
Alma Mater Studiorum
Università di Bologna

Dottorato di Ricerca in

Economia

ciclo XXVII

Settore Concorsuale di a�erenza: 13/A5 Econometria

Settore Scienti�co disciplinare: SECS/P05 Econometria

Essays in Macroecometrics:

methodological aspects and
empirical applications

Vanessa Gunnella

Coordinatore del
Dottorato
Matteo Cervellati

Relatori:
Roberto Golinelli

Luca Fanelli

Esame �nale anno 2015



A SUR-bounds Panel Cointegration Test in the

Presence of Cross-Section Dependence

Vanessa Gunnella
1

Abstract

This paper introduces a new panel cointegration test. It extends
Pesaran et al. (2001) bounds test by considering the individual re-
gressions in a Seemingly Unrelated Regression (SUR) system. The
algorithm to implement the test is developed and Monte Carlo simu-
lation is used to analyze the properties of the test. The small sample
properties of the test are remarkable, compared to its single equation
counterpart. Size distortion is almost absent and power increases sub-
stantially. The use of the test is illustrated through a test of Purchasing
Power Parity in a panel of EU15 countries.
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1 Introduction

In time series analysis, cointegration is a statistical property that is used to
detect meaningful relationships between non-stationary variables and thus,
to test for the existence of long-run links.

Panel cointegration tests have been introduced in the literature in order to
improve the power of uni-equational tests. The extension to a cross-section of
N units - countries, regions, �rms, etc - increases the number of observations
and allows to exploit more information. Also, the panel setting makes it
possible to test for hypotheses that should hold for a group of units.
Even though panel cointegration analysis seems to be overlooked in recent
times, in the last years many papers have used this technique in order to
address empirical questions in a variety of economic �elds (see for example
Chong et al., 2012, Herzer et al., 2012 and Rassenfosse and Potterie, 2012).

Nevertheless, the approach is a�ected by two main issues: how to combine
the information coming from all the units of the panel and how to deal with
the cross-sectional dependence.

Regarding the �rst issue, many testing methodologies proposed in the lit-
erature have opted either for estimating a single test's parameter pooling the
observations (e.g. Kao, 1999) or for estimating separate equations - one for
each individual - and pooling the test's statistics (see Pedroni, 2004; West-
erlund, 2007 and Larsson et al., 2001 among the others).
However, neglecting the parameters' heterogeneity can lead to biased esti-
mates, whereas producing unique statistics do not give information about
how many and which units of the panel are cointegrated.

On the other hand, assuming cross-section independence leads to ine�-
ciency and size distortion of the tests (see O'Connell, 1998).
In many recent contributions, cross-section dependence is modeled with a
common factors representation (Gengenbach et al., 2006; Westerlund and
Edgerton, 2008; Gengenbach et al., 2008). Nevertheless, the small cross-
sectional dimension of the panel can compromise the estimation of the com-
mon factors.

The test proposed here, called the SUR-bounds test, is conceived to tackle
the above mentioned problems.
Heterogeneous parameters for the N testing regressions are estimated in a
SUR (Seemingly Unrelated Regressions) system with FGLS. This allows to
take into account unobserved common factors that contemporaneously af-
fect all the units of the panel providing, at the same time, unit-speci�c test
statistics. Moreover, the approach is particularly suited when the number
of individuals of the panel is small relatively to the number of time series
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observations.2

FGLS estimation of a SUR system has been adopted in the panel liter-
ature in the context of unit root testing (Breuer et al., 2002; Breitung and
Das, 2005), in the cointegration rank test proposed by Breitung (2005) and
in the estimation of cointegrating regressions (Mark et al., 2005).
In this paper the methodology is applied to extend Pesaran et al. (2001)'s
(PSS hereafter) single equation bounds test. This test veri�es the presence
of a long-run relationship by testing for the joint signi�cance of the lagged
variables in an ECM representation. The most appealing feature of the test
is that, di�erently from other tests, it allows the regressors to be I(1), I(0)
or mutually cointegrated.
The SUR extension allows to exploit the information coming from the vari-
ance covariance matrix and hence it leads to increased power properties.

The distribution of the new test statistics is neither pivotal, nor bound-
edly pivotal because it depends on the covariance matrix of the panel. Thus
critical values have to be simulated for each dataset under investigation by
stochastic simulation. Hence, an algorithm for critical values' simulation is
provided in order to allow the practitioner to apply the test.3 The properties
of the new panel test are compared with those of PSS. The results of the
Monte Carlo simulation are unequivocally in favor of the new test. Even
though both tests are found to be not dramatically distorted - although with
better size properties of the new test in high dependence scenarios - power
gains of the SUR-bounds test are widespread, especially in the presence of
high cross-sectional correlation. A Monte Carlo experiment shows that the
SUR-bounds test has superior power in comparison with Westerlund (2007)
panel cointegration test.
The use of the test is shown in an empirical application of the test of the
PPP -hypothesis in EU15 countries.
The rest of the paper proceeds as follow. Section 2 outlines the methodology:
PSS bounds test is presented, then the panel extension is introduced and the
testing procedure is illustrated.
Section 3 describes the algorithm to simulate the critical values whereas in
Section 4 Monte Carlo experiments are performed in order to investigate size
and power properties, comparing the new test with PSS single equation test
and Westerlund (2007) panel test, under various scenarios. Section 5 pro-
vides the empirical application and conclusions are drawn in Section 6.

2In order to consistently estimate the elements of the residuals' variance-covariance
matrix, the time dimension should be signi�cantly larger than the size of the panel, i.e.
T >> N .

3The development of the command is now object of research. The idea is to make such
algorithm available to the scienti�c community.
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2 Single equation test and its extension to the

panel data framework

The proposed test is an extension to the panel setting of the bounds test of
PSS. In this testing procedure, cointegration is veri�ed considering the joint
signi�cance of the lagged variables of an unrestricted conditional ECM.

The panel test is characterized by the same features of the single equation
counterpart.

On the one hand, it assumes the existence of only one cointegrating rela-
tion and weakly exogenous regressors.
The �rst restriction characterizes all the single equation and panel tests
that abstract from a VAR-VECM approach to cointegration à la Johansen
(1991)4.
The second one is required for the ECM -based tests. If the regressors are
not weakly exogenous, the conditional model do not contain the necessary
information to test for cointegration (see Zivot (2000)).
However, as Pesaran and Shin (1998) show, a potential endogeneity problem
can be circumvented adding enough lags of the regressors.

On the other hand, the test shows two interesting features: the a priori

knowledge of the order of integration of the regressors is not needed and
the regressors are allowed to be mutually cointegrated. In fact, two sets of
critical values are computed: one corresponding to the cases in which all
the regressors are I(0) and the other considering the possibility that all the
regressors are I(1). This critical values provide respectively the lower and
the upper bound of the test.

The extension to the panel setting of this test is carried out by estimating
a SUR system featuring N individual ECM s.
This allows to estimate heterogeneous, individual speci�c parameters for each
equation and therefore to test separate null hypotheses.
At the same time, the information provided by the cross-equation error co-
variance structure is exploited leading to more e�cient estimators and con-
sequently more powerful test statistics, conditional on the use of �correct�
critical values.

4In the literature of panel cointegration tests, see for instance Pedroni (2004) and
Westerlund (2007)
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2.1 The individual bounds test

The VECM representation of the VAR(p) model underlying the data gener-
ating process of the (k + 1)-vector of variables {zt}∞t=1 is the following:

∆zt = a0 + a1t+ Πzt−1 +

p−1∑
j=1

Γj∆zt−j + εt (1)

where a0 and a1 are (k + 1)-vectors of intercept and trend coe�cients, Π is
the long-run multipliers matrix and Γj is the short run coe�cient matrix of
the di�erenced variables with lag j.

Under assumption 1-5 of PSS5, the bounds test is applied to the condi-

tional model E
[
yt|xt, {zt−j}t−1j=1

]
where zt = (yt,xt)

′. Hence, the conditional

ECM is:

∆yt = c0 + c1t+ πyyyt−1 + πyx,xxt−1 +

p−1∑
j=1

ψ′j∆zt−j + ω′∆xt + ut (2)

To test for no cointegration, the joint null hypothesis is:

H
πyy
0 : πyy = 0 ∧ H

πyx,x

0 : πyx,x = 0′ (3)

whereas the alternative hypothesis is:

H
πyy
1 : πyy 6= 0 ∨ H

πyx,x

1 : πyx,x 6= 0′ (4)

This is implemented with the usual Wald test or the F -test for the joint
signi�cance of the coe�cients of the lagged variables zt−1 . Moreover, PSS
propose a bounds procedure also for the test proposed by Banerjee et al.
(1998) which is based on testing the signi�cance of the coe�cient of the
lagged dependent variable with a t-test.
However, the Wald-statistic and the F -statistic have asymptotic null distri-
butions that depend on the deterministic speci�cation of (2).6

The limiting distributions of the statistics depend also on whether the vari-
ables within the vector [xt]

∞
t=1 are cointegrated and on the number of the

regressors (k). Two polar cases are studied - namely, {xt} ∼ I(1) when the

5See mentioned paper.
6See Pesaran et al. (2001) for the �ve di�erent speci�cations and for the derivation of

the limiting distribution of the Wald statistic.
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rank is equal to k and {xt} ∼ I(0) when the rank is equal to 0 - and the
critical values of the statistics are derived through stochastic simulation.
These two sets of critical values represent, respectively, the upper and the
lower bounds for the test. That is, if the statistic is higher than the upper
bounds then {yt}∞t=1 and {xt}∞t=1 are cointegrated.
On the other hand, if the value of the statistic is smaller than the lower
bounds the processes are not cointegrated.
Finally, if the statistic falls within the bounds, the {xt}∞t=1 are mutually coin-
tegrated and an analysis of their orders of integration is needed to reach a
meaningful conclusion.

2.2 The panel model and the panel test

In this section, the extension of the bounds test to the panel environment is
illustrated.

In order to take into account the heterogeneity of the parameters and, at
the same time, to consider the cross-sectional dependence across the variables
involved, the individual testing regressions (2) for the N units of the panel
are estimated in a Seemingly Unrelated Regressions (SUR), as Breuer et al.
(2002) do in the context of unit root testing.
This method treats the equations separately, but, assuming the errors to be
correlated across panel units, it estimates for each unit speci�c parameters
applying the FGLS procedure.

Hence, a system of unrestricted conditional ECM is considered. For sim-
plicity of notation, deterministic constants and trends are not included and
the coe�cients associated with yt−1 and xt−1 are renamed, respectively with
πy and πx.

∆y1t = π1yy1,t−1 + π1xx1,t−1 +
∑p−1

j=1 ψ
′
1j∆z1,t−j + ω′1∆x1t + u1t

∆y2t = π2yy2,t−1 + π2xx2,t−1 +
∑p−1

j=1 ψ
′
2j∆z2,t−j + ω′2∆x2t + u2t

...
...

...
...

...
...

∆yNt = πNyyN,t−1 + πNxxN,t−1 +
∑p−1

j=1 ψ
′
Nj∆zN,t−j + ω′N∆xNt + uNt

(5)
The matrix form of the ith individual equation is:

∆yi = Zi,−1π
∗
i,yx + ∆Zi−ψi + ui i = 1, . . . , N (6)

where ∆yi ≡ (∆yi1, . . . ,∆yiT )′, Zi,−1 ≡ (zi0, . . . , zi,T−1)
′, ∆Xi ≡ (∆xi1, . . . ,∆xiT )′,

∆Zi,−j ≡ (∆zi,1−j, . . .∆zi,T−1)
′, ∆Zi− ≡ (∆Xi,∆Zi,−1, . . . ,∆Zi,1−p), ψi ≡

(ω′i,ψi1, . . . ,ψi,p−1)
′, ui ≡ (ui1, . . . , uiT )′ and
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π∗i,yx =

(
0′

Ik+1

)(
πiy
π′ix

)
(7)

Thus, considering the system (5) in a stacked form, the following equation
is obtained:

∆y = Z−1π
∗
yx + ∆Z−ψ + u (8)

where y ≡ (y1, . . . ,yN), π∗yx ≡ (π∗1,yx, . . . ,π
∗
N,yx), u ≡ (u1, . . . ,uN),

Z−1 ≡


Z1,−1 0 · · · 0

0 Z2,−1 · · · 0
...

...
. . .

...
0 0 · · · ZN,−1

 and ∆Z− ≡


∆Z1− 0 · · · 0

0 ∆Z2− · · · 0
...

...
. . .

...
0 0 · · · ∆ZN−


(9)

Assumption 1-5 of PSS hold and, furthermore, it is further assumed:

Assumption 1. There is no cross-unit cointegration among the stacked
variables belonging to the matrix Z−1

7.

Moreover, the following assumptions on the stacked error vector u are im-
posed:

Assumption 2. E[u|Z−1,Z−] = 0 and E[uu′|Z−1,Z−] ≡ Ω is positive
de�nite.

Assumption 3. E[uitujs|Z−1,Z−] = σij for t = s and 0 otherwise.

It follows that for the t-th observation, the covariance matrix is:

Σ =


σ11 σ12 · · · σ1N
σ21 σ22 · · · σ2N
...

...
. . .

...
σN1 σN2 · · · σNN

 (10)

so that Ω = Σ⊗ IT .
In a �rst step, the covariance matrix Ω is estimated with LS and Ω̂ is in-

corporated in the estimators of the parameters of interest π̂∗iy,x (i=1, . . . , N)
in the second step.8

7As Banerjee et al. (2004) point out, panel cointegration test can be oversized in the
presence of cross-unit cointegration.

8Alternatively, the covariance matrix could be estimated with the procedure proposed
by Mark et al. (2005)
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Therefore, the following set of separate null and alternative hypothesis is
tested with unit-speci�c Wald or F statistics:

H
1π1y
0 ∧H1π1x

0 H
1π1y
1 ∨H1π1x

1

H
2π2y
0 ∧H2π2x

0 H
2π2y
1 ∨H2π2x

1
...

...

H
NπNy

0 ∧HNπNx
0 H

NπNy

1 ∨HNπNx
N

(11)

with H
iπiy
0 : πiy = 0 and H

iπiy
1 : πiy 6= 0 and H iπix

0 : πix = 0 and H iπix
1 : πix 6=

0.
Whereas, the following null and alternative hypothesis are tested with unit-
speci�c t statistic:

H1
0 : π1y = 0 H1

1 : π1y 6= 0
H2

0 : π2y = 0 H2
1 : π2y 6= 0

...
...

HN
0 : πNy = 0 HN

1 : πNy 6= 0

(12)

Moreover, a joint signi�cance test on the coe�cients of the lagged vari-
ables of all the equations is proposed. That is, the null hypothesis of (11)
are tested jointly with an F test and a Wald test (sys-F and sys-W test
hereafter). Under the null, there is no cointegration in all the panel, whereas
under the alternative at least one of the equation of the panel is cointegrated.
These tests, as most of the panel tests (see Westerlund (2007), Pedroni (2004)
among the others), give a unique, synthetic information on the panel as a
whole. While this constitutes a limitation of the other panel tests, in the
present context this represents an additional information.

Apart from depending on the number of regressors, on the deterministic
speci�cation, on the panel dimension and on the cointegration rank of [xit]

∞
t=1

(i = 1, . . . , N), the null distributions of the test statistics are speci�c to the
estimated covariance matrix Ω̂.
That is why the critical values are series speci�c and have to be computed
through stochastic simulation. This would not represent an obstacle to the
implementation of the test by practitioners because a program (e.g. Stata
.ado �le) will be provided in order to make it possible to easily perform the
test on other datasets and will thus spread the applicability of the test.
In the next session the algorithm to simulate critical values is illustrated.

3 Critical values' simulation

In what follows, the steps of the procedure put forth to produce the data-set
speci�c critical values are illustrated. As in Breuer et al. (2002), Monte Carlo
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methods are applied.
The simulated data are generated from the estimated covariance matrix and
coe�cients of the model under the null hypothesis. Therefore, starting from
randomly generated errors and regressors series - for every equation of the
system - dependent variables series are derived. Then, the test statistics
are computed with the simulated sample. Their discrete distributions are
obtained performing a suitable number of replications and the critical values
correspond to the percentiles of interest of the distributions.

The procedure consists of the following steps9:

1. Choose the lag orders of the dependent variable and of the regressor10.
with a lags selection method in each regression of the system.11

2. Estimate the SUR system of the testing regressions under the null
hypothesis, i.e.:

∆y1t =
∑p1−1

j=1 ψ1yj∆y1,t−j +
∑q1−1

j=1 ψ1xj∆x1,t−j + ω1∆x1t + u1t

∆y2t =
∑p2−1

j=1 ψ2yj∆y2,t−j +
∑q2−1

j=1 ψ2xj∆x2,t−j + ω2∆x2t + u2t
...

...
...

...

∆yNt =
∑pN−1

j=1 ψNyj∆yN,t−j +
∑qN−1

j=1 ψNxj∆xN,t−j + ωN∆xNt + uNt
(13)

in order to get ψ̂iyj,H0 (j = 1, ..., pi), ψ̂ixj,H0 (j = 1, ..., qi) and ω̂i for
i = 1, .., N and the estimated covariance matrix of the errors of the
system, Σ̂H0 .

3. For i = 1, ..., N , generate u
(s)
it and x

(s)
it . The �rst, as random draw from

standard normal distribution multiplied by the Cholesky decomposition
of Σ̂H0 = SS ′. The latter, generated from x

(s)
it = x

(s)
i,t−1+ε

(s)
it , in the case

that xit is assumed to be purely I(1) or from x
(s)
it = ε

(s)
it if xit is purely

I(0).12 ε
(s)
it is a draw from independent standard normal variables.

9For the sake of simplicity of notation, only one regressor is considered.
10 As Pesaran et al. (2001) clarify, it is possible to have heterogeneous lag orders for the

variables without compromising the asymptotic results of their test, so that the model is
an ARDL(p, q1, q2, ..., qk).

11Pesaran and Shin (1998) demonstrate through Monte Carlo experiments that the esti-
mators of the ARDL model with lag structure selected with Schwartz Bayesian Criterion
perform slightly better than those selected with Akaike Information Criterion.

12These two cases characterize, respectively, the upper and the lower critical values
bounds, are described in Section 2.
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4. Generate y
(s)
it with the estimated parameters and the generated resid-

uals and regressors, imposing the null, i.e.:

∆y
(s)
it =

pi−1∑
j=1

ψ̂iyj,H0∆y
(s)
i,t−j +

qi−1∑
j=1

ψ̂ixj,H0∆x
(s)
i,t−j + ω̂i∆x

(s)
it + u

(s)
it (14)

and
y
(s)
it = y

(s)
i,t−1 + ∆y

(s)
it (15)

Notice that here the initial conditions for yit and xit can be set to zero
generating extra observations and discarding the �rst ones.

5. Estimate πiy and πix (i = 1, ..., N) from the SUR system of unrestricted
testing regressions using the simulated sample and the estimated co-
variance matrix, Σ̂H0 . The i

th element of the system is:

∆y
(s)
it = πiyy

(s)
i,t−1+πixx

(s)
i,t−1+

pi−1∑
j=1

ψiyj∆y
(s)
i,t−j+

qi−1∑
j=1

ψixj∆x
(s)
i,t−j+ωi∆x

(s)
it +uit

(16)

6. Compute the Wald and the F -statistics corresponding to the joint null
hypothesis Hyi

0 : πiy = 0 ∧ Hxi
0 : πix = 0, the t-statistics for the null

Hyi
0 : πiy = 0 and the sys-W and the sys-F statistics for the null of all

zero coe�cients on the lagged variables of the system.

Points 3-6 are repeated the necessary number of times in order to obtain
discrete distributions of the test statistics and the critical values are taken
from the corresponding percentile of interest.

4 Monte Carlo simulations

In this section, small sample size and power properties of the new test are
evaluated and are compared to those of Pesaran et al. (2001)'s single equation
test - of which this test represents the extension and to those of a popular
ECM -based panel test (Westerlund, 2007).13

In order to confront the SUR-bounds test with the bounds test and with
Westerlund's test, the mean size and power of the SUR-bounds test are con-
sidered, because the former deals with only one individual, whereas the latter
provides synthetic panel statistics.

13Comparisons with single equation and panel residual-based tests are not considered,
since they have been already performed, among the others, by Pesavento (2004) for the
former case and by Westerlund (2007) for the latter case.
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The DGP adopted borrows from that of Westerlund's, but it has been
modi�ed in order to address speci�c issues that are illustrated later on.
In this context, one non-stationary I(1) regressor is taken into account and it
is assumed that the order of integration of the regressor is known a priori.14

Therefore, only the upper bound of the SUR-bounds test is considered in
order to make decisions on the outcome of the test.

4.1 Baseline scenario

This simulation experiment compares the tests on the ground of cross-sectional
dependence and assumes the particular structure underlying the SUR-bounds
test, namely, the presence of cross-correlation among the error terms of the
individual regressions.
The DGP is the following:

∆yit = πi,yyyi,t−1 + πi,yxxi,t−1 + ωi∆xit + uit (17)

with
xit = xi,t−1 + εit (18)

Here, no lags and deterministic component are included15.
In this scenarios it is assumed that xit is strictly exogenous, therefore ωi = 0.
Hence, the errors of the N regressors are assumed to be uncorrelated with
uit, i = 1, .., N and uncorrelated with each other. On the other hand
the errors of equation (17) are assumed to have as covariance matrix the
unit diagonal N × N matrix Σ. Each o�-diagonal element of Σ represents
the errors' covariance between two units and it is drawn from a uniform
distribution. As in Breuer et al. (2002), according to the degree of correlation,
the support of the distribution is de�ned between three di�erent ranges:
0.20− 0.30 for low cross-sectional dependence, 0.45− 0.55 for medium cross-
sectional dependence and 0.70− 0.80 for high cross-sectional dependence.
Therefore, a covariance matrix for the errors of equation (17) and equation
(18) is built such that:

Σ̆︸︷︷︸
2N×2N

=

[
Σ 0
0 IN

]
(19)

and the residuals are generated as independent draws from a standard
normal distribution multiplied by the Cholesky decomposition of the matrix
Σ̆.

14This implies that the degenerate case in which the coe�cient of the dependent variable
is equal to zero while the coe�cient of the regressor is di�erent from zero is excluded, as
it will be illustrated in what follows.

15The deterministic speci�cation corresponds to model I of PSS.
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The parameters πi,yy and πi,yx are set to zero in order to study the size
properties.
Under the alternative hypothesis and the fact that xit ∼ I(1) πi,yx do not
depend on any parameter of the marginal model for xit so that it is unre-
stricted.
Hence, it is more suitable to consider an alternative representation of the
model (17), that is:

∆yit = αi(βiyyi,t−1 + βixxi,t−1) + uit (20)

where the parameters are set as follows: βiy is set to one for all the units,
βix ∼ N(0, 1) and αi = 0 under the null and is drawn from U(−0.01,−0.03)
and U(−0.07,−0.09) for two di�erent case studies for the power analysis (one
closer to the null, the other more distinct from the null).
Notice that, under the null, both parameters are zero whereas under the
alternative the coe�cient are both di�erent from zero.

The testing regressions are estimated choosing the individual lag orders
with the SBC criterion and the maximum number of lags varies with T ,

according to the rule suggested by Schwert (1989)
⌊
12×

[
(T/100)1/4

]⌋
.

Since critical values of the SUR-bounds test are speci�c to the covariance
matrix of each correlation scenario, they have to be computed for the three
cases of low, medium and high cross-correlation. These critical values are
taken as reference for the decision of rejection of the null hypothesis in the
SUR− bounds test.
The simulations are performed considering several cross-section and time
dimensions that is N = 5, 10, 20 and T = 50, 100, 200. Therefore, 27 di�erent
environments are analyzed (3 types of cross-sectional dependence × 3 cross-
section dimensions × 3 time dimensions). Furthermore, PSS bounds test's
critical values have to be computed for T = 50, 100, 200 since the critical
values of their paper refer to a sample size of 1000 observations16.

The 0.05 lower and upper critical values for each experiment are shown in
Table 2. As it is possible to see, the magnitude of the critical values decreases
with the time dimension of the panel. On the contrary, the critical values
increase as N is growing. Moreover, the critical values are bigger the higher
is the cross-sectional dependence between the units of the panel.
Compared to PSS critical values presented in Table 1, the critical values are
substantially higher, even for low cross-correlation.

Table 3 reports size results of SUR-bounds and PSS bounds tests for a
nominal size equal to 0.05. For αi = 0, size magnitudes are reported. Both

16Narayan (2005) provides critical values for T = 30 − 80, but only for case II to V of
PSS, that is excluding the �no intercept, no trend� case considered here.
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tests show correct size or at the most minimal distortion. PSS test seems
to be slightly more correct for low cross-correlation scenarios, whereas the
SUR-bounds has better size properties for cross-correlation range 0.45-0.55
and 0.70-0.80.
On the other hand, the sys-F statistics overperforms the sys-W, except for
the high cross-correlation case.

The power results are shown in Table 4-5. The �rst table reports re-
spectively the power and the size-corrected power of the tests comparing the
SUR-bounds tests with the PSS tests for the case of close to the null alter-
native, whereas the latter assumes the 0.07-0.09 alternative.
The comparison is totally in favor of SUR-bounds test. The power of the
new test is higher than that PSS test in every scenario. Although both tests
perform poorly when α = U(−0.01,−0.03) (the highest power is reached by
the SUR-bounds tests under the high correlation, N=10, T=200 scenario),
SUR-bounds test shows good power properties, in particular in the case of
high cross-sectional dependence and for T = 100, 200.
Particularly, the panel tests seem to perform best, reaching the desired power
in the high cross-sectional correlation scenarios.

4.2 Serial correlation

The second scenario is designed to analyze the e�ect of serial correlation in
the error terms of the testing regressions. Hence, the N error processes are
modeled as follow:

uit = eit + ρ1iei,t−1 + ρ2iei,t−2 (21)

where the autoregressive parameter ρji j = 1, 2 are heterogeneous across units
and are uniformly distributed between 0.4 and 0.5 in case of positive serial
correlation and between -0.4 and -0.5 in case of negative serial correlation.
Size magnitudes are shown in Table 6. In the MA(1) case, while the sizes
of the individual tests are almost preserved, the joint tests su�er from some
distortion, especially the sys-W test.
Considering a higher serial correlation (MA(2)), the size distortion increases,
as expected, but not so dramatically.

4.3 Mixed Panel

This scenario is meant to verify the power properties in the presence of mixed
alternative, i.e. when under the alternative hypothesis some number of units
(n) of the panel are simulated under no-cointegration and the remaining

12



under cointegration (N − n):

∆yit = uit for i = 1, ..., n

and
∆yit = αi(yi,t−1 + βixxi,t−1) + uit for i = n+ 1, ..., N

For this experiment αi ∼ U(−0.09,−0.07), N = 10 and T = 100. Table
7, reports power magnitudes for various sizes of n. As it is possible to see,
individual tests su�er from negligible loss of power, increasing with n. In-
stead, for the panel statistics, the power decrease is more pronounced, but
they can nevertheless preserve nominal power in M and H scenarios, as long
as n ≤ (N/2).

4.4 Comparison with Westerlund (2007)

In this subsection the SUR-bounds test is compared with Westerlund (2007)
panel cointegration test. It is an ECM -based test which treats cross-sectional
dependence with a bootstrap procedure as in Chang (2004). The author for-
mulated four test statistics: two group statistics Gτ and Gα and two panel
statistics Pτ and Pα (see mentioned paper for details).
Data have been simulated under the baseline scenario described above, con-
sidering a panel dimension of N = 10 and T = 100. Results are reported in
Table 8.
For what regards the sizes, Westerlund's τ statistics are quite distorted,
whereas the α statistics are undersized.
Comparing the power properties of the two tests, the individual statistics
of the SUR-bounds are those performing worst. However, the SUR panel
statistics beat the Westerlund's statistics almost in all cases, but especially
when the cross-sectional dependence is substantial (M and H).

5 Empirical application

As illustrative example, the new methodology is applied to the PPP hypoth-
esis testing in a panel of EU15 countries17for the quarterly sample 1974q1-
1998q3.
The example is a classic empirical application in the unit-root and cointe-
gration hypothesis testing literature (see Breuer et al. (2002) and Pedroni
(2004) for what regards the panel literature) and it has been chosen for its

17EU15 comprises: Austria, Belgium, Denmark, Finland, France, Germany, Greece,
Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden, United Kingdom.
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popularity.
Single equation testing shows lack of evidences in favor of the theoretical
hypothesis. Therefore, panel unit root or cointegration testing has been pro-
posed as a solution to the empirical puzzle. Indeed, the higher power of the
panel tests has led to the rejection of the null of absence of PPP hypothesis.
Nevertheless, many studies have applied panel tests on groups of countries
- usually not related with each other - but the conclusion they draw could
be only applied to the group as a whole, without giving directions on which
countries follow the theoretical prediction and which do not. Therefore, it
seems appropriate to analyze this with the SUR-bounds test which can pro-
vide individual tests treating cross-country dependency at the same time.
The theory states that nominal exchange rate and price ratio of two coun-
tries should move together in the long-run. Hence, the long-run cointegrating
relation is:

sit = αi + βipit + eit

where sit is the log nominal exchange rate of country i with respect to the US
and pit is the log price di�erencial between country i and the US. Here, the
US are taken as benchmark country. The data source is the OECD database.
Di�erently from the strong PPP hypothesis which postulate slope parameters
βi equal to one, the weak version of the theory only requires that the two
series are cointegrated.
The individual ECM testing regressions are:

∆sit = πissi,t−1 + πippi,t−1 +

pi−1∑
j=1

ψisj∆si,t−j +

qi−1∑
j=0

ψipj∆pi,t−j + uit

i=aus,bel,de,den,�n,fra,gr,ire,ita,lux,nl,por,spa,swe,uk

Under the null hypothesis of no cointegration, i.e. H i
0 : πis = 0 πip = 0, the

PPP hypothesis does not hold.
For the sample under analysis, the correlations between the error series uit are
remarkable. As the following correlation matrix shows, they range between
0.60 and 0.99. Therefore, the power gains are expected to be important.
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Σ̂ =

aut
bel
de
den
�n
fra
gr
ire
ita
lux
nl
por
spa
swe
uk



1.00
0.96 1.00
0.99 0.97 1.00
0.96 0.95 0.96 1.00
0.76 0.73 0.75 0.78 1.00
0.91 0.87 0.91 0.90 0.78 1.00
0.72 0.70 0.73 0.71 0.62 0.71 1.00
0.85 0.82 0.84 0.84 0.77 0.82 0.69 1.00
0.82 0.80 0.82 0.80 0.77 0.83 0.67 0.80 1.00
0.97 0.99 0.97 0.96 0.73 0.87 0.68 0.82 0.80 1.00
0.98 0.97 0.99 0.97 0.77 0.90 0.73 0.84 0.81 0.97 1.00
0.86 0.84 0.86 0.86 0.75 0.81 0.69 0.76 0.79 0.84 0.85 1.00
0.71 0.71 0.71 0.74 0.88 0.74 0.58 0.72 0.78 0.71 0.72 0.71 1.00
0.83 0.80 0.82 0.81 0.76 0.84 0.67 0.77 0.74 0.80 0.83 0.74 0.69 1.00
0.62 0.60 0.62 0.63 0.71 0.62 0.69 0.74 0.67 0.59 0.64 0.63 0.65 0.67 1.00


Table 9 presents the results for the PSS test and for the SUR-bounds test

applied to the individual countries and to the panel as a whole.
While the PSS test is only rejecting the null of no cointegration - i.e. no
PPP hypothesis - for Sweden and France, the SUR-bounds individual tests
provide evidence in favor of the PPP hypothesis for almost all the countries,
with the only exception of UK and Greece, as well as the panel statistics.
Thus, di�erently for the PSS single equation test, the SUR-bounds test em-
pirically supports the weak-form PPP hypothesis and this is basically due to
the increased power of the new methodology with respect to the PSS test,
as shown in the previous sections.

6 Conclusions

This paper proposes a new test for panel cointegration. It extends the bounds
test of Pesaran et al. (2001) to a group of cross-sectional units by considering
the testing regressions in a SUR system in order to take into account the
cross correlation in the error terms and improve the power properties.
It tests unit-speci�c null hypotheses of no signi�cance of the autoregressive
parameters in the conditional ECM models. If the null is rejected, there is
no level relationship among the variables.
Di�erently from the other panel cointegration tests, the test proposed herein
provides unit speci�c tests as well as panel tests. This allows to identify
which units of the panel are cointegrated and which are not.

The algorithm to implement the test is illustrated and a Monte Carlo ex-
periment is performed in order to check the size and power properties. Many
scenarios are simulated, according to the degree of cross-section correlation,
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the number of units in the panel and the number of observations.
The new test shows minimal or absent size distortion and substantial gains
on the power side over the Pesaran et al. (2001) test.
The comparison with Westerlund (2007) test favours the SUR-bounds test
when the cross sectional correlation is medium or high.
The empirical application on PPP hypothesis testing, illustrates how the in-
creased power properties allow to reject the null of absence of cointegration
between the exchange rate and the price di�erential for a panel of the EU15
countries and it con�rms the validity of the PPP hypothesis.

Table 1: PSS test 0.05 critical values

T F W t

50 3.325 4.284 6.650 8.568 -3.054 -2.172
100 3.213 4.177 6.427 8.354 -2.518 -2.302
200 3.134 4.044 6.268 8.089 -2.446 -2.261

Notes: The critical values of joint and of the t statistics are respectively the 95th
and the 5th percentile of the empirical distribution obtained with 10,000 replica-
tions.
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This paper empirically tests the Expectation Hypothesis of the term structure
of the US repurchasing agreements (repo) rates, considered in a Vector Auto
Regression (V AR) model. A multiple hypotheses approach is adopted, in order
to jointly test all the statistical hypotheses implied by the EH, i.e. the long-run
and short-run implications of the theory. Furthermore, the testing procedures
are carried out by taking into account heteroskedasticity through bootstrap
inference, White correction and rolling windows analysis. Di�erently from
previous results, overall evidence in favor of the statistical non-rejection of the
EH is found. In particular, the rolling window analysis clari�es that the EH
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1 Introduction

The aim of this paper is to test the Expectation Hypothesis of the Term Structure
(EHTS) of the US repo rates. It contributes to the literature by taking into account
cointegration and changes in volatility over the sample. The testing procedure is
carried out in a multiple hypothesis framework, which means that the long-run and
the short-run implications of the theory are addressed jointly through a strict size
control.
The repo (repurchase agreement) contracts are among the most relevant �nancial
instruments in terms of trading volumes. It is a form of collateralized debt in which
the collateral is often represented by Treasury or Government Bonds, because of their
high liquidity. The repo market constitutes the main channel of short-term liquidity
provision for �nancial institutions and serves the cash storage needs of hedge founds
(see Adrian and Shin, 2010). Its market size in the US amounts to about $10 trillion,
according to estimates by the Task Force on Tri-Party Repo Infrastructure and Bank
of International Settlement (see Gorton and Metrick, 2012). Moreover, repo rates
re�ect the liquidity and collateral value of the assets, and the repo-Libor spread is
considered by �nancial agents a good proxy for liquidity.
Hence, the repo market and its functioning play a crucial role in the money market.
It is thus relevant to assess whether the repo market is well operating, namely,
whether long-term interest rates correctly re�ect future expectations on short-term
interest rate, as the EHTS predicts.

From the empirical point of view, the veri�cation of the EHTS constitutes a
controversial topic. While EHTS represents a commonly accepted framework in
economic theory, the econometric evidence is mixed. The implications of the EHTS
are generally rejected when tested on US bonds term structure data (see Campbell
and Shiller, 1987 and Bekaert and Hodrick, 2001 among the others).
More speci�cally, as regards the EHTS of the US repo Term Structure, Longsta�
(2000) �nds empirical support to the EHTS for very short-term repo rates, whereas
Della Corte et al. (2008) statistically reject the hypothesis in an extension of Longsta�
(2000) data set. Della Corte et al. (2008) apply Campbell and Shiller (1987) method-
ology as revised by Bekaert and Hodrick (2001).
Existing approaches su�er from some drawbacks. Even though Della Corte et al.
(2008) improve upon Longsta� (2000)'s single equation framework by increasing
the power of the testing procedure with a V AR approach, they do not exploit
the non-stationarity of repo rates - hence cointegration analysis - and they treat
heteroskedasticity parametrically, that is by simulating a sample with GARCH in-
novations with the bootstrap.

Therefore, the aim of this paper is to improve on the econometric and empirical
analysis along the following dimension:

1. An "inexact" formulation of the EHTS is considered. In the inexact form, the
stochastic disturbance which a�ects the relationships between interest rates at dif-
ferent maturities is consistent with a time-varying component in the risk premia.
The time-varying component represents transitory deviations from the equilib-
rium.

2. The time series properties of the interest rates are seriously taken into account by

1



treating them as a non-stationary cointegrated system. While Della Corte et al.
(2008) correct for small sample bias and apply Campbell and Shiller's (1987)
method for stationary data, this paper builds on Campbell and Shiller (1987) "two
steps" procedure which is devised for non-stationary time series. The approach
is further extended by modeling all the interest rates of the term structure as
generated by a joint process in order to make a more realistic assumption about
the Data Generating Process2.

3. The e�ect of the heteroskedasticity is controlled by means of testing procedures
which are robust to variance and covariance shifts over time.
On the one hand, Cavaliere et al. (2012, 2014) and Boswijk et al. (2013) method-
ology for heteroskedastic co-integrated V AR models and Hafner and Herwartz
(2009) methodology for heteroskedastic stationary V AR model are applied. On
the other, rolling window analysis is performed in order to assume a more general
type of parameters variation which not only involves the conditional and uncon-
ditional variance, but also the other parameters.
It is important to notice that, by introducing heteroskedasticity control, this
paper contributes to the general literature of present value models testing3, be-
cause many (if not most) applications are characterized by time-varying volatility
and therefore should use the approach proposed herein. For instance, it is well
established that �nancial time series are a�ected by heteroskedasticity.

4. The implications of the EHTS at di�erent frequencies are tested jointly and not
separately. Therefore, the size of the testing procedure is strictly controlled.
Testing for the expectation hypothesis requires that both the long-run and the
short-run properties are veri�ed. For this reason, it is important to test both
properties jointly at a pre-�xed level of signi�cance. The type I error should be
such that it does not exceed the sum of the type I errors pre-�xed for each test
involved.

5. Through the rolling window analysis, the paper introduces the idea that the
assessment of EHTS is time-dependent. Indeed, it is reasonable to expect that
the assumptions behind the EHTS are not always holding throughout the sample.

The statistical testing procedures lead to the non-rejection of the long-run implica-
tions of EHTS. For what regards short-term implications, the restrictions are not
rejected in the inexact form of EHTS. In particular, this result is due to the size
correction. Therefore, considered as a whole, the EHTS is not rejected.
Furthermore, the rolling window analysis clari�es that the EHTS is only rejected in
periods of turbulence of �nancial markets.

The remainder of the paper is organized as follow: Section 2 introduces the
theoretical model. Section 3 describes the econometric methods applied on the data

2Sarno et al. (2007) applied the Bekaert-Hodrick methodology to all possible trivariate combi-
nations of their 12 bond yields.

3Recent empirical contributions which use Campbell and Shiller (1987) methodology to test
present value models are: Sbordone (2005) and Fanelli (2008) for what regards New Keynesian
Phillips Curve; Engel and West (2005) in an application on exchange rates and Campa and Gavilan
(2011) for the empirical veri�cation of the Permanent Income Hypothesis.
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for the term structure of Repo rates (illustrated in Section 4). The results of the
empirical analysis are displayed and discussed in Section 5. Section 6 o�ers some
conclusions.

2 Theoretical framework

The EHTS of interest rates states that the return on the h-period investment should
equal the return of a 1 period investment rolled over h times, plus a term premium:

(1 +R
(h)
t )h = Θ

(h)
t

h−1∏
j=0

(1 + Etrt+j)

where R
(h)
t is the annual interest rate on a h period investment, rt is the annual

return on a 1 period investment, Et = E( . | It) is the expected value conditional on

the information set It and Θ
(h)
t is the term premium.

Taking logs, the relation becomes:

R
(h)
t =

1

h

h−1∑
j=0

Etrt+j + θ
(h)
t (1)

where θ
(h)
t = (1/h)log(Θ

(h)
t ).

The term premium is modeled such that it is the sum of a constant long-run com-
ponent, θ̄(h) and a time varying component, θ̃

(h)
t :4

θ
(h)
t = θ̄(h) + θ̃

(h)
t

The time varying component θ̃
(h)
t can be interpreted as a term which captures what

the EHTS is not able to explain, i.e. observable transitory deviations from the
equilibrium conditions (i.e. variations of expected equilibrium returns, change in
the risk free rate and riskiness, etc.). In principle, it can be assumed to follow

several stochastic processes. However, if θ̃
(h)
t captures transitory deviations from the

equilibrium conditions, its time series pattern cannot exhibit too much persistence
and this term must be at least stationary. In the empirical analysis, it will be
assumed that θ̃

(h)
t obeys a Martingale Di�erence Sequence (MDS), i.e. a process

such that E[θ̃
(h)
t | It−1] = 0. This means that the process is not forecastable with

currently available information and hence there is no room for arbitrage.
As González and Gonzalo (2000) show, adding θ̃

(h)
t does not change the equilibrium

conditions from which the model is derived, in the sense that the model with time-
varying term-premium is derived from the same non-arbitrage conditions of the exact
present value model.

4Campbell and Shiller (1987) and Hansen (2003) among others, consider a constant term pre-
mium in the theoretical model, while González and Gonzalo (2000) by assuming a time-varying
term premium - but abstracting from the constant part - derive testing procedures for the "inexact"
present value model.
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Subtracting rt from both sides of equation (1), an equation in terms of the spread

S
(h)
t := R

(h)
t − rt is obtained:

S
(h)
t =

h−1∑
j=0

(
1− j

h

)
Et∆rt+j + θ

(h)
t

Shiller (1979) derived an approximation of the equation above from a linearization
of an expectations model and obtained the following solution through recursive
substitution:

S
(h)
t =

h−1∑
j=0

δjhEt∆rt+j + θ
(h)
t

with δh := 1/(1 +R) being a parameter of linearization.
By writing out the term premium, the following equation is obtained:

S
(h)
t =

h−1∑
j=0

δjhEt∆rt+j + θ̄(h) + θ̃
(h)
t (2)

An equivalent parametrization of equation (2) is derived after some algebraic
manipulations which lead to the expression:

S
(h)
t = δhEtS

(h)
t+1 + δhEt∆rt+1 + θ

(h)
t (3)

i.e. a inexact formulation of the Present Value model (see González and Gonzalo,
2000 and Fanelli, 2008).

3 Methodology

Provided that the interest rates are integrated of order one (I(1)) variables, the
EHTS can be tested following Campbell and Shiller's (1987) approach.
The idea is to nest the model in equation (2) within a V AR model for the interest
rates. The testing procedure consists in two steps.

The authors outline a testable implication of the theoretical equations above,
which is veri�ed in the �rst step. If the short-term rate rt is an I(1) variable, the

term
∑h−1

j=0 δ
j
hEt∆rt+j in equation (2) is stationary, as well as θ̃

(h)
t , if it is assumed to

be a MDS or an MA(q) process, for instance. It follows that the term rt − Rt + θh
should be a stationary cointegrating relation, i.e. in the long-run, the long-term
rate should equal the short-term rate plus a constant term premium.
Therefore, a necessary condition for the EHTS to hold is that the long-term rate
and the short-term rate are cointegrated, with cointegrating vector (1, −1, θ̄h), for
every maturity h.

The second step is relevant and indispensable, because the �rst step only gives
indications about "low frequency" implications of the theory. It consists in testing
the cross-equation restrictions implied by the theoretical equation on the parameters
of a stationary transformation of the statistical model as it will be shown in what
follows. Therefore, in the empirical analysis, three hypotheses have to be veri�ed,
namely:
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- the cointegration hypothesis (Hr), i.e. there must exist a cointegrating relation
between interest rates at all maturities;

- the restrictions on the beta matrix (Hβ), which maintain that the long-run
cointegrating vectors are (1, −1, θ̄h), for every maturity h.

- the cross equation restrictions (HCER) on the parameters of the VAR.

The three hypotheses have to hold jointly, in order for the EHTS to be valid. Any
violation implies rejection of the theoretical model. As Bårdsen and Fanelli (2014)
suggest, in testing many hypotheses using e.g. the 5% signi�cance level for each
hypothesis, the overall size of the test procedure is likely to be large (Savin, 1984).
For this reason, the overall asymptotic size should not exceed the sum of the type I
errors pre-�xed for each test.
As in Campbell and Shiller (1987) and Della Corte et al. (2008), the theoretical
predictions will be tested on bivariate V ARs which model couples of short term rate
and long term rates. Then, the testing procedure will be extended to a multivariate
V AR process which jointly models the whole term structure of p maturities, in
order to make a more reliable assumption on the Data Generating Process of the
repo rates.

Hence, the interest rates of the term structure are assumed to follow a V AR(k)
process:

Xt = c + A1Xt−1 + ...+ AkXt−k + εt (4)

with Xt being a p × 1 vector. In the bivariate model, Xt := [rt R
(h)
t ]′ and p = 2,

whereas in the joint system Xt := [rt R
(1)
t R

(2)
t ...R

(n)
t ]′ is a p = n + 1 vector of the

short-term interest rate and the R
(h)
t , h = 1, ..., n, long-term interest rates.

Notice that equation (4) is a conditional model for Xt on its past values up to
a truncation lag k, i.e. E(Xt | It) = E(Xt | Xt−1,Xt−2, ...,Xt−k). Here, the infor-
mation set is represented by past observations of interest rates. In this sense, this
modeling assumption quali�es the approach as a "weak form" - type of Expectation
Hypothesis testing, as de�ned by Fama (1970).

3.1 First step: rank test and restrictions on β (Hr and Hβ)

As stated above, as a �rst implication of EHTS, the term structure of interest rates
should be driven by a common stochastic trend and the (p − 1) spread(s) between
long rate(s) and the short rate should be stationary. Consequently, the multivariate
process (4) should be characterized by one common stochastic trend and (p − 1)
cointegrating relations.
The long-run implications are the same both for the inexact present value model (i.e.

equation (2) with θ̃
(h)
t ∼ MDS) and the exact present value model (i.e. equation

(2) with θ̃
(h)
t = 0) as remarked by González and Gonzalo (2000).

Considering the V ECM representation of the V AR in (4)

∆Xt = ΠXt−1 +
k−1∑
i=1

Γi∆Xt−i + εt (5)
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the aforementioned condition translates into a reduced rank equal to (p− 1) of the
matrix Π.
In order to statistically test this prediction, rank tests are applied, namely, Jo-
hansen's test, which relies on asymptotic distribution of the test statistics, and
Cavaliere et al. (2012, 2014) test, which tackles the problem of heteroskedasticity
with wild bootstrap.
If the condition is satis�ed, equation (5) can be written as:

∆Xt = αβ′Xt−1 +
k−1∑
i=1

Γi∆Xt−i + εt (6)

with α and β matrices describing the short-run and the long-run dynamics, re-
spectively. In the bivariate case, the long-run matrix β has dimension 2×1, whereas
in the model for all interest rates β is a p× n matrix.
In the bivariate model, the cointegrating vector should have as coe�cients (1, −1, θ̄h).
As for the joint system, the columns of the β which outline the cointegrating rela-
tions should be as such:

β =



1 1 · · · 1
−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1
θ̄1 θ̄2 · · · θ̄n


(7)

This can be tested by leaving the �rst row of parameters unrestricted and then ver-
ifying the restrictions with a Likelihood Ratio (LR) test as in Hansen (2003).
Again, together with the asymptotic test, a bootstrap test (Boswijk et al., 2013) is
performed in the testing procedure.
Of particular relevance is the fact that, both in the bivariate and in the joint sys-
tem, the V ECM allows to identify the n long-run constant component of the term
premia θ̄h, h = 1, .., n in the matrix β. 5

3.2 Second step: cross equation restrictions (HCER)

Following Campbell and Shiller (1987), once the necessary condition has been ful-
�lled, the restrictions implied by the rational expectation model in equation (3)
should be tested in a stationary V AR model.
For the derivation of the constraints implied by a bivariate V AR the reader can
refer to previous literature and in particular to González and Gonzalo (2000) for the
inexact present value model's restrictions.
In what follows, the derivation of the constraints implied from the system of all
interest rates is discussed.

5Term premia could be modeled as piece-wise time varying in a V ECM model with structural
changes as proposed by Hansen (2003).
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The V ECM model in equation (5) is reparametrized as the following stationary
V AR:

Yt = B1Yt−1 + ...+ B̃kYt−k + et (8)

where

Yt :=

[
Št

∆rt

]
with Št being an (n × 1) vector of cointegrating relations, i.e. the spreads minus

the respective estimated long-run constant term premium ˆ̄θh, Š
(h)
t := R

(h)
t − rt− ˆ̄θh,

h = 1, ..., n. The last column of B̃k is restricted to be 0p.
The companion form of equation (8) is

Y∗t = JB Y∗t−1 + e∗t

The theoretical equations (2) for each maturity can put together in a system which,
in compact form, would be:

Št = MδEtŠt+1 + DδEt∆rt+1 + θ̃t (9)

with θ̃t being either equal to zero (exact present value model) or an MDS (inexact
present value model).
The variables of equation (9) are expressed in terms of Y∗t , so that, through substi-
tutions, it is possible to obtain the following expression:

RS −MδRSJB −DδRrJB = 0

for the exact present value model, and

RSJB −MδRSJ2
B −DδRrJ

2
B = 0

in the case of inexact formulation.
The restrictions on matrix JB (hence on the parameters of the equation (8)), are
derived from the above equations.
The example in Appendix A clari�es how the restrictions are formulated.

The restrictions derived as such, are tested on the stationary V AR of equation
(8). In the model for all interest rates, the joint restrictions are very likely to be
rejected because of the complexity of the constraints. Instead, the hypothesis tests of
the n EHTS equations (3) veri�ed on bivariate V ARs, breaks down the complexity
of the problem.
In order to treat heteroskedasticity, the bootstrap approach proposed by Hafner and
Herwartz (2009) in a stationary V AR framework and HAC correction are adopted.

3.3 Rolling window analysis

With the aim of taking into account a more general type of parameters variation
over time, a rolling window analysis is performed. In this case, not only the variance-
covariance matrix, but also all the parameters of the statistical model are assumed
to change over the period under investigation. In this way, it is also possible to
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follow the evolution of the test statistic over time and evaluate in which periods the
EHTS holds.
The rolling window analysis consists in computing the test statistics for the hy-
potheses Hr, Hβ and HCER and the relative p-values for each sub-sample (window)
of 1000 observations (approximately 4 years with business days data), i.e. for sub-
samples (1,...,1000), (2,...,1001), ... , (4576,..., 5576).
Since Hr, Hβ and HCER are tested jointly, each sub-sample will not reject the EHTS
when the sum of the p-values of all the tests will exceed the pre-�xed level of sig-
ni�cance. Potentially, the critical values of each test could be α/N where N is the
number of hypothesis to be tested jointly.

4 Data

The methodology described above is applied to a dataset of general collateral gov-
ernment repo rates. The data consists of daily observations of closing repo rates for
the following maturities: overnight, one-week, two-weeks, three-weeks, one-month,
two-months, and three-months, so that the term structure comprises 7 interest rates.
The sample goes from May 21st 1991 to October 23rd 2013.
For comparative purposes, the analysis is also conducted in a sample which excludes
the observation from May 1st 20096 on - in order to exclude the too stable last part
of the sample - and on Della Corte et al. (2008) sample (May 21st 1991 - December
9th 2005).
An extensive descriptive analysis of the data set has been provided by Longsta�
(2000) and Della Corte et al. (2008) for the sample May 21st 1991 - December 9th

2005. As it is possible to see in Figure 1, the most relevant aspect of the following
period included in the present analysis, is the sharp increase of repo rates until the
recent �nancial crisis. After the burst of the crisis, the levels of variables decrease
and stabilize around the zero bound.7

The time series plot of the levels and �rst di�erences of the interest rates (Figure 1
and Figure 2, respectively) show two relevant aspect for the present analysis: non-
stationarity and heteroskedasticity.
For what regards the former, the series show clear signs of non-stationarity and the
statistical analysis following in the next section con�rms this �nding.
Moreover, periods of high volatility and low volatility are alternating all over the
sample. In particular, higher noise coincides with �nancial markets' crises. Further-
more, shorter maturities display higher volatility.

6Since 2009, the Fed undertook "unconventional monetary policies" which had the e�ect of
stabilizing the interest rates to a low level. Furthermore, since 1st May 2009 the fail charge was
introduced by the Fed (see http://www.newyorkfed.org/tmpg/faq.html), i.e. up to 3% charge
in case of fail to deliver upon trade.

7General Collateral Repo are backed by very liquid assets (generally Treasury bills maturing
in less than 10 years), di�erently from Special Repo contracts, in which a speci�c asset is asked
for as collateral. Therefore, the interest rate of the former is that one prevailing in the money
market and it is really close to rates on overnight loans in the federal funds market. It follows that
repo rates are closely related to the FED rate, which was brought to near zero in response to the
�nancial crisis.
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Figure 1: Repo interest rates

Notes: The graphs show time series plots of the interest rates at daily frequency (business days). Sample: 21st 1991
- October 23rd 2013.

Figure 2: Repo interest rates - �rst di�erences

Notes: The graphs show time series plots of �rst di�erences of interest rates at daily frequency (business days).
Sample: 22st 1991 - October 23rd 2013.
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5 Results

The implementation of the two steps begins with the estimation of V AR models
for the interest rates at di�erent maturities.The V AR's lag length is �xed at k =
2, 5 and 11, as suggested by previous literature and by lag selection information
criteria8. However, results are invariant to the sample choice. In what follows,
results for lag k = 5 and May 21st 1991 - October 23rd 2013 sample are presented.
Results for other samples can be found in the Appendix B.

5.1 First step: rank test and restrictions on β (Hr and Hβ)

The �rst step is based on testing the long-run implications of the EHTS, i.e. the
presence of a common stochastic trend driving the rates of the term structure. This
is empirically translated the β matrix in equation (6) having column rank equal to
n = 1 in the bivariate system case and column rank equal to n = 6 in the joint
system case, i.e. in the rank hypothesis (Hr) testing.
The tests' results are shown in Table 1.
Johansen (1995) rank test and the heteroskedastic variance Cavaliere et al. (2012,
2014) test9 do not reject the null of cointegration rank equal to (n− 1), both in the
bivariate (Table 1 - Panel A) and in the multivariate case (Table 1 - Panel B). Fixed
the cointegration rank, the V AR(5) can be expressed in its V ECM form (equation
(6)) and the cointegrating restrictions (7) implied by the theoretical model can be
tested on the β matrix (Hβ).
The results of the LR test for the h bivariate systems are shown in Panel A of Table
2, together with the estimated constant term premia θ̄h. Both the asymptotic test
and the bootstrap test by Boswijk et al. (2013) cannot reject the null hypothesis.
Panel B of Table 2 reports the LR tests and the θ̄h for the joint system test. Also
in this case, the test on the β matrix cannot reject the restrictions implied by the
EHTS, both in the asymptotic version and in the bootstrap version (see Panel A).

The long-run constant term premia ˆ̄θh h = 1W, 2W, 3W, 1M, 2M, 3M are estimated
and reported in the �rst column of both Panels.

The estimation of the constant term premia from the multivariate model should
be more reliable, because the information set on which the model is based is richer.
The estimated term premia of the model for all interest rates tend to be signi�cant
but very small in magnitude (at most 0.0399 basis points). Agents ask for a very
small extra-yield, given the fact that, when choosing longer maturities, they have
to commit for a small additional amount of time with respect to the overnight
maturity. Moreover, the term premia are increasing with maturity, as expected.
Surprisingly, the term premia related to the 1W and the 2W rates are negative.
A tentative explanation for the negative signs is that the cost of committing for a

8Both Longsta� (2000) and Della Corte et al. (2008) use 5 lags. For what regards information
criteria, the Schwartz Bayesian Criterion (SBC) chooses 2 lags, Hannan and Quinn Criterion (HQC)
11 lags and Akaike Criteria (AIC) 12, using a maximum lag equal to 12. The choice of a bigger
maximum lag would have led to the selection of a higher lag for the AIC, but Ljung-Box Q test of
no-autocorrelation shows total absence of residuals' autocorrelation already in a model with k = 6.

9The boostrap testing procedure has been implemented with the command bootrank.ado for
Stata which I programmed on purpose. However, the ado �le is meant to be used on every dataset.
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Table 1: Cointegration Rank Test - Hr

Deterministic component: restricted constant obs = 5576
Sample: May 29th 1991- October 23rd 2013 Lags = 5

Panel A: Bivariate systems

rank trace stat. P-value bootstrap
p-value

1W
0 854.29 0.000 0.000
1 2.44 0.691 0.671

2W
0 730.75 0.000 0.000
1 2.58 0.665 0.619

3W
0 624.72 0.000 0.000
1 2.84 0.616 0.553

1M
0 535.17 0.000 0.000
1 2.84 0.617 0.607

2M
0 421.50 0.000 0.000
1 3.21 0.550 0.551

3M
0 334.06 0.000 0.000
1 3.01 0.586 0.581

Panel B: Joint systems

rank trace stat. P-value bootstrap
p-value

0 4492.70 0.000 0.000
1 3278.22 0.000 0.000
2 2286.93 0.000 0.000
3 1450.74 0.000 0.000
4 802.72 0.000 0.000
5 220.02 0.000 0.000
6 2.33 0.712 0.676

Notes: In the last two columns p-values of Johansen (1995) rank test and Cavaliere
et al. (2012, 2014) bootstrap rank test are reported. For the latter, Gaussian wild
bootstrap has been performed. The number of bootstrap replications is 499.

longer period is lower that the cost of rolling over the one period repo contract, since
the commitment is for such a short time period. Therefore, the agents would prefer
to renounce to some yield in order to secure his position for one or two weeks, hence
the negative term-premia.
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Table 2: Test on β - Hβ

Panel A: Bivariate systems Panel B: Joint system

θ̄h LR stat. P-value bootstrap θ̄h LR stat. P-value bootstrap
p-value p-value

1W
-0.0059 5.27 0.022 0.033 -0.0052

9.43 0.151 0.196

(0.002) (0.000)

2W
-0.0039 2.47 0.116 0.097 -0.0025
(0.003) (0.000)

3W
-0.0014 0.95 0.329 0.294 0.0006
(0.004) (0.000)

1M
0.0053 0.19 0.666 0.635 0.0085
(0.005) (0.000)

2M
0.0184 0.18 0.671 0.709 0.0229
(0.007) (0.000)

3M
0.0345 0.82 0.36 0.371 0.0399
(0.009) (0.000)

Notes: LR test compares the restricted model with β matrix as (7) with the unrestricted model that has a free
parameter on the �rst row of (7) in the V ECM equation ∆Xt = ΠXt−1 +

∑4
i=1 Γi∆Xt−i + εt . Panel A and

Panel B report the results for the test on the bivariate system and the joint system, respectively. In each Panel, the
�rst column reports the estimates of the constant term premia θ̄ (standard errors in brackets). Last two columns
display p-values of Johansen (1995) rank test and Boswijk et al. (2013) bootstrap LR test.

5.2 Second step: cross equation restrictions (HCER)

As mentioned above, the second step veri�es the cross-equation restrictions implied
by the theoretical model on the V AR of equation (8). In what follows, constraints
from both the exact present-value model and the inexact present value model are
tested in a V AR framework.
In the case of the bivariate model, with k = 5, the restrictions derived from the
V AR ammount to 9.
The constraints implied by the EHTS on the V AR model comprising all the interest
rates are derived as explained in Appendix A. The restrictions amount to a very
large number, which is increasing with the number of lags considered10.
In the joint system case, the set of restrictions is rather complex, hence the null
hypothesis is very likely to be rejected. The rejection of the EHTS is not the only
reason for this outcome.
Table 3 shows the results of the cross-equation restriction tests for the n bivariate
V ARs. The two Wald-type statistics proposed by Hafner and Herwartz (2009) are
computed in order to adjust for the e�ect of heteroskedasticity. Table 3 shows, for
each long-term maturity, the test statistics and the p-values associated with the test.
In the case of non-linear restrictions (inexact present value model), it is not possible
to apply the bootstrap procedure suggested by the authors because a closed-form
solution for the coe�cients under the non-linear constraint does not exist, hence the

10For instance, for a V AR(5) the restrictions to be imposed are n(nk)− n = 204 (see Appendix
A for details).
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bootstrap samples cannot be generated under the null hypothesis.
As it is possible to see, HCER is strongly rejected at any signi�cance level for almost
all the maturities in the case of the exact present value model, exceptions being the
2 weeks, 3 weeks and 1 month rates (with heteroskedasticity correction, either with
the bootstrap procedure or the White approach).
However, since the EHTS is tested for the whole term structure in a multiple hy-
pothesis testing framework, Hh

CER should not be rejected at any maturity, given
the pre-�xed signi�cance level. This is the case of the test statistics corrected for
heteroskedasticity for the inexact present value model.

Table 3: Test of restrictions implied by EHTS HCER - bivariate

V ARs

Exact Model Inexact Model

Wald test Wald test with HAC Wald test Wald test with HAC

1W
345.51 31.16 173.27 13.67
(0.000) (0.000) (0.000) (0.135)
(0.012) (0.000)

2W
225.40 31.82 71.89 8.35
(0.000) (0.000) (0.000) (0.500)
(0.166) (0.000)

3W
339.03 22.57 73.76 6.03
(0.000) (0.007) (0.000) (0.737)
(0.040) (0.002)

1M
875.26 11.08 22.16 3.92
(0.000) (0.268) (0.008) (0.917)
(0.098) (0.251)

2M
545.74 57.57 32.09 7.15
(0.000) (0.000) (0.000) (0.622)
(0.004) (0.000)

3M
600.42 80.37 54.69 15.69
(0.000) (0.000) (0.000) (0.074)
(0.000) (0.000)

Notes: The Wald tests (plain and with White (1980) Heteroskedasticity and Autocorrelation Consistent
(HAC) covariance, see Hafner and Herwartz, 2009) verify the restrictions implied by the theoretical

equation Š
(h)
t = δhEtŠ

(h)
t+1 + δhEt∆rt+1 + θ̃

(h)
t with θ̃

(h)
t = 0 (i.e. exact present value model) or θ̃

(h)
t ∼

MDS(0,Σθ) (i.e. "inexact" present value model) on the V AR model Yt = B1Yt−1+...+B̃5Yt−5+et,

with Yt = [Š
(h)
t ,∆rt]′ and h = 1W, 2W, 3W, 1M, 2M, 3M . In brackets, asymptotic and bootstrap (in

italics) p-values are reported. Bootstrap p-values are computed with B = 499 replications.

Table 4 reports the result of the Likelihood Ratio (LR) test of HCER on the
V AR including all interest rates. Given the high number of restrictions (204) im-
plied by the V AR, a Wald-type test is algebraically too involving to be formulated.
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Table 4: Test of restrictions implied by EHTS HCER - joint

system

Trend: restricted constant obs = 5576
Sample: May 29th 1991- October 23rd 2013 Lags = 5

LR(204) p-value

exact 14115.69 0.000
inexact 11529.89 0.000

Notes: The LR test veri�es the restrictions implied by the theoretical equation
Št = MδEtŠt+1 + Dδ∆rt+1 + θ̃t with θ̃t = 0 (i.e. exact present value model) or
θ̃t ∼ MDS(0,Σθ) (i.e. "inexact" present value model) on the V AR model Yt =

B1Yt−1 + ... + B̃5Yt−5 + et, with Yt = [Š
(1W )
t , ..., Š

(3M)
t ,∆rt]′. The p-value is re-

ported in the last column.

As perhaps expected, the restrictions are strongly rejected. This might be due to
the complexity of the restrictions involved.11

An alternative method for testing the restrictions implied by the EHTS in a joint sys-
tem, without explicitly deriving the restrictions, could be the "graphical method".
The methodology was introduced in Campbell and Shiller (1987) and revised by Jo-
hansen and Swensen (2011) by using parameters from the V ECM model in equation
(5). The method consists in building the spread series as predicted by the theoret-
ical model and compare them with the actual spread series. This can be object of
future research.

5.3 Multiple hypotheses testing

Summing up the results for the whole testing procedure, in the bivariate testing
case, if an overall signi�cance level of 5% and hence a type-I error of the tests equal
to 0.00625 is considered, each stage of the procedure (i.e. Hr, Hβ and HCER) is
not rejected12 in the inexact present value model case, as shown in the summarizing
table 7.
Notice that the non-rejection of the EHTS is veri�ed once time varying volatility is
taken into account in the statistical model. This result underlines the importance
of heteroskedasticity correction in Present Value models.
Overall, the empirical analysis shows supporting evidences in favor of the EHTS, in
the model which allows for transitory deviations from the equilibrium conditions,
i.e. in the inexact present value model.

11Bootstrap inference appears to be useless, because it will not lead to the non-rejection of the
null hypothesis. Moreover, a bootstrap procedure has been proposed by Hafner and Herwartz
(2009) for a Wald-type test, which is not possible to compute for the reasons explained above.

12The reader should remind that under the null the constraints implied by the EHTS are true.
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Table 5: Test of Expectation Hypothesis - Summary results Hr, Hβ, HCER

Rank test - Hr Beta test - Hβ CER test - HCER

Exact model Non exact model

trace stat. p-value bootstrap LR stat. p-value bootstrap Wald(HAC) p-value bootstrap Wald(HAC) p-value
p-value p-value stat p-value stat

Bivariate System

1W 2.44 0.691 0.671 5.27 0.022 0.033 31.16 0.000 0.000 13.67 0.135
2W 2.58 0.665 0.619 2.47 0.116 0.097 31.82 0.000 0.000 8.35 0.500
3W 2.84 0.616 0.553 0.95 0.329 0.294 22.57 0.007 0.002 6.03 0.737
1M 2.84 0.617 0.607 0.19 0.666 0.635 11.08 0.268 0.251 3.92 0.917
2M 3.21 0.550 0.551 0.18 0.671 0.709 57.57 0.000 0.000 7.15 0.622
3M 3.01 0.586 0.581 0.82 0.364 0.371 80.37 0.000 0.000 15.69 0.074

Joint System 2.33 0.712 0.676 9.43 0.151 0.196 14115.69 0.000 11529.89 0.000

Notes: The table reports the results of the rank test (Hr), the test on the beta coe�cients (Hβ) and the test of the cross-equation restrictions (HCER) from the previous tables 1-3 (see for further
details). Asymptotic and bootstrap p-values are reported.
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5.4 Rolling window analysis

The graphs in Figure 3 and 4 show the rolling window of the p-values for the testing
of the rank hypothesis (Hr), the test of restrictions on the beta matrix (Hβ) and
the test of CER for each maturity (HCER) for the exact and the inexact bivariate
models, respectively13. The EHTS is rejected when one of the test rejects its null
hypothesis14.
In the graphs, each test rejects its null hypothesis (i.e. the validity of EHTS) when
the p-value series is below the signi�cance level (red line). The latter is pre-�xed
at 0.05/3 = 0.01666 because of multiple hypothesis testing.The grey areas highlight
the rejection periods.
In the exact model, the EHTS is rejected most of the times, the grey area covering
almost the whole graph area.
As for the inexact model, the rolling window analysis shows that the long-run impli-
cation of EHTS are con�rmed by data most of the time. Considering each maturity,
it is possible to notice that the shortest maturities reject the EHTS more frequently
along the sample.
However, in some periods the EHTS is de�nitely rejected for all maturities. Interest-
ingly, these periods coincide with times of turmoil of the �nancial market and/or the
repo market. After all, it is reasonable to conjecture that the rational expectation
and unlimited arbitrage hypothesis which are on the basis of the EHTS do not hold
during economic crises15.
The �rst rejections are between the Asian and the Russian �nancial crises and in
the aftermath of the Russian crisis (late 1998-1999). Likewise, the Dot-com bubble
burst between 2000 and 2001 and the 9/11 caused disruption in the �nancial as well
as in the repo market in particular. Because of the terrorist attack, settlement fails
had an enormous jump (more than 110%).16 For what regards the years between
2003 to 2006, this period was characterized by many fails on repo contracts17 and
by "market squeezes" which distorted prices in the repo market (see Remarks of
Deputy Assistant Secretary for Federal Finance James Clouse U.S. Department of
the Treasury, September 27th, 2006). As for the �rst issue, in April 2006 the Bond
Market Association adopted the fail penalty measure, which charges a penalty on
the trader in case of fail. For what regards market squeezes, some big traders -
deemed to manipulate Treasury and repo market - were �red in the last months
of 2006 and no market squeeze materialized anymore. As it is possible to see on
the graph, after these events, the EHTS equilibrium was restored until the recent
�nancial crisis. In this period, the repo market was a�ected by numerous fails and

13In the joint system, the cross-equation restrictions (HCER) are rejected all over the sample.
Therefore the rolling windows graph is not reported.

14In some windows, the maximization of the log-likelihood function was not possible because of
collinearity. Therefore, the LR statistics was not computable and the corresponding observations
have been dropped.

15The reader can refer to Krishnamurthy (2009) for an account of limit of arbitrage problems in
the repo market during the recent crisis.

16See Fleming and Garbade (2002).
17Even though counterparty fail of a repo contract has no nominal costs - in such an event,

the counterpart can keep the collateral - it implies back-o�ce costs and negative externalities on
traders' business.
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run on repo contracts, especially those backed by private sector collaterals (see Gor-
ton and Metrick, 2012 and Krishnamurthy et al., 2012). The steeper penalty fail
introduced by the Fed on May 1st 2009, mitigated the repo market distress. Right
after this event, the EHTS test starts to not-reject again the null, until July 2011,
when concerns about US debit ceiling started to spread among �nancial sector's
operators (see D. Du�e and A K Kashyap, "US default would spell turmoil for the
repo market", The Financial Times, July 29th 2011).
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Figure 3: Rolling window p-values - w.s.=1000 - Exact Model

Notes: The Figure reports the graphs of the rolling window p-values for each of the test, in the following order: rank test (blue line), test of restrictions on the beta matrix (orange line)
and the CER (green line) for each maturity ("1W",...,"3M"). For each date, the corresponding p-value of the relevant test are reported. The red line represents 0.01666 signi�cance
level. A window size of 1000 observation has been used.
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Figure 4: Rolling window p-values - w.s.=1000 - Inexact Model

Notes: The Figure reports the graphs of the rolling window p-values for each of the test, in the following order: rank test (blue line), test of restrictions on the beta matrix (orange line)
and the CER (green line) for each maturity ("1W",...,"3M"). For each date, the corresponding p-value of the relevant test are reported. The red line represents 0.01666 signi�cance
level. A window size of 1000 observation has been used.
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6 Conclusions

The empirical veri�cation of the EHTS has always constituted a controversial ground
for applied econometrics research. Many empirical strategies have been applied, with
mixed conclusions.
For what regards the repo market, two previous studies by Longsta� (2000) and
Della Corte et al. (2008) provide contrasting statistical evidences by using di�erent
methodologies.

This paper applies most recent econometric techniques to provide a rigorous
statistical treatment of the testing problem. The approach adopted allows to control
for the following features of the data and of the testing procedure in a coherent
framework:

1. the possibility of temporaty deviation of the data from the equilibrium which
determines the EHTS equation ("inexact" form);

2. the non-stationarity of the repo interest rates;

3. the heteroskedasticity in the data;

4. the joint nature of the statistical problem;

5. the time-dependency of the validity of the EHTS.

The empirical results provide overall support to the validity of EHTS. None of the
tests rejects the restrictions implied by the EHTS in the inexact model. It is impor-
tant to notice that the result is reached only after heteroskedasticity correction.
Finally, a rolling window analysis shows that the implications of the EHTS are only
rejected in periods of turmoils either of the �nancial or of the repo market.
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Appendices

A Restrictions implied by the EHTS - Example:

n = 2, k = 2

Consider the case in which there are a short-run interest rate and two long-run
interest rates. In this case, the dynamics of the term structure of interest rates is
modeled as the following multivariate process:

Xt :=

 rt
R

(1)
t

R
(2)
t


As outlined above, the tri-variate system should have one common trend and two
cointegrating relations which are the spreads (to which the respective estimate of the

constant term premium is subtracted) Š
(1)
t := R

(1)
t −rt− ˆ̄θ1 and Š

(2)
t := R

(2)
t −rt− ˆ̄θ2.

Moreover, the vector Yt of equation (8) is de�ned as such:

Yt :=

[
Št

∆rt

]
:=

Š(1)
t

Š
(2)
t

∆rt


The theoretical relation to be tested (equation 3) is a bivariate system:[

Š
(1)
t

Š
(2)
t

]
=

[
δ1 0
0 δ2

][
EtŠ

(1)
t+1

EtŠ
(2)
t+1

]
+

[
δ1

δ2

]
Et∆rt+1 +

[
θ̃

(1)
t

θ̃
(2)
t

]

which can be rewritten in a compact form as:

Št = MδEtŠt+1 + DδEt∆rt+1 + θ̃t (10)

A.1 Exact present value model - θ̃t = 0

In the case of a model which excludes time varying risk premia, the theoretical
equation to be tested is:

St = MδEtSt+1 + Dδ∆rt+1 (11)

As illustrative example, consider the case in which k = 2. The V AR model in
equation (8) is:

Yt = B1Yt−1 + B̃2Yt−2 + et

and the companion form is:[
Yt

Yt−1

]
=

[
B1 B̃2

I3 0

] [
Yt−1

Yt−2

]
+

[
et
0

]
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Y∗t
6×1

= JB
6×6

Y∗t−1
6×1

+ e∗t
6×1

(12)

The restrictions implied by the rational expectation equation (10) will be expressed
as restrictions on the parameters of the JB matrix and ultimately on those of B1

and B̃2.
As it is possible to notice, each variable of equation (10) can be expressed in terms
of Y∗t as follows:

St = RSY∗t

EtSt+1 = RSEtY
∗
t+1 = RSJBY∗t

Et∆rt+1 = RrEtY
∗
t+1 = RrJBY∗t

where

RS :=

[
1 0 0 0 0 0
0 1 0 0 0 0

]
Rr := [0 0 1 0 0 0]

The substitution of the previous expressions in (10), leads to the following equation:

RSY∗t = MδRSJBY∗t + DδRrJBY∗t

(RS −MδRSJB −DδRrJB)Y∗t = 0

since Y∗t 6= 0 a.s., the following equation must hold:

RS −MδRSJB −DδRrJB = 0

that is[
1 0 0 0 0 0
0 1 0 0 0 0

]
−
[
δ1 0
0 δ2

] [
1 0 0 0 0 0
0 1 0 0 0 0

]
JB −

[
δ1

δ2

]
[0 0 1 0 0 0]JB = 0

2×6

where

JB =

[
B1 B̃2

I3 0

]
=


b1

11 b1
12 b1

13 b2
11 b2

12 0
b1

21 b1
22 b1

23 b2
21 b2

22 0
b1

31 b1
32 b1

33 b2
31 b2

32 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


Simple matrix algebra gives[
1 0 0 0 0 0
0 1 0 0 0 0

]
−
[
δ1 0
0 δ2

] [
b1

11 b1
12 b1

13 b2
11 b2

12 0
b1

21 b1
22 b1

23 b2
21 b2

22 0

]
−
[
δ1

δ2

]
[b1

31 b
1
32 b

1
33 b

2
31 b

2
32 0] = 0

2×6

and [
1 0 0 0 0 0
0 1 0 0 0 0

]
−
[
δ1b

1
11 δ1b

1
12 δ1b

1
13 δ1b

2
11 δ1b

2
12 δ1b

2
13

δ2b
1
21 δ2b

1
22 0 δ2b

2
21 δ2b

2
22 0

]
+

−
[
δ1b

1
31 δ1b

1
32 δ1b

1
33 δ1b

2
31 δ1b

2
32 0

δ2b
1
31 δ2b

1
32 δ2b

1
33 δ2b

2
31 δ2b

2
32 0

]
= 0

2×6
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Finally, the two sets of restrictions are

δ1b
1
11 + δ1b

1
31 = 1

δ1b
1
12 + δ1b

1
32 = 0

δ1b
1
13 + δ1b

1
33 = 0

δ1b
2
11 + δ1b

2
31 = 0

δ1b
2
12 + δ1b

2
32 = 0

and



δ2b
1
21 + δ2b

1
31 = 0

δ2b
1
22 + δ2b

1
32 = 1

δ2b
1
23 + δ2b

1
33 = 0

δ2b
2
21 + δ2b

2
31 = 0

δ2b
2
22 + δ2b

2
32 = 0

The �rst (second) set links the parameters of the �rst (second) spread equation to
the parameters of the equation for ∆rt.

A.2 Inexact present value model - θ̃t 6= 0

If θ̃t ∼MDS(0,Σθ), taking expectations conditional on the information set It−1 of
(10) gives:

Et−1Št = MδEt−1Št+1 + DδEt−1∆rt+1

where Et−1θ̃t = 0. In the illustrative example above (with k = 2), the following
correspondence between the variables of the theoretical equation and those of the
statistical model (12):

Et−1Št = RSJBY∗t

Et−1Št+1 = RSEt−1Y
∗
t+1 = RSJ2

BY∗t

Et−1∆rt+1 = RrEt−1Y
∗
t+1 = RrJ

2
BY∗t

where

RS :=

[
1 0 0 0 0 0
0 1 0 0 0 0

]
Rr := [0 0 1 0 0 0]

The substitution of the previous expressions in (10), leads to the following equation:

RSJBY∗t = MδRSJ2
BY∗t + DδRrJ

2
BY∗t

(RSJB −MδRSJ2
B −DδRrJ

2
B)Y∗t = 0

since Y∗t 6= 0 a.s., the following equation must hold:

RSJB −MδRSJ2
B −DδRrJ

2
B = 0

that is[
1 0 0 0 0 0
0 1 0 0 0 0

]
JB−

[
δ1 0
0 δ2

] [
1 0 0 0 0 0
0 1 0 0 0 0

]
J2
B−

[
δ1

δ2

]
[0 0 1 0 0 0]J2

B = 0
2×6

where

JB =

[
B1 B̃2

I3 0

]
=


b1

11 b1
12 b1

13 b2
11 b2

12 0
b1

21 b1
22 b1

23 b2
21 b2

22 0
b1

31 b1
32 b1

33 b2
31 b2

32 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


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and

J2
B =


(b1

11)2 + b1
12b

1
21 + b1

13b
1
31 + b2

11 b1
11b

1
12 + b1

12b
1
22 + b1

13b
1
32 + b2

12 b1
11b

1
13 + b1

12b
1
23 + b1

13b
1
33

b1
21b

1
11 + b1

22b
1
21 + b1

23b
1
31 + b2

21 b1
21b

1
12 + (b1

22)2 + b1
23b

1
32 + b2

22 b1
21b

1
13 + b1

22b
1
23 + b1

23b
1
33

b1
31b

1
11 + b1

32b
1
21 + b1

33b
1
31 + b2

31 b1
31b

1
12 + b1

32b
1
22 + b1

33b
1
32 + b2

32 b1
31b

1
13 + b1

32b
1
23 + (b1

33)2

b1
11 b1

12 b1
13

b1
21 b1

22 b1
23

b1
31 b1

32 b1
33

b1
11b

2
11 + b1

12b
2
21 + b1

13b
2
31 b1

11b
2
12 + b1

12b
2
22 + b1

13b
2
32 0

b1
21b

2
11 + b1

22b
2
21 + b1

23b
2
31 b1

21b
2
12 + b1

22b
2
22 + b1

23b
2
32 0

b1
31b

2
11 + b1

32b
2
21 + b1

33b
2
31 b1

31b
2
12 + b1

32b
2
22 + b1

33b
2
33 0

b2
11 b2

12 0
b2

21 b2
22 0

b2
31 b2

32 0


After some algebra, the two sets of restrictions are the following:

b1
11 − δ1b

2
11 − δ1b

2
31 − δ1b

1
11b

1
31 − δ1b

1
12b

1
21 − δ1b

1
21b

1
32 − δ1b

1
13b

1
31 − δ1b

1
31b

1
33 − δ1(b1

11)2 = 0

b1
12 − δ1b

2
12 − δ1b

2
32 − δ1b

1
11b

1
12 − δ1b

1
12b

1
22 − δ1b

1
12b

1
31 − δ1b

1
13b

1
32 − δ1b

1
22b

1
32 − δ1b

1
32b

1
33 = 0

−δ1b
1
332 − δ1b

1
13b

1
33 + b1

13 − δ1b
1
11b

1
13 − δ1b

1
12b

1
23 − δ1b

1
13b

1
31 − δ1b

1
23b

1
32 = 0

b2
11 − δ1b

1
11b

2
11 − δ1b

1
12b

2
21 − δ1b

1
31b

2
11 − δ1b

1
13b

2
31 − δ1b

1
32b

2
21 − δ1b

1
33b

2
31 = 0

b2
12 − δ1b

1
11b

2
12 − δ1b

1
12b

2
22 − δ1b

1
31b

2
12 − δ1b

1
13b

2
32 − δ1b

1
32b

2
22 − δ1b

1
33b

2
32 = 0

b1
21 − δ2b

2
21 − δ2b

2
31 − δ2b

1
11b

1
21 − δ2b

1
11b

1
31 − δ2b

1
21b

1
22 − δ2b

1
21b

1
32 − δ2b

1
31b

1
23 − δ2b

1
31b

1
33 = 0

b1
22 − δ2b

2
22 − δ2b

2
32 − δ2b

1
12b

1
21 − δ2b

1
12b

1
31 − δ2b

1
22b

1
32 − δ2b

1
23b

1
32 − δ2b

1
32b

1
33 − δ2(b1

22)2 = 0

−δ2b
1
332 − δ2b

1
23b

1
33 + b1

23 − δ2b
1
21b

1
13 − δ2b

1
13b

1
31 − δ2b

1
22b

1
23 − δ2b

1
23b

1
32 = 0

b2
21 − δ2b

1
21b

2
11 − δ2b

1
31b

2
11 − δ2b

1
22b

2
21 − δ2b

1
32b

2
21 − δ2b

1
23b

2
31 − δ2b

1
33b

2
31 = 0

b2
22 − δ2b

1
21b

2
12 − δ2b

1
31b

2
12 − δ2b

1
22b

2
22 − δ2b

1
32b

2
22 − δ2b

1
23b

2
32 − δ2b

1
33b

2
32 = 0

In general, for a model with n EHTS relations and k lags, the restrictions implied
are n(pk)− n.
Moreover, considering an MA(q) model for θ̃t, the restrictions to be applied are
given by the following equation, as derived by González and Gonzalo (2000):

RsJq+1
B −MδR

sJq+2
B −DδR

rJq+2
B = 0
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B Results for other samples

B.1 Restricted sample

Table 6: Test of Expectation Hypothesis - Summary results Hr, Hβ, HCER

Rank test - Hr Beta test - Hβ CER test - HCER

Exact model Non exact model

trace stat. p-value bootstrap LR stat. p-value bootstrap Wald(HAC) p-value bootstrap Wald(HAC) p-value
p-value p-value stat p-value stat

Bivariate System

1W 1.97 0.781 0.792 0.01 0.910 0.913 30.38 0.000 0.000 13.67 0.134
2W 2.08 0.759 0.774 1.24 0.265 0.221 30.57 0.000 0.000 8.17 0.517
3W 2.37 0.706 0.737 2.58 0.108 0.100 22.05 0.009 0.002 6.09 0.731
1M 2.37 0.705 0.784 2.09 0.148 0.134 10.84 0.287 0.271 3.84 0.921
2M 2.79 0.627 0.782 2.73 0.099 0.067 56.21 0.000 0.000 7.00 0.637
3M 2.55 0.672 0.775 2.30 0.130 0.107 78.71 0.000 0.000 15.45 0.079

Joint System 2.33 0.886 0.676 9.432 0.151 0.196 11349.130 0.000 0.000

Notes: The table reports the results of the rank test (Hr), the test on the beta coe�cients (Hβ) and the test of the cross-equation restrictions (HCER) (see Tables 1-3 for further details).
Asymptotic and bootstrap p-values are reported.
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B.2 Della Corte et al. (2008) sample

Table 7: Test of Expectation Hypothesis - Summary results Hr, Hβ, HCER

Rank test - Hr Beta test - Hβ CER test - HCER

Exact model Non exact model

trace stat. p-value bootstrap LR stat. p-value bootstrap Wald(HAC) p-value bootstrap Wald(HAC) p-value
p-value p-value stat p-value stat

Bivariate System

1W 1.79 0.813 0.850 0.01 0.910 0.913 54.28 0.000 0.000 23.97 0.004
2W 1.72 0.824 0.844 1.24 0.265 0.221 55.47 0.000 0.000 10.40 0.319
3W 1.70 0.828 0.826 2.58 0.108 0.100 67.70 0.000 0.000 13.90 0.126
1M 1.72 0.826 0.826 2.09 0.148 0.134 31.26 0.000 0.000 9.02 0.435
2M 1.65 0.836 0.890 2.73 0.099 0.067 130.84 0.000 0.000 16.38 0.059
3M 1.63 0.841 0.890 2.30 0.130 0.107 158.18 0.000 0.000 22.99 0.006

Joint System 1.93 0.926 0.820 12.995 0.043 0.040 9425.370 0.000 0.000

Notes: The table reports the results of the rank test (Hr), the test on the beta coe�cients (Hβ) and the test of the cross-equation restrictions (HCER) (see Tables 1-3 for further details).
Asymptotic and bootstrap p-values are reported.
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Abstract

This paper introduces the stata command bootrank which imple-

ments the bootstrap likelihood ratio rank test algorithm developed by

Cavaliere et al. (2012). The test improves the small sample properties

of Johansen (1995) by generating I(1) bootstrap samples under the

null cointegration rank. Moreover, Cavaliere et al. (2014) show that

the wild resampling scheme is both correctly sized and consistent un-

der conditional and unconditional heteroskedasticity. The procedure

to test H(r) against H(p) is implemented, as well as the sequential

procedure. The test is consistent and it shows good size properties.
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1 Introduction

The rank test plays a crucial role in the cointegrated vector autoregressive
(VAR) analysis. It allows to establish whether the endogenous variables of
the model are cointegrated and, in case they are, it makes inference about the
number of cointegrating relationships and the number of stochastic common
trends driving the system.
Johansen (1988, 1991) treats the maximum likelihood estimation of reduced
rank regression as an eigenvalues problem and in this framework he derives
his likelihood ratio tests. The trace test is a likelihood ratio (LR)-type test.
It compares the restricted model under the null H(r), which imposes rank
equal to r (0 ≤ r < p), with the unrestricted model which assumes full rank,
H(p). In order to determine the cointegration rank, a sequential procedure
can be implemented. Starting from r = 0, the test is carried out testing H(r)
against H(p), until the non-rejection of the null hypothesis. The asymptotic
distribution of the test depends on the number of common stochastic trends
(p−r) of the model and on the speci�cation of the deterministic components.
However, it has been shown (Johansen, 2002) that the asymptotic test su�ers
from poor small sample properties. For this reason bootstrap algorithms have
been proposed in order to improve the test performance. These procedures
are based either on iid resampling (Giersbergen, 1996; Swensen, 2006; Tren-
kler, 2009) or wild bootstrap (Cavaliere et al., 2010a,b). Swensen (2006) al-
gorithm generate explosive bootstrap samples when the tested rank is smaller
than the true rank and this compromises both �nite and asymptotic proper-
ties of the test.
The bootstrap scheme proposed by Cavaliere et al. (2012) solves this issue
using the estimated parameters and the residuals of the model under the null
H(r) for the generation of the bootstrap samples that are I(1), as they are
supposed to be. The authors prove that the estimates are asymptotically
consistent even when r < r0 and show through Monte Carlo experiments
better size and power with respect to both the asymptotic test and Swensen
(2006) procedure. Moreover, Cavaliere et al. (2014) also show that the iid
bootstrap resampling scheme is correctly sized and consistent in the case of
time-varying conditional variance. The alternative wild bootstrap they in-
troduce, instead, preserves both properties also in the case on unconditional
heteroskedasticity.
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2 The bootstrap rank test

The bootstrap scheme assumes the following reduced rank VAR model for
the multivariate process {Xt}t=1,..,∞ of dimension p:

∆Xt = αβ
′Xt−1 +

k−1∑
i=1

Γi∆Xt−i +αρ
′Dt + φdt + εt (1)

where Dt is the vector of deterministic components that lie in the cointegrat-
ing space and dt is the vector of short run deterministics.
The bootstrap algorithm is based on the parameters estimated under the null
hypothesis H(r) so that it generates the bootstrap sample with the recursion:

∆X∗r,t = α̂
(r)β̂

(r)′X∗r,t−1 +
k−1∑
i=1

Γ̂
(r)

i ∆X∗t−i + α̂ρ̂
(r)′Dt + φ̂

(r)
dt + ε

∗
r,t (2)

β̂
(r)

is a Gaussian QML estimator and α̂(r), Γ̂
(r)

i (i = 1, .., k−1), ρ̂(r) and
φ̂ are obtained by OLS.
Hence the following two algorithms are proposed. The �rst one is to testH(r)
against H(p), whereas the second one implements the sequential procedure.

ALGORITHM 1 :

1. Estimate equation 1 under H(r) in order to get β̂
(r)
, α̂(r), Γ̂

(r)

i (i =

1, .., k − 1), ρ̂(r) and φ̂
(r)

and the residuals series ε̂r,t.

2. Check the stability condition of the model, i.e. check whether the

equation
∣∣∣Â(r)(z)

∣∣∣ = 0 have (p − r) roots on the unit circle and the

remaining roots outside the unit circle.

3. Resample the centered residual ε̂cr,t with:

(a) iid bootstrap: generate an iid sequence of discrete uniform dis-
tribution with support {1, ..., T}, Ut, and associate the bootstrap
residuals ε∗r,t with ε̂

c
r,Ut

(b) wild bootstrap: generate an iid N(0, 1) sequence wt and multiply it
by the centered residual in order to obtain the bootstrap residuals
ε∗r,t=ε̂

c
r,twt

Then, generate X∗t with the recursion 1, choosing as initial values those
of the original series, i.e. X∗r,j = Xj, j = 1− k, ..., 0
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4. Compute the LR trace statistics, Q∗r,T , as in Johansen (1995).

5. Repeat steps 1-4 B times in order to produce B conditionally indepen-
dent bootstrap statistics. The p-value associated to the null H(r) is
obtained as p̃∗r,T := B−1

∑B
b=1 1(Q

∗
r,T :b > Qr,T ) where Qr,T is the trace

statistics computed from the original sample. For B→∞ p̃∗r,T→p∗r,T
with p∗r,T := 1−G∗r,T (Qr,T ) and G

∗
r,T (Qr,T ) conditional cdf of Q

∗
r,T .

The bootstrap test rejects H(r) against H(p) at level η if p∗r,T ≤ η.

ALGORITHM 2 : Starting from r = 0 perform the following steps:

1. - 4. Same as in ALGORITHM 1.

5. Same as in ALGORITHM 1 and if p∗r,T > η the estimated rank is r,
otherwise repeat steps the proceduere testing the null H(r+1) against
H(p) if r + 1 < p or the selected rank is p if r + 1 = p.

3 The bootrank command

3.1 Syntax

bootrank varlist [if ] [in], lags(#) algorithm(#) bootstrap(#) [trend(string)
ranksel(#) bootrep(#) ]

3.2 Options

lags (#) speci�es the number to be included in the model, i.e. the order k
of the VAR model in equation 1.

algorithm (#) selects the algorithm to be implemented. The �rst algorithm
is run if 1 is typed, and the second is started if 2 is typed. If Algorithm
1 is selected, the optional option ranksel should be provided.

bootstrap (#) choices the resampling method for the bootstrap on the
residuals: 1 for iid and 2 for wild gaussian bootstrap and 3 for wild
Rademacher.

trend(none) speci�es a model without trend or constant.

trend(constant) includes a constant in model.

trend(rconstant) includes an restricted constant in model.
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trend(trend) includes a trend in model.

trend(rtrend) includes a restricted trend in model.

3.3 Optional options

ranksel (#) sets r, that is the rank under the null hypothesis for the �rst
Algorithm.

bootrep (#) chooses the number of bootstrap replication B. If the option
is not speci�ed, the default number of replications is set to 499.

4 Empirical application

In this session Cavaliere et al. (2012) is illustrated through an empirical ap-
plication on the term structure of interest rates in the US, as in ?. The data
are monthly time series of zero yields from the CRSP unsmoothed Fama and
Bliss (1987) forward rates for monthly maturities τ = 3; 12; 36; 60; 120. The
sample goes from January 1970 to December 2009.
The dataset has to be tsset.

Before proceeding with the rank test, the lag order k should be selected.

Schwartz Bayesian Criteria suggests one lag, but the V AR(1) displays
some residual autocorrelation. Therefore, k = 2 is chosen, as suggested by
Hannan-Queen information criterion.
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4.1 Algorithm 1

First, the Algorithm 1 is chosen, in order to test H(1) against H(4).
For comparison purposes, the bootrank command performs Johansen (1995)
asymptotic rank test and it reports the bootstrap p-values in the last column.
Thus, after the B = 499 number of iterations performed, the command gives
the following output:

First, the output of the bootrank command shows the eigenvalues, i.e. the
reciprocal of the roots of the equation in point 2. of the Algorithm. If the
condition of point 2. is violated, the error message "The VECM(r) is not
stable" will appear.
The condition for the root of the characteristic polynomial are satis�ed.
As it is possible to see, the bootstrap test cannot reject the null H(4) at any
signi�cance level.

4.2 Algorithm 2

By selecting algorithm(2) and bootstrap(1) the sequential procedure with iid

bootstrap resampling is performed. First, the conditions for the root of
the characteristic polynomial are veri�ed and reported for rank r = 1, ..., 4.
Then, the sequential procedure reproduces the outcome of the test for r = 1
and it shows the test for the subsequent rank orders.
The outcome of the sequential test is the following:
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The conditions for the root of the characteristic polynomial are veri�ed
for rank r = 1, ..., 4. As before, the p-value associated to H(3) is not smaller
than the 5% signi�cance level, hence the null hypothesis of rank equal to 3
cannot be rejected.
Therefore, the sequential procedure with wild bootstrap N(0, 1) is performed
with the option bootstrap(2)2:

As it is possible to see, the wild bootstrap supports the hypothesis of r ≥ 3
only at 10% signi�cance level.

2The stability check on the roots of the characteristic polynomial are the same as in

the previous case.
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