Interfacial interactions, charge transport and growth phenomena in Organic Field Effect Transistors

Kyndiah, Adrica (2015) Interfacial interactions, charge transport and growth phenomena in Organic Field Effect Transistors, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Chimica, 27 Ciclo. DOI 10.6092/unibo/amsdottorato/7100.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (7MB) | Anteprima

Abstract

Organic electronics is an emerging field with a vast number of applications having high potential for commercial success. Although an enormous progress has been made in this research area, many organic electronic applications such as organic opto-electronic devices, organic field effect transistors and organic bioelectronic devices still require further optimization to fulfill the requirements for successful commercialization. The main bottle neck that hinders large scale production of these devices is their performances and stability. The performance of the organic devices largely depends on the charge transport processes occurring at the interfaces of various material that it is composed of. As a result, the key ingredient needed for a successful improvement in the performance and stability of organic electronic devices is an in-depth knowledge of the interfacial interactions and the charge transport phenomena taking place at different interfaces. The aim of this thesis is to address the role of the various interfaces between different material in determining the charge transport properties of organic devices. In this framework, I chose an Organic Field Effect Transistor (OFET) as a model system to carry out this study as it An OFET offers various interfaces that can be investigated as it is made up of stacked layers of various material. In order to probe the intrinsic properties that governs the charge transport, we have to be able to carry out thorough investigation of the interactions taking place down at the accumulation layer thickness. However, since organic materials are highly instable in ambient conditions, it becomes quite impossible to investigate the intrinsic properties of the material without the influence of extrinsic factors like air, moisture and light. For this reason, I have employed a technique called the in situ real-time electrical characterization technique which enables electrical characterization of the OFET during the growth of the semiconductor.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Kyndiah, Adrica
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze chimiche
Ciclo
27
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Organic field effect transistor,Organic semiconductors, Interface,Charge transport,Percolation, Disorders
URN:NBN
DOI
10.6092/unibo/amsdottorato/7100
Data di discussione
8 Aprile 2015
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^