
Alma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN

Ingegneria Elettronica, Informatica e delle
Telecomunicazioni

Ciclo XXVII

Settore concorsuale di afferenza: 09/H1
Settore scientifico disciplinare: ING-INF/05

LEARNING METHODS AND
ALGORITHMS FOR SEMANTIC TEXT
CLASSIFICATION ACROSS MULTIPLE

DOMAINS

Presentata da: Roberto Pasolini

Coordinatore Dottorato
Prof. Alessandro Vanelli-Coralli

Relatore
Prof. Gianluca Moro

Correlatore
Prof. Claudio Sartori

Esame finale anno 2015

Abstract

Information is nowadays a key resource: machine learning and
data mining techniques have been developed to extract high-level
information from great amounts of data. As most data comes in form
of unstructured text in natural languages, research on text mining
is currently very active and dealing with practical problems.

Among these, text categorization deals with the automatic or-
ganization of large quantities of documents in priorly defined tax-
onomies of topic categories, possibly arranged in large hierarchies.
In commonly proposed machine learning approaches, classifiers are
automatically trained from pre-labeled documents: they can perform
very accurate classification, but often require a consistent training
set and notable computational effort.

Methods for cross-domain text categorization have been pro-
posed, allowing to leverage a set of labeled documents of one domain
to classify those of another one. Most methods use advanced sta-
tistical techniques, usually involving tuning of parameters. A first
contribution presented here is a method based on nearest centroid
classification, where profiles of categories are generated from the
known domain and then iteratively adapted to the unknown one. De-
spite being conceptually simple and having easily tuned parameters,
this method achieves state-of-the-art accuracy in most benchmark
datasets with fast running times.

A second, deeper contribution involves the design of a domain-
independent model to distinguish the degree and type of relatedness
between arbitrary documents and topics, inferred from the differ-
ent types of semantic relationships between respective representative
words, identified by specific search algorithms. The application of
this model is tested on both flat and hierarchical text categorization,
where it potentially allows the efficient addition of new categories
during classification. Results show that classification accuracy still
requires improvements, but models generated from one domain are
shown to be effectively able to be reused in a different one.

To everyone who somehow supported me

v

Contents

Introduction ix
Contributions . xi
Structure of the thesis . xiii

Conventions . xiv
Technical remarks . xiv

1 Data and Text Mining 1
1.1 Data mining . 1

1.1.1 Applications . 2
1.1.2 Machine learning . 3

1.2 Text mining . 5
1.2.1 Applications . 5

1.3 High-level text mining tasks 7
1.3.1 Text categorization 7
1.3.2 Sentiment analysis 7
1.3.3 Text clustering . 8
1.3.4 Document summarization 8

1.4 Natural language processing 9
1.4.1 Part-Of-Speech Tagging 10
1.4.2 Word Sense Disambiguation 11
1.4.3 Other tasks . 12

2 General Techniques and Tools for Text Mining 13
2.1 Brief history . 13

vi Contents

2.2 Bag-of-Words representation 14
2.2.1 Cosine similarity . 16

2.3 Extraction of features . 17
2.3.1 Lemmas . 17
2.3.2 Stems . 18
2.3.3 n-grams and phrases 19
2.3.4 Concepts . 20

2.4 Term selection and weighting 21
2.4.1 Basic word filtering 21
2.4.2 Feature selection . 22
2.4.3 Term weighting . 23

2.5 Extraction of latent semantic information 26
2.5.1 Latent semantic analysis 26
2.5.2 Probabilistic models 28

2.6 Linguistic and semantic knowledge bases 29
2.6.1 WordNet . 30

3 Text Categorization 35
3.1 Problem description . 35
3.2 Variants . 36

3.2.1 Binary, single-label and multi-label classification . . . 36
3.2.2 Hierarchical classification 37

3.3 Knowledge engineering approach 39
3.4 Machine learning approach 40

3.4.1 General setup . 41
3.4.2 Supervised term selection 42

3.5 Common learning algorithms for text 44
3.5.1 Näıve Bayes . 44
3.5.2 Support Vector Machines 47
3.5.3 Other methods . 49

3.6 Nearest centroid classification 50
3.7 Hierarchical classification . 52

3.7.1 Big-bang approach 53
3.7.2 Local classifiers . 53

3.8 Experimental evaluation . 54
3.8.1 Benchmark datasets 55
3.8.2 Evaluation metrics 58

Contents vii

4 Cross-Domain Text Categorization 65
4.1 Problem description . 65

4.1.1 Formalization . 67
4.1.2 Motivations . 67

4.2 State of the art . 68
4.2.1 Instance transfer . 68
4.2.2 Feature representation transfer 69
4.2.3 Other related works 70

4.3 Evaluation . 71
4.3.1 Common benchmark datasets 71

4.4 Iterative refining of category representations 72
4.4.1 Rationale . 75
4.4.2 Base method . 77
4.4.3 Computational complexity 79
4.4.4 Results . 81
4.4.5 Variant with logistic regression 91
4.4.6 Variant with termination by quasi-similarity 95
4.4.7 Discussion . 99

5 A Domain-Independent Model for Semantic Relatedness 101
5.1 General idea . 101

5.1.1 Possible applications 105
5.2 Related work . 106
5.3 General working scheme for text categorization 108

5.3.1 Semantic knowledge base 108
5.3.2 Model training . 109
5.3.3 Semantic matching algorithm 111
5.3.4 Classification . 114
5.3.5 Computational complexity 114
5.3.6 General experiment setup 115

5.4 Search of semantic relationships 117
5.4.1 Use of WordNet . 118
5.4.2 Existing approaches 119
5.4.3 Hypernyms-based algorithm 121
5.4.4 Extended search algorithm 123

5.5 Flat categorization . 126
5.5.1 Example couples and category profiles 126
5.5.2 Classification . 127

viii Contents

5.5.3 Experiment setup . 128
5.5.4 Experiment results 130

5.6 Hierarchical categorization 138
5.6.1 Couple labeling and selection 138
5.6.2 Representation of categories 140
5.6.3 Top-down classification algorithm 141
5.6.4 Experiment setup . 142
5.6.5 Experiment results 144

5.7 Discussion . 151

6 Conclusions 155
6.1 Ideas for future research . 157

A Network Security through Distributed Data Clustering 159
A.1 Distributed data mining . 159
A.2 Network intrusion detection systems 160
A.3 General system model . 161
A.4 Implementation details . 162
A.5 Simulation setup . 164
A.6 Simulation results . 166

Bibliography 169

ix

Introduction

Nowadays, across many contexts, information of all kinds is produced at
fast rates. Many things can be considered “information”: the current tem-
perature in a room, the details of a purchase in a store, a post on a social
network and so on. From information, especially in large quantities, useful
knowledge can be extracted: the details of many sales of a store may give
useful indications about products often purchased together, while a col-
lection of public messages about some product or service can reveal what
people generally think about it. However, the extraction of useful knowl-
edge from very large amounts of data is not always trivial, especially to be
performed manually.

Data mining research is dedicated to developing processes for automated
extraction of useful, high-level information hidden within large amounts of
data. It has many applications in business, finance, science, society and so
on. Data mining is mostly based on machine learning, the study of algo-
rithms to analyze a set of raw data and extract from it a knowledge model
which encapsulates recurring patterns within it and allows to make more
or less accurate predictions on future data. Machine learning algorithms
can solve various task, such as classification of items or events according
to prominent characteristics, such as classifying reviews of a product as
positive or negative.

Ordinary machine learning techniques work on structured data, where
every piece of information is well distinguishable and computers can easily
handle it. On the other way, unstructured data exist, which are easily
interpreted by humans in small amounts, but not directly understandable
by computers. A prominent part of such data is constituted by free text in

x Introduction

natural language, such as English or Italian, in units of different lengths,
ranging from short messages on Twitter to publicly available whole books.
Such text data, whose examples have been given above, can contain like
other very valuable information, but automatic analysis is necessary to
efficiently extract such knowledge in a usable form.

Text mining is a branch of data mining studying techniques for auto-
matic treatment of free text. This is generally achieved by processing text
to represent it with structured forms, which can then be analyzed by usual
learning algorithms. A very common form to efficiently represent every
document of a large collection is the bag of words, a multiset of relevant
words or other related features contained in the text.

In this context, a quite common task is text categorization, consisting
in the automatic organization of a possibly very large set of documents into
distinct, meaningful categories. Categorization is usually carried out ac-
cording to separate different topics discussed in document, but the general
description involves also tasks like spam filtering in e-mail and identification
of positive and negative reviews of a product. Organization of documents
by topics can be useful in contexts like dividing books in sections, sepa-
rating news articles by categories and organizing Web pages in hierarchical
directories.

Most methods for automatic text categorization are based on machine
learning: given a training set of documents already labeled with respective
correct categories, they are reduced to bags of words and, using suitable
learning algorithms, a knowledge model is inferred from them, which is able
to classify further documents within the same categories. This approach
automates the learning process, but requires a consistent training set, which
may not be priorly available and thus require considerable effort to be built.

To overcome this problem, at least in some circumstances, methods for
cross-domain classification have been proposed, where a knowledge model to
classify a set of documents within a target domain is obtained by leveraging
a set of pre-labeled documents of a source domain which is allowed to have
some differences from the former. Most methods to perform this task are
based on advanced statistical techniques, which transform source data to
adapt them to the target or convert data of both domains to a common
representation.

Here is proposed a simple method for cross-domain text categorization
based on explicit document-like representations of categories, likely to some
existing methods for standard classification, which are created from the

Contributions xi

source domain and then iteratively refined to adapt them to the target
domain. From experimental evaluations, this approach appears to be ef-
fective in finding good representations of categories of target domain and
consequently in accurately classifying documents within them.

Keeping valid the idea of explicit category profiles, it is subsequently
introduced an improved method to compare them to documents, based
on the analysis of semantic relationships held between respective relevant
words: it is theorized that these can suggest whether and how documents
and categories are related, according to implicit rules which are more or
less globally valid across any domain. This leads to the construction of
a domain-independent model of semantic knowledge which encapsulates
this knowledge. To support the analysis of semantic relationships between
words, a couple of alternative algorithms have been developed to identify
non-obvious relationships from sequences of primitive links between con-
cepts provided by the WordNet lexical database.

The use of this general knowledge model is tested on text categorization.
The proposal is to use a set of pre-labeled documents to extract a knowl-
edge model which encapsulates these rules, then to use this model to classify
incoming documents by comparing them to representation of relevant cate-
gories. Under the assumption of its general validity across multiple domains,
a model extracted from a training set should be fairly able to support clas-
sification of documents in an arbitrarily different domain, for which is only
necessary to have bag-of-words-like representations of categories which can
be extracted very efficiently from pre-labeled documents.

This model potentially allows to build a classification system where cat-
egories can be added and removed at any time just by providing suitable
representations which are very efficiently generated from example docu-
ments: this is possible as the knowledge model itself is decoupled from
specific words and categories of its training data. Some basic experiments
are performed to evaluate the accuracy of classification with this approach
and to investigate to which degree the knowledge model can be applied to
a domain different from the one of its training documents.

Contributions

Here are summarized the main contributions presented in the thesis. In the
sub-points, references to related publications and works currently under

xii Introduction

review are given.

� Starting from general data mining and machine learning, a discussion
of text mining tasks and techniques is given, with focus on text cate-
gorization and machine learning techniques usually employed within
it. This also serves to describe techniques which are employed in the
subsequently presented work.

� Cross-domain text categorization, where documents of a target do-
main are classified by leveraging knowledge of a slightly different
source domain, is discussed. A novel method based on nearest cen-
troid classification is presented: the source domain is used to extract
initial category profiles, which are then iteratively refined according
to most similar documents in the target domain, until a stable con-
figuration is reached. Compared to the state of the art, the method
yields better or comparable results with a more conceptually simple
algorithm, which can be implemented easily, exposes few parameters
to be tuned and runs fast. A couple of variants are separately dis-
cussed to further improve robustness with respect to parameters and
running times.

– G. Domeniconi, G. Moro, R. Pasolini, C. Sartori. Cross-domain
text categorization through iterative refining of target categories
representations. 6th International Conference on Knowledge Dis-
covery and Information Retrieval (KDIR), 2014. (awarded as
Best Student Paper)

– (undergoing review process) G. Domeniconi, G. Moro, R. Pa-
solini, C. Sartori. Iterative refining of category profiles for near-
est centroid cross-domain text classification. Submitted to Knowl-
edge Discovery, Knowledge Engineering and Knowledge Manage-
ment (Communications in Computer and Information Science
series, Springer).

� Finally, is introduced the idea of a domain-independent model pre-
dicting whether and how documents and category profiles are related
from the analysis of semantic relationships held between respective
representative words. Text categorization is presented as a concrete
application of this model, indicating how it is built and then used.

Structure of the thesis xiii

A couple of non-trivial algorithms are proposed to search indirect se-
mantic relationships from the primitive links given by the WordNet
database. Specific methods are proposed for both flat and hierarchi-
cal classification, along with results of experiments to evaluate the
classification accuracy and the generality of the model.

– G. Domeniconi, G. Moro, R. Pasolini, C. Sartori. Domain-
independent text categorization. 2nd Italian Workshop on Ma-
chine Learning and Data Mining (MLDM.it) at the XIII Confer-
ence of the Italian Association for Artificial Intelligence, 2013.

– (undergoing review process) G. Domeniconi, G. Moro, R. Pa-
solini, C. Sartori. Towards topic-independent text classification:
a novel semantic learning method for hierarchical corpora. Sub-
mitted to Journal of Machine Learning Research (Microtome
Publishing).

� As an additional work outside of the text mining research, is de-
scribed a novel method for identification of malicious traffic in a net-
work based on distributed data clustering. In the proposed approach,
different network nodes gather aggregated statistics about incoming
traffic from standard SNMP agents, on which cluster analysis is then
run in a distributed fashion: nodes exchange summary information of
respective clusters with neighbors, in order to have a shared clustering
model, so that each node has knowledge of classes of traffic even if
not detected by itself.

– (undergoing review process after major revision) W. Cerroni,
G. Moro, R. Pasolini, M. Ramilli. Decentralized detection of
network attacks through P2P data clustering of SNMP data.
Submitted to Computers and Security (Elsevier).

Structure of the thesis

Chapter 1 gives a general introduction of automated text analysis along
with its motivations, describing most prominent examples of high and low
level tasks usually tackled. In Chapter 2, the most recurring techniques
employed in text mining are described in detail. Chapter 3 focuses on text
categorization, showing some specific techniques and methods presented

xiv Introduction

in literature. Chapter 4 goes in detail on cross-domain text categoriza-
tion, presenting known approaches and exposing the novel method based
on iterative refining of category profiles. Chapter 5 introduces the domain-
independent knowledge model and its application to text categorization,
including discussion of search of semantic relationships between words and
presentation of flat and hierarchical variants along with experiments. Fi-
nally, Chapter 6 briefly sums up the work and indicates potential directions
for further research.

In the end, outside of the text mining scope, Appendix A presents the
work dealing with network security based on distributed data mining.

Conventions

Throughout the thesis, cited single words (or equivalently terms) which may
appear in text documents are typeset in sans-serif font. Names of categories
of documents, introduced in Chapter 3 and generally denoting topics, are
instead distinguished by small capitals.

Technical remarks

All the experimental evaluations which are part the work presented in the
thesis have been performed on virtualized hardware, with the use of up to
6 parallel processing cores.

Tests have been run within a dedicated software framework implemented
in Java. The following third-party tools and libraries have been extensively
used:

� the WEKA software suite for machine learning [44] (http://www.cs.
waikato.ac.nz/ml/weka/),

� the Java WordNet Interface (JWI) [37] (http://projects.csail.
mit.edu/jwi/).

Where cited, version 3.1 of the WordNet database (described in §2.6.1)
has been used.

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://projects.csail.mit.edu/jwi/
http://projects.csail.mit.edu/jwi/

1

Chapter 1

Data and Text Mining

Starting from data mining in general, a general overview about automatic
handling of text in natural language is given in this chapter, including the
motivations for this research and the general tasks which are usually tackled.

1.1 Data mining

Information is a key resource throughout many contexts. A part of scientific
research is collection and analysis of data from experiments. Many areas of
engineering are similarly based on analyzing available data to find optimal
solutions to problems. In the business context, information can be gathered
and used to drive strategic decisions and actions. These are only some
general examples, many other exist.

A possible problem in this vision is the lack of information, generally
meaning that possessed data is not enough to have a sufficiently accurate
knowledge of the phenomenon under analysis.

Nonetheless, with the continuous development of processing, storage and
communication means, a situation of excess of information can be easily
reached. While a limited quantity of information can be feasibly analyzed
by human workers, difficulties can be met in extracting useful information
from an overly abundant quantity of data.

At this end, the fields of data mining and knowledge discovery are
generally focused on the development of methods and techniques for the
non-trivial extraction of high-level information from potentially enormous

2 Chapter 1. Data and Text Mining

quantities of raw data [39]. Data mining is successfully applied in business,
research and many fields and is used to perform tasks such as discover-
ing patterns in data and partitioning elements of large sets into smaller,
meaningful groups according to similar characteristics.

1.1.1 Applications

Data mining techniques in general have a wide range of applications. Here
only some examples are given.

In the business context, a great amount of data is or can be gathered
from operations of a company. Taking a chain of stores as an example, data
of all purchases from all stores can be gathered, associated where possible
to specific customers. This data, suitably stored in data warehouses, can
usually be accessed through on-line analytical processing (OLAP) tools to
have condensed summary information about different aspects of the state
of the business, such as sales for each product category or in each store.

Through data mining, it is additionally possible to perform automatic
analysis of this data in order to highlight non-obvious patterns within them.
A typical task is market basket analysis, where past purchases data is ana-
lyzed in order to locate items which are often sold together; another useful
application is customers segmentation, where distinct groups of identifiable
customers with similar habits are tried to be delineated. All this high-level
information can be useful for example when taking marketing decisions re-
garding discounts and promotional offers. Further examples in business and
financial contexts are analysis of applications for credits by financial institu-
tions or evaluation of risks and detection of frauds by insurance companies.

Research is also a prominent area where data mining techniques are
employed. In general, it can be used to discover recurring patterns in the
possibly large quantities of data obtained by observations and experiments
in various fields. In genetics, specific techniques for sequence mining are
used to discover correlations between DNA sequences and phenomenons
like susceptibility to some diseases.

Another field of application of data mining are sensor networks, used
in some environments to monitor conditions such as temperature or air
pollution in other to gather data about them with space and time references.
Given the possibly large extension of such networks and often the limited
communication capabilities, they are the natural context for distributed
data mining methods, cited below.

1.1. Data mining 3

Data mining is primarily intended to analyze structured data, but tech-
niques for analysis of data such as images and music (other than text) have
been developed.

1.1.2 Machine learning

While a data mining or knowledge discovery process generally involves dif-
ferent steps, ranging from the collection and processing of data to be an-
alyzed to the consumption of final results, the key step is obviously the
conversion of the great and not easily understandable amount of “raw”
data into compact, high-level information which can be easily interpreted.

This task is usually based on machine learning techniques, which are
generally used to infer knowledge models from data of heterogeneous form
and nature: these models can highlight interesting features of the analyzed
data and can be used to make predictions regarding data which arrives in
the future.

In general, input data is composed of observations or instances, each
corresponding to one item or event of a set to be analyzed: these can be
for example transactions (purchases) of a store. Observations are distin-
guishable from each other by a set of features, indicating which are the
properties of each observation. Seeing this data as a table of a relational
database, observations correspond to records (rows), while features corre-
spond to columns.

To be used as input for machine learning algorithms, available data
generally needs to undergo some pre-processing steps to obtain a set of
observations with convenient features. This can involve joining data from
multiple tables of a relational database, in order to obtain in practice a
single table where all information is condensed with no or minimal loss. This
can lead to a consistent number of features, which can make the analysis
cumbersome (dimensionality problem): specific methods exist to perform
selection of these features and discard those least useful in the analysis.
Learning methods are generally able to work only with specific types of
data: some of them in their basic versions can only deal with discrete
values, such as integer numbers or categorical data (elements from a finite
set), while others are specialized on continuous ranges of values, which can
anyway be discretized in order to be treated by other algorithms.

Different machine learning algorithms exist, differing mainly for the type
of knowledge which is extracted. A rather common need is to extract knowl-

4 Chapter 1. Data and Text Mining

edge from known items or past events in order to somehow assign labels to
them or to new items or events according to some specific important char-
acteristics of them. This generic description can be applied to two different
tasks.

� Classification is the task of labeling new items with a set of prede-
fined set of classes, which represent categories in which is convenient
to subdivide such items. In general, this process involves building a
training set of observation which are already correctly labeled with
the same classes; a machine learning algorithm then analyzes data to
find relevant correlations between features and class labels and ex-
tracts from them a classifier, which is ideally able to correctly label
any observation represented with the same features. As data provided
for training must be priorly labeled, algorithms of this type are said
to be supervised. An example of applications of this general task is
insurance fraud detection (indemnity requests are classified as either
suspect or not).

� Clustering is the task of partitioning data in some groups, said
clusters, about which no prior knowledge is given. The goal of a clus-
tering algorithm is, given a set of data, to identify clusters within this
set so that each contains observations which are very similar to each
other and significantly different from those of other clusters; possi-
bly, also new observations can then be organized in the same clusters.
Differently from classification, clustering algorithms are unsupervised,
as they analyze data with no priorly assigned group labels. Among
concrete applications described above, customers segmentation is an
example of clustering problem.

For each of these two general tasks, as well as for others, different ap-
proaches can be used: which are the most convenient ones usually depends
from the nature of the data under analysis. For example, in Section 3.5,
some general techniques for classification will be shown, along with consid-
erations on how much they are suitable to text categorization.

1.2. Text mining 5

1.2 Text mining

Data mining has been introduced as the extraction of information from
large amounts of data. Such data can come in different forms, each re-
quiring specific techniques to be handled. Machine learning algorithms, as
discussed above, are suitable to handle structured data, where single pieces
of information are organized according to some model and each of them is
easily distinguishable from the others, as usually happens for example in a
relational database.

A type of data which in general can’t be handled directly by these algo-
rithms is free text written in natural language, such as English or Italian.
While a computer can check for equality between two elements from a fi-
nite set and can operate with numbers, it can not trivially perform tasks on
portions of text which are relatively simple for persons. Examples of such
tasks include recognizing the topic treated in the text or the opinion of the
writer about it and making a summary of the contents.

Text mining (or text analysis) is the research field which deals with
extracting useful, high-level information from text: it can be seen in practice
as data mining applied on natural language text.

Most text mining-related literature has its roots in data mining, ma-
chine learning and related fields as well as in information retrieval, which
generally refers to automatic retrieval from a vast data collection of infor-
mation relevant to some need. Most research on this field is focused on
retrieval from text collections and proposed many of the techniques used in
text mining.

Likely to data mining, a text mining process generally involves a pre-
liminary pre-processing phase, which in this case is needed to translate raw
text into a structured form, upon which statistical analysis tools such as
machine learning algorithms can be applied. The typical choice is to rep-
resent documents as vectors, according to a variety of techniques spawned
from information retrieval research, which can then be processed with many
known methods. Coverage on these techniques will be given in Chapter 2.

1.2.1 Applications

Text mining techniques can be exploited in different contexts where abun-
dance of textual data is produced.

6 Chapter 1. Data and Text Mining

A prominent source of such data is the World Wide Web, especially refer-
ring to the so-called “Web 2.0”, where each user can publish self-generated
content: this includes sites such as discussion forums, blogs with readers
comments and social networks. Due to the large diffusion and usage of
these platforms, the amount of data produced every day by their users is
huge, and a substantial part of it consists of textual data.

Texts produced and published by Web users include posts on forums
and social networks, product reviews on e-commerce services and reviews
of services (such as restaurants and hotels) and creative works (such as
movies and video games) on specialized sites. Given its nature, this data can
potentially indicate the general opinion of people about a variety of topics,
persons and things, making it an highly valuable asset. For example, the
automated analysis of a bunch of reviews of a particular product or service
may reveal the most relevant strengths and weaknesses experienced by its
users.

However, the huge amount of such data requires specialized methods to
extract the needed high-level information. Text mining techniques are very
useful in this context, enabling the selection of data relevant to some topic
and the summarization of its content. A relatively recent and currently
very active branch of text mining research is sentiment analysis, which is
specialized in understanding the positive or negative polarity of a portion
of text expressing an opinion, which may be referred to anything (a person,
a brand, a political party, etc.).

Another necessity regarding massive collection of text is its automatic
organization. This necessity arises for collections of text documents which
are ought to be consulted by users, such as books in a library or stories in
a news site: these texts are generally grouped into categories, consistently
with topics treated by them. When the number of documents is even mod-
erately high, manually grouping them can be a cumbersome task, so many
methods have been devised to automatize this process.

Other than browsing documents by predefined categories, a user may
want to retrieve documents which are the most relevant to a specific query
decided by him or her, as commonly happens when using a Web search
engine. This is a problem tackled since earlier research, in the specific
branch of information retrieval, which will be discussed later in Section 2.1.

1.3. High-level text mining tasks 7

1.3 High-level text mining tasks

Above, a general overview of the possible applications of text mining meth-
ods has been given. In the following, a shallow distinction is given of the
specific problems which are tackled by text mining, along with a quick
overview of related literature. These tasks are here regarded as “high-level”
as they can be applied to large collections of documents as a whole.

1.3.1 Text categorization

Text categorization (or classification) generally refers to the organization
of a set of text documents into categories of a priorly defined set, often
representing topics of discussion such as “science”, “arts”, “sports” and so
on. This general description may refer to many practical problems in a wide
range of complexity, such as classifying mail messages as useful or spam,
labeling articles of a news site with meaningful topics and indexing web
pages and sites in hierarchical directories.

In the vast majority of recent works, automatic text classification is
tackled through the use of machine learning algorithms, which use training
documents as input to infer classifiers able to coherently label subsequent
documents. This approach requires to pre-process documents to represent
them as vectors, after defining a suitable set of predictive features [107].

Text classification will be treated in detail throughout the rest of the
thesis, starting from Chapter 3 (although with references to general tech-
niques presented in Chapter 2).

1.3.2 Sentiment analysis

Sentiment analysis (or opinion mining) refers to the extraction from a col-
lection of text of the general attitude expressed regarding some particular
object [91, 74]. This branch of text analysis includes some different cases.

In a conceptually simple case, sentiment analysis means classifying a
set of text documents (e.g. reviews of a movie) as expressing a positive
or negative (or maybe neutral) opinion. To perform a finer distinction,
documents may be labeled with a rating, implying different possible levels
of positive or negative polarity, as expressed for example with ratings “from
one to five stars”. To extract even more useful information, the analysis
may identify different aspects of the same object and evaluate the average

8 Chapter 1. Data and Text Mining

polarity for each of them (e.g. reviews of a movie may declare that it has
an interesting plot, but that it is poorly directed). Another possibility is
to understand whether a polarity is present at all, distinguishing subjective
from objective texts.

Sentiment analysis methods can be in some cases considered as specific
applications of other known task: classifying reviews as either positive or
negative can be seen for example as a text categorization problem. Any-
way, specific techniques are often employed when dealing with opinions, for
example the extraction of composite phrases rather than single words and
the use of external knowledge indicating the polarity of each of them.

1.3.3 Text clustering

Text clustering refers to the identification of groups (clusters) of similar
documents in a potentially large set of them [76, 1]. Likely to text classi-
fication described above, the goal is to organize documents in groups; the
difference is that the groups are not priorly given.

As in general data clustering, groups should be created so that each
document is largely similar to others of the same group and different from
those of other groups. Also the used techniques are equivalent or similar
to known ones, in particular hierarchical and partitive (e.g. k-means or
variants) clustering.

Clustering results may be used to automatically organize a vast collec-
tion in groups of similar documents in order to ease their browsing. In
this case, to be more useful in practice, especially if their number is large,
clusters should be automatically labeled with some meaningful names or
descriptions of the documents in each. This task is a form of text summa-
rization, further discussed below. The organization of documents in clusters
may even be used as an indexing method to support other tasks, such as
retrieval of documents relevant to an arbitrary query.

1.3.4 Document summarization

Document summarization generally refers to obtaining a summary of con-
tents from a document or a set thereof, in form of keyphrases, keywords or
sentences [26].

A very diffused approach is summarization by extraction consists into
giving as summary a set of words, phrases or sentences appearing in the

1.4. Natural language processing 9

text, picking the ones deemed to be more representative of the contents
[43]. Many works select such items by means of machine learning or using
other probabilistic models, such as hidden Markov models.

Another solution is summarization by abstraction, where new sentences
which describe the contents of the text are generated. This potentially
allows for more concise and fluently readable summaries, but constitutes a
much harder challenge, due to the necessity to generate non-trivial portions
of general language. The extraction of information needed for the summary
also requires advanced techniques to understand natural language.

Other than summarization itself, a non-trivial problem discussed in lit-
erature is evaluation of summarization methods. While for tasks like text
categorization the experimental evaluation is simply based on verifying that
predictions on a test set match a gold standard and is trivially automated,
this method is not easily appliable to summarization. Summaries for a same
document (or set thereof) given by different human expert are very likely
to differ from each other and is therefore difficult to define a unique correct
solution to be used as gold standard [77]; manual evaluation of automated
summaries can be a solution, but requires considerable effort.

1.4 Natural language processing

Natural language processing (NLP) generally refers to methods and tech-
niques allowing a computer to directly handle text in human language.
While this definition also includes tasks like automatic generation of such
text, the focus here is on reading and analysis of natural language: the
general goal is to infer the underlying structure of read text at different
possible levels of detail.

The distinction made here between techniques described in this section
and text mining tasks discussed above is mainly based on the scope: while
tasks like text classification are inherently carried out on whole collections of
documents to extract high-level information, techniques ascribable to NLP
are generally employed to perform a more fine-grained analysis of text and
many of them can be applied on single documents independently from the
others. Citing [55], the difference is that text mining is “the discovery and
extraction of interesting, non-trivial knowledge from free or unstructured
text”, while NLP is “the attempt to extract a fuller meaning representation
from free text”.

10 Chapter 1. Data and Text Mining

According to the specific needs, NLP techniques can be useful by them-
selves to perform some specific tasks or can be leveraged to aid in addressing
the needs presented in the previous sections.

In the following, some common NLP tasks are presented.

1.4.1 Part-Of-Speech Tagging

Each word in a text belongs to one part of speech (POS), a grammatical
category denoting its function in a sentence. Most common parts of speech
are nouns and verbs, usually present in every phrase, while examples of
other parts are articles, pronouns and conjunctions.

While for a human is often trivial to distinguish among such different
parts of speech (it is usually learned at school), there are some concerns for
computers. Given the potential ambiguity of natural language, the correct
part of speech for a word might not be identifiable by itself and may depend
in a complex way from its context. For example, the word set might be a
noun (“the set of natural numbers”), a verb (“parameters must be set”) or
an adjective (“the table is set for two people”).

Specialized algorithms for part-of-speech tagging (POS tagging) exist,
analyzing sentences in their entirety to determine the correct POS for each
of their words. A POS tagging algorithm must have knowledge of the
grammatical structures of the specific language to be analyzed: this may
be given in form of predefined rules, but is common to use a training set
of preliminary tagged text from which such knowledge is automatically
extracted, for example in form of hidden Markov models [23].

Known examples of these tagged datasets, which are also used for eval-
uating correctness of the methods, are the Brown Corpus and the Penn
Treebank Dataset. Each of such datasets is based on a specific tags set,
which defines the possible labels which can be attributed to words. While
commonly only about ten grammatical categories are considered (nouns,
verbs, etc.), tags sets commonly contain many more elements in order to
make finer distinctions within these categories: for example, in both the
two datasets cited above proper nouns are distinguished from the rest and
also singular and plural nouns are separated.

1.4. Natural language processing 11

1.4.2 Word Sense Disambiguation

POS tagging, identifying the components of the underlying grammatical
structure of text, is a first step in extracting its meaning. Anyway, a sub-
sequent step is to identify the specific concepts expressed by each word.
Again, the difficulty of this task lies in the ambiguity of the language, where
many homonimies exist: a word may refer to more than one meaning. A
typical example is the word bank, which as a noun may refer to either a
financial institution (as in “a bank account”) or a portion of land (“the bank
of the river”). Similarly to how distinguishing the POS of a word generally
involves identifying those for other words in the same phrase, the correct
meaning of a word is usually suggested by the ones surrounding it in the
text, as in the two example phrases above where account and river are hints
about the respective senses of bank.

Word sense disambiguation (WSD) is the specific task of identifying the
correct sense for each ambiguous word in a text [84]. This task generally
requires the availability of an external knowledge base to be used as a sense
inventory, telling which are the possible senses of each word, which may dif-
fer across different sources; anyway, research on unsupervised discrimination
(clustering) of different word senses exists. This task may be regarded as
similar to POS tagging, but different methods are often employed.

Intuitively, sense disambiguation is generally based on the context in
which every word appears, which usually consists into the surrounding
words rather than the sentence containing it or even the whole document.
Specifically, it is common to resolve ambiguities for multiple words at once,
as the most likely sense for a word often depends from senses of the others,
so that the overall most likely combination must be found.

Various approaches exist to WSD, which can be subdivided according to
the type of external knowledge sources required. Some methods are based
on structured knowledge bases like dictionaries: a representative example
is the Lesk algorithm, where senses for more words are chosen in order to
maximize the number of common words occurring in the dictionary defi-
nitions of all of them [64]. Likely to other tasks, other methods are based
instead on training a general model from a collection of text which is fully or
partially already tagged with correct senses [63], but also methods learning
from untagged text exist [126].

12 Chapter 1. Data and Text Mining

1.4.3 Other tasks

The following are some other specialized task which are sometimes needed
to be performed.

� Parsing refers to inferring the structure each sentence, which can
be usually represented as a parse tree where the root corresponds
to the whole sentence, intermediate nodes to phrases and leafs to
single words. For example, the sentence “the book is red” can be
decomposed into the noun phrase “the book” and the verb phrase “is
red”, which can be in turn decomposed into the single words.

� Named entity recognition (NER) is used to find proper nouns
in a text and identify to which specific person, place or other entity
refer to [83]. This usually implies resolving ambiguous references, for
example identifying a person of which only the last name is given.

� Recognition of pattern-identified entities refers to spotting some
specific type of information from common patterns: for example a
string containing a “@” character (e.g. “bob@example.com”) could
be tagged as being an e-mail address, while a number followed by
one of some specific strings (e.g. “88 mph”) may be identified as a
physical quantity.

� Coreference resolution refers to locating words in a text referenc-
ing the same entity. For example, a pronoun is generally used to refer
to a person or an object explicitly named in a previous phrase, con-
stituting what is called an anaphora: coreference resolution methods
must correctly link the pronoun to the noun.

13

Chapter 2

General Techniques and Tools for
Text Mining

Research on automated processing of text documents has been active for
decades and, as stated above, the theme is today of great interest. Through-
out the literature, many recurring techniques proved to be effective in many
situations: this chapter gives an overview of these techniques, with some
focus on those employed for text classification.

2.1 Brief history

Research on automatic analysis of text dates back to several decades ago:
its need was generally driven by the general necessity to efficiently retrieve
specific knowledge from consistent amounts of information. Storage of in-
formation, primarily in written forms, is performed since hundreds and even
thousands of years. As the amount of information grows, retrieving spe-
cific needed pieces of it naturally becomes more difficult, so any method
to improve the efficiency of search across information sources has primary
importance. Since shortly after their advent, the great potential support of
computers in storage and retrieval of very large amount of information had
started to be explored.

Information retrieval (IR) is the research field dedicated to this issue,
which can be dated back to the 1950s: in [78] was first proposed the general
idea of a statistical approach based on keywords to automatize the search

14 Chapter 2. General Techniques and Tools for Text Mining

of pertinent information. The typical problem studied in IR is the selection
of documents from a possibly large collection which are pertinent to some
query given by a user. Important advances in this field were made in the
1960s, including the development of the SMART Retrieval System [105],
from which the vector space model (see next section) and other important
concepts emerged.

One of the need within IR systems was the indexing of documents, to
improve the query response time. In [80] a concrete probabilistic technique
for indexing of documents in categories is presented along with experimental
evaluation of its accuracy: this and successive similar works [9, 35] can be
seen as early examples of text categorization methods.

Until 1990s, experimental evaluation of information retrieval methods
was usually performed on relatively small datasets, due to the lack of avail-
ability of large collections. To support this research field, in 1992 has been
launched the Text Retrieval Conference (TREC) [47], whose goal is to en-
courage large-scale information retrieval by providing the necessary infras-
tructure for its evaluation.

2.2 Bag-of-Words representation

The main hindrance in automated processing of text is its unstructured
form: normally, a computer sees a text as a sequence of characters, usually
without any additional information about how words, sentences and sections
are divided and what they represent. The grammatical structures which are
usually easily recognizable by human readers can’t be trivially understood
by computers, especially due to semantic and even syntactic ambiguities.

While NLP techniques can aid in discovering the grammatical structure
and even the meaning of analyzed text and building a structured represen-
tation of it, applying them to large volumes of data may be not feasible,
especially in contexts like online classification of documents where responses
must be given quickly.

One solution to this problem is to build a somehow approximated rep-
resentation of the text under analysis, which can be extracted with limited
complexity but retains enough information to handle the task to be accom-
plished.

The basic elements constituting a text document are words : each word
in a text has a meaning and constitutes a building block for phrases and

2.2. Bag-of-Words representation 15

complete sentences. The single words of a text can be extracted in a rel-
atively trivial way, by splitting the sequence of characters constituting the
text on spaces and punctuation signs: this process is known as tokenization.

The extraction of single words is usually the first step for NLP tech-
niques, which are then able to detect sentence boundaries and find the
function and the meaning of each word. Anyway, even without using such
techniques, it is trivial to identify the set of distinct words found in a
document and obtaining a count of occurrences for each of them: this in-
formation is used to represent the document as a bag of words (BoW).

A bag of words is in practice the multiset (a set which can contain mul-
tiple occurrences of elements) of the words contained in a text document,
without considering their order and excluding other elements like punctua-
tion marks. While this representation implies a significant information loss,
it proves to be effective to accomplish many practical tasks with good accu-
racy. An example is text classification, where the most recurring words in
a document can indicate quite straightforwardly which is the topic treated
in the document, given that representative words of categories of interest
are known.

To allow usual standard machine learning algorithms to handle a collec-
tion of documents, they must be represented as vectors using a global set of
features, according to the vector space model (VSM). A set of bags of words
can be translated straightforwardly into a set of such vectors, considering
the union of all distinct words as the set of features and representing each
document as a vector with the count of occurrences or some other kind
of weight (as explained in the following) of each word. In this view, each
document is actually seen as a vector in a multidimensional space, where
each dimension corresponds to one of the words appearing throughout the
whole collection of documents.

The whole set of document vectors can be seen as a document-term ma-
trix, where rows and columns correspond to documents and words (terms)
respectively. A matrix built in such way is generally largely sparse (many
entries are 0), as usually the global number of distinct words in a collection
of documents is very high, but each document only contains a small part
of them.

While here is described how to build a basic, “raw” representation of
a collection of documents as bags of words and vectors, countless variants
exist on this scheme to improve the accuracy of the representation and
address the high dimensionality problem. As exposed in the following,

16 Chapter 2. General Techniques and Tools for Text Mining

other features rather than words can be considered and a subset of them
can be selected to represent documents.

2.2.1 Cosine similarity

In many circumstances, some of which will be shown in the following, it
is required to somehow compare one bag of words, in form of a vector,
with another one in order to evaluate their similarity. In a vector space
Rn, it is generally possible to define a similarity function Rn × Rn → [0, 1]
which maps to two vectors a numeric measure of how much they are similar.
Similarity functions are somehow the inverse of the more known distance
functions, which map to two vectors a scalar value in [0,+∞): conversion
from distance to similarity of two vectors can be done by any function
mapping 0 to 1 (equal vectors) and very large values to very small ones
(distant vectors), such as similarity = exp(−distance).

The distance measure generally mostly employed in vector spaces is the
euclidean distance. However, considering vectors representing text docu-
ments where values represent the frequency of each term, the similarity
between two documents should depend on the proportions between the
different values rather than on their absolute values. For example, two doc-
uments dealing with the same topic but with very different lengths (say
100 words versus 10,000) would generally be represented with two vectors
similar in their orientation in the space, but different in their length (or
magnitude), thus their euclidean distance would be misleadingly significant.

For this reason, a suitable solution is to evaluate the angle between two
vectors without considering their length: the smaller is the angle, the more
similar are the documents. To obtain a similarity measure constrained in
the range between 0 and 1, the cosine of such angle is considered, which is
equal to 1 for a null angle and is non-negative if all the vectors are so. This
measure, called cosine similarity, can be computed from the components of
two generic vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) as follows.

cos(a,b) =
a · b
‖a‖ · ‖b‖ =

∑n
i=1 ai · bi√∑n

i=1 ai ·
√∑n

i=1 bi

As shown in the formula, the cosine similarity is in practice the dot
product of the two vectors normalized by their lengths.

As an example, the point a in Figure 2.1 is closer to b than to c by

2.3. Extraction of features 17

a

b

c

x1

x2

Figure 2.1 – Comparison between euclidean distance and cosine similarity

euclidean distance (‖b − a‖ < ‖c − a‖), but has an higher cosine simi-
larity with c than with b, because the angle between the two is smaller
(cos(a, c) > cos(a,b)).

Cosine similarity effectively expresses how much two bags of words are
similar in the distribution of the words they contain, thus constituting a
good estimation of much the topics they discuss overlap.

2.3 Extraction of features

In the need of reducing text documents to vectors, is important to define
a set of predictive features which are effective in representing the original
contents of the document. The trivial choice presented above is to consider
words as they appear in the document, without considering their form or
meaning. Variants of this approach aim to overcome this limitation by
exploiting semantics of words, possibly using external knowledge. Other
approaches consider other features than single words, such as n-grams.

2.3.1 Lemmas

Given a dictionary of a certain language (e.g. English), at each entry cor-
responds one headword or lemma, which is the canonical form representing
a possibly wider set of words corresponding to the same entry. For many
of such lemmas, inflected forms also exist, which express the same concept
with differences in number, gender, tense or other categories. For example,

18 Chapter 2. General Techniques and Tools for Text Mining

waiter and waiters refer to the same dictionary entry, having waiter as its
lemma; similarly, served and serving are both inflected forms of (to) serve.

In the basic case presented above, where words are considered as mean-
ingless tokens, different inflected forms of a same lemma are considered as
distinct words. A different approach would be to represent each word by its
lemma, without distinguishing its different forms. While this theoretically
implies a loss of information, the advantage is a noteworthy reduction of
the number of features which, in many cases, does not lead to a practical
loss of accuracy. Taking again text classification as an example, it generally
matters to know which lemmas appear and their frequency, while the spe-
cific form in which they appear (e.g. how many singular and plural forms
of each noun are there) has negligible importance.

The application of this approach, however, is not straightforward, as a
computer must be able to infer, for each distinct word encountered in a set
of documents, its corresponding lemma. This process, known as lemmatisa-
tion, requires prior knowledge of the specific language under analysis. Such
knowledge can be very complex, including a complete set of general rules
addressing common cases (e.g. -s termination for plurals in many nouns
and for singular third person in verbs) and enumerations of specific cases
and exceptions to such rules (e.g. mice being plural of mouse).

2.3.2 Stems

In the most general sense, a stem of a word is a part of it. Here, stem is
used to indicate the part of any word which is common to all its inflected
variants. Some words have their stem equal to their lemma, but does not
apply to any word. Recalling the examples above, waiter and waiters have
waiter as their stem, which is also their lemma; however, served and serving
have serv as stem, which is a truncation of the lemma (to) serve. In many
cases, such as this latter example, the stem of a word, contrarily to the
lemma, is not itself a word of the language (although a human reading a
stem should generally be able to infer the lemma of the original word).

Likely to lemmatisation, stemming is the process of extracting the stem
of an arbitrary word. Also in this case, the process is dependent from
the language and requires proper knowledge of it. However, stemming a
word is usually more simple than extracting its lemma: the stem is always
contained in the word itself and can usually be extracted just relying on a
not too many complex set of rules.

2.3. Extraction of features 19

Given the efficiency of stemming algorithms, also known as stemmers,
in the many situations where it is not necessary to have complete words
as features, stems are instead used to efficiently identify groups of similar
words.

Some stemming algorithms have been proposed, even since decades ago.
The most commonly used among such algorithms is the Porter stemmer
[97]. This algorithm, likely to others, is based on suffix stripping: a number
of rules divided into some steps is defined so that each input word has its
suffix removed or substituted according to rules whose preconditions match
the word. For example, the -ing suffix is removed only if the resulting stem
contains at least one vowel, so that serving is stemmed into serv, but sing is
instead left as is.

2.3.3 n-grams and phrases

An n-gram is in general a sequence of n consecutive elements extracted
from a wider sequence: common specific cases are for n = 2 (bigrams) and
n = 3 (trigrams). Elements grouped in n-grams are generally either letters
or words. For example, considering letters, from the word example can
be extracted the bigrams ex, xa, am, mp, pl, le. Some works use n-grams
as features in place of or in addition to single words, sometimes mixing
different lengths.

n-grams of letters are not practical to use in place of words, as these
serve usually to identify the topic discussed in a document and groups of
letters (especially if short) would generally instead be poorly indicative
of what the document discusses about. Instead, sequences of letters are
usually employed in particular tasks where they can actually be effective
as predictive features, such as classifying documents by language [16]: for
example, English texts can be recognized by the high frequency of some
bigrams such as th and er.

n-grams of words as features are instead more similar to words, as can
be informative of the topic discussed in the text. The extraction of bigrams
and trigrams can be useful to represent recurring compound expressions,
such as text categorization or word sense disambiguation. A field where n-
grams of words are currently particularly used is sentiment analysis, where
some sequences of words expressing a specific polarity are present which
would be not accurately represented as single words [85].

20 Chapter 2. General Techniques and Tools for Text Mining

Some works also deal with the use of phrases as features, which may
refer either to generic sequences of words which often recur in text – which
reflects the above definition of word n-grams – or to syntactic phrases, which
are those defined by the language grammar, having a meaning on their own.
In [65] the use of syntactic phrases for text categorization is evaluated; it
is observed anyway that phrases “have inferior statistical qualities” with
respect to words, because distinct phrases are in higher number and many
of them having similar meaning end up being split across many features.

2.3.4 Concepts

Types of features described above are extracted in a relatively trivial way
from words, this with minimal processing of them. While words can gen-
erally give a good indication of the contents of the document, they anyway
are not a perfect representation. A cause of this are the properties of syn-
onymy and polysemy of natural language, implying that a meaning may be
expressed by more than one word and a word, taken out of its context, may
have more possible meanings. An ideal solution would be to represent a
document with the concepts expressed in them, rather than (or in addition
to) with the possibly ambiguous words.

Different methods exist to extract features of this type. Two general
types of approaches can be distinguished: existing concepts can be extracted
statistically from the documents or obtained from an external knowledge
base. In the first case, the documents to be processed (or in some cases an
external set of different documents) are analyzed in order to identify po-
tential concepts according to co-occurrences between words in documents.
For example, a set of words which (almost) always appear together in docu-
ments are likely to represent a unique meaning or very related ones: this set
could be reduced to a single feature with no significant loss of information
about the contents of documents. Some methods to extract latent semantic
knowledge from collections of documents are discussed in Section 2.5.

The other possible approach is to use some sort of external knowledge
base to obtain information about all the existing concepts and to correctly
map words found within documents to them. Different sorts of knowledge
bases can be used for this purpose, as discussed in Section 2.6, while in
Section 5.2 are summarized some concrete methods for text categorization
making use of external knowledge bases for extracting semantic features
from documents.

2.4. Term selection and weighting 21

2.4 Term selection and weighting

As seen above, there is more than one possibility to extract predictive
features from a collection of text documents, with single words (or stems
thereof) being a common choice given the good balance between accuracy
and efficiency. However, an issue to be generally faced with any of these
methods is the high number of global features, which potentially leads to
poor performances in subsequent steps of the analysis. In general data min-
ing, this is known as the dimensionality problem. What usually happens
in practice is that each single document contains a manageable number of
words or other features (say hundreds), but the union of all documents in
collections of typical sizes brings a very high number of distinct terms. In
this phase it is generally useful to apply techniques for feature selection to
reduce the global number of distinct features to a smaller, convenient set.
This step, if correctly tuned, can enhance the efficiency of the analysis with
small or negligible loss of accuracy, which might be even improved in some
cases.

Once a set of features has been defined, each document must be repre-
sented as a vector with one value for each of these features: a criterion to
assign these values is necessary. Term weighting is the general task where,
within a set D of documents, fixed a set T of features, a weight is decided
for each term w ∈ T in each document d ∈ D.

In the following, some recurring methods for selecting and weighting
terms are presented.

2.4.1 Basic word filtering

Referring here to the case where single words are used as features, there are
few trivial expedients which can be exploited while parsing documents to
reduce the number of features.

An important aspect of the bag-of-words approach is that, while infor-
mation about the presence and usually the frequency of distinct words is
maintained, their position and their function in the text is lost. As words
are stripped from their context, some more information becomes useless
and may be discarded as well.

For example, while the first word of each sentence in a text is generally
written with an uppercase initial, when the text is reduced to a bag of
words it is no more important to distinguish sentence-opening words with an

22 Chapter 2. General Techniques and Tools for Text Mining

uppercase letter. This is the main motivation for case-folding, i.e. turning
all letters of all words to the same case (conventionally lowercase). This
reduces the number of distinct words because, for any word that appears
both in lowercase and with uppercase initial (and possibly all uppercase or
in other forms), only one feature is extracted rather than two (or more).

As each word is taken without considering its context, it should have a
meaning by itself to be somehow informative on the document it is found
in. The words which better represent the content of a document by them-
selves are generally some nouns, verbs and adjectives which express the
most relevant concepts of the text. On the other side, words like articles,
pronouns and prepositions are quite common and do not express concepts
by themselves, so are less likely to be useful as features. An example is the
determinative article the: this is likely to appear multiple times in every
document of a collection in English language, but it does not mean any-
thing by itself and does not help in representing the semantic content of the
document. For this reason words like these, called stopwords, are usually
filtered out while documents are parsed. The removal of stopwords requires
to be able to recognize them: generally a language-specific list is given.
There isn’t a unique list of stopwords for English or any other language,
but all available lists are similar and using one rather than another usually
has negligible effects on the results.

2.4.2 Feature selection

As the dimensionality problem affects data analysis in various fields, among
which text mining is a prominent example, general techniques to automati-
cally select an optimal subset of features have been devised. General feature
selection algorithms are usually based on statistical observation of the data,
regardless of what features actually represent.

Generally, analyzing a set of vectors, the features which can be discarded
without affecting accuracy are those whose variability is too low (a feature
with a constant value being the limit case) or too high. Also, if the values of
two or more features are highly correlated to each other, only one of them is
useful. These are unsupervised approaches, applicable in any learning task.

A trivial selection technique of this type is based on document fre-
quency : features appearing in less than a set number N of documents are
removed. This serves to ignore some very rare features which can be usu-
ally ignored without significant loss of information, like rather uncommon

2.4. Term selection and weighting 23

terms or words with typos. This threshold N is usually very small, roughly
near to the 0.1% of the number of documents, but even with such values a
consistent number of unimportant features can be usually removed.

If additional information about the documents under analysis is avail-
able, it can be exploited to improve the efficacy of the feature selection
process. Specifically, if documents are organized in categories, features can
be evaluated accordingly to their correlation with them. This possibility
will be discussed in §3.4.2, when dealing with text classification.

2.4.3 Term weighting

Once a set of features to represent documents as vectors has been decided,
the vectors themselves must be computed: different term weighting schemes
exist to determine the values to be assigned.

The weight of each term in each document should denote its importance
in representing the contents of the document itself. The most basic weight-
ing schemes just follow this intuition, so that weights of any document are
assigned only on the basis of that document itself: these are referred to as
local schemes. Below are briefly discussed the most common schemes.

The most basic scheme is binary weighting, which assigns 1 to any term
present in the document and 0 to the rest of terms in T . This method is
necessary with learning algorithms which only accept presence of features
and not weights, like some forms of probabilistic classifiers (see §3.5.1).
Despite the fact it discards the information about the number of occurrences
of each term, this method often yields practical results very similar to those
obtained with other weights.

If the number of occurrences #(t, d) of each term t for any document d
is instead to be considered, the simplest solution is to use this number itself
as the weight of each term: this value (and the weighting scheme using it)
is referred to as term frequency (tf). Intuitively, multiple occurrences of a
term in a document are equally or more important than single appearances
(this is also known as the tf assumption), so giving higher weights to terms
appearing more often in the document may help to better characterize them.

A commonly employed variation of this scheme is logarithmic term fre-
quency, where the number of occurrences is dampened using the logarithm
function, with 1 added to the argument to maintain weight 0 on absent
terms. This method can be employed to avoid overweighting the most re-

24 Chapter 2. General Techniques and Tools for Text Mining

curring terms at the expense of possible other ones which are less frequent
but still important.

In order to avoid giving more bias to long documents, the term frequency
may be normalized by dividing all counts of occurrences by their sum.
Although this simple normalization scheme is not much frequently used, it
will be applied in experiments described later in the thesis.

Weighting schemes presented above compute the importance of each
term locally to each document, without considering the larger context which
is the collection of documents. Global weighting schemes measure instead
the relevance of a term across the whole collection.

The by far most common global weighting scheme is inverse document
frequency (idf), for which various similar formulations exist. The idf of
a term t is usually computed as the logarithm of the inverse ratio of the
number of documents nt where t appears with respect to the total number
N of documents in the collection. Another variant, commonly labeled as
probabilistic, the total number of documents is substituted with the number
of those where the term does not appear.

This type of schemes follows the hypothesis (also known as idf assump-
tion) that terms appearing in many documents are not more important
than more rare terms. Intuitively, the presence of a term appearing in
many of the documents is not very informative: it could be for example
strongly related to the topic treated in the whole collection and thus fail to
be a distinctive feature for a limited amount of documents.

In summary, local and global weighting schemes, of which a short list is
given in Table 2.1, assign convenient weights to terms in documents accord-
ing to their importance measured respectively in the single documents and
in the whole collection. These two aspects are complementary, but both
are important to consider when creating the vectors for each document.For
this, in most works, the weighting scheme adopted is the product of a local
and a global one, so that each term is weighted with two factors denoting
its importance in the two different aspects. The most common choice is to
combine the basic term frequency with the inverse document frequency, to
obtain the well known tf.idf weighting scheme.

tf.idf(t, d) = tf(t, d) · idf(t) = #(t, d) · log
|D|

|{δ ∈ D : #(t, δ) > 0}|

2.4. Term selection and weighting 25

Table 2.1 – Summary of local and global term weighting schemes

Scheme Formula
Local (weight within document)

binary bin(t, d) = min(1,#(t, d))
term frequency tf(t, d) = #(t, d)

logarithmic term frequency logtf(t, d) = log(1 + #(t, d))

normalized term frequency ntf(t, d) =
#(t, d)∑
τ∈T #(τ, d)

Global (weight within collection)

inverse document frequency idf(t) = log
N

nt

probabilistic inverse document freq. idfprob(t) = log
N − nt
nt

#(t, d) = number of occurrences of term t within document d � nt = number of documents
where t appears � N = total number of documents

To maintain final values in vectors in a [0, 1] range and in order to
avoid giving more bias to longer documents, sometimes the vector of each
document is normalized according to some scheme, as suggested above for
the term frequency. The most common one is cosine normalization, which in
practice transforms the vector so that its length (or magnitude) is brought
to 1 without changing its direction, which is often the actual important
property of a bag of words, as discussed in §2.2.1.

wnormalized(t, d) =
w(t, d)√∑
τ∈T w(τ, d)2

Also some supervised term weighting schemes have been proposed, which
are based on known organization of documents in categories and are there-
fore mostly used in text categorization: a couple of related works are cited
in §3.4.2 together with supervised feature selection.

26 Chapter 2. General Techniques and Tools for Text Mining

2.5 Extraction of latent semantic

information

Ideally, features extracted from documents should uniquely represent high-
level concepts and topics in order to give an accurate representation of their
contents. In practice, words or other features are generally far from the ideal
condition due to the fact that there are more words are frequently used in
each topic and each word may be used in more than one of them. From
the point of view of the language, words can have multiple meanings (pol-
ysemy) and the same concept can be recalled by more words (synonymy).
Additionally, some words may have different meanings but be somehow
related.

These properties sometimes dmake ifficult to correctly spot similarities
and correlations within data. For example, two documents may discuss the
same topic using different words, so that they appear to be unrelated to
each other. However, the relevant words of both documents may signifi-
cantly occur simultaneously in either few or many other related documents:
this information might serve to infer that all those words are somehow se-
mantically related, thus the two example documents are potentially related
despite they differ significantly in the words they contain.

Solutions exist based on the use of external knowledge bases, which
are described in the following section. However, another possible approach
is to analyze the available documents to recognize recurring dependencies
between words, which are usually indicative of relatedness between them.
These techniques to extract latent semantic information from documents
are based on statistics and probability and are used across different text
mining and general information retrieval applications.

2.5.1 Latent semantic analysis

Latent semantic analysis (LSA) [30], also known as latent semantic indexing
(LSI), is a general technique to analyze relationships between documents
and terms in a collection, extract high-level concepts and transform the
representation of documents according to the identified relationships.

Summarily, LSA transposes documents of a collection and terms therein
in a latent feature space, where dimensions ideally correspond to high-level
concepts or components. Therefore, each document is represented as a

2.5. Extraction of latent semantic information 27

weighted mix of such components, while each term may similarly be related
with different degrees to more concepts. This scheme is very similar to
principal component analysis, which is used to map a vector space with
possible correlations between dimensions to another space without such
correlations.

Given a collection with n documents and m distinct terms extracted
from them, in order to apply LSA, a m× n term-document matrix X must
be built, with each cell xi,j containing the weight of term ti in document
dj. Columns of X correspond in practice to bags of words for documents,
with terms weighted according to some scheme: those presented above in
2.4.3 can be used, although different schemes based on entropy are often
effective in this case.

Within this matrix, dot product (or cosine similarity) can be computed
between two rows (terms) or two columns (documents) to estimate their
correlation. A whole correlation matrix for terms or document may be
obtained computing XXT or XTX respectively.

On the term-document matrix is applied singular value decomposition
(SVD), a mathematical technique which computes a decomposition of the
original matrix X into three matrices.

X = UΣVT

Of the resulting matrices, U and V are orthogonal matrices sized m×
r and n × r respectively, while Σ is a r × r diagonal matrix containing
eigenvalues. The rationale is that each of the r eigenvalues corresponds to
one of the aforementioned high-level components traced in the collection of
documents and denotes how much it is relevant throughout the collection.

Eigenvalues are sorted along the diagonal of Σ in decreasing order, so
that the ones coming first are related to the most relevant components. This
allows to easily cut off less important components to a number k ≤ r, simply
by removing relevant rows and columns in the matrices. This reduction
potentially allows to remove noise in the data, which can be constituted
for example from terms or groups thereof appearing in few documents and
poorly related to other ones.

Once such a value k is set, it can be considered to build an approximated
version of the original term-document matrix X, by multiplying the three
reduced matrices: the resulting matrix X′ will have its rank reduced from
r to k. X′ is structurally identical to X (its rows and columns are repre-

28 Chapter 2. General Techniques and Tools for Text Mining

sentative of the same terms and documents as X), but term weights are
corrected so that noise is removed and evident correlations between terms
(or between documents) are accounted. For example, if two terms ta and tb
frequently occur together in documents, a document containing only ta of
the two will anyway have a weight for tb higher than zero (and vice versa).

From the reconstructed matrix X′ or directly from the truncated matri-
ces used to compute it, similarity between terms and between documents
can be computed according to the corrected weights, which will generally be
different from the corresponding one computed from the original matrix. In
the common case where documents most related to a query must be found,
using the common approach where the query is represented like a document
to be compared to known ones, it should first be mapped into the latent
space to undergo the same correction of values: this procedure is known as
fold-in. In the latent space, related documents which do not contain the
exact words of the query but strictly related ones can be found.

2.5.2 Probabilistic models

The LSA technique described above is based on singular value decomposi-
tion, which assumes a normal distribution of weights in the term-document
matrix: this modeling is not fully accurate, although particular weighting
schemes can make it work better. For this, improved techniques have been
proposed, based on different probability models, in particular on multino-
mial models, which better represent the occurrences of words in documents.

A first extension of the basic LSA technique has been the probabilistic
latent semantic analysis (PLSA) [49], which considers a probabilistic model
based on an hidden class variable z ∈ Z, which correspond to components
(dimensions of the latent space) in LSA. In practice, each word and each
document under analysis are considered to have affinities to these latent
classes, which ideally represent topics, each with specific recurring words.
From this, the occurrence of a word w in a document d is seen as a mixture of
these classes; in another parameterization, a document is seen as a mixture
of classes, which are in turn seen as mixtures of words.

P (d, w) =
∑
z∈Z

P (z)P (d|z)P (w|z) = P (d)
∑
z∈Z

P (z|d)P (w|z)

The conditional parameters of the model are estimated by the Expecta-

2.6. Linguistic and semantic knowledge bases 29

tion Maximization algorithm. While PLSA constitutes a better probabilis-
tic model than the one assumed in LSA for a corpus of existing documents,
it has the shortcoming of not providing a generative model able to represent
any document, even outside of the corpus.

A further extension of PLSA, latent Dirichlet allocation (LDA) [5] ad-
dresses this issue by providing a probabilistic model for generation of doc-
uments: it assumes the mixture of topics z conditioning words w of a
document to have a Dirichlet-distributed prior θ, which is parameterized
by a vector α. Another parameter of the model other than α is the per-
topic word distribution β. This gives the following joint distribution for a
document, where N is the number of words (assumed as constant here for
simplicity).

P (θ, z,w|α, β) = P (θ|α)
N∏
n=1

P (zn|θ)P (wn|zn, β)

Further improvements and extensions of these models exist, such as
the pachinko allocation model [70], which captures arbitrary correlations
between topics which can be represented as a directed acyclic graph.

2.6 Linguistic and semantic knowledge

bases

Techniques described in the previous section are used to infer semantic
information about words present throughout a collection of documents un-
der analysis basing on statistical co-occurrence within the collection itself.
Obtaining information about semantic relatedness between words from the
collection itself can be advantageous, as the words for which information
is obtained are exactly those for which is needed, independently from the
domain. However, extracted information may happen to be incomplete or
even erroneous, due to statistical anomalies in the collection.

Potentially, more accurate knowledge can be obtained from an external
base of knowledge about the language under analysis. In general, a complete
enough knowledge base should be used, in order to grant coverage of the
information needed in the domain of the collection under analysis.

Different resources have been used as knowledge bases for text mining
applications, including some which were not initially built with this specific

30 Chapter 2. General Techniques and Tools for Text Mining

purpose. At a very high level, two types of external knowledge bases can
be generally distinguished.

� Structured knowledge bases are specifically built to be machine-readable
resources employable in specific text mining and natural language pro-
cessing task. These can be subdivided according to the type of infor-
mation they provide, roughly ranging from dictionaries or lexicons to
ontologies. While the former are basically lists of words possibly with
descriptions associated, the latter are usually large sets of concepts
with various types of links across them.

� Unstructured knowledge bases are generic collections of data, usu-
ally in form of text primarily built for consultation by humans, from
which structured knowledge can be somehow extracted. Sometimes,
these consist into collections of documents different from those under
analysis, from which additional knowledge can be extracted. Some
of these collections are also partly structured, including for example
small structured parts and/or links between documents: a prominent
example is Wikipedia, which has often been used as a source of se-
mantic knowledge.

The proper use of such external knowledge bases allows to more or less
accurately to “understand” words and assign them meanings, which can
be possibly linked with each other. This allows for example to represent a
document by the concepts it contains, rather than by possibly ambiguous
words, as discussed in §2.3.4. An example of task for which the use of
knowledge bases is often important is word sense disambiguation (§1.4.2),
as they provide possible senses for each word and can be also used to support
the task of disambiguating between them. Methods for text categorization
also exist relying on these resources: some of them will be summarized in
Section 5.2.

2.6.1 WordNet

Throughout the text mining literature, one of the most employed knowledge
bases is WordNet, which has been subsequently extended in many forms.

WordNet is a lexical database of the English language, created in the
Cognitive Science Laboratory of Princeton University [81]. WordNet stores

2.6. Linguistic and semantic knowledge bases 31

more than 100,000 English lemmas, divided into four parts of speech (POSs,
see explanation in §1.4.1): nouns, verbs, adjectives and adverbs. Each
lemma appears in one or more synsets (contraction of synonym sets), also
divided into the same four POSs: each synset represents a concept described
by a human-readable gloss and includes one or more lemmas which express
that same meaning (which are thus synonyms), possibly with only slightly
different acceptations. The possibility for one synset to include more lem-
mas reflects the synonymy property of the language, while the fact that one
lemma may appear in more than one synset reflects polysemy.

Other than lemmas and synset, an important part of WordNet is con-
stituted by the relationships existing between them. Two types of relation-
ships are defined within WordNet: each semantic relationship involves two
synsets, while each lexical relationship involves the specific instances of two
lemmas appearing in two distinct synsets, which in WordNet are formally
referred to as words. Relationships are represented internally as pointers,
which start from a synset or word and point to another one which is some-
how related. Each pointer has a type, which indicates in which mode the
two objects are related; 29 different pointer types exist in WordNet.

The following are the most recurring types of pointers which can be
associated to a synset X.

� A hypernym is a synset Y which represents a more general concept
with respect to X, whose meaning is included in Y . This relationship
can be intuitively expressed with “X is a (type of) Y ”, as in for exam-
ple “car is a vehicle” or “dog is a type of animal”. Hypernymy exists
between nouns and between verbs and creates a subsumption hierar-
chy of concepts in form of a directed acyclic graph, where most synsets
have exactly one hypernym (so almost tree-like). Nouns are organized
into 25 hierarchies (animal, food, location, feeling, . . .), merged at the
top levels by generic concepts (unique beginners), having root in the
synset entity.

� A hyponym is a synset Y representing a more specific concept than
X. Hyponymy is exactly the inverse relationship of hypernymy: Y is
hyponym of X if and only if X is hypernym of Y .

� An instance hyponym is a synset Y which represents a single specific
object which is of the type represented by X. For example, Sun is an
instance hyponym of star.

32 Chapter 2. General Techniques and Tools for Text Mining

� An instance hypernym is the type of entity of which X is an instance.
Instance hypernymy is the opposite of instance hyponymy.

� A meronym is a synset Y representing an object which is somehow
part of X. Three types of meronymy are distinguished.

– A part meronym is a constitutive part of the object X, necessary
to obtain it (e.g. wheel is part meronym of car).

– A member meronym is a member of the set X (e.g. player is
member meronym of team).

– A substance meronym is an object made of X as material (e.g.
glass is substance meronym of bottle).

� A holonym is a synset Y representing an object of which X is a
part. Holonymy is the opposite of meronymy and has the same three
distinctions (part holonymy, member holonymy, substance holonymy).

The following are instead the most recurring types of pointers which a
word x may have.

� An antonym is a word expressing an opposite meaning with respect
to x. Antonymy is a reflexive relationship. For example, male and
female are antonyms of each other.

� A derivationally related form is a word with the same root or stem.
This also is a reflexive relationship. For example, fish (the animal)
and fishing are derivationally related.

From WordNet, many extensions and related projects have been devel-
oped. Some of such extensions consist in augmentations of the original data
with additional information. An example of this is SentiWordNet, where to
each synset weights are assigned indicating whether it expresses positivity
(e.g. wonderful), negativity (e.g. awful) or objectivity (e.g. complex) [3]:
this is useful in opinion mining tasks.

Some projects are focused instead on creating equivalent databases of
different languages, possibly with links across them. EuroWordNet is a sys-
tem of wordnets in multiple languages, interconnected by an Inter-Lingual
Index [117]. Between examples of projects focused on single languages, Mul-
tiWordNet is a database for the Italian language aligned with the original
English one [95].

2.6. Linguistic and semantic knowledge bases 33

Other projects aim to interlink WordNet data with other resources and
to integrate it into the Linked Open Data network constituting the Semantic
Web. A notable project is BabelNet, a multilingual ontology created by
automatically linking WordNet to Wikipedia.

The original WordNet, being already widely used in many tasks, has
been chosen as the reference knowledge base for the text categorization
method presented in Chapter 5 based on semantic relationships between
words.

35

Chapter 3

Text Categorization

Here the general task of text categorization is described, distinguishing its
variants and reporting some known solutions from relevant literature.

3.1 Problem description

Generally speaking, text categorization (or classification) is the task of la-
beling each text document of a set with categories (or classes, as commonly
named in general data classification). Categories assigned to each document
must be a subset of a priorly defined set of known categories, in contrast
e.g. to text clustering, where no such set is given.

Throughout the thesis, the global set of documents of a particular collec-
tion is usually denoted with D, while C denotes the set of known categories
with which documents can be labeled. Given this notation, the general
goal of text classification can be formalized as giving in output a labeling
L̂ : D × C → {0, 1}, indicating for each couple (d, c) ∈ D × C whether d
should be labeled with c (1) or not (0).

The set C of categories is decided according to some practical criterion.
In the most common case, each category represents a topic which is dis-
cussed in some documents in the collection: the need is to extract the subset
of topics significantly treated by each of the documents.

Keeping valid the general scheme of the problem, categories may refer
to something else other than topics. Works exist dealing with classification
of documents by author or by language, for example. Anyway, these tasks

36 Chapter 3. Text Categorization

often require ad hoc techniques to achieve good accuracy and efficiency:
for example, many works to classify text by language usually work with
n-grams of letters instead of words, to have a smaller and possibly more
significant set of features (§2.3.3).

There also are tasks which are not always regarded as “text classifi-
cation”, but are ascribable as such, usually for being more specific. For
example, spam filtering in a mail inbox may be regarded as labeling each
text document (a mail message) as belonging to either spam or not spam
(or ham, in jargon) category. In these cases, the techniques usually em-
ployed in text classification by topic can be (and often are) applied.

3.2 Variants

The description above is very general and refers to a wide range of works
about text classification. Works usually give slightly narrower definitions of
the problem they address, which are anyway similar and some of them can
be seen as generalizations or specializations of others. Here are described
the commonly possible variants of the general problem.

3.2.1 Binary, single-label and multi-label
classification

One thing to define, other than how many and which categories can be
globally applied to documents, is how many of them can be applied to each
single document.

Generally speaking about classification of objects (either documents or
not), the most basic task is binary classification, where each object must
be assigned to one and only one of two possible classes. It is common here
to denote one class with some identifier, say c, and the other one as its
complement c̄: in this point of view there is a single class to which each
object may belong or not. This is the case of the spam filtering example
cited above, as well as other similar filtering tasks. This type of problems
fits well to some machine learning models which are natively oriented to
binary classification, such as support vector machines (§3.5.2).

While binary classification considers only two possible classes, multi-
class classification entails an arbitrarily sized set of classes: in this case,
two possibilities are common. In single-label classification, each document

3.2. Variants 37

is assigned to one and only one possible category: in this case, considering
classification by topics, we impose that each document must treat a single
one of such topics, which may be reasonable or not according to the specific
context.

With multi-label classification, instead, no constraints are set on the
labeling of each document: given a set C of possible categories, to each doc-
ument can be assigned an arbitrary subset of them, which is usually allowed
to be empty. While some machine learning algorithms have been specifi-
cally proposed for multi-label classification problems (often being general-
purpose adaptations of standard ones), most of them can only treat binary
and single-label cases. The most common solution is to consider a multi-
label problem with |C| possible categories as |C| distinct binary classification
problems, each to determine which documents should be labeled with one
of the categories. In this approach, the potential dependencies between
categories are not considered, meaning that the probability for a document
to belong to a certain category does not depend from its associations to the
other categories. Although considering independence between categories
may be theoretically not correct, it is usually an acceptable approximation
in practice to ease the classification process.

3.2.2 Hierarchical classification

In the most general case, categories of the set C are independent from each
other: the assignment (or absence thereof) of a certain category to a doc-
ument does not depend from which of the other categories are assigned to
that document. This happens when the scopes of different categories do
not significantly overlap. Consider for example the classification of docu-
ments under three categories corresponding to topics computer, music
and sports: while some documents may be related to more than one of
these categories at the same time (e.g. a document about a soccer video
game might regard both computer and sports), it is generally not pos-
sible to make assumptions about the likelihood for a document to belong
to a category knowing whether it belongs to any other one.

Anyway, there is the possibility for topic categories to be inter-related
by means of is-a relationships, meaning that some known topics are more
specific branches of other topics, also represented by categories. For ex-
ample, considering a set of known categories including sports, baseball
and hockey, documents talking about baseball are forcedly also dealing

38 Chapter 3. Text Categorization

with sports and the same is valid for hockey. Given a set of topics pre-
senting these relationships, a hierarchical taxonomy of these topics can be
created, where some of them are recursively broken down into more specific
branches.

Hierarchical text classification generally refers to classifying text docu-
ment under hierarchically-organized taxonomies of categories. Each of such
taxonomies is generally structured as a single-rooted tree, where each node,
apart from a root node, represents a category having a distinct, single node
as its parent. Each category may have any number of children categories,
representing more specific topics: categories with no child nodes are leafs
of the tree. As a generalization, a taxonomy may also be represented by a
directed acyclic graph (DAG), which in practice allows multiple roots and
nodes with multiple parents, but in the following, unless otherwise stated,
only single-root trees are considered.

A hierarchical taxonomy can be expressed formally as a partially ordered
set 〈C,≺〉, where C is the set of categories and ≺⊂ C×C is the asymmetric,
transitive is-a relationship. In practice, cd ≺ ca means that cd represents
a specific topic within the wider discussion area represented by ca: in this
case, ca is said to be an ancestor of cd, which is in turn a descendant of ca.
In this formalization, the (direct) parent of a non-root category cd is the
only category cp satisfying cd ≺ cp ∧ @γ ∈ C : cd ≺ γ ≺ cp, while children of
a category cp are those categories whose cp is parent.

The use of a hierarchical taxonomy of categories is often useful to better
organize documents, allowing to find specific ones starting from general
discussion areas and progressively narrowing down the domain to the topic
of interest. A typical example of this organization are web directories,
where great numbers of websites are organized in a fine-grained taxonomy of
categories which can be browsed by the user, from the home page presenting
the top-level categories to the sub-pages of specific topics listing general
related websites and possibly even more specific sub-categories where other
websites are distributed.

The most extended and known web directory is the Open Directory
Project, also known as DMOZ1: it is maintained collaboratively by users
and contains millions of web links organized into a dynamic hierarchical
taxonomy of about one million categories. Figure 3.1 shows a small part of
the top of this taxonomy, which in some branches goes down for ten levels

1http://dmoz.org

http://dmoz.org

3.3. Knowledge engineering approach 39

(root)

Business Arts Science Sports

InvestingManagement

Funds Exchanging

Music Literature Movies

Drama Poetry

Math Physics Computer

Geometry Probability AI CG

Golf Football

American Rugby

Figure 3.1 – Excerpt of the DMOZ taxonomy of categories.

and more.

Within this general representations, there are some different specific
cases handled by hierarchical algorithms. Documents are often classified
under a single category of the tree, as in single-label classification, but as-
suming implicitly also its ancestor categories up to the root; in some cases
documents may be instead assigned to multiple, independent categories.
Also, the problem (and the used method) might restrict classification of
documents to leaf categories only or allow to label them also with inter-
mediate categories. Some works consider that a document classified to a
category c is also automatically classified to all ancestor categories up to
the root: in this vision the problem must be multi-label, but in many cases
classification is anyway restricted to a single path between the root and the
most specific category.

With some exceptions, hierarchical classification is generally tackled tak-
ing into consideration the taxonomy of categories, usually by a top-down
approach which progressively narrows down the possible categories of each
document. Solutions specifically relevant to hierarchical classification will
be discussed in Section 3.7.

3.3 Knowledge engineering approach

Before the establishment of the now common machine learning-based meth-
ods, many solutions for automatic classification of text documents were
based on manual coding of the required knowledge by human experts. This

40 Chapter 3. Text Categorization

knowledge engineering approach was most common in operational settings.
The approach was to manually build a set of rules subsequently fol-

lowed by a computer to classify documents. The accuracy of classification
reached with this method was approximately at the same level of subse-
quent approaches based on machine learning, but reaching them required
large amounts of human effort to write a sufficiently representative set of
rules. This manual work had to be repeated every time the set of categories
changes.

The mentioned rules have the general form {condition} ⇒ {category},
read as “if the document satisfies {condition}, then label it with {category}”.
Such conditions are usually given in disjunctive normal form, i.e. a disjunc-
tion (OR) of conjunctions (AND) of possibly negated clauses. Common
primitive clauses refer to the presence of specific words in the document,
likely to many later methods. Below is given a hypothetical sample of one
of such rules.

(bat ∧ ball ∧ ¬softball) ∨ (pitcher)⇒ baseball

This rule is relatively trivial; in real scenarios with many categories, a
consistent amount of more complex rules is generally needed to be compiled
by knowledge engineers and domain experts. The machine learning-based
methods emerged later are aimed in practice to obtain this knowledge in
an automated way.

3.4 Machine learning approach

In the late 1990s, also due to increasing computational power of comput-
ers, machine learning-based methods for text categorization became widely
common. In this approach, machine learning algorithms are used to infer
one or more knowledge models from a training set of labeled documents;
models can be used subsequently to predict correct categories for new doc-
uments.

An important limit of this approach is the need for a suitable training
set: this must contain a consistent amount of documents as similar as possi-
ble to those to be classified and already labeled with the correct categories.
In practice, if such set is not available, some documents must be classified
manually to automatize the rest of the process. On the other side, once a
training set is available, the required knowledge is extracted from it in a

3.4. Machine learning approach 41

fully automated way and can be as complex as needed to accurately classify
further documents under the same categories.

In this approach to text categorization, documents are usually repre-
sented in a vector space using the bag-of-words representation described in
Section 2.2, so that well-known standard machine learning algorithms can
be used off the shelf, without the need to develop specific solutions.

3.4.1 General setup

Suppose that a set of documents D must be organized into a set C of cate-
gories. Machine learning-based text categorization starts from retrieving an
adequate training set DT of pre-labeled documents, which should be repre-
sentative of documents to be classified: this entails using roughly the same
words and being labeled coherently with the same categories. An ideal and
possible case is that some of the documents of D are manually labeled to
build the set DT . Anyway, a common assumption is that a suitable training
set DT is priorly available and that the set of documents to be classified is
instead unknown, so that no knowledge can be extracted from it. Ideally,
the distribution of categories of training documents should be as balanced
as possible, or corresponding to distribution of subsequent documents to be
classified.

Once a training set of labeled documents becomes defined, to apply
standard machine learning algorithms, these must be represented as vectors
in a common feature space. The typical choice is the general bag-of-words
model, usually taking stemmed words as features; common preprocessing
steps are case-folding and removal of stopwords. After applying feature
selection and weighting, documents are reduced to the vectors constituting
the training set.

The subsequent steps depend from the type of considered classifica-
tion. In the simple case of single-label (possibly binary) classification, each
training vector can be labeled with the single relevant category for the
corresponding document. However, the more general case of multi-label
classification has often been considered. As cited above, a practical solu-
tion is to consider one separate binary problem for each category, so that
each document to be classified is included in or excluded from a category
independently from the others. In this case, in practice, one binary classi-
fier is trained for each category, always using the same algorithm and the
same training set, but with “yes” and “no” labels differently assigned.

42 Chapter 3. Text Categorization

After one or more classifiers are extracted, new documents can be clas-
sified in the same categories. Each input document must be represented
with a vector compatible to those of the training set: the same features
selected for the training documents are extracted, with the possibility of
losing some words (those which were not selected from the training set).

3.4.2 Supervised term selection

In Section 2.4 have been presented some common techniques to select a
suitable set of features to represent documents. These techniques can be
generally applied in any text mining task where a set of documents is given,
regardless of any possible additional information about them. However, in
text classification, the training set under analysis has a labeling associating
documents to categories: this knowledge can be exploited during feature
selection to improve it.

An ideal method is to select the features which are most helpful in de-
termining the correct class of each object, even giving less consideration
to unsupervised criteria. For example, given a set of documents with cat-
egories representing sports like baseball and hockey, the word injury
would probably appear in an average number of them and would be a hint
about the content of the text, but if it appears with similar likelihood in any
category, it does not help in classifying the documents. On the other end,
a word like batting gives a greater clue about the category of a document,
even if it happens to be rare throughout the collection.

Different methods exist to compute numerically the relevance of a fea-
ture to determine the class of data, theoretically based on statistics and in-
formation theory: they are often based on the probabilities of (co-)occurrence
of features and classes in the data. These probabilities are estimated from
the training set, which is assumed to be representative of the domain under
analysis.

An evaluation scheme used to perform feature selection usually com-
putes a value for each feature-class couple (t, c) ∈ T × C, indicating how
much t is useful in determining the membership of documents in c. To
obtain a general ranking of most predictive features, a single score must be
given to each of them: possible solutions are to consider the maximum or
the mean of scores for each class. From the ranking, a number of topmost
entries can be selected as the set of features used to represent documents.

3.4. Machine learning approach 43

In this case, term selection is global because a single set of features is
selected for the whole process. Anyway, as each category usually has its
own representative words, it would be beneficial to consider them one by
one. This is possible in the multi-label setting where one classifier for each
category is trained: in this case, the models can be classified from training
sets with different features, which are the best in each single case. This is
referred to as local feature selection and usually brings to slightly better
results.

Some schemes exist to evaluate the predictive power of a feature t within
a class c: these are commonly defined on the basis of probabilities, sampled
from the training set, for a document to contain (t) or not (t̄) the term
and to be labeled (c) or not (c̄) with the category. Alternative but similar
formulations are based on four variables conventionally denoted with A, B,
C and D, indicating respectively the number of training documents

� (A) containing t and labeled with c,

� (B) containing t and not labeled with c,

� (C) not containing t and labeled with c,

� (D) not containing t and not labeled with c.

The total number of training documents is indicated with N = A + B +
C +D.

Examples of used functions are the pointwise mutual information and
the chi-square (χ2) statistic, expressed hereafter in the two alternative
modalities.

PMI(t, c) = log
P (t, c)

P (t)P (c)
= log

N · A
(A+B)(A+ C)

χ2(t, c) =
|DT |(P (t, c)P (t̄, c̄)− P (t, c̄)P (t̄, c))2

P (t)P (t̄)P (c)P (c̄)

=
N · (AD − CB)2

(A+ C)(B +D)(A+B)(C +D)

Some studies [124, 38] compare how different schemes perform in text
categorization tasks: information gain and chi-square generally result among
the best choices.

44 Chapter 3. Text Categorization

Other than in feature selection, knowledge of how documents are labeled
with categories can be exploited in term weighting. In [29] is proposed to
use the schemes already used to evaluate which term are selected also as
global weights for them, possibly substituting the classic idf scheme. In
[60] a relevance frequency factor is instead proposed to replace idf, based
on the ratio between variables A and B discussed above.

3.5 Common learning algorithms for text

To train a classifier on vectors extracted from text documents, theoreti-
cally, any standard supervised machine learning algorithm may be used to
infer knowledge models to classify text documents suitably represented as
vectors. Anyway, throughout the literature, some specific approaches have
proven to work sensibly better than others, often with good efficiency. Here
are described in detail two classes of general supervised learning models
often used in text categorization, then other relevant approaches are sum-
marized.

Throughout the discussion, single data objects are referred to as in-
stances, while class is used to denote one of some possible partitions of the
data. These classes may not exactly correspond to the categories: for ex-
ample, in a multi-label problem decomposed into multiple binary classifica-
tion problem, each problem related to a category c has two complementary
classes: documents to be labeled with c and documents not to be labeled
with it.

3.5.1 Näıve Bayes

Näıve Bayes generally refers to a family of learning algorithms based on
probability theory, especially on the well known Bayes theorem, relating
belief conditioned by an evidence to previous belief.

P (A|B) =
P (B|A)P (A)

P (B)

This is the most basic and known form of the Bayes theorem, stating
that the posterior probability of an event A conditioned by an event B
is the product between the prior probability of A and the support to A
provided by B.

3.5. Common learning algorithms for text 45

The rationale of a näıve Bayes classifier is to infer the support given by
each feature to each class, assuming it to be completely independent from
the other features: this is what makes the approach “näıve”. Ideally, a
classifier should compute the likelihood with which an instance should be
labeled with class c from the combination of values of features t1, t2, . . . , tn.

P (c|t1, t2, . . . , tn) =
P (c)P (t1, t2, . . . , tn|c)

P (t1, t2, . . . , tn)

However, considering the possible combinations of values of an even
moderately large number of features, an exact computation is unfeasible,
so the “näıve” assumption of complete independence between features is
used. This assumption allows to rewrite the formula in a tractable form.

P (c|t1, t2, . . . , tn) =
P (c)

∏n
i=1 P (ti|c)

P (
∏n

i=1 P (ti))
∝ P (c)

n∏
i=1

P (ti|c)

The denominator just serves as a normalizing constant, so the most
likely class c for an instance can be assumed to be the one yielding the
highest numerator. Through normalization, proper probability estimations
can be made, which can be useful in evaluating the obtained classifier (see
§3.8.2).

To avoid numeric underflow during computation of the product, its log-
arithm can be computed instead, allowing to decompose it in the sum of
those of each factor, thus obtaining a linear formula.

logP (c|t1, t2, . . . , tn) ∝ log

(
P (c)

n∏
i=1

P (ti|c)
)

= logP (c) +
n∑
i=1

logP (ti|c)

Summing up, the parameters of the classification model are, for each
class c, the prior probability P (c) and the conditional likelihood P (t|c) for
each feature t. The prior probabilities can be estimated from the training
set itself as the ratios of instances belonging to each class, assumed to be
equally distributed (P (c) = 1

n
∀c where n is the number of classes) or be

set to other arbitrary values based on some additional knowledge of the
context.

For what concerns the P (t|c) parameters, always estimated from the
training set, their computation depends from the possible values which can

46 Chapter 3. Text Categorization

be assumed by each t and the model assumed for them, for which some
possibilities exist.

In the basic case with binary-valued features, which in text catego-
rization refer to the presence or absence of terms in each document, each
parameter P (t|c) refers to the estimated probability of term t to either ap-
pear or not (according to the case under analysis) in class c. Denoting with
pt,c the probability estimated from the training set of t appearing in c and
with xt ∈ {0, 1} a sampled value of feature t, the related parameter can be
written as the distribution between the two cases.

P (t|c) = pxtt,c · (1− pt,c)1−xt

Should be noted that, if a term t never appears within a class c, the
probability pt,c would be estimated to 0, implying P (t|c) = 0 and conse-
quently P (c|t, . . .) = 0 for any instance containing the term. To avoid this,
Laplace smoothing is usually applied: the counts of occurrences of terms in
classes are increased by one.

Considering instead each feature as the number of occurrences of some
term (term frequency weighting), a multinomial model is often used where
P (t|c) must account for all possible values.

Despite the usually strong approximation brought by the independence
assumption, näıve Bayes classifiers have been largely employed in informa-
tion retrieval applications [66] and, combined with optimal pre-processing
methods, have proven to be moderately effective in text categorization
tasks, although bringing lower accuracies compared with other methods
[123], also because of susceptibility to unbalanced distribution of training
classes.

Given its efficiency and ease of implementation, the näıve Bayes clas-
sifier is a common choice as a baseline method to be compared with new
proposed ones or as a learning algorithm to be used as an alternative to
others in more complex classification methods. However, some works tested
improvement on the basic method with the goal to obtain better results:
this has been done for example by suitably normalizing the weights (like-
lihood parameters) of the model [57], by partially relaxing the standard
complete independence assumption [93] or by combination of some of such
improvements [102].

3.5. Common learning algorithms for text 47

x1

x2

w

w · x−
b =

0

Figure 3.2 – Example of SVM operation: yellow and blue points are train-
ing data points of class 1 and -1 respectively, the green line is the computed
separation hyperplane, circled points are support vectors, red dashed lines
are sub-optimal separation hyperplanes

3.5.2 Support Vector Machines

Support vector machines (SVM) are a class of supervised learning methods
to infer binary classification models. The general idea is to infer, from a
training set of points of a high-dimensional space divided into two classes, a
hyperplane or a set thereof which is as most effective as possible in correctly
separating points of the two classes.

Formally, considering a m-dimensional vector space, a usual SVM algo-
rithm accepts as input a set of points x1,x2, . . . ,xn ∈ X = Rm along with
respective class labels y1, y2, . . . , yn ∈ {−1, 1}. The output is a hyperplane,
representable as a set of points x satisfying w · x − b = 0, where w is the
vector normal to the hyperplane itself.

If points of the two classes are linearly separable, the parameters w and
b can be defined so that all positive (class 1) points lie in the subspace of
points x having w ·x−b ≥ 1, while all negative (class -1) points lie in w ·x−
b ≤ −1. If the parameters are optimized to maximize the distance between
the two hyperplanes w·x−b = 1 and w·x−b = −1 (equivalent to minimizing
||w||), some training points will lie on the hyperplanes themselves: these
are the support vectors defining the position of the optimal hyperplane
separating the two classes.

The soft margin variant [21] takes into consideration the possibility that

48 Chapter 3. Text Categorization

input data is not linearly separable, due for example to labeling errors
or outliers: in this case, the generated model will unavoidably mislabel
some training points, but this can be acceptable as long as the computed
hyperplane is as most effective as possible in correctly classifying new points.
A cost parameter c is introduced, controlling the penalty to be given to
misclassified training points. If its value is high, these misclassifications are
minimized, but this could lead to choose a sub-optimal hyperplane which
does not properly generalize the training data (this phenomenon is known
as overfitting). On the other side, a low value of c allows more misclassified
training instances to find an hyperplane with a higher distance from the
remaining training points.

In its basic formulation, SVM can separate points in two classes only lin-
early. An intuitive solution to overcome this limitation is to set a non-linear
mapping M : X → V from the original space X to a new one V and run the
SVM training algorithm in the latter. However, transforming vectors coor-
dinates across the two spaces can be very inefficient. To enable non-linear
separation while maintaining the algorithm efficient, the kernel trick can
be employed: instead of explicitly mapping points to V and compute their
dot products (or more generally inner products 〈·, ·〉) in it, an appropriate
kernel function k : X × X → R is used which takes vectors in the original
space as input and returns their inner product in the transformed space
[10].

∀a,b ∈ X : k(a,b) = 〈M(a),M(b)〉V
The best kernel function to use (if any) largely depends on the nature

of the data to be classified. The following are some commonly employed
kernel functions (in parenthesis, the parameters of each).

� Polynomial (degree d, c): k(a,b) = (a ·b+ c)d (using d = 1 and c = 0
entails no mapping at all)

� Gaussian radial basis function (γ): k(a,b) = exp(γ||a− b||2)

� Sigmoid kernel (κ, c): k(a,b) = tanh(κa · b + c)

Additionally, kernel functions can be defined in domains different from real
vector spaces, in order to apply SVM to different types of data without per-
forming feature extraction. For example, string kernels measure similarity

3.5. Common learning algorithms for text 49

between sequences of symbols, while graph kernels exist operating on nodes
of a graph or on whole graphs.

The first notable use of support vector machines for text categorization
is reported in [52], where arguments are given based on usual properties of
text: high dimensionality, sparsity and (often) linearly separable categories.
Successively, they have been largely employed in text categorization by topic
and other text classification tasks, like spam filtering [32] and sentiment
analysis [92], whose bipartite nature (in addition to reasons reported above)
makes them good targets for SVMs.

Several improvements have been proposed on support vector machines
for text categorization: examples are the use of a kernel function based on
external semantic knowledge [110], an active learning approach where users
are only required to manually label few documents from an unlabeled set
[115] and a co-training approach where two classifiers are iteratively trained
on disjoint sets of features to integrate initially unlabeled documents [58].

3.5.3 Other methods

In the following are summarized some other relevant machine learning meth-
ods which have been proposed for text categorization.

� k-nearest neighbors (k-NN) classification consists into comparing
each document to be classified with all those of the training set, find-
ing the k most similar to it according to a defined similarity measure
(e.g. cosine similarity) and labeling the new document with the most
recurring category among these k training documents. This approach,
in its basic form (without e.g. indexing documents for faster queries),
is often defined lazy, as a labeled “training” set is needed but no
specific operation is actually performed at training time. Heavy com-
putation is instead deferred to the classification phase, which could
take a relatively long time to compare each incoming document with
the whole training set. Many works test the performances obtained
with k-NN in comparison with other learners [123, 122]; other papers
propose improvements to the basic approach, for example by assigning
differentiated weights to terms [46] or training documents [113].

� Decision tree learners analyze training data to generalize it and
infer a tree of simple rules, which are followed to classify new docu-
ments: the tree is explored top-down from the root and in each node

50 Chapter 3. Text Categorization

a branch is traversed according to the value of one feature, until a
terminal node indicating the predicted class is reached. An interest-
ing characteristic of decision tree models, compared to other types, is
that they are easily interpretable by humans: for example, the dis-
criminative feature used in the root node of a decision tree is usually
among the ones giving the best clues about the class of each instance.
Nowadays, the decision tree approach is not used for text categoriza-
tion, but some early works proposed it [34, 67]. Decision trees are
also employed in the method proposed in Chapter 5.

� Linear Least Squares Fit (LLSF) is in general a method to infer
a linear function f(d) = Md, where M is the matrix for which,
given a training set of pairs of vectors X = (x1,x2, . . . ,xn) and
Y = (y1,y2, . . . ,yn), the error on it measured by the Frobenius norm
‖MI−O‖N is minimized. Rather than classification, this method per-
forms regression, meaning that one or more real values are predicted
rather than one class or a set thereof. However, it has been applied to
text categorization, using bags of words as input vectors and vectors
with likelihood scores for each possible category as values, although
also in this case has been proposed mostly in earlier works [122, 125].

3.6 Nearest centroid classification

Approaches to text categorization considered up to now rely on standard
machine learning methods, commonly used also in non-text related tasks.
Special focus is given here to the Rocchio classifier or nearest centroid clas-
sifier for having instead its roots mainly in information retrieval and espe-
cially for introducing the idea of explicit document-like representations of
categories, which is prominently used in the methods presented in the next
chapters.

Originally, the Rocchio algorithm is a method for relevance feedback in
information retrieval. Relevance feedback is used to transform an arbitrary
user-given search query on a set of documents basing on the results it gives
initially to yield more accurate results.

Assume to have a set of documents D = {d1,d2, . . . ,d|D|}, represented
as vectors in a n-dimensional space, according to the bag-of-words model.
A generic query given by a user would be likely mapped to a vector q, which

3.6. Nearest centroid classification 51

is compared to all documents to retrieve a subset Dq ⊆ D of documents
considered relevant to that query. At this point, in the Rocchio method, the
following formula is used to compute a modified query vector qm, which is
then used like the original vector q to retrieve a set of relevant documents.

qm = (α · q) +

β · 1

|Dq|
∑
d∈Dq

d

−
γ · 1

|D − Dq|
∑

d∈D−Dq

d

In practice, the modified query is computed from the sum of the follow-

ing three factors, weighted according to the parameters α, β and γ:

� the original query,

� the mean of related documents,

� the mean of non-related documents (in negative).

This approach, intuitively, moves the query vector towards related doc-
uments and away from unrelated ones, in a measure dependent from the
three weighting parameters. Specifically, what β and γ weight are the cen-
troids of the sets Dq and D −Dq, which are used as representations of the
whole sets.

In some works, this approach has been adapted to text categorization.
Suppose that is given a set DT of training documents organized in a set of
categories C according to a labeling L; from each document d ∈ DT a vector
wd has been extracted. For each category c ∈ C, having a set Dc = {d ∈
DT : L(d, c) = 1} of training documents labeled with it, a representative
vector wc can be computed using the Rocchio’s formula without considering
the query factor.

wc =

(
β · 1

|Dc|
∑
d∈Dc

wd

)
−
(
γ · 1

|D − Dc|
∑

d∈D−Dc
wd

)
As above, the parameters β and γ control respectively how much pos-

itive weight give to documents in c and how much penalty give to other
documents. Usually, β is greater than γ and in some cases γ is 0, meaning
that only training documents labeled with c contribute to build its vector.

52 Chapter 3. Text Categorization

Each vector wc effectively serves as a representation (or profile) of a
category c having the same form used to represent document: for this, such
representations are sometimes referred to as prototype documents. Being
in the same space, vectors for documents and categories can have their
distance measured through standard methods. Once a suitable similarity
function s : Rn ×Rn → [0, 1] in the vector space is defined, classification of
any document d can be simply seen as finding the category l̂(d) = c having
the representation wc least distant from the vector wd representing the
document. This general approach is known as nearest centroid classification.

l̂(d) = argmax
c∈C

s(wd,wc)

The function most commonly used for this is cosine similarity, which as
cited in §2.2.1 is particularly indicated to compare bags of words.

In the case of multi-label classification, a suitable threshold should be
found so that a document is assigned to all categories having their profile
at a distance lower than the threshold.

Likely to other approaches cited above, nearest centroid classification
has been proposed in early works about machine learning-based text cat-
egorization [34], but experiments shown that it usually does not perform
as good as methods like SVMs and Näıve Bayes. This weakness can be
ascribed to the impossibility in many cases of accurately representing a
category with a single centroid [122]. Anyway, given their straightforward
structure and the efficiency in extracting them, we investigate the use of
centroids in the methods presented in the following chapters, which are
based on these aspects.

3.7 Hierarchical classification

As discussed in §3.2.2, in hierarchical classification problems, categories are
organized in a rooted tree-like taxonomy, where categories farther from the
root represent more specific topics with respect to higher-level categories.

In many practical cases, accurate classification of documents in a hi-
erarchy of categories is difficult due to the usually very high number of
categories with respect to typical flat categorization cases. Anyway, the
knowledge of how categories are organized in the taxonomy can be lever-

3.7. Hierarchical classification 53

aged to decompose the classification problem in order to address it with
more efficacy and efficiency.

There are two main approaches to take this knowledge into considera-
tion: conditioning the training of a single classifier operating on all cate-
gories of the taxonomy or building multiple classifiers for different nodes of
the tree.

3.7.1 Big-bang approach

In the big-bang (or global classifier) approach, a single classification model
is trained an all categories of the taxonomy, which is however taken into
consideration in some way. This can be done either intervening in the
feature extraction phase or using an appropriate learning algorithm able to
cope with classes in a hierarchy.

Using the first method, in [14] is investigated the use of concept-based
document representations to supplement word- or phrase-based features.
Weak hypotheses are created based on terms and concepts features, which
are combined using Adaboost. The method in [116] transform the classifi-
cation output into a vector with boolean components corresponding to the
possible category. They also use a distance-based metric to measure the
similarity of training examples in the classification tree.

For what regards adapted learning algorithms, in [15] is proposed a gen-
eralization of support vector machines learning, where discriminant func-
tions (used to classify instances) can be adapted to mirror structures such
as a categories hierarchy. Multi-class SVMs are also used in [100], where in
the computation of the optimal separation hyperplanes leaf categories are
taken into consideration together with respective ancestor categories.

3.7.2 Local classifiers

Approaches with local classifiers are generally based on standard learning
algorithms, but use them to train multiple knowledge models on different
portions of the taxonomy. Specifically, a specialized classifier is trained on
each intermediate node of the tree, possibly using a local set of predictive
features. Classification of a document follows then a top-down process
starting from the root of the taxonomy, where the classifier of each node
predicts the correct branch for the document and, if no definitive category
label is decided, forwards it to another more specific classifier. If documents

54 Chapter 3. Text Categorization

can be classified in non-leaf nodes, it is necessary to decide at each step
whether to classify document at current node or keep walking down the
tree.

In [33] SVM classifiers are used in a two-levels hierarchy of summaries of
web documents, using feature sets created with documents and categories of
the same node, assigning multiple leaf nodes to the test documents; similarly
[75] also use multiple SVMs trained for each category. In [19] is proposed
an incremental classifier, while [18] presents a refined evaluation scheme.
In [121] is discussed a strategy based on pruning the original hierarchy
which first computes the similarity between the test document and all other
documents, and then classifies the document in a pruned hierarchy.

In [112] are tested three methods to limit the blocking problem in top-
down approaches, that is the problem of documents wrongly rejected by
the classifiers at higher-levels of the taxonomy. The expert refinements
technique [4] uses cross-validation in the training phase to obtain a better
estimation of the true probabilities of the predicted categories. In [104] is
proposed a variant of the Hierarchical Mixture of Experts model, making
use of two types of neural networks for intermediate nodes and for leaves.

A comparison between the usage of a standard flat classifier and local
classifiers in a hierarchy is given in [17], testing both SVM and näıve Bayes
approaches.

3.8 Experimental evaluation

As commonly happens in machine learning and data mining problems, while
developing an improved or novel method for text classification, it is neces-
sary to assess its effectiveness. Other than being theoretically motivated, ev-
ery proposed method typically undergoes an experimental evaluation phase,
where its accuracy is measured by applying it in a controlled environment
where errors can be detected.

The typical experimental evaluation of a text classification method can
be broken down to the following steps.

1. First, one or more benchmark datasets must be collected, each con-
sisting of a significant collection D of text documents which already
are coherently labeled with meaningful categories of a set C, accord-
ing to a labeling L : D × C → {0, 1}. Throughout the literature, a

3.8. Experimental evaluation 55

number of recurring datasets have been used as benchmark: these are
presented below.

2. From the set of documents D of each of the datasets must be sampled
a training set DT ⊆ D and a test set (or evaluation set) DE ⊆ D. In
order to correctly assess the general efficacy of the classifier, the two
sets must be disjoint (DT ∩ DE = ∅).

3. According to the specific method under analysis, the training set DT
is used to build the classifier(s).

4. This classifier is applied to all documents in DE: a predicted labeling
L̂ : DE × C → {0, 1} is obtained for these documents.

5. The predicted labeling L̂ is compared against the actual one L for
the test documents. One or more accuracy measures are computed,
giving a quantifiable assessment of the goodness of the classifier.

In step 2, to create a training and a test set from a set of documents,
this is usually split into two parts, not necessarily of the same size: this is
the basic hold-out method. Another used approach is cross-fold validation:
the whole set of documents D is exhaustively partitioned into k disjoint
sets D1,D2, . . . ,Dk, evaluation (steps 3-5) is then performed once for each
set Di using it as a test set and the complementary set D−Di for training;
results for each i are then aggregated.

The goal of experimental evaluation is to verify how much the labeling
L̂ predicted by a trained classifier for test documents DE is similar to the
actual labeling L known from the collection. There are multiple methods
commonly used in machine learning and data mining to quantify this sim-
ilarity: those to be used generally depend from the specific problem under
analysis and there is no one which is universally acknowledged as the best
one. Anyway, also for this aspect, there are some common choices, which
will be discussed briefly.

3.8.1 Benchmark datasets

In order to perform experimental evaluation of a text classification method,
at least one benchmark dataset must be retrieved; however, experimental
results for a method are usually given for two or three of such datasets.

56 Chapter 3. Text Categorization

Throughout the literature, some collections of pre-classified documents,
also known as corpora (singular: corpus), have been usually employed as
benchmark datasets in text classification and some other text mining tasks.
Using the same benchmark datasets across different works helps in making
comparisons between the efficacy of each method, as the experimental re-
sults are measured with methods working in the same conditions. Should
be noted, anyway, that sometimes different works use different parts of the
same dataset, or perform a different split between training and test docu-
ments.

Here are presented some of these corpora commonly used as benchmarks.
For some of them, one or more predefined splits between training and test
documents exist.

� The Reuters-21578 collection2 is a corpus of newswire stories of
1987 about economy and markets, primarily edited by David Lewis;
it is a cleaned up version of the older Reuters-22178 collection. As the
name suggests, it includes 21,578 documents. Different splits between
training and test set have been used, making sometimes difficult the
comparison of different works using this collection. One of the most
common splits is ModApté: it contains 9,603 documents for training
and 3,299 documents for testing (8,676 documents remain unused).

To each document is assigned a subset of the possible labels, divided
into 5 groups: topics, orgs, people, places and exchanges:
those of the first group are often used as categories. Documents
are distributed quite unevenly between topics: documents counts for
topics range from a handful to hundreds. Most works based on the
ModApté split perform experiments considering one or both of two
subsets of categories: the 90 topics having at least one document in
both training and test set and the 10 topics with the greatest numbers
of documents (more than 200 each in the union between training and
test set).

� The 20 Newsgroups collection3 contains almost 20,000 newsgroups
posts from Usenet discussion groups, partitioned nearly evenly across
20 different groups (about 1,000 posts per group). These 20 groups
represent more or less specific topics of different areas, so that there

2http://www.daviddlewis.com/resources/testcollections/reuters21578/
3http://qwone.com/~jason/20Newsgroups/

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://qwone.com/~jason/20Newsgroups/

3.8. Experimental evaluation 57

are categories nearly related to each other (such as comp.sys.ibm.pc-
.hardware and comp.sys.mac.hardware), slightly more loosely
related categories (talk.religion.misc and alt.atheism) and highly
unrelated categories (rec.autos and talk.politics.guns). Also of
this collection slight variants exist: a common one is the “bydate”
selection of 18,846 posts, divided between 11,314 training posts and
7,532 test posts.

� Ohsumed is a subset of the MEDLINE database created by William
Hersh and colleagues at the Oregon Health Sciences University and
consists of 348,566 documents obtained from 270 medical journals
over the period 1987 to 1991. The documents were manually indexed
using the taxonomy MeSH (Medical Subject Headings), which con-
sists of 18,000 categories. The choice used in the literature is the
consideration of only the articles in the HealthDiseases category
and its subtree in the MeSH taxonomy. This sub-hierarchy has 119
categories, of which only 102 contain usable data.

� Reuters Corpus Volume 1 (RCV1) [68] is, like Reuters-21578,
a collection of newswire stories, labeled with different types of codes,
which in this case are topic, industry and region. The whole collection
contains over 800,000 articles, so that only portions of it are sometimes
used. The 103 topic codes, usually treated as categories, are organized
in a hierarchy with 4 top categories (Corporate/Industrial, Eco-
nomics, Government/Social and Markets).

Apart from these collections built on purpose, some sources exist across
the Web from where collections of documents used by some works have been
extracted.

The Open Directory Project (DMOZ) (already cited in 3.2.2) is
a collaboratively built web directory, organizing web pages into a detailed
taxonomy of topics. As of writing this, it reports containing 4,129,130 links
to web sites organized under more than 1,023,636 categories. While each
category (apart from Top) has a single “hard” parent node in the database,
other nodes may have a link to it as a cross-related sub-topic: considering
these links, the structure of the taxonomy has the form of a directed acyclic
graph (DAG) rather than a tree (where only one path must exist between

58 Chapter 3. Text Categorization

Actual Predicted category
category computer music sports (total)
computer 532 42 13 587

music 23 547 16 586
sports 14 18 563 595
(total) 569 607 592 1768

Figure 3.3 – Example of confusion matrix with three categories; entries in
bold constitute the diagonal

two nodes). Yahoo! Directory4 was another similarly structured web
directory.

3.8.2 Evaluation metrics

In the following, specific methods to numerically evaluate classification ac-
curacy from test runs of a method are presented.

In the case of single-label classification (including binary classification),
for each test document d ∈ DE, there is one single actual class l(d) ∈ C
and one single predicted class l̂(d) ∈ C: the document is correctly classified
if and only if the two are equal. In machine learning, it is common to
summarize the co-occurrences between actual and predicted classes in a
confusion matrix, showing the number of documents for each possible couple
of them: Figure 3.3 shows an example. The numbers in the main diagonal
are counts of cases where actual and predicted labels match, so they refer
to correctly classified documents; the rest of the values out of the diagonal
represent various types of errors.

From the confusion matrix many performance measures can be com-
puted. The most obvious one is the ratio of correctly classified docu-
ments with respect to the total, which is often referred to as accuracy :
it is in practice the sum of the elements of the diagonal divided by the
sum of all elements (i.e. the total number of test documents). For ex-
ample, from the confusion matrix reported in Figure 3.3, an accuracy of
(532 + 547 + 563)/1768 ≈ 0.9287 = 92.87% can be computed.

4http://dir.yahoo.com (no longer active)

http://dir.yahoo.com

3.8. Experimental evaluation 59

Acc =
|d ∈ DE : l(d) = l̂(d)|

|DE|
The accuracy is generally used when there are few categories (ideally

two) and documents are equally distributed among them. In a case where
categories are unbalanced, the accuracy may underestimate errors done
on minority categories. For example, supposing a test set with 90% of
documents of class A and 10% of class B, even a trivial classifier indicating
class A for any document would obtain a 90% accuracy, which is generally
an high value.

Measures exist to evaluate performances on single categories. The recall
ρ(c) of a category c is the ratio of correct classifications within documents
which are actually labeled with c, while its precision π(c) is conversely the
number of correct classifications within documents for which c has been
predicted as category.

ρ(c) =
|d ∈ DE : l(d) = l̂(d) = c|
|d ∈ DE : l(d) = c| π(c) =

|d ∈ DE : l(d) = l̂(d) = c|
|d ∈ DE : l̂(d) = c|

The two values measure in practice how much the classifier is able to
detect category c and to assign it only to correct documents. They are
usually summarized in a F-measure, parameterized by a factor β which
indicates the importance to give to recall with respect to precision

Fβ(c) =
(β2 + 1) · ρ(c) · π(c)

β2 · ρ(c) + π(c)

The most common choice is to set β = 1, i.e. equally weighting recall
and precision: this results in their harmonic mean, known as F1 measure.

F1(c) =
2 · ρ(c) · π(c)

ρ(c) + π(c)

Consider now multi-label classification, where each test document d ∈
DE has a set L(d) = {c ∈ C : L(d, c) = 1} of actual labels and a set
L̂(d) = {c ∈ C : L̂(d, c) = 1} of predicted labels, rather than only one of
both. The classifier in this case can be seen as taking |DE × C| decisions
between c (label the document with the category) and c (do not label)

60 Chapter 3. Text Categorization

Actual Predicted class
class c c
c TP c (true positives) FN c (false negatives)
c FP c (false positives) TN c (true negatives)

Figure 3.4 – Scheme of a confusion matrix for a single category c

rather than |DE| decisions among categories in C.
In this case, the standard accuracy cannot be computed as above, as each

document may have an arbitrary number of actual and predicted categories.
One obvious solution would be to compute the ratio of test documents for
which the classifier predicted its exact set of categories, but this ratio would
be generally quite small and can easily underestimate the efficacy of the
classifier. On the other hand, the accuracy could be computed as the ratio
of correct decisions of the classifier on single couples (d, c) ∈ DE × C, but
this tends instead to overestimate the efficacy. This is due to the fact that
usually each document belongs to a small ratio of all the possible categories,
so there is a vast majority of decisions which should be negative and usually
most of them are trivial, as documents are very easily detected as unrelated
to most categories.

In multi-label evaluation, it is not possible to extract a single confusion
matrix of all categories. Instead, considering an independent binary clas-
sification problem for each category, one binary confusion matrix for each
category c can be consequently extracted, having c and its complement c
as classes. Each of these matrices (also known as tables of confusion) show
four counts related to a category c:

true positives documents correctly labeled with c,

false negatives documents for which the c label is erroneously missing,

false positives documents wrongly labeled with c,

true negatives documents correctly not labeled with c.

Recall ρ(c) and precision π(c) for each category c can be computed likely
as above, adapting the formulas to the multi-label case. From the two, F1

measure is computed exactly as above.

3.8. Experimental evaluation 61

ρ(c) =
TP c

TP c + FN c

=
|d ∈ DE : c ∈ L(d) ∩ L̂(d)|
|d ∈ DE : c ∈ L(d)| =

∑
d∈DE L(d, c) · L̂(d, c)∑

d∈DE L(d, c)

π(c) =
TP c

TP c + FP c

=
|d ∈ DE : c ∈ L(d) ∩ L̂(d)|
|d ∈ DE : c ∈ L̂(d)|

=

∑
d∈DE L(d, c) · L̂(d, c)∑

d∈DE L̂(d, c)

In order to get an overall evaluation of the classifier, these values must
be aggregated. Two approaches exist to compute an average of recall and
precision for all categories. The macroaverage recall (or precision) is simply
the average of recalls (or precisions) for all categories. Conversely, microav-
erage recall and precision are computed from the confusion matrix obtained
by summing up by components those for each category: they refer in prac-
tice to all the individual decisions for each couple (d, c) ∈ DE × C.

ρm =

∑
c∈C TP c∑

c∈C TP c +
∑

c∈C FN c

πm =

∑
c∈C TP c∑

c∈C TP c +
∑

c∈C FP c

All these accuracy measures, as stated above, can be applied in the
case of an hard binary decision in {0, 1} for each document-category cou-
ple. Anyway, some classifiers commonly used in text classification (includ-
ing some of those presented in Section 3.5) return by default a likelihood
p(d, c) ∈ [0, 1] of any document d belonging to any category c which may
be equal to 0, 1 or any intermediate value between them. In this case, hard
decisions can be obtained by setting a threshold value τ so that a positive
decision is taken for all couples and only for those for which the likelihood
score is greater (or equal) to the threshold.

By varying the value of the threshold, some different classification de-
cisions are taken about test documents. More specifically, if the threshold
value is low, documents will be generally labeled with more categories and
the number of missing correct labels will decrease (high recall), but docu-
ments will be more likely be filed under wrong categories (low precision).
Conversely, if the threshold is set to a high value, documents will more
hardly be labeled with categories and wrong labels will drop (high preci-
sion), but more correct labels will be also missed (low recall).

Summing up, the threshold can be set accordingly to the desired tradeoff

62 Chapter 3. Text Categorization

between recall (avoiding missing labels) and precision (avoiding erroneous
labels): as the threshold grows, recall drops and precision increases. In
many past works, was common to search the threshold setting for which
precision and recall are equal (or as close as possible): their common value
with this setting is called breakeven point (BEP) and was often used as an
overall accuracy measure with a settable threshold.

For what concerns hierarchical classification, with reference to a single-
label case, the accuracy can be computed as above as the ratio of correctly
classified test documents. However, distinctions can be made on the errors
made by the classifier: the document may be assigned to an overly generic
or specific category with respect to the correct one, or may be even classified
under a category of a different branch of the tree, which can be at different
distances from the correct one.

When evaluating the classifier, one could want to weight these errors
according to their gravity: for example, intuitively, classifying a document
in a sibling (i.e. a node with the same parent) of the correct category is
a smaller error than choosing the wrong path in the tree already at the
root, thus ending in a very distant category. For example, with reference
to the taxonomy in Figure 3.1 (page 39), classifying a document about
drama under poetry could be deemed as a more “forgivable” mistake
than classifying it under movies or even worse under management.

Some different measures for evaluation of hierarchical classification have
been proposed. Among these, hierarchical recall and precision have been
presented in [59] and endorsed by [109] as an intuitive adaptation of the
standard recall and precision concepts to this context. Considering that
each document classified under a category c is also automatically labeled
with all ancestor categories, the hierarchical recall ρH(d) is computed for
each document d as the ratio of actual labels L(d) which have been pre-
dicted, while hierarchical precision πH(d) is the ratio of predicted labels
L̂(d) which are correct. In all cases, the root node is not considered.

� For a correct classification both recall and precision are 1.

� For a generalization error (a document assigned in a correct but too
generic category) the precision is 1 and the recall is proportional to
the number of correct labels found.

� For a specialization error (a document labeled with too specific classes)
the recall is 1 and the precision decreases as the predicted category is

3.8. Experimental evaluation 63

more deep in the taxonomy.

� For other errors, recall and precision are both below 1 and are penal-
ized respectively by the unpredicted actual categories and the erro-
neously assigned categories.

For example, still referencing the taxonomy in Figure 3.1, for a document
d having drama as its correct category, classifying it generically under arts
would imply a recall ρH(d) = 1

3
(as literature and drama are missed)

and a precision πH(d) = 1 (as arts is correct); classifying it under movies
would instead yield ρH(d) = 1

3
and πH(d) = 1

2
.

For multiple test documents, the measures are microaveraged: the result
is the ratio of the sums of the two ratio elements for each document.

ρH =

∑
d∈DE |L(d) ∩ L̂(d)|∑

d∈DE |L(d)| πH =

∑
d∈DE |L(d) ∩ L̂(d)|∑

d∈DE |L̂(d)|
From the two, a hierarchical F1 measure can be computed in the usual

way.

FH
1 =

2ρHπH

ρH + πH

65

Chapter 4

Cross-Domain Text
Categorization

This chapter deals with the specific task of cross-domain text categoriza-
tion, where knowledge extracted from labeled documents must be applied
to other documents of a different domain where different terms are used,
so that methods described so far do not achieve optimal results. After an
introduction of the problem, known methods to accomplish this task are
exposed, then one novel solution to it along with experimental results is
presented.

4.1 Problem description

As seen in the previous chapter, typical approaches to automatic text clas-
sification in predefined categories require the availability of a training set
of documents, from which necessary knowledge is inferred. A training set
generally must have some characteristics in order to be usable and to yield
optimal results: it must contain an adequate amount of documents, which
must be as exactly as possible representative of the documents which will
be classified and must be coherently labeled with the same categories which
are going to be assigned to new documents. To be representative, training
documents should intuitively contain the same words or, more generally, the
same features which will be extracted to predict categories of subsequent
documents to be classified, which are refered to as target documents.

66 Chapter 4. Cross-Domain Text Categorization

In other words, can be said that training documents must be within
the same domain of the target documents. Intuitively, the domain of the
documents is the context within they are produced and/or consumed and
dictates the words which are used and the categories under which are or
must be filed.

Retrieving a set of documents of the exact same domain of the target
documents can often be difficult. As discussed previously, a solution would
be to manually label some target documents, but creating a suitable training
set may require to label a great amount of documents, thus implying a
significant amount of human effort.

However, in some cases, a set of labeled documents of a slightly different
domain may be available. The difference between the domains may consist
in the use of some different terms or in the organization within categories
representing slightly different concepts. Considering the general setting of
the problem, the traditional techniques seen so far for text categorization
might be applied to infer a classifier from available training documents and
apply it to target documents. However, due to the differences between the
two domains, this would likely not result in an accurate classification, as
many of the features known by the classifier would not be found within the
target documents.

Cases like these would require specific methods to somehow transfer the
knowledge extracted from the available training data to the target domain.
Throughout the last decade, techniques for transfer learning have been de-
vised to address these cases. Transfer learning generally involves solving a
problem in a target domain by leveraging knowledge from a source domain
whose data is fully available. Cross-domain text categorization refers to
the specific task of classifying a set of target documents in predefined cate-
gories using as support a set of pre-labeled documents of a slightly different
domain.

Contrarily to traditional text categorization problems, where target doc-
uments are generally assumed to be not known in advance, typical cross-
domain methods imply that unlabeled target documents must be given in
advance, at least in part, as some knowledge of the target domain is nec-
essary. Also, the majority of cross-domain methods consider a single-label
setting (i.e. one and only one category label to each document), which is
assumed by default for the rest of this chapter.

4.1. Problem description 67

4.1.1 Formalization

Formally, an algorithm for cross-domain text classification has as its input
a set DS of source documents constituting the source domain, a set DT of
target documents making up the target domain, a set C of categories and a
labeling CS : DS → C associating a single category to each source document.
The required output is a predicted labeling ĈT : DT → C for documents of
the target domain.

For what concerns the relationship between the two domains, in the
general case of transductive transfer learning where cross-domain text cat-
egorization falls in (see below), they must share the same feature space
X and the same class labels Y : in the case of text documents, the first
condition can be satisfied simply by selecting the same terms for source
and target domain. The common assumption on the difference between the
two domains is that the labels are equally conditioned by the input data,
which though is distributed differently in them. Denoting with XS and YS
data and labels for the source domain and with XT and YT those for the
target domain, we have P (YS|XS) = P (YT |XS), but P (XS) 6= P (XT): this
condition is known as covariate shift [108].

4.1.2 Motivations

Cross-domain text categorization methods generally address situations where
a set of target documents must be classified and a set of labeled documents
of a slightly different domain is available.

A situation of this kind can be the classification of documents in a set
of categories CT by leveraging document pre-labeled with categories of a
set CS dealing with similar topics, such that there is a one-to-one mapping
between CS and CT . Consider for example, drawing category labels from the
taxonomy depicted in Figure 3.1 (page 39), to have unlabeled documents
about either music or physics to be distinguished from each other: if one
happens to have pre-labeled documents about movies and math, cross-
domain methods can be used to extract knowledge from them which is
then transferred to the similar categories. This problem can be seen as
classification of documents in two general categories arts and science,
each including one sub-category of the source domain and one of the target.
Datasets typically used as benchmarks for evaluation simulate this situation
(§4.3.1).

68 Chapter 4. Cross-Domain Text Categorization

An interesting area of application of cross-domain text categorization
on which current research is focused is sentiment analysis, specifically the
classification of texts (forum posts, reviews, etc.) talking about a specific
entity as either positive or negative. Through cross-domain methods, it is
potentially possible to perform this classification on reviews of objects of one
type by training a classifier on reviews of different objects: it is possible
for example to classify comments about books by training on reviews of
movies which are already labeled for their polarity (e.g. with a 1-to-5-stars
rating), or similarly to distinguish positive and negative reviews of hotels
by learning from those addressed to restaurants. As for the other cases,
cross-domain learning works better if the two domains are enough similar
and there are many common words between the two.

4.2 State of the art

As stated above, cross-domain text categorization lies within the wide re-
search branch of transfer learning, generally dealing with methods to trans-
fer knowledge from a source to a target domain. A comprehensive survey
on transfer learning is given in [90], where different types of tasks are de-
scribed. In this survey, general cross-domain classification of data is referred
to as transductive transfer learning, roughly meaning that the domains are
different, but the classes are the same1. Text categorization is perhaps the
specific task most commonly addressed within transductive methods: some
works presented in the following are specific for this, while other are general
approaches or can at least be easily adapted to other tasks.

Two major approaches to transductive transfer learning are generally
distinguished: instance transfer and feature representation transfer, treated
separately in the following.

4.2.1 Instance transfer

Instance transfer-based approaches generally work by re-weighting instances
(data samples) from the source domain to adapt them to the target domain,
in order to compensate the discrepancy between P (XS) and P (XT): this

1As the survey points out, this is different from the usual meaning of “transductive”
in machine learning, used instead to indicate learning algorithms where test data must
be known at training time.

4.2. State of the art 69

generally involves estimating an importance P (xS)
P (xT)

for each source instance
xS to reuse it as a training instance xT under the target domain.

Some works mainly address the related problem of sample selection bias,
where a classifier must be learned from a training set with a biased data
distribution. [128] analyzes the bias impact on various learning methods and
proposes a correction method using knowledge of selection probabilities.

The kernel mean matching method [50] learns re-weighting factors by
matching the means between the domains data in a reproducing kernel
Hilbert space (RKHS); this is done without estimating P (XS) and P (XT)
from a possibly limited quantity of samples. Among other works operating
under this restriction there is the Kullback-Liebler importance estimation
procedure [111], a model to estimate importance based on minimization of
the Kullback-Liebler divergence between real and expected P (XT).

Among works specifically considering text classification, [25] trains a
Näıve Bayes classifier on the source domain and transfers it to the target
domain through an iterative Expectation-Maximization algorithm. In [42]
multiple classifiers are trained on possibly multiple source domains and
combined in a locally weighted ensemble based on similarity to a clustering
of the target documents to classify them.

4.2.2 Feature representation transfer

Approaches based on feature representation transfer generally work by find-
ing a new feature space to represent instances of both source and target do-
mains, where their differences are reduced and standard learning methods
can be applied.

The structural correspondence learning method [6] works by introduc-
ing pivot features and learning linear predictors for them, whose resulting
weights are transformed through Singular Value Decomposition and then
used to augment training data instances. The paper [28] presents a simple
method based on augmenting instances with features differentiating source
and target domains, possibly improvable through nonlinear kernel map-
ping. In [72] a spectral classification-based framework is introduced, using
an objective function which balances the source domain supervision and the
target domain structure. With the Maximum Mean Discrepancy (MMD)
Embedding method [87], source and target instances are brought to a com-
mon low-dimensional space where differences between data distributions are

70 Chapter 4. Cross-Domain Text Categorization

reduced; transfer component analysis [89] improves this approach in terms
of efficiency and generalization to unseen target data.

The following works are focused on text classification. In [24] an ap-
proach based on co-clustering of words and documents is used, where la-
bels are transferred across domain using word clusters as a bridge. The
topic-bridged PLSA method [120] is instead based on Probabilistic Latent
Semantic Analysis, which is extended to accept unlabeled data. In [129] is
proposed a framework for joint non-negative matrix tri-factorization of both
domains. Topic correlation analysis [69] extracts both shared and domain-
specific latent features and groups them, to support higher distribution gaps
between domains.

4.2.3 Other related works

Likely to traditional text classification, some methods leverage external
knowledge bases: these can be helpful to link knowledge across domains.
The method presented in [118] improves the cited co-clustering-based ap-
proach [24] by representing documents with concepts extracted from Wikipedia.
The bridging information gap method [119] exploits instead an auxiliary do-
main acting as a bridge between source and target, using Wikipedia articles
as a practical example. These methods usually offer very high performances,
but need a suitable knowledge base for the context of the analyzed docu-
ments, which might not be easily available for overly specialized domains.

Other than text classification by topic, another related task on which
domain adaptation is frequently used is sentiment analysis, where posi-
tive and negative opinions about specific objects (products, brands, etc.)
must be distinguished: a usual motivating example is the need to extract
knowledge from labeled reviews for some products to classify reviews for
products of a different type, with possibly different terminologies. Spectral
feature alignment [88] works by clustering together words specific for differ-
ent domains leveraging the more general terms. In [8] a sentiment-sensitive
thesaurus is built from possibly multiple source domains. In [20] a Näıve
Bayes classifier on syntax trees-based features is used.

Beyond the presented works where domains differ only in the distribu-
tion of terms, methods for cross-language text classification exist, where
source and target documents are written in different languages, so that
there are few or no common words between the two domains. This scenario
generally requires either some labeled documents for the target domain or

4.3. Evaluation 71

an external knowledge base to be available: a dictionary for translation of
single terms is often used. As examples, in [73] is presented an approach
based on information bottleneck where Chinese texts are translated into
English to be classified, while the method in [99] is based on the structural
correspondence learning cited above [6].

4.3 Evaluation

Throughout all works on cross-domain text categorization presented in the
previous section, there is a small set of publicly available datasets used
as benchmarks for experimental evaluation of them. All these datasets
are generally organized in a shallow hierarchical structure, where a small
number of top-level categories can be isolated so that each includes a number
of roughly similar sub-categories.

An evaluation dataset can be thus set up by choosing a small set of
top categories of a collection constituting the set C of possible categories
and splitting documents of these categories into two groups: one contains
documents of some branches of the top categories and is used as the source
domain, the other one containing documents of different sub-categories is
used as the target domain. By labeling each document in the two domains
with its top-category, a dataset suitable for evaluation is obtained.

The tested method receives in input all the documents and the labeling
of the source group and must give in output predicted labels for documents
of the target group, which will be compared to known labels. Given the
structure of the available datasets, the number of top categories is in most
cases limited to two, with few works also performing tests with three or
(rarely) four top categories, which usually give results sensibly worst com-
pared to those on two categories only.

Given the single-label setting, the very small number of categories and
in most cases the balanced distribution of documents across them, the basic
accuracy, intended as the ratio of correctly classified documents with respect
to the total, is mostly used as the unique performance indicator.

4.3.1 Common benchmark datasets

Here are presented the three recurring text collections for evaluation of
topic-based cross-domain text categorization. The first two were already

72 Chapter 4. Cross-Domain Text Categorization

presented in §3.8.1.
The 20 Newsgroups collection is used for having its 20 categories

divided among 6 main branches: the 4 most frequent of them are comp,
rec, sci and talk and are used as top categories, each represented by 4
sub-categories (5 for comp). While many splits of sub-categories between
source and target domain are possible, most works only consider one of
them as a reference for each possible set of top categories. An example of
splits for each of the six possible sets of two categories is given by [24] and
reused in other subsequent works; this is reported in Table 4.1 and will be
used as a reference in the following. For what regards the four possible
sets of three categories and the full set of four categories, splits used as
reference are taken from [118] (with the exception of comp vs. rec vs.
talk, missing from the paper and made up here) and reported in Tables
4.2 and 4.3.

In the Reuters-21578 collection, documents are labeled with 5 types
of labels: while those of type topics are often used as topic labels in regular
text categorization tasks, orgs, people and places are instead used as
top categories for cross-domain classification. For each of the three possible
pairs of top categories, sub-categories are usually evenly divided.

The SRAA text collection2 is not much used for regular text catego-
rization, but is very adapt for the cross-domain case. Like 20 Newsgroups,
it is drawn from Usenet: it consists of 73,218 posts from discussion groups
about simulated autos, simulated aviation, real autos and real aviation.
With this setting, tests can be intuitively performed using two different
sets of top categories: {real, simulated} and {auto, aviation}. Given
the highly unbalanced distribution of documents among the four categories
in the base collection, tests are usually performed on a selection of 4,000
documents for each of them, for a total of 16,000 documents.

4.4 Iterative refining of category

representations

In the following, a novel approach to cross-domain text categorization is
proposed, summarily based on creating representations of categories from
the source domain and adapting them to the target domain by iteratively

2http://people.cs.umass.edu/~mccallum/data/sraa.tar.gz

http://people.cs.umass.edu/~mccallum/data/sraa.tar.gz

4.4. Iterative refining of category representations 73

Table 4.1 – Reference two-categories splits for cross-domain categorization
experiments on the 20 Newsgroups datasets

Top categories Source domain Target domain

comp vs. sci

comp.graphics comp.sys.ibm.pc.hardware

comp.os.ms-windows.misc comp.sys.mac.hardware

comp.windows.x

sci.crypt sci.med

sci.electronics sci.space

rec vs. talk

rec.autos rec.sport.baseball

rec.motorcycles rec.sport.hockey

talk.politics.guns talk.politics.mideast

talk.politics.misc talk.religion.misc

rec vs. sci

rec.autos rec.motorcycles

rec.sport.baseball rec.sport.hockey

sci.med sci.crypt

sci.space sci.electronics

sci vs. talk

sci.electronics sci.crypt

sci.med sci.space

talk.politics.misc talk.politics.guns

talk.religion.misc talk.politics.mideast

comp vs. rec

comp.graphics comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware comp.windows.x

comp.sys.mac.hardware

rec.motorcycles rec.autos

rec.sport.hockey rec.sport.baseball

comp vs. talk

comp.graphics comp.os.ms-windows.misc

comp.sys.mac.hardware comp.sys.ibm.pc.hardware

comp.windows.x

talk.politics.mideast talk.politics.guns

talk.religion.misc talk.politics.misc

74 Chapter 4. Cross-Domain Text Categorization

Table 4.2 – Three- and four-categories splits used for cross-domain cate-
gorization experiments on the 20 Newsgroups collection

Top categories Source domain Target domain

comp vs. rec
vs. sci

comp.graphics comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware comp.windows.x

comp.sys.mac.hardware

rec.motorcycles rec.autos

rec.sport.hockey rec.sport.baseball

sci.med sci.crypt

sci.space sci.electronics

rec vs. sci vs.
talk

rec.autos rec.sport.baseball

rec.motorcycles rec.sport.hockey

sci.med sci.crypt

sci.space sci.electronics

talk.politics.guns talk.politics.mideast

talk.politics.misc talk.religion.misc

comp vs. sci
vs. talk

comp.graphics comp.os.ms-windows.misc

comp.sys.mac.hardware comp.sys.ibm.pc.hardware

comp.windows.x

sci.crypt sci.space

sci.electronics sci.med

talk.politics.mideast talk.politics.misc

talk.religion.misc talk.politics.guns

comp vs. rec
vs. talk

comp.graphics comp.sys.ibm.pc.hardware

comp.sys.mac.hardware comp.windows.x

comp.os.ms-windows.misc

rec.autos rec.sport.baseball

rec.motorcycles rec.sport.hockey

talk.politics.guns talk.politics.misc

talk.religion.misc talk.politics.mideast

4.4. Iterative refining of category representations 75

Table 4.3 – Four-categories split used for cross-domain categorization ex-
periments on the 20 Newsgroups collection

Top categories Source domain Target domain

comp vs. rec
vs. sci vs.
talk

comp.graphics comp.sys.mac.hardware

comp.os.ms-windows.misc comp.sys.ibm.pc.hardware

comp.windows.x

rec.autos rec.sport.baseball

rec.motorcycles rec.sport.hockey

sci.crypt sci.space

sci.electronics sci.med

talk.politics.mideast talk.politics.misc

talk.religion.misc talk.politics.guns

retrieving highly related documents and using them to refine the represen-
tations.

4.4.1 Rationale

Recalling the nearest centroid classifier (or Rocchio classifier) discussed in
Section 3.6, classification of text documents can be carried out by producing
prototypical representations of the known categories and finding for each
document to be classified which is the most similar to it.

In the case of cross-domain categorization, if one had representations
of the categories of the target domain, the nearest centroid approach could
be used to accurately classify them. Anyway, these representations are
not readily available, as they would require a correct labeling of the target
documents, which is to be found.

What can be extracted from the available data of a cross-domain prob-
lem, instead, are centroids of categories in the source domain, as both doc-
uments and their labeling are known. As these categories are different from
those of the target domain, representations generally differ from the optimal
ones.

However, given the setting of the problem where categories of source
and target domain are similar one-to-one, their representations are also
expected to be similar. Specifically, considering the sets of words having

76 Chapter 4. Cross-Domain Text Categorization

the highest weights in the representations, a number of these will be unique
to a source category or to its correspondent in the target domain, but some
of them will be shared between the two, thus boosting their similarity.

Considering this, if representations of categories extracted from source
domain are compared to documents in the target domain, it is expected
that nearest centroid classification will not be completely accurate, as the
used profiles do not properly represent the domain. Anyway, a number of
documents is likely to be associated to the respective correct categories. It
is also expected that at least some of these documents happen to have a
particularly high similarity to the prototype for their category, so that the
confidence in their classification can be considered significantly high.

If all the assumptions hold, these documents are, with high probabil-
ity, correctly classified within the target domain. From this set of labeled
documents, new centroids of categories can be extracted as usual. Being
extracted from a possibly small subset of the target documents, these rep-
resentations are likely to constitute an approximation of categories of the
target domain, but should be closer to the correct representations with
respect to those originally extracted from the source domain.

In other words, it is expected that the newly obtained category profiles
constitute an improvement over the previous ones obtained from source
documents and thus, performing nearest centroid classification again using
these, will yield more accurate predictions on the target documents. Doc-
uments which were used to create new representations will likely still be
associated to them with even higher confidence and, additionally, new doc-
uments will potentially reach a high similarity to their category profile as
before.

All these documents can be used to create a further new representation
of categories, from which the same sequence of operations can be repeated.
This cycle can be iterated an arbitrary number of times, with centroids of
categories moving at each step, presumably getting close to the optimal
representations of categories in the target domain.

This procedure is similar to the k-means clustering algorithm, where
centers are progressively moved to centroids of respective data points until
they converge to a stable configuration. Likely, the iterative algorithm
proposed above can be stop when profiles of categories cease to change
from one step to another. At this point, nearest centroid classification can
be run one last time to get the definitive predicted category for each target
document. If representations of categories successively moved close to real

4.4. Iterative refining of category representations 77

centroids for the target domain, classification will be as accurate as possible.
This is the idea behind the proposed iterative refining method for cross-

domain text categorization, formally described below.

4.4.2 Base method

The data to be given in input to the algorithm is what discussed in Section
4.1.1: the sets DS and DT of source and target documents whose union
is denoted with D, the set C of possible category labels shared across the
domains and the labeling CS : DS → C mapping source documents to
categories. In addition, the following two parameters are given:

� a confidence threshold ρ ∈ [1
|C| , 1) used to select relevant documents

in the iterative phase,

� a maximum number NI of iterations for the iterative phase.

The first step consists in typical document pre-processing, considering
the whole set of all known documents D = DS ∪ DT . At this extent, the
following steps are performed in detail for each document:

� words are extracted by splitting on all non-letter characters (spaces,
periods, dashes, . . .),

� each word is casefolded (all letters are turned lowercase) for unifor-
mity,

� words shorter than 3 letters are removed,

� words appearing in a predefined list of 671 stopwords are removed3,

� Porter’s stemming algorithm is applied to each word.

After this, distinct words along with their counts of occurrences can be
obtained for each document. As correct labels are known only for source
documents and not for target, unsupervised techniques for term selection
and weighting are employed. Selecting features on both domain generally
ensures to not remove words appearing in only one of them. Specifically,

3The list was retrieved from http://www.ranks.nl/resources/stopwords.html;
actually, some of the 671 words are already filtered out by previous steps.

http://www.ranks.nl/resources/stopwords.html

78 Chapter 4. Cross-Domain Text Categorization

feature selection is simply based on document frequency: terms appearing
in less than 3 documents are discarded. For what concerns term weighting,
various schemes will be tested. In the end, from each document d ∈ D a
vector wd of term weights is extracted.

From the bags of words for source documents, whose labeling is known,
an initial representation w0

c for each category c ∈ C can be computed as
the centroids of relevant documents, whose set is denoted with R0

c .

R0
c = {d ∈ DS : CS(d) = c}

w0
c =

1

|R0
c |
∑
d∈R0

c

wd

At this point, the iterative phase begins by measuring the similarity of
these representations with bags of words for target documents by means
of cosine similarity between the vectors, as discussed in §2.2.1. For each
couple (d, c) ∈ DT × C, a relatedness score s0(d, c) = cos(wd,w

0
c) is thus

obtained. To get for each document d ∈ DT a distribution of probabilities
across the possible categories, the score for each category is divided by the
sum of those for all categories, so that they sum to one: the result for each
category c is referred to as p0(d, c).

p0(d, c) =
s0(d, c)∑
γ∈C s

0(d, γ)

These relative probabilities are compared with the confidence threshold
ρ to select a set R1

c ⊆ DT of representative documents for each category
c ∈ C. Specifically, documents chosen for each category c are those whose
relative probability both outscores those for other categories and is superior
to the ρ threshold.

R1
c = {d ∈ DT : p0(d, c) > ρ ∧ p0(d, c) ≥ p0(d, γ)∀γ ∈ C}

Now, a new representation for each category can be computed as the
centroid of these representative documents.

w1
c =

1

|R1
c |
∑
d∈R1

c

wd

4.4. Iterative refining of category representations 79

This completes the first iteration of the refining loop. For each subse-
quent iteration i, executed computations are obtained by generalizing the
above formulas.

si(d, c) = cos(wd,w
i
c) pi(d, c) =

si(d, c)∑
γ∈C s

i(d, γ)

Ri+1
c = {d ∈ DT : pi(d, c) > ρ ∧ pi(d, c) ≥ pi(d, γ)∀γ ∈ C}

wi+1
c =

1

|Ri+1
c |

∑
d∈Ri+1

c

wd

At the end of each iteration i, i.e. after computing the new category
profiles, stop conditions are checked. The iterative phase terminates when

� the limit of NI iterations is reached (i+ 1 = NI), or

� representations for all categories are identical to those obtained after
the previous iteration.

∀c ∈ C : wi+1
c = wi

c

In this case, the algorithm terminates by measuring once again similarity
between category profiles obtained at last iteration and predicting for each
target document the category having the most similar profile.

ĈT (d) = argmax
c∈C

cos(wd,w
N
c)

The pseudo-code for the whole algorithm (without considering the com-
mon documents pre-processing phase) is shown in Figure 4.1: as can be
seen, the process is quite straightforward, allowing it to be easily imple-
mented in many possible programming languages and environments.

4.4.3 Computational complexity

The process performs many operations on vectors of length |T |: while these
operations would generally require a time linear in this length, given the
prevalent sparsity of these vectors, we can use suitable data structures to
bound both storage space and computation time linearly w.r.t. the mean

80 Chapter 4. Cross-Domain Text Categorization

Input: a bag of words wd for each document d ∈ D = DS ∪ DT ,
set C of top categories, labeling CS : DS → C for source documents,
confidence threshold ρ, maximum number NI of iterations
Output: predicted labeling ĈT for documents of the target domain

for all c ∈ C do
R0
c ← {d ∈ DS : CS(d) = c}

w0
c ← 1

|R0
c | ·
∑

d∈R0
c
wd

end for
i← 0
while i < NI ∧ (i = 0 ∨ ∃c ∈ C : Ri

c 6= Ri−1
c) do

for all (d, c) ∈ DT × C do
si ← cos(wd,w

i
c)

pi(d, c)← si(d,c)∑
γ∈C s

i(d,γ)

end for
for all c ∈ C do

Aic ← {d ∈ DT : argmax
γ∈C

pi(d, γ) = c}
Ri+1
c ← {d ∈ Aic : pi(d, c) > ρ}

wi+1
c ← 1

|Ri+1
c | ·

∑
d∈Ri+1

c
wd

end for
i← i+ 1

end while
for all d ∈ DT do

ĈT (d)← argmax
c∈C

cos(wd,w
i
c)

end for
return ĈT

Figure 4.1 – Pseudo-code for the iterative refining algorithm.

4.4. Iterative refining of category representations 81

number of non-zero elements. At this extent, we denote with lD and lC
the mean number of non-zero elements in bags of words for documents and
categories, respectively. By definition, we have lD ≤ |T | and lC ≤ |T |; from
experiments is also generally observed lD � lC < |T |. Cosine similarities
for vectors with lD and lC non-zero elements respectively can be computed
in O(lD + lC) time, which can be written as O(lC) given that lD < lC .

The construction of the initial representation for categories is done in
O(|DS| · lD) time, as all values of all documents representations must be
summed up.

In each iteration of the refining phase, the method computes cosine
similarity for NT = |DT | · |C| document-category pairs and normalizes them
to obtain distribution probabilities in O(NT · lC) time; then, to build new
bags of words for categories, up to |DT | document bags must be summed
up, which is done in O(|DT | · lD) time. The sum of these two steps, always
considering lD < lC , is O(|DT | · |C| · lC), which must be multiplied by the
final number nI of iterations.

Summing up, the overall complexity of the method is O(|DS| · lD + nI ·
|DT | · |C|· lC), which can be approximated to the component for the iterative
phase O(nI · |DT | · |C|· lC), with lC ≤ |W|. The complexity is therefore linear
in the number |DT | of documents, the number |C| of top categories (usually
very small), the mean number lC of mean terms per category (having |T | as
an upper bound) and the number nI of iterations in the final phase, which
in the experiments presented below is almost always less than 20. This
complexity is comparable to the other methods described.

4.4.4 Results

Here are presented the results of experimental runs of the algorithm on the
datasets described in §4.3.1. The splits specifically used are the following.

� For two-classes problems on 20 Newsgroups, the splits used in other
works and reported in Tables 4.1, 4.2 and 4.3 are used.

� From SRAA, likely to other works, 4.000 documents for each of the
four classes have been picked randomly and used across all runs.

� For Reuters-21578, a publicly available4 split distribution has been
used.

4Download URL: http://www.cse.ust.hk/TL/dataset/Reuters.zip

http://www.cse.ust.hk/TL/dataset/Reuters.zip

82 Chapter 4. Cross-Domain Text Categorization

Regarding the parameters, the maximum number NI of iterations is
fixed to 50, so that the iterative phase usually converges before this limit
is reached. Selection of features is always performed by the aforementioned
document frequency thresholding with three minimum documents, which is
the scheme followed by most other works. The remaining “free” parameters
are the term weighting scheme and the similarity threshold ρ for selecting
relevant documents in the iterative phase.

To find optimal values for these parameters, we performed tests on val-
idation datasets, different from the “final” ones used for comparison with
other works. Specifically, for each of the final datasets extracted from the
20 Newsgroups collection, a source and a target domain have been obtained
by picking, among the categories normally constituting the source domain,
two sub-categories for each top category, one for the source and one for the
target.

Through experiments with different local weighting measures, either
considered as are or combined with idf (inverse document frequency), the
following ones generally resulted to give better results:

� bin.idf (binary weighting · idf),

� logtf.idf (logarithmic term frequency · idf),

� ntf.idf (normalized term frequency · idf),

� cntf.idf (cosine-normalized term frequency · idf).

Plots in Figures 4.2, 4.3 and 4.4 report the accuracy levels obtained in
the tests on validation datasets, using the weighting schemes listed above
and for different values of the ρ parameter. In all cases, the accuracy
maintains optimal values for values of ρ not too far from the minimum
possible (which is 1/|C|, for example 0.5 with two top categories), while
important and usually sharp drops are observed as ρ is overly increased.
The range of values of ρ where the accuracy is optimal generally depends
from the dataset and the weighting scheme: we observe that ntf.idf and
cntf.idf schemes usually yield a larger range compared to the other two.
Selecting the minimum value of ρ generally guarantees very high accuracy,
but slightly below the optimal value reachable by tuning the parameter at
its best setting.

From the results obtained here, we have to pick default parameter val-
ues to run the method on final test datasets. Regarding term weighting,

4.4. Iterative refining of category representations 83

0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

1

Confidence threshold

A
cc

u
ra

cy

comp vs sci

0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

1

Confidence threshold
A

cc
u
ra

cy

rec vs talk

0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

1

Confidence threshold

A
cc

u
ra

cy

rec vs sci

0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

1

Confidence threshold

A
cc

u
ra

cy
sci vs talk

0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

1

Confidence threshold

A
cc

u
ra

cy

comp vs rec

0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

1

Confidence threshold

A
cc

u
ra

cy

comp vs talk

bin.idf logtf.idf ntf.idf cntf.idf

Figure 4.2 – Accuracy on 20 Newsgroups two-categories validation splits
with different term weighting schemes as the confidence threshold ρ varies

84 Chapter 4. Cross-Domain Text Categorization

0.4 0.5 0.6 0.7
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Confidence threshold

A
cc

u
ra

cy

comp vs sci

0.4 0.5 0.6 0.7
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Confidence threshold

A
cc

u
ra

cy

rec vs talk

0.4 0.5 0.6 0.7
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Confidence threshold

A
cc

u
ra

cy

rec vs sci

0.4 0.5 0.6 0.7
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Confidence threshold

A
cc

u
ra

cy

comp vs talk

bin.idf logtf.idf ntf.idf cntf.idf

Figure 4.3 – Accuracy on 20 Newsgroups three-categories validation splits
with different term weighting schemes as the confidence threshold ρ varies

cntf.idf (cosine normalized tf · idf) is chosen for being the scheme yield-
ing the highest overall accuracy, considering an average on all tests, with
ntf.idf being only slightly inferior. On the other hand, the optimal value
for the confidence threshold ρ depends largely from the number |C| of top
categories: we then differentiate the value on the basis of this variable. Al-
ways by considering all the tests on the validation datasets, the values of
ρ yielding the highest average accuracy on datasets with 2, 3 and 4 top
categories are 0.55, 0.4 and 0.36, respectively: we pick those as the default
values of the threshold.

4.4. Iterative refining of category representations 85

0.3 0.4 0.5 0.6 0.7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence threshold

A
cc

u
ra

cy

comp vs rec vs sci vs talk

bin.idf
logtf.idf
ntf.idf
cntf.idf

Figure 4.4 – Accuracy on the 20 Newsgroups four-categories validation
split with different term weighting schemes as the confidence threshold ρ
varies

Using these default parameter values, results on effective test datasets
are now shown, along with some results for different values.

To evaluate the “difficulty” in classifying documents of each dataset in-
dependently from the cross-domain setting, two types of preliminary base-
line results are given in Table 4.4. These results denote for each dataset a
range within which the actual cross-domain accuracy should lie.

� The no transfer baseline is the accuracy obtained by classifying tar-
get documents directly using the initial categories representations ex-
tracted from the source domain. It constitutes a sort of lower bound
for the cross-domain accuracy.

� The same domain baseline is the accuracy obtained by classifying
target documents using categories representations extracted from the
target domain itself, corresponding in practice to standard nearest
centroid classification using the target domain as both training and
test set. It constitutes an upper bound for the cross-domain accuracy.

In the upper bound results, the comparison of performances of the dif-
ferent weighting schemes does not reflect important differences between

86 Chapter 4. Cross-Domain Text Categorization

Table 4.4 – Baseline results for classification in cross domain datasets with
different term weighting schemes (names shortened for space constraints, so
e.g. “bin” stands for “bin.idf”).

No transfer Same domain
Dataset bin logtf ntf cntf bin logtf ntf cntf

20 Newsgroups

comp vs sci 0.828 0.819 0.760 0.786 0.982 0.983 0.988 0.987
rec vs talk 0.653 0.645 0.641 0.647 0.993 0.994 0.998 0.996
rec vs sci 0.843 0.847 0.821 0.829 0.989 0.987 0.990 0.989
sci vs talk 0.763 0.762 0.796 0.791 0.985 0.983 0.989 0.989

comp vs rec 0.874 0.881 0.904 0.902 0.985 0.988 0.992 0.990
comp vs talk 0.967 0.968 0.965 0.962 0.995 0.993 0.995 0.995

comp - rec - sci 0.668 0.674 0.682 0.683 0.960 0.964 0.973 0.972
rec - sci - talk 0.527 0.510 0.487 0.493 0.986 0.983 0.991 0.989

comp - sci - talk 0.709 0.707 0.721 0.705 0.982 0.982 0.986 0.985
comp - rec - talk 0.918 0.923 0.916 0.919 0.982 0.985 0.990 0.988

comp rec sci talk 0.641 0.632 0.587 0.602 0.978 0.977 0.983 0.980

SRAA

real vs simulated 0.700 0.708 0.723 0.719 0.961 0.961 0.965 0.961
auto vs aviation 0.807 0.822 0.816 0.818 0.972 0.971 0.978 0.976

Reuters-21578

orgs vs places 0.707 0.722 0.733 0.726 0.915 0.909 0.908 0.905
orgs vs people 0.783 0.768 0.781 0.774 0.928 0.930 0.916 0.932

people vs places 0.632 0.628 0.627 0.635 0.929 0.930 0.926 0.927

them, although ntf.idf usually performs better, closely followed by cntf.idf.
For the lower bound, instead, the variance between results with different
schemes is much higher and there is no clearly best scheme: this shows
the necessity of cross-domain methods, as normally classifying target doc-
uments using a model trained from the different source domain yields poor
results.

Table 4.5 reports effective cross-domain results for all datasets compar-
ing the same weighting measures and with default values of the confidence
threshold, reporting both the final accuracy and the number of iterations
run before convergence. As for the validation datasets, the cntf.idf scheme
usually appears to perform best: with the other schemes, in at least one

4.4. Iterative refining of category representations 87

Table 4.5 – Accuracy and number of iterations for cross-domain catego-
rization on different datasets with different term weighting schemes.

bin.idf logtf.idf ntf.idf cntf.idf
Dataset Acc. Itrs. Acc. Itrs. Acc. Itrs. Acc. Itrs.

20 Newsgroups – 2 classes (ρ = 0.55)

comp vs sci 0.975 7 0.980 8 0.977 13 0.978 9
rec vs talk 0.992 7 0.992 6 0.994 8 0.993 6
rec vs sci 0.982 8 0.980 7 0.984 8 0.985 8
sci vs talk 0.972 15 0.972 9 0.976 9 0.976 9

comp vs rec 0.982 10 0.983 8 0.980 10 0.981 9
comp vs talk 0.990 5 0.990 5 0.991 6 0.992 5

20 Newsgroups – 3 classes (ρ = 0.4)

comp - rec - sci 0.657 16 0.791 24 0.939 16 0.938 29
rec - sci - talk 0.980 10 0.979 11 0.853 12 0.979 12

comp - sci - talk 0.819 10 0.818 12 0.953 15 0.966 13
comp - rec - talk 0.976 11 0.978 9 0.977 7 0.981 8

20 Newsgroups – 4 classes (ρ = 0.36)

comp rec sci talk 0.539 31 0.539 24 0.569 18 0.860 27

SRAA – 2 classes (ρ = 0.55)

real vs simulated 0.950 20 0.949 23 0.932 12 0.936 11
auto vs aviation 0.959 19 0.960 11 0.956 27 0.958 19

Reuters-21578 – 2 classes (ρ = 0.55)

orgs vs places 0.731 9 0.729 6 0.721 13 0.722 9
orgs vs people 0.787 16 0.777 14 0.803 22 0.770 40

people vs places 0.625 19 0.501 39 0.730 44 0.732 25

88 Chapter 4. Cross-Domain Text Categorization

0.5 0.6 0.7 0.8
0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence threshold

A
cc

u
ra

cy

comp vs sci

0.5 0.6 0.7 0.8
0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence threshold

A
cc

u
ra

cy

rec vs talk

bin.idf logtf.idf ntf.idf cntf.idf

Figure 4.5 – Accuracy on two 20 Newsgrops two-categories splits with
different term weighting schemes as the confidence threshold ρ varies

case each, important accuracy drops are experienced; among these, ntf.idf
is the one least subject to this. Regarding the number of iterations, no
scheme shows a consistent advantage over the others, although cntf.idf of-
ten involves a nearly-optimal iteration count other than yielding a good
accuracy.

Regarding instead the similarity threshold ρ, plots in Figures 4.5 and
4.6 show how the accuracy varies on some datasets and for different weight-
ing schemes as its value changes, likely to plots shown for the validation
datasets. In all cases, the accuracy maintains optimal values for some val-
ues of ρ near to the minimum possible, with sharp drops as ρ is increased:
this generally confirms observations made above while tuning the parame-
ter.

By observing running tests with high values of ρ and poor accuracies,
it is usually noted that the iterative phase stops after few iterations, only
two in most cases. In these cases, categories profile generated after the
first iteration are generally built from few or even no documents at all and
they remain the same in the second iteration, causing the algorithm to
terminate. What presumably happens is that the threshold is set so high
that no or few target documents reach a sufficient similarity degree with the
categories: the variant based on logistic regression presented below partly
overcomes this phenomenon.

4.4. Iterative refining of category representations 89

Table 4.6 – Results of our method (on rightmost columns) on selected test
datasets, compared with those reported by other works: the results in bold
are the best for each dataset (excluding baselines).

Other methods
Dataset CoCC TPLSA CDSC MTrick TCA I.R.

20 Newsgroups – 2 classes (ρ = 0.55)
comp vs sci 0.870 0.989 0.902 - 0.891 0.978
rec vs talk 0.965 0.977 0.908 0.950 0.962 0.993
rec vs sci 0.945 0.951 0.876 0.955 0.879 0.985
sci vs talk 0.946 0.962 0.956 0.937 0.940 0.976

comp vs rec 0.958 0.951 0.958 - 0.940 0.981
comp vs talk 0.980 0.977 0.976 - 0.967 0.992

20 Newsgroups – 3 classes (ρ = 0.4)
comp - rec - sci - - - 0.932 - 0.938
rec - sci - talk - - - 0.936 - 0.979

comp - sci - talk - - - 0.921 - 0.966
comp - rec - talk - - - 0.955 - 0.981

SRAA – 2 classes (ρ = 0.55)
real vs simulated 0.880 0.889 0.812 - - 0.936
auto vs aviation 0.932 0.947 0.880 - - 0.958

Reuters-21578 – 2 classes (ρ = 0.55)
orgs vs places 0.680 0.653 0.682 0.768 0.730 0.722
orgs vs people 0.764 0.763 0.768 0.808 0.792 0.770

people vs places 0.826 0.805 0.798 0.690 0.626 0.732
Values for 20 Newsgroups collection reported by “MTrick” (in italic) actually are not com-
puted on single runs, but are averages of multiple runs, each with an equal set of top cate-
gories, where a baseline document classifier trained on source domain and tested on target
got an accuracy higher than 65%

90 Chapter 4. Cross-Domain Text Categorization

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Confidence threshold

A
cc

u
ra

cy

comp vs sci vs talk

bin.idf
logtf.idf
ntf.idf
cntf.idf

Figure 4.6 – Accuracy on a 20 Newsgrops three-categories split with dif-
ferent term weighting schemes as the confidence threshold ρ varies

Table 4.6 compares the accuracy obtained by the iterative refining al-
gorithm using default parameters with those reported by papers presenting
other cross-domain text categorization methods, which are namely:

CoCC the co-clustering based approach [24],

TPLSA the topic-bridged PLSA [120],

CDSC the spectral classification method [72],

MTrick the method based on matrix trifactorization [129],

TCA topic correlation analysis [69].

In most tests, the iterative refining approach performs comparably or
better than other methods. The most peculiar results are on the Reuters-
21578 collection, where the variance between the different methods is much
higher5: this is probably due to the not fully proper use of orgs, people
and places as top categories, as they are independent groups of labels
which often co-occur in the documents; also the relatively low results for
the upper bounds (Table 4.4) lead to this hypothesis.

5Comparing the reported results, it is actually likely that the distribution used in
some works has mislabeled datasets, as results given by CoCC, TPLSA and CDSC are
very different from the others but would be comparable by permuting the datasets.

4.4. Iterative refining of category representations 91

Regarding the running times, depending from the considered dataset,
the pre-processing phase where documents are read, processed and stored
in memory in bag-of-words form is performed in about 5 to 10 seconds,
the creation of initial category profiles does not take more than one second
and the refining phase requires about 0.5 to 2 seconds for each iteration.
Overall, many single tests generally run within 15-20 seconds, with the most
long-running ones reaching 30 seconds.

While the given results show a satisfactory performance of the algo-
rithm on the benchmark datasets, in the rest of the section two variants
are proposed to make the algorithm less sensible to parameter tuning and
to improve its running time. As the two variants operate on distinct parts
of the algorithm, they can be applied simultaneously.

4.4.5 Variant with logistic regression

In the base method described above, the result of the cosine similarity be-
tween two bags of words is considered directly to estimate their absolute
(i.e. not conditioned from others) probability of being related. Anyway,
this is used as a rough approximation. For example, this would imply that
a document and a category which are very related to each other have rep-
resentative vectors with a mutual cosine similarity very close to 1, but this
is unlikely to happen in practice. Similarly, vectors of unrelated documents
and categories should have a cosine similarity close to 0; but often there are
some words which are present in almost all documents, granting a minimum
degree of similarity to all documents and categories, although lower with
respect to related ones.

As an example, the histograms in Figure 4.7 show how related and
unrelated document-category couples of the source domain for the rec vs
talk dataset used in the experiments are distributed across various ranges
of cosine similarity. While the average value for unrelated couples is near
to 0, that for related couples is very far from the ideal value of 1. Couples
extracted from other datasets generally follow similar distributions.

A possible solution is to apply some sort of correction to the “raw” co-
sine similarity value, so that typical similarity values for couples of related
document and categories are mapped to sensibly high probabilities and con-
trarily typical similarities for unrelated couples are mapped to consistently
low probabilities. This can be formalized as applying a suitable function
π : [0, 1] → [0, 1] to the cosine similarity between vectors of a document

92 Chapter 4. Cross-Domain Text Categorization

0 0.1 0.2 0.3 0.4 0.5
0

500

1,000

1,500

Cosine similarity

Related couples (µ ∼= 0.144)

0 0.1 0.2 0.3 0.4 0.5
0

500

1,000

1,500

Cosine similarity

Unrelated couples (µ ∼= 0.058)

Figure 4.7 – Distribution of cosine similarity for couples of source docu-
ments and categories in the 20 Newsgrops rec vs talk dataset, dashed lines
indicate averages

d and a category c to find their final relatedness probability si(d, c) (with
reference to a generic iteration i of the process).

si(d, c) = π(cos(wd,w
i
c))

To pick a function which adheres to the aforementioned conditions, typ-
ical values for cosine similarity for related and unrelated couples should be
known. The trivial chosen option is to sample values from couples of the
source domain: as the labeling of the documents is known, it is possible to
measure the cosine similarity cos(wd,w

0
c) for all couples (d, c) ∈ DS × C,

which constitute samples of its distribution for both related (those where
CS(d) = c) and unrelated couples (the remaining ones).

To generalize these observations, univariate logistic regression is used.
In general, logistic regression is a probabilistic classification model which
can be used as a machine learning technique. In the specific univariate case,
a value π(x) ∈ [0, 1] is returned from a single predictive feature with a value
x ∈ R, according to a function with the following form.

π(x) =
1

1 + e−(β0+β1x)

The goal of the logistic regression algorithm is to find optimal values for

4.4. Iterative refining of category representations 93

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Cosine similarity

R
el
at
ed
n
es
s

Figure 4.8 – Logistic function extracted by regression on data of Figure
4.7, for which summary information is reported through box plots (whiskers
are total range, box lines are quartiles, diamond is average)

parameters β0 and β1. Given n observations x1, x2, . . . , xn ∈ R respectively
labeled with y1, y2, . . . , yn ∈ {0, 1}, the value of the following objective
function must be maximized.

n∏
i=1

π(xi)
yi(1− π(xi))

1−yi

In the problem under analysis, each observation corresponds to a generic
source document-category couple (d, c) ∈ DS×C, the corresponding x value
is the cosine similarity of their representations and the y label is 1 if the
two are related and 0 otherwise.

xd,c = cos(wd,w
0
c) yd,c =

{
1 if CS(d) = c
0 if CS(d) 6= c

As an example, Figure 4.8 shows the function which is obtained through
logistic regression on couples of the rec vs talk dataset, whose distribution
of samples was reported in Figure 4.7. The function returns values above
0.99 for any cosine similarity of at least 0.2, reflecting that such similarity
values are reached almost exclusively by related couples.

In practice, the base method is modified as follows. After computing
representations for each document and each category from the source do-
main and before starting the iterative phase, a univariate logistic regression

94 Chapter 4. Cross-Domain Text Categorization

0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

1

Confidence threshold

A
cc

u
ra

cy

comp vs sci

0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

1

Confidence threshold

A
cc

u
ra

cy

rec vs talk

cntf.idf (no LR) bin.idf logtf.idf ntf.idf cntf.idf

Figure 4.9 – Accuracy on two 20 Newsgrops two-categories splits with
the logistic regression variant and different term weighting schemes as the
confidence threshold ρ varies

model π is trained from observations extracted as specified above from all
possible document-category couples (d, c) ∈ DS × C. Then, during the it-
erative phase, the model is applied to the result of cosine similarity when
computing the absolute relatedness between any document d and any cat-
egory c.

si(d, c) = cos(wd,w
i
c) is replaced by si(d, c) = π(cos(wd,w

i
c))

For what concerns computational complexity, to fit the logistic regres-
sion model, the cosine similarity for NS = |DS| · |C| pairs must be computed
to acquire input data, which requires O(lc ·NS) time; then the model can be
fit with one of various optimization methods which are generally linear in
the number NS of data samples [82]. In practice, in experiments described
hereafter, the whole process roughly takes the time of one or two iterations
of the refining phase, i.e. not more than 5 seconds.

Experiments on this variant have been carried on using the same pa-
rameter values of those on the base algorithm. Plots in Figures 4.9 and
4.10 are the counterparts of those in Figures 4.5 and 4.6 with this variant
applied: they show how accuracy varies with the weighting scheme and the

4.4. Iterative refining of category representations 95

0.3 0.4 0.5 0.6 0.7 0.8
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Confidence threshold

A
cc

u
ra

cy

comp vs sci vs talk

cntf.idf (no LR)
bin.idf
logtf.idf
ntf.idf
cntf.idf

Figure 4.10 – Accuracy on a 20 Newsgrops three-categories split with the
logistic regression variant and different term weighting schemes as the con-
fidence threshold ρ varies

confidence threshold ρ, in all of them are also shown for comparison results
for the base method with the default cntf.idf weighting. As can be seen,
there is still a drop of accuracy for too high values of the threshold, but this
now happens for higher values across all datasets and weighting schemes,
as shown by the comparison with cntf.idf in the normal case, which is the
most “stable” scheme together with ntf.idf.

In summary, this variant does not yield significant improvements of the
results when parameters are optimally tuned, but guarantees optimal results
for a wider range of parameters, derived from a more solid estimation of
similarities between document and category representations.

4.4.6 Variant with termination by quasi-similarity

As discussed above, the expected behavior of the iterative refining algorithm
is that the representations of categories are progressively improved at each
iteration, finally leading to an optimal classification accuracy in the end.
However, it is interesting to observe how much the profiles of the categories
improve over iterations and specifically how accurate would be classifying
document with them.

Figure 4.11 reports a plot of the accuracy levels which would be ob-
tained on different datasets by stopping the iterative phase at a certain

96 Chapter 4. Cross-Domain Text Categorization

0 5 10 15 20
0.7

0.75

0.8

0.85

0.9

0.95

1

Iteration

A
cc
u
ra
cy

Accuracy progression over iterations

comp vs sci
comp sci talk
auto vs avi

Figure 4.11 – Progression of accuracy through refining iterations with the
cntf.idf scheme on different datasets

number of steps and classifying target documents using the category pro-
files of that moment; the monitored tests are three of those using cntf.idf
weighting reported in Table 4.5. Can be noted that the accuracy generally
grows rapidly in the first iterations and only has minor fluctuations in later
iterations. In the shown cases, 4 iterations grant an accuracy at most 2%
below the convergence value, while with 5 iterations the optimal result is
within 1%.

In order to further optimize running times while maintaining a good
accuracy level, the iterative phase could be stopped before reaching the
convergence condition, i.e. before profiles for each category are equal to
those of previous step. This could be achieved by setting a lower maximum
number NI of iterations, such as 5 or 10, but the resulting approximation
could significantly vary with the dataset and the values of other parame-
ters. For example, referring to Figure 4.11, setting NI = 2 would cause
an acceptable approximation of accuracy in the auto vs avi dataset (95.2%
instead of 95.8%), while for comp vs sci vs talk the drop would be more
consistent (90.1% instead of 96.6%). An ideal solution should instead grant
a similar approximation level across any dataset.

Rather than setting a fixed limit number of iterations, an alternative
approach is to set a relaxed convergence condition which is satisfied more
“easily” and thus potentially causes earlier termination. An intuitive solu-
tion is, for each category c ∈ C, rather than requiring the new profile wi+1

c

4.4. Iterative refining of category representations 97

to be equal to the previous one wi
c, to require it to be close enough.

The closeness between the two successive representations can be com-
puted trivially by means of cosine similarity. Formally, given a threshold
β ∈ [0, 1], the second termination condition of the base method (§4.4.2) is
substituted with this:

� representations for all categories have a cosine similarity with their
respective previous versions of at least β.

∀c ∈ C : cos(wi+1
c ,wi

c) ≥ β

The parameter β can in theory assume any value between 0 and 1;
anyway, values to be used in practice are those very close to 1, such as 0.99,
0.999 and similar: smaller values would usually stop the iterative phase
too prematurely and cause significant accuracy drops. The value of β in
practice sets a trade-off between keeping the accuracy optimal (for greater
values) and reducing the number of iterations (for smaller values). It is
expected that the effects of varying the parameter β are more consistent
across datasets with respect to limiting the absolute maximum number NI

of iterations, so that the new parameter does not need to be tuned for each
single dataset.

Again, experiments on this variant are performed with the same pa-
rameter values used in the base method. Table 4.7 reports the results, in
terms of both accuracy and number of iterations, for the tests with ntf.idf
and cntf.idf already reported in Table 4.5 along with new results obtained
setting the β threshold to 0.9999 or 0.999. Results show that the number
of iterations is generally reduced, sometimes significantly: in the case with
0.999, it is at least halved down in some cases. For what regards accuracy
drop, for β = 0.9999 it is always within 0.4%, while for β is always under
1%, although with an important exception in comp vs rec vs sci. There
are even some cases, especially for Reuters datasets, where stopping the
iterative phase before even results in better accuracies.

Summing up, the goal generally reached with this variant is to shorten
the number of iterations of the method and consequently its running time,
with a limited drop of accuracy. It can be also noted that, apart from
the cited exceptions, the drop of accuracy across different datasets is very
consistent for equal values of the β parameter: this allows to set a gener-

98 Chapter 4. Cross-Domain Text Categorization

Table 4.7 – Comparison with two weighting schemes of accuracy (A) and
number of iterations (I) between the base method and two settings for ter-
mination by similarity threshold.

ntf.idf cntf.idf
β → base 0.9999 0.999 base 0.9999 0.999

Dataset A I A I A I A I A I A I

20 Newsgroups – 2 classes (ρ = 0.55)

comp vs sci 977 13 977 9 976 7 978 9 978 6 977 5
rec vs talk 994 8 994 6 993 5 993 6 993 5 993 4
rec vs sci 984 8 984 6 984 5 985 8 985 6 985 4
sci vs talk 976 9 976 7 975 5 976 9 976 6 976 5

comp vs rec 980 10 979 5 978 4 981 9 981 5 980 4
comp vs talk 991 6 991 6 990 3 992 5 992 4 992 3

20 Newsgroups – 3 classes (ρ = 0.4)

comp rec sci 939 16 939 13 937 9 938 29 935 21 886 6
rec sci talk 853 12 853 10 852 8 979 12 979 8 978 7

comp sci talk 953 15 952 11 949 8 966 13 965 9 961 6
comp rec talk 977 7 977 5 976 3 981 8 979 4 979 3

20 Newsgroups – 4 classes (ρ = 0.36)

comp rec sci talk 569 18 569 16 573 12 860 27 859 21 859 20

SRAA – 2 classes (ρ = 0.55)

real vs sim 932 12 928 11 922 5 936 11 930 7 928 4
auto vs avi 956 27 960 12 950 4 958 19 962 7 958 4

Reuters-21578 – 2 classes (ρ = 0.55)

orgs places 721 13 721 10 725 6 722 9 722 7 722 5
orgs people 803 22 805 12 820 7 770 40 815 10 824 6

people places 730 44 730 43 773 7 732 25 732 19 756 10

4.4. Iterative refining of category representations 99

ally predictable trade-off between accuracy and running time independently
from the data under analysis.

4.4.7 Discussion

The presented method for cross-domain text categorization based on it-
erative refining can be seen as an adaptation of nearest centroid classifi-
cation, where representations of categories of interest are extracted from
the source domain and then adapted to the target domain by progressive
improvements, so that they get as much close as possible to ideal profiles.

Comparison of obtained results with baselines shows substantial im-
provement over the results which would be obtained without the iterative
phase and, above all, they are rather close to results which would be ob-
tained by knowing in advance the correct centroids for the target domain,
indicating that the method is effective in obtaining a good approximation
of them. The suggested extensions do not give noticeable improvements
in the classification accuracy, but the logistic regression model is useful to
make the method more robust with respect to parameters choice, while
termination by approximate similarity allows to set a tradeoff between ac-
curacy and running time with a roughly predictable effect. With respect
with other cross-domain categorization methods, this obtains better or com-
parable accuracy, despite of its relative conceptual simplicity (leading to a
trivial implementation) and limited running times.

Other than experiments on cross-domain text classification by topic,
some tests on datasets used for sentiment analysis were performed, which
did not result in satisfactory accuracy levels with respect to the state of the
art. Anyway, no specific variants suitable to sentiment analysis have been
tested by now: these possibly include the use of n-grams (§2.3.3) and of
particular term weighting schemes [86].

Another important improvement on the iterative refining method could
be obtained by substituting the centroids and the simple measurement of
their distance from documents with a potentially more accurate model.
For example, documents selected as representative for a category at an
iteration could be used to train a SVM or another machine learning-based
model, used then to estimate a relatedness score for all documents. While
this would likely increase the computational effort for each iteration, it
is possible that this would be compensated from a minor number of such
iterations.

100 Chapter 4. Cross-Domain Text Categorization

The logistic regression model presented in the related variant, telling the
degree of relatedness of documents and categories from the cosine similarity
of their representations, is trained on documents of the source domain of
each experiment and applied to corresponding target documents: a key as-
sumption made in this procedure is that the ideal function correlating mea-
surable similarity and semantic relatedness remains fully or enough valid
across the two domains. The work presented in the next chapter starts from
a similar hypothesis, applied to a more complex model and to more general
text categorization tasks.

101

Chapter 5

A Domain-Independent Model
for Semantic Relatedness

Up to now, known approaches for standard text categorization based on
machine learning and for the cross-domain variant have been analyzed.
These are generally based on extracting a knowledge model from a training
set of pre-labeled documents and using it to classify other documents in the
same domain or, in the case of cross-domain methods, a slightly different
one.

In this chapter will be introduced an approach differing from the previ-
ous ones, based on the creation and utilization of a knowledge model which
further generalizes information extracted from the training set to make it
potentially applicable to completely different domains. The goal is to in-
vestigate the possibility to create a generally valid model for evaluation of
semantic relatedness, using text categorization as a concrete application for
testing it.

5.1 General idea

Most text categorization methods use machine learning algorithms to infer
classification models which allow to predict the membership of subsequent
documents to categories seen in the training set. Specifically, the extracted
knowledge models embed information which is representative of the specific
categories they were trained on and are aimed specifically at recognizing

102 Chapter 5. Domain-Independent Semantic Relatedness Model

those categories. Obviously, if new categories to be recognized are subse-
quently introduced into the system, the training of new knowledge models
is required, which may require consistent amounts of time. Even updating a
classifier for some category with new documents requires an additional, pos-
sibly costly training phase, unless incremental learning methods are used.

In other words, most text categorization methods work by extracting
knowledge which is focused on the taxonomy of categories (either flat or
hierarchical) known from the training set and can not be easily adapted
to different topics which might be introduced at a later time in the same
taxonomy or in a different context.

The nearest centroid classifier described in Section 3.6 can be considered
less prone to this problem: rather than being based on arbitrarily complex
classification models, each category is simply represented by the centroid
of the respective relevant training documents. This approach is intuitively
more simple in computational terms, as computing a mean of vectors is
usually much simpler than building a knowledge model like a decision tree
or a SVM. In this case, introducing new categories in the classification
context would still require to provide a set of representative documents,
but their processing would be very quick.

Anyway, the triviality of the approach, consisting in its basic form in
measuring similarity between vectors of known categories and new docu-
ments, cannot guarantee the optimal results obtained with more complex
machine learning methods: categories must be linearly separable in the
space and the number of features must be adequate. As discussed previ-
ously, because of these limits, centroid-based methods did not receive focus
in recent research on text categorization. The approach proposed here gives
in practice a finer method to compare similarly structured representations
of documents and categories, which could potentially improve the accuracy
of the centroid-based approach while maintaining its flexibility advantages
cited above.

Making a step backwards from the vector space model typically used,
where documents are reduced to vectors based on a global feature set ex-
tracted at training time, each document can be seen as a set of arbitrary
words, with associated counts of occurrences and possible derived weights.
Likely, categories can be represented in the same way by summing up rep-
resentations of single documents related to them. Each of the words carries
a meaning, which might be related to other meanings expressed by other
words in the same document or in other documents. These meanings can be

5.1. General idea 103

inferred with the support of semantic knowledge bases, discussed in Section
2.6.

While works based on vector space model leveraging semantic knowledge
generally use it to augment the feature space or to modify the weights of
terms, here it is used to determine which words are semantically related to
each other and also how they are related. When juxtaposing the words con-
tained in a document to those representing a whole category, different types
of semantic relationships between them can be identified, which could be
indicative of their relatedness as wholes. The identification of such seman-
tic relationships is possible by using a suitable “normative” knowledge base
which explicitly indicates these relationships, such as WordNet (§2.6.1).

We expect that, from the semantic relationships between words repre-
senting an object (either a document or a category) and those representing
another one, the semantic relationship between the two objects themselves
can be inferred. Concretely, this implies that the degree of relatedness be-
tween a document and a category may be measured from the relationships
between their words: roughly, their similarity should be proportional to the
quantity of detected relationships. Equal or similar assumptions are made
in other works where semantic knowledge is employed. However, in addi-
tion to the intensity of the relationship between two objects, we consider
that even its type might be distinguished among more possibilities: for ex-
ample, within a hierarchical taxonomy of categories, one of them may be
specifically identified as an ancestor of the other.

The identification of the relationships between objects requires to cor-
rectly interpret those between their words: for example, it must be known
how many couples of related words must be present in order to consider the
objects themselves significantly related. The proposed approach is based on
using standard machine learning techniques to capture this general knowl-
edge, rather than training models strictly on documents and categories
under analysis.

Consider a set of documents organized in categories: from it representa-
tions made of relevant words for both single documents and whole categories
can be extracted likely to what was done in methods presented so far. Con-
sequently, arbitrary couples each made of a document and a category can
be juxtaposed to check the semantic relationships between their represen-
tative terms. Defined a suitable set of “semantic” features, these can be
extracted from the information on these relationships to obtain a vector of
values. The vector extracted from each couple can then be labeled with

104 Chapter 5. Domain-Independent Semantic Relatedness Model

Training set for typical TC methods
example features (terms) label

document shot movie song . . . category
doc1 2 1 1 . . . movies
doc2 0 1 3 . . . music
doc3 1 2 4 . . . music
.

terms used to predict categories

Training set of couples in our approach
example features (term relationships) label
couple synonyms hypernyms . . . relation

doc1-movies 4 2 . . . related
doc1-music 1 3 . . . unrelated

doc2-movies 0 2 . . . unrelated
.

term relationships used to predict
document-category relationships

Figure 5.1 – Comparison between explanatory examples of training sets
for classic text classification methods and for the proposed approach: for
simplicity, absolute numbers of occurrences of terms in documents and of
relationships in document-category couples are used as features, respectively.

the known relationship between the document and the category involved:
in the most basic case, the document may be either related to the category
(i.e. labeled with it) or not.

An adequate number of these labeled vectors can be gathered to consti-
tute a training set, to be given in input to a standard supervised machine
learning algorithm, like those seen so far. This yields a classification model
where the predictive features are based on semantic relationships between
words and the known classes are the possible relationships between docu-
ments and categories. Both the final training set and the resulting model
references neither specific words nor specific categories used to build the
training set: this is shown in Table 5.1, comparing the training set of a
typical document classifier to that for the model discussed here.

Assuming the existence of general latent rules binding relationships be-

5.1. General idea 105

tween words to those between whole objects, a machine learning algorithm,
given a proper training set, can potentially capture these rules in a knowl-
edge model, which could then be applied in any context.

In practice, once such a knowledge model is extracted from a domain,
it could be applied to compare representations of documents and categories
within it as well as in other domains. Using representations of categories,
an arbitrary document can be compared to categories in order to find the
ones deemed most related to it, thus classifying the document. For a new
domain this requires the creation of representations of categories, which are
simply computed as the mean point of relevant documents, but the training
of the general semantic knowledge should not need to be repeated.

The construction of the described knowledge model allows to perform
classification of documents by comparing them to profiles of categories,
likely to the nearest centroid method, but with potentially more precision
due to the use of semantic information and with the possibility to identify
multiple modalities of relatedness: we leverage this aspect to distinguish
documents discussing a general topic from those dealing with a specific
branch of it. Additionally, we expect that the model has the property of
being equally valid in any domain, so new categories can be introduced at
a later time in the same domain or even different domains can be targeted,
just by providing representations of relevant categories.

In the rest of the chapter, it is described in detail how to apply this
model to text categorization. Over a standard approach, this method offers
the advantages described hereafter.

5.1.1 Possible applications

The described approach has some interesting potential applications in prac-
tical text categorization tasks.

Suppose to create a domain-independent knowledge model as described
above from an adequate training set of labeled documents. A suitable
classification system based on the model, using representations of categories
already employed for its training, can be immediately set up to classify new
documents in the same domain by comparing them with all categories (using
the respective representations) to find the most likely ones. To possibly
save time, the model may even be trained considering only a part of the
categories, as long as they are in a number sufficient for the model to be
general enough.

106 Chapter 5. Domain-Independent Semantic Relatedness Model

Moreover, it is generally possible to alter the organization of categories
while the system is already operational. In particular, new categories can
be introduced: once their profiles are given, the system can compare new
documents to them in addition to profiles of original categories, so to be
possibly labeled with them. In practice, given a set of representative docu-
ments, a category can be added efficiently just by computing their centroid.
Obviously, it is also possible to remove a category from the set of recog-
nized ones in order to ignore it or to update one’s representation to reflect
changes in the context.

In the end, as suggested above, the same model as is can be transposed
to an arbitrarily different domain where to classify documents. Once profiles
of categories are built from a set of labeled documents, always by computing
respective means as in the nearest centroids method, a classifier for the new
domain based on the already available model can be made operational. Also
in this context the taxonomy of categories can be dynamic, with efficient
addition of new categories or other changes at a later time.

Consider as a practical use case a news site classifying articles incom-
ing from a constant stream into a taxonomy of categories, for the conve-
nience of the users browsing the site. The taxonomy should include both
top-level categories like economy, politics and sports and specific cat-
egories therein about relevant topics and events like financial crisis,
presidential elections and Olympic Games. As new events emerge
over time, sometimes unexpectedly, categories representing them must be
added while the classification system is already operational.

The addition of new categories generally requires to both collect a suf-
ficient number of documents representing the new topics and to train a
new or updated classifier to update the knowledge of the system. Using
this approach, after collecting the relevant documents, the update of the
taxonomy requires negligible computational effort.

5.2 Related work

Related work about text categorization in general has already been exposed
throughout Chapter 3. Here some additional works having one or more
aspects in common with the approach proposed here are presented.

A prominent characteristic of the presented method is the use of an ex-
ternal semantic knowledge base to obtain required information: this aspect

5.2. Related work 107

is common to many other methods for text categorization. As discussed in
Section 2.6, used knowledge bases can be either structured and built ad-
hoc or not fully structured, thus requiring adequate processing to be used.
Among the two, the method presented here requires a knowledge base of
the former kind (or anyway incorporating suitable structured knowledge)
in order to retrieve semantic relationships between words.

In [56] is tested the leverage of “internal” semantic information: cate-
gorization is performed on the Brown Corpus, having words already sense-
tagged, using alternatively words or senses as features; the measured differ-
ence of accuracy between the two approaches is marginal.

Many works make use of external semantic knowledge by substituting
or enriching the representations of documents with concepts expressed by
terms, as anticipated in §2.3.4. For example, in [106] WordNet synsets are
used as features, weighting them also by respective hypernyms found in the
text. In [7] synsets are used alongside words, testing two domain-specific
ontologies in addition to WordNet: hypernyms are searched to augment
their weights and also basic forms of word sense disambiguation are tested.

In [94] feautres corresponding to WordNet synsets are added to those
for words and their weights are adjusted according to the subsumption
hierarchy, by increasing that of each general synset according to those of
hyponyms; moreover, also this method like the one proposed here is also
based on creating category representations, which however are compared to
documents simply by means of cosine similarity.

Alternative approaches also exist to leverage semantic information rather
than adding features. As already cited in §3.5.2, in [110] WordNet is used
for a semantic kernel to be employed in a standard support vector ma-
chine learner. In [79] is instead proposed a term weighting scheme based
on semantic knowledge and also on category names.

Other works make use of suitable unstructured data, which is processed
to obtain a subsumption hierarchy of concepts and other information similar
to that given by WordNet. In [40] is tested the introduction of additional
features extracting hundreds of thousands of concepts from DMOZ; the
same authors also test an equivalent method using Wikipedia instead [41].
Similarly, in [114] is performed unsupervised classification by extracting
categories from generalized world knowledge.

108 Chapter 5. Domain-Independent Semantic Relatedness Model

5.3 General working scheme for text

categorization

Here the general idea exposed above is made concrete in a high-level pro-
cedure to build the domain-independent model and to use it to classify
documents. In later sections, specific methods and evaluations thereof for
flat and hierarchical text categorization based on this general scheme are
given.

5.3.1 Semantic knowledge base

In both training and classification phases, to know the semantic relation-
ships existing between words read in documents, some sort of semantic
knowledge base is needed.

In the following, such knowledge base will be considered formally as a
function Θ :W×W → [0, 1]|R|, which maps to an asymmetric pair of words
(wa, wb) ∈ W×W (considered here as generic strings of characters) a vector
Θ(wa, wb) of values between 0 and 1 giving for each known relationship class
of a set R a score indicating the degree with which that type of relationship
holds (or may hold) from wa to wb. Intuitively, the elements of Θ(wa, wb)
indicate with weights what are the possible ways (if any) in which wa is
related to wb. As seen in the following, Θ will represent specifically an algo-
rithm which searches for semantic relationships in the concrete knowledge
base, which will be also referred to as semantic search algorithm.

Considering as output a vector of weights rather than a single relation-
ship class or a subset thereof or a single relatedness weight, allows for more
expressiveness of the possible relationships between terms.

� It is considered that more than one relationship class could be con-
sidered at once, because two words might be linked by more than one
type of relationship, possibly because of the multiple meanings they
might have.

� Giving a vector instead of a set allows to express fuzzy relationships,
which can be useful for different reasons, such as expressing uncer-
tainty about a relationship class (for example if a word has more
possible senses) or indicating a “weak” relationship.

The following are a couple of examples of the points above.

5.3. General working scheme for text categorization 109

� Intuitively, wheel is a meronym of bicycle as wheels are part of a
bicycle. However, wheel is seldom used with the very same meaning
of bicycle (i.e. the whole vehicle), so they may be also regarded as
synonyms. Using fuzzy relationships, a small (but non-zero) value
could be assigned as a weight for synonymy, in addition to the high
value for meronymy.

� The word dog is an hyponym of both mammal and organism (among
many others), but the hypernymy/hyponymy relationship with the
latter can be considered to be weak, because of the high generality of
the term.

Supposing to have an algorithm which instead returns a single relation-
ship class from a finite set or a subset thereof, it can be trivially adapted
to this scheme by considering a function which returns for each input pair
of words a vector whose values are 1 for classes of found relationships and
0 for other classes.

While specific algorithms exist to compute a single score denoting the
degree of relatedness between words (see §5.4.2), the use of multiple scores
allows to distinguish different ways in which words can be related: this can
be particularly useful for example to distinguish similarity (as between dog
and cat) from hypernymy and hyponymy (as between dog and animal).

The semantic function Θ is used in the specific algorithm which com-
pares representations of documents and categories, presented in §5.3.3. As
a concrete knowledge base, WordNet (§2.6.1) is here considered, although
it can’t be used directly as a function of the required type: this issue will
be discussed thoroughly in Section 5.4.

5.3.2 Model training

As an input, the training of the domain-independent model requires a set
DT of documents labeled with categories of a set CT . In this general schema,
it is not considered explicitly how documents are assigned to categories and
whether these are organized in a hierarchy. Instead, all this information is
abstracted with a general function ∆T : DT × CT → K, which maps to a
generic couple of a document d and a category c a label indicating how they
are related.

As a first step, a representation of relevant words for each document
d ∈ DT must be obtained. Following the typical bag-of-words approach,

110 Chapter 5. Domain-Independent Semantic Relatedness Model

distinct words are extracted from text and weighted proportionally to their
recurrence in single documents and in whole collection, according to any
technique described in §2.4.3.

However, within this method, differently from typical text categoriza-
tion approaches, no global set of features is selected: each bag of words is
considered as an isolate entity rather then being a vector with weights for
a defined set of words. Formally, the representation of each document d is
constituted by a function ωd : W → R+ mapping each word contained in
the document to its corresponding weight and any other possible word to 0.
This formalization allows to effectively decouple all the parts of the method
from the specific dictionary of words involved.

Other than from documents, also from each category c ∈ CT is extracted
a representation ωc of the same form. The most obvious approach, already
seen for nearest centroid classification, is to compute a mean of the rep-
resentations of documents related to the category itself. In hierarchical
classification, as discussed later in its own section, these means should also
include documents of some sub-categories.

At this point, to create a training set for the model, labeled vectors
must be extracted from couples of documents and categories. The first
step is to pick a set of such couples from the available ones in the training
corpus. According to some specific method, which depends from the type
of categorization to perform, a set E ⊆ DT × CT of example couples is
selected. Generally, this set should be representative of the different possible
document-category relationships defined in K, with enough instances for
each of them.

For each example couple (d, c) ∈ E, a vector pd,c ∈ Rn must be obtained
and then labeled with the known relationship ∆T (d, c) ∈ K between the
document d and the category c. The extraction of a vector from each couple
is a task performed by a so-called semantic matching algorithm (SMA),
which will be described briefly.

In the end, the training set of labeled vectors is passed as input to
a standard machine learning algorithm, which infers the needed knowledge
model, which classifies subsequent vectors obtained by the SMA into classes
in K. In order to quantify the likelihood of relatedness between documents
and categories, the learning algorithm must output a probabilistic classifier,
which rather than indicating a single class from the set K in response to
an input vector, returns a distribution of probabilities between the different
classes.

5.3. General working scheme for text categorization 111

Training corpus

Documents

Sports

Movies
Arts

Science

Categories

Documents
representations

Categories
representations

coupling

Example
couples

Semantic
Matching
Algorithm

SRS training set

supervised
learning algorithm

Semantic
Relationship

Scoring Model

Figure 5.2 – Schema of the process to train the semantic relationship
scoring model

This classification model, denoted with Ω : Rn → [0, 1]|K| and referred to
as semantic relationship scoring model (SRSM), is subsequently used in the
document classification phase to compare incoming documents with target
categories, as explained later. The whole described process to obtain the
SRSM is summarized in Figure 5.2.

5.3.3 Semantic matching algorithm

The purpose of the semantic matching algorithm, denoted with Ψ : (W →
R+

0)×(W → R+
0)→ Rn, is to extract a vector pd,c ∈ Rn from the analysis of

the semantic relationships between words characterizing a document d and a
category c, which are taken from their respective structured representations
ωd and ωc.

The working of the SMA is influenced by two positive integer parameters
nWpD and nWpC , which indicate the number of words to be considered for
representations of each document and of each category, respectively. The
limit set by these parameters is posed principally to reduce the number of
queries to the Θ function for semantic relationships. Obviously, for docu-
ments and categories represented by less than nWpD or nWpC words, all of
them are considered. The numbers of words considered by the SMA for d
and c are denoted in the following with ld and lc respectively.

ld = min(nWpD, |w ∈ W : ωd(w) > 0|)

112 Chapter 5. Domain-Independent Semantic Relatedness Model

lc = min(nWpC , |w ∈ W : ωc(w) > 0|)
As only a part of the words (if more than nWpD or nWpC) representing

the document and the category are considered, it is desirable to pick those
having more importance within them. For this, words of each bag are put
in order by descending weights1 and throughout the SMA are considered
only the first ld for the document and the first lc for the category, denoted
respectively with td1, t

d
2, . . . , t

d
ld

and tc1, t
c
2, . . . , t

c
lc

.

ωx(t
x
1) ≥ ωx(t

x
2) ≥ . . . ≥ ωx(t

x
lx) ≥ ωx(τ) ∀τ ∈ W − {tx1 , tx2 , . . . , txlx}

At this point, every possible couple (tdi , t
c
j) of one of the considered words

for d and one for c could be compared. Anyway, to further reduce the num-
ber of comparisons with a limited loss of information, a subset Td,c of most
relevant couples can be considered. Following some experiments, a criterion
which resulted to grant a reduction of comparisons with a negligible loss of
final classification accuracy is the following.

Td,c =

{
(tdi , t

c
j) :

(
i− 1

ld

)2

+

(
j − 1

lc

)2

< 1

}
In practice, picturing the possible couples disposed in a grid, this corre-

sponds to discarding those which lay outside of an ellipse having its center
at (0,0) and passing for (0, ld) and (lc, 0), which are about π/4 of the total.
In this way, the least relevant terms of each document (within the limit set
by nWpD) are still coupled to those most relevant for each category and vice
versa, but pairs where both words are not much important are discarded.
This is shown graphically in Figure 5.3.

For each selected couple (wd, wc) ∈ Td,c, the vector Θ(wd, wc) weighting
the semantic relationships between the two is computed. The vectors for
all the considered couples are then weighted by the product of the weights
of the two involved words before being summed up. The sum is then nor-
malized by dividing it for the length of the vectors constituted by weights
of considered words of both document and category.

1No specific indication is given on how to break ties between words with equal
weights, as with most commonly used weighting schemes (especially those based on
combination of factors, such as tf.idf and alike) they very rarely have any influence on
the results.

5.3. General working scheme for text categorization 113

td 1
··
·

to
p
te
rm

s
o
f
d
o
c.

d
··
·

td l d

tc1 tc2 · · · top weighted terms of category c · · ·tclc−1t
c
lc

Figure 5.3 – Schema of selection of relevant pairs of words between repre-
sentations of a document d and a category c: pairs corresponding to white
cells are considered in the computations, while those with a gray cell are
discarded.

rd,c =
1√∑ld

i=1 ωd(t
d
i) ·
√∑lc

j=1 ωc(t
c
j)
·

∑
(tdi ,t

c
j)∈Td,c

ωd(t
d
i) · ωc(tcj) ·Θ(tdi , t

c
j)

The formula is somehow based on cosine similarity (§2.2.1). Notably, if
the number of considered words would not be limited to nWpD and nWpC and
the search of semantic relationship would simply result in Θ(wa, wb) = (1)
if wa = wb and (0) otherwise, the formula would return a vector with a
single value, which would correspond to the cosine similarity of the bags of
words.

This vector rd,c constitutes a summary of which semantic relationships
occur between the relevant words of d and c and how much they are present
across it, also considering how much each word is relevant. The final output
of the SMA is constituted by this vector along with the sum of its values as
an additional feature, which can be helpful for certain learning algorithms.
The total count of features is then |R|+ 1.

pd,c = Ψ(ωd, ωc) = rd,c ⊕ sum(rd,c)

114 Chapter 5. Domain-Independent Semantic Relatedness Model

This is the vector returned by the SMA in response to two representa-
tions ωd and ωc: in the training phase described above it is then labeled
with the actual relationship between d and c to be put in the training set for
the semantic model, while in the classification phase, as discussed below, is
passed to the existing model to predict such relationship.

5.3.4 Classification

Once a semantic relationship scoring model Ω : R|R|+1 → [0, 1]|K| is trained
according to the procedure described above, it can be combined with the
semantic matching algorithm Ψ : (W → R+

0)× (W → R+
0)→ R|R|+1 to ob-

tain a function which, given the representations of any document d and any
category c, returns a distribution of probability among the possible relation-
ships in K between them. In practice, most likely relationship for a (d, c)
couple is the having the highest probability in the distribution obtained by
Ω(Ψ(ωd, ωc)).

The combination of SMA and SRSM can be used within a document
classifier, which labels input documents with a set C of target categories,
which can be either the same used to train the model or a different one.

In the proposed approach, classification is based in general on comparing
representations of the input document d with those of all or some of the
target categories, according to the specific method used. This requires
representations of the target categories, which should be obtained from a
set of documents consistently labeled with them: this is denoted with DP
and referred to as profiling set. Another possibility, not tested here, would
be to provide manually built representations, made up with some picked
keywords.

Once the representations are given, classification of new documents can
be performed. The specific procedure to classify a document varies between
the flat and the hierarchical case and will be described in detail in the
respective sections. In both cases, it is possible to change the taxonomy
of categories subsequently, by providing new profiles for categories to be
added or updated.

5.3.5 Computational complexity

Throughout both the model training and the classification phase, compu-
tation generally consists into comparisons between representations of doc-

5.3. General working scheme for text categorization 115

uments and categories, which are carried out by searching semantic rela-
tionships between the respective relevant words: so, the final complexity of
the method largely depends from the complexity of the adopted semantic
search algorithm.

In both phases, is required to extract profiles of categories: this process
slightly changes between flat and hierarchical classification, but in both
cases can be assumed to be linear in the number of documents to be pro-
cessed and in their average number of words. However, in practice, this
part takes negligible time with respect to the rest of the process.

In the training phase, the number of comparisons depends from the
number |E| of example couples, which has |DT | · |CT | as an upper bound,
but is in practice limited by other parameters which will be presented in the
methods for flat and hierarchical categorization. For each couple, semantic
relationships are searched for a number of pairs of words within nWpD ·nWpC .
Overall, the construction of the training set for the SRSM requires a number
O(|E| ·nWpD ·nWpC) of queries to the semantic search algorithm. Regarding
the training itself of the model, the complexity depends from the specific
learning algorithm used, which is usually linear or superlinear with respect
to the number of training instances, which in this case is |E|.

The complexity of the classification phase changes between flat and hi-
erarchical classification, but in both cases requires, for each document to
be classified, its comparison with profiles of either all possible categories
of a set C or a subset thereof: likely to above, this requires a number
O(|C| · nWpD · nWpC) of searches for semantic relationships.

5.3.6 General experiment setup

In both the flat and the hierarchical case, accuracy of the method has been
evaluated experimentally on some benchmark datasets. Here are described
details about experiments which are common between the two cases; more
detail are given in the related part of the respective sections.

In both cases, each text corpus used as a benchmark is priorly split
in a training set and a test set. Generally, in experiments for other text
categorization methods, the training set is used as the input to a machine
learning algorithm which extracts one or more classification models, which
are then applied to the test set to compare their response with the known
actual categories for each test document.

116 Chapter 5. Domain-Independent Semantic Relatedness Model

Table 5.1 – Usage of training and test splits of each dataset

Phase Training split Test split

(1) SRSM training
training set (DT) not used

Extraction of training set
from example couples

(2) Documents
classification

profiling set (DP) test set (DE)
Creation of category

profiles
Documents to be

classified

Within the method presented here, two decoupled tasks are considered:
the training of a semantic model and its use to classify documents. Given
the domain-independence assumption, it is implied that the text collections
used to perform the two tasks can be different: documents of a dataset
can be classified by leveraging the SRSM extracted from another dataset.
However, as discussed above, category profiles used when classifying target
documents must reflect the exact topics of the documents, so the same
dataset of the test documents is used to ensure this.

So, in practice, when training a SRSM throughout the experiments,
the training split of a selected dataset is used as the set of documents DT
from which the training set of couple vectors is built. To test the method,
given a built model, the training split of a dataset is used as the profiling
set DP from which category representations are built, then documents of
the test split of the same dataset are used to test the method, comparing
categories predicted by the classifier with the actual ones. This organization
is summarized in Table 5.1.

To extract bags of words for documents, here in form of functions
W → R+

0 rather than of vectors, a pre-precessing step is required. In
the following, this is considered to be composed of the following operations
for each document (first 4 steps are the same as in §4.4.2):

� words are extracted by splitting on all non-letter characters (spaces,
periods, dashes, . . .),

� each word is case-folded (all letters are turned lowercase) for unifor-
mity,

� words shorter than 3 letters are removed,

5.4. Search of semantic relationships 117

� words appearing in a predefined list of 671 stopwords are removed2,

� lemmatisation (§2.3.1) is applied to reduce each inflected word to its
base form.

The lemmatisation algorithm used is based on WordNet, so that words
effectively appearing within it are obtained where possible: this aids in using
WordNet itself to search for semantic relationship between them. The use of
a stemming algorithm, usually employed in other works, would make more
difficult the search for relationships in WordNet, as many stems would not
be found in WordNet, not being complete words by themselves.

As semantic relationships between relevant terms of documents must
be searched, it would be potentially useful to either use words tagged with
information about their meaning or to directly extract concepts instead
(§2.3.4). While this could be obtained with techniques for part-of-speech
tagging and word sense disambiguation (described in Section 1.4), it is cho-
sen to take instead words as they appear to keep the document processing
phase as simple as possible, so that also the computation of category profiles
from still unprocessed documents can be run fast.

Terms are weighted by cntf.idf, the product of cosine normalized term
frequency and inverse document frequency (§2.4.3). As cited above, no
feature selection is performed, as documents and categories are considered
to be represented as lists of all the words they contain with associated
weights rather than as vectors, so it is not necessary to establish a global
set of features.

Other parameters of the method will be discussed in detail in the sections
related specifically to variants for flat and hierarchical categorization.

5.4 Search of semantic relationships

In the previous section, a semantic knowledge base has been presented as a
generic function mapping a couple of arbitrary words to a vector express-
ing potential semantic relationships holding between them. As a concrete
information source for the needed semantic knowledge, WordNet is chosen
to be used given its large diffusion in the related literature. However, its
usage in the method presented above is not straightforward.

2This is the same list cited in §4.4.2, also see footnote there.

118 Chapter 5. Domain-Independent Semantic Relatedness Model

5.4.1 Use of WordNet

As discussed in §2.6.1, WordNet is a lexical database for the English lan-
guage containing a set of lemmas divided between four part-of-speech classes
and grouped into synsets of synonym words, with various types of semantic
relationships defined between synsets and between words. This database
can be used as the knowledge base used in the semantic matching algorithm,
but some expedient is necessary.

Firstly, the required knowledge base must define relationships between
words, intended as generic strings of characters; WordNet defines instead
relationships between words intended as specific instances of lemmas inside
synsets and between synsets themselves. A simple solution would be to
“transpose” these relationships to lemmas, which are then considered as
the words found in documents. Specifically, setting R to the set of 28
possible classes of relationship defined in WordNet, two words (lemmas) wa
and wb can be considered to hold a relationship of type r ∈ R if and only
if:

� two (WordNet) words, each instance of one of the two lemmas, are
related by r, or

� two synsets, each containing one of the two lemmas, are related by r.

If one or both of the words are not found in the WordNet database, no
relationship can be found between them, so the Θ function returns a null
vector.

With these rules, the relationships defined by WordNet between two
words can be found. However, this does not include the synonymy relation-
ship, which is not represented explicitly in Wordnet but implicitly exists
between two words in the same synset and can be transposed like others
to the corresponding lemmas. Other than this, two words extracted from
different sets (like one from a document and one from a category profile, as
happens in the method) may also be identical. For this, the two symmet-
ric relationship classes equality and synonymy are introduced in the set R
alongside relationship explicitly defined in WordNet, so that:

� two words are equal if they are the same string, even if WordNet does
not contain a lemma matching the string) and

� two words (lemmas) are synonym if are not equal and at least one
synset contains them both as words.

5.4. Search of semantic relationships 119

With these additions, all potential classes of relationships between words
found in documents are covered. Anyway, there is still a limit in applying
the above rules for relationships between synsets and between words: the
missing identification of indirect relationships.

Consider for example the nouns bicycle and vehicle: intuitively, the first
should be identified as a hyponym (i.e. “a specific type”) of the second and
conversely the second as a hypernym of the first. Anyway, WordNet does not
explicitly consider a relationship between these two words. Instead, bicycle
has wheeled vehicle as its hypernym, which is in turn a hyponym of vehicle.
An even more representative example is the similar relationship between
dog and animal, which is obvious to a person, but WordNet organizes living
organisms likely to standard biological classification, so the synsets for dog
and animal are separated by the following chain of hypernyms, in order
of decreasing specificity: canine, carnivore, placental, mammal, vertebrate,
chordate.

In order to save space, the WordNet database only stores primitive re-
lationships, while indirect relationships like the examples above must be
inferred from the primitive ones. One possibility would be to precompute
an expanded version of WordNet with all the indirect relationships made
explicit.

Anyway, with the goal to maintain a limited memory usage, methods to
search indirect relationships “on the fly” from the primitive WordNet graph
are employed. Should be noted that, given the high number of comparisons
between words which are made while training and using the semantic model,
it is critical for any algorithm used to search relationships between words
to run very fast.

In the rest of the section, possible solutions to realize such an algorithm
are discussed, along with how to consider chains of relationships involving
different types of pointers. For example, if a word wa in WordNet is a
meronym of an hyponym of another word wb, which is the actual general
relationship between wa and wb, if any?

5.4.2 Existing approaches

Some literature exist where the problem of inferring non-trivial semantic
relationships between words starting from a “primitive” knowledge base
like WordNet is studied.

120 Chapter 5. Domain-Independent Semantic Relatedness Model

Many works (especially earlier) only considered the hypernymy/hyponymy
relationships between synsets, being the most common and important of
WordNet semantic relationships. In general, most works only consider a
part of the type of pointers defined in WordNet, which have very different
frequencies.

Existing works regarding the evaluation of relatedness between words
using a semantic knowledge base are mostly focused on computing a single
score for any couple of words, rather than a combination of scores for all
possible semantic relationships. Specifically, proposed methods generally
address one of two different concepts [12].

� Similarity of two words refers to the degree of overlap in their mean-
ing: this may be given from synonymy (full overlap) or from hy-
pernymy/hyponymy (partial overlap). For example, tiger and cat are
quite similar (they are both felines, which is a rather specific concept),
while money and bank are dissimilar (one is a medium of exchange,
the other is an institution).

� Relatedness of two words refers to how much they are related generally
by association of ideas; this is a far more generic concept, including
virtually any type of semantic relationship. For example, money and
bank are not similar (see above), but any person is likely to consider
them strongly related, as they share the domain of discourse.

Given a primitive graph of direct relationships between words, a basic
intuition is that similar words have a short distance between them in the
graph: in [101] this type of approach is tested on the MeSH (Medical Subject
Headings) taxonomy.

Among those based on WordNet, the similarity measure proposed in
[103] is the maximum information content of synsets subsuming (i.e. being
hypernyms of) both the two analyzed words: the information content of a
concept x is lower as the probability of encountering any concept subsumed
by x is higher. In [48] hypernymy, hyponymy and antonymy relationships of
WordNet are considered: the relatedness between two words depends both
from the number of links between them and from how much time the type
of link (“direction”) changes throughout the path; relatedness is considered
anyway only for some specific patterns of these direction changes. The
method proposed in [96] is able to consistently compare arbitrarily grained

5.4. Search of semantic relationships 121

units of texts (from single senses to whole documents) by reducing them to
probability distributions of senses and measuring similarity between these.

Recalling the distinction given in §2.6, other than using WordNet or
similar ad hoc, structured knowledge bases, an alternative approach is to
extract information from a large corpus (collection) of text, useful to infer
relatedness of words by their frequency of co-occurrence or other statistical
properties. For example, in Explicit Semantic Analysis [41], the meaning of
either single words or texts is mapped to a high-dimensional space of con-
cepts extracted from Wikipedia: relatedness can be then simply computed
as the (cosine) similarity between corresponding vectors. In [2] a compari-
son of different methods of both approaches is given. There also are hybrid
solutions: in [51] the distance between two terms depends from their most
specific common hypernym in WordNet and is computed from information
content of the three, statistically estimated from a corpus of text.

The evaluation of these methods can be difficult, as actual similarity
and (especially) relatedness between words can be a rather subjective judg-
ment. Some small collections of pairs of words with associated similarity or
relatedness scores exist, which have been compiled by averaging judgments
given by multiple persons: an example of these is the WordSimilarity-353
Test Collection3 [36]. A method can be evaluated by comparing its results
for these pairs with the actual ones: accuracy is usually measured by the
Spearman correlation between actual and predicted scores, which indicates
accordance between the order given to pairs by the scores rather than be-
tween the scores themselves. Another possible approach is to evaluate a
measure by observing the performances of a certain task where it is used:
by keeping constant other parameters of this task, different measures can
be compared.

5.4.3 Hypernyms-based algorithm

Here is proposed a relatively simple algorithm to search relationships be-
tween words which partly overcomes the limit of the simple search of direct
relationships of not retrieving indirect ones. This algorithm is summarily
based on searching for relationships between given words and also between

3http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

wordsim353.html

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/wordsim353.html
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/wordsim353.html

122 Chapter 5. Domain-Independent Semantic Relatedness Model

respective hypernym synsets up to a certain maximum number of steps,
which is a parameter of the algorithm denoted with MH .

The set R of possible relationships recognized by this algorithm, as
discussed in §5.4.1, is composed by all 28 pointer types defined in WordNet
with the addition of equality and synonymy. This basic algorithm does not
weight returned relationships, so the resulting vector only contains zeros
and ones according to the found relationships (either none, one or more
than one).

Firstly, if the two compared words wa and wb are equal, the algorithm
terminates returning only the equality relationship. Otherwise, the sets Sa
and Sb of all synsets containing wa and wb are retrieved: if one or more
synsets appears in both sets (Sa∩Sb 6= ∅), it means that those synsets con-
tain both wa and wb and the algorithm stops by labeling them as synonyms.

At this point, if the algorithm did not terminate, from each Sx (with
x = a, b) is extracted the hypernyms set of synsets Hx ⊇ Sx, made up from
all the synsets which can be reached within MH steps starting from synsets
of Sx by following hypernymy pointers (including synsets of Sx themselves).
At first, these sets are used to check for indirect hypernymy/hyponymy
relationship between the two words: specifically, if at least one of the synsets
of Sa is contained in Hb, i.e. Sa ∩Hb 6= ∅, then wa is labeled as hypernym
of wb; conversely, if Sb ∩ Ha 6= ∅ then wa is labeled as hyponym of wb.
Regardless of found relationships, the algorithm then proceeds with the
next step.

As hypernymy conceptually represents a is-a relationship, synsets are
considered to inherit the properties of their hypernyms, including relation-
ships with other synsets. For this, direct relationship are searched between
Ha and Hb rather than between Sa and Sb how would happen in a sim-
ple method. This allows to extend some relationships involving general
synsets down to more specific synsets. For example, the part meronymy
pointer from wheeled vehicle to wheel is inherited by bicycle, being it a di-
rect hyponym of wheeled vehicle: this algorithm so returns the intuitively
held meronymy relationship between bicycle and wheel which would not be
found by just looking for direct relationships. After this search, the algo-
rithm terminates by returning a vector of ones for found relationships and
of zeros for all the others.

This is a relatively simple algorithm to find some indirect relationships,
based on making the two searched terms “inherit” pointers from their hy-
pernyms. As most synsets have a single hypernym each, searching them for

5.4. Search of semantic relationships 123

each input word has a roughly linear complexity with respect to the number
MH of considered levels, while search of relationships among all hypernyms
takes about quadratic time. The algorithm presented next starts from the
same principle of examining hypernyms of input words, using an improved
method and extending it to some other relationship types.

5.4.4 Extended search algorithm

Here is presented an improved algorithm for search of indirect relationships
in WordNet, where a new set R of relationship types is introduced and
fuzzy relationships are considered. Specifically, 14 types of relationships
listed below are considered, so that the output of the algorithm is a vector
of 14 values denoting the weight with which each of them holds.

� equality

� synonymy

� hypernymy

� hyponymy

� coordination

� holonymy

� meronymy

� co-occurrence

� similarity

� derivation

� antonymy

� domain

� indomain

� codomain

This method is based on what are hereby referred to as explorations of
the WordNet synsets graph, whose set of nodes will be here denoted with
S. Each exploration α starts from a set Iα ⊆ S of synsets, each s having
assigned a positive score wα(s) of 1 or less: these are the first synsets to be
explored. When exploring a synset s, for each s′ of those related to it by
certain pointer types and not previously explored, a score rα(s′) = rα(s)−εR
is assigned, where εR ≥ 0 is a decay parameter: synsets whose this score
is greater than 0 will be explored in turn, the others are discarded. In the
end, an exploration yields a set Eα ⊆ S of explored nodes, each with a score
given by rα.

Given two input words wa and wb, the steps performed by the algorithm
are the following. The first two steps are the same of the hypernyms-based

124 Chapter 5. Domain-Independent Semantic Relatedness Model

algorithm and make the algorithm early terminate if given conditions are
met. In the final output vector, weight for each relationship type is assumed
to be 0 if not assigned.

� If the two words are identical, terminate the algorithm by returning
equality with weight 1.

� Extract sets Sa and Sb of synsets for wa and wb. If the two share at
least one synset, return synonymy with weight 1. If at least one of
the two sets is empty, return a null vector.

� Two explorations ηa and ηb starting from Sa and Sb with score 1 for
all synsets are performed, each considering hypernymy and instance
hypernymy pointers, with distinct decay parameters of εhyp and εinst.
If in ηa has been explored at least one synset in Sb, set score for hy-
pernymy to the maximum score within such synsets. Conversely, if
in ηb at least one synset of Sa was found, do the same for hyponymy.
Only if both these conditions fail, the intersection between the sets
of explored nodes of ηa and ηb is checked: if contains at least one
synset, consider the one s for which rηa(s) · rηb(s) is maximum and
use this value as score for coordination relation, indicating that the
two input words have a common hypernym.

� Similar steps are now taken with holonymy in place of hypernymy.
Two explorations θa and θb considering all three types of holonymy
pointers are started from Sa and Sb with all synsets having score
1; decay parameters for part, member and substance holonymy are
respectively εpart, εmemb, εsubst. If at least one synset explored in θa was
also explored in ηb, holonymy relationship is assigned with weight
equal to the maximum score of these synsets within θa. Symmetrically,
weight meronymy as the highest score among synsets explored in
θb which were also explored in ηa, if any. If neither of these two
relationships hold, find the synset explored within both θa and θb for
which the product of its scores given by the two is higher and, if any,
use this product as weight for co-occurrence relationship, expressing
in practice being part of a same entity.

� Explorations σa and σb are started from all synsets explored respec-
tively within ηa and ηb (i.e. hypernyms of input words), from which

5.4. Search of semantic relationships 125

scores for initial synsets are taken (∀s ∈ Iσx : rσx(s) = rηx(s)): in
these two explorations “verb group” and “similarity” pointers are fol-
lowed, with respective decay parameters εverbg and εsim. These two
relationships are considered together, as they both indicatively rep-
resent similarity between concepts, which are verbs in the first case
and adjectives in the second. If one or more synsets are found in both
explorations, excluding their initial synsets (for which relevant rela-
tionships have already been found), weight for similarity relationship
is set to the product of σa and σb scores of the synset for which it is
maximum.

� All couples of synsets explored in ηa and ηb are checked for lexical
relationships of type “derivationally related form”, “derived from ad-
jective” and “participle” between words of synsets of one and words of
synsets of the other. Weight for derivation relationship is set to the
maximum product of weights of synsets across the two sets with words
related by these relationships: this type of relationship generally links
words with a common morphology.

� Similarly to above, the hypernym synsets are checked for antonymy
relationships between words in a set and words of the other. Weight
for antonymy is the maximum product of weights of synsets across
Eηa and Eηb with antonym words.

� For last, “member of domain” relationships are considered. Explo-
rations δa and δb starting from synsets explored in ηa and ηb are run,
following all three types of such pointers (topic, region and usage)
with a unique decay factor εdom. Similarly to hyponymy/meronymy,
if one or more synsets are shared between Eδa and Eηb , domain re-
lationship is weighted according to the maximum score within δa of
these synsets, while indomain relationship is weighted with the max-
imum score in δb of synsets also explored in ηa, if any. If none of these
two relationships holds, codomain relationship weight is set to the
maximum product of scores in δa and δb of non-initial synsets explored
in both, if any.

The algorithm is parameterized by the decay factors referenced along the
described steps and summarized in Table 5.2 along with their default values.
These parameters have been tuned through some preliminary tests, training

126 Chapter 5. Domain-Independent Semantic Relatedness Model

Table 5.2 – Decay parameters defined in the algorithm with their values

Exploration Pointer type Decay parameters

hypernyms (η)
hypernym εhyp = 0.2

instance hypernym εinst = 0

holonyms (θ)
part holonym εpart = 0.2

member holonym εmemb = 0.2
substance holonym εsubst = 0.4

similar synsets (σ)
verb group εverbg = 0.2
similar to εsim = 0.2

domain of synset (δ) domain (all 3 types) εdom = 0.4

the search algorithm on lists of word pairs with pre-assigned relatedness or
similarity scores, cited in §5.4.2. For each pair, we compared the reference
scores given by these lists with the maximum value of the output vector
from the search algorithm across a subset of relationships, having picked
those deemed to best represent the intended concepts of “relatedness” and
“similarity”.

In general, the proposed algorithm has been designed to find various
types of indirect relationships, even involving pointers of multiple types.
The set of pointer types defined in WordNet and used in the previous algo-
rithm is reduced to a smaller set of relevant relationship classes, grouping
together similar types and defining new ones which can only be obtained
by composition of primitive relationships.

5.5 Flat categorization

In this section, the general scheme of Section 5.3 is made concrete in a
method for multi-label classification of documents within a flat taxonomy
of categories. This is a very simple case, which requires few integrations in
the scheme.

5.5.1 Example couples and category profiles

In flat categorization, the taxonomy where to organize documents is given
by a simple set of categories C. In this context, the possible relationships

5.5. Flat categorization 127

between any document d and any category c are reduced to two cases: d is
either labeled with c or not, according to some labeling L : D×C → {0, 1}.
In these two cases, the document and the category are said to be related or
unrelated, respectively.

K = {related, unrelated}

∆(d, c) =

{
related if L(d, c) = 1

unrelated if L(d, c) = 0

The set E of example couples extracted from the model training docu-
ments should be ideally composed equally of related and unrelated couples
to yield a balanced training set for the semantic model. Anyway, it is typi-
cal that each document is labeled with few categories out of many possible
ones, so unrelated pairs largely outnumber related ones. As a reference
scheme for selection of training couples, it is assumed that for each train-
ing document d ∈ DT a fixed number nCpD ≤ |CT | of categories is selected
randomly so that the number of related couples is the maximum possible.
Specifically, if a document is labeled with more than nCpD categories, then
it is coupled with nCpD of them picked randomly, otherwise it is coupled
with all the related categories and with randomly picked unrelated ones to
get to nCpD.

Representation of each category in the flat case is built simply by av-
eraging those for single documents labeled with it, whose set is denoted
with Dc = {d ∈ DT : L(d, c) = 1}, as in nearest centroid classification.
The average of standard vectors can be trivially adapted to the weighting
functions used instead here as bags of words.

ωc(w) =
1

|Dc|
∑
d∈Dc

ωd(w)

5.5.2 Classification

As explained in the general scheme, the SMA is applied to the example
couples to extract vectors of semantic features, which are then labeled as
related or unrelated and used as training set for the semantic model, which
is then combined with the same SMA to obtain a function predicting how
much any document is likely to be related or not to any category. As there

128 Chapter 5. Domain-Independent Semantic Relatedness Model

Table 5.3 – Summary information about benchmark datasets for flat cat-
egorization

Docs. Docs. per category
Dataset Split count min. avg. max.
Reuters training 9,603 182 719.4 2,877

multi-label, 10 categories test 3,299 56 278.8 1,087
20NG training 11,314 377 565.7 600

single-label, 20 categories test 7,532 251 376.6 398

are two possible classes, the probability distribution returned by the model
for a generic document-category couple will be of the form (p, 1− p), with
p being the likelihood with which the document should be labeled with the
category.

In this setting, likely to standard method for multi-label flat catego-
rization where specific classifiers are used, classification of a document d is
performed by comparing it with profiles of all target categories to find which
of them are related. Recalling what said above, for each category c ∈ C,
the semantic model returns a probability pR(d, c) for the related label. In
general, by setting a threshold τ , can be established that a document is
predicted to be related to all categories for which such probability reaches
this threshold.

L̂(d, c) = 1⇔ pR(d, c) ≥ τ

This yields for any document d a set of predicted categories, as entailed
by multi-label classification. The method may also be easily adapted to
the single-label case by labeling d with the category c with the highest
relatedness likelihood.

L̂(d, c) = 1⇔ argmax
γ∈C

pR(d, γ) = c

5.5.3 Experiment setup

The method has been tested on two datasets commonly used as benchmarks
in text categorization research, already described in §3.8.1. Both of them
are provided already split between a training and a test set, which are used

5.5. Flat categorization 129

Table 5.4 – Summary of parameters of the flat categorization method and
of their default values (used where no different indication is given)

Parameter function Symbol and value(s)
Both training and classification

Words considered by SMA for each document nWpD = 30
Words considered by SMA for each category nWpC = 60

Algorithm for search of semantic relationships Θ varying
SRSM training

Documents selected for example couples nED = 4000
Example couples per selected document nCpD = 4

to train the semantic model and to test classification of documents using it
as indicated in §5.3.6. Basic statistics about the two datasets are given in
Table 5.3.

� The ModApté split of Reuters-21578 (9,603 training documents, 3,299
test documents) has been considered for multi-label classification.
Likely to other works, classification under the 10 most recurring top-
ics is considered. Namely, these topics are: earn, acq, money-
fx, grain, crude, trade, interest, ship, wheat, corn. This
dataset will be indicated in short with Reuters.

� The standard bydate distribution of 20 Newsgroups (11,314 training
documents, 7,532 test documents) has been considered for single-label
classification: every documents belongs to one and only one of the 20
groups. This dataset will be indicated in short with 20NG.

The domains of the two datasets are somehow different and disjoint:
while 20NG can be considered more general as it contains categories deal-
ing with a variety topics (sports, motors, religion, . . .), Reuters is instead
focused on economy and markets, a discourse area which has not signifi-
cantly representative categories in 20NG.

As seen in the description, the method has a number of parameters
influencing its performances. Most tests are run by fixing some parameters
to arbitrary default values and testing different values for remaining ones.
Hereafter are described the parameters along with their default values, also
summarized in Table 5.4.

130 Chapter 5. Domain-Independent Semantic Relatedness Model

Two important parameters of the process are the numbers nWpD and
nWpC of most relevant words considered by the SMA respectively for doc-
uments and categories when comparing them. The number must be high
enough to guarantee that all important words are considered for each doc-
ument and category, but the number of queries to the semantic knowledge
grows linearly with these numbers.

In the same context, is also relevant how the semantic relationships are
computed. As discussed above, WordNet is always used here as a primitive
semantic knowledge base, but different algorithms can be used to infer
more high-level information from it. In the following, three algorithms
are considered:

� the direct algorithm only searches and reports direct, primitive rela-
tionships, using the trivial techniques reported in §5.4.1;

� the hypernyms algorithm also searches for relationships between hy-
pernyms of both words up to a number MH of levels, as discussed in
§5.4.3;

� the extended algorithm extends search through more types of pointers
and returns fuzzy relationships, as discussed in §5.4.4.

For the hypernyms algorithm, MH = 2 is assumed by default.
To train the SRSM, numbers nED of documents to be coupled to cat-

egories and nCpD of categories to couple each document with must be set.
To have a consistent training set, default values are set to nED = 4000
and nCpD = 4, yielding a total of 16,000 example couples. As a learning
algorithm for the SRSM, multivariate logistic regression is used [61].

As classification accuracy measures, commonly to most other works,
the F1 measure and the break-even point are reported for Reuters, whose
calculation is discussed in §3.8.2. In the single-label case of 20NG, the
classifier is required to report a single category, namely that with the highest
similarity score for each document: here, accuracy (ratio of correctly labeled
test documents) is reported instead as an accuracy measure.

5.5.4 Experiment results

In the beginning, to test the performances of the approach as a standard
text categorization method, results are given for experiments where the

5.5. Flat categorization 131

20 30 40 50
0.7

0.72

0.74

0.76
Reuters – F1 measure

20 30 40 50

0.7

0.72

0.74

Reuters – break-even

20 30 40 50

0.62

0.64

0.66

0.68

20NG – accuracy

direct
hypernyms
extended

Figure 5.4 – Accuracy measures (Y axes) for flat categorization as the
number nWpD of words considered for each document varies (X axes)

corpus used to train the semantic model is the same on which it is tested
subsequently.

Experiments shown first are those based on variation of the numbers
nWpD and nWpC of words considered by the SMA for each document and
category, respectively: different values are tested with the three different
algorithms for searching semantic relationships listed above.

In Figure 5.4, results are shown for different values of nWpD, where
nWpC is always set to the default value 60. The expectable result is that
the accuracy measures grow as the number of words considered for each
document is raised, as documents are better represented when comparing
them to category profiles. The raise of accuracy for this range of values is
of about 4% for Reuters and 7% for 20NG, showing that the contribute of
“averagely” important words to represent the documents is at least in part
helpful. In Reuters, the use of the extended algorithm appears to give an

132 Chapter 5. Domain-Independent Semantic Relatedness Model

40 60 80 100
0.71

0.72

0.73

0.74
Reuters – F1 measure

40 60 80 100
0.71

0.72

0.73

0.74 Reuters – break-even

40 60 80 100
0.62

0.64

0.66

0.68
20NG – accuracy

direct
hypernyms
extended

Figure 5.5 – Accuracy measures (Y axes) for flat categorization as the
number nWpC of words considered for each category varies (X axes)

accuracy boost of about 2%, but for the other cases the differences between
the three algorithms are not significant.

Figure 5.5 shows the same results as nWpC varies instead, with nWpD

fixed to 30. These results are essentially similar to those above: the use
of more words to represent categories grants an increase in the accuracy,
although with a slightly smaller difference in the considered range (1.5%
for Reuters, 5% for 20NG). The observations above about semantic search
algorithms still hold, with the extended one working better on Reuters.

Regarding the search algorithms, can be interesting to see what hap-
pens when their parameters are varied. Tests have been performed on the
hypernyms-based algorithm, which only exhibits one parameter: the num-
ber MH of levels of hypernyms to explore for each word. Figure 5.6 shows
how accuracy on flat classification with this semantic search algorithm varies
as its parameter is changed. Different results emerge for the two datasets:

5.5. Flat categorization 133

1 2 3 4
0.71

0.72

0.73

0.74

0.75 Reuters

F1

BEP

1 2 3 4

0.64

0.65

0.66

20NG

Accuracy

Figure 5.6 – Accuracy measures (Y axes) for flat categorization using
the hypernyms-based algorithm to search for semantic relationships as the
number MH of maximum considered hypernyms varies (X axes)

for Reuters a deeper search makes some noticeable difference in the results,
while for 20NG the variation of accuracy is minimal. It is supposed that the
Reuters dataset contains many words with indirect hypernymy/hyponymy
relationships, which require a proper algorithm to be found: this happens
with the hypernyms based algorithm with a sufficient value for MH and,
as seen in the results above, also with the extended algorithm with its de-
fault values (given in §5.4.4), which likely grant thorough exploration of
hypernyms.

In the experiments above, default fixed values for nED and nCpD are
used. To see how the composition of the training set of example couples for
the SRSM influences the accuracy, different values are tested. Specifically,
some tests have been performed by keeping constant the total number of
example couples |E| = nED · nCpD to 16,000, but doubling alternatively
one factor while halving down the other. Additionally, tests where per-
formed with selection of a reduced number of 2,000 example couples, given
by nED = 1000 and nCpD = 2 and also with selection of all possible ex-
ample couples, so that E = DT × CT , yielding 96,030 couples for Reuters
and 226,280 for 20NG. Figure 5.7 reports the accuracy measures for all
these tests. In the case of Reuters small differences emerge between the
considered cases: the loss of accuracy using 2,000 couples instead of 16,000
is within 1%. On the other hand, with 20NG the differences are more evi-
dent, although they are much reduced when the extended semantic search

134 Chapter 5. Domain-Independent Semantic Relatedness Model

2×1000 2×8000 4×4000 8×2000 all
0.71

0.72

0.73

0.74
Reuters – F1 measure

2×1000 2×8000 4×4000 8×2000 all
0.71

0.72

0.73

0.74 Reuters – break-even

2×1000 2×8000 4×4000 8×2000 all
0.62

0.63

0.64

0.65

0.66
20NG – F1 measure

direct hypernyms extended

Figure 5.7 – Accuracy measures (Y axes) for flat categorization as the
composition of the set of example couples to train the SRSM varies: X axes
labels are given in the form nCpD × nED

5.5. Flat categorization 135

Table 5.5 – Comparison of results on flat categorization with those reported
in other works

Reuters – Comparison by break-even point
this method (std. parameters, extended search) 0.733

this method (best result among tests) 0.749
Rocchio method [53] 0.799

Find Similar (Rocchio) [34] 0.646
SVM (best result with tested kernels) [53] 0.865

SVM [34] 0.920
20NG – Comparison by accuracy

this method (std. parameters, direct search) 0.655
this method (best result among tests) 0.688

Rocchio method, tf.idf [52] 0.823
probabilistic tf.idf classifier [52] 0.903

algorithm is used. It can be noted that accuracy slightly tends to drop
as matching documents to more categories is favored against considering
more documents: this might be due to the fact that, when documents are
matched to many categories, the training set for the SRSM tends to be
highly unbalanced in favor of unrelated couples and the learning algorithm
may be sensitive to this.

In comparison to the state of the art in flat text categorization, results
given so far are not satisfactory. Table 5.5 shows a comparison among re-
sults obtained here with default parameters and other reported in relevant
papers. Reported results for Reuters are those from [53] and [34] for the
nearest centroid classifier (§3.6, referred to as Rocchio method) as the pro-
posed method is somewhat an extension of it and for standard machine
learning-based classification with support vector machines (§3.5.2), as the
best overall performing method. Accuracy of the proposed method is about
5% below the best reported with nearest centroid classification and almost
20% below with respect to SVM. For what regards 20NG, comparison is
done with results from [52] regarding the use of centroid-based classifica-
tion and the probabilistic approach proposed there, which is among the best
accuracy scores for this dataset. Also in this case, accuracy obtained here
is inferior.

136 Chapter 5. Domain-Independent Semantic Relatedness Model

2×8000 4×4000 8×20000.66

0.68

0.7

0.72

0.74
20NG → Reuters – F1

2×8000 4×4000 8×20000.66

0.68

0.7

0.72

0.74 20NG → Reuters – BEP

2×8000 4×4000 8×2000
0.55

0.6

0.65
Reuters → 20NG – acc.

direct (train=test)
hypernyms (train=test)
extended (train=test)

direct
hypernyms
extended

Figure 5.8 – Accuracy measures (Y axes) for flat categorization with dif-
ferent SRSM training and classification test collections as the composition
of the set of example couples to train the SRSM varies: plot titles are in the
form “training corpus → test corpus”, X axes labels are given in the form
nCpD × nED; results which would be obtained by training the SRSM on the
test collection are reported in gray

All tests discussed above are performed each on the same dataset on
which the SRSM is trained. To evaluate the actual independence of the
semantic model from the specific domain upon which it is trained, it must be
applied to a different domain. Following tests show the accuracy obtained
by the method when classifying documents of a dataset by using a SRSM
trained on a different dataset. The approach allows this even when, like as
in this case, the datasets deal with different topics.

Figure 5.8 shows the accuracy obtained by crossing Reuters and 20NG
as training and test collections – i.e. by using the SRSM model extracted
with one to classify documents within the other – as the composition of

5.5. Flat categorization 137

Table 5.6 – Accuracy measures for possible combinations of training and
test collections

SRSM training Reuters (extended search) 20NG (direct)

collection F1 measure Break-even Accuracy
Reuters (2×8000) 0.733 0.731 0.610 (-0.045)
20NG (2×8000) 0.705 (-0.028) 0.699 (-0.032) 0.655

example couples varies. Results for each test collection are compared with
those of Figure 5.7 where the SRSM is trained on the same collection. In
the transfer of knowledge from one collection to the other there is some loss
of accuracy, but in some cases it is of few percentage points. The worst
cases are those applying a model extracted from Reuters on 20NG, where
loss of accuracy can reach about 10%; on the other hand, when applying a
20NG-based model on Reuters using the extended semantic algorithm, the
loss is as little as about 3%.

Finally, Table 5.6 summarizes the accuracy measures obtained for possi-
ble combinations of the two datasets used for training and evaluation, with
the best tested combinations of parameters related to selection of example
couples (nED = 8000 and nCpD = 2 in all cases) and search of semantic rela-
tionships (extended algorithm when testing on Reuters, direct when testing
on 20NG). For each cross-collection case, the loss of accuracy with respect
to a SRSM extracted from the test collection itself is reported: in these
cases with optimal parameters, the difference is within 5%, showing a not
perfect but fair capability of the SRSM to obtain a generally valid model.

Between the two cases of transfer of knowledge across domain, the use
of the model from Reuters on 20NG seems more difficult than the opposite,
given the higher accuracy loss with respect to the standard case. This
could possibly be given to the generation of a not fully accurate SRSM
from Reuters, for which we hypothesize as a possible cause the slightly
greater specificity of the domain, focused on economy, with respect to the
general one of 20NG.

Summing up, experiments on flat categorization show that the method
needs improvements to get a classification accuracy comparable to the state
of the art, but they also suggest that SRSM models are already domain-

138 Chapter 5. Domain-Independent Semantic Relatedness Model

independent to some extent and can be applied in a context different from
that where they are trained with limited penalties in accuracy.

About running times of the test, considering the whole process including
model training and classification of test documents, they have been in a
range between about 3 minutes and 3 hours, depending from the dataset
and the parameters. The required time to use the hypernyms-based search
algorithm is roughly triple with respect to that required with the direct
algorithm; the extended algorithm requires in turn about triple the time
of the hypernyms-based one. For other parameters, running time varies
linearly with them. Classification on Reuters is about four times faster than
on 20NG, considering the lower number of both documents and categories.

Experiments with hierarchical classification, presented below after the
description of the method, are in part similar to those shown here for flat
categorization.

5.6 Hierarchical categorization

While the previous section described how to apply the general method based
on the domain-independent semantic model to flat categorization, here
single-label classification in a hierarchy of categories is discussed instead.
This setting entails a bit more complex implementation of the method, espe-
cially in the classification phase, for which a top-down approach is followed,
similarly to methods with local classifiers described in §3.7.2.

5.6.1 Couple labeling and selection

Reusing the notation given in §3.2.2, the organization of categories of a set
C in the hierarchy is defined by a relation ≺, so that cd ≺ ca indicates that
ca is an ancestor of cd, i.e. a more general category. Considering single-
label classification, each document d is associated with a single category,
indicated with l(d). As in the flat case, a document d is considered to be
strictly related to a category c if l(d) = c, but the hierarchy of categories
introduces also the possibility for l(d) and c to be related within it.

Considering this, the specialized relation label is introduced for document-
category couples (d, c) where the category is a generalization of the topic
of the document, i.e. l(d) ≺ c. While a generalized label would make sense
for couples where the document topic is more general than the compared

5.6. Hierarchical categorization 139

Science

MathPhysics

Geometry Probability

Document about
Geometry

related
unrelated

unrelated

specialized

specialized

Figure 5.9 – Coupling of a document with various categories in a hierarchy

category (c ≺ l(d)), it is not considered here, as in the top-down classifi-
cation algorithm presented in the following a document should not happen
to be compared with a more specific category. Considering this, the set K
of possible couple relation labels and the relative labeling function ∆ are
illustrated in Figure 5.9 and defined as follows.

K = {related, specialized, unrelated}

∆(d, c) =

related if l(d) = c

specialized if l(d) ≺ c

unrelated otherwise

The set of example couples E must then contain samples of all the
three relationship labels, with as much balance as possible between them.
However, given the single-label setting, the number of related couples is
limited to one for each training document and specialized couples are also
limited, being for each training document in number equal to the depth
of the document in the hierarchy. Set two parameters nSpD and nUpD, a
number of couples NCpD = 1 + nSpD + nUpD is selected for each document
d ∈ DT :

� the related couple (d, l(d)) with its own category,

� as most specialized couples as possible up to nSpD with ancestor cat-
egories ((d, c) : l(d) ≺ c),

140 Chapter 5. Domain-Independent Semantic Relatedness Model

� the necessary number of unrelated couples to arrive to NCpD (at least
nUpD).

This yields a total of |DT | · (1 + nSpD + nUpD) example couples. The
parameters nSpD and nUpD, contrarily to others, only have influence on the
training set of the model and not on the classification using it.

5.6.2 Representation of categories

In the flat case, each category is represented simply as an average of all
representative documents, which are trivially identified as those labeled
with it. For hierarchical classification, in general, could be useful to take
into account also documents of categories which are hierarchically related
to the represented one.

Specifically, as a top-down algorithm is used, a very specific category
dealt by a document must be distinguishable from the possible others since
first steps, where the correct top categories must be chosen to follow the
path which leads to the final correct category. For this, the profile of a cate-
gory should integrate information of documents of more specific categories,
in order to make their documents recognizable at higher levels. However,
taking all documents in the whole subtree of a category could entail a high
computational effort even for simply computing their average.

The adopted solution is, set a limit z of levels to explore, each category
c has a bottom-up representation ωHc which is constituted by the average
of documents labeled either with c or with a descendant of it whose tree
distance is within z. Denoting with cd ≺n ca that cd is a descendant of
ca distant n from it (e.g. cd ≺1 ca denotes that it is a direct child), a
bottom-up representation is built as follows.

ωHc (w) =
1

|DHc |
∑
d∈Dc

ωd(w) where DHc = {d ∈ DT : l(d) ≺n c, n ≤ z}

Representations of this type are used as input for the SMA during the
model training phase. Instead, within the top-down algorithm during the
classification phase, also the simple representation ωc made up of strictly
related documents only is considered.

5.6. Hierarchical categorization 141

5.6.3 Top-down classification algorithm

While in the flat case a document is classified by comparing it with profiles of
all possible categories, for hierarchical categorization a top-down approach
is used: the document is first compared to profiles of categories of higher
levels to progressively narrow down the range of its topics, until the most
likely exact category is reached. This allows to avoid comparing a document
with all existing profiles, which could be a very high number in hierarchical
classification.

The algorithm is iterative, acting in each step on a set C ⊂ C of current
categories: at the beginning, C is the set containing only the root node of
the taxonomy of categories.

At each step, the combination of SMA and SRSM is first used to compare
the document d with the simple representation of each category in C: the
probability for each c ∈ C to be related to d constitutes its score. In
the following, the document is compared this time with the bottom-up
representation of each category which is child of one of those in C: the
score of each of these categories is computed as the probability to be in
either related or specialized relationship with the document.

If one of the categories in C has the highest score of all (among both
current categories and children), the classification algorithm terminates by
returning it as the predicted category for d. Otherwise, a new set C ′ is
built by taking at most a predefined number nCC ≥ 1 of the examined
children categories having scores not lower than the remaining ones and
also not lower than a threshold τ . If the resulting set C ′ is not empty, a new
iteration is run using it as the new set C of current categories; otherwise,
as no category is deemed to be enough likely related to the document, the
algorithm terminates leaving the document unclassified, which expresses
too high uncertainty about its correct category.

The parameter nCC controls in practice the maximum number of branches
explored throughout the search: if it is 1 only one path is tested, but for
higher values the search can run through multiple, arbitrarily distant paths.
The threshold τ has instead to be tuned to find an optimal value: a too low
value may allow too much erroneous path in the classification, while a too
high value may yield a high number of unclassified documents.

142 Chapter 5. Domain-Independent Semantic Relatedness Model

Table 5.7 – Summary information about benchmark datasets for hierar-
chical categorization

Yahoo! DMOZ
Level docs. cats. docs. cats.
root 0 1 0 1

1 98 6 350 21
2 349 27 1,563 81
3 454 35 2,703 85
4 - - 1,163 32
5 - - 57 2

total 907 69 5,836 222

5.6.4 Experiment setup

Experiments on the hierarchical variant of the method have been carried
out on the two datasets extracted from web directories (see also §3.8.1) and
used as benchmarks in [17]4.

� The Yahoo! dataset was extracted from the Science branch of Ya-
hoo! Directory: it contains a total of 907 documents organized in 69
categories.

� The DMOZ dataset was extracted from the Conditions and Dis-
eases branch of the Health top category of the Open Directory
Project: it contains a total of 5,836 documents organized in 222 cat-
egories.

Likely to those used in flat categorization experiments, these two datasets
represent different domains: while DMOZ deals with a specific branch of
the Health theme, topics in Yahoo! are related more generically to sci-
ence. As in the Yahoo! dataset there is no branch dealing with health, the
two datasets have in practice no specific topics in common.

For each of the two datasets, 2/3 of the documents are priorly selected at
random to constitute the training split, while the remaining 1/3 constitute
the test split: both splits are used in the experiments as explained in §5.3.6.

4Both datasets are available for download at http://www.di.uniba.it/~malerba/
software/webclass/WebClassIII.htm

http://www.di.uniba.it/~malerba/software/webclass/WebClassIII.htm
http://www.di.uniba.it/~malerba/software/webclass/WebClassIII.htm

5.6. Hierarchical categorization 143

Table 5.8 – Summary of parameters of the hierarchical categorization
method and of their default values (used where no different indication is
given)

Parameter function Symbol and value
Both training and classification

Sublevels for bottom-up category profiles z = 2
Words considered by SMA for each document nWpD = 10

Words considered by SMA for each category nWpC = 200
Algorithm for search of semantic relationships Θ varying

SRSM training
Specialized couples per example document nSpD = 5
Unrelated couples per example document nUpD = 5

Document classification
Probability threshold for specialization τ = 0.15

Maximum attempted categories nCC = 3

Regarding parameters, some of those present in the flat version of the
method are also present here, with the addition of those related to the
presence of hierarchy: these are the number z of sublevels of the taxonomy
when building the bottom-up representation of each category, the parame-
ters nSpD and nUpD related to selection of example couples and the param-
eters τ and nCC of the hierarchical classification algorithm. Default values,
used where not otherwise specified, are given in Table 5.8.

In this hierarchical context, the number nWpC of words considered for
each category by the SMA is substantially raised with respect to the flat
case in order to support the high number of words for higher-level categories,
which must be also representative of respective subcategories within up to
z sublevels. nWpD is reduced to balance the additional workload.

To train the semantic model, is used here the Random Forest learner
[11], based on an ensemble of decision trees (briefly discussed in §3.5.3).

As accuracy measures for the hierarchical case, standard accuracy has
been chosen to check how often the classifier picks the exact category, while
hierarchical F1 measure (hF1 for short, see §3.8.2) is reported to indicate
how much severe generally are the errors.

144 Chapter 5. Domain-Independent Semantic Relatedness Model

5.6.5 Experiment results

As above, are first considered experiments where the semantic model is
trained on the same dataset on which is tested. Firstly, is analyzed the
effect of varying the maximum number z of sublevels of the taxonomy where
to retrieve documents to build the bottom-up representations of categories.
Intuitively, this number should be high enough so that words belonging
to more deep categories also appear in profiles of corresponding higher-
level categories, so that, during the classification phase, these categories
are correctly chosen. Results shown in Figure 5.10 confirm this intuition:
for z < 2, a consistent loss of accuracy is experienced. Regarding efficiency,
changing z does not have noticeable effects on the whole running time, as
higher values generally just involve computing average of more documents
for each category, which is a relatively efficient operation anyway.

Now, as done in the flat case, the effect of varying the number of words
considered by the SMA for documents and categories is considered, along
with the specific algorithm used to search for semantic relationships. In
Figure 5.11 is shown how accuracy varies with the number of relevant words
for each document, while in Figure 5.12 it is shown how it varies with
the number of words per category. In both cases, obviously, the use of
an excessively low number of words to consider has negative effects on
accuracy. However, this effects are in some cases reduced with the use of
more complex algorithms for finding semantic relationships, although the
hypernyms algorithm appears to be not positively effective on the Yahoo!
dataset.

Another parameter which can influence the performances is the number
nCC of open branches during top-down classification: Figure 5.13 shows
the accuracy measures for different values of this parameter. It appears
that in most cases it is necessary to explore at least two branches to obtain
optimal accuracy, which instead drops when using only one and, to some
extent, also when using too many branches, which in addition would make
running times longer.

Is now investigated the effect of the number of example couples to train
the SRSM on the final accuracy. Figure 5.14 reports the results for different
values assigned to both nSpD and nUpD, indicating the number of special-
ized and unrelated couples produced for each document, in addition to the
related couple with the document’s own category. It is shown that these
parameters can make a significant difference in the results, suggesting how

5.6. Hierarchical categorization 145

0 1 2 3

0.55

0.6

0.65

Yahoo! – Accuracy

0 1 2 3
0.65

0.7

0.75

Yahoo! – hF1 measure

0 1 2 3

0.2

0.3

0.4

DMOZ – Accuracy

0 1 2 3
0.2

0.4

0.6

DMOZ – hF1 measure

direct hypernyms extended

Figure 5.10 – Accuracy measures (Y axes) for hierarchical categorization
as the number z of sublevels of the categories taxonomy to consider when
building bottom-up representations varies (X axes)

146 Chapter 5. Domain-Independent Semantic Relatedness Model

5 10 15 20

0.6

0.62

0.64

Yahoo! – Accuracy

5 10 15 20

0.78

0.8

0.82

0.84
Yahoo! – hF1 measure

5 10 15 20

0.4

0.42

0.44

0.46

0.48

DMOZ – Accuracy

5 10 15 20

0.62

0.64

0.66

0.68

DMOZ – hF1 measure

direct hypernyms extended

Figure 5.11 – Accuracy measures (Y axes) for hierarchical categorization
as the number nWpD of words considered for each document varies (X axes)

consistent must be the set of example couples to obtain an accurate enough
model.

The obtained results, compared with the best ones reported in [17] for
various methods and for the same datasets (although obtained with cross-
validation rather than with a single training/test split) are partly satis-
factory. This method obtains overall superior results in Yahoo!, while in
DMOZ it does not outscore flat approaches applied to the dataset, but is
superior to hierarchical ones.

Likely to the flat case, experiments where the semantic model is trained
on a different collection from that of documents to be classified are con-
sidered, varying the semantic search algorithm and the number of selected
example couples as above. Figure 5.15 shows these results, compared with

5.6. Hierarchical categorization 147

100 200 300 400

0.6

0.62

0.64

Yahoo! – Accuracy

100 200 300 400
0.76

0.78

0.8

0.82

Yahoo! – hF1 measure

100 200 300 400

0.4

0.42

0.44

0.46

0.48
DMOZ – Accuracy

100 200 300 400
0.62

0.64

0.66

0.68

DMOZ – hF1 measure

direct hypernyms extended

Figure 5.12 – Accuracy measures (Y axes) for hierarchical categorization
as the number nWpC of words considered for each category varies (X axes)

Table 5.9 – Comparison of accuracy on hierarchical categorization with
results reported by [17]

Yahoo! DMOZ
this method (std. parameters, extended search) 0.6486 0.4837

this method (best results among tests) 0.6857 0.5053
flat, centroids-based ≈0.62 ≈0.50

flat, SVM ≈0.61 ≈0.61
hierarchical, näıve Bayes ≈0.55 ≈0.41

148 Chapter 5. Domain-Independent Semantic Relatedness Model

1 2 3 4 5

0.55

0.6

0.65

Yahoo! – Accuracy

1 2 3 4 5
0.78

0.8

0.82

0.84

0.86
Yahoo! – hF1 measure

1 2 3 4 5

0.4

0.45

DMOZ – Accuracy

1 2 3 4 5
0.6

0.62

0.64

0.66

0.68

DMOZ – hF1 measure

direct hypernyms extended

Figure 5.13 – Accuracy measures (Y axes) for hierarchical categorization
as the maximum number nCC of categories tested at each level during clas-
sification varies (X axes)

those already given in Figure 5.14 where training and test collections are not
crossed. Among studied cases of transfer of knowledge across collections,
the one where the SRSM trained on DMOZ is applied on Yahoo! seems
to be the more problematic: the loss of accuracy with respect to using a
SRSM trained on Yahoo! itself is generally within 10% and 15%, while hF1

measure is about 10% below. The opposite setting, where the SRSM is
trained on Yahoo! and used on DMOZ, gives a slightly smaller gap with
respect to the base case: loss of both accuracy and hF1 measure is generally
within 10%, with cases where the difference is around just 2%.

Table 5.10 summarizes the accuracy and the hF1 measure obtained for
possible combinations of the two datasets with standard parameters and

5.6. Hierarchical categorization 149

1 (3) 3 (7) 5 (11) 7 (15)

0.6

0.65

Yahoo! – Accuracy

1 (3) 3 (7) 5 (11) 7 (15)

0.76

0.78

0.8

0.82

0.84

Yahoo! – hF1 measure

1 (3) 3 (7) 5 (11) 7 (15)

0.4

0.45

0.5
DMOZ – Accuracy

1 (3) 3 (7) 5 (11) 7 (15)

0.6

0.65

0.7
DMOZ – hF1 measure

direct hypernyms extended

Figure 5.14 – Accuracy measures (Y axes) for hierarchical categoriza-
tion as the composition of the set of example couples to train the SRSM
varies: X axes labels indicate the values of both nSpD and nUpD and between
parentheses the total number of obtained example couples for each training
document

Table 5.10 – Accuracy measures on hierarchical categorization for possible
combinations of training and test collections

SRSM Yahoo! DMOZ
training Accuracy hF1 Accuracy hF1

Yahoo! 0.629 0.816 0.428 (-0.056) 0.666 (-0.019)
DMOZ 0.477 (-0.152) 0.705 (-0.111) 0.484 0.685

150 Chapter 5. Domain-Independent Semantic Relatedness Model

1 (3) 3 (7) 5 (11) 7 (15)
0.4

0.5

0.6

DMOZ → Yahoo! – Acc.

1 (3) 3 (7) 5 (11) 7 (15)

0.7

0.8

DMOZ → Yahoo! – hF1

1 (3) 3 (7) 5 (11) 7 (15)

0.4

0.45

0.5
Yahoo! → DMOZ – Acc.

1 (3) 3 (7) 5 (11) 7 (15)

0.6

0.65

0.7

Yahoo! → DMOZ – hF1

direct (train=test) direct

hypernyms (train=test) hypernyms

extended (train=test) extended

Figure 5.15 – Accuracy measures (Y axes) for hierarchical categorization
with different SRSM training and classification test collections as the com-
position of the set of example couples to train the SRSM varies: plot titles
are in the form “training corpus → test corpus”, X axes labels indicate the
values of both nSpD and nUpD and between parentheses the total number of
obtained example couples for each training document; results which would
be obtained by training the SRSM on the test collection are reported in gray

5.7. Discussion 151

the extended semantic search algorithm. Again, for cross-collection cases,
the loss with respect to the use of the same collection for training is shown.
As from the plot above, from the table are visible the unsatisfactory result
on classification on Yahoo! using a model from DMOZ and the instead
interesting result with the opposite setting, with a quite small difference
between the two models.

Regarding the relatively poor results on the DMOZ dataset, we hypothe-
sise as one possible cause the specificity of its Conditions and Diseases
domain. As WordNet is a general-purpose database without a relevant
coverage of domain-specific knowledge, it is very likely that a significant
number of important words found within the DMOZ dataset do not have a
corresponding entry in WordNet, thus making impossible to identify seman-
tic relationships involving them (apart from exact matching). The relative
scarcity of word relationships potentially affects also the SRSM training
phase and consequently the accuracy of the model: this could explain the
poor results when using the model extracted from DMOZ to classify Yahoo!
documents.

Most considerations about running times reported for flat categorization
are also valid here: in these experiments, running times are roughly between
2 minutes and 3 hours, with experiments on DMOZ being about 3-4 times
slower than equivalent ones on Yahoo!.

Summing up, the proposed method for hierarchical categorization, when
the SRSM is trained on the same domain of documents to be classified,
seems to yield good results in comparison with existing work on the same
datasets. The noticeable difference between the “absolute” classification
accuracy and the hF1 measure in all cases suggests that at least some er-
rors of the classifier happen in lower levels of the taxonomy. Regarding the
capability of the SRSM to work across different domain, results are some-
what worse with respect to the flat case, with only one of two tested cases
giving a fairly limited gap with respect to the base case of no transfer of
knowledge.

5.7 Discussion

The proposed approach to text categorization is based on a knowledge
model trained to predict the mutual relatedness between documents and
categories by analyzing the semantic relationships between corresponding

152 Chapter 5. Domain-Independent Semantic Relatedness Model

representative words. The model trained on documents within a domain
is structurally decoupled from its specific words and categories, potentially
allowing it to be reused in different domains. Experiments were carried
out to test the effective capability of extracted models to work across dif-
ferent domains as well as the general efficacy of the method in classifying
documents, either in a flat or in a hierarchical set of categories.

Considering all the reported results on both the flat and the hierarchical
variants of the proposed method, the results are partly interesting but still
not fully satisfactory. Regarding the overall accuracy in documents classifi-
cation, results for flat categorization are substantially below best methods
such as SVM-based classification and, with smaller gaps, below standard
nearest centroid classification, which somehow constitutes the skeleton for
this method. Gaps with existing results are more favorable in the case
of hierarchical classification, where obtained results are comparable and in
part superior to those reported for the same datasets, which are however
less diffused with respect to those used for flat categorization.

Throughout the experiments, some alternative methods have been tested
to find semantic relationships between words. These methods, rather than
returning a single relatedness or similarity score as most existing ones to
compare couple of words, give a vector of scores for different relationship
classes, allowing to differentiate between them. In many cases, the use of a
carefully developed algorithm to identify relationships not directly indicated
by the WordNet database has resulted in improvements of few percentage
points of the accuracy measures.

Regarding the presumed generality of the semantic model to predict
document-category relationships, results of tests partially support this hy-
pothesis. When classifying documents on the basis of a semantic model
extracted from a different domain, the final accuracy is generally lower
with respect to using a model obtained from the same domain, but in many
cases the loss is limited to some percentage points. This happens despite
of differences in the topics treated by the different test collections, suggest-
ing that the obtained models are effectively domain-independent to some
extent. Results seem to suggest that, to obtain a SRSM which works well
across domains, it should be trained from a domain which is as more general
as possible: infact, lower accuracy measures appear to occur exactly when
the model is trained on domain-specific datasets.

By also looking at the results of other methods on the same datasets,
we can suppose that the sub-optimal results are mostly a consequence the

5.7. Discussion 153

centroid-based nature of the method. As discussed earlier and seen in the
comparison of results, nearest centroid classification has been proven not
to be among the best approaches to text categorization. We chose to use it
for being the most straightforward method to have self-contained profiles of
categories resembling bags of words for documents, so that each category
is represented by a list of weighted relevant words. Potential room for
improvement could be in using finer models for representation of categories,
which however requires either to fit them in the existing scheme involving
the search of semantic relationships with relevant words of documents or to
adapt somehow this scheme to accept sensibly different models.

Another aspect which could be improved is the search of semantic re-
lationship. While the use of finer search algorithms helps in finding more
useful relationships and often results in accuracy improvements, we anyway
experienced, while testing such algorithms, that some intuitive relationships
between words are still not found; it also happens that links are returned
between actually unrelated words. These issues with false negatives and
false positives could be possibly solved by further work on the semantic
search or, probably better, from the use of more rich semantic knowledge
bases. From the emerging Semantic Web, it is possible to extract knowl-
edge about a large number of objects, with many meaningful links between
them.

Other parts of the method could also be refined to attempt to improve
the overall results of the method. Other than trying different values for
parameters, which would anyway have in many cases negative effects on
the running times, changes could be made in the creation of categories pro-
files (for example by considering negative examples, as happens in general
in the Rocchio method), in the selection of example couples, in the search
of semantic relationships or in the training of the semantic model. Addi-
tionally, tests could be performed on larger datasets, testing for example
if more general semantic models, with optimal accuracy on other datasets,
can be extracted from them.

155

Chapter 6

Conclusions

In the thesis, techniques for text mining, consisting in the automatic analy-
sis of possibly large collections of text documents, have been discussed. The
presentation of such techniques constitutes a general overview of the liter-
ature about text mining, borrowing from fields such as machine learning
and information retrieval. These techniques mostly serve to create suitable
structured representations of documents, which can be then handled by
many algorithms.

Focus has been given to text categorization, a task prominently ad-
dressed within text mining with different applications, among which dis-
tinction of topics discussed within documents is the most recurring genre.
In the common machine learning-based approach, a knowledge model able
to classify new documents is extracted from a training set of already labeled
ones, usually handled in form of bags of words.

The first contribution addressed cross-domain text categorization, where
a knowledge model to classify documents in a target domain is obtained
with the support of labeled documents of a source domain. A novel method
has been proposed, based on nearest centroid classification, where a pro-
file for each category is extracted from training documents and each new
document is classified with the category having the closest profile. In the
cross-domain case, such profiles are extracted from the source domain and,
through successive refining steps, they are adapted to the target domain
and then used to classify relevant documents.

Experiments on recurring benchmark datasets produced good results,
with accuracy measure superior or comparable to those reported by many

156 Chapter 6. Conclusions

works and fast running times, all despite the relative simplicity of the ap-
proach. A variant is proposed to cut down the number of iterations with
minimal loss of accuracy, while another one is proposed to obtain from the
source domain a regression model mapping measurable similarity to effec-
tive relatedness.

Starting from the simple idea of this model, a more complex one based
on semantic relationships between words has been conceived: the idea is
to deduce the degree and also the nature of relatedness between arbitrary
documents and categories from the semantic relationships between the re-
spective relevant words within them. The proposed model is trained from
a set of labeled documents, but once built it is decoupled from them, as
references no specific words or categories. It is theorized that the model is
effectively domain-independent, able to accurately predict the relationships
between documents and categories from their representations even outside
of the domain it was trained into.

To test this assumption, a general scheme for text categorization based
on this model has been proposed, which could grant advantages like the pos-
sibility to introduce new categories at any time while classifying documents
without the need to train new or updated models, but just by providing pro-
files built efficiently from relevant documents. Two instances of this scheme
have been proposed for flat and hierarchical categorization, respectively: in
the latter case, a top-down algorithm is used to allow efficient classification
within taxonomies with many categories.

Knowledge of semantic relationships between words is based on the lex-
ical database WordNet, which stores primitive links between concepts. In
order to identify indirect relationships which exist but are not directly given,
two algorithms with different complexity have been proposed, which have
been tested in categorization experiments along with the solution to simply
look for direct relationships only.

Experiments on flat categorization have been carried out on two largely
diffused datasets, testing different values for some key parameters. Accu-
racy measures are below those reported by other works on the same datasets,
but tests showed that a semantic relatedness model extracted from one of
the two dataset can be employed to classify documents within the other
dataset with a limited loss of accuracy, namely within 5% in the analyzed
cases.

Also concerning hierarchical categorization, two datasets have been con-
sidered for experiments. In this case, comparison of accuracy with reported

6.1. Ideas for future research 157

results for other methods on them is partly satisfactory. With these two
datasets, applying a model extracted from one to classify documents in the
other brings results about as good as above in one case and worse results
in the other.

Overall, the experiments show that classifying documents using knowl-
edge extracted from a different domain yields an accuracy which often is
only few percentage points below that which would be obtained by using
a model extracted from the same domain. This partly supports the hy-
pothesis of the general validity of the semantic relatedness model. It is
expected that some improvements could be made with further tuning of
parameters and especially by using models extracted from larger datasets,
possibly providing more rich knowledge.

Comparison of the different approaches to identification of semantic re-
lationships show that the more complex algorithm generally guarantees
slightly higher accuracy with respect to more simple methods, although
with higher running times. Possible further work on these algorithms will
be focused on carefully selecting the operations to be performed, in order
to retain good efficacy while improving the efficiency.

6.1 Ideas for future research

A relevant limit of the presented work, concerning both the cross-domain
categorization method and the semantic model, is the centroid-based na-
ture, which is likely an important cause of the unsatisfactory accuracy mea-
sures in the latter part. Works on text categorization show that methods
based on nearest centroid classification usually bring sub-optimal efficacy
due to the fact that categories cannot usually be accurately represented with
single centroids. We have chosen this representation as a straightforward
solution to experimentally investigate the possibility to extract domain-
independent knowledge. Future work might be dedicated to the search of a
more robust model for representation of categories, to be fit in the proposed
approach.

For what regards the concrete text categorization method based on the
domain-independent semantic model, further research may include, other
than experiments on larger datasets and with different values of parame-
ters, test of variants in different parts of the method, such as the selection
of example couples and the classification process. The goal is to obtain

158 Chapter 6. Conclusions

improvements on the generality of the obtained models and on the overall
accuracy of classification of documents.

Other possible directions include the application of the proposed ap-
proach to different tasks, such as performing clustering of documents, by
using the semantic model to measure mutual distances and relationships be-
tween documents. The distinction of multiple relatedness modalities, like
distinguishing strictly related documents from those treating more general
or more specific topics, may be useful in more advanced applications, such
as hierarchical clustering and induction of a taxonomy of categories.

159

Appendix A

Network Security through
Distributed Data Clustering

While the rest of the thesis has its focus on text mining and specifically
on text categorization, here is presented an additional work developed dur-
ing the Ph.D. course, consisting in the design of a system for detection
and identification of malicious traffic within a computer network based on
distributed data mining. In this system, nodes of a network continuously
gather statistics on the traffic obtained from SNMP agents on monitored
hosts and periodically run a distributed data clustering algorithm to coop-
eratively build a knowledge model able to separate observations of normal
traffic from those relative to different types of attacks.

A.1 Distributed data mining

As described in §1.1.2, machine learning techniques are generally within
data mining used to extract knowledge models from potentially large vol-
umes of data, which can be used to formulate predictions on subsequently
produced data.

A branch of machine learning which is gathering interest in present
times is that of distributed learning algorithms, which run on multiple sepa-
rated machines with more or less limited capabilities to communicate among
them. A “distributed algorithm” in general is distinguished for the distri-
bution of computation across machines, in order to split the load of work

160 Appendix A. Network Security through Distributed Clustering

and thus reduce the total time necessary to complete it. In the context
of data mining and machine learning, it is often considered to have data
distributed as well: each machine has a different set of observations and
must cooperate with the others to produce coherent general models based
on their distribute knowledge.

These algorithms are useful in networks of nodes where each of them
gathers significant amounts of data which should be analyzed collectively,
but transferring all data to a central point would be costly, inefficient or
unfeasible for other reasons, such as for privacy concerns between different
parties. Many distributed learning algorithms work with minimal exchange
of information: nodes are connected according to a network topology and
exchange small messages with neighbor nodes only, thus limiting costs for
their interconnection and latency of communications [22].

A.2 Network intrusion detection systems

Information security is an essential issue in distributed systems: any host
connected to the Internet is a potential target of a variety of network-
based attacks trying to discover possible system vulnerabilities (by means
of, e.g., port scanning) and to exploit them for malicious intents, for example
making network services unavailable to legitimate users (e.g. Denial of
Service attacks) or to gain unauthorized access to them (e.g. brute force
or buffer overflow attacks). To contrast these network threats, specific
countermeasures have been devised and already deployed in production
environments, while the research community is still working to improve
them.

Network-based Intrusion Detection Systems (NIDSs) have been devel-
oped to automatically detect potential attacks coming from the network,
report them to the system administrators and, in some cases, even try to
prevent them. The general model of intrusion detection systems, also used
to monitor hardware and software on single hosts, was introduced in [31]:
from this general idea, various solutions for network security have been
proposed [54, 71].

Two major approaches for intrusion detection systems can be distin-
guished. Signature-based systems require the preliminary knowledge of
some sort of behavioral patterns of the threats to be detected, so that the
system can trigger an alert as it detects a signature of a specific attack in

A.3. General system model 161

the observed traffic. This type of IDSs has the natural limitation of being
able to detect only known threats, which can be described at different levels
of detail. On the other hand, anomaly-based IDSs are trained to recognize
the normal behavior of the monitored system and their task is to report
any significant divergence from it. These systems are more likely to de-
tect previously unknown types of attack, but they need a precise and often
complex definition of the correct behavior of the system.

Some works proposed the use of machine learning techniques for intru-
sion detection, with [62] being the first to apply supervised learning tech-
niques to network security, while the use of unsupervised learning started
from [98] with the use of single-linkage clustering. These methods are
based on analysis of raw traffic or summarized data obtained from platform-
specific tools (e.g. Unix’ netstat).

Some newer methods leverage instead information obtainable from the
SNMP (Simple Network Management Protocol) agents usually running on
many hosts, which gather statistical information about network activity,
stored in a Management Information Base (MIB) with a standard struc-
ture: these methods are then more easily portable across platforms. A first
example of MIB-based NIDS is given in [13] where abnormal rates of change
of some variables are detected. An example of application of machine learn-
ing to MIB data is given in [127], where Support Vector Data Descriptions
(SVDD, variant of one-class support vector machines) are used.

A.3 General system model

We present here the general architecture of the proposed system. It is
composed by a set of monitoring stations that form a peer-to-peer (P2P)
network according to a given overlay scheme: this way, each station has a
number of neighbors it communicates with. Each station (or node) collects
MIB data with statistical traffic information from a set of hosts (servers,
workstations etc. and/or even itself) through the SNMP protocol, by query-
ing them at regular time intervals.

Each node gathers then a continuously growing set of observations, each
containing part of the information given by the SNMP protocol about net-
work traffic traversing a given host at a given time, constituting a con-
cise snapshot of such traffic. At some moments during this data collection
process (e.g., at regular intervals), all the nodes in the network start a

162 Appendix A. Network Security through Distributed Clustering

distributed data clustering algorithm, each using its own SNMP observa-
tions as a local data set. The objective of the data clustering algorithm is
to partition the “global” data set (the union of all observations stored by
all nodes in the network) into a number of clusters constituting groups of
similar instances of data.

Each one of the detected clusters corresponds to a particular traffic sit-
uation, which may denote either a regular network activity or the presence
of an attack against a host or the entire network it is part of. Initially,
a node is not able to determine whether a given cluster corresponds to a
normal situation or to an ongoing attack: therefore it is necessary to have
some form of user supervision to match located clusters to traffic situa-
tions as long as these are unknown. However, after a node knows that a
cluster corresponds to a particular network threat, it can use this infor-
mation to detect that threat. While collecting observations from SNMP,
a node can trigger a warning if some of these fall into a cluster which is
known to correspond to an attack. By periodically repeating the execution
of the distributed clustering algorithm over time, the knowledge of nodes
is progressively updated and previously unknown types of attacks can be
identified.

A.4 Implementation details

The previous section describes the general structure of the system, leaving
much freedom about its design and implementation. We illustrate here
some details about a possible implementation we used as a reference, used
for the simulations described subsequently.

One thing to determine is the set of features of which each observa-
tion extracted by monitoring stations is composed: SNMP provides a large
amount of information, but processing all of it can be inefficient. This issue
can be addressed by means of feature selection, using specific techniques
to select a subset of all the possible features which can be much smaller
but can represent the observations with minimal loss of information. In our
simulations (see below), once extracted the test dataset, we run on it the
correlation-based feature selection algorithm [45], which selects attributes
poorly correlated with each other to avoid redundancy: the algorithm has
been run on multiple folds of the dataset, then the 14 features selected in
at least half of the folds have been picked. In a real setting, this feature se-

A.4. Implementation details 163

Dn ← local data set
k ← number of clusters (same for all nodes)
γ ← termination threshold (same for all nodes)
M1 ← initial centroids (same set for all nodes)
i← 1
repeat

A1, A2, . . . , Ak ← ∅
for all d ∈ Dn do

Ax ← Ax ∪ {d} : x = arg max
x∈{1,...,k}

(
∥∥d−mn

i,x

∥∥)

end for
for all j ∈ {1, 2, . . . , k} do

lni,j ← 1
#Aj

∑
d∈Aj d

end for
Send local centroids Lni and counts cni,j to neighbors a ∈ Adj(n)
Receive centroids Lai and counts cai,j from neighbors a ∈ Adj(n)
for all j ∈ {1, 2, . . . , k} do

mn
i+1,j ←

∑
a∈Adj′(n) c

a
i,j ·lai,j∑

a∈Adj′(n) c
a
i,j

end for
i← i+ 1

until max
j∈{1,...,k}

∥∥mn
i,j −mn

i−1,j
∥∥ ≤ γ

Figure A.1 – Pseudo-code for the Local Synchronization-Based P2P K-
means, as executed by a node n.

lection process could be run periodically to keep the optimal set of features
up to date, although it should not need to be repeated as frequently as the
clustering process.

As a concrete distributed clustering algorithm for experiments, an adap-
tation proposed in [27] of the classic k-means partitive algorithm has been
used. All nodes start from a common set of k center points in the obser-
vations space, then iteratively each node n executes the standard k-means
actions, followed by exchange of information with the peers Adj(n) which
are neighbor in the topology. First, as always, each observation is assigned
to the nearest center and centroids of observations for each group are then
computed. Subsequently, these obtained local centroids are sent to the

164 Appendix A. Network Security through Distributed Clustering

neighbors, which send in turn their ones: the node then computes the new
position of each center as the average of the centroid positions in the node
itself and in its neighbors (Adj′(n) = {n} ∪ Adj(n)), weighted according
to the number of observations assigned to it in each one. When, from one
iteration to the other one, the position of every center is not moved for a
distance greater than a threshold γ, the node has reached convergence and
stops iterating, continuing anyway to communicate its local centroids to
neighbors still running the algorithm. In the end, each node has a cluster-
ing model based on the collective knowledge in the network. Figure A.1
shows the pseudo-code for the algorithm.

A.5 Simulation setup

To test the potential effectiveness of the proposed system in distinguishing
observations generated from normal traffic and those generated from dif-
ferent types of attacks, we have simulated the execution of the distributed
k-means-based clustering algorithm described above on an artificially gen-
erated yet realistic set of SNMP observations.

We first generated the dataset by setting up a network with a “victim”
server monitored by a separated host and connected to a network includ-
ing machines simulating both regular clients and attackers. We gathered
SNMP data at regular intervals from the monitored server in five different
sessions. During the first session, we emulated regular network behavior
by generating HTTP requests from the clients. Then, in the following four
sessions, we added malicious traffic from the attackers by placing the same
server under different kinds of network attacks. The attacks used in the
respective sessions were:

1. Denial of Service,

2. Distributed Denial of Service,

3. Denial of Service on SSH,

4. Brute force on SSH.

We produced a total of 5,655 observations divided into five classes, ac-
cording to the session each one was generated in, so one class corresponds
to the absence of attacks, while each of the remaining four corresponds to
one of the listed network attacks. After building this dataset, we reduced
its initial set of hundreds of features to only 14 representative ones, using
the selection algorithm mentioned above.

A.5. Simulation setup 165

This dataset has been tested on multiple simulations of the clustering
algorithm. Each simulation works by setting up a virtual network of nodes,
assigning a training and a test set to each of them, running the algorithm
with each node using its training set and finally measuring accuracy indica-
tors on all nodes using their respective test sets. To assign data to nodes, we
used specific data distribution algorithms to extract from the whole dataset
a training subset and a test subset for each node. Simulations are different
from each other for three principal aspects: the topology of the network on
which the algorithm is run, the distribution of data across the nodes and
the parameters specific to the clustering algorithm. Considering the dis-
tributed k-means variant presented above, we mainly tested the variation
of the number k of clusters.

Five different topologies with 64 nodes have been tested: a scale-free
network, a ring, a ring with 16 random additional links, a torus and a fully
connected mesh. Regarding distribution of data across nodes, two different
general strategies have been tested to provide a training and a test set to
each node: (A) distributing different observations of the same n classes to
the two sets or (B) picking independently for each n classes and provide
all observations of them. In all cases, data is distributed independently to
each node and the distributed classes always include that of regular traffic,
as it is supposed to be observed much more than the others in a real case.

For each tested combination of parameters, 20 random distributions of
data are considered from the picked distribution strategy; for each of these,
the distributed k-means algorithm is run 50 times with different random
initial positions of the centroids. From these 50 runs, the one with the
best results is considered, assuming the application of existing methods for
optimal centroid initialization; the results of the 20 “best-case” simulations
with differently distributed data are then averaged, as the distribution of
data cannot be controlled in a real case.

For each single simulation, all accuracy measures are averaged across
all nodes. The main accuracy measure, used to determine which are the
best runs, is the ratio of test observations correctly classified considering
the best possible mapping from clusters to classes (assumed to be super-
vised), referred to as attack identification accuracy. Other than this, attack
detection accuracy is also measured, which only considers the ability of the
nodes to distinguish regular traffic from attacks, regardless of their class, so
that detecting an attack of a type in response to one of a different type is
not considered an error. At this extent, to have indications about the type

166 Appendix A. Network Security through Distributed Clustering

2 3 4 5
70

80

90

100

Training classes for each node

(a) Traffic class identification

2 3 4 5
97

98

99

100

Training classes for each node

(b) Attack detection

2 3 4 5
0

2

4

6

8

10

Training classes for each node

(c) False positive rate

2 3 4 5
0

0.5

1

1.5

2

Training classes for each node

(d) False negative rate

Fully connected Torus Ring w/ random links Ring Scale free

Figure A.2 – Percentage accuracy measures for distributed k-means (on
Y axis, in percentage) run on different 64-node topologies, using data dis-
tribution strategy A (train and test on different data of same classes) with
a variable number of training classes (on X axis).

of committed errors, false positive rate (ratio of regular traffic observations
misclassified as threatening) and false negative rate (ratio of undetected
attack observations) are also measured.

A.6 Simulation results

A parameter with an important influence on the results is the distribu-
tion of data across nodes, especially the number of classes known by each
node. Considering both the strategies proposed above, if each node knows
4 classes or all 5 of them, the detection is perfect and the identification
accuracy is generally above 98%; we found out these to be the same re-
sults which can be reached by running the standard centralized k-means

A.6. Simulation results 167

2 3 4 5
70

80

90

100

Training classes for each node

(a) Traffic class identification

2 3 4 5
98

98.5

99

99.5

100

Training classes for each node

(b) Attack detection

2 3 4 5
0

5

10

15

20

Training classes for each node

(c) False positive rate

2 3 4 5
0

0.1

0.2

0.3

Training classes for each node

(d) False negative rate

Fully connected Torus Ring w/ random links Ring Scale free

Figure A.3 – Percentage accuracy measures for distributed k-means (on Y
axis, in percentage) run on different 64-node topologies, using data distribu-
tion strategy B (train and test on different classes) with a variable number
of training classes (on X axis).

algorithm on the whole dataset. Instead, with 2 or 3 known classes, the de-
tection is in most cases over 97% and 99% respectively, with false positives
more common than false negatives, while identification is usually above
90% with 3 classes per node. Figures A.2 and A.3 show these results on all
tested network topologies for data distribution strategies A (same classes
for training and test set) and B (sets with different classes) respectively:
as by what explained above, each point shows the average on 20 runs with
different random distributions, with error bars indicating variance.

From the plots, can also be noted that using network topologies with
higher connectivity degrees can boost accuracy, as each node is more likely
to receive information about classes he misses. A comparison can be made
for example between using a plain ring topology and one with 16 additional

168 Appendix A. Network Security through Distributed Clustering

links, for which results are given in the plots. Testing further quantities
of additional links in the ring network, we experienced accuracy measures
to grow roughly linearly with such quantity, in cases where they are not
already at optimal levels.

Another tested parameter is the number k of clusters to be generated. A
decently accurate identification of all 5 considered traffic classes obviously
requires at least 5 clusters, which is the default value considered. However,
it results that just 3 clusters are generally sufficient to achieve good attack
detection accuracy. If even higher numbers of clusters are used, all accuracy
measures slightly increase, although the number of k-means iterations run
by nodes and therefore the global complexity also does. About this aspect,
apart from the number of clusters, conditions guaranteeing good accuracy
(enough known classes per node and good network connectivity) often also
entail a slightly lower average number of iterations per node.

Due to the lack of other works proposing decentralized data clustering
for network security, a comparison of the results with the related literature is
not fully feasible. However, the accuracy levels reached by experiments with
distributed clustering are generally better or comparable to those obtained
by other works performing standard centralized analysis, either supervised
or not. The proposed system has the advantage over supervised ones of
being able to distinguish previously unseen types of traffic and, given the
distributed nature, it can be run on a network of nodes causing minimal
traffic among them.

169

Bibliography

[1] Charu C Aggarwal and ChengXiang Zhai. A survey of text clustering
algorithms. In Mining Text Data, pages 77–128. Springer, 2012.

[2] Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Mar-
ius Paşca, and Aitor Soroa. A study on similarity and relatedness
using distributional and wordnet-based approaches. In Proceedings
of Human Language Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for Computational
Linguistics, pages 19–27. Association for Computational Linguistics,
2009.

[3] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Senti-
wordnet 3.0: An enhanced lexical resource for sentiment analysis and
opinion mining. In LREC, volume 10, pages 2200–2204, 2010.

[4] Paul N. Bennett and Nam Nguyen. Refined experts: improving classi-
fication in large taxonomies. In Proceedings of the 32nd international
ACM SIGIR conference on Research and development in information
retrieval, pages 11–18, 2009.

[5] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet
allocation. the Journal of machine Learning research, 3:993–1022,
2003.

[6] John Blitzer, Ryan McDonald, and Fernando Pereira. Domain adap-
tation with structural correspondence learning. In Proceedings of the

170 Bibliography

2006 conference on empirical methods in natural language processing,
pages 120–128. Association for Computational Linguistics, 2006.

[7] Stephan Bloehdorn and Andreas Hotho. Boosting for text classifi-
cation with semantic features. Lecture Notes in Computer Science,
3932:149, 2006.

[8] Danushka Bollegala, David Weir, and John Carroll. Cross-domain
sentiment classification using a sentiment sensitive thesaurus. IEEE
Transactions on Knowledge and Data Engineering, 25(8):1719–1731,
2013.

[9] Harold Borko and Myrna Bernick. Automatic document classification.
J. ACM, 10(2):151–162, April 1963.

[10] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A
training algorithm for optimal margin classifiers. In Proceedings of the
Fifth Annual Workshop on Computational Learning Theory, COLT
’92, pages 144–152, New York, NY, USA, 1992. ACM.

[11] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[12] Alexander Budanitsky and Graeme Hirst. Evaluating wordnet-based
measures of lexical semantic relatedness. Computational Linguistics,
32(1):13–47, 2006.

[13] J. B D Cabrera, L. Lewis, Xinzhou Qin, Wenke Lee, R.K. Prasanth,
B. Ravichandran, and R.K. Mehra. Proactive detection of distributed
denial of service attacks using MIB traffic variables-a feasibility study.
In Integrated Network Management Proceedings, 2001 IEEE/IFIP In-
ternational Symposium on, pages 609–622, 2001.

[14] Lijuan Cai and Thomas Hofmann. Text categorization by boosting
automatically extracted concepts. In Proceedings of the 26th annual
international ACM SIGIR conference on Research and development
in informaion retrieval, pages 182–189, 2003.

[15] Lijuan Cai and Thomas Hofmann. Hierarchical document catego-
rization with support vector machines. In Proceedings of the 13th
ACM International Conference on Information and Knowledge Man-
agement, pages 78–87, 2004.

Bibliography 171

[16] William B. Cavnar and John M. Trenkle. N-gram-based text catego-
rization. In In Proceedings of SDAIR-94, 3rd Annual Symposium on
Document Analysis and Information Retrieval, pages 161–175, 1994.

[17] Michelangelo Ceci and Donato Malerba. Classifying web documents
in a hierarchy of categories: a comprehensive study. Journal of Intel-
ligent Information Systems, 28(1):37–78, 2007.

[18] Nicolò Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Hierarchi-
cal classification: combining Bayes with SVM. In Proceedings of the
23rd international conference on Machine learning, pages 177–184,
2006.

[19] Nicolò Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Incre-
mental algorithms for hierarchical classification. Journal of Machine
Learning Research, 7:31–54, 2006.

[20] S. Cheeti, A. Stanescu, and D. Caragea. Cross-domain sentiment clas-
sification using an adapted nive bayes approach and features derived
from syntax trees. In Proceedings of KDIR 2013, 5th International
Conference on Knowledge Discovery and Information Retrieval, pages
169–176, 2013.

[21] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine Learning, 20(3):273–297, 1995.

[22] V.M. Crestana and N. Soparkar. Mining decentralized data repos-
itories. Technical Report CSE-TR-385-99, University of Michigan,
1999.

[23] Doug Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. A
practical part-of-speech tagger. In Proceedings of the third conference
on Applied natural language processing, pages 133–140. Association
for Computational Linguistics, 1992.

[24] Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu. Co-
clustering based classification for out-of-domain documents. In Pro-
ceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 210–219. ACM, 2007.

172 Bibliography

[25] Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu. Transferring
naive bayes classifiers for text classification. In Proceedings of the
AAAI ’07, 22nd national conference on Artificial intelligence, pages
540–545, 2007.

[26] Dipanjan Das and André FT Martins. A survey on automatic text
summarization. Literature Survey for the Language and Statistics II
course at CMU, 4:192–195, 2007.

[27] S. Datta, C.R. Giannella, and H. Kargupta. Approximate distributed
k-means clustering over a peer-to-peer network. IEEE Transactions
on Knowledge and Data Engineering, pages 1372–1388, 2008.

[28] Hal Daumé III. Frustratingly easy domain adaptation. In Proceed-
ings of the 45th Annual Meeting of the Association of Computational
Linguistics, pages 256–263, 2007.

[29] Franca Debole and Fabrizio Sebastiani. Supervised term weighting
for automated text categorization. In Proceedings of the 18th ACM
Symposium on Applied Computing, pages 784–788, 2003.

[30] Scott C. Deerwester, Susan T Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman. Indexing by latent
semantic analysis. JASIS, 41(6):391–407, 1990.

[31] D.E. Denning. An intrusion-detection model. IEEE Transactions on
Software Engineering, 13(2):222–232, 1987.

[32] Harris Drucker, S Wu, and Vladimir N Vapnik. Support vector ma-
chines for spam categorization. Neural Networks, IEEE Transactions
on, 10(5):1048–1054, 1999.

[33] Susan Dumais and Hao Chen. Hierarchical classification of web con-
tent. In Proceedings of the 23rd annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages
256–263, 2000.

[34] Susan Dumais, John Platt, David Heckerman, and Mehran Sahami.
Inductive learning algorithms and representations for text categoriza-
tion. In Proceedings of CIKM ’98, 7th International Conference on In-
formation and Knowledge Management, pages 148–155. ACM, 1998.

Bibliography 173

[35] BJ Field. Towards automatic indexing: automatic assignment of
controlled-language indexing and classification from free indexing.
Journal of Documentation, 31(4):246–265, 1975.

[36] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin,
Zach Solan, Gadi Wolfman, and Eytan Ruppin. Placing search in
context: The concept revisited. In Proceedings of the 10th interna-
tional conference on World Wide Web, pages 406–414. ACM, 2001.

[37] Mark Alan Finlayson. Java libraries for accessing the princeton word-
net: Comparison and evaluation. In Proceedings of the 7th Global
Wordnet Conference, Tartu, Estonia, 2014.

[38] George Forman. An extensive empirical study of feature selection
metrics for text classification. Journal of Machine Learning Research,
3:1289–1305, 2003.

[39] William J Frawley, Gregory Piatetsky-Shapiro, and Christopher J
Matheus. Knowledge discovery in databases: An overview. AI mag-
azine, 13(3):57, 1992.

[40] Evgeniy Gabrilovich and Shaul Markovitch. Feature generation for
text categorization using world knowledge. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence, pages 1048–
1053, 2005.

[41] Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic re-
latedness using wikipedia-based explicit semantic analysis. In IJCAI,
volume 7, pages 1606–1611, 2007.

[42] Jing Gao, Wei Fan, Jing Jiang, and Jiawei Han. Knowledge transfer
via multiple model local structure mapping. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 283–291. ACM, 2008.

[43] Vishal Gupta and Gurpreet Singh Lehal. A survey of text summa-
rization extractive techniques. Journal of Emerging Technologies in
Web Intelligence, 2(3):258–268, 2010.

[44] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H Witten. The WEKA data mining software: an
update. ACM SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

174 Bibliography

[45] Mark A Hall. Correlation-based feature selection for machine learning.
PhD thesis, The University of Waikato, 1999.

[46] Eui-Hong Sam Han, George Karypis, and Vipin Kumar. Text cat-
egorization using weight adjusted k-nearest neighbor classification.
Springer, 2001.

[47] Donna Harman. Overview of the first trec conference. In Proceedings
of the 16th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 36–47. ACM, 1993.

[48] Graeme Hirst and David St-Onge. Lexical chains as representations of
context for the detection and correction of malapropisms. WordNet:
An electronic lexical database, 305:305–332, 1998.

[49] Thomas Hofmann. Probabilistic latent semantic analysis. In Pro-
ceedings of the Fifteenth conference on Uncertainty in artificial intel-
ligence, pages 289–296. Morgan Kaufmann Publishers Inc., 1999.

[50] Jiayuan Huang, Alexander J Smola, Arthur Gretton, Karsten M Borg-
wardt, and Bernhard Schölkopf. Correcting sample selection bias by
unlabeled data. Advances in neural information processing systems,
19:601–608, 2007.

[51] Jay J Jiang and David W Conrath. Semantic similarity based on
corpus statistics and lexical taxonomy. In Proc of 10th International
Conference on Research in Computational Linguistics, ROCLING97.
Citeseer, 1997.

[52] Thorsten Joachims. A probabilistic analysis of the Rocchio algorithm
with TFIDF for text categorization. In Proceedings of ICML ’97, 14th
International Conference on Machine Learning, pages 143–151, 1997.

[53] Thorsten Joachims. Text categorization with support vector ma-
chines: Learning with many relevant features. Proceedings of ECML-
98, 10th European Conference on Machine Learning, 1398:137–142,
1998.

[54] P. Kabiri and A.A. Ghorbani. Research on intrusion detection and re-
sponse: A survey. International Journal of Network Security, 1(2):84–
102, 2005.

Bibliography 175

[55] Anne Kao and Steve R Poteet. Natural language processing and text
mining. Springer, 2007.

[56] Athanasios Kehagias, Vassilios Petridis, Vassilis G Kaburlasos, and
Pavlina Fragkou. A comparison of word-and sense-based text catego-
rization using several classification algorithms. Journal of Intelligent
Information Systems, 21(3):227–247, 2003.

[57] Ashraf M Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey
Holmes. Multinomial naive bayes for text categorization revisited. In
AI 2004: Advances in Artificial Intelligence, pages 488–499. Springer,
2005.

[58] Svetlana Kiritchenko and Stan Matwin. Email classification with co-
training. In Proceedings of the 2011 Conference of the Center for Ad-
vanced Studies on Collaborative Research, pages 301–312. IBM Corp.,
2011.

[59] Svetlana Kiritchenko, Stan Matwin, and A. Fazel Famili. Functional
annotation of genes using hierarchical text categorization. In in Proc.
of the BioLINK SIG: Linking Literature, Information and Knowledge
for Biology (held at ISMB-05, 2005.

[60] Man Lan, Chew Lim Tan, and Hwee-Boon Low. Proposing a new
term weighting scheme for text categorization. In AAAI, volume 6,
pages 763–768, 2006.

[61] S. le Cessie and J.C. van Houwelingen. Ridge estimators in logistic
regression. Applied Statistics, 41(1):191–201, 1992.

[62] Wenke Lee and Salvatore J Stolfo. Data mining approaches for intru-
sion detection. In 7th USENIX Security Symposium, 1998.

[63] Yoong Keok Lee and Hwee Tou Ng. An empirical evaluation of knowl-
edge sources and learning algorithms for word sense disambiguation.
In Proceedings of the ACL-02 conference on Empirical methods in
natural language processing-Volume 10, pages 41–48. Association for
Computational Linguistics, 2002.

[64] Michael Lesk. Automatic sense disambiguation using machine read-
able dictionaries: How to tell a pine cone from an ice cream cone. In

176 Bibliography

Proceedings of the 5th Annual International Conference on Systems
Documentation, SIGDOC ’86, pages 24–26, New York, NY, USA,
1986. ACM.

[65] David D Lewis. An evaluation of phrasal and clustered representa-
tions on a text categorization task. In Proceedings of the 15th annual
international ACM SIGIR conference on Research and development
in information retrieval, pages 37–50. ACM, 1992.

[66] David D Lewis. Naive (bayes) at forty: The independence assumption
in information retrieval. In Machine learning: ECML-98, pages 4–15.
Springer, 1998.

[67] David D Lewis and Marc Ringuette. A comparison of two learning
algorithms for text categorization. In Third annual symposium on
document analysis and information retrieval, volume 33, pages 81–
93, 1994.

[68] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new
benchmark collection for text categorization research. The Journal of
Machine Learning Research, 5:361–397, 2004.

[69] Lianghao Li, Xiaoming Jin, and Mingsheng Long. Topic correlation
analysis for cross-domain text classification. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

[70] Wei Li and Andrew McCallum. Pachinko allocation: Dag-structured
mixture models of topic correlations. In Proceedings of the 23rd in-
ternational conference on Machine learning, pages 577–584. ACM,
2006.

[71] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-
Yuan Tung. Intrusion detection system: A comprehensive review.
Journal of Network and Computer Applications, 36(1):16–24, 2013.

[72] Xiao Ling, Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu.
Spectral domain-transfer learning. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 488–496. ACM, 2008.

Bibliography 177

[73] Xiao Ling, Gui-Rong Xue, Wenyuan Dai, Yun Jiang, Qiang Yang,
and Yong Yu. Can chinese web pages be classified with english data
source? In Proceedings of the 17th international conference on World
Wide Web, pages 969–978. ACM, 2008.

[74] Bing Liu. Sentiment analysis and opinion mining. Synthesis Lectures
on Human Language Technologies, 5(1):1–167, 2012.

[75] Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun Zeng, Zheng Chen,
and Wei-Ying Ma. Support vector machines classification with a very
large-scale taxonomy. SIGKDD Explorations Newsletter, 7(1):36–43,
2005.

[76] Yuanchao Liu, Xiaolong Wang, Zhiming Xu, and Yi Guan. A survey
of document clustering. Journal of Chinese Information Processing,
20(3):55–62, 2006.

[77] Annie Louis and Ani Nenkova. Automatically assessing machine sum-
mary content without a gold standard. Computational Linguistics,
39(2):267–300, 2013.

[78] Hans Peter Luhn. A business intelligence system. IBM Journal of
Research and Development, 2(4):314–319, 1958.

[79] Qiming Luo, Enhong Chen, and Hui Xiong. A semantic term weight-
ing scheme for text categorization. Expert Systems with Applications,
38(10):12708–12716, 2011.

[80] Melvin Earl Maron. Automatic indexing: an experimental inquiry.
Journal of the ACM (JACM), 8(3):404–417, 1961.

[81] George A Miller. WordNet: a lexical database for English. Commu-
nications of the ACM, 38(11):39–41, 1995.

[82] Thomas P Minka. A comparison of numerical optimizers for logistic
regression. http://research.microsoft.com/en-us/um/people/

minka/papers/logreg/, 2003.

[83] David Nadeau and Satoshi Sekine. A survey of named entity recogni-
tion and classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

http://research.microsoft.com/en-us/um/people/minka/papers/logreg/
http://research.microsoft.com/en-us/um/people/minka/papers/logreg/

178 Bibliography

[84] Roberto Navigli. Word sense disambiguation: A survey. ACM Com-
puting Surveys (CSUR), 41(2):10, 2009.

[85] Alexander Pak and Patrick Paroubek. Twitter as a corpus for senti-
ment analysis and opinion mining. In LREC, 2010.

[86] Georgios Paltoglou and Mike Thelwall. A study of information re-
trieval weighting schemes for sentiment analysis. In Proceedings of
the 48th Annual Meeting of the Association for Computational Lin-
guistics, pages 1386–1395. Association for Computational Linguistics,
2010.

[87] Sinno Jialin Pan, James T Kwok, and Qiang Yang. Transfer learning
via dimensionality reduction. In Proceedings of the AAAI ’08, 23rd
national conference on Artificial intelligence, pages 677–682, 2008.

[88] Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang Yang, and
Zheng Chen. Cross-domain sentiment classification via spectral fea-
ture alignment. In Proceedings of the 19th international conference
on World wide web, pages 751–760. ACM, 2010.

[89] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang.
Domain adaptation via transfer component analysis. IEEE Transac-
tions on Neural Networks, 22(2):199–210, 2011.

[90] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22(10):1345–1359,
2010.

[91] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis.
Foundations and trends in information retrieval, 2(1-2):1–135, 2008.

[92] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?:
sentiment classification using machine learning techniques. In Pro-
ceedings of the ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. Association for Compu-
tational Linguistics, 2002.

[93] Fuchun Peng, Dale Schuurmans, and Shaojun Wang. Augmenting
naive bayes classifiers with statistical language models. Information
Retrieval, 7(3-4):317–345, 2004.

Bibliography 179

[94] Xiaogang Peng and Ben Choi. Document classifications based on word
semantic hierarchies. In Proceedings of the International Conference
on Artificial Intelligence and Applications, pages 362–367, 2005.

[95] Emanuele Pianta, Luisa Bentivogli, and Christian Girardi. Developing
an aligned multilingual database. In Proc. 1st Intl Conference on
Global WordNet, 2002.

[96] Mohammad Taher Pilehvar, David Jurgens, and Roberto Navigli.
Align, disambiguate and walk: A unified approach for measuring se-
mantic similarity. In ACL (1), pages 1341–1351, 2013.

[97] Martin F Porter. An algorithm for suffix stripping. Program: elec-
tronic library and information systems, 14(3):130–137, 1980.

[98] Leonid Portnoy, Eleazar Eskin, and Sal Stolfo. Intrusion detection
with unlabeled data using clustering. In Proceedings of ACM CSS
Workshop on Data Mining Applied to Security (DMSA-2001), pages
5–8, 2001.

[99] Peter Prettenhofer and Benno Stein. Cross-language text classifica-
tion using structural correspondence learning. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguis-
tics, pages 1118–1127, 2010.

[100] Xipeng Qiu, Wenjun Gao, and Xuanjing Huang. Hierarchical multi-
class text categorization with global margin maximization. In Pro-
ceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages
165–168. Association for Computational Linguistics, 2009.

[101] Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner. Devel-
opment and application of a metric on semantic nets. Systems, Man
and Cybernetics, IEEE Transactions on, 19(1):17–30, 1989.

[102] Jason D Rennie, Lawrence Shih, Jaime Teevan, David R Karger,
et al. Tackling the poor assumptions of naive bayes text classifiers.
In ICML, volume 3, pages 616–623. Washington DC), 2003.

[103] Philip Resnik. Using information content to evaluate semantic sim-
ilarity in a taxonomy. In Proceedings of the 14th international joint
conference on Artificial intelligence-Volume 1, pages 448–453. Morgan
Kaufmann Publishers Inc., 1995.

180 Bibliography

[104] Miguel E. Ruiz and Padmini Srinivasan. Hierarchical text categoriza-
tion using neural networks. Information Retrieval, 5:87–118, 2002.

[105] G. Salton. The SMART Retrieval System—Experiments in
Automatic Document Processing. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1971.

[106] Sam Scott and Stan Matwin. Text classification using wordnet hy-
pernyms. In Use of WordNet in natural language processing systems:
Proceedings of the conference, pages 38–44, 1998.

[107] Fabrizio Sebastiani. Machine learning in automated text categoriza-
tion. ACM Computing Surveys, 34(1):1–47, 2002.

[108] Hidetoshi Shimodaira. Improving predictive inference under covariate
shift by weighting the log-likelihood function. Journal of statistical
planning and inference, 90(2):227–244, 2000.

[109] Jr Carlos N. Silla and Alex A. Freitas. A survey of hierarchical classifi-
cation across different application domains. Data Mining and Knowl-
edge Discovery, 22(1-2):31–72, 2011.

[110] George Siolas and Florence d’Alché Buc. Support vector machines
based on a semantic kernel for text categorization. In Neural Net-
works, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS In-
ternational Joint Conference on, volume 5, pages 205–209. IEEE,
2000.

[111] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul
Von Buenau, and Motoaki Kawanabe. Direct importance estimation
with model selection and its application to covariate shift adaptation.
In Advances in Neural Information Processing Systems 20, volume 7,
pages 1433–1440, 2007.

[112] Aixin Sun, Ee-Peng Lim, Wee-Keong Ng, and Jaideep Srivastava.
Blocking reduction strategies in hierarchical text classification. IEEE
Transactions on Knowledge and Data Engineering, 16(10):1305–1308,
2004.

[113] Songbo Tan. Neighbor-weighted k-nearest neighbor for unbalanced
text corpus. Expert Systems with Applications, 28(4):667–671, 2005.

Bibliography 181

[114] Xiaohui Tao, Yuefeng Li, RaymondY.K. Lau, and Hua Wang. Un-
supervised multi-label text classification using a world knowledge on-
tology. In Advances in Knowledge Discovery and Data Mining, pages
480–492. Springer, 2012.

[115] Simon Tong and Daphne Koller. Support vector machine active learn-
ing with applications to text classification. The Journal of Machine
Learning Research, 2:45–66, 2002.

[116] Celine Vens, Jan Struyf, Leander Schietgat, Sašo Džeroski, and Hen-
drik Blockeel. Decision trees for hierarchical multi-label classification.
Machine Learning, 73(2):185–214, 2008.

[117] Piek Vossen. A multilingual database with lexical semantic networks.
Springer, 1998.

[118] Pu Wang, Carlotta Domeniconi, and Jian Hu. Using Wikipedia for co-
clustering based cross-domain text classification. In ICDM ’08, 8th
IEEE International Conference on Data Mining, pages 1085–1090.
IEEE, 2008.

[119] Evan Wei Xiang, Bin Cao, Derek Hao Hu, and Qiang Yang. Bridg-
ing domains using world wide knowledge for transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22(6):770–783,
2010.

[120] Gui-Rong Xue, Wenyuan Dai, Qiang Yang, and Yong Yu. Topic-
bridged plsa for cross-domain text classification. In Proceedings of
the 31st annual international ACM SIGIR conference on Research
and development in information retrieval, pages 627–634. ACM, 2008.

[121] Gui-Rong Xue, Dikan Xing, Qiang Yang, and Yong Yu. Deep classifi-
cation in large-scale text hierarchies. In Proceedings of the 31st annual
international ACM SIGIR conference on Research and development
in information retrieval, pages 619–626, 2008.

[122] Yiming Yang. An evaluation of statistical approaches to text catego-
rization. Information retrieval, 1(1-2):69–90, 1999.

[123] Yiming Yang and Xin Liu. A re-examination of text categoriza-
tion methods. In Proceedings of the 22nd annual international ACM

182 Bibliography

SIGIR conference on Research and development in information re-
trieval, pages 42–49. ACM, 1999.

[124] Yiming Yang and Jan O. Pedersen. A comparative study on feature
selection in text categorization. In Proceedings of the 14th Interna-
tional Conference on Machine Learning, pages 412–420, 1997.

[125] Yiming Yang, Jian Zhang, and Bryan Kisiel. A scalability analysis
of classifiers in text categorization. In Proceedings of the 26th annual
international ACM SIGIR conference on Research and development
in informaion retrieval, pages 96–103. ACM, 2003.

[126] David Yarowsky. Unsupervised word sense disambiguation rivaling
supervised methods. In Proceedings of the 33rd annual meeting on
Association for Computational Linguistics, pages 189–196. Associa-
tion for Computational Linguistics, 1995.

[127] Jaehak Yu, Hansung Lee, Myung-Sup Kim, and Daihee Park. Traffic
flooding attack detection with SNMP MIB using SVM. Computer
Communications, 31(17):4212–4219, 2008.

[128] Bianca Zadrozny. Learning and evaluating classifiers under sample
selection bias. In Proceedings of the 21st International Conference on
Machine Learning, page 114. ACM, 2004.

[129] Fuzhen Zhuang, Ping Luo, Hui Xiong, Qing He, Yuhong Xiong, and
Zhongzhi Shi. Exploiting associations between word clusters and doc-
ument classes for cross-domain text categorization. Statistical Analy-
sis and Data Mining, 4(1):100–114, 2011.

	Introduction
	Contributions
	Structure of the thesis
	Conventions

	Technical remarks

	Data and Text Mining
	Data mining
	Applications
	Machine learning

	Text mining
	Applications

	High-level text mining tasks
	Text categorization
	Sentiment analysis
	Text clustering
	Document summarization

	Natural language processing
	Part-Of-Speech Tagging
	Word Sense Disambiguation
	Other tasks

	General Techniques and Tools for Text Mining
	Brief history
	Bag-of-Words representation
	Cosine similarity

	Extraction of features
	Lemmas
	Stems
	n-grams and phrases
	Concepts

	Term selection and weighting
	Basic word filtering
	Feature selection
	Term weighting

	Extraction of latent semantic information
	Latent semantic analysis
	Probabilistic models

	Linguistic and semantic knowledge bases
	WordNet

	Text Categorization
	Problem description
	Variants
	Binary, single-label and multi-label classification
	Hierarchical classification

	Knowledge engineering approach
	Machine learning approach
	General setup
	Supervised term selection

	Common learning algorithms for text
	Naïve Bayes
	Support Vector Machines
	Other methods

	Nearest centroid classification
	Hierarchical classification
	Big-bang approach
	Local classifiers

	Experimental evaluation
	Benchmark datasets
	Evaluation metrics

	Cross-Domain Text Categorization
	Problem description
	Formalization
	Motivations

	State of the art
	Instance transfer
	Feature representation transfer
	Other related works

	Evaluation
	Common benchmark datasets

	Iterative refining of category representations
	Rationale
	Base method
	Computational complexity
	Results
	Variant with logistic regression
	Variant with termination by quasi-similarity
	Discussion

	A Domain-Independent Model for Semantic Relatedness
	General idea
	Possible applications

	Related work
	General working scheme for text categorization
	Semantic knowledge base
	Model training
	Semantic matching algorithm
	Classification
	Computational complexity
	General experiment setup

	Search of semantic relationships
	Use of WordNet
	Existing approaches
	Hypernyms-based algorithm
	Extended search algorithm

	Flat categorization
	Example couples and category profiles
	Classification
	Experiment setup
	Experiment results

	Hierarchical categorization
	Couple labeling and selection
	Representation of categories
	Top-down classification algorithm
	Experiment setup
	Experiment results

	Discussion

	Conclusions
	Ideas for future research

	Network Security through Distributed Data Clustering
	Distributed data mining
	Network intrusion detection systems
	General system model
	Implementation details
	Simulation setup
	Simulation results

	Bibliography

