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Overview 

 

This thesis regards the study and the development of new cognitive assessment and 

rehabilitation techniques of subjects with traumatic brain injury (TBI). 

Advances in emergency medicine have greatly increased survival rates of people 

sustaining TBI. However, these advances have come with the realization that many 

survivors are living with significant residual deficits in multiple areas of functioning, 

which make the resumption of a quality lifestyle that is extremely difficult. To this 

point, TBI has recently been characterized as a chronic disease. As well as other 

chronic diseases, TBI is often responsible for persistent disabling symptoms in 

multiple organ systems. Therefore, several researchers and clinicians have emerged 

to treat these symptoms in order to help these individuals regain function and live 

more productive and independent lives.  

The use of technological innovations in assessment and neuropsychological 

rehabilitation has increased in research and clinical practice. 

The literature shows that neuropsychological assessment benefits from the use of 

neuroimaging technique (i.e. qEEG) and computerized instruments. The use of these 

techniques in the assessment of a patient allows to have quantitative and objective 

parameters; moreover these techniques reduce the misdiagnosis rate. A correct 

assessment has deep implications in rehabilitation of the patients, than it is very 

important to search new technologies and methods of assessment. 

In rehabilitation, the use of new technologies is more diversified, such as electronic 

devices and cell phones, quantitative EEG (qEEG), brain computer interface (BCI), 

virtual reality, robots, neurofeedback, transcranial direct current stimulation, among 

others.  

In neuropsychological rehabilitation, the new technologies have facilitated the 

development of compensatory strategies and real-world simulations, but they have 

not yet been introduced in daily clinical practice.  

For these reasons, we need new studies and investigations to understand the action 

mechanism of these new technologies and to validate their use on large scale. 

This thesis i) provides an overview about the state of art of this new assessment and 

rehabilitation technologies, ii) suggests new methods for the assessment and 
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rehabilitation and iii) contributes to the explanation of the neurophysiological 

mechanism that is involved in a rehabilitation treatment. 

This thesis is composed of 12 chapters. Some chapters provide useful information to 

contextualize TBI and its outcome; they describe the methods used for its 

assessment/rehabilitation. The other chapters illustrate a series of experimental 

studies conducted in healthy subjects and TBI patients that suggest new approaches 

to assessment and rehabilitation. The new proposed approaches have in common the 

use of electroencefalografy (EEG). EEG was used in all the experimental studies 

with a different porpouse, such as diagnostic tool, signal to command a BCI-system, 

outcome measure to evaluate the effects of a treatment, etc. 

Chapter 1 gives an overview of TBI. It gives a definition of TBI, epidemiological 

information and the classification of TBI. In particular, TBI can be classified as mild, 

moderate and severe. This classification will be the guideline of all the paper. Infact, 

the thesis is divided into two main parts: the first part (cap4-cap7) is focused on the 

severe TBI. The second one is focused on mild and moderate TBI. 

Chapter 2 resumes the basic information about the physiological origin, the 

properties and the application domains of the EEG signal and the most common 

analytical methods, involving methods for i) the analysis in the frequency and time-

frequency domains, ii) the separation and the localization of EEG sources and iii) 

applications aimed to extract event-related modifications of some EEG properties. 

Chapter 3 introduces the concept of BCI; it describes the EEG-based BCI typologies 

and their applications. 

Chapter 4 defines severe-TBI that is classified in different levels of consciousness 

disorders (coma state, in the vegetative state, in the minimally conscious state, and 

affected by the so-called locked-in syndrome). The related issues have an enormous 

relevance due to ethical, clinical, and economical reasons. The focus in this review 

relies on i) the search for optimal (both in the neuroimaging and in the 

electrophysiological domains) methods to assess the functionality (and the degree of 

impairment) of the several functions of the central nervous system of the patients and 

ii) the possibility to communicate with these patients through properly developed 

BCI systems. 

Chapter 5 describes the first experimental activity about the development of an 

improved procedure to detect brain response to imagery instruction in patients with 

disorders of consciousness. This work describes a procedure using EEG to detect 
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brain responses to imagery instruction in patients with disorders of consciousness. 

Five healthy subjects and five patients with different disorders of consciousness took 

part in the study. A support vector machine classifier applied to EEG data was used 

to distinguish two mental tasks (Imagery Trial) and to detect answers to simple yes 

or no questions (pre-Communication Trial). The proposed procedure uses feature 

selection based on a nested-leave-one-out algorithm to reduce the number of 

electrodes required. We obtained a main classification accuracy of 82.0% (SD 5.1%) 

for healthy subjects and 84.6% (SD 9.1%) for patients in the Imagery Trial, and a 

main classification accuracy of 80.7% (SD 11.5%) for healthy subjects and 91.7% 

(SD 7.4%) for patients in the pre-Communication Trial. The subset of electrodes 

selected was subject and session dependent. 

After the development of the procedure for the discrimination of two imagery tasks, 

a BCI system for communication was proposed.  

Chapter 6 describes a procedure to design a similitude-based brain computer 

interface system for communication. Five healthy subjects and two patients with 

disorders of consciousness took part in the study. A support vector machine classifier 

applied to EEG data was used to detect answers to simple yes/no questions, while 

reducing the number of required electrodes. Just using ten electrodes we obtained a 

main classification accuracy of 83.5% (SD 12%) for healthy subjects and 90% (SD 

14.1%) for patients. 

The two studies were conducted in collaboration with “Maggiore Hospital” of 

Bologna.  

Chapter 7 describes a case of study conducted in collaboration with the Institute of 

Medical Psychology and Behavioral Neurobiology of Tübingen. The aim of the 

study was to develop an hybrid BCI system EEG-fNIRS based on the 

communication with amyotrophic lateral sclerosis (ASL) patients. 

Four ASL patients took part in the study and after several online feedback sessions 

the achieved accuracy was higher than 65% for 90% of the sessions. 

Chapter 8 defines moderate and mild TBI. The main cognitive impairment is listed 

and the EEG finding in TBI was analyzed. The chapter shows that the new 

techniques, developed in the last few years (computer assisted rehabilitation, 

neurofeedback, transcranial electrical modulation), can improve the rehabilitation of 

the subjects. 
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Chapter 9 describes a tele-rehabilitation system developed for the cognitive 

rehabilitation of people with brain injury using LabVIEW, a high-level graphical 

programming environment. The system offers several cognitive rehabilitation 

exercises and allows to patients’ personal and clinical data and the results of the 

exercises performed by patients to be saved in an Access database. The system 

provides a remote connection between the database and the device suitable for 

rehabilitative training, allowing continuous monitoring of patients’ performance. 

In Chapter 10, transcranial electrical stimulation techniques were studied. In 

particular, the chapter was focused on the effects of these techniques on the EEG 

signal. The investigation of the modifications induced by transcranial electrical 

stimulation may support and detail the use of electrical stimulation as a therapeutic 

tool for several disorders characterized by abnormalities in electrophysiological and 

behavioral parameters. 

Chapter 11 relates a case of study about the effect of transcranial direct current 

stimulation on EEG.  

The study examine the effects of anodal tDCS on spontaneous cortical activity in a 

resting brain to disclose possible modulation of spontaneous oscillatory brain 

activity. EEG activity was measured in ten healthy subjects during and after a session 

of anodal stimulation of the postero-parietal cortex to detect the tDCS induced 

alterations. Changes in the theta, alpha, beta, and gamma power bands were 

investigated. Three main findings emerged: (1) an increase in theta band activity 

during the first minutes of stimulation; (2) an increase in alpha and beta power 

during and after stimulation; (3) a widespread activation in several brain regions. 

Chapter 12 describes a study about i) the realization of a system able to generate and 

to record the steady-state visual evoked potential (SSVEP), and ii) the study of this 

potential before and after a session of tDCS. From the explorative analysis results 

that the SSVEP were well generated and recorded. 

From the statistical analysis emerges that the tDCS induces changes in the oscillatory 

activity. The analysis shows that there is a significant difference before and after the 

stimulation, and in particular the anodal stimulation induces a decreasing of the 

power associated to the SSVEP. 
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Chapter 1   

Traumatic brain injury (TBI) 

 

 

1.1 Introduction 

The term acquired brain injury enclose all types of neurological disorders that are not 

congenital or degenerative. There are two subsets of acquired brain injury. One type 

of acquired brain injury has an intrinsic derivation and does not involve an external 

mechanism. Such non-traumatic brain injuries may be caused by heart attacks, 

strokes, aneurisms, intracranial tumours, infectious diseases, venereal diseases, 

meningitis, hypo/hyperglycaemia, hypoxia and toxic exposure. The second type of 

acquired brain injury, known as traumatic brain injury, is caused by the impact of an 

external force. Traumatic brain injury is clearly defined in the following statement: 

“Traumatic brain injury is an insult to the brain, not of a degenerative or congenital 

nature but caused by an external physical force, that may produce a diminished or 

altered state of consciousness, which results in impairment of cognitive abilities or 

physical functioning. It can also result in the disturbance of behavioral or emotional 

functioning. These impairments may be either temporary or permanent and cause 

partial or total disability or psychosocial maladjustment.” (Brain Injury Association 

of America, 1986) 

The rehabilitation needs of acquired brain injury survivors are likely to be similar, 

regardless of whether the injury was caused by trauma or not (Soryal et al. 1992). 
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Consequently, the sequelae of traumatic brain injury outlined in this literature review 

may be relevant to the non-traumatic brain injury population. 

Traumatic brain injury is a significant cause of death and disability, particularly 

amongst people below the age of 35 years (Seel et al., 2003). The societal cost of 

traumatic brain injury is substantial (Ghajar, 2000). Survivors may require a 

multitude of services to aid their recovery. The process of rehabilitation may include 

acute care, rehabilitation nursing, physiotherapy, occupational therapy, social care 

work, counselling and home-based support services and, for younger survivors, 

specialist educational provision. The financial burden of providing 

neurorehabilitation care is amplified by the age distribution of head trauma injuries, 

given that a third of survivors are aged between ten and 19 years. The repercussion 

of acquiring brain injury at a young age is that individuals will spend considerably 

longer living with the consequences of their disability and, hence, society will spend 

longer providing rehabilitative care. The personal costs involved with poor outcome 

following traumatic brain injury are also extensive and pervasive. Empirical studies 

document adverse long term effects for brain injured individuals and their families in 

terms of emotional well being and social and occupational functioning. 

1.2 Epidemiology 

The overall incidence of TBI in the United States was estimated to be 538.2 per 

100,000 population, or around 1.5 million new cases in 2003 (Rutland-Brown et al., 

2003). Somewhat lower rates are reported in Europe (235 per 100,000) and Australia 

(322 per 100,000) (Tagliaferri et al., 2006; Hillier et al., 1997). 

Rates of TBI are highest in the very young (age group zero to four years) and in 

adolescents and young adults (15 to 24 years); there is another peak in incidence in 

the elderly (age >65 years) (Rutland-Brown et al., 2003). Approximately 78 percent 

of TBI are treated in the emergency department only; 19 percent of patients require 

hospitalization, and 3 percent are fatal. Most cases treated in emergency departments 

occur in the very young (ages zero to four years), while hospitalization rates are 

highest in patients older than 65 years. 

As with most traumatic injuries, the incidence of TBI is significantly higher in men 

compared to women, with ratios that vary between 2.0 to 1 and 2.8 to 1 (Langlois et 

al., 1997; Kraus et al.,1996; Feigin et al., 2013). For severe TBI, the gender ratio is 
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more pronounced, 3.5 to 1. Lower socioeconomic status, and underlying psychiatric 

and cognitive disorders are also risk factors for head injury (Liao et al., 2012). 

Falls are the leading cause of TBI (particularly in older patients), followed by motor 

vehicle accidents (Feigin et al., 2013; Langlois et al., 2006; Jennett et al., 1990). The 

proportion of TBI secondary to violence has risen over the past decade and now 

accounts for 7 to 10 percent of cases (Butcher et al., 2007)). TBI related to military 

combat has received increased attention in the years from 2002 to 2009 (Summers et 

al., 2009). Mechanistic aspects of combat-related trauma may differ from TBI related 

to other causes, as the former usually involve blast explosives. 

Moderate and severe TBIs are associated with neurologic and functional 

impairments. The prevalence of long-term disability related to TBI in the United 

States is variably estimated to be between 3.2 to 5.3 million, or approximately 1 to 2 

percent of the population (Thurman et al., 1999; Zaloshnja et al., 2005). 

1.3 Classification of TBI 

The severity of brain injury relates to the amount of damage incurred through 

trauma. This can range from mild bruising to a prolonged coma, a persistent 

vegetative state or death. Severity is inferred from the extent and duration of 

alterations in responsiveness. 

There are three generally accepted assessment measures to classify severity of the 

injury during the acute stage. The most common is the Glasgow Coma Scale (GCS) 

(Teasdale & Jennett, 1974; 1976). This quantitative assessment rates the depth and 

duration of altered consciousness, along three parameters; eye opening, verbal 

response and motor response. The second measure is an assessment of ‘Post-

Traumatic Amnesia’ (PTA), which appraises the time taken to regain recall of 

continuous memories. It is considered a more sensitive gauge of mild and moderate 

brain injury compared to the GCS (Bay & McLean, 2007). As such, extended 

versions of the GCS have been devised to incorporate amnesia as an additional factor 

(Nell, et al., 2000; Batchelor & McGuiness, 2002). The third measure is the Loss of 

Consciousness (LOC), which refers to the duration of unconsciousness. As there is 

no definitive measure of brain injury severity, a classification system may use any 

combination of these three measurements (Rao & Lyketsos, 2000). Moreover, the 

measures may be used in conjunction with diagnostic tools that draw on additional 

predictor variables of outcome (Brewer & Therrien, 2000; McNett, 2007). 
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Three broad grades of severity are used to categorize brain injury; mild, 

moderate and severe. However, universally accepted definitions for the severity of 

brain injury do not exist (Petchprapai & Winkelman, 2007). Consequently, different 

sources often use contrasting inclusion criteria to determine severity, especially when 

using combined measures. Even for single measures, the demarcations used for 

severity may sometimes overlap or be discontinuous. Also, some authors have 

proposed a fourth severity category to identify ‘minor’ brain injuries, as distinct from 

other mild and more serious forms of brain injury. Generally, a mild brain injury is 

generally defined by a GCS score of 13–15 (Jennett, 2002), LOC of less than 30 

minutes (Rao et al., 2000) and/or PTA of less than an hour (Teasdale, 1995). A GCS 

score of 9–12 (Jennett, 2002), LOC of 30 minutes to 24 hours (Rao et al., 2000) 

and/or PTA of one to 24 hours (Teasdale, 1995) is classified as a moderate brain 

injury. Those with a severe brain injury have a GCS score less than 8 (Jennett, 2002), 

LOC of more than 24 hours (Rao et al., 2000) and/or PTA of more than 24 hours 

(Teasdale, 1995). 

Mild and moderate brain injuries represent the majority of brain injury cases. 

Estimates for the proportion of brain injury diagnoses classed as mild have ranged 

from 75% to 95% [75%, (Bazarian et al., 2005); 79%, (Miller, 1993); 80% (Tiret et 

al., 1990), 83%, (Hawley et al., 2003); 95%, (Teasdale, 1995)]. The seriousness of 

mild brain injuries should not be underestimated. Such injuries can result in long-

term problems that affect daily functioning. The neurobehavioural deficits of mild 

brain injury may include: headaches, dizziness, attention difficulties, memory, 

lapses, sleep disturbances, fatigue, irritability, depression, anxiety, low motivation, 

poor planning, visual problems and heightened sensitivity to stimuli (Alves et al., 

1993; Youngjohn et al., 1995). This group of symptoms has been termed ‘post-

concussion syndrome’. However, the use of this term is controversial because of 

significant difficulties in establishing the aetiology of such symptoms and in making 

accurate diagnoses. The term ‘syndrome’ is a misnomer given that headaches and 

memory difficulties are the only typically reported symptoms. Also the subjective 

nature of the reported symptoms prevents any kind of accurate evaluation or 

assessment of change. Symptoms are particularly prevalent immediately after injury-

onset but then tend to recede with time. Still, around half of mild brain injury 

survivors reported suffering one or more symptoms between six and twelve months 

post-injury. This persistence can be considered to arise from a delay in awareness or 



17 

 

onset of symptoms. However, the dominant view, originally proposed by Lishman 

(1988), is that the aetiology of such complaints is organic initially and then 

psychological thereafter. Indeed, continued reports of post-concussion symptoms 

may be motivated by litigation claims for compensation (Youngjohn et al., 1995). 

Only a minority of traumatic brain injuries are severe. According to a review of 

European epidemiology studies (Tagliaferri et al., 2006), severe injury types account 

for less than 10% of all traumatic brain injuries. The ratio of mild to moderate to 

severe traumatic brain injury is estimated to be 22:1.5:1. The fatality rate amongst 

those with severe brain injuries is 40% for coma admissions (Choi et al., 1994). Of 

those that survive severe brain injuries, a small proportion (1%–3%) remain in 

a persistent vegetative state and some more (10%–20%) suffer severely 

disability for at least six months (Teasdale, 1995). Some common consequences of 

severe brain injury may include significant physical disabilities, long-term cognitive 

deficits, gross changes in personality, behaviour problems and poor emotional well-

being.  
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Chapter 2   

EEG: Basics and Applications 

 

 

Before describing the application of the EEG in the context of TBI assessment and 

rehabilitation is necessary to provide the basis of the EEG signal relating to the 

generation, processing and features that can be extracted and used in applications that 

will be described below. 

2.1 EEG Basics 

Electroencephalogram (EEG) is a record of the electric activity from the scalp, 

obtained with the aid of an array of electrodes. EEG signals have been studied 

extensively since Dr. Hans Berger, a German neuro-psychiatrist, published the 

earliest research on human EEG in 1929 (Berger, 1933). It has been used as a clinical 

diagnostic and research tool ever since. Since its early use by Dr. Berger, EEG has 

been motivated by the need to study the mental (psychiatric) state and disease 

diagnosis. Before brain-imaging techniques became available, EEG was the main 

tool in this area. The development of quantitative EEG (qEEG) was motivated by the 

need for objective measures as well as some degree of automation. qEEG may also 

prove to be useful in understanding electrical brain activity and brain function. EEG 

analysis started from the long EEG recordings available since the end of the 1930s. 

Subsequent use of computers and digitization led to the evolution of qEEG methods. 

Before the 1980s, qEEG mainly consisted of frequency related analysis (Hughes et 

al., 1999). Essentially, the signal was decomposed into its subband frequencies or the 
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power spectrum was obtained. Since the 1990s, more novel techniques have been 

applied to EEG signal processing, including nonlinear and information theory-based 

methods. In the following, the current methods in qEEG analysis and the research 

issues will be addressed. 

2.1.1 Origin 

EEG is the recording of the brain’s electrical activity. Some of the activities recorded 

by scalp electrodes are generated by the action potentials of cortical neurons, but 

most are generated by excitatory postsynaptic potentials. Yet fine details about EEG 

generation are not fully understood. The EEG rhythms recorded on the scalp are the 

result of the summation effect of many excitatory and inhibitory postsynaptic 

potentials (EPSPs and IPSPs) produced in the pyramidal layer of the cerebral cortex. 

In humans, the thalamus is thought to be the main site of origin of EEG activities 

(Alpha and Beta bands) (Hughes et al., 1999). Thalamic oscillations activate the 

firing of cortical neurons. The depolarization (mainly in layer IV) creates a dipole 

with negativity at layer IV and positivity at more superficial layers. The scalp 

electrodes will detect a small but perceptible far-field potential that represents the 

summed potential fluctuations. In clinical and experimental conditions, EEG is the 

recording of the potential difference between two electrodes (bipolar EEG) or one 

scalp electrode and the ear as the reference (unipolar EEG). Scalp electrodes cannot 

detect charges outside 6 cm2 of the cortical surface area, and the effective recording 

depth is several millimeters. The brain is an extremely complex system, constantly 

carrying out information transfer and processing. The neural system works through 

the interactions between large assemblies of neurons in the central nervous system 

(CNS) and the peripheral neural system. At the cellular level, neurons transfer and 

process the information via the action potentials and neural firing (also known as 

spikes). When this kind of electrical activity transfers to the surface of the cortex and 

to the surface of the scalp, we can record it as the EEG. One of the rationales for 

qEEG is that EEG signals originate in the brain and carry redundant physiological or 

pathological information inside the brain. 

To perform qEEG analysis, sensors, also known as electrodes, are positioned at 

standardized locations on the scalp. During the data acquisition phase of brain 

mapping, each electrode collects electrical signals from the CNS. The EEG recording 

system includes the: (I) electrode and head stage, (II) preprocessing and quantitative 

EEG, and (III) data/results storage. 
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2.1.2 EEG Properties 

The properties of the EEG signal can be described as complex. The EEG complexity 

originates in the intricate neural system. Traditionally, the spontaneous EEG is 

characterized as a linear stochastic process with great similarities to noise. From the 

signal processing view, EEG has the following properties: 

 noisy and pseudo-stochastic: the EEG is often between 10-300 μV , which is 

easily affected by various physiological and electrical noises. Meanwhile, 

artifacts from electrocardiogram (ECG), electrooculogram (EOG), 

electromyogram (EMG), and recording systems can also contaminate the 

signals. Even the EEG shows a high degree of randomness and 

nonstationarity. 

 time-varying and nonstationary: EEG is not a stationary process; it varies 

with the physiological states. The waveforms may include a complex of 

regular sinusoidal waves, irregular spikes/polyspikes, or 

spindles/polyspindles. In most pathological conditions, such as epileptic 

seizures, the EEG may show evident singularity or nonstationarity. In 

practice, we regard EEG as a stationary process over a relatively short period 

(inferior to 3.5 s for routine spontaneous EEG (Goel et al., 1996). 

 High nonlinearity: Although the traditional linear models of EEG still play 

significant roles in EEG analysis and diagnosis, EEG is a nonlinear process 

(Palus, 1996). This kind of nonlinearity is also time-, state-, and site-

dependent (Pijn et al., 1991). 

2.1.3 Known Rhythm 

The clinical technician interprets the EEG by the features or magnitudes of waves in 

each frequency band. Spectral analysis has been used for decades as the most 

important diagnostic tool. Even though the physicians do not calculate the spectrum, 

they usually focus on some specific wave rhythms (frequency components). 

Delta rhythm 

Delta is the frequency range up to 4 Hz. It tends to be the highest in amplitude and 

the slowest waves. It is seen normally in adults in slow wave sleep. It is also seen 

normally in babies. It may occur focally with subcortical lesions and in general 

distribution with diffuse lesions, metabolic encephalopathy hydrocephalus or deep 

midline lesions (Niedermeyer et al., 2005). It is usually most prominent frontally in 

adults and posteriorly in children. 
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Theta rhythm 

Theta is the frequency range from 4 Hz to 7 Hz. Theta is seen normally in young 

children. It may be seen in drowsiness or arousal in older children and adults; it can 

also be seen in meditation (Bazhenov et al., 2001). Excess theta for age represents 

abnormal activity. It can be seen as a focal disturbance in focal subcortical lesions; it 

can be seen in generalized distribution in diffuse disorder or metabolic 

encephalopathy or deep midline disorders or some instances of hydrocephalus 

(Niedermeyer et al., 2005). On the contrary this range has been associated with 

reports of relaxed, meditative, and creative states. 

Alpha rhythm 

Alpha is the frequency range from 8 Hz to 12 Hz. Hans Berger named the first 

rhythmic EEG activity he saw, the alpha wave. This is activity in the 8-12 Hz range 

seen in the posterior regions of the head on both sides, being higher in amplitude on 

the dominant side. It is brought out by closing the eyes and by relaxation. It was 

noted to attenuate with eye opening or mental exertion. This activity is now referred 

to as posterior basic rhythm, the posterior dominant rhythm or the posterior alpha 

rhythm. The posterior basic rhythm is actually slower than 8 Hz in young children 

(therefore technically in the theta range). In addition to the posterior basic rhythm, 

there are two other normal alpha rhythms that are typically discussed: the mu rhythm 

and a temporal third rhythm. Alpha can be abnormal: an EEG that has diffuse alpha 

occurring in coma and is not responsive to external stimuli is referred to as alpha 

coma (Niedermeyer et al., 2005). 

µ rhythm 

Mu rhythm is alpha-range activity that is seen over the sensorimotor cortex. It 

characteristically attenuates with movement of the contralateral arm (or mental 

imagery of movement of the contralateral arm) (Pfurtscheller, 1992). 

Beta rhythm 

Beta is the frequency range from 12 Hz to about 30 Hz. It is seen usually on both 

sides in symmetrical distribution and is most evident frontally. Beta activity is 

closely linked to motor behavior and is generally attenuated during active 

movements (Benjamini et al., 2001). Low amplitude beta with multiple and varying 

frequencies is often associated with active, busy or anxious thinking and active 

concentration. Rhythmic beta with a dominant set of frequencies is associated with 

various pathologies and drug effects, especially benzodiazepines (Niedermeyer et al., 
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2005). It may be absent or reduced in areas of cortical damage. It is the dominant 

rhythm in patients who are alert or anxious or who have their eyes open. 

Gamma rhythm 

Gamma is the frequency range approximately 30-100 Hz. Gamma rhythms are 

thought to represent binding of different populations of neurons together into a 

network for the purpose of carrying out a certain cognitive or motor function 

(Niedermeyer et al., 2005). 

2.2 EEG Analysis technique 

2.2.1 Frequency analysis technique 

EEG frequency analysis usually means power spectral analysis. The spectra can be 

estimated by the following methods. 

Periodogram 

In general terms, one way of estimating the power spectral density (PSD) of a 

process is to simply find the discrete-time Fourier transform of the samples of the 

process (usually done on a grid with an FFT) and take the magnitude squared of the 

result. This estimate is called the periodogram. The periodogram estimate of the PSD 

of a length-L signal 𝑋𝐿[n] is:  

𝑃𝑥𝑥(𝑓) ̂ =
‖𝑋𝐿(𝑓)‖2

𝑓𝑠 ∙ 𝐿
 (1) 

 

where: 

𝑋𝐿 =
1

𝑁
∑ 𝑋𝐿[𝑛]𝑒

−𝑗2𝜋
𝑓𝑛
𝑓𝑠

𝐿−1

𝑛=0

 (2) 

The actual computation of 𝑋𝐿(𝑓) can be performed only at a finite number of 

frequency points, N, and usually employs the FFT. In practice, most implementations 

of the periodogram method compute the N-point PSD estimate: 

𝑃𝑥𝑥(𝑓) ̂ =  
‖𝑋𝐿[𝑓𝑘]‖2

𝑓𝑠 ∙ 𝐿
                                           𝑓𝑘 =

𝑘 ∙ 𝑓𝑠

𝑁
 (3) 

k=0, 1, 2, … , N-1 

Modiefied Periodogram 

FFT-based spectral estimation assumes that the signal is stationary and slowly 

varying. This kind of spectrum estimation has some drawbacks and limitations with 

respect to its resolution and leakage (or aliasing) effects (Muthuswamy et al., 1998). 

If the function to be transformed is not harmonically related to the sampling 
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frequency, the response of an FFT looks like a sinc function (although the integrated 

power is still correct). Spectral leakage can be reduced by using a tapering function 

(such as gabor, hanning window, and others). Nevertheless, reduction of spectral 

leakage is at the expense of broadening the spectral response. 

The modified periodogram windows the time-domain signal prior to computing the 

FFT in order to smooth the edges of the signal. This has the effect of reducing the 

height of the side lobes or spectral leakage. This phenomenon gives rise to the 

interpretation of side lobes as spurious frequencies introduced into the signal by the 

abrupt truncation that occurs when a rectangular window is used. For nonrectangular 

windows, the end points of the truncated signal are attenuated smoothly, and hence 

the spurious frequencies introduced are much less severe. On the other hand, 

nonrectangular windows also broaden the main lobe, which results in a net reduction 

of resolution. Nonrectangular windowing affects the average power of a signal 

because some of the time samples are attenuated when multiplied by the window. To 

compensate for this, the presence of the window needs to be normalized to have a 

window average power of unity. This way the choice of window does not affect the 

average power of the signal. 

The modified periodogram estimate of the PSD is: 

𝑃𝑥𝑥(𝑓) ̂ =
‖𝑋𝐿(𝑓)‖2

𝑓𝑠 ∙ 𝐿 · 𝑈
 (4) 

where U is the window normalization constant: 

𝑋𝐿 =
1

𝐿
∑|𝑤𝑛|2

𝐿−1

𝑛=0

 (5) 

which is independent of the choice of window. The addition of U as a normalization 

constant ensures that the modified periodogram is asymptotically unbiased. 

Whelch’s method 

An improved estimator of the PSD is the one proposed by Welch (Welch, 1967). The 

method consists of dividing the time series data into (possibly overlapping) 

segments, computing a modified periodogram of each segment, and then averaging 

the PSD estimates. The result is Welch’s PSD estimate. The averaging of modified 

periodograms tends to decrease the variance of the estimate relative to a single 

periodogram estimate of the entire data record. Although overlap between segments 

tends to introduce redundant information, this effect is diminished by the use of a 

nonrectangular window, which reduces the importance or weight given to the end 
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samples of segments (the samples that overlap). However, as mentioned above, the 

combined use of short data records and nonrectangular windows results in reduced 

resolution of the estimator. In summary, there is a trade-off between variance 

reduction and resolution. One can manipulate the parameters in Welch’s method to 

obtain improved estimates relative to the periodogram. 

2.3 Time - Frequency analysis technique 

2.3.1 Short time Fourier Transform 

Time-domain analysis does not provide any frequency information. When signals 

such as EEG are time varying, the spectral analysis can provide the frequency details, 

but unfortunately, we do not know at what times the frequency changes occur. As 

described above, the EEG signal is dynamic, time varying, sometimes transient 

(spikes/bursts), mostly nonstationary, and usually corrupted by noise. In practice, we 

not only need to know the frequency components but we also want to know the time 

relation. Time-frequency analysis is especially suitable for addressing such problems 

(Thakor et al., 1994). Time-frequency analysis has been successfully used to analyze 

the epileptic EEG (Blanco et al., 1998) and electrocorticograms (ECoG) to locate the 

seizure source. The simplest method uses a short time FT (STFT) to increase the time 

resolution: 

STFT(ω,t)=∫ 𝑥(𝜏)𝑔(𝜏 − 𝑡)𝑒−𝑗𝜔𝜏𝑑𝜏
+ ∞

−∞
 (6) 

where g(t) is the window function. Equation 6 is also called Gabor transform. The 

FFT based time-dependent spectrum is also called a spectrogram. The spectrogram, 

however, has some pitfalls. 

- STFT is based on FFT such that its time resolution cannot be high, and also 

there is bias at the boundaries. A high time and frequency resolution can be 

obtained through Wigner-Ville distribution (WVD): 

𝑊𝑥(𝜔, 𝑡) = ∫ 𝑥 (𝑡 +
𝜏

2
) 𝑥∗ (𝑡 −

𝜏

2
) 𝑒−𝑗𝜔𝜏𝑑𝜏 (7) 

𝑊𝑥(𝜔, 𝑡) is the FT of the autocorrelation function of signal x(t) with respect to 

the delay variable. It can also be thought of as an STFT where the windowing 

function is a time-scaled, time-reversed copy of the original signal. In general, 

it has much better time and frequency resolution than does the STFT. 

Nevertheless, WVD has notable limitations: cross-term calculations may give 

rise to negative energy and the aliasing effect may distort the spectrum such 
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that a high-frequency component may be misidentified as a low-frequency 

component. 

- the second pitfall of STFT is the fixed time and frequency resolutions. By the 

uncertainty principle, the product of the time uncertainty and frequency 

uncertainty is larger than a constant. In signal processing, we usually need 

more time accuracy in locating the transient waves (high frequency). For a 

slow waveform, we may be more interested in the frequency resolution. Such 

an analysis needs an adaptive time-frequency analysis method. The wavelet 

transform (WT) is such a tool. 

2.3.2 Wavelet Transform 

Two main formulation of the wavelet decomposition / representation exist: the 

Continuous Wavelet Transform (CWT) and the Discrete Wavelet Transform (DWT). 

Both of them are of interest in the field of EEG analysis, and their usage answer to 

different needs. To compute a continuous wavelet transform, the original signal time 

series, x(t), is convolved with a scaled and translated version of a mother wavelet 

function, Ψ(t). The convolution leads to a new signal of wavelet coefficients: 

𝑊𝑥𝜓(𝑎, 𝑏) = 𝐴𝜓 ∙ ∫ 𝜓∗  (
𝑡 − 𝑏

𝑎
)  ∙ 𝑥(𝑡)𝑑𝑡 (8) 

where 𝜓∗ denotes the complex conjugation of the wavelet function, b is the 

translation parameter, a is the wavelet’s scaling parameter, and 𝐴𝜓 denotes a 

(wavelet specific) normalization parameter. The wavelet coefficients quantify the 

similarity between the originalsignal and the wavelet function at a specific scale a 

and target latency b. Hence, the wavelet coefficients depend on the choice of the 

mother wavelet function. The mother wavelet is constructed in such a way that it has 

zero mean and is localized in both time and frequency space. This is in contrast to the 

Fourier transform where the harmonic basis functions have a well determined 

frequency but extend over the whole time axis. Due to its localization properties the 

wavelet transform allows to follow the time-course of component structures in the 

signal. This feature is of crucial importance when analyzing non-stationary signals 

but has to be paid for with a reduced frequency resolution. Another important feature 

of the wavelet transform is its zooming property. When the scaling parameter, a, is 

varied from high to low values the wavelet function, Ψ([t-b]/a), will be compressed. 

The corresponding wavelet transform zooms from coarser (i.e. lowfrequency) to 
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finer (i.e. high-frequency) signal structures. In the case of Morlet’s wavelets, also 

referred to as Gabor wavelets, 

 the mother wavelet function is given by the formula: 

𝜓(𝑡) = 𝑒𝑗𝜔0𝑡 ∙ 𝑒−𝑡2/2 (10) 

where j denotes the imaginary unit and !0 is 2_ times the frequency of the unshifted 

and uncompressed mother wavelet. Morlet wavelets are complex functions. Both 

their real and imaginary part consist of a harmonic oscillation windowed in time by a 

Gaussian envelope. Using sinusoidal wavelets like the Morlet wavelet is ideally 

suited for detecting sinusoidal EEG activity since the wavelet transform is similar to 

detecting whether the used wavelet is contained in the signal. Other wavelets which 

are more spiky can be used for detecting transient phenomena in EEG like epileptic 

spikes (Schiff et al., 1994). In the frequency domain, Morlet wavelets also have a 

Gaussian shape around their modulation frequency, i.e. the wavelet scale can be 

directly interpreted in terms of a well-defined center frequency (the terms scale and 

frequency will be used synonymously here). Hence, the scaled, unshifted wavelet can 

be written as a function of frequency, f: 

𝜓(𝑡) = 𝑒𝑗2𝜋𝑓𝑡 ∙ 𝑒−𝑡2/2𝜎𝑡
2
 (11) 

where the standard deviation _t of the Gaussian temporal envelope is reciprocally 

related to the frequency (𝜎𝑡∼=f) in order to retain the wavelet scaling properties. If 

the number of significant cycles of the wavelet is kept constant it varies in temporal 

width as a function of frequency, since the same number of cycles spread over a 

longer time interval for lower frequencies. Therefore, at high frequencies the 

temporal resolution of a wavelet is better than at low frequencies; the inverse is true 

for the frequency resolution of the wavelet transform. Convolutions with Morlet 

wavelets can be computed for multiple frequencies in order to yield a time-frequency 

representation of the analyzed signal, x(t). Because the Morlet wavelet function is 

complex, the wavelet transform, Wx(t, f), is also a complex function, which can be 

divided into its real part, ℜWx and its imaginary part, ℑWx. 

A wavelet function can be thought of as a finite impulse response filter. In this 

context, the real part, ℜWx, of the Morlet wavelet transform represents a bandpass-

filtered signal, 𝑥𝑓(𝑡), while the imaginary part, ℑWx, yields a 90-degree phase shifted 

signal (Hilbert transform). In analogy to the Fourier power spectrum, the wavelet 
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power spectrum is defined as ‖𝑊𝑥(𝑡, 𝑓)‖2. It is a measure for the signal energy 

(signal variance) contained in the time-frequency bin covered by the transform, 

centered around time point t and frequency f. The Wavelet functions can be 

normalized prior to the convolution to have unit energy at all scales. What’s 

continuous about the CWT, and what distinguishes it from the discrete wavelet 

transform, is the set of scales and positions at which it operates. Unlike the discrete 

wavelet transform, the CWT can operate at every scale, from that of the original 

signal up to some maximum scale that you determine by trading off your need for 

detailed analysis with available computational power. The CWT is also continuous in 

terms of shifting: during computation, the analyzing wavelet is shifted smoothly over 

the full domain of the analyzed function. 

Calculating wavelet coefficients at every possible scale is a fair amount of work, and 

it generates an awful lot of data. What if we choose only a subset of scales and 

positions at which to make our calculations? It turns out, rather remarkably, that if 

we choose scales and positions based on powers of two - so-called dyadic scales and 

positions - then our analysis will be much more efficient and just as accurate. We 

obtain such an analysis from the discrete wavelet transform (DWT). An efficient way 

to implement this scheme using filters was developed in 1988 by Mallat (Mallat, 

1989). The Mallat algorithm is in fact a classical scheme known in the signal 

processing community as a two-channel subband coder In wavelet analysis, we often 

speak of approximations and details. The approximations are the high-scale, low-

frequency components of the signal. The details are the low-scale, high-frequency 

components. 

2.4 Blind Source Separation Techniques 

EEG signals are not produced in the scalp or the brain directly under the recording 

electrodes. Rather, they are generated by partial synchrony of local field potentials in 

many distinct cortical domains - each domain being, in the simplest case, a patch of 

cortex of unknown extent. The radial orientation of pyramidal cells relative to the 

cortical surface within such a domain allows summation of temporally synchronous 

extra-neuronal potentials whose summed far-field potentials project to the scalp 

electrodes near instantly through passive volume conduction. In the absence of such 

local area synchrony and near parallel orientations of neighboring pyramidal 

neurons, local field activities would partially or completely cancel each other out, 
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thus preventing far-field potentials of sufficient strength to be detected at scalp 

electrodes. By the basic laws of electrical conductance, far-field potentials generated 

within all cortical (and non-brain) domains project to and sum linearly at nearly 

every scalp electrode. Thus, EEG data recorded at a single electrode are a simple 

sum (or more technical, a weighted linear mixture) of underlying cortical source 

signals. The weights of each recorded mixture are determined by the distance of the 

cortical source domains or patches from the electrode pair (active and reference), the 

orientation of the cortical patch relative to the electrode pair locations, and the 

electrical properties of intervening tissues (cortex, cerebralspinal fluid, skull, and 

skin). 

This spatial mixing of EEG source signals by volume conduction produces the strong 

correlations observed between EEG recordings at nearby electrodes and is the reason 

why EEG has long been denigrated as having poor spatial resolution. The term 

spatial resolution has several meanings, however, and the actual degree of spatial 

resolution of EEG depends on the intended sense of the term resolution. For any 

signal modality, three separable meanings of the term spatial resolution are the 

degree to which the exact location of a single source may be accurately determined; 

the spatial separation between two sources that is necessary to separate their signals; 

and the number of such sources that can be separated from the whole data. While the 

spatial resolution of EEG imaging has in the past been considered to be poor in all 

three of these aspects, we believe that new techniques for EEG analysis including 

those discussed in this review significantly improve its spatial resolution by all 

definitions of the term. The recovery of the exact cortical distribution of an EEG 

source region is limited by the under completeness of the inverse source localization 

problem. For example, far-field potentials from two synchronously active but 

physically opposing cortical source areas, e.g., source areas facing each other on 

opposite sides of a cortical sulcus may cancel, and their joint activity will have no 

effect on the scalp data. If a third area is coherently active, there will be no way to 

determine from scalp recordings whether the observed activity arises within the third 

area alone, within all three areas synchronously, or in any other combination of 

partially self-canceling source areas whose summed activity at the scalp also matches 

or closely resembles that of the third area alone. The inverse source localization 

problem may be greatly simplified by relying on the well-accepted assumptions that 

EEG signals arise from cortical pyramidal cells oriented perpendicular to the cortical 
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surface and (usually) located within a single contiguous and therefore highly 

interconnected cortical domain. It is not easy, however, to separately record an EEG 

scalp distribution generated in only one cortical domain, since many EEG source 

domains contribute to each recorded EEG signal at nearly all time points. An ideal 

goal for EEG analysis should be to detect and separate activities in multiple 

concurrently active EEG source areas, regardless of their relative strengths at 

different moments. Recently, a new approach to finding EEG source activities has 

been developed (Makedig et al., 1996) based on a simple physiological assumption 

that across sufficient time, the EEG signals arising in different cortical source 

domains are near temporally independent of each other. 

This assumption is sufficient to separate signals from both physically distant and 

adjacent EEG source areas - if their contributions to the scalp EEG are largely 

independent over time. This insight and the resulting algorithms for signal separation 

that have emerged in the last decade have created a new field within signal 

processing in general known in particular as independent component analysis (ICA) 

or more generally as blind source separation. ICA methods can be used to 

decompose recorded EEG data into temporally, functionally, and spatially 

independent source signals. 

2.4.1 EEG sources and source independence 

The idea that EEG signals originate from temporally independent or near-

independent brain processes is consistent with the long observed fact that cortex is 

organized into compact regions of specialized function. More particularly, 

connectivity among pyramidal cells is highly skewed toward short (intra-columnar) 

connections, principally between inhibitory cells that help sustain oscillatory field 

activity (Budd et al., 2001). In fact, inhibitory cells not only favor short-range 

synaptic contacts, but they also communicate via electrical gap junction connections 

(Gibson et al., 1999). These facts alone suggest that a partially synchronous local 

field activity pattern, once initiated, should spread through a compact cortical area 

(of unknown extent), much as observed by Freeman (2004) using small electrode 

grids placed on the cortex of animals. 

Since the density of longer-range cortical connections is so low relative to the density 

of local connections, a neurobiologically plausible working hypothesis for EEG 

analysis is that over sufficient time, locally synchronous activities within roughly 

cm-scale patches of cortex are in fact nearly temporally independent of each other 
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and act as single, distinct, temporally independent sources of EEG activity. 

Alternatively, locally synchronized field activities in a pair of cortical source patches 

that are densely connected to each other, as for example via corpus callosum, may 

become synchronized, forming a single effective EEG source. In either case, EEG 

scalp signals may be modeled as the sum of distinct, phase-independent, and 

spatially stationary signals from cortical patches (or coupled patch pairs). A third 

major category of EEG signal sources are non-brain artifact sources including the 

eyes, scalp muscles, defective or poorly attached electrodes, and ambient line noise, 

whose volume-conducted activities are also summed in EEG recordings. While 

sufficiently dense multi-scale recordings of macroscopic field activity in cortex are 

still lacking, the physiological plausibility and heuristic accuracy, at least, of the 

above EEG source model allows the principled application of a new form of 

information-based signal processing. 

2.4.2 Independent component analysis history 

In the simplest terms, ICA algorithms are a family of related methods for unmixing 

linearly mixed signals using only recorded time course information, e.g., blind to 

detailed models of the signal sources as required by earlier signal processing 

approaches. Three early and relatively effective ICA algorithms were JADE 

(Cardoso et al., 1996), infomax ICA (Jung et al., 2001), and so-called FastICA 

(Hyvärinen et al., 2000). The original infomax ICA algorithm was soon enhanced by 

introducing natural gradient normalization and an extended mode capable of learning 

filters for sources such as sinusoids that have sub-Gaussian value distributions. Jung 

et al. (2001) reviewed how these and other methods may all be derived from a 

common information theoretic framework. The ICA algorithms above only consider 

the higher order statistics of the separate data maps recorded at different time points, 

with no regard for the time order in which the maps occur. The so-called second-

order blind identification (SOBI) approach (Molgedey et al., 1994) considers 

relationships between multiple time points using an autoregressive model in which 

sources are assumed to have both differing spatial distributions and stable power 

spectra. 

2.4.3 ICA model assumptions 

Following the points discussed above, EEG may be plausibly modeled as a linear 

mixture of the activities of multiple brain and non-brain sources with (near) 

independent time courses. A further ICA assumption, that the cortical EEG source 
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domains remain spatially fixed for the duration of the input data, requires careful 

consideration. 

2.4.4 The ICA model 

The data submitted to ICA are simply the recorded EEG channel data arranged in a 

matrix of n channels (rows) by t time points (columns). ICA performs a blind 

separation of the data matrix (X) based only on the criterion that resulting source 

time courses (U) are maximally independent. Specifically, ICA finds a component 

unmixing matrix (W) that, when multiplied by the original data (X), yields the matrix 

(U) of independent component (IC) time courses: 

𝑈 = 𝑊 ∙ 𝑋 (12) 

where X and U are n × t matrices, and W is n × n By simple matrix algebra, Eq. 12 

implies that: 

𝑋 = 𝑊−1 ∙ 𝑈 (13) 

Here, 𝑊−1, is the n × n component mixing matrix whose columns contain the 

relative weights with which the component projects to each of the scalp channels, 

i.e., the IC scalp map. The portion of the original data (X) that forms the 𝑖𝑡ℎ IC (𝑋𝑖) 

is the (outer) product of two vectors, the 𝑖𝑡ℎ column of W and the 𝑖𝑡ℎ row of U, 

𝑋𝑖 = 𝑊𝑖 ∙  𝑈𝑖 (14) 

And the whole data (X) are the sum of the (back-projected) ICs (𝑋𝑖): 

𝑋 = ∑ 𝑋𝑖 (15) 

where i=1,2, … n. 

Again, each column of the (𝑊−1) mixing matrix represents the relative projection 

weight at each electrode of a single component source. Mapping these weights to 

corresponding electrodes on a cartoon head model allows visualization of the scalp 

projection or scalp map of each source. The source locations of the components are 

presumed to be stationary for the duration of the training data. That is, the brain 

source location s and projection maps (𝑊−1) are assumed to be spatially fixed, while 

their activations (U) reveal their activity time courses throughout the input data. 

Thus, the IC activations (U), can be regarded as the EEG waveforms of single 

sources, although obtaining their actual amplitudes at the scalp channels requires 

multiplication by the inverse of the unmixing matrix (𝑊−1). The backprojected Ics 

(𝑋𝑖) are in the same mV units as the recorded scalp data. However, neither the IC 

scalp maps nor the IC activations are themselves calibrated. Rather, the original 

activity units (mV) and polarities (+/−) are distributed between the two IC factors – 
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the IC scalp map and activation time series. For example, reversing the polarities of 

the activation and inverse weight matrices, then backprojecting the activations 

through the respective columns of (𝑊−1) recovers the original component activities 

in their native mV units. Thus, neither the sign of the scalp maps nor the sign of the 

activations are meaningful in themselves, but only their product, which determines 

the sign of the potential accounted for at each scalp channel. However, IC activation 

magnitudes may be normalized by multiplying each by the root-mean square (RMS) 

amplitude of the corresponding IC scalp map. The activation units are then RMS mV 

across the scalp array. The ICA decomposition considered here is termed complete, 

i.e., a decomposition in which the number of ICA components recovered is the same 

as the number of channel inputs. Thus, 30-channel data will be decomposed by ICA 

into 30 ICs, whereas 60-channel data will be decomposed into 60 ICs. Methods for 

overcomplete ICA decomposition also exist, though these require additional 

assumptions. An often-posed question is whether there are really 30 or 60 source 

components in the data, and if not, what are the effects of recording and 

decomposing different numbers of data channels? Anatomic considerations suggest 

the number of near independent sources in the brain may in general be nearly 

unlimited, although most of them may be very small and thus difficult to resolve 

from a limited amount of scalp data. Results of ICA decomposition of high-density 

(e.g., 128 or more channel) data acquired from normal subjects during performance 

of cognitive tasks show that some dozens of temporally and dynamically distinct 

EEG sources are large enough to be separated into components with physiologically 

interpretable scalp maps and activations. Applying ICA decomposition to fewer data 

channels must result in some or all of the extracted components summing activity 

from more than one underlying source. However, in this case, ICA should efficiently 

arrange for even these mixtures to have minimal common or mutual information. 

2.5 Sensory Evoked potential 

Evoked potentials (EPs) are time-locked responses of the nervous system to external 

stimuli. Sensory evoked potentials (SEPs) are one type of EP, which are generated by 

stimulation of afferent peripheral nerve fibers elicited by electrical, tactile, or other 

stimuli. Following either mixed nerve or sensory nerve stimulation, SEPs can be 

recorded over more proximal portions of the peripheral and central nervous system 

including peripheral nerves, spinal cord, and/or brain. SEP are recorded from the 
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central nervous system following stimulation of sense organs (for example, visual 

evoked potentials elicited by a flashing light or changing pattern on a monitor: 

auditory evoked potentials by a click or tone stimulus presented through earphones) 

or by tactile or somatosensory evoked potential elicited by tactile or electrical 

stimulation of a sensory or mixed nerve in the periphery. They have been widely 

used in clinical diagnostic medicine since the 1970s, and also in intraoperative 

neurophysiology monitoring , also known as surgical neurophysiology. 

Several kinds of events, the most notably being sensory stimuli or cues for the onset 

of specific internal processings, can induce timelocked changes in the activity of 

neuronal populations that are generally called event-related potentials (ERPs). 

On the other hand, rapid periodic stimulation produces a brain response characterized 

by a “quasi-sinusoidal” waveform whose frequency components are constant in 

amplitude and phase, the so-called steady-state response (SSR) (Celesia, 1982). The 

traditional motivation for dividing the electrophysiological literature into the ERP 

and the SSR fields is summarized in the following statement: “If the brain responded 

in a linear fashion, steady-state responses would be completely predictable from the 

transient response. However, the brain is not linear, and steady-state and transient 

responses therefore provide independent views of its function” (Capilla et al., 2011). 

There are three kinds of evoked potentials in widespread clinical use: i) auditory 

evoked potentials, usually recorded from the scalp but originating at brainstem level; 

ii) visual evoked potentials, and iii) somatosensory evoked potentials, which are 

elicited by electrical stimulation of peripheral nerve. 

2.5.1 Event-related potential 

In order to detect such ERPs, averaging techniques are commonly used. Indeed, the 

basic assumption is that the evoked activity, has a more or less fixed time-delay to 

the stimulus or to the onset of the internal processing mechanism, while the ongoing 

EEG activity is considered as additive noise; although the ongoing EEG reflects a 

wide range of neural activity related to the various sensory and cognitive functions, it 

also reflects the myriad of self-regulation processes ongoing in the brain at the same 

time (e.g., maintaining body temperature, heart rate, breathing). This intermixing of 

signals makes it difficult to separate cognitive and physiological contributors to the 

observed EEG. 

In contrast, the ERP approach permits investigators to link recorded signals with 

stimulus events more directly by focusing on the change in electrophysiological 

http://en.wikipedia.org/wiki/Central_nervous_system
http://en.wikipedia.org/wiki/Sense_organ
http://en.wikipedia.org/wiki/Visual
http://en.wikipedia.org/wiki/Auditory_system
http://en.wikipedia.org/wiki/Somatosensory
http://en.wikipedia.org/wiki/Peripheral_nervous_system
http://en.wikipedia.org/w/index.php?title=Clinical_diagnostic&action=edit&redlink=1
http://en.wikipedia.org/wiki/Brainstem
http://en.wikipedia.org/wiki/Somatosensory_evoked_potentials
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signal that occurs immediately following the stimulus event. The smaller size of 

ERPs relative to other physiological events can make it difficult to discern the 

relevant signal. To accommodate these factors, researchers employ repeated 

presentations of the evoking stimulus to average out potentially unrelated events. 

ERPs have been successfully used to study both general and specific aspects of an 

individual’s response to events in the external as well as internal environment. 

Additional advantages of the ERP technique over other procedures include (a) very 

fine temporal resolution (on the order of milliseconds) that reveals even momentary 

changes in patterns of brain activation, and (b) relatively gross-level spatial 

resolution capabilities that allow for theorizing about the distribution of brain 

mechanisms that subserve these cognitive functions. 

ERP waveforms are typically described in terms of positive and negative peaks (i.e., 

the most positive and negative deflections in the waves). At a general level, the 

labeling refers to the sequence in which the peak occurs and to its polarity. The 

naming scheme for ERP components can also identify the positive and negative 

peaks by their latency (usually defined as the time from stimulus onset). N100 in this 

example refers to the negative peak that occurs 100 msec following stimulus onset. 

P300 would identify the positive peak that occurred 300 msec poststimulus onset. 

In addition to the latency measures and functional interpretations, ERP descriptors 

often include topographical scalp distributions or identify electrodes where 

maximum amplitudes are typically observed. 

Such information can be useful for interpreting ERP peaks that may occur at the 

same time but over different scalp areas reflecting different cognitive processes. In 

the following, the most important ERP waveform are listed: 

P100 

This peak is not always easily identified, but when present it occurs approximately 

50 msec after an auditory stimulus onset (also known as P50) or about 100 msec after 

the onset of a visual stimulus. 

Functionally, this component is usually interpreted as a neurophysiological indicator 

of preferential attention to sensory inputs (suppression of unattended information) 

and is thought to reflect the general level of arousal. 

N100 

Generally, N100 is assumed to reflect selective attention to basic stimulus 

characteristics, initial selection for later pattern recognition, and intentional 



36 

 

discrimination processing (Luck et al., 2000). Latency and amplitude of the peak 

depend on the stimulus modality. Auditory stimuli elicit a larger N100 with shorter 

latency than visual stimuli. 

P200 

The P200, like the N100 and P100, has long been considered to be an obligatory 

cortical potential because it has low interindividual variability and high replicability 

(Sandman et al., 2000). 

N200 

The N200 component is characterized by higher interindividual variation and has 

multiple psychological interpretations, including orienting response , stimulus 

discrimination (Ritter t al., 1983), possibly reflecting task demands. 

N170  

The N170 peak is another member of the N2 family and ranges in latency between 

156 msec and 189 msec. It is associated primarily with visual processing of human 

faces. The topographic distribution of the N170 component or both familiar and 

unfamiliar faces is largest over the occipitotemporal regions (Jemel et al., 2003). 

MMN 

The MMN is a negative deflection that has a typical latency of 100 ms to 250 ms. 

The amplitude is largest at frontal and central electrode sites (Liebenthal et al., 2003) 

and has been replicable with different reference points, including the tip of the nose, 

the earlobe, and noncephalic locations. MMN is elicited using an oddball paradigm 

where an occasional deviant stimulus is presented in a stream of more frequent 

standard stimuli. MMN paradigms typically do not require attention to the stimuli. 

P300 

The P300 is the most extensively researched ERP component. It was first identified 

by Sutton, Tueting, Zubin, and John (1965) (Sutton et al., 1967) in a cuing paradigm 

as a pronounced positivity over parietal areas that occurred in response to an 

unexpected stimulus type approximately 300 ms after stimulus onset. This effect was 

present for auditory (clicks) and visual (light flashes) stimuli. Unlike the MMN 

paradigms, for a P300 to be elicited, the participant must pay attention and respond 

(overtly orcovertly) to the stimuli. In addition, the ratio of target to distracter stimuli 

must be low (the fewer targets, the larger the peak). P300 amplitude is affected by 

attention, stimulus probability, stimulus relevance, and the amount of processing 

resources available, such as in single versus dual tasks, the quality of selection, and 



37 

 

attention allocation. The P300 component has also attracted attention in clinical 

studies. Because P300 amplitude varies with the amount of attention paid to the 

stimuli, this component is widely studied in populations with attention deficits (e.g., 

ADHD) where it is interpreted to reflect information regarding various attentional 

functions. 

Sources of the P300 are not clearly identified, but intracranial recordings indicate 

that at least some are expected to be in the medial temporal lobe, including the 

hippocampal region, parahippocampal gyrus, amygdala, or thalamus. 

N400 

This negative component occurs approximately 400 msec after stimulus onset and is 

usually associated with visual and auditory sentence comprehension tasks in 

paradigms where words of a sentence are visually presented one after another at 

fixed intervals (Klumpp et al., 2010). 

The last word of the sentence is syntactically appropriate and either congruous or 

incongruous with the rest of the sentence. The incongruous words elicits a larger 

amplitude N400 response than the congruous words. Further, the amplitude of the 

N400 is correlated with the degree of incongruency of the sentence and the final 

word. 

It has been reported (Kutas et al., 1983) that the N400 effect is elicited for semantic, 

but not syntactic, deviations from expected endings. The N400 is also elicited in 

semantic word pairs , semantic priming tasks , and matching semantic material to 

visual displays (Klumpp et al., 2010). 

For both visual and auditory stimuli, the N400 is larger over the parietal and 

temporal regions in the right hemisphere. N400 latency varies with the modality of 

the task, with visual stimuli resulting in an earlier peak relative to the auditory 

presentation (475 msec vs. 525 msec), but only over the temporal, anterior temporal, 

and frontal sites. The N400 is likely to arise from multiple generators that are 

segregated both functionally. Results of intracortical recordings point to the 

parahippocampal anterior fusiform gyrus or medial temporal structures near the 

hippocampus and amygdala, whereas others suggest locations in the lateral temporal 

region. 

P600 

This component has two functionally different interpretations, one associated with 

memory processes and another related to language. 
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Although both peaks have roughly similar topographies, they appear to have 

different brain sources. Some researchers proposed that the P600 component, 

especially the one associated with language, is a delayed variant of the P3 because 

both peaks have relatively similar scalp distributions and are both sensitive to 

probability manipulations. 

The P600 phenomena due to memory processes is typically observed in recognition-

recall memory paradigms and is often referred to as an old-new effect. Typically, the 

peak onsets at 400 msec and continues for approximately 400 msec to 600 msec. 

Maximum amplitudes are noted over the left temporo-parietal regions. The P600 old-

new effect often co-occurs in time with a frontal N400 effect present over the left 

fronto-central areas, starting at 300 msec to 500 msec post-stimulus and continuing 

to 1,200 msec and beyond (Rugg et al., 2000). 

2.5.2 Steady State Evoked Potential  

An evoked potential is the electrical response of the brain to a sensory stimulus. 

Regan constructed an analogue Fourier series analyzer to record harmonics of the 

evoked potential to flickering (sinusoidally modulated) light but, rather than 

integrating the sine and cosine products, fed them to a two-pen recorder via lowpass 

filters (Regan et al., 1966). This allowed him to demonstrate that the brain attained a 

steady-state regime in which the amplitude and phase of the harmonics (frequency 

components) of the response were approximately constant over time. By analogy 

with the steady-state response of a resonant circuit that follows the initial transient 

response he defined an idealized steady-state evoked potential (SSEP) as a form of 

response to repetitive sensory stimulation in which the constituent frequency 

components of the response remain constant with time in both amplitude and phase 

(Regan et al., 1966; Regan et al., 1979). Although this definition implies a series of 

identical temporal waveforms, it is more helpful to define the SSEP in terms of the 

frequency components that are an alternative description of the time-domain 

waveform, because different frequency components can have quite different 

properties (Regan et al., 1979). For example, the properties of the high-frequency 

flicker SSEP (whose peak amplitude is near 40–50 Hz) correspond to the properties 

of the subsequently discovered magnocellular neurons in the retina of the macaque 

monkey, while the properties of the medium-frequency flicker SSEP ( whose 

amplitude peak is near 15–20 Hz) correspond to the properties of parvocellular 

neurons. Since a SSEP can be completely described in terms of the amplitude and 
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phase of each frequency component it can be quantified more unequivocally than an 

averaged transient evoked potential. 

It is sometimes said that SSEPs are elicited only by stimuli of high repetition 

frequency, but this is not generally correct. In principle, a sinusoidally modulated 

stimulus can elicit a SSEP even when its repetition frequency is low. Because of the 

high-frequency rolloff of the SSEP, high frequency stimulation can produce a near-

sinusoidal SSEP waveform, but this is not germane to the definition of a SSEP. By 

using zoom-FFT to record SSEPs at the theoretical limit of spectral resolution ΔF 

(where ΔF in Hz is the reciprocal of the recording duration in seconds) Regan and 

Regan discovered that the amplitude and phase variability of the SSEP can be 

sufficiently small that the bandwidth of the SSEP’s constituent frequency 

components can be at the theoretical limit of spectral resolution up to at least a 500-

second recording duration (0.002 Hz in this case). Repetitive sensory stimulation 

elicits a steady-state magnetic brain response that can be analysed in the same way as 

the SSEP. 

SSVEP 

Steady-state visually evoked potentials (SSVEP) are the oscillatory electrical 

responses of neurons in the visual cortex to stimuli that are repeatedly presented (or 

flashed) at frequencies above 6 Hz. For many years, it has been known that such 

rapid stimulus sequences set up stable and synchronized neural oscillations in the 

occipital cortex, at frequencies corresponding to that of the stimulus (Vialette et al., 

2010). SSVEPs are easy to detect, as their frequency content is completely 

determined by the visual stimuli used to elicit them. These stimuli typically also 

elicit oscillations at harmonics of the stimulating frequency (Vialette et al., 2010). 

SSSEP 

Analogous to visually evoked SSVEPs, steady-state somatosensory evoked potentials 

(SSSEPs) are elicited by a continuous vibrotactile stimulus of a constant carrier 

frequency and a modulation frequency applied to the skin (Zhang et al., 2010). Using 

this technique, early research reported that when the palm (Muller er al., 2001) or the 

palm and sole (Snyder et al., 1992) were stimulated, corresponding steady-state 

responses were recorded at the scalp.  

ASSEP 

Actually, Cortically recorded steady-state acustic response (ASSEP) are generated 

presenting amplitude-modulated tones to the ear (Pastor et al., 2002). 
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Chapter 3 

EEG and BCI application 

 

 

3.1 Introduction 

In the 7 decades since Hans Berger’s original paper (Berger, 1929), the EEG has 

been used mainly to evaluate neurological disorders in the clinic and to investigate 

brain function in the laboratory; and a few studies have explored its therapeutic 

possibilities (e.g. Kuhlman, 1978; Rice et al., 1993; Sterman, 2000). Over this time, 

people have also speculated that the EEG could have a fourth application, that it 

could be used to decipher thoughts, or intent, so that a person could communicate 

with others or control devices directly by means of brain activity, without using the 

normal channels of peripheral nerves and muscles. However, EEGbased 

communication attracted little serious scientific attention until recently, for at least 3 

reasons. 

First, while the EEG reflects brain activity, so that a person’s intent could in theory 

be detected in it, the resolution and reliability of the information detectable in the 

spontaneous EEG is limited by the vast number of electrically active neuronal 

elements, the complex electrical and spatial geometry of the brain and head, and the 

disconcerting trialto- trial variability of brain function. The possibility of recognizing 

a single message or command amidst this complexity, distortion, and variability 

appeared to be extremely remote. Second, EEG-based communication requires the 

capacity to analyze the EEG in real-time, and until recently the requisite technology 
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either did not exist or was extremely expensive. Third, there was in the past little 

interest in the limited communication capacity that a first generation EEG-based BCI 

was likely to offer. Recent scientific, technological, and societal events have changed 

this situation. First, basic and clinical research has yielded detailed knowledge of the 

signals that comprise the EEG. For the major EEG rhythms and for a variety of 

evoked potentials, their sites and mechanisms of origin and their relationships with 

specific aspects of brain function, are no longer wholly obscure. Numerous studies 

have demonstrated correlations between EEG signals and actual or imagined 

movements and between EEG signals and mental tasks (e.g. Keirn and Aunon, 1990; 

Lang et al., 1996; Anderson et al., 1998; McFarland et al., 2000). Thus, researchers 

are in a much better position to consider which EEG signals might be used for 

communication and control, and how they might best be used. Second, the extremely 

rapid and continuing development of inexpensive computer hardware and software 

supports sophisticated online analyses of multichannel EEG. This digital revolution 

has also led to appreciation of the fact that simple communication capacities (e.g. 

‘Yes’ or ‘No’, ‘On’ or ‘Off’) can be configured to serve complex functions (e.g. 

word processing, prosthesis control). Third, greatly increased societal recognition of 

the needs and potential of people with severe neuromuscular disorders like spinal 

cord injury or cerebral palsy has generated clinical, scientific, and commercial 

interest in better augmentative communication and control technology. Development 

of such technology is both the impetus and the justification for current BCI research. 

BCI technology might serve people who cannot use conventional augmentative 

technologies; and these people could find even the limited capacities of first-

generation BCI systems valuable.  

In addition, advances in the development and use of electrophysiological recording 

methods employing epidural, subdural, or intracortical electrodes offer further 

options. Epidural and subdural electrodes can provide EEG with high topographical 

resolution, and intracortical electrodes can follow the activity of individual neurons 

(Schmidt, 1980; Ikeda and Shibbasaki, 1992; Levine et al., 1999). Furthermore, 

recent studies show that the firing rates of an appropriate selection of cortical 

neurons can give a detailed picture of concurrent voluntary movement (e.g. 

Georgopoulos et al., 1986; Schwartz, 1993; Wessberg et al., 2000). Because these 

methods are invasive, the threshold for their clinical use would presumably be higher 

than for methods based on scalp-recorded EEG activity, and they would probably be 
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used mainly by those with extremely severe disabilities. At the same time, they might 

support more rapid and precise communication and control than the scalp-recorded 

EEG. 

Like any communication or control system, a BCI has input (e.g. 

electrophysiological activity from the user), output (i.e. device commands), 

components that translate input into output, and a protocol that determines the onset, 

offset, and timing of operation. Figure 1 shows these elements and their principal 

interactions. 

 

Figure 1: Basic designed and operation of any BCI system. Signals from the brain are acquired 

and processed to extract specific signal features that reflect the user’s intent. These features are 

translate into commands that operate a device (e. g. a simple word processing program, a wheelchair 

or neuroprosthesis).  

3.2 Dependent and independent BCI 

A BCI is a communication system in which messages or commands that an 

individual sends to the external world do not pass through the brain’s normal output 

pathways of peripheral nerves and muscles. For example, in an EEG-based BCI the 

messages are encoded in EEG activity. A BCI provides its user with an alternative 

method for acting on the world. BCIs fall into two classes: dependent and 

independent. 

A dependent BCI does not use the brain’s normal output pathways to carry the 

message, but activity in these pathways is needed to generate the brain activity (e.g. 

EEG) that does carry it. For example, one dependent BCI presents the user with a 

matrix of letters that flash one at a time, and the user selects a specific letter by 

looking directly at it so that the visual evoked potential (VEP) recorded from the 

scalp over visual cortex when that letter flashes is much larger that the VEPs 
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produced when other letters flash (Sutter, 1992). In this case, the brain’s output 

channel is EEG, but the generation of the EEG signal depends on gaze direction, and 

therefore on extraocular muscles and the cranial nerves that activate them. A 

dependent BCI is essentially an alternative method for detecting messages carried in 

the brain’s normal output pathways: in the present example, gaze direction is 

detected by monitoring EEG rather than by monitoring eye position directly. While a 

dependent BCI does not give the brain a new communication channel that is 

independent of conventional channels, it can still be useful (e.g. Sutter, 1992). In 

contrast, an independent BCI does not depend in any way on the brain’s normal 

output pathways. The message is not carried by peripheral nerves and muscles, and, 

furthermore, activity in these pathways is not needed to generate the brain activity 

(e.g. EEG) that does carry the message. For example, one independent BCI presents 

the user with a matrix of letters that flash one at a time, and the user selects a specific 

letter by producing a P300 evoked potential when that letter flashes (Donchin et al., 

2000). In this case, the brain’s output channel is EEG, and the generation of the EEG 

signal depends mainly on the user’s intent, not on the precise orientation of the eyes 

(Sutton et al., 1965; Donchin, 1981). The normal output pathways of peripheral 

nerves and muscles do not have an essential role in the operation of an independent 

BCI. Because independent BCIs provide the brain with wholly new output pathways, 

they are of greater theoretical interest than dependent BCIs. Furthermore, for people 

with the most severe neuromuscular disabilities, who may lack all normal output 

channels (including extraocular muscle control), independent BCIs are likely to be 

more useful. 

Present-day BCIs fall into 6 groups based on the electrophysiological signals they 

use. The first and the second groups, those using VEPs and SSEP, are dependent 

BCIs, i.e. they depend on muscular control of gaze direction. The other 4 groups, 

those using slow cortical potentials, P300 evoked potentials, mu and beta 

rhythms, and cortical neuronal action potentials, are believed to be independent 

BCIs, though this belief remains to some extent an assumption still in need of 

complete confirmation. 

3.2.1 Steady State Evoked Potential (Chatelle) 

Several BCI approaches are based on the volitional modulation of steady-state 

electrical responses set up in the brain by the presentation of oscillatory stimulus 
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sequences. Such BCI designs are distinguished based on the sensory modality used to 

present these stimuli, considered here in turn. 

SSVEP-based BCIs.  

SSVEPs are easy to detect, as their frequency content is completely determined by 

the visual stimuli used to elicit them. These stimuli typically also elicit oscillations at 

harmonics of the stimulating frequency. 

For the purposes of BCI design, the finding that the strength of the SSVEP is 

modulated by endogenous attention is crucial. Specifically, it has been found that, 

when the visual system is presented with multiple stimuli flashing at different 

frequencies, the frequency of the stimulus being attended to generates the largest 

oscillatory response in the brain. 

Tapping into this knowledge, researchers have built BCIs that use stimuli at different 

frequencies to represent a set of responses from which the user selects one by paying 

attention to it. Such BCIs are particularly attractive because occipital SSVEPs have 

high signal-to-noise ratios and are nearly completely free of eye movement (Perlstein 

et al., 2003) and electromyographic artifacts (Regan, 1966; Gray et al., 2003). 

Moreover, SSVEP-based BCIs allow the user to select from a relatively large number 

(up to 64 of different choices) without adversely affecting classification accuracy, 

which tends to range between 64–96.5% (Vialatte et al., 2010). Stimulation for 

modern SSVEP-based BCIs is delivered either on a computer screen or using 

lightemitting diodes flickering at different frequencies (Wang et al., 2006; Cheng et 

al., 2002). The power at the stimulation frequencies over occipital electrodes is fed to 

a classifier, which is trained a priori to identify the stimulus frequency most likely to 

be focused on by the user. It has been found that the first three harmonics of the 

stimulus frequencies carry additional information, providing for a significant 

increase in classification accuracy (Müller-Putz et al., 2005). Progressive 

improvements in the design have produced systems that allow for an impressive rate 

of communication. Parini et al. (2009) showed performance results from an SSVEP-

based BCI that employed four cubic LED stimuli mounted at each side of a display. 

Seven healthy participants and four patients affected by muscular dystrophy at 

different stages were able to successfully use this system. In particular, the study 

reported the robustness of the system and the rapidity of user performance. 
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SSSEP-based BCIs.  

Several SSSEPs BCI system were developed. The first study showing attentional 

modulation of SSSEP amplitude in humans was done by Giabbiconi et al. (2004), 

using tactile stimuli with different frequencies applied simultaneously to the left and 

right index finger. Following this, the usability of SSSEPs in BCI design was 

evaluated by Muller-Putz et al. (2006). They stimulated both index fingers using 

tactile stimulation in the resonance frequency range of the somatosensory system. 

Four healthy subjects participated in the experiments and were trained to modulate 

the induced SSSEPs by focusing their attention on either their left or their right index 

fingers. Two of them learned to modulate their SSSEPs with accuracies between 70–

80%, demonstrating the initial possibilities of this approach. Researchers have also 

attempted to combine multiple modalities to improve the classification accuracy of 

steady-state BCIs. Such BCIs, based on multi-modal attention, have been proposed 

by Zhang et al. (2007). They combined tactile and visual stimuli to realize a 3-class 

BCI based on SSSEPs and SSVEPs. The combination of the two modalities resulted 

in improved classification accuracies when compared to either modality alone. 

Further, they showed that steady-state evoked potential amplitudes were modulated 

not only by switching spatial attention within one sensory modality, but also by 

switching across different modalities. 

ASSR-based BCIs.  

There have been a few relatively recent attempts to use steady-state responses 

produced by auditory stimulation, i.e. ASSRs (Auditory steady-state responses (Roß 

et al., 2000; Roß et al., 2003; Pastor et al., 2002)) to drive BCIs. Cortically recorded 

ASSRs are generated presenting amplitude-modulated tones to the ear. Ross et al. 

(2003) showed that the amplitude of the prominent ASSR generated by 40 Hz 

stimulation is modulated by selective attention. However, as of yet, there has been no 

demonstration of a BCI driven by such attentional modulation of ASSRs. The BCI 

design challenge yet to be overcome here is the relatively small size of this 

modulation effect, making it difficult to detect in real-time. BCIs employing ASSRs 

would come with the important advantage of not requiring the visual modality.  

3.2.2 Visual evoked potentials 

In the 1970s, Jacques Vidal used the term ‘brain–computer interface’ to describe any 

computer-based system that produced detailed information on brain function. This 

early usage was broader than current usage, which applies the term BCI only to those 
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systems that support communication and control by the user. Nevertheless, in the 

course of his work, Vidal developed a system that satisfied the current definition of a 

dependent BCI (Vidal, 1973, 1977). This system used the VEP recorded from the 

scalp over visual cortex to determine the direction of eye gaze (i.e. the visual fixation 

point), and thus to determine the direction in which the user wished to move a cursor. 

Sutter (1992) described a similar BCI system called the brain response interface 

(BRI). It uses the VEPs produced by brief visual stimuli and recorded from the scalp 

over visual cortex. The user faces a video screen displaying 64 symbols (e.g. letters) 

in an 8 × 8 grid and looks at the symbol he or she wants to select. Subgroups of these 

64 symbols undergo an equiluminant red/green alternation or a fine red/green check 

pattern alternation 40–70 times/s. 

Each symbol is included in several subgroups, and the entire set of subgroups is 

presented several times. Each subgroup’s VEP amplitude about 100 ms after the 

stimulus is computed and compared to a VEP template already established for the 

user. From these comparisons, the system determines with high accuracy the symbol 

that the user is looking at. A keyboard interface gives access to output devices. 

Normal volunteers can use it to operate a word processing program at 10–12 

words/min. In users whose disabilities cause uncontrollable head and neck muscle 

activity, scalp EMG can impede reliable VEP measurement and reduce performance. 

For one such user, a man with ALS, this problem was solved by placing a strip of 4 

epidural electrodes over visual cortex. With this implant, he could communicate 10– 

12 words/min (Sutter, 1992). Middendorf et al. (2000) reported another method for 

using VEPs to determine gaze direction. Several virtual buttons appear on a screen 

and flash at different rates. The user looks at a button and the system determines the 

frequency of the photic driving response over visual cortex. When this frequency 

matches that of a button, the system concludes that the user wants to select it. These 

VEP-based communication systems depend on the user’s ability to control gaze 

direction. Thus, they perform the same function as systems that determine gaze 

direction from the eyes themselves, and can be categorized as dependent BCI 

systems. They show that the EEG can yield precise information about concurrent 

motor output, and might prove superior to other methods for assessing gaze 

direction. It is possible that VEP amplitude in these systems reflects attention as well 

as gaze direction, and thus that they may be to some extent independent of 

neuromuscular function. 
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3.2.3 Slow cortical potentials 

Among the lowest frequency features of the scalp-recorded EEG are slow voltage 

changes generated in cortex. 

These potential shifts occur over 0.5–10.0 s and are called slow cortical potentials 

(SCPs). Negative SCPs are typically associated with movement and other functions 

involving cortical activation, while positive SCPs are usually associated with reduced 

cortical activation (Rockstroh et al., 1989; Birbaumer, 1997). In studies over more 

than 30 years, Birbaumer and his colleagues have shown that people can learn to 

control SCPs and thereby control movement of an object on a computer screen. This 

demonstration is the basis for a BCI referred to as a ‘thought translation device’ 

(TTD). The principal emphasis has been on developing clinical application of this 

BCI system. It has been tested extensively in people with late-stage ALS and has 

proved able to supply basic communication capability (Kubler, 2000). In the standard 

format EEG is recorded from electrodes at the vertex referred to linked mastoids. 

SCPs are extracted by appropriate filtering, corrected for EOG activity, and fed back 

to the user via visual feedback from a computer screen that shows one choice at the 

top and one at the bottom. Selection takes 4 s. During a 2 s baseline period, the 

system measures the user’s initial voltage level. In the next 2 s, the user selects the 

top or bottom choice by decreasing or increasing the voltage level by a criterion 

amount. The voltage is displayed as vertical movement of a cursor and final selection 

is indicated in a variety of ways. The BCI can also operate in a mode that gives 

auditory or tactile feedback (Birbaumer et al., 2003). Users train in several 1–2 h 

sessions/week over weeks or months. When they consistently achieve accuracies 

≥75%, they are switched to a language support program (LSP). The LSP (Birbaumer, 

2003) enables the user to choose a letter or letter combination by a series of two-

choice selections. In each selection, the choice is between selecting or not selecting a 

set of one or more letters. The first two selections choose between the two halves of 

the alphabet, the next two between the two quarters of the selected half, and so on 

until a single letter is chosen. A backup or erase option is provided. With this 

program, users who have two-choice accuracies of 65–90% can write 0.15–3.0 

letters/min, or 2– 36 words/h. While these rates are low, the LSP has proved useful to 

and highly valued by people who cannot use conventional augmentative 

communication technologies. Furthermore, a predictive algorithm that uses the first 

two letters of a word to select the word from a lexicon that encompasses the user’s 
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vocabulary can markedly increase the communication rate. A new protocol provides 

Internet access to one disabled user (Birbaumer et al., 2003). A stand-by mode 

allows users wearing collodium-fixed electrodes to access the system 24 h/day by 

producing a specific sequence of positive and negative SCPs (Kaiser et al., 2001). 

This sequence is essentially a key for turning the BCI on and off. 

3.2.4 P300 evoked potentials 

Infrequent or particularly significant auditory, visual, or somatosensory stimuli, 

when interspersed with frequent or routine stimuli, typically evoke in the EEG over 

parietal cortex a positive peak at about 300 ms (Walter et al., 1964; Sutton et al., 

1967; Donchin and Smith, 1970). Donchin and his colleagues have used this ‘P300’, 

or ‘oddball’ response in a BCI (Donchin et al., 2000). 

The user faces a 6 × 6 matrix of letters, numbers, and/or other symbols or commands. 

Every 125 ms, a single row or column flashes; and, in a complete trial of 12 flashes, 

each row or column flashes twice. The user makes a selection by counting how many 

times the row or column containing the desired choice flashes. EEG over parietal 

cortex is digitized, the average response to each row and column is computed, and 

P300 amplitude for each possible choice is computed. P300 is prominent only in the 

responses elicited by the desired choice, and the BCI uses this effect to determine the 

user’s intent. In online experiments and offline simulations, a variety of different 

algorithms (e.g. stepwise discriminant analysis, discrete wavelet transform) for 

recognizing the desired choice have been evaluated, and the relationship between the 

number of trials per selection and BCI accuracy has been described. These analyses 

suggest that the current P300-based BCI could yield a communication rate of one 

word (i.e. 5 letters) per minute and also suggest that considerable further 

improvement in speed should be possible. In people with visual impairments, 

auditory or tactile stimuli might be used (Glover et al., 1986; Roder et al., 1996). In 

related work, Bayliss and Ballard (2000) recorded P300s in a virtual environment. 

Offline analyses suggested that single-trial P300 amplitudes might be used for 

environmental control. 

A P300-based BCI has an apparent advantage in that it requires no initial user 

training: P300 is a typical, or naive, response to a desired choice. At the same time, 

P300 and related potentials change in response to conditioning protocols (Glover et 

al., 1986; Roder et al., 1996). A P300 used in a BCI is also likely to change over 

time. Studies up to the present have been short-term. In the long term, P300 might 
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habituate (Ravden and Polich, 1999) so that BCI performance deteriorates, or it 

might get larger so that performance improves. Thus, appropriate adaptation by the 

translation algorithm is likely to be important for this BCI, as it is for others. 

3.2.5 Mu and beta rhythms and other activity from sensorimotor cortex 

In awake people, primary sensory or motor cortical areas often display 8–12 Hz EEG 

activity when they are not engaged in processing sensory input or producing motor 

output (Neidermeyer, 2005). This idling activity, called mu rhythm when focused 

over somatosensory or motor cortex and visual alpha rhythm when focused over 

visual cortex, is thought to be produced by thalamocortical circuits (Lopes da Silva, 

1991; Neidermeyer, 2005). Unlike the visual alpha rhythm, which is obvious in most 

normal people, the mu rhythm was until quite recently found only in a minority. 

However, computer-based analyses reveal the mu rhythm in most adults. Such 

analyses also show that mu-rhythm activity comprises a variety of different 8–12 Hz 

rhythms, distinguished from each other by location, frequency, and/or relationship to 

concurrent sensory input or motor output. These mu rhythms are usually associated 

with 18–26 Hz beta rhythms. While some beta rhythms are harmonics of mu 

rhythms, some are separable from them by topography and/or timing, and thus are 

independent EEG features (McFarland et al., 2000). Several factors suggest that mu 

and/or beta rhythms could be good signal features for EEG-based communication. 

They are associated with those cortical areas most directly connected to the brain’s 

normal motor output channels. Movement or preparation for movement is typically 

accompanied by a decrease in mu and beta rhythms, particularly contralateral to the 

movement. This decrease has been labeled ‘event-related desynchronization’ or 

ERD. Its opposite, rhythm increase, or ‘event-related synchronization’ (ERS) occurs 

after movement and with relaxation (Pfurtscheller, 1999). Furthermore, and most 

relevant for BCI use, ERD and ERS do not require actual movement, they occur also 

with motor imagery (i.e. imagined movement) (McFarland et al., 2000). Thus, they 

might support an independent BCI. Since the mid-1980s, several mu/beta rhythm 

based BCIs have been developed. 

3.2.6 Cortical Neurons 

Since the 1960s, metal microelectrodes have been used to record action potentials of 

single neurons in the cerebral cortices of awake animals during movements. While 

most studies focused on the relationships between this neuronal activity and simple 

or complex sensorimotor performances, a few have explored the capacity of animals 
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to learn to control neuronal firing rates. With operant conditioning methods, several 

studies showed that monkeys could learn to control the discharge of single neurons in 

motor cortex (Fetz and Finocchio, 1975; Schmidt, 1980). From such work came the 

expectation that humans, including many with motor disabilities, could develop 

similar control and use it to communicate or to operate neuroprostheses.  

Evaluation of this possibility was delayed by lack of intracortical electrodes suitable 

for human use and capable of stable long-term recording from single neurons. 

Conventional implanted electrodes induce scar tissue and/or move in relation to 

individual neurons, so that over time recording deteriorates or neurons come and go. 

In 1989, Kennedy described an intracortical electrode consisting of a hollow glass 

cone containing recording wires (Kennedy, 1989). Neural tissue or neurotrophic 

factors placed inside the cone induced cortical neurons to send processes into the 

cone so that their action potentials could be recorded. These electrodes, implanted in 

motor cortices of monkeys and several humans nearly locked-in by ALS or 

brainstem stroke, have provided stable neuronal recordings for more than a year 

(Kennedy et al., 2000). Up to now, one user has learned to control neuronal firing 

rates and uses this control to move a cursor to select icons or letters on a computer 

screen. By using neuronal activity to control one dimension of cursor movement and 

residual EMG control to control the other dimension and final selection, 

communication rates up to about 3 letters/min (i.e. about 15 bits/min) have been 

achieved. While training has been limited by recurring illness and medication effects, 

the results have been encouraging and suggest that more rapid and accurate control 

should be possible in the future. Furthermore, by demonstrating this control in people 

who are almost totally paralyzed, these initial data suggest that cortical neurons can 

support an independent BCI system. 

Several laboratories have used multielectrode arrays to record from single neurons in 

motor cortex of monkeys or rats during learned movements (Georgopoulos et al., 

1986; Schmidt et al., 1988). The results show that the firing rates of a set of cortical 

neurons can reveal the direction and nature of movement. At the same time, almost 

all of this work has studied neuronal activity associated with actual movement. It is 

not clear whether the same patterns of neuronal activity, or other stable patterns, will 

be present when the movements are not made, and, most important, when the animal 

is no longer capable of making the movements (due, for example, to a spinal cord 
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injury). Limited data suggest that the patterns persist for at least a time in the absence 

of movement (Craggs, 1975; Chapin et al.). 
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Chapter 4  

Severe TBI and Disorder of consciousness 

 

 

4.1 Doc classification 

Disorder of consciousness (DOC) can result from focal brain injuries that induce 

widespread functional changes, or from more-global injuries. DOC are categorized 

largely on the basis of observable behavioral features and their inferred relationship 

to level of consciousness diagnostic taxonomies based on pathophysiological 

mechanisms have not yet been developed. DOC exist on a continuum, and patients 

may or may not transition sequentially through each state of consciousness.  

Accurate differential diagnosis is essential to the clinical management of patients 

with DOC. Diagnosis drives the approach to treatment, and is strongly associated 

with functional outcome (Giacino et al., 1997; Nakase-Richardson et al., 2012). 

Augmentative communication training, for example, should be deferred until the 

patient transitions to MCS and demonstrates evidence of language comprehension. 

The clinical examination should be designed to identify the key distinguishing 

features (Table 1), so that the prognosis can be established and appropriate 

therapeutic interventions initiated as early as possible (Giacino et al., 2014). 
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Table 1: Caracteristic clinical features of disorders of consciousness. 

Disorder 

Arousal 

and 

attention 

Cognition 
Receptive 

language 

Expressive 

language 
Visuoperception 

Motor 

function 

Coma 
No sleep-

wake cycles 
None None None None 

Primitive 

reflexes 

only 

Vegetative 

state 

Intermittent 

periods of 

wakefulness 

None None None 
Inconsistent visual 

startle 

Involuntary 

movement 

only 

Minimally 

conscious 

state 

Intermittent 

periods of 

wakefulness 

Inconsisten

t but clear-

cut 

behavioural 

sign of self-

awareness 

or 

environmen

tal 

awareness 

Inconsisten

t one-step 

command-

following 

Aspontane

ous and 

limited to 

single 

words or 

short 

phrases 

Visual pursuit 

Object recognition 

Localization 

to noxious 

stimuli 

Object 

manipulatio

n 

Automatic 

movement 

sequences 

Locked-in 

syndrome 

Normal 

sleep-wake 

cycles 

Normal to 

near-

normal 

Normal Aphonic Normal Tetraplegia 

 

4.1.1 Two components of consciousness 

Clinically defined, consciousness encompasses two main components: arousal and 

awareness (Zeman, 2001). At the bedside, arousal (also called vigilance or alertness) 

is observed by looking at the presence of eye opening. At a neuroanatomical level, 

the level of arousal (and in particular of sleep-wake cycles) is mainly supported by 

the brainstem (which is the region between the brain and the spinal cord), and the 

thalami (which are the nuclei in the center of the brain) (Schiff, 2008; Lin, 2000). 

Awareness, the second component of consciousness, refers to conscious perception 

which includes cognition, experiences from the past and the present, and intentions. 

At a clinical level, awareness is mostly inferred by command following (e.g. 

“squeeze my hand”, “close your eyes”). At a neuroanatomical level, awareness is 

underpinned by the cerebral cortex, which is a thin mantle of gray matter covering 

the surface of each cerebral hemisphere, and mainly through a wide frontoparietal 

network. Awareness can be further divided into awareness of the environment and 

awareness of self. Awareness of the environment can be defined as the conscious 

perception of one’s environment through the sensory modalities (e.g. visual, 

auditory, somesthetic or olfactory perception) whereas awareness of self is a mental 
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process that does not require the mediation of the senses and is not related to external 

stimuli for its presence (as shown by mind wandering, daydreaming, inner speech, 

mental imagery, etc.). Awareness of self also refers to the knowledge of our own 

social and cultural history as well as our family membership. To be aware, we need 

to be awake but when awake, we are not necessarily aware. Consciousness depends 

on the interaction between the activity of the cerebral cortex, the brainstem and 

thalamus. When one of these systems is disrupted, consciousness gets impaired. 

Thus, consciousness is not an all-or-nothing phenomenon but lies on a continuum of 

states (Wade, 1996). The various states of consciousness include wakefulness, deep 

sleep and paradoxical sleep (dreaming sleep, i.e. rapid eye movement sleep, REM 

sleep), anesthesia, coma, vegetative state and the minimally conscious state (Figure 

2). The boundaries between these different states are not always sharp but often are 

progressive transitions (Figure 3). 

 

Figure 2: Illustration of the two major components of consciousness: the level of consciousness 

(arosal or wakefulness) and the content of consciousness (awareness) in normal physiological states 

and in pathological states or pharmacological coma. 
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Figure 3: Different conditions may follow acute brain injury. Classically, coma lasts for a couple 

of days, and once the patients open their eyes they evolve into a vegetative state. Then they may enter 

a minimally conscious state after showing some signs of consciousness, and eventually they recover 

full consciousness. In rare case, a person may develop locked-in syndrome, a nearly complete 

paralysis of the body’s volontary motor responses.  

4.1.2 Coma 

Coma is a state of unarousable unresponsiveness in which the patient lies with the 

eye closed and has no awareness of self and surroundings (Posner et al., 2007). These 

patients will never open their eyes even when intensively stimulated. To be clearly 

distinguished from syncope, concussion, or other states of transient unconsciousness, 

coma must persist for at least one hour. In general, comatose patients who survive 

begin to awaken and recover within 2 to 4 weeks. This recovery may sometimes go 

no further than the vegetative state or the minimally conscious state. There are two 

main causes for coma: (1) bihemispheric diffuse cortical or white matter damage or 

(2) brainstem lesions bilaterally affecting the subcortical reticular arousing systems 

(Laureys et al., 2004). Many factors such as etiology, the patient’s general medical 

condition, age, clinical signs and complimentary examinations influence the 

management and prognosis of coma. After 3 days of observation, absence of 

pupillary or corneal reflexes, stereotyped or absent motor response to noxious 

stimulation, iso-electrical or burst suppression pattern EEG, bilateral absent cortical 

responses on somatosensory evoked potentials, and (for anoxic coma) biochemical 

markers such as high levels of serum neuron-specific enolase are known to herald 

bad outcome. Prognosis in traumatic coma survivors is known to be better than in 
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anoxic cases (Posner et al., 2007). An important general slowing characterizes the 

EEG in patients who are in coma. In addition, functional neuroimaging showed a 

global decrease of 50-70% in cerebral metabolism in coma patients, similar to values 

observed in general anesthesia. 

4.1.3 Vegetative State 

After some days to weeks comatose patients will eventually open their eyes. When 

this return of wakefulness without awareness of self and environment is accompanied 

by reflexive motor activity only, devoid of any voluntary interaction with the 

environment, the condition is called a vegetative state, VS. The VS may be a 

transition to further recovery, or not. It can be diagnosed soon after a brain injury and 

can be partially or totally reversible or it may progress to a permanent VS or death. 

Many people in VS regain consciousness in the first month after brain injury. 

However, after a month, the patient is said to be in a persistent VS and the 

probability of recovery diminishes as more time passes. If patients show no sign of 

awareness one year after a traumatic brain injury or three months after brain damage 

from lack of oxygen, the chances of recovery are considered close to zero, and the 

patient is considered in a permanent VS. However, rare cases of patients who recover 

after this interval have been reported (Childs et al., 1996). It is very important to 

stress the difference between persistent and permanent VS (Laureys et al. , 2000). It 

is now recommended to omit persistent and to describe a patient as having been 

vegetative for a certain time. When there is no recovery after a specified period 

(depending on etiology three to twelve months) the state can be declared permanent 

and withholding and withdrawal of treatment can be discussed (Coleman et al., 2005; 

Laureys et al. , 2000). No validated diagnostic nor prognostic markers for patients in 

a VS exist at present. The chances of recovery depend on patient’s age, etiology 

(worse for anoxic causes), and time spent in the VS. Recent data indicate that 

damage to the corpus callosum and brainstem indicate bad outcome in traumatic VS 

(Kampfl et al., 1998). Importantly, VS is not brain death: the VS can be partially or 

completely reversible. Unlike VS patients who have their eyes spontaneously open, 

patients in brain death never show eye opening. Moreover, contrary to brain death, 

VS patients can breathe spontaneously without assistance and have preserved 

brainstem reflexes and hypothalamic functioning. Additionally, positron emission 

tomography (PET) studies have showed clear differences between brain metabolism 

of VS and brain death patients. EEG shows an important general slowing of the 
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electrical brain activity of VS patients. Somatosensory evoked potentials may show 

pre served primary somatosensory cortical potentials and brainstem auditory evoked 

potentials often show preserved brainstem potentials. Endogenous evoked potentials 

measuring for example the brain’s response to complex auditory stimuli such as the 

patient’s own name (as compared to other names) permits to record a so-called P300 

response. Recent data show that the P300 is not a reliable marker of awareness but 

rather signs automatic processing, as it could be recorded in well-documented VS 

patients who never recovered (Perrin et al., 2005). VS patients show substantially 

reduced (40-50% of normal values) but not absent overall cortical metabolism. In 

some VS patients who subsequently recovered, global metabolic rates for glucose 

metabolism did not show substantial changes In addition, PET studies on pain 

perception have showed that healthy control subjects and VS patients didn’t 

demonstrate the same brain activity when they received a painful stimulation. In VS 

patients, the activity of primary somatosensory cortex was isolated and disconnected 

from the rest of the brain, in particular from the frontoparietal network believed to be 

critical for conscious perception (Laureys et al., 2002). 

4.1.4 Minimally Conscious State 

The criteria for the MCS were recently proposed in 2002 (Giacino et al., 2002). The 

MCS describes patients who are unable to communicate their thoughts and feelings, 

but who demonstrate inconsistent but reproducible behavioral evidence of awareness 

of self or environment. Patients in a MCS have to show at least one of the following 

behaviors: oriented response to noxious stimuli, sustained visual pursuit, command 

following, intelligible verbalization or emotional or motor behaviors that are 

contingent upon the presence of specific eliciting stimuli such as episodes of crying 

that are precipitated by family voices only. Like the vegetative state, the MCS may 

be chronic and sometimes permanent. At present, no time intervals for permanent 

MCS have been agreed upon. Some patients who have remained in the MCS for 

years were shown to slow recover to meaningful lives (Voss et al., 2006). The 

emergence from the MCS is defined by the ability to use functional interactive 

communication or functional use of objects [59]. Given that the criteria for the MCS 

have only recently been introduced, there are few clinical studies of patients in this 

condition. Similar as for the VS, traumatic etiology has a better prognosis than non-

traumatic (anoxic) MCS. Preliminary data show that overall outcome is better than 

for the VS (Giacino et al., 2002). The EEG shows a general slowing of the electrical 
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brain activity in MCS patients. Neuroimaging has shows that minimally conscious 

patients differ from VS patients in their metabolic activity in the precuneus and 

posterior cingulate cortex (Laureys et al., 2004).. In addition, in patients in a MCS, 

auditory stimuli trigger higher-order cortical activity normally not observed in the 

VS (Boly et al., 2005). In the same line, auditory stimuli with emotional valence 

(such as infant cries or the patient’s own name (Laureys et al., 2004). or a narrative 

told by the patients mother) induce a much more widespread activation in patients in 

MCS than meaningless stimuli do. This indicates that content does matter when 

talking to a patient in MCS. A recent fMRI study reported a young women 

considered as being in a VS while she showed indistinguishable brain activity from 

these observed in healthy people when we asked her to imaging playing tennis and 

visiting her house (Owen et al., 2006). Despite the clinical diagnosis that the patient 

was in a VS, she understood the tasks and repeatedly performed them and hence 

must have been conscious. A few months after the study, the patient evolved towards 

a MCS. The results of this study should not be misinterpreted as evidence that all 

patients in a VS may actually be conscious. The most likely explanation of these 

results is that the patient was already beginning the transition to the MCS at the time 

of the experiment. A study conducted by Di et al. (2007) also indicated that the 

activation of higher-level brain regions during functional MRI seems to predict 

recovery to the MCS. In addition, MRI studies permit to visualize the extent of brain 

damage, and new advances in MRI scanning, such as diffusion tensor imaging and 

spectroscopy, can also offering prognostic information (Galanaud et al., 2007). This 

technique can also shed light on mechanisms of recovery from the MCS: an MRI 

diffusion tensor imaging study identified axonal regrowth in the brain of a patient 

who emerged from a MCS after 19 years of silence (Voss et al., 2006). 

4.1.5 Locked-in Syndrome 

The locked-in syndrome describes patients who are awake and conscious but have no 

means of producing speech, limb, or facial movements. Brainstem lesions are its 

most common cause. People with such lesions often remain comatose for some days 

or weeks, needing artificial respiration and then gradually wake up, albeit remaining 

paralyzed and voiceless, superficially resembling VS patients. Locked-in patients can 

be divided into three categories (Bauer et al., 1979): (a) classical locked-in syndrome 

is characterized by quadriplegia and anarthria with eye coded communication; (b) 

incomplete locked-in syndrome permits remnants of voluntary responsiveness other 
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than eye movement; and (c) total locked-in syndrome consists of complete 

immobility including all eye movements, combined with preserved consciousness. 

Once a locked-in syndrome patient becomes medically stable, and given appropriate 

medical care, life expectancy now is several decades. Even if the chances of good 

motor recovery are very limited, existing eye-controlled computer-based 

communication technology currently allows these patient to control their 

environment, use a word processor coupled to a speech synthesizer and access the 

world wide net. Neuropsychological testing batteries adapted and validated for 

eyeresponse communication, have shown preserved intellectual capacities in locked-

in syndrome patients (Schnakers et al., 2008). Recent surveys show that chronic 

locked-in syndrome patients self-report meaningful quality of life and the demand for 

euthanasia, albeit existing, is infrequent (Laureys et al., 2004). According to some 

studies, the EEG does not consistently distinguishes the locked-in syndrome from the 

VS. PET scanning has shown preserved metabolic cerebral functioning in a locked-in 

syndrome when compared to those in a VS or MCS. 

4.2 The issue of misdiagnosis between VS and MCS 

Diagnostic accuracy is critical to designing an appropriate plan of care, establishing 

an accurate prognosis, and providing appropriate information to caregivers (Giacino 

et al., 2009, Giacino et al., 2007). Unfortunately, diagnostic error is common among 

patients with VS and MCS. Reports consistently find that approximately 30–40% of 

people diagnosed with VS actually retain conscious awareness. Misdiagnosis may 

contribute to premature withdrawal of life-sustaining care and lead to inappropriate 

medical management (for example, neglect of pain treatment). The risks associated 

with early misdiagnosis are highlighted by a Canadian study, which found that 70% 

of the deaths reported in six level I trauma centres were attributable to withdrawal of 

life-sustaining therapy, with half occurring within the first 72 h of injury (Turgeon et 

al., 2011). The failure to detect conscious awareness may also limit access to 

specialized neurorehabilitative services, as many insurance policies will not 

authorize admission to a rehabilitation programme for individuals believed to be 

unconscious. 

The lack of a ‘gold standard’ for detection of conscious awareness is the most 

prominent confounding factor for diagnostic assessment. In the absence of an 

objective test of consciousness, diagnostic impressions are based on behavioural 



61 

 

observations at the bedside. Behaviour is, however, an unreliable proxy for 

consciousness (Giacino et al., 2009). Interpretation of the significance of a specific 

behaviour reflects the subjective bias of the observer and is a byproduct of the range 

of behaviours sampled (narrow versus broad), the frequency of assessments 

performed (one-off versus serial), and the parameters established for response 

interpretation (qualitative versus operationally defined).  

A second source of diagnostic error arises from patient-specific characteristics. 

Underlying peripheral and cortical sensory deficits, neuromuscular impairments, 

fluctuations in arousal level, cognitive dysfunction, subclinical seizure activity, and 

occult illness may all mask conscious awareness (Giacino et al., 2009). 

Environmental factors that constrain the patient’s behavioural response repertoire — 

for example, use of restraints or sedating medications—may also bias the diagnostic 

impression. 

Various approaches have been employed to discern levels of consciousness in 

behaviourally non-responsive and non-communicative patients. Neurobehavioural 

assessment methods are most commonly employed in clinical practice, in view of 

their availability, low cost and ease of use. Structural and functional neuroimaging 

strategies and electrophysiological techniques have garnered scientific and clinical 

attention in light of increasing evidence that they can detect active cognitive 

processing in the absence of behavioural signs of consciousness (Goldfine et al., 

2011). 

4.3 Behavioural assessment 

4.3.1 Neurobehavioural rating scales 

Neurobehavioural rating scales rely on standardized administration and scoring 

procedures to detect subtle but important behavioural signs of consciousness. Scales 

designed for this purpose have generally been shown to have good reliability and 

validity, although other important psychometric properties such as sensitivity and 

specificity, and positive versus negative predictive value, have not been adequately 

investigated. An evidence-based review of neurobehavioural rating scales designed 

specifically for patients with DOC was recently completed by a task force of the 

American Congress of Rehabilitation Medicine. The task force identified six scales 

that seem to be sensitive for detecting conscious awareness (Seel et al., 2010). The 

Coma Recovery Scale-Revised (CRS-R) (Giacino et al., 2004) received the strongest 
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recommendation (“minor reservations”) of those reviewed, on the basis of 

psychometric properties deemed important for clinical assessment. 

4.3.2 IQBA 

Individualized quantitative behavioural assessment (IQBA) employs single-subject 

experimental design to address case-specific questions, and is intended to 

complement comprehensive neurobehavioural assessment. This method of 

assessment is particularly useful when behavioural responses are ambiguous or 

infrequent (Giacino et al., 2005). 

In IQBA, behaviours of interest are operationally defined and tested under varying 

conditions constructed to address a specific question. For example, one can ask 

whether movement of the thumb is volitional by testing the frequency of thumb 

movement following a command to move the thumb (volitional condition) or another 

part of the body (noise condition), and in the absence of any command (rest 

condition). Differences in the frequency of the target behaviour can then be tested 

statistically to determine whether the rate of occurrence is significantly greater in one 

condition relative to the others. If the analysis indicates that the frequency of 

movement is significantly higher in the volitional condition relative to the noise and 

rest conditions, the behaviour is very likely to be under volitional control (Giacino et 

al., 2005). IQBA can be adapted to address a broad range of questions and has been 

shown to be useful for detection of command-following, visual field deficits, 

hemispatial neglect, and medication effects (Whyte et al., 1999; Di Pasquale et al., 

1996). 

4.4 Neuroimaging strategies 

While behavioural assessment of DOC remains the gold standard, neuroimaging 

permits objective documentation of CNS damage after acquired brain injury. From a 

scientific standpoint, neuroimaging studies aid our understanding of the neural 

correlates of human consciousness. From a clinical perspective, they provide 

additional information concerning diagnosis, prognosis and the course of recovery of 

consciousness, and can serve as surrogate markers for novel therapeutic 

interventions. 

4.4.1 Stuctural imaging 

MRI is the method of choice to visualize the location and extent of brain damage in 

chronic DOC. In the acute setting, however, CT scanning may be preferred, owing to 
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its accessibility, speed of acquisition, and sensitivity to acute haemorrhage or lesions 

that require immediate surgery. Standard T1-weighted structural MRI assessments 

cannot reliably differentiate VS from MCS, but voxel-based morphometry analyses 

may allow this distinction in the near future. Older studies have shown the possible 

prognostic value of ‘classic’ structural MRI sequences to predict DOC outcome; for 

example, the presence of corpus callosum and dorsolateral brainstem lesions 

correlates with lack of recovery at the group level (Kampfl et al., 1998). However, 

recently developed quantitative diffusion tensor imaging (DTI) techniques, which 

permit assessment of structural white matter damage, have been shown to outperform 

clinical markers in predicting 1-year functional outcome at the individual-patient 

level in patients with traumatic or anoxic brain injury. In our view, DTI-MRI 

techniques offer a unique opportunity to quantify the structural integrity of the white 

matter, and can also quantify the primary and secondary axonal damage encountered 

in DOC (Voss et al., 2006). 

4.4.2 Functional Neuroimaging 

Key advances in our understanding of DOC have come from the use of functional 

imaging. Depending on the technique employed, functional neuroimaging can 

measure the brain’s metabolic activity (for example, by use of 18F-

fluorodeoxyglucose PET, [FDG-PET] or MRI spectroscopy), haemodynamic activity 

(for example, by use of H215O-PET or functional MRI [fMRI]) or electrical activity 

(for example, EEG, evoked potentials or magnetoencephalography). Depending on 

the acquisition conditions, these approaches can measure resting or active brain 

function, the latter through either passive external stimulation or active cognitive 

paradigms. 

PET imaging 

FDG-PET studies in ‘resting state’ conditions were the first to demonstrate massive 

decreases in brain metabolism in DOC. In VS, FDG-PET classically shows a 

reduction of brain function to 40–50% of normal values (Laureys et al., 2012). 

Voxel-based studies indicated that the lateral and medial frontoparietal associative 

cortices are the most hypometabolic areas, and recovery of consciousness seems to 

be characterized by recovery of activity in this frontoparietal ‘awareness network’. 

More-recent studies have used automated classifiers for the analysis of FDG-PET 

data, permitting calculation of the probability that individual patients are conscious 

(‘locked in’) or unconscious (VS) (Phillips et al., 2011). At the single-patient level, 
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FDG-PET cannot disentangle VS from MCS, but group studies have shown that 

CRS-R total scores correlate with metabolic activity in the awareness network. 

Within this network, fronto-parietal midline structures are thought to be important 

for internal, stimulus-independent or ‘self’ consciousness, whereas lateral fronto-

parietal cortices seem to be critical for external or sensory awareness. The latter 

network seems to be relatively preserved in MCS (compared with VS), possibly 

reflecting recovery of voluntary interaction with the environment. Patients who are 

considered to be in MCS because they display nonreflexive behaviour but fail to 

follow commands (a condition newly termed MCS-MINUS) have been shown to 

have metabolic dysfunction in the dominant left-hemispheric language network, 

possibly related to the presence of aphasia (Giacino et al., 2014). 

H2 15O-PET studies suggest that VS represents a global disconnection syndrome in 

which the awareness networks are functionally disconnected from primary cortical 

areas. By contrast, patterns of activation observed in patients in MCS indicate 

preservation of large-scale cortical networks associated with auditory and pain 

processing (Giacino et al., 2014). 

fMRI imaging 

In recent years, PET activation studies have been largely superseded by non-ionizing 

fMRI techniques. Activation fMRI studies using auditory, tactile or visual stimuli 

have shown near-normal high-level cortical activation in MCS and low-level 

activation in VS (Laureys et al., 2012). The minority of patients in VS who exhibited 

high-level activation often showed clinical signs of recovery at long-term follow-up 

(Di et al., 2008). Despite their potential value as prognostic markers, the diagnostic 

value and interpretation of activation fMRI studies in DOC in terms of the presence 

or absence of residual consciousness have remained controversial. Indeed, in the 

absence of a full understanding of the neural correlates of consciousness, deficient 

cortical activation to external stimuli does not necessarily prove the absence of 

consciousness. 

‘Active’ fMRI paradigms have been developed to probe for possible motor-

independent signs of command-following (Boly et al., 2007). Patients with DOC are 

asked to perform cognitive tasks in motor (for example, “imagine playing tennis”), 

visuospatial (for example, “imagine walking around in your house”) or visual (for 

example, “look at the face”) domains. This approach provided an opportunity to ask 

yes–no questions to a patient with an initial clinical diagnosis of VS (but later shown 
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to be in MCS) (Monti et al., 2010). It should be stressed, however, that many of the 

tested patients in MCS who showed behavioural signs of command-following failed 

to show a response to these active fMRI tests, leading to false-negative findings. 

Because this approach depends on adequate processing and performance of the 

cognitive task, these paradigms cannot document residual consciousness in patients 

with severe sensory, cognitive or language impairment. 

Task-free ‘resting-state’ blood oxygen level-dependent (BOLD) fMRI measurements 

have also been performed in DOC (Heine et al., 2012). Recording of spontaneous 

fluctuations in BOLD fMRI activity under unstimulated conditions has identified 

various functional networks, some of which are thought to represent conscious 

cognitive activity. The best-studied network is the default mode network (DMN) 

encompassing the posterior and anterior cortical midline structures, which are 

considered to be involved in stimulus-independent thought, mind-wandering and 

self-consciousness (Demertzi et al., 2013). The DMN was shown to be absent in 

brain death, but still partially preserved in VS, probably reflecting residual structural 

connectivity. At the group level, resting-state network activity revealed reduced 

interhemispheric connectivity and correlated with levels of consciousness in patients 

with DOC (Vanhaudenhuyse et al., 2009). At the single-patient level, however, it 

fails to reliably distinguish VS from MCS, and contamination by motion or other 

artefacts can impede the identification of true neuronal activity. 

The arterial spin labelling (ASL) technique allows noninvasive measurement of 

resting-state cerebral blood flow. A recent ASL-MRI study in patients in MCS 

showed a profound decrease in blood flow in anterior cortical midline structures (Liu 

et al., 2011). Finally, MRI spectroscopy, a measure of biochemical changes in the 

brain, has uncovered severe metabolic cortical and thalamic neuronal dysfunction in 

DOC, with probable prognostic value (Carpentier et al., 2006). 

Despite the very promising results obtained by these studies, fMRI-based 

applications remain challenging for many reasons: 1) high costs; 2) limited scanner 

availability; 3) the inactive state of these patients; 4) the frequent uncontrolled, 

involuntary movements inside the scanner; 5) the substantial physical stress to 

patients on transfer to the fMRI facility. Furthermore, metal implants, including 

plates and pins, which are common in most traumatically injured populations, rule 

out the use of fMRI. 
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A variety of other diagnostic tools is currently in development and is being tested on 

DOC patients. Amongst the most promising are electromyography, “sniffing”-tests, 

and functional near-infrared spectroscopy (fNIRS). Electromyography has been used 

to study the occurrence of subthreshold muscle activity in response to verbal 

command. In a study by Bekinschtein and colleagues (2010), one VS/UWS and two 

MCS patients showed increases in the electromyography signal related to the 

command “move your hand.” Willful modulation of nasal pressure (“sniffing”) can 

also be used for communication, writing texts and driving a wheelchair (Plotkin et 

al., 2010). Sniffing can provide a control interface that is fast, accurate, robust and 

highly conserved following severe injury. It is therefore possible that this can be used 

as a diagnostic tool in DOC, although more research is needed. When studying the 

brain, fMRI has the advantage of showing with high precision the brain areas that are 

involved in cognition and consciousness. As mentioned before, this information can 

be used to communicate via brain modulation by the patient. However, although 

attempts for such fMRI-based communication have been successful in a number of 

cases, it has the disadvantage of being dependent on expensive and immobile fMRI 

scanning equipment. fNIRS might offer a solution to this problem in the near future 

(Sorger et al., 2009), as it is a portable, silent, low-cost alternative to fMRI. The 

technique capitalizes on the changing optical characteristics of blood in the visible 

and near-infrared light range, when oxygenated hemoglobin in the blood becomes 

deoxygenated due to oxygen extraction by brain tissues. Although initial fNIRS 

studies have been performed in several neurological and psychiatric disorders (Irani 

et al., 2007), validation of the technique in DOC is still awaited. A limitation of 

fNIRS is the fact that it cannot measure activity in deep brain structures. However, 

the technique offers the possibility of continuous scanning for longer periods of time 

than would be possible with fMRI and can include patients that have physiological 

limitations that make fMRI scanning impossible. 

4.5 The use of EEG in context of research 

The majority of electrophysiological studies on VS/MCS focused on the search for 

the presence of specific event-related potentials that would sustain the integrity of 

some superior functions of the central nervous system of the patients. Among the 

whole set of ERP, two of them have been demonstrated to be the best predictor of a 

good outcome; the P300 and the Mismatch negativity. They are included in protocols 



67 

 

testing particularly the integrity of sensory processing pathways in the acoustic 

channel. 

 Mismatch negativity (MMN) is a mid-latency ERP (peaking after 100-150 ms 

from the stimuli) that reflects the automatic detection of rare stimuli in a 

sequence, and, for the acoustic channel, it is believed to be a product of 

processing in the associative acoustic areas in the temporal lobes. 

 P300 is a long-latency ERP components that reflect attentional processing in 

responses to rare, deviant and or meaningful stimuli to the subject. It is a 

product of attentional processes mainly located in the parietal areas and can 

be divided in two subcomponents: P300a, produced by attentive mechanisms 

evoked by just the rarity of a given stimulus in a sequence (latency: 200- 300 

ms) and P300b, elicitable when some executive processes are requested to the 

subject when faced to a given stimulus (latency: 300-400 ms). 

Aside from studies involving ERP methodologies, other studies involved spectral and 

coherence analyses of EEG in SV/MCS patients. Such studies have shown a general 

slowing of EEG in SV/MCS, with a general increase of power in lower bands (range 

delta, theta) over the whole scalp, and a generalized decrease of spectral coherence 

for every band and over the whole scalp. Authors suggested that the latter could be 

probably an index of functional disconnection between the different cortical regions. 

Up to now, these research studies have not conduced to the definition of new 

diagnostic and/or prognostic methodologies: such studies rely on relatively small 

groups of subjects, and results are difficultly interpretable and integrable with results 

from ERP-based assessments. 

Systematic studies involving EEG spectral parameters of SV/SMC patients were 

published only recently (Babiloni et al., 2009; Keller et al., 2007, Sharova et al., 

2007]). Babiloni et al. (2009) showed that power in the alpha band in the parieto-

occipital areas positively correlates with recovery degree after 3 months from injury 

(assessed through the Level of Cognitive Functions scale, LCF) in a study involving 

50 VS patients. Keller et al. (2007) studied the modifications induced by different 

sensory stimulations on the spectral baricentric frequency in 18 VS patients, showing 

that tactile stimulation induces higher increases compared to auditory stimulation. 

Several studies used EEG-based systems to validate the scientific reliability of EEG-

related procedures in discriminating mental imagery tasks in DoC patients (Lemm et 

al., 2011). These studies demonstrated that EEG-signals could be produced and 
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controlled by thinking about specific imagery tasks, thereby confirming that this 

activity could also serve as a new form of communication in patients with disorders 

of consciousness. With a paradigm similar to that of Monti et al., Cruse and 

colleagues used EEG to detect command-following in vegetative state patients 

undertaking two motor imagery tasks (image moving hand and toe). They used EEG-

signals recorded by 25 electrodes located over the motor area and a support vector 

machine (SVM) to classify the two tasks, obtaining a classification accuracy of 61– 

78% (Cruse et al., 2012). In a second study, Cruse and colleagues optimized their 

technique using only four fixed electrodes and confirmed the classification accuracy 

of their previous study (Cruse et al., 2012). Cruse et al.’s results were discussed by 

Goldfine et al. because of the difficulty of the tasks and the critical reliance on 

certain statistical assumptions. They reanalyzed the data with a method independent 

of such assumptions and reported no evidence for covert consciousness (Goldfine et 

al., 2013). Using Fisher’s linear discriminant approach and two different tasks with 

respect to those used by Cruse et al. (image swimming and image walking in one’s 

own home). Goldfine and colleagues were the first to translate to the EEG motor 

imagery tasks (imagine swimming/ stop imagining) and spatial navigation tasks 

(imagine walking around your home/stop imagining) similar to those used with 

fMRI. They tested 5 healthy controls and 3 DOC patients, 2 MCS and 1 LIS. The 

authors reported variability in the patients’ responses, which allowed only limited 

conclusions to be drawn about the applicability of these paradigms to patients with 

disorders of consciousness. In the first patient, the authors observed that the task-

related signals were different from those observed in the healthy controls. In the 

second patient, the authors observed variability between the task-related signals 

produced during 2 different visits. The signal from the first visit was consistent 

across runs, but the signal from the second visit was inconsistent across runs, and 

was classified as indeterminate. The third patient showed a similarly indeterminate 

pattern during both visits. The authors concluded that assessment of larger sample 

sizes of both healthy controls and patients groups would be needed before this task 

could be used as a clinically diagnostic tool. However, as the first study to translate 

to EEG the motor imagery paradigms that have been used successfully in fMRI, this 

work is an important proof of principle (Goldfine et al., 2011). John and colleagues 

established the reproducibility of differential EEG source localization during 

requested imagery tasks in vegetative state patients (Jhon et al., 2011), as had been 
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established for fMRI. Kotchoubey and colleagues described a CLIS patient whose 

slow EEG activity significantly differed between trials when he was asked to try to 

move the left compared to the right hand (Kotchoubey et al., 2003). In healthy 

participants, motor imagery also produces clearly distinguishable modulation of EEG 

sensorimotor rhythms (SMRs), similar to those seen during motor execution. Kubler 

and colleagues showed that LIS patients with ALS could learn to modulate their 

SMRs with . 70% accuracy, but did not test VS patients with this paradigm (Kubler 

et al., 2005). Results obtained in the above studies are often discrepant but confirm 

the usefulness of EEG to reliably detect awareness in patients with a clinical 

diagnosis of VS. Therefore, EEG may serve as an important tool for the assessment 

of awareness components in patients with disorders of consciousness in the clinical 

setting. 

4.6 BCI in DOC 

Typically, BCI applications with (behaviorally) responsive participants involve 

analysis and classification of brain responses, produced either voluntarily, or in 

response to sensory stimulation, to infer a desired command that reflects the user’s 

intention. The executed command brings about a state change of the BCI system that 

is communicated to the BCI user, for example, through a visual display (Kübler et 

al., 2007). This cycle can be repeated iteratively until there is bidirectional feedback, 

or online communication between the user and the operator. Such an advanced BCI 

system involves reading and interpreting the user’s intention in real time to produce 

physical outcomes/changes in the system, which can inform the user’s subsequent 

response. For conscious participants, the BCI user’s intent is clear—for example, to 

regulate one’s own brain activity, such as that which produces the sensation of 

chronic pain, via neurofeedback. A major hurdle in communicating with behaviorally 

nonresponsive patients is the lack of a priori knowledge about their level of 

conscious awareness, cognitive capacities, and even their communicative intent. 

Moreover, the level of arousal, awareness, and more generally, cognition varies 

dramatically between patients who are truly in a VS and those who are (minimally) 

aware, but have been misdiagnosed as VS. Thus, to maximize the chances that any 

given patient will be able to respond, a BCI system for DOC patients must be as 

robust to this variation, and as straightforward to use, as possible. Another significant 

challenge in the development of BCIs for DOC patients is the limited sensory 
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processing that these patients are likely to have (Andrews et al., 1996). The majority 

of BCI techniques, which have been developed for conscious participants, rely on 

visual stimulation and feedback. However, vision is among the most affected senses 

in DOC patients (Andrews et al., 1996; Gill-Thwaites et al., 2004). By definition, VS 

patients lack the ability to fixate on or pursue objects in their visual field,12 which 

results in highly impaired visual processing. This precludes the use of visually based 

BCI systems in this group, and moreover the modification of such systems for use in 

other modalities (eg, auditory) is not trivial.  

Below, we review BCI research in 3 noninvasive neuroimaging technologies, fMRI, 

EEG, and functional near-infrared spectroscopy (fNIRS), all of which may be 

applicable to varying degrees in nonresponsive patients. Invasive technologies, such 

as electrocorticography, single microelectrodes, or microelectrode arrays involve 

implantation of electrodes in the cortex, and therefore provide superior signal-to-

noise ratio and better detection of high-frequency oscillatory activity than 

noninvasive technologies. A proof of principle study used invasive electrodes in a 

BCI application for patients with limited behavioral response (eg, locked-in) 

(Guenther et al., 2009). However, invasive technologies are of limited relevance to 

patients who are the main focus of this article for several reasons. Electrode 

implantation is often a corollary of a surgical procedure in the course of a patient’s 

treatment, and rarely an option with stable and/or chronic DOC patients. The DOC 

patients we consider here (VS and MCS) are not able to provide informed consent. 

For any research, legal approval is required from the patient’s family or other legal 

representative. This is far less likely to be granted for invasive BCI applications, 

especially when they are not part of treatment protocols, as they may adversely 

influence the patient’s health. For similar reasons, with the exception of rare cases, 

where the patient requires surgical intervention and the appropriate legal and ethical 

permissions are already in place, such research is prevented by rulings of ethics 

boards and other regulatory organizations. Finally, issues of financing and access to 

medical resources available only to acute patients with specific conditions further 

prohibit invasive BCI applications in DOC patients (Naci et al., 2012). 

4.6.1 fMRI BCIs 

fMRI has several strengths for BCI applications, including its noninvasive nature, 

global brain coverage of the cortex and deep subcortical structures, and excellent 

spatial resolution (in the millimeter range). As introduced above, Monti and 
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colleagues (2010) employed an fMRI-based mental imagery paradigm to assess 

command following in a patient who had been clinically diagnosed as VS and had 

been unresponsive for 5 months. The patient was asked to imagine playing tennis 

(for 30 seconds) when she heard the word tennis, and to relax (for 30 seconds) when 

she heard the word relax. In a separate spatial imagery task, she was asked to 

imagine moving around the rooms of her home (for 30 seconds) when she heard the 

word house, and to relax (for 30 seconds), when she heard the word relax. The 

patient showed task-specific fMRI activation in the appropriate regions of the 

supplementary motor area following the instruction to imagine playing tennis, and in 

the parahippocampal gyrus, the posterior parietal lobe, and the lateral premotor 

cortex following the instruction to imagine moving from room to room in her house. 

Moreover, this activity was indistinguishable from that of healthy participants 

performing the same tasks (Owen et al., 2006; Bol et aò., 2007). The patient’s fMRI 

activation was statistically robust, reproducible, task appropriate, and sustained over 

long time intervals (30 seconds), allowing Owen and colleagues (2006) to conclude 

that she was responding to the commands by performing the imagery tasks in the 

absence of any overt action. Monti et al (2010) extended this approach to 

demonstrate that fMRI could also be used to communicate with a nonresponsive 

patient who was assumed to be in a VS. One type of imagery (tennis or spatial 

navigation) was mapped to a yes response, and the other to a no response. A single 

neutral word, answer, was used to cue each response to a question. To decode the 

answers, each communication scan was compared to 2 localizer scans, during which 

the patient was asked to simply imagine playing tennis, or imagine moving around 

his house (see Owen et al 2006). Following 6 autobiographical questions (eg, ‘‘Is 

your father’s name Thomas?’’), the answers that were decoded from the brain 

activity matched the factually correct answers (in 5 of the 6 questions), which were 

unknown to the experimenters at the time. This study demonstrated that the presence 

of voluntary, reliable, and sustained brain activity in response to command could be 

used as a proxy for physical behavior, such as movement or speech, to facilitate 

communication with nonresponsive participants. In the study described above, 

(Monti et al., 2013) VS and MCS patients were tested and, of those, only 5 (4 VS) 

showed significant changes in fMRI activation during the basic imagery tasks. One 

interpretation of this finding is that the diagnosis was accurate in the vast majority of 

cases, and the negative results reflect a genuine lack of awareness in those patients. 
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Several other factors, however, may also explain these findings. First, it is possible 

that this technique lacks sensitivity, and thus failed to show activation in patients 

who might have been engaged in the task. Indeed, it is known that in brain-damaged 

patients, the coupling of hemodynamics and neuronal firing, which lies at the basis of 

the fMRI signal, may be very different from that in healthy volunteers. Alternatively, 

it is possible that in some patients, deficits in language comprehension, decision 

making, working memory, or executive function may have hampered their efforts to 

express themselves through the imagery task, yielding brain activity too weak to be 

interpreted. Consistent with this possibility, a recent report found an MCS patient 

who showed no distinguishable activation in the mental imagery task, but 

nonetheless was able to voluntarily modulate his brain activity by allocating visual 

attention in response to verbal commands. Finally, in some patients, functional 

reorganization of the brain following the injury may have produced highly atypical, 

and therefore uninterpretable, patterns of fMRI activation. Communication via fMRI 

BCIs has been attempted in 6 other DOC patients, 5 MCS and 1 LIS. Bardin et al. 

(2011) used binary paradigms involving motor imagery, similar to those used by 

Monti and colleagues, and a multiple-choice paradigm, adapted from Sorger et al. 

(2009). In a novel application of this 4-choice paradigm, the experimenters presented 

each patient, at their bedside, with 1 playing card, which could be 1 of 4, differing in 

2 dimensions (suit and face). Subsequently, while inside the fMRI scanner, each 

patient was aurally provided with the 4 options for the suit and face of the card, and 

was asked to perform a mental imagery task (swimming or tennis) to indicate the 

correct card, for each of the 2 dimensions. The authors reported a communication 

signal in 1 of the 6 patients. Although the patient showed significant brain activity to 

the task, this activity conveyed incorrect responses to the 2 questions asked, with 

respect to the face and the suit of the card. However, the patient was able to correctly 

show command following behaviorally at the bedside, and by modulating her brain 

activity in the scanner, according to the instructions of the binary mental imagery 

task. The authors suggested that a delay in the timing of the hemodynamic signal to 

the patient’s response might explain why the neural responses to 2 stimuli proximal 

in time could not be disambiguated with traditional fMRI analyses (Bardin et al., 

2011)). This study highlighted the issue of unknown delay range of the neural signal 

in this patient group, which could be driven by an unusual coupling of 

hemodynamics and neuronal firing, as compared to healthy individuals (Gsell et al., 
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2000). Although the optimal interval for a reliable measurement of the neural 

response is not known, the 30-second intervals reported by Owen, Monti, and 

colleagues have so far yielded unequivocal results of successful communication in 1 

patient, and command following in 6 patients, documented in published reports. A 

systematic study of the delay range would be necessary to determine the optimal 

response interval, and furthermore this parameter might differ across neuroimaging 

methodologies (fMRI, fNIRS, EEG). A second patient reported by Bardin et al. 

(2011) raised a different issue relevant to communicating with DOC patients through 

neuroimaging BCIs. This patient could show command following by using motor 

imagery (swimming) in 2 different visits, but could not use the motor imagery task to 

produce robust brain activity that could be used for binary (yes/no) communication. 

Several factors could be behind this patient’s failure to communicate. The patient’s 

profile of cognitive deficit, in particular her short-term memory reserve, may 

underlie her inability to communicate. Beyond command following, where the 

patient has to perform a task in response to a specific command such as tennis or 

swim to communicate, the patient must be able to perform at least 2 additional 

processes. First, the patient must be able to find the answer to the question that is 

being asked. In addition, the patient must also be able to abstract the demand 

characteristic of the task (ie, imagine playing tennis/swimming), to a particular 

answer word (yes or no), which applies in some situations (ie, questions whose 

answer is that word) but not in others. A patient with a pronounced memory deficit 

may not be able either to think of the answer and/or to maintain in short term 

memory the abstract link between the arbitrary response function (ie, a specific form 

of motor imagery) and the answer word to a question (yes or no). This patient 

highlights the need for new paradigms that rely on more intuitive response modes, to 

maximize the chance that patients with very limited cognitive reserves will be 

reached. 

At least the issue of delayed response might be resolved with more sophisticated 

neuroimaging analysis methods, (Bardin et al., 2012) such as multivoxel pattern 

analysis (MVPA). MVPA is an fMRI analysis technique that is highly sensitive to 

the information content in the neural signal. Traditional univariate fMRI analyses 

average across activations in a brain region, and compare overall changes in signal 

strength between different types of conditions. MVPA, conversely, does not discard 

the information relating to the patterns of activity within that brain region. As such, it 
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is capable of dissociating overlapping neural patterns to different stimuli or mental 

states, which could not be disentangled with univariate methods (Christopher 

deCharms et al., 2008). By dissociating several mental states/responses elicited by a 

single command, MVPA also has the potential to expand communication from 

binary responses to multiple-choice answers. For example, although this is still in the 

future, with MVPA it may eventually be possible to ask a patient to express how 

much pain he/she feels on a sliding scale from 1 to 10, by imagining the appropriate 

number. In a follow-up study, Bardin et al. (2012) provided the first proof of 

principle that MVPA can decode a patient’s answers elicited from a multiple-choice 

response paradigm. In the case described above, (Bardin et al., 2011) conventional 

fMRI analysis could not distinguish which was the patient’s response between 2 

choices in each question relating to the 2 card features (suit or face). For each 

question, 2 options, temporally proximal in the 4-choice stimuli presentation, 

produced statistically significant responses that were undistinguishable with 

univariate analysis. By contrast, an MVPA classifier was able to disambiguate the 

response patterns for each question, by classifying the response to the correct option 

(selected prior to the scanning session) above chance, and the response to the 

incorrect option at chance, with a significant difference between the 2 classifications. 

MVPA methods can also be applied in real time, (Caria et al., 2012; Sitaram et al., 

2011) and present exciting possibilities for communication without perceptible delay 

between the question and the interpretation of the response. With these methods, 

however, classification accuracy is strongly dependent on the amount of available 

fMRI data. This may be a problem for VS patients, where the scanning time is often 

limited for physical reasons, for example, the patient experiences difficulty lying 

supine for long periods of time. Moreover, one has to consider that VS patients may 

become exhausted easily. Other approaches have also been used to explore the 

potential uses of fMRI for BCI-related applications. 

In a study with healthy participants, Sorger and colleagues (2009) were able to 

generate the differential blood oxygenation level-dependent (BOLD) responses 

necessary to answer a 4-choice question within the length of a single, 1-minute trial. 

To express their choice, participants had the option of 1 of 2 tasks, performed at 1 of 

4 moments in time, which were indicated by a highlighted letter on the screen and 

offset by 5 seconds one from the other. Thus, the BOLD responses could be 

differentiated with respect to at least 2 of 3 features of the BOLD signal: its source 
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location, onset, and offset. An automated decoding procedure deciphered the answer 

by analyzing the generated single-trial BOLD responses online. Participants’ answers 

were decoded correctly with a mean accuracy of 94.9%, ranging from 75% to 100%. 

This study made an important contribution by demonstrating that single-trial (ie, 

brief, or, 1 minute long) fMRI time courses can be used as a robust source of 

information for decoding responses. Furthermore, it showed that fMRI can be used to 

communicate multiple-choice answers online/in real time, and within a reasonable 

response time scale (eg, 1 minute). This length of time does not introduce excessive 

time pressures, and may prove patient-friendly. However, the applicability of this 

design for communication with nonresponsive patients would be limited by its 

reliance on visual processing. Although, as we have discussed, fMRI has great 

strengths for BCI applications, including its noninvasive nature, global brain 

coverage, and excellent spatial resolution of specific brains structures, it also comes 

with significant limitations, which restrict its widespread use in DOC patients. In 

particular, its high cost, lack of portability, and physical impositions on some patients 

(eg, patients must not wear paramagnetic equipment, must refrain from any minor 

movement, and must be able to cope with the loud noise of the fMRI scanner) make 

it unlikely that fMRI will provide the ultimate communicative solution that DOC 

patients require in real life situations. fNIRS and EEG, however, are not susceptible 

to these same problems, and provide exciting opportunities to extend these fMRI 

developments. 

4.6.2 fNIRS BCIs 

fNIRS exploits the penetrability of biological tissue by light in the near-infrared 

spectrum (700–1,000nm) to infer neural activity. The amount of near-infrared light at 

specific wavelengths that is absorbed by blood vessels varies depending on the 

concentration of oxygenated and deoxygenated hemoglobin. Using head-mounted 

near-infrared emitters and sensors, fNIRS provides a noninvasive hemodynamic 

measure of cortical activity. The main advantage of fNIRS over fMRI is that it is 

portable. Furthermore, in contrast to fMRI, fNIRS is also a relatively comfortable 

method. It is nearly noiseless, does not expose patients to a high magnetic field, thus 

avoiding the restrictions imposed by paramagnetic medical equipment, and is less 

sensitive to movement artifacts. Moreover, fNIRS is relatively affordable, less 

technically demanding, and easier to operate than fMRI. 
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These qualities make fNIRS a viable technology for use at the patients’ bedside. 

Although it is in its infancy, some early applications have demonstrated the potential 

of fNIRS as a BCI method. Naito and colleagues (2007) mapped 2 mental imagery 

tasks, calculation and singing, to yes/no responses, and were able to detect responses 

with fNIRS in 40% of 17 CLIS patients. The brain response for these patients could 

be decoded with 74% accuracy. As the first BCI method successfully applied in 

CLIS patients, this study highlighted the future potential of fNIRS in this field. 

Although fNIRS has certain benefits over fMRI, it also suffers from technological 

challenges that limit its application for BCI systems, at least in its current state. In 

particular, fNIRS only allows reliable measurement of hemodynamic responses in 

cortical tissue that is close to the head surface, up to approximately 3cm in depth. 

Thus, brain activation in deeper subcortical structures, accessible with fMRI, cannot 

be targeted. Moreover, the spatial resolution of fNIRS, in the range of a few cubic 

centimeters, is considerably lower than the resolution that can be obtained with 

fMRI. Thus, BCI paradigms that employ fNIRS must be based upon neural responses 

that are relatively broad. Future improvements in the development of multichannel 

fNIRS systems promise to address this issue (Joseph et al., 2006). Another area that 

will benefit greatly from further research and development is that of analyses 

methods, which are still relatively rudimentary in fNIRS, as compared to those used 

for fMRI. For example, the limited spatial resolution may be overcome by employing 

more sensitive data analysis techniques such as MVPA that maximize the likelihood 

of decoding different mental states from widely distributed brain activation patterns.  

4.6.3 EEG BCIs 

EEG is another noninvasive, portable, and relatively inexpensive neuroimaging 

method that has been used extensively in BCI applications. The experience gained 

with its use in many populations, from healthy participants to severely paralyzed and 

LIS patients, lends itself to application in nonresponsive DOC patients. The EEG 

signal that is measured on the scalp results from neural activity originating in the 

cortex, which can be captured with high temporal resolution, in the millisecond 

range. However, in contrast to fMRI, EEG provides limited spatial resolution 

(centimeter range) that strongly decreases with the depth of the source. Similar to 

fNIRS, EEG is silent, less physically demanding for the patient (for example, it can 

be applied in the seated and supine positions, or even when the patient is asleep), and 

easier to operate than fMRI. EEG is susceptible to artifacts from electromyographic 
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activity from cranial muscles, and electrooculographic activity from eye movements, 

but sophisticated analysis methods can eliminate these artifacts. Below, we review 

the EEG markers that hold promise for BCI systems in nonresponsive DOC patients, 

as well as a number of challenges that thus far have limited the application of this 

technology in this patient group. 

P300 evoked potential 

One prominent component of event-related potentials (ERPs; electrical potentials 

related to events/stimuli) that has been widely used for EEG BCI applications in 

responsive patients is the P300. The active/willful modulation of the P300 may be 

employed to establish an EEG BCI method, where the patient’s response is expressed 

through attention to specific (eg, auditory) stimuli, according to the operator’s 

commands. Schnakers presented a CLIS patient with her own and other people’s 

names, and asked her to count specific names (Schnakers et al., 2009). Although the 

patient’s own name elicited a P300 in all conditions, the P300 elicited when the 

patient was specifically asked to count her own name was significantly larger in 

amplitude than that elicited by her own name when she was asked to count other 

names. This suggested that the patient was able to follow instructions, and 

consciously processed the meaning of the words she had heard. In another study, 

Schnakers and colleagues (2008) tested 14 DOC (MCS and VS) patients with a 

similar technique, and showed that the MCS patients exhibited a P300 to their own 

names, in both active (counting) and passive (listening) conditions. Like controls, 

this P300 was larger in the active condition than in the passive condition, suggesting 

voluntary compliance with task instructions. By contrast, the VS patients did not 

show any P300 differences between the active and passive conditions, suggesting 

that they were unable to comply with task instructions in the active condition. 

Similar to the study by Monti et al, (2010) at least 2 alternative interpretations may 

explain the negative result observed in the VS patients. One interpretation is that the 

diagnosis for these patients was accurate; they were not aware of the task they were 

being asked to perform and therefore did not produce any responses. An alternative 

explanation is that the task lacked sensitivity and thus failed to detect VS patients 

who retained some level of consciousness, but were perhaps unable to understand the 

instructions and/or to sustain attention for a sufficient period to perform the task. 

This paradigm may permit the detection of voluntary brain function in patients who 

show very limited signs of awareness and thus has potential to be used as a BCI 
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communication paradigm. However, further work is needed to establish its suitability 

for detecting awareness in VS patients, whose attention and cognitive faculties are 

subject to drastic fluctuations over time, and may therefore be detected only by 

methods robust to noise and sensitive to weak responses. 

A completely different approach for using the P300 modulation as a BCI method was 

originally proposed by Farwell and Donchin (1988). In this paradigm, participants 

were presented with a screen displaying a matrix of letters A to Z and asked to 

choose a letter they wished to write on the screen. Columns and rows of the matrix 

flashed in a pseudorandomized order. By identifying which column and row flashed 

immediately prior to an evoked P300 component, it was possible to deduce that the 

letter at their intersection was the attended one and therefore the one the participant 

wished to write. At least, also Lule´ et al. proposed an auditory P3-based BCI to 

detect command-following in patients with disorders of consciousness (Lulè et al., 

2013). 

Although this BCI technique proved very efficient for severely paralyzed and locked-

in patients, its reliance on visual presentation limits its applicability to VS patients. 

Efforts to translate this paradigm to the auditory modality (Furdea et al., 2009) have 

met with a number of problems, even in healthy controls. For instance, visual 

information can be presented in parallel, that is, an entire matrix of 26 letters can be 

presented at once, whereas equivalent auditory stimuli must be presented 

sequentially. Even if the many items of the matrix could be coded by fewer auditory 

stimuli, compared to the visual paradigm, remembering the coding system requires 

focusing of attention for a longer period, while keeping much of the information in 

short-term memory. Such cognitive demands would very likely hamper the 

performance of brain-damaged patients, especially those assumed to be in the VS. 

Sellers and Donchin84 introduced a simpler version of this paradigm. They 

developed the so-called 4-choice speller, in which participants were presented with 

only 4 visual or auditory stimuli, namely, yes, no, pass, and end. 

This paradigm has been tested with LIS (ALS) patients, (Kübler et al., 2009) all of 

whom exhibited a P300 effect to the stimulation, but classification accuracies were 

lower in the auditory than in the visual version of the task. For reasons similar to 

those discussed above, DOC patients are likely to find this task more difficult than 

LIS patients. Other studies with late stage ALS patients have used the self-regulation 

of slow-cortical potentials to assess and train conditional learning (Iversen et al., 
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2008) and cognitive function, including the ability to perform simple computations in 

these patients. However, the translation of such paradigms, developed for patients 

who are known to be conscious and have preserved cognitive responsivity, to 

patients whose clinical diagnosis precludes the presence of conscious awareness (ie, 

VS patients), faces several major challenges. In particular, they rely on training, 

which is not generally an option with VS/MCS patients. These challenges point to 

the need for continued development of EEG auditory BCI paradigms that are 

amenable to the limitations of nonresponsive (DOC) and especially VS patients. 

Mu and Beta rhytms 

Another type of active EEG paradigm has utilized attempted, or imagined, motor 

actions, which produce neural activity that can be measured with EEG, as it can with 

fMRI. Kotchoubey and colleagues (2003) described a CLIS patient whose slow EEG 

activity significantly differed between trials when he was asked to try to move the 

left as compared to the right hand. In healthy participants, motor imagery also 

produces clearly distinguishable modulation of EEG sensorimotor rhythms (SMRs) 

(Cincotti et al., 2003), similar to those seen during motor execution. Kubler and 

colleagues showed that LIS patients with ALS could learn to modulate their SMRs 

with >70% accuracy, but did not test VS patients with this paradigm (Kubler et al., 

2005). 

Cruse et al. (2012) have shown the most promising application of EEG as a BCI 

technology for VS patients to date. They instructed a group of 16 VS patients to 

perform 2 motor imagery tasks, imagining moving their right hand and imagining 

moving their toes. By submitting the EEG data associated with each task command 

to a cross-validated support vector machine classifier, Cruse et al. were able to 

demonstrate that 3 of the 16 VS patients were able to reliably and consistently 

modulate their SMR, with classifier outputs of up to 78% accuracy. Such a result 

provides the necessary proof of concept for the use of motor imagery as a BCI 

method and with the future application of real time data analyses may allow for 

bedside communication with VS patients. 

Alternative forms of imagery 

Despite its popularity in BCI research, motor imagery is not the only task that can be 

used for volitional modulation of oscillatory rhythms in the brain. Mental arithmetic 

(Sakurai et al., 1996), mental task rotation (Rappelsberger et al., 1988) and many 

others have been shown to lead to differentially specific patterns of spatially-specific 
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cortical activation and deactivation (Curran et al., 2003). Given that some patients 

with DoC were able to follow command imagine playing tennis and spatial 

navigation with fMRI, it might be fruitful to draw upon this previous work to explore 

novel imagery tasks that are well suited for use with EEG. The most suitable sorts of 

tasks in this context are likely to be based on well-established, long-term mental 

capabilities that might be preserved in DoC. Looking ahead, tapping into these 

capabilities might allow BCI design to move beyond the two-choice design, into the 

realm of complex and nuanced communication. 

Steady-state evoked potential  

Visual - The ability to focus gaze and attention is an obvious requirement for using 

SSVEP BCIs. Hence, their use by a majority of patients with DoC, who often have 

little or no control of their eye movements, would seem infeasible. There has been 

some progress in addressing this limitation; paradigms based on covert spatial 

attention (Kelly et al., 2005), selective attention to spatially overlapping stimuli 

(Allison et al., 2008) and superimposed illusory surfaces (Zhang et al., 2010) have 

also been found to evoke changes in SSVEP activity. However, preliminary tests 

with healthy controls have found significant increases in the variability of 

performance, making it difficult for a patient to reliably control the BCI. BCI based 

on auditory and tactile information presentation may provide a solution to this 

problem. 

Somatosensory - A BCI-based on steady state evoked potential independent of vision 

was entroduced by Muller-Putz and collegues (2006). The authors used vibratory 

stimulation of left and right hand finger tips to elicit SSSEP. Online accuracy of four 

participant varied between 53% (chance level) and 83%.) 

Auditory - Hence, as with SSSEP-based BCIs, they could find applications for 

patients with DoC. However, a potential drawback, the seriousness of which is yet to 

be properly studied, might be related to sensory stress and irritation brought on by 

continual steady-state stimulation. The problem of cognitive fatigue and short 

attention spans, common in patients with DoC, might be exacerbated with steady-

state stimulation, limiting the viability of steady-state BCI applications in this 

context. 

Slow Cortical Potential 

Over the last few decades, Birbaumer and colleagues (1999; 2003) have worked on 

the development of SCPs-based BCIs. Crucially, they have shown that people can 
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learn to modulate their SCPs and use them to control the movement of an object on a 

computer screen. Further, this system has been tested in people with late-stage ALS 

and has proved capable of providing basic communication capacities (Kubler et al., 

1999). Often, these BCIs are based on visual feedback from a computer screen that 

shows one choice at the top and one at the bottom. Two seconds of baseline are 

necessary to provide the system the user’s initial voltage level. In the next 2 seconds, 

the user selects either the top or bottom choice by attempting to decrease or increase 

their SCP voltage level by a criterion amount, leading to a vertical movement of a 

cursor in the chosen direction. In addition to the commonly used visual feedback 

mode, SCP BCIs have also been set up to provide auditory or tactile feedback 

(Birbaumer et al., 2000). However, a study by Pham et al. (2005) in healthy 

participants showed that auditory feedback resulted in a relative increase in the 

variability of performance. SCP-based BCIs come with the advantage of being the 

most stable over longer periods of usage and do not require the use of any specific 

sensorimotor functions. This is a potential advantage for patients with DoC. On the 

other hand, the speed of choice selection is low, owing to the slow rates at which 

SCPs manifest. More importantly, these BCIs require relatively long periods of user 

training, sometimes in the order of months for some LIS patients. It will probably be 

a minority of patients with DoC, showing consistent signs of awareness, who will be 

able to exercise the cognitive control required to train their SCPs over extended 

periods of time. 

Semantic classical conditioning 

The latest study by De Massari et al. demonstrated the possibility of yes-no 

communication with an amyotrophic lateral sclerosis (ALS) subject using an EEG 

signal (De Massari et al., 2012). This study included 15 healthy control subjects. De 

Massari et al. developed a semantic classical conditioning paradigm able to 

discriminate between conditioned yes or no responses in the cortex, and thus enable 

basic affirmative and negative communication in all subjects. Classification accuracy 

in the discrimination of answers was 64% in healthy subjects and 62% in the ALS 

patient. Another study by De Massari et al. found no reliable communication in a 

completely locked-in state (CLIS) patient, but satisfactory BCI performance in a 

locked-in state (LIS) patient obtaining an accuracy up to 70% (De Massari et al., 

2013). 
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Chapter 5 

Case of study 

A Feasibility Study of an improved 

procedure for using EEG to detect brain 

responses to imagery instruction in patients 

with disorders of consciousness 

 

 

5.1 Introduction 

One of the major concerns of recent studies is the correct discrimination between 

vegetative and minimally conscious state as the distinction between these two 

conditions has major implications for subsequent patient rehabilitation. In particular, 

it would be advantageous to establish communication with these patients. This work 

describes a procedure using EEG to detect brain responses to imagery instruction in 

patients with disorders of consciousness. 

Results obtained in the above studies are often discrepant but confirm the usefulness 

of EEG to reliably detect awareness in patients with a clinical diagnosis of VS. 

Therefore, EEG may serve as an important tool for the assessment of awareness 

components in patients with disorders of consciousness in the clinical setting. In the 
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light of these findings, we set out to improve classification accuracy in yes-no 

communication with subjects, while reducing the number of electrodes required. We 

report here the results of a feasibility study conducted on a group of five healthy 

subjects and five patients with different levels of disorders of consciousness who 

underwent EEG recording during the execution of two mental imagery tasks. 

Without any assumption about the positioning of electrodes, the main aim of the 

study was to see whether some mental activation patterns could be discriminated 

using only EEG data and simple power parameters extracted from the EEG. A 

preliminary investigation was conducted on healthy subjects. Results obtained were 

used to design the experiments with patients. With a view to clinical application, the 

first step of the study was to simplify the set-up for the acquisition of EEG data by 

reducing the number of electrodes. The second aim of the study was to evaluate the 

reliability of a classification procedure to distinguish between the electrode 

activation patterns of the two mental states evoked by the two imagery tasks. The 

third was to evaluate the reliability (and hence practical feasibility) of the 

classification results during communication with the subjects, using the EEG signal 

to detect answers to simple yes or no questions. 

5.2 Methods 

5.2.1 Subjects 

Five control subjects and five patients with different levels of consciousness 

disorders took part in the study. The five control subjects (age 26 to 37) were healthy 

and free of medication and any central nervous system disorder. 

Table 2 lists the demographic and clinical information of the five patients (Gouvier et 

al., 1987; Giacino et al., 2004). In addition, Figure 4 shows the power spectra of 

patients in resting condition as extracted from 120s signal recording. 

5.2.2 Protocol 

Healthy subjects and imagery tasks 

The experiment comprised two sessions repeated on two consecutive days at the 

same time of day. Each session included two trials: an Imagery Trial and a pre-

Communication Trial. The Imagery Trial consisted of ten one minute repetitions of 

two tasks: one imagining a movement of the right hand and the other imagining a 

movement of the right foot. The subjects were instructed to mentally simulate the 

movements (kinaesthetic motor imagery). We chose this internal imagery because 

several studies demonstrated that good recognition rates are only achieved when the 
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‘imaginer’ uses the strategy of kinaesthetic motor imagery (first-person process), 

whereas recognition is almost impossible when the subject forms a visual image of 

another’s action (third-person process) (Neuper et al., 2005). 

The sequence of hand and foot imagery was randomized. In the pre-Communication 

Trial the 

subjects were asked simple yes or no personal questions. Subjects were instructed to 

imagine for 30 seconds a movement of the right hand for an affirmative answer and a 

movement of the right foot for a negative answer. The pre-Communication Trial 

comprised six questions repeated five times. The entire experiment was performed 

with closed eyes. The subjects’ answers were collected after the experiment. 

Patients 

The experiment consisted of one session comprising the same two trials used for the 

healthy 

subjects: the Imagery Trial and the pre-Communication Trial. The Imagery Trial 

consisted of seven 30 second repetitions of the two imagery tasks. In the pre-

Communication Trial the patients were asked the same simple yes or no questions 

used for healthy subjects. The six questions were repeated twice. The patients’ 

answers were collected after the experiment through their relatives. 

Fewer repetitions were made in patients because of their limited attention span. The 

healthy participants and the families of the patients included in the study provided 

their written informed consent to participate in the study. The Ethical Committee of 

the Maggiore Hospital and Bologna Health Trust approved the study and consent 

procedure. 

Table 2: Demographic and clinical information of the five patients with disorders of 

consciousness (DoC). 

Patient 

no. 

Age at 

assessment 

(years) 

Sex 

Interval 

post 

trauma 

(months) 

Aetiology CRS-R LCF 
DoC 

classification 

1 22 F 10 TBI - 7 CS 

2 29 F 22 TBI 2/1/2/2/1/2 3 MCS 

3 36 M 5 TBI/Anoxia 1/0/2/2/0/2 3 VS/MCS 

4 63 M 4 TBI 2/1/5/1/0/2 3 MCS 

5 60 M 17 TBI 3/4/5/2/1/2 4 MCS 
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Figure 4: The figure shows the PSD spectrum in the frontal (Fz), central (Cz) and parietal (Pz) 

regions. The alpha peak is visible only in spectra of patient 1, i.e. the only patient in conscious state. 

All other spectra are characterized by an attenuation of the alpha rhythm. In these spectra there was 

relatively greater power at lower frequencies and diminished power at higher frequencies. The 

predominant rhythms are delta and theta, which represent the most prominent abnormality in awake 

EEGs on VS-MCS patients. 
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5.2.3 Recordings and signal preprocessing 

EEG was recorded from 31 electrodes (Fp1, Fp2, AF3, AF4, F3, F4, F7, F8, Fc1, 

Fc2, Fc5, Fc6, Fz, C3, C4, Cp1, Cp2, Cp5, Cp6, Cz, P3, C4, PO3, PO4, Pz, T3, T4, 

T5, T6, O1, and O2) positioned according to the international 10-20 layout using a 

Neurowave System (Khymeia, Italy). EEG signals, referenced to linked ear lobes, 

were sampled at 256 samples/s, and preliminarily band-pass filtered between 3 Hz 

and 60 Hz. Trial datasets underwent i) manual identification and rejection of 

artefactual segments, and ii) data cleaning with independent component analysis 

(Congedo et al., 2008). 

For each section, the epochs after the fifth second were eligible for the classification 

process. Power spectral density (PSD) was extracted from two second epochs 

without overlap.  

A modified periodogram method, based on FFT-algorithm and Blackman Harris 

window, was used. 

Subsequently, we averaged eight values of the extracted PSD with a six second 

overlap, thus obtaining one PSD for every 16 seconds. A 16-second epoch length 

PSD represents a good compromise between reliability and sensitivity with respect to 

EEG signal variations (Gudmundsson et al., 2007). The power in four frequency 

bands was extracted from the calculated PSD value: theta (4-8 Hz), alpha (8-13 Hz), 

beta (13-25 Hz), and gamma (25-40 Hz). We restricted the analysis to these four 

bands because these are supposed to be the most active during the performed tasks 

(Yuan et al., 2010; Li et al., 2009). Parameter was defined as the group of the 

powers in theta, alpha, beta and gamma bands extracted for each 16- second epoch 

and each electrode. 

For each subject and each session, there are 31 sets of parameters, one for each 

electrode. Ten parameters were included in each set for the Imagery Trial and five 

for the pre-Communication Trial. Each value of the variable described above was 

labelled with the corresponding imagery task. 

5.2.4 Search for the best site 

The first aim of the study was to simplify the set-up for the acquisition of EEG data 

with a view to clinical use of the proposed method. To reduce the number of 

electrodes, a one-way analysis of variance (ANOVA) on two levels (hand and foot) 

was performed with a significance level p<0.05. ANOVA analysis was carried out 

for each subject, each session and each electrode-band combination of the Imagery 
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task. The total number of ANOVAs executed was 1240 (5 subjects x 2 sessions x 31 

electrodes x 4 bands). We then selected the electrodes showing a significant 

difference between hand and foot imagination in at least one frequency band for each 

subject and each session assigning a unit score to the selected electrodes. Finally, we 

ordered the electrodes on the basis of the total maximum score of 10 (5 subjects and 

2 sessions). Best electrodes (BE) for successive analyses were selected as the eight 

electrodes with the highest score. After selection of the BE an ANOVA analysis was 

carried out on two levels (hand and foot) with a significance level p<0.05. The 

ANOVA was performed for each patient and each BE-band combination of the pre-

Communication Trial. The total number of ANOVAs executed was 160 (5 patients x 

8 electrodes x 4 bands). This analysis aimed to evaluate if the BE selected on the 

healthy subject also provided a significantly different activation in the two imagery 

tasks in the patients. 

5.2.5 Classification performance 

The second and third aims of the study were 1) to evaluate the possibility of 

classifying the two mental states corresponding to the two imagery tasks, through an 

analysis of the Imagery Trial, and 2) to establish a means of communicating with the 

subject by detecting his/her answer to simple yes or no questions, by analysing the 

pre-Communication Trial. We thought that the two trials involve different cognitive 

processes. During the Imagery Trial the subject imagines a definite behaviour, 

without other contingent activities. During the pre-Communication Trial the subjects 

are involved in additional mental processes, i.e., initiating and sustaining the will to 

answer through the imagery activities. Moreover, content-dependent additional 

emotions and memory-related activations could not be excluded a priori. For these 

reasons we considered the two trials separately. 

Imagery Trial 

A linear SVM classifier (SVMc) was used to find the best hyperplane capable of 

discriminating between the two classes with the maximum possible margin (Burges 

et al., 1998), since this is known to increase the generalization capability (Kurita, 

2004). The parameters used for the SVM classifier were a soft margin equal to 1, a 

linear kernel function and a least-square method to find the separating hyperplane. 

To obtain an unbiased estimation with small sample sizes, nested leave-one-out cross 

validation was employed to determine the classifier’s generalization error across the 

entire dataset (Kohavi et al., 1997). The external leave-one-out cross validation 
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(LOO CV) was used to evaluate the final discriminant ability of the classifier through 

the classification accuracy. This external LOO CV splits the dataset into N different 

combinations of training and testing sets (TRi, TSi), where N is the size of the 

dataset. An internal LOO CV was performed on each resulting TRi to find the best 

subset related to that specific training set. The aim of this work was to select the best 

group of electrodes to maximize the classification accuracy. For this reason, all 

possible combinations of these electrodes were considered after preliminary selection 

of the eight BE. These combinations are all single BE (8), all BE couples (28), all BE 

triples (56), all the groups of four BE (70), all groups of five BE (56), all groups of 

six BE (28), all groups of seven BE (8), and all BE considered together. The number 

of electrodes included in each group was defined as “cardinality” (1, 2, 3, 4, 5, 6, 7, 

8). 

An exhaustive search was performed in each internal LOO CV (all subsets of all 

cardinalities among the BE) to find the subset optimizing the classification 

performance (see Figure 5). We defined the features of the classification process as 

the powers of the 32 electrode-band couples (4 bands x 8 electrodes). To make an 

exhaustive analysis for each subject and patient, and each session of the Imagery 

Trials, we trained and tested the classifiers using 4-8-12-16-20-24-28-32 features (4 

bands x 1-8 electrodes) using all the BE combinations. In each internal loop we 

trained and tested 8-28-56-70-56-28-8-1 SVMc respectively. The output of the 

classifiers trained with the Imagery Trial data defined the imagery classification 

accuracy (ICA). The ICA is the rate of correctly classified parameters (each 

parameter is the group of the four powers in theta, alpha, beta and gamma bands) in 

the Imagery Trial using the features selected by the internal loop of the nested LOO. 

We compared the ICA for both healthy subjects and patients with the random 

classification level computed with the theoretical method proposed by Müller-Putz et 

al. (2008), with a significance level of 0.05. 

Pre-Communication Trial 

As for the Imagery Trial, we used a linear SVM classifier and a nested cross 

validation. In this Trial the N different combinations of datasets in which we split the 

data are the questions and not the single parameters; for the healthy subject N=30, for 

the patients N=12. For each question there are five parameters, so we define the cross 

validation procedure as Leave-Five-Out Cross Validation (LFO CV). The external 

LFO CV splits the dataset into N different combinations of training and testing sets 
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(TRi, TSi), where N is the number of questions. An internal LFO CV was performed 

on each resulting TRi to find the best subset related to that specific training set. An 

exhaustive search was performed in each internal LFO CV (all subsets of all 

cardinalities among the BE) to find the subset optimizing the classification 

performance (see Figure 5). As for the imagery trial, we defined the features of the 

classification process as the powers of the 32 electrode-band couples (4 bands x 8 

electrodes). To make an exhaustive analysis for each subject and patient, we trained 

and tested the classifiers with 4-8-12-16-20-24-28-32 features (4 bands x 1-8 

electrodes) using all the BE combinations. In each internal loop we trained and tested 

8-28-56-70-56-28-8-1 SVMc respectively. 

The external LFO CV was used to evaluate the final discriminant ability of the 

classifier through the classification error rate. 

The output of the classifiers trained with the pre-Communication Trial data defined 

the communication classification accuracy (CCA). The CCA was computed not in 

terms of correctly classified parameters, as for the Imagery Trial, but in terms of 

correctly classified answers. Each answer comprised five parameters, then the class 

to which answers are attributed is decided by counting the assignment of the 

parameters in the two classes (yes/no) according to a majority criteria. CCA 

computation was used to estimate how accurately the classifier will perform with 

respect to future questions. As for the Imagery Trial, we compared the CCA for both 

healthy subjects and patients with the random classification level computed with the 

theoretical method proposed by Müller-Putz et al. (2008), with a significance level of 

0.05. 

 

Figure 5: Explanation of the features selection procedure; 𝑇𝑅𝑖 = 𝑖𝑡ℎ training set, 𝑇𝑆𝑖 = 𝑖𝑡ℎ testing 

set. 
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5.2.6 Software tools 

MATLAB language and toolboxes were used for data processing and analysis. In 

particular, we used the Signal Processing Toolbox to preprocess the recorded data, 

and the Bioinformatics Toolbox for the SVMc classification. 

5.3 Results 

5.3.1 Search for the best site 

Table 1s (Supplementary File) lists the significant electrodes in at least one band for 

each subject and each session. As shown in Figure 6, the eight BE selected were: C4, 

C3, PO4, O2, T4, O1, Fc6 and Cp1. These electrodes will be used in the following 

analyses. Table 2s (Supplementary File) shows the couple BE-band with a 

significantly different activation in the two imagery tasks for the patients in the pre-

Communication Trial. 

 

Figure 6: Best electrodes (BE) selected by the ANOVA analysis. All marked electrodes registered a 

significantly different activation during the two tasks for each healthy subject and each session in at 

least one frequency band. 
 

5.3.2 Classification performance 

For each subject and each patient, each session and each trial, we extracted the mean 

power in theta, alpha, beta and gamma bands for the BE and we trained and tested 

the classifiers using these features. Figure 7 shows an example of the features used 

for the classification process for one healthy subject and one patient. 

Table 3 shows the mean and standard deviation of the best classification accuracy 

obtained for the healthy subjects and the patients for each cardinality in the Imagery 

Trial and in the pre-Communication Trial. Tables 3s and 4s (Supplementary File) 
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show the complete results on the best classification accuracies obtained for each 

subject, each patient, each session and each cardinality for the Imagery Trial and pre-

Communication Trial, respectively. Considering the best configuration for each 

subject and each patient, we computed the mean ICA and the mean CCA. 

Table 3: Mean and standard deviation (SD) of the best classification accuracy obtained for the 

healthy subjects and the patients for each cardinality in the Imagery Trial and in the pre-

Communication Trial. 

CLASSIFICATION ACCURACY % (Mean±SD) 

Electrod

es 

one two three four five six seven eight 

IMAGERY TRIAL 

Subjects 67.2±5.1 74.1±6.0 77.1±6.3 79.2±5.

4 

81.7±5.1 79.8±5.3 79.6±5.0 76.8±5.1 

Patients 63.4±8.8 76.1±8.4 78.9±9.3 81.9±8.

8 

83.3±7.8 83.6±8.5 83.6±10.

3 

82.4± 

9.6 

PRE-COMMUNICATION TRIAL 

Subjects 66.4±17.

2 

73.7±14.

5 

71.1±15.

8 

66.4±1

4 

68.1±12.

9 

66.4±12.

1 

65.4±16 68.3±8.6 

Patients 66.7±20.

4 

80.1±17.

2 

66.7±15.

6 

65.1±3.

7 

63.4±9.5 68.4±10.

8 

70.1±12.

6 

66.8±11.

7 

 

The mean ICA of the best configurations for each session was 82.0% (SD 5.1%) for 

healthy subjects and 84.6% (SD 9.1%) for patients. The mean CCA of the best 

configurations for each session was 80.7% (SD 11.2%) for healthy subjects and 

91.7% (SD 7.4%) for patients (see Figure 8). In each case the ICA and CCA were 

greater than the random classification level with a significant level of 0.05. Table 5s 

(Supplementary File) lists the electrode configurations maximising the classification 

accuracy for each subject, each session and each trial. 
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Figure 7: Example of the features used in the classification process for subject 3 in session 2 and 

patient 2. The features are the powers in theta, alpha, beta and gamma bands extracted by the BE for 

the two motor imagery tasks. 

5.4 Discussion 

5.4.1 Search for the best site 

Neuroanatomical correlation 

We did not use a specific algorithm for source localization, so only a qualitative 

analysis of the detected electrode sites can be made. We found that the BE are 

mainly located in the centro-parietal and parieto-occipital cortex. This confirms the 

results of a previous study demonstrating activation of motor cortex, temporo-

occipital, parieto-occipital areas and occipital lobe during the execution of motor 

imagery tasks. Solodkin et al. used fMRI and structural equation modelling to study 

the activation pattern during motor execution and motor imagery (Solodkin et al., 

2004). They demonstrated a predominant activation of the motor and premotor 
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cortex but also an activation of the occipital cortex during the imagery task. Ishizu et 

al. (2009) demonstrated that the act of imaging hand movement activates the 

extrastriate body area in the lateral occipital cortex. Lebon et al. (2012) studied the 

role of the inferior parietal cortex in the motor circuits, explaining that the inferior 

parietal lobe is part of an inhibitory network that may prevent unwanted movement 

during imagery tasks. Szameitat and colleagues (2007) investigated the functional 

neuroanatomical correlates of motor imagery. The participant imagined motor tasks 

involving the whole body, e.g. swimming: activation was apparent in Brodmann 

areas 4 and 6, corresponding to the motor cortex. Munzert and colleagues (2008) 

demonstrated activation of the motor area during imagery of dance and gymnastic 

movements. 

The pre-motor cortex plays important roles in the planning paradigm, programming 

and execution of motor acts. Imagined and executed movements often require the 

same activation to be performed (Guillot et al., 2005), suggesting they are generated 

through analogous computational steps in the brain. This implies that imagined 

movements also include a planning/preparation phase before the imagination. 

The parietal cortex is an important sensory integration hub and its different sub-

regions, projecting to various brain areas including the premotor and motor cortex, 

play important roles during motor execution. In particular the postero-parietal cortex 

is involved in the visuo-motor transformation process. 

 

 

Clinical relevance 

Although EEG has many practical advantages over fMRI, correct positioning of the 

electrodes is time-consuming and requires skilled personnel. Several studies (Ishai et 

al., 200; Popescu et al., 2007; Lal et al., 2004; Kamrunnahar et al., 2009; Arvaneh et 

al., 2011; Chungki et al., 2012; Wing-Kin et al., 2011) investigating selection of the 

minimum number of channels for classification purposes in BCI systems were able 

to reduce the number of electrodes required to between 4 and 12. All studies with 

motor imagery tasks used a pre-fixed set of electrodes positioned over the motor 

cortex. We did not make any a priori assumptions on the positioning of the 

electrodes, so the electrodes selected were not localized in a single area on the scalp. 

Nevertheless, the use of fewer electrodes simplifies preparation by unskilled 

personnel. The preliminary choice of the eight electrodes in healthy subjects, 
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selecting the optimum subject-specific subset also proved suitable for patients and 

guaranteed a higher 

classification accuracy of their answers. 

5.4.2 Classification performance 

We initially analysed the Imagery Trial finding a mean ICA of 82.0% (SD 5.1%) for 

healthy 

subjects and 84.6% (SD 9.1%) for patients considering the BE configuration for each 

subject and each session. A high ICA in the classification of the two tasks 

demonstrates that both healthy subjects and patients were able to perform the tasks. 

Since the two tasks can be reliably differentiated, we think that the patients’ (and 

subjects’) level of cognitive activity is sufficient to allow attempts to communicate. 

The pre-Communication Trial analysis evaluated the possibility of detecting answers 

to simple yes or no questions. The search for the best configuration specific for each 

subject and each session from the BE allowed us to distinguish between the two 

answers with a mean CCA of 80.7% (SD 11.2%) for healthy subjects and 91.7% (SD 

7.4%) for patients. 

 

Figure 8: Mean and SD of the classification accuracy of the best configurations for the healthy 

subjects (h-s) and patients (p) in the Imagery (Im) and pre-Communication (Com) Trials. The 

classification accuracy was the mean of the accuracy obtained using the best configuration (in terms 

of electrodes selected by the nested CV procedure) for each subject and each patient. The figure also 

shows the random classification level computed for healthy subjects and patients and each trial. 

The search for the optimum subset from the eight BE shows that the best ICA and 

the best CCA were obtained with different electrode configurations. This variability 

was found in all subjects and all sessions. In the Imagery Trial, the classification 

performance for both healthy subjects and patients improved using more than four 
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electrodes, while the use of five electrodes yielded the highest mean accuracy. In the 

pre-Communication Trial, the classification performance for both healthy subjects 

and patients improved using two electrodes. The proposed procedure allowed us to 

fix a robust and statistically significant common subset for all subjects (BE), but we 

also considered the inter and intra-subject variability by selecting a subject and 

session specific subset. In a future practical application of our protocol, each 

communication session will be preceded by a configuration session in which the 

classification algorithm selects the optimum electrode subset from the fixed BE. 

Comparing the performance of the healthy subjects with that of the patients we found 

a higher classification accuracy in the patients. This finding could depend on the 

simplified brain activity of the patients that allows a simpler representation during 

the two imagery tasks. The healthy subjects could be thinking about many things 

besides the imagery task, whereas the patients perhaps could only perform the task 

by concentrating on it, thus decreasing spurious variability that would lead to 

decreased ICA and CCA. Lastly, the patients could be more motivated in conducting 

the experiment. 

5.5 Conclusions 

This study evaluated the possibility to classify two mental states corresponding to 

two imagery tasks, using non-event-related EEG techniques, and to use them for 

communication purposes. 

Firstly, we outlined a general, automated procedure to identify the BE sites in terms 

of statistical significance of the PSD features in the two tasks. We paid particular 

attention to issues related to discrimination between and communication with 

patients affected by different levels of consciousness disorders. This preliminary 

study involved just five healthy subjects and five patients and hence did not aim to 

define a standard protocol for clinical assessment. The proposed automated 

procedure provided good classification accuracy for the two investigated imagery 

tasks, while identifying suitable and clearly defined sites for EEG spectral 

parameters classification. 

These promising results suggest further studies and investigations, namely: 1) 

increasing the 

number of patients who are vegetative or minimally conscious; 2) developing an 

online procedure to establish communication with the patients. 
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Chapter 6:  

Case of Study 

A similitude-based BCI system for 

Communication  

 

 

6.1 Introduction 

This work describes a procedure to investigate a subject’s pattern of activation 

during mental imagery tasks. It aims to design a brain computer interface system for 

communication. Five healthy subjects and two patients with different levels of 

disorders of consciousness underwent EEG recording during yes/no personal 

questions. They were instructed to execute two imagery tasks to answer to the 

questions. The first aim of the study was to develop a procedure of features selection 

in order to reduce the number of electrodes required. The second aim of the study 

was to realize an adaptive classifier that, after the training with two questions with 

known answers, is able to forecast the third unknown answer. 

 

6.2 Methods  

6.2.1 Subjects  

Five control subjects and two patients with different levels of consciousness 

disorders took part in the study. The five control subjects (age 26 to 37) were healthy 
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and free of medication and any central nervous system disorder. The first patient was 

a 21-year-old female car crash victim who received traumatic brain injury with 

diffuse axonal damage and subarachnoid hemorrhage. At the time of the study, ten 

months after the injury, the patient’s level of cognitive functioning (LCF) was 7, 

corresponding to automatic and appropriate cognitive behavior. The second patient 

was a 28-year-old female car crash victim with a contusion focus in the left 

temporal-occipital-parietal cortex and an axonal hemorrhage lesion in the right 

frontal area. At the time of the study, 22 months after the injury, the patient’s LCF 

was 3, corresponding to localized response.  

6.2.2 Protocol  

The experiment consisted of a Communication Trial. Simple yes/no personal 

questions were asked to the subjects (e.g. “Are you married?”). Subjects were 

instructed to imagine for 30 seconds a movement of the right hand for an affirmative 

answer and a movement of the right foot for a negative answer. The Trial comprised 

six questions which were repeated six times for the healthy subjects and twice for 

patients. The experiment was repeated on two consecutive days only for the healthy 

subjects. The answer were collected after the experiment from subjects and relatives 

of patients. 

6.2.3 EEG recording and signal processing  

The EEG was recorded from 31 electrodes (Fp1, Fp2, AF3, AF4, F3, F4, F7, F8, 

Fc1, Fc2, Fc5, Fc6, Fz, C3, C4, Cp1, Cp2, Cp5, Cp6, Cz, P3, C4, PO3, PO4, Pz, T3, 

T4, T5, T6, O1, and O2) positioned according to the international 10-20 layout using 

a Neurowave System (Khymeia, Italy). EEG signals, referenced to linked ear lobes, 

were sampled at 256 samples/s, and preliminarily band-pass filtered between 3 Hz 

and 60 Hz. Trial datasets underwent i) manual identification and rejection of 

artefactual segments, and ii) data cleaning with independent component analysis 

(Congedo et al., 2008). For each section, the epochs after the fifth second were 

eligible for the classification process. Power spectral density (PSD) was extracted 

from two seconds epochs without overlap. A modified periodogram method, based 

on FFT-algorithm and Blackman Harris window, was used. Subsequently, we 

averaged 5 values of the extracted PSD with a four seconds overlap, then obtaining 

one PSD for every 10 seconds. The power in four frequency bands was extracted 

from the calculated PSD value: theta (4-8 Hz), alpha (8-13 Hz), beta (13-25 Hz) and 

gamma (25-40 Hz). For each subject and each session and each answer, there were 
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31 (electrodes) × 4 (bands) × n (repetition) subsets. The number n of repetitions 

included in each set depended on the EEG signal length after rejection of the 

artefactual segments. Each value of the variable described above was labelled with 

the corresponding imagery task.  

The first aim of the study was to choose the Best 10 common Electrodes (BE) for all 

the healthy subjects using a similitude criteria between equal answers. After the BE 

selection procedure we listed the subject-specific most significant features, in terms 

of Band-Electrodes Couples (BEC) for each subject and each patient. The feature 

selection procedure used the same criteria of similitude of the BE research. A certain 

number of  BEC will be used in the classification process. For each healthy subject, 

each patient and each session we divided the dataset into two parts. The first one 

includes the 31 (electrodes) × 4 (bands) × n (repetition) subsets of the first half of the 

Communication Trial and it was used to select the BE and the BEC. The second 

includes the 10 (BE) × 4 (bands) × n (repetition) sets of the remaining half of the 

Communication Trial and it was used to classify the answers of the subjects and the 

patients. 

6.2.3 Search of the BE and BEC 

For each subject, on the basis of the given answers, all the sequences of three 

answers, with the first and the second one different (one hands and one foot 

movement imagery), were identified in the first part of the dataset. Considering the 

data of each healthy subject, each session, each triple we computed a similitude 

index si,j,k: 

𝑠𝑖,𝑗,𝑘 =

∑
𝑃3𝑖,𝑗,𝑘 − 𝑃1𝑖,𝑗,𝑘

𝑃2𝑖,𝑗,𝑘 − 𝑃1𝑖,𝑗,𝑘
𝑘

𝑛
 

(16) 

 

where i is the electrode index, j the band index, k is the repetition index, n the 

number of repetitions and P1, P2 and P3 are the power of the first, of the second and 

of the third answer of the triple, respectively. If the third answer is the same of the 

first one, s tends to zero, while if the third one is equal to the second, s tends to 1. 

Using s we calculated the similitude between equal answers and we selected the 10 

BE that optimize s for all the healthy subjects. After this preliminary selection, we 

applied again the same criterion for each healthy subject and each patient separately, 

with the aim to find a list of the BEC according to the similitude criterion. 
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6.2.4 Classification Performance 

The second aim of the study was to establish a mean of communicating with the 

subject by detecting his/her answer to simple yes/no questions. We designed an 

adaptive classifier trained with two questions with known answers that was able to 

forecast the third unknown answer. 

After each sub-session of three questions, the classifier will be retrained with new 

data.  As first we used the first part of the dataset to select the number of BEC to be 

considered. For each subject, each patient and each session, a linear SVM classifier 

(SVMc) was used to train and to test all the triples of the first half of the dataset 

using a variable number, from 1 to 10, of BEC from the ordered list. The 

classification error rate was computed and the number of BEC with the smaller error 

was selected.  

Subsequently we considered the second half of the dataset. For each subject, each 

patient and each session we trained and test all the triples using the number of BEC 

previously selected. The first and the second answers were used to train the SVMc 

and the third one was used to test it. Each answer have different repetition, than the 

class of attribution is decided by counting yes/no responses. 

6.3 Results and Discussion 

6.3.1 Search of the BE and BEC 

Considering all the healthy subjects and all the sessions, the ordered list of the ten 

BE was: PO3, Fc2, C3, O1, Fc1, Cz, Fz, P3, PO4 and T6 (Figure 9). We did not use 

a specific algorithm for source localization, so only a qualitative analysis of the 

detected electrode sites can be made. We found that the BE are mainly located in the 

fronto-central and parieto-occipital cortex. This confirms the results of the previous 

studies demonstrating activation of motor cortex and parietal cortex during the 

execution of motor imagery task (Ishizu et al., 2009; Lebon et al., 2012). Using the 

BE we searched for the healthy subject and patient a subset of subject-specific and 

session specific BEC optimizing the similitude index s. Table 4 lists the BECs 

selected for the classification process for each subject, each patient and each session. 
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Figure 9: The figure shows the ten BE selected through the similitude criteria considering the data 

of all subjects and all patients. These electrodes are: PO3, Fc2, C3, O1, Fc1, Cz, Fz, P3, PO4 and T6. 

6.3.2 Classification Performance 

The mean of the classification error was 16.5% (SD 12%) for healthy subjects and 

10% (SD 14.1%) for the patients. Table 4 shows the results for each subject and each 

session.  

The preliminary choice of the ten electrodes in healthy subjects, selecting the 

optimum subject-specific subset, also proved suitable for patients and guaranteed a 

low error rate in the classification of their answers. The proposed procedure allowed 

us to fix a robust common subset for all subjects (BE), but we also considered the 

inter and intra-subject variability by selecting a subject and session specific subset. In 

a future practical application of our protocol, each communication session will be 

preceded by a brief configuration session in which the classification algorithm selects 

the optimum electrode subset from the fixed BE. Furthermore it will be necessary to 

train the classifier with two known questions. Even if the procedure is long and 

repetitive, guarantee a very low classification error for the patients. 

Table 4: The table shows for each healthy subject, each patient and each session the best couples 

electrodes-band selected using the similitude index s and the related classification errors. 

Subjects Sessions Band-Electrode Couples selected Classification 

Error   θ α β γ 

1 1 O1 Cz-PO4 C3-Cz-PO4  10 % 

 2   P3-Fc1-T6 PO3-O1-T6 10 % 

2 1 C3- T6-PO3 O1-PO3-P3  O1-PO4 20 % 

 2 P3-PO4  C3 
Fz-T6-Fc1-

P3-O1-PO3 
20 % 
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3 1    Fz-C3 0 % 

 2 Fc1-Fc2 PO4  C3 25 % 

4 1 Fc2  C3 Fc2-PO3 20 % 

 2 Cz   O1-PO3 40 % 

5 1  C3 Fz  0 % 

 2 Fc2-Fz 
O1-Cz-PO3-

P3-PO4 
 O1 20% 

Mean±SD 16.5±12% 

Patients       

1 1 PO3-C3 Fc1-P3 Fc2 PO4 20% 

2 1 PO3-C3 C3-P3   0% 

Mean±SD 10±14.1% 

 

6.4 Conclusion 

This study evaluated the possibility to classify two mental states corresponding to 

two imagery tasks, using non-event-related EEG techniques, and to use them for 

communication purposes. The proposed automated procedure provided good 

classification accuracy for the two investigated imagery tasks, while identifying 

suitable and clearly defined sites for EEG spectral parameters classification. 
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Chapter 7  

Case of study 

Brain computer interface fNIRS-EEG 

based for communication in completely 

locked-in patients 

 

 

The study that will be introduced in this chapter was conducted at the Institute of 

Medical Psychology and Behavioral Neurobiology of Tübingen. 

The study was conducted in collaboration with Dott. U. Chaudary and Prof. N. 

Birbaumer. 

7.1 Introduction 

An increasing number of research activities and different types of studies in brain-

computer interface (BCI) systems show potential in this young research area. 

Research teams have studied features of different data acquisition techniques, brain 

activity patterns, feature extraction techniques, methods of classifications, and many 

other aspects of a BCI system. However, conventional BCIs have not become totally 

applicable, due to the lack of high accuracy, reliability, low information transfer rate, 

and user acceptability. 
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A new approach to create a more reliable BCI that takes advantage of each system is 

to combine two or more BCI systems with different brain activity patterns or 

different input signal sources. This type of BCI, called hybrid BCI, may reduce 

disadvantages of each conventional BCI system. In addition, hybrid BCIs may create 

more applications and possibly increase the accuracy and the information transfer 

rate. 

In general, in a hybrid BCI, two systems can be combined sequentially or 

simultaneously (Pfurtscheller et al., 2010). In a simultaneous hybrid BCI, both 

systems are processed in parallel. Input signals used in simultaneous hybrid BCIs can 

be two different brain signals, one brain signal, or one brain signal and another input. 

In sequential hybrid BCIs, the output of one system is used as the input of the other 

system. This approach is mostly used when the first system task is to indicate that the 

user does not intend to communicate or as a “brain switch”. 

Several combinations of signal were used to realize hybrid BCI: i) SSVEP-Motor 

Imagery (Allison et al., 2008), ii) P300-Motor imagery (Rebsament et al. 2008), iii) 

P300-SSVEP (Panicker et al., 2011), EEG-EMG (Leeb et al., 2011), iv) EEG-EOG 

(Punsawad et al., 2010), v) SSVEP-NIRS (Pfurtscheller et al., 2010) and vi) EEG-

NIRS (Fazli et al., 2012; Khan et al., 2014; Ma et al., 2012). 

The Hibryd systems based on EEG and NIRS are really interesting for this work 

because the study that will be described uses this technology. 

A type of hybrid BCI that uses EEG and NIRS was introduced by Fazli et al (2012). 

In this study, EEG and NIRS measurements were used simultaneously for ERD-

based BCIs. The experiment made up of 2 blocks of motor execution and 2 blocks of 

motor imagery. For all blocks, both EEG and NIRS were measured simultaneously. 

The increase in concentration of oxygenated hemoglobins (HbO) and decrease in 

concentration of deoxygenated hemoglobins (HbR) were measured using NIRS. The 

global peak cross-validation accuracy for each subject was considered for evaluation 

of the hybrid BCI. The main classification accuracies of HbO, HbR, and EEG for 

executed movement tasks were 71.1%, 73.3%, and 90.8%. For motor imagery tasks 

they were 71.7%, 65.0%, and 78.2%. The main classification accuracies of 

EEG/HbO, EEG/HbR, and EEG/HbO/HbR for executed movement tasks were 

92.6%, 93.2%, and 87.4%, and for motor imagery tasks were 83.2%, 80.6%, and 

83.1%, respectively. It was shown that the combination of EEG and NIRS improved 
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the classification accuracy in both MI and executed movement tasks. However, the 

information transfer rate may decrease. 

Khan et al. (2014) used an experimental hybrid near-infrared spectroscopy-

electroencephalography technique to extract and decode four different types of brain 

signals. The NIRS setup was positioned over the prefrontal brain region, and the 

EEG over the left and right motor cortex regions. Twelve subjects participating in the 

experiment were shown four direction symbols, namely, “forward,” “backward,” 

“left,” and “right.” The control commands for forward and backward movement were 

estimated by performing arithmetic mental tasks related to oxy-hemoglobin (HbO) 

changes. The left and right directions commands were associated with right and left 

hand tapping, respectively. 

They obtained an accuracy of 94.7% for the left and right task, 80.2 % for the 

Forward task and 83.6 % for the back task. 

Ma et al., (2012) proposed a hybrid BCI system based on the combination of the 

EEG signal and the cerebral blood oxygen changes measured by NIRS to detect the 

state of motor imagery. Six healthy subjects took part in the experiment. The result 

shows that the average recognition rate can achieve above 75.04%, which is higher 

than when only using EEG or NIRS.  

The described studies, carried out on healthy subjects, suggested that the proposed 

hybrid BCI systems have a good performance in the combination of these two 

different signals and motivate the interest in the following study.  

The aim of the study was to apply an hybrid BCI system EEG-fNIRS based on the 

communication with amyotrophic lateral sclerosis (ASL) patients. 

ALS is a progressive motor disease of unknown etiology resulting eventually in a 

complete destruction of the peripheral and central motor system but only affecting 

sensory or cognitive functions to a minor degree. Almost all the people with ALS 

experienced a motor speech disorder as the disease progresses. At some point in the 

disease progression, 80 to 95% of patients with ALS are unable to meet their daily 

communication needs using natural speech. Later, most patients become unable to 

speak at all. Brain computer-interface (BCI) technology has generated considerable 

research interest for the “locked-in” patients such as those in the late stages of ALS. 

Several EEG-based BCI are currently in use namely slow cortical potential (SCP)-

BCI, sensorimotor rhythm (SMR)-BCI and P300-BCI but none of them have been 

successful for communication in ALS patients in completely locked in state (CLIS). 
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Hence there is a need to find an alternative neuroimaging technique to design a more 

effective BCI to help ALS patient in CLIS with communication. Near infrared 

spectroscopy (NIRS) is an emerging neuro-imaging modality which employs near-

infrared light to non-invasively or invasively investigate cerebral oxygenation 

changes in healthy and neurologically challenged adults and children. Previous 

researches have shown that NIRS can be successfully used to design BCI; hence 

NIRS was used to design BCI to help ALS patient in CLIS with communication. 

The use of both EEG and NIRS signal could improve the accuracy of classification 

and than the communication with these patients. 

7.2 Materials and Methods 

7.2.1 Subject 

Two ASL patients take part in the study. 

7.2.2 Protocol 

The experiment consists in the repetition of a certain number of blocks. One block 

consists in the presentation of 20 sentences, 10 true and 10 false sentences (ie. 

“Rome is the capital of Russia” or “Rome is the capital of Italy”). The blocks are 

repeated for consecutive days and the number of blocks is different for each day, 

according to the fatigue of the subject. 

If the sentence that was correct, the subject was instruct to think YES, in the sentence 

that was incorrect, the subject was instruct to think NO. 

The EEG signal was recorded from two channels, P3 and P4. The NIRS signal was 

recorder from 20 channels. All the channels were positioned according to the 10-20 

internationl system. Figure 10 show the experimental protocol. 

The data were recorded in the patient’s home. 

7.2.3 Signal Preprocessing end features extraction 

EEG 

EEG signals, referenced to linked ear lobes, were sampled at 500 samples/s, and 

preliminarily band-pass filtered between 3 Hz and 35 Hz.  

Power spectral density (PSD) was extracted from five second epochs without 

overlap. A modified periodogram method, based on FFT-algorithm and Blackman 

Harris window, was used. Subsequently, we averaged four values of the extracted 

PSD, thus obtaining one PSD for each sentence. The power in four frequency bands 
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was extracted from the calculated PSD value: delta (1-4 Hz), theta (4–8 Hz), alpha 

(8–13 Hz), beta1 (13–20 Hz), and beta2 (20–30 Hz).  

NIRS 

NIRS signals were sampled at 6.25 samples/s, and preliminarily low-pass filtered at 

0.2 Hz. HbR, the main value between 3 s and 8 s was extracted. 

Then, the extracted features are the 2(channels) ×20(sentences) ×5(bands) for EEG 

and 20(channels) ×20 (sentences) ×2 (HbO/HbR) for NIRS.  

All the features were labeled with the correspondent imagery task (YES/NO). 

7.2.4 Statistical Analysis and Classification 

The data of the first patient were processed and classified offline and they were used 

to choose the best features to use for the next patients. The selected features were 

used for the online classification of the patients answers. The output of the classifier 

was used to give an auditory feedback to the patient, reporting him/her if the 

classifier classified his answer as YES or as NO. 

EEG and NIRS signal were compared to obtain the best features in term of statistical 

analysis and classification performance. For this porpoise the following steps were 

executed: 

- EEG: statistical analysis and classification 

- NIRS: classification 

- EEG and NIRS: classification 

Statistical analysis 

One-way ANOVA analysis on two level (YES and NO) was performed to compare 

the statistical significance of the different activation during the two imagery tasks 

(p<0.05). The analysis was performed for each block and each frequency band. 

Classification 

A linear SVM classifier (SVMc) was used to find the best hyperplane capable of 

discriminating between the two classes with the maximum possible margin, since 

this is known to increase the generalization capability. The parameters used for the 

SVM classifier were a soft margin equal to 1, a linear kernel function and a least-

square method to find the separating hyperplane.  

For the offline analysis, 5-fold cross validation was employed to determine the 

classifier’s generalization error across the entire dataset.  

The results will be reported in term of number of blocks in which the classification 

accuracy is higher than the random level of classification (65%). 
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Figure 10: Experimental setup of fNIRS-EEG-based BMI system developed for communication 

in CLIS patients by researchers from the Institute of Medical Psychology and Behavioral 

Neurobiology, University of Tubingen. The fNIRS-EEG-based BMI consists of fNIRS system, EEG 

system, computers and an audio system. The fNIRS and EEG signals are combined to provide 

neurofeedback to the CLIS patient, when they attend to the auditory stimuli, as ‘‘your answer was 

classified as (in) correct’’. 

7.3 Results 

7.3.1 Statistical Analysis 

The ANOVA analysis showed that only in Delta band there was a significant 

difference in the activation during the two imagery tasks (p=0.0055). 

7.3.2 Classification 

The results were showed in Table 5. 

Table 5: Numbers of blocks in which the classification accuracy is higher than the random level of 

classification (65%) using EEG features, NIRS features and the combination of all the features (EEG 

and NIRS) in the first patient. 

 NIRS 

EEG 

 
HbO HbR HbO-HbR / 

Delta 25/45 24/45 21/45 22/45 

Theta 22/45 20/45 21/45 14/45 

Alpha 19/45 21/45 20/45 22/45 

Beta1 18/45 17/45 19/45 17/45 

Beta2 18/45 21/45 19/45 21/45 

/ 19/45 17/45 17/45  
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7.3.3 Online analysis 

Comparing the results obtained with statistical analysis and with the classification 

with SVM we found that using both EEG and NIRS give better results than using 

only EEG or only NIRS. 

In particular, the couple EEG-delta band and NIRS-HbO give the best performance. 

For this reason we chose the couple delta-HbO to give the feedback in the online 

classification on the second patient. 

After the online sperimental session, the data were reanalyzed offline and the 

obtained results were reported in Table 6. 

Table 6: Numbers of blocks in which the classification accuracy is greater that the random level of 

classification (65 all the features (EEG and NIRS) in the second patient. 

HbO  

d 

HbR  

d 

HbO  

t 

HbR 

 t 

HbO  

a 

HbR  

a 

HbO  

b1 

HbR  

b1 

HbO  

b2 

HbR  

b2 

14/25 13/25 12/25 9/25 9/25 12/25 11/25 8/25 9/25 11/25 

 

The offline analysis confirm that the chosen features give the best classification 

accuracy.  

7.4 Discussion and Conclusion 

After this preliminary investigation, the study was extended to 4 ASL patient and 

after several online feedback sessions the achieved accuracy was higher than 65% for 

90% of the sessions. 

It suggests that the proposed hybrid BCI system has a good performance in the 

combination of these two different signals. Further investigation may help develop 

better BCIs with high accuracy and significant efficiency. 
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Chapter 8  

Mild and moderate TBI 

 

 

Cognitive impairments are a common consequence of traumatic brain injury. 

Cognitive deficits can be grouped into the following broad categories: perception, 

learning and memory, attention and communication (Stratton et al., 1994). These 

categories are outlined below. However, it should be made clear that all cognitive 

processes are integrated and any deficits in one category invariably impact upon 

others. 

The extent and duration of the cognitive deficits experienced by brain injury 

survivors have been found to be related to the severity of injury. 

8.1 Cognitive Function 

8.1.1 Perception 

Neurological damage in areas that govern sensory and attentional processes impinge 

upon the ability to discriminate, organize and interpret information, relating to the 

self and the external environment. A variety of perceptual impairments can result. 

These include neglect disorders (inattention to particular aspects of the environment), 

various types of agnosia (inability to recognize percepts), body scheme disorders 

(inability to identify body parts or their spatial relations), visuospatial deficits and 

sensory losses. Such impairments in perception often underlie many physical 

difficulties. Apraxia can cause difficulties in performing purposeful actions, 

maintaining postures, moving on command, coordinating precise movements, 
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engaging in rapid movements or learning new motor skills. Perseveration may also 

occur, which manifests in the continuous repetition of behaviours. Some perceptual 

deficits may resolve over time. Thomsen (1991) observed visual recovery 

particularly with minor visual problems. However, severe visual impairments 

remained in over a tenth (13%) of the sample twenty years after injury onset. Other 

reports have suggested that even minor difficulties with vision may not resolve over 

time. Brooks and colleagues (1986) discovered that over 40% of survivors were 

reported to have subtle visual difficulties one and five years following the injury. 

8.1.2 Learning and Memory 

The most common cognitive impairment following traumatic brain injury is impaired 

memory (Gloag, 1985). Regions of the brain implicated in memory processes include 

the medial temporal lobe, which incorporates the hippocampus, and the basal 

forebrain. Brain structures governing memory systems can be affected from direct or 

diffuse damage. Memory deficits are the most enduring cognitive impairment and are 

particularly difficult to treat (Gloag, 1985). An extensive study of long-term 

outcomes found that over half the sample (54%) presented significant memory 

problems (Colantonio et al., 2004). It has been reported that the extent of memory 

deficits is associated with brain injury severity  

Memory deficits may arise from impaired arousal, attention, retrieval and/or 

encoding processes. Two types of memory impairment are often observed. 

Retrograde amnesia, where memory for events occurring prior to the injury is 

disturbed, is an impairment of long term episodic memory. Anterograde amnesia, 

where memory for events occurring after the injury is disturbed, is an impairment of 

consolidating new information in long term memory. Both retrograde and 

anterograde amnesia can occur together. Difficulties in short term and working 

memory are also usual. Impairments in categorical knowledge have been 

documented. Severe amnesia may lead to confabulations, which relates to false, 

grandiose and absurd memories. In amnesic syndrome, the most severe form of 

memory impairment, memories cannot be retained long enough to carry out even 

simple behavioural sequences. This inability to attend, encode or recall information 

causes incapacity to plan and execute actions and learn information. Slower rates of 

learning and difficulties in generalizing and initiating learned behaviours are typical 

consequences of memory problems. 
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This poses a challenge to rehabilitative efforts, which typically require a mastery of 

new skills and the relearning of adaptive behaviours. 

8.1.3 Attention 

Attention can be conceptualised as “the capacity to focus on particular stimuli over 

time and to manipulate flexibly the information” (Sohlberg & Mateer, 1987). 

Numerous attention deficits may follow brain trauma (Mathias & Wheaton, 2007). 

Survivors may exhibit deficits in orient attention, selective attention, divided 

attention and sustained attention. Such deficits may lead to impairments in both 

automatic and controlled attention processing. Survivors may require conscious 

attention to engage in previously automatic activities and controlled attention 

processing may also be impaired. However, it is not clear whether such cognitive 

impairments reflect specific deficits. 

It has been argued that such impairments may be due to a more general disruption in 

information processing (Brouwer et al., 2002; Felmingham et al., 2004). 

Experimental data have shown that traumatic brain injury survivors, irrespective of 

the severity of their injury, produce slower response rates and more errors in various 

tests of attention compared to controls (Ziino et al., 2006). These deficits in attention, 

and/or information processing speed, also impact on memory, fatigue, task 

performance and skill acquisition.  

8.1.4 Communication 

Due to impairments in information processing and attention, language difficulties are 

common in the brain injury population. Long-term difficulties with reading, writing 

and word finding are reported frequently by survivors and their relatives (Masson et 

al., 1997). The gravity of the language deficits experienced varies. 

Neurological assessments have shown that the degree of language impairment shown 

by survivors with severe head injury was greater than those with only moderate 

injuries (Hellawell et al., 1999). However, communication difficulties are not limited 

to those with only moderate and severe head injuries. Significantly impaired verbal 

fluency was observed in individuals with mild brain injury, compared to healthy 

controls and patients with Parkinson’s 

Disease (Raskin & Rearick, 1996). These differences were attributed to attention 

deficits and slower retrieval processes. The findings suggest that communication 

impairments may arise from memory deficits, attention disorders and perceptual 

problems. 
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Communication impairments can also be caused by direct damage to brain regions 

that govern language. However specific disorders of language function following 

brain trauma are rare (Richardson, 2013). Aphasia is a loss of the ability to produce 

or comprehend language that arises from damage to Broca’s and Wernicke’s area. 

Different classifications exist and the extent of the inability can vary. However, 

aphasia is a rare clinical disorder. The brain injury population is far more likely to 

experience dysphasia. Dysphasia relates to a group of subclinical disorders of 

comprehension and speech production. It is associated with generic left hemisphere 

damage, executive dysfunction and short term memory deficits (Stratton et al., 

1994). Receptive dysphasia relates to difficulties in understanding written and 

spoken words. Rehabilitation can be severely hindered by survivors’ 

incomprehension of simple instructions and sentences. Although the impairment 

concerns the input of language, there can also be associated problems related to 

output. For instance, even though fluent speech is enjoyed by those with receptive 

dysphasia, the speech may distorted or even unintelligible. The spoken words may 

contain irrelevant, illogical and digressive themes. Perseveration (repeating words 

and phrases) and echolalia (copying another’s words) may also occur. Expressive 

dysphasia relates to difficulties in articulating speech, due to either the inability to 

form or pronounce words. The articulated speech is slow, monotonous and seemingly 

effortful. It is often characterised by word finding difficulties, word and syllable 

substitutions, new words and non-content words. 

Expressive language problems are much more common, especially amongst those 

with severe brain injury (Richardson, 2000). Schalen and colleagues (1994) 

conducted various outcome tests, five to eight years post-injury, and found a 

prevalence rate of 22% for expressive dysphasia and only 3% for receptive 

dysphasia. However, the rate of articulation problems may be higher as mild 

language impairments may not be perceptible in a neuropsychological assessment 

but may be manifested during normal communication efforts. 

8.2 EEG Findings in Traumatic Brain Injury 

This paragraph will discuss the various EEG findings seen in head injury when it 

results in a brain injury, though any given head injury may or may not result in 

traumatic brain injury. When an injury is incurred by the brain there are a few 

varieties of findings seen in the EEG, ranging from spectral changes associated with 
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either white or gray matter damage, to the changes in “connectivity”, seen as changes 

in coherence or correlation measured across the cortex, or between more distant 

functionally related areas. 

Damage is seldom restricted to merely being exclusively either white or gray matter, 

and mixed findings are seen commonly. There are studies showing the correlation of 

quantitative EEG findings with quantitative MRI findings that are instructive in 

identifying the nature of the effect on the EEG of the different types of damage. 

The EEG changes following brain injury are spectrally different between white and 

gray matter damage, which helps when evaluating the nature of the damage with the 

EEG. The white matter is a high speed relay system that innervates the cortex, both 

with primary sensory input relayed from the thalamus, and with cortical-cortical 

input via various fasciculi. 

When the cortex has decreased innervation, delta content emerges, according to the 

IFCN’s position paper on the basic mechanisms of cerebral rhythmic EEG. Thus, 

traumatic brain injury resulting in white matter damage is associated with slower 

spectral increases in the areas cortically where decreased innervation is present. 

These slow spectral increases are seen primarily as delta, and may also be seen as a 

slower band including theta, especially with larger increases in the slow spectra. 

White matter also carries signals across the cortex, and from the cortex through 

subcortical structures to other cortical locations, resulting in the neural network’s 

“connectivity”. There has been a small case series showing that in some direct frontal 

injuries, there is a decrease in correlation from the left to the right frontal lobe, seen 

as decreased spectral correlation, also referred to as co-modulation. This is identical 

to the changes seen with damage to the anterior portions of the corpus callosum 

following surgery.  

Coherence changes may also be seen with head injury, with both hypercoherence and 

hypocoherence reported, depending on the nature of the specific case’s 

damage. Isolated areas may become hypercoherent due to the lack of input, though 

separated areas will be hypocoherent due to the damage to their connective network. 

Damage may be seen in gray matter, which is highly “plastic”, unlike white matter, 

where damage persists. The neural plasticity allows for regeneration of the cortical 

gray matter following injury, so the spectral changes associated with gray matter 

damage may change over time, from the more acute stages, through a transition 



116 

 

phase into a static phase, which may allow for re-integration into functional 

relationships with neural network activity. 

The immediate changes seen spectrally with gray matter injury is a decrease in the 

function of the thalmo-cortical neural network activity, seen spectrally as decreased 

alpha and beta, as well as decreased gamma in the affected gray matter. These 

changes last for the period of the healing, commonly seen across a period from 6 

months to a year. 

As the gray matter heals, but is not integrated into the neural network function, the 

idling rhythm in alpha may return and even be seen as an excessive value in database 

comparisons, since the cortical area is not “working”. The beta and gamma remain 

low during this phase, since they are not seen at normal levels in the idled cortical 

areas. Beta is generated in local gray matter network activity, and gamma is seen in 

functionally bound and active networks only. 

Once the neural network of the local gray matter is re-integrated into the functional 

processing, the alpha will then be reduced, and the faster activity seen associated 

with local function will also be seen as returning to more normal levels. This may not 

happen spontaneously, and may require specific interventions, such as 

neurofeedback, physical therapy, and/or various cognitive-behavioral interventions 

(Thatcher et al., 1999). 

The work of Kirtley Thornton showed that the gamma and beta remain low, even 

when the alpha return has occurred. These faster patterns returned following 

successful clinical therapy to re-integrate the neural tissue into the functional neural 

network of the cortical gray matter and white matter. 

8.3 Cognitive rehabilitation 

Cognitive rehabilitation is a systematic, functionally oriented program of 

interventions designed to improve neuropsychologic performance. Following a 

thorough neuropsychologic assessment of a patient’s cognitive strengths and deficits, 

interventions are designed to reestablish or reinforce previously learned skills, 

develop compensatory strategies for cognitive deficits, or facilitate adaptation to 

irremediable cognitive impairments. 

Regardless of the specific type of intervention, cognitive rehabilitation is intended to 

promote functional improvement, and limit the impact of permanent cognitive 

disabilities on everyday functioning and quality of life. 
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Cognitive rehabilitation is often multimodal, but each component is directed towards 

the improvement of a specific cognitive domain or ability. Programs targeting 

impairments in attention, language and communication, memory, visuospatial 

function, and executive function have been studied in TBI patients. The literature 

regarding cognitive rehabilitation is complex, and interpretation of treatment studies 

is challenging. 

The goal of cognitive rehabilitation therapy is to help an individual with a brain 

injury enhance his or her ability to move through daily life by recovering or 

compensating for damaged cognitive functions. A restorative approach helps the 

patient reestablish cognitive function, while compensatory approaches help the 

individual to adapt to an ongoing impairment. 

Cognitive rehabilitation therapy interventions are nearly as unique and varied as the 

individuals they are used to treat. A comprehensive rehabilitation program may be 

used for individuals with multiple impairments, for example memory loss combined 

with difficulties in problem-solving, while approaches focused on a single cognitive 

function attempt to work on each impairment in isolation. In addition to the variation 

in treatment, an individual’s response to any one treatment may vary as well, 

depending on the injury, the individual’s prior state of health, and the individual’s 

social context. Treatment strategies evolve, as different treatments become necessary 

at different points in time 

8.4 New Technologies in Neuropsychological Rehabilitation 

There is increasing use of technological innovations in neuropsychological 

rehabilitation in research and clinical practice. For example, Cochlear implants have 

restored hearing to thousands of people, while devices to restore sight and movement 

are progressing rapidly. Sensory devices inject signals into the nervous system, while 

motor prosthetics extract signals from the nervous system and send them to control 

devices such as robotic arms or stimulators to re-activate paralyzed muscles (Serruya 

et al., 2004). Other types of neurotechnology devices improve health by modulating 

pre-existing systems: deep brain stimulators, for example, deliver targeted electrical 

stimulation to the basal ganglia to relieve the symptoms of Parkinson's disease. Non-

invasive techniques under development include transcranial magnetic or direct 

current stimulation, and biofeedback delivered from quantitative 

electroencephalography (EEG) or functional magnetic resonance imaging (fMRI). 
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Several behavioral and external modulatory techniques will be described in the 

following. 

8.4.1 Behavioral techniques 

Assistive devices 

Simple, low-cost interventions such as a memory book or wallet, containing pictures 

of familiar places or people, can help patients with impaired episodic memory better 

navigate conversations and daily activities. Mobile phones and pagers can be set up 

to actively remind patients of tasks.  

Cognitive orthotic software can facilitate skill acquisition and self-sufficient 

management of daily tasks. These systems can be highly customized to take into 

account the deficits and rehabilitation goals of a particular patient. Expert systems 

comprising mobile phones and palm-top computers linked by radio to web-based 

central workstations have been found to help remind patients with brain injury, 

stroke and dementia that certain tasks must be performed such as taking a medication 

or calling a relative. A palmtop computer can literally step a patient through a task: it 

might alert them that it is time to call a sister, and then either to provide the phone 

number and await confirmation the task was completed, or give the patient the option 

to defer the task and follow-up later. Patients with brain injuries may benefit from 

both wearable computers that facilitate interaction with the environment, and 

computer-based diaries, with auditory alarms and linked entries (Serruya et al., 

2008). 

Virtual reality (VR) 

VR has been shown to promote learning in people with memory impairments; 

furthermore, this learning appears to transfer to improved real-world performance 

(Zhang et al., 2003). Virtual worlds based on a patient's own home enable safe 

practice of daily activities and memorization of the location of items. Just as VR 

tools can be used for data management by scientific teams to capture and manage 

complex data, so too the annotated display might be adapted to help individuals with 

memory impairment. Given that enriched environments increase new neuron 

production in rodents, elaboration of gray matter and remyelination in white matter 

(Mahncke et al., 2006), the mere act of having patients navigate through complex VR 

worlds may yield clinical benefits. 

Computerized Cognitive Training 
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Cognitive treatments using computers, which began with memory training, are being 

widely used these days. Computer-assisted cognitive rehabilitation has advantages, in 

that it provides personalized treatment based on a subject’s neuropsychological 

pattern to stimulate impaired areas (Talassi et al., 2007). A computer-assisted 

cognitive rehabilitation training program consists of exercises focused on visual 

reaction, visual scanning, attention, information processing speed, memory, and 

problem solving. These exercises can not only provide flexibility and adjustment 

within a treatment regimen, but may also shorten treatment time. They also provide a 

means for objectively measuring subject’s performance as well as providing instant 

feedback. The causes of decreasing cognitive information processing speeds among 

the elderly include the decrease in the number of brain cells, the weakening of motor 

nerve cells, and a decrease in general activity. Cognitive dysfunction begins with 

memory decline and is accompanied by miscalculation, disorientation, misjudgment, 

and comprehension disability, all of which greatly affect daily life (Rhee et al., 1993; 

Lee et al., 2013). 

8.4.2 Noninvasive modulation (paper TBI e brain stimulation) 

Neurofeedback 

Neurofeedback is biofeedback, or operant conditioning, of any measure of brain 

functioning. The term neurofeedback is used to refer to the use of the 

electroencephalogram (EEG) to produce biofeedback, although the use of other 

measurements, such as cerebral blood oxygenation, are also possible (Zotev et al., 

2011). In the practice of neurofeedback, an auditory or visual cue is used to guide the 

patient toward a “healthy” EEG signal as defined by a sample of healthy subjects. 

This behavior has not been found to correlate with any type of subjective thought 

process on the part of the patient, although understanding of the paradigm and 

attention to the task are typically presumed prerequisites. Treatment usually is 

broken into 5 to 60 sessions, each lasting 30 to 60 minutes, depending on the 

patient’s condition and response to treatment. Double-blind, placebo-controlled 

studies have shown that neurofeedback can be effective for the treatment of 

refractory epilepsy, attention-deficit/hyperactivity disorder, and obsessive-

compulsive disorder. 

Neurofeedback often is guided by the patient’s quantitative electroencephalogram 

(QEEG), typically a Fourier transform of EEG data. This provides power spectral 

density measurements at each EEG channel, and measures of “coherence,” or power 
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density that correlates between 2 channels. Power and coherence measurements at 

each of 64 frequencies for 19 channels provide thousands of measurements that can 

be the target of biofeedback (Nuwer et al., 2005). Targets often are chosen with the 

help of a normative database, built from the QEEGs of healthy subjects. 

Neurofeedback has led to symptom improvement for patients with a history of mTBI. 

A number of damage experienced in a stroke or TBI can be helped with 

neurofeedback. Neurofeedback helps connectivity and timing in the brain, and 

specific areas of the brain can be targeted to have the most impact. Some common 

repercussions of stroke and TBI that can be helped are: Speech, Movement, Mood 

regulation, Better behavior control, Headache reduction. Neurofeedback works 

extremely well for these because the brain regulates each of those issues. For people 

recovering from stroke and TBI, neurofeedback training can be particularly helpful 

in improving speech. During brain training, the specific areas of the brain associated 

with speech can be targeted, strengthened, and improved (May et al., 2013). 

Transcranial magnetic stimulation (TMS) 

TMS is based on Faraday’s principle of electromagnetic induction and features the 

application of rapidly changing magnetic fields to the scalp via a copper wire coil 

connected to a magnetic stimulator (Kobayashi et al., 2003). These brief pulsed 

magnetic fields of 1-4 Tesla pass through the skull and create electric currents in 

discrete brain regions. Applied in single pulses (singlepulse TMS) appropriately 

delivered in time and space, the currents induced in the brain can be of sufficient 

magnitude to depolarize a population of neurons and evoke a certain phenomenon. 

Paired-pulse application of TMS can be used to evaluate intracortical 

inhibitory/excitatory circuits and cortico-cortical connectivity. These TMS measures 

have proved valuable in understanding the neurophysiologic basis of various 

neuropsychiatric diseases and can provide useful diagnostic information in 

conditions with intra- or intercortical excitability abnormalities (Hallet et al., 2007). 

Repetitive trains of TMS (rTMS) applied to targeted brain regions can suppress or 

facilitate cortical processes, depending upon stimulation parameters (Kobayashi et 

al., 2003). In most instances, continuous low frequency (≤1Hz) rTMS decreases the 

excitability of the underlying cortex while bursts of intermittent high frequency 

(≥5Hz) rTMS enhance it. Also, a subtype of rTMS, known as Theta Burst 

Stimulation (TBS), incorporates very short, high frequency (50Hz) trains of stimuli 

delivered intermittently or continuously at 5Hz (Di Lazzaro et al., 2005). TBS can 
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induce or decrease excitability when applied in an intermittent (iTBS) or continuous 

(cTBS) paradigm, respectively. The fact that the modulatory effects of rTMS can 

outlast the duration of its application has led to the exploration of the technique as a 

potential treatment modality with promising results in various neuropsychiatric 

disorders. The rTMS after-effects are influenced by the magnitude and duration of 

stimulation, the level of cortical excitability and the state of activity in the targeted 

brain region (Silvanto et al., 2008). Extensive neurophysiologic and neuroimaging 

studies in human and animal models are starting to illuminate the neurophysiology 

underlying rTMS effects. Overall, rTMS of a targeted brain region has been 

demonstrated to induce modulation distributed across corticosubcortical and 

corticocortical networks by means of transsynaptic spread, resulting in distant but 

specific changes in brain activity along functional networks. Modeling studies can 

provide essential information on the induced current and field distributions generated 

in biological tissue during TMS. Short-term effects of TMS on brain activity appear 

to result from changes in neural excitability caused by shifts in the ionic equilibrium 

surrounding cortical neurons, reafferent feedback from targeted structures, or the 

storage of charge induced by stimulation. The prolonged after-effects are considered 

to result from modulation of long-term depression (LTD) and long-term potentiation 

(LTP) between 

synaptic connections, modifying neuronal plasticity. Increased expression of 

immediate early genes and neurotrophic effects have also been discussed as possible 

mechanisms. 

Following diffuse damage after TBI, the induction of LTP and LTD may be 

abnormal due to cellular injury and altered connectivity, which may ultimately 

account for lasting deficits. 

Importantly, this plastic potential might be guided using neuromodulatory strategies 

to improve clinical outcomes of TBI. 

TMS-induced side effects primarily include transient headache, local pain, neck pain, 

toothache, paresthesias, transient hearing changes, transient changes in cognitive/ 

neuropsychological functions and syncope (possible as an epiphenomenon). 52-54 

The most serious adverse event related to TMS is induction of a seizure but this is a 

rare complication if the stimulation is applied according to the safety guidelines. 

While not yet widely popular in TBI research, TMS appears to be well suited to 

serve as a diagnostic and prognostic factor in the case of TBI.  
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Importantly, the focality of TMS might be disadvantageous in the acute stage as 

diffuse damage is frequently a key component of the insult. In the subacute stage, 

TMS may affect potentially salvageable lesioned circuits dependent on maintaining 

adequate levels of arousal and avoiding activation of competitor circuits. In order to 

optimize the therapeutic potential of neuromodulation in promoting functional 

recovery in the chronic stage, extensions of insights gained from other patient 

populations can be translated to TBI patients with carefully characterized deficits 

(Demirtas-Tatlidede et al., 2012). 

Transcranial direct current stimulation (tDCS) 

tDCS is a noninvasive technique of neuromodulation, which uses low amplitude 

direct current to alter neuronal firing. While the use of anodal or cathodal direct 

current polarization to induce changes in the firing rates of neurons was 

demonstrated in the 1960’s, the technique has received renewed interest in recent 

years. Nitsche and colleagues investigated the modulatory effects of tDCS on motor 

cortical excitability and reported that anodal tDCS elicits prolonged increases in the 

cortical excitability and facilitates underlying regional activity, while cathodal 

stimulation shows the opposite effects. The duration of aftereffects outlasts the 

period of stimulation and largely depends on the duration of tDCS (Nitsche et al., 

2000). 

Furthermore, several consecutive sessions of stimulation result in behavioral effects 

lasting several weeks, a particularly important feature with respect to cortical 

plasticity (Boggio et al., 2007). 

The short-term effects of tDCS are likely elicited by a non-synaptic mechanism and 

result from depolarization of neuronal resting membrane, presumably caused by 

alterations in transmembrane proteins and electrolysis-related changes in hydrogen 

ions.58,62-64 Longterm effects are believed to depend on changes in NMDA (N-

Methyl-Daspartate,) receptor activation as well as neuronal hyper- and 

depolarization, and thus, may share similarities with LTP and LTD.65 

Indeed, we have directly relevant pilot data demonstrating modulation of synaptic 

LTP by tDCS in a murine model. In addition, a functional neuroimaging study 

investigating the effects of tDCS, demonstrated persistent metabolic changes in 

oxygen metabolism consistent with electrode location and neural network 

modulation. Therefore, tDCS has the potential to modify spontaneous activity and 
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synaptic strengthening, and to modulate neurotransmitter-dependent plasticity on the 

network level (Lang et al.,2005). 

The procedure consists of a 1-2mA current applied through 35 cm2 pad electrodes 

placed on the scalp (George et al., 2009). The low-level current flows from the 

positive electrode, anode, to the negative electrode, cathode, and increases the 

regional activity by the anode while decreasing the activity underneath the cathode. 

The process may be referred to as cathodal or anodal tDCS depending on the 

electrode placed over the region being modulated. Large electrode size limits the 

focality of stimulation, but is preferential to avoid high current densities at the skin 

which may cause local irritation or even burning.64 It is also possible to apply the 

second electrode to an extracranial position (e.g. shoulder) instead of the scalp. 

While providing greater specificity of stimulation effects on the brain, this 

application may lead to quite different effects at the primary site; modeling should be 

considered for such novel electrode arrangements to better predict and understand the 

current distribution (Wagner et al., 2007). 

Future developments (e.g. employing carrier frequencies) may help to bridge the 

scalp and skull and deliver the stimulating current to the brain more reliably. Even in 

its present form, the density of stimulation is low enough that subjects only perceive 

the stimulus during the rapid change in current at the onset and offset of the 

stimulation. Thus, from a practical point of view, it is easy to sham stimulate subjects 

by slowly ramping down the intensity after switch on, and ramping up before switch 

off. This method of sham stimulation has tDCS has been shown to enhance motor 

learning in healthy subjects and stroke patients, language in normal subjects and 

patients with aphasia, and verbal fluency and verbal working memory in healthy 

subjects and patients with early Alzheimer’s disease. Furthermore, modulation on the 

network level allows for modulation of behaviors such as decision-making or social 

interactions, and has been shown to have translational clinical applications in cases 

of impulsive behavior, addiction and depression (Demirtas-Tatlidede et al., 2012). 

Therefore, tDCS has the potential to improve learning by modification of 

spontaneous activity and synaptic strengthening, and to modulate neurotransmitter-

dependent plasticity on the network level. 

Several studies of the safety of tDCS have concluded that it is a painless technique 

for electrically stimulating the brain with almost no risk of harm. The most frequent 

adverse effects include moderate fatigue (35%), mild headache (11.8%), nausea 
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(2.9%) and temporary mild tingling sensation, itchiness and/or redness in the area of 

stimulation. While the risks are rather minimal, tDCS may also result in temporary 

side effects such as dizziness, disorientation, or confusion. 

Overall, tDCS features a highly portable, safe, noninvasive means to modulate 

cortical excitability with reasonable topographic resolution and reliable experimental 

blinding. It can focally suppress or enhance neuronal firing following TBI, 

depending on the size and location of the applied electrodes, and thus may offer a 

promising method to minimize the damage and promote functional recovery. 

Cathodal tDCS may be employed to suppress the acute glutamatergic 

hyperexcitability following TBI. In the subacute stage, when GABAergic activity is 

excessive and conditions neurologic, cognitive and functional disability, anodal 

tDCS may increase excitability to counter these aberrant GABAergic effects. In the 

chronic stage, brain stimulation coupled to rehabilitation may enhance behavioral 

recovery, learning of new skills and cortical plasticity. In this stage, the relative ease 

of use and portability of tDCS may enable modulation of plasticity via concomitant 

behavioral interventions such as cognitive behavioral, occupational and physical 

therapy. 

Online or offline combinations of tDCS, EEG and fMRI may assist in understanding 

the extent of injury and the mechanisms of plasticity underlying functional recovery 

in TBI. Its neuromodulatory potential in rehabilitation of patients with TBI also 

remains to be investigated. 

In a recent study, Ulam et al. recorded serial EEGs, along with serial 

neuropsychological tests, among a sample of 12 patients as they progressed through 

inpatient neurorehabilitation for TBI. The same measures were obtained from a 

group of 13 closely matched healthy controls. This sample of patients was 

completely separate from the sample recruited for the present study. Patients with 

TBI differed significantly from controls due to excesses of power in the delta and 

theta frequency bands, as well as in the mean peak frequency of alpha, which was 

slower than for controls. Using linear regression, we found EEG spectral power 

measures to be significantly related to neuropsychological tests such that as power in 

delta and theta decreased, performance on measures of attention and working 

memory increased, and as power in the alpha frequency increased, performance on 

the measures of attention and working memory increased. It was concluded that EEG 

spectral power measures tracked recovery from TBI in a meaningful way, providing 



125 

 

a useful neurobiological marker that could be used to quantify response to 

rehabilitative interventions, and could potentially become an important predictor of 

treatment response (Ulam et al., 2014). 
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Chapter 9 

Case of study 

A Tele-Cognitive Rehabilitation System Using 

LabVIEW 

 

 

9.1 Introduction 

Brain injury can produce a variety of cognitive disturbances depending on the 

location of the lesion (Gurd et al., 2010). Current methods for cognitive rehabilitation 

are based on traditional paper-and-pencil tests. However, significant difficulties are 

encountered when these conventional methods are applied to cognitively impaired 

patients. First, many patients with both cognitive and physical impairment, cannot 

reach the hospital alone, and most families cannot afford the high cost of 

accompanying patients to the rehabilitation hospital several times a week for training 

or even stay in the hospital. Second, traditional paper-and-pencil tests are usually 

carried out in one-to-one mode, meaning one doctor can only coach one patient at a 

time to do the cognitive training. For a large number of patients, this method of 

cognitive rehabilitation is ineffective. Since cognitive rehabilitation is a far-flung 

process, computer-based technologies show outstanding advantages in assisting 

therapy, evaluating residual function quantitatively, storing rehabilitation results, and 

so on. In addition, doctors can assist patients to perform the computer-based 

rehabilitation training through an internet connection and check the training results, 
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thus overcoming the problems arising with traditional therapy. The tele-therapy 

technology for cognitive disturbances offers good opportunities to satisfy the needs 

of an increasing number of patients (Bai et al., 2005; Dwolatzky et al., 2004; Tam et 

al., 2003). For this reason, we developed software for tele-cognitive rehabilitation 

using LabVIEW, a high-level graphical programming environment. This paper 

outlines the rehabilitation tests, the structure of the database connected to the 

application, and the LabVIEW-based remote connection between the database and 

the patient’s training workstation. 

9.2 Description of the Tele-Rehabilitation System 

9.2.1 Cognitive Rehabilitation System 

The tele-rehabilitation software contains several cognitive training programmes for 

the patients. The application for cognitive rehabilitation training is organized into 

four parts: (1) memory training, (2) visuo-spatial cognition training, (3) selection and 

classification training, and (4) cognitive phonology training. Rehabilitation exercises 

are characterized by adaptation of training difficulty to the performance of the 

patient, effective feedback and userfriendliness. 

Rendering scales and scores are also provided to improve the patients’ motivation. 

Furthermore, exercises are characterized by a random presentation of stimuli to avoid 

learning effects (Sohlberg et al.,1979). 

9.2.2 Database Architecture 

The software allows the personal and clinical data of the patients to be inserted and 

stored in a database along with the exercise settings and patients’ scores. The 

relational database is based on Access. A relational database is a collection of data 

item tables formally described and organized according to a relational model. Data in 

a single table represent a relation and, in typical solutions, tables may have 

additionally defined relationships with each other (Ramakrishnan et al.,2000). Our 

database tables are: (1) Patient, containing patients’ personal data, (2) Medical Case, 

containing patients’ clinical data, (3) Training Exercise, containing the list of 

exercises executed by the patients with the setting parameters for each one, (4) 

Results and Score, containing the patients’ results for each exercise. A block diagram 

of the database relations is shown in Figure 11. Different medical cases can be 

associated with each patient, different training exercises with each medical case, and 
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different results and scores with each training exercise. This allows the patient’s 

performance to be monitored in real time and the follow-up phases easily executed. 

 

Figure 11: Database block diagram 

We used the Access Database because it allows a simple consultation independently 

of LabVIEW. We used the Database Connectivity Toolkit (DCT) to connect the 

Database with LabVIEW. The DCT is a LabVIEW toolkit providing optimized 

Virtual Instruments (VI) for database access using ActiveX Data Objects (ADO) 

technology. The system allows a remote connection between the database and the 

patient’s workstation executing the training. 

9.2.2 Database Remote Connection 

The database remote control uses the Client-Server model and the TPC/IP protocol. 

The server is the machine hosting the database at the rehabilitation centre, while the 

clients are the devices running the cognitive rehabilitation training software. To 

achieve remote connection, we used the LabVIEW VI Server functions. A VI Server 

is a set of functions that dynamically controls front panel objects, VIs, and the 

LabVIEW environment. With a VI Server, VIs and LabVIEW can also be loaded and 

run either on the same machine or across a network (Elliott et al., 2007). Our idea to 

achieve database remote control was to execute in the server machine all the VIs 

involved in database management, as shown in Figure 12. That occurs whenever 

information needs to be inserted in or retrieved from the database by the client 

device. We call the VI of the server involved in database management VIDM (VI 

Database Management). 

 

Figure 12: Schematization of the remore connection model 

In order to build the VI server application, both the TCP/IP protocol in LabVIEW 

and the client access to the server had to be enabled, setting the client’s IP. The 
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following steps were completed to allow the database to communicate with the VI 

running on the client device for the insertion of personal data and test results in the 

database. The client VIs: (1) open a reference to the server instance through the 

function Open Application Reference, (2) open a reference to the VIDM through the 

function Open VI Reference, (3) call the VIDM through the function Invoke by 

Reference Node, specifying the information inserted in the client device we want to 

store in the database, (4) close the VIDM reference and the server reference through 

the function Close Reference. 

9.3 Experiment and Results 

To demonstrate the concept introduced in this paper, the system is organized into two 

main parts: (1) the cognitive rehabilitation training battery, and (2) the database 

storing patients’ personal and clinical data and the setting and results of the 

rehabilitation exercises performed by the patients. The exercise interfaces are 

interactive, motivating and easily adapted to individual patients’ performance. Some 

exercise interfaces are shown in Figure 13. The system allows a remote connection 

with the database. Figure 14 shows the software interface for the insertion of the 

Client and Server IPs. 

The remote control of the application has many advantages. First of all, it uses a 

single database accessible from every outstation, in order to insert and retrieve 

patients’ data. This makes the application lighter and suitable for portable devices 

like smartphones or tablet pc. The remote control opens the possibility of “shared 

Figura 13: Some example of testing interfaces 
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therapy” because the therapist monitors the training of different patients at the same 

time, increasing the total capability of the rehabilitation team. Our tele-cognitive 

rehabilitation model is home-based and tailor-made. As previously stated, people 

with brain injuries do not just have cognitive problems, but they may also suffer from 

physical impairment. 

Tele-cognitive rehabilitation methods provide greater flexibility during service 

delivery. The system allows users to stay at home and avoid spending a long time 

travelling to receive tailor-made face-to-face treatments. 

9.4 Conclusion 

This paper outlined a tele-therapy system for cognitive disturbances. The results 

obtained are promising since our system is safe and stable. However there are many 

ways to improve and integrate the system. Thanks to the modularity of the 

application, it will be simple and fast to complete the platform with new 

rehabilitation exercises. An application for portable devices like tablets or 

smartphones is also planned. 

  

Figure 13: Software Interface for the configuration of Server and Client IP addresses. 
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Chapter 10 

Transcranial Stimulation e EEG 

 

 

10.1 Introduction 

The recent emergence of new, noninvasive brain stimulation (NIBS) techniques for 

inducing reversible changes in brain activity has allowed the temporary modulation 

of a wide range of functions (Wassermann et al., 2008). The development of NIBS 

techniques for the study of mechanisms underlying perceptual, motor, and cognitive 

functions, as well as the ability to modulate these functions in the human brain, has 

constituted a significant advance in basic neuroscience. The combination of NIBS 

with neuroimaging techniques has gained popularity in recent years, due to its 

potential to investigate the state of targeted brain areas and the roles of these areas in 

specific functions. The NIBS techniques used to modulate cortical activity include 

transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES). 

The tES technique (Priori et al., 2003) involves the application of weak electrical 

currents directly to the head for several minutes. These currents generate an electrical 

field that modulates neuronal activity according to the duration, intensity, and 

modality of the application, which can be direct (transcranial direct current 

stimulation [tDCS]), alternating (transcranial alternating current stimulation [tACS]), 

or random noise (transcranial random noise stimulation [tRNS]) (Pausul et al.,2011). 

Several studies using animal models have suggested that neurons respond to 

membrane polarization changes induced by tDCS, thereby leading to a reduction in 
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spontaneous neuronal firing rates after cathodal tDCS and an opposite effect after 

anodal stimulation. Firing increases when the positive pole (anode) is located near 

the cell body or dendrites and decreases when the field is reversed. 

Accordingly, the first studies performed on the motor cortex showed that cathodal 

polarization induced robust inhibition of motor cortex excitability, whereas anodal 

polarization increased motor cortex excitability (Nitsche et al. 2000). 

Similar results have been observed using tRNS (Terney et al.,2008), although the 

mechanisms for tRNS-induced alterations have been assumed to be the result of 

repeated subthreshold stimulations. 

Therefore, in the same manner as tDCS, tRNS can change the cortical excitability by 

means of mechanisms of membrane polarization. In addition, the advantage of using 

tRNS over tDCS is that tRNS is not constrained by the sensitivity of the current flow 

direction. Instead, random frequencies are typically presented, and all coefficients 

have a similar size (i.e., white noise).  

To date, few studies have evaluated the modulation effects induced by tRNS, which 

have been shown to induce substantial behavioral modifications. The use of an 

approach, such as EEG, could allow for a more detailed understanding of the neural 

mechanisms involved in these observed changes. 

The few studies published to date on cortical measures have indicated that the 

alternating stimulation used as tACS is a powerful tool for investigating human brain 

oscillations. Using tACS, it is possible to deliver an oscillatory current to the cortex 

in a frequency-specific manner to induce a particular oscillatory entrainment (Kanai 

et al., 2008). In this respect, tACS may serve as an instrument to interact with 

ongoing cortical oscillations and induce entrainment, thereby contributing to a better 

understanding of cortical binding through frequencies during different functions. 

10.2 tDCS e EEG 

Investigating the effects of a low electric current passing through the human scalp is 

now common (Paulus 2011). So far, researchers have investigated the modifications 

induced by tDCS given that advances in this field may further support and detail the 

use of tDCS as a therapeutic tool for several disorders characterized by abnormalities 

in electrophysiological and behavioral parameters. Electroencephalogram (EEG) 

constitutes a simple and cost–effective methodology to measure modifications of 

brain activity during and after tDCS delivery. Indeed, the EEG: i) reflects the 
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fluctuation of the local field potentials resulting from the postsynaptic potentials of 

the cortical neurons, then the changes of the neuronal resting membrane potential due 

to the tDCS; ii) offers the possibility to identify responses to tDCS within an area or 

across circuits, thereby helping to determine in vivo the brain areas that are directly 

or indirectly affected by the stimulation.  

Two combined EEG-tDCS methodologies can be identified: i) the “offline” method, 

with the EEG recording performed after the tES stimulation, in order to evaluate the 

short- and long-term aftereffects induced by tES, and ii) the “online” method, with 

the EEG recording performed during the tES stimulation, in order to evaluate the 

ongoing changes that occur during tES delivery. 

10.2.1 Offline approach 

Several electrophysiological changes in EEG oscillations following tDCS have been 

previously observed using offline methods in experiments involving a task for the 

subject or with the subject at rest. Ardolino et al. (2005) reported that cathodal 

stimulation of the motor cortex (1.5 mA, 35 𝑐𝑚2 electrode, 10 minutes) increased the 

power on delta and theta rhythms. Matsumoto et al. (2010) evaluated how tDCS 

applied over the left primary motor area (1mA, 35 𝑐𝑚2 electrode, 10 minutes) 

influenced event-related desynchronization (ERD) of the mu rhythm recorded during 

the imaging of right hand grasping. An increase and decrease in mu ERD after 

anodal and cathodal stimulation, respectively, were observed. These results are in 

partial disagreement with the afore-mentioned report by Ardolino et al.. Nevertheless 

this apparent discrepancy may be explained by the different state of the subject (rest 

state vs active state) (Miniussi et al. 2012). Polania et al. (2012) reported that, 

following anodal stimulation over the primary motor cortex, functional connectivity 

patterns significantly increased within the premotor, motor, and sensory motor areas 

of the stimulated hemisphere during motor activity. Notturno et al. (2013) 

investigated the effects of cathodal and anodal tDCS on the electric activity of 

primary motor cortex during a finger-tapping task. They found an increment of low 

alpha ERD in bilateral central, frontal areas and in the left inferior parietal region, as 

well as an increment of beta ERD in fronto-central and parieto-occipital regions, 

after anodal stimulation compared to sham and cathodal stimulations. Finally, beta 

band coherence among signals from left sensorimotor cortex and activity of bilateral 

parietal, occipital and right frontal regions was higher after anodal stimulation 

compared with sham condition. Similarly, theta coherence with parietal and frontal 
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regions was enhanced after anodal stimulation. Electrophysiological changes were 

also observed following stimulation over non motor area. Antal et al. (2004) applied 

anodal and cathodal tDCS (1mA, 35 𝑐𝑚2 electrode, 10 minutes) over Oz. They 

recorded the EEG activity during the presentation of visual stimuli and found a 

decrease of the power in the beta and gamma frequency bands after cathodal 

stimulation, whereas no changes were observed after anodal stimulation. In a second 

study, Antal et al. (2004b) studied if tDCS applied over the occipital cortex, is also 

able to affect visual-evoked potentials (VEPs). They found reversible excitability 

changes on the amplitude of the N70 and P100 component in a polarity-specific and 

time-specific way. On a working memory task, Keeser et al. (2011b) showed that 20 

minutes of anodal stimulation (2 mA) over the left dorsolateral prefrontal cortex 

significantly reduced left frontal delta activity. Further, Zaehle et al. (2011) 

stimulated the left dorsolateral prefrontal cortex during a working memory task and 

reported a significant reduction of power in the delta band after anodal stimulation. 

At least Zaehle et al. (2011b) applied tDCS over the left temporal as well as the left 

temporo-parietal cortex and investigated tDCS-induced effects on auditory evoked 

potentials after anodal, cathodal, and sham stimulation. They found that anodal tDCS 

over the temporal cortex increased auditory P50 amplitudes, cathodal tDCS over the 

temporo-parietal cortex induced larger N1 amplitudes.  

Changes on ongoing oscillatory brain activity subsequent to tDCS have been 

investigated also during rest in few studies (Ardolino et al. 2005; Spitoni et al. 2013; 

Zaehle et al. 2011b). Brain activity at rest constitutes an index of the internal state of 

the brain in the absence of an external input or motor output. Spitoni et al. studied the 

effect of tDCS on postero-parietal cortex in the resting state, finding that anodal 

stimulation alters ongoing brain activity, specifically in the alpha band rhythm. 

Ulam et al. (2014) investigated in a randomized, double-blind design, cumulative 

effects of anodal tDCS on EEG oscillations and neuropsychological tests among 

patients with (TBI) undergoing subacute neurorehabilitation. Twenty-six patients 

were randomly assigned to active (n = 13) or sham (n = 13) tDCS groups. EEGs 

were recorded at 6 different time points, assessing both immediate and cumulative 

effects of tDCS on EEG oscillations. Twenty minute sessions of 1 mA anodal 

stimulation to the left dorsolateral prefrontal cortex (F3, cathode placed at right 

supraorbital site, Fp2), were provided on 10 consecutive days. Neuropsychological 

tests were administered before and after the series of tDCS sessions. 
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The results showed that theta was significantly reduced for active tDCS patients 

following the first tDCS session. Delta decreased and alpha increased, both 

significantly, for the active tDCS group after 10 consecutive tDCS sessions. No 

significant changes were seen for sham group. Decreases in delta were significantly 

correlated with improved performance on neuropsychological tests for the active 

tDCS group to far greater degree than for the sham group. Participants in the active 

tDCS group who had excess slow EEG activity in their 

initial recordings showed greater improvement on neuropsychological tests than 

other groups. 

Results suggest that 10 anodal tDCS sessions may beneficially modulate regulation 

of cortical 

excitability for patients with TBI.  EEG-guided tDCS warrants further investigation 

as a potential intervention for TBI during subacute neurorehabilitation. 

10.2.2 Online approach 

The aforementioned studies mostly focused on the “offline” method for studying the 

effects of tDCS on EEG, while we think that the “online” approach should be the 

optimal candidate for combined tDCS-EEG investigations. Indeed, i) online 

approaches can yield information regarding the effects that are directly induced by 

tDCS, thus providing valuable information on the mechanisms of action of tDCS 

(this is particularly important in order to fully understand and exploit the potential of 

tDCS when used as a modulatory tool together with concomitant behavioral 

conditioning strategies (i.e. biofeedback) (Bolognini et al 2011; Wirth et al 2011); ii) 

EEG findings during tDCS can be interpreted as surrogate marker for the effects of 

tDCS and thus can be used to optimize the tDCS parameters in the context of a given 

application; iii) online approaches could also be envisioned to be used for preventive 

treatment of neurological conditions characterized by abnormal peaks of cortical 

excitability, such as seizures (Faria et al. 2012; Schestatsky et al. 2013). The study of 

Soekadar et al. (2014) used the online approach to understand if learned EEG-based 

brain-machine interface control during tDCS is feasible. They recorded the learned 

desynchronization of mu-rhythms (8–15Hz) associated with motor imagery over C4 

during the application of anodal stimulation in a site of stimulation placed 1 cm 

anterior to C4. They found a significant power increase in the lower frequencies 

mostly evident in the signal spectrum of the EEG channel closest to the stimulation 

electrode. 
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Accornero et al. (2007) assessed VEP-P100 latencies and amplitudes in response to 

pattern-reversal checkerboard stimuli before, during, and after polarization. Anodal 

polarization reduced VEP-P100 amplitude whereas cathodal polarization 

significantly increased amplitude but both polarities left latency statistically 

unchanged. These changes persisted for some minutes after polarization ended 

depending on the duration of tDCS and on the contrast level of visual stimuli. tDCS-

induced changes in VEPs seem to depend on the duration of polarization and type of 

visual stimuli used. The effects induced on visual cortical neurons during 

polarization are more consistent than the after effects. In a further study, Accornero 

et al. (2014) evaluated EEG mean frequency changes induced by prefrontal 

transcranial direct current stimulation (tDCS) and investigated whether they 

depended on tDCS electrode montage. Eight healthy subjects underwent tDCS for 15 

minutes during EEG recording. They completed six tDCS sessions, one week apart, 

testing left and right direct current (DC) dipole directions with six different 

montages: four unipolar montages (one electrode on a prefrontal area, the other on 

the opposite wrist) and two bipolar montages (both electrodes on prefrontal areas), 

and a single sham session. EEG power spectra were assessed from four one-minute 

EEG epochs, before, during and after tDCS. During tDCS the outcome variable, the 

EEG mean frequency, changed significantly, and the changes persisted for minutes 

after tDCS ended. With the DC dipole directed to the left (anode on the left 

prefrontal area or wrist) increased, with the DC dipole directed to the right (anode on 

the right prefrontal area or wrist) the mean frequency decreased, suggesting 

asymmetric prefrontal cortex functional organization in the normal human brain. 

Anodal and cathodal effects were opposite but equally large. 

Song et al. (2014) )performed simultaneous electroencephalogram (EEG) monitoring 

during tDCS on 10 healthy individuals. They recorded EEGs with direct current 

stimulation, as well as during a 5-min resting state before and after the stimulation. 

All participants kept their eyes closed during the experiment. Anode and cathode 

patches of tDCS were placed on the left and the right dorsolateral prefrontal cortex, 

respectively. In addition, an EEG electrode was placed on the medial prefrontal 

cortex. The beta frequency power increased promptly after starting the stimulation. 

The significant beta-power increase was maintained during the stimulation. Other 

frequency bands did not show any significant changes. The results indicate that tDCS 
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of the left dorsolateral prefrontal cortex changed the brain to a ready state for 

efficient cognitive functioning by increasing the beta-frequency power. 

Roy et al. used a combination of Transcranial Magnetic Stimulation (TMS) and 

Electroencephalography (EEG) in order to explore local and global cortical 

excitability modulation during and after active and sham tDCS. Single pulse TMS 

was delivered over the left posterior parietal cortex (PPC), before, during, and after 

15 min of tDCS over the right PPC, while EEG was recorded from 60 channels. 

For each session, indexes of global and local cerebral excitability were obtained, 

computed as global and local mean field power (Global Mean Field Power, GMFP 

and Local Mean Field Power, LMFP) on mean TMS-evoked potentials (TEPs) for 

three temporal windows: 0e50, 50e100, and 100e150 msec. The global index was 

computed on all 60 channels. The local indexes were computed in six clusters of 

electrodes: left and right in frontal, parietal and temporal regions. GMFP increased, 

compared to baseline, both during and after active tDCS in the 0 e100 msec temporal 

window. LMFP increased after the end of stimulation in parietal and frontal clusters 

bilaterally, while no difference was found in the temporal clusters. 

In sum, a diffuse rise of cortical excitability occurred, both during and after active 

tDCS. 

This evidence highlights the spreading of the effects of anodal tDCS over remote 

cortical regions of stimulated and contralateral hemispheres. 

This evidence foster the application of this technique in rehabilitation settings (e.g., 

Brunoni et al., 2011), based on results showing that tDCS may induce not only on-

line effects on spontaneous neuronal activity, but also long-lasting after-effects likely 

mediated by mechanisms of synaptic long-term potentiation and depression (i.e., 

LTP and Long-term Depression, LTD, respectively), which affect neuroplasticity 

(Liebetanz, Nitsche, Tergau, & Paulus, 2002; Nitsche, Fricke et al., 2003, 2008; 

Stagg et al., 2009). 
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Chapter 11 

Case of study 

Transcranial Direct Current Stimulation 

and Power Spectral Parameters: a 

tDCS/EEG co-registration study 

 

 

11.1 Intoduction 

We present here a preliminary study aiming i) to investigate the effects of tDCS on 

spontaneous cortical activity at rest and ii) to differentiate between ongoing 

modifications and aftereffect modifications. To this end, we measured the 

modulation of spontaneous EEG during and after a session of anodal tDCS 

stimulation of the postero-parietal cortex. We decided to focus the study solely on 

the anodal stimulation (and sham control), excluding the cathodal stimulation, since 

Spitoni et al. (2013) did not found significant EEG modifications after cathodal 

tDCS. Moreover, we decided to focus on the tDCS over posterior parietal cortex 

since several studies demonstrated the utility of tDCS in the rehabilitation of the 

visual functions in both healthy subjects and patients with lesions on the parietal 

cortex, while a few studies (Spitoni et al. 2013) investigated the ongoing 

electrophysiological effects of the stimulation.  
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We also aimed to determine the beginning and the duration of the alterations induced 

by the stimulation. Several studies demonstrated that the effects of tDCS were 

stronger in the first 5 minutes after the stimulation and persisted for about 20 minutes 

(Keeser et al. 2011b; Antal et al. 2010). Therefore, we studied the effects of the 

stimulation over EEG power spectral parameters, specifically in theta, alpha, beta 

and gamma bands, through a statistical analysis of variance, with the aim to 

determine: 1) the bands showing a change in their power, 2) the duration of the 

effects, and 3) their localization. 

11.2 Materials and Methods 

11.2.1 Subjects 

Ten healthy subjects (seven male) participated in the study. They ranged in age from 

23 to 51 years. The inclusion criteria were (1) no history of neurological or 

psychiatric disorder, (2) no history of substance abuse or dependence, and (3) no use 

of medication affecting the central nervous system. All participants provided written 

consent for the experiment participation. The study conformed to the Declaration of 

Helsinki and was approved by the local ethics committee. 

11.2.2 tDCS Stimulation 

We used the same protocol of Brunoni at al. (2012) and Spitoni et al. (2013). The 

Spitoni protocol aimed to investigate the electrophysiological changes that are 

induced through anodal and cathodal tDCS over posterior parietal areas during the 

resting state. A direct of 1.5 mA (during the stimulation the impedance value was 

maintained in a range of 4-6 kOhm), induced through two saline-soaked surface 

sponge electrodes (7 x 4.5 cm), was delivered using a battery driven, constant-current 

stimulator (neuroConn GmbH, Ehrenbergstr, Ilmenau, Germany). To avoid 

confounding biases that could have arisen from two electrodes with opposite 

polarities over the scalp, we used an extra-cephalic reference electrode for tDCS. The 

active electrode, the anode, was placed over the right posterior parietal cortex and the 

reference electrode, the cathode, was placed over the ipsilateral deltoid muscle. The 

location of the active electrode was determined according to the 10-20 EEG standard 

montage, placing the electrode over P4, as suggested in previous studies (Spitoni et 

al 2013). In the stimulation session, the current was ramped up from 0 to 1.5 mA in 

30 s. Fifteen minutes after onset, the current was ramped down  back to 0 in 30 s. 

Sham stimulation was used as control in the experiment, in order to isolate the effects 
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solely due to the current stimulation and not due to the placebo and somatosensory 

effects that could arise from tDCS application. During the sham condition the 

electrodes were located in the same positions as in the anodal stimulation, but the 

current was supplied only for the first 43 s (8 s ramp up, 30 s of DC stimulation and 

5 s ramp down). This procedure ensured that the subjects felt the tingling sensation at 

the beginning of the stimulation. 

11.2.3 Protocol 

The subjects seated in a quiet room and were asked verbally every 2 minutes to open 

or close their eyes, thus allowing us to conduct the subsequent analyses for two 

different behavioral conditions, the Eyes Open condition (EO) and the Eyes Closed 

condition (EC). During EO intervals, the subjects were instructed to fix a point in 

front of them and not to move their eyes. The participants did not know whether 

anodal tDCS or sham stimulation was delivered.  

The protocol consists in a Baseline session (B), a Sham session (SS) and an Anodal 

session (AS) executed in sequence, as shown in Figure 15. The Sham session and the 

Anodal session consisted each in a Stimulation and Recording Session (SS and AS, 

respectively) and in a Post recording session (PSS and PAS, respectively). It was 

decided to have the Sham session always preceding the Anodal session, in order to 

avoid the possible effects of the Anodal stimulation on the Sham session recordings. 

Indeed, given a choice to be made, we a priori hypothesized the effects due to the 

Anodal stimulation  being equally or more relevant than the effects induced by Sham 

stimulation.  

In order to further control for the placebo/somatosensory effects due to the 

stimulation, we administered a side effects questionnaire to the subjects to 

investigate if they perceived differently during the Anodal and the Sham 

stimulations. 
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Figure 14: Experimental protocol. The protocol consists in a Baseline session (B),a Sham session 

(SS) and an Anodal session (AS) executed in sequence. 

11.2.4 EEG recording and preprocessing 

EEG was recorded from 18 electrodes (Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, P3, 

Pz, T3, T4, T5, T6, O1, and O2) positioned according to the international 10-20 

layout using a Neurowave System (Khymeia, Italy). The EEG electrode over the 

stimulated area (P4) was removed from the registration cap to allow for the 

positioning of the stimulation electrode. EEG signals, referenced to linked ear lobes, 

were sampled at 512 samples/s, preliminarily band-pass filtered between 3 Hz and 60 

Hz (through an high pass IIR filter (2nd order) and a low pass IIR filter (7th order) 

filters. An additional stopband IIR filter at 50 Hz (7th order) was applied. Trial 

datasets underwent 1) manual identification and rejection of artefactual segments; 2) 

decomposition in 2–seconds long segments; 3) detrend of the signal of the segments 

by removing the mean and the linear trends in each 2-second segment (Muthuswamy 

et al 1998); 4) Power spectral density (PSD) estimation for each 2-seconds segment 

(without overlap) through a modified periodogram method based on FFT-algorithm 

and Blackman Harris window. PSDs for each interval of interest (e.g. experimental 

sessions) were obtained by averaging the PSDs of the related 2-seconds segments. 

Power values were extracted from the calculated PSDs in four frequency bands: theta 

(4-8 Hz), alpha (8-13 Hz), beta (13-25 Hz) and gamma (25-40 Hz).  

In order to compare the data of all subjects, we performed an intra-subject 

normalization, by dividing the powers of each band, each electrode and each session 

(B, SS, PSS, AS and PAS) by the correspondent power during the B session.  

 

http://www.sciencedirect.com/science/article/pii/S016502709800065X
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11.2.5 Statistical Analysis 

Effects of Stimulation 

We preliminarily tested for the normality of the power data distribution through a 

Kolmogorov–Smirnov test (Massey et al. 1951). We found a normal distribution of 

the data, justifying the subsequent use of ANOVA analyses. 

A one-way ANOVA analysis on five levels (B, SS, PSS, AS, and PAS) was 

performed for each band and for each electrode, using the data of all subjects, 

separately for the EO and the EC conditions. This analysis allowed us to test the 

hypothesis stating that there is a significant effect due to the stimulation conditions, 

against the general alternative that there is no significant effect. Since we were also 

interested in which pairs of conditions were significantly different, multiple 

comparison post-hoc tests were also conducted, in cases where the ANOVA found a 

significant effect. We choose a significance level p=0.01 % and we used the 

Bonferroni correction for multiple comparisons (Benjamini et al. 2001).  

The correction factor was computed considering each electrode independent from the 

other. Then this factor is given by the number of levels in the ANOVA analysis and 

repetitionsIn fact, for each electrode, we carried out the ANOVA test four times, one 

for each power band that we considered (theta, alpha, beta and gamma). Then, the 

correction factor is 20 (5 levels × 4 bands). In order to further reorganize and 

interpret the results, we considered: i) the effects of tDCS during the SS and PSS 

sessions (SHAM effects) as being significant only if SS and PSS power values were 

significantly different from B and  ii) the effects of tDCS during the AS and PAS 

sessions (STIMULATION effects) as being significant only if AS and PAS power 

values were significantly different from B, SS, and PSS simultaneously. 

Effects Over Time 

In order to investigate the effects over time of tDCS, the AS and PAS periods were 

divided into 2 minutes segments. For the EO condition we obtained four segments 

for AS (AS1 (1-2 min), AS2 (5-6 min), AS3 (9-10 min) and AS4 (13-14 min)), and 

three segments for PAS (PAS1 (1-2 min), PAS2 (5-6 min), PAS3 (9-10 min)). For 

the EC condition we obtained three segments for AS (AS1 (3-4 min), AS2 (7-8 min), 

AS3 (11-12 min)), and three segments for PAS (PAS1 (3-4 min), PAS2 (7-8 min), 

PAS3 (11-12 min)). 

Moreover, the effects of tDCS over time were analyzed by one way ANOVA 

analysis with ten levels for the EO condition and one way ANOVA analysis with 

http://www.wikipedia.org/wiki/Normal_distribution
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nine levels for the EC condition, with subsequent multiple comparison tests. For the 

EO condition, the levels of the analysis were: B, SS, PSS, AS1, AS2, AS3, AS4, 

PAS1, PAS2 and PAS3. For the EC condition, the levels of the analysis were: B, SS, 

PSS, AS1, AS2, AS3, PAS1, PAS2 and PAS3. As for the analysis conducted to 

evaluate the stimulation effects, we choose a significance level p=0.01 % and we 

used the Bonferroni corrections for the multiple comparison tests (Benjamini et al. 

2001). In this case, the correction factor is 40 (10 levels × 4 bands) in eyes open 

condition and 36 (9 levels × 4 bands) in eyes open condition. 

11.2.6 Side Effects Questionnaire  

After the experiment, we administered a side effects questionnaire to each subject to 

evaluate if there were differences in their physical perception of the tDCS. If there 

were no differences between these two conditions of stimulation we could exclude 

that the tDCS effects over the EEG rhythm were due to the marked physical 

sensations associated with the anodal stimulation. The questionnaire consists in 

eleven questions about: tingling, itching sensation, burning sensation, pain, 

headache, fatigue, difficulty in concentrating, nervousness, visual perceptual 

changes, discomforting sensations, visual sensation associated with the start/end of 

the stimulation (Poreisz et al. 2007). The severities of the side effects were rated in a 

numerical discrete scale from one to five, one being very mild and five being 

extremely strong intensity of any given side-effect. To determine the statistical 

significance of each effect, these were analyzed with an independent samples Mann-

Whitney U test between the anodal and the sham conditions. We used the Mann–

Whitney U test because the data distribution is not Gaussian. For each side effect, we 

computed the p-value and used a significance level p=0.01. 

11.2.7 Software Tools 

MATLAB language and toolboxes were used for data processing and analysis (The 

Mathworks, US). In particular, we used the Signal Processing Toolbox to preprocess 

the recorded data and the Statistics Toolbox for statistical analysis. 

11.3 Results 

11.3.1 Statistical Analysis 

Effects Of Stimulation 

We analyzed the significance of each electrode-band couple for the different 

stimulation conditions as detailed in the Methods.  
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We did not found any significant SHAM effect. The results reported below and in the 

next sessions refer only to the STIMULATION effects. 

Considering the EO condition, we did not found any significant effect. Considering 

the EC condition, we found: i) a significant effect in theta band during AS for the 

electrodes F4, C4, O2, T4, T6, Cz and Pz; ii) a significant effect in alpha band during 

AS for the electrodes C4, T6, Cz and Pz; iii) a significant effect in alpha band during 

PAS for the electrodes Fp2, O2, F8, T4, T6, Fp1, F3, C3, P3, O1, T5 and Fz; iiii) a 

significant effect in beta band during AS for the electrodes P3, O1, T3, T5, Cz and 

Pz; iiiii) a significant effect in beta band during PAS for the electrodes C3, P3, O1, 

T3, T5 and Fz. 

Figure 16 and Figure 17 show an example of the Power Spectral Density for the 

electrode O2 in the five experimental conditions (B, SS, PSS, AS, PAS), respectively 

for the EO and EC conditions. 

 

 

 

 

Figure 15: EEG power spectral density of B, SS, PSS, AS, and PAS (EO condition) for electrode 

O2 (mean of all subjects). Even if there are no significant effects considering the whole session 

duration, there is a significant peak increment in theta and alpha bands during stimulation. These 

effects are significant in the analysis of time effects. 
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Figure 16: EEG power spectral density of B, SS, PSS, AS, and PAS (EC condition) for electrode 

O2 (mean of all subjects). The figure shows the increase in alpha band after stimulation. 

Effects Over Time 

As previously described, we examined the effects of tDCS during 15 minutes of 

stimulation and for additional 12 minutes after the stimulation. In order to monitor 

the effects of stimulation in detail, the AS and PAS were divided into a certain 

number of epochs, of two minutes each. In Table 7 and Table 8 we report the 

electrode-band couples with a significant activation during and after the stimulation, 

respectively in the EO and EC conditions. In Figure 18 we show the trend of the 

power in the four analyzed bands for the electrode O1 in the EC condition. 

Table 7: Electrode-band couples with a significant activation during and after anodal tDCS. The 

table reports the activation pattern in the EO condition. 

EYES OPEN 

 AS1 AS2 AS3 AS4 PAS1 PAS2 PAS3 

Theta / 

Fp2 Fp1 C4 

O2 F8 F3 
F7 Fz Cz 

Pz 

/ / / Fp2 Fp1 Fp2 Fp1 

Alpha / 
F4 C4 O2 
Pz 

C3 P3 / / / / 

Beta / / / / / / / 

Gamma / / / / / / / 

 

Table 8: Electrode-band couples with a significant activation during and after anodal tDCS. The 

table reports the activation pattern in the EC condition. 

EYES CLOSED 

 AS1 AS2 AS3 PAS1 PAS2 PAS3 

Theta T4 Cz C4 F4 C4 Fz Pz T4 Fp2 T4 Fp1 Fz Fp1 F3 Fz  

Alpha 
O2 C3 P3 O1 

T5 Cz 

C4 O2 P3 O1 

Cz Pz 

C4 O2 C3 P3 

O1 Pz 

O2 Fp1 F3 C3  

P3 O1 T5 Fz 
Pz 

O2 Fp1 F3 C3 

P3 O1 T5 Fz 
Pz 

O2 F3 C3 P3 

O1 T5 Fz 

Beta O1 P3 Cz O1 P3 C3 Cz O1 P3 C3 Pz O1 P3 C3 O1 P3 C3  C3 P3 

Gamma / / / / / / 
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Figure 17: The effectsofstimulationovertimeforelectrodeO1inthe EC condition. Alpha and beta 

powers increase significantly (*p < 0.01) during the first minutes of stimulation and the effects persist 

for at least 12 min after the end of stimulation in the alpha band and for 6 min in the beta band. 

The Tables S6, S7, S8 and S9 (Supplementary file) show the p-value, the F-value and 

the significance of each couple band-electrode in EO and EC for stimulation-effects 

and the time-effects respectively.  

11.3.2 Side Effects Questionnaire  

The results of the Mann-Whitney U test showed that none of the eleven considered 

side effects shows a significant difference between the two conditions of sham and 

anodal stimulation. Therefore, we can exclude that the effects over the EEG rhythm 

are due to the physical perception of the stimulation. 

11.4 Discussion 

11.4.1 Statistical Analysis 

Effects of Stimulation 

The mechanism underlying the neuromodulatory effects induced by tDCS is a very 

hot topic and numerous studies are trying to better understand this phenomenon. 

Several studies, using animal models, have suggested that neurons respond to 

membrane polarization changes induced by tDCS (Liebetanz et al. 2002), thereby 

leading to a reduction in spontaneous neuronal firing rates after cathodal tDCS and 

an opposite effect after anodal stimulation. Accordingly, the first study performed on 

the motor cortex showed that cathodal polarization induced robust inhibition of 

motor cortex excitability, whereas anodal polarization increased motor cortex 

excitability (Nitsche et al. 2000). In the light of these findings, we expected in our 
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study a decrease of theta and alpha powers associated with cortical deactivation, and 

an increase of beta and gamma powers associated with cortical activation. On the 

contrary, the main findings are the increase of theta power during the stimulation and 

the increase of alpha and beta powers during and after the stimulation in the EC 

condition. In the EO condition we did not found any effect. This finding can be 

explained because the tDCS perturbs the equilibrium on both excitatory and 

inhibitory neurons inducing an increase of the activity in theta band in the first 

minutes of the stimulation and in alpha and beta bands during and after the 

stimulation. The increase in alpha band after the anodal stimulation confirms the 

results of Spitoni et al. (2013).  

Effects Over Time  

The effect of tDCS over time is a critical issue, because the aftereffect of the 

stimulation might last minutes to hours, depending on the intensity and the duration 

of the stimulation. Antal et al. (2010) found that, at equal intensity and duration, the 

effects of stimulation lasted longer on motor cortex than posterior cortex. We 

observed significant effects both during and after the stimulation. In particular, in the 

EO condition the effect is predominant during AS2 in theta and alpha bands, while in 

the EC condition it is present during the whole stimulation and the whole interval 

after the stimulation. In particular, theta power had a significant activation in the 

centro-parietal regions during the stimulation and a propagation in the frontal region 

after the stimulation. In the EO condition, a significant activation was found mainly 

in the frontal region. These results are consistent with the spontaneous flow of 

information between sources of brain activity of the theta band. Indeed, Michels et 

al. (2013) found that, in resting state condition, there is an information flow 

involving both parietal and frontal region in EC condition, and only frontal region in 

the EO condition. 

Alpha power increases significantly during and after the stimulation. The effects 

persist for all the 12 minutes after the stimulation and we did not observe a decline of 

these effects. Alpha amplitude modulation is not observed only in posterior areas but 

also in frontal regions. Several studies demonstrated that tDCS increases the 

coherence of the cerebral rhythm and the interaction between inter and intra cerebral 

cortexes (Keeser et al. 2011a, Hampstead et al. 2013). Polania et al. (2012) 

demonstrated that tDCS applied over the primary motor cortex produces 

modifications in the EEG synchronization and in the functional organization in 
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healthy subjects. Furthermore, they demonstrated the presence of coherence 

modification in all frequency bands (theta, alpha, beta and gamma).  

We found an increase of beta band during and after the stimulation for three 

electrodes positioned in the contro-lateral site with respect to the site of stimulation.  

We did not found significant effects in the gamma band. 

Comparison between the EC and the EO responsiveness to tDCS Stimulation 

We found evident differences between the EO and the EC conditions (EOC, ECC) in 

terms of responsiveness to tDCS, with the EEG power parameters much more 

sensitive to the tDCS stimulation in the ECC than in the EOC. Several studies 

investigated the difference of the EEG signal properties between the ECC and the 

EOC in resting state: in particular, the study of Barry et al. (2007) showed that: i) the 

signal power in the EOC is lower than in the ECC for the delta, theta, alpha; ii) a 

reduction of lateral frontal delta, a reduction of posterior theta, a reduction of right-

posterior beta, and an increment of the left-frontal beta are present in the EOC 

compared to the ECC; iii) no significant topographic differences were evident for the 

power in the  alpha band between the two conditions. The results cited above allow 

us to interpret our results in terms of different processing capability of the brain in 

the two conditions. In particular, the brain is much more stimulated in the EOC than 

in the ECC: the lower powers in delta, theta and alpha bands in the EOC reported by 

Barry et Al. are clearly related to a lower involvement of cortico-thalamic (idling) 

dynamics, and (possibly) to a higher involvement of intra-cortical (processing) 

dynamics; the higher value of frontal beta power in the EOC further confirms such 

interpretation key. Given the premises above, the higher responsiveness to tDCS in 

the ECC could be interpreted, in general terms, as the consequence of a higher 

processing capability to the external tDCS stimuli available in the ECC than in the 

EOC. 

Comparing the results of the studies interested in EEG modifications induced by 

tDCS in resting state conditions, we found that the stimulation of the posterior cortex 

generates, as its most clear results, modifications of the alpha power (our results and 

Spitoni et al. 2013). Such result is not surprising since it is well known from the 

literature that the alpha rhythm is mainly generated in the posterior cortex and that 

posterior cortexes resonate to external stimulations in the alpha band. (Omata et al. 

2013, Sadato et al. 1998, Laufs et al. 2003, Tyvaert et al. 2008).  Several other 

studies showed that stimulating other areas would produce power changes in 



152 

 

different bands, e.g., the stimulation of the prefrontal cortex induced a significant 

decrease in frontal delta power (Ardolino et al. 2005, Keeser et al. 2011b) and a 

significant increase in frontal beta power (Keeser et al. 2011b) in resting state 

condition. 

It is evident that the significant effects found are not easy to interpret. Even taking 

into account the simplest interpretation of EEG rhythms, stating that power in delta, 

theta and alpha bands are positively correlated with cortical idling and power in 

beta and gamma bands are positively correlated with cortical processing (Barry et 

al. 2007, Basar et al. 2001), the effects found need to be further investigated with 

more complex interpretative tools. Future investigations on the results of combined 

tDCS–EEG experiments could benefit from the interpretative power of neural mass 

models. Neural mass models have been so far successfully used in order to interpret 

EEG power modifications as dynamic modifications of functional connectivity of 

cortical  networks during sleep rhythms (Cona et al., 2014), due to cognitive and 

motor tasks (Cona et al. 2009), and, intriguingly, due to dynamic perturbation of 

brain networks with TMS (Transcranic Magnetic Stimulation) (Cona et al. 2011), the 

latter being a companion technology of tDCS. 

11.5 Conclusions  

In this study, we investigated the ongoing and aftereffects of anodal tDCS applied 

over postero-parietal cortex, in a resting brain. We compared the power spectral 

parameters obtained from a sham condition (during and post) and a real condition 

(during and post) of stimulation. We found that the main effect regards the theta, 

alpha and beta bands. This effect begins with the start of the stimulation and lasts at 

least for 12 minutes after the end of the stimulation. We confirmed the results of the 

study by Spitoni, the only one that studied the effects of tDCS over parietal cortex in 

resting state, and, in addition, we investigated the effects during the stimulation. 

Possible future developments, aimed to reach a wider interpretation of the results 

found, were suggested.  
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Chapter 12 

Case of study 

Transcranial direct current stimulation 

and Steady state visual evoked potential 

 

 

12.1 Introduction 

The aim of this study was to evaluate if tDCS-elicited visual cortical excitability 

shifts are accompanied by a similar change of oscillatory activity. In particular, they 

are interested in the effects of tDCS on the SSVEP.  

The first aim of the study was to realize a system able to generate and to record the 

SSVEP; the second one was to study this potential before and after the electrical 

simulation. 

The study of the effects of the tDCS on the SSVEP allows: 

 to understand better the neuro-physiological mechanism and its modification 

due to the stimulation 

 to search the best stimulation parameters to obtain SSVEPs as much as 

possible discriminable and to improve the performance of a BCI system 

SSVEP-based. 
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12.2 Methods 

12.2.1 Subjects 

Six healthy subjects took part in the study (age between 21 and 51; 4 men). 

12.2.2 Visual Stimuli 

The experiment consists in the visualization of three squares (three red squares or 

three yellow squares) in a black screen. The three squares flicker simultaneously at 

three different frequencies: 12 Hz, 15 Hz and 20 Hz. The software allows to 

configure the following parameters: 

 Target indication: Time (in seconds) between the appearance of the arrow 

marking the square to stimulate and the beginning of the flickering:1 

 Visual Stimulation: Duration (in seconds) of the stimulation period: 7 

 Rest: Duration (in seconds) of the break period:4 

We defined trial the repetition of 15 sequences (5 repetition x 3 frequencies) of these 

three operations. In each session, one trial was repeated 4 times alternating the colour 

of the visual stimuli (Red-Yellow-RedYellow). 

12.2.3 tDCS 

A direct of 1.5 mA (during the stimulation the impedance value was maintained in a 

range of 4-6 kOhm), induced through two saline-soaked surface sponge electrodes (7 

x 4.5 cm), was delivered using a battery driven, constant-current stimulator 

(neuroConn GmbH, Ehrenbergstr, Ilmenau, Germany)., we used an extra-cephalic 

reference electrode for tDCS to avoid confounding biases that could have arisen from 

two electrodes with opposite polarities over the scalp. The active electrode, the 

anode, was placed over the occipital cortex and the reference electrode, the cathode, 

was placed over the ipsilateral deltoid muscle. The location of the active electrode 

was determined according to the 10-20 EEG standard montage, placing the electrode 

over Oz, as suggested in previous studies (Antal et al 2004, Accornero et al. 2007). 

In the stimulation session, the current was ramped up from 0 to 1.5 mA in 30 s. 

Fifteen minutes after onset, the current was ramped down back to 0 in 30 s. Sham 

stimulation was used to control in the experiment, in order to isolate the effects 

solely due to the current stimulation and not due to the placebo and somatosensory 

effects that could arise from tDCS application. During the sham condition the 

electrodes were located in the same position as they were in the anodal stimulation, 

but the current was supplied only for the first 43 s (8 s ramp up, 30 s of DC 
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stimulation and 5 s ramp down). This procedure ensured that the subjects felt the 

tingling sensation at the beginning of the stimulation. 

12.2.4 SSVEP recording  

Electroencephalography was recorded from 2 bipolar channels (O1-PO7 and O2-

PO8) positioned according to the international 10–20 layout using a Neurowave 

System (Khymeia, Italy). EEG signals were sampled at 128 samples/s. 

PROTOCOL 

The protocol consists of the following sessions (Figure 19): 

1. SSVEP recording (4 trail repetition) baseline 

2. Sham stimulation  

3. SSVEP recording (4 trail repetition) post Sham 

4. Anodal stimulation 

5. SSVEP recording (4 trail repetition) post Anodal 

 

Figure 19: Experimental Protocol 

12.2.5 Signal Processing 

EEG signals were preliminary band-pass filtered between 3 and 60 Hz. An additional 

stop-band filter at 50 Hz was applied. The signal epochs corresponding to the 

effective 7 seconds of stimulation were extracted. At least, the signal was divided 

into 4 classes: 

- stimulation at 12 Hz 

- stimulation at 15 Hz 

- stimulation at 20 Hz 

- rest 
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For each class (12 Hz-15Hz-20Hz-rest), each color (red-yellow) and each session 

(baseline-sham-anodal), there are 10 EEG segments. The segments belonging from 

the three stimulation classes was 7-s long, the segments belonging from the rest class 

was 4-s long. 

Power spectral density (PSD) was estimated for each 7-s or 4-s segment through a 

modified periodogram method based on FFT-algorithm and Blackman Harris 

window. 

In order to compare the results of all the subjects, for each subject, all the stimulation 

PSD were normalized compared to the Rest PSD of the own baseline session. 

The powers in the range of the interesting frequency, the frequency of stimulation, 

were extracted. In particular, the powers were extracted in the ranges 12Hz, 15 Hz 

and 20 Hz ± 0,5714. These powers are the features that we will use in the statistical 

analysis. 

12.2.7 Statistical Analysis 

The powers in the range of the frequency of interest will be used in the statistical 

analysis. Three effects will be studied: stimulation effect, frequency effect and color 

effect. 

Stimulation Effects 

A one-way ANOVA analysis on three levels (Baseline, Sham and Anodal) was 

performed for each frequency and for each color, using the data of all subjects. This 

analysis allowed us to test the hypothesis stating that there is a significant effect due 

to the stimulation conditions, against the general alternative where there is no 

significant effect. Since we were also interested in which pairs of conditions were 

significantly different, multiple comparison post-hoc tests were also conducted, in 

cases where the ANOVA found a significant effect. We choose a significance level 

p=0.05 %. 

Frequency Effects 

A one-way ANOVA analysis on three levels (12 Hz, 15 Hz and 20 Hz) was 

performed for each color and for each stimulation condition, using the data of all 

subjects. This analysis allowed us to test the hypothesis stating that there is a 

significant effect due to the frequency, against the general alternative where there is 

no significant effect. Since we were also interested in which pairs of conditions were 

significantly different, multiple comparison post-hoc tests were also conducted, in 
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cases where the ANOVA found a significant effect. We choose a significance level 

p=0.05 %. 

Color Effects 

A one-way ANOVA analysis on two levels (red and yellow) was performed for each 

frequency and for each stimulation condition, using the data of all subjects. This 

analysis allowed us to test the hypothesis stating that there is a significant effect due 

to the color, against the general alternative that there is no significant effect. 

12.3 Results 

12.3.1 Explorative Analysis 

The explorative analysis of the frequency-domain signal shows the presence of the 

peak corresponding to the stimulation frequency (i.e. 15 Hz in the example of Figure 

20). The second and third harmonics (30 Hz and 45 Hz) are also visible in the figure. 

 

Figure 20: Example of the PSD in the three condition, Baseline, Sham and Anodal stimulation (15 Hz 

stimulation). 

12.3.2 Statistical Analysis 

Stimulation Effects 

We analyzed the significance of each frequency and each color for the different 

stimulation conditions as detailed in the “Materials and Methods” (see Table 9). 

We found the following results: 

 Hz-red: no significance was found; 
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 15 Hz-red: no significance was found between the two baseline conditions 

and sham, significant difference was found between baseline and anodal and 

baseline and sham. In power decreased in anodal condition. 

 20 Hz –red: no significance was found between baseline and sham condition 

and sham and anodal condition. The anodal condition was significantly 

different from the baseline condition. In power decreased in anodal condition. 

 Hz-yellow: no significance was found between the two baseline conditions 

and sham, significant difference was found between baseline and anodal and 

baseline and sham. In power decreased in anodal condition. In power 

decreased in anodal condition. 

 Hz-yellow: no significance was found between the two baseline conditions 

and sham, significant difference was found between baseline and anodal and 

baseline and sham. In power decreased in anodal condition. In power 

decreased in anodal condition. 

 20 Hz-yellow: no significance was found between the two baseline conditions 

and sham, significant difference was found between baseline and anodal and 

baseline and sham. In power decreased in anodal condition. In power 

decreased in anodal condition. 

Table 9: Statistical Analysis results; Stimulation Effects. 

Color 

Frequancy 

12 Hz 15 Hz 20 Hz 

Red / Post Anodal * (<) / 

Yellow Post Anodal * (<) Post Anodal * (<) Post Anodal * (<) 

 

Frequency Effects 

No significant difference was found with respect the effect frequency. 

Color Effects 

A significant different was found according to the color condition. In particular, the 

power corresponding to the yellow stimulation was greater than the red stimulation. 

12.4 Discussion and Conclusion 

The aims of this work were to realize a system able to generate and record the 

SSVEP, and to study this potential before and after the tDCS. 
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From the explorative analysis results that the SSVEP were well generated and 

recorded. 

From the statistical analysis emerge that the tDCS induces changes in the oscillatory 

activity. The analysis shows that there is no difference between the sham condition 

and the baseline condition, instead a significant difference was found between the 

two baseline conditions and anodal and baseline and sham. It is possible to conclude 

that the anodal stimulation induces a decreasing of the power associated to the 

SSVEP. This result is in contrast with the results of Antal et al. 2004. They found a 

decrease statistically significant of the VEP after the cathodal stimulation and an 

increase statistically not significant o the VEP after the anodal stimulation. This 

difference could be explained with the different montage used in our study and antal 

study. Infact, he used a bipolar montage whit the two electrodes of stimulation 

positioned in Oz and Cz, than the provenience of the effects is not well defined. On 

the contrary, our results confim the results obtained by Accornero et al. (2007). They 

assessed VEP-P100 latencies and amplitudes in response to pattern-reversal 

checkerboard stimuli before, during, and after polarization. Anodal polarization 

reduced VEP-P100 amplitude whereas cathodal polarization significantly increased 

amplitude. 

The results related to the color effect confirm the results of Duszyk et al. (2014). 

They found a significantly stronger SSVEP response during yellow visual 

stimulation than red stimulation. 

There is growing evidence that tDCS allows the manipulation of cortical network 

activity in the human and can cause perceptual changes. This work shows that tDCS 

can change SSVEP response. 

We need further studies to study the effects of cathodal stimulation and to study if 

the performance of a BCI system SSVEP-based can change during or after tDCS.  
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Conclusions 

 

The presented thesis regards the study and the development of new assessment and 

rehabilitation techniques of subject with TBI. 

At the beginning of the Ph.D. course, the hypothesized ensemble of aims to be 

pursued mainly involved the development of smart system able to integrate many 

quantitative informations, becoming from EEG signal and computerized 

neuropsychological tests, and able to make a complete diagnosis of a patients with 

TBI and to plan a rehabilitation process. 

These goals were achieved partially because the carried out activity allowed to study 

and to develop separately methods and devices for assessment and rehabilitation 

purpose but not to integrate these systems. 

The main achieved results are about: 

 the study and the development of a system for the communication with 

patients with disorders of consciousness. It was possible to identify a 

paradigm of reliable activation during two imagery task using EEG signal or 

EEG and NIRS signal. 

 the study of the effects of a neuromodulation technique (tDCS) on EEG 

pattern. This topic is of great importance and interest. The emerged founding 

showed that the tDCS can manipulate the cortical network activity and 

through the research of optimal stimulation parameters, it is possible move 

the working point of a neural network and bring it in a condition of maximum 

learning. In this way could be possible improved the performance of a BCI 

system or to improve the efficacy of a rehabilitation treatment, like 

neurofeedback. 

Next steps along the present research pathway will be taken in order to continue 

investigating the spectral reactivity to tDCS stimulation (by extending the 

preliminary group of subjects involved up to now), and to develop and design (in 

collaboration with clinical centers) experimental setups and protocols aimed to 

investigate the effects of tDCS on patients EEG, in resting state and during cognitive 

tasks (i.e. imagery task for BCI application, neurofeedback, ets.). 
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Supplemetary file 

Table S1: Electrodes with significant level of ANOVA (p<0.05) in at least one band for each subject 

and each session. 

 Session 1 Session 2 

Subject 1 F4 – C4 – O2 – F8 – T4 – T6 - C3 – O1 – T3 – Cz 

– Pz – Fc2 – Fc6 – Cp1 - Cp2 - Cp6 – PO4 

F4 – C4 – P4 – O2 – T4 – T6 – Fp1 – F3 – C3 - P3 

– O1 – F7- T3 – T5 – Fz – Cz – Pz – AF3 – AF4 – 

Fc5 – Fc1 – Fc2 – Fc6 – Cp5 – Cp1 – Cp2 – Cp6 – 

PO3 – PO4 

Subject 2 Fp2 – C4 – P4 – O2 – F8 – T4 – T6 – Fp1 – C3 – 

P3 – O1 – F7 – T5 – Fz – Cz – Pz – AF3 – AF4 – 

Fc1 – Fc2 – Fc6 - Cp5 – Cp1 – Cp2 – Cp6 – PO3 

– PO4 

C4 – O2 – T4 – T6 – Fp1 –F3 – C3 – P3 - F7- T3 – 

Fz – AF3 – Fc5 – Fc1 –Fc6 – Cp6 – PO4 

Subject 3 Fp2 – F4 – C4 – O2 – F – T4 – Fp1 F3 – C3 – O1 

– F7 – T3 – AF3 – AF4 – Fc5 – Fc1 – Fc6 –Cp1 – 

PO3 – PO4 

Fp2 - C4 – P4 – O2 – F8 – T4 – Fp1 –F3 – C3 – O1 

- F7- T3 – T5 – Fz – Cz – Pz – AF3 – AF4 – Fc5 – 

Fc1 – Fc2 – Fc6 – Cp5 – Cp1 – Cp2 – Cp6 – PO4 

Subject 4 Fp2 – F4 – C4 - O2 – F8 – T4 – T6 – Fp1 – F3 – 

C3 - P3 – O1 – F7- T3 – T5 – Fz – Cz – Pz – AF3 

– AF4 – Fc5 – Fc1 – Fc2 – Fc6 – Cp5 – Cp1 – 

PO3 – PO4 

C4 – P4 –O2 – F8 - T4 – T6 – Fp1 - C3 - P3 – O1 – 

F7 - T3 – T5 - Pz – AF3 – Fc5 – Cp5 - Cp1 – Cp2 – 

Cp6 – PO3 – PO4 

Subject 5 Fp2 – C4 – P4 – Fp1 – C3 – P3 – O1 – T3 – T5 – 

Cz – Pz – AF3 - Cp5 - Cp1 – Cp2 – Cp6 – PO3 – 

PO4 

Fp2 – F4 – C4 – P4 - O2 – F8 – T4 - C3 - P3 – O1 

– T5 – Cz – Pz – AF4 - Fc2 – Fc6 – Cp5 – Cp1 – 

Cp6 – PO3 – PO4 
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Table S2: The Table shows the results of ANOVA analysis performed for each patient (P) and each 

BE-band (C4 O2 T4 C3 O1 Fc6 Cp1 PO4 – Theta Alpha Beta Gamma) combination of the pre-

Communication Trial (p<0.05). The ANOVA analysis allowed to find the BE-band couples with a 

significantly different activation during the two imagery tasks, then during the two answers “yes” (y) 

and “no” (n). The table reports also if the power increases or decreases depending on the answers. It is 

possible to observe that Theta, Alpha and Gamma bands contribute likewise in the discrimination of 

the two answers. The Table shows also that “yes” answer, that corresponds to the hand movement 

imagery, increases the power in the low frequency bands, while “no” answer, that corresponds to the 

foot movement imagery, increases the power in the high frequency bands. 

 

 

  

p<0.05(*) C4 O2 T4 C3 O1 Fc6 Cp1 PO4 

Theta P3 (y>n) 

P4 (y>n) 

P5 (y>n) 

P4 (y>n) P3 (y>n) 

P4 (y>n) 

P5 (y>n) 

P5 (y>n) P5 (y>n) P3 (y>n) 

P4 (y>n) 

P5 (y>n) 

 P3 (y>n) 

P4 (y>n) 

Alpha P1 (n>y) 

P4 (y>n) 

P2 (n>y) 

P4 (y>n) 

P1 (n>y) 

P3 (n>y) 

P4 (y>n) 

P4 (y>n)  P1 (n>y) 

P4 (y>n) 

P4 (y>n) P2 (n>y) 

P4 (y>n) 

Beta   P1 (n>y) P2 (y>n) P5 (n>y)  P2 (y>n) P3 (n>y) 

Gamma P1 (n>y) 

P2 (n>y) 

P5 (n>y) 

P1 (n>y) 

P2 (n>y) 

P1 (n>y) 

P3 (n>y) 

P1 (n>y) 

P2 (n>y) 

P5 (n>y) 

P1 (n>y) 

P2 (n>y) 

P1 (n>y) 

P3 (n>y) 

P1 (n>y) 

P2 (n>y) 

P5 (n>y) 

P1 (n>y) 

P2 (n>y) 
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Table S3: Best classification accuracy obtained for each subject, each patient, each session and 

each cardinality for the Imagery Trial. 

IMAGERY TRIAL (classification accuracy %) 

Subjects Sessions Electrodes 

  one two three four five six seven eight 

Subject 1 Session 1  69.2  79.2     82.5     84.2     84.9     82.5     82.5     83.4 

 Session 2 66.7 74.2  80 79.2 82.4 80.9  79.2    75 

Subject 2 Session 1 75.9   78.4  84.2  85  85.8   83.4 83.4 79.2 

 Session 2 66.7   75.9  76.7  81.7  84.9  83.4  81.7 73.4 

Subject 3 Session 1 66.7  72.5  77.5  84.2  84.1  83.4  83.4  80.9 

 Session 2 66.7  70.9  74.2  77.5  81.6   80  82.5  78.4 

Subject 4 Session 1  70   82.5  83.4  84.2  87.4  84.2   84.2  82.5 

 Session 2 71.7  78.4  79.2  81.7   79.9     79.2  76.7  75.9 

Subject 5 Session 1 59.2  63.4 65.9  69.2 70.6  67.5  69.2 66.7 

 Session 2  59.2   65.9  67.5  72.5  75.7  73.5  73.4   72.5 

Mean±SD 67.2±5.1 74.1±6.0 77.1±6.3 79.2±5.4 81.7±5.1 79.8±5.3 79.6±5.0 76.8±5.1 

Patient 1 Session 1 75 84.2 84.2 85.9 89.2 89.2 90 90 

Patient 2 Session 1 70 81.7 87.5 89.2 88.4 89.2 88.4 89.2 

Patient 3 Session 1 55.9 69.2 66.7 68.4 71.7 70.9 68.4 69.2 

Patient 4 Session 1 60.9 65 70.9 77.5 78.4 78.4 77.5 75 

Patient 5 Session 1 55 80 85 88.4 88.4 90 93.4 88.4 

Mean±SD 63.4±8.8 76.1±8.4 78.9±9.3 81.9±8.8 83.3±7.8 83.6±8.5 83.6±10.3 82.4± 9.6 
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Table S4: Best classification accuracy obtained for each subject, each patient, each session and 

each cardinality for the pre-Communication Trial. 

PRE-COMMUNICATION TRIAL (classification accuracy %) 

Subjects Sessions Electrodes 

  one two three four five six seven eight 

Subject 1 Session 1 83.4 97.7 93.4 86.7 83.4 76.7 73.4 66.7 

 Session 2 93.4 83.4 86.7 86.7 86.7 83.4 83.4 76.7 

Subject 2 Session 1 56.7 70 70 66.7 43.3 63.4 46.7 60 

 Session 2 56.7 80 76.7 60 76.7 60 43.4 60 

Subject 3 Session 1 50 76.7 73.4 70 66.7 66.7 66.7 66.7 

 Session 2 90 76.7 73.4 70 63.4 46.7 53.4 60 

Subject 4 Session 1 60 56.7 60 53.4 50 50 60 60 

 Session 2 53.4 50 43.4 46.7 73.4 76.7 76.7 73.4 

Subject5 Session 1 73.4 86.7 83.4 73.4 73.4 76.7 83.4 83.4 

 Session 2 46.6 60 50 50 50 63.4 76.7 76.7 

Mean±SD 66.4±17.2 73.7±14.5 71.1±15.8 66.4±14 68.1±12.9 66.4±12.1 65.4±16 68.3±8.6 

Patient 1 Session 1 66.7 66.7 66.7 66.7 75 75 83.4 83.4 

Patient 2 Session 1 50 58.4 50 66.7 58.4 83.4 83.4 58.4 

Patient 3 Session 1 50 91.7 91.7 66.7 66.7 58.4 58.4 58.4 

Patient 4 Session 1 66.7 100 66.7 66.7 66.7 58.4 58.4 58.4 

Patient 5 Session 1 100 83.4 58.4 58.4 50 66.7 66.7 75 

Mean±SD 66.7±20.4 80.1±17.2 66.7±15.6 65.1±3.7 63.4±9.5 68.4±10.8 70.1±12.6 66.8±11.7 
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Table S5: Electrode configurations maximizing classification accuracy for each subject, each patient, 

each session and each trial. 

Subject Session Electrodes 

  IMAGERY TRIAL PRE-COMMUNICATION TRIAL 

Subject 1 Session 1 O2, T4, O1, Fc6, PO4 T4, O1 

 Session 2 C4, T4, C3, O1, Fc6, Cp1 O1 

Subject 2 Session 1 C4, O2, C3, Cp1, PO4 C4, O1 

C4, O1, Fc6 

 Session 2 C4, O2, C3, O1, PO4 C4, Fc6 

Subject 3 Session 1 O2, T4, O1, Fc6 O2, PO4 

 Session 2 C4, O2, T4, C3, Fc6, Cp1, PO4 C4 

Subject 4 Session 1 C4, T4, O1, Fc6, Cp1 O1 

C4, O1, PO4 

C4, O2, T4, C3, O1, Cp1, PO4 

C4, O2, T4, C3, O1, Fc6, Cp1, PO4 

 Session 2 C4, O2, O1, Fc6 C4, O2, C3, Fc6, Cp1, PO4 

C4, O2, T4, C3, Fc6, Cp1, PO4 

Subject 5 Session 1 C4, T4, O1, Fc6, PO4 C4, Cp1 

 Session 2 C4, O2, C3, O1, Fc6 C4, O2, T4, C3, Fc6, Cp1, PO4 

C4, O2, T4, C3, O1, Fc6, Cp1, PO4 

Patient 1 Session 1 C4, T4, C3, O1, Fc6, Cp1, PO4 

C4, O2, T4, C3, O1, Fc6, Cp1, PO4 

C4, O2, T4, O1, Fc6, Cp1, PO4 

C4, O2, T4, C3, O1, Fc6, Cp1, PO4 

Patient 2 Session 1 O2, T4, Fc6, Cp1 

C4, O2, T4, C3, Cp1, PO4 

C4, O2, T4, C3, O1, Fc6, Cp1, PO4 

C4, O2, T4, C3, O1, Fc6 

C4, O2, T4, C3, O1, Fc6, PO4 

Patient 3 Session 1 T4, O1, Fc6, Cp1, PO4 O1, Cp1 

C3, O1, Cp1 

Patient 4 Session 1 T4, O1, Fc6, Cp1, PO4 

O2, T4, O1, Fc6, Cp1, PO4 

O2, PO4 

Patient 5 Session 1 C4, O2, T4, C3, Fc6, Cp1, PO4 C4 
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Table S6: The table shows the p-value, the F-value and the significance of each couple band-

electrode in EO condition in the comparison between B, SS, PSS, AS and PAS1 (stimulation-effects). 

The significance (s) is reported in three conditiosn: (*) indicates the significance without Bonferroni 

correction (p<0.01), (**) indicates the  significance after the Bonferroni correction (p<0.01/20), (***) 

indicate the significance, after the Bonferroni correction, of the AS and PAS condition with respect 

the B, SS and PSS (p<0.01/20).   

EYES OPEN 

 theta alpha beta gamma 

 
p-value F-value sign p-value F-value sign p-value F-value sign p-value F-value sign 

Fp2 0,00000 9,91648 (**) 0,06547 2,23549  0,20967 1,47599  0,01011 3,38170  

F4 0,49692 0,84623  0,49743 0,84540  0,29622 1,23512  0,32997 1,15743  

C4 0,47077 0,88926  0,41338 0,98999  0,39195 1,03028  0,31262 1,19649  

O2 0,36931 1,07473  0,22725 1,42076  0,11593 1,86989  0,07149 2,17992  

F8 0,46539 0,89833  0,15974 1,65920  0,00133 4,58968 (*) 0,01458 3,16095  

T4 0,05183 2,38228  0,00001 7,57855 (**) 0,00404 3,93071 (*) 0,70567 0,54110  

T6 0,65399 0,61247  0,57252 0,72942  0,54438 0,77175  0,00013 5,95445 (**) 

Fp1 0,00000 10,59812 (**) 0,01190 3,28382  0,03912 2,55724  0,00231 4,26260 (*) 

F3 0,90956 0,24993  0,10577 1,92934  0,18059 1,57711  0,24802 1,36022  

C3 0,07695 2,13322  0,00019 5,74426 (**) 0,00195 4,36276 (*) 0,15093 1,69685  

P3 0,00718 3,58712  0,00000 8,28532 (**) 0,00385 3,95915 (*) 0,01824 3,02507  

O1 0,00186 4,39057  0,00028 5,49984 (**) 0,00171 4,44294 (*) 0,00235 4,25310 (*) 

F7 0,72168 0,51922  0,19875 1,51239  0,04132 2,52337  0,12265 1,83319  

T3 0,00058 5,08478  0,07316 2,16528  0,00741 3,56888 (*) 0,13449 1,77290  

T5 0,00031 5,44081 (**) 0,00046 5,21460 (**) 0,00577 3,71806 (*) 0,08864 2,04300  

Fz 0,15287 1,68840  0,07816 2,12327  0,15069 1,69791  0,01141 3,30910  

Cz 0,11430 1,87912  0,00932 3,43073 (*) 0,11629 1,86791  0,07366 2,16098  

Pz 0,08403 2,07717  0,00012 6,02821 (**) 0,00001 7,24642 (**) 0,00028 5,50814 (**) 
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Table S7: The table shows the p-value, the F-value and the significance of each couple band-

electrode in EC condition in the comparison between B, SS, PSS, AS and PAS1 (stimulation-effects). 

The significance (s) is reported in three conditiosn: (*) indicates the significance without Bonferroni 

correction (p<0.01), (**) indicates the  significance after the Bonferroni correction (p<0.01/20), (***) 

indicate the significance, after the Bonferroni correction, of the AS and PAS condition with respect 

the B, SS and PSS (p<0.01/20).   

EYES CLOSE 

 theta alpha beta gamma 

 
p-value F-value s p-value F-value sign p-value F-value sign p-value F-value s 

Fp2 0,00003 6,87943 (**) 0,00003 6,83202 (***) 0,59849 0,69150  0,47445 0,88351  

F4 0,00007 5,03744 (***) 0,01315 3,23384  0,00823 3,51769 (*) 0,00022 5,69386 (**) 

C4 0,00000 13,66868 (***) 0,00000 9,77080 (***) 0,00000 10,23386 (**) 0,00002 7,22553 (**) 

O2 0,00400 3,95220 (***) 0,00000 27,65414 (***) 0,00000 12,29829 (**) 0,00513 3,80309  

F8 0,26820 1,30674  0,00000 11,81246 (***) 0,00001 7,43366 (**) 0,35595 1,10276  

T4 0,00000 27,06526 (***) 0,00000 15,29106 (***) 0,00493 3,82670 (*) 0,77630 0,44457  

T6 0,00009 6,22067 (***) 0,00003 6,20693 (***) 0,00090 4,84810 (*) 0,00312 4,10123  

Fp1 0,00000 10,13106 (**) 0,00000 9,84762 (***) 0,50029 0,84113  0,59534 0,69609  

F3 0,00001 7,45191 (**) 0,00000 14,41640 (***) 0,00001 7,38426  0,31154 1,19996  

C3 0,01735 3,06451  0,00000 23,50859 (***) 0,00000 18,68782 (***) 0,31329 1,19593  

P3 0,50498 0,83359  0,00000 38,97035 (***) 0,00000 26,02585 (***) 0,35938 1,09567  

O1 0,17278 1,60887  0,00000 29,18315 (***) 0,00000 18,95819 (***) 0,00125 4,64681  

F7 0,40799 1,00057  0,02781 2,77501  0,16136 1,65470  0,30924 1,20530  

T3 0,00034 5,42699 (**) 0,26539 1,31416  0,00043 5,27972 (***) 0,01482 3,16084  

T5 0,15177 1,69555  0,00000 18,15574 (***) 0,00000 13,36395 (***) 0,08062 2,10750  

Fz 0,00000 14,30752 (**) 0,00000 21,15472 (***) 0,00007 6,39110 (***) 0,50943 0,82649  

Cz 0,00003 6,82041 (***) 0,00000 10,93108 (***) 0,00000 10,48662 (***) 0,00246 4,24379  

Pz 0,00035 5,41567 (***) 0,00000 17,24579 (***) 0,00000 8,96042 (***) 0,00186 4,41008  
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Table S8: The table shows the p-value, the F-value and the significance of each couple band-

electrode in EO condition in the comparison between B, SS, PSS, AS1, AS2, AS3, AS4, PAS1, PAS2 

and PA3 (time-effects). The significance (s) is reported in three conditiosn: (*) indicates the 

significance without Bonferroni correction (p<0.01), (**) indicates the  significance after the 

Bonferroni correction (p<0.01/40), (***) indicate the significance, after the Bonferroni correction, of 

the AS and PAS condition with respect the B, SS and PSS (p<0.01/40).   

EYES OPEN 

 theta alpha beta gamma 

 
p-value F-value s p-value F-value s p-value F-value s p-value F-value s 

Fp2 0,00000 13,48195 (***) 0,12543 1,56595 
 

0,57698 0,84312 
 

0,06257 1,83256 
 

F4 0,04720 1,93586 
 

0,00006 5,85947 (***) 0,04782 1,93114 
 

0,04687 1,93839 
 

C4 0,00004 4,97342 (***) 0,00004 4,95482 (***) 0,04814 1,92865 
 

0,04973 1,91691 
 

O2 0,00005 4,91615 (***) 0,00005 6,89704 (***) 0,06398 1,82432 
 

0,07185 1,78100 
 

F8 0,00000 7,51130 (***) 0,06191 1,83648 
 

0,02900 2,10952 
 

0,18027 1,41766 
 

T4 0,00565 2,66329 (*) 0,00042 3,49031 (*) 0,00398 2,77786 (*) 0,02142 2,21505 
 

T6 0,17366 1,43332 
 

0,08192 1,73150 
 

0,09437 1,67741 
 

0,00339 2,83001 (*) 

Fp1 0,00000 15,03025 (***) 0,03714 2,02203 
 

0,24799 1,27941 
 

0,03455 2,04775 
 

F3 0,00000 5,19098 (***) 0,27635 1,23028 
 

0,52939 0,89590 
 

0,57824 0,84174 
 

C3 0,00041 3,49846 (*) 0,00024 3,66250 (***) 0,02294 2,19134 
 

0,50776 0,92041 
 

P3 0,00003 4,30247 (*) 0,00000 5,31510 (***) 0,03621 2,03107 
 

0,14040 1,52070 
 

O1 0,00010 3,92985 (**) 0,00074 3,31479 (*) 0,01095 2,44353 
 

0,02586 2,14971 
 

F7 0,00001 4,68154 (***) 0,56226 0,85930 
 

0,30173 1,18942 
 

0,49930 0,93012 
 

T3 0,00056 3,40535 (*) 0,23141 1,31017 
 

0,04512 1,95212 
 

0,17465 1,43094 
 

T5 0,00003 4,35848 (**) 0,00055 3,40845 (*) 0,04797 1,92994 
 

0,18777 1,40044 
 

Fz 0,00000 7,56427 (***) 0,15531 1,47957 
 

0,52196 0,90427 
 

0,11537 1,59911 
 

Cz 0,00004 4,18541 (***) 0,02884 2,11146 
 

0,37477 1,08394 
 

0,33442 1,14028 
 

Pz 0,00003 4,32360 (***) 0,00000 5,78812 (***) 0,00000 4,89278 (**) 0,00060 3,37961 (*) 
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Table S9: The table shows the p-value, the F-value and the significance of each couple band-

electrode in EC condition in the comparison between B, SS, PSS, AS1, AS2, AS3, AS4, PAS1, PAS2 

and PAS3 (time-effects). The significance (s) is reported in three conditions: (*) indicates the 

significance without Bonferroni correction (p<0.01), (**) indicates the  significance after the 

Bonferroni correction (p<0.01/36), (**) indicate the significance, after the Bonferroni correction, of 

the AS and PAS condition with respect the B, SS and PSS (p<0.01/36).   

EYES CLOSE 

 theta alpha beta gamma 

 
p-value F-value sign p-value F-value sign p-value F-value sign p-value F-value sign 

Fp2 0,00017 4,02145 (***) 0,00070 3,53366 (*) 0,74541 0,63794 
 

0,78021 0,59667 
 

F4 0,00003 4,03875 (***) 0,12223 1,61191 
 

0,06726 1,86008 
 

0,00459 2,87190 (*) 

C4 0,00000 8,70197 (***) 0,00001 5,09023 (***) 0,00000 6,13439 (**) 0,00002 4,76163 (**) 

O2 0,00469 2,86389 (*) 0,00000 14,15470 (***) 0,00000 6,33374 (**) 0,04323 2,03594 
 

F8 0,43362 1,00414 
 

0,00000 5,86189 (**) 0,00015 4,07554 (**) 0,37155 1,08907 
 

T4 0,00000 13,51774 (***) 0,00000 7,60158 (**) 0,00114 3,36601 (*) 0,02506 2,24630 
 

T6 0,00120 3,34641 (*) 0,51521 0,90236 
 

0,00695 2,72185 (*) 0,02054 2,32152 
 

Fp1 0,00000 5,57060 (***) 0,00001 4,97888 (***) 0,67057 0,72363 
 

0,78040 0,59644 
 

F3 0,00001 5,23098 (***) 0,00000 7,25957 (***) 0,00014 4,08870 (**) 0,51608 0,90131 
 

C3 0,00294 3,03057 (*) 0,00000 11,80555 (***) 0,00000 9,68550 (***) 0,56631 0,84226 
 

P3 0,09267 1,72873 
 

0,00000 19,69973 (***) 0,00000 13,29208 (***) 0,61844 0,78261 
 

O1 0,09207 1,73145 
 

0,00000 14,81725 (***) 0,00000 9,78090 (***) 0,01060 2,56754 
 

F7 0,20910 1,37327 
 

0,17228 1,46157 
 

0,28883 1,21858 
 

0,44058 0,99508 
 

T3 0,00052 3,64162 (*) 0,66536 0,72952 
 

0,00136 3,30217 (*) 0,01768 2,37775 
 

T5 0,08900 1,74553 
 

0,00000 9,17247 (***) 0,00000 6,98598 (**) 0,30541 1,19066 
 

Fz 0,00000 9,28820 (***) 0,00000 10,51237 (***) 0,00056 3,61232 (*) 0,75177 0,63050 
 

Cz 0,00009 4,44606 (***) 0,00000 5,66459 (***) 0,00000 5,50613 (***) 0,02023 2,32719 
 

Pz 0,00000 6,24298 (***) 0,00000 11,57693 (***) 0,00000 6,93207 (***) 0,00042 3,71499 (*) 
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