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Chapter 1: 

 

Preface: cascading events 
 

The increase of the industrial production of the past century generated a significant change in 

modern lifestyle, since industry provides most of the needs of people. The increase of energy 

demand and material supply are two of the requirements for the development of the modern 

mass productions. The relentless increase in population and their needs, which were fulfilled only 

thanks on innovation in technologies, determined an acceleration in the growth of chemical 

production. 

Therefore, also the quantity of hazardous materials and their diffusion in industrial activities has 

had an increasing tendency in the recent years. New chemical plants are installed every years 

worldwide, often in the vicinity of urban areas, in order to provide the availability of plenty of 

personnel. In the same time, both process plants and residential areas has suffered a process of 

intensification. As a results, if in the one hand the happening of accidents related to the industrial 

activity has become a far more rare event than years before, on the other hand the few accidents 

that occurred and that may occur, have a greater potential to cause huge losses.   

For this reason, the so called cascading events, which lead to high-impact low-frequency scenarios 

are rising concern worldwide. During those events, a chain of event result in a major industrial 

accident with dreadful (and often unpredicted) consequences. 

A high level of concentration of industrial activities within chemical clusters generates the basis for 

accidents having a simultaneous impact on several plant units, eventually resulting in casualties, 

environmental contamination ad of course huge monetary losses. Cascading events can be the 

result of terrorist attack or of “domino effect”, an event in which the escalation of a primary 

accident is driven by the propagation of the primary event to nearby units, causing an overall 

increment of the accident severity. Also natural disasters, like intense flooding, hurricanes, 

earthquake and lightning are found capable to trigger industrial accidents as a result of an event 

cascade that result in loss of containment of hazardous materials and in major accidents. Has this 

event to happened the consequences of those technological accidents adds to the emergency 

situation left by the impact of natural disaster on urban areas. For this reason the scientific 

community usually refers to those accident as “NaTech”: natural events triggering industrial 

accidents.  

The events related to the 2011 Tohoku Tsunami in Japan demonstrated the need for safety 

managers to an even more important necessity to explicitly prevent, model and manage the risks 

due to cascading events. There is growing evidence that loss of containment of  hazardous 

material triggered by “external hazards” can pose significant risks to nearby population, which 

may be unprepared for such events. Also the response plan of the industries can be bound 

unprepared to face domino or NaTech events. Utilities used to fight the accidental situation (e.g. 

water, power, and communications ways) may not be available due to external damage. The 

chemical safety personnel supposed to fight the accident situation might be caught in the event 
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cascade or might be busy on finding a shelter. Finally, mitigation measures (e.g. containment dikes 

or foam systems) may not work properly due to the interference of the event cascade. 

However, due to the fact that accidents scenarios due to cascading events are characterized by a 

very high complexity, in combination with the extremely low probabilities of such accidents,  those 

events are often left out from the safety assessment of chemical activities. For this reason, one of 

the main topics of academic and industrial research in the field of industrial safety is the study of 

cascading events, aimed at the development of specific methodologies for risk assessment and 

safety management. 

The activity of my PhD regarded cascading events, on the research of domino and NaTech events. 

In this thesis, a state of the art of available approaches to the modelling,  assessment, prevention 

and management of domino and NaTech events is described. New methodologies, developed 

during my research activity, aimed at the quantitative assessment of domino and Natech accidents 

are also presented. 

Chapter 2 reports the state of the art on the research regarding domino accidents. In this chapter 

three main topics are analyzed: the analysis of past accidents, the development of fragility models 

for process equipment and the development of risk analysis and safety management methods. 

Chapter 3 reports the state of the art on the study of NaTech events. In this chapter a review of 

past accidents is reported, observed both in the US and in the EU. Then, the efforts toward a 

common framework for the quantitative assessment of NaTech accidents are described. 

Chapter 4 reports the efforts toward a novel methodology for the quantitative assessment of 

accidents due to lightning strikes. In this chapter contains: a detailed analysis of past accidents 

caused by lightning strikes, a statistical model for the assessment of lightning impact frequency on 

process units, the analysis and identification of possible accidents triggered by lightning strikes, a 

model for the assessment of process vessel vulnerability due to lightning strikes, the description of 

the protective barriers that protects storage tanks, event trees that helps the assessment of the 

probability of the final scenarios, a methodology for consequence assessment of accidents 

triggered by lightning strikes, a case study showing the result obtained by the use of the 

developed models to a real industrial installation. 

Chapter 5 contains the development of fragility models for the assessment of the damage 

probability of storage and process vessels during intense floods events. In this chapter, a 

mechanical model for the damage to horizontal storage tank is presented. The extensive use of 

the mechanical model lead to the identification of a dataset of failure conditions, allowing the 

statistical interpretation for the assessment of a damage probability for a given tank involved in 

flood events. 

Chapter 6 contains a novel methodology to describe and assess the possible scenarios that arise as 

a consequence of domino events. In this chapter the Markovian analysis is used in order to 

identify all the possible domino scenarios and their probability to occur.  

Chapter 7 contains the final conclusions of the work. 

This thesis presents the most up to date discussion, and uses the most advanced models, in order 

to provide the best methodologies to deal with cascading events, allowing their inclusion in safety 

management systems of the chemical and process industry. This study offers to be a milestone for 

the state-of-the-art for further research on the topic. 
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Chapter 2: 

State of the art on the research of Domino accidents 
 

2.1 Introduction 

 

The growing public concern caused by high-impact low-probability (HILP) accident scenarios raised 

the attention in the scientific and technical literature on the analysis of the so called “domino 

effect” (Reniers and Cozzani, 2013). Domino effect was responsible of several catastrophic 

accidents that took place in the chemical and process industry (Abdolhamidzadeh et al., 2011; 

CCPS, 2000; Khan & Abbasi, 1999; Mannan, 2005). Although an increasing interest can be inferred 

from the available scientific publications, this subject has been afforded by a relatively limited 

number of authors. As a result, there is still a poor agreement on the main definitions of domino 

effect, and specific features of domino scenarios are still poorly known. Table 2.1 reports a 

summary of domino effects definitions (Reniers (2010); Abdolhamidzadeh et al. (2011), Reniers 

and Cozzani 2013b).  

 

Table 2.1: Definitions Given for a “Domino Effect” or a “Domino Accident” 

Author(s)  Domino effect definition  

Third Report of the 
Advisory Committee on 
Major Hazards (HSE, 1984)  

The effects of major accidents on other plants on the site or nearby sites. 

Bagster and Pitblado 
(1991) 

A loss of containment of a plant item which results from a major incident on 
a nearby plant unit. 

Lees (1996) An event at one unit that causes a further event at another unit. 

Khan and Abbasi (1998b) A chain of accidents or situations when a fire/explosion/missile/toxic load generated by an accident in one unit in 
an industry causes secondary and higher order accidents in other units 

Delvosalle (1998) A cascade of accidents (domino events) in which the consequences of a previous accident are increased by the 
following one(s), spatially as well as temporally, leading  to a major accident. 

Uijt de Haag and Ale (1999) The effect that loss of containment of one installation leads to loss of containment of other installations. 

AIChE-CCPS (2000) An accident which starts in one item and may affect nearby items by thermal, blast or fragment impact. 

Vallee et al. (2002) An accidental phenomenon affecting one or more installations in an establishment which can cause an accidental 
phenomenon in an adjacent establishment, leading to a general increase in consequences. 

Council Directive 
2003/105/EC (2003) 

A loss of containment in a Seveso installation which is the result (directly and indirectly) from a loss of containment 
at a nearby Seveso installation. The two events should happen simultaneously or in very fast subsequent order, and 
the domino hazards should be larger than those of the initial event. 

Post et al. (2003) A major accident in a so-called ‘exposed company’ as a result of a major accident in a so-called ‘causing company’. 
A domino effect is a subsequent event happening as a consequence of a domino accident. 

Lees (2005) A factor to take account of the hazard that can occur if leakage of a hazardous material can lead to the escalation of 
the incident, e.g. a small leak which catches fire and damages by flame impingement a larger pipe or vessel with 
subsequent spillage of a large inventory of hazardous material. 

Cozzani et al. (2006)  Accidental sequences having at least three common features: (i) a primary accidental scenario, which initiates the 
domino accidental sequence; (ii) the propagation of the primary event, due to “an escalation vector” generated by 
the physical effects of the primary scenario, that results in the damage of at least one secondary equipment item; 
and (iii) one ore more secondary events (i.e., fire, explosion and toxic dispersion), involving the damaged 
equipment items (the number of secondary events is usually the same of the damaged plant items). 

Bozzolan and Messias de 
Oliveira Neto (2007)  

An accident in which a primary event occurring in primary equipment propagates to nearby equipment, triggering 
one or more secondary events with severe consequences for industrial plants. 

Gorrens et al. (2009) A major accident in a so-called secondary installation which is caused by failure of a so-called external hazards 
source. 

Antonioni et al. (2009) The propagation of a primary accidental event to nearby units, causing their damage and further “secondary” 
accidental events resulting in an overall scenario more severe than the primary event that triggered the escalation. 
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Since there is not a widely accepted definition of domino effect, as a consequence most of the 

studies on domino effect are carried out independently and focus either on very particular aspects 

of accident escalation process, as vulnerability models, or on the definition of methodologies for 

hazard and/or risk assessment of domino scenario. This was evidenced in a recently published 

comprehensive review of the state of the art in domino effect assessment (Reniers and Cozzani, 

2013a). Relevant research efforts are currently dedicated to domino effect assessment and to the 

development of safety management systems that allow coping with escalation and cascading 

events. Four main topics may be identified for the ongoing research activities on domino effect: 

past accident analysis; vulnerability models for equipment damage; quantitative risk assessment; 

and safety management of domino scenarios. Figure 2.1 shows the number of relevant 

publications on domino effect present published in scientific journals in the period 1985-2014 

divided by topic. As shown in the figure, large part of the papers published were aimed at the 

study of equipment damage mechanism and at the development of vulnerability models. A quite 

high number of papers aimed at the inclusion of domino accidents in quantitative risk assessment, 

while a more limited number of studies were dedicated to innovative safety management tools for 

domino accidents and to the historical assessment of domino events through the analysis of past 

accident database. Further details on publications addressing domino effect are reported in Annex 

1. 

 

 

Figure 2.1: Scientific publications on domino effect in the period 1988 – 2014 divided by topic. 
 
The present contribution is aimed at assessing the progress and providing a critical review of the 

most important studies on domino effect carried out in the last 25 years on three specific key 

points in domino effect assessment: i) past accident analysis; ii) vulnerability models for 

equipment damage; iii) quantitative risk assessment and safety management of domino scenarios. 

A summary of the contributions analysed,  with particular focus on the progress provided by each 

reference to the overall knowledge concerning domino effect analysis can be found in Table 2.2. 

The final aim of the present analysis is to understand how the progress on such issues may affect 

the assessment of domino hazard, and to identify weak points of actual methodologies and 

possible directions of future studies, in order to fill the gaps that prevent an exhaustive scientific 

description of domino effect. 
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Table 2.2: The articles analysed in the present study divided by categories. 

Document Category Methodology Topic Pubblication/Journal 

Kourniotis et al. 
(2000) 

Past accident 
Analysis 

Past accident Analysis-
Statistical analysis Database research Journal of Hazardous Materials 

Gómez-Mares et 
al. (2008) 

Past accident 
Analysis 

Past accident Analysis-
Event tree analysis Database research Fire Safety Journal 

Debara et al. 
(2010) 

Past accident 
Analysis 

Past accident Analysis-
Event tree analysis Database research Journal of Hazardous Materials 

Abdolhamidzadeh 
et al. (2011)  

Past accident 
Analysis Past accident Analysis Database research 

Journal of Loss Prevention in the Process 
Industries 

Abdolhamidzadeh 
et al.(2012)  

Past accident 
Analysis 

Investigation of a Case 
Study Accident investigation 

Process Safety and Environmental 
Protection 

Hemmatian et al. 
(2014) 

Past accident 
Analysis 

Past accident Analysis-
Event tree analysis Database research 

Journal of Loss Prevention in the Process 
Industries 

Eisenberg et al. 
(1975) Vulnerability models Probit models Overpressure 

Report CG-D-136-75, Enviro Control Inc., 
Rockville, MD, 1975 

Cozzani and 
Salzano (2004 a) Vulnerability models 

Threshold Values and 
Probit Overpressure Journal of Hazardous Materials 

Cozzani and 
Salzano (2004 b) Vulnerability models 

Threshold Values and 
Probit Overpressure Journal of Hazardous Materials 

Mingguang and 
Juncheng (2008) Vulnerability models Probit Models Overpressure Journal of Hazardous Materials 

Hauptmanns 
(2001 a) Vulnerability models Monte Carlo Fragments 

Journal of Loss Prevention in the Process 
Industries 

Hauptmanns 
(2001 b) Vulnerability models Monte Carlo Fragments Probabilistic Engineering Mehanics 

Gubinelli et al. 
(2004) Vulnerability models Probabilistic Fragments Journal of Hazardous Materials 

Gubinelli and 
Cozzani (2009) Vulnerability models Monte Carlo Fragments Journal of Hazardous Materials 

Nguyen et al. 
(2009) Vulnerability models Monte Carlo Fragments Advances in Engineering Software 

Zang and Chen 
(2009)  Vulnerability models Monte Carlo Fragments Safety Science 

Tugnoli et al. 
(2014) Vulnerability models 

Accident investigation 
Fragments 

Journal of Loss Prevention in the Process 
Industries 

Birk (1988) Vulnerability models Modelling BLEVE Journal of Hazardous Materials 

Moodie (1988)  Vulnerability models Experimental BLEVE Journal of Hazardous Materials 

Droste e Schoen 
(1988) Vulnerability models 

Experimental 
BLEVE Journal of Hazardous Materials 

Leslie and Birk 
(1991) Vulnerability models Review BLEVE Journal of Hazardous Materials 

Prugh (1991) 
Vulnerability models 

Past accident analysis 
BLEVE 

Hazard Reduction Engineering, Inc. 
Wilmington, DE (1991) 

Birk and 
Cunningham 
(1994)  Vulnerability models 

Experimental and 
modelling 

BLEVE 
Journal of Loss Prevention in the Process 
Industries 

Birk (1995) Vulnerability models 
Experimental and 
modelling BLEVE 

Journal of Loss Prevention in the Process 
Industries 

Venart et al 
(1993) Vulnerability models 

Experimental and 
modelling BLEVE 

Gas–Liquid Flows, vol. 165ASME, New York 
(1993) 

Venart (2000) Vulnerability models 
Experimental and 
modelling BLEVE 

Proceedings of the IChemE Symposium 
Series No. 147  

Yu and Venart 
(1996) Vulnerability models 

Experimental and 
modelling BLEVE Journal of Hazardous Materials 

Birk and 
Cunningham 
(1996) Vulnerability models 

Experimental and 
modelling BLEVE Journal of Hazardous Materials 

Roberts et al. 
(1995a) Vulnerability models Experimental only BLEVE 

HSL Report R04.029, IR/L/PH/95/11, 
Buxton, UK, July. 

Roberts et al. 
(1995b) Vulnerability models Experimental only BLEVE 

HSL Report R04.029, IR/L/PH/95/11, 
Buxton, UK, July. 

Roberts et al. 
(1995c) Vulnerability models Experimental only BLEVE 

HSL Report R04.029, IR/L/PH/95/11, 
Buxton, UK, July. 

Roberts et al. 
(1996a) Vulnerability models Experimental only BLEVE 

HSL Report R04.029, IR/L/PH/95/11, 
Buxton, UK, July. 

Roberts et al. Vulnerability models Experimental only BLEVE HSL Report R04.029, IR/L/PH/95/11, 
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(1996b) Buxton, UK, July. 

Susan et al. (2005) 
Vulnerability models 

Modelling wall 
temperature BLEVE 

HSL Report R04.029, IR/L/PH/95/11, 
Buxton, UK, July. 

Abbasi and Abbasi 
(2007) Vulnerability models 

Past accident Analysis-
Article review BLEVE Journal of Hazardous Materials 

Salzano et al. 
(2003) Vulnerability models 

Equipment damage 
modelling Thermal radiation 

Industrial & Engineering Chemistry 
Research 

Raj (2005)  Vulnerability models 
Heat radiation-wall 
etmperature modelling Thermal radiation Journal of Hazardous Materials 

Landucci et al. 
(2009a) Vulnerability models 

Experimental and 
modelling Thermal radiation Journal of Hazardous Materials 

Landucci et al. 
(2009b)  Vulnerability models 

Correlation for damage 
due to fire Thermal radiation Accident Analysis and Prevention 

Bagster and 
Pitbaldo (1991) 

Risk Assessement 
and Management 

Methodology  for 
domino assessment QRA Proc. Safety Environ. Protect 

Delvosalle (1996) 
Risk Assessement 
and Management 

Methodology  for 
domino assessment QRA 

uropean Seminar on Domino Effects, 
Federal Ministry of Employment, Brussels 

Gledhill and Lines 
(1998) 

Risk Assessement 
and Management 

Methodology  for 
domino assessment QRA CR Report 183, Health and Safety Executive 

Khan and Abbasi 
(1998a) 

Risk Assessement 
and Management 

Methodology  for 
domino assessment QRA Process Saf. Prog. 

Khan and Abbasi 
(1998b) 

Risk Assessement 
and Management 

Software tool for 
domino assessment QRA Environ. Model. Softw. 

Khan and Abbasi 
(2000) 

Risk Assessement 
and Management 

Methodology  for 
domino assessment QRA Chem. Eng. Prog. 

Khan and Abbasi 
(2001a) 

Risk Assessement 
and Management 

Application of QRA tool 
to case study QRA Cleaner Prod. 

Khan and Abbasi 
(2001b) 

Risk Assessement 
and Management 

Application of QRA tool 
to case study QRA 

Journal of Loss Prevention in the Process 
Industries 

Cozzani et al. 
(2005)  

Risk Assessement 
and Management 

Methodology  for 
domino assessment QRA Journal of Hazardous Materials 

Cozzani et al. 
(2006) 

Risk Assessement 
and Management 

Software tool for 
domino assessment QRA 

Journal of Loss Prevention in the Process 
Industries 

Antonioni et al 
(2009) 

Risk Assessement 
and Management 

Software tool for 
domino assessment QRA 

Journal of Loss Prevention in the Process 
Industries 

Abdolhamidzadeh 
et al. (2010)  

Risk Assessement 
and Management 

Software tool for 
domino assessment QRA Journal of Hazardous Materials 

Bernachea et al 
(2013) 

Risk Assessement 
and Management 

Software tool for 
domino assessment QRA 

Process Safety and Environmental 
Protection 

Khakzad et al. 
(2013) 

Risk Assessement 
and Management 

Software tool for 
domino assessment QRA Risk Analysis  

Rad et al. (2014) 
Risk Assessement 
and Management 

Software tool for 
domino assessment QRA 

Process Safety and Environmental 
Protection 

Cozzani et al. 
(2014) 

Risk Assessement 
and Management 

Methodology  for 
domino assessment QRA 

Journal of Loss Prevention in the Process 
Industries 

Reniers et al. 
(2005a) 

Risk Assessement 
and Management 

Risk Management and 
operation planning 

Risk Management and 
AccidentPrevention 

Journal of Loss Prevention in the Process 
Industries 

Reniers et al. 
(2005b) 

Risk Assessement 
and Management 

Risk Management and 
operation planning 

Risk Management and 
AccidentPrevention 

Journal of Loss Prevention in the Process 
Industries 

Cozzani et al. 
(2006) 

Risk Assessement 
and Management 

Thresholds and safety 
distances 

Risk Management and 
AccidentPrevention Journal of Hazardous Materials 

Cozzani et al. 
(2007) 

Risk Assessement 
and Management 

Safety distances and 
Inherent safety 

Risk Management and 
AccidentPrevention Journal of Hazardous Materials 

Tugnoli et al. 
(2008a) 

Risk Assessement 
and Management 

Ihnerent safety 
approach 

Risk Management and 
AccidentPrevention Journal of Hazardous Materials 

Tugnoli et al. 
(2008b) 

Risk Assessement 
and Management 

Ihnerent safety 
approach 

Risk Management and 
AccidentPrevention Journal of Hazardous Materials 

Cozzani et al. 
(2009) 

Risk Assessement 
and Management 

Key performance 
indicators 

Risk Management and 
AccidentPrevention Accident Analysis and Prevention 

Reniers et al. 
(2009)  

Risk Assessement 
and Management 

Risk Management and 
operation planning 

Risk Management and 
AccidentPrevention Journal of Hazardous Materials  

Reniers et al. 
(2010) 

Risk Assessement 
and Management 

Risk Management and 
operation planning 

Risk Management and 
AccidentPrevention Journal of Hazardous Materials  

Di Padova et al. 
(2011) 

Risk Assessement 
and Management 

Identification of 
fireproofing zones 

Risk Management and 
AccidentPrevention Journal of Hazardous Materials  
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2.2 Past accident analysis 
 

The analysis of past accidents is a powerful tool to understand and analyse domino scenarios. Past 

accidents are in fact the only source of “experimental data” available in this field. The analysis of 

domino accidents gives the possibility of investigating specific features of escalation scenarios: the 

events that more fre quently trigger a domino sequence, the more frequent escalation sequences, 

the hazardous substances that are more prone to be involved in these accidents, etc. However, 

the survey of domino accidents has implicit difficulties, the most significant being the lack of 

information. Reports on accidents involving domino effect can be obtained from the scientific 

literature, from technical reports and in specific databases. Some cornerstone studies are present 

in the field. 

The paper of Kourniotis et al. (2000) reports the analysis of a set of 207 major accidents retrieved 

from competent authorities reports and well established accident databases. The ratio of domino 

accidents on the total number of accidents analysed is of 0.386. Accidents have up to 600 

recorded causalities. Data are analysed statistically in order to calculate the p-N distribution curves 

for the accident analysed. 

Differences in the distribution shape and parameters have been observed between the entire set 

of accidents analysed and accidents where domino effect takes place, showing that the probability 

of numerous fatalities occurring is higher as a consequence of domino accidents than as a 

consequence of a general accident (see Figure 2.2). The conclusion is that domino scenarios show, 

in general, a higher severity to the respect of conventional scenarios. 

The study of Ronza et al. (2003) is not focused at domino effect, however it performed a survey of 

828 accidents in port areas recorded in the MHIDAS database (MHIDAS, 2001). A total of 108 out 

of 828 past accident records are domino accidents. Conditional probability event trees were built 

to identify the event sequences in the accident scenarios where a domino effect was observed. 

The most frequent event sequences were: fire→explosion, release→fire→explosion, and 

release→gas cloud→explosion. 

The investigation of Gómez-Mares et al. (2008) is focused on the study of accidental scenarios 

involving jet fires. Events were retrieved from four different accident databases: MHIDAS, ARIA, 

MARS and FACTS. A total of 84 accidents involving jet fire were analysed. Event trees where 

created on the basis of available data in order to identify the probability of first and second level 

domino scenarios. In 27% of the cases, the sequence identified by the event tree analysis was loss 

of containment (LOC) to jet-fire to explosion. In 11% it was LOC to vapour cloud explosion to jet-

fire, which in a few cases evolved in an explosion or in a Boiling Liquid Expanding Vapour Explosion 

(BLEVE). According to the data from the event tree , the probability of another accident occurring 

together with a jet fire is 0.49 (both causes and consequences), and the probability of occurrence 

of an explosion occurring is of 0.44. 

In the paper from Darbra et al. (2010), the main features of domino accidents in process/storage 

plants and in the transportation of hazardous materials were studied through the analysis of 225 

accidents involving escalation. The more common causes of primary events triggering domino 

accidents resulted: external events, mechanical failure, human error. Most of the accidents took 
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place in storage installations, process installations and during transport. The statistics also point 

out high accident frequencies during loading and unloading operations. The severity of domino 

accidents is analysed with the use of p-N curves. The result of this analysis shows how in the last 

20 years the number of accidents in Europe and in US decreased, while overall the number and 

also the severity of major accidents increased. 

Figure 2.2 represents the p-N plots reported in the studies by Kourniotis et al. (2000), who studied 

accidents occurred in industrial installations, and by Darbra et al. (2010), who studied the 

accidents occurred during transport of hazardous materials. In the graph the abscissae represent 

the severity of the accident (the number of fatalities, N) and the values on the ordinate axis 

represent the conditional probability (p) of an accident (that occurred and resulted in fatal 

consequences) to result in N or more fatalities.  

 

 
Figure 2.2 - The p-N graph that show the impact of domino accidents on population. The two black 

curves are those provided by Kourniotis et al. (2000), while the grey dots are those provided by 

Darbra et al. (2010) 

 

The study of Abdolhamidzadeh et al. (2011) analysed a set of 224 domino accidents that occurred 

between 1910 and 2008 considering the type of activity, the substances involved, the level of 

domino effect and the impact on the affected population. The study focuses on a relatively small 

number of accidents, some of which occurred in the early 20th century. The study evidences that 

the most of the domino accidents considered involved flammable substances. Fires have been the 

accident trigger in 43 % of the recorded domino accidents. Among fires, pool fire was the specific 

scenario more frequently resulting in an escalation (80% of domino accidents initiated by fires). 

Explosions were the accident chain initiator in the 57% of cases, and vapour cloud explosions 

(VCEs) were the specific scenario more frequently resulting in an escalation (84%). The number of 

fatalities per accident was also examined and resulted increasing in time. 

Thus, the analysis of domino accidents carried out in previous studies allows evidencing that the 

number of severe domino scenarios, although decreasing locally e.g. in Europe, is increasing 

worldwide, and the severity of domino scenarios is also increasing. Specific scenarios, in particular 

pool fires and VCEs, seem particularly prone to trigger domino scenarios. Thus, the assessment of 

the vulnerability of equipment items to fires and explosions emerges as a key issue to explore in 

escalation assessment and in the analysis of domino scenarios. 



15 

 

2.3 Vulnerability models 
 

2.3.1 Approach to the probabilistic modelling of Equipment Damage 

A primary accident scenario usually propagates due to the failure of other storage or process 

units. Direct damage causing the loss of the structural integrity of secondary (target) equipment is 

the more frequent cause of accident propagation. Seldom, indirect effects are responsible of 

accident propagation (e.g. loss of control of the installation due to control room damage or 

evacuation, e.g. in the case of explosions or toxic releases) (Khan and Abbasi, 1998b). Thus, in 

order to have a domino effect the presence of an “escalation vector” is required: a vector of 

physical effects generated by the primary accident scenario, which causes its propagation. 

The study of domino scenarios therefore requires the analysis of the relation between the physical 

effects of the primary accident and the potential damage caused on nearby units and equipment 

items. These relations are usually referred to as vulnerability models (Cozzani et al., 2005; Cozzani 

et al, 2013a). Since both the behaviour of the accident scenarios and the resilience of the target 

units are stochastic, studies on vulnerability models are performed in a probabilistic framework. 

The goal of vulnerability models is to calculate a damage probability as a function of the intensity 

of the physical effect and of the constructive characteristics of the targets. Many studies in the 

past used Probit-like models (Lees, 1996; Van Den Bosh et al., 1989) to relate the damage 

probability of a given target to the intensity of the physical effects (Eisenberg et al. 1975; Cozzani 

and Salzano 2004a; Mingguang and Juncheng 2008). Nevertheless, some authors apply different 

types of damage probability models. In the following, a list of contributions aimed at the 

assessment of escalation probability is reviewed. The discussion is divided in three sections, 

according to the physical effect which may be responsible for the escalation: 

 Blast Waves 

 Heat Radiation 

 Fragment projection 

 

2.3.2 Damage due to Blast Waves 

In industrial accidents, blast waves me be generated by several different accident scenarios: vessel 

bursts, vapor cloud explosions (VCEs.), Boiling Liquid Expanding Vapor Explosions (BLEVEs) and 

condensed phase explosions. 

The consequences of the blast load effects on a structure or equipment will depend on both the 

characteristics of the blast load and on the target characteristics such as: shape, size, mass and 

dynamic resistance. Equipment may be sensitive to static overpressure, dynamic pressure or a 

combination of both (Di Benedetto et al., 2010). 

The correct approach to assess equipment damage due to a blast wave would require the 

application of finite element models. However, such resource-demanding deterministic approach 

needs a very detailed characterization of both the explosion scenario and the mechanical features 

of the target equipment. These are difficult to obtain, in particular due to the inherent 

uncertainties associated to the definition of the explosion scenario. 
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Thus, the use of simplified models and approaches is presently the main option for escalation 

assessment. The simplest approach for the assessment of damage to equipment caused by 

shockwave is based on threshold values or vulnerability tables. For a overpressure value that 

overcome the threshold value a damage probability one is assumed, while damage probability 

zero is assumed for overpressure values below the selected limit. However, no agreement exists 

among different authors on the threshold values that range from 7 to 70 kPa, depending on the 

different damage typology considered (vessel rupture, vessel displacement, connection 

displacement, etc…) (Cozzani et al., 2006). 

Threshold values were also used in empirical models to develop probabilistic correlations for 

equipment failure: e.g. the model of Bagster and Pitblado (1991) who proposed the following 

correlation for equipment damage due to blast waves: 

   (  
 

   
)
 

     (2.1) 

Where Fd is the damage probability, r is the distance from the explosion and rth is the distance at 

which the predicted overpressure equals the threshold value for equipment damage. The formula 

implies that the probability of damage is 1 where blasting occurs, which may lead to strongly 

unrealistic results. 

Simplified deterministic approaches are also proposed in the literature. The DIN standard 4119 

(Deutsche Norme (DIN) 4119, 1979) proposes the use of Equations (2.2) and (2.3) to calculate the 

maximum value of pressure that vertical atmospheric storage tank can withstand before a 

relevant deformation takes place (the “buckling” pressure): 

          (
 

 
) (   

  

  
)
   

       
    (2.2) 

         (
 

 
) (   

 

  
)
   

       
     (2.3) 

where W is the mean wall thickness, WU the shell thickness in the upper tank section , Wo is the 

shell thickness in the lower tank section, D is the tank diameter, H is the height of the empty 

section of the tank, HL is the liquid level height and B is a coefficient having a value around 2. 

More recently, Probit-like models (Lees, 1996; Van Den Bosh et al., 1989) were used to relate the 

peak overpressure to the expected damage probability (Eisenberg et al., 1975): 

             (  
 )     (2.4) 

where Yblast is the probit value for equipment damage, ΔPo is the peak static overpressure (in Pa), a 

and b are the probit coefficients. From the probit value, probability is easily calculated (Lees, 1996; 

Van Den Bosh et al., 1989). The probit approach was first applied in the pioneering work of 

Eisemberg and co-authors, which proposed a general correlation for any type of equipment 

(Eisenberg et al. (1975)). 

More recently, specific probit models for different categories of equipment were proposed by 

Salzano and Cozzani (2004a; 2004b). The study, necessarily based on several simplifying 

assumptions (far field, no directionality effects, etc.) pointed out the importance of considering 

the different characteristics of equipment categories for the reliable assessment of blast wave 

damage. More recently, a different fitting of the damage data used by Salzano and Cozzani to 

develop the probit correlations was propsoed by Mingguang and Juncheng 2008, resulting in 

higher damage probabilities at lower pressure and lower probabilities at higher pressure than 
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those provided in the original probit models. Table 2.3 reports the coefficients for the Probit 

equation, provided by above cited studies. Salzano and Cozzani (2005) also coupled the probit 

models to simplified models for peak overpressure as a function of distance from the explosion 

centre and of explosion strength, thus providing simplified correlations allowing a straightforward 

estimation of damage probability and of safety distances for escalation effects. 

 

Table 2.3 - Probit equation coefficients for the calculation of the damage probability due to 

overpressure, provided by different authors 
Equipment  a  b Reference 

Atmospheric Vessels -23.8 2.92 Eisenberg et al. (1975) 
Atmospheric Vessels -18.96 2.44 Salzano and Cozzani (2004) 
Pressurized Vessels -42.44 4.33 Salzano and Cozzani (2004) 
Elongated equipment -28.07 3.16 Salzano and Cozzani (2004) 
Small equipment  -17.79 2.18 Salzano and Cozzani (2004) 
Atmospheric Vessels -9.36 1.43 Mingguang and Juncheng 2008 
Pressurized Vessels -14.44 1.82 Mingguang and Juncheng 2008 
Elongated equipment -12.22 1.65 Mingguang and Juncheng 2008 
Small equipment  -12.42 1.64 Mingguang and Juncheng 2008 

 

 
 
2.3.3 Damage due to Fragment Impact 

Beside blast waves, explosions in the process industry may result in the projection of fragments or 

debris. The impact of projected fragments was documented as a cause of domino effect (Gledhill 

and Lines, 1998; Khan and Abbasi, 1998). Fragment projection is usually caused by internal 

explosions (physical explosions, confined explosions, BLEVEs, runaway reactions) causing the 

catastrophic failure of vessels and the transfer of part of the explosion energy to the projected 

fragments. Fragment may be projected very far from the collapsed vessel (up to more than 1km), 

and the projected fragments have the potential to trigger secondary accidents causing the loss of 

integrity of the target vessel. When a fragment hits a target vessel, it may pierce the vessel shell 

(perforation), stop at some depth of penetration (embedment) or bounce back (ricochet). Thus 

the target can be damaged either by penetration or by plastic collapse. 

Most of the studies concerning fragment projection were dedicated to the assessment of the 

probability of fragment impact. Less attention to date was dedicated to the conditional probability 

of damage given the impact, that was usually assumed equal to one (damage always follows the 

impact). 

The early work on the topic was mainly based on direct statistical analysis of accident data (CCPS, 

1994; Scilly and Crowter, 1992). More recently, models based on the analysis of fragment 

trajectory were proposed. Two papers by Hauptmanns (2001a; 2001b) describe a probabilistic 

method, based on Monte Carlo simulations, for the assessment of fragment impact probability. 

The fragments trajectories are described by the basic equation of motion, but the critical 

parameters are discussed and analysed in detail. The initial fragment velocity is calculated as a 

function of the explosion energy (CCPS, 1994; Baum, 1998). The operating conditions and the 

filling level result as the more important parameter for the calculation of the explosion energy. 
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Fragment mass and number are also relevant, not only to calculate the distance of projection, by 

also to assess the energy received by each fragment. Other important parameters are the 

projection angles, for which a uniform distribution is assumed. The probability of impact is 

assessed as a function of distance and average kinetic energy received by the fragments. 

Gubinelli et al. 2004, starting from the work of Hauptmanns (2001a; 2001b), developed an 

improved model, specifically aimed at the assessment of fragment impact probability on a target 

vessel. The model calculates the instantaneous velocity of fragments as a function of the angle of 

departure. On the basis of target distance and geometry, the range of departure angles leading to 

fragment impact is then calculated. The probability of impact is then assessed as the integral of 

the probability distribution function assumed for the projection angles in polar coordinated. In 

analyses the relations among the vessel geometry, the characteristics of the accidental scenario 

causing the vessel shattering into pieces and the shape and number of fragments generated. In 

this study the critical parameters of fragment shape, velocity and energy are discussed in detail. 

Successive studies by Gubinelli and Cozzani (2009a; 2009b), Tugnoli et al., (2014) based on the 

analysis of a database of 143 accidents in which vessel fragmentation and fragment projection 

took place, provided statistical correlations on fragmentation patterns on the basis of accident 

scenario and vessel features (Gubinelli and Cozzani, 2009a), on the drag factor and expected 

number of fragments generated (Gubinelli and Cozzani, 2009b) and on the probability distribution 

functions for the initial projection angles (Tugnoli et al., 2014). The overall approach resulting by 

this set of publications was recently applied to the detailed analysis of a past accident occurred in 

1993 in the Milazzo refinery, in Italy (Tugnoli et al., 2014). The accident features were found to be 

coherent with the results of the application of the modelling approach, and the accident 

consequences resulted among those having a higher probability according to the model. 

The development of 3D simulators allowed Nguyen and coworkers (Nguyen et al., 2009) to use 

improved Monte Carlo simulations to assess the probability of fragment impingement in a 3D 

environment. Several improvements with respect of previous study are introduced in this model: a 

non-uniform probability for the fragment initial direction is assumed and a model for fragment 

penetration in metal enclosure as a function of the fragment speed and mass is applied. This 

simplified analytical model calculates the penetration probability of fragments in the metal wall, 

considered as a rigid object, and is adequate only for small fragments having a high velocity at the 

instant of the impact. 

Finally, a study by Zang and Chen (2009) presents a procedure for the calculation of fragment 

impact probability based on the work on Hauptmanns (2001) and of Gubinelli et al. (2004). Monte 

Carlo simulations where used for impact probability assessment and a new methodology for the 

calculation of expansion energy and of the initial fragment velocity is presented. Furthermore, the 

model identifies automatically all the possible targets based on the maximum fragment projection 

distance. 

Thus, it may be concluded that in the case of damage due to fragment impact, more complex and 

less consolidated approaches are present. The rather low number of escalation accidents caused 

by fragment impact and the very high number of parameters that may affect fragment impact and 

damage hindered the development and validation of vulnerability models. Only recently, the 

systematic studies based on a relevant number of accident by Gubinelli and Cozzani, and the use 
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of improved simulation tools by Nguyen and Mebarki, overcome the scarcity of data and the 

limitations due to computational results. Still, further work is needed to improve the available 

models for fragment impact and damage resulting in escalation. 

 

2.3.4 Damage due to Fire 

2.3.4.1 Equipment damage caused by fire 

Fire acts as a severe heat load on structures, capable to cause damage and failure of process units, 

storage vessels, pipework and pipelines. A massive heat flow investing a vessel can produce many 

dangerous effects: a lower mechanical resistance of the shell wall, an increase of the internal 

pressure, local thermal stresses, the melting of seals and other non-metallic components and it 

may ignite flammable vapours (e.g. of flammable vapours around the rim seal of floating roof 

atmospheric storage tanks). There are many different types industrial fires, but in the framework 

of escalation assessment four categories of industrial fires are relevant: pool fires, jet fires, flash 

fires, and fireballs (Uijt de Haag and Ale, 1999). 

 

2.3.4.2 Time to failure of vessels under heat load 

The results of the analysis of past accidents evidences that long-lasting stationary fires, as pool 

fires and jet fires are responsible of the large majority of escalation events in industrial accidents 

(Gómez-Mares et al. 2008). In such scenarios, the heat load is a combination of the heat 

transferred from the fire by radiation and convection. While the target equipment receives the 

heat load, the shell of the target vessel heats up and heat is transferred into the liquid and vapour 

lading. Thus, the wall temperature increases and consequently the internal fluid temperature 

rises. For typical steel vessels the strength of the material drops rapidly at temperatures above 

700K. The heating effect is time-dependent, since the higher the exposure time, the higher the 

consequences. For this reason the escalation is usually delayed with respect to the initiating event. 

The time lapse between the start of the fire accident and the failure of target equipment damaged 

by the fire takes the name of time to failure (ttf). 

In fire accident scenarios relevant for escalation, the resistance of the target equipment needs to 

be specifically evaluated, taking into account the characteristics of the fire scenario and the actual 

exposure to fire. Hence, reliable tools for the prediction of the ttf are required in order to 

determine the likelihood of escalation. However, modelling the failure mechanisms of equipment 

effected by heat load due to fires is a very complex and multidisciplinary task. Semi-empirical 

correlations and simplified criteria for estimation of the vessel failure were proposed in earlier 

studies (Moodie, 1988), while more recently more complex two-dimensional and three-

dimensional (3D) models were developed (Hadjisophocleous et al., 1990; Venart, 1986). 

Early work on the topic was mostly dedicated to the analysis of pressurized vessels failure leading 

to BLEVEs. The study by Moodie 1988 is aimed at the effects of fire engulfment due to pool fire. 

The work of Birk and co-workers (Birk, 1988; 1995; 1996; Leslie and Birk, 1991; Birk and 

Cunningham, 1994) addressed the experimental analysis of the catastrophic failure of liquefied gas 

stored in pressurized vessels engulfed by fire. Different heat loads are considered: pool fire 

engulfment, partial pool fire engulfment, jet fire impingement and distant heat radiation. The 

studies of Birk and Cunningham (1994) and Birk (1996) evidence the role of liquid temperature 
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stratification in conditions leading to pressure safety valve opening and in determining vessel time 

to failure. Temperature stratification consist in the formation of different temperature liquid 

layers. This phenomenon is due to a density gradient  that creates as the liquid inside the vessel is 

heated and temperature rises non uniformly. Venart and coworkers 1993-2000 (Venart et al., 

1993; You and Venart, 1996; Venart, 1999; 2000) also report important data and models for the 

determination of time to failure leading to BLEVE of pressurized vessels containing liquefied gas 

under pressure. 

Based on these early studies, several lumped parameters models are now available in the 

literature for the assessment of the thermal response of both the vessel and its content when 

invested by a heat load (Landucci et al., 2009a; Birk, 2006; Persaud et al., 2001; Hadjisophocleous 

et al., 1990; Moodie, 1988; Graves, 1973; Forrest, 1985; Beynon et al., 1988; Birk, 1988; Ramskill, 

1988; Birk and Leslie, 1991; Johnson, 1998; Shebeko et al., 2000; Salzano et al., 2003; Gong et al., 

2004). These models are in general dedicated to the assessment of the resistance of horizontal 

cylindrical vessels storing liquefied petroleum gas (LPG) to engulfing fire, predicting the wall 

temperature rise and the vessel internal pressure. 

More recently, the study of Raj (2005) aimed at modelling the effect of external non-engulfing 

pool fire on liquefied gas storage tanks. The main focus of this paper is to identify the heat 

transferred to the storage vessel shell by heat radiation in order to evaluate the vessel wall 

temperature rise with time. The study of Landucci et al. (2009b) also presents a model for the 

assessment of the failure conditions of LPG tanks exposed to external fire. The model describes 

the vessel wall using finite elements, for the description of the transient temperature and 

mechanical stress distribution on the entire vessel surface. Specific key performance indicators 

(KPIs) were introduced to identify safe operating zones and for the selection of the different 

coating design solutions. 

 

2.3.4.3 Vulnerability models for vessels under fire load 

The assessment of escalation possibility and/or probability in the framework of the risk 

assessment of complex industrial areas may require the assessment of hundreds of different fire 

scenarios. Thus, the use of distributed parameter models and even of lumped models may 

become critical in this context, requiring the collection of a huge amount of data and unaffordable 

computational resources. 

Thus, simplified approaches might be preferred in escalation assessment carried out in the 

framework of quantitative risk assessment (QRA) studies. Rules of thumb were adopted to directly 

predict vessel failure conditions: e.g. in several studies escalation is considered as taking place if 

radiation intensity caused by the fire on the target vessel exceeds a threshold value (Cozzani et al., 

2006; Health and Safety Executive, 1978; British Standards Institution (BSI), 1990; Mecklenburgh, 

1985) or if the vessel wall temperature increases over critical values (Khan and Abbasi, 1998). 

More recently, simplified correlations, based on the results of models and empirical work, were 

developed for the calculation of the failure probability (Cozzani et al., 2006a; Landucci et al., 

2009a; Landucci and Cozzani, 2009). A summary of threshold criteria is reported elsewhere 

(Cozzani et al 2013b). 
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More recently, a study by Landucci et al. (2009a) aimed at the development of Probit like 

correlation for the assessment of damage probability to storage tanks both atmospheric and 

pressurized. The model is based on a simplified correlation for the assessment of the time to 

failure of the target equipment (ttf): 

   (   )         ( )   ( )    (2.5) 

Where I is the thermal radiation c is a constant and d is an analytic function of the vessel volume, 

V. Several fire conditions and tank sizes were tested to derive the correlation, that was validated 

using both experimental results and results of finite element models. The probability of failure is 

then calculated comparing the ttf with the time of response of the fire-fighting system (tte). A 

Probit model is obtained applying a lognormal probability density function to the tte (Landucci et 

al. (2009a)): 

              (   )     (2.6) 

The Probit value Y is then easily converted to the value of the vessel failure probability. Recent 

developments allow including specific features of the site emergency procedures and of fire 

protection barriers may be integrated in the approach.  
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2.4 Quantitative Risk Assessment and Safety Management  
 

2.4.1 Key steps and level of detail of domino scenario assessment 

Risk assessment and safety management are mandatory requirements for the installations dealing 

with hazardous materials. In recent years, several methodologies were proposed for the 

assessment of risk due to domino scenarios. Domino events are the result of a complex 

propagation and escalation process of a primary event. For this reason, specific methodologies are 

required for the analysis of the hazard, potential damage and risk to human being that may derive 

from this category of accidents. 

The procedure for the identification and evaluation of domino scenarios demands for a detailed 

analysis of the consequences of the primary scenario and of the potential structural damage 

caused to secondary targets. Equipment vulnerability models are the tool more used to allow the 

assessment of probability and intensity of secondary scenarios. 

The specific analysis required by domino scenarios may be divided in two main stages: the 

assessment of the escalation vector generated by the primary scenario and the assessment of 

possible escalation effects. In this framework, two key elements in domino scenario assessment 

are the evaluation of escalation probabilities and consequences following the failure of the 

identified secondary targets. 

A detailed analysis of all the possible domino scenarios may be very complicated and time 

consuming. Thus, domino assessment may be carried out at different levels of detail, depending 

on the context and aims of the analysis. In the following, the state of the art of procedures for 

preliminary hazard analysis and quantitative risk assessment is briefly summarized. 

 

2.4.2 Preliminary Hazard Analysis of Domino Scenarios 

A preliminary hazard analysis (PHA) may be useful to identify the presence of hazards related to 

domino scenarios and to screen the critical escalation sources and targets. A qualitative 

assessment of escalation hazards is required in this framework. The possibility of accident 

escalation may be carried out on the basis of a simplified assessment of primary scenarios. The 

possibility of escalation may be assessed comparing the escalation vector (namely, the intensity of 

the physical effects generated by the primary scenario at the position of a potential target vessel) 

to an escalation threshold. Escalation thresholds are tabulated values of physical effects (e.g. a 

maximum peak overpressure for blast waves or a radiation intensity for a fire) below which no 

damage to the target item is expected. However, caution is needed when using this simplified 

assessment, since escalation thresholds represent an oversimplification of the escalation process. 

In the study of Cozzani et al. 2006, equipment failure conditions using threshold values are 

examined in detail. Accident scenarios that can trigger the escalation process are presented, and 

both explosion and fires are analysed. If fire is the primary scenario, the time evolution of the fire 

scenario needs to be taken into account, comparing the duration of the primary scenario with the 

characteristic “time to failure” (ttf) of the target equipment involved in the fire. In the case the fire 

duration exceeds the ttf, escalation is possible. When explosion is the primary scenario, the target 

equipment shape and size are found to be determinant for the assessment of possible damage. An 

example of escalation thresholds derived from this analysis is provided in Table 2.3.  
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Table 2.3: Probit equation coefficients for the calculation of the damage probability due to 

overpressure, provided by different authors 
Equipment  a  b Reference 

Atmospheric Vessels -23.8 2.92 Eisenberg et al. (1975) 
Atmospheric Vessels -18.96 2.44 Salzano and Cozzani (2004) 
Pressurized Vessels -42.44 4.33 Salzano and Cozzani (2004) 
Elongated equipment -28.07 3.16 Salzano and Cozzani (2004) 
Small equipment  -17.79 2.18 Salzano and Cozzani (2004) 
Atmospheric Vessels -9.36 1.43 Mingguang and Juncheng 2008 
Pressurized Vessels -14.44 1.82 Mingguang and Juncheng 2008 
Elongated equipment -12.22 1.65 Mingguang and Juncheng 2008 
Small equipment  -12.42 1.64 Mingguang and Juncheng 2008 

 

Cozzani et al. 2007 discuss the role of inherent safety criteria to prevent accident escalation, based 

on a detailed consequence analysis of each possible scenarios that may trigger the escalation. 

Safety distances are calculated based on the fireball radii, jet-fire flame length, pool fire radii, 

overpressure effect, based on the operative condition and generic characteristic of the substance. 

Using the safety distance criterion, safe and unsafe regions can be identified in lay-outs, and 

accident mitigation and domino prevention can be addressed by inherent safety criteria, 

increasing the distance among the different unit or limiting vessel hold-up. 

 

2.4.3 Quantitative Risk Assessment of Domino Scenarios 

When a relevant hazard due to domino scenarios is detected, a more detailed risk assessment is 

needed. Quantitative Risk Assessment (QRA) is nowadays used as a standard tool to analyze and 

compare the risk due to industrial installations (Lees, 1996; CCPS, 2000). Despite the fact that QRA 

is a mature and consolidated tool, only few applications to domino effect have been performed. 

Domino effects are usually excluded from QRAs in common professional practice, due to the fact 

that quantitative assessment of domino scenarios requires high computational resources that 

were not available or not easy to accessible until recent years. Actually, the quantitative risk 

assessment of domino scenarios is a complex industrial installation or in an industrial cluster, a 

huge number of possible scenarios need to be considered. It was demonstrated that for each 

primary scenario which is able to target n equipment items, up to 2n different domino scenarios 

are possible (Cozzani et al., 2005). 

The inclusion of domino scenarios in framework of quantitative risk assessment was addressed in 

several studies (Delvosalle, 1998; Khan and Abbasi, 1998; Abdolhamidzadeh et al., 2010; Reniers et 

al., 2005; Cozzani et al., 2005). Specific methods (Abdolhamidzadeh et al., 2010; Reniers and 

Dullaert, 2007; Cozzani et al., 2005) were proposed for the calculation of individual and societal 

risk (Lees, 1996; CCPS, 2000) caused by domino scenarios. In recent years, methods and models 

become available to allow the quantitative assessment of domino accidents in a QRA framework, 

supported by specific software tools based on geographic information systems (Cozzani et al., 

2006). Further progress in the field allows the frequency assessment of multilevel escalation 

scenarios, e.g. by the use of statistical tools such as Bayesian analysis (Khakzad et al., 2013) and 

Monte Carlo simulations (Abdolhamidzadeh et al., 2010). More recently, a procedure based on 

acyclic graphs was also proposed and would be further discussed in chapter 6. The discussion of 
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such approaches is needed to understand the state of the art of domino risk assessment. For this 

reason, details regarding the proposed approaches to the QRA of domino scenarios will be 

presented in the following, starting from the tools dedicated to allow the inclusion of domino 

scenarios in conventional QRA procedures. 

Efforts to develop quantitative methodologies for the assessment of domino accidents are 

documented since the early 1990s. Bagster and Pitblado (1991) described an approach for the 

inclusion of domino events in risk assessment. The procedure is based on the evaluation of the 

domino scenario as an external event, which increases the frequencies of corresponding incidents, 

evaluated according to conventional methodologies (fault trees analysis). Several other authors 

addressed the specific topic of the inclusion of the domino effect in QRA during the ‘90s 

developing risk assessment methodologies (Delvosalle, 1996; Contini et al., 1996; Gledhill and 

Lines, 1998), focusing the specific issue of the escalation frequency assessment (Pettitt et al., 

1993) and analysing the escalation triggered by fires (Latha et al., 1992; Morris et al., 1994). At the 

time, oversimplified vulnerability models were used (Bagster and Pitbaldo, Khan and Abbasi) for 

the assessment of domino escalation probability (Pd). The domino event frequency was then 

calculated as follows: 

            (2.7) 

where fde is the domino event frequency and fp is the frequency of the primary accident that 

triggers the accident chain. The domino frequency is used to update the accident frequencies of 

conventional accident scenarios: 

               (2.8) 

where fse is the overall event frequency that include escalation as a cause of the scenario, and fpe is 

the frequency of the primary event only. There is general agreement that such methodologies are 

insufficient to describe all possible domino accident scenarios and that more research was needed 

at the time in order to fulfil the scientific and technical gap that prevent an exhaustive analysis of 

such complex phenomenon. 

The work by Khan and Abbasi (1998a) had the aim to track a procedure for Domino Effect 

Assessment (DEA) within quantitative assessment of risk in the chemical and process industry. The 

proposed methodology was introduced in the software tool “DOMIFFECT” (Khan and Abbasi, 

1998a), a tool of the “MAXCRED” software for risk analysis (Khan and Abbasi, 1997). DOMIEFFECT 

enabled its users to understand the likelihood of domino effect in an industrial lay-out, the 

identification of the most probable accident scenarios, and the expected consequences of the 

different domino scenarios (Khan and Abbasi, 1998). The tool was aimed at supporting the 

decision making toward strategies aimed at the prevention of domino effect. Thus, one of the 

major issues was the assessment of escalation probabilities for simple and/or complex accidental 

scenarios, in particular for the possible secondary accidents with the worse consequences on 

humans, as toxic releases. A list of possible escalation vectors and of the critical parameters 

identified is presented in Table 2.4. 
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Table 2.4: Escalation vectors and critical parameters identified in the study by Khan and Abbasi 

(1998b). 
Damage typology Possible Mechanisms Important parameters 

Thermal damage Heat radiation 
Convection 

View factor: flame slope,  distances, position, orientation 
Air Transmissivity*** 
Transient flame temperature, velocity and emissivity 
Vessel shape 
Hot spots 

Overpressure Shock Overpressure Pulse 
Drag force 

Overpressure absolute 
Overpressure difference between the object front and back 

Missile Impact Fragment velocity 
Shape 
Kinetic energy 
Penetrative capability 
Direction 

 

The proposed approach has the following main features: i) estimation of all possible hazards from 

toxic release to explosion; ii) handling of interaction among different accidental events (generation 

of domino or cascading accident scenarios); iii) estimation of domino effect probability; and iv) 

estimation of domino effect consequences. The DOMIEFFECT model and approach allows the 

identification the most critical scenario, in order to select and design effective safety measures. 

Several illustrative applications of DOMIFFECT were carried out, considering refineries, 

petrochemicals plants (Khan and Abbasi, 2001a) and chemical or fertilizer production units (Khan 

and Abbasi, 2001b). 

The growing concern on domino effect was highlighted in Europe by the Seveso Directives 

(Directive 82/501/EEC and 96/82/EC). Several research projects were promoted aiming at the 

improvement of tools for the assessment of domino effect. Among the more important results, 

Delvosalle et al. (2002) proposed a methodology to assess the probability of domino effect inside 

an industrial site (internal domino effect) or between different establishments (external domino 

effect). The methodology was compiled in a software package called Domino XL 2.0, which aimed 

at the assessment of possible domino effects in the Seveso industries and which can also be used 

as a safety tool in these industries (Delvosalle et al., 2002). 

In 2005, Cozzani et al. (2005) presented a methodology that allows the calculation of individual 

and societal risk caused by domino accidents contribution in the risk profile of an industrial plant, 

providing for the first time a procedure for the quantitative assessment of domino effect within 

QRA studies. Domino effect calculation is based on several sequential steps. The detailed 

assessment of primary events is required (frequency and consequence assessment), as well as the 

position of the primary accident source on the layout, and the assessment of the possible 

secondary scenario consequences. Once the primary events are characterized, it is possible to 

associate a single escalation vector and a single vulnerability vector to each scenario. Domino 

accident frequencies are calculated as follows: 

              (    )     (2.9) 

where fde the domino event frequency, fpe is the primary event frequency, Pd the secondary target 

vulnerability and P(E|PE) is the conditional probability of escalation (E) given the primary event 

(PE). The probability of accident escalation is calculated by the use of dedicated vulnerability 

models (Cozzani and Salzano 2004a; 2004b; Landucci et al. 2009; Gubinelli and Cozzani, 2009a; 

2009b). In a complex layout, usually a single primary event may be able to trigger several 
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secondary events simultaneously. In this case, the probabilities of accident escalation are mutually 

conditioned and all the possible combinations of the credible and relevant secondary events 

should be considered in the analysis. Each accident combination represent one possible domino 

scenario. Therefore the probability of all accident combination must be calculated in order to 

assess the risk related to escalation scenarios for a given primary event. If first level escalation is 

considered (Reniers and Cozzani, 2013b), the event combinations may be reasonably considered 

as independent from a probabilistic point of view. Therefore, if N secondary events are possible, 

the probability of a secondary scenario given by a generic combination m of k secondary events (k 

≤ N) is the following: 

  
(   )

 ∏ [        (    
 )(        )]

 
      (2.10) 

here Pd,i is the probability of escalation for the i-th secondary event defined by Eq.(9), Jm
k
 is a 

vector whose elements are the indexes of the m-th combination of k secondary events, and the 

function  (    
 ) is defined as follows: 

 (    
 )  {

       
 

       
       (2.11) 

If k is the number of contemporary secondary accidents, the total number of domino scenarios in 

which the primary event triggers k contemporary secondary events is:  

   
  

(   )   
      (2.12) 

Therefore, the total number of different domino scenarios that may be generated by the primary 

event is: 

  ∑    
 
            (2.13) 

where   is the total number of domino scenarios that need to be assessed in the quantitative 

analysis of domino effects. Cut off criteria based on frequency values may be applied to limit the 

secondary scenarios (Antonioni et al 2009; Cozzani et al 2006).  

In the original framework proposed by Cozzani et al. (2005; 2006), only domino scenarios deriving 

directly from the primary events are considered. Thus, only first level escalation is considered and 

scenarios deriving from the further escalation of secondary events (the so called multilevel-

escalation (Cozzani et al., 2013 DB)) is not considered. However, it was recently demonstrated that 

the approach presented above may be extended to assess higher level domino events (Cozzani et 

al., 2014; Antonioni et al., 2009). 

The assessment of the consequences of complex domino scenarios with multiple secondary events 

was also afforded by Cozzani and coworkers (Cozzani et al., 2005; Cozzani et al., 2004 ESREL). 

Models created for the assessment of consequences used in the framework of risk analysis are not 

conceived to assess the effects of multiple simultaneous events (e.g. several pool and/or jet fires, 

etc.). Thus, the proposed methodology evaluates the consequences of complex scenarios 

superimposing the physical effects of each separate event (radiation, overpressure, toxic gas 

concentration) that compose the specific combination of a given domino scenario. This procedure, 

which neglects the assessment of possible synergetic effects, is obviously an oversimplification of 

the problem. Nevertheless, this approach seems acceptable if compared to other approximation 

present in a QRA framework. For each primary and secondary accident in the complex scenario, a 

“vulnerability map” is provided (Leonelli et al., 1999). In each position on a map, the vulnerability 
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of an exposed individual with respect to a domino scenario (Vd) may be calculated as a 

combination of the vulnerabilities caused by the physical effect of the single events that compose 

the domino scenario. Vulnerability may thus be calculated according to the following equation: 

  
(   )

    [(   ∑  (    
 )    

 
     )]    (2.14) 

In other words, the combined vulnerability is a sum of the death probabilities due to all the 

scenarios that compose the domino sequence, limited to 1. In order to actually calculate the 

vulnerability values and obtain vulnerability maps for domino scenarios, the domino methodology 

was introduced in a GIS software tool for QRA (Cozzani et al 2006): the ARIPAR-GIS software (Egidi 

et al., 1995). The results obtained allowed the calculation of individual (Cozzani et al., 2005) and 

societal risk (Cozzani et al., 2006), and highlighted the great influence that domino scenarios and 

escalation may have on the risk profile of an industrial activity. A more recent application to an 

industrial park evidences that the methodology can be applied also to assess domino threat 

between different industrial installations or within an industrial cluster (Antonioni et al., 2009). 

The requirements in terms of computational resources required by the extension to the proposed 

methodology to the quantitative assessment of higher level domino scenarios (Cozzani et al., 

2014) supported the investigation of alternative approaches to the assessment of domino scenario 

frequencies. The study by Abdolhamidzadeh et al. (2010) presents a methodology based on Monte 

Carlo simulations aimed at the assessment of domino scenarios frequencies in industrial facilities. 

The edge of Monte Carlo simulations is the possibility to avoid the complexity of calculating 

conditional probabilities necessary to account for domino accident scenarios and allow the use of 

independent probability relations. For this reason, the procedure was proposed also to assess 

accident frequencies of multilevel domino scenarios. The study of Bernachea et al. (2013) is aimed 

at the description of a methodology to assess the risk of domino accidents using an advanced 

event tree method. Each equipment item is analysed considering all the possible releases and per 

every release all the possible scenarios are considered. Depending on the consequences of the 

primary accident scenario on the target, rules are set to identify the probability of damage and the 

expected reference releases. The reference release causes different scenarios, and each can 

trigger other accidents in adjacent units. The procedure iteratively continues until all equipment 

are considered. In this approach simultaneous events are not considered, and each scenario is 

considered singularly. 

As an alternative to conventional frequency assessment and Monte Carlo procedures, Bayesian 

networks may be applied A Bayesian network can be represented as a directed acyclic graph, a 

graphical tool for reasoning under uncertainty in which the nodes represent variables and are 

connected by means of oriented arcs. The arcs denote dependencies or causal relationships 

between the linked nodes, while the conditional probability tables assigned to the nodes 

determine the type and strength of such dependencies. In the study of Khakzad et al. (2013) a 

methodology based on Bayesian Networks for the assessment of the probability of escalation from 

one unit in which a primary accident occurs to other units in the plant is presented. It is intended 

as a supplement for QRA, since it allows the calculation of domino accident frequencies. The 

propagation pattern of the first level domino scenarios is identified evaluating the equipment 

vulnerabilities using Probit functions (Cozzani and Salzano 2004a). The escalation probability is 
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then obtained by Bayesian Networks. Using the chain rule and the d-separation criterion, a 

Bayesian network expands the joint probability distribution of a set of linked nodes. One crucial 

step for the simplification of the propagation pattern construction, which may become more and 

more complicated as the number of equipment increases, is the identification of the “more likely” 

direction for the propagation pattern between the primary accident to the second, from the 

second to the third, and so on. By the use of this hierarchical approach, the interdependencies 

between the accident are described and the “conditioned” direction of the propagation pattern is 

drawn. An example of Bayesian network is provided in Figure 2.3; the joint probability distribution 

of the events contributing to the combination   {       } is given by Eq. (2.15): 

 ( )   (  ) (     ) (        ) (        ) (        ) (        )  (2.15) 

The great flexibility of Bayesian Network application can lead to a further improvement of the 

model, by the identification and evaluation of contemporary and sequential events. 

 

Figure 2.3: A likelihood propagation pattern of escalation in a process plant composed by six units 
(a unit where the primary scenario happens, X1, and five possible target units, X2 to X6). The 
possible sequential order is represented by the numbers in parenthesis (1 to 4). (Khakzad et al., 
2013). 

 
In the study of Antonioni et al. (2009) the proposed methodology for domino accidents was 
modified to allow the quantitative assessment of NaTech events triggered by earthquakes and 
floods. A combinatorial evaluation, similar to the procedure used for domino effect, was proposed 
to assess the probability and consequence of contemporary accidents (Campedel et al., 2008, 
Antonioni et al., 2007). A recent contribution (Cozzani et al. 2014) highlights the analogy between 
the assessment of domino scenarios and technological effects of natural disasters (Natech 
scenarios). In perspective this may lead to a comprehensive assessment of cascading events in 
technological systems. 
 
2.4.4 Safety management and accident prevention 
Two basic elements are required for a domino escalation to take place: a primary scenario with 
enough energy to damage one or more than one “domino target units” and the presence of at 
least one “domino target unit” within the reach of the primary scenario. Acting on the plant and 
lay-out design is a possible route to affect both the elements. The severities of the primary and 
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secondary scenarios depend, among the other, on the inventory of hazardous substances, on the 
operating conditions, and on the unit size and design features. All these are key elements which 
can be managed in order to reduce the effect of accident scenarios and therefore the likelihood of 
escalation. The presence and position of target units, which also influences the escalation process, 
depend on the plant siting and layout design. Since the very beginning of process industry, 
distances among the units composing an industrial facility were applied in the layout design, in 
order to avoid the spread of industrial accidents (Mecklenburgh, 1985; Mannan, 2005). Therefore, 
adequate measures implemented in the design phase may result in safer plants from the point of 
view of escalation. Design optimization tools mainly focus on economic aspects, even if safety 
issues have been considered in some recent works (Díaz-Ovalle et al., 2010; Jung et al., 2010; Jung 
et al., 2011; Nolan and Bradley, 1987; Penteado and Ciric, 1996; Patsiatzis et al., 2004). Several 
tools can be applied in order to anticipate safety issues related to the prevention of escalation in 
layout design. One example is the application of safety indicators, aimed at the identification of 
escalation hazard and of the optimal layout configuration (Tugnoli et al.,2007; 2008a; 2008b; 
2012). Increasing the safety of process plant with respect to domino accidents is a 
multidisciplinary subject which includes elements of security management (Reniers et al., 2008), 
loss of containment prevention (Reniers and Dullaert, 2007), emergency planning (Reniers et al. 
2005a), fireproofing design (Di Padova et al. 2011; Tugnoli et al., 2012) and personnel training. The 
role of the research in the understanding of escalation phenomenon allowed the development of 
methodologies for the prevention of domino accidents. In this section, recent studies concerning 
different aspects of safety management and safety design of industrial facilities related to 
escalation and domino risk management are presented. 
As discussed above, the specific features of the accident scenario and of the target may play an 
important role in the escalation potential and deserve a throughout discussion. The minimum 
segregation distance between units required to avoid an escalation event is called “safety 
distance”. If threshold values for escalation are available (Cozzani et al. 2006), the safety distances  
may be easily calculated by the application of standard literature models for consequence 
assessment (CCPS, 1994; Uijt de Haag and Ale, 1999; Van Den Boshet al, 1989). 
An application of such concepts was carried out by Di Padova and coworkers (Di Padova et al., 
2011), that aimed at the development of a risk-based methodology for the identification of 
fireproofing zones applied to protect assets. The methodology was extended to specifically 
address domino effect prevention, also introducing key performance indicators for inherent safety 
assessment (Tugnoli et al 2012 ])  
The potential role of inherent safety in the prevention of escalation leading to domino scenarios 
was first evidenced by Bollinger and coworkers (Bollinger et al., 1996), that state that it is possible 
to reduce (or even to eliminate) the domino propagation by inherently safer design, to limit its 
effects by engineered barriers (passive or active systems) and/or to manage accident escalation by 
appropriate procedural safeguards. The application of an inherent safety philosophy leads to 
several advantages, highlighted by Keltz (Kletz, 1978; 1991; 1998; Kletz and Amyotte, 2010) and 
other studies (Bollinger et al., 1996; Hendershot, 1997; Hurme and Rahman, 2005; Khan and 
Amyotte, 2003). The optimum application of inherent approach to domino prevention is at the 
early stage of plant design. The study by Cozzani et al. (2007) discusses the role of inherent safety 
criteria to prevent accident escalation, based on a detailed consequence analysis of each possible 
scenarios that may trigger the escalation. Safety distances were calculated based on the fireball 
radii, jet-fire flame length, pool fire radii, overpressure effect, based on the operative condition 
and generic characteristic of the substance. Using the “safety distance” criterion, the safe and 
unsafe regions in a plant footprint can be identified. Then, different solutions for accident 
mitigation and domino prevention can be compared, using the inherent safety criteria. For 
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instance where possible increasing the distance among the different unit could be economically 
convenient or in other cases the hold-up reduction could be a suitable solution, instead. 
Cozzani and coworkers (Cozzani et al., 2007, 2009; Tugnoli et al., 2008a) also analyzed the 
application of a set of classical inherent safety guide words (intensification, moderation, 
substitution, simplification and limitation of the effects) to the layout definition activities. Tugnoli 
and coworkers (Tugnoli et al. 2008a; 2008b) provide a methodology for the application of inherent 
safety criteria for the improvement of the safety of an industrial facility dealing with hazardous 
materials by lay-out optimization. The Integrated Inherent Safety Index (I2SI), developed by Khan 
and Amyotte (2004; 2005), was used to implement inherently safer solutions, also accounting for 
domino scenarios. 
Inherent safety criteria have been quantified by the use of dedicated indicators (Cozzani et al., 
2009). The indexes provide useful information on the potential hazard of escalation events: critical 
sources as well as critical targets of escalation events could be identified. The application of 
indexes allows a fast assessment of the effect of different solution and can be used for 
streamlined decision-making, providing a useful support for risk based methodologies for design 
and cost benefit analysis. 
Domino scenarios due to events originating outside the area of the facility may be indicated as 
external domino effects. The risk management of this particular type of hazard needs the 
involvement of personnel from different plants and a detailed exchange of information. As a 
consequence, specific tools are required for the identification and management of thi0s type of 
domino scenarios, due to implicit difficulties in information exchange, coordination and 
communication between different companies. Reniers et al. (2005a) remark the importance of 
cross-company cooperation for domino risk reduction. Hazwim, an economically viable External 
Domino Accident Prevention (EDAP) framework used for structuring cooperation between 
neighbouring enterprises was developed to this purpose (Reniers et al. 2005b). After the 
preliminary assessment of domino hazard by the use of conventional risk assessment methods, 
inter-company risk assessment procedures are carried out using simple methods: HazOp, What if 
and Risk Matrices. This methodology allows companies to be aware of the risk due to 
neighbouring industrial facilities and to properly manage risk due to external domino events. 
Reniers and Dullaert (2007) have elaborated a 10-step methodology to prioritize domino effects in 
an industrial area. Based on the Oil&Gas producer model for human factors, three dimensions are 
identified: People, Procedures and Technology. Measures can be taken in these three dimension 
to avoid and to prevent industrial accidents, and to mitigate their consequences. 
Reniers and coworkers (Reniers et al. 2009; Reniers 2010) also propose the use of game theory as 
a tool to analyse external domino hazard from a management point of view. The theory is based 
on the assumption that the risk of an industrial plant is not only function of the decision taken 
inside the plant, but also of the decisions taken by the other plants in the industrial cluster. 
Furthermore, decision taken outside the plant may affect, not only the overall safety, but also the 
decision taken inside the plant. The study analyses this situation as a so called “game”, in 
particular the possible conditions that lead every company (player) to invest on safety (win) are 
searched (Nash equilibrium). The push for every company to invest in domino prevention is 
described in terms of prevented economic loss. The study demonstrates that the conventional 
methods for cost benefit analysis may be insufficient to evaluate the convenience of one 
investment on domino prevention, because the effect of one investment reflects on the other’s 
company choices and therefore may result in a higher (or lower) benefit than predicted, 
depending on the mutual relation between the companies. 
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2.5 Discussion 

 
2.5.1 Vulnerability models and uncertainties affecting escalation probability 

All the available vulnerability models are important tools to assess equipment vulnerability, but by 

concept are simplified models, thus suffering of large uncertainties. It is worth to remark that the 

failure of a vessel is a deterministic event, in the sense that for a given accident scenario and a 

given target, equipment damage and accident escalation takes place or not. The idea of an 

“escalation vector” and of an “equipment vulnerability” are intended to take into account by a 

probabilistic approach the inherent knowledge gap regarding actual primary scenario that will take 

place and the uncertainties in the escalation process. The so called “damage probability” is 

therefore obtained from the simultaneous application of deterministic damage models and of 

probabilistic approaches to primary scenario selection, and introduce also the related 

uncertainties in the analysis. 

Some of the vulnerability models available in the literature focus on the maximum intensity of the 

escalation vector at the position of the target equipment, but this is only one of the variables to 

account in the damage of an equipment item. In fact, also the direction, the transient behaviour, 

the environment and the safety measures play a determinant role on the chances to damage 

other units. Moreover, the target may undergo many different operating conditions during its 

operative life, thus different responses to the same accidental scenario may occur, due to process 

variables (pressure, temperature, liquid fraction, etc…) and due the ageing/corrosion of 

construction material that cause a reduction of resistance with the time (Susan et al., 2005). 

A qualitative collection of the uncertainties that rule the damage and the vulnerability of process 

equipment is reported in Figure 2.4. Figure 2.4 shows the more important parameters that affect 

equipment damage and divides them in three areas: parameters of the accident, parameters of 

the target, and parameters of the safety barriers. The description of such parameters according to 

their role on the escalation potential could be of large interest: dividing the parameters into 

independent categories may allow the specific study of domino effect separating the different 

contributions deriving from each category. without influencing aspects of the other category. 

Figure 2.4-b shows a tentative definition of three main categories that represents the three main 

contributors to vulnerability calculation and that may include all the parameters defined in figure 

2.4-a: 

 Escalation potential of an accident represents its severity and its capability of cause 

damage to nearby equipment. It depends on accident variables only. In particular, it is a 

function of the accident severity (the intensity of the physical effect against the distance) 

and of the accident duration. The escalation potential concept can be expressed as a map 

of the area of impact of the physical effect generated by the primary scenario. The analysis 

of accident consequences is required to retrieve this information. Even though there are 

large uncertainties on physical effects calculations, due to simplified model assumptions 

and to uncertainties in the source term that should be considered, it is a common practice 

to assume these variables as deterministic, although a probability or expected frequency 

may be associated to the actual generation of the escalation vector. It is important to 
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remark that the escalation potential of secondary accident scenarios to involve undamaged 

equipment items is strongly dependent on the damage mechanism (Birk et al., 2007; 

Venart 1993) and on the LOC type (Bernachea et al., 2013). 

 

 Target exposure represents the portion of the accident potential that actually affects the 

target. Distance from the source, target shape and orientation have a dominant role on 

vulnerability assessment. Safety barriers and emergency response time also effect the 

exposure of the target to the hazardous effect, as well as the presence of other structure, 

equipment, walls and bunds. All these effects may reduce significantly the chances of 

equipment damage. Also the installed fire fighting system and the time to response of the 

plant to the play a critical role on the vessel damage probability (Landucci et al., 2009). 

Even though target shape and orientation are deterministic data, the physical effect 

intensity (that may be influenced by wind speed and direction (Raj; 2005)), the response 

time and the fire fighting system reliability are probabilistic variables. Lay-out data are 

necessary to obtain these information, and a detailed knowledge of safety management 

system is required. Most studies on accident escalation introduce conservative 

assumptions to reduce the parameters actually used for the calculation of equipment 

vulnerability. 

 

 Target resistance depends on target structure and represents the capability to withstand a 

given physical effect. It depends on the equipment size, on the mechanical properties of 

the construction material (Susan et al., 2005), on the operating conditions and on the 

presence of protections as passive fireproofing materials used for fire protection (Di 

Padova et al. 2011; Tugnoli et al. 2012). The resistance of target equipment items may be 

obtained experimentally or simulating the effect of fire, explosion or missile impact on the 

target equipment by simplified or finite element models (Landucci et al., 2009a; 2009b). On 

one hand, target volume, mechanical properties and protections are mainly deterministic 

data, even though uncertainties may be present due to material corrosion and ageing. On 

the other hand, operating conditions, as the filling level of a tank, may be considered 

stochastic variables. 

 

The type of damage experienced by target equipment in an escalation scenario depends on both 

the target features (e.g. the equipment size, shape, construction material) and the operating 

conditions and the accident characteristics (e.g. engulfing fire, peak overpressure, distances). 

Depending on the damage mechanism, the relation between the uncertainties changes, thus the 

probability of damage and the consequences of secondary accidents change as well (Birk et al 

2007; Roberts 2000). In particular, in the case of pressurized vessels the fragmentation pattern 

could be totally different, changing the damage mode (Leslie and Birk, 1991; Susan et al., 2005). 

The future work on vulnerability models will benefit if different damage mechanisms will be 

accounted, with different models addressing the different types of failure. 

Even though the complexity of the domino accident requires complex models for dealing with 

multiple uncertainties, the main application for vulnerability models is the QRA, which demands 
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for simple and fast calculation methods due to the large number of possible accidental scenarios 

that must be processed. Although the further progress of vulnerability models is on its way, 

existing vulnerability models provide a sufficiently detailed conservative assessment of damage 

probability, suitable for the calculation of risk due to domino scenarios in a QRA study. 

 

 
Figure 2.4 Lists of variables which effects the equipment vulnerability; a) grouped according to 
their source; b) grouped according to their actual contribution to the equipment vulnerability 
 

2.5.2 Risk Assessment 

In the past several methodologies were proposed for the assessment of risk caused by domino 

scenarios. The different studies focused on four main tasks: the identification of domino scenarios, 

the assessment of escalation frequencies, the calculation of human lethality due to complex 

domino scenarios and the assessment of equipment vulnerability.  

The very first studies on the quantitative assessment of domino scenarios (Khan and Abbasi, 

1998a; Delvosalle, 1996; Bagster and Pitbaldo, 1991) considered the secondary accidents as 

independent scenarios, therefore only their frequency and their consequences were considered 

for the assessment of risk. Simple “domino chains” were considered (a primary event causing a 

single secondary event, that may further escalate causing a tertiary event, and so on). Such 

methodologies, used since the beginning in the assessment of domino effect, are still used to date. 

Their main limitation is that the consequences of secondary scenarios are not considered 

simultaneously. As an example, DOMIFFECT (Khan and Abbasi 1998b) is not capable of dealing 

with potential synergic effect of secondary accidents. Actually, simultaneous events affecting more 

than one unit need a specific approach to consequence and damage assessment, and existing 

software cannot be directly used to such purpose. Domino XL 2.0 (Delvosalle et al., 2002) is 

specifically focused on the identification of critical equipment and on the assessment of the 

effectiveness of safety systems with respect to domino effects by the use of relative factors, but 

does not address multiple scenarios. A few methodologies are aimed at the calculation of the 

frequencies of combined simultaneous secondary accidents. In particular, the methodology 

proposed by Cozzani and coworkers (Cozzani et al., 2005; 2006, Antonioni et al., 2009) allows the 

identification and assessment of all the possible first level domino scenarios involving the 

simultaneous failure of secondary units. The combinatorial procedure itself is conceptually simple, 
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and it has been automatized by the use of a dedicated GIS software (Egidi et al. 1995), allowing 

model application to industrial clusters and industrial parks (Antonioni et al., 2009). 

An extension of the methodology to consider higher domino level was demonstrated (Cozzani et 

al., 2014).Unfortunately, the application of combinatorial analysis is demanding for second or 

higher level domino scenarios, due to the huge number of event combinations that should be 

considered and to the calculation resources needed. Therefore, combinatorial analysis has been 

applied only for the calculation of first level domino scenarios (Cozzani et al. 2005; 2006). The 

extension of domino assessment to higher level scenarios may benefit in perspective of dedicated 

mathematic formulations for domino frequency estimation. 

A proposal for the calculation of domino accident frequencies is the application of Bayesian 

networks for the calculation of accident escalation probabilities (Kharzad et al., 2013). This 

methodology is capable to assess frequencies of complex accidental scenario and is used for the 

assessment of second and higher level domino based on the identification of the most probable 

secondary target and accident scenario. However, one of the largest model limits is that the most 

likely escalation pattern is not always immediate to identify. Some equipment may have similar 

escalation probabilities and in this case the only way to apply the methodology the description of 

the escalation pattern direction is an operator choice, depending on the accident features and 

wind direction. Furthermore, in the present state the methodology is not automatized and 

requires an active participation of the user, which excludes its extensive application to large 

industrial installations or to industrial clusters. 

When coming to shortcuts of current methodologies, three issues emerge. In the assessment of 

domino scenarios, almost all quantitative risk assessment methods consider one and only one 

secondary scenario per each target considered (Cozzani et al., 2005; Khan and Abbasi, 1998a; 

Abdolhamidzadeh, 2010; Kahkzad et al., 2013). The study of Bernachea et al. (2013) remarks the 

limitations introduced by this assumption, since many different possible release categories and 

accident scenarios may follow the damage on a secondary unit. Moreover, in several approaches, 

a single scenario causing escalation is also considered for primary units triggering domino events. 

A second issue is the issue of the time gap between accident scenarios. This may play a critical role 

on the assessment of human vulnerability, since survivors may have the chance to move in a safe 

position during the time of the accident escalation process due to the application of the 

emergency plan. However, this effect is still not included in dedicated risk assessment 

methodologies for domino scenarios. Similarly, this limit is also evident in the assessment of 

equipment damage probabilities in case of second (or higher) level domino: for instance it is easier 

for an explosion to damage an equipment that was previously weakened by fire. 

Third issue is the appropriate calculation of the impact of domino scenarios. Although it was 

demonstrated that sufficiently conservative results may be obtained superimposing vulnerability 

maps (Cozzani et al., 2005; 2006), the lack of well-defined methodologies for the assessment of 

human lethality due to composed scenarios hinders the correct assessment of the impact of 

domino scenarios on the nearby population (Cozzani et al., 2006; Antonioni et al., 2009): e.g. the 

assessment of human vulnerability of both an explosion and a toxic release, since possible synergic 

effects are still unknown. A further example is a toxic dispersion moving over a pool fire, that 
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could have mitigated effects since the fire may either increase the air entrainment in the cloud 

and therefore dilute the toxic concentration, or burn and decompose the toxic substance. 

 

2.6 Conclusions 
 

The analysis of scientific publications concerning domino effect in the process industry resulted in 

a database of more than 60 documents, addressing four main issues: past accident analysis, 

vulnerability models, risk assessment and safety management of domino scenarios. This huge 

research effort allows a quantitative assessment of domino scenarios in risk analysis and safety 

management of industrial sites. Nevertheless, a number of open point still remain, where existing 

tools may be improved and uncertainty may be reduced. In particular, escalation assessment may 

benefit from more detailed vulnerability models and dynamic tools for consequence assessment 

may consistently improve the results obtained when the impact of domino scenarios is of concern. 

Finally, a second generation of risk assessment tools addressing escalation effects and multi-level 

scenarios should pave the way to a holistic assessment of cascading events involving industrial 

sites and critical industrial infrastructures. 
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Chapter 3: 

State of the art on the research of NaTech events 
 

3.1 Introduction 
 

The impact of the natural events on industrial sites often resulted in large losses, and in some 

cases on the releases of huge quantities of hazardous materials. In these events at the side of the 

initial natural disaster, a severe technological accidents starts, eventually causing extended 

damage to the industrial area or to the nearby population (Natural-Technological or NaTech 

events). Industrial operators were often found unprepared or off-guard for unannounced events, 

but also when they had received early warnings. Due to these occurrences, public awareness has 

raised and the issue of NaTech is now considered as an emerging risk (Salzano et al., 2013). Due to 

the climate change and increase in the frequency of some categories of natural disasters, the 

likelihood of NaTech scenarios is growing, thus NaTech may be also considered as a new risk in 

some areas of the world. 

In the present chapter a short review of some important studies regarding NaTech events 

produced in the recent years has been carried out. Three main research fields have been 

identified: the past accident database analysis for the identification of the domino accident real 

impact on industrial safety, the development of vulnerability models for the assessment of the 

probability of accident escalation, and the methodologies to account of domino accident in risk 

assessment and safety management. 

 

3.2 Analysis of past accidents triggered by natural events 
 

In order to prevent industrial disasters involving hazardous material the knowledge of the causes 

and modality by which accident occurs, is a crucial step to achieve. The systematic study of the 

interaction between natural and technological disasters is an area that has attracted growing 

attention in the last decade. Awareness of NaTechs as an “emerging systemic risk” has grown in 

Europe. NaTech incidents among Seveso II industrial facilities have been rare, thus difficult to 

analyze. Data from the Major Accidents Reporting Systems (MARS, 2008) database of the Major 

Accident Hazards Bureau (MAHB) at the JRC reveals on average at least one NaTech incident per 

year since 1985. Although NaTechs have been relatively rare events, there is growing evidence 

that NaTechs are on the rise. In the United States an increase in NaTechs has been reported over 

the last 20 years (Lindell and Perry, 1996a; 1996b; Showalter and Myers, 1994). 

Rasmussen (1995) indicates that between 1% and 5% of accidents in fixed installations reported in 

the accident databases have natural events as a causative factor, possibly near the upper limit, or 

above. Most of the accidents identified have happened in Western Europe and North America. In 

this study the most often reported natural cause of NaTech is ‘ Atmospheric Phenomena ’,  which 

accounts for 80% of the initiating factors; the remaining portion is mainly due to geologic activity 
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18%. Among atmospheric phenomena one of the major contributor is lightning strikes, which 

account for the 33% of the total accidents triggered by natural events.    

 

3.2.1 The analysis of NaTech in the USA 

Lyndel and Perry (1998) recounts actual releases that were documented in the Northridge 

earthquake of 1994. Smith  (1997) analyzed NaTech caused by lightning strike, which caused a fire 

and explosion that ultimately resulted in the collapse of a 55000-barrel tank of crude oil. The 

accident caused the death of two fire fighters when the tank experienced a catastrophic rupture. 

Young (2002) analyzed the National Response Center (NRC, 2008) database and the Federal 

Emergency Management Agency (FEMA, 2004) records searching for natural disasters and related 

NaTech events in the period 1990-1999. A total of 480 natural, non-fire disasters and 1152 NaTech 

events were found. Furthermore, more than an half of the natural disasters were associated with 

at least one NaTech, being wind storms and floods the main causes of NaTech events. 

Young et al. (2004) performed a systematic review which summarizes several research works of 

the 90s about direct and indirect disaster-associated releases, as well as environmental 

contamination and adverse human health effects that have resulted from natural disaster-related 

hazmat incidents. The goal is to use disaster-related hazmat releases to identify future threats and 

to improve mitigation and prevention efforts.  

Steinberg et al. 2008 provides an overview of the state of the art in NaTech risk assessment and 

management in the United States. This work tries to assess the extent of NaTechs analyzing 

accident databases; the data show a fairly constant number around 650 of NaTechs per year over 

the time period studied, with a low of 530 in 1997 and a high of 820 in 1994. Moreover the 

authors discuss the possible safeguards against NaTechs and indicate: design criteria, safety 

measures, land use planning, community disaster mitigation and response, adoption of 

sustainable industrial processes, as the key tasks that need particular attentions to reduce possible 

NaTech risk. 

Ruckart et al. (2008) analyzed a set of 166 hurricane-related events occurred in industrial settings 

in Louisiana and Texas in 2005, with an eye on those events triggered by hurricane Katrina and 

Rita. Most (72.3%) releases were due to emergency shut downs in preparation for the hurricanes 

and start-ups after the hurricanes. For this reason all the possible contributing causal factors have 

been highlighted, as well as the hazardous substances released, and event scenarios.  

Reible et al. (2006) discussed a set of NaTech events that happened in New Orleans during 

hurricane Katrina, with particular emphasis on water contamination, which caused long term 

damages to the population, in particular chronic diseases, and environmental pollution. The most 

abundant contaminants were arsenic and organic liquids, with toxic and/or carcinogen properties. 

Sengul et al.,(2012) analyses the hazardous materials involved in the NaTech accidents and in 

particular the quantity released. Storage tank releases make up 11% of all NaTech releases and 

result most often from rain, hurricanes, and floods (Fig. 3.1a). However, since the volume released 

often is highly dependent on a few large releases, the very majority of hazardous materials 

released was from storage facilities (Figure 3.1b). Petroleum (in particular crude oil) was released 

during 60% of NaTech events, whereas various chemical releases made up another 30%, aqueous 

materials comprised 5% of releases, and natural gas 3%. Nitrogen oxides (NOx) and benzene, the 
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two most common chemical compounds, resulted by flare stack combustion following NaTechs. 

The total volume of petroleum released during NaTechs (approximately 29 million litres between 

1990 and 2008) comprises 3%of the volume of all petroleum releases reported to the NRC. 

  
Figure 3.1: NaTech causes and targets to the respect of a) the number of NaTech; b)quantity of 

petroleoum released (Sengul et al., 2012) 

 

3.2.2 The analysis of NaTech in the EU 

Steinberg and Cruz (2004) discussed the enormous Tupras oil refinery fire and naphtha, ammonia, 

and toxic acrylonitrile releases which occurred as a result of the 1999 Kocaeli earthquake in 

Turkey. Fendler (2008) discusess the reccomendations for those industrial extablishment  

containing large quantities of hazardous materials to the respect of the threat of floods. Recent 

studies have indicated that legislation and standards for chemical-accident prevention do not 

explicitly address NaTech risk (Krausmann and Baranzini, 2009; Krausmann, 2010). 

Krausmann et al. (2011a; 2011b) discusses the efforts toward the development of dedicated tools 

for NaTech risk management for earthquakes, floods and lightning. According to Steinberg and 

Cruz (2004) more than 21 incidents of NaTech (natural hazards triggering technological disasters) 

events followed the August 17, 1999 earthquake in Turkey; among those events  eight resulted in 

off-site consequences and in the damage of surrounding population.  In another major incident 

resulting from the recent floods in the Czech Republic in August 2002, 400 kilograms of chlorine 

were released from the Spolana Chemical Works company, situated at the river Labe in 

Neratovice, north of Prague. 

Cozzani et al. (2010) performed a study of past accidents caused by flood events; data on 272 

NaTech events triggered by floods were retrieved from some of the major industrial accident 

databases (MARS, 2008; MHIDAS, 2001; TAD, 2004; NRC, 2008). Several specific elements that 

characterize NaTech events have been investigated. In particular, the damage modes of 

equipment and the specific final scenarios that may take place in NaTech accidents are key 

elements for the hazard and risk assessment (Figure 3.2). The figure indicates that item 

displacement ad sequent failure of flanges and connections due to water drag and/or to floating 

are among the principal causes for loss of containment. 
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Figure 3.2: Available data for different structural damage typologies experienced by process 

equipment items during flood events and associated release category (Cozzani et al., 2010). 

 

A more detailed analysis of the accident files collected allowed the identification of the equipment 

categories that are most frequently damaged as a consequence of floods. As shown in Fig. 3.3, 

storage tanks (and pipework) are the equipment items that were most frequently damaged during 

flood events while cylindrical vessels, compressors and pumps resulted less affected. 

 

 
Figure 3.3: Categories of equipment items mainly involved in the accidents triggered by flood 

events (Cozzani et al., 2010) 

 

It is interesting to analyze the data available on the final scenarios(Figure 3.4): in NaTech accidents 

triggered by floods the two scenarios typical of the process industry, fire and toxic dispersion, can 

have specific non-conventional causes due to the presence of wide amounts of water in flood 

events. The systematic analysis of data presented in Cozzani et al. (2010) allowed the 

development of post-release event trees.  

 
Figure 3.4 Accident scenarios initiated by flood events (Cozzani et al., 2010) 
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From the detailed historical analysis of industrial accidents triggered by natural disaster over 

several decades,  Salzano et al. (2013) discusses the process that promoted the public awareness 

to the respect of these events. The tools and methodologies for the assessment of NaTech risk are 

described and their provision to the general NaTech knowledge and response capability.  

 

3.2.3 Discussion 

The past accident analysis showed that the most important causes of NaTech events are 

atmospheric phenomena: hurricanes, heavy rain, winds, etc… However, the happening of a few 

tremendous earthquakes that caused numerous contemporary NaTech events  highlighted the 

hazard behind seismic events as well. For this reason most of studies regarded those two main 

topics.  

Several aspects of NaTech events are important in understanding the significance of NaTechs 

versus other types of industrial accidents. First, natural disasters influences large areas, therefore 

those events are capable of induce many accidents simultaneously, even in different industrial 

facilities. Thus, the number of releases may easily overwhelm the available emergency response 

capacity. Mitigation measures may not work properly because they may be damaged by the 

natural event as well. Therefore, the possibility of cascading disasters (domino effects) particularly 

high. Response personnel and equipment may not be available. In addition to the possible need to 

respond to a large number of simultaneous releases, response personnel and their equipment 

may be called to respond to the natural disaster-caused catastrophe, or even blocked by the 

natural disaster itself. The physical environment created by the natural disaster may slow 

response to the chemical release by reducing people moving capability and  blocking 

communication lines. The recovery and rebuilding processes of the damaged equipment, the 

clean-up of the contaminated environment, and the overall ability of the industrial facility to 

resume operation may be significantly slowed by impacts from the natural disaster. NaTechs also 

offer different response and mitigation characteristics than other types of chemical accidents.  

On the contrary of seismic or lightning hazard the risk of flood is very site specific, thus the 

industrial installation have the chance to avoid to be exposed to such a threat simply being built at 

a safe distance from rivers or at some height over the water level. However, most of industrial 

facilities have been established along the banks of large rivers to facilitate transport of raw 

materials and finished product, and also to provide water supply for industrial processes and 

waste disposal. Industry has been prone to accept the risk of inundation from flood waters in in 

exchange for evident advantages, but has also exposed population centers to industrial accidents 

and in particular to NaTechs (Steinberg et al, 2008).  

Policies on the prevention of riverine floods exist for a lot of river systems. The prevention of flash 

floods requires changes in the use of land, the reduction of draining and appropriate agriculture. A 

policy to support this may be in place in a few cases only. Authorities, the public and operators 

have to be aware of the possibility of natural impact. Therefore, communication between 

authorities, industry and the public plays a determinant role on disaster prevention. 
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3.3 NaTech risk assessment and accident prevention 
 

At the European Community level there are several legal acts that directly or indirectly address 

NaTech risk through rules governing industrial establishments housing hazardous materials, 

landfill sites and waste treatment plants. Regulations that govern lifeline systems operations such 

as electrical power plants, gas and oil pipelines, and water resources and trans-boundary issues 

may also indirectly address NaTech risk reduction. However, any guideline that encompasses the 

entire NaTech disaster risk assessment and management at the EU level are only partial and 

contain only vague recommendations. Most important for NaTech risk reduction is the knowledge 

that NaTech risk exists. If NaTech risks have not been identified, communities and industrial 

facilities cannot take action to reduce potential NaTech related losses. The higher rank attributed 

in public awareness to NaTech scenarios required the development of a specific approach to 

assess and manage NaTech risk (Salzano et al., 2013). While developing a specific approach for 

NaTech risk assessment and management, one must comply with the standard risk management 

procedure, which involves the following consolidated process: 

(1) planning the risk management process, which involves the definition of the level of detail and 

of the tools to be used in the analysis, so that it will fit the available resources and the defined 

goal; 

(2) identification of the hazards, which involves all the activities required to identify all the hazards 

related to the system under examination;  

(3) qualitative risk analysis, which involves screening activities (for instance through some key 

performance indicators – KPIs (Tugnoli et al. 2008) aimed to identify if and where more detailed 

analyses are required; 

(4) quantitative risk analysis, which involves quantifying both occurrence probability and expected 

magnitude of the consequences of each previously identified hazard, in order to estimate overall 

risk indexes  

(5) planning of mitigation measures, which requires implementing all the prevention and 

protection measures required to reduce the risk level below to some predetermined threshold; 

and 

(6) risk monitoring and control, which involves the activities required to avoid that changes in the 

situation examined would increase the risk level above the acceptable threshold. 

In this general framework, both the steps of qualitative and quantitative risk assessments involve 

peculiar aspects when investigating NaTech events. In particular, the characterization of the 

initiating event and of the final scenarios needs a dedicated approach. 

 

3.3.1 NaTech and regulatory requirements in the EU 

Requirements for the management of chemical accident prevention in the European Community 

first  appear in the Seveso II Directive (98/82/EC). The aim of the Seveso Directive is to: “Prevent 

major accidents which involve dangerous substances, and to limit their consequences for man and 

the environment with a view to ensuring high levels of protection throughout the Community in a 

consistent and effective manner.” 
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The Seveso Directive demands for the institution of major-accident prevention policy, for the 

publication of a safety report, and for the  establishment of emergency plans in the case of an 

accidental chemical release for those  industrial facilities that store, use or handle large quantities 

of dangerous substances. Several issues must be completed in order to assess all the possible 

hazard: process safety analysis; process safety information; evaluation of mitigation measures; 

external events analysis; and consequence analysis.  

Although no specific requirement have been introduced by the  Seveso II Directive for NaTech risk 

management, it is addressed indirectly, since the Directive requires the analysis of external events, 

which may lead to a chemical accident.  The potential threat of natural hazards in the hazard 

analysis is exactly what the directive intends for external events. All the suitable preventive 

measures able to reduce the likelihood of an accident must be carried out together with the 

development of specific  procedures in case such an accident occurs. Nevertheless, methodologies 

or actions that can be taken to achieve these requirements are not specified in the directive, 

therefore the levels of preparedness vary among countries (Cruz et al.,  2004). Finally , competent 

authorities can assure the safety for the population living in the vicinity of plant by keeping 

appropriate distances between industrial activities and residential areas, through the definition of 

proper land use policies for those areas affected by particular “natural sensitivity”. 

Furthermore, the Directive calls for the analysis of potential domino effects. Therefore, the 

competent authority must study the likelihood of domino effects in the specific industrial setup 

analyzed. The study of domino events needs advanced models for risk analysis, which motivated 

many researchers to address  this specific topic. Moreover, a sort of synergy can be evidenced 

between NaTech and domino effect (Cozzani et al., 2014). Several researchers have noted that the 

probability of domino effect increases during natural disasters (Cruz and Steinberg 2005, Cruz et 

al. 2001, Lindell and Perry 1997). The most relevant publications regarding domino effect are fully 

addressed in chapter 2. 

 

3.3.2 Preliminary NaTech risk assessment 

The implementation of the risk assessment procedure requires qualitative screening to identify 

when a detailed (and much more resource-demanding) analysis is required (Busini et al.,  2011). 

Such procedure should be easy to apply, requiring a limited amount of information and of 

resources. The procedure should provide, also through suitable indicators, which is the NaTech 

risk level associated to a given situation (that is, a process plant located in a given position) and 

eventually a ranking among different situations. 

A first level in the assessment of NaTech hazard is the identification of the sites where such hazard 

is relevant. The problem is usually of concern at district, regional or national level, thus requiring 

the analysis of extended areas. Therefore, the most suitable tools for the assessment of NaTech 

hazard, for a preliminary evaluation of the possible vulnerable sites, are simplified screening 

methods. Cruz and Okada (2008b) proposed a detailed screening methodology mostly useful at a 

district level and the paper by Sabatini et al. (2008) extends the evaluation to regional level. A 

ranking of the equipment vulnerability to natural events could be useful for designing and 

planning prevention and mitigation measures and systems. 
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A similar approach was adopted for the vulnerability ranking of typical industrial equipment found 

in process plants or storage sites. As a first step, critical equipment categories and their associated 

four-level hazard index under natural event loading were determined, based on the extent of 

damage of an equipment item, its operating conditions and the hazard posed by the released 

substance. This was based on an extensive analysis of NaTech accidents, as well as on a review of 

the technical literature (Campedel et al., 2008; Fabbrocino et al., 2005; Salzano et al., 2003; 

Talaslidis et al., 2004). Furthermore Cruz and Okada (2008a) show possible strategies to design 

process equipment in order to obtain protection from natural events. 

Using the above natural-hazard and technological-hazard classifications, vulnerability analyses for 

industrial equipment under natural-event loading can be performed and the risk from possible 

damage can be estimated.  In order to define credible accidental scenarios a number of discrete 

states for structural damage to equipment (damage state, DS) were defined, in order to assess the 

extent of the LOC. Damage states typologies ranged from the total absence of damage (DS1) to 

total collapse of the structure (DS3) (Antonioni et al., 2007).  

In order to obtain a measure of the quantity and rate of hazardous substance releases from 

damaged equipment due to a specific natural-hazard impact, three risk states (RS) were defined, 

which are a function of an equipment’s damage state and the type of equipment affected (e.g. 

pressurised or at atmospheric pressure)(Antonioni et al., 2007). The possibility of equipment 

damage is addressed using dedicated fragility models (Salzano et al., 2003; Fabbrocino et al., 2005; 

Iervolino et al., 2004, Landucci et al., 2012). Each risk state can then be associated with a specific 

accident scenario (toxic dispersion, fire, explosion). 

More recently, Rota and coworkers proposed the application of the Analytical Hierarchy Process 

and through suitable Key Hazard Indicators (KHIs) (Busini et al., 2011) to screening procedures for 

the ranking of NaTech hazard. The application of all these methods to case-studies proved to yield 

effective results in the identification of “hot-spots” and critical sites where the application of more 

detailed assessment techniques is recommended.  

Software package tools have been recently provided in order to assist companies in the 

preliminary evaluation of NaTech accidents (Girgin and Krausmann, 2013). 
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3.4 Quantitative risk assessment of NaTech scenarios 
 

The issue of extending the bow-tie approach to NaTech hazards, schematized in figure 2, was 

proposed since the development of the MIMAH technique within the ARAMIS project (Delvosalle 

et al., 2006). Bow-ties including natural events as failure causes were developed in the approach. 

In parallel, Hazard Identification (HazId) Analysis technique spread out as a structured review 

technique able to account also threats caused by natural hazards to industrial facilities and assets. 

More recently, the bow-tie approach was extended to allow a comprehensive quantitative 

assessment of the contribution of NaTech scenarios to industrial risk. A detailed procedure and 

specific fragility models were developed for the calculation of individual and societal risk due to 

NaTech scenarios triggered by earthquakes and by floods (Antonioni et al., 2007; Campedel et al., 

2008; Antonioni et al., 2009). More recently the proposed approach was further extend to other 

natural events, as lightning (Renni et al., 2009). The results obtained evidenced the important 

contribution of NaTech scenarios to industrial risk, due to the high expected frequencies that 

intense natural events may have in prone areas and to the absence of a risk-based design of 

industrial facilities where relevant quantities of hazardous substances are present. 

Due to the complexity of NaTech events, there is still debate about the possibility to assess the risk 

related to such accidents. The main argue on the application of quantitative methodologies for the 

calculation risk related to NaTech events is that such scenarios are often unpredictable, since that 

the common sense often refers to them as “acts of God”. Furthermore, the consequences of those 

events are hard to describe. Nevertheless, increasing efforts in research are dedicated to the 

prediction of natural disaster and to the risk assessment of natural disasters and NaTechs, as well. 

 

3.4.1 General framework for the quantitative assessment of NaTech 

The study by Antonioni et al. (2009) is focused on the development of procedures aimed at the 

quantitative assessment of the risk due to accidents triggered by natural disasters impacting on 

the industrial installation. Two types of natural events are considered: earthquakes and floods. 

The study also aimed at the development of a more general framework allowing a unified 

approach to the quantitative assessment of the risk related to Na-Tech events. As shown in the 

flowchart (Figure 3.5), the starting point of the methodology is the identification of the credible 

external disastrous events (step 1) and of critical equipment items, that are likely to cause major 

accidents as a consequence of damage caused by natural events (step 2).  
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Figure 3.5: Flow chart of the procedure for the quantitative risk assessment of NaTech risk 

(Campedel et al., 2008) 

 

A set of impact vectors are defined, the elements of the vectors being the intensity of the natural 

events classified by one or more intensity parameters selected to characterize the natural event. 

Critical equipment items are those that have the potentiality to cause a severe scenario due to an 

escalation triggered by the natural event.  In this section the proposed methodologies for risk 

assessment of accidents triggered by seismic events (Antonioni et al., 2007) and by floods 

(Antonioni et al., 2009; Campedel et al., 2008) are discussed and showed in detail. Reference 

scenarios should be associated to each critical equipment item (step 3). On the basis of the 

reference scenarios identified for each equipment item, a specific procedure should be applied for 

the identification of the overall expected scenarios, in order to take into account that more than 

one reference scenario may take place simultaneously due to the damage of more than one unit 

(steps 4–7). Thus, also the consequence assessment of the resulting scenarios should be carried 

out combining the consequences of each of the reference accidental events identified (step 8). 

Finally, the conventional risk recomposition procedure may be applied for the calculation of the 

additional contribution to individual and societal risk of the accidental scenarios induced by 

seismic events and identified by the above procedure. 

 

3.4.2 Identification of critical target equipment 

Large atmospheric vessels, mainly used for the storage of liquid hydrocarbons, are the category of 

equipment more frequently involved in these accidents. Several events are reported in which the 

damage of this category of tanks following an earthquake resulted in tank or pool fires. 

Contamination of surface water as a result of the LOC was also reported. Pressurized storage 

vessels and long pipelines were also involved in severe LOC events following.  Atmospheric and 

pressurized vessels having a large inventory of flammable or toxic substances, as well as large 

diameter pipelines, should be considered as the more critical equipment items in the assessment 

of risk due to external events in process plants (Antonioni et al., 2007). Table 3.1 reports the 
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preliminary criteria, based on operating conditions, volume, hold-up and physical state of 

hazardous substances, which may be used together with vessel inventory for a preliminary ranking 

of the critical equipment items (Antonioni et al., 2009). 

 

Class of critical equipment 
items 

Gas 
liquefied  

Liquid (cryogenic, 
evaporating, 
stable) 

Gas 

Vessels 4 4 3 

Piping 4 3 2 

Columns 4 2 1 

Reactors/heat exchangers 3 2 1 

Table 3.1: Matrix for the identifying the more critical equipment item for different storage 
conditions (Antonioni et al., 2009). 
 

3.4.3 Quantitative assessment of NaTech due to earthquake 

Antonioni et al. (2007) developed a procedure for the quantitative risk assessment of accidents 

triggered by seismic events in industrial facilities. The procedure was derived from conventional 

risk assessment and previous studies regarding fragility of equipment items exposed to violent 

earthquakes (Salzano et al., 2003; Fabbrocino et al., 2005; Iervolino et al., 2004). 

 

3.4.3.1 Expected frequency and severity of the reference earthquakes 

The first step in the assessment of the expected frequencies of the reference scenarios is the 

evaluation of the expected frequencies of the seismic events. The return time of an earthquake is 

often obtained on the basis of historical data. Furthermore, the evaluation of the expected 

damage due to a seismic event requires the estimation of the severity of the event. This 

“magnitude” may be expressed by qualitative approaches (e.g. by the well known Mercalli–

Cancani–Sieberg, or MCS scale) or using quantitative indexes (e.g. the Richter scale). A 

quantitative scale based on clear physical assumptions must be used when the purpose is to 

assess the seismic risk. In order to be suitable for QRA framework the severity of the seismic event 

was described using a single parameter, the peak ground acceleration (PGA), which may be 

sufficient when the behavior of steel equipment is under investigation. 

In order to define correlation between magnitude and frequency of the seismic event, a PGA 

vector having an arbitrary number of elements, n, may be defined in order to represent the 

discretization of all the possible earthquake severities, expressed in terms of peak ground 

acceleration. In this approach, the frequency of exceedance of a given PGA value is expressed by 

Eq. (3.1), developed from data of available seismic studies: 

    (    )       (3.1) 

where PGAi is the ith element of the PGA vector, representing a PGA value. Usually, the above 

function is derived from conventional exceedance probability curves, which report the expected 

probability of an earthquake with a PGA higher than a given value over a time interval T: 

   (       )      (3.2) 

The conventional exceedance probability curves are easily available from governmental agencies 

as well as from scientific institutions. 
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3.4.3.2 Reference scenario selection 

 Two main factors influence the accidental scenarios that may follow the damage of industrial 

equipment caused by an earthquake:  the characteristics of the substance released and the LOC 

entity. Quite obviously, the hazardous properties of the substance released influence the 

scenarios that may follow the release, and thus they can be described using event tree approach. 

On the other hand, the LOC intensity directly related to: the extent of the structural damage, the 

operating conditions of the damaged vessel (in particular, operating pressure and temperature at 

the release) and the physical state of the released substance. Thus, a schematic identification of 

the reference scenario for the equipment item of concern may be based on three main factors: (i) 

the extension of the damage reported by the vessel, (ii) the operating conditions, and (iii) the 

hazard posed by the released substance (Antonioni et al., 2007). 

Moreover, the framework of risk assessment demands for the use of simplified methodologies for 

the description of the damage intensity that may follow an earthquake. The damage of a structure 

or of an equipment item may be roughly evaluated defining a limited number of damage states 

(DS). In the approach presented by Antonioni et al. (2007), two damage states were defined to 

classify the damage experienced by equipment items in a seismic event: 

 

• Damage state 1 (DS1): Limited structural damage, as the rupture of connections or the buckling 

of equipment, resulting in a low intensity of the loss of containment, causing a partial loss of vessel 

inventory or the entire loss in a time interval higher than 10 min. 

• Damage state 2 (DS2): Extended structural damage, causing the rapid loss of containment of the 

entire inventory 

 

For the sake of simplicity, only two categories of equipment items were considered: atmospheric 

and pressurized equipment. As a working hypothesis, a limited volatility was assumed for 

atmospheric releases, a high volatility was assumed in the case of pressurized releases. The 

framework of the proposed approach suggests to consider the worst credible scenario among 

those listed in the table for each damage state and substance hazard. Moreover, the possible 

unavailability of the safety systems for the mitigation of accidental scenarios that may be triggered 

by seismic events must be taken into account, given that the safety barrier can suffer damage as 

well from the earthquake. On the basis of this approach, the suggested reference scenarios are 

summarized in Table 3.2. 

 

Table 3.2: Expected scenarios of LOC events following the damage of atmospheric and pressurized 

vessels in seismic events (Antonioni et al., 2007) 

Damage 
state 

Substance 
hazard 

Atmospheric vessels Pressurized vessels 

DS1 Flammable  
Toxic 

Pool Fire 
Toxic dispersion from evaporating pool 

Jet Fire 
Toxic dispersion from jet 
release 

DS2 Flammable  
Toxic 

Pool Fire 
Toxic dispersion from evaporating pool 

Jet Fire 
Toxic dispersion from jet 
release 
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3.4.3.3 Damage probability of critical equipment item 

As discussed above, in the framework of the QRA of industrial plants undergoing an earthquake, 

“vulnerability models” are required to estimate the expected probability of a given damage state 

following an earthquake of given magnitude. A simplified correlation linking the conditional 

probability of the ith damage state, P(DSi), to the PGA of the earthquake is required for each 

equipment item (Salzano et al., 2003; Fabbrocino et al., 2005). In the conventional approach to the 

probabilistic analysis of damage caused by seismic events, fragility curves are used to assess the 

resistance of a structure to a given PGA. Fragility curves are based on the assumption of a log-

normal distribution of damage probability data with respect to PGA values. In this approach, the 

mean, μ, and the standard deviation, σ, of the data are usually provided: 

   
 

√   
∫     ( 

(   ) 

   
)  

 

  
     (3.3) 

where Ps is the probability of the damage state to which the parameters of the fragility curve are 

referred. Fragility curves based on the analysis of historical data were proposed for anchored and 

unanchored atmospheric tanks (Fabbrocino et al., 2005; Chopra, 1995) and for pressurized 

equipment (Di Carluccio et al., 2006). However, in conventional QRA, the so called “probit” 

functions are more widely used than fragility curves to correlate data that are expected to follow a 

log-normal distribution. 
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A linear correlation is thus assumed between the “probit” variable and the independent variable, 

x, which is the PGA value. 

         (   )     (3.5) 

Approaches based on fragility curves (Eq. (3.2)) and on “probit” functions (Eqs. (3.4) and (3.5)) are 

equivalent and the constants of the “probit” function are given by: 

                          (3.6) 

Table 3.3 reports the “probit” coefficients used for the different categories of industrial equipment 

considered in the case-studies. 

 

Table 3.3: “Probit” function coefficients for equipment seismic fragility (Antonioni et al., 2007) 

 

 

Once the frequency of a seismic event having a given PGA and the relation between the 

magnitude of the seismic event and the damage probability of the given equipment are known, 

the expected frequency of a reference scenario involving a single equipment item may be 

calculated as follows: 

 ( ) 
      (   ) 

 
      (3.7) 

where  ( ) 
  is the expected frequency of the reference scenario involving the kth equipment item 

following a seismic event having a PGA value equal to PGAi;    is the expected frequency of the ith 

Target a b 
Atmospheric vessel unanchored -8.833 1,25 

Atmospheric vessel anchored -2,43 1,54 

Pressurized vessel 5,146 0,884 
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PGA value; and  (   ) 
 

 is the expected probability of the jth damage state of unit k following a 

seismic event having a PGA equal to PGAi. Since different earthquakes may be considered as 

mutually exclusive, the overall expected frequency of the reference scenario R involving 

equipment k may be calculated as follows: 

 ( )  ∑     (   ) 
  

        (3.8) 

where n is the total number of elements of the PGA vector defined above. However, 

contemporary damage  of more than one unit may follow the seismic event. Therefore, the 

accidental scenario that follows the seismic event may either be caused by a single LOC (if a single 

equipment item is damaged) or by a combination of reference LOCs (due to the damage of 

multiple units at the same time). Thus, the actual overall scenarios that may follow a seismic event 

in a process plant are all the possible combinations of the reference scenarios associated to each 

of the critical equipment items identified in step 2 of the procedure. 

If m critical items were identified and an index r is arbitrarily associated to each different 

reference scenario considered in the procedure, each overall scenario that may follow the seismic 

event may be identified by a vector S having s elements (1≤s≤m): 

     [           ]      (3.9) 

where the elements of the vector are the indexes of the reference scenarios that take place in the 

t-th combination of s scenarios considered,     . The probability of the scenario     may thus be 

calculated from the probabilities of each of the reference scenarios considered in the 

combination: 

    
  ∏ [    

   (      )(    
   )] 

      (3.10) 

where   
  is the probability of each reference scenario considered, obtained from the above 

discussed probabilistic damage models, and the function  (      ) equals 1 if the jth event belongs 

to the t-th combination, 0 if not. The overall expected frequency of the      combination may thus 

be obtained: 

     ∑        
  

    (3.11) 

On the other hand, if m is higher than 1, the total number of different scenarios that may be 

generated by a seismic event with a given PGA is: 

    
         (3.12) 

The total number of scenarios that need to be assessed in the quantitative analysis of the risk 

caused by seismic events, ν, is given by the sum of all the scenarios considered for each element of 

the PGA vector: 

  ∑    
 
     (    )     (3.13) 

This means that a huge number of possible scenarios may be present. Therefore, a cut off criteria 

based on the calculated frequency and/or the conditional probability of the scenario must be 

applied before the consequence assessment.  

 

3.4.3.4 Consequence assessment 

If more than one reference scenario is expected to take place (due to the damage of more than 

one equipment item) there are several issues that should be addressed in this step: accidental 
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events may take place simultaneously or subsequently, and their effects may be synergetic, simply 

additive or mutually exclusive, depending on the type of scenarios and on the distance of the 

damaged units. Moreover, the physical effects of the different events that may take place may be 

different (e.g. thermal radiation from a fire and a toxic release). A complete analysis of the effects 

of interacting scenarios is still an open problem in consequence analysis, even considering the use 

of approaches based on advanced tools as computational fluid dynamic codes. In the framework 

of risk analysis, due to the uncertainties present in the assessment of the single scenarios that are 

likely to take place, a simplified approach to the problem is acceptable to obtain at least a rough 

estimate of the magnitude of the expected consequences. 

In “Chapter 2”, which was mainly addressed to the analysis of domino effect, the consequence 

assessment of complex scenarios has been already discussed (Cozzani et al., 2005;2006) and the 

same procedure was used for the assessment of complex scenarios due to NaTech. Since a huge 

number of possible scenarios may arise, the development of a software tool  that makes risk 

calculations automatic was a necessary step in order to apply the methodology discussed above. A 

specific software package was added to the Aripar-GIS software (Egidi et al., 1995). 

 

3.4.4 Quantitative assessment of NaTech due to flood events 

In the study by Campedel et al. (2009) a general framework is proposed in order to assess the risk 

associated to industrial accidents triggered by floods. The starting point of the methodology was 

the assessment of reference flood scenarios. The selection and characterization of the flood 

scenarios was made in terms of maximum water speed and maximum water height. Simplified 

fragility models were used for the assessment of the LOC scenarios that may be triggered by the 

reference floods. Everything  just said for the assessment of NaTech risk due to seismic event is 

valid also in case of flood with the following exceptions. 

 

3.4.4.1.Expected frequency and severity of the reference floods 

Three specific characteristics of the flood: the return time, the maximum water depth expected at 

the site and  the maximum expected water speed  are the three parameters that have been taken 

into account for the selection and characterization of reference flood events. These data can be 

obtained by the public authorities or by specific analyses carried out on the site. Once more, t is 

worth of mention that by no means these parameters may be sufficient to fully characterize the 

flood hazard of a site, but they are suitable to characterize the severity of the reference events in 

the discussed approach (Antonioni et al., 2009). 

 

3.4.4.2. Identification of critical equipment items 

In the case of floods, besides substances having ‘‘conventional’’ Hazards considered in off-site 

consequence assessment of industrial accidents(flammability or toxicity), the analysis should be 

extended to substances reacting with water and/or developing flammable/toxic gases in contact 

with water. Thus, besides conventional release scenarios (fires, explosions and toxic cloud 

dispersion),floods may add other important threats: significant environmental contamination and 

release of toxic gases and flammable vapors generated by reactions of chemicals with water. 
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3.4.4.3. Damage states and reference accidental scenarios 

Reference damage states were defined to characterize equipment damage in case of flood. 

Damage states were defined on the basis of equipment typology according to  structural 

characteristics. The equipment categories defined are(i)cylindrical vertical vessels having diameter 

to height (D/H)ratio higher than 1(atmospheric); (ii)cylindrical vertical vessels having D/H lower 

than 1 (atmospheric and pressurized); (iii) cylindrical horizontal vessels (atmospheric and 

pressurized).  

The flood characteristic may change drastically the response of the exposed equipment. In 

particular three possible flood wave typologies have been identified and associated to specific 

structural damage: slow submersion (water velocity negligible), low-speed 

wave(watervelocitybelow1m/s), and high-speed wave (water velocityhigherthan1m/s). Three 

release classes were considered for storage and process equipment, as well as for piping: R1 for 

the instantaneous release of the whole inventory following severe structural damage; R2 for the 

continuous release of the complete inventory in more than 10 min; R3 for the continuous release 

from a hole having an equivalent diameter of 10 mm. Table 3.4 shows the release categories and 

the associated modalities of  flood action. The accidental scenarios that are expected to follow the 

releases were identified by the event tree technique, taking into account the possible scenarios 

deriving from substances reacting with water.  

 

Table 3.4: Damage modality and release category considered (Antonioni et al., 2009) 

Modality of water impact Type of structural damage Release category 
Slow submersion Failure of flanges/connections R3 

Moderate speed wave Failure of flanges/connections R3 

High speed wave Shell fracture R2 

 Impact with/of adjacent vessels R1 

 Failure of flanges/connections R3 

 

3.4.4.4. Damage probability of the critical equipment items, frequency and consequence 

assessment of the overall scenarios 

In the case of floods a few equipment damage models are available in the literature (Landucci et 

al., 2012). Very limited data are available in the open literature to analyze in detail the damage 

caused by floods to industrial equipment.  Thus, starting from the analysis of the limited data 

available, a simplified damage model was used, relating maximum ranges of water speed and 

maximum water height to different equipment damage probabilities.  Fig. 3.6 shows an example 

of simple models that can be used for the damage probability assessment. Different damage 

probability values are associated to different combinations of water height and wave speed. 

Further details on vulnerability models for vessel involved in flood events will be discussed in the 

following. 

Once equipment damage probabilities have been obtained (Fig. 3.6) and release modes have been 

assessed, the approach to consequence evaluation and frequency calculation for overall scenarios 

triggered by floods is the same described in the case of earthquakes. This analysis includes the 

calculation of all the expected frequency for all the combination of scenarios.  
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Figure 3.6: Estimation of equipment damage probability with respect to maximum water height 

and of the square of maximum water velocity (Antonioni et al., 2009). 

 

3.4.5 Discussion 

Specific equipment damage models and procedures were developed to build up a general 

framework allowing the extension of quantitative risk assessment to the analysis of industrial 

accidents caused by natural events. The tools developed allowed the assessment of accidents 

triggered by earthquakes and floods. 

However, more detailed studies are needed at the national and local levels that assess risk 

management and emergency response practices by government agencies, industrial facilities, and 

communities to natural disaster- induced technological disasters and other systemic risks. These 

studies would also serve to identify innovative NaTech risk reduction strategies and to assist 

knowledge transfer to other regions in Europe by the adoption of a common EC policy for NaTech 

accident prevention, which has been only partially introduced in the current directives for accident 

prevention (Seveso Directive). 

It is not clear what a NaTech disaster, as compared to a natural disaster, means in terms of 

economic, human, and environmental costs. The collection of data on social-economic losses due 

to NaTechs is crucial, both to clearly identify the magnitude of the problem, and to permit cost-

benefit studies to determine if prevention and mitigation of NaTechs really pays. 

Natural disasters have the potential to trigger simultaneous technological failures from single or 

multiple sources. Designing preparedness plans for multiple and simultaneous accidents would 

prove valuable not only for addressing NaTechs, but other type of disasters involving multiple 

accidents such as domino accident scenarios and accidents caused by acts of terrorism. 
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3.5 Conclusions 
 

In this chapter a short review of the past works regarding NaTech accidents has been carried out. 

Attention was focused on several research addressing NaTech data collection from past accident 

studies, as well as the improvements of risk analysis methodologies to the respect of NaTech 

accident has been discussed.  

However, the availability of partial or fragmented data regarding this kind of accidents, while 

systematic data on NaTech incidents are instead needed, increases the difficulty of this research. 

Since most countries already record data on chemical accidents, the collection of information on 

NaTechs would require only a limited further effort. 

Land use planning has been found to be an important factor for the control of natural disasters 

consequences and economic losses from disasters in those regions subject to natural hazards. 

Analysis of economic development policies and industrialization to determine how they affect 

vulnerability to NaTech disasters and other systemic risks would help guide future development 

programs in the developing world. In addition, case studies could be developed to promote 

sustainable risk reduction practices and coping mechanisms in regions of high NaTech risk. 

Another possible strategy to improve safety of the industrial installation is by providing useful 

design indications, which account for a safer layout disposal and recommendation on equipment 

construction in NaTech prone zones. Furthermore, by the tool of preliminary hazard analysis it is 

possible identify with relatively limited efforts the critical equipment units that require an 

improved design attention. 

Finally, the current research shows that preparedness for NaTech disasters is low, though it is 

difficult to establish actual levels of preparedness for NaTechs or any other type of disaster. The 

development of comparative indicators of preparedness for NaTechs and other hazards would 

help decision- makers design appropriate policy options to protect those regions that need it the 

most. 

However, a huge work is still needed to increase the understanding of this particular risk, in order 

to prevent and to mitigate the impact of such scenarios. It is worth of mentioning that other than 

seismic events and floods, many other natural events, and in particular lightning strikes, have the 

potential to trigger tremendous accidents and to cause huge losses to process industries. 

Therefore, there is the need of dedicated procedures for the risk assessment of such events. The 

aim of the current research work is to investigate more in detail the NaTech hazard, providing 

tools to assist operators in the assessment of NaTech risk. In particular the inclusion of NaTech 

due lightning strikes in the framework of quantitative risk assessment of NaTech events and the 

development of more detailed fragility models for equipment involved in flood events are 

important steps to achieve an overall improved assessment of NaTech hazard. Therefore the work 

produced during my PhD study regarding those two topics will be further discussed in the 

following chapters. 
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Chapter 4: 

Risk analysis of Natech accidents triggered by lightning strikes 

 

4.1 Introduction 

 

NaTech events often lead to catastrophic consequences, as shown by the analysis of major 

accident databases (Krausmann et al. 2011a,b), as well as from specific studies on the single 

causes (Cruz and Okada 2008a; 2008b; Renni et al. 2010; Salzano et al. 2003; 2009; 2013). In 

particular lightning has identified as the most frequent NaTech accident initiator, since the 33 % of 

the analyzed NaTech past accidents has lightning strikes as initiative event (Rasmussen, 1995); this 

value rises to 61 % for process installations (Renni et al., 2010). 

Atmospheric storage tanks are the equipment which is more frequently damaged by lightning 

strikes, usually leading to severe fires (Renni et al., 2010). Nevertheless, lighting strikes are one of 

the major causes of tank fires and explosions (Argyropulos et al., 2012; Chang and Lin, 2006). 

Furthermore, tank fire statistics shows that  35% of all floating roof tank fires are caused by 

lightning related issues (LASTFIRE, 1997) and that lightning strikes are the absolute main cause of 

fires at the rim-seal for external floating roof tanks (95%) (Persson and Lönnermark, 2004), 

LASTFIRE, 1997). 

For this reason codes and standards for the construction of atmospheric storage tanks must be 

constantly up to date. The API RP 545 (2009) and OISD 180 (1999) are the most advanced standard 

for lighting protection of above ground atmospheric storage tanks and provide all the available 

technical knowledge for an accurate bonding of the structure. However, they warn that total 

ignition protection is an utopic target and therefore the installation of protective devices should 

be accompanied by a proper risk assessment. Unfortunately, standards for risk analysis in the 

framework of lightning protection (e.g. CEI (2013), NFPA (2004) ) lack of the knowledge necessary 

do deal with industrial installation in which huge amounts of  hazardous materials are present. 

Furthermore, while performing risk analysis one must take into account that fires caused by 

lightning have the potential to trigger cascading effects on nearby equipment, leading to severe 

accident escalation or domino effects (Cozzani et al., 2014). 

The extension of Quantitative Risk Analysis (QRA) to the assessment of Natech scenarios has been 

recently recognized as an important issue to obtain comprehensive data when assessing industrial 

risk related to major accident hazards (Antonioni et al., 2007; 2009; Campedel et al., 2008). 

However, in spite of the relevant frequency of Natech events triggered by lightning, specific 

methodologies for the detailed assessment of Natech scenarios initiated by lightning impact still 

needed to be developed. 

Depending on the plant location, the contribution of NaTech events, and in particular of lightning, 

may be relevant or even crucial on the overall risk profile of an industrial installation. Therefore, 

the implementation of NaTech scenarios in the framework of Quantitative Risk Assessment (QRA) 

is a critical research task that was addressed in the past by different authors (Campedel et al. 
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2008, Antonioni et al. 2009). More recent contributions to NaTech accident research are the work 

of (Landucci et al., 2012) who developed a straightforward methodology for the evaluation of Risk 

due to flood events and the work by (Cozzani et al., 2014) who applied a methodology for QRA to 

NaTech events and domino accidents. 

According to Antonioni et al. (2007; 2009), who first developed and applied a methodology for the 

inclusion of NaTech accident in the framework of Quantitative Risk Assessment, the first step for 

the calculation Risk due to NaTech is the assessment of the expected frequency of natural events 

on the process installation. The study authored by Necci et al. (2014a) is aimed at the evaluation 

of lightning impact probability on atmospheric storage tanks in a complex industrial layout.   

Another key issue for the QRA implementation of such particular events is the evaluation of 

frequencies for NeTech accidental scenarios, in particular fragility models for the estimation of 

equipment damage probability on the basis of the severity of the natural event are demanded. 

Furthermore, QRA study requires the assessment of a high number of scenarios, for this reason 

there is the need to use of simplified models for the estimation of equipment vulnerability, which 

at the same time are capable to yield conservative results (Landucci et al. 2009).  

Recent works have provided a systemic analysis of lightning triggered damage mechanism (Necci 

et al., 2013a) and on the role of safety barriers for lightning triggered accident prevention (Necci 

et al., 2014b). 

Considering NaTech scenarios triggered by lightning, recent works allowed determining specific 

fragility models for storage and process equipment, in particular for above ground atmospheric 

and pressurized storage tanks, considering different types of geometries (Landucci et al., 2012; 

Landucci et al., 2014). 

This chapter discusses the application of the models developed during the PhD studies, to the 

assessment of lightning-triggered accident frequency (Necci et al., 2013; 2014-a; 2014-b) for 

implementation in a Quantitative Risk Assessment study. The aim of this work is to provide a 

methodology which is able to assess the risk contribution of lightning triggered accidents: the 

features of lighting accidents are discussed, the accident modelling is addressed with particular 

interest on lighting singularities and the influence of NaTech caused by lightning on the overall risk 

profile of a facility in showed by the use of a case study.  
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4.2 Past accident analysis of accident triggered by lightning event 
 

In order to identify and analyse lightning threat to industrial activities evidences of this hazards 

must be collected. While many different types of natural events have triggered Natech accidents, 

lightning strikes were the most common cause. Rasmussen (1995) analysed accident case histories 

in the industrial accident databases MHIDAS and FACTS and concluded that 61% of the accidents 

initiated by natural events at storage and processing activities were triggered by lightning strikes. 

Lightning was also found to be the most frequent cause of failure in the set of storage tank 

accidents analysed in the study of Chang and Lin (2006) and appears with very high frequency in 

the study performed by Persson and  Lönnermark (2004). 

 

4.2.1 Data retrieval for past accident analysis 

The paper by Renni et al. (2010) is dedicated at the data retrieval and analysis of those industrial 

accidents  that have been triggered by the impact of lightning. The data sources used for the 

analysis were the European industrial accident databases ARIA (2006), MHIDAS (2001), MARS 

(2008) and IChemE’s (2004) The Accident Database (TAD). In addition, the US National Response 

Centre (NRC, 2008) database was interrogated. The accident coverage in the databases is global 

with the exception of the NRC database where hazardous-materials-release and oil-spill reports 

are restricted to the United States and its territories. 

The analysed databases contain accident data from the open technical literature, government 

authorities, or in-company sources. Commonly, accident information from the chemical industry 

undergoes an abstraction process for confidentiality reasons. 

The ARIA and NRC databases are publicly available; access to MHIDAS, FACTS and TAD requires a 

license. The MARS database contains confidential information on major accidents submitted to 

the European Commission by the Competent Authorities. 

For the data extraction, selection criteria were defined in agreement with those used in a previous 

study on flood-triggered Natech accidents (Cozzani et al., 2010). Therefore, the following criteria 

were used:  

1. The loss of containment of a hazardous substance occurred or could have occurred. 
2. An industrial activity having a relevant inventory of hazardous substances was involved. 
3. The event generated or had the potential to generate an accident scenario with off-site 

consequences (major accident). 
For the purposes of this study “hazardous substances” are chemicals that are classified in the 

European Dangerous Substances Directive (Council Directive 67/548/EEC, 1967) and its later 

amendments, including those that extended the Directive to mixtures of chemical substances 

(Directive 1999/45/EC, 1999). The above selection criteria led to the inclusion in the analysis of 

industrial activities mainly falling under the provisions of the European 

Seveso II Directive on the control of major accident hazards (Council Directive 96/82/EC, 1996) and 

similar legislation. However, accidents in industrial sites not covered by these types of legal 

frameworks were also included in the present study if they were considered useful for lessons 

learning.  
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The following categories of process equipment were selected for the data analysis on the basis of 

the results of previous studies (Antonioni et al., 2007; 2009): 

 

 Storage: atmospheric or pressurized storage tanks, warehouses. 

 Process: reactors, heat exchangers, columns, separators, others. 

 Auxiliary: pipework, pumps and compressors. 
Electric and electronic systems, as well as flare stacks were also considered as specific targets of 

lightning-induced accidents. Although their failure may not directly result in loss of containment of 

hazardous substances, secondary effects due to collapse or loss of utilities have the potential to 

trigger a major accident. 

The quality of the reported information was often poor and in many cases the accident description 

was not very detailed or incomplete and in most of the cases analysed  the entire chain of events 

leading to the loss of containment was not described. Therefore, the analysis has been limited to 

subsets of the retrieved 721 accidents with a sufficient level of detail. 

 

4.2.2 Results 

Fig. 4.1 gives an overview of the industrial sectors for which accidents were recorded in the 

analysed databases. According to the data (a subset of 190 accident records that provided the 

required information) 95% of lightning-triggered Natech events occurred in oil and gas facilities 

(mainly oil refineries) and the petrochemical sector, including storage sites and tank farms. 

Obviously, the large number of industrial sites in operation within these sectors increases the 

frequency of lightning accidents in these sectors, as well as their susceptibility to lightning. 

However, accidents in chemical and petroleum industries account almost for the total of NaTech 

triggered by lightning strikes, therefore the high vulnerability of equipment categories present in 

such facilities is evident. 

 

 
Fig 4.1: Industrial activities involved in lightning-triggered accidents, with release of hazardous 

materials (Renni et al., 2010). 
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Fig. 4.2 shows a summary of the different equipment typologies damaged by lightning strikes, 

based on the analysis of 485 accident records. The Storage tanks is the equipment category which 

shows the highest number of accidents due to  lightning impact. Within this category,  

atmospheric tanks, and in particular floating-roof tanks which are commonly used for the storage 

of liquid hydrocarbons, are the most vulnerable equipment. Only 3 out of 289 accidents affecting 

storage tanks involved pressurised tanks, evidencing low vulnerability of this equipment typology. 

Other categories of process equipment were less susceptible to the impact of lightning: 

compressors and pumps and distillation columns, while flare stacks, pipes and electrical devices 

showed a high vulnerability lightning. 

Lightning impact also resulted in the disruption of control systems and electrical circuitry which led 

to corrupted data, false signals, and damage to sensitive electronic devices. Several loss of 

containment events were reported as a consequence of this type of lighting-induced damage. 

 

 
Figure 4.2: Equipment categories involved in Natech accidents due to lightning (Renni et al., 2010) 

 

Regarding the structural damage to equipment due to the impact of lightning, only limited 

information is available. In the reports failure modes that equipment may be subject to during a 

lightning strike are described only in very general, while more information regarding the 

firefighting efforts are reported in the analysed accident databases. From the limited information 

reported, two different failure modes were identified, which are direct and indirect structural 

damage. 

In addition to loss of containment caused by structural damage, damage to electric and electronic 

systems and immediate ignition of flammable substances were found. In several cases the electric 

field generated by the lightning caused the failure of control devices, with consequent loss of 

containment from vent and blow-down systems. Immediate ignition of flammable substances at 

the rim seal of storage tanks was also reported to have caused several fires and explosions. 

Due to the fact that storage tanks in chemical and oil industries, which are the most vulnerable 

equipment category, usually contain large amounts of flammable substances, severe off site 

effects might be expected due to lightning triggered accidents. Not surprisingly, the hazardous 

substances mainly involved in this type of Natech accident were found to be oil, diesel and 
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gasoline which constitute the typical inventory for atmospheric storage tanks. Table 4.1 gives an 

overview of the released substances and the number of accident records associated with each. 

The accident scenarios initiated by a lightning strike are therefore influenced by the type of 

equipment damaged, the substance inventory and the operating conditions. 

 

Table 4.1: Hazardous substances released during 713 lightning-triggered Natech accidents. (Renni 

et al., 2010). 

Substance category  Hazard N° Accidents 

Oil, diesel and gasoline Extremely flammable 389 

Oxides Explosive 122 

Natural gas Extremely flammable, Explosive 105 

Aromatics Extremely flammable, Dangerous for the environment 34 

Chlorine Toxic, Dangerous for the environment 32 

Ammonia Toxic, Dangerous for the environment 19 

Acid products Toxic, Dangerous for the environment 10 

Cyanides Toxic, Dangerous for the environment 1 

Explosives Oxidising 1 

 

According to the analysis of the whole accident case histories performed by Renni et al. (2010), 

the majority of lightning-triggered events resulted in the release of hazardous substances (58%), 

while  lower number of accidents resulted in fires (35%) and explosions (7%). Obviously, limiting 

the analysis to those accidents regarding storage tanks, fires and explosions constitute the large 

majority of the scenarios reported. However, limiting the analysis to release scenarios only, an  

ignition probability of 0.82 was estimated from the data analysis of 252 lightning-triggered 

releases of flammable substances from storage tanks. 

In 10 accident records the tank roof is specifically indicated as the position where the fire takes 

place, while most records refers to general fires. It is highly likely that ignition in atmospheric 

floating-roof tanks occurs at the rim seal of the floating roof where flammable vapours may be 

present (Renni et al., 2010). According to a dedicated study regarding fires in storage areas 

(LASTFIRE, 1997), 95% of rim-seal fires are caused by lightning strikes. This result is so explicative 

that it is worth to analyse what is peculiar about the rim-seal region of a FRT that makes it 

susceptible to lightning. By design to ensure ease of movement of the floating roof within the tank 

shell, there exist a gap between the tank shell and the edge of the floating roof. This eliminates 

friction, guarantees ease of movement but creates issues in the following areas when lightning 

strikes. 

Limited information on the on-site and off-site consequences of lightning-triggered accidents was 

provided in the analysed databases. In 6 out of 721 records fatalities were reported. The two most 

severe accidents analysed by Renni et al. (2010) resulted in over 400 and 16 fatalities, respectively. 

In 11 accident case histories information injured people were reported. In 34 accident records 

workers and/or residents were evacuated. Reported direct and indirect costs due to accidents 

triggered by lightning show significant economic losses due to the loss of expensive equipment, 
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other than huge inventories of products. The most costly reported Natech accident triggered by 

lightning resulted in damage of the order of 140 million US$ (in 1994 Dollars). 

 

4.2.3 Conclusions 

The results, obtained by the mean of lightning triggered accident data analysis, provided useful 

information on the equipment categories most vulnerable to lightning impact as well as on 

damage to and release modes of equipment impacted by lightning. A very high ignition probability 

for released flammable substances was estimated from the analysed data, highlighting once more 

the threat of lightning ignition of flammable materials. Thus, the development of specific tools for 

the quantitative risk analysis of Natech accidents triggered by lightning has started with a robust 

data analysis of real accidents. 
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4.3 Quantitative risk assessment of accidents triggered by lightning 
 

4.3.1 Methodology Overview 

The methodology for the NaTech scenarios implementation in Quantitative Risk Assessment study 

was described in the previous chapter. Even if there are evidences of rare accidental scenarios in 

the past in which multiple units are damaged at the same time by a single lightning strike, in the 

present methodology it is assumed that a single stoke can affect a only one equipment. Data 

regarding multiple accidents triggered by lightning are poor in the accident databases and it is 

hard to tell whether the multiple damage was produced by the lightning strike itself or by accident 

propagation due to domino effect. This assumption makes lightning strikes different from the 

other NaTech accidents, such as floods and earthquake, in which multiple units are hit at the same 

time and complex accidental scenarios must be analyzed (Antonioni et al., 2009). A simpler 

methodology than this presented by Antonioni et al. (2009), is therefore required. A summary of 

the proposed methodology is presented in Figure 4.3. 

 

 
Figure 4.3: Flow chart of the procedure for the quantitative risk assessment of Natech accidents 

due to lightning 

 

The first step of the methodology is the characterization of the frequency and of the severity of 

the natural event by a sufficiently simple approach, suitable for the use in a risk assessment 

framework. It must be remarked that this step by no way is intended to supply a characterization 
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of the natural hazard at the site, nor to provide data for a detailed analysis of the damage to 

structures, but only to obtain the input data necessary for simplified equipment damage models. 

Data on the flash frequency at ground are available from several sources: scientific publications, 

lightning protection standards (e.g. see (CEI, 2013; Cooray and Becerra 2010)), or directly 

consulting the databases obtained by the constant monitoring of lightning strikes carried out by 

competent authorities (SIRF, 2013). Then, the identification of vulnerable equipment in carried out 

for the entire industrial facility. The analysis of past accidents due to lightning evidences storage 

areas as the most vulnerable plant zones, which will be further discussed in section 4.3.3. 

Both the constructive specifications for the target equipment units and their relative position on 

the tank footprint are then used to apply a dedicated model for the assessment of the expected 

frequency of a generic lightning strike on every target unit. The damage modalities and the 

possible accidental scenarios must be assessed in the following step. Since one of the mayor 

lightning threat is the ignition of flammable material, dedicated event trees has to be applied to 

evaluate the possibility of all the possible lightning-triggered accidental scenario, also considering 

the inability to face the fire emergency. In order to assess the frequency of every possible 

accidental scenarios the application of vulnerability models is needed to assess the equipment 

damage probability. These models are discussed in the following sections. 

Consequence assessment of the single scenarios triggered by the natural event (step 7) may be 

carried out by conventional models, although a limited number of NaTech-specific final outcomes 

may arise (Cozzani et al., 2010; Renni et al., 2010; Necci et al. 2014b; Persson and  Lönnermark, 

2004). The final steps of the procedure are aimed at individual and societal risk calculation by the 

use of a dedicated GIS software (Egidi et al., 1995). 

 

4.3.3 Identification of the vulnerable units 

The first step of the quantitative risk assessment procedure is the identification of target 

equipment. As a result of the historical analysis of past accidents due to lightning strikes (see 

section 4.2), above ground atmospheric storage tanks shows the highest rate of lightning-triggered 

NaTech events. Large storage vessels containing hazardous liquids and gases are the critical 

equipment identified by the historical analysis. Thus, even if the present methodology is applicable 

to every critical unit in a hazardous site, it is developed  in the detail for storage tanks only. In 

particular for above ground atmospheric storage tanks.  

In fact, the review of records on industrial accidents triggered by lightning on atmospheric storage 

tanks allowed to identify: 

 

 the more recurrent damage modalities, which are: direct damage to the metal enclosure 
with consequent release of hazardous materials, ignition of flammable vapors, damage to 
instrumentation and loss of power supply 

 the associated recurrent scenarios: fire and explosion (both at the tank roof or in the bund 
area), toxic dispersion and soil/water contamination 

 a possible correlation between the severity parameter of the natural event and the 
vulnerability: high vulnerability for external floating roof atmospheric tanks, and in 
particular at the rim-seal area, has been highlighted  
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4.4 Assessment of lightning impact frequency on target equipment 
 

The approach used to develop the model for estimating lightning capture frequency is summarized 

in Figure 4.4. The model is aimed at assessing the expected equipment capture frequency in a 

specific lay-out. The preliminary step (Step 1 in Figure 4.4) is the definition of the main geometrical 

features of the area of interest, of the lay-out and of the specific characteristics of the considered 

equipment items. A Monte Carlo model is then used to generate a wide number of events each 

representing a lightning strike (Step 2 in Figure 4.4). Events are randomly generated with different 

perspective striking points (i.e., the strike location at ground without the presence of any 

structure), polarities and peak values of the lightning current waveform at the channel base. 

Probability distribution functions available in the literature (Anderson and Erikson, 1980; CEI, 

2013) or derived from lightning location systems (e.g. SIRF (2013)) are used to define polarity and 

current parameters, while a uniform distribution is assumed for the initial striking position. The 

final striking point of the lightning is then determined on the basis of the perspective striking point 

and of the lightning current amplitude (Step 3 in Figure 4.4). The results of the Monte Carlo 

simulations are then used to assess the expected capture frequency of each equipment item(Step 

4 in Figure 4.4). A simplified model, based on the calculation of an average attraction distance, was 

derived from the complete model developed (Steps 5 to 7 in Figure 4.4), in order to provide a tool 

more suitable for use in a quantitative risk assessment (QRA) framework. The features of the 

model and the approach needed for its application are described in detail in the following. 

 

 
Figure 4.4: Modelling approach: Monte carlo simulations and simplified model 
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4.4.1 Preliminary definition of geometrical features and lightning generation 

Before model application it is necessary to define the features and the limits of the area of 

interest, A. The position, shape and height of each item present in the area of interest need to be 

defined. In the case of equipment items for which structural damage may be of interest, also data 

on type and thickness of the shell need to be collected. It should be remarked that the area of 

interest should be extended to include any element having a relevant height above ground with 

respect to that of the equipment items considered (e.g. buildings, stacks, flares and trees). 

In the application of the Monte Carlo method, the number of simulations needed to obtain stable 

results is usually in the range between 105 and 108, and depends on the complexity of the system 

analyzed. Random generation of flash polarities and of peak values of the lightning current is 

carried out taking into account the statistical data for lightning distribution. In particular, the log-

normal distributions having mean value, μln, and standard deviation, σln, proposed by Anderson 

and Eriksson (1980) are assumed for the lightning peak current intensity Ip of both positive and 

negative first strokes of the flashes. The ground impact position in the absence of attraction due to 

structures is then randomly defined assigning uniformly random generated values to the x and y 

coordinates of the strike location within the area A of concern. For each generated event, the 

triplet of values (x,y,Ip) attributed by the Monte Carlo procedure is then checked with respect to a 

capture condition described in the following. 
 

4.4.2 Lightning attraction 

In order to evaluate whether a lightning flash is attracted by one of the relevant items defined in 

the area of interest or hit a non-hazardous zone, a specific capture model is applied, derived from 

the Electro-Geometrical Model (EGM) (Cooray and Becerra, 2010). The model calculates a 

maximum attraction distance for the item of concern as a function of the lightning peak current 

intensity and of the height of the structure. When the distance between the lightning strike 

original impact position and the nearest point of equipment perimeter is lower than the attraction 

distance, the lightning strike is assumed to be captured by the item. The theoretical background of 

the EGM and its limitations are discussed in the literature  (Cooray and Becerra, 2010; Borchetti et 

al., 2010; CEI, 2013; Love, 1973). The overall attraction distance, rs, may be calculated as follows: 

65.0
ps I10r 

 
 (4.1) 

where Ip is the peak return stroke current associated to the lightning strike by the Monte-Carlo 

method (expressed in kA), and rs is the attraction distance from the structure, or lightning final 

jump, (expressed in m). The attraction distance from the ground, rg, may then be calculated as a 

fraction of rs (Cooray and Becerra, 2010; CEI, 2013): 

sg r9.0r   (4.2) 

The projection on the ground of the attraction distance, r, is obtained as follows (see Figure 4.5) 

(Cooray and Becerra, 2010; CEI, 2013): 












s

2
g

2
s

rr

)Hr(rr
  (4.3) 

where H is the height of the structure. The lightning is captured by the equipment if the distance 

between the original strike location (x,y) and the nearest point of the equipment perimeter (dsl in 

grH 

grH 



75 

 

Figure 4.6-(a)) is lower than the projection on the ground of the capture distance, r, calculated 

from Eqs.(4.1-4.3). 

 

  
Figure 4.5: Procedure for the calculation of the ground projection of the capture distance: (a) 

equipment height H higher than attraction distance from the ground rg; (b) equipment height H 

lower than attraction distance from the ground rg. (Necci et al., 2014a) 

 

 

  
Figure 4.6: Calculation of the attraction height for the assignment of a lightning strike among 

different structures: (a) geometrical parameters for the calculation of capture height; (b) allocation 

zones based on the capture height criterion. (Necci et al., 2014a) 

 

However, the above model is only suitable to calculate the capture frequency in the absence of 

interference from any other structure or relevant item in the surroundings. In most applications, it 

may well be that capture condition is satisfied by more than one item. Buildings, tanks, trees, 

columns, flares, etc. can all attract lightning strikes. When the capture condition is satisfied for 

more than one item, each lightning strike must be properly allocated. The EGM model can be 

applied to assign a lightning event to each structure.  
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Considering that the capture condition of a lightning with original position (x,y) is satisfied for a 

number k of items of concern, a “capture height” can be calculated for each of the k targets by the 

following equation (see Figure 4.6-(a) (Necci et al., 2014a)): 

j
2

j,sl
2
sj Hdrz        (4.4) 

where zj is the capture height of the j-th item, dsl,j is the distance between the j-th item and the 

original strike location (x,y) calculated from the nearest point of the structure, and Hj is the height 

of the j-th structure. The values calculated for zj are then compared for the k items of concern, and 

the lightning is assigned to the item having the highest value of the capture height. Figure 4.6-(b) 

exemplifies the procedure for two storage tanks. 

 

4.4.3  Frequency assessment of attracted lightning strikes 

The application of the Monte Carlo method allows the assessment of the expected frequency of 

lightning impact on each of the items considered in the area of interest. The capture frequency 

may be thus assessed as follows (Necci et al., 2014a): 
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where fc,j is the frequency of capture of the j-th item, fl is the expected frequency of a lightning at 

the ground in area A expressed as number of lightning flashes per year, Pc,j is the conditional 

probability of lightning impact on the j-th item given the lightning, ng is the annual flash density 

(that is the number of expected lightning strikes per year per square km), A is the extension of the 

area of interest expressed in square km, ntot is the total number of lightning events of the Monte 

Carlo simulations, and nc,j is the number of flashes captured by the j-th equipment. The capture 

frequency varies widely with the geographical region of interest, since ng is comprised between 

10-2 and 102 flashes.km-2.year-1 depending on the geographical area of interest. Typical values of ng 

range between  0.1 and 10 flashes.km-2.year-1 (Cigré, 2013). Data on the flash frequency at ground 

are available from lightning location systems available in many countries (e.g. SIRF (2013)). 

It is important to remark that the role of layout and of nearby items that are able to attract 

lightning strikes is relevant in determining the capture frequency. Thus, when considering the 

actual capture frequency for an equipment item of interest, a lay-out index may be defined to 

underpin this aspect. The lay-out index may be defined as the ratio between the lightning capture 

frequency of the unit of concern in its specific layout and the capture frequency that the same unit 

would have in an open flat field: 

j,cs
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where LIj is the layout index and fcs, is the capture frequency of equipment j in an open flat field 

where no other structure is present. The lay-out index is thus always comprised between 0 and 1, 

and is equal to 1 when no other nearby structure is present that may be able to attract and 

capture a lightning strike. 

 

  



77 

 

4.4.4 Simplified assessment of attracted lightning strikes 

The model developed above provides a sound assessment of lightning capture frequency based on 

the EGM model and lay-out characteristics. However, in order to apply it, the user is required to 

carry out a high number of Monte Carlo simulations that increases with the complexity of the lay-

out of interest. Thus, a simplified approach was developed, aimed to provide a model more 

suitable for the use in a QRA framework and validated by the comparison of the results with those 

obtained by the Monte Carlo method. As shown in Figure 4.4, the first step of the simplified model 

is based on the calculation of an average capture distance. 

 

 
Figure 4.7: Average capture area of a vertical cylindrical structure: (a) generic structure; (b) vertical 

cylindrical structure (e.g. atmospheric storage tank). D: tank diameter; Lmin and Lmax: the two main 

horizontal dimensions of the structure; rcm: average ground projection of the capture distance. 

(Necci et al., 2014a). 
 

A mean peak current intensity, Ip,m, can be obtained from the distribution of peak current intensity 

values, Ip (Andersen and Erikkson, 1980; CEI, 2013). On the basis of the mean peak current 

intensity of the lightning, a mean attraction distance from the structure, rsm, may be calculated 

from Eq. (4.1). The value of rsm can be used to calculate a mean attraction distance from the 

ground, rgm, using Eq. (4.2). The values calculated for these parameters using the distribution data 

for lightning current intensity provided by Andersen and Erikkson (1980), considering both positive 

and negative flashes are reported in Table 4.2. 

 

Table 4.2: Average capture parameters obtained from the Andersen and Erikkson (1980) 

probability distribution data of peak lightning current intensity. 

Mean Peak Current Intensity, Ip,m (kA) 42.4 

Mean Attraction distance, rsm (m) 114.3 

Mean Attraction Distance from the Ground, rgm (m) 102.8 
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Since in an ordinary lay-out no element reasonably exceeds the height of 100m, it was assumed 

that the mean capture height is always higher than any structure considered. Thus, using Eq.(4.3) 

an average value may be obtained for the ground projection of the capture distance considering 

the height of the structure(Necci et al., 2014a): 

2
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(4.7) 

where rcm is the average ground projection of the capture distance and H is the structure height 

expressed in meters. If the average values in table 1 are used for rsm and rgm, Eq.(4.7) can be 

approximated as follows (Necci et al., 2014a): 

22
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As shown in Figure 4.7, the correlation given by Eq.(4.8) allows the calculation of an average 

capture area for any item of interest, Ac. In the case of a vertical cylindrical structure, such as an 

atmospheric storage tank, the capture area can be calculated as follows (Necci et al., 2014a): 
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where D is the tank diameter. 

If two or more structures are present in the area considered, it may happen that part of the 

capture areas of different units will overlap. In this case, the overlapping parts of the capture areas 

must be allocated among the structures. In order carry out such task, the adoption of a “cell 

method” is proposed. The area of interest is divided into square cells of uniform size. The ground 

projection of the capture distance is then calculated for each of the k equipment items present in 

area A of concern using Eqs. (4.7) or (4.8). A capture area, Ac,j, is then calculated for each 

equipment item. The capture area is obtained attributing to the equipment capture area, Ac,j, the 

area of each cell that verifies the following condition (see Figure 4.8-(a)): 

j,cmj,i,cc rd    (4.10) 

where dcc,i,j is the distance between the center of cell i and the nearest point of the j-th equipment 

item. 

If the same cell verifies the condition given by Eq.(4.10) for two or more equipment items or 

structures present in the area, the capture height of the j-th equipment in the center of the i-th 

cell, zi,j, is calculated applying Eq.(4.4) to the average value of the attraction distance (Necci et al., 

2014a): 
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where Hj is height of the j-th structure. The cell is then allocated to the capture area of the 

structure with the highest value of zi,j (see Figure 4.6). The overall value of the capture area of 

each equipment item or structure considered is thus calculated as follows (Necci et al., 2014a): 
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where Ai is the area of cell i , Nc is the total number of cells considered, and δi,j is equal to 1 if the i-

th cell is attributed to the capture area of equipment j by the conditions discussed above. 

Otherwise δi,j is equal to 0. 
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Figure 4.8: Procedure to assess the capture area of equipment items or structures by the cell 

method: (a) assignment of cells to the equipment capture area (grey: equipment item; red: cells 

attributed to equipment item capture area; green: cells not belonging to capture area); (b) capture 

areas calculated by the cell method for four equipment items using the criterion given by Eq.(11). 

Tank geometries are reported in Table 4.3. (Necci et al., 2014a) 
 

The accuracy of this simplified method, as well as the computational effort required for its 

application, increase with the number of cells in which the area of interest, A, is divided. Usually a 

sufficient accuracy is obtained if square cells of equal area are defined with size lower than the 

lower value of ground projection radius rcm calculated for the equipment items or structures 

considered in the area of concern using Eqs. (4.7) and (4.8). 

The capture frequency for the j-th equipment item considered, fc,j, may be then calculated on the 

basis of the capture area obtained from Eq.(4.12) and of the annual flash density, ng (Necci et al., 

2014a): 

j,cgj,c Anf 
  (4.13) 

As an example, the above-described procedure is applied to the simplified lay-out reported in 

Figure 4.8-(b). Square cells of 1m2 are defined, having a size much lower than the capture radius. 

Area A is represented by 50,000 square cells. Among these, the procedure attributes 38,460 cells 

to the capture area of the tanks in the lay-out. Figure 4.8-(b) shows the shape of the capture areas 

calculated for the four tanks. The tank geometries are described in Table 4.3. The table also 

reports the calculated extent of the capture areas and the capture frequencies calculated by using 

both the Monte Carlo and the simplified model. The lay-out index was also estimated and is 

reported in the table. As shown by the table, the two models provide quite similar results for this 

case-study.  
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Table 4.3: Geometrical features and capture frequencies calculated for the four tanks in the lay-out 

shown in Figure 4.8-(b); fc,MC: results obtained from the Monte-Carlo model; fc,S: results obtained 

from the simplified model; RE%: relative error of the capture frequency obtained from the 

simplified model with respect to the corresponding capture frequency obtained from the Monte-

Carlo model, calculated using Eq.(14). (Necci et al., 2014a) 

 

Tank id. D 

(m) 

H 

(m) 

Ac  

(m
2
) 

fc,S 

(y
-1

) 

fc,MC 

(y
-1

) 

RE% LI 

(MC) 

LI 

(Simplified) 

T1 20 15 12900 3.87 x10
-2

 3.79 x10
-2

 2.11 0.581 0.594 

T2 20 10 6330 1.90 x10
-2

 1.91 x10
-2

 -0.64 0.340 0.343 

T3 20 10 6330 1.90 x10
-2

 1.88 x10
-2

 1.06 0.340 0.343 

T4 20 15 12900 3.87 x10
-2

 3.80 x10
-2

 1.84 0.582 0.593 

 

4.4.5 Comparison of results obtained by the Monte Carlo and the simplified model 

The simplified model described above leads to a more simple calculation of the capture frequency 

for stand-alone equipment items as well as for complex lay-outs. However, since the model 

introduces some approximations, it is important to understand the expected differences in the 

results obtained with respect to those obtained from the complete Monte Carlo model. A vessel 

database, developed in a previous study (Landucci et al., 2012) was used to obtain an exhaustive 

and representative range of possible vessel geometries and was used for model validation. The 

database was obtained considering available data on tanks present at several industrial tank 

farms, data from widely-used design standards (e.g. API Standard 650 (2003)) and available design 

standards from engineering companies. Table 4.4 reports a summary of the ranges of tank 

volumes and geometrical data considered in the database, which includes 116 different vessel 

geometries. Further details on the vessel database used are reported in (Landucci et al., 2012). 

Standalone capture frequencies and a total of 96 lay-outs were defined to assess the effect on 

model results of simple lay-out geometries composed of a variable number of storage tanks, 

including 2 to 20 items. A square area A with the tanks at its center was considered in the 

calculations, having an extension of 1 km2. A value of 3 flashes.km-2.year-1 was assumed for the 

flash density at the ground (ng). The relative error of the simplified model was calculated as (Necci 

et al., 2014a): 
 

100
f

ff
%RE

MC,c

MC,cS,c



      (4.14) 

where fc,S is the capture frequency obtained from the simplified model and fc,MC is the capture 

frequency obtained from the Monte Carlo model.  

 

Table 4.4: Ranges of main geometrical data assumed for the atmospheric storage tanks considered 

in simplified model assessment; D: tank diameter; H: tank height (Necci et al., 2014a). 
Tank Type Capacity (m

3
) D (m) H (m) 

Atmospheric 38-16300 3-66 5.4-18 
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Figure 4.9 shows the parity plot obtained for the values of the capture frequencies calculated by 

the two models. As evident from the figure, the results expressed in terms of capture frequency 

show only limited differences. The relative error is always below 10%. The recorded maximum 

positive relative error is 8.5%, while the maximum negative relative error is -6.6%. On the one 

hand, the simplified model shows to be slightly conservative for tanks in lay-outs where several 

structures capable of attracting lightning flashes are present. On the other hand, somewhat higher 

capture frequencies are obtained by using the Monte Carlo model for standalone tanks. 
 

 
Figure 4.9: Parity plot showing the capture frequencies (events/year) calculated with the simplified 

model, fc,S, versus the capture frequencies obtained with the Monte Carlo model, fc,MC, for all the 

simulations carried out for both stand-alone vessels and more complex lay-outs (Necci et al., 

2014a). 

 

4.4.6 Results 

4.4.6.1 Model application to stand-alone equipment items and to simple lay-outs 

In order to verify the applicability of the model in a realistic framework, the lightning capture 

frequency was calculated for a reference set of equipment items in industrial lay-outs, identifying 

tank geometries widely used in industrial sites and considering actual lay-outs for unprotected 

structures. 

As a first step, the capture frequency was calculated for all the tanks assumed to be stand-alone, 

i.e., neglecting the influence of nearby structures. Since previous studies showed that atmospheric 

storage tanks are the structures most affected by lightning strikes (Renni et al., 2010; Necci et al., 

2013a), vertical cylindrical atmospheric storage tanks of different geometries were considered. 

The tanks were assumed to be on an open flat ground without any other structure in the vicinity. A 

square area A of 1 km2with the tank at its center was considered. A value of 3 flashes.km-2.year-1 

was assumed for the flash density ng. Table 4.5 reports some sample results obtained for the 

capture frequency using both the complete Monte Carlo model and the simplified model. As 

shown in the table, the attraction frequency for unprotected stand-alone structures is rather high 

(of the order of 10-2 events/year) for flash densities typical of European regions.  
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Table 4.5: Capture frequencies calculated for a reference set of stand-alone vertical cylindrical 

tanks assuming a flash density of 3 flashes.km-2.year-1 using the Monte Carlo (fcs,MC) and the 

simplified models (fcs,S). D: tank diameter; H: tank height; RE%: relative error (%) calculated from 

Eq.4.13 (Necci et al., 2014a). 

Tank ID Volume D H w  fcs,MC  fcs,S RE% 

 (m
3
) (m) (m) (mm) events/year events/year  

1 38 3 5.4 5 3.71 x10
-2

 3.53 x10
-2

 -4.85% 

2 100 4.4 7 5 4.04 x10
-2

 3.91 x10
-2

 -3.14% 

3 250 7.7 7.5 5 4.36 x10
-2

 4.21 x10
-2

 -3.40% 

4 500 7.8 11 6 4.94 x10
-2

 4.87 x10
-2

 -1.36% 

5 750 10.5 9 7 4.77 x10
-2

 4.68 x10
-2

 -1.89% 

 6 1000 15 6 9 4.57 x10
-2

 4.38 x10
-2

 -4.16% 

7 2500 20 5.4 11 4.77 x10
-2

 4.58 x10
-2

 -4.01% 

8 5200 25 11 11 6.15 x10
-2

 6.11 x10
-2

 -0.68% 

9 7634 30 10.8 12 6.49 x10
-2

 6.45 x10
-2

 -0.60% 

10 9975 42 7.2 12 6.67 x10
-2

 6.58 x10
-2

 -1.38% 

11 12367 54 5.4 13 7.15 x10
-2

 7.08 x10
-2

 -0.92% 

12 16303 66 5.4 15 8.09 x10
-2

 8.10 x10
-2

 0.11% 

 

These values are actually conservative since they neglect lay-out effects from nearby structures 

that in real-life situations would lead to lower values of capture frequency. Lay-out effects may 

derive from other equipment items in the area, but also from buildings, electric lines, trees, and 

other tall structures. Lay-out effects depend on the distance and on the geometrical features of 

the other structures (the height being the most important parameter). Thus, it is important to 

understand which are the reference distances below which lay-out effects become significant and 

need to be considered in the assessment of the capture frequency. 

As a starting point to understand lay-out effects due to nearby equipment items, a simplified lay-

out is analyzed, composed of two tanks having the same diameter and height, and positioned at 

different distances (Figure 4.10). 

 
Figure 4.10: Simplified lay-out considered to assess lay-out effects: footprint and side view (H: tank 

height; D: tank diameter; d: distance among tank shells). (Necci et al., 2014a) 
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Table 4.6: Geometrical features assumed for tanks in Figure 4.10 (D: diameter; H: height; Hr: ratio 

of height on tank 2 over height of tank 1;; fcs: capture frequency). (Necci et al., 2014a) 

ID Tank 1, D 

(m) 

Tank 1, H 

(m) 

Tank 2, D 

(m) 

Tank 2, H 

(m) 

Hr
 Tank 1, fcs 

(events/year) 

A 10 12.6 10 9; 12.6; 16.2; 18 0.71-1.43 5.42 x10-2 

B 20 12.6 20 9; 12.6; 16.2; 18 0.71-1.43 6.09 x10-2 

C 30 12.6 30 9; 12.6; 16.2; 18 0.71-1.43 6.87 x10-2 

D 60 12.6 60 9; 12.6; 16.2; 18 0.71-1.43 9.33 x10-2 

E 5-100 9 20 9 1 4.33x10-2-1.25x10-1 

F 10-100 9 20 9 1 4.65x10-2-1.25x10-1 

 

Figure 4.11 shows the values of the lay-out indices calculated with the Monte Carlo model and the 

simplified model for the lay-out of Figure 4.10 (case b reported in Table 4.6 for a height of 12.6m 

for Tank 2). As shown in Figure 4.11, the lay-out index ranges from 0.6 to 1, depending on the 

distance between the tanks. Although the results shown in Figure 4.11 refer to a specific tank 

geometry, similar trends were obtained for all the tank geometries reported in the database, thus 

allowing us to draw some general conclusions. The values of the lay-out index obtained with the 

two models are very similar, with differences lower than 5%. It should be noted that differences 

between the two models in general are negligible (lower than 1%) up to distances of 50m that are 

those of interest in industrial lay-outs. Moreover, the results obtained with the simplified method 

are always conservative with respect to those obtained with the Monte-Carlo model. 

 

 
Figure 4.11: Values calculated for the lay-out index as a function of distance between vessel shells 

for two identical storage tanks having a diameter equal to 20 m and height equal to 12.6m. (Necci 

et al., 2014a) 
 

In order to assess the influence of tank diameter and height on the lay-out index, Figures 4.12-(a) 

to 4.12-(d) show the values of the lay-out indices calculated with the Monte Carlo model for 

simplified lay-outs in which two tanks having the same diameter and different heights are 

considered. As shown in the figure, the lay-out index ranges from 0.2 to 0.8, depending on the 

relative height and on the diameter of the tanks. As shown in the figure, the lay-out index shows a 

limited dependency on the tank height ratio when the tanks have very large diameters (e.g. see 

Figure 4.12-(d), where diameters of 60m were assumed). In contrast, the lay-out index is highly 
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influenced by the height ratio of the structures for small tank sizes and short distances, as shown 

in Figure 9-(a) and 4.12-(b). Figures 4.12-(e) and 4.12-(f) show some results obtained for tanks with 

different diameters and the same height.  The LI lies between 0.4 and 0.9 and increases with the 

difference between the diameters. Moreover, when diameters have the same order of magnitude 

or are larger than the mean capture radius (60m), the variation of the LI as a function of the 

distance among the tanks is very limited or almost negligible. 

 

  

  

  

Figure 4.12: Lay-out index (LI) calculated for Tank 1 in the simplified lay-out shown in Figure 4.10. 

(a) LI vs. distance for Tank 1 and Tank 2 diameters equal to 10 m and different Hr values; (b) LI vs. 

distance for Tank 1 and for Tank 2 diameters equal to 20 m and different Hr values; (c) LI vs. 

distance for Tank 1 and Tank 2 diameters equal to 40 m and different Hr values; (d) LI vs. distance 

for Tank 1 and Tank 2 diameters equal to 60 m and different Hr values; (e) LI vs. Tank 1 diameter 

and different distances among tanks (Tank 1 and Tank 2 heights equal to 9 m; Tank 2 diameter 

equal to 20 m); (f) LI vs. distance considering for Tank 2 D=20 m and different values of Tank 1 

diameter. Other geometrical parameters of the tanks are reported in Table 4.6; Hr is the ratio of 

the height of Tank 2 with respect to the height of Tank 1. (Necci et al., 2014a) 
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When more complex and more realistic lay-outs are considered, edge effects become evident. 

Figure 4.13 shows a simplified regular lay-out consisting of 12 tanks all having the same distance 

one to another and disposed along square cells. Such simplified geometries are typical for tank 

farms in oil refineries. 

 
Figure 4.13: Lay out of 12 identical tanks having the same geometrical features. Tank centers are 

positioned at the same distance to each other. P1, P4, P9, P12 : tanks in angle position; P2, P3, P5, 

P8, P10, P11: tanks in edge position; P6,P7: tanks in central position. (Necci et al., 2014a) 

 

Table 4.7 shows the results obtained for the lay-out indices calculated by the Monte Carlo model 

using 107 simulations. For the sake of simplicity, a single tank geometry was considered for all the 

tanks in the lay-out (Tank 9 in Table 4.5).  

 

Table 4.7: Values of LI calculated for the lay-out in Figure 4.13 assuming for all the tanks the 

geometrical features of tank 9 in table 4.5 and considering different distances, d, between tank 

shells. (Necci et al., 2014a) 

Position Type Distance, d 

  10 m 20 m 30 m 50 m 

P1 Angle 0.41 0.46 0.50 0.60 

P2 Edge 0.18 0.24 0.30 0.42 

P3 Edge 0.18 0.24 0.30 0.42 

P4 Angle 0.41 0.46 0.50 0.60 

P5 Edge 0.18 0.24 0.30 0.42 

P6 Centre 0.073 0.12 0.17 0.29 

P7 Centre 0.073 0.12 0.17 0.29 

P8 Edge 0.18 0.24 0.30 0.42 

P9 Angle 0.41 0.46 0.50 0.60 

P10 Edge 0.18 0.24 0.30 0.42 

P11 Edge 0.18 0.24 0.30 0.42 

P12 Angle 0.41 0.46 0.50 0.60 

 

As shown in the table, the lay-out index is influenced both by the distance and the position of the 

tanks in the lay-out. In particular, tanks having a similar position in the lay-out (angle, edge, 
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center) have very similar values of the lay-out indices (see Tables A1, A2, A3 in the Appendix). As a 

matter of fact, differences in the value of lay-out indices are almost negligible for tanks in the 

same type of position (angle, edge, center) in the lay-out. 

 

4.4.6.2 Results obtained in the analysis of an existing tank farm lay-out 

In order to understand the values of capture frequencies in real-life application, the lay-out of an 

existing tank farm in an oil refinery was considered. Figure 4.14 shows the lay-out of the 

considered tank farm. Several atmospheric tanks with different geometries are present: external 

floating roof tanks, internal floating roof tanks and fixed cone roof tanks. Table 4.8 summarizes the 

features of the tanks present in the lay-out. Two different assessments were carried out: i) taking 

into account only atmospheric tanks; ii) taking into account all tall structures (e.g. also power lines, 

flares, columns, etc.). No specific lightning protection was assumed to be present. Both the Monte 

Carlo and the simplified model were applied to calculate the capture frequency values. The 

capture frequencies calculated from the simulations carried out using both the Monte Carlo and 

the simplified models, and considering a flash density ng typical of an Italian site and equal to 2.5 

flashes.km-2.year-1 (SIRF, 2013), are reported in Table 4.8. The table shows the stand-alone capture 

frequency calculated for each tank and the actual capture frequency calculated neglecting and 

considering the effect of structures different from storage tanks. The table shows that when 

surrounding structures are not considered the capture frequencies of the tanks in the lay-out are 

between 2.10-2 and 10-1 events.year-1. Lay-out indices are between 0.25 and 0.75, depending on 

the size and position of the tank (angle, edge, or centre), with the exception of Tanks 1 and 2 that 

have a more isolated position and thus a higher lay-out factor than the others (between 0.75 and 

1). When the effect of surrounding tall structures, such as flares, is considered, capture 

frequencies slightly decrease, falling into the range of 10-2 to 7.10-2 events.year-1. Lay-out indices 

also decrease, being between 0.25 and 0.5 for most of the tanks. Table 4.8 also confirms that the 

results of the simplified method are in good agreement with those obtained by Monte Carlo 

simulations, with an error in the assessment of capture frequencies that is below the inherent 

uncertainties of QRA calculations. 

Figure 4.15 reports a ranking of the lay-out indices calculated either excluding or including in the 

analysis the surrounding structures. The figure allows a better understanding of how the position 

on the lay-out of the equipment items influences the lay-out index calculated from the method. 

Comparison of Figures 4.15-(a) and 13-(b) clearly shows the indirect protection effect of 

surrounding tall structures. In particular, this effect is evident for Tanks 6, 9 and 18, that receive a 

considerable indirect protection from the presence of adjacent tall structures. As expected, the LI 

calculated for the largest tanks, with D>50 m, are generally less influenced by the presence of 

nearby tanks (Case 1). However their capture frequency and LI can still be effected by the vicinity 

of very tall structures (Case 2). This result is coherent with the historical data on accidents 

triggered by lightning strikes, which reports that most of fires and explosions involved very large 

tanks (Persson and  Lönnermark, 2004). 
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Figure 4.14: Lay-out considered for the extended case study: the zone of interest is highlighted in 

grey and delineated by a dashed line; the storage tanks under analysis are blue; other relevant 

structures considered in the analysis are displayed with different symbols and colours. (Necci et al., 

2014a) 

 

 

 

  
Figure 4.15: Lay-out indices calculated for the structures considered in the lay-out reported in 

Figure 4.14. a) lay-out indices calculated considering only storage tanks; b) lay-out indices 

calculated considering all structures in the vicinity of the storage tanks. (Necci et al., 2014a) 
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Table 4.8: Results of the analysis of lay-out in Figure 4.13. Case 1: only storage tanks considered; 

Case 2: all structures considered (D: diameter or equivalent diameter of the structure; H: height of 

the structure; fc: capture frequency; LI: lay-out index; ID: structure number in Figure 4.14). (Necci et 

al., 2014a) 

TANK 

FEATURES 

MONTE CARLO METHOD SIMPLIFIED METHOD 

Stand 

alone 

Case 1 Case 2 Stand 

alone 

Case 1 Case 2 

ID D 

(m) 

H 

(m) 

fcs,MC 

(y
-1

) 

fc,MC 

(y
-1

) 

LIMC fc,MC 

(y
-1

) 

LIMC fcs,S 

(y
-1

) 

fc,S 

(y
-1

) 

LIS fc,S 

(y
-1

) 

LIS 

1 72 10.8 8.21x10
-2

 6.93 x10
-2

 0.84 5.35 x10
-2

 0.65 8.00 x10
-2

 7.01 x10
-2

 0.88 5.86 x10
-2

 0.73 

2 72 10.8 8.21 x10
-2

 6.72 x10
-2

 0.82 4.84 x10
-2

 0.59 8.00 x10
-2

 6.95 x10
-2

 0.87 5.28 x10
-2

 0.66 

3 60 9.0 7.09 x10
-2

 5.14 x10
-2

 0.72 2.20 x10
-2

 0.31 6.76 x10
-2

 5.19 x10
-2

 0.77 2.37 x10
-2

 0.35 

4 48 10.8 6.69 x10
-2

 3.37 x10
-2

 0.50 3.26 x10
-2

 0.49 6.21 x10
-2

 3.63 x10
-2

 0.58 3.63 x10
-2

 0.58 

5 48 10.8 6.69 x10
-2

 4.00 x10
-2

 0.60 3.90 x10
-2

 0.58 6.21 x10
-2

 4.50 x10
-2

 0.72 4.31 x10
-2

 0.69 

6 48 12.6 6.71 x10
-2

 3.91 x10
-2

 0.58 1.61 x10
-2

 0.24 6.51 x10
-2

 3.92 x10
-2

 0.60 1.64 x10
-2

 0.25 

7 48 12.6 6.71 x10
-2

 2.73 x10
-2

 0.41 2.69 x10
-2

 0.40 6.51 x10
-2

 2.82 x10
-2

 0.43 2.82 x10
-2

 0.43 

8 48 12.6 6.71 x10
-2

 2.75 x10
-2

 0.41 2.69 x10
-2

 0.40 6.51 x10
-2

 2.84 x10
-2

 0.44 2.84 x10
-2

 0.44 

9 30 12.6 6.71 x10
-2

 3.29 x10
-2

 0.49 1.68 x10
-2

 0.25 5.29 x10
-2

 3.30 x10
-2

 0.62 1.85 x10
-2

 0.35 

10 48 10.8 6.69 x10
-2

 3.17 x10
-2

 0.47 3.13 x10
-2

 0.47 6.21 x10
-2

 3.43 x10
-2

 0.55 3.43 x10
-2

 0.55 

11 36 9.0 5.51 x10
-2

 1.90 x10
-2

 0.34 1.98 x10
-2

 0.36 5.13 x10
-2

 2.04 x10
-2

 0.40 2.04 x10
-2

 0.40 

12 48 18.0 7.93 x10
-2

 4.31 x10
-2

 0.54 2.53 x10
-2

 0.32 7.38 x10
-2

 4.28 x10
-2

 0.58 2.59 x10
-2

 0.35 

13 66 12.6 8.18 x10
-2

 4.92 x10
-2

 0.60 4.65 x10
-2

 0.57 7.86 x10
-2

 5.29 x10
-2

 0.67 4.90 x10
-2

 0.62 

14 66 10.8 7.92 x10
-2

 3.62 x10
-2

 0.46 2.73 x10
-2

 0.34 7.54 x10
-2

 3.63 x10
-2

 0.48 2.90 x10
-2

 0.38 

15 66 12.6 8.18 x10
-2

 4.16 x10
-2

 0.51 2.93 x10
-2

 0.36 7.86 x10
-2

 4.13 x10
-2

 0.52 2.99 x10
-2

 0.38 

16 66 12.6 8.18 x10
-2

 3.11 x10
-2

 0.38 2.16 x10
-2

 0.26 7.86 x10
-2

 3.17 x10
-2

 0.40 2.13 x10
-2

 0.27 

17 54 14.4 7.64 x10
-2

 2.42 x10
-2

 0.32 2.50 x10
-2

 0.33 7.25 x10
-2

 2.50 x10
-2

 0.34 2.50 x10
-2

 0.34 

18 48 14.4 7.20 x10
-2

 1.94 x10
-2

 0.27 1.53 x10
-2

 0.21 6.81 x10
-2

 1.98 x10
-2

 0.29 1.62 x10
-2

 0.24 

19 54 14.4 7.64 x10
-2

 2.80 x10
-2

 0.37 2.04 x10
-2

 0.27 7.25 x10
-2

 2.90 x10
-2

 0.40 2.03 x10
-2

 0.28 

20 48 14.4 7.20 x10
-2

 4.54 x10
-2

 0.63 3.55 x10
-2

 0.49 6.81 x10
-2

 4.70 x10
-2

 0.69 3.94 x10
-2

 0.58 

21 66 14.4 8.55 x10
-2

 5.14 x10
-2

 0.60 3.88 x10
-2

 0.45 8.19 x10
-2

 5.10 x10
-2

 0.62 3.94 x10
-2

 0.48 

 

 

4.4.7 Final consideration regarding lightning impact frequency assessment 

The calculation of the lightning impact frequency provides the essential information to approach 

the assessment of the quantitative contribution of lightning-triggered accidents to industrial risk. A 

specific model based on a Monte Carlo procedure was developed to assess the capture frequency 

of lightning by equipment items in complex lay-outs. A simplified method, devoted to QRA 

application, was also proposed and validated on the basis of the results of the Monte Carlo model. 

Both modelling approaches allow the calculation of capture frequencies either for stand-alone 

tanks or considering the lay-out and the effect of nearby structures. Because of the crucial 

contribution of the layout on lightning attraction, a lay-out index was defined as the ratio of the 

actual capture frequency with respect to that calculated for a stand-alone situation (corresponding 

to a lay-out in which no other structure is present), in order to evaluate the effect of the 

surrounding buildings and items on lightning impact frequency. The lay-out index was shown to 
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depend on the separation distances between the structures, on the relative height, as well as on 

the relative position of equipment items and structures. In particular, when tank farms are 

considered, non-uniform capture frequencies are present and tanks positioned on angles or edges 

show higher capture frequencies than tanks in the centre of the tank farm. The layout index 

calculated for reference realistic case studies ranged between 0.1 to 0.8, for the critical equipment 

units: the biggest atmospheric tanks of a storage tank park. This is a useful information, because it 

assesses the error present on lightning impact frequency assessment in the case simplified 

correlations, such as those presented in section 4.4.4 are used and the layout effect is neglected 

(i.e. Eq. 7 to 9). Even with this extremely simplified approach, the assessed lightning impact 

frequency by the use of simplified correlations does not exceed  of more than one order 

magnitude  the lightning impact frequency values, assessed by methodologies, such as Monte 

Carlo simulations or the “cell method”, which requires a higher computational effort. 
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4.5 Identification of the damage modalities and of reference scenarios 

 

4.5.1 Characterization of the critical equipment  

Above ground atmospheric tanks for the storage of large amounts of liquids are typically vertical 

cylinders made of low carbon steel, with a flat bottom resting on a uniform specifically prepared 

ground layer. The storage capacity of these tanks depends on the tank diameter and height. Due 

to their size, these tanks are usually built directly on site and obtained assembling steel plate 

courses having different thicknesses. The more common course heights (h) used in industrial 

practice are 1800mm or 2400mm (API Std 650, 2003). As shown in the sketch reported in Fig. 4.16, 

the bottom courses are usually thicker than the higher ones, since they need to resist to a higher 

hydrostatic pressure. However, courses having a constant thickness may be used in low volume 

tanks. The tank construction features that are relevant with respect to the vulnerability to lighting 

are (with reference to Fig. 4.16: tank diameter, D; tank height, H; type of construction material; 

height, hj, and thickness, tj, of the j-th level of courses. Exhaustive details about of welded storage 

tank design are reported in API Standard 650 (2003). 

 

 
Figure 4.16: Typical sketch of a welded above ground atmospheric tank. a) typical arrangement of 

shell thicknesses with respect to tank height (tj: course thickness; hj: course height; n: total number 

of courses); b) overall geometrical parameters of a tank (D: diameter; H: height). (Necci et al., 

2014b) 

 

Depending on the roof shape, three main categories of atmospheric storage tank may be 

identified in storage tank farms (see Fig. 4.17) (Necci et al., 2014b): 

 Cone roof (CR) tanks, having a flat bottom, a vertical cylindrical shell and a fixed cone-
shaped roof welded to the top of the tank. In these tanks, an inert blanketing system is 
generally used to avoid the formation of flammable mixtures in the confined volume above 
the liquid level. 

 External floating roof (EFR) tanks, having a flat bottom, a vertical cylindrical shell and a 
pontoon type roof floating directly on the surface of the stored liquid. The floating roof has 
a mechanical shoe or tube seal on its perimeter. This “rim-seal” covers the space between 
the floating roof and the tank shell. 

H

D

hn

h2

h1

tn

t2

t1

a)

D

H

Course

b)



91 

 

 Internal Floating Roof (IFR) tanks, having a cone roof but with the addition of an internal 
floating roof or pan that floats directly on the liquid surface. Depending on the seal used to 
limit evaporation through the gap between the floating roof and the shell, and on the 
properties of the stored substance, the installation of an inert blanketing system may be 
required. 

 

 
Figure 4.17: Sketch of the more frequently applied above ground design solutions for large volume 

atmospheric storage tanks. (Necci et al., 2014b) 

 

4.5.2 Lightning damage modes 

The impact of lighting strike can trigger different accidental scenarios, depending on the features 

of the target tank and on the properties of the stored substance. The direct action of lightning 

impact on tank shells may result in the damage of vessel shell (puncturing) and in the consequent 

release of liquid. If puncturing does not occur (e.g. since the lightning energy is not sufficient to 

perforate the vessel shell), the only consequence of lightning impact may be the ignition of 

flammable vapor mixtures in the vicinity of the impact point (Renni et al., 2010). Thus, in the case 

of tanks storing non-flammable materials, the only possible hazard is the perforation of the tank 

due to direct lighting impact, with the consequent release of liquid and its evaporation from the 

bund surface. The conditional probability of this scenario derives from the assessment of lightning 

damage probability and may be estimated by the model proposed by Necci et al. (2013a). 

When flammable substances are stored, more complex scenarios are possible. In particular, the 

possible ignition of flammable vapors due to the lightning may cause fires and/or confined 

explosions, depending on the type of tank, even in the absence of direct damage to tank shell. 

Ignition hazard, both outside and inside the tank may derive from electric arcs that can be 

generated at junctions between non-welded components (e.g. manholes, etc.). Also for this 

reason, welded storage tanks are always protected from arc formation by providing electrical 

contacts among all metal components (e.g. the vessel wall and the floating roof) (API RP 2003, 

2008). However, even if these systems provide a sufficient protection from indirect lighting strikes, 

there is evidence that such ordinary systems are not able to protect a process item from the 

effects of a direct lightning strike (API RP 545, 2009; OISD GDN 180, 1999). Two main categories of 

tanks may thus be identified, where different scenarios are possible in the case of lightning 

impact: 
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 Category “a”: External floating roof (EFR) tanks containing flammables, characterized by 
the possibility of formation of flammable mixtures in the open space, mainly at the rim-seal 
position. In these tanks, beside direct damage, a rim-seal fire may start following vapour 
ignition caused by the lightning, with possible escalation to a full surface fire (Sengupta et 
al., 2011). 

 Category “b”: Fixed roof (FR) tanks, both cone roof (CR) and internal floating roof (IFR) 
tanks, containing flammables, characterized by the possibility of formation of flammable 
mixtures in the confined top space inside the tank above liquid level. In these tanks, beside 
direct damage, confined explosions and escalation to full surface fire are possible if a 
flammable mixture is present in the vapor space when lightning strike takes place. When 
low flammable vapor emissions are expected in IFR tanks (e.g. if the stored flammable 
liquid has low volatility, or if the seal has a tight vapor containment) inert gas blanketing 
may not be installed, since the chances of flammable mixture formation are very low. 
Nevertheless, in case of lightning direct hit a rim-seal fire may start inside the tank, 
following the vapour ignition caused by the lightning, with possible escalation to a full 
surface fire. 
 

Therefore, safety barriers that prevent or mitigate fire scenarios play a determinant role on the 

impact of lightning strikes; therefore they deserve to be discussed in detail in order to assess 

possible scenarios triggered by lightning and to assess their likelihood. 

 

4.5.3 Schematization of fire safety barriers 

In order to prevent fires in storage installations, several protection barriers are applied. These aim 

either to minimize the probability of presence of flammable mixtures in the tank or to mitigate the 

effect of accidental fires. The presence of such barriers needs to be accounted in the development 

of quantified reference event trees following lightning impact. 

 

Table 4.9: Petroleum products classification (OISD, 2007). 

Petroleum Class Flash point range 

A < 23 °C 

B 23-65 °C 

C 65-93 °C 

Excluded Petroleum          > 93 °C 

 

Storage tanks for petroleum products were considered as a reference in the present study, since 

they account for wide part of large scale tank farms worldwide. Moreover, protections barriers 

associated to such tanks are somehow representative of the safety barriers adopted on most 

atmospheric tanks storing flammable substances. 

Therefore, safety barriers considered in the present study were defined accordingly to standards 

for tanks storing petroleum products, taking into account the tank geometry (see Section 2.2) and 

the flammability hazard class of the stored substance. Table 4.9 summarizes the classification of 

petroleum products based on the flash point used to select tank protection methods according to 

OISD standards (OISD, 2007). Table 4.10 reports a summary of the required fire protection systems 



93 

 

for each tank geometry and flammability hazard allowed by OISD standard (OISD, 2007). In the 

following, the technical features of the safety systems summarized in Table 4.10 are briefly 

outlined, in order to provide the necessary data needed to assess their expected performance in 

the case of lightning impact. Fig. 4.18 reports the functional scheme of each safety system 

considered in the Fault Tree Analysis (FTA) discussed in Section 3.3.3. 

 

 
 

Figure 4.18: Scheme of the fire protections considered: a) automatic actuated rim-seal fire 

suppression system; b) fixed foam system and foam pourer; c) inert gas blanketing system and 

pressure vacuum vents. (Necci et al., 2014b) 
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Table 4.10: Summary of fire protection systems for atmospheric tanks storing flammable products 

based on OISD standards (2007). Tank category, according to definitions given in section 2.3, is also 

reported. (Necci et al., 2014b) 

Substance 

Hazard 

Category  

Type of tank Tank Category 

(Sect. 2.3) 

Size Type of protection 

systems 

A Floating Roof a All sizes Fixed water spray system 

+ 

Fixed or semi-fixed Foam 

system 

+ 

Automatically Actuated Rim-

seal Protection System (Foam 

flooding mechanism)  

A Cone Roof b All sizes Fixed water spray system 

+ 

Fixed or semi-fixed Foam 

system 

 

B Floating Roof a Diameter > 30 m Fixed water spray system 

+ 

Fixed or semi-fixed Foam 

system 

+ 

Automatically Actuated Rim-

seal Protection System (Foam 

flooding mechanism)  

B Floating Roof a Diameter < 30 m Fixed or semi-fixed Foam 

system 

+ 

Automatically Actuated Rim-

seal Protection System (Foam 

flooding mechanism)  

B Cone roof b Diameter > 20 m Fixed water spray system 

+ 

Fixed or semi-fixed Foam 

system 

B Cone roof b Diameter < 20 m Fixed or semi-fixed Foam 

system 

C Cone roof b Diameter > 40 m Fixed or semi-fixed Foam 

system 
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4.5.3.1 Fire protection systems for Category “a” tanks 

In this category of tanks the ignition of flammable vapours leaking from the floating roof seal may 

result in a rim-seal fire, which may evolve to a full-surface tank fire scenario in the case of 

ineffective mitigation. Thus, specific active protection systems are installed on floating-roof 

storage tanks for rim-seal fire extinction, based on foam flooding. 

A widely used solution for storage tank fire protection are fixed foam systems. In fixed systems, 

foam is transferred from a central foam station to the protected area. The fixed system consists of 

pumps and fixed piping for water supply at adequate pressure, a foam concentrate tank, suitable 

proportioning equipment for the production of foam solution from foam concentrate, a fixed 

piping system for onward conveying to the foam maker, and a foam pourer or other discharge 

devices designed to distribute foam effectively over the hazard area (see Fig. 4.18b). A suitable 

detection system, typically a Linear Heat Detector of the hollow metallic tube type, may be 

provided to activate the foam system. 

Foam is poured from the foam makers at the foam dam to blanket the rim-seal of the roof. Fixed 

foam discharge outlets can be mounted above the top of the tank shell or on the periphery of the 

floating roof. The foam dam is designed to retain foam at the seal area, at a sufficient depth to 

cover the seal area while causing the foam to flow laterally to the point of seal rupture. The dam is 

welded or securely fastened to the floating roof. Foam application from fixed discharge outlets can 

be achieved from above the mechanical shoe seal, the metal weather shield, or the secondary seal 

or either below a mechanical shoe seal directly onto the flammable liquid, behind a metal weather 

shield directly onto the tube seal envelope, or beneath a secondary seal onto the primary seal. 

Automatically actuated rim-seal protection systems represent a further protection for EFR tanks. 

These systems consist on an adequate number of equally spaced modular foam units positioned 

on the tank roof, near to, but outside, the containment area of the foam dam, in order to protect 

the entire rim-seal area. For large storage tanks, more than one modular unit is required for foam 

application over the entire rim-seal area. Each modular unit typically consists of a storage vessel 

containing pre-mix foam connected to a distribution pipe laid along the tank perimeter over the 

rim-seal area. Spray nozzles for foam application are positioned at suitable intervals along the rim-

seal area(OISD, 2007). A schematic representation of a modular unit is presented in Fig. 4.18-a. 

 

4.5.3.2 Fire protection systems for Category “b” tanks 

Category “b” tanks designed in accordance with API standards (2003) have a weak seal at the joint 

where the roof and lateral vessel shell meet. In the event of an internal explosion, the roof 

ejection typically occurs, in order to protect the tank cylindrical shell. This system allows the tank 

to retain its contents and any resulting fire will involve the full surface of the exposed flammable 

liquid (i.e. a tank fire). 

Both in CR and IFR tanks, risk reduction measures may also include inertization/void-

compensation system and provision of pressure vacuum vents which afford some degree of 

flashback protection (Fig. 4.18-c). It has to be remarked that inert gas blanketing represents a 

mandatory requirement for the protection of fixed roof storage tank from fire and explosion 

hazards (NFPA, 2008). API Std 2000 (1998), API RP 2003 (2008) and API RP 2210 (2000) require the 

installation of pressure vacuum valves or back flash protection in all vents, as pressure vacuum 
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vents on tank openings prevent propagation of flame into a tank if escaping vapour ignites. A 

pressure/vacuum (PV) valve, also called “breather valve” or “conservation vent” consists of two 

vent valves: a pressure valve which opens to let vapour out and a vacuum valve which opens to let 

air in (see scheme in Fig. 4.18-c). Hence, a PV valve is effective in reducing volatile vapour loss (API, 

1998; Lees, 1996). A fixed or semi-fixed fire suppression system may be also installed in order to 

mitigate and control fires on the tank or in the bund area. However, the extinction of a full surface 

tank fire may not be guaranteed only by the application of these systems, for this reason those 

system will not be considered in this study. 

The same type of protection systems was assumed for IFR tanks, based on indications reported in 

(OISD, 1999; API, 1998; 2000). IFR tanks typically require the installation of fixed foam systems for 

the rim-seal fire extinguishment similar to those applied on category “a” tanks, especially for those 

IFR tanks that do not include the inert gas the blanketing system. This system will be considered, 

where installed. 

 

4.5.4 Characterization of lightning-triggered accident scenarios 

In the case perforation of the tank  body occurs, the material contained is released through the 

hole in the vessel. According to the specific studies on lightning thermal damage (Necci et al. 

2013a) a credible reference size for this leak release is 10 mm. 

In the case an atmospheric storage tank is struck and damaged a liquid release is obtained. In the 

case the vessel has a uniform thickness of the tank shell, then the conservative assumption  of a 

release at a height of 1 m from the ground is considered. In the case the atmospheric tank body is 

made with courses of different thickness with the tank height (the bottom courses are usually 

thicker than the higher ones), thus the higher courses have higher chance to be damaged by the 

lightning strike. The lower height of the courses with the lower thickness is the height where the 

release is assumed. 

If a pressurized vessel is struck and damaged both horizontal and upward releases are possible, 

but not the downward release. In order to obtain the most conservative result the release 

direction with the most severe consequences should be selected.   

In the case the hazardous material is flammable the high temperature of the hole edge is sufficient 

to ensure immediate ignition to the substance. Thus, atmospheric flammable liquid release due to  

is always followed by a pool fire scenario (Fig 4.19-a, Fig 4.19-b). Pressurized flammable gas 

releases caused by lightning produce a jet-fire scenario, instead (Figure 4.19-c). 

In the case lightning strikes an EFRT containing flammable atmosphere a fire is likely to start at the 

rim-seal (Figure 4.19-a). In the case this fire is not extinguished in time the roof will sink in the 

stored liquid and a full surface tank fire will start (Necci et al., 2014b, Lees, 1996). The tank fire 

scenario does not produce high thermal heating to the respect of people placed at the ground 

level, and thus no direct serious consequences for humans are expected. However, the tank fire 

scenario has the potential to escalate more serious scenarios: to produce a boil-over scenario 

(Argyropulous et al., 2012), to cause the tank collapse and the release of the burning total 

inventory in the bay area [REF] and/or to damage other tanks in the same storage facility 

beginning a domino chain accident with devastating consequences to the respect of the plant and 

of people (Reniers et al. 2013, 2005, Sengupta et al., 2011). Thus, full surface tank fire is 
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considered a major hazard scenario and its occurrence is handled as a severe emergency situation. 

Nevertheless, the quantification of the full surface tank fire escalation to more serious 

consequences  is a complicated task, which represents an unknown at the actual state con 

knowledge. For this reason, the only risk associated to the thermal heating caused by the full 

surface tank fire is addressed in the followings, and not the contribution of all the possible derived 

scenarios.  

Lightning affects the integrity of fixed roof atmospheric vessel (FRT) containing flammable 

material, since it represents a source of ignition. In the case lightning strikes a vessel, in which 

flammable atmosphere is present, a confined explosion will follow (Figure 4.19-b). The confined 

explosion may cause the tank failure and the release of the entire stored inventory. For this 

reason, a weak roof joint is applied to large atmospheric tanks, in order to provide a vent area that 

is supposed to fail to preserve the tank body integrity. However, a shockwave is generated and 

fragments of the tank roof are projected in the area. For smaller atmospheric tanks the weak joint 

may not be present, in this case the tank collapses due to the explosion energy, and the inventory 

is released to the basin and ignited immediately, causing a “catastrophic pool fire”: a pool fire that 

spread in the entire bund area. 

Finally, in the case the stored substance is not flammable, but toxic, a dispersion is the only 

possible accidental scenario that follows the direct thermal damage due to a direct lightning strike. 

  

 

 
Figure 4.19: Lightning triggered event trees for different equipment typologies: a) EFRT filled with 

flammable liquid; b) FRT filled with flammable liquid; c) pressurized vessel filled with flammable 

gas (or liquefied vapour); d) pressurized vessel filled with toxic gas (or liquefied vapour); e)  

atmospheric vessel filled with toxic liquid. Positive gate response is upward. (Necci et al., 2014b) 
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4.6. Model for Lightning Damage 
 

A Monte Carlo based procedure for assessing lightning damage due to local heating is presented in 

the following. The model, based on a simplified analysis of the physical damage mechanism due to 

metal melting, has been validated by using experimental data available in the literature. The 

application of the model allows the assessment of the conditional probability of damage given the 

lightning impact on process and storage vessels. The probability of damage depends mostly on the 

wall thickness and more generally on the geometry of the impacted vessel. The simplified version 

of the developed model is suitable for application in a QRA framework. In particular, it may be 

used to assess the overall frequency of loss of containment due to vessel perforation following 

lightning impact. Perspective work on the issue should allow the development of quantitative 

correlations for lightning-induced accidents in the chemical and process industry. 

 

4.6.1 Effect of lightning strikes on process equipment 

As described in section 4.5, lightning can cause indirect damage to process equipment due to the 

ignition of flammable vapours present near or inside specific process equipment items, such as 

floating roof tanks and other atmospheric tanks. In particular, rim-seal fire scenarios may be 

triggered by lightning in floating roof tanks, while confined explosions may follow the lightning-

induced ignition of flammable atmospheres inside process or storage equipment, mainly in the 

case of storage tanks vented to the atmosphere. Flammable vapours may be ignited by lightning 

either at vent points or by electric arc at junction points where the metallic shell is not continuous, 

as in the case of flanges (Metwally et al., 2004). 

However, a direct damage mechanism is also possible, due to the perforation of the equipment 

shell. The high energy of lightning flashes is able to melt or even to evaporate construction 

materials like steel, aluminium, copper or composite materials (Rupke et al., 2002). The volume of 

the molten metal depends on the lightning energy released at the attachment point with the 

equipment. The present study focused on this direct damage mechanism. As highlighted in several 

analyses of past accidents, the direct damage mechanism triggered a significant number of major 

accidents (Renni et al., 2010; Argyropoulos et al., 2012; EPA, 1997).  

 

4.6.2 Arc erosion modeling 

The electric arc formed by a lightning is a phenomenon having a high energy density. In the case of 

a lightning strike, the temperature of the strike point increases abruptly due to the high plasma 

temperature and by resistive heating. The temperature can reach very high values (even 

exceeding 15000°C) in a few milliseconds (CEI, 2013). The high temperature generated can melt 

(or even vaporize) part of the metal shell, causing a hole that may result in loss of containment 

usually leading to a major accident. 

In order to model the damage induced by lightning strike, a model for lightning arc erosion is 

required. According to conventional theory on welding processes (Lancaster, 1986), the electric 

arc is defined as a discharge of electricity between electrodes. The arc is typically formed by three 

regions: the cathode region, the arc column region and the anode region. Each region is 



99 

 

characterized by a specific voltage drop, and the voltage drop at the cathode and at the anode 

should be of the order of the excitation potential of the electrode material (of the order of 10V). 

The flowing current can have any value above a minimum, which varies between 0.1A and 1A, 

depending on the electrode material. 

Several theoretical models are available for the calculation of the erosion volume on metal 

surfaces at the attachment point of the arc channel (Lancaster, 1986; Argyropoulos et al., 2012; Di 

Bitonto et al., 1989; González and Noack, 2008). In spite of the very high temperature of the arc 

channel, the temperature at the arc spot is limited to values below or at most up to the boiling 

point of the electrode material (Lancaster, 1986; González and Noack, 2008). The heating at the 

attachment point is mainly produced by the charged particles (electrons and positive ions) which 

impinge on the metal surface and transfer their kinetic energy, gained because of their 

acceleration through the voltage drop region. The current density, the arc spot radius and the 

voltage drop at the electrode are thus the most important parameters to consider for the 

assessment of the heat transferred to the electrode. An important contribution to the overall heat 

transferred to the area around the arc spot is due to heat radiation from the arc channel (González 

and Noack, 2008). 

González and Noack (2008) theoretically and experimentally described that positive strokes are 

characterized by the unsteady behaviour of the arc spot. The fast and short displacement of the 

arc spot over the sheet surface near the original attachment point spread the molten volume 

rather than making it deeper in the case of positive strokes. Negative long strokes are instead 

characterized by a stable behaviour. The resulting molten volume zone has shown to be deeper 

than wide, indicating a better transport in the axial direction. 

Due to the variation and uncertainties related to the lightning current properties, it is extremely 

difficult to predict the duration and the intensity of the heating power of a lightning arc 

discharging through a solid structure. For the sake of simplicity, in Standard CEI EN 62305 (2013) 

the power associated to the electric arc (W) is evaluated as the product of the lightning current 

intensity, i, multiplied by the cathode or anode voltage drop, ua,c. The typical value of ua,c is in the 

range of 10-20 V. The cathode or anode current drop is dependent on the current intensity 

amplitude and on the arc length, duration and polarity. A value between 13 and 17 V is suggested 

for this parameter in the literature (González and Noack, 2008). 

The energy (E) released by the electric arc is the time integral of the power associate to the 

electric arc over the total duration of the strike. If the voltage drop is assumed constant, this 

becomes equal to the voltage drop multiplied by the electric charge (CEI, 2013): 

QudtiudtiudtWE c,ac,ac,a    (4.15) 

where t is time and Q is the electric charge of the lightning. If heat dispersion to the surroundings 

is conservatively neglected, all the energy transferred to the solid material at the lightning 

attachment point (e.g. the vessel shell in the case of a process or storage equipment item) 

becomes available for heat-up, melting and vaporization. 
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 The maximum volume of the molten metal may thus be calculated as follows (CEI, 2013): 
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where V is the melted volume, γ is the material density, Cw is the material thermal capacity, Ts is 

the melting temperature, Tu is the ambient temperature and cs is the latent heat of melting. In 

Eq.(2) all the heat transferred from the lightning, that can be calculated using Eq.(4.15), is 

conservatively assumed to contribute to the heat-up and melting of a portion of material. All other 

possible simultaneous phenomena (heat dispersion by conduction to other parts of the vessel 

wall, heat transfer by convection to the inner fluid, heat dispersion to the surroundings, further 

heat-up and evaporation of molten material) were neglected for the sake of simplicity, thus 

obtaining a conservative estimate for the molten volume. A hemispherical shape was assumed for 

the resulting pool of molten metal, as shown in Figure 4.20.  

In order to calculate the extent and the shape of the molten region, the radius of the molten 

volume should first be calculated assuming that the shell is not perforated (see Figure 4.20-(a)) 

(Necci et al., 2013): 
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where V is the maximum molten volume calculated using Eq.(4.16). If the value of rs exceeds the 

shell wall thickness, w, then the following equation should be used to calculate the values of rs and 

Dh (see Figure 4.20-(b)) (Necci et al., 2013): 
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 (4.18) 

Equation (4) was derived assuming that the shape of the molten volume is given by the 

intersection between the vessel wall (considered flat) and part of the hemisphere having radius rs 

and the center in the attachment point of the lightning strike, as shown in Figure 4.20-(b). 

 

 

Figure 4.20: Geometry assumed for the pool of molten material: a) Vessel shell not perforated; b) 

Perforated vessel shell (rs is the pool surface radius; Dh is the hole diameter) (Necci et al., 2013) 
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4.6.3 Validation of the model for molten volume calculation 

The approach proposed in the previous section is a simplified and conservative method for the 

calculation of the molten volume and of the possible perforation diameter, Dh. This simplified 

approach is mostly adequate for thin metal skins, where longitudinal heat transfer by conduction 

is limited (CEI, 2013). Nevertheless, a specific validation was carried out, also considering the 

influence of the material and the lightning properties. In order to verify the validity of the model, 

the perforation diameter calculated using Eq.(4.18) was compared with the measured values of 

hole diameters obtained in experiments with known values of the electric charge (Q).  

There are only few studies that report experimental data relating the electric charge to simulated 

lightning impact on metal plates. However, studies by González et al. (2006) and González and 

Noack (2008) report the results of experiments simulating lightning strikes on thin aluminium, 

steel and copper plates. Both the effect of the current pulse and of long duration current were 

investigated for positive and negative flashes, and the damage is reported both for the side of the 

arc attachment (larger hole diameter) and the opposite side of the plate (inner hole diameter). 

The effect of painting, wind and water on the metal surface was also investigated. Sueta et al. 

(2006) carried out experiments on the effect of simulated lightning strikes on metal layers with 

thermal insulation and LPS (lightning protection system) equipment. In several experiments the 

vaporization of the metal was observed. Porta et al. (2003) performed a study on the cutting 

(melting) speed of a plasma arc torch. The experimental data reported in these four studies 

provide results on a wide range of wall thicknesses, materials, and electric charge intensities, as 

shown in Table 4.11. Properties for carbon steel used for calculations are reported in standard CEI 

EN 62305 (2013).  

 

Table 4.11: Experimental datasets available in the literature used to validate the model for the 

calculation of the molten metal volume(Necci et al., 2013) 

Dataset Arc Polarity Current 
Plate thickness 

(mm) 
Reference 

Set 1 Positive 
650 A continue; 

19.2 kA Impulsive 

0.55; 

0.70 
Sueta et al. 2006 

Set 2 Positive and negative 200 A continue 2.00 González and Noack 2008 

Set 3 Negative 10-60 A continue 0.60 Porta et al. 2004 

 

Figure 4.21 shows a comparison between the experimental and calculated values of the holes 

formed in metal plates. Experimental data for perforation diameters, Dh, were obtained from the 

datasets described in table 4.11. The calculated values of the perforation diameter were obtained 

using Eqs.(4.15-4.18) and the reported value for the charge of simulated lightning strikes, Q. 

Material properties assumed for validation were those reported by standard EN 62305 (CEI, 2013), 

while a value of ua,c of 15V was assumed for the anode or cathode voltage drop (depending on the 

polarity of the lightning charge). As shown in the figure, sufficient agreement is present between 

model predictions and experimental data. Moreover, model errors are mostly on the safe side, 
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thus leading to a slight overestimation of the perforation diameter for the experiments performed 

with the largest plate thickness. 

 
Figure 4.21: Comparison between experimental values of perforation diameters and values 

calculated using Eqs. (4.15-4.18). Upper and lower dashed lines represent model predictions 

5mm. Data set number refers to table 4.11. (Necci et al., 2013) 

 

4.6.4 Calculation of equipment damage probability due to lightning strike 

In order to assess the equipment damage probability due to lightning strike, the probability that a 

flash having a given charge strikes the equipment item of interest should be calculated. 

The lightning ground flash density and the distribution of lightning charge for positive and negative 

strikes are available from historical data and often reported in standards or specific reports 

(Anderson and Eriksson, 1980). Cloud to ground event locations and estimates of the relevant 

current amplitudes are also provided by Lightning Location Systems (e.g., in Italy, SIRF (2013)). 

Several exposure models, i.e. models intended to describe the process of the lightning attachment 

with the structure, have been proposed in the literature. A recent review of the subject is provided 

by Cooray and Becerra (2010). In general, the attachment of lightning flashes to grounded 

structures depends not only on the prospective return stroke peak current but also on the 

geometry of the structure exposed. The classical electro-geometrical method, as well as the 

related rolling sphere method, assumes that there is a spherical region with a radius equal to the 

so-called striking distance and located around the tip of the stepped leader, and the first point of a 

grounded structure that enters into this spherical volume will be the point of attachment. The 

striking distance is a function of the prospective peak value of the return stroke current. 

Approaches based on Monte Carlo methods are often adopted to estimate the frequency of 

flashes that hit a structure, on the basis of the selected model that represents the exposure of the 

structure to lightning events. For the evaluation of the so-called lightning performance of electric 

power distribution overhead lines, Borghetti et al. (2007; 2009) developed a procedure based on 

the use of Monte Carlo simulations and a computer code for the evaluation of the overvoltages 

along the line caused by lightning events that hit the ground in the vicinity of the line (Nucci and 

Rachidi, 2003). A Monte Carlo based approach was also proposed for the lightning risk assessment 

of storage tanks (Borghetti et al., 2010).  
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In the frame of the present study, the Monte Carlo method was applied together with the damage 

model described in section 2.2 for the calculation of the tank damage probability. A set of 

Cartesian coordinates x and y that indicate the lightning flash locations within an area and a same 

size set of first stroke peak current values Ip were generated randomly. Each triplet of values 

(x,y,Ip) allows determining if the capture condition is verified for each of the simulated lightning 

events. Once that capture occurs in a given simulation, a value of the electric charge Q correlated 

with the value of the peak current intensity Ip, is also randomly generated. The electric charge of a 

lightning is a statistical variable that follows a log-normal distribution with mean μlnQ and standard 

deviation σlnQ. The values of the parameters of the distribution are available in the CEI EN 62305 

(2013) standard. In order to account for the statistical correlation between peak current Ip and 

electric charge Q,the mean value *

lnQ and the standard deviation  of the electric charge 

lognormal probability distribution related to a specific value of Ip are calculated as (Necci et al., 

2013a): 

))(ln( ln

ln

ln

ln
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


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*

ln 1   QQ
 (4.20) 

where ρ is the correlation coefficient between the probability distribution of Q and the probability 

distribution of Ip, μlnQ is the mean of ln Q, μlnIp is the mean of ln Ip, σlnQ is the standard deviation of 

lnQ, and σlnIp is the distribution of the standard deviation of the peak current..  

When the molten pool radius, rs, calculated by the randomly generated value of Q using Eq.4.17 is 

equal or higher the vessel shell thickness, w, perforation is assumed. Thus, the damage probability 

given the lightning capture can be calculated from the Monte-Carlo method as follows (Necci et 

al., 2013a): 

captured

damaged

damage
n

n
P   (4.21) 

where ndamaged is the number of events that causes a shell perforation and ncaptured is the number 

of simulated events that hit the target equipment. 

 

4.6.5 Simplified method for damage probability assessment 

Although the developed Monte Carlo model allows for the assessment of the damage probability 

of an equipment item, its applicability in the practical framework of a quantitative risk assessment 

(QRA) is difficult, due to the significant calculation times required for the assessment of the 

damage probability for a high number of structures. Shortcut methods are commonly adopted in a 

QRA framework (Di Padova et al., 2011; Landucci et al., 2009; Tugnoli et al., 2012). Thus, a 

simplified method for the calculation of the lightning damage conditional probability was 

developed. The model allows the calculation of the damage probability of the vessel given that a 

lightning strike is captured by the equipment. As shown in the following, the use of the simplified 

model leads to a limited error, usually tolerable within a QRA. 

 

 

*

lnQ
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For a given shell thickness, w, the minimum lightning electric charge, Qmin, required to form a hole 

may be calculated rearranging Eq.(4.16) as follows (CEI, 2013): 

 

ca

susw

u

cTTCV
Q

,

min
min

)( 



 (4.22) 

where Vmin, the minimum molten volume required for perforation, may be calculated using 

Eq.(4.17) (Necci et al., 2013a): 

3

min
3

2
wV    (4.23) 

The lightning damage conditional probability can thus be calculated as the probability that the 

electric charge of the captured lighting strikes is higher than Qmin obtained from Eq. (4.22). 

The probability of having a lightning with a charge higher than Qmin can be calculated assuming 

that the captured flashes have a log-normal charge distribution: 
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For a single value of Qmin two values of probability should be calculated using Eq.(4.24): one for 

positive flashes and the other for negative flashes, by using the parameter values recommended 

by Anderson and Eriksson (1980).  

 

The overall conditional damage probability is obtained as the average of the damage probability 

due to positive and negative flashes, weighted respectively by the expected ratio of positive or 

negative flashes with respect to the total number of simulated lightning events(Necci et al., 2013): 

 (4.25) 

where Ψpos is the fraction of positive flashes, whilst Ψneg is the fraction of negative flashes. 

According to the EN 62305 standard (CEI, 2013), a value of 0.1 may be assumed for Ψpos and a 

value of 0.9 for Ψneg.  

In order to calculate the parameters of the distribution of the captured strikes, σ*lnQ and μ*lnQ, 

to be used in Eq.(4.24), a vessel database was built to obtain a representative range of possible 

vessel geometries. A total of 12 vertical cylindrical and 6 horizontal cylindrical tanks were 

considered. The database was obtained considering available data on tank items present in several 

industrial tank farms, data from widely used design standards (e.g. API Standard 650 (2003)), and 

available design standards from engineering companies. Geometrical data and further details on 

the vessels included in the vessel database are reported in (Landucci et al., 2012). 
The average values of the charge distribution parameters of the events were calculated for the 

population of the vessel database: σ*
lnQ,av and μ*

lnQ,av. Table 4.12 reports the values obtained and 

the maximum and average deviations. 

 

     
min min mindamage pos negpos neg

P P Q P Q P Q     
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Table 4.12:Electric charge distribution parameters of captured lightning calculated for the tank 

database used in the study (D is the tank diameter, H is the height of vertical tanks, L is the length 

of horizontal vessels). (Necci et al., 2013a) 

Tank 

type 
Geometry Value 

μ*
lnQ,av 

positive 

σ*
lnQ,av 

positive 

μ*
lnQ,av 

negative 

σ*
lnQ,av 

negative 

 
Vertical 

V = 3816300 m3 Average 145.15 0.373 8.57 0.451 

D = 366 m Max dev. 12.42 0.008 0.32 0.003 

H = 5.418 m Mean dev. 6.14 0.004 0.16 0.001 

 
Horizontal 

V = 1025 m3 Average 159.46 0.363 8.96 0.451 

D = 1.62.5 m Max dev. 1.48 0.002 0.058 0.002 

L = 4.510.5 m Mean dev. 0.96 0.001 0.029 0.0008 

 

As the geometry of storage tanks, and in particular the height, does not vary significantly (usually 

being comprised between 1 and 20m, and around 10m for large atmospheric tanks), the average 

values of the charge distribution of captured lightning , σ*
lnQ,av and μ*

lnQ,av,can be used in Eq. 

(4.24). 

Figure 4.22 reports a comparison of the conditional damage probabilities obtained by the Monte 

Carlo and the simplified model (Eqs. (4.22-4.25)). As shown in the figure, the simplified model 

reasonably reproduces the results of the Monte Carlo model. 

 
Figure 4.22: Parity plot for the results obtained by the Monte Carlo method and the simplified 

model for the vessel database considered. (Necci et al., 2013a) 

 

4.6.6 Lightning damage probability calculation 

The developed model allows the calculation of the damage probability as a function of a limited 

number of parameters. As evident from Eqs. (4.22-4.25), the shell thickness and some physical 

properties of the vessel material (density, melting temperature, latent heat of fusion, specific 

heat) are needed to apply the model. Figure 4.23-(a) shows the damage probability calculated as a 

function of wall thickness for four different construction alloys used in the chemical and process 
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industry. The physical properties used in the calculations were taken from current standards (CEI, 

2013; IAEA, 2008; Geen and Perry, 2008) and are listed in Table 4.13. 

 

Table 4.13: Thermal properties of different construction alloy (γ is the density, Ts is the melting 

temperature, Cs is the latent heat of fusion and Cw is the specific heat) (Necci et al., 2013a) 

Parameter Mild Steel Stainless Steel AISI 13XX AISI 316 

γ (kg/m3) 7700 8000 7800 8000 

Ts (°C) 1530 1500 1510 1430 

Cs (J/kg) 272000 272000 270000 270000 

Cw(J/kgK) 469 500 460 510 

 

As shown in figure 4.23, the damage probabilities are comprised between 10-1 and 10-6 for wall 

thicknesses lower than 15mm. Damage probability values lower than 10-6 are obtained for 

thicknesses higher than 15mm, and fall below 10-7 for thicknesses higher than 20mm. Figure 4.23-

(b), reporting the differences (%) in the results obtained for all materials with respect to those 

obtained for mild steel, shows that only very small differences in damage probability (lower than 

7%) are obtained for the different construction alloys considered. Thus, in the following, for the 

sake of brevity only results obtained using the properties of material 1 (mild steel as defined by EN 

62305 (CEI 2013)) will be reported. 

 

  
Figure 4.23: (a) Damage probability as a function of shell thickness (w) obtained for four different 

construction steel alloys; (b) % deviation of the results with respect to those obtained for the 

reference material selected (Material 1, Mild Steel as defined by  CEI EN 62305). (Necci et al., 

2013a) 

 

As shown in Figure 4.23, an almost linear correlation is present between the logarithm of the 

damage probability and the shell thickness. This may be expressed as follows (Necci et al., 2013a): 

wPdamage  908.0924.0)ln(  (4.26) 

where w is the shell thickness in mm. 
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Figure 4.24-(a) shows the results obtained with Eq.(4.26) compared to those from the Monte Carlo 

model. As shown in the figure, Eq. (4.26) provides a reasonable approximation of Monte Carlo 

model. 

Besides the probability that the vessel shell is perforated, also the hole size is relevant for 

understanding the potential consequences of a lightning impact in terms of possible hazardous-

materials releases. Figure 4.24-(b) shows the average expected hole diameter due to lightning 

strike calculated as a function of vessel thickness considering the probability distribution of all 

captured strikes having a charge sufficient to cause vessel shell perforation.  

 

  
Figure 4.24: Damage probability (a) and average hole diameter (b) with respect to shell thickness 

(Necci et al., 2013a) 

 

As shown in the figure, the average hole diameter is comprised between 5 and 8.5 mm for metal 

plates of up to 20 mm width. Also in this case, the average diameter can be calculated using an 

empirical correlation (Necci et al., 2013a): 

23.5106.6105.8 323

,   wwD avh  (4.27) 

where Dh and w are expressed in mm. Figure 4.24-(b) shows that Eq. (4.27) provides a reasonable 

approximation of Monte Carlo model results. 

In addition to the calculation of the overall damage probability, the developed model may also be 

easily applied for the calculation of the probability that a lightning causes a hole in the vessel wall 

having a diameter higher than a given limit value, Dl. 

 

Equations (4.22-4.25) should be applied, using the following relation, derived from Eq.(4.18), for 

the calculation of the minimum volume, Vmin, in Eq. (4.22) (Necci et al., 2013a): 




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
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22
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lDw
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Figure 4.25 reports the cumulative probability P(Dl) that a hole larger than a given limit diameter 

(Dl) is formed following lightning impact on a vessel wall having a given thickness. As shown in the 
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figure, even for atmospheric vessels having low thicknesses (5mm), the probability that the hole 

diameter is larger than 20mm is of the order 10-3. 

  

  
 

Figure 4.25: Probability that a lightning strike causes a hole of diameter higher than Dl obtained for 

different values of wall thickness. a) Probability as a function of the limit diameter, Dl, for fixed 

values of shell thickness, w; b) probability as a function of the shell thickness, for fixed values of the 

limit diameter, Dl. (Necci et al., 2013a) 

 

The model also allows assessing the probability that a lightning strike causes a hole having a 

diameter within a specific range. Table 4.14 reports the probability of different release categories 

as a function of shell thickness. The release probabilities were obtained integrating the probability 

of release for a given hole diameter range as follows (Necci et al., 2013a): 

   
max,

min,
,

l

l

D

D
rangel dDDPDP   (4.29) 

 

Table 4.14: Probabilities of different release categories following lightning impact. (Necci et al., 

2013a) 

Plate  

Thickness 

Diameter Range 

0-5 mm 5-10 mm 10-15 mm 15-20 mm >20 mm 

5 mm 1.96E-02 3.19E-02 1.50E-02 3.99E-03 1.04E-03 

10 mm 1.87E-04 2.74E-04 1.19E-04 3.01E-05 7.06E-06 

15 mm 2.59E-07 4.68E-07 2.85E-07 1.04E-07 3.52E-08 

 

4.6.7 The contribution of positive flashes 

The developed model takes into account both positive and negative lightning impacts. In the usual 

approach aimed at the assessment of damage to electrical equipment, positive flashes are usually 

not considered since they have a much lower frequency with respect to negative strikes. Thus it is 

interesting to understand the relevance of the contribution of positive strikes to equipment 

damage, since positive lightning strikes have a higher average value of electric charge compared to 

negative flashes (Anderson and Eriksson, 1980).  
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Figure 4.26 reports the contribution of damage due to positive lightning strikes to the overall 

damage probability (Cpos), calculated as follows (Necci et al., 2013a): 

damage

pos

pos
P

QP
C

)( min
   (4.30) 

As shown in the figure, positive flashes provide the most important contribution to damage 

probability. When the wall thickness exceeds 7mm, the contribution of negative flashes to the 

overall damage probability is almost negligible, falling below 1%. These results suggest to allow 

neglecting the effect of multiple strokes, which is a phenomenon related to negative flashes only, 

and justifies the use of the molten metal model reported by standard EN 62305 (CEI, 2013). 

 

 
Figure 4.26: Contribution of positive flashes to overall damage probability. (Necci et al., 2013a) 

 

4.6.8 Damage probabilities for a reference set of equipment items 

In order to verify the applicability of the model in a realistic framework, the damage probability 

was calculated for a reference set of equipment items, identifying tank geometries widely used in 

industrial sites. Table 4.15 and 4.16 report the geometrical data used for a set of atmospheric and 

pressurized storage tanks, respectively.  

In Figure 4.27 the probability that a lightning strike results in a hole with a diameter higher than 

10mm  is plotted (this hole size  is of particular interest for  the application to the consequence 

analysis (Uijt De Haag and Ale, 1999)). As shown in the figure, damage probabilities values higher 

than 10-2 are obtained for atmospheric tanks. Pressurized tanks have a damage probability that is 

at least an order of magnitude lower, that decreases with increasing design pressure due to the 

increasing shell thickness. These results are confirmed by past accident analysis, that evidence a 

much higher number of fires involving atmospheric tanks caused by lightning with respect to 

pressurized equipment (Rasmussen, 1995; Renni et al., 2010). 
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Table 4.15: Reference set of vertical cylindrical atmospheric storage tanks (D: tank diameter; H: 

tank height; w: shell thickness) (Necci et al., 2013a) 

Tank Volume D H w 
n (m3) (m) (m) (mm) 
1a 38 3 5.4 5 

2a 100 4.4 7 5 

3a 250 7.7 7.5 5 

4a 500 7.8 11 6 

5a 750 10.5 9 7 

6a 1000 15 6 9 

7a 2500 54 5.4 11 

8a 5200 25 11 11 

9a 7634 30 10.8 12 

10a 9975 42 7.2 12 

11a 12367 54 5.4 13 

12a 16303 66 5.4 13 

 

Table 4.16: Reference set of horizontal cylindrical pressurized storage tanks. (Pdes: Design pressure; 

D: tank diameter; L: vessel length; w: shell thickness). (Necci et al., 2013a) 

Tank Volume Pdes D L W 
n (m3) (bar) (m) (m) (mm) 

1p 20 15 2 6 13 

2p 25 15 2.3 7 15 

3p 50 15 2.5 10.4 16 

4p 50 15 2.7 10 17 

5p 100 15 2.8 18 18 

6p 250 15 3.8 24 24 

7p 20 20 2 6 17 

8p 25 20 2.2 6 19 

9p 30 20 2.4 6.5 20 

10p 50 20 2.7 10 23 

11p 100 20 2.8 18 24 

12p 250 20 3.8 24 32 

 

  
 

Figure 4.27: Probability of lightning damage causing a perforation having a diameter larger than 

10mm for: (a) atmospheric storage tanks (Table 4.15); (b) pressurized storage tank (Table 4.16) 

(Necci et al., 2013a) 
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4.7 Assessment of accident frequency induced by lightning 
 

Geometrical features and reference conventional safety barriers used in current industrial practice 

were defined for the tank categories of interest. The possible impact mode of lighting was then 

analysed, in order to develop reference accident chains applying event tree analysis (ETA) and to 

obtain reference event trees (ET) (see section 4.5). The reference ET were developed to include 

relevant protection barriers and were validated using detailed past accident records. The 

probability of failure on demand (PFD) of the safety barriers following lighting strike was 

calculated by fault tree analysis (FTA). 
It should be remarked that the present analysis was carried out only considering the events 

following lightning impact. Thus possible protection by lightning rods or by other systems used to 

prevent lightning impact itself is not considered in the reference ETs provided. 

 

4.7.1 Event tree analysis (ETA) and reference accident chains 

An Event Tree Analysis (ETA) was carried out in order to determine the potential accident 

sequences following lightning impact and to evaluate the role of protection systems. The 

protection systems are intended as protective barriers which play their role when the lightning 

strikes on the storage tank. In the case the protective barrier is unavailable, the scenario evolves 

to the final accident. The unavailability of a protective barrier is presented as the probability of 

failure on demand (the lightning strike), PDF, of the system. In the case the system is not present 

the PFD value is set to 1.The reference event trees (ET) obtained are reported in Fig. 4.28. Fig. 

4.28-a illustrates the reference ET obtained for EFR tanks (category “a”), while Fig. 4.28-b reports 

the ET obtained for CR and IFR tanks (category “b”). As shown in the figure, for both vessels 

categories two alternative possible final outcomes involving a fire are obtained: the pool fire 

associated to the ignition of spilled flammable liquid in the case of vessel direct damage, and the 

full surface fire (FSF) in the case of failure of safety barriers. The frequency of the fire scenarios 

may be obtained as follows (Necci et al., 2014b): 

DDcPF Pff   (4.31) 

  



bN

1i

iDDcFSF PDFP1ff  (4.32) 

where fc is the capture frequency of the target vessel, fPF is the frequency of the pool fire 

associated to the ignition of the liquid released from the punctured tank, fFSF is the frequency of 

the FSF scenario, PDD is the probability of direct damage, PFDi is the Probability of Failure on 

Demand of the i-th barrier, Nb is the total number of barriers. 

For any cases, the probability of presence and ignition of flammable vapours is conservatively 

assumed equal to 1, at any point of the event tree, due to the effect of a direct lightning strike on 

the tank. Thus, event trees may be simplified, since the only final outcomes considered are fires. 

For category “a” tanks, it is supposed that flammable vapours may be considered as always 

present at the rim-seal position. Thus, the probability of presence of a flammable mixture may 

conservatively be assumed as equal to 1. However, the automatic fire suppression system installed 
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on the tank is supposed to be able to prevent the escalation of the initial rim-seal fire to a full 

surface tank fire scenario. 

 

 
Figure 4.28: Event tree following lightning impact on atmospheric storage tanks containing 

flammable liquids: a) EFR tanks (category “a”); b) CR and IFR tanks (category “b”). At each gate: if 

the condition is verified, the upper branch event follows (Necci et al., 2014b) 

 

4.7.2 Validation of ETA results 

In order to assess the relevance of the event trees obtained, past accident data concerning major 

accidents triggered by lightning and involving atmospheric tanks storing hydrocarbons or generic 

flammable materials were retrieved and analyzed. The accident sequences reported in past 

accidents were then compared with the ETs reported in Fig. 4.28, in order to validate the event 

sequences assumed in the analysis. 

Three different data sources were considered: the MHIDAS database (2001), The Accident 

Database (TAD) (2004) run by IChemE (Institution of Chemical Engineers, and a review on tank fire 

accidents occurred between 1951 and 2003 carried out within the framework of BRANDFORSK 

Project (Persson and Lönnermark, 2004).  



113 

 

Out of the over 1700 past accidents analysed, 1030 records concerning scenarios triggered by 

lightning were retrieved. Data records not reporting information on protection or mitigation 

systems were excluded from the analysis, reducing the dataset to 82 records. However, only 33 

over these 82 records report sufficient details to allow a comparison with the ETs in Fig. 4.28. 

Table 4.17 reports four relevant samples of final dataset used for ET validation. Table 4.18 reports 

the list of the past events used for database validation and a detailed description of sample 

included in Table 4.17. 

 

Table 4.17: Sample of past accident data used for the identified scenarios validation. (Necci et al., 

2014b) 
ID Tank type Protection system type Success/ 

Failure 

Validated event tree scenario  

(see Fig. 4.28) 

Year and 

country 

A1 Floating 

roof 

Fixed foam system with 

foam pourers 

Success 

 

S1.2 

(rim-seal fire extinguishment) 

1972; Italy 

A2 Floating 

roof 

Rim-seal fire extinguishment 

system (generic) 

Fixed foam system (generic) 

Failure  

 

Success 

S1.3 

(rim-seal fire escalation to tank fire;  

& tank fire extinguishment) 

1979; USA 

A3 Floating 

roof 

Fixed foam system with 

foam pourers 

Failure S1.4 

(rim-seal fire escalation to tank fire; 

& tank fire burn out) 

1964; N.A. 

A4 Internal 

Floating 

Roof 

Inert Gas Blanketing system  

Fixed foam system with 

foam chambers 

Failure 

Failure 

S2.2 and S2.3 1987; USA 

 

The role of inert gas blanketing systems availability in preventing the formation of flammable 

mixture inside “category b” fixed roof tanks found no direct confirmation in past accidents: 

although the scenario of roof blow off followed by tank fire in the case of ignition by lightning 

strike was confirmed by past accident data analysis (Persson and Lönnermark, 2004), none of the 

analysed records mentioned the presence or the failure of inert gas blanketing systems. However, 

the presence past accidents reporting a tank fire as the final outcome of li lightning impact on 

“category b” tanks may be assumed as an indirect validation of the ET sequence. 

All ET event sequences for “category a” external floating roof tanks assuming no direct damage 

were confirmed by case histories. Accident records where the unavailability of foam chambers 

made the full surface fire extinguishment impossible were considered appropriate for the 

validation of the ETs sequences deriving from failure and success of fixed foam systems both for 

“category a” and “category b” tanks (see accident A4 in Table 4.17). 
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Table 4.18: Past accident events used for ET validation. (Necci et al., 2014b) 

 

ID Date  Location Tank 

category 

Validated final scenario Ref. 

1 04/06/2003 Australia; 

Queensland 

A S1.4 Full surface fire MHIDAS 

2 02/08/2003 USA; 

Mississippi; 

Pascagoula 

A S1.2 Rim-seal fire 

extinguishment 
MHIDAS 

3 05/05/2001 Seria; United 

Arab Emirates 

A S1.2 Rim-seal fire 

extinguishment 
MHIDAS 

4 19/07/1996 Sarnia; 

Ontario; 

Canada 

B S2.3 Full surface fire MHIDAS 

5 14/06/1993 New Orleans; 

Louisiana; 

USA 

A S1.2 Rim-seal fire 

extinguishment 
MHIDAS 

6 04/04/1991 Pasadena; 

Texas; USA 

A S1.2 Rim-seal fire 

extinguishment 
MHIDAS 

7 21/06/1990 Karkateyev; 

CIS (ex 

URSS) 

A S1.4 Full surface fire MHIDAS 

8 22/03/1989 Sullom Voe; 

Shetland; UK 

A S1.2 Rim-seal fire 

extinguishment 
MHIDAS 

9 21/08/1975 Rozenburg; 

Zuid Holland; 

Netherlands  

A S1.3 Full surface fire 

extinguishment 
MHIDAS 

10 1999 - A S1.2 Rim-seal fire 

extinguishment 
TAD 

11 24/09/1977 USA A S1.3 Full surface fire 

extinguishment 
TAD 

12 December 

1992 

- A S1.2 Rim-seal fire 

extinguishment 
TAD 

13 August 

1984 

- B S2.3 Full surface fire TAD 

14 May 1978 USA A S1.2 Rim-seal fire 

extinguishment 
TAD 

A.1 27/07/1972 Italy A S1.2 Rim-seal fire 

extinguishment 
TAD 

A.3 20/09/1964 - A S1.4 Full surface fire TAD 

15 - - B S2.3 Full surface fire TAD 
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Table 4.18 continues: Past accident events used for ET validation. (Necci et al., 2014b) 

 

ID Date  Location Tank 

category 

Validated final scenario Ref. 

A.4 1987 Philadelphia, 

USA 

B S2.3 Full surface fire TAD 

16 24/09/1977 (Union Oil) 

Romeoville; 

Illinois; USA 

B S2.3 Full surface fire Persson and 
Lönnermark, 2004 

17 05/05/2002 (Trzebinia 

Refinery) 

Malopolska 

region, Poland 

B S2.3 Full surface fire Persson and 
Lönnermark, 2004 

21 1964 - A S1.4 Full surface fire Persson and 
Lönnermark, 2004 

A.2 1979 USA A S1.3 Full surface fire 

extinguishment 
Persson and 
Lönnermark, 2004 

22 07/12/1990 USA A S1.2 Rim-seal fire 

extinguishment 
Persson and 
Lönnermark, 2004 

23 1991 USA A S1.2 Rim-seal fire 

extinguishment 
Persson and 
Lönnermark, 2004 

24 25/12/1992 Castellon; 

Spain 

A S1.4 Full surface fire Persson and 
Lönnermark, 2004 

25 24/10/1995  Indonesia B S2.3 Full surface fire ARIA 

26 27/06/1994 Gernshein 

Hessen; 

Allemagne; 

France 

B S2.3 Full surface fire ARIA 

27 20/06/1987 France A S1.4 Full surface fire ARIA 

28 01/06/2006 Pasadena, 

Texas; USA 

A S1.2 Rim-seal fire 

extinguishment 
NRC 

29 7/06/2004  Bay St. Louis, 

Massachusetts; 

USA 

B S2.3 Full surface fire NRC 

30 8/09/2003 Friend; 

Oklahoma; 

USA 

B S2.3 Full surface fire NRC 

31 5/11/2001 Seminole, 

Texas; USA 

A S1.2 Rim-seal fire 

extinguishment 
NRC 

32 7/02/2001 Wilson; 

Oklahoma; 

USA 

B S2.3 Full surface fire NRC 

33 4/18/1981 Singapore A S1.4 Full surface fire TAD 
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4.7.3 Quantification of event trees and frequency assessment 

4.7.3.1 Lightning impact frequency assessment 

A specific probabilistic assessment of the event trees in Fig. 4.28 was carried out, aiming at the 

calculation of conditional probability of the final outcomes given the lightning impact. The results 

obtained allow the assessment of the frequencies of the final outcomes if the capture frequency 

(frequency of lightning impact ) is known. 

The calculation of the capture frequency of storage tanks of known geometry requires specific 

models which have already been described in Section 4.4. It should be also recalled that the ETs in 

Fig. 4.28 only describe the events following lightning impact. Thus, the presence and the influence 

of specific lightning protection systems as lightning rods are not considered, since these should be 

accounted when assessing the capture frequency. 

 

4.7.3.2 Probability of direct damage to the tank shell 

As remarked in Section 4.6, a direct lightning strike may cause a direct damage of tank shell. At the 

attachment point between the electric arc and the storage tank, the melting of a portion of the 

shell may occur due to the large heat input as well as due to a concentration of resistive heating 

due to the high current densities. Perforation resulting in a loss of containment event (LOC) may 

thus occur. 

The model of Necci et al. (2013a) allows the calculation of the fraction of lightning strikes that has 

the minimum energy required to perforate a steel course of given thickness. As fully described in 

section 4.6, Eq.4.33 may be used to calculate perforation probability (See section 4.6): 

jj,d t908.0924.0)Pln(   (4.33) 

where Pd,j is the perforation probability of the j-th steel course having a thickness tj. 

Two other factors should be considered to assess the overall conditional probability of damage, 

PDD, needed to quantify the event trees in Fig.4.28. In order to cause a liquid spill, the perforation 

should occur on the side of the tank and not on the roof. Furthermore, very large storage tanks 

may feature decreasing values of board thickness at increasing height (Fig. 4.16). Thus, the overall 

conditional direct damage probability (PDD) may be calculated as follows: 

tot

i ii,d

DD
S

SP
P

 
  (4.34) 

where Pd,i is the perforation probability of the i-th course of the tank calculated by Eq.4.33 on the 

basis of its thickness, Si is the exposed surface of the i-the course of the tank, and Stot is the total 

exposed surface (including roof surface, but excluding tank bottom). In the application of Eq.4.34 

only the courses below the maximum allowed liquid level should be considered. 

 

4.7.3.3 Assessment of safety barriers 

As shown in Fig. 4.28, the expected occurrence frequency of a full surface fire scenario also 

depends on the availability of the protection systems. As a matter of facts, the activation of the 

reference safety barriers identified in section 2.3 may prevent this final outcome. Therefore, in 

order to quantify all the branches of the ETs in Fig.4.28, the assessment of the PFD (probability of 
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failure on demand) of the identified reference protection systems was carried out. In order to 

address this issue, two possible procedures may be identified. 

A case-specific detailed calculation is possible, deriving site-specific failure frequencies and 

calculating the actual PFD values for the case of interest. 

As an alternative, generic values of PFD may be used. Table 4.19 reports generic values of PDF 

obtained in the present study for the reference safety barriers identified in section 2.3. Clearly 

enough, such values should be intended only as reference values for a preliminary assessment of 

the expected occurrence probabilities of the final events. The values in Table 4.19 were obtained 

from a Fault Tree Analysis (FTA) carried out for barrier availability, starting from generic literature 

reliability data (see Necci et al. 2014b for further details on the ET construction). The generic PFDs 

of automatically actuated rim-seal fire extinguishing systems and fixed foam systems featuring 

fixed discharge outlets and foam dam, identified as reference active protection systems, was 

assessed. Only fixed systems, with all components permanently installed, were considered. Both 

simple rim-seal fire extinguishing systems, with only automatic actuation upon fire detection, and 

systems, with either automatic and manual actuation, were analysed. The fixed foam systems 

considered have a foam distribution network that is connected to the fire water main network of 

the refinery, and by an actuation system that is integrated within the actuation logic of the fire-

fighting system of the refinery. In a conservative approach, it is assumed that the failure of a single 

foam unit (in the case of automatically actuated systems) or of a single foam discharge device is 

sufficient to consider the entire rim-seal fire extinguishing system unavailable.  

Since the requirements for inert gas blanketing systems are not detailed in specific standards (as a 

matter of fact only generic indications are provided by NFPA 69 (NFPA, 2008)), the features and 

architectures of these systems may vary considerably depending on tank types, tank sizes and 

global design considerations on the installation. Hence, instead of retrieving a reference scheme 

which could identify standard system architecture and allow the application of FTA, a risk-based 

approach was adopted in order to determine the required SIL (Safety Integrity Level) for the 

system by the adoption of a risk matrix approach, following the guidelines from IEC 61508 (IEC, 

1998a; 1998b; Schüller et al., 1997). The SIL required was then assumed as a reference to estimate 

the maximum allowable PDF of the system. Further details on the procedures applied to carry out 

the analysis are provided in the paper by  Necci et al. (2014b). 

It has to be remarked that the FTA was carried out assuming that all the protection systems are 

not affected by the lightning. In other words, the lightning strike is not considered as a common 

cause failure for the system components. However, Common Cause Failure (CCF) which may affect 

more components (such as poor quality maintenance or external impact), not specifically involving 

the lightning event, was taken into account by the adoption of the beta factor method. 
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Table 4.19: Calculated Probability of Failure on Demand (PFD) for different fire protection systems. 

Necci et al. (2014b). 

System 

ID 
System Description 

Calculated PFD 

value 

Corresponding 

parameter in event 

tree (see Fig.4.28) 

Type of analysis 

A 

Rim-seal fire extinguishing 

systems, only automatic 

actuation 

2.38×10-2 PFD1 Fault tree analysis 

B 

Rim-seal fire extinguishing 

systems, both automatic and 

manual actuation 

2.37×10-2 PFD1 Fault tree analysis 

C 

Fixed foam systems with 

fixed discharge outlets and 

foam dam 

8.10×10-3 PFD2 Fault tree analysis 

D Inert gas blanketing systems 
10-3 - 10-2 

(equivalent SIL 2) 
PFD3 

Risk-based approach 

for SIL requirements 

determination 
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4.8 Consequence assessment of lightning-triggered scenarios 
 

In order to characterize the different type of release, hazardous substances with different effects 

are considered. For atmospheric vessel a flammable and a toxic substance have been chosen; for 

pressurized vessel a flammable gas, a flammable pressurized liquefied vapor and a toxic 

pressurized liquefied vapor have been chosen. The following substances are considered in the 

study: Gasoline (approximated as n-heptane) and Crude Oil (approximated as n-octane)  

atmospheric releases; Propane and Chlorine for Pressurized vessels.  

Due to their particular features lightning triggered scenarios have been separated from 

conventional scenarios used in quantitative risk assessment. In order to compare the risk obtained 

with and without the lightning triggered accident a brief description of the scenarios (following 

both conventional causes and lightning strikes impacting on the tank) considered in the following 

calculation is provided in this section. 

 

4.8.1 Conventional scenarios 

The conventional releases for QRA are collected from several sources (Uijt De Haag and Ale, 1999; 

Lees, 1996). Table 4.20 shows the considered release typologies and the suggested overall annual 

probabilities of occurrence. Conventional top events regards releases of hazardous material both 

from the vessel and from the connected pipeline. Only the top events due to mechanical failure or 

corrosion are considered and not those due to the operative conditions on a plant. This last type 

of analysis requires much more detailed data, which are specific of the system analyzed and 

therefore cannot be generalized. For this reason the only top events considered are listed in the 

following. 

The vessel leakage is a continuous release of hazardous material due to a hole or a fracture in the 

vessel, characterized by a low release rate. The equivalent diameter considered for this release 

typology is 10 mm (Purple Book). It usually results in a small pool of hazardous material in the 

bund area for atmospheric storage tanks and in a jet release for pressurized tanks. 

The release of the entire inventory in 10 minute is another standard loss of containment typology, 

characterized by a high release rate. It usually results in a large pool of hazardous material in the 

bund area for atmospheric storage tanks and in a jet release for pressurized tanks. 

Instantaneous release, represent the immediate release of the entire inventory of the tank. It 

usually results in a large pool of hazardous material in the bund area for atmospheric storage 

tanks and in a BLEVE for pressurized tanks. 

The leakage from a pipeline connected to the tank is a continuous release of hazardous material. 

Consequences are similar to those of the leakage from the vessel, but the release size is 

considered as a portion of the nominal diameter of the pipe. 

The full bore rupture of a pipeline connected to the tank is a continuous release of hazardous 

material. It’ consequences are similar to those of the leakage from the vessel, but the release size 

is considered as the entire nominal diameter of the pipe, resulting in a higher release rate. 

Since the release frequencies and consequences depends on the pipe features, for both the full 

bore rupture and the pipeline leak, a total pipeline length of 10 m is considered. 
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The vessel major leakage, able to release the entire inventory of the tank in 10 min is a continuous 

release of hazardous material. It’ consequences are similar to those of the leakage from the vessel, 

but the release rate is considered enough to empty the vessel content in less than 10 minute, 

resulting in a much higher release rate. The vessel catastrophic rupture: is considered as an 

immediate release of the entire inventory of the tank. 

The continuous releases are always considered to be positioned at 1 m from the ground level. The 

liquid release forms a pool on the ground, which can either ignite forming a pool fire or slowly 

evaporate, generating a cloud of hazardous substance in the atmosphere with toxic and/or 

flammable features. Pressurized storage tanks store gaseous (or liquefied vapors) hazardous 

material Pressurized vessels are supposed to be supported on a concrete base (hc = 0.5m) to 

evaluate the overall tank height and the release height. Continuous releases from pressurized 

vessels forms gas jets (or two-phase vapor/liquid jets) that emit a high rate of hazardous 

substance in the atmosphere,  generating a cloud with toxic and/or flammable features. The 

instantaneous release of the entire inventory is accompanied by the shockwave due to the rapid 

expansion of the pressurized stock.  

For the calculation of consequences due to the ignition of a flammable vapor cloud for either the 

vapors evaporated from a liquid pool and the vapors generated after a jet dispersion, both flash 

fire and Vapor Cloud Explosion are considered. Data for conventional top event frequency, ignition 

probability and the Flash Fire/Explosion division considered in this work are taken from (Uijt De 

Haag and Ale, 1999). The values used to quantify the branches of the fault tree are resumed in 

table 4.20. Detail on event trees constructions for conventional scenarios used in QRA can be 

found in reference literature (Lees, 1996; Uijt De Haag and Ale, 1999). 

 

Table 4.20: For every top event data for event trees assessment are provided: Frequency of the top 

event, Ignition probabilities, probability of Flash Fire / Vapor Cloud Explosion 

Top Event Typology f  Substance Immediate 
Ignition 

Delayed 
ignition 

Flash fire / 
Explosion 

Leak from 
vessel 

Atmospheric 10-4 y-1 Liquid 0.065 0.9 0.3-0.7 

Leak from 
vessel 

Pressurized 10-5 y-1 Gas or Two 
phase 

0.2 0.9 0.3-0.7 

Full bore 
Rupture 

- 2.5x10-6 
y-1m-1 

Liquid/Gas or 
Two phase* 

0.065 / 0.5* 0.9 0.3-0.7 

Leak from 
pipeline 

- 3.5x10-6 
y-1m-1 

Liquid/Gas or 
Two phase* 

0.065 / 0.2* 0.9 0.3-0.7 

Catastrophic 
rupture 

Atmospheric 5x10-6 y-1  Liquid 0.065 0.9 0.3-0.7 

Catastrophic 
rupture 

Pressurized 5.10-7 y-1 Gas or Two 
phase 

0.7 0.9 0.3-0.7 

Release in 10 
m 

Atmospheric 5.10-6 y-1 Liquid 0.065 0.9 0.3-0.7 

Release in 10 
m 

Pressurized 5.10-7 y-1 Gas or Two 
phase 

0.5 0.9 0.3-0.7 
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4.8.2 Lightning triggered scenario modelling 

Lightning-triggered scenarios have described in section 4.5 and the event tree response are 

described in Figure 4.19 and 4.28. Although, a description of the lightning triggered accidental 

scenarios modelling is provided in the following sections. In order to calculate lighting triggered 

accident  frequencies, the lightning statistic properties are those provided by the directive (CEI, 

2013). The annual flash density at ground is considered as a typical Italian value of 3 flashes/km2/y 

(SIRF, 2013). 

Since lightning triggered accidents shows some atypical features a few indications should be given 

in order to give the reader the sensibility on how results are obtained. For the calculation of the 

pool fire surface, immediate ignition of the flammable material is considered. Thus, the pool 

diameter that causes an equilibrium between the release rate and the pool burning rate is 

considered. Full surface tank fire can be modeled as pool fire with a diameter equal to the 

diameter of the tank and placed at an elevation from the ground, which is equal to the tank 

height.  

In order to model the confined explosion, the vapor space is assumed equal to the half volume of 

the tank. The concentration of the flammable vapor in mixture is assumed homogeneous in the 

vapor space and equal to the minimum value between to the equilibrium composition at the liquid 

interface, due to the liquid vapor pressure for a given storage temperature condition, and the 

upper explosive limit (UEL) of the substance. However, the portion of the explosion energy that is 

used to destroy the tank roof is usually very high, due to the roof (or tank) size and mass. For this 

reason the maximum value for this parameter is used, in the range proposed by (Gubinelli et al., 

2009a; 2009b). Therefore, in some of the cases analyzed the overpressure is limited to very low 

values and short distances, thus the effect of the shockwave on humans has been neglected in the 

present study. Fragments projected can be the highest threat to nearby equipment, in particular 

the entire roof is likely to be thrown in a single piece, also at great distances. In the current 

methodology fragments impingement is not considered for the evaluation of human vulnerability, 

however it is worth to remark the importance of roof projection for future studies on domino 

effect triggered by lightning NaTech scenarios (see Chapter 3). 

 

4.8.3 Meteorological Data 

The meteorological aggregation should be chosen coherently with the site under investigation. 

Since no specific region is considered in this study, two conventional atmospheric conditions are 

selected, in order to shows exemplificative results, for the consequence calculation (F and D 

atmospheric stability according to Pasquill classification (Mannan, 2005): 

 Stability class F with a wind speed of 2 m/s 

 Stability class D with a wind speed of 5 m/s 
The temperature is set at 20 ° C for all the calculations and the relative humidity is set to 70 % for 

all the conventional releases. Further considerations are needed for lightning triggered accidents. 

In order to perform a consequence analysis that is coherent with the lightning phenomenon, the 

typical atmospheric condition of a thunderstorm should be represented. The formation of a 

thunderstorm cloud happens in condition of high atmospheric instability and elevate air relative 

humidity. Moreover, thunderstorms are usually accompanied by strong winds and rain (Cooray 
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and Becarra, 2010). the following indications should be followed in order to have more realistic 

simulations:  

 In order to represents strong wind and the atmospheric instability condition  the use of 
stable and low wind conditions (e.g. wind velocity 2 m/s and stability class F) should be 
avoided. Thus, the wind direction probability should be chosen accordingly. 

 In this document the “2F” stability class have been ignored while calculating the lightning-
triggered scenario consequences; only class “5D” has been considered.  

 A relative humidity equal to 100 % should be considered for all the lightning-triggered 
scenarios 

 

The presence of  rain, which contribute to mitigate the effect of the thermal radiation with the 

distance and may absorb the hazardous vapors, is not compatible with the most of models for 

consequence assessment. Thus, rain is conservatively not considered.  
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4.9 Application of QRA procedure: results 
 

The accidents consequences are assessed by the use of conventional models for consequence 

assessment implemented in DNV’s software Phast. The individual and societal risk was then 

calculated by the use of ARIPAR GIS: a software for Quantitative Area Risk Assessment (QARA) 

(Egidi et al.1995). Results are obtained  with and without lighting triggered scenarios in order to 

evaluate the weight of those accidents. First, the methodology is applied to single equipment in 

order to analyze in detail the effect of lightning strikes on different equipment typologies. Finally, 

the methodology is applied to a realistic case study based on the map of the storage park area of 

an oil refinery. 

 

4.9.1 “Conventional” risk assessment against risk contribution of “NaTech scenarios” for single 

equipment 

The procedure for the introduction of lightning NaTech risk is applied to three single equipment: 

an external floating roof atmospheric tank (EFRT), a fixed roof atmospheric tank (FRT) and a 

pressurized tank (PT). For all the atmospheric tanks a square bund area which side is equal to the 

double of vessel diameter is considered. All the releases are considered as horizontal in the same 

direction as the wind. A uniformly distributed wind direction probability, is considered. Table 4.21 

shows the features of the tank under analysis and the calculated frequencies for lightning 

triggered accidents for the three different vessel categories, considered as stand-alone equipment. 

Lightning impact frequency on the storage tank is calculated according the simplified method 

presented in Section 4.4.4, using a flash density at ground (ng) of 3 flash/km2/y (typical Italian 

value (SIRF, 2013); the shell perforation probability is calculated according the simplified method 

presented in Section 4.6; lightning-triggered scenario frequencies are finally calculated following 

the indications provided in Section 4.7. 

Three different storage typologies are considered: external floating roof atmospheric tank (EFTR), 

cone roof atmospheric tank (CR) and pressurized tank (PT). Details on vessel geometries, as well as 

the calculated frequencies of the possible accident scenarios triggered by lightning strikes are 

reported in Table 4.21. 

The EFRT is the biggest tank typology, thus is the one with the highest expected number of strikes 

per year; the highest PDD is instead for the CRT due to low vessel thickness. In order to evaluate 

the tank fire frequency foe EFRT, the tank is assumed to be protected by a fixed foam system only. 

A representative value for the probability of failure on demand of this system considered; a value 

of 7.03.10-3 is assumed, according to Table 4.19.  

 

Table 4.21: Features of tank analyzed. The expected number of lightning attracted per year, the 

probability of direct damage and the frequencies for the tank fire scenario and for the pool fire / jet 

fire scenario. 

Type Material D 

(m) 

H 

(m) 

L 

(m) 

V 

(m
3
) 

tmin 

(mm) 

tmax 

(mm) 

fcap 

(y
-1

) 

PDD fTF 

(y
-1

) 

fPF/JF 

(y
-1

) 

CR Gasoline 21 12.6 - 4364 6 10.3 6.14x10
-2

 4.82x10
-3

 3.07x10
-4

 2.96x10
-4

 

EFRT Crude Oil 55 14.4 - 34200 8 20.5 9.42x10
-2

 3.10x10
-4

 6.62x10
-4 

2.92x10
-5

 

PT LPG 2.8 3.5 18 100 18 18 3.70x10
-2

 2.01x10
-7

 - 7.44x10
-9
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In order to evaluate the tank fire frequency for the CRT, the tank is assumed to be protected by 

inert gas blanketing system only. A representative value for the probability of failure on demand of 

this system considered; a value of 5.0.10-3 is assumed, according to Table 4.19.  The direct damage 

result in a loss of containment with immediate ignition of the flammable material released. It 

results in a pool fire for the two atmospheric tanks and in a jet fire for the pressurized one.  

Figure 4.29-a,4.29-b and 4.29-c represents the local specific individual risk, calculated with and 

without the scenarios caused by lightning strikes, reported against the distance from the vessel, 

obtained by the use of a GIS software tool, developed with the MATLAB software.  

 
Figure 4.29: The value of individual risk against the distance from the tank center (X); the grey line 

is calculated for the conventional scenarios only, the dotted black line is calculated considering 

lightning triggered scenarios. a) cone roof tank (CFT); b) external floating roof tank (EFRT); c) 

pressurized tank 

 

Figure 4.29-a and 4.29-b shows two distinct curves for the individual risk due to conventional 

scenarios only and for scenarios that include lightning triggered accidents. In particular at a short 

distance from the tank, the difference between the two curves is the highest, due to the 

increment of the number of accident scenarios with limited consequences (tank fires, fires in the 

bund), while the frequencies of those scenarios with major consequences (flash fire, VCE) remain 

unaffected.  
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4.9.2 “Conventional” risk assessment against risk contribution of “NaTech scenarios”: case study 

A case study was analyzed with the aim of assessing the importance of the previously discussed 

extensions of QARA studies to NaTech scenarios triggered by lightning. A representation of the 

case study analyzed is reported in Figure 4.30. In the case-study, the NaTech quantitative risk 

assessment procedure (Figure 4.3) was applied to a storage section of an existing industrial site. 

 

 
Figure 4.30: The footprint of the storage area of the industrial activity considered as a case study 

showing the vessels considered. Details regarding the equipment considered in the risk analysis are 

provided in Table 4.22 

 

Table 4.22 shows the features of the vessels considered in the study and the inventory for the 

consequence calculation. Design features and relative position in the plant footprint are crucial 

variables for the assessment of lightning-triggered scenario frequencies. Thus expected attraction 

frequency assessment, direct damage probability assessment and the frequencies of Natech 

scenarios are reported in Table 4.23. 

The calculated frequency of lightning impact on the tank in the layout considered are significantly 

lower than those calculated in the previous section for standalone equipment, due to the fact that 

several storage tanks are present in the same attraction area. Therefore, the resulting scenario 

frequency are significantly lower than those presented in Section 4.9.1. 

 

  



126 

 

Table 4.22: Features of the storage tanks reported in Figure 4.30: length (L), diameter (D), height 

(H), volume (V), height of the course (Hcourse), shell thickness at different heights (ts1 to ts6) 

Tank 

ID 

L 

(m) 

D 

(m) 

H 

(m) 

V 

(m) 

Hcourse 

(m) 

ts1 

(mm) 

ts2 

(mm) 

ts3 

(mm) 

ts4 

(mm) 

ts5 

(mm) 

ts6 

(mm) 

TA_01 - 38 9 8160 1,8 9,9 8 8 8 12,5 - 

TA_02 - 38 9 8160 1,8 9,9 8 8 8 12,5 - 

TA_03 - 38 9 8160 1,8 9,9 8 8 8 12,5 - 

TA_04 - 38 9 8160 1,8 9,9 8 8 8 12,5 - 

TA_05 - 60 9,6 21700 2,4 16,27 11,96 8 8 - - 

TA_06 - 60 9,6 21700 2,4 16,27 11,96 8 8 - - 

TA_07 - 60 9,6 21700 2,4 16,27 11,96 8 8 - - 

TA_08 - 38 9 8160 1,8 9,9 8 8 8 12,5 - 

TA_09 - 38 9 8160 1,8 9,9 8 8 8 12,5 - 

TA_10 - 30 12 6780 2,4 10,4 8,2 6 6 6 - 

TA_11 - 27 14,4 6590 2,4 11,3 9,3 7,4 6 6 6 

TA_12 - 27 14,4 6590 2,4 11,3 9,3 7,4 6 6 6 

TA_13 - 27 10,8 4940 1,8 11,3 9,3 7,4 6 6 6 

TA_14 - 27 10,8 4940 1,8 11,3 9,3 7,4 6 6 6 

TA_15 - 27 10,8 4940 1,8 11,3 9,3 7,4 6 6 6 

TA_16 - 38 9 8160 1,8 9,9 8 8 8 12,5 - 

TA_17 - 21 12 3320 2,4 7,3 6 6 6 6 - 

TA_18 - 38 9 8160 1,8 9,9 8 8 8 12,5 - 

TA_19 - 50 12 18840 2,4 17,3 13,96 10,15 8 8 - 

TA_20 - 27 10,8 4940 1,8 11,3 9,3 7,4 6 6 6 

TA_21 - 27 14,4 6590 2,4 11,3 9,3 7,4 6 6 6 

TA_22 - 27 14,4 6590 2,4 11,3 9,3 7,4 6 6 6 

PA_01 37 3,3 4,8 250 - 21 - - - - - 

PA_02 37 3,3 4,8 250 - 21 - - - - - 

PA_03 37 3,3 4,8 250 - 21 - - - - - 

PA_04 37 3,3 4,8 250 - 21 - - - - - 

PA_05 - 16 17,5 1700 - 24 - - - - - 
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Table 4.23: details regarding lightning-triggered scenarios for each equipment in the case study: 

the calculated capture frequency (fcap), the probability of direct damage (PDD), the frequency of the 

tank fire scenario (fTF), the frequency of the pool fire or jet fire scenario (fPF/JF), the tank category 

and the stored substance 

Tank ID  fcap (y-1)  PDD fTF (y
-1) fPF/JF(y

-1) Category Substance 

TA_01  2,74E-02  5,48E-04 1,37E-04 1,50E-05 CR Gasoline 

TA_02  1,79E-02  5,48E-04 8,94E-05 9,81E-06 CR Gasoline 

TA_03  1,56E-02  5,48E-04 7,81E-05 8,57E-06 CR Gasoline 

TA_04  1,13E-02  5,48E-04 5,65E-05 6,20E-06 CR Gasoline 

TA_05  2,72E-02  3,49E-04 2,20E-04 9,49E-06 EFRT Crude OIL 

TA_06  2,00E-02  3,49E-04 1,62E-04 6,98E-06 EFRT Crude OIL 

TA_07  4,53E-02  3,49E-04 3,67E-04 1,58E-05 EFRT Crude OIL 

TA_08  1,21E-02  5,48E-04 6,06E-05 6,66E-06 CR Gasoline 

TA_09  4,08E-03  5,48E-04 2,04E-05 2,24E-06 CR Gasoline 

TA_10  1,43E-02  4,21E-03 7,10E-05 6,01E-05 CR Gasoline 

TA_11  3,44E-02  4,11E-03 1,71E-04 1,41E-04 CR Gasoline 

TA_12  1,45E-02  4,11E-03 7,23E-05 5,96E-05 CR Gasoline 

TA_13  1,34E-02  3,71E-03 6,70E-05 4,99E-05 CR Gasoline 

TA_14  9,98E-03  3,71E-03 4,97E-05 3,71E-05 CR Gasoline 

TA_15  1,03E-02  3,71E-03 5,14E-05 3,83E-05 CR Gasoline 

TA_16  2,70E-03  5,48E-04 1,35E-05 1,48E-06 CR Gasoline 

TA_17  1,60E-02  6,50E-03 7,97E-05 1,04E-04 CR Gasoline 

TA_18  9,59E-03  5,48E-04 4,79E-05 5,26E-06 CR Gasoline 

TA_19  2,21E-02  3,71E-04 1,79E-04 8,21E-06 EFRT Crude OIL 

TA_20  1,34E-02  3,71E-03 6,70E-05 4,99E-05 CR Gasoline 

TA_21  1,69E-02  4,11E-03 8,39E-05 6,93E-05 CR Gasoline 

TA_22  2,80E-02  4,11E-03 1,40E-04 1,15E-04 CR Gasoline 

PA_01  2,22E-02  1,32E-08 - 2,92E-10 PT LPG 

PA_02  2,04E-03  1,32E-08 - 2,69E-11 PT LPG 

PA_03  1,22E-03  1,32E-08 - 1,61E-11 PT LPG 

PA_04  2,22E-03  1,32E-08 - 2,93E-11 PT LPG 

PA_05  3,53E-02  8,65E-10 - 3,05E-11 PT LPG 
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A specifically developed software tool, implemented on the Matlab platform, was used to carry 

out the risk calculation and risk mapping for the case-study. The computer program applies the 

ARIPAR methodology (Egidi et al., 1995). By the application of conventional and lightning triggered 

scenarios to the possible accident sources, individual risk contours have been calculated. Figure 

4.31 shows the local specific risk profile generated by the hazardous substances stored in the area. 

Figure 4.31-a shows the risk map for the lay-out of concern, obtained considering conventional 

scenarios only, while Figure 4.31-b shows the risk map obtained considering lightning triggered 

accidents together with conventional. Figure 4.31-b shows an increment of more than one order 

of magnitude of the risk value in the area in the close vicinity of the tanks to the respect of Figure 

4.31-a, while the risk profiles at larger distance from the tanks are identical in both the panels.  

 

 

Figure 4.31: The risk profile of the storage area under investigation. The individual risk maps are 

calculated in panel a) using the conventional accident scenarios only and in panel b) using 

conventional accident scenarios together with lightning triggered scenarios 

 

In order to better understand the entity of the risk associated to lighting strikes, the societal risk 

calculation has been carried out for the lay-out analyzed.  A uniform population distribution of 100 

persons per km2 was selected to provide societal risk figures. Since this calculation has the only 
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purpose to show the effect of lightning triggered accidents, the same population density was 

applied both outside and inside of the plant, where only a few operators should be expected to be 

in place. Figure 4.32 shows the F-N risk curves for the three equipment considered, with (dotted 

black line) and without (grey line) the lightning-triggered accidents.  

 

 
Figure 4.32: The societal risk expressed as F-N plot for the case study considered. Frequencies and 

casualties are calculate for conventional accident scenarios and for lightning triggered scenarios  

 

As shown by the figure, the frequency of scenarios with a few casualties expected increases 

significantly with the introduction of lightning hazard, while the frequency of those scenarios with 

a high number of deaths, and therefore with a high impact on the community, are unaffected by 

the introduction of lightning-triggered scenarios. 

Furthermore an index could be calculated to represent the impact of the industrial plant: the 

potential life loss (PLL) (Lees, 1996; Uijt De Haag and Ale, 1999). The value of PLL of the industrial 

plant in absence of lightning threat is 1.71, while introducing lightning- triggered scenarios the PLL 

rise to 9.39. The increase of this indicator is an interesting signal on the risk increment due to 

lightning strikes, despite the fact that only those accidents with limited consequences have been 

increased the PLL rises significantly. Again, in order to get the sense of these values, one should 

consider that an uniform population value was assumed. 

 

4.9.3 Final considerations 

Some general conclusions can be drawn based on the result obtained. The lightning triggered 

scenarios generally show a high frequency, which can be much higher than conventional 

scenarios, on the other hand, lightning scenarios consequences are characterized by fire and 

explosions with limited extension. Therefore, the risk profile of the industrial site, calculated 

considering lightning scenarios, is higher than the risk calculated using conventional 

methodologies for QRA, in the close vicinity of the storage tanks. Furthermore, since the 

consequence of Natech accidents due to lightning do not cross the tank perimeter, they are not 

supposed to increase the risk due to the industrial activity for nearby population. However, in the 

current analysis the possibility of accident escalation due to domino effect was not considered. 

Since the lightning triggered accidents occur with very high frequency and with the potential to 
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trigger an accident escalation process, they represent a frequent ignition for the escalation 

process. Moreover, the possibility of accident escalation within the tank itself was not considered: 

as a consequence of a tank fire the tank integrity could be lost and the entire inventory could be 

released, increasing the scenario severity. At the same time the tank fire scenario could lead to 

boil over, again increasing the accident severity. All those effects need to be considered in order to 

quantify the risk associated to Natech due to lightning strikes. Therefore, the development of tools 

to achieve these issues represent the future for the research of lightning triggered accidents. 
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4.10 Possible strategies for the lightning protection of storage tanks 
 

Every year a large number of atmospheric storage tanks suffer a lightning related accident, usually 

a fire or an explosion. These events suggest that the atmospheric tanks should be protected with 

specific protective measures against lightning strikes, other than the safety barriers that prevents 

or mitigate the occurrence of fires, which have been already discussed in Section 4.5. For this 

reason oil industries worldwide decided to develop protective measures to protect tanks from the 

threat of lightning strikes. Recommended practice 545 from API (API, 2009) is the dedicated 

standard on lighting protection for storage tanks and substitute the previous indications provided 

by API 2003 standard (API, 2008). Two potential threats are identified for installation containing 

flammable substances: threat from a direct lightning strike, when the flash hits directly the storage 

tank and threat from indirect lightning strike, when the flash hit the ground (or another structure) 

in the vicinity of the tank. In either events, the lightning current (or a portion of it) flows through 

the tank, eventually causing sparking. There are two types of spark; thermal sparks, which are 

generated only in the case of direct lightning strike on the tank and voltage sparks, which form 

because discontinuities in the current paths may result in arcing across the gaps (API, 2009). 

Sparks and electric arcs may ignite the flammable atmosphere eventually present in the storage 

tank. 

For this reason, the document lists several objectives to achieve, in order to protect the storage 

tank from the lightning threat. In particular, External Floating Roof Tanks (EFRT) should meet 

specific design requirement for the installation of shunts, seals and bypass conductors (API, 2009). 

These protective devices, together with specific indications about operational planning have the 

aim of avoiding ignition of flammable material, by minimizing spark generation probability, as a 

consequence of a lightning strike, and by preventing the formation of flammable-air mixture at the 

rim-seal. 

The Indian “Oil Industry Safety Directorate (OISD)” provides its specific standard regarding the 

issue of lightning protection of storage tanks (OISD, 1999), on the basis of international standards 

(NFPA, 2004) of lightning protection of structures. It is similar in contents to the API RP 545, but it 

includes a section for the protection of the tank from the threat of direct lightning strikes by the 

use of dedicated air terminals (CEI, 2013). There is general agreement, among the different codes, 

about the fact that total protection from the lightning hazard in storage tank areas is just a 

hypothetical goal, due to the stochastic behaviour of lightning strikes. Thus, the design of lightning 

protection systems should be flanked by a dedicated risk analysis method (API, 2009). 

 

4.10.1 Bonding 

This is a specific requirement for External Floating Roof Tanks (EFRT). The gap between the roof 

and the tank shell is a major cause of lightning voltage spark. In order to mitigate this, standards 

on lightning protection recommends that a form of short circuit (direct connection) should be 

established between the roof and the shell so as to provide a flow path for the lightning current 

from the roof to the tank shell rather than through the air gaps. 



132 

 

In order to significantly reduce potential differences between the different parts of the tank, an 

electrical connection is provided among all the components. This measure create a “safe” path for 

the lightning current to the ground. An adequate bonding is achieved by the installation of shunts 

and bypass conductors between the storage tank body and the floating roof (API, 2009). 

Furthermore, any gauge or guide pole components or assemblies that penetrate the tank floating 

roof shall be electrically insulated from the tank floating roof. 

Even if these measure are capable to completely protect the tank from the ignition threat due to 

indirect strike currents, the analysis of past accidents demonstrate that in case of direct lightning 

impact, bonding can slightly reduce the probability of ignition of flammable atmosphere, but does 

not ensure the prevention of incendiary sparks (Carpenter, 1996). Since there will always be 

sparking at the shunt-shell interface API recommended that the shunts should be installed 

submerged below the crude oil at a minimum depth of 0.3m in a region where flammable vapour 

does not exist such that even when sparks are generated the fire triangle will not be completed. 

Presently the submersible type of shunt is not available because the feasibility and effectiveness of 

such a design is not generally agreed on. This therefore challenges the effectiveness of shunts for 

current conduction.  However, since the probability of indirect strikes is much higher than the 

probability of direct strike on the storage tank (as much as 1000 times larger (CEI, 2013)), bonding 

is considered a mandatory requirement for the design and installation of atmospheric storage 

tanks. 

About grounding of the structure API RP 545 does not include specific requirement since the metal 

body of the storage tank provides adequate grounding itself. Furthermore, the eventual presence 

of sparking below the roof, where no flammables are present, should not be considered an 

hazardous situation. 

 

4.10.2 External lightning protection system (ELPS) 

The approach to solving the lightning induced fire issue is centred on eliminating voltage 

differential eliminating the chances of spark generation at the shunt-shell interface by ensuring 

that the lightning stroke does not terminate on the roof  instead of a preferred conductive part. 

An ideal protection for structures and services would be to enclose the object to be protected 

within an earthed and perfectly conducting continuous shield of adequate thickness, and by 

providing adequate bonding, at the entrance point into the shield, of the services connected to the 

structure. This would prevent the penetration of lightning current and related electromagnetic 

field into the object to be protected and prevent dangerous thermal and electro-dynamic effects 

of current, as well as dangerous sparking and over voltages for internal systems. In practice, it is 

often neither possible nor cost effective to go to such lengths to provide such optimum protection 

(CEI, 2013). 

The OISD GRD 180 (1999) describes a methodology, based on the rolling sphere method, for the 

design of external lightning protection systems (ELPS) for storage tank parks. A lightning 

protection system (Conventional Air Terminal System) consists of the following three basic 

components: 

a) Air terminal: capable of drawing the lightning discharge to it in preference to vulnerable parts of 

the protected structure. 
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b) Down conductor: provide a safe low-impedance path to the ground. 

c) Earth connection: provides safe discharge of lightning current into the soil 

Different air terminal provides different protection to the respect of direct strikes to the storage 

tank. The solutions proposed by OISD GDN 180 (OISD, 1999) are discussed in the following. 

 

4.10.3 Lightning rods 

The design of lightning rods (OISD, 1999) is performed by the use of the “rolling sphere method” 

(CEI, 2013), used to define the minimum number of rods per tank that shall be installed. Rods are 

designed to attract a stroke that would be directed to the tank roof and divert the resulting 

current via a preferred path (the down conductor) to earth. They are reasonably effective in 

performing these functions. However, air terminals can cause fires by attracting the strike, since 

the design assume to place the air terminal in close proximity to the flammables (top of tank body) 

and cause the ignition of the substance due to thermal sparking. Furthermore, the closer the 

stroke channel is to the flammables, the higher the related effects (bound charge and earth 

currents), and the greater the risk of a fire initiating arc. Thus, even if they are capable of reducing 

the dangerous effect of lightning strikes on storage tanks, i.e. neglecting the direct damage to the 

tank shell (Necci et al., 2013b), they also increase the chances of lightning hitting the tank and do 

not prevent the threat due to possible ignition of flammable vapours (Carpenter, 1996).  

 

4.10.4 Lightning protection masts 

Their mechanism is similar to the lightning rods. Air terminal are supported by tall masts, placed at 

some distance from the tank (at least 6 m in order to avoid side flashes (OISD, 1999) (Figure 4.33-

a). Even though a single mast is capable to reduce significantly the frequency of lightning hitting 

smaller storage tanks (Necci et al., 2013b), for a significant protection of larger tanks a network 

composed by several mast surrounding the tank is suggested by the codes for lightning protection 

(OISD, 1999). The number of lightning masts that shall be applied is obtained by the use of the 

“rolling sphere method” (Table 4.24) based on a striking distance of 30 m.  

Table 4.24:  The use of lightning protection mast network: capture frequency calculation and 

reduction factor (Necci et al., 2014c) 

D (m) Mast N fc (y
-1) fcs (y

-1) LI 

up to 12 3 5.44E-02 2.59E-06 4.77E-05 
13-21 4 6.08E-02 3.02E-06 4.97E-05 
22-32 5 6.89E-02 1.38E-05 2.01E-04 
33-38 6 7.37E-02 2.33E-05 3.17E-04 
39-45 7 7.91E-02 3.72E-05 4.69E-04 
46-51 8 8.42E-02 5.92E-05 7.03E-04 
52-57 9 8.94E-02 1.03E-04 1.16E-03 
58-63 10 9.46E-02 1.56E-04 1.64E-03 
64-71 11 1.02E-01 2.52E-04 2.46E-03 
72-79 12 1.10E-01 4.44E-04 4.04E-03 
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In Appendix 1 of OISD GDN 180 (1999) details on the use of the rolling sphere method for the 

design of ELPS are shown. In particular air terminal height, number and distance from the tank are 

reported. Lightning mast network should overcome the maximum tank height of 15 m; it should 

include one mast per every 24 m of the tank perimeter; masts should be placed at a minimum 

distance of 6 m from the tank. A reference tank height of 12 m has been considered in the 

following (OISD, 1999). Table 4.24 reports the indications provided by OISD GDN 180 for the 

installation of a lightning mast network around storage tank in a wide range of possible tank size It 

also reports the fc, the fcs and the respective LI for each tank size, calculated for the largest 

diameter proposed in the range of applicability. Since this system is actually capable of attracting 

lightning away from the equipment, they are capable to reduce significantly the frequency of 

direct lightning strikes to the tank. 

 

4.10.5 Overhead shield wire 

A system of overhead earth wires placed at the top of dedicated supporting structures  can be 

installed to protect a storage tank. The system is designed (OISD, 1999) according to rolling sphere 

concept based on a striking distance of 30 m (Figure 4.33-b). A single earth wire with a minimum 

clearance of about 8 m above the highest point of the tank can protect a tank of about 6 to 8 m 

diameter (OISD, 1999). For tank diameters between 8 to 30 m two parallel earth wires are used 

while for tank diameters between 30 to 80 m (Figure 4.33-b); three parallel wires are required to 

protect the tank. Again the lightning strike is  attracted away from the storage tank with an 

expected reduction of the frequency of direct lightning strikes on the vessel. 

 

  

    

Figure 4.33: Air terminals for the ELPS: a) Lightning masts; b) overhead shield wire (Necci et al., 

2014c) 

 

Since the frequency of accidental scenarios triggered by lightning is directly proportional to the 

frequency of lightning strikes hitting the tank, the assessment of the reduction on the lightning 

attraction frequency result in an equivalent reduction of the frequency of the lightning-triggered 

accidental scenarios. In order to express the protection that can be achieved by the use of a 

protection system, a non-dimensional factor, the layout index (LI) defined in section 4.4.3 by 
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equation 4.6, can be used. This index represents the ratio between the lightning capture 

frequency of the unit in its specific layout and the capture frequency that the same unit would 

have in an unprotected open flat field. The complete methodology for the assessment of the 

lightning impact frequency and for the layout index calculation is provided in Section 4.4. 

Table 4.25 reports the indications provided by OISD 180 for the installation of overhead shield 

wires network above a storage tank in three possible configuration, according to the tank size. It 

also reports the fc, the fcs and the LI for every tank size, calculated for the largest diameter 

proposed in the range of applicability.  

Table 4.25:  The use of overhead shield wire network: capture frequency calculation and reduction 

index (Necci et al., 2014c) 

D (m) Wire N fc (y
-1) fcs (y

-1) LI 

6-8 1 9.00E-06 5.19E-02 1.73E-04 
9-30 2 5.00E-06 6.74E-02 7.42E-05 
31-80 3 9.40E-05 1.11E-01 8.47E-04 

 

 

Figure 4.34: The use of Monte Carlo model to evaluate the protection provided by the ELPS. The 

location of attracted lightning on a map in three cases: a) the storage is tank unprotected; b) the 

storage tank is protected by lightning mast network; c) the storage tank is protected by overhead 

shield wires (Necci et al., 2014c) 

Figure 4.34 shows a footprint of a simple lay-out in which the Monte Carlo method, described in 

section 4.4.3, has been applied. The figure is intended to provide a visual representation about the 

significant reduction on the number of lightning attracted by the tank, in the case of tank was 

protected. The point of formation of the descending step leader of those lightning strikes 

attracted by the storage tank are evidenced in dark gray, while the tank is light gray. The two 

different solutions are applied to protect the storage tank. Figure 4.34-a shows the attracted 

lightning for a huge tank of 79 m diameter in case the tank is unprotected; Figure 4.34-b the 

attracted lightning by the tank in the case it is protected by twelve masts (see Table 4.24); Figure 

4.34-c shows the attracted lightning by the tank in the it is protected by three overhead shield 

wires (see Table 4.25). A number of 106 simulations were performed for each panel.  
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4.11 Conclusions 
 

A methodology for the assessment of final outcomes following a lightning strike on storage tank 

containing hazardous liquids and gases was developed. In particular, accidents triggered by 

lightning strikes that took place in industrial installation have been analysed. The results 

discovered that most of accidents triggered by lightning strikes regarded storage sites containing 

flammable materials and in particular atmospheric storage tanks of petroleum industry. The 

reference scenarios and the mitigation barriers that may influence event sequences after lightning 

impact were identified. A methodology for the assessment of the so called Natech accidents due 

to lightning was presented. In order to apply the methodology several tools were developed. A 

dedicated methodology allowed the calculation of the expected frequency of lightning strikes on 

storage tanks, considering the lightning statistics collected at regional level, as well as design 

features of the industrial equipment units and the lay-out of the industrial site. A fragility model 

for direct damage to storage tank was developed, allowing to calculate a damage probability for 

vessel struck by lightning. The fragility model, based on a detailed analysis of possible thermal 

damage at the attachment point allowed the definition of a simplified correlation, suitable for the 

application to QRA studies. Reference event trees were obtained and validated using past accident 

data. The assessment of standard safety barriers applied in industrial practice allowed the 

quantification of event trees based on generic reference values for barrier probability of failure on 

demand. The application of the entire methodology to a case study confirmed on one hand that 

NaTech scenarios caused by lightning may have an important influence on the risk profile of a 

facility, and, on the other hand, evidenced the role of the safety barriers in preventing accident 

propagation.  

Finally the possibility of risk reduction due to the application of lightning protection systems (LPS) 

was discussed. The risk reduction that can be achieved by the installation of lightning masts and 

shield wires was assessed in quantitative terms by the use of a dedicated lay-out index LI. 
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Chapter 5:  

Development of fragility models for risk assessment of Natech 

due to floods 

 

5.1 Introduction 

 

As showed in Section 3.3.4, in order to allow the QRA of NaTech events, a key point is the 

definition of equipment vulnerability models, that should allow the estimation of equipment 

damage probability on the basis of severity or intensity parameters of the flood event. A typical 

QRA study  usually requires the assessment of a huge number of accidental scenarios. For this 

reason, risk analysts demand for simplified models and correlations able to yield a conservative 

estimation of equipment failure conditions, allowing the assessment of Natech scenario 

frequencies. Fragility curves and equipment vulnerability models have been specifically built for 

several industrial equipment items in the case of earthquake (Salzano et al., 2003; Fabbrocino et 

al., 2005; Iervolino et al., 2004), while simplified damage models for flood scenarios were available 

only for generic structures until a few years ago. 

In a recent study, equipment vulnerability models were obtained for atmospheric vertical 

cylindrical storage tanks in the case of flood scenarios (Landucci et al., 2012). Specific fragility 

models for equipment vulnerability in the case of flood are thus not available for horizontal 

cylindrical storage tanks. Past accident data analysis (Cozzani et al., 2010) evidenced that these 

equipment items were often damaged in NaTech events triggered by floods. However, horizontal 

vessels are usually positioned on saddles or, more in general, are welded to supports anchored to 

the ground. For this reason flooding damage occurs by different mechanisms with respect to 

vertical cylindrical tanks, thus different damage models are required for this equipment typology. 

Actually, horizontal cylindrical vessels are mostly damaged due to displacement caused by water 

drag and/or to floating (Cozzani et al., 2010; Campedel, 2008), instead of instability, which on the 

contrary is the main damage mechanism for vertical atmospheric vessels (Landucci et al., 2012).  

For these reasons, one of the activities carried out within the present PhD project was the 

development of dedicated fragility models for horizontal storage tanks. In this chapter, the 

development of a model for the vulnerability assessment of horizontal cylindrical process and 

storage vessels involved in flood events is shown. In order to evaluate the resistance of the 

equipment items considered, a mechanical model was developed. The model, validated with 

respect to the available data obtained from past accident records, was applied to derive simplified 

vulnerability functions to calculate vessel failure probability in flood events. In order to explore the 

model features and potentialities. Finally, some case studies based on actual industrial lay-outs 

were analyzed. 
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5.2 Modelling the equipment damage due to flood events 
 

The approach proposed to assess the vulnerability of equipment items involved in flood events is 

schematized in Fig. 5.1. The procedure follows the key steps of an analogous methodology 

developed for cylindrical vertical storage tank (Landucci et la., 2012) however considering the 

specific features of horizontal vessels. 

As shown in Fig. 5.1, in the first step of model a simplified vessel and saddle geometry was 

represented. In step 2, on the basis of this schematization, a mechanical model was developed, 

able to assess the effects of floodwater impact on the vessel. In particular, two main damage 

modalities are possible in the case of horizontal vessels: damages caused by the displacement of 

vessels due to water drag and/or to floating, leading to the rupture of the connected pipelines and 

damage caused by a potential impact on the other equipment items or structures. Hence, on the 

basis of available data on past flooding events (New South Wales Government, 2005; Dutch 

Ministry of Infrastructure and Environment, 2005), the flood water impact was schematized 

considering a credible range of values for flood water depth and velocity (step 3). Reference data 

from past accidents caused by events were then used for model validation (step 4). In step 5, a 

vessel database was developed, obtained from actual data retrieved at industrial facilities and 

from current design standards. Either pressurized vessels (defined as vessels operating at 

pressures higher than 103.4 kPa (ASME, 1989) and atmospheric vessels were included in the 

database. A dataset of vessel failure conditions with respect to flood intensity parameters was 

obtained applying the mechanical model to the entire vessel database (step 5). In step 6, the 

simplified damage correlations, which relate the vessel geometry with the flood wave intensity 

parameters and used for the assessment of vessel failure probability, have been obtained by the 

dataset of failure conditions obtained in step 5 (step 7). 

 

 

Figure 5.1: Schematization of the methodological approach adopted for the development of a vulnerability 

model for horizontal vessels involved in flood events.(Landucci et al., 2014) 
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Table 5.1: Vessel database considered in the present study: main features of tanks (see Fig. 5.2).  
Pd = design pressure; ATM = operating at atmospheric pressure. 

ID 
Pd Capacity Dimensions (mm) 

(MPa) (m3) D L t l1 l2 l3 S1 S2 

1 ATM 5 1600 3000 5 800 980 2200 140 1240 

2 ATM 5 1300 3500 5 650 780 2850 140 900 

3 ATM 5 1000 6100 5 500 680 5600 95 780 

4 ATM 10 1600 4500 5 800 980 3700 140 1240 

5 ATM 10 1200 7700 5 600 780 7100 140 900 

6 ATM 15 1800 5500 5 900 1080 4600 140 1420 

7 ATM 20 1500 9700 6 750 880 8950 140 1060 

8 ATM 20 2000 6000 6 1000 1180 5000 140 1600 

9 ATM 20 1900 7200 6 950 1080 6250 140 1420 

10 ATM 25 1700 10500 6 850 980 9650 140 1240 

11 ATM 25 2200 6000 6 1100 1280 4900 150 1780 

12 ATM 25 2300 7000 6 1150 1280 5850 150 1780 

13 ATM 30 2400 6500 6 1200 1380 5300 150 1960 

14 ATM 30 1900 11100 6 950 1080 10150 140 1420 

15 ATM 50 2100 13200 6 1050 1180 12150 140 1600 

16 ATM 50 2800 8000 6 1400 1580 6600 150 2200 

17 ATM 50 2700 10000 6 1350 1480 8650 150 2060 

18 ATM 50 2500 10400 6 1250 1380 9150 150 1960 

19 ATM 100 3200 12000 6 1600 1780 10400 150 2520 

20 ATM 100 3200 13700 6 1600 1780 12100 150 2520 

21 ATM 100 2800 18000 6 1400 1580 16600 150 2200 

22 ATM 115 2750 20100 6 1375 1580 18725 150 2200 

23 ATM 150 3200 19400 6 1600 1780 17800 150 2520 

24 ATM 250 3800 24000 6 1900 1980 22100 150 2800 

25 1.5 5 1600 3000 11 800 980 2200 140 1240 

26 1.5 5 1300 3500 9 650 780 2850 140 900 

27 1.5 5 1000 6100 7 500 680 5600 95 780 

28 1.5 10 1600 4500 11 800 980 3700 140 1240 

29 1.5 10 1200 7700 8 600 780 7100 140 900 

30 1.5 15 1800 5500 12 900 1080 4600 140 1420 

31 1.5 20 1500 9700 10 750 880 8950 140 1060 

32 1.5 20 2000 6000 13 1000 1180 5000 140 1600 

33 1.5 20 1900 7200 12 950 1080 6250 140 1420 

34 1.5 25 1700 10500 11 850 980 9650 140 1240 

35 1.5 25 2200 6000 14 1100 1280 4900 150 1780 

36 1.5 25 2300 7000 15 1150 1280 5850 150 1780 

37 1.5 30 2400 6500 16 1200 1380 5300 150 1960 

38 1.5 30 1900 11100 12 950 1080 10150 140 1420 

39 1.5 50 2100 13200 14 1050 1180 12150 140 1600 

40 1.5 50 2800 8000 18 1400 1580 6600 150 2200 

41 1.5 50 2700 10000 17 1350 1480 8650 150 2060 

42 1.5 50 2500 10400 16 1250 1380 9150 150 1960 

43 1.5 100 3200 12000 21 1600 1780 10400 150 2520 

44 1.5 100 3200 13700 21 1600 1780 12100 150 2520 

45 1.5 100 2800 18000 18 1400 1580 16600 150 2200 

46 1.5 115 2750 20100 18 1375 1580 18725 150 2200 

47 1.5 150 3200 19400 21 1600 1780 17800 150 2520 

48 1.5 250 3800 24000 24 1900 1980 22100 150 2800 

49 2 5 1600 3000 14 800 980 2200 140 1240 

50 2 5 1300 3500 11 650 780 2850 140 900 

51 2 5 1000 6100 9 500 680 5600 95 780 

52 2 10 1600 4500 14 800 980 3700 140 1240 

53 2 10 1200 7700 11 600 780 7100 140 900 

54 2 15 1800 5500 16 900 1080 4600 140 1420 

55 2 20 1500 9700 13 750 880 8950 140 1060 

56 2 20 2000 6000 17 1000 1180 5000 140 1600 

57 2 20 1900 7200 16 950 1080 6250 140 1420 

58 2 25 1700 10500 15 850 980 9650 140 1240 

59 2 25 2200 6000 19 1100 1280 4900 150 1780 

60 2 25 2300 7000 20 1150 1280 5850 150 1780 

61 2 30 2400 6500 21 1200 1380 5300 150 1960 

62 2 30 1900 11100 16 950 1080 10150 140 1420 

63 2 50 2100 13200 18 1050 1180 12150 140 1600 

64 2 50 2800 8000 24 1400 1580 6600 150 2200 

65 2 50 2700 10000 23 1350 1480 8650 150 2060 

66 2 50 2500 10400 22 1250 1380 9150 150 1960 

67 2 100 3200 12000 27 1600 1780 10400 150 2520 

68 2 100 3200 13700 27 1600 1780 12100 150 2520 

69 2 100 2800 18000 24 1400 1580 16600 150 2200 

70 2 115 2750 20100 24 1375 1580 18725 150 2200 

71 2 150 3200 19400 27 1600 1780 17800 150 2520 

72 2 250 3800 24000 32 1900 1980 22100 150 2800 

73 2.5 5 1600 3000 17 800 980 2200 140 1240 

74 2.5 5 1300 3500 14 650 780 2850 140 900 

75 2.5 5 1000 6100 11 500 680 5600 95 780 

76 2.5 10 1600 4500 17 800 980 3700 140 1240 

77 2.5 10 1200 7700 13 600 780 7100 140 900 

78 2.5 15 1800 5500 19 900 1080 4600 140 1420 

79 2.5 20 1500 9700 16 750 880 8950 140 1060 

80 2.5 20 2000 6000 22 1000 1180 5000 140 1600 

81 2.5 20 1900 7200 20 950 1080 6250 140 1420 

82 2.5 25 1700 10500 18 850 980 9650 140 1240 

83 2.5 25 2200 6000 24 1100 1280 4900 150 1780 

84 2.5 25 2300 7000 25 1150 1280 5850 150 1780 

85 2.5 30 2400 6500 26 1200 1380 5300 150 1960 

86 2.5 30 1900 11100 20 950 1080 10150 140 1420 

87 2.5 50 2100 13200 23 1050 1180 12150 140 1600 

88 2.5 50 2800 8000 30 1400 1580 6600 150 2200 

89 2.5 50 2700 10000 29 1350 1480 8650 150 2060 

90 2.5 50 2500 10400 27 1250 1380 9150 150 1960 

91 2.5 100 3200 12000 34 1600 1780 10400 150 2520 

92 2.5 100 3200 13700 34 1600 1780 12100 150 2520 

93 2.5 100 2800 18000 30 1400 1580 16600 150 2200 

94 2.5 115 2750 20100 29 1375 1580 18725 150 2200 

95 2.5 150 3200 19400 34 1600 1780 17800 150 2520 

96 2.5 250 3800 24000 40 1900 1980 22100 150 2800 
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5.2.1 Representation of vessel geometry (step 1) 

In the present study, storage tanks have been schematized using a simplified geometry consisting 

of a horizontal cylindrical body with spherical edges. The vessels were assumed as disposed on 

saddle-type supports, fixed to the ground by bolt connections. The references for the design and 

features of the tanks considered in the present study are the API Standard 620 (API, 2002) and the 

ASME Pressure Vessel Code (Sec. VIII of the ASME Boiler and Pressure Vessel Code (ASME, 1989)). 

Fig. 5.2a reports a schematic representation of the vessel geometry, while the relevant mechanical 

features considered are summarized in Table 1. As shown in Fig. 5.2a, one of the vessel saddles is 

assumed to be fixed to the ground with a bolt connection, while the other assumed to be only laid 

on the ground. This configuration is frequently adopted in the process industry in order to limit 

the stress due to steelwork thermal expansion (Sinnott, 1999). Fig. 5.2c shows in detail the 

schematization of the saddle base plate bolt connection to the ground assumed in the present 

analysis. 

 

 
Figure 5.2: Schematization adopted to describe the impact of floodwater on horizontal vessels: a) 

definition of geometrical parameters and sketch of the vessel; b) force balance on the vessel and 

schematization of the wave impact; c) schematization of the base plate bolt connection to the 

ground. 
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5.2.2 Mechanical model set-up (step 2)  

Flooding may cause damages to equipment or structures due to the pressure associated to both 

water speed (vw) and water effective depth (hw). In the case of atmospheric vertical cylindrical 

failures comes mainly as a consequence of buckling due to water external pressure due to flood 

events (Cozzani et al., 2010; Landucci et al., 2012; Campedel, 2005). 

Horizontal cylindrical vessels are likely to experience different failure mechanisms in flood events: 

due to their smaller size and higher resistance they are more likely to be displaced than to 

experience bulking. The analysis of past accidents involving flooding in industrial facilities (Cozzani 

et al., 2010; Campedel, 2005) evidenced that failure caused by buckling was never experienced for 

horizontal vessels. Actually, horizontal cylindrical vessels, either atmospheric or pressurized, have 

a higher resistance to buckling if compared to vertical cylindrical storage tanks. Moreover, the 

analysis of past accidents evidenced that this category of vessels is more prone to undergo failures 

due to displacement in flood events. In particular, the rupture of the saddle framework and of its 

connection to the ground was experienced in several cases. The consequences of a displaced 

floating vessel are the rupture of the vessel pipe connections and, in some cases, in the impact of 

the displaced vessel with adjacent vessels or structures (U.S. Army Corps of Engineers, 1993; 

Gruntfest  et al., 1994). 

Therefore, the mechanical model was developed focusing on the integrity of the saddle-type 

support, that is the element required to fail in the case of vessel displacement caused by flood 

water. In particular, the resistance of the saddle connection to the ground under load conditions 

caused by floodwater was investigated. Table 5.2 summarizes the procedure applied for the 

evaluation of the framework connection resistance to the flood water load. 
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Table 5.2a: Summary of input parameters implemented in the present. study DB: derived from the 
database provided in Table 1, CALC: parameter calculated on the basis of input data. (Landucci et 
al., 2014) 
Operation ID Item Description / Definition Value Units 

1) Selection of 
input 

parameters: 

characterization 
of the 

equipment and 

storage system 

1.1x Pd Design pressure of the vessel 0.01a-2.5 MPa 

1.2x D Storage vessel external diameter DB m 

1.3x L Storage vessel length (end to end) DB m 
1.4x t Minimum thickness of the vessel wall DB m 
x l Distance of the saddle from the vessel edge (Fig. 5.2a) DB m 

x l
Distance between the anchored saddle and the opposite vessel end 
(See Fig. 5.2a) 

DB m 

x f
Operative filling level defined as the fraction of liquid volume 

respect to the total vessel inner volume 
fmin - fmax - 

x fmin Minimum operative filling level 0.01 - 

x fmax Maximum operative filling level 0.9 - 

x Tst Storage temperature (ambient temperature) 300 K 

x Pst
Storage pressure. Pst  = 0.01 barg for atmospheric tanks, Pst = vapour 

pressure of stored liquid evaluated at Tst for pressurized vessels. 
CALC Pa 

x l Density of stored liquid phase 500 - 1500 kg/m3 

x v 

Density of vapor phase in the top space of the vessel 

  )ZRT/(MP stwstv   where Z is the compressibility factor  and Mw 

the vapor molecular weight (Liley et al., 1999) 

CALCa kg/m3 

x s Density of steel (vessel construction material) 7800 kg/m3 

x ref 
Density of the reference substance used for the definition of CFL 

correlations (see steps 5.3x and 5.4x) 
1000 kg/m3 

x Vext 

Vessel external volume (assuming spherical edges):  

 
64

32 D
DL

D
Vext 

 CALC m3 

x Vint 

Vessel internal volume (assuming spherical edges): 

 
 

 
6

2

4

2
32

int

tD
DL

tD
V







 CALC m3 

x Wt 
Vessel tare weight. If no data are available for the vessel under 

analysis this simplified evaluation can be used Wt = s (Vext-Vint) 

Given or 
CALC 

kg 

2) Selection of 
input 

parameters: 

characterization 
of the 

equipment 

framework 

2.1x l
Saddle height parameter (Fig. 5.2a) which indicates the vessel axis 
height respect to the ground anchorage point 

DB m 

2.2x S Saddle width on the vessel axis (Fig. 5.2c) DB m 
2.3x S Transversal saddle width (Fig. 5.2c) DB m 
2.4x hc Base parameter (Fig. 5.2a) b m 
x Ares Resistance area of the bolt  157 c mm2 

x nb Number of bolts in the base plate connection 4-10 - 

x fd,N Normal design stress 560 c MPa 

x fd,S Tangential design stress 396 c MPa 
x b,adm Normal admissible stress 373 c MPa 
x b,adm Tangential admissible stress 264 c MPa 

3) Selection of 
input 

parameters: 

characterization 
of the flooding 

scenario 

x hw0 Actual depth of flood water over the ground level 0 – 4d m 

x hw Effective flooding depth given by hw = hw0 - hc CALC m 

x hmin 
2/Dlh 2min    

minimum flooding height able to wet the vessel surface 
CALC m 

3.4x hwet Wetting height, representing the height of the vessel wetted by flood  CALC m 

3.5x vw Velocity of flood water 0 – 3.5d m/s 

3.6x w Density of flood water 1100 kg/m3 

3.7x kw Flood hydrodynamic coefficient 1.8 - 

3.8x tr Return period 10 – 500 y 

3.9x f Expected frequency of the flooding scenario 10-3 – 10-2 y-1 

3.10x  Geometrical parameter defined as follows:  = min [hmin; D] CALC m 

3.11x 

Vessel submerged fraction: 





























 
 1;2

2

22
arcsin

48
min 2

2
2 


 D

D

D

DD
D

V

L

ext

 CALC - 

a) Saturation pressure data were derived from  Liley et al., (1999). 

b) Assumed for the case study in Section 3.4 

c) Value selected for the present study. Other possible values may be inserted by the user according to Tables 3 and 4. 
d) Range assumed for the preparation of failure charts reported in Appendix (Figures A1-A4). 
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Table 5.2b: Summary of input parameters implemented in the present. DB: derived from the 
database provided in Table 5.1, CALC: parameter calculated on the basis of input data. (Landucci et 
al., 2014) 
Operation ID Item Description / Definition Value Units 

4) Evaluation 

of vessel 

resistance with 
the mechanical 

model 

4.1x Fn 
Buoyancy due to the flooding (Fig. 2b): 

 vintlinttwextthn V)1(VWggVFFF ff   CALC N 

x Fn,b Portion of the normal force on each bolt: bnb,n n/FF 
 CALC N 

4.3x Mb Bending moment due to lift action (Fig. 2b): 3n2
1

b lFM 
 CALC Nm 

4.4x Xi Distance from the “neutral axis” on which Mb is applied - m 

4.5x Fx,i 

Resultant normal force on each bolt due to the bending moment: 





bn

1i

2

ibii,x xMxF
 CALC N 

4.6x Ntot,i Overall normal force acting on each single bolt: i,xb,ni,tot FFN 
 CALC N 

4.7x Aext 

External surface of the vessel wetted by the flooding (Fig. 2b): 




















 
 2

2
2

1 2
2

22
arcsin

48
)2( 


 D

D

D

DD
DlLAext

 
CALC m2 

4.8x Fv Drag force due to flooding (Fig. 2b): 
ext

2

ww2
1

v AvkF w  CALC N 

x Fv,b Portion of the drag force on each bolt: 
bvb,v n/FF   CALC N 

4.10x Mt Torque due to drag force (Fig. 2b): 3v2
1

t lFM 
 CALC Nm 

4.11x yi Distance from the “neutral axis” on which Mb is applied - m 

4.12x Fy,i 

Resultant shear force on each bolt due to the torque action: 





bn

1i

2

itii,y yMyF
 CALC N 

4.13x Stot,i Overall shear force acting on each single bolt: 
i,yb,vi,tot FFS   CALC N 

4.14x i Overall normal stress acting on the i-th bolt: 
resi,toti A/N  CALC MPa 

4.15x i Overall shear stress acting on the i-th bolt: 
resi,toti A/S  CALC MPa 

4.16x FC1 
Failure criterion FC1 for the i-th bolt: 
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4.17x FC2 
Failure criterion FC2 for the i-th bolt: 
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- - 

4.18x CFL 

Critical filling level for a given storage system and assigned storage 
conditions. Repeat steps 4.1 to 4.18 in order to find the minimum 

fwhich allows satisfying one of the two failure criteria (FC1 or 

FC2) 

CALC - 

4.19x vw,c 

Critical velocity related to a specific vessel. Given an assigned 

flooding height hw, repeat steps 4.8 to 4.18 in order to find the 

minimum vw value which allows satisfying one of the two failure 
criteria (FC1 or FC2) 

CALC m/s 

5) Evaluation 

of vessel 
resistance with 

correlations 

5.1x A 
First CFL correlation coefficient evaluated for reference substance: 

aDKA  1  where K1, a are shown in Table 6 
CALC - 

5.2x B 
Second CFL correlation coefficient evaluated for reference 

substance:  b3t2 KWKB   where K2, K3, b are shown in Table 6: CALC - 

5.3x A’ 
Modified A coefficient considering a generic stored substance: 

   vlref A'A    CALC - 

5.4x B’ 
Modified B coefficient considering a generic stored substance: 

   vlvref B'B    CALC - 

5.5x E vw,c correlation factor:  
cLKE  4  where K4, c are shown in Table 6 CALC - 

5.6x F 
vw,c correlation exponent:  

  65 /ln KDLKF   where K5, K6 are shown in Table 6 CALC - 

5.7x CFL Critical filling level evaluated with correlations: '' BhACFL w   CALC - 

5.8x vw,c Critical velocity evaluated with correlations: F

wcw hhEv )( min,   CALC m/s 

6) Evaluation 
of parameters 

implemented in 

QRA studies 

6.1ax 
Vessel failure probability evaluation based on critical velocity (see 

Fig. 7):  = 1 if vw ≥ vw,c 
CALC - 

6.1bx 
If vw < vw,c, vessel failure probability evaluation based on CFL (step 

4.19 or 5.7, see Fig. 7):    minmaxminCFL fff   CALC - 

6.2x fLOC Expected frequency of loss of containment (LOC) ffLOC   CALC y-1 



The schematic representation of the floodwater impact on a horizontal cylindrical vessel is 

reported in Fig. 5.2b. As shown in the figure, the vessel is subject to the hydrostatic lift force (Fh 

in Fig. 5.2b), which causes a vertical lift action, and, at the same time, to a horizontal drag force 

caused by the flood wave (Fv in Fig. 5.2b). Buoyancy (Fn in Fig. 5.2b) is the net force obtained 

considering the opposite actions of hydrostatic lift and of overall weight force (Ft in Fig. 5.2b), 

resulting from vessel weight and from the weight of the fluid inside the vessel: 

thn FFF        (5.1) 

Buoyancy may thus be expressed as a function of vessel geometry, weight and filling level: 

 vltwext VVWggV ff intintn )1(F     (5.2) 

where g is the gravity constant (9.81 m/s2), Wt is the “tare weight” of the tank (i.e. the mass of 

the empty tank in kg), ρl is the liquid average density, ρv is the average density of the vapor in 

the top space of the vessel, ρw is the density of floodwater, Vint and Vext are the inner and outer 

vessel volume respectively, and φ is the vessel volumetric filling level defined as the fraction of 

liquid volume respect to the total vessel inner volume Vint. If the value of vessel weight, Wt, is 

not available, this parameter may be estimated as follows, assuming the value of steel density 

ρs: 

 intextst VVW        (5.3) 

The parameter ω in Eq. 5.2 is the fraction of the vessel volume wetted by flooding. Geometrical 

relationships summarized in Table 2, which take into account the effective depth hw of flood 

water, and the height of the saddles, l2, may be used for the evaluation of ω. Further details on 

the calculation of ω are provided in Section 5.2.3. 

The drag force due to the floodwater wave kinetic energy (Fv) may be calculated as follows 

(Tilton, 1999; Gudmestad and Moe, 1996): 

ext

2

ww2
1

v AvkF w      (5.4) 

where kw is the hydrodynamic coefficient (Tilton, 1999; Gudmestad and Moe, 1996) and Aext is 

the projected area of the vessel external surface impacted by flooding in a plane normal to 

water flow. In order to obtain a conservative evaluation for the drag force, the water flow is 

assumed to impact on the side of the vessel featured by a higher external surface (see Fig. 

5.2b). Table 5.2 summarizes the procedure for the evaluation of Aext in Eq. 5.2, based on the 

vessel geometrical features and on water depth at vessel location, hw. 

Both the buoyancy, Fn, and the drag force, Fv acting on the vessel generate a stress on the 

vessel support (e.g., the saddle connected to the ground). Assuming that the vessel connection 

to the saddle is a dap-joint (i.e. a connection of infinite rigidity) the forces acting on the vessel 

directly affect the bolt connection between the saddle base plate and the ground, as shown in 

Fig. 5.2c. As usual in engineering practice, it is assumed that a total number nb of bolts having 

the same features characterize the connection. The buoyancy Fn causes a normal stress on each 

of the nb bolts of the connection (Sinnott, 1999; CEN, 1993): 

bnb,n n/FF        (5.5) 

where Fn,b is the portion of normal force allocated to each bolt. 

Beside the direct action of buoyancy on the connection, the contribution of the bending 

moment Mb must be taken into account. In fact, only one of the two vessel saddles is anchored 



150 

 

to the ground (see Figs. 5.2a and 5.2b), thus the buoyancy generates a bending moment on the 

support. The bending moment Mb may be expressed as follows: 

3n2
1

b lFM        (5.6) 

where l3 is the distance between the anchored saddle and the vessel edge (see Fig. 5.2a). In the 

absence of more specific data, the position of the saddle can be conservatively assumed in 

correspondence of the end of the cylindrical part of the vessel, as shown in Fig. 5.2a (thus, l3 = 

L-l1). The action of the bending moment is distributed over the nb bolts of the plate according to 

their distance from the “neutral axis” of the plate (xi) as follows: 

in
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i,x x
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




     (5.7) 

where xi is the distance of the i-th bolt from the “neutral axis” of the plate (see Fig. 5.2c). 

Finally, the overall action of buoyancy on the i-th bolt (Ntot,i) may be evaluated summing the 

contribution of the normal net force (Eq. 5.5) and of the bending moment (Eq. 5.7): 

i,xb,ni,tot FFN       (5.8) 

It is worth to mention that buoyancy may also induce a bending moment opposite to Mb, thus 

acting on the bolts of the connection as a negative force (see the coordinate system in Fig. 

5.2b) which results in an attenuation of the effective Fx,i value. This effect was neglected in the 

model, thus obtaining conservative results. 

A similar procedure allows evaluating the action on each bolt of the drag force, Fv, which affects 

the nb bolts of the connection as follows (Sinnott, 1999; CEN, 1993): 

bvb,v n/FF        (5.9) 

where Fv,b is the portion of shear force allocated to each bolt. Also in this case, the bolts 

undergo a supplementary force due to the torque caused by the vessel rotation induced by the 

drag force (see Fig. 5.2b). The torque (Mt) is schematized in Fig. 5.2c and may be evaluated as 

follows: 

3v2
1

t lFM        (5.10) 

It is worth to notice that Eq. 5.9 may lead to conservative results, since the friction associated 

to the slipping of the unanchored saddle may reduce the action of the net drag force on the 

bolts of the anchored saddle. The torque action of Mt is distributed over the i-th bolt according 

to its distance from the center of the plate (yi) as follows: 

in
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i,y y
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F
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


     (5.11) 

where yi is the distance of the i-th bolt from the base plate center (see Figure 5.2c). 

Finally, the total shear force on the i-th bolt (Stot,i) is evaluated summing the contribution of the 

shear force (Eq. 5.9) and of the torque (Eq. 5.11): 

i,yb,vi,tot FFS       (5.12) 

The procedure reported in a reference technical standard for bolt connection integrity 

verification (Sinnott, 1999; CEN, 1993; RCSC, 2009) was adopted in the present study in order to 



151 

 

assess the failure conditions of the vessel anchorage caused by flooding. The procedure is 

based on the calculation of the total normal and shear forces acting on each bolt (Ntot,i and Stot,i, 

calculated by Eqs. 5.8 and 5.12) as a function of assumed flood intensity parameters (water 

velocity, vw, and water effective depth, hw) and of vessel geometry. The failure of the 

connection is assumed if at least one of the following criteria is verified for at least one of the nb 

bolts of the base plate (see Fig. 5.2c): 
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where: σb,adm and σb,adm are respectively the normal and tangential admissible stress; fd,N and fd,S 

are respectively the normal and tangential design stress; σi is the average normal stress and τi is 

the average shear stress on the i-th bolt derived as follows from the loading conditions: 

resi,toti A/N      (5.14) 

resi,toti A/S       (5.15) 

in which Ares is the resistant area of each bolt. Conditions expressed by Eq. (5.13a) are derived 

from the application of the “maximum allowable stress” criterion (CEN, 1993; RCSC, 2009), 

while Eq. (5.13b) represents the “limit state” criterion (CEN, 1993; RCSC, 2009). 

 

Table 5.3: Standard bolt connection materials classes (ASTM, 2004; ISO, 1984a; ISO, 1984b) 
evidencing the materials of interest (marked with “X”) (Sinnott et al., 1999).( see Table 5.2). 

ID 
Class 
type 

Industrial 
application 

fd,N 
(Mpa) 

fd,S 
(Mpa) 

σb,adm 
(Mpa) 

σb,adm 
(Mpa) 

A 4.6  240 170 160 113 

B* 5.6 X 300 212 200 141 

C 6.6 X 360 255 240 170 

D 8.8 X 560 396 373 264 

E 10.9 X 700 493 467 330 

* Selected for the development of mechanical model and correlations (see Table 2). 
 
Table 5.4: Standard bolt dimensions range (ASTM, 2004; ISO, 1984a; ISO, 1984b) evidencing the 
dimensions of interest (marked with “X”) (Sinnott et al., 1999). See Table 5.2. 

ID 
Industrial 

application 
Bolt Diameter (mm) Ares (mm2) 

Typical diameter range (m) of 
supported tanks [33] 

A  12 84  

B  14 115  

C X 16 157  

D X 18 192  

E* X 20 245 <1.2 

F X 22 303  

G* X 24 353 1.2 – 2.4 

H* X 27 459 >2.4 

I  30 561  

* Selected for the development of mechanical model and correlations (see Table 5.2). 
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Clearly enough, the above conditions may be applied to any bolt connection provided that 

specific data are available. In the present study, a set of reference data were assumed to obtain 

representative failure conditions for the vessel geometries considered in the vessel database 

summarized in Table 5.1. The features assumed for the bolt connections considered are 

summarized in Tables 5.3 and 5.4, and were derived from technical standards (ASTM, 2004; ISO, 

1984a; ISO, 1984b; Kulak et al., 2001).  

 

5.2.3 Characterization of flood impact vector (step 3) 

The elements needed for the characterization of the flood impact vector are the flooding 

frequency and the expected flood severity. The standard parameter for flood frequency 

evaluation is the return period (tr) measured in years and given by hydrological studies 

(Ramachandra Rao and Hamed, 2000; Charlton, 2008; Bryant, 2005), usually available from 

local competent authorities (New South Wales Government, 2005; Rijkswaterstaat,2005; 

Holmes, 2001; Dept. of Regional Development and Environment, 1991). The flooding frequency 

f can thus be estimated as follows: 

rt/1f        (5.16) 

Since there are different types of flood events (e.g. floodplain inundations with high water 

level, flash floods with high water velocity, etc.), the possible modalities of flood impact (slow 

submersion, moderate speed wave, high speed wave) must be discriminated. As shown in 

Section 5.2.2, the flood severity can be quantified by two parameters: water effective depth 

(hw) and water speed (vw). The effective depth should take into account the possible effect of 

protection measures, such as concrete supports higher than the ground level to which the 

vessel saddles are fixed. Taking into account the schematization in Fig. 5.2a, if the height of the 

supports (hc) is considered, the effective flood water height hw may be calculated as follows: 

cww hhh  0       (5.17) 

where hw0 is the actual depth of flood water. Clearly enough hw is equal to hw0 if no protections 

are available. 

On the basis of available data on past events, reasonable ranges for credible values of water 

height and water speed recorded in flood events were collected and are reported in Table 5.2. 

The higher values were derived analyzing the features of critical flooding events (Pistrika and 

Jonkaman, 2010; Bates et al., 2005; Ebersole et al., 2010), in order to obtain a worst case 

reference. Besides, a minimum value of flood height is also introduced (namely, hmin), that is 

defined as the minimum possible flooding height affecting vessels mounted on saddles. This 

parameter depends on the type of vessel and may be derived as follows (see Figure 5.2a): 

2/Dlh 2min       (5.18) 

Hence, hmin is the minimum flooding height needed to wet the surface of the horizontal vessel. 

Finally, in the evaluation of vessel damage due to flood impact, a further parameter is 

introduced in order to estimate the height of the vessel effectively wetted by flooding, namely 

the flooding wetting height: 

minwwet hhh       (5.19) 
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This latter parameter, representing the effective water depth, is particularly significant for the 

evaluation of vessels failure due flood impact, as explained in the following sections. 

 

5.2.4 Model validation (step 4) 

Past accident data analysis on NaTech scenarios involving flooding of process equipment are 

scarce and not detailed (Young et al., 2004; Cozzani et al., 2010; Landucci et al., 2012; 

Rasmussen, 1995; Krausmann et al., 2011). In the accident description, the flood parameters 

(water height and speed) needed to support model validation are usually not mentioned or 

only provided in qualitative terms (e.g.: “high depth flood”, “low speed flood”, “severe flood”, 

etc.). Nevertheless, a significant accident occurred in a park of propane tanks during the 1993 

Mississippi River basin floods close to Des Peres River, Illinois. Fifty tanks, with nominal capacity 

of 30000 gallons (e.g., about 120 m3), supported by saddles, began to float under the action of 

the flood water (U.S. Army Corps of Engineers, 1993; Gruntfest and Pollack, 1994). The water 

speed is not reported, but a water height hw of 2.4m could be estimated (U.S. Army Corps of 

Engineers, 1993). Only small and localized flash fires occurred, with no catastrophic ruptures of 

vessels. A number of 12000 residents was forced to leave their homes for twelve days (U.S. 

Army Corps of Engineers, 1993; Gruntfest and Pollack, 1994). 

The available accident data were taken into account for a preliminary model validation. Input 

data used in the calculations are summarized in Table 5.2. The typical vessel geometry adopted 

for 30000 gallon tanks is included in the database reported in Table 5.1. However, since the 

design pressure of the flooded tanks is unknown, three tank geometries corresponding  

o tanks having the same diameter and length, but increasing thickness were considered: #46 

with design pressure 1.5MPa; #70 with design pressure 2.0MPa; #94 with design pressure 

2.5MPa (see Table 5.1 for further details). The procedure described in Section 5.2.2 and 

summarized in Table 5.2 was applied to assess possible vessel failure. The tanks were 

considered conservatively as containing propane up to their maximum filling level (thus 

assuming the minimum buoyancy according to Eq. 5.2) and assuming a water depth of 

2.4m±0.25m (considering possible uncertainties in the actual reported floodwater height). The 

model evidenced that connection failure conditions for the three tank geometries assumed 

were verified independently of water velocity vw. Thus, model results are in agreement with 

past accident evidence, pointing out the criticalities connected with high-depth flooding of 

storage vessels. 

In order to extend model validation, generic threshold data on damage caused to equipment 

items by floods derived in previous studies (Landucci et al., 2012; New South Wales 

Government, 2005; Rijkswaterstaat, 2005) were considered. From available data, a flood wave 

with a velocity of 2m/s and a maximum height of 0.5m were considered as thresholds below 

which damages are not expected for generic structures. Fig. 5.3 shows the fraction of vessels 

contained in the database which fail under these reference flooding conditions. In order to 

consider reference conditions suitable for both atmospheric and pressurized equipment, water 

was assumed as the reference substance inside vessels and air was assumed in the top space of 

the vessels. 
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Figure 5.3: Results of the extended validation of the mechanical model: fraction of the tanks 

failed as a consequence of the reference flood (hw=0.5m; vw=2 m/s) as a function of vessel filling 

level. Stored fluid density considered for validation is that of water (ρl=1000 kg/m3), and air is 

considered in the top space of the vessel (ρv =1.2 kg/m3). The evaluation was carried out for all 

the vessels reported in the database (96 vessels, see Table 5.1). 

 

As shown in the figure, most of the vessels do not fail even when empty (failure fraction for 

empty vessels is around 30%). When different filling levels are considered, the fraction of 

vessels which fails due to the flood impact decreases to 25%. Large tanks (i.e. having volumes 

higher than 100m3) are not able to withstand the high water speed conditions even considering 

a 100% filling level, due to the high value of l3 (12-15m), which dramatically increases the 

torque action on the support. However, it is worth mentioning that the model only considers 

the worst possible orientation of the vessel respect to the flood wave (e.g., the one which 

maximizes the Aext in Eq. 5.4), thus obtaining the maximum value of drag force. Hence the 

results should be considered conservative, thus evidencing a sufficient agreement with the 

available literature data. 

 

5.2.5 Dataset of failure conditions (step 5) 

The vessel database reported in Table 5.1 was used to obtain a dataset of failure conditions 

considering the set of reference flooding conditions identified in step 3 (Section 5.2.3). A value 

of 1% of the reference lower bound, φmin, was assumed as the minimum credible operational 

limit for the filling level. A range of filling levels between 1 and 90% was thus considered, as 

shown in Table 5.2. Table 5.5 reports the reference values assumed for the liquid and top space 

vapor density. Liquid density values are based on available data concerning substances released 

in past accidents (Cozzani et al., 2010). The density of the vapor was calculated assuming 

nitrogen blanketing in the top space of atmospheric vessels and the vapor at saturation 

pressure for liquefied pressurized storages. In both cases, equation (1.13x) in Table 5.2 was 

used for the estimation of vapor density. 

Figs. A1 to A4 in the Appendix show the failure conditions obtained considering all the vessels 

in the database (see Table 5.1), different stored fluids and different operating conditions. Figs. 

A1 and A2 report the data obtained for atmospheric vessels, while Figs. A3 and A4 report the 
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data obtained for the pressurized vessels considered in the database. Fig. 5.4 reports some 

examples of failure plots derived from the failure tables reported in the Appendix. The failure 

plots synthetically represent the results obtained from the application of the model, and will be 

discussed in detail in Section 5.3. 

 

Table 5.5: Reference substances, associated to the correspondent type of vessel, and flood 
conditions considered in the present analysis. PRES = pressurized vessel; ATM = atmospheric 
vessel 
 

Parameter 
ID 

Reference parameters 

Description 

Liquid 
density 

l 
(kg/m

3
) 

Vapor 
density 

v 
(kg/m

3
)

a
 

Typical 
type of 
storage 
vessel 

Flood 
water 
speed 

vw 
(m/s) 

Flood 
water 
actual 
height 

hw0 
(m) 

Expected 
occurrence 
frequency 

f 
(y

-1
) 

Reference 
substances 

S1 LPG 500 20.7 PRES - - - 

S2 Ammonia 600 7.8 PRES - - - 

S3 
Gasoline or diesel 
fuel 

750 1.2 ATM - - - 

S4 
Liquid aromatics 
or hydrocarbons 

900 1.2 ATM - - - 

S5 
Water solutions 
with 
contaminant(s) 

1100 1.2 ATM - - - 

S6 Chlorine 1400 24.4 PRES - - - 

Reference 
flooding 
conditions 

W1 
High depth 
flooding 
condition 

1100 - - 0.5 2 2.0×10
-3

 

W2 
High speed 
flooding 
conditions 

1100 - - 2 0.5 2.0×10
-3

 

W3 
Intermediate 
severity flooding 
conditions 

1100 - - 1 1 5.0×10
-3

 

W4 
Low severity 
flooding 
conditions 

1100 - - 0.5 0.5 3.3×10
-2

 

a
 See Table 5.2 for details on v evaluation 

 

5.2.6 Simplified correlations for vessel damage (step 6) 

The analysis of the dataset of failure conditions obtained in step 5 allowed the identification of 

the critical parameters leading to vessel failure. The plots reported in Fig. 5.4 highlight that the 

stored fluid has a strong impact on the failure region of the vessels. An increase in the filling 

level and/or a higher density of the stored fluid result in an increased resistance of the vessel to 

the action of buoyancy. Therefore, once the storage system is defined (i.e. defining the 

geometry of the vessel and the substance stored) the filling level φ is the only operating 

parameter which affects the vessel resistance to buoyancy caused by a given set of flooding 

conditions. The critical filling level (CFL) of a vessel may thus be defined as the minimum value 

of φ able to ensure the tank resistance to buoyancy caused by a flood wave having a given 



156 

 

intensity (Landuci et al., 2012). This parameter can be evaluated using the failure plots reported 

in Figure 5.4, based on the failure model described in Section 5.2.2. 

Nevertheless, simplified correlations are also provided in the following to allow a simplified 

straightforward evaluation of vessel failure probability. The correlations are based on the 

analysis of the CFL behavior respect to the water effective height (hw) assuming a reference 

value, ρref, for the density of the stored substance. The effect of water speed is not taken into 

account to assess the CFL, since the CFL significantly affects only the resistance to buoyancy and 

has a limited influence on the resistance to the action of flood water drag force. 

As shown by the examples reported in Fig. 5.5a, a linear empirical correlation may be used to 

relate the CFL to water height, given the vessel geometry and the stored fluid density: 

BhACFL w       (5.20) 

where the parameters A and B are only a function of the vessel geometry (hence, operating 

pressure and volume). 

The data in Fig. 5.5a were obtained for the sample vessels considered for Fig. 5.4 assuming a 

reference fluid density (ρref) of the stored fluid equal to 1000 kg/m3. Similar data were obtained 

for all the vessels in the database (see Table 5.1), and are not reported for the sake of brevity. 

The extended application of the mechanical model allowed the calculation of the values of the 

A and B parameters as a function of the geometrical features of the vessel. Figs. 5.5b and 5.5c 

show an example of the behavior of the A and B with respect to vessel diameter (D) and vessel 

tare weight (Wt).  

The data reported in the figures were obtained for vessels having a specific design pressure (1.5 

MPa). However, qualitatively similar results were obtained for the other types of vessels. It is 

worth mentioning that the CFL has a maximum value related to the operating capacity of the 

vessels (i.e. the maximum CFL value is equal to φmax). Thus, the following empirical correlations 

were obtained for the A and B parameters with respect to vessel features: 
aDKA  1       (5.21) 

 b3t2 KWKB       (5.22) 

The values calculated for the K1, K2, K3, a, and b parameters are reported in Table 5.6 for each 

category of vessel considered. Two sets of parameters were calculated: 

 SET A: best fit parameters (dashed lines in Fig. 5.5); 

 SET B: envelope parameters allowing a conservative estimation of CFL (solid lines in Fig. 
5.5). 

 

Clearly enough, the above set of parameters depends on the value assumed for the reference 

density of the stored fluid, ρref. In order to take into account the actual density of the stored 

fluid, the following changes may be introduced in Eq. 5.20: 

'' BhACFL w       (5.23) 

The values of the A’ and B’ coefficients in Eq. 5.23 may be calculated from the A and B 

parameters obtained using the reference fluid density ρref: 

vl

ref A
'A








       (5.24) 
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vl

vref B
'B








      (5.25) 

where ρl is the actual density of the stored fluid and v is the density of the vapor phase inside 

the vessel. The approach discussed above allows the calculation of a critical filling level below 

which the vessel may fail due to buoyancy. In order to account also for the action of the drag 

force, the simplified model needs to be extended. Flood waves with high water velocity, vw, 

may lead to vessel failure due to drag force even in the case of limited water depth (see Section 

5.2.4). Hence a critical water velocity, vw,c, was defined as the vw value able to damage a given 

vessel for an assigned value of wetting height (hwet see Eq. 5.19). As a matter of fact, in case of a 

food wave with a small hwet value, thus unable to cause damages by buoyancy, vw,c represents 

the critical flood velocity value which causes the minimum drag force value required to damage 

the vessel. 

Also in this case this parameter may be derived applying the mechanical model. Also in this 

case, simplified correlations based on hwet (see Fig. 5.4) were obtained from failure plot 

analysis: 
F

wetc,w hEv        (5.26) 

Figs. 5.5d and 5.5e show the behavior of E and F calculated for the sample vessels in Fig. 5.4. 

Similar trends were obtained for all the vessels in the database. Thus, also in this case it was 

possible to obtain empirical correlations for the E and F parameters with respect to vessel 

geometry: 
cLKE  4       (5.27) 

65 ln K
D

L
KF 








       (5.28) 

where L is the vessel length and D is the vessel diameter. Again, for the c, K4, K5, and K6 

parameters a set of best fit (SET A, dashed lines in Fig. 5.5) and of envelope (SET B, solid line in 

Fig. 5.5) values were calculated and are reported in Table 5.6. 

 

Table 5.6: Parameters for CFL and vw,c evaluation applying the simplified correlations (Eqs. 5.20-
5.28). SET A: best fit parameters; SET B: envelope correlation parameters. Pd = design pressure 
(MPa); ATM = atmospheric pressure. 
Correlation 

type 
Vessel 
type 

K1 K2 K3 K4 K5 K6 A b c 

SET A 

ATM 1.331 -2.163 -288.6 

9.910 -0.037 -0.399 

-0.990 -0.260 

-0.718 Pd = 1.5 1.287 -1.144 -499.2 -0.952 -0.112 

Pd = 2.0 1.290 -1.305 -546.0 -0.966 -0.109 

Pd = 2.5 1.256 -6.068 -234.0 -0.951 -0.263 

SET B 

ATM 1.331 -1.882 -46.8 

3.195 -0.037 -0.399 

-0.990 -0.252 

-0.341 
Pd = 1.5 1.347 -1.197 -475.8 -0.995 -0.129 

Pd = 2.0 1.341 -1.365 -483.6 -0.976 -0.120 

Pd = 2.5 1.355 -4.512 -234.0 -0.999 -0.239 
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5.3. Results and discussion 
 

5.3.1 Analysis of vessel failure conditions 

The application of the mechanical model developed in the present study to the reference 

flooding conditions summarized in Table 5.2 and to all the vessels considered in the database 

(Table 5.1) allowed obtaining the failure charts reported in the Appendix (Figs. A1 and A2 for 

atmospheric vessels, Figs. A3 and A4 for pressurized vessels). The failure charts give an 

overview of reference conditions leading to vessel failure in flood events, considering a large 

set of vessels, several different flood conditions and assuming fixed filling level and fluid 

density, thus considering the same operating conditions for all the vessels. The failure charts 

may be used to carry out a direct and straightforward preliminary assessment of the credibility 

of vessel failure in different flooding conditions. 

 

 
Figure 5.4: Example of failure plot for: (a) vessel #5; (b) vessel #20; (c) vessel #53; (d) vessel#68. 

Vessel data are provided in Table 5.1 at the correspondent ID number. Failure plots were 

obtained considering two different filling levels (5 and 50%) and two different reference 

substances (S1,S6, see Table 5.5). 

 

More detailed data may be obtained by the use of failure plots, that require the application of 

the mechanical model to the actual data of the vessel of interest. Fig. 5.4 shows an example of 

the failure plots obtained for four representative vessels: two atmospheric tanks and two 

pressurized tanks. For each design pressure, two reference volumes were considered: 10 m3, 

representative of medium scale vessels, and 100 m3, representative of large scale storage. 

Table 5.1 reports the data of the vessels considered (see IDs #5, #20, #53 and #68). 
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Figure 5.5: Plots of the coefficients developed for the simplified correlations derived from the 
extended data set of failure conditions: assessment of (a) critical filling level (CFL); (b) coefficient 
A in Eq. 5.21, (c) coefficient B in Eq. 5.22, (d) coefficient E in Eq. 5.27, and (e) coefficient F in Eq. 
5.28. 
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The failure plots show the combinations of flooding parameters leading to vessel failure due to 

the failure of the support bolt connection. Two density values were assumed for the stored 

liquid (i.e. the lowest and the highest values considered credible in the present study, 

respectively associated to substances S1 and S6 in Table 5.5). The effect of two different filling 

levels (respectively 5 and 50%) was assessed. The plots in Figure 5.4 report the minimum value 

of water velocity, vw, able to cause the failure of the connection at a given a value of wetting 

height (hwet). A peculiar behaviour of the curve is obtained, since when flood water height 

exceeds a critical value the connection is predicted to fail even in the case of low or negligible 

values of water speed. This corresponds to a critical value of buoyancy (Fn in Eq. 5.1), which, 

according the failure criterion assumed (Eq. 5.13a and 5.13b), leads to the rupture of the bolt 

connection even in the absence of drag force (Fv). Therefore, for a given vessel type and 

substance, the critical filling level (CFL, see Section 5.2.6) may be obtained from the failure plots 

in Fig. 5.4 as a function of flooding effective height (hw). The results are reported in  Fig. 5.5a. 

The failure plots allow understanding the key parameters affecting the failure of the vessel 

related to the type of storage system. In fact, the failure zone of tanks with small inventory 

(Figures 5.4a and 5.4c) is more extended with respect to that of larger tanks (Figures 5.4b and 

5.4d), thus indicating a higher vulnerability. This is due to the lower overall vessel weight (both 

considering inner fluid and vessel shell), which results in a lower resistance to the hydrostatic 

lift force. The significant change in the failure zone of a tank of given volume when its operative 

pressure, and thus its shell thickness as well as its overall weight, is increased (see the 

comparison of Figures 5.4a and 5.4b with Figs. 5.4c and 5.4d) confirms the higher vulnerability 

of smaller tanks to the respect of buoyancy forces. For the same reason, the increase of the 

filling level φ and of the stored fluid density have a significant effect on the vessel resistance. 

The effect of the increasing fluid density is more evident at higher values of φ (solid lines in Fig. 

5.4), due to the growing importance of this parameter at higher filling levels. 

 

5.3.2 Sensitivity and uncertainty analysis 

The failure plots in Figure 5.4 were obtained assuming the values of several parameters (see 

Table 5.2) related to construction materials and bolt connection features on the basis of 

technical standards. However, some variability may exist in these key-parameters. Thus, a 

sensitivity analysis was undertaken to understand the influence of the geometry and 

mechanical properties of the connection on model results. Tables 5.3 and 5.4 respectively 

summarize the standard range of bolt material mechanical properties (i.e. the resistance class) 

and of geometrical parameters. Moreover, both tables report the typical values of the 

mentioned parameters commonly used for the anchorage of process and storage vessels. 

The sensitivity analysis was carried out applying the mechanical model, considering all the 

possible combinations of bolts geometry and construction material class. Moreover, each 

combination was modelled considering different numbers of bolts (ranging from 4 to 10). For 

the sake of simplicity, as for the extended model validation (see Section 5.2.4) air was assumed 

in the top space of the vessels, water was assumed as the stored liquid and a fixed filling level 

(e.g., φ=10%) was considered. 
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Figure 5.6a shows the fraction of failed vessels in the database (Table 5.1) varying the bolt 

connection features imposing in the model the reference flooding condition used for model 

validation (see Section 5.2.4). Since this condition represents a threshold limit below which no 

failure is expected, as mentioned in Section 5.2.4, no change is expected in results, even if bolt 

connection parameters are changed.  

Actually, the results show a significant variation (an increase of the fraction of failed vessels) 

only when low resistance connections are considered (e.g., bolt class lower than B and Ares < 

200 mm2). However, such types of connections are usually not applied in industrial facilities for 

this type of anchorage (Sinnott, 1999; ISO, 1994a). In Figure  5.6a, the connection material type 

set for the present study is highlighted by the arrow. It clearly appears that the results obtained 

are the same of the case with higher resistance materials with failure fraction lower than 25% 

for any type of bolt with Ares > 200 mm2. 

 
 

 
Figure 5.6: Results of the sensitivity and uncertainty analysis: a) fraction of the tanks failed as a 
consequence of the validation reference flood (hw = 0.5m; vw =2 m/s) considering different bolt 
connection materials (resistance class A to E) and bolt sizes (Ares in mm2); b) distribution of 
failure fraction values obtained applying the model with different input types for all the vessels 
reported in the database (96 vessels, see Table 5.1); cumulated normal distribution of failure 
fraction values obtained applying the model with all possible input values (c) and limiting input 
data (d). Density assumed for the stored fluid is that of water (ρl=1000 kg/m3), and air is 
considered in the top space of the vessel (ρv =1.2 kg/m3). The dashed box in panels (c) and (d) 
represents the third quartile (Q3) of model predictions. 
 

In order to evaluate model uncertainties, the statistical evaluation of model predictions was 

carried out determining the distribution of vessels failure fraction values considering the 

reference flooding conditions (see Section 5.2.4).  At first, all the possible input values were 
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implemented in the model, thus the full range of bolt connection materials, bolts geometries 

and bolts number were used. Secondarily, limited input values were implemented by only 

selecting the parameters commonly applied in industrial facilities according to Tables 5.3 and 

5.4 (Sinnott, 1999). In this latter case, only 4, 8 and 10 bolts were considered for the base 

connection.  

Fig. 5.6b shows the distribution of vessel failure fraction obtained applying the model with all 

possible combinations of input parameters and by “filtering” the input parameters according to 

Tables 5.3 and 5.4.  Then, the results shown in Figure 5.6b were interpolated considering a 

normal distribution and obtaining the cumulative distribution functions (CDF) shown 

respectively in panels 5.6c and 5.6d for “full range” and “selected” input values. As shown in 

Figure 5.6c, if all possible input values are considered, values of failure fraction higher than 60% 

are obtained, since the weaker connections lead to the failure even in presence of the low 

severity flooding. However, if only the relevant connections types are considered, the failure 

fraction is lower than 50% even in the case of weaker connections. The third quartile (Q3) of 

the vessel failure distribution (highlighted by the dashed box in panels 5.6c and 5.6d) was taken 

into account in order to quantitatively evaluate the robustness of the model. Q3 of failure 

fractions is reduced from 36% to 22%, thus demonstrating the limited variability of model 

results considering relevant input parameters combinations. 

It may be concluded that the only few critical parameters are determinant to assess the vessel 

resistance to a given flood scenario (identified by a given flooding height and velocity 

combination). In particular, given a vessel geometry, the key parameters to assess vessel 

resistance to flood impact are the fluid density and the vessel filling level. Clearly enough, these 

are the operating parameters of the storage system. These results are in accordance with the 

outcomes of a previous study concerning atmospheric vertical vessels (Landucci et al., 2012). 

 

5.3.3 Assessment of vessel damage probability 

The results discussed above evidence that two key parameters influence vessel failure in a 

given flooding scenario: the vessel filling level and the flood water velocity. Hence, in order to 

estimate the failure probability of a vessel due to flood impact (i.e. the vessel vulnerability to a 

flood), two threshold parameters may be used as a reference:  the critical water velocity, vw,c 

(see Section 5.2.6), and the critical filling level, CFL (that may be calculated by Eq. (4.18) in Table 

5.2b, see Section 5.2.6). The first represents a threshold condition for velocity over which the 

drag force generated by flood water is sufficient to cause the failure of the bolt connection for a 

given flooding height. Thus, connection rupture is predicted independently on vessel 

parameters other from vessel shape and volume (e.g. vessel design pressure, stored fluid 

density or filling level have a negligible influence, if any, on the drag force caused by flood 

water). The second threshold parameter identified, the CFL, represents the minimum value of 

the filling level, , able to ensure the resistance of the bolted connection to buoyancy. Thus, a 

specific approach, schematized in Figure 5.7, was developed in order to assess vessel failure 

probability (Ψ). The procedure for the assessment of Ψ is outlined in the following, while the 

detailed steps needed to carry out the specific calculations required for the assessment of 

vessels damage probability are summarized in Table 5.2.  
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Figure 5.7: Algorithm for the determination of vessels failure probability as for given flooding 
scenario. 
 

Given only the vessel geometry and the characteristic of the flooding, the critical water velocity, 

vw,c, may be directly evaluated and compared with the actual velocity of floodwater, vw, 

considered in the analysis. This may be done either with the detailed model or with the 

simplified correlations. If vw is equal or greater than vw,c the upper-bound failure condition due 

torque action caused by the drag force is fulfilled. Thus a unit value of vessel failure probability 

may assumed: 

Ψ= 1 if vw ≥ vw,c      (5.29) 

If floodwater velocity if lower than the critical threshold for direct failure due to torque (vw < 

vw,c), also buoyancy should be taken into account. According to Figure 5.7, it is assumed that 

the CFL delimitates the “safe” operating conditions given the features of the storage system for 

a given flooding scenario. If the filling level is lower than the CFL, the tank is in the “unsafe” 

zone since the vessel support may not resist the flood water impact.  

The filling level value may be determined on the basis of site specific historical data or by 

implementing statistical distributions which might be available for the site under analysis (as 

specified in Fig. 5.7). Thus, after having built a cumulative distribution function of filling level 

values (CDFφ) one may define the failure probability Ψ as follows: 

)(CFLCDFf      (5.30) 

in which the CDFφ (CFL) is the value of the cumulative distribution function evaluated for a 

filling level equal to the estimated CFL. In absence of any specific data for filling level 

distribution, a linear distribution of possible filling levels between φmin (=1%) and φmax (=90%) 

was used in this work for the calculation of Ψ. Under this assumption, the failure probability is 

derived by the ratio between the “unsafe” operative conditions with respect to all the possible 

operative conditions: 
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This approach was followed in the evaluation of vertical atmospheric tanks vulnerability to 

flooding (Landucci et al., 2012). Either the complete model discussed in Section 5.2.2 or the 

simplified correlations may be applied to calculate the value of the CFL in Eq. 5.31.  

In order to evaluate the performance of the simplified model, the results expressed in terms of 

damage probability, obtained by the rigorous mechanical model and by the simplified 

correlations have been compared (Figure 5.8). 

Panels 5.8a and 5.8b report parity plots obtained for the comparison of the results obtained by 

the complete model and by the two sets of simplified correlations. The data displayed in the 

figure were obtained applying to all the vessels in the database (see Table 5.1) a matrix of 

reference flood conditions (see Table 5.5). Data were obtained assuming water as the stored 

fluid ( l=1000 kg/m3) and air in the top space of the vessel (ρv =1.2 kg/m3). The vessels were 

considered anchored (thus hw=hw0).  

Clearly enough, the simplified correlations allow a rapid and straightforward assessment of 

vessel failure probability. On one hand, as evident from Fig. 5.8a, the best fit correlations (SET 

A), provide results which are in good agreement with the detailed model even if some of the 

prediction are not on the safe side (i.e. failure probability is underestimated especially when 

values are near to 1). On the other hand, panel 5.8b shows that the use of the envelope 

correlations (SET B) allows for less accurate but always conservative predictions of vessel failure 

probability. 

 
Figure 5.8: Comparison among the prediction of vessel vulnerability (%) carried out by the 
deterministic model and correlation SET A (a), SET B (b); geometric mean bias (MG) and 
geometric variance (VG) for correlations compared to deterministic model (c). Reference 
flooding conditions are reported in Table 5.5. Tank geometrical data are listed in Table 5.1. 
Density assumed for the stored fluid is that of water (ρl=1000 kg/m3), and air is considered in 
the top space of the vessel (ρv =1.2 kg/m3). 
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The method proposed by Hanna et al. (1993) was used to analyze the performance of 

correlations in predicting the failure probability and to compare them against the detailed 

model. The method is based on the calculation of the geometric mean bias (MG) and the 

geometric variance (VG) of the values of failure probability predicted by the detailed model 

(Ψmod) and by the simplified correlations (Ψcorr): 
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The over-bars indicate that an average was performed over the data set. Good model 

performances are achieved when both MG and VG are close to unity. In order allow a 

systematic performance assessment, VG values may be plotted versus the corresponding MG 

values for each data set and may be compared to the following reference parabola: 
2))(ln()ln( MGVG       (5.34) 

As clearly appears from Eq. 5.32 and Eq. 5.33, Eq. 5.34 represents the relationship between VG 

and MG values in a correlation having only a mean bias with respect to the detailed model 

results (that is, a correlation for which the ratio of Ψmod /Ψcorr is nearly constant), but showing 

no systematic deviations, hence with good statistic performance. 

Panel 5.8c shows the chart with the results of Hanna et al. (1993) method. In the chart, for each 

flooding condition (e.g., W1 to W4) a point was obtained both for SET A and B correlations. The 

reference curve defined by Eq. 5.34 is also reported. As shown in Fig. 5.8c, for both correlation 

sets, the points fall above the reference curve, hence showing no systematic deviations. It is 

worth to mention that despite the high VG values, MG values are limited. In fact, all the points 

associated to correlation SET A are inside the range of MG between 0.5 and 2, thus 

demonstrating the good correlation performance (Hanna et al., 1993). Correlation SET B is, as 

expected, more conservative, but still with MG values close to 0.5. 
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5.4 Case study application 

 

The methodology developed to assess vessel failure probability was applied to the analysis of 

an industrial lay-out in order to provide data on expected vessel failure probabilities, suitable 

for the use in a quantitative risk assessment (QRA) framework. Fig. 5.9 shows the storage area 

considered, in which several pressurized or atmospheric horizontal tanks are present in a flood-

prone zone. Two different assumptions were considered for vessel supports: i) all vessels 

supports are fixed on the ground (thus the effective water height hw corresponds to the actual 

flood height hw0); ii) all vessel supports are fixed to a concrete base having a height above 

ground, hc, equal to 0.3m (thus hw is evaluated according to Eq. 5.17). Table 5.7 summarizes the 

features of the vessels analysed and the densities of the substances stored, while the reference 

flooding conditions used for model assessment and reported in Table 5.5 were applied to 

assess vessel resistance. 

 
Figure 5.9: Layout of the facility analyzed in the case study. Tank data are reported in Table 5.7. 
 
Table 5.7: Case study definition and results: features of the vessels considered and expected 
failure frequency (y-1) due to each flooding condition defined in Table 5.5 considering the tanks 
anchored to the ground. MOD: frequency predicted by the deterministic model; SET A and SET B 
refer to data predicted by the correspondent set of simplified correlations; NF: No predicted 
failure. For stored substance features, see Table 5.5 at the correspondent ID. 

 
ID Vessel 

V1-V4 V5-V10 V11-V16 V17-V19 V20-V23 V24-V26 V27-V30 V31 V32-V35 V36-V39 

Capacity (m
3
) 100 10 10 50 100 50 100 100 100 100 

D (m) 2.8 1.2 1.2 2.1 2.8 2.1 2.8 2.8 3.2 3.2 

L (m) 18 7.7 7.7 13.2 18 13.2 18 18 13.7 13.7 

t (mm) 18 13 5 18 24 6 30 18 6 27 

Pd (MPa) 1.5 2.5 ATM 2.0 2.0 ATM 2.5 1.5 ATM 2.0 

Stored Substance ID S2 S6 S5 S1 S1 S3 S1 S1 S4 S1 

LOC frequency 
fLOC (y-1) W1 

MOD 1.23×10-3 1.73×10-3 2.00×10-3 1.81×10-3 1.06×10-3 2.00×10-3 1.05×10-3 1.23×10-3 1.28×10-3 1.06×10-3 

SET A 1.72×10-3 2.00×10-3 2.00×10-3 1.68×10-3 1.10×10-3 2.00×10-3 1.10×10-3 1.72×10-3 8.72×10-4 1.10×10-3 

SET B 1.75×10-3 2.00×10-3 2.00×10-3 1.83×10-3 1.23×10-3 2.00×10-3 1.22×10-3 1.75×10-3 9.56×10-4 1.23×10-3 

LOC frequency 
fLOC (y-1) W2 

MOD NF NF 7.04×10-5 NF NF 3.76×10-5 NF NF NF NF 

SET A 1.02×10-4 NF 1.33×10-4 NF NF 4.65×10-5 NF 1.02×10-4 NF NF 

SET B 2.00×10-3 NF 1.90×10-4 NF 2.00×10-3 9.46×10-5 2.00×10-3 2.00×10-3 NF NF 

LOC frequency 
fLOC (y-1) W3 

MOD 3.23×10-4 NF 2.43×10-3 8.66×10-4 5.51×10-5 1.86×10-3 NF 3.23×10-4 8.41×10-4 5.51×10-5 

SET A 1.60×10-3 8.57×10-4 2.54×10-3 6.70×10-4 8.13×10-5 1.91×10-3 1.07×10-4 1.60×10-3 NF 8.03×10-5 

SET B 1.67×10-3 1.84×10-3 2.69×10-3 9.24×10-4 3.11×10-4 2.03×10-3 3.17×10-4 1.67×10-3 1.07×10-5 3.11×10-4 

LOC frequency 
fLOC (y-1) W4 

MOD NF NF 1.16×10-3 NF NF 6.21×10-4 NF NF NF NF 

SET A 1.68×10-3 NF 2.20×10-3 NF NF 7.67×10-4 NF 1.68×10-3 NF NF 

SET B 2.10×10-3 NF 3.13×10-3 NF NF 1.56×10-3 NF 2.10×10-3 NF NF 

River
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20m
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G = GROUP OF VESSELS

G5 = V20-V23

G6 = V24-V26

G7 = V27-V30

G8 = V31

G9 =  V32-V35

G10 = V36-V39
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In Figure 5.10 results of the application of the model to the case study are reported. Panels 

5.10a, 5.10b, 5.10c and 5.10d show the vulnerability values obtained for the tanks following the 

developed methodology and applying the envelope correlations (SET B) for vessels fixed on the 

ground, while panels 10e to 10h show the results obtained considering the presence of the 

concrete support. As shown in the figure, high failure probability values are obtained for the 

first three reference flooding conditions considered (W1 to W3), while the low-severity flooding 

W4 does not affect most of the vessels. In the case of high-speed flooding, vessel failure is 

mostly due to the excessive drag force (W2 conditions). Buoyancy is responsible of vessel 

failure for high-depth floods (W1 and W3 conditions). Low volume vessels, due to the reduced 

sizes, are more resistant to flood action, since the momentums acting on the bolted 

connections are lower. Actually, vessels V5 to V10 are those showing the higher resistance to 

flood action. Moreover, such vessels also have a lower inventory that may be release in the 

case of failure. 

 

 
 

Figure 5.10: Example of case study results: vessel failure probability (%) given the flooding 
conditions reported in Table 5.5. Panels (a) and (e): flooding W1; panels (b) and (f): flooding W2; 
panels (c) and (g): flooding W3; panels (d) and (h): flooding W4. Panels (a) to (d): vessels 
anchored to the ground. Panels (e) to (h): vessels on a concrete base (hc = 0.3 m). G = group of 
vessels defined in Fig. 5.9. 
 

As shown in Figure 5.10, a greater height of the supports (hc) may be effective in protecting the 

vessels only if the actual water depth hw0 (see Section 5.2.3) is lower than the overall vessel 

height. If the expected frequency, f (years-1), of a flood event having a given intensity (vw;hw) is 

known, the frequency of loss of containment (LOC) associated to the damage induced by 

flooding may be calculated as follows: 

ffLOC        (5.35) 

a)

b)

c)

d)

g)

h)

20 – 45% 45 – 75% > 98%Vessel damage probability <20%No failure 75 – 98%

e)

f)
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The value of f may be derived from site specific data available from local authorities, or may be 

evaluated with specific models present in the literature (New South Wales Government , 2005; 

Riskwaterstraat, 2005; Holmes, 2001; Dept. of Regional Development and Environment , 1991). 

Table 5.5 reports the values of f used in the case study, that were based on the actual values 

obtained for an Italian site (Italian Ministry of the Interior, 1994). Table 5.7 and Table 5.8 show 

the LOC frequencies, fLOC, calculated for each tank on the basis of the vulnerability assessment 

carried out applying both sets of simplified correlation and the deterministic model developed. 

The data were obtained both for the case of vessels anchored to the ground and for vessels 

having a concrete support. As evident from the tables, the simplified approach yields 

conservative values for fLOC, in good agreement with those predicted by the complete model, 

with maximum discrepancies that in general are lower than a factor 2. 

 
Table 5.8: Expected failure frequency (y-1) due to each flooding condition defined in Table 5.5 
implementing the concrete base (hc = 0.3 m). MOD: frequency predicted by the deterministic 
model; SET A and SET B refer to data predicted by the correspondent set of simplified 
correlations; NF: No predicted failure. For vessels features refer to Table 5.7 at the 
correspondent ID. 

ID 

Vessel 

LOC frequency 

fLOC (y-1) W1 

LOC frequency 

fLOC (y-1) W2 

LOC frequency 

fLOC (y-1) W3 

LOC frequency 

fLOC (y-1) W4 

MOD SET A SET B MOD 
SET 

A 

SET 

B 
MOD SET A SET B MOD 

SET 

A 

SET 

B 

V1-V4 8.98×10-4 1.40×10-3 1.42×10-3 NF NF NF NF 7.94×10-4 8.58×10-4 NF NF NF 

V5-V10 1.66×10-3 2.00×10-3 2.00×10-3 NF NF NF NF NF NF NF NF NF 

V11-V16 2.00×10-3 2.00×10-3 2.00×10-3 NF NF NF 1.08×10-3 1.22×10-3 1.36×10-3 NF NF NF 

V17-V19 1.37×10-3 1.26×10-3 1.39×10-3 NF NF NF NF NF NF NF NF NF 

V20-V23 7.48×10-4 7.83×10-4 8.96×10-4 NF NF NF NF NF NF NF NF NF 

V24-V26 1.74×10-3 1.77×10-3 1.82×10-3 NF NF NF 8.01×10-4 8.34×10-4 9.54×10-4 NF NF NF 

V-27-

V30 
7.26×10-4 7.85×10-4 8.89×10-4 NF NF NF NF NF NF NF NF NF 

V31 8.98×10-4 1.40×10-3 1.42×10-3 NF NF NF NF 7.94×10-4 8.58×10-4 NF NF NF 

V32-V35 9.99×10-4 5.85×10-4 6.70×10-4 NF NF NF 1.31×10-4 NF NF NF NF NF 

V36-V39 7.48×10-4 7.83×10-4 8.96×10-4 NF NF NF NF NF NF NF NF NF 

 

Calculated LOC frequency values for the reference flood scenarios considered range between  

1×10-5 and 3×10-3 y-1. A comparison was carried out with the frequencies of LOC events due to 

internal failures available in the technical literature. In particular, according to the “Purple 

Book” (Uijit de Haag and Ale, 1999), data for pressurized vessels range between 5×10-7 y-1 

(catastrophic and 10 minute release of entire inventory) and 1×10-5 y-1 (release from a 10 mm 

equivalent diameter). In the case of atmospheric storage tanks with single containment, the 

conventional expected LOC frequencies are quite higher: 5×10-6 y-1 (catastrophic and 10 minute 

release of entire inventory) and 1×10-4 y-1 (release from a 10 mm equivalent diameter). These 

figures are more than one order of magnitude lower than the site-specific flood-induced LOC 

events calculated in the case-study. This confirms that in flood-prone zones, NaTech scenarios 

triggered by floods may significantly contribute to the risk of an industrial facility. Nevertheless, 

an increase in the height of the anchorage was evidenced as a possible protection barrier.  
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5.5 Conclusions 

 

A model was developed to calculate the failure probability of horizontal cylindrical vessels as a 

function of flood severity. The modelling approach was validated against available literature 

data and allowed the identification of the more critical parameters affecting the vessel 

resistance to the flood. Several simplified correlations were derived for the straightforward 

estimation of vessel resistance. The application of the developed model and of the simplified 

correlations to a case-study confirmed that NaTech scenarios caused by floods may have an 

important influence on the risk due to major accidents caused by the release of hazardous 

substances. The importance of an appropriate design of the vessel support and basements was 

evidenced, highlighting the potential importance of mitigation barriers in the prevention of 

NaTech scenarios triggered by floods. However, while selecting appropriate basements one 

should take into account both parameters related to the credible flooding scenarios and the 

resistance of the vessel. 
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Chapter 6: 

Probability assessment of multilevel domino scenarios 

6.1 Introduction 

In the risk analysis of accident scenarios, cascading events  in industrial sites are raising a 

growing concern. The so called domino effect has become a main safety issue that needs to be 

managed  in order to avoid major accidents that affected the chemical and process industry 

(Reniers and Cozzani, 2013). Difficulties arises when trying to assess risk due to domino events, 

often related to the lack of specific tools and methodologies. 

In the last 20 years a lot of work has been performed on the research in the field of domino 

accidents, and novel tools and procedures are now available. Nevertheless, knowledge gaps 

concerning domino effect assessment are still relevant. In particular one of the main issue is 

related to the assessment of accident propagation, due to tendency of domino accidents to 

grow in complexity as the size of the plant grows in size.  

By the use of Markovian analysis this paper aims at the statistical description the possible 

multilevel domino propagation of domino scenarios associated with an industrial activity. The 

probability and frequency calculation for those domino scenarios provide the required input 

parameter for the quantitative risk assessment of industrial accidents due to domino events. 

The main element that identifies scenarios where a “domino effect” takes place is the 

“propagation” effect. It is universally recognized that in a “domino” accident the propagation 

(in space and/or in time) of an initiator accident should take place to start one or more than 

one secondary accidents. Thus, two further elements of a domino scenario may be identified in 

relation to the “propagation” element: the presence of a “primary scenario” and of one or 

more than one “secondary scenarios”. The result is a set of contemporary accidents that takes 

the name of “domino scenario” (Reniers and Cozzani, 2013b).  

To study the propagation of domino accidents means to analyze the mechanisms by which 

equipment are damaged by the accidental scenarios and generate new accidents themselves.  

Nevertheless, while dealing with domino scenarios one should take into account an important 

fact: the propagation is relevant only if it results in an  “escalation’’ of the consequence of 

primary event (Cozzani et al., 2005). Four elements may thus be considered to characterize a 

domino event (Reniers and Cozzani, 2013b):  

 

(i) A primary accidental scenario, which triggers the domino effect. 

(ii) A propagation effect following the primary event, due to the effect of escalation vectors 

caused by the primary event on secondary targets. 

(iii) One or more secondary scenarios, involving the same or different plant units, causing the 

propagation of the primary event to other equipment. 

(iv) An escalation of the consequences of the primary event, due to the effect of the secondary 

scenarios. 
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The escalation is caused by the damage of at least one equipment item, due to the physical 

effects (e.g. fires, blast waves, fragments) of the primary event (Landucci et al., 2009a; Landucci 

et al., 2009b; Leslie and Birk, 1991; Birk and Cunningum, 1994; Birk, 1995; 1996; Cozzani et al., 

2004). The damage to process equipment usually result in secondary accidents. Moreover, the 

secondary accident scenarios have chances to generate further accidents, which may eventually 

be the cause of further propagation of the event and augmenting the overall consequences of 

the domino scenario (Reniers et al., 2013b). 

Figure 1 shows alternative propagation patterns that may be assumed in the analysis of domino 

scenarios (Reniers et al., 2013 CHAPTER IN DOMINO BOOK). A “simple” propagation may be 

assumed, defining a “one-to-one” correspondence, that is, a single primary scenario triggering 

a single secondary scenario (Delvosalle et al., 2002). Alternatively, second-, third- and more in 

general multilevel propagation may be assumed, defining a so-called multilevel “domino 

chain”: a first accident scenario triggers a second accident scenario, the second accident 

scenario triggers a third accident scenario, and so on. 

 

 

Figure 6.1. Different escalation patterns used for the description of the domino propagation 

mechanism  

 

The paper by Cozzani et al. (2005) remarks that more than one secondary scenario may take 

place simultaneously, given a single primary event. Secondary scenarios may also trigger more 

than one secondary scenario, defining a complex net of sequential and parallel propagation 

possibilities. This mechanism takes the name of “multilevel propagation” (Reniers et al., 2013). 

This mechanism may be extremely complex to analyze even if the number of equipment units, 

which are mutually capable to trigger domino effect one to the other, is limited. It is easy to 

imagine that, as the number of units increases, the complexity rises exponentially. In the 
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original framework proposed by Cozzani et al. (2005; 2006), only domino scenarios deriving 

directly from the primary events are considered. Thus, only first level escalation is considered 

and scenarios deriving from the further escalation of secondary events (the so called multilevel-

escalation (Cozzani et al., 2013a)) is not considered.  However, higher level domino events may 

be accounted as well by the extension of the proposed methodology (Cozzani et al., 2014; 

Antonioni et al., 2009). Nevertheless, the application of the procedure for simultaneous domino 

event to domino scenarios that may have multilevel propagation, has a very high computational 

demand as the system grows in complexity and the computing times may become prohibitively 

high. 

In order to assess the probability of the accident scenarios generated in a such complicated 

mechanism, a dedicated mathematical methodology is required. The study by 

Abdolhamidzadeh et al. (2010) presents a methodology for the calculation of domino accident 

frequencies based on Monte Carlo simulations, in order to avoid the complexity given by the 

complication of the combinatorial analysis. Bayesian networks may be also applied in order to 

assess the probabilities of a event in a complex environment and have been applied to the 

frequency assessment of domino accidents as well (Khakzad et al. (2013)).  

The aim of the present work is to develop a methodology to evaluate the probability of every 

accident scenario produced at the end of the entire accident chain that constitute the 

escalation process. Knowing the probabilities for each domino scenario to occur allows the 

calculation of domino scenario frequencies in order to obtain input data for the QRA procedure. 

In this chapter an advanced methodology tool for the calculation of domino accident 

frequencies is presented. The transition of the system from each domino scenarios to any 

possible higher level domino scenario is considered allowing the drawing of the possible 

propagation pattern. Using the Markovian analysis the probabilities of transition between each 

scenario to the others may be obtained. Transition probabilities allows to represent the 

evolution of the system with time, therefore the probabilities of the all the final states of the 

system, which represent all the possible domino scenarios, can  also be assessed. Finally, the 

frequencies of all the possible secondary accidents can also be calculated. 
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6.2 Multilevel domino assessment using Markov analysis  

 

6.2.1. Methodology Overview 
The current study is aimed at the development of a dedicated methodology for the assessment 

of the domino scenario frequency caused by complex accident chains, in which secondary 

accidents are cause of further accident escalation themselves. As shown in chapter 2, it is 

possible to associate a single escalation vector and a single vulnerability vector to each 

scenario. In the reference literature, domino accident frequencies are calculated as follows: 

              (    )      (6.1) 

where fde the domino event frequency, fpe is the primary event frequency and P(E|PE) is the 

conditional probability of escalation (E) given the primary event (PE) (Cozzani et al., 2005), 

which depends on the target vulnerability, Pd.  If calculating the conditioned probability of 

escalation to the respect of a primary scenario, characterized by a single accident, is already a 

complicated task that requires the tools of frequentistic probability and combinatory logic, it 

becomes even more complex  when the secondary scenarios can also generate complex events. 

Furthermore, even calculating the vulnerability of secondary targets  to the respect of complex 

scenarios is not an easy task, since many sources for equipment damage are present in the area 

at the same time. 

For these reasons a novel  methodology, able to deal with the dynamics of the accident 

propagation process is proposed in the present document. A schematic description of the 

methodology is provided in Table 6.1.  

 

Table 6.1: Detailed description of the three steps of the methodology 

1 

Modelling the 

consequences 

1.1 Identification of all the primary accident and of a single secondary 

accident for every equipment unit 

1.2 Consequence assessment of all the primary scenarios and of for every 

equipment that stores hazardous substances in the plant 

1.3 Selection of a primary accident 

2 

Hazard identification 

2.1 Identification of possible target units  

2.2 Calculation of the ensemble of the possible configuration the domino 

system can assume: the set of accidental scenario 

2.3 Identification of the possible paths for the transitions between the 

states of the domino system by the DAG construction 

3 

Frequency 

calculation 

3.1 Estimation of the damage probability for each target unit to the 

respect of every domino scenarios 

3.2 Calculation of  transition probabilities between the possible states of 

the domino system 

3.3 Probability calculation for every domino scenario at the end  of the 

escalation process 

3.3 Calculation domino scenario frequencies 

 

The first step of the methodology is to assess the consequences for every accident of all the 

equipment units that stores hazardous substances in the industrial facility. A set of accidental 

scenarios is identified for every equipment; one, or more, scenarios may be the starting point 
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of a domino event. Furthermore, one of the scenarios is selected to be the secondary accident, 

for each unit, depending on the substance stored and on the equipment typology. Each 

scenario able to cause domino effect (i.e. fire and explosion scenarios) is called “primary 

scenario”; each primary scenario must be analyzed in order to assess  the probability of domino 

scenarios to occur. One at once, all the primary scenarios are selected. Each scenario 

represents specific accident consequences, calculated for a given accident typology, weather 

stability class, wind speed and direction. 

The second step is to identify the hazards associated to the escalation process, in particular to 

identify all the possible scenarios, intended as a combination of simultaneous accidents. The 

identification of all the possible equipment involved in the escalation process  is, thus, a crucial 

task, which is achieved by the application of consequences of the primary scenario to the map 

containing the industrial layout, thus selection of the secondary units by a threshold-based 

criteria. Furthermore, all the possible paths for the accident escalation process must be 

identified. The ensemble composed by: the primary scenario, all the secondary accidents and 

the possible escalation paths represent the “domino system”, which is going to be analyzed in 

order to calculate domino accident frequency. Each combination of the domino system 

elements represent one of the possible states that can be taken by the system at a given time 

after the escalation has started. Each combination, which describe a system state, represents 

also a possible domino scenario. The “domino system” can be schematized by the construction 

of a “Directed Acyclic Graphs” (DAG), in which all the states that can be eventually taken by the 

system are drown, as well as conditional dependencies between the states are reported. 

The third step is the probability and frequency calculation for all the domino scenarios which 

have been identified. A new combinatorial methodology is developed for the probability 

assessment of these scenarios, based on the Markovian analysis and on the calculation of 

probability of transition between different states of the domino system. This method allows to 

consider multiple sequential and parallel steps for the propagation/escalation process and to 

evaluate the probabilities of domino scenarios due to “multilevel propagation”. In this step, the 

vulnerability of target units are calculated to the respect of each possible scenarios. Then, the 

transition probabilities form one state to another are also calculated, allowing the calculation of 

the probabilities of each domino scenarios. Finally, by the application of the primary event 

frequency to the probability of all the possible scenarios, also the expected frequencies of 

domino scenarios are calculated. 

 

6.2.2. Preliminary considerations regarding domino scenarios 

In conventional QRA several procedures are may be applied for the assessment of the 

frequency of an accidental scenario. The most popular technique is the use of dedicated event 

trees (REF Purple), in which the calculation of accident scenario frequencies represents the final 

step. When dealing with domino effect one should consider each scenario as a potential 

initiator event for a devastating escalation process, which generates secondary accidents, 

usually with more serious consequences than the initiator accident. The secondary scenarios, 

which are caused by a specific initiator accident, called “primary accident” , may have the 
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potential to damage or to destroy other structure or equipment containing hazardous material. 

As a secondary target get damaged, a secondary accident immediately follows. Moreover, 

secondary accidents may eventually generate other accidents themselves. Thus, every “primary 

scenario” which has escalating potential should not be analyzed as a single scenario, but as an 

entire “set of accidental scenarios” (Figure 6.2). When assessing QRA procedure with the intent 

to analyze domino accidents this consideration should be applied to every accident which is 

able to damage neighbor equipment, i.e. every fire and explosion scenarios.  

It is worth to remark that the probability to experience secondary accidents, for the most of 

causes (e.g. pool fires, jet fires, VCE), is strongly influenced by the wind speed and direction. In 

order to analyze the damage to humans and the possibility for further domino escalation, for 

“domino scenario” it is considered the combinations of the consequences of the primary 

scenario and of each secondary scenario, which represent a characteristic accident 

combination. Furthermore, a scenario can be modelled only, if the three variables that govern 

the meteorological condition (the stability class, the wind speed and the wind direction) are 

known. 

Nevertheless, other data are required  to apply the procedure defined in Table 6.1: information 

regarding the lay-out of the site examined, in particular, the position on the lay-out of the 

potential primary events (consequences and frequency of the primary events must be well 

known) and of all the potential targets for the escalation (again consequence of secondary 

accidents should be known). Likely, all these data are already provided when addressing a 

conventional QRA, thus the additional work for data collection is limited. 

 

 
 
Figure 6.2. The example of catastrophic liquid release has been considered in order to show the 
difference between the approach for conventional QRA and QRA of domino scenarios  
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6.2.3. Secondary accident typology selection 
In this study a single typology of damage modality, and thus of “secondary accident”, is 
considered per typology of target equipment, independent from the escalation vector that 
triggered the secondary accident. In order to identify the secondary accident typology the 
following data are required: the pressure condition of the vessel; the aggregation state of the 
stored substance (Liquid, Gas, Liquefied Vapour)and the hazardous properties of the substance 
(Flammable and/or toxic). Moreover, often physical effect related to an accidents may have 
differenced effects for humans and for other target equipment. A list of damage modalities, 
secondary scenarios, escalation vectors and physical lethal consequences for all the possible 
secondary target typologies is reported in table 6.2. 

 
Table 6.2: Secondary accident selection criteria 

Secondary 
Target 

Stored 
substance 
hazardous 
properties 

Damage 
modality 

Secondary 
scenarios 

Associated 
escalation 

vector 

Associated 
physical lethal 

effect 

Atmospheric Flammable 
Liquid 

Cat. Rupture + 
immediate 

ignition 

Pool Fire Thermal 
radiation 

Thermal 
radiation 

Toxic 
Liquid 

Cat. Rupture Pool Evaporation 
+ Toxic Dispersion 

None Toxic Dose 

Toxic + 
Flammable 

Liquid 

Cat. Rupture + 
immediate 

ignition 

Pool Fire Thermal 
radiation 

Thermal 
radiation 

(Toxic Dose?) 

Pressurized Flammable 
Gas 

Cat. Rupture + 
immediate 

ignition 

EXPLOSION mech Overpressure + 
Fragment 

Overpressure 

Toxic 
Gas 

Cat. Rupture EXPLOSION mech 
+ Toxic Dispersion 

Overpressure + 
Fragment 

Overpressure + 
Toxic Dose 

Toxic + 
Flammable 

Gas 

Cat. Rupture + 
immediate 

ignition 

EXPLOSION mech 
+ Toxic Dispersion 

Overpressure + 
Fragment 

Overpressure + 
Toxic Dose 

Flammable 
 Liq. vapour 

Cat. Rupture + 
immediate 

ignition 

BLEVE + FIREBALL Overpressure + 
Fragment + Heat 

Load 

Overpressure + 
Heat Load 

Toxic 
Liq. Vapour 

Cat. Rupture BLEVE + Toxic 
Dispersion 

Overpressure + 
Fragment 

Overpressure + 
Toxic Dose 

Toxic + 
Flammable 
Liq. vapour 

Cat. Rupture + 
immediate 

ignition 

BLEVE + FIREBALL Overpressure + 
Fragment + Heat 

Load 

Overpressure + 
Heat Load 
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6.2.4. Identification of targets for the escalation process and domino system definition 

The definition of the accident escalation process target equipment and, thus, the typology of 
secondary accidents triggered, is a critical issue, because the set composed by the primary 
accident and by all the possible secondary accident represents the closed system in which the 
entire escalation process proceeds, the “domino system”. Furthermore, the secondary 
accidents generated may trigger the escalation to other equipment themselves. Thus, the 
quantitative assessment of domino events requires the identification, the frequency evaluation 
and the consequence assessment of all the credible domino scenarios, considering all the 
possible combinations of secondary scenarios that may be originated by each primary scenario. 
The identification of targets and of the respective secondary accidents triggered by a primary 
scenario scenario is a also a main issue. The set composed by the primary scenario and by all 
the possible secondary scenarios represents the “domino system” in which the entire 
escalation process proceed. 
 
Table 6.3 Modality and escalation criteria for the most common accidents divided by typology 

Scenario Escalation 
vector 

Modality Escalation criteria Escalation 
criteria 

Atmospheric 
Vessel 

Pressurized 
Vessel 

Flash fire Heat radiation Fire impingement Unlikely Unlikely 

Fireball Heat radiation Flame engulfment I > 100 kW/m2 Unlikely 

Stationary radiation I > 100 kW/m2 Unlikely 

Jet-fire Heat radiation Fire impingement Always possible Always possible 

Stationary radiation I > 10 kW/m2 I > 40 kW/m2 

Pool fire Heat radiation Flame engulfment Always possible Always possible 

Stationary radiation I > 10 kW/m2 I > 40 kW/m2 

VCE Overpressure MEM F ≥ 6; 
Mf ≥ 0.35 

P > 22 kPa P > 16 kPa 

Confined explosion Overpressure Blast wave 
interaction 

P > 22 kPa P > 16 kPa 

Mechanical 
explosion 

Overpressure Blast wave 
interaction 

P > 22 kPa P > 16 kPa 

Fragment projection Fragment impact Fragment impact 

BLEVE Overpressure Blast wave 
interaction 

P > 22 kPa P > 16 kPa 

Fragment Fragment impact Fragment impact 

Point-source 
explosion 

Overpressure Blast wave 
interaction 

P > 22 kPa P > 16 kPa 

 
The identification of the credible domino scenarios should be based on escalation criteria 
addressing the possible damage of equipment due to the physical effects of the primary and 
secondary  scenarios. The physical effects resulting from an accidental scenarios are applied on 
the map containing possible targets, allowing the assessment of the value of the harmful effect 
at the target position. The use of threshold values, which are compared with the values of the 
physical effect actually applied at the location of the process units containing hazardous 
materials allows the identification of potential domino targets. The use of threshold-based 
criteria is a common practice for the preliminary analysis of domino risk (Ref Cozzani and 
Salzano., 2006). An extended discussion on the procedures for the identification of the possible 
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contemporary domino scenarios due to a primary event, by the use of threshold values, is 
reported elsewhere (Cozzani et al., 2005).  Table 6.3 summarizes the suggested threshold 
values obtained in the previous study and adopted herein to identify the credible escalation 
targets. Literature models from the “Yellow Book” (Van Den Bosh & Weterings, 2005) were 
used in the present approach for the calculation of the physical effects arising from the final 
outcomes of primary events.  
However, in the case of multilevel propagation a further step must be made. Once the 
secondary targets are identified the secondary scenarios must also be identified and, their 
consequences can be applied on a map. This allows the calculation of possible tertiary targets 
and tertiary scenarios are also identified. The procedure continues until either all the remaining 
equipment units suffer an amount of damage which is below the threshold, or all the units in 
the area have been considered already. 
Figure 6.3 reports an example of the application of threshold criteria for the identification of 
possible targets for the propagation process. A simplified layout composed by 5 units is 
considered. In this example P is the primary source, while A, B and C are possible escalation 
targets and, thus, secondary sources, D is another item which is not involved in the escalation 
process. The system analyzed is composed by: the primary accident, and the accidents of 
equipment A, B and C. The same threshold values, applied for determining the escalation 
criteria at the primary accident, apply also to secondary accidents.  
 

 

 
 
Figure 6.3: Example of the threshold criteria application to assess possible secondary target and 
sources for domino accidents; a) The primary source; b) Threshold contour for the primary 
accident that contains the potential secondary targets; c) threshold contours of secondary 
sources containing potential tertiary targets; d) threshold contours of all sources, with no 
further targets 
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On the contrary of other methods, Cozzani et al.,( 2005; 2006) consider target for accident 
escalation only those units affected by the consequences of the primary scenario, in the 
example shown in the figure also the targets of secondary scenarios (i.e. the item C) are 
considered.  

 
6.2.5 The accidental scenario set 

Cozzani et al. (2005; 2006) presented a methodology that allows the calculation of individual 

and societal risk caused by domino accidents contribution in the risk profile of an industrial 

plant, that analyses the entire “set of possible domino scenarios” triggered by the primary 

event. The domino scenario set is composed by all the possible combinations of the primary 

and all the secondary scenarios. In the reference literature, the probability of accident 

escalation have been calculated by the use of dedicated vulnerability models (Cozzani and 

Salzano 2004a; 2004b; Landucci et al. 2009; Gubinelli and Cozzani, 2009a; 2009b).  

In multilevel propagation, the probabilities of accident escalation to one scenario or to the 

other are mutually conditioned and all the possible combinations of the credible and relevant 

secondary events should be considered in the analysis. Each combination of secondary 

scenarios represent one possible domino scenario. Therefore, the probability of all the 

secondary scenario combinations must be calculated in order to assess the risk related to 

escalation scenarios, for a given primary event.  

If first level escalation only is considered (Reniers and Cozzani, 2013b), the event combinations 

may be reasonably considered as independent from a probabilistic point of view. However, 

when multilevel propagation is considered, the probabilities of the scenarios are the one 

conditioned to the happening or non-happening of the other scenarios. 

 

Table 6.4: The set of all the possible accidental scenarios due to escalation to three equipment, 

other than the initial scenario. Each scenario is represented by a vector of Boolean variables: 0 

represents the safe condition; 1 represents the failed condition. P indicates the equipment 

where the primary scenario occurs, which is oviously considered damaged, A, B, C represent the 

three possible targets. 

STATE P A B C 

S01 1 0 0 0 

S02 1 1 0 0 

S03 1 0 1 0 

S04 1 0 0 1 

S05 1 1 1 0 

S06 1 1 0 1 

S07 1 0 1 1 

S08 1 1 1 1 

 

Given the number of target vulnerable equipment nt, the possible scenario combinations are 

determined by the possibility that every equipment is either “healthy” or “failed”. In the 

condition “healthy”, no harm is assumed to the unit, while in the condition “failed” the unit is 

considered significantly damaged, furthermore an accident is considered to take place. The 



183 

 

typology of accident should be selected according to the indications provided in table 2. Each 

combination can be expressed as a vector of Boolean variables that represent the conditions 

healthy (0) and failed (1). These combinations represents the ensemble of the possible domino 

scenarios for the risk analysis. Furthermore, each combination can be considered as a possible 

state that can be assumed by the domino system at a given time after the start of the 

propagation process. 

Combinations of nt binary items (healthy, failed) can be calculated, for a total of 2nt admissible 

combinations, including the combination in which no domino effect occurs, which is also 

representative of the initial state of the domino system in which domino effect have not 

happened yet.  

As an example it is considered a primary accident which expose other three equipment (nt=3), 

containing hazardous substances, to a physical effect with potential destructive effects. The 

possible domino scenarios are 23=8, represented as all the possible combinations of three 

binary objects: A,B, C and the primary event, P, (see Figure 6.2) are reported in Table 6.4, 

organized in growing order for the number of accidents that compose the scenarios. 

 

6.2.6 System and “states” description: the construction of the Directed Acyclic Graph (DAG) 

In order to evaluate the probability of escalation from one domino scenario to another, every 

“scenario” represents one possible “state” that can be assumed by the domino system at a 

given time after the primary accident have happened. With the time progression, “states” have 

a possibility to further evolve at a domino scenario with a higher number of secondary 

scenarios. In fact, in the propagation mechanism it is possible to catch causal dependencies 

between domino scenarios. Domino scenarios characterized by a high number of secondary 

accidents, can be caused either directly by the primary scenario or by domino scenarios with a 

lower number of accidents.  

One method to help understand  the evolution of the system, which is dependent by the 

reciprocal relationship between the probabilities of each domino scenario to occur, is to use 

graphical representation in order to view the causal effects between the different variables. A 

Directed Acyclic Graph (DAG) is a graphical tool for reasoning under uncertainty in which the 

nodes represent variables and are connected by means of oriented arcs.  In the directed acyclic 

graph (DAG) approach, an arrow connecting two variables, or nodes, indicates causation; 

variables with no direct causal association are left unconnected. In the case of domino events, 

arcs, which describe a causation relation, represent a probability of transition from one state of 

the domino system (or domino scenario), to another. Each node represents the probability of a 

given domino scenario, or state of the system at a given time. Assuming that several equipment 

may be effected at the same time, arrows draw the trajectories for the transitions from the one 

state toward all the possible admissible states with a higher number of secondary scenarios. 

In order to draw the DAG, the domino scenarios must be grouped on the basis of the number of 

contemporary secondary scenarios. The assumption of non-repairable system components is 

applied, therefore every arc, originated in one node, can be directed either to other nodes with 

a larger number of accidents (accident propagation) or back to the same node (no further 

propagation). 
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In Figure 6.4 the example of DAG due to a system composed by a primary source and 3 target 

secondary equipment: A,B,C, is reported (the same of  Table 6.4 and figure 6.3). Eight domino 

scenarios, thus the system can take eight possible state at a given time, represented in the 

figure as nodes. Each node is characterized by a color, thus the arcs that start in one node have 

the same color in order highlight the state transition which are possible or not possible, given a 

node.  

The present methodology is developed to assess the probability of domino scenarios intended 

as the “end states” of the escalation process. For the calculation of the probability of a generic 

“end state” one should considers all the possible path that may lead to the final accidental 

scenario. However, the methodology remains exclusively combinatory. Thus, the dynamic 

investigation regarding the number of steps or the time necessary for the accident escalation, 

from the primary accident to the end state, are not concern of this work. 

 

 
Figure 6.4: The DAG that represents the accident propagation to three possible secondary 

targets: A, B, C. Each node is Arrows represent all the possible transitions for the evolution of 

the system, the nodes represent the 8 states, S1-S8, the system may take. 

 

6.2.7 Probability of accident escalation: transition between states 

In the DAG, the arcs denote dependencies or causal relationships between the linked nodes. 

Since the domino system evolves with time the arcs represents the transition of the system 

from one state to another. Each transition is characterized by a finite probability of happening. 

In case of multilevel propagation, the accident escalation process can be simplified as a 
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sequence of transitions between the possible states that system can assume. In order to assess 

the probability of a given scenario, intended as a specific combination of secondary accidents, 

the probability of transition from one scenario to one of the others, characterized by a higher 

level of escalation, must be assessed.   

In order to describe the system evolution, it is worth to define a methodology for the 

straightforward calculation of transition probability between the possible states of the systems.  

As a first step, Markovian analysis for the calculation of the transition probabilities and for the 

calculation of “end state” probability is applied. Since the probability of one state is 

independent of the rest of the states in the system given its immediate lower-level neighbors, 

the “local Markov property” is unequivocally valid for every node of the process. Furthermore, 

the value of the Initial state of the system, represented by the combination in which only the 

primary scenario is active, is known. It is also known that every state is conditioned only by the 

other states with a lower number of failed components and that the states with the same 

number of failed components are mutually exclusive.  

Under those conditions, it is assumed that the transition probability from one generic “parent 

state”, at any position in the accident escalation chain (including the primary scenario), to a 

generic “son state” is function of the probability of the “parent state” only and not of the story 

that produced the “parent state”. In other words, the global Markov property is considered 

valid for all the states of the system under investigation and a transition matrix can be built. 

The edge is that all the transition probabilities are dependent only by the node where the 

transition start, if the global Markov property can be applied. This simplification allows to 

consider the possible states of the system as an ensemble of all accident combinations only. All 

the domino scenarios characterized by the same accident combination are merged into one, 

neglecting the differences due to the different paths that produces a specific domino scenario.  

This assumption is reasonably valid in the case the transition probabilities are constant until the 

transitions end. This condition is obtained when the physical effects, responsible of the 

escalation vectors, are also constant during the entire escalation process. Thus, the Markov 

property applies to domino scenarios composed by steady fires scenarios, but it does not apply 

to domino scenarios composed by explosion scenarios. This is because the effects of the 

explosion scenarios do not last in time, so they should be accounted for one transition only and 

do not apply to any further transitions. Therefore, the path that produced one scenario does 

influence the transition probabilities and the global Markov property cannot be applied. 

However, in the following the procedure will show how to deal with instantaneous scenarios, 

while maintaining the formalism which depends on the global Markov property. 

 

6.2.7.1 Equipment vulnerability due to several secondary scenarios 

The problem of multiple scenario sources has been addressed in the past for the assessment of 

human vulnerability. A vulnerability map of each domino event is calculated as a combination 

of the vulnerability maps of the primary and of the secondary scenarios that compose the 

domino scenario. Several possible strategies are suitable for the combination of the 

vulnerabilities, that are actually probability values (See section 6.2.4.3). However, the results of 

a previous study (Cozzani et al., 2005) suggested to calculate the domino vulnerability as the 
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sum of the death probabilities due to all the single scenarios which take place in the domino 

event, with an upper limit of 1. In the present study the same advice is applied for addressing 

equipment vulnerability due to multiple sources. 

Once all the equipment, and thus the related accidents, that compose the system are 

identified, for each accident, being either a primary or secondary accident, it is possible to build 

a vector of vulnerabilities that reports the vulnerability of each target to the respect of a given 

source, being either a primary or secondary scenario. Each position of this vector (Pd,i), reports 

a value of target equipment vulnerability for each target, expressed as probability values. These 

damage probabilities are obtained, by the application of dedicated vulnerability expressions, 

which relate the target equipment vulnerability to gravity of the suffered destructive physical 

effect of the scenario (Cozzani et al,. 2004; Landucci et al., 2009). 

Each domino scenario is given by the combination of the effects of the primary scenario with 

the effect of one, or more secondary scenarios. For every domino scenario, a vulnerability map 

to the respect of people is built, as well as a “domino scenario vulnerability vector” that reports 

the values of target equipment vulnerability for each target, calculated as follows: 

    
     [(    

  ∑  (    
 )      

  
     )]    (6.2) 

where PS
d,i represents the vulnerability of i-th target to the respect of the overall effects due to 

the combined accidents in domino scenario S, PP
d,i represents the vulnerability of the i-th target 

to the respect of the effects of the primary accident P, Pd,I,j represents the vulnerability of the i-

th target to the respect of the effects of the  j-th secondary scenario,   
 

 is a vector whose 

elements are the indexes of the combination of k secondary events that compose the domino 

scenario S, and the function  (    
 ) is defined as follows: 

 (    
 )  {

       
 

       
       (6.3) 

Furthermore, in the case of secondary scenarios being targeting their own unit (i=j), Pd,i,j is 

considered 1, since the unit has failed already. Therefore, the vulnerability of a generic 

equipment to high level domino scenarios are ,generally, higher than the vulnerability to the 

primary scenario only, due to the additive contribution of all the secondary sources to the 

equipment damage. Thus, the transition probability between states is typically higher between 

high level states of the system, than those states at the beginning of the escalation process.  

High level domino scenarios are composed by several accidents, which may significantly differ 

one to the other to the respect of the typology of dangerous physical effect and on gravity. 

Moreover, some secondary scenarios may happen simultaneously, while others may happen in 

sequence. In order to combine equipment vulnerabilities of several scenarios for a given 

domino scenario, two main accident typologies are thus identified to the respect of accident 

escalation assessment: 

 

-“continuous escalation accidents” (CEA), which generate physic effects that last until the end 

of the escalation process and that contribute to the transition probability from the actual state 

of the system to all the subsequent states of the domino propagation process  
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- “instantaneous escalation accidents” (IEA), which generate physic effects that last for a very 

short time and that contribute to the transition probability from the actual state of the system 

to the first subsequent domino scenarios of the domino propagation process only. 

 

The main difference is that those domino scenarios entirely composed by “continuous 

escalation accidents” follow the Markov property, while those constituted by at least one 

“instantaneous escalation accident” don’t. 

In order to combine equipment vulnerability from a domino scenario composed by multiple 

continuous sources, the vulnerability vectors of each single scenario are added, according to 

equation (6.2). In this vector the probability of damage of all the survived equipment is 

reported to the respect of the additive effect of all the accidents of the current domino 

scenario.  However the probabilities of the “instantaneous escalation accident” present in the 

domino scenarios must be considered with particular caution for the calculation of the 

vulnerability vector of the scenario, since their contribution last for the duration of one 

escalation step only. This property implies that only that the contribution to equipment 

vulnerability that comes from an IEA is not valid if the domino scenario representative of one 

state was produced by another state where that component was already failed. Moreover, if 

the primary event was an IEA, its contribution to the overall vulnerability of second, or higher, 

level scenarios should not be considered, with the exception of those transitions from the initial 

state to the others. 

For a given state, S, in which the m-th is an IEA , the Pd,i,m for the m-th scenario must be 

multiplied by a reductive factor,   
 , given by the following expression: 
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Where nL is the number of parent states, BL is the Boolean vector that identifies the L-th state, 

PL is the probability of the L-th parent state, PL-S is the transition probability between the L-th 

state and state S, PS is the overall probability of state S to occur, due to all the possible parental 

states,   
  

 is a Boolean vector with nL elements, whose elements are all zeros, except the one 

in position m, which is 1. In other words   
  represents the ratio between: 1-the probability 

that the state S derives from other scenarios in which the event mth was not happened yet, so it 

can be accounted for a further transition, and 2-the probability of state S to occur.  

Figure 5 shows an example of the application this method by the use of graphs. State p and 

state q are both capable to generate state r; all three represent a combination of three Boolean 

variables: A, B, C. C is assumed to be IEA. In state q, C is positive, meaning it has already 

happened, while in scenario p, C is negative. In this example, the contribution of  the event C to 

the overall vulnerability vector of state r, must take into account the happening of state p and 

not of state q.  

 



188 

 

 
Figure 6.5: Example of the application of the methodology for the calculation of transition the 
vulnerability of element A to the respect of state r. In this picture C is IEA, and has happened in 
state q, but not in state p. 
 
6.2.7.2 Transition probability calculation 

After vulnerability vectors have been calculated for each domino scenario, transition 

probabilities between states can be assessed. A new vector: the transition vector, which has 

the same length as the number of domino scenarios NS, is created for every scenario. In this 

vector the transition probabilities from one parent state to a son state (or to itself, meaning 

non further escalation) are reported. These probabilities are actually conditional probabilities, 

in the sense that they are conditioned to the happening of the referred parent state.  

In order to calculate transition probabilities from one jth parent state to ith son state, the 

respective Boolean vectors, Bj and Bi, which are used to identify the scenarios and the states, 

must be compared element by element. The response this comparison is a new variable, Rj,i. 

The value of the response are reported in Table 6.5. Finally the transition probability can be 

calculated as the joint probability of all the nt conditions addressed by the response, using the 

following equation: 

        ∏     ( )
  
       (6.5) 

Where         is the transition probability from the j-th parent state to the i-th son state. An 

important outcome of this comparison tells us which transition are possible, since even one 

response of zero means that the transition cannot be made. 

 

Table 6.5: The possible responses of the comparison of the k-th elements (k) of the Boolean 

vectors Bj and Bi 

Bj(k) Bi(k) Rj,i(k) Description 

1 0 0 Impossible transition 

1 1 1 Already damaged, no influence 

0 1     
 

 Probability of damage 

0 0 (      
 
) Probability of non-damage 
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6.2.8 Application of the Bayes theorem: Conditional transition probabilities calculation and 

domino frequency assessment 

The transition probabilities from one state to another are conditioned by the happening of the 

parent state where the transition starts. What is actually required for the calculation of the final 

scenario probabilities (or end state probabilities) for the domino scenario set is to calculate the 

transition probabilities, conditioned to the happening of the primary event.  

One possible approach is to start from the first state of the domino system (the state in which 

all the target are safe and the only active scenario is the primary scenario) and to proceed to 

other states, following a growing order number of secondary scenarios. This rule forces to 

calculate the transition probabilities for all the “parent” states of the system, before to 

calculate the conditioned transition probabilities for the “son” states. A very simple calculation 

of conditioned transition probabilities it therefore performed, since all the variables needed to 

assess the transition probabilities are known. In order to calculate the probability of a generic 

transition        ,  conditioned to the initial scenario P1, by the use of        , the  Bayes 

theorem can be applied: 

                        (6.6) 

Where    is the total probability for the system to assume the j-th state, independently by the 

path. Thus, it is calculated as the sum of all the contribution of all the conditional transition 

probabilities, conditioned to the happening of the initiator scenario, which target the j-th 

scenario. 

   (∑        
   
   )      (6.7) 

As a matter of fact without a primary accident no domino propagation occurs, therefore     is 

considered 1. The procedure considers the number of failed secondary targets for each 

scenario and then continues in ascending order. No further criteria are needed for the selection 

among scenarios with the same number of failed components. This order is necessary because 

the local Markov property is valid, thus the parent state probability must be knows before to 

assess the probability of derivate states. This order is also needed to assess   
 , which can be 

calculated only if the story that produced the referred state it is known.  

Once the new values of transition probability are calculated, new conditioned transition vectors 

can be generated. For each j-th state of the system the most important value for the transition 

vector is        . This value contains the joint probability that the j-th scenario has happened, 

conditioned to the primary scenario, and that this scenario has not propagated further. 

In other words it represents the probability of the j-th scenario at the end of the escalation 

process: the conditional probability of the j-th domino scenario. 

Once the end state probabilities are known, by the use of Eq. (6.1) the domino scenario 

frequency can also be calculated: 

                       (6.8) 

where fde,j the frequency of the j-th domino scenario, fpe is the primary event frequency and 

        is the end state probability, given the initiator event (state 1). 
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6.3 Results 

 

6.3.1 Application to simplified case study 

In order to apply the methodology a simple layout made of 4 items: a vessel where the primary 

accident occurs (P) and three potential targets (A, B and C)  has been chosen. The layout 

selected was shown in Figure 6.3. Details for the definition of equipment typologies and  for the 

selection of primary and secondary scenarios are reported in Table 6.6. The domino system is 

identifies according to the threshold based approach proposed in section 6.2.4.  

 

Table 6.6: Details of the units reported in the simplified case study. Scenario typology and 

damage probabilities of primary and secondary scenarios. (Cozzani et al., 2006) 

 Typology Substance Primary Secondary 

P Atmospheric Gasoline Pool Fire - CEA - 

A Atmospheric Gasoline - Pool Fire – CEA 

B Atmospheric Gasoline - Pool Fire – CEA 

C Pressurized LPG - BLEVE/Fireball - IEA 

 

In order to identify the propagation probabilities, and thus to identify the transition vector 

there is the need to set damage probabilities. Three example values: low (0.01), medium (0.1) 

and high (0.6) are used for the damage probabilities. Negligible probability (10-7) is assumed for 

those equipment outside the damage threshold contours drown in Figure 6.3. Table 6.7 reports 

the damage probabilities for those equipment units in the case study. 

 

Table 6.7: Vulnerability vectors for the units in the case study 

Tank 
ID 

Target A Target B Target C 

P 0.01 0.1 10-7 

A 1 10-7 10-7 

B 0.01 1 0.1 

C 10-7 0.6 1 

 

The domino accident scenario set is, thus, identified on the basis of all possible combination of 

secondary accident scenario, each one can be identified as a Boolean vector. The scenario set 

has been already reported in Table 6.4. The transition probabilities from each scenario to the 

others, conditioned to the happening of the primary scenario, have been calculated following 

the instructions provided in section 6.2.7 and 6.2.8. The results, expressed as transition 

probabilities, collected in transition vectors, are reported in Table 6.8; the probability values 

lower than 10-6 are not considered, therefore a value of 0.00 is reported instead. 
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Table 6.8: The conditioned transition vectors containing the transition probabilities and the 

probability of domino scenarios 

ID S01 S02 S03 S04 S05 S06 S07 S08 

Vector S01 8.91X10-1 9.00X10-3 9.90X10-2 0.00 1.00X10-3 0.00 0.00 0.00 

Vector S02  0.00 8.10X10-3 0.00 0.00 9.00X10-4 0.00 0.00 0.00 

Vector S03  0.00 0.00 0.00 0.00 8.91X10-2 0.00 0.00 9.90X10-3 

Vector S04  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Vector S05  0.00 0.00 0.00 0.00 8.19X10-2 0.00 0.00 9.10X10-3 

Vector S06  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Vector S07  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Vector S08  0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.90X10-2 

Domino Scenarios 
Probability vector 

8.91X10-1 8.10X10-3 0.00 0.00 8.19X10-2 0.00 0.00 1.90X10-2 

 

Vector S01 reports the results of the domino propagation due to primary scenario only and the 

transition probability values of this vector are the same of those obtained by the methodology 

proposed by Cozzani et al. (2005) for simple contemporary propagation. The overall probability 

of any domino scenario (the sum of all domino scenario probability) is the same considering 

both simple and multilevel propagation (about 11 %) and therefore the probability of “no 

domino”, represented by S01 is the same in both the cases (89%). The main difference of the 

two approaches is the repartition of the probability of domino event to occur among the 

possible domino scenarios. In this simple case study the probability of domino with two or 

more failed objects is very low (0.1 %) if a domino propagation of the first level is considered, 

while the probability of domino scenarios with a single secondary scenario account for the 

remaining probability of domino scenarios. On the contrary, if a multilevel domino propagation 

logic is assumed, domino scenarios with two or more secondary scenarios account for about 

the 10% of the domino scenario probability, with a surprising 1.9% for the scenario 

representative of the failure of all four the units composing the system. 

 

6.3.2 Comparison with previous models 

In the study performed by Cozzani et al. (2006) the propagation probabilities, as well as the 

domino scenario probabilities have been calculated for simple realistic case studies. In the 

following the probability of domino scenarios have been assessed. A comparison of the results 

obtained by the mean of the model presented by Cozzani et al. (2005; 2006), which consider 

simple contemporary propagation and by the mean of the model presented in this paper is 

performed. The layout of concern is described in Figure 6.6 (Cozzani et al., 2006), while Table 

6.9 reports the features of the equipment reported. The initiator event is a pool fire scenario in 

the vessel “AT_2F”. In Table 6.9 the secondary accidents are described and the damage 

probabilities for every target of the primary scenario and for every target of each secondary 

scenario are also reported (Cozzani et al., 2006). Damage probabilities of equipment due to 

fires and explosions are calculated by the mean of existing vulnerability models (Cozzani et al., 

2004; Landucci et al., 2009a). 
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Figure 6.6 The layout of concern descried by Cozzani et al. (2006) 

 

Table 6.9 Details of the units reported in the case study. Typology and damage probabilities of 

primary and secondary scenarios. (Cozzani et al., 2006) 

 Typology Substance Primary Secondary Pd 
AT_1F 

Pd 
PV1 

Pd 
PV3 

Pd 
AT_3T 

Pd 
AT_4T 

AT_2F Atmospheric Methanol Pool Fire - CEA 
 

- 0.227 0.060
6 

0.564 0.0708 0.382 

AT_1F Atmospheric Methanol - Pool Fire – CEA 
 

1 0.564 0.060
6 

0.0071 0.0708 

PV1 Pressurized LPG - BLEVE 
Fireball – IEA 

1 1 0.9 0.95 0.95 

PV3 Pressurized LPG - BLEVE 
Fireball – IEA 

1 0.9 1 0.95 0.95 

AT_3T Atmospheric Hydrofluoric 
acid 

- Toxic 
Dispersion - CEA 

0 0 0 1 0 

AT_4T Atmospheric Hydrofluoric 
acid 

- Toxic 
Dispersion - CEA 

0 0 0 0 1 

 

Results of the calculation of domino scenarios, obtained using either simple and multilevel 

propagation logic, are reported in table 6.10. In this case the set of accident scenarios is 

composed by 32 possible domino scenarios. In the case of simple contemporary propagation, 

the most of accidents show valuable probabilities, which ranges between 10-4 and 3.10-1. In the 

case of simple propagation, 4 out of 32 accident, show high probabilities (higher than 0.1). In 

the case multilevel domino propagation is considered, the accidents in PV1 and PV2 have very 

high probability to generate higher-level domino accidents, since the Pd of targets due to 

secondary scenarios are very high (higher than 0.9). 
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Table 6.10: Domino scenario probabilities calculated using both simple contemporary 

propagation and multilevel propagation criteria. The domino scenario with a dramatic 

difference between the values calculated by the multilevel propagation to the respect of the 

values obtained considering simple propagation are evidenced with (*) 
Scenario AT_1F PV3 PV1 AT_3_T AT_4_T Scenario Probability 

Multilevel Propagation 
Scenario Probability 
Simple Contemporary Propagation 

S01 0 0 0 0 0 1.82X10
-01

  1.82X10
-01

 
S02 1 0 0 0 0 3.80X10

-03
 5.34X10

-02
 

S03 0 1 0 0 0 0.00 (*) 2.35X10
-01

 (*) 
S04 0 0 1 0 0 0.00 1.17X10

-02
 

S05 0 0 0 1 0 2.71X10
-03

 1.39X10
-02

 
S06 0 0 0 0 1 3.31X10

-02
 (*) 1.12X10

-01
 (*) 

S07 1 1 0 0 0 0.00 6.91X10
-02

 
S08 1 0 1 0 0 0.00 3.44X10

-03
 

S09 0 1 1 0 0 0.00 1.52X10
-02

 
S10 1 0 0 1 0 4.00X10

-04
 4.07X10

-03
 

S11 0 1 0 1 0 0.00 1.79X10
-02

 
S12 0 0 1 1 0 0.00 8.94X10

-04
 

S13 1 0 0 0 1 5.96X10
-03

 3.30X10
-02

 
S14 0 1 0 0 1 0.00 (*) 1.45X10

-01
 (*) 

S15 0 0 1 0 1 0.00 7.25X10
-03

 
S16 0 0 0 1 1 4.04X10

-03
 8.56X10

-03
 

S17 1 1 1 0 0 0.00 4.46X10
-03

 
S18 1 1 0 1 0 0.00 5.26X10

-03
 

S19 1 0 1 1 0 0.00 2.62X10
-04

 
S20 0 1 1 1 0 0.00 1.16X10

-03
 

S21 1 1 0 0 1 0.00 4.27X10
-02

 
S22 1 0 1 0 1 0.00 2.13X10

-03
 

S23 0 1 1 0 1 0.00 9.38X10
-03

 
S24 1 0 0 1 1 8.50X10

-04
 2.51X10

-03
 

S25 0 1 0 1 1 0.00 1.11X10
-02

 
S26 0 0 1 1 1 0.00 5.52X10

-04
 

S27 1 1 1 1 0 0.00 3.39X10
-04

 
S28 1 1 1 0 1 0.00 2.75X10

-03
 

S29 1 1 0 1 1 0.00 3.25X10
-03

 
S30 1 0 1 1 1 0.00 1.62X10

-04
 

S31 0 1 1 1 1 0.00 7.15X10
-04

 
S32 1 1 1 1 1 7.67X10

-01
 (*) 2.10X10

-04
 (*) 

 

Therefore, once a secondary accident is started, it is very likely to have further escalation. In 

the case of multilevel propagation the only two scenarios with high probability are: the scenario 

of total destruction of the site, S32 (0.767), and the scenario in which no domino effect occurs, 

S01 (0.182). In other words, once the domino propagation has started, the most probable 

scenario, is the one representative of the damage of all the units in the site, S32, which results 

in six contemporary scenarios: the primary scenario and all five the secondary scenarios. The 

other interesting fact is that, excluding S01 in which no domino occurs, S32 is the only domino 

scenario with damage probability higher than 10-1.  

The results showed that by the use of the proposed model, domino scenarios with a higher 

level are considered more frequently than they were considered by the use of previous models 
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which followed a simple propagation logic. The expected difference in terms of risk calculation 

is that the overall frequency of domino scenarios is exactly the same in either the case of simple 

and multilevel propagation, but what it changes is the risk. In fact, considering multilevel 

propagation allows to consider domino scenarios with a higher number of contemporary 

secondary scenarios, which inevitably result in more serious consequences and on an 

increment of the scenario magnitude. 

 

6.4 Conclusions 
 

Due to the need to analyze a multilevel domino escalation process, a novel tools has been 

proposed for the assessment of domino scenario frequencies. The presented methodology is 

based on the Markovian analysis for the assessment of the transition probabilities between 

possible domino scenarios. Possible combination of secondary scenarios are identified and 

transition probabilities between the possible states taken by the domino system are assessed. 

The probabilities, and frequencies of domino scenarios are calculated by the use of the Bayes 

theorem. The application of the methodology to case studies and to previous work based on 

simple logic for the propagation of domino accidents, allowed the assessment of a set of 

realistic domino scenarios, and of their probabilities. The results obtained by the use of this 

novel methodology are compared with those obtained by the previous models based on a 

single propagation level. The result is that the overall domino probability of any of the possible 

domino scenarios is exactly the same, but the probabilities are distributed in a different 

manner. Results obtained using a multilevel propagation logic are characterized by a higher 

probability of those domino scenarios with a higher number of secondary scenarios, the ones 

with the most serious overall consequences. Therefore, multilevel propagation logic allows the 

consideration of domino scenarios with higher magnitude.  

The availability of this new tool enable the calculation of complex accidental scenario 

probabilities and frequencies. The simplicity of this methodology allows the automation of the 

procedure, and its inclusion on those software used for QRA, allowing the quantitative risk 

assessment associated to these domino scenarios and the calculation of individual and societal 

risk indicators. 

 

 

 

 

 

 

 

 

  



195 

 

References: 
 
Abdolhamidzadeh B, Abbasi T, Rashtchian D, Abbasi SA. A new method for assessing domino 

effect in chemical process industry. Journal of Hazardous Materials, 2010; 182:416–426.  
Antonioni, G., Spadoni, G., & Cozzani, V. (2009). Application of domino effect quantitative risk 

assessment to an extended industrial area. Journal of Loss Prevention in the Process 
Industries, 22(5), 614-624. 

D.F. Bagster, R.M. Pitblado, Proc. Safety Environ. Protect. 69 (1991) 196. 
A.M. Birk, M.H. Cunningham The boiling liquid expanding vapor explosion J. Loss Prev. Process 

Ind., 7 (1994), pp. 474–480 
A.M. Birk, Scale effects with fire exposure of pressure-liquefied gas tanks J. Loss Prev. Process 

Ind., 8 (1995), pp. 275–290  
A.M. Birk Hazards from propane BLEVEs: an update and proposals for emergency responders J. 

Loss Prev. Process Ind., 9 (1996), pp. 173–181 
CCPS, Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires and 

BLEVEs, AIChE, New York, 1994 
CCPS Guidelines for Consequence Analysis of Chemical Releases, Center for Chemical Process 

Safety American Institute of Chemical Engineers, New York (1999) 
V. Cozzani, E. Salzano, The quantitative assessment of domino effects caused by overpressure. 

Part I: probit models, J. Hazard. Mater. A107 (2004a) 67–80. 
V. Cozzani, E. Salzano, The quantitative assessment of domino effects caused by overpressure 

Part II: case studies, J. Hazard. Mater A107 (2004b) 81–94. 
Cozzani, V., Gubinelli, G., Antonioni, G., Spadoni, G., & Zanelli, S. (2005). The assessment of risk 

caused by domino effect in quantitative area risk analysis. Journal of Hazardous Materials, 
127(1e3), 14-30. 

Cozzani, V., Antonioni, G., & Spadoni, G. (2006). Quantitative assessment of domino scenarios 
by a GIS-based software tool. Journal of Loss Prevention in the Process Industries, 19(5), 
463-477. 

Cozzani, V., Tugnoli, A., & Salzano, E. (2009). The development of an inherent safety approach 
to the prevention of domino accidents. Accident Analysis & Prevention, 41(6), 1216-1227. 

Cozzani V., Antonioni G., Khakzad N., Khan F., Taveau J., Reniers G., Quantitative Assessment of 
Risk Caused by Domino Accidents, Domino Effects in the Process Industries, Modeling, 
Prevention and Managing, Elsevier, Amsterdam, The Netherlands, (2013a) 

Cozzani V., Tugnoli A., Bonvicini S., Salzano E., Threshold-Based Approach, Domino Effects in 
the Process industries, Modeling, Prevention and Managing, Elsevier, Amsterdam, The 
Netherlands, (2013b) 

Cozzani V, Antonioni G, Landucci G,Tugnoli A, Bonvicini S, Spadoni G, Quantitative assessment 
of domino and NaTech scenarios in complex industrial areas .Journal of Loss Prevention in 
the Process Industries 28 (2014) 10-22 

Delvosalle C., Domino effects phenomena: definition, overview and classification, in: Direction 
Chemical Risks (Ed.), European Seminar on Domino Effects, Federal Ministry of Employment, 
Brussels, 1996, pp. 5–15. 

Di Padova A, Tugnoli A, Cozzani V, Barbaresi T, Tallone F. Identification of fireproofing zones in 
oil & gas facilities by a risk-based procedure. Journal of Hazardous Materials 2011; 191:83–
93. 

Egidi, D., Foraboschi, F. P., Spadoni, G., & Amendola, A. (1995). The ARIPAR project: analysis of 
the major accident risks connected with industrial and transportation activities in the 
Ravenna area. Reliability Engineering & System Safety, 49(1), 75-89. 



196 

 

Gubinelli, G., Zanelli, S., & Cozzani, V. (2004). A simplified model for the assessment of the 
impact probability of fragments. Journal of Hazardous Materials, 116, 175e187. 

Gubinelli, G., & Cozzani, V. (2009a). Assessment of missile hazard: reference fragmentation 
patterns of process equipment. Journal of Hazardous Materials, 163, 1008-1018. 

Gubinelli, G., & Cozzani, V. (2009b). The assessment of missile hazard: evaluation of fragment 
number and drag factors. Journal of Hazardous Materials, 161, 439-449. 

Khakzad N, Faisal Khan F.I., Amyotte P, Valerio Cozzani V Risk Analysis Volume 33, Issue 2, 
pages 292–306, 2013 

F.I. Khan, S.A. Abbasi Models for domino effect analysis in the chemical process industries 
Process Saf. Prog., 17 (1998a), pp. 107–123 

F.I. Khan, S.A. Abbasi DOMIFFECT: a new user friendly software for domino effect analysis 
Environ. Model. Softw., 13 (1998b), 163–177 

F.I. Khan, S.A. Abbasi, Studies on the probabilities and likely impacts of chains of accident 
(domino effect) in a fertiliser industry, Process Saf. Prog., 19 (2000a),  40–56 

F.I. Khan, B. Natarajan, S.A. Abbasi, Avoid the domino effect via proper risk assessment, Chem. 
Eng. Prog., 96 (2000b),  63–76 

G. Landucci, G. Gubinelli, G. Antonioni, V. Cozzani, The assessment of the damage probability of 
storage tanks in domino events triggered by fire, Accident Anal. Prev. 41 (6) (2009) 1206–
1215. 

I.R.M. Leslie, A.M. Birk, State of the art review of pressure liquefied gas container failure modes 
and associated projectile hazards, J. Hazard. Mater., 28 (1991), 329–365 

Mannan, S., 2005. Lees’ Loss Prevention in the Process Industries, third ed. Elsevier, Oxford, UK.  
Reniers, G., Dullaert, W., Ale, B., Soudan, K., Developing an external domino accident 

prevention framework: Hazwim Journal of Loss Prevention in the Process Industries 18 
(2005a), 127–138 

Reniers, G., Dullaert, W., Soudan, K., & Ale, B. The use of current risk analysis tools evaluated 
towards preventing external domino accidents. Journal of Loss Prevention in the Process 
Industries, Volume 18, 3, (2005b),119-126 

G.L.L. Reniers, W. Dullaert, A. Audenaert, B.J.M. Ale, K. Soudan. Managing domino effect-
related security of industrial areas. Journal of Loss Prevention in the Process Industries, 21, 
3, (2008) 336-343  

G. Reniers, W. Dullaert, K. Soudan, Domino effects within a chemical cluster: a game-theoretical 
modeling approach by using Nash-equilibrium, J. Hazard. Mater. 167 (1/3) (2009) 289–293. 

G. Reniers An external domino effects investment approach to improve cross-plant safety 
within chemical clusters, Journal of Hazardous Materials 177 (2010) 167–174 

G. Reniers, V. Cozzani, Domino Effects in the Process Industries, Modeling, Prevention and 
Managing, Elsevier, Amsterdam, The Netherlands, (2013a) 

G. Reniers, V. Cozzani, Features of Escalation Scenarios, Domino Effects in the Process 
Industries, Modeling, Prevention and Managing, Elsevier, Amsterdam, The Netherlands, 
(2013b) 

Tugnoli A, Cozzani V, Di Padova A, Barbaresi T, Tallone F, Mitigation of fire damage and 
escalation by fireproofing: A risk-based strategy, Reliability Engineering and System Safety 
105 (2012)25–35 

Uijt de Haag, P. A. M., & Ale, B. J. M. (1999). Guidelines for quantitative risk assessment (Purple 
book). The Hague (NL): Committee for the Prevention of Disasters. 

 



197 

 

Chapter 7: 

Final Conclusions 

Cascading events are capable to generate accidental scenarios with serious consequences for 

the population that lives in the vicinity of process plants. The issues related to cascading event 

were analyzed and discussed in detail in this thesis. Both the topics of NaTech and domino 

events have been developed during this research activity. 

The state of the art of technical, scientific and managerial knowledge concerning such accident 

scenarios, caused by domino events was described. The analysis of scientific publications 

concerning domino effect was carried out addressing four main issues: past accident analysis, 

vulnerability models, risk assessment and safety management of domino scenarios. A number 

of open points still remain, in order to improve the effectiveness of existing tools aimed at the 

assessment and prevention of risk due to domino. This is the case of risk assessment tools 

addressing escalation effects to the respect of those complex multi-level scenarios, which 

requires major improvement in order to be fully applicable. 

A short review of the past works regarding NaTech accidents has been carried out. Attention 

was focused on several research addressing NaTech data collection from past accident studies, 

as well as the improvements of risk analysis methodologies to the respect of NaTech accident 

has been discussed.  However, the availability of partial or fragmented data regarding this kind 

of accidents increases the difficulty of this research. A critical task Land use planning has been 

found to be an important factor in the mitigation of natural disasters and economic losses from 

disasters in regions subject to natural hazards. Another possible strategy to improve safety of 

the industrial installation is by providing useful design indications, which account for a safer 

layout disposal and recommendation on equipment construction in NaTech prone zones. 

Furthermore, by the tool of preliminary hazard analysis the critical units can be identified. The 

level of preparation to respond to NaTech is also an important indication for the safety of an 

industrial area. However, a huge work is still needed to increase the understanding of this 

particular risk, in order to prevent and to mitigate the impact of such scenarios. The aim of the 

current research work was to investigate more in detail the NaTech hazard, providing novel 

tools to assist operators in the assessment of NaTech risk.  

Within this framework, a methodology for the assessment risk due to lightning strikes on 

process installation was developed. Past accident analysis showed that atmospheric storage 

tanks are the equipment typology most frequently damaged by the impact of lightning. 

Reference scenarios have been identified, with the respects of possible safety barriers installed 

on the tanks. In order to evaluate the risk due to accidents triggered by lightning strikes, several 

technical tools were developed. A dedicated methodology allowed the calculation of the 

expected frequency of lightning strikes on storage tanks. A fragility model that assess the 

possibility of direct structural damage was developed, allowing to calculate a damage 

probability for vessel struck by lightning. Reference event trees were obtained and validated 

using past accident data. Reliability analysis carried out on safety barriers applied in industrial 
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practice allowed the quantification of event trees. The application of the entire QRA 

methodology to a case study confirmed on one hand that NaTech scenarios caused by lightning 

may have an important influence on the risk profile of a facility, and, on the other hand, 

evidenced the role of the safety barriers in preventing accident propagation.  

Due to the fact that dedicated fragility models for the assessment of equipment damage 

probability in case of flood was lacking, a model able to calculate the failure probability of 

horizontal cylindrical vessels as a function of flood severity was developed. Due to the necessity 

to analyse a huge number of scenarios, simplified correlations were derived for the quick 

estimation of vessel resistance. The importance of an appropriate design of the vessel support 

and basements was evidenced, highlighting the potential importance of mitigation barriers in 

the prevention of NaTech scenarios triggered by floods. 

As evidenced by the state of the art on domino events, a recognized unique methodology for 

the assessment of multilevel domino events is lacking.  A novel tools has been proposed for the 

assessment of domino scenario frequencies. The presented methodology is based on the 

Markovian analysis for the assessment of the transition probabilities between possible domino 

scenarios, allowing the assessment of multilevel propagation. Possible combination of 

secondary scenarios are identified. The probabilities, and frequencies of domino scenarios are 

calculated. The results obtained by the use of this novel methodology are compared with those 

obtained by the previous models based on a single propagation level. Results obtained using a 

multilevel propagation logic are characterized by a higher probability of those domino scenarios 

with a higher number of secondary scenarios: the ones with the most serious overall 

consequences. Therefore, multilevel propagation logic allows the consideration of domino 

scenarios with higher magnitude.  

On the one hand, the relevant research work carried out in the past years provided a 
framework to approach the assessment of cascading events, being either domino or Natech 
event. On the other hand, the relevant work carried out still needs to be consolidated and 
completed. The tools and methods provided within this very study had the aim to assist the 
progress toward a consolidated and universal methodology for the assessment and prevention 
of cascading events, contributing to enhance safety and sustainability in the chemical and 
process 
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Appendix 

 
This Appendix presents the results obtained for simplified regular lay-outs as that in Figure 10. Three 

further cases were considered: 6 tanks in a 2 rows - 3 columns matrix; 9 tanks in a 3 rows - 3 columns 

matrix; 20 tanks in a 4 rows - 5 columns matrix. As for Figure 10, identical tank geometries were 

considered for all tanks in the lay-outs (Tank ID 9 in Table 4). 

The results are reported in Tables A1, A2 and A3. A comparison of the three tables with data in Table 6 

shows that the values of LI for the three different types of positions (Angle, Edge, Centre) are identical in 

these lay-out configurations, due to symmetry. Thus, the results suggest that LI is mainly influenced by 

the distance and type of position (Angle, Edge, Centre), and not by the number of the tanks in the lay-

out. However, it should be noted that these results apply only to storage tank parks in which tank sizes 

are similar. 

 

 

Table A1: Values of LI for a simple lay-out of 6 atmospheric tanks in a 2 rows - 3 columns matrix. 

Number Position Distance, d 

  10m 20m 30m 50m 

1 Angle 0.41 0.46 0.50 0.60 

2 Edge 0.18 0.24 0.30 0.42 

3 Angle 0.41 0.46 0.50 0.60 

4 Angle 0.41 0.46 0.50 0.60 

5 Edge 0.18 0.24 0.30 0.42 

6 Angle 0.41 0.46 0.50 0.60 

  

 

 

Table A2: Values of LI for a simple lay-out of 9 atmospheric tanks in a 3 rows - 3 columns matrix. 

Number Position Distance, d 

  10m 20m 30m 50m 

1 Angle 0.41 0.46 0.50 0.60 

2 Edge 0.18 0.24 0.30 0.42 

3 Angle 0.41 0.46 0.50 0.60 

4 Edge 0.18 0.24 0.30 0.42 

5 Centre 0.07 0.12 0.17 0.29 

6 Edge 0.18 0.24 0.30 0.42 

7 Angle 0.41 0.46 0.50 0.60 

8 Edge 0.18 0.24 0.30 0.42 

9 Angle 0.41 0.46 0.50 0.60 
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Table A3: Values of LI for a simple lay-out of 20 atmospheric tanks in a 4 rows - 5 columns matrix. 

Number Position Distance, d 

  10m 20m 30m 50m 

1 Angle 0.41 0.46 0.50 0.60 

2 Edge 0.18 0.24 0.30 0.42 

3 Edge 0.18 0.24 0.30 0.42 

4 Edge 0.18 0.24 0.30 0.42 

5 Angle 0.41 0.46 0.50 0.60 

6 Edge 0.18 0.24 0.30 0.42 

7 Centre 0.073 0.12 0.17 0.29 

8 Centre 0.073 0.12 0.17 0.29 

9 Centre 0.073 0.12 0.17 0.29 

10 Edge 0.18 0.24 0.30 0.42 

11 Edge 0.18 0.24 0.30 0.42 

12 Centre 0.073 0.12 0.17 0.29 

13 Centre 0.073 0.12 0.17 0.29 

14 Centre 0.073 0.12 0.17 0.29 

15 Edge 0.18 0.24 0.30 0.42 

16 Angle 0.41 0.46 0.50 0.60 

17 Edge 0.18 0.24 0.30 0.42 

18 Edge 0.18 0.24 0.30 0.42 

19 Edge 0.18 0.24 0.30 0.42 

20 Angle 0.41 0.46 0.50 0.60 

 

 

  



201 

 

 
In the following, the results of the application of the failure model are reported. The results are 
summarized in charts that allow a quick overview of the vessels response to pre-determined flood 
conditions (some examples are reported in Fig.s A1, A2, A3, A4). For each vessel, identified by the vessel 
ID in Table 1, the failure to a given flood condition (identified by the imposed flood velocity vw in m/s 
and effective depth hw in m) is highlighted by a red color. On the contrary, if the model does not predict 
a failure, the box is white. 

 
 

 
 

Figure A1: Failure chart for the vessels considered in the present study assuming 50% filling level and 
stored liquid density of 1100 kg/m3 (water solution containing toxic contaminant). 

 

 
 
Figure A2: Failure chart for the atmospheric vessels considered in the present study assuming 90% filling 
level and stored liquid density of 1100 kg/m3 (water solution containing toxic contaminant). 
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Figure A3: Failure chart for the pressurized vessels considered in the present study assuming 50% filling 
level and stored liquid density of 600 kg/m3 (ammonia). 
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Figure A4: Failure chart for the pressurized vessels considered in the present study assuming 90% filling 
level and stored liquid density 
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