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1. Introduction 

1.1.  Biochar System  

In the last half-century (1965-2015), the number of people on the planet has soared 

from 3 billion to 7 billion (United Nations Population Division), placing ever-growing 

pressure on the Earth and its resources. 

Leading demographers, including those at the United Nations (UN) and the U.S. 

Census Bureau, are projecting that world population will peak at 9.5 billion to 10 billion 

later this century and then gradually decline as poorer countries develop. But what could 

happen if those projections would be too optimistic? What if population continues to soar, 

as it has in recent decades, and the world becomes home to 12 billion or even 16 billion 

people by 2100, as a high-end UN estimate has projected? Such an outcome would clearly 

have enormous social and environmental implications, including placing enormous stress 

on the world’s food and water resources, spurring further loss of wild lands and 

biodiversity, and hastening the degradation of the natural systems that support life on Earth 

(Haub and Gribble, 2011). Other consequence of the rising world total population is a 

tremendous demand and consumption of fossil fuels for energy generation and 

consequently an increase in human-induced Greenhouse Gases (GHGs) emissions. The 

world׳s total energy consumption was estimated at about 524 exajoules per year (EJ/y) and 

has been predicted to increase by about 27% by the year 2020 and by about 65% by 2040 

(BP statistical review, 2013) and (International energy outlook, 2014). The increase in 

cost, depletion in availability, and deleterious environmental concerns associated with the 

use of fossil fuels are the main topic of debates in energy meetings.  

The urgency to address these threats creates an ever increasing demand for solutions 

that can be implemented now or at least in the near future. These solutions need to be 

widely implemented both locally by individuals and through large programmes in order to 

produce effects on a global scale. This is a daunting and urgent task that cannot be 

achieved by any single technology, but requires many different and integrated approaches 

(Lehmann and Joseph, 2009).  

Among the available options for these issues there is exploitation of chemical energy 

captured into biomass by thermochemical conversions into energy, fuels and bioproducts. 

Biomass can be converted to biofuels and bioproducts via thermochemical processes, 

such as pyrolysis and gasification. The net carbon dioxide emissions from biofuel use are 

considered virtually zero or negative because there leased CO2 was recycled from the 
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atmosphere captured during photosynthesis (Routa et al., 2012). In addition, since biomass 

contains a low amount of sulphur and nitrogen, combustion of biofuels leads to lower 

emissions of harmful gas, such as nitrous oxides (NOx) and sulphur dioxide (SO2), than 

most of fossil fuels (Vassilev et al., 2010). Such advantages of biomass make it a 

promising renewable energy resource. 

The major products from biomass pyrolysis are a gaseous fraction (syngas), a liquid 

material (bio-oil) and a solid residue (biochar) with yields that depend on the process 

conditions. Syngas and bio-oil are considered as major intermediate products that can be 

used to create fuels alternative to conventional fuels. Numerous studies have been 

conducted involving up grading and utilization of syngas and bio-oil for various 

applications (Noordermeer and Petrus, 2006; Kumar et al., 2010; Mortensen et al., 2011; 

Swain et al., 2011).  

Recently, biochar has received increasing attention for use in several applications. 

Biochar has unique properties that make it a valuable soil amendment to sustainably 

increase soil health and productivity, and also an appropriate tool for sequestering 

atmospheric carbon dioxide in soils for the long term in an attempt to mitigate global 

warming (Lehmann and Joseph, 2009). The recent broad interest in biochar has been 

chiefly stimulated by the discovery that biochar is the primary reason for the sustainable 

and highly fertile dark earths in the Amazon Basin, Terra Preta de Indio. Even though 

biochar has been used in many other places at other times, and has even been the subject of 

scientific investigation for at least a century, efforts have been isolated or regionally 

focused (Lehmann and Joseph, 2009). 

 

1.1.1. Biochar definition  

According to Lehmann and Joseph (2009), biochar is defined as “a carbon (C)-rich 

product when biomass such as wood, manure or leaves is heated in a closed container with 

little or unavailable air” (Lehmann and Joseph, 2009). Shackley et al. (2012) defined 

biochar more descriptively as “the porous carbonaceous solid produced by the 

thermochemical conversion of organic materials in an oxygen depleted atmosphere that has 

physicochemical properties suitable for safe and long-term storage of carbon in the 

environment”. Verheijen et al. (2010) also defined biochar as “biomass that has been 

pyrolyzed in a zero or low oxygen environment applied to soil at a specific site that is 

expected to sustainably sequester C and concurrently improve soil functions under current 
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and future management, while avoiding short- and long-term detrimental effects to the 

wider environment as well as human and animal health’’. The International Biochar 

Initiative (IBI) standardized its definition as ‘‘a solid material obtained from the 

thermochemical conversion of biomass in an oxygen-limited environment’’ (IBI, 2012). 

While the European Biochar Certificate (EBC, 2014) defined biochar as “a heterogeneous 

substance rich in aromatic carbon and minerals. It is produced by pyrolysis of sustainably 

obtained biomass under controlled conditions with clean technology and is used for any 

purpose that does not involve its rapid mineralisation to CO2 and may eventually become a 

soil amendment”. 

All of these definitions are directly or indirectly related to the biochar production 

condition and its application to soil. Lehmann and Joseph (2009) distinguished biochar 

operationally from charcoal. Primarily, the difference between these two terms lies in the 

end use. The charcoal is a source of charred organic matter for producing fuel and energy 

whereas the biochar can be applied for carbon sequestration and environmental 

management. The term hydrochar is closely related to biochar; however, it is distinguished 

by different condition like the hydrothermal carbonization of biomass (Libra et al., 2011). 

In general, biochar is produced by dry carbonization or pyrolysis and gasification of 

biomass, whereas hydrochar is produced as slurry in water by hydrothermal carbonization 

of biomass under pressure. The two chars differ widely in chemical and physical properties 

(Bargmann et al., 2013). 

 

1.1.2. Biochar regulation  

In 1984, Japan became the first country worldwide to approve the use of biochar as a 

soil conditioner. For the first time in Europe, the Swiss Federal Ministry of Agriculture 

officially approved the use of certified biochar in agriculture in 2013 (http://www.ithaka-

journal.net/schweiz-bewilligt-pflanzenkohle-zur-bodenverbesserung?lang=en). Approval is 

based on strict, scientifically checked requirements with regard to the sustainability of 

biochar production, to biochar quality and to user protection in its application. In the EU, 

the use of biochar in agriculture is neither clearly regulated nor explicitly forbidden. In 

Germany for example, the use of biochar as animal feed is allowed. It can thus be 

composted with the manure and applied to fields. In addition, charcoal is allowed as an 

additive for fertilizers and soil conditioners. What however is missing is an exact definition 
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of what can be counted as biochar and which production conditions and thresholds need to 

be complied with. With the Swiss approval, we now have an exact definition, along with a 

requirement for strict quality controls. Further, the European Biochar Certificate has been 

developed to become the voluntary European industrial standard ensuring a sustainable 

biochar production and low hazard use in agronomic systems (http://www.european-

biochar.org/en).  

In the United States (U.S.) some biochar production systems have been recommended 

for generating C offsets by soil sequestration (De Gryze et al., 2010). Also, U.S. proposed 

federal legislation to comprehensively address energy and climate change (i.e., the 

American Power Act) included “projects for biochar production and use” to be considered 

for domestic C offset programs (Gurwick et al., 2012). Recently, IBI certified the first 

biochar material for effective use as a soil amendment for the development of small-scale 

bio-refineries for the conversion of non-food biomass into biofuels and biochar in 

California (http://www.biochar-international.org/certification). Biochar is commercially 

available in the U.S. (Biochar Supreme, www.biocharsupreme.com; Biochar Solutions, 

www.biocharsolutions.com). Further, large-scale biochar production from crop straw is 

now commercially available in China (Pan et al., 2011). However, the biochar price is 

claimed to be too much high (about 3.7 $ kg
-1

) and would not be balanced by the potential 

economic gains based on average yield improvements and current prices for CO2 (Liu et 

al., 2013). Thus, biochar has not yet made a substantial entry into large-scale agricultural 

operations (IBI, 2014). 

 

1.1.3. Learning from history  

Several thousand years ago, pre-Columbian indigenous farmers used ‘slash and char’ to 

bring soils into production. ‘Slash and char’ sequesters approximately 50% of the carbon 

in the vegetation whereas ‘slash and burn’, still practiced by some cultures today, 

sequesters only about 3% of the carbon. To create ‘char’, vegetation cleared from new 

areas was smouldered at moderate temperatures in the absence of oxygen. The result was 

then dug into the soil. Food scraps and waste materials were also added with the result that 

the terra preta soils have not only high carbon (and are black) but also high fertility in 

comparison with adjacent char-free soils (Fig. 1). 

The terra preta soils are thought to have formed over a relatively short time span – 

only 40-50 years. They range in depth from half a metre to two metres deep, and can 

http://www.biocharsupreme.com/
http://www.biocharsolutions.com/
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contain as much as 250 tonnes of carbon per hectare in the first 30 cm and 500 tonnes per 

hectare up to one meter (but different authors have different values, indicating the 

difficulty of assessing soil carbon, as explained in the Grassland newsletter article by 

Parsons and Rowarth 2009). Unimproved soils from similar parent material have 

approximately 60% less carbon than the ‘char-enriched’ soils.  

Although stable, biochar is not inert – it can hold plant nutrients, including nitrogen, 

and often has useful supplies of potassium, sulphur and phosphate in the accompanying 

ash. It is probably this capacity that has resulted in reports that the addition of biochar 

resulted in a doubling of crop production in South America. The biochar was added with 

manure and food waste, as well as the ash resulting from the charring process. The ash also 

has a liming effect, increasing soil pH. As the ash, manure and food waste was broken 

down by microorganisms, the nutrients released that were not immediately immobilised 

(by micro-organisms) or taken up by plants, were retained by the biochar instead of being 

lost by leaching or, in the case of nitrogen, denitrification. Thus the biochar provided a 

source of nutrients that did not come from the char, but were plant available? 

 

Figure 1. Comparison of profiles of terra preta and adjacent soils (Source: IBI website). 
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1.2. Potential biomass for biochar production 

The biomass potentials that could be available for biochar is categorized into two types: 

(i) primarily produced biomass as a resource of bioenergy and biochar, and (ii) byproducts 

as waste biomass. However, biochar production from dedicated crops could create 

competition for land with any other land use option — such as food production or leaving 

the land in its pristine state. Therefore, biochar should be made from biomass waste 

materials. Appropriate biomass waste materials for biochar production include crop 

residues (both field residues and processing residues such as nut shells, fruit pits, bagasse, 

etc), as well as yard, food and forestry wastes and animal manures. Large amounts of 

agricultural, municipal and forestry biomass are currently burned or left to decompose and 

release CO2 and methane back into the atmosphere. They also can pollute local ground and 

surface waters — a large issue for livestock wastes, therefore using these materials to 

produce biochar allows to remove them from a pollution cycle.  

 

In theory, any C-based feedstock can be pyrolysed to produce biochar, and so biochar 

production has the potential to mitigate the increasing global problem of waste disposal. 

To date, a wide range of waste streams have been considered and tested, including 

biosolids (Chan and Xu, 2009), tannery wastes (Muralidhara, 1982), paper sludge 

(Rajkovich et al., 2011) and sewage and wastewater sludge (Bridle and Pritchard 2004; 

Hossain et al., 2010). The type of feedstock affects the properties of the resulting biochar 

(Kloss et al., 2012) in terms of crop yield effects (Jeffery et al., 2011) and recalcitrance in 

the soil (Zimmerman, 2010; Singh et al., 2012). Furthermore, it is likely to affect whether 

the resulting biochar is classified as a waste product, with implications regarding its 

permissibility for soil application (Sohi et al., 2010). Legislative issues surrounding 

biochar application to soils produced from waste products, and the classification of such 

biochar in terms of policy, is vital before its large-scale application can be implemented.  

One readily apparent trade-off regarding choice of feedstock for biochar production is 

the issue of stability of the resulting biochar vs. its nutrient content. For example, evidence 

suggests that biochars prepared from poultry litter support greater increases in crop 

productivity than those obtained from wood (Jeffery et al., 2011), probably because of a 

higher nutrient contents in this feedstock. However, biochars from poultry litter are less 

stable in the soil than those prepared from wood (Singh et al., 2012).  
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1.3. Biochar production techniques 

The conversion of biomass into biochar can be performed with the help of a variety of 

thermochemical processes, including pyrolysis, gasification and hydrothermal 

carbonization (HTC). The choice of treatment method depends on type of feedstock (wet 

or dry) and the desired properties of biochar for its different applications. In fact, the 

properties of a given biochar strongly depend on the characteristics of each process and 

also on the material to which the process is applied. Under all thermal treatments, biochar 

is generally produced by heating biomass at high temperature in the absence or limited 

supply of oxygen. Thermal treatments are classified based on their operating conditions 

such as: severity of process parameters (mainly reaction time and temperature), pre- and 

post-processing requirements like shaping, sizing, drying, cooling, condensation, etc. 

(Mosier et al., 2005; Goyal et al., 2008; Manyà et al., 2012) 

 

Pyrolysis 

The most common method to produce biochar is pyrolysis. Pyrolysis is a 

thermochemical decomposition process during which biomass is heated at elevated 

temperature (300-650 °C) in the absence of oxygen. At these temperatures, organic 

materials thermally decompose releasing a vapor phase and biochar. By cooling the 

pyrolysis vapor, polar and high-molecular-weight compounds condense out as bio-oil 

while low-molecular-weight volatile compounds, like CO, CO2, CH4 and H2 (Brownsort, 

2009; Mohan et al., 2006), remain as syngas. Biochar generally has a high carbon content, 

up to a half of the total carbon of the original organic matter. Bio-oil is generally a 

hydrophilic liquid, containing many oxygenated compounds, and can be obtained as a 

single aqueous phase or phase-separated (Demirbas and Arin, 2002). Syngas is generally 

composed by carbon dioxide, carbon monoxide, methane, hydrogen and C2 hydrocarbons 

in varying proportions. 

Depending upon the reaction time, temperature, and heating rate the pyrolysis process 

is sub-divided in four categories: slow, fast, flash and intermediate pyrolysis (Bridgwater 

and Peacocke, 2000; Onay et al., 2003; Laird et al., 2009; Jones et al., 2009; Vamvuka, 

2011).  

Slow pyrolysis. Conventional or slow pyrolysis processes produces biochar by heating 

biomass at a low heating rate for a relatively long residence time (Table 1) and usually at 

lower temperature than fast pyrolysis (400°C). The target product is often the char, but this 
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is always accompanied by liquid and gas products although these are not always recovered. 

Slow pyrolysis can be divided into traditional charcoal making and more modern 

processes. In fact, this process has been practiced for thousands of years (Zhang et al., 

2010). It continues to be widely used for production of high quality charcoal for 

metallurgical applications such as in the production of high grade silicon, as a leisure fuel 

in many developed countries, and in developing countries as an essential and storable 

commodity for cooking. There is widespread small scale local production in many 

developed countries as a cottage industry but there are limited truly commercial operations 

(a notable exception is charcoal production in Brazil for iron and steel production). 

Several variables and factors play a critical role during the pyrolysis process, and 

specifically: peak temperature, pressure, vapor residence time and moisture content (Antal 

et al., 2003). The peak temperature is the highest temperature reached during the process. 

As a general rule, the charcoal yield decreases as temperature increases. However, an 

increase of the peak temperature results in an increase of the fixed-carbon content in 

biochar (Schenkel et al., 1998; Antal et al., 2000; Antal et al., 2003a). This increase is 

especially pronounced in the temperature range from 300 to 500 °C. In addition, the peak 

temperature has influence on surface area and pore size distribution (both properties 

generally related to specific adsorptive properties) of charcoals.  

Fast pyrolysis. Fast pyrolysis produces biochar at a high heating rate (10-1000 °C s
-1

) 

and short residence time (less than 10 s). The peak temperature is usually set between 500 

and 550 °C in order to obtain the highest bio-oil yield (Maschio et al., 1999; Onay et al., 

2001; Yanik et al., 2007; Uzun et al., 2007). In this kind of pyrolysis, biomass decomposes 

very quickly favouring the formation of bio-oil and inhibiting the formation of biochar 

(about 15% of products) (Table 1). 

Intermediate pyrolysis. Intermediate pyrolysis operates between the reaction 

conditions of slow and fast pyrolysis, including moderate heating rates up to 200-300 °C 

min
-1

 and residence times for feedstock of 0.5-25 min. The product distribution generated 

by this process is typically 40-60% of bio-oil, 20-30% syngas and 15-25% biochar. In 

particular, the biochar obtained by intermediate pyrolysis is dry and has a brittle texture as 

it contains less tar and therefore less toxic compounds making it suitable for further 

applications, such as a solid fuel or as a soil amendment and/or as a fertilizer. 

Flash pyrolysis. Flash pyrolysis occurs with very fast heating rates of ≥ 1000 °C s
-1

 

and uses even shorter solid residence time (<0.5 s) than fast pyrolysis. The flash 

carbonization process has been developed by Antal and Grönli (2003) at the University of 
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Hawaii as an efficient way to produce biochar by the ignition of flash fire at elevated 

pressure in a packed bed of biomass. Air is used to pressurize a vessel to an initial pressure 

of 1-2 MPa, and a flash fire is ignited at the bottom of a packed bed. After a few minutes, 

air is delivered to the top of the packed bed and biomass is converted to charcoal. The total 

reaction time is less than 30 min and the temperature profile of the packed bed is 

conditioned by several factors: biomass feedstock, moisture content of the feedstock, 

heating time and the total amount of air delivered (Antal et al., 2003b). In any case, the 

flame front moves up the packed bed, causing the middle and top temperatures to 

successively increase, until reaching values near 600 °C. This procedure determines a 

significant improvement in yields with respect to conventional carbonization or slow 

pyrolysis (Antal et al., 2003b; Nunoura et al., 2006). 

 

Gasification 

Gasification is an alternative thermo-chemical conversion technology suitable for 

treatment of biomass or other organic matter including municipal solid wastes or 

hydrocarbons such as coal. Gasification primarily transforms biomass into a gaseous 

mixture (syngas containing CO, H2, CO2, CH4, and smaller quantities of higher 

hydrocarbons) by supplying a controlled amount of oxidizing agent under high temperature 

(> than 700 °C). Although they are designed to produce gas, gasifiers under some 

conditions can also produce reasonable yields of char. Therefore they have been proposed 

as an alternative production route to pyrolysis for biochar (Brown, 2009). The typical 

biochar yield of gasification averages about 10wt% of biomass (Meyer et al., 2011; Qian et 

al., 2013). The oxidizing agent used in gasification can be oxygen, air, steam or mixtures 

of these gases. Air gasification produces syngas with low heating values of 4-7 MJ/Nm
3
, 

while gasification with steam produces syngas with high heating values of 10-14 MJ/Nm
3
 

(Kumar et al., 2009).  

 

Hydrothermal carbonization 

Hydrothermal carbonization (HTC) of biomass takes place in water at elevated 

temperatures (160-800 °C). Since the water temperature is above 100 °C, the reaction 

pressure also must be elevated (more than 1 atm) to maintain the water in a liquid form. 

According to the reaction temperature, hydrothermal carbonization can be divided into 

high-temperature HTC (between 300 and 800 °C) and low-temperature HTC (below 300 

°C) (Hu et al., 2010). Since the reaction conditions of high-temperature HTC (above 300 
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°C) are beyond the stability condition of most organic compounds, the dominant reaction 

in this case is hydrothermal gasification and the dominant products are gases, such as CH4 

and H2 (Kruse et al., 2013). Below 300 °C, gasification is limited and carbonization of 

biomass to char dominates the reaction. Low-temperature HTC can mimic the natural 

coalification of biomass, although the reaction rate is higher and reaction time is shorter if 

compared to the thousand/billion years of slow natural coalification of biomass. Char yield 

of low-temperature biomass HTC varies from 30% to 60% depending on the feedstock 

properties, reaction temperature and pressure. Since HTC requires water, this may be a 

cost effective biochar production method for feedstock with high moisture content (Titirici 

et al., 2012). 

Table 1. 

Temp & 

Duration

Solid

(Biochar)

Liquid 

(Bio oil)

Gas 

(Syn Gas)

Slow Pyrolysis
~ 500C

min to days
35% 30% 35%

Intermediate  
450-500°C 

min 
20% 50% 30% 

Fast Pyrolysis 
~ 500C

seconds 
12% 75% 13% 

Flash Pyrolysis
> 800°C 

seconds
10% 75% 15% 

Gasification
> 800C

hours
10% 5% 85%

HTC 
180-250°C 

1-12 hours 
70% 25% 5% 

 

 

1.4. Chemical reactions behind the production of hydrochar and biochar 

During the production of biochar, biomass undergoes to a series of chemical reactions 

that are highly complicated and depend on both the nature of the biomass and the 

conditions (Glaser et al., 2001; Di Blasi, 2008; Babu, 2008; Funke and Ziegler, 2010). 

However, most of these chemical reactions have similar thermochemical pathways, i.e. the 
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degradation and depolymerization of polymeric composition of biomass take place, 

resulting in the formation of solid, liquid and gaseous (by-) products. The fundamental 

difference in various thermochemical treatments lies in the operating conditions and 

reaction medium that are used for the production of biochar and hydrochar. The highest 

reaction temperature reached during a thermochemical process is the main parameter that 

controls: i) the dominant reactions; ii) the reaction mechanism; iii) the physicochemical 

properties of char. Decarboxylation, dehydration, de-carbonylation, de-methoxylation, 

intermolecular rearrangement, condensation, aromatization, etc. are some of the proposed 

chemical reactions that can take place (Funke et al., 2010). However, in real practice, it is 

difficult to maintain uniform temperature profiles in pyrolysis reactors; therefore, it is most 

likely possible that many of the aforementioned reaction mechanisms take place 

simultaneously (Glaser et al., 2001). 

The thermal stability of the polymeric constituent of lignocellulosic of biomass 

significantly depends on the reaction medium in which the process is carried out. Under 

standard pressure conditions (e.g. pyrolysis) the decomposition of hemicellulose takes 

place between 200-300 °C, followed by cellulose that decomposes at higher temperatures 

(300-400 °C). Lignin is the most thermo-chemically stable polymer and decomposes in a 

wide temperature range peaking around 600 °C (Grønliet al., 2002) In contrast, during 

HTC the degradation/depolymerization of biomass occurs at significantly lower 

temperatures than pyrolysis (Yan et al., 2009). The degradation of hemicellulose and 

cellulose under HTC process starts at around 160-180 °C, where most of the lignin still 

remains stable until near or above critical point of water (Bobleter, 1994). The polymeric 

degradation of biomass in the HTC process is controlled by reaction mechanisms very 

similar to those in the pyrolysis process. However, due to the presence of hot compressed 

water process the degradation of biomass during HTC is primarily initiated by hydrolysis, 

resulting in the cleavage of ether and ester bonds between monomeric sugars by the 

addition of one molecule of water (Bobleter, 1994) and thereby reducing the activation 

energy levels of biomass polymers (Glaser et al., 2001). During HTC, the cellulose and 

hemicellulose are partially or fully driven off, leaving behind a char with high lignin 

content. 
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1.5. Biochar characteristics 

The composition and the chemistry of biochar can be very different according to the 

variety of feedstock that have been thermally degraded under a range of conditions (Antal 

et al. 2000; Antal and Grønli 2003; Amonette and Joseph 2009; Krull et al. 2009; Libra et 

al. 2011; Cantrell et al. 2012).  

Kuwagaki (1990) proposed that seven properties should be measured for a quality 

assessment for agronomically-used biochar: pH, volatile matter, ash content, water holding 

capacity, bulk density, pore volume, and specific surface area. IBI and the EBC have 

developed a series of guidelines for biochar production and quality (IBI, 2013; EBC, 

2014). For instance, IBI sets a range of 6-20 mg kg
-1

dry weight (dw) as the maximum allowable 

threshold values (varying between different countries) for the sum of the 16 US 

Environmental Protection Agency’s (EPA) polycyclic aromatic hydrocarbons (PAHs) in 

biochar (IBI, 2013). Similarly, EBC requires PAHs to be below 4 and 12 mg kg
-1

dw, in 

premium and basic grade biochars, respectively (EBC, 2014). Both documents also list 

guide values for a number of heavy metals, elemental contents (C, H, N, O) and their 

molar ratios, and specific surface area (SSA) (Table A1 in supplementary materials). With 

regard to carbon content, for instance, EBC proposed that the biochar's carbon content 

must be higher than 50%dw.  While IBI requires a carbon content higher than 60% and 

30%dw for first and second class biochar, respectively.  

The organic carbon content of pyrolysed chars ranges between ±5% and 95% of the dry 

mass, dependent on the feedstock and process temperature used. Generally, biochars 

derived from solid biomass residues tend to have higher carbon contents (63-82%) than 

those derived from digestable biomass residues (35-66%) and digestates (42%) (Enders et 

al., 2012). For instance the carbon content of pyrolysed poultry manure is around 35% 

(Song et al., 2012), while that of wood is around 70-80% (Fabbri et al., 2012). When using 

mineral-rich feedstocks such as sewage sludge or animal manure, the pyrolysed products 

tend to have high ash content.  

At low temperature, biochar chemical composition is closer to the original feedstock 

while high temperature biochar is similar to graphite (Masiello, 2004). The biochars 

produced at around 350 °C are mainly dominated by aromatic (aryl) carbon with small 

proportions of alkyl-O and alkyl-C. When the reaction temperature is further increased 

(>500 °C), these alkyl-O and alkyl-C were completely converted to aryl-C and these chars 

usually have very low H/C ratios. In general, the carbon content of biochar is inversely 
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related to biochar yield. Increasing pyrolysis temperature from 300 to 800°C decreases the 

yield of biochar from 67 to 26% and increases the carbon content from 56 to 93% (Tanaka, 

1963). Beyond a certain threshold, the mass of biochar may decrease without any affect on 

the amount of carbon retained within it; but as mass is lost, the ash content of biochar 

increases (Bourke et al., 2007). Pyrolysis temperature greatly affects the surface area of 

pyrolysis products. In particular, the increase of pyrolysis temperature determines an 

increase of surface area of biochar. This effect of temperature suggest that biochar 

prepared at low temperature may be suitable for controlling the release of fertiliser 

nutrients (Day et al., 2005), whilst high temperature biochars would be more suitable as 

activated carbon (Ogawa et al., 2006). The surfaces of low temperature biochar are, 

however, hydrophobic and this may limit the capacity to store water in soil. The scanning 

electron microscopy images (Fig. 2) of these biochars clearing show that have a structure 

with voids and micropores in which water can be retained.  

It is critically important to characterize biochar because its characterization will play a 

vital role in determining its importance and application in the industry and environment. 

For example, a biochar with low carbon content and high ash content is not suitable for 

energy product, and in the same way a biochar with low surface area and low adsorption 

capacity is not meant for agricultural and wastewater treatment applications. 

 

Figure 2. Scanning electron microscopy images of orchard pruning biochar at 

magnification × 500 and 7000. 
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1.6. Environmental impact of biochar  

 

1.6.1. Biochar and climate change 

The greenhouse-gas (GHG) concentrations of CO2, CH4 and NOx in the atmosphere 

have strongly risen since pre-industrial times (Ciais et al., 2013). The driver of these 

concentrations is an increase in human-induced GHG emissions (Ciais et al. 2013). 

Emissions of CO2 are attributed to the increased use of fossil fuels, as well as to the 

enhanced clearing and burning of forests (Fearnside, 2000), and the expanding of 

agriculture. As the main cause for the rise in the global mean surface temperature (Bindoff 

et al. 2013), it is widely recognized that the anthropogenic GHG concentrations need to be 

drastically reduced to combat climate change. The world is on a trajectory that results in a 

level of emissions consistent with long-term average temperature increase of more than 3.5 

°C (International Energy Agency, 2011). To change this trajectory, a timely and ambitious 

programme of mitigation measures is needed. Several studies have shown that, to stabilize 

global mean surface temperature, cumulative anthropogenic GHG emissions must be kept 

below a maximum upper limit, thus indicating that future net anthropogenic emissions 

must approach zero.  
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Figure 3. Scheme of biochar driven soil carbon sequestration. Diagram from Nature 

Publishing Group (Lehmann, 2007).  

 

production of biochar, in combination with its storage in soils, has been suggested 

as one possible 

Biochar’s climate-mitigation potential primarily 

stems from its highly recalcitrant nature ( ), which 

slows the rate at which photosynthetically fixed carbon (C) is returned to the atmosphere. 

The biochar also improves soil fertility, stimulating plant growth, which then consumes 

more CO2 in a feedback effect and the energy generated as part of biochar production can 

displace carbon positive energy from fossil fuels.  

Moreover, biochar applied to soils has been shown to reduce NOx emissions 

significantly (with the added benefit of reducing nitrogen fertiliser requirements). As NOx 

are approximately 320 times more effective as a GHG than CO2, biochar could be very 

important in mitigating emissions. However, the mechanisms and quantities involved are 
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still being investigated.  

Additional effects from adding biochar to soil can further reduce greenhouse gas 

emissions and enhance carbon storage in soil. These include: (i) Biochar reduces the need 

for fertilizer, resulting in reduced emissions from fertilizer production; (ii) Biochar 

increases soil microbial life, resulting in more carbon storage in soil; (iii) Turning 

agricultural waste into biochar reduces methane (another potent greenhouse gas) generated 

by the natural decomposition of the waste. Moreover, there may be additional benefits 

arising from the contribution of biochar to facilitate agricultural development and 

improving the socioeconomic circumstances of farmers in developing countries. 

Globally, Woolf et al. (2010) estimated that the potential impact of biochar for climate-

change mitigation is 12% of current anthropogenic CO2-C equivalent (CO2-Ce) emissions 

(that is, 1.8 Pg CO2-Ce per year of the 15.4 Pg CO2-Ce emitted annually), and that over the 

course of a century, the total net offset from biochar would be 130 Pg CO2-Ce: These 

results are possible at current levels of feedstock availability, while preserving 

biodiversity, ecosystem stability and food security. They also show that conversion of all 

sustainably obtained biomass to maximize bioenergy, rather than biochar, production can 

offset a maximum of 10% of the current anthropogenic CO2-Ce emissions. The relative 

climate-mitigation potentials of biochar and bioenergy depend on the fertility of the soil 

amended and the C intensity of the fuel being offset, as well as the type of biomass. 

Locations in which the soil fertility is high and coal is the fuel being offset are best suited 

for bioenergy production. The climate-mitigation potential of biochar (with combined 

energy production) is higher for all other situations. 

IBI developed scenarios on carbon removal from the atmosphere by biochar. Those 

scenarios primarily differ in the amount of biomass that was available in a sustainable way 

from global Net Primary Production (NPP). The “Conservative” scenario assumes that 

only biomass from cropping and forestry residues that otherwise has no use (about 27% of 

the total residues) is available. The “Moderate” and “Optimistic” scenarios consider that 

50% and 80%, respectively, of all cropping and forestry residues is available to produce 

biochar. For each base scenario, IBI estimated the amount of biochar produced, as well as 

the amounts of fossil fuel carbon emissions replaced by the energy generated during 

biochar production. Moreover, IBI estimated the additional amount of carbon that could be 

sequestered if CO2 emissions generated during biochar production were captured and 

sequestered in the same way as proposed for coal combustion facilities.  
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The results of IBI scenarios show that the carbon sequestered in biochar can be 0.25 Gt 

per year by 2030 in the “Conservative” scenario, and 1 Gt annually before 2050 in the 

“Optimistic” scenario. An often-quoted analysis (Pacala and Socolow, 2004) shows a need 

to have 7 Gt of carbon per year of reduced carbon emissions by 2054 just to keep 

emissions at the 2004 level. 

 

1.6.2. Biochar and soil 

Biochar used as a soil amendment to improve soil fertility and plant growth has been 

the focus of much research in the recent past (Zhang et al., 2012; Ibrahim et al., 2013). It 

has shown promise as a sustainable amendment to enhance soil chemical properties 

(Glaser et al., 2002; Lehmann et al., 2011). Soil may become degraded due to human 

activities such as mining and industrial activities as well as the use of certain pesticides in 

agriculture.  

Because of its high organic C content, biochar has the potential to serve as a soil 

conditioner to improve the physicochemical and biological properties of soils. Soil water 

retention capacity increases with increase in organic C. About 18% increase in the water 

holding capacity of soil containing biochar was reported (Glaser et al., 2002). Soil water 

holding capacity is related to hydrophobicity and surface area of biochar, and the improved 

soil structure following biochar application (Verheijen et al., 2010). Biochar amendments 

have been reported to improve soil bulk density, porosity and hydraulic conductivity (Asai 

et al., 2009; Jeffery et al., 2011; Abel et al., 2013). Moreover, a decrease of nutrient 

leaching due to biochar application has been also reported (Sohi et al., 2009; Major et al., 

2010; Singh et al., 2010).  

Biochar generally has a neutral to alkaline pH; however, acidic biochar has been also 

reported (Chan et al., 2007). The pH of biochar depends on various factors including 

feedstock type and the thermochemical process of production. The alkaline pH of biochar 

induces a liming effect on acidic soils, thereby possibly increasing plant productivity. The 

extent of liming effect of biochar depends on its acid neutralizing capacity that varies 

depending on the feedstock and pyrolysis temperature. For example, biochar derived from 

paper mill waste pyrolyzed at 550 °C has a liming value around 30% that one of CaCO3 

(Zweiten et al., 2010). Significant increases in seed germination, plant growth, and crop 

yields have been reported in the soils amended with biochars (Glaser et al., 2002).  
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The effect of biochar on microbial activity needs to be further investigated, especially 

when considering the possibility of large applications of biochar in agronomic systems for 

the purpose of increasing soil organic carbon. However, Lehmann et al. (2011) and more 

recently Ameloot et al. (2013) reported direct and indirect interactive effects between 

biochar and soil organisms. Although biochar does not provide a suitable habitat for soil 

microorganisms (Quilliam et al., 2013), soil microbial activity may be indirectly 

influenced by changes in the physicochemical properties, e.g. soil porosity, pH, cation 

exchange capacity (CEC) and adsorption properties. In a direct way, microorganisms can 

utilize a number of labile biochar constituents as an energy source (Cross and Sohi, 2011). 

These are presumably either relatively untransformed biomass components that have not 

been subjected to volatilization during pyrolysis (Ronsse et al., 2013) or volatilized 

compounds that have recondensed in the biochar matrix during pyrolysis (Kloss et al., 

2012). However, Ameloot et al. (2014) reported that, in contrast to many short-term 

laboratory studies, in field experiment biochar amendment led to a lowered or equal soil 

microbial activity after 1-4 years incorporation in the field.  

Some researches reported the potential role of biochar in reducing N losses. However, 

to date little is known about the effects of biochar on the soil nitrogen (N) cycle. Yanai et 

al. (2007) and Singh et al. (2010) have shown that biochar decreased N2O emissions 

because of its ability to absorb water. In particular, Singh et al. (2010) hypothesized that 

reduction of N2O emissions and ammonium leaching was determined by the increasing 

biochar nutrient sorption capacity due to the higher oxidative reactions on its surface over 

time.  

Applying biochar together with organic or inorganic fertilizers can even enhance crop 

yields (Lehmann et al., 2002). Studies show that when biochar is applied in soil, it 

increases crop yield, reduces irrigation needs and enhances fertilizer efficiency (Steiner et 

al., 2007; Blackwell et al. 2009). However, the biochar as a soil amendment for crop 

production is still being investigated, and results so far are not conclusive. The application 

of biochar to soils can boost crop yields by up to 60% or diminish yields by up to 30%, 

mainly depending on the type of soil to which it is applied
 
(Crane-Droesch et al., 2013). 

Spokas et al. (2012), in their biochar review article, reported that biochar application rates 

in research studies have range from <1 to over 100 t ha
-1

 and reported relative response to 

biochar compared to the treatment that receives no biochar (0 t ha
-1

) from a reduction of 50 

% to positive yield increases of ~200 %. Therefore, biochar applications affect crop yields 
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in highly variable ways. Such great variation likely stems from the large range of biochar 

application rates, crops, and soil types used. In particular, the differences in results reflect:  

1. Type of feedstock for biochar and the temperature and time of pyrolysis. The application 

of different types of biochar can lead to very different responses
 
(Rajkovich et al., 2012): 

some types of biochar can increase crop production by over 100%, and others can reduce it 

by a similar amount. 

2. Differences in soil types. Positive effects on plant growth tend to be recorded from 

highly- degraded and nutrient-depleted soils (Zwieten et al., 2009). Application of biochar 

to fertile soils has not been shown to increase plant growth.  

Therefore, the impact of biochar on the crop yield needs to be investigated further. In 

fact, the extent with which biochar application might increase agricultural production is an 

important driver in any attempt to develop systems that economically incorporate pyrolysis 

products within the soil. It is not the only consideration (carbon sequestration is also very 

important), but it requires long-term investment in agricultural experimentation. 

 

1.6.3. Biochar and waste management  

Biochar has great potential for managing the waste stream originating from animals or 

plants; thus, decreasing the associated pollution loading to the environment. The use of 

waste biomass for biochar production is not only economical but also beneficial. Making 

biochar from biomass waste materials should create no competition for land with any other 

land use option  such as food production or leaving the land in its pristine state. 

Therefore, the conversion of wastes into biochar through pyrolysis is potentially an 

effective waste management solution and economic feasibility. 

Waste biomass that has been used to produce biochar includes crop residues (both field 

residues and processing residues such as nut shells, fruit pits, bagasse, etc), forestry waste, 

animal manure, food processing waste, paper mill waste, municipal solid waste and sewage 

sludge (Cantrell et al., 2012; Enders et al., 2012). 

Large amounts of agricultural, municipal, and forestry biomass are currently burned or 

left to decompose and release CO2 and methane back into the atmosphere. They also can 

pollute local ground and surface waters  a large issue for livestock wastes. Using these 

materials to make biochar not only removes them from a pollution cycle, but biochar can 
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be obtained as a by-product of producing energy from this biomass. Moreover, pyrolyzing 

the waste biomass, particularly animal manure and sewage sludge, kills any microbes 

present, thereby reducing the environmental health effects (Lehmann and Joseph, 2009). 

However, the persistence of toxic heavy metals in biochar developed from sewage sludge 

and municipal solid waste (Lu et al., 2012) must be carefully handled before long-term 

application to soils. 

The annual worldwide production of wheat straw as agricultural waste was estimated to 

be approximately 540 million tons in 2007 (Reddy and Yang, 2007). The straw might be 

left on the field, burned, fed animals or used as industrial raw materials. As lignosulfonate 

is the main component of paper mill waste, huge amount of lignosulfonate was generated 

and the disposal of waste (liquid, solid and suspended matter) generated during the paper 

manufacturing process contributed to a very high impact on the environment, but less of 

them were utilized. Moreover large proportion of waste has been disposed of by burning 

and discharging, resulting in not only a waste of resource but also a serious environmental 

problem. Conversion of straw and lignosulfonate into biochar through pyrolysis has further 

advantages of energy and environment. 

 

1.6.4. Biochar and other environmental effects  

Biochar not only improves chemical and biological soil properties but also can help 

mitigate environmental issues by reducing of the mobility of heavy metals (Cu and Zn) 

(Hua et al., 2009) and other organic soil contaminants (i.e. insecticides, Hilber et al., 

2009). The adsorption behavior of biochar for different contaminants (i.e., heavy metals, 

organic pollutants and other pollutants) are different and well correlated with the properties 

of contaminants. In addition, the adsorption mechanism may also depend on biochar’s 

various properties including surface functional groups, specific surface area, porous 

structure and mineral components. 

One of the characteristics of biochars is possessing large surface areas, which implies a 

high capacity for complexing heavy metals on their surface. Surface sorption of heavy 

metals on biochar has been demonstrated on multiple occasions using scanning electron 

microscopy (Beesley and Marmiroli, 2011; Lu et al., 2012). This sorption can be due to 

complexation of the heavy metals with different functional groups present in the biochar, 

due to the exchange of heavy metals with cations associated with biochar, such as Ca
+2

 and 
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Mg
+2

 (Lu et al., 2012), K
+
, Na

+
 and S (Uchimiya et al., 2011), or due to physical 

adsorption (Lu et al., 2012). Also oxygen functional groups are known to stabilise heavy 

metals in the biochar surface, particularly (Uchimiya et al., 2011) for softer acids like Pb
+2

 

and Cu
+2

. In addition, Méndez et al. (2009) observed that Cu
+2

 sorption was related to the 

elevated oxygenated surface groups, elevated superficial charge density and Ca
+2

 and Mg
+2

 

exchange content of biochar. Furthermore, the surface area and porous structure of biochar 

can also have effects on the adsorption of heavy metals. However, as the literature data 

reported, the surface area and porous structure of biochar seem to have less effect on heavy 

metal adsorption than oxygen-containing functional groups (Ding et al., 2014). Sorption 

mechanisms are also highly dependent on soil type and the cations present in both biochar 

and soil. Some other compounds present in the ash, such as carbonates, phosphates or 

sulphates (Cao et al., 2009; Park et al., 2013) can also help to stabilise heavy metals by 

precipitation of these compounds with the pollutants. Alkalinity of biochar can also be 

partially responsible for the lower concentrations of available heavy metals found in 

biochar-amended soils. Higher pH values after biochar addition can result in heavy metal 

precipitation in soils. Biochar pH value increases with pyrolysis temperature (Wu et al., 

2012), which has been associated with a higher proportion of ash content (Cantrell et al., 

2012). Biochar can also reduce the mobility of heavy metals, altering their redox state of 

those (Choppala et al., 2012). As an example, biochar addition could lead to the 

transformation of Cr (VI) to the less mobile Cr
 
(III) (Choppala et al., 2012). Therefore, the 

possible adsorption mechanisms usually involved integrative effects of several kinds of 

interactions including electrostatic attraction, ion exchange, physical adsorption, surface 

complexation and/or precipitation (Fig. 4a). However, the relative contribution of the 

different mechanisms to heavy metal immobilisation by different biochar remains 

unknown. 

Fellet et al. (2011) tried to use biochar to remediate a multicontaminated mine soil. 

Biochar addition did not result in the decrease of the total heavy metal content of the soil; 

however, biochar addition reduced the bioavailability of Cd, Pb and Zn and the mobility 

(measured using a leaching experiment) of Cd, Cr and Pb. Uchimiya et al. (2012) analysed 

the effects on soil heavy meals concentrations of 10 biochars prepared from 5 feedstocks at 

2 different temperatures. They observed that manures with a high or low proportion of ash 

or P were less effective to immobilise heavy metals. In contrast, biochars prepared at 700 

°C were more effective, which could be attributed to transformations in the material, 

including the removal of nitrogen containing heteroaromatic and leachable aliphatic 
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functional groups. They found Cu and Pb relatively easy to stabilise in soil, while Cd and 

Ni response depended strongly on the type of biochar added to the soil. 

Biochar application can also reduce the availability of organic contaminants such as 

phenols in the soil (Gundale and DeLuca, 2007). The sorptive capacity of biochar to 

organic contaminants in soil is controlled by carbonised and non-carbonised fractions and 

the surface and bulk properties of biochar (Obst et al., 2011). Sorptive characteristics can 

equally be affected by hydrophilic groups on biochar (James et al., 2005). The adsorption 

mechanisms by which organic contaminants bind to biochars were also combined with 

different kinds of interactions. In general, electrostatic interaction, hydrophobic effect, 

hydrogen bonds, and pore-filling may be the main mechanisms for the adsorption of 

organic contaminants onto biochar. The various mechanisms proposed for the interaction 

of biochar with organic contaminants are summarized in Fig. 4b. For instance, the 

adsorption of aromatic molecules such as PAHs to wood biochars is rapid and is assisted 

by π-π electron interactions and pore-filling mechanisms (Chen et al., 2009), multilayer 

adsorption, surface coverage, condensation in capillary pores, and adsorption into the 

polymetric matrix (Werner et al., 2005). The results of different studies collected suggests 

that electrostatic attraction was the dominant mechanism for adsorption of organic 

contaminants onto the chars, with others performed as a contributing adsorption 

mechanism (Inyang et al., 2014). 
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Figure 4. Summary of proposed mechanisms for (a) heavy metals and (b) organic 

contaminants adsorption on biochars (Tan et al., 2015).  

 

 

 

 

Recently, the biochar has been investigated for its effectiveness in saline soil 

remediation. An interesting short incubation experiment (Wu et al., 2014) showed which 

biochar can play a more important role in saline soil remediation reducing exchangeable 

sodium percentage of saline soil and that biochar can improve soil fertility due to the 
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increment of soil organic carbon, cation exchange capacity and enhanced available 

phosphorus.  

 

1.7. Stability of biochar  

The stability of biochar is of fundamental importance in the context of biochar use for 

environmental management for two primary reasons: first, stability determines how long 

carbon applied to soil, as biochar, will remain in soil and contribute to the mitigation of 

climate change; second, stability will determine how long biochar will continue to provide 

benefits to soil, plant, and water quality (Lehmann et al., 2006). It is well known that a 

variable component of the carbon in many biochars is degradable on annual to decadal 

timescales and hence, only a proportion of total carbon in biochar provides long-term 

carbon sequestration (Bird et al., 1999; Zimmermann et al., 2012).  

An increasing number of studies suggests that biochar can be degraded, by both biotic 

and abiotic processes (Hamer et al., 2004; Cheng et al., 2008; Guggenberger et al., 2008). 

However, in most of the studies the stability of biochar was assessed during laboratory 

incubations, with fresh biochars added to soil (Zavalloni et al., 2011; Ameloot et al., 2013). 

The duration of these experiments ranges from several weeks (Cross and Sohi, 2011) to 

several years (Kuzyakov et al., 2009; Kuzyakov et al., 2014), allowing to understand 

biochar stability under controlled laboratory conditions. On the contrary, there are only 

few studies estimating biochar degradation rates in soil (Kuzyakov et al., 2009) and the 

long-term stability of biochar in soils. This is because the changes of biochar content are 

too small for any practical experimental period. Many studies estimating the 

decomposition rates of biochar in soil are based on changes of CO2 efflux after biochar 

application. This approach is unsuitable to estimate biochar decomposition because of the 

much higher contribution of soil organic matter and plant residues mineralization of the 

CO2 compared to biochar.  

The complexity and chemical heterogeneity of biochar has made it difficult to establish 

a single method suited to assessing the potential stability (Hammes et al., 2006) and hence, 

there is no globally established method for determination of absolute stability for biochar. 

However, a number of methods for comparing the relative stability of different biochar 

materials have emerged. These include proximate analysis using the fixed carbon as a 

measure of stability (ASTM Standard D3175; 2007), thermal analysis (thermogravimetry, 
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TG; de la Rosa et al., 2008), molecular markers by means of pyrolysis-gas 

chromatography-mass spectrometry (Py-GC-MS; Kaal et al., 2008, 2009, Conti et al., 

2014), benzene polycarboxylic acid method (Brodowski et al., 2005), O:C or H:C molar 

ratios (Spokas, 2010; Enders et al., 2012; IBI Guidelines, 2012) and chemical oxidation 

(Cross and Sohi, 2013). Further information on the studies conducted on biochar stability 

can be found in the introductory section of chapters 5.1 and 5.2. 

 

1.8. Biochar and pollutants 

Biochar quality guidelines have been recently proposed such as the IBI Biochar 

Standard (IBI, 2013), the European Biochar Certificate (EBC, 2014) or the UK Biochar 

Quality Mandate (BQM, Shackley et al., 2013). In these standards, environmental risks are 

accounted for by the inclusion of limit values for physicochemical properties, including 

pollutants such as heavy metals, dioxins/furans,  

and polychlorinated biphenyls (PCBs). For instance, the IBI sets a range of maximum 

allowed threshold values (varying between different countries) for the sum of the 16 US 

Environmental Protection Agency’s (EPA) PAHs in biochar to 6-20 mg kg
-1

 dry weight (dw) 

(IBI, 2013). Similarly, the EBC requires PAHs to be below 4 and 12 mg kg
-1

 dw, in 

premium and basic grade biochars, respectively (EBC, 2014).  

Research shows (Hale et al., 2012 and Oleszczuk et al., 2013) that biochar can contain 

dangerous inorganic contaminants (heavy metals) and organic ones (e.g. polycyclic 

aromatic hydrocarbons (PAH) as well as dioxins and furans (PCDD/Fs)). The presence of 

contaminants, therefore, poses a question mark over the common utilisation of biochars, 

especially for the amendment of soils used for crop plant cultures. In the case of high 

levels of contaminants there is the risk of their uptake by plants or migration down the soil 

profile to groundwaters. This may have negative effects for humans, for the environment 

and for living organisms. Among the threats, most frequently mentioned is the 

contamination of biochar with PAHs and heavy metals. While in the case of heavy metals 

their levels are at relatively low values (Freddo et al., 2012) and depend on the content of 

trace metals in the initial material, studies concerning PAHs indicate (Freddo et al., 2012; 

Hale et al., 2012; Hilber et al., 2012; Keiluweit et al., 2012; Oleszczuk et al., 2013; Fabbri 

et al., 2013) that biochars may be contaminated with those compounds to a significant 

degree. PAHs are formed during the pyrolysis of organic matter (including biomass) and 
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the content in biochars varies with relation to the feedstock, and also to the conditions of 

the pyrolysis process (Manyà, 2012; Wiedner et al., 2013).  

The application of biochar (containing high levels of PAHs) to soils, even at small 

doses, may undeniably cause an increase in the soil content of those contaminants. 

Moreover, s

PCDD/Fs could be present in the biochars produced from feedstock that contain 

chlorine. Biochar feedstocks such as grasses, straws and food waste (which contains 

sodium chloride, i.e., salt) can be a source of chlorine. Other potential sources of chlorine 

in biochar feedstocks include biomass that has been exposed to salt (such as crops or trees 

grown near seashores), and the biomass fraction of municipal solid waste that may be 

contaminated with polyvinyl chloride (PVC) or other chlorine-containing plastics. 

Research concerning dioxin indicates that biochars may be contaminated with those 

pollutants (Downie et al., 2011). Moreover, in biochars from food waste have been found 

relatively high concentration of dioxin likely due to the high salt (sodium chloride) content 

in food waste. However, in the biochars studied the total dioxin concentrations (0.005-1.20 

ng Kg
-1

) (Hale et al., 2012) are lower than the guideline values for dioxin and furans in 

biochar of the EBC (20 ng Kg
-1

 TEQ) and IBI (17 ng Kg
-1

 TEQ). Further information on 

the PAH topic has been reported in the introductory part of section 3. 

 

1.9. Biochar: some non-negligible issues  

Owing to the extensive range of combinations of biochar, soils and plants, much 

research still needs to be undertaken to understand the large variety of resulting 

interactions and their effects. As research progresses, it will be possible to make 
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extrapolations with increasing robustness as, for example, the database upon which meta-

analysis can be performed grows. Such information is vital to guide the development of 

certification schemes such as that proposed by the IBI, and the EBC, which is already 

implemented in part of Europe, as well as to guide policy. 

Interaction of biochar with soil microbial communities and plants 

The physical, biological and chemical processes that biochar may exert on microbial 

communities and their symbiotic interaction with plants, and possibly enhanced nutrient 

use efficiency, are not yet understood. The apparent contradiction between the high 

stability of biochar, soil organic matter accumulation and apparent enhancement of soil 

microbial activity needs to be resolved. In the future work, the effects of biochar on 

various soil biota groups, their diversity and functioning need to be carefully considered. 

Moreover, further research biochar needs to involve a careful selection of the feedstock 

and pyrolysis conditions to find an optimal match of biochar type to the intended 

ecosystem goal. 

Biochar erosion, transport and fate 

The loss of biochar through vertical or lateral flow is not quantified, and only recently 

have studies been initiated to examine movement through soil profiles and into water 

ways. It should be noted however that transport of biochar through the profile does not 

impact on its direct carbon sequestration potential. 

Biochar stability 

A key requirement for the use of biochar as tool for environmental management is that 

the carbon in the biochar is stable, meaning that a substantial fraction of the carbon 

sequestered is not re-mineralized on at least centennial timescales. However, a variable 

component of the carbon in many biochars is degradable on annual to decadal timescales 

and hence, only a proportion of total carbon in biochar provides long-term carbon 

sequestration. Although our understanding of biochar carbon stability has improved in 

recent years, there is limited research on process conditions to produce a biochar suitable 

and highly stable for the long-term carbon sequestration.  

Pollutants environmental fates 

The fate of contaminates in the environment is of prime importance in order to prevent 

severe contamination to the environment. The environmental fates of biochar-associated 

pollutions added to soil are still poorly understood. In particular, further research work is 
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required to improve understanding of the role biochar plays in sorbing PAHs and on 

microbial activity and how this influences the concentration of PAHs in soil and their 

persistence in the environment. 

Synergistic effects 

The interactions of biochar with soil organic matter as well as the mineral matrix need 

to be assessed in order to determine the nature and the environmental conditions under 

which synergistic effects develop. 

Water holding capacity 

The contribution that biochar can make to water retention, macro-aggregation and soil 

stability is poorly understood – yet should be of critical importance in climate change 

adaptation, where mitigating drought, nutrient loss and erosion are critical.  

Cation exchange capacity (CEC) 

While the CEC of fresh char itself is not very high biochar that has resided in soil for 

hundreds of years has been shown to have much higher CECs, comparable to those of 

zeolites. However, several studies have reported an increase in soil CEC after the 

application of fresh biochar. Thus, the processes that are instrumental in developing CEC 

over time as well as the effects that lead to an increase in CEC by addition of fresh (low 

CEC) biochar requires detailed understanding. 

Decreased emissions of non-CO2 greenhouse gases (e.g. N2O and CH4) 

The currently available data on the effect of biochar additions on trace gas emission is 

very limited, but has a potentially great impact on the net benefit of biochar application. 

Therefore, further research work is required to determine the impact of biochar on the 

emission of N2O and CH4.  

Soil carbon modelling 

Modelling of the linked carbon and nitrogen cycles in soil with and without application 

of biochar is essential to understanding the fundamental mechanisms referred to above, and 

the impact on soil-based emissions of greenhouse gases.  

Project specific Life Cycle Assessment (LCA) 

The total environmental life cycle assessment has been conducted for some biochar 

case studies. Greenhouse balances, for example, are very project specific and hence there 
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is opportunity to assess the benefits over a large range of feedstock, process and biochar 

application scenarios.  
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2. Aim of the thesis 

Studies on biochar are relatively recent, leaving several aspects unexplored or not fully 

developed. Further research on the impact of biochar in the environment in both the long 

and the short term is required both to avoid unforeseen consequences and to provide 

evidences of further potential benefits. In particular, the environmental potential and 

limitation of biochar in soil applications requires a full understanding of the stability and 

fate of carbon fractions and trace contaminants, in particular PAHs. For this reasons this 

thesis was focused on the assessment of biochar stability and the occurrence and fate of 

PAHs.  

Regarding PAHs, biochar is the by-product of a thermochemical process. Therefore, 

the formation of PAHs from biomass pyrolysis and their occurrence in biochar is inevitable 

and must be considered and properly evaluated in order to avoid or limit occupational 

exposure, land contamination and PAHs transfer to crops. Due to the carbonaceous nature 

of biochar that has a great affinity for polyaromatic compounds, the analysis of PAHs is 

challenging, no certified reference materials are available, and standardised methods are 

being developed. In order to determine the level of PAHs with reliable analytical 

procedures and evaluate the potential negative impact, this thesis aimed at:  

 

 developing a well characterized analytical method for the determination of 

PAHs in pure biochars as well as in soil-biochar matrices.  

 measuring the levels of PAHs in biochars from different feedstock and process 

conditions, searching for causal relationships, extending the analysis to EU-

PAHs (food safety) along with EPA-PAHs (environmental protection).  

 assessing the long-term impacts of biochar additions, at different applications 

rates, on PAHs concentration in agricultural soils; 

 evaluating their possible role in the phytoxicity of animal vs. plant derived 

biochar. 

 

Regarding the environmental stability, this is probably the most crucial and less known 

among the properties of biochar of interest for assessing its benefits to soil organic carbon 

and CO2 mitigation. In this topic, the thesis was focused to: 
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I. The determination and quantification of labile and resistant carbon fractions in 

biochar by hydropyrolysis (HyPy). 

II. The molecular characterisation of the biochar labile fraction by HyPy combined 

with GC-MS. 

III. The assessment of the impact of production conditions on biochar stability by 

pyrolysis-GC/MS and HyPy.  

IV. The identification of the resistant carbon fractions and the characterization of 

the labile organic carbon in biochar amended soils in a four years field study. 
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3. Determination of PAHs: method development and application 

 

3.1. Determination of polycyclic aromatic hydrocarbons in biochar and biochar 

amended soil 

 

3.1.1. Introduction 

Biochar is a co-product from biomass pyrolysis that is targeted as a material with 

applications in environmental and agricultural management, as well as a vehicle for carbon 

sequestration (Sohi et al., 2010; Manyà et al., 2012). As the interest toward biochar is 

steeply growing, safety procedures for ensuring human health and preservation of the 

environment are imperative. Polycyclic aromatic hydrocarbons (PAHs) are well known 

carcinogenic and persistent pollutants that are ubiquitous in the environment. PAHs are 

formed during the pyrolysis of biomass (Fabbri et al., 2010) and their occurrence in 

biochar (Hale et al., 2012; Hilber et al., 2012; Schimmelpfennig and Glaser., 2012; 

Keiluweit et al., 2012; Freddo et al., 2012; Kloss et al., 2012) along with its possibly 

released into the environment need to be addressed. PAH production has also been 

confirmed during the production of charcoal by pyrolysis (Ré-Poppi et al., 2002; Mara Dos 

Santos Barbosa et al., 2006) and natural wildfires (Kim et al., 2003). Human exposure of 

PAHs might occur through different pathways, such as inhalation of particles generated 

during synthesis, handling and field applications of biochar or the ingestion of 

fruit/vegetables grown in biochar amended soil. Therefore, determining the content of 

PAHs in biochar is of utmost importance to establish risk assessment of biochar usage.  

The worldwide distribution of PAHs in soils span over five orders of magnitude and is 

related to source (atmospheric input) and sorption ability of soil organic matter and black 

carbon (Nam et al., 2009). The inclusion of carbonaceous residues in soil could increase 

PAHs sorption on humic matter (Cornelissen et al., 2005; Oen et al., 2006; Poerschmann et 

al., 2007; Brandli et al., 2008) and biochar (Hale et al., 2011; Oleszczuk et al., 2012). In 

this respect, soil application of biochar might represent a source and/or a sink of PAHs. All 

these aspects need to be considered when dealing with the origin of PAHs in soil amended 

with biochar. 

A reliable methodology of PAH analysis is a first requisite towards risk assessment. 

Recent studies have examined the content of PAHs in biochar (Hale et al., 2012; Hilber et 

al., 2012; Keiluweit et al., 2012). These results have provided a comprehensive picture on 
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the levels and availability of PAHs in biochar (Hale et al., 2012), the influence of pyrolysis 

temperature (Keiluweit et al., 2012), as well as critical aspects of validation (Hilber et al., 

2012). Analytical methods described in these studies have utilized toluene as the extracting 

solvent. In fact, it was demonstrated that toluene is superior to other solvents for 

carbonaceous materials (Jonker et al., 2002). Nonetheless, extraction efficiencies are not 

always quantitative, especially in the case of low molecular weight (LMW) PAHs. In 

particular, naphthalene is problematic because of the high boiling point of toluene (111°C) 

which causes the loss of semi-volatile PAHs during the preconcentration step (Hilber et al., 

2012; Keiluweit et al., 2012). Naphthalene is considered a possible carcinogenic to humans 

(IARC group 2B) and genotoxic to plants (Aina et al., 2006). Incidentally, naphthalene is 

often the most abundant PAH in biochar (Hale et al., 2012; Hilber et al., 2012; 

Schimmelpfennig and Glaser, 2012; Freddo et al., 2012; Kloss et al., 2012; Spokas et al., 

2011). Naphthalene and its isotopically labelled version are often employed in studies 

aimed at investigating the fate of PAHs in the environment (Wild et al., 1994; Fraser et al., 

1998; Kipopoulou et al., 1999; Motelay-Massei et al., 2006). In general, LMW PAHs are 

absorbed at higher rates than high molecular weight (HMW) PAHs (Kipopoulou et al., 

1999; Motelay-Massei et al., 2006; Tao et al., 2004), and naphthalene presence could 

affect the growth/response of the soil microbial community (Loibner et al., 2004; Krang et 

al., 2007). 

Although present at lower concentrations, HMW PAHs pose the highest health and 

environmental hazards due to the established carcinogenic potential of this class of 

compounds. Because of biochar’s proposed use in crops and potential human exposure of 

biochar PAHs through bioaccumulation in agricultural products, biochar sorbed PAH 

concentrations could be a matter of concern (Ahn et al., 2008; Meudec et al., 2006; Rey-

Salgueiro et al., 2009). On the basis of their occurrence and carcinogenicity, 15PAHs have 

been identified as priority hazardous substances in food by the European Union (EU) 

(ECR, 2006)] and 16 PAHs by US Environmental Protection Agency (USEPA) (2002), 8 

of them are shared across both lists. While studies have been reported on the occurrence of 

USEPA PAHs in biochar due to the widespread inclusion of these compounds in 

worldwide environmental legislation, very limited information is available on the 

occurrence of EU PAHs on biochar. 

In addition, recent studies were focused on the analysis of PAHs in solely biochar, but 

the robustness of the solvent extraction method to extract PAHs when biochar is present in 

the soil was not fully investigated. It is important that a method developed for the analysis 
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of solely biochar should be equally accurate for the biochar-soil matrix. In this context, the 

use of (cyclo)hexane/acetone mixtures as an extracting solvent in PAH determination in 

soil is rather common  (e.g. Gfrerer et al., 2002; Shu et al., 2003; Beesley et al., 2010). In 

fact, a relatively polar solvents like acetone has been cited as beneficial for the extraction 

of hydrophobic PAHs from soil (Pena et al., 2007). 

The present study is aimed at developing a well characterized method for the 

determination of PAH in biochars and soils amended with biochar by GC–MS. To this 

purpose, several solvent and extraction procedures were examined using the 16 EPA PAHs 

as targeted PAHs on a biochar utilized in agronomic field studies (Fellet et al., 2011). The 

method was then applied to a set of biochars investigated as soil amendments of different 

origin and from different process conditions (Fabbri et al., 2012). Besides the EPA PAHs, 

the level of EU PAHs in these biochars was investigated as well. 

 

3.1.2. Materials and methods 

3.1.2.1. Reagents and standards 

Cyclohexane, acetone, acetonitrile, dichloromethane, toluene, ethyl acetate (all ultra-

purity), and surrogate standard mix (for USEPA 525) containing acenaphthene-d10, 

phenanthrene-d10 and chrysene-d12 at concentrations of 500 mg l
-1

 each in acetone were 

purchased from Sigma-Aldrich. PAH-Mix solution containing naphthalene, acenaphtylene, 

acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, 

benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, 

dibenz[a,h]anthracene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene certified at 

concentrations of 10 mg l
-1

 for each species in acetonitrile was purchased from Sulpeco 

(Belleforte, PA, USA).  

PAH-Mix standards in acetonitrile (10 mg l
-1

) of EU PAHs were obtained from Dr. 

Ehrenstorfer GmbH (Augsburg, Germany): benzo[a]anthracene, benzo[b]fluoranthene, 

benzo[j]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, benzo[a]pyrene, 

chrysene, cyclopenta[c,d]pyrene, dibenzo[a,h]anthracene, dibenzo[a,e]pyrene, 

dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, dibenzo[a,l]pyrene, indeno[1,2,3-c,d]pyrene, 5-

methylchrysene. Standard mix solutions containing the 15 PAHs at concentrations of 1 mg 

l
-1

 were prepared in acetone/cyclohexane (1:1, v/v) and stored at room temperature in the 

dark.  
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A solution of 1,3,5-tri-tert-butylbenzene (TTB, 12.7 mg l
-1

) in acetone:cyclohexane 

(1:1, v/v) was prepared by weighing the pure compound purchased from Sigma-Aldrich. 

 

3.1.2.2. Soil and biochar samples 

A natural matrix soil certified reference material ERM–CC013a (manufactured by 

Federal Institute for Materials Research and Testing; Berlin, Germany) containing 15 

PAHs with concentrations ranging from 1.14 to 12.9 mg kg
-1 

was used for the validation of 

the method for soil. An internal reference biochar sample (here named as reference 

biochar, or RB) was utilized for method optimization. This was a commercially available 

biochar created by the slow pyrolysis of orchard pruning, which was kindly provided by 

the Department of Agriculture and Environmental Sciences (DISA) University of Udine 

(Fellet et al., 2011). This reference biochar was homogenized and then mixed with an 

agricultural soil (dried and sieved 2 mm) at a 1.16% (w/w) amendment level. This 

concentration corresponded to an application of 36 t biochar ha
-1 

(assuming a soil with 1.2 

g cm
-3

 density and 0.3 m depth) (Schimmelpfennig and Glaser., 2012; Zavalloni et al., 

2011), which is within the range currently investigated for biochar use in agriculture (20–

60 t biochar ha
-1

) (Baronti et al., 2010).  

Additional biochars evaluated were from an on going study on the impact of biochar 

additions on greenhouse gas production potentials conducted by the USDA-ARS Biochar 

and Pyrolysis Initiative. The full characterization of these biochars (i.e. ultimate and 

proximate analysis, Py-GC–MS, and microbial CO2 production) was reported in a previous 

publication [40]. This group provides across-section of currently available biochars for 

agricultural field applications. 

 

3.1.2.3. Sample treatment 

3.1.2.3.1. Optimized sample pretreatment: soxhlet extraction and clean up 

About 1 g of biochar (or 5 g soil sample) was placed into the extraction cellulose 

thimble, spiked with 0.1 ml of surrogate standard mix (Supelco for EPA 525 containing 

acenaphthene-d10, phenanthrene-d10 and chrysene-d12 5 µg ml
-1

 each in acetonitrile). The 

thimble was covered with cotton wool, and inserted into the Soxhlet extractor. Soxhlet 

extraction thimbles (and the Soxhlet apparatus) were pre-cleaned by a 4 h Soxhlet 

extraction with acetone/cyclohexane (1:1, v/v). Extraction was carried out with 160 ml of 
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extraction solvents (acetone/cyclohexane (1:1, v/v)) mixture for 36 h (4 cycles h
-1

). The 

Soxhlet apparatus was covered with an aluminum foil to avoid exposure to daylight, which 

prevents PAH photodegradation. The extraction solvent was filtered, added with 1 ml of n-

nonane, and then carefully evaporated by rotatory vacuum evaporation at 40 °C. The 

concentrated extract was collected and loaded onto a silica gel cartridge (6 ml, 1 g DSC-Si 

Supelco washed with ethyl acetate, dried and conditioned with 4 ml cyclohexane). After 

purification with 1 ml of cyclohexane, PAHs were eluted with 4 ml of ace-

tone/cyclohexane (1:1, v/v). The obtained solution was then blown down to 10–50 µl 

under nitrogen and spiked with 10 µl of the internal standard solution (TTB at 12.7 mg l
-1

) 

prior to GC–MS analysis. 

 

3.1.2.3.2. Reflux extraction 

Four different solvent systems (toluene, dichloromethane, acetone:cyclohexane 1:1 

(v/v) and acetone:cyclohexane 1:5 (v/v)) were compared by means of reflux extraction. To 

this purpose PAHs were extracted from the biochar (2 g reference biochar added with 0.1 

ml of surrogate standard mix) by refluxing for 4 h with 80 ml solvent. The extract was 

filtered and concentrated to ∼100 µl by using rotary evaporator and then under a nitrogen 

stream. The obtained solution was spiked with 10 µl of internal standard (12.7 mg l
-1

 TTB) 

and then analyzed by GC–MS. 

3.1.2.3.3. Ultrasonication extraction 

Each homogenized reference biochar sample (1 g) was transferred into a Pyrex tube, and 

20 ml of acetone/cyclohexane (1:1, v/v) were added. The sample was ultrasonicated for 30 

min with occasional swirling. The extraction solutions were then centrifuged and the 

supernatant filtered into a 50 ml beaker using a 9.0 cm GF/C glass microfibre filter 

(Whatman International, Maidstone, UK). The obtained solutions were reduced to 2 ml 

using a rotary evaporator and transferred into 4 ml vials. These solutions were further 

reduced using nitrogen gas, spiked with 10 µl of 12.7 mg l
-1

 TTB, and analyzed by GC–

MS. 
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3.1.2.4. GC–MS 

GC–MS analyses were performed using a 6850 Agilent HP gas chromatograph 

connected to a 5975 Agilent HP quadrupole mass spectrometer. Analytes were separated 

by a HP-5MS fused-silica capillary column (stationary phase poly[5% 

diphenyl/95%dimethyl]siloxane, 30 m × 0.25 mm i.d., 0.25 mm film thickness), using 

helium as the carrier gas. Samples (1 µl) were injected under splitless conditions (1 min, 

then split ratio 1:50 to the end of analysis) with an injector temperature of 280 °C. The 

following thermal program of the capillary column was used: 50 °C to 100 °C at 20 °C 

min
-1

, then from 100 °C to 300 °C at 5 °C min
-1

, then a hold for 2.5 min at 300 °C. The 

mass spectrometer operated under electron ionization (70 eV) and acquisition was 

performed on single ion monitoring (SIM) at the molecular ion of each PAH at the time 

windows corresponding to the elution region of the target PAH. Acenaphthene-d10 was 

utilized to quantify naphthalene, acenaphthylene, acenaphthene and fluorene; 

phenanthrene-d10 to quantify phenanthrene, anthracene, fluoranthene and pyrene; 

chrysene-d12 to quantify the remaining PAHs. Quantitation of EPA PAHs was based on the 

calibration curve (Section 3.1.2.5), while in the case of EU PAHs a single point calibration 

(1 mg l
-1

, Section 3.1.2.1) was utilized. 

 

3.1.2.5. Method validation  

The figures of merit were reported for the EPA PAHs. Recovery of surrogated PAHs 

was determined with respect to the internal standard TTB. The procedural blank 

concentrations were determined as the average of five empty thimble runs. Procedural 

blanks were run periodically. Precision of the procedure was determined by four replicate 

analyses of reference biochar sample. Calibration was performed in the 0.0025–1.25 mg l
-1

 

interval by serial dilutions of the 10 µg ml
-1

 EPA PAH calibration mix (Supelco). Three 

replicates were performed at each concentration level and the resulting instrumental 

response was homoscedastic for each PAH ( = 0.05, Cochran test), therefore the least-

squares regression line was utilized for quantification (R
2
 values were 0.993–0.999). Limit 

of detection (LOD) and limit of quantification (LOQ) were estimated for each analyte by 

using Eqs. (1) and (2) 

 



40 
 

LOD = 3 sb / a                                                                                                                                    (1) 

LOQ = 10 sb / a                                                                                                                                  (2) 

 

 

Table 3.1.1. Limits of detection (LOD), limits of quantification (LOD), mean 

concentration of EPA PAHs in reference biochar (RB) and relative standard deviations 

(RSD) from four replicates. 

PAH LOD (ng g
-1

) LOQ (ng g
-1

) RB (μg g
-1

) RSD (%) 

Naphthalene 0.08 0.2 1.75 8 

Acenaphtylene 0.01 0.03 0.026 13 

Acenaphthene 0.03 0.1 0.034 5 

Fluorene 0.03 0.1 0.071 10 

Phenanthrene 0.4 1 0.71 12 

Anthracene 0.03 0.1 0.13 13 

Fluoranthene 0.08 0.3 0.30 11 

Pyrene 0.06 0.2 0.35 11 

Chrysene 0.1 0.4 0.095 9 

Benzo[a]anthracene 0.08 0.3 0.095 9 

Benzo[b]fluoranthene 0.2 0.5 0.13 6 

Benzo[k]fluoranthene 0.09 0.3 0.10 18 

Benzo[a]pyrene 0.2 0.8 0.19 14 

Indeno[1,2,3-cd]pyrene 0.2 0.7 0.15 16 

Dibenzo[a,h]anthracene 0.3 0.9 0.056 15 

Benzo[ghi]perylene 0.1 0.4 0.15 8 

 

 

where sb stands for the mean standard deviation of peak areas integrated at the retention 

time of the PAH from procedural blanks and a for the slope of the calibration curve. 

Results of LOD, LOQ and precision (%RSD) are listed in Table 3.1.1. 
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3.1.3. Results and discussion 

3.1.3.1. Solvent selection 

The choice of the extracting solvent is a crucial parameter in the analysis of PAHs in 

carbonized materials (soot, charcoal) because hydrophobic contaminants are tightly bound 

to the aromatic matrix (Jonker et al., 2002). In this study, the extraction ability of four 

different solvent systems was preliminary evaluated by means of reflux extraction under 

the same conditions. Toluene, solely (Hale et al., 2012; Hilber et al., 2012) or mixed with 

methanol (Keiluweit et al., 2012), was the solvent of choice in the determination of PAHs 

in biochar reported in recent literature and therefore included in this comparison. 

Dichloromethane is a rather common solvent in the extraction of PAHs in several matrices, 

including wood chars (Brown et al., 2007) and biochar (Freddo et al., 2012). 

Acetone/hexane mixtures were described in the analysis of PAHs in charcoal and soot 

samples (Jonker et al., 2002).  

The recovery of surrogate PAHs for each extraction system is reported in Table 3.1.2. 

Toluene is the best extracting solvent in the case of spiked d-phenanthrene and d-chrysene. 

This finding is in agreement with previous studies showing the strong extraction efficiency 

of toluene in comparison to other solvents and solvent/mixtures (Hilber et al., 2012; Jonker 

et al., 2002). However, in the case of spiked d-acenaphthene, dichloromethane and 

acetone/cyclohexane 1:1 exhibited higher extraction efficiency than toluene (83 and 80% 

vs. 68%). The loss of LMW PAHs in the case of toluene was caused by the analytical 

procedure following the extraction step, as blank analysis with toluene (resulting from 

solvent evaporation) confirmed a recovery of 65 ± 11% of d-acenaphthene. A similar result 

was reported by Hilber et al. (2012), who suspected a cross-contamination by naphthalene 

possibly due to extended toluene removal. When examining the PAH concentrations as a 

function of solvent, the detected concentrations of the LMW PAHs were the lowest with 

toluene (0.84 µg g
-1

) and highest with acetone/cyclohexane 1/1 (1.37 µg g
-1

). Therefore, 

the solvent mixture of acetone/cyclohexane was selected for the method optimization, 

because of its superior extraction efficiency for naphthalene (the most common PAH 

detected on biochar; see below), its widespread use in soil analysis of PAHs, and its 

reduced toxicity compared to toluene and dichloromethane. 
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Table 3.1.2. Recovery of surrogate PAHs using different extraction procedures of 

reference biochar (RB). 

 Acenaphthene-d10 

recovery (%) 

Phenanthrene-d10 

recovery (%) 
Chrysene-d12 

recovery (%) 

Reflux extraction    

Acetone/cyclohexane 1/1 80 41 7 

Acetone/cyclohexane 1/5 56 38 7 

Dichloromethane 83 50 11 

Toluene  68 68 58 

    

Ultrasonication extraction    

Acetone/cyclohexane 1/1 9 4 0.4 

    

Soxhlet extraction (18 hours)    

Acetone/cyclohexane 1/1 75 66 29 

Acetone/cyclohexane 5/1 76 37 10 

Acetone 84 58 29 

    

Soxhlet extraction (36 hours)    

Acetone/cyclohexane 1/1 88 77 67 

 

 

3.1.3.2. Selection of the extraction procedure 

The recovery of surrogate PAHs from reflux extraction with acetone:cyclohexane 1:1 

were compared with Soxhlet extraction (18 h) and ultrasonic extraction (Table 3.1.2). 

Ultrasonic extraction had very low recoveries (<10%) and therefore was not investigated 

further. As expected, the recovery of d-chrysene by Soxhlet extraction increased with 

respect to reflux conditions. Increasing (100%, v/v) or decreasing (20%, v/v) the mixing 

ratio of acetone with respect to the 1:1 acetone:cyclohexane mixture (i.e. 50%, v/v) did not 

significantly improve the recovery of the surrogate PAHs. Therefore, the 

acetone:cyclohexane mixture 1:1 was selected to investigate the effect of the extraction 

time on the recovery. The results, depicted in Fig. 3.1.1, show that the higher recoveries 

were achieved with longer extraction times, which is in agreement with a previous study 

(Hilber et al., 2012). Interestingly, the same study showed that accelerated solvent 
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extraction (ASE) was a less efficient than Soxhlet extraction (Hilber et al., 2012). 

However, prolonged extractions were problematic and did not guaranteed high recovery. 

 

Figure 3.1.1. Recovery of deuterated PAHs vs. soxhlet extraction times with 

acetone:cyclohexane 1:1 v/v of reference biochar (mean values and 1 s.d. from four 

replicates).  

 

 

 

We decided to focus on the behaviour of two HMW PAHs representative of five rings 

(benzo[a]pyrene) and six (indeno[1,2,3,cd]pyrene) rings as the target compounds for 

optimizing the extraction time. Their concentrations increased significantly when the 

extraction time was increased from 18 to 36 h, after which time the concentration remained 

almost constant. Thus, 36 h of extraction were selected for the final procedure. 
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3.1.3.3. Final procedure applied to reference biochar and soil 

The final procedure was described in detail in Section 3.1.2.3.1. The USEPA PAH 

concentrations of reference biochar are reported in Table 1 along with the relative standard 

deviations. A typical chromatogram is presented in Fig. 3.1.2. The precision (expressed as 

RSD from four replicates) was good, being within the 5–18% interval. The recoveries of 

surrogate PAHs were satisfactory (67, 77, and 88% for d-acenaphthene, d-phenenthrene, 

and d-chrysene, respectively, Table 3.1.2). This is also considered a good result 

considering that PAHs are strongly associated to the aromatic carbonaceous matrix of 

biochar. These results are on the higher end of PAH recoveries currently reported for 

biochar materials. Hilber et al. (2012) reported 42–72% recovery range for several 

deuterated PAHs (from d-naphthalene to d12-indeno[1,2,3-cd]pyrene), and similar values 

(56–79%) were reported by Hale et al. (2012). The accuracy of the method developed for 

biochar was tested on the soil matrix by the analysis of the certified soil (ERM-CC013a). 

The difference between the mean measured and certified values (Table 3.1.3) were lower 

than the expanded uncertainty of that difference for the majority of PAHs, attesting the 

validity of the method for the soil matrix (Linsinger et al., 2005). Then, the ability of the 

method to analyze PAHs in the biochar amended soil was evaluated. The obtained 

concentrations of PAHs in the untreated soil and in the soil amended with biochar are 

presented in Table 3.1.4. The total PAH concentration in the amended soil is significantly 

higher than that in the untreated soil. In particular, the concentration of naphthalene is 

0.0263 µg g
-1

 against 0.0098 µg g
-1

 in the untreated soil, a quite large difference due to 

naphthalene being the most abundant PAH in biochar at 1.75 µg g
-1

. The excess 

naphthalene in the treated soil of 0.0263 – 0.0098 = 0.0165 µg g
-1

 is slightly lower than 

that expected from the quantity of naphthalene added with biochar corresponding to 1.75 × 

1.16% = 0.0203 µg g
-1

. Overall, the correspondence between the measured excess and 

expected is (0.0165–0.0203)/0.0203 = -0.19 (or -19%), which is an acceptable result and 

good demonstration of the accuracy of the method for LMW PAH compounds, which has 

been a shortcoming of some of the existing methods [i.e. 5].  
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Figure 3.1.2. GC-MS (SIM) chromatogram obtained from the analysis of reference 

biochar (RB). Peak numbers refers to PAHs listed in table 3.1.5. 

 

 

 

Table 3.1.3. Validation of the optimized method for the soil matrix through the analysis of 

the certified material ERM – CC013a. 

PAH 

Measured 

concentration 

(μg g
-1

) 

Certified 

value 

(μg g
-1

) 

Relative 

error 

(%) 

Naphthalene 2.2 ± 0.2 2.4 ± 0.5 -9 

Fluorene 1.30 ± 0.11 1.14 ± 0.11 +13 

Phenanthrene 12.4 ± 0.3 12.0 ± 0.6 +2 

Anthracene 1.96 ± 0.09 1.41 ± 0.22 +32 

Fluoranthene 12.0 ± 0.5 12.9 ± 0.7 -9 

Pyrene 8.4 ± 0.6 9.6 ± 0.3 -15 

Benzo[a]anthracene 5.1 ± 0.3 5.6 ± 0.5 -11 

Chrysene 6.3 ± 0.3 5.3 ± 0.8 +15 

Benzo[b]fluoranthene 6.4 ± 0.4 7.1 ± 1.0 -12 

Benzo[k]fluoranthene 4.0 ± 0.4 3.4 ± 0.4 +14 

Benzo[a]pyrene 4.6 ± 0.4 4.9 ± 0.7 -8 

Benzo[ghi]perylene 4.3 ± 0.7 4.6 ± 0.5 -8 

Indeno[1,2,3-cd]pyrene 5.5 ± 0.9 5.2 ± 1.0 +3 
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A similar calculation was performed for the other PAHs, and the results are reported in 

last column of Table 3.1.4. These differences between the calculated and measured values 

were satisfactory for the most abundant PAHs in biochar (Table 3.1.4; at the ±20% level). 

These data support that the proposed method was capable to extract PAHs from a biochar 

amended soil, a PAH contaminated soil, and the original biochar.  

 

Table 3.1.4. Observed concentration of PAHs in an agricultural soil and a corresponding 

biochar amended soil (1.16% (w/w) of reference biochar RB). 

PAHs 
Soil 

(µg g
-1

) 

Soil + biochar 

(µg g
-1

) 

Difference from 

expected  

(%) 

Naphthalene 0.0098 ± 0.0002 0.0263 ± 0.0046 -19 

Acenaphtylene n.d. n.d. n.d. 

Acenaphthene n.d. n.d. n.d. 

Fluorene 0.0023 ± 0.0008 0.0033 ± 0.0006 +13 

Phenanthrene 0.0118 ± 0.0036 0.0212 ± 0.0063 +15 

Anthracene 0.0003 ± 0.0002 0.0014 ± 0.0014 -24 

Fluoranthene 0.0035 ± 0.0010 0.0075 ± 0.0030 +15 

Pyrene 0.0031 ± 0.0007 0.0069 ± 0.0020 -6 

Chrysene 0.0007 ± 0.0003 0.0014 ± 0.0010 -31 

Benzo[a]anthracene 0.0039 ± 0.0007 0.0057 ± 0.0009 +60 

Benzo[b]fluoranthene 0.0067 ± 0.0014 0.0091 ± 0.0029 +32 

Benzo[k]fluoranthene 0.0005 ± 0.0001 0.0014 ± 0.0003 -51 

Benzo[a]pyrene 0.0001 ± 0.0002 0.0019 ± 0.0009 -21 

Indeno[1,2,3-cd]pyrene 0.0023 ± 0.0008 0.0040 ± 0.0022 -9 

Dibenzo[a,h]anthracene 0.0009 ± 0.0002 0.0014 ± 0.0004 -18 

Benzo[ghi]perylene 0.0046 ± 0.0011 0.0070 ± 0.0013 +36 

Total 0.0506 ± 0.017 0.0986 ± 0.019 -2 

 

Notes: Values in the tables are the mean value ±1 standard deviation from four replicates. 

The last column reports the relative percent difference between the measured and expected 

value. The expected value is the concentration calculated from the PAH concentration 

obtained by summing the soil and biochar contributions (Table 3.1.1). This is expressed as 

a relative percentage of (measured - expected)/expected × 100. 
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Obviously, the effect of biochar addition in soils on the level of PAHs will depend on 

the background level of PAHs in the soil before treatment (Nam et al., 2009;  Wilcke et al., 

2000), the concentration of PAHs in the original biochar, and the quantity of added 

biochar. Then, environmental processes (evaporation, biodegradation, or abiotic 

degradation) will affect the fate and levels of PAHs in amended soil. Due to the lipophilic 

nature of the PAHs, these compounds tend to bioaccumulate in plants (Duxbury et al., 

1997; Parrish et al., 2006). Leafy vegetables typically accumulate higher levels of PAHs 

from the soil system than companion fruit or root crops (Lei et al., 2011). The levels of 

PAH observed in some of the biochars (see below) do posses levels that could be of 

potential health and environmental concern, depending on the application rate, original soil 

concentrations, and end-use for the soil. 

 

3.1.3.4. Determination of EPA and EU PAHs in different biochar samples 

The method developed in this study was applied to the determination of USEPA and 

EU PAHs in a suite of ten biochar investigated in a previous study (Fabbri et al., 2012). 

With the exception of biochar S-18 and S-19 (distillers grain) and S-17 (Macadamia nut 

shells), all the other biochars were derived from woody biomass (Table 3.1.5). Almost all 

16 USEPA PAHs were detected and quantified in the biochars, as well as several EU 

PAHs. However, HMW EU PAHs were not detected (Table 3.1.5). The recovery of spiked 

deuterated PAHs ranged between 60 and 100% and for all the samples an average of 78%, 

78 and 75% for d-acenaphthene, d-phenanthrene and d-chrysene, respectively, with ∼10% 

RSD each. Despite the difference in feedstock and process treatment the PAH levels were 

quite similar (1–19 µg g
-1

). One sample (biochar S-17) was characterized by high levels of 

PAHs. However, the literature reports examples of biochar with much higher 

concentrations, some comparable to those observed on soot (Hilber et al., 2012; 

Schimmelpfennig and Glaser., 2012). A large number of biochars investigated by Hale et 

al. (2012) exhibited total PAHs in the 0.07–3.27 µg g
-1

 interval when produced from slow 

pyrolysis from different biomass at temperatures between 250 and 900 °C, and higher 

values (45 µg g
-1

) from gasification. These examples underline the variety of PAH levels 

that could find in biochars. With few exceptions (S-17), naphthalene was the most 

abundant PAH, in accordance to previous studies (Hale et al., 2012; Hilber et al., 2012; 

Schimmelpfennig and Glaser, 2012; Freddo et al., 2012; Kloss et al., 2012), followed by 
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phenanthrene. However, it is interesting to note that benzo[a]pyrene was detected in all 

biochars analyzed here, with concentrations ranging from 0.01 to 0.67 µg g
-1

. 

Sample S-2 was biochar obtained from the fast pyrolysis of hardwood sawdust at 500 

°C, while S-3 the same biochar stored 1 year in an open drum subject to environmental 

conditions (Fabbri et al., 2012). Table 3.1.5 shows that the levels of LMW PAHs did not 

change markedly, confirming the strong sorption of PAHs to biochar. However, Hale et al. 

(2012) reported that artificial aging in aqueous solutions generally increased the 

concentration of PAHs on biochar, probably due to the leaching of hydrophilic components 

leaving the more hydrophobic biochar fraction.  

Biochars S-18 and S-19 produced from the same feedstock (distiller grains) at similar 

pyrolysis temperatures (350 and 400°C, respectively) exhibited significantly different PAH 

concentrations (total USEPA 5.0 and 2.2 µg g
-1

) suggesting the importance of pyrolysis 

conditions, as well as the role of temperature. A general trend has been observed of 

increasing PAH contents at shorter pyrolysis times and high pyrolysis temperatures (Hale 

et al., 2012). A detailed study on the presence PAHs in biochar samples produced from 

woody and herbaceous biomass pyrolyzed at different temperatures showed that the 

concentration of pyrogenic PAHs peaked at 500 °C, a common temperature in slow 

pyrolysis (Keiluweit et al., 2012). Chagger et al. (2000) demonstrated through modelling 

that PAHs are preferentially formed in a fluidized bed reactor versus a kiln style reactor, 

due to unstable combustion reactions present in a fluidized bed reactor. Schimmelpfennig 

and Glaser have underlined the importance of the particular technological process on the 

sorbed PAH concentrations, with wood gasifiers associated with the highest levels of 

PAHs on the solid residuals (Schimmelpfennig and Glaser, 2012). These authors proposed 

the naphthalene/phenanthrene ratio and the total PAHs concentrations as factors to 

differentiate pyrolysis processes between biochars. These hypotheses are also supported by 

our data, since biochars that are created by slow pyrolysis at longer residency times in kiln 

style reactors possess lower sorbed amounts of PAHs compounds. 
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Table 3.1.5. Concentrations of the 16 USEPA PAHs and (#) 15 EUPAHs (µg g
-1

 mean of two duplicates). (RB reference biochar; characteristics of 

biochars from S-2 to S-20 were published elsewhere [Fabbri et al., 2012].) 

 Sample Id. RB S-2 S-3 S-4 S-5 S-15 S-16 S-17 S-18 S-19 S-20 

Nr. PAHs 

1 Naphthalene 1.75 1.57 1.71 2.39 0.44 0.47 0.93 2.58 0.78 0.49 3.36 

2 Acenaphtylene 0.03 0.50 0.30 0.04 0.01 0.02 0.12 0.71 0.10 0.05 0.10 

3 Acenaphthene 0.03 0.62 0.31 0.05 0.01 0.07 0.08 0.28 0.24 0.22 0.11 

4 Fluorene 0.07 0.25 0.16 0.10 0.05 0.08 0.04 0.92 0.59 0.26 1.13 

5 Phenanthrene 0.71 0.25 0.30 0.56 0.31 0.27 0.36 3.88 0.49 0.33 2.70 

6 Anthracene 0.13 0.03 0.04 0.07 0.03 0.03 0.04 0.65 0.19 0.12 0.33 

7 Fluoranthene 0.3 0.14 0.08 0.11 0.08 0.11 0.05 2.46 0.10 0.09 0.21 

8 Pyrene 0.35 0.07 0.07 0.08 0.08 0.12 0.04 2.58 0.16 0.07 0.10 

9 Cyclopenta[c,d]pyrene
# 

0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.04 n.d. 0.03 

10 Chrysene
#
 0.09 0.05 0.02 0.02 0.02 0.03 0.02 0.92 0.42 0.17 0.09 

11 Benzo[a]anthracene
#
 0.09 0.04 0.02 0.05 0.04 0.04 0.02 0.83 0.46 0.08 0.17 

12 5-methylchrysene
#
 0.01 0.11 0.04 0.02 0.02 0.02 0.09 0.27 0.21 n.d. 0.21 

13 Benzo[b]fluoranthene
#
 0.13 0.02 0.05 0.04 0.04 0.05 0.02 0.70 0.29 0.05 0.07 

14 Benzo[k]fluoranthene
#
 0.1 0.02 0.01 0.04 0.02 0.02 0.01 0.43 0.39 0.07 0.06 

15 Benzo[j]fluoranthene
#
 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

16 Benzo[a]pyrene
#
 0.19 0.02 0.02 0.10 0.01 0.05 0.02 0.67 0.32 0.06 0.22 

17 Indeno[1,2,3-cd]pyrene
#
 0.15 0.02 0.01 0.13 n.d. 0.02 0.01 0.50 0.27 n.d. 0.03 

18 Dibenzo[a,h]anthracene
#
 0.06 0.02 0.01 0.01 0.01 0.01 0.01 0.08 0.21 0.19 0.06 

19 Benzo[ghi]perylene
#
 0.15 0.01 0.01 0.01 0.01 0.02 0.01 0.53 n.d. n.d. 0.08 

20 Dibenzo[a,e]pyrene
#
 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

21 Dibenzo[a,h]pyrene
#
 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

22 Dibenzo[a,i]pyrene
#
 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

23 Dibenzo[a,l]pyrene
#
 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

 Σ 16 EPA PAHs 4.3 3.6 3.1 3.8 1.2 1.4 1.8 19 5.0 2.2 8.8 
 #

 Σ 15 EU PAHs 0.97 0.32 0.2 0.43 0.18 0.27 0.22 5.0 2.6 0.62 1.0 
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Given the values of total PAHs reported in Table 3.1.5, as well as those reported in the 

literature (Hale et al., 2012; Freddo et al., 2012) for the slow pyrolysis biochars and the 

level of biochar applications recommended in agriculture practices, the increased levels of 

elevated PAHs in biochar amended soil is not of universal concern. However, as also seen 

in our data and those from other studies (Keiluweit et al., 2012; Kloss et al., 2012), some 

biochars do have levels of sorbed PAHs that do exceed existing and proposed guidelines 

for the usage of specific materials (e.g. sludge, wood ash) on land (Keiluweit et al., 2012; 

Freddo et al., 2012; Kloss et al., 2012) including commercial biochar (Hilber et al., 2012). 

In addition, the bioaccumulation of PAH compounds in produce grown in biochar 

amended soils requires further investigation. Therefore, the development of valid analytical 

procedures for the determination of PAHs in biochar and biochar amended soils is critical. 

 

3.1.3.5. Determination of EPA-PAH in EU-COST biochar samples 

The method described in the previous sections was applied to three biochar samples 

that were part of a laboratory exercise organised within the EU COST Action TD1107 

(http://cost.european-biochar.org/en). The Working Group 1. 

The three biochar samples BC1, BC2 and BC3 were produced with a PYREG® 500 – 

III pyrolysis unit (PYREG GmbH, Dörth, Germany) from different feedstock (woodchip 

sievings, paper sludge - wheat husks blend, sewage sludge) at similar conditions. 

Information on the process is available in Bucheli et al. (2014). 

The method was the same as described in the previous sections, however, two sets of 

analyses were run under slightly different conditions. In the first set of samples (A) about 

20 g were dried at 40 °C for 48 hours and the test-sample spiked with the surrogate PAH 

mix (Supelco for EPA 525 containing acenaphthene-d10, phenanthrene-d10 and chrysene-

d12; in a second set of samples (B) about 200 g were dried at 40 °C for 96 hours and 

spiked with 16 EPA PAHs (prepared from Dr. Ehrenstorfer PAH-Mix 9 deuterated, 10 ng 

µl
-1

).  

The results are reported in Tables 3.1.6, 3.1.7 and 3.1.8.  

Data obtained from the few laboratories participating to the PAH determination in the 

ring trial are being evaluated by the WP1. Preliminary results would indicate that no major 

deviations in the reported data occurred for the total PAH concentrations. Naphthalene was 

the most dominant PAH in all the three biochars followed by phenanthrene. Naphthalene 

was the PAH with the largest deviations, probably because of its volatility. The longer 

http://cost.european-biochar.org/en
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drying period in test B seems to have resulted in loss of naphthalene.  

 

Table 3.1.6. Concentrations of PAHs in biochar 1 in ng g
-1

. 

     

 

A 
 

B 
 

BC1 mean sd mean sd 

     

Naphthalene 1475 56 507 84 

Acenaphthylene 86 11.4 49 6 

Acenaphthene 24 4.1 23 5 

Fluorene 27 7.1 41 12 

Phenanthrene 143 49 136 41 

Anthracene - - 23 3 

Fluoranthene 30 8 33 7 

Pyrene 46 11.7 31 4 

Chrysene 20 6.6 18 6 

Benzo[a]anthracene 30 5 26 3 

Benzo[b]fluoranthene 81 7.6 51 10 

Benzo[k]fluoranthene 41 5.5 27 3 

Benzo[a]pyrene 51 12.5 32 1 

Indeno[1,2,3-cd]pyrene n.d. - - 
 

Dibenzo[a,h]anthracene n.d. - - 
 

Benzo[ghi]perylene n.d. - - 
 

PAH TOTAL 2055 
 

997 
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Table 3.1.7. Concentrations of PAHs in biochar 2 in ng g
-1

. 

 

 

A 
 

B 
 

BC2 mean sd mean sd 

     

Naphthalene  1864 174 1039 90 

Acenaphthylene  149 23 24 4 

Acenaphthene  18 5 21 3 

Fluorene 26 5.7 14 3 

Phenanthrene 168 19 117 27 

Anthracene  8 1.6 33 7 

Fluoranthene  53 1.8 41 9 

Pyrene  63 3.4 49 15 

Chrysene  18 1.2 21 6 

Benzo[a]anthracene  22 4.3 23 3 

Benzo[b]fluoranthene  29 6.9 17 4 

Benzo[k]fluoranthene  11 3.5 15 3 

Benzo[a]pyrene  5.8 1.6 12 4 

Indeno[1,2,3-cd]pyrene  6.9 0.9 11 3 

Dibenzo[a,h]anthracene  2.3 0.8 0 
 

Benzo[ghi]perylene  8.5 2.5 12 6 

PAH TOTAL 2454 
 

1450 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 53 

Table 3.1.8. Concentrations of PAHs in biochar 3 in ng g
-1

. 

 

 

A 
 

B 
 

BC3 mean sd mean sd 

     

Naphthalene  363 83 330 33 

Acenaphthylene  4.5 1.1 13 4 

Acenaphthene  10.6 0.8 8 0 

Fluorene 10.5 1.6 13 3 

Phenanthrene 50.2 5.8 99 13 

Anthracene  13.2 1.5 28 2 

Fluoranthene  16.6 1.5 38 5 

Pyrene  24.8 2.4 52 6 

Chrysene  7.1 1.1 15 2 

Benzo[a]anthracene  18.0 3.4 31 5 

Benzo[b]fluoranthene  6.2 1.5 10 2 

Benzo[k]fluoranthene  5.2 1.3 12 1 

Benzo[a]pyrene  8.4 2.3 21 3 

Indeno[1,2,3-cd]pyrene  5.4 1.6 17 2 

Dibenzo[a,h]anthracene  4.2 0.8 0 
 

Benzo[ghi]perylene  9.5 3 13 1 

PAH TOTAL 558 
 

699 
 

 

 

 

 

 

3.1.4. Conclusions 

A method for the determination of PAHs in biochar was developed making use of a 

solvent mixture (1:1 acetone:cyclohexane) in place of more toxic and/or hazardous 

solvents (e.g., dichloromethane, toluene) which was appropriate for the determination of 

LMW PAHs (including naphthalene) along with HMW PAHs. The method was validated 

with a certified reference soil and demonstrated its validity for the detection of PAHs 

deriving from biochar in a soil matrix amended with 1% biochar. Because of the strong 

affinity of PAHs toward biochar, solvent and duration time of the Soxhlet extraction were 

crucial parameters and at least 36 h was necessary to obtain a satisfactory recovery with 

1:1 acetone:cyclohexane. Furthermore, this method provided satisfactory recovery when 

applied to a wide range of biochar samples obtained at different pyrolysis conditions from 

different biomass parent materials suggesting that this analytical procedure could be used 

successfully on different biochars. All the biochar analyzed contained the USEPA, as well 
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as some of the EU PAHs at detectable levels ranging from 1.2 to 19 µg g
-1

. In particular, 

the presence of EU PAHs on biochar could be of concern when biochars with elevated 

levels of PAHs are used in human food production due to the potential of contamination. 

However, this aspect requires further investigations. 
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3.2. Quantitative determination of PAHs in an agricultural soil treated 

with biochar  
 

3.2.1. Introduction 

Biochar application to soils has recently emerged as a potential strategy to sequester 

carbon into agricultural soils, improve physical, chemical and biological properties of soil 

and produce renewable energy (Glaser et al., 2002; Lehmann et al., 2006; Steiner et al., 

2007; Sohi et al., 2010; Uchimiya et al., 2010; Galinato et al., 2011; Vaccari et al., 2011; 

Ventura et al., 2013). Biochar is known to improve soil water-holding capacity (Case et al., 

2012; Basso et al., 2013; Baronti at al., 2014) and plant water availability (Baronti et al., 

2014), decrease nutrients leaching (Güereña et al., 2013) and bioavailability of heavy 

metals (Park et al., 2011), improve soil structure (Case et al., 2012) and stimulate soil 

microbial activity (Kolb et al., 2009; Rutigliano et al., 2014), and finally, increase the pH 

of soil, due to which it can be used on acidic soils with poor cultivation properties (Glaser 

et al., 2002; Slavich et al., 2013). 

In spite of the unquestionable advantages, there are also certain threats related with the 

production and subsequent utilisation of biochar. Among threats, most frequently 

mentioned is the contamination of biochar with polycyclic aromatic hydrocarbons (PAHs) 

and heavy metals. While in the case of heavy metals their levels are at relatively low 

values (Freddo et al., 2012) and depend on the content of trace metals in the initial 

material, studies concerning PAHs indicate (Freddo et al., 2012; Hale et al., 2012; Hilber et 

al., 2012; Keiluweit et al., 2012; Oleszczuk et al., 2013; Fabbri et al. 2013) that biochars 

may be contaminated with those compounds to a significant degree. PAHs are formed 

during the pyrolysis of organic matter (including biomass). PAHs are well known 

carcinogenic and persistent pollutants and 16 PAHs are classified as priority pollutants and 

are heavily regulated by the US EPA due to their carcinogenic, mutagenic or teratogenic 

properties (Keiluweit et al., 2012). Therefore, the application of biochar to agricultural soil 

could carry a significant risk to human health by contaminating soils. Moreover, PAHs in 

soil may exhibit a toxic activity towards different plants, microorganisms and invertebrates 

(Guo et al., 2012).  

Several studies have shown that the presence of biochar in soils can influence the 

bioavailability and bioaccessibility of organic contaminants (Beesley et al. 2010; Gomez-

Eyles et al. 2011; Zhang et al. 2013; Lattao et al. 2014). The biochar is particularly 
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effective at adsorbing and sequestering organic contaminants; enhanced sorption of 

hydrophobic organic compounds such as PAHs could actually decrease microbial 

mineralization by decreasing bioavailability (Rhodes et al., 2008, 2010; Xia et al., 2010), 

and could lead to localize PAH accumulation. On the contrary, Liang et al. (2015) reported 

that biochar amendment stimulates PAH-metabolizing bacterial activity by enhancing the 

number of gene copies related to PAH degradation and by changing the structure of soil 

microbial community. 

Quilliam et al. (2012) reported that biochar can reduce the degradation of PAHs in two 

important types of agricultural soil, which in the short term could not only increase the 

concentration of soil PAHs but could also affect the long-term persistence of PAHs in the 

environment. However, the environmental fates of biochar-associated PAHs added to soil 

are still poorly understood. Therefore, it is necessary to improve understanding of the role 

biochar plays in sorbing PAHs and on microbial activity and how this influences the 

concentration of PAHs in soil and their persistence in the environment. 

The aim of this study was quantifying the concentration of the 16 priority PAHs in soil 

amended with biochar at two different rates and determine the impacts of biochar additions 

on PAHs concentration in soils. Furthermore, the effect of biochar on PAHs levels was 

compared with some properties of soil, which may influence the fate of PAHs. 

 

3.2.2. Materials and Methods 

3.2.2.1. Reagents and standards  

PAH-Mix solution containing each of the 16 EPA PAHs [i.e., naphthalene, 

acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, 

chrysene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, 

benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene and benzo[ghi]perylene] 

certified at concentrations of 10 mg l
-1

 for each species in acetonitrile was purchased from 

Sulpeco (Belleforte, PA, USA). 

Cyclohexane, acetone, ethyl acetate (all supra solv quality), and surrogate standard mix 

(for EPA 525) containing acenaphthene-d10, phenanthrene-d10 and chrysene-d12 at 

concentrations of 500 mg l
-1

 each in acetone were purchased from Sigma-Aldrich. 

A solution of 1,3,5-tri-tert-butylbenzene (TTB, 10 mg l
-1

) in acetone:cyclohexane (1:1, 

v/v) was prepared by weighing the pure compound purchased from Sigma-Aldrich. 
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3.2.2.2. Experimental layout  

The field experiment was setup in a vineyard at the “Marchesi Antinori - La Braccesca 

Estate” (Lat. 43° 10’ 15'’ N; Long. 11° 57’ 43’’ E; 290 m a.s.l.), located few kilometers 

away from Montepulciano (Tuscany, central-Italy). The vineyard has been planted in 1995 

and trellis system is a single curtain with plant-row spacing of 0.8 and 2.5 m; rows 

orientation is East-West. The vineyard is not irrigated. 

A randomized plot experiment, with three treatments and five replicates was setup in 

2009. Each plot, 15 in total, had a surface area of 225 m
2
 (7.5 m in width and 30 m in 

length) including 4 vineyard rows and 3 inter-rows. The treatments were: a single biochar 

application at a rate of 22 t ha
-1

 in 2009 (B); two biochar applications at a rate of 22 t ha
-1

 

each, in 2009 and 2010 (BB); and a control (C). Biochar was applied with two treatments, 

in five replicates randomly distributed, as follows: 22 t ha
-1

 of biochar applied in 2009 (B); 

22 t ha
-1

 in 2009 and further 22 t ha
-1

 in 2010 (BB) and control untreated plots (C). 

Rows orientation is East-West, inter-rows are partially covered with spontaneous grass, 

and tilled with a chisel plow in the March–June period. The vineyard is not irrigated and it 

is fertilized with an inorganic fertilizer (15.0.26) twice per year (in November and April) at 

a rate of 120 kg ha
-1

. Soil is acid, shallow and sandy-clay-loam textured (USDA, 2005) 

(Table 1) and is highly compacted below 0.4 m depth 

Untreated soil (control) and soil treated by two concentrations of biochar amendment 

were sampled four times from 2011 to 2013 (August 2011, December 2011, May 2012 and 

May 2013). Sixty samples (5 replicates x 3 treatments x 4 sampling seasons) were 

examined, each sample was dried at 40 °C, sieved (mesh size: 2 mm) in order to obtain 

homogeneous samples free of stones, larger roots and other coarse fragments, and stored at 

- 20 °C. No losses of PAHs occur under these conditions.  

 

3.2.2.3. Soil properties  

Soils are shallow, acid, sandy-clay-loam (USDA, 2005) textured (Table 3.2.1). The 

total organic Carbon content (C) and Total Nitrogen content (N) were analyze by dry 

combustion elemental analyzer (Thermo Fisher Science) after fine grinding with a ball mill 

to 0.5 mm. The pH was measured potentiometrically in a 1:2.5 soil– water suspension. The 

CEC analysis was performed by saturation with barium–chloride at pH 8.2, displacement 

http://www.sciencedirect.com/science/article/pii/S016788091400543X#tbl0005
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of adsorbed barium by 0.05 M MgSO4 and titration of the Mg remaining in solution with 

0.025M EDTA (Gessa and Ciavatta, 2000). 

 

3.2.2.4. Biochar characterization 

The biochar used in the experiment is a commercial charcoal provided by “Romagna 

Carbone s.n.c.” (Italy) obtained from orchard pruning biomass through a slow pyrolisis 

process at temperature of 500 °C in a transportable ring kiln of 2.2 m in diameter and 

holding around 2 t of feedstock. The biochar at the end of the pyrolisis was crushed into 

particles smaller than 5 cm of diameter before the soil application. Elemental composition 

(C,H,N,S) was determined by combustion using a Thermo Scientific FLASH 2000 Series 

CHNS/O Elemental Analyzer. Ash content of the biochar was measured by heating 

samples in a muffle at 550 °C for 6 hours, as proposed by ANPA (2001). The oxygen 

content was calculated from mass balance: %O=100-% (C+H+N+ash).  

As the carbonate concentration of the soils was negligible, the total measured C 

concentration was considered to represent total organic carbon (TOC). The TOC content 

was determined on 5 samples of biochar amended soil and 5 control soil according to the 

Ministero per le Politiche Agricole (1999), Method VII.1. Samples were pre-treated with 

HCl 1.5 M (40 uL in 2-3 g of sample), heated at 60 °C for 1 hour; this procedure was 

repeated for 4-5 times, till the samples stop reacting with HCl. Determinations were made 

using a Thermo Scientific FLASH 2000 Series CHNS/O Elementar Analyzer. 

A mixture of biochar with deionized water at 1:10 wt/wt ratio was prepared, thoroughly 

mixed and pH measured at room temperature with a digital pH meter (HI 98103, 

Checker®, Hanna Instruments). Prior to this analyses, biochar was sieved at 2 mm and 

oven dried at 40 °C for 72 h. 

 

3.2.2.5. Determination of polycyclic aromatic hydrocarbons  

3.2.2.5.1. Extraction and clean up 

The PAHs determined comprised of 16 compounds (US EPA List; Table 3.2.2). 

Analyses of PAHs were conducted as described in Fabbri et al. (2013). Briefly, about 5 g 

of sample was placed into the extraction cellulose thimble, spiked with 0.1 mL of surrogate 

PAH mix (Supelco for EPA 525 containing acenaphthene-d10, phenanthrene-d10 and 
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chrysene-d12 5 μg mL
-1

 each in acetonitrile). The thimble was covered with cotton wool 

and inserted into the Soxhlet extractor. The extraction was performed with 160 ml of 

extraction solvents (acetone/cyclohexane (1:1, v/v)) mixture for 36 h (4 cycles h
-1

). The 

extraction solvent was filtered, added with 1 ml of n-nonane, and then carefully evaporated 

by rotatory vacuum evaporation at 40 °C.  

The concentrated extract was collected and loaded onto a silica gel cartridge (6 ml, 1 g 

DSC-Si Supelco washed with ethyl acetate, dried and conditioned with 4 ml cyclohexane). 

After purification with 1 mL of cyclohexane, PAHs were eluted with 4 ml of 

acetone/cyclohexane (1:1, v/v). The obtained solution was then blown down to 10 – 50 μl 

under nitrogen, spiked with 10 μl of the internal standard solution 1,3,5-tri-tert-

butylbenzene (TTB at 10 mg l
-1

) prior to GC–MS analysis. 

 

3.2.2.5.2. GC-MS  

Samples (1 µl) were injected under a splitless condition (1 min, then split ratio 1:50 to 

the end of analysis) into a 6850 Agilent HP gas chromatograph connected to a 5975 

Agilent HP quadrupole mass spectrometer. Analytes were separated by a HP-5MS fused 

silica capillary column (stationary phase poly[5% diphenyl/95% dimethyl]siloxane, 30 m× 

0.25 mm i.d., 0.25 mm film thickness) with the following temperature program: 50 °C to 

100 °C at 20 °C min
−1

, then from 100 °C to 300 °C at 5 °C min
−1

, then a hold for 2.5 min 

at 300 °C, using helium as the carrier gas. The mass spectrometer operated under electron 

ionization (70 eV) and acquisition was performed on single ion monitoring (SIM) at the 

molecular ion of each PAH at the time windows corresponding to the elution region of the 

target PAH. 

Acenaphthene-d10 was utilised to quantify naphthalene, acenaphthylene, acenaphthene 

and fluorene; phenanthrene-d10 to quantify phenanthrene, anthracene, fluoranthene and 

pyrene; chrysene-d12 to quantify the remaining PAHs. Recovery of surrogated PAHs was 

determined with respect to the internal standard TTB. The procedural blank was 

determined by going through the same extraction and cleanup procedures for each series of 

samples. None of the analytical blanks were found to have detectable contamination of the 

monitoring PAHs and thus the results were not blank corrected. 
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3.2.2.6. Statistical analysis 

Mean and standard deviation of five replicates were used to compare results of soils 

and biochar amended soils. An analysis of variance (ANOVA) test was conducted with R 

software version 3.1.2 (2014-10-31) to evaluate significant difference between control and 

biochar amended soil.  

 

3.2.3. Results and discussion  

3.2.3.1. Soil and biochar characteristics  

The study was carried out using an agricultural soil classified as sandy-clay-loam 

(USDA, 2005) textured with 70% sand, 15% silt and 15% clay. The soil characteristics 

were as follows: pH 5.37, total C 0.77%, total N 0.24%, total H 0.43%, and cation 

exchange capacity of 12.1 meq 100 g
-1

. 

Results of biochar characterizations are reported in Table 3.2.1. The biochar used for 

soil amendment had a total content of C, N, H, and O of 71.4%, 0.7%, 1.5%, 5.9%, 

respectively, an ash content of 19.9% and a pH of 9.8 (Table 3.2.1). The biochar had a 

molar H/C ratio of 0.26 and molar O/C ratio of 0.06, indicating a comparably high 

aromaticity of the biochar carbon (Zimmerman et al., 2013).  

 

Table 3.2.1. Chemical characteristics of biochar applied in the field experiment. 

  
 

Value 

C (%)  71.4 

H (%)  1.54 

N (%)  0.72 

S (%)  0.59 

O (%)  5.9 

H/C (molar)  0.26 

O/C (molar)  0.06 

Ash (%)  19.9 

pH  9.8 

Charred (%)  97.6 
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The concentration of ∑16PAHs in the utilised biochar is 3.5 μg g
-1 

and all the US EPA 

PAHs were detected, with naphthalene as the most abundant species followed by 

phenanthrene (Table 3.2.2). With this concentration would pass current quality standards 

by the European Biochar Certificate (4 μg g
-1 

for premium quality and 12 μg g
-1 

for basic 

quality) and the International Biochar Initiative (6 μg g
-1

). Additional details about the 

physicochemical properties of the biochar are presented in Baronti et al. (2014). 

 

Table 3.2.2. BIOCHAR. Concentrations of the 16 USEPA PAHs and standard deviation 

(n=2) in biochar applied in the field experiment. 

Sample Id. BIOCHAR 

PAHs ng g
-1

 SD 

Naphthalene 2149 658 

Acenaphthylene 42 12.0 

Acenaphthene 37 2.1 

Fluorene 60 6.7 

Phenanthrene 674 38 

Anthracene 92 1.4 

Fluoranthene 133 0.2 

Pyrene 150 33 

Chrysene 49 11 

Benzo[a]anthracene 109 18 

Benzo[b]fluoranthene 98 3.6 

Benzo[k]fluoranthene 88 34 

Benzo[a]pyrene 93 6.9 

Indeno[1,2,3-cd]pyrene 19 5.6 

Dibenzo[a,h]anthracene 21 2.2 

Benzo[ghi]perylene 18 2.1 

Σ 16 EPA PAHs 3834 819 

 

 

3.2.3.3. Total PAH in soil and in biochar amended soil 

Almost all 16 US-EPA PAHs were detected and quantified in the amended soil samples 

analysed (Table 3.2.3 and Table 3.2.4). In all of the untreated soils, acenaphthylene, 

acenaphthene, indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene and benzo[ghi]perylene 
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were not detected. The recovery of spiked deuterated PAHs ranged between 60 and 100% 

and for all the samples an average of 78%, 78 and 75% for acenaphthene-d10, 

phenanthrene-d10 and chrysene-d12, respectively, with ∼10% RSD each.  

Total PAHs concentrations in untreated soils ranged from 18 ng
1
 to 29 ng g

-1
, in 

amended soils B from 26 ng g
-1

 to 60 ng g
-1

and in amended soils BB from 192 ng g
-1

 to 60 

ng g
-1 

(Table 3.2.3 and Table 3.2.4). The total level of 16 PAHs in amended soils BB was 

on the same level as other data reported for agriculture soils in Europe, for example, 60-

145 ng g
-1

 for arable soil in Switzerland (Bucheli et al., 2004); 187 ng g
-1

 for rural soil in 

United Kingdom (Wild and Jones, 1995) and 150 ng g
-1

 in Norwegian agriculture soil 

(Nam et al., 2008). The levels in amended soils BB, instead, were significantly lower than 

those in soils from non-industrial areas in China 318 ng g
-1

 and in arable lands in Poland 

395 ng g
-1 

(Maliszewska-Kordybach et al., 2008).  

 

 

Fig. 3.2.1. Concentrations of the 16 USEPA PAHs and standard deviation (n=5 

plot) in soil, biochar amended soil BB and B at different sampling dates from the 

beginning of the field experiment (May 2009). 
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ng g
-1

) and December (39 vs. 24 ng g
-1

) (Fig. 3.2.1, Table 3.2.2 and Table 3.2.3). 

Moreover, the differences were statistically significant although the high dispersion of 

PAH values between samples withdrawn from the same parcel (n = 5) (Fig. 3.2.1). The 

lower concentrations observed in winter for the treated soils suggest a seasonal variability 

superimposed to sampling heterogeneity.  

The mean concentration of total PAHs in soil amended BB, one year after the 

application in August 2011, was approximately 6 times higher than the control soil (153 vs. 

24 ng) (Fig. 3.2.1). However, the range of total PAHs concentrations in the 5 amended 

soils BB sampled in August 2011 (102 ng g
-1

-192 ng g
-1

) remained within the range 

reported for Italian agriculture soils (80-304 ng g
-1

, ARPA Piemonte - Rapporto Stato 

Ambiente 2009).  

Four years after the addition of 44 t ha
-1

 of biochar to agricultural soils BB, the PAH 

concentration was significantly higher than that in unamended soil suggesting that biochar 

can act as a source of soil contaminants. However, the level of PAHs in the biochar 

amended soil soil remained within the maximum acceptable concentration for a number of 

European countries, 5–50 µg g
-1

 (Carlon, 2007). In addition, table 3.2.5 shows that in the 

amended soils BB the concentrations of the PAHs decreased significantly during the four 

years following biochar application.  

Quilliam et al. (2013) reported that biochar can reduce the degradation of PAHs in two 

important types of agricultural soil, which in the short term could not only increase the 

concentration of soil PAHs but could also affect the long-term persistence of PAHs in the 

environment. On the contrary, our results suggest that the soil contamination by PAHs 

following biochar application is not significant at the application rates currently 

recommended in agriculture (20-60 t ha
-1

) and that biochar does not decrease PAH 

degradation and has not long-term effects. Long-term impacts of biochar additions to soils 

are still not fully understood, although evidence suggests that the characteristics of soil and 

biochar are of central importance. 
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Table 3.2.3. Concentrations of the 16 USEPA PAHs and standard deviation (n=5 

plot) in biochar amended soil B at different sampling dates from the beginning of 

the field experiment (May 2009). 

Sample Id. Aug 2011  Dec 2011  May 2012  May 2013 

PAHs ng g
-1

 SD  ng g
-1 

SD  ng g
-1

 SD  ng g
-1

 SD 

Naphthalene 16.9 5.5  9.9 0.9  7.2 2.2  6.6 1.9 

Acenaphthylene 2.34 1.59  0.52 0.66  n.d. -  n.d. - 

Acenaphthene 0.32 0.48  0.73 0.54  n.d. -  n.d. - 

Fluorene 3.5 1.72  2.8 1.78  2.8 1.26  2.6 1.13 

Phenanthrene 12.1 3.6  8.4 2.0  7.5 0.7  6.5 0.8 

Anthracene 2.19 0.70  1.71 0.57  1.50 0.52  1.32 0.52 

Fluoranthene 5.27 2.42  4.47 1.50  3.41 0.28  2.91 0.37 

Pyrene 4.74 2.06  3.66 1.29  2.76 0.30  2.64 0.20 

Chrysene 1.47 0.44  1.29 0.34  0.94 0.24  0.89 0.15 

Benzo[a]anthracene 1.72 0.68  1.32 0.29  1.17 0.11  1.20 0.20 

Benzo[b]fluoranthene 1.69 0.51  1.53 0.42  1.25 0.25  1.48 0.22 

Benzo[k]fluoranthene 1.36 0.94  1.33 0.94  0.99 0.72  1.00 0.61 

Benzo[a]pyrene 0.97 0.40  0.85 0.35  0.76 0.36  0.78 0.35 

Indeno[1,2,3-cd]pyrene 0.69 0.44  0.50 0.37  0.18 0.39  0.30 0.52 

Dibenzo[a,h]anthracene n.d. -  n.d. -  n.d. -  n.d. - 

Benzo[ghi]perylene 0.51 0.51  0.28 0.28  n.d. -  n.d. - 

Σ 16 EPA PAHs 55.8 17.3  39.0 7.6  30.5 4.5  28.1 2.9 
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Table 3.2.4. Concentrations of the 16 USEPA PAHs and standard deviation (n=5 

plot) in biochar amended soil BB at different sampling dates from the beginning of 

the field experiment (May 2009).  

Sample Id. Aug 2011  Dec 2011  May 2012  May 2013 

PAHs ng g
-1

 SD  ng g
-1 

SD  ng g
-1

 SD  ng g
-1

 SD 

Naphthalene 74.1 20.9  41.1 15.5  34.5 8.1  35.0 5.0 

Acenaphthylene 1.7 0.3  1.1 0.4  1.0 0.4  1.0 0.5 

Acenaphthene 2.0 1.0  1.4 0.5  1.5 0.4  1.1 0.2 

Fluorene 4.8 1.4  2.7 0.6  2.4 0.6  2.4 0.5 

Phenanthrene 29.8 11.5  17.5 5.9  18.7 5.4  14.3 5.5 

Anthracene 3.5 0.6  2.2 0.9  2.2 1.0  1.5 0.4 

Fluoranthene 10.3 3.3  5.9 2.3  6.8 3.5  4.9 1.7 

Pyrene 10.3 3.5  5.8 2.2  6.7 3.4  4.9 1.7 

Chrysene 3.0 1.0  2.0 0.6  1.4 0.8  1.2 0.3 

Benzo[a]anthracene 2.9 0.8  2.2 0.9  2.3 0.9  1.9 0.6 

Benzo[b]fluoranthene 3.8 1.8  3.3 1.8  2.9 1.1  2.8 1.1 

Benzo[k]fluoranthene 2.5 1.6  1.8 0.9  1.6 0.9  1.6 0.9 

Benzo[a]pyrene 2.3 0.6  2.0 0.4  2.2 0.6  1.8 0.3 

Indeno[1,2,3-cd]pyrene 0.91 0.38  0.82 0.28  0.85 0.21  0.90 0.30 

Dibenzo[a,h]anthracene n.d. -  n.d. -  n.d. -  n.d. - 

Benzo[ghi]perylene 1.0 0.42  0.83 0.37  0.95 0.53  0.85 0.42 

Σ 16 EPA PAHs 153.0 37.7  97.7 35.5  88.5 29.7  78.42 20.6 
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Table 3.2.5. Concentrations of the 16 USEPA PAHs and standard deviation (n=5 

plot) in soil control at different sampling dates from the beginning of the field 

experiment (May 2009). 

Sample Id. Aug 2011  Dec 2011  May 2012  May 2013 

PAHs ng g
-1

 SD  ng g
-1 

SD  ng g
-1

 SD  ng g
-1

 SD 

Naphthalene 5.6 2.0  6.2 1.3  5.0 2.0  5.6 1.0 

Acenaphthylene n.d. -  n.d. -  n.d. -  n.d. - 

Acenaphthene n.d. -  n.d. -  n.d. -  n.d. - 

Fluorene 1.55 0.3  1.61 0.42  1.74 0.14  1.52 0.27 

Phenanthrene 7.8 1.4  7.7 1.2  5.66 0.7  6.7 2.0 

Anthracene 0.90 0.08  0.82 0.32  0.90 0.32  0.92 0.48 

Fluoranthene 2.70 1.0  2.62 0.47  2.12 0.71  1.67 0.53 

Pyrene 1.83 0.89  1.81 0.20  1.82 0.57  1.37 0.31 

Chrysene 0.50 0.12  0.53 0.08  0.56 0.16  0.62 0.20 

Benzo[a]anthracene 0.98 0.25  0.84 0.16  0.80 0.13  0.73 0.16 

Benzo[b]fluoranthene 0.89 0.14  0.82 0.28  1.24 0.46  1.05 0.40 

Benzo[k]fluoranthene 0.74 0.16  0.79 0.14  0.59 0.10  0.55 0.10 

Benzo[a]pyrene 0.75 0.03  0.79 0.16  0.63 0.16  0.80 0.18 

Indeno[1,2,3-cd]pyrene n.d. -  n.d. -  n.d. -  n.d. - 

Dibenzo[a,h]anthracene n.d. -  n.d. -  n.d. -  n.d. - 

Benzo[ghi]perylene n.d. -  n.d. -  n.d. -  n.d. - 

Σ 16 EPA PAHs 24.2 3.08  24.5 2.01  21.0 3.97  21.6 3.01 

 

 

 

3.2.3.4. Individual PAH concentration and degradation  

The individual concentrations of 16 US EPA PAHs in control soils and in soils 

amended by two concentrations of biochar are presented in Tables 3.2.3, 3.2.4 and 3.2.5. 

The PAHs with 2–3 rings composed the majority of PAHs in control soil and in amended 

soil samples while PAHs with 4–6 rings only accounted for 24-40% of ∑PAHs on average.  

A detailed analysis of the contribution of the individual PAHs in amended soils 

indicated the dominance of naphthalene (40 ± 3.5% BB and 26 ± 3.2% B of the total 

PAHs) and phenanthrene (20 ± 1.3% BB and 25 ± 1.5% B of the total PAHs) in all the 

samples studied.  
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In the control soils, phenanthrene, naphthalene and fluoranthene dominated the PAH 

profiles, supplying 30 ± 2.4%, 25 ± 1.3%, and 10 ± 1.5% of the total PAH concentrations, 

respectively. In this control soil, the observed fingerprints of PAHs are in agreement with 

data in the literature, where the same compounds were reported to be the dominating ones 

in soil samples (Bucheli et al., 2004; Zhang et al., 2006; Kwon et al., 2014). Table 3.2.6 

and 3.2.7 show that in the amended soils B and BB the concentrations of the PAHs 

decreased significantly during the four years following biochar application. The total PAH 

decreases by about 50% compared to that found the first year. However, the degradation 

was generally higher for low molecular weight PAHs. Up to 61 and 56% in soils B and 

BB, respectively, whereas for PAHs with five and six rings the corresponding figures 

varied between 1 and 37%. In particular, naphthalene reduces its first year value to 61% in 

B and 53 in BB. Acenaphtylene, acenaphthene, fluorene, phenanthrene, anthracene, 

fluoranthene, pyrene and chrysene were all reduced to approximately 40-50% of their 

initial values (concentration found the first year). The PAHs with higher molecular 

weights, benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, 

benzo[a]pyrene, indeno[1,2,3-c,d]pyrene and benzo[ghi]perylene showed a decrease 

between 1 and 37%.  

In a few cases, an increase in concentration of PAHs is observed, which is likely caused 

by the heterogeneity of the soil. High molecular weight PAHs are well known for their 

recalcitrance to biodegradation because of their low bioavailability. PAH molecule 

stability and hydrophobicity are two primary factors which contribute to the persistence of 

HMW PAHs in the environment. This could due to the higher biodegradation rate of soil 

bacteria in utilizing lower than higher ring PAHs as energy (Olson et al., 2008). However, 

it is interesting to note that benzo[a]pyrene, considered to be representative for the group 

of cancerogenic PAHs, was detected in all amended soil analyzed here, with concentrations 

from 0.8 to 2.3 ng g
-1

. This levels of benzo[a]pyrene are lower than 3-13 ng g 
-1 

reported 

for agriculture soils in Norway, Poland, Czech Republic and China (Nam et al., 2008; 

Gusev et al., 2008; Maliszewska-Kordybach et al., 2009; Cao et al., 2013). Moreover, the 

level of benzo[a]pyrene varied in untreated soils from 3 to 3.7%, in amended soils B and 

BB from 1.5 to 2.8%. The presented results for control soil are in agreement with other 

data reported in the literature (3-5%) concerning soils from non-industrial areas (Desaules 

et al., 2008; Maliszewska-Kordybach et al., 2009; Cao et al., 2013).  
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Table 3.2.6. Reduction PAH concentration (%) in amended soils B compared to 

concentration found the first year (August 2011) at different sampling dates from 

the beginning of the biochar amendment (April 2009). 

Sample Id.  
 Dec 

2011 

 May 

2012 

 May 

2013 

PAHs 

Time after 

amendment      
  

27 

moths 
 

37 

moths 
 

49 

moths 

 
Reduction 

(%) 
     

Naphthalene    41  57  61 

Acenaphthylene    78  -  - 

Acenaphthene    -128  -  - 

Fluorene    21  21  26 

Phenanthrene    31  38  46 

Anthracene    22  31  40 

Fluoranthene    15  35  45 

Pyrene    23  42  44 

Chrysene    12  36  40 

Benzo[a]anthracene    23  32  30 

Benzo[b]fluoranthene    10  26  13 

Benzo[k]fluoranthene    2  27  26 

Benzo[a]pyrene    12  22  19 

Indeno[1,2,3-cd]pyrene    28  74  57 

Dibenzo[a,h]anthracene    -  -  - 

Benzo[ghi]perylene    45  -  - 

Total PAHs    30  45  50 
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Table 3.2.7. Reduction PAH concentration (%) in amended soils BB compared to 

concentration found the first year (August 2011) at different sampling dates from 

the beginning of the biochar amendment (April 2009). 

Sample Id.  
 Dec 

2011 

 May 

2012 

 May 

2013 

PAHs 

Time after 

amendment      
  

27 

moths 
 

37 

moths 
 

49 

moths 

 
Reduction 

(%) 
     

Naphthalene    45  53  53 

Acenaphthylene    33  40  41 

Acenaphthene    32  26  43 

Fluorene    44  51  51 

Phenanthrene    41  37  52 

Anthracene    38  38  56 

Fluoranthene    42  34  52 

Pyrene    44  35  52 

Chrysene    33  52  61 

Benzo[a]anthracene    26  21  37 

Benzo[b]fluoranthene    14  25  28 

Benzo[k]fluoranthene    28  35  37 

Benzo[a]pyrene    11  5  19 

Indeno[1,2,3-cd]pyrene    10  6  1 

Dibenzo[a,h]anthracene    -  -  - 

Benzo[ghi]perylene    -  -  - 

Total PAHs    36  42  49 
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Table 3.2.8. Reduction PAH concentration (%) in soils C compared to 

concentration found the first year (August 2011) at different sampling dates from 

the beginning of the biochar amendment (April 2009). 

Sample Id.  
 Dec 

2011 

 May 

2012 

 May 

2013 

PAHs 

Time after 

amendment      
  

27 

moths 
 

37 

moths 
 

49 

moths 

 
Reduction 

(%) 
     

Naphthalene    -1  11  0 

Acenaphthylene    -  -  - 

Acenaphthene    -  -  - 

Fluorene    -3  -12  2 

Phenanthrene    2  27  13 

Anthracene    9  -1  -3 

Fluoranthene    3  22  38 

Pyrene    1  0  25 

Chrysene    -7  -12  -25 

Benzo[a]anthracene    14  18  25 

Benzo[b]fluoranthene    8  -39  -18 

Benzo[k]fluoranthene    -7  20  25 

Benzo[a]pyrene    -5  17  -7 

Indeno[1,2,3-cd]pyrene    -  -  - 

Dibenzo[a,h]anthracene    -  -  - 

Benzo[ghi]perylene    -  -  - 

Total PAHs    -1  13  11 

 

 

3.2.2.5. Molecular diagnostic ratios 

PAH diagnostic ratios have been used to determine the source of PAH and the relative 

importance of combustion and petroleum derived PAH in sediments and in soils (Yunker 

et al., 2002; Tobiszewski and Namieśnik, 2012; Vane et al., 2013). PAH diagnostic ratios 

may be an efficient supporting tool in studying the fate of PAH in the soil and assessing 

the influence of the biochar on the PAH degradation/leaching. Mutsazawa et al. (2001) 

investigated the photodegradation of PAHs emitted with diesel particles deposited on soils 

and found that fluoranthene and pyrene were rather stable, but that pyrene degraded faster 
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on most of the model soils. Under natural conditions, the photodegradation of PAHs bound 

to diesel particles deposited on soils is expected to be very slow.  

The literature provides descriptions of more than ten different molecular diagnostic ratios 

(Katsoyiannis et al. 2011; Tobiszewski and Namieśnik 2012). In this study, three 

molecular ratios were used: anthracene/(phenanthrene+anthracene), 

fluoranthene/(fluoranthene+pyrene), naphthalene/(naphthalene+phenanthrene). 

Anthracene/(phenanthrene+anthracene) and fluoranthene/(fluoranthene+pyrene) diagnostic 

ratios are frequently applied to soil samples; on the contrary 

naphthalene/(naphthalene+phenanthrene) is not used in literature. Schimmelpfennig and 

Glaser (2012) have found that naphthalene and phenanthrene can be specific of the source 

of different biochars.  

The results of calculations of molecular diagnostic ratios for the soil, biochar amended soil 

and biochar samples are presented in Table 3.2.9 and in Fig. 3.2.2 in the form of the so-

called cross plots. The values of anthracene/(phenanthrene+anthracene) and 

fluoranthene/(fluoranthene+pyrene) in the biochar amended soil B and BB were of 0.10-

0.17 and 0.50-0.55, respectively, characteristic for contaminants of pyrogenic origin, and 

thus biochar. Moreover, those results are in agreement with the results of Kuśmierz et al. 

(2014) for soils situated in the vicinity of biochar production sites (Table 3.2.9). In 

addition, are similarly with molecular ratios calculated for various biochars on the basis of 

literature data (Table 3.2.9). PAH cross plots for the ratios of 

fluoranthene/(fluoranthene+pyrene) vs. naphthalene/(naphthalene+phenanthrene) shows 

that biochar addition to the soil induced a decrease of these molecular diagnostic ratios 

(Fig. 3.2.2). In particular, the biochar amendment at 44 t ha
−1

 caused a considerable 

similarity of these diagnostic ratios to those of the used biochar.  

PAHs present in soil can be degraded by native bacteria and fungi (Zhang et al., 2006), 

resulting in a (possibly selective) decrease of concentration over time, with rates depending 

on soil type, organic carbon and nutrient content, humidity and aeration (Sabaté et al., 

2006; Zhang et al., 2006). The results of microbial PAH degradation studies indicate that 

phenanthrene may be degraded faster than anthracene, and fluoranthene faster than pyrene 

(Sabaté et al., 2006). Moreover, PAHs may undergo desorption: fluoranthene and pyrene 

are desorbed at similar rates, but phenanthrene is desorbed faster than anthracene (Enell et 

al., 2005). The change of molecular ratios as a function of time for the biochar amended 

soils B and BB are presented in Table 3.2.10. It is interesting to note that PAHs molecular 

ratios have remained largely unchanged during the four years following biochar 
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application. Therefore, these resultants may indicate that PAH degradation in biochar 

amended soil is influenced by biochar.   
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Table 3.2.9. Calculated anthracene/[phenanthrene+anthracene] (ANT/[ANT+PHE]), fluoranthene/[fluoranthene+pyrene] (FLA/[FLA+PYR]), 

naphthalene/[naphthalene+phenanthrene] (NAP/[NAP+PHE]) ratios in biochar amended soil B and BB, soil C, biochar sample and literature 

data. 

Sample name ANT/[ANT+PHE] FLA/[FLA+PYR] NAP/[NAP+PHE]  

    Present work 

Soil C 0.1143 0.5683 0.4467  

Soil B 0.1646 0.5382 0.5302  

Soil BB 0.1038 0.5019 0.6934  

Biochar 0.1201 0.4707 0.7611  

    Literature 

Wood 400°C 0.1006 0.3715 - Keiluweit et al. (2012) 

Wood 500 °C 0.1238 0.3302 -  

Wood 600 °C 0.0683 0.3667 -  

Biochar 1 0.1923 0.4627 0.7714 Hilber et al. (2012) 

Biochar 2 0.1571 0.5304 0.7330  

Biochar 3 0.1668 0.5840 0.7876  

Biochar 4 0.1705 0.5495 0.7621  

Hardwood 500 °C 0.1071 0.6666 0.8626 Fabbri et al. (2013) 

Wood waste 550 °C 0.0882 0.5000 0.5866  

Wood waste 470 °C 0.0879 0.5789 0.8101  

Soil W1a 0.2396 0.4951 - Kuśmierz et al. (2014) 

Soil W1b 0.1969 0.5303 -  

Soil W1c 0.2139 0.4916 -  
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Table 3.2.10. Calculated anthracene/[phenanthrene+anthracene] (ANT/[ANT+PHE]), fluoranthene/[fluoranthene+pyrene] 

(FLA/[FLA+PYR]), naphthalene/[naphthalene+phenanthrene] (NAP/[NAP+PHE]) ratios in biochar amended soil B and BB and soil C 

sampled four times from 2011 to 2013 (August 2011, December 2011, May 2012 and May 2013). 

 

Sample name ANT/[ANT+PHE] FLA/[FLA+PYR] NAP/[NAP+PHE] 

Soil C    

Aug 2011 0.1032 0.5955 0.4186 

Dec 2011 0.0964 0.5907 0.4475 

May 2012 0.1378 0.5373 0.4679 

May 2013 0.1199 0.5497 0.4528 

Biochar amended soil B    

Aug 2011 0.1532 0.5264 0.5833 

Dec 2011 0.1696 0.5496 0.5424 

May 2012 0.1668 0.5532 0.4912 

May 2013 0.1688 0.5237 0.5038 

Biochar amended soil BB    

Aug 2011 0.1044 0.4993 0.7130 

Dec 2011 0.1099 0.5048 0.7019 

May 2012 0.1041 0.5031 0.6482 

May 2013 0.0969 0.5005 0.7104 
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Fig. 3.2.3. PAH cross plots for the ratios of fluoranthene/[fluoranthene+pyrene] (FLA/[FLA+PYR]) vs. 

naphthalene/[naphthalene+phenanthrene] (NAP/[NAP+PHE]). 
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3.2.3.6. Effects of biochar on soil properties and relationship with PAHs 

The chemical and physical characteristics of the soil and biochar amended soil B and 

BB during the three years of studies are reported in Tables 3.2.11, 3.2.12 and 3.2.13. 

Biochar amended soil pH, C content and CEC were increased and soil bulk density 

decreased under biochar amendments in both treatments, being more or less in proportional 

to the amendment rates for pH and CEC. On the contrary, the changes in C content and soil 

bulk density in all years were not corresponding with the biochar amendment rates. In 

particular, biochar amendment at 44 t ha
−1

 caused a consistent decrease in soil bulk density 

by 0.15 mg m
−3

 in 2010 year and by 0.06 g cm
−3

 in 2011 and 2012 years as compared to 

the corresponding control, respectively. Moreover, the biochar amendment at 44 t ha
−1

 

caused a consistent increase in organic C by 4.7% in 2010 year, by 3.9% in 2011 year and 

by 3.4% in 2012 year as compared to the corresponding control, respectively. This effect, 

however, also if less consistent is present in the biochar amended soil B. In these soils the 

biochar amendment at 22 t ha
−1

 caused an increase in organic C by 0.68% in 2010 year, by 

0.49% in 2011 year and by 0.37% in 2012 year as compared to the corresponding control, 

respectively. 

Biochar addition to the soil induced a significant increase of soil CEC. This increase of 

CEC in the biochar amended soils B and BB compared to control C (Table 3.2.11, 3.2.12 

and 3.2.13) is proportional to the amendment rates. The increase of CEC in soils amended 

can be attributed to the presence of retained oxygen content in biochar used in this 

experiment, as previously published (Lee et al., 2010). The retained oxygen content 

presents itself on the biochar as primarily carbonyl, carboxyl, and phenolic groups, all of 

which in part facilitate CEC through electrostatic interactions. Furthermore, this data 

shows that the biochar sample has the capability of not only serving as a long-term carbon 

sequestration agent, but also has the potential to increase soil CEC. 

The soil pH was clearly modified by the amendments in both treatments. In particular, 

the pH of the soil the first year after application significantly increased with the 

concentration of biochar amendment, starting from 5.50 in the control to 6.47 in the 

biochar amended soil B and 7.18 in the BB (Table 3.2.11, 3.2.12 and 3.2.13). A similar 

trend was observed by Fellet et al. (2011) using the same concentrations of biochar 

application. Compared to the first year of biochar amendment, biochar amended soil pH 

almost unchanged in the 2011 and 2012 in both treatments. The increase in soil pH after 

the application of biochar may be attributed to the alkaline nature of biochar.  
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PAH degradation in the soil is slow; however, PAHs may be degraded through properly 

stimulated soil microorganisms by mineralization, co-metabolic degradation and non-

specific radical oxidation (Wetzel et al., 1997). Soils inherently contain complex 

autochthonous microbial communities, which have PAH degrading abilities (Ding et al., 

2010). The acidity of soils can control conditions for microbial degradation and regulate 

the sorptive capacity of organic matter (e.g. by protonation of acidic functional organic 

matter groups), thus it may contribute in different ways to soil matrix effects on PAH 

degradation (Maliszewska-Kordybach, 1999; Bucheli et al., 2004). Therefore, in biochar 

amended soil BB the higher pH may have been important for influencing the fate of PAHs. 

Moreover, the biochar has been shown to increase microbial activity in soil (Steinbeiss et 

al., 2009) which can stimulate PAH degradation. Our results showed that total PAH in BB 

soil decreases by about 50% in two years, and therefore the addition of biochar could have 

increased the degradation of PAHs. 

 

 

Table 3.2.11. Chemical characteristics of soil C in the field experiment. 

 
Soil 

 

Jun 10 Feb 11 Jun 11 Jun 12 

C (%) 0.67±0.02 0.73±0.08 0.82±0.07 0.93±0.04 

pH 5.50±0.22 5.18±0.30 5.25±0.15 5.39±0.26 

EC (meq 100 g
-1

) 12.6±0.4 11.8±0.9 11.5±1.5 11.9±1.9 

Bulk density (mg m
-3

) 1.44±0.05 1.44±0.10 1.45±0.06 1.44±0.03 

Notes: Values in the tables are the mean value ± standard deviation from five replicates. 
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Table 3.2.12. Chemical characteristics of biochar amended soil B in the field experiment. 

 
Biochar amended soil 

Jun 10 Feb 11 Jun 11 Jun 12 

C (%) 1.35±0.25 1.33±0.30 1.31±0.29 1.30±0.29 

pH 6.47±0.24 6.54±0.25 6.32±0.14 6.34±0.24 

EC (meq 100 g
-1

) 18.16±0.96 18.32±1.05 18.14±0.83 18.22±0.78 

Bulk density (mg m
-3

) 1.42±0.03 1.42±0.07 1.40±0.03 1.40±0.06 

Notes: Values in the tables are the mean value ± standard deviation from five replicates. 

 

 

Table 3.2.13. Chemical characteristics of biochar amended soil BB in the field experiment. 

 
Biochar amended soil 

Jun 10 Feb 11 Jun 11 Jun 12 

C (%) 5.4±1.2 5.11±0.96 4.76±0.53 4.3±1.4 

pH 7.18±0.11 6.76±0.18 6.59±0.20 6.61±0.30 

EC (meq 100 g
-1

) 26.0±3.7 24.3±1.8 24.1±1.8 22.9±1.8 

Bulk density (mg m
-3

) 1.29±0.18 1.38±0.06 1.38±0.25 1.38±0.09 

Notes: Values in the tables are the mean value ± standard deviation from five replicates. 

 

 

 

3.2.4. Conclusions  

The fate of PAHs in biochar amended soil is relevant in order to prevent severe 

contamination to the environment. The results presented in this study show that the biochar 

addition determines an increase of the amounts of PAHs. However, the results 

corresponding to the amendment of 22 and 44 t ha
-1

 suggest that the soil contamination by 

PAHs following biochar application is not significant at the application rates currently 

recommended in agriculture (20-60 t ha
-1

). In fact, the levels of PAHs in the soil remained 

within the maximum acceptable concentration (5–50 µg g
-1

) for a number of European 
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countries. Moreover, biochar amendment in four years does not increase the concentration 

of soil PAH. Therefore, the biochar does not reduce the degradation of PAHs in 

agricultural soil and does not affect the persistence of PAHs in the environment. However, 

the impact of biochar on the fate of PAHs needs to be investigated further for different 

soils, biochars, over longer periods, and also under different field conditions. 
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4. Biochar characterization for agricultural utilization 

 

4.1. Relationships between chemical characteristics and phytotoxicity of biochar from 

poultry litter pyrolysis 

 

4.1.1. Introduction 

Biochar is the carbonaceous product of biomass pyrolysis which can be used as soil 

additive capable to mitigate a variety of agro-environmental stresses through the 

permanent storage of biomass carbon, pH correction, reduced synthetic fertilizer use, 

decreased runoff of fertilizers and agrochemicals (Glaser et al., 2002; Lehmann et al., 

2006; Steiner et al., 2007; Sohi et al., 2010; Uchimiya et al., 2010; Galinato et al., 2011; 

Vaccari et al., 2011; Ventura et al., 2013). 

The effect of adding biochar to soils may result in increased plant growth, productivity 

and yield (Graber et al., 2010, Vaccari et al., 2011, Joseph et al., 2013) attributed to the 

improvement of soil water-holding capacity (Case et al., 2012; Basso et al., 2013; Baronti 

at al., 2014), lower disease incidence in crops (Matsubara et al., 2002; Elad et al., 2010; 

Elmer and Pignatello, 2011), reduced bioavailability of heavy metals (Park et al., 2011), 

increased nitrogen and carbon bioavailability  (Scharenbroch et al., 2013). Preventing loss 

of nutrient leaching may reduce the needs of fertilizer use (Liang et al., 2006; Laird et al., 

2010). Because of its basicity, biochar can be used in acidic soils with poor cultivation 

properties (Glaser et al., 2002; Slavich et al., 2013). However, the effects of biochar are 

highly variable depending on the feedstock, thermochemical process conditions, 

application rate, soil characteristics, environmental conditions, and plant species (Chan and 

Xu, 2009; Jeffery et al., 2011, Schulz and Glaser, 2012), explaining the variety of 

outcomes reported in literature that range from a boost in plant productivity to evident 

phytotoxicity (Jeffery et al., 2011). 

Prompted by the urgency to find applications alternative to its disposal and 

management, poultry litter has been investigated as a substrate in the preparation of 

biochar (Chan et al., 2008; Van Zwieten et al., 2013; Novak et al., 2014). Possible benefits 

of amending soils with poultry litter biochar have been reported and attributed to an 

improved nitrogen availability (Chan 2008; Van Zwieten et al., 2013). Lower N2O 

emissions with respect to the raw poultry litter and the elimination of potential pathogens 

has advocated its pyrolytic conversion (Van Zwieten et al., 2013). However, the use of 
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biochar especially from animal origin has raised concerns related to its possible toxicity 

and studies have been recently conducted to explore physiological effects on biota (Bastos 

et al., 2014; Smith et al., 2013; Oleszczuk et al., 2012).  

Bioassays based on seed germination and early stage seedling growth is a simple and 

commonly used ecotoxicological test for evaluating the impact of biochar amendment on 

crop growth (Solaiman et al., 2012). The test of phytotoxicity of the biochars was made in 

the absence of soil due to the large soil–char interactions observed in some studies 

(Zimmerman et al., 2011) and because Solaiman et al. (2012) demonstrated that growing 

seedlings in pure biochar materials is a valid tool in assessing the effect of biochar 

application rate on germination. 

Seed germination, one of the most important phases in the life cycle of a plant, is 

highly responsive to existing environment (Kuriakose et al., 2008). Factors such as heavy 

metals (Wollan et al., 1978), PAHs (Rogovska et al., 2012), ammonia (Wong et al., 1983), 

salts (Adriano et al., 1973) and low molecular weight fatty acids (Zucconi et al., 1985) 

have been shown to be responsible for inhibitory effects. 

Some studies have examined the effect of biochar on seed germination (Free et al., 

2010; Solaiman et al., 2012; Busch et al., 2013). Rogovska et al. (2012) reported that 

biochars contain phytotoxic compounds that inhibit germination of maize. In contrast, Free 

et al. (2010) reported that maize seed germination was not significantly affected by 

biochars made from a range of organic sources. Solaiman et al. (2012) showed that 

biochars generally increased germination at low application rates (10-50 t ha
-1

), whereas 

higher application rates of 100 t ha
-1 

had no effect or decreased germination rate. 

Alburquerque et al. (2014) observed that different biochars exerted a positive effect on 

seed germination also to high application rates instead.  

Recent studies have also suggested different methods for reducing the toxicity of 

biochar (Bargmann et al., 2013; Buss and Masek, 2014). Washing biochar with water or an 

organic solvent has been successfully tested to reduce phytotoxicity of biochar (Bargmann 

et al., 2013; Bernardo et al., 2010; Rogovska et al. 2012). Meanwhile, Kołtowski et al. 

(2015) demonstrated significant reduction of biochars toxicity by drying them at various 

temperatures (100–300 °C) for 24 h.  

While the published and ongoing investigations are providing increasing data helpful to 

understand the relationships between biochar characteristics and seed germination  

(Bargmann et al., 2013; Kołtowski et al., 2015), further studies are needed to better clarify 

the role played by the chemical properties in determining the plant toxicity in order to 
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forecast strategies in biochar synthesis or post-treatments. Biochars from different 

feedstock and process conditions may exhibit a wide range of plant response, from growth 

inhibition to stimulation. The relatively simple seed germination test is a valid and fast tool 

to compare several biochars obtained from different starting materials and under different 

pyrolysis conditions. Since the test is performed in short time and without the buffering 

effect of soil, it could be considered a kind of precautionary procedure that highlights 

intrinsic phytotoxicity of the tested materials.   

The aim of this study was to evaluate phytotoxicity of biochar from poultry litter by 

means of standard germination tests and to identify possible relationships with its chemical 

characteristics. To this purpose, germination tests with cress (Lepidium sativum L.) were 

conducted to poultry litter biochars synthesised at different pyrolysis conditions. Besides 

manure, poultry litter typically contains bedding materials made up of lignocellulosic 

residues. Therefore, a comparison was made with biochars from a representative 

herbaceous residue, corn stalk, prepared under the same conditions. The effect of solvent 

extraction and biological conditioning on seed germination was tested on a selected poultry 

litter biochar prepared upon pyrolysis at 400 °C (PL400). The chemical composition of 

mobile constituents in this sample capable to be potentially released in the water and air 

compartments was investigated by solvent extraction and solid-phase microextraction 

(SPME). 

 

4.1.2. Materials and Methods  

4.1.2.1. Biochar synthesis 

Cornstalk was described in a previous study (Cordella et al., 2012). Granular poultry 

litter was a marketed organic fertilizer obtained after processing raw poultry litter collected 

from local broiler farms by pasteurizing at 80–110°C, milling, and pelletizing. Biomass 

was air dried at 60°C, milled and sieved at 2 mm before pyrolysis. 

Batch pyrolysis experiments were conducted under nitrogen with a fixed bed tubular 

quartz reactor placed into a refractory furnace (see Conti et al., 2014 for details) with about 

20 g cornstalk or 35 g poultry litter exactly weighed and uniformly placed onto a sliding 

quartz boat; nitrogen flow was set at 1500 cm
3
 min

-1
 and when the temperature inside the 

reactor, measured with a thermocouple, reached the selected value, the boat was pushed 

into the oven and left for a given residence time before pulling it back into the unheated 



 83 

part of the reactor. Pyrolysis were performed under three different conditions based on a 

previous study (Conti et al. 2014) of temperature/residence time: 400°C/20 min, 500°C/10 

min and 600°C/5 min. In accordance to the original biomass (cornstalk, CS; poultry litter, 

PL) and pyrolysis temperature, the obtained biochar samples were named CS400, CS500, 

CS600, PL400, PL500 and PL600. Chemicals were purchased by Sigma Aldrich. SPME 

Carboxen-PDMS fibers and the fiber holder were purchased by Supelco. 

 

4.1.2.2. Biochar Characterization 

Elemental composition (HCNS) was determined by combustion using a Thermo 

Scientific Flash 2000 series analyzer. Ash was determined as the residual mass left after 

exposure at 600 °C for 5 hours. The oxygen content was calculated from the mass balance: 

O%=100-(C+H+N+ash)%. 

Analytical pyrolysis (Py-GC-MS) were conducted at 900 °C for 100 seconds with a 

CDS 5250 pyroprobe interfaced to a Varian 3400 GC-Saturn 2000 MS. GC-MS conditions 

and the determination of indicators of carbonisation % charred and toluene/naphthalene 

ratio were described in Conti et al. (2014).  

The content of the 16 EPA priority PAHs was measured in triplicate as described in 

Fabbri et al., (2013). Briefly, about 0.5 g of biochar were spiked with 0.1 mL of surrogate 

PAH mix (Supelco for EPA 525 containing acenaphthene-d10, phenanthrene-d10 and 

chrysene-d12 5 μg mL
-1

 each in acetonitrile) and soxhlet extracted with 

acetone/cyclohexane (1:1, v/v) for 36 hours. The solution was filtered, added with 1 ml of 

n-nonane (keeper), carefully evaporated by rotatory vacuum evaporation at 40 °C and 

cleaned up by solid phase extraction onto a silica gel cartridge before analysis with a 

Agilent HP 6850 GC coupled to a Agilent HP 5975 quadrupole mass spectrometer; GC-

MS conditions were those detailed in Fabbri et al., (2013). Recovery of surrogate PAHs 

was determined with respect to the internal standard tri-tert-butylbenzene added prior to 

GC-MS analysis. 

Volatile fatty acids (VFAs) were determined by the single drop extraction procedure as 

described in Torri et al., (2014). About 200 mg of biochar exactly weighed was added with 

0.1 ml of internal standard solution (1.0 g l
-1

 2-ethylbutyrate in deionised water) and 

thoroughly mixed with 0.2 ml of saturated aqueous KHSO4. After centrifugation, a drop of 

dimethyl carbonate (1.2 µl) from a 10 µl chromatography microsyringe was exposed into 

the supernatant aqueous solution. After 20 min exposure the drop was retracted and 
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injected into a GC-FID (injection temperature 250°C) equipped with polar GC column 

(Agilent Q7221J&W nitroterephthalic-acid-modified polyethylene glycol DB-FFAP 222 

30 m, 0.25 mm, 0.2 µm) with the following thermal program: 80°C for 5 min, then 

10°C/min to 250°C. Calibration was performed by applying the same procedure to 

standard solutions containing known concentration of each VFA (namely: acetic, 

propionic, isobutyric, butyric, isovaleric and valeric acid). 

For the determination of N-NH4
+
, about 10 g of biochar were placed in an end-to-end 

shaker for 2 h with 1 N KCl (1:10 dw:v) followed by centrifuging at 4500 x g for 20 m and 

passing through a 0.45 µm paper filter. 

 

4.1.2.3. SPME of mobile compounds 

The SPME was applied to aqueous extracts following the procedure under development 

by Ghidotti et al. 2014 using a Carboxen-PDMS fiber direclty immersed (DI-SPME) into 

the test solution added with KH2PO4/Na2HPO4 phosphate buffer 2M at pH 5.3 and internal 

standard (o-eugenol and 2-ethyl butyric) under magnetic stirring for 30 minutes followed 

by thermal desoprtion at 250 °C and GC-MS analysis.  

Head space (HS) analysis was performed following the procedure described by Spokas 

et al., 2011 modified for the SPME sampling with Carboxen-PDMS fiberv (HS-SPME) 

utilising o-eugenol as internal standard (Ghidotti et al. 2015). 

Separation of thermally desorbed compounds was conducted with a DB-FFAP polar 

column (30m lenght, 0.25mm i.d, 0.25µm film thickness). 

 

4.1.2.4. Biochar post-treatments. Aqueous extraction  

About 2 g of PL400 was extracted with 50 mL of deionised water in a 100 mL flask at 

room temperature for 12 hours with mechanical shaking. The aqueous phase was separated 

by filtration through a 0.22 mm paper filter and used as such for the germination test, while 

an aliquot was kept at –20 °C for SPME-GC-MS analysis (see above). The solid biochar 

residue left after water extraction was further extracted with 50 mL of methanol under 

reflux for 12 hours. The methanol was separated by filtration and an aliquot corresponding 

to the 40g/L suspension of biochar was poured into petri dishes and dried overnight at 70 
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°C under vacuum to remove all the methanol. Thereafter deionised water was added to 

perform germination tests. The final solid biochar residue left after water and methanol 

extraction was dried overnight at 100°C under vacuum and utilized for germination tests. 

 

4.1.2.5. Biochar post-treatments. Biological treatment 

Microbial treatment of PL400 was conducted for 14 days with an activated sludge. The 

sludge was obtained from a municipal wastewater treatment plant located in Ravenna after 

centrifugation at 6000 rpm  (20% w/w volatile suspended solids). A suspension containing 

0.5 g of the concentrated sludge and 250 ml of 40 g l
-1

 PL400 in deionised water was 

thoroughly mixed under laminar shake at 120 rmp overnight. An aliquot of 10 ml of this 

suspension was added in petri dishes and stored at 14 days at 25°C before performing 

germination test as shown above. 

 

4.1.2.6. Germination tests 

The germination tests were conducted in four replicates by incubating 50 seeds of cress 

(Lepidium sativum L.) with 5 g of a mixture containing biochar and deionized water onto 

sterilized cellulose filter paper (Whatman No. 1) placed in a petri dish sealed with paraffin 

film. Three levels of biochar concentration were tested 2, 5 and 40 g L
-1

. These rates were 

equivalent to 2, 5 and 40 t ha
-1

 on an area basis of 10 cm soil depth and a dry bulk density 

of 1.5 kg m
-3

. Germination tests were also performed on the fractions obtained from the 

chemical and biological post-treatments of PL400 described above. The quantities of these 

fractions were adjusted to correspond to the concentration level of 40 g l
-1

 of the original 

biochar. Before incubation, the samples were shaken at 150 r.p.m. on a platform shaker at 

room temperature for 24 h. pH and electrical conductivity (EC) were determined. The pH 

was directly measured placing the glass-electrode into the suspension with a pH-meter 

Mettler Toledo SG 2-ELK. The electrical conductivity (EC) was measured with a Delta 

OHM HD 8706 conductimeter in the supernatant obtained by centrifuging the suspension 

and filtered at 0.45 micron. 

Phytotoxicity tests were performed on biochar:deionized water mixtures (wetted 

biochar) according to the procedure described in UNI 11357:2010. The experiments were 

conducted with 50 seeds of cress which were incubated with 10 g of biochar saturated with 

deionized water according to value of the water holding capacity (table 4.1.1) on sterilized 
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cellulose filter paper placed in a petri dish. All Petri dishes were covered and incubated in 

room thermostat at 25 ± 2° C for 72 ± 0.5 hours in the dark. Similarly, a control was 

prepared with deionised water. 

After 72 h of exposure, a visible root development was used as the operational 

definition of seed germination. Data were reported as percentage relative seed germination 

(RSG) with respect to the control (deionised water):  

RSG = (number of seeds germinated in the sample/ number of seeds germinated in 

control) * 100 

 

4.1.2.7. Statistical analysis  

All the experiments were conducted at least in duplicate. Results of germination tests 

were evaluated statistically using Analysis of Variance (ANOVA) performed with 

STATISTICA (StatSoft Italia, 2011) and GMAV (Underwood and Chapman, 1997) 

followed by Student-Newman-Keuls post hoc tests.  

  

4.1.3. Results and Discussion 

4.1.3.1. Characterization of biochar 

Bulk analysis 

The yields and characteristics of biochars obtained from the pyrolysis of poultry litter 

(PL400, PL500, PL600) under three different pyrolysis conditions are reported in Table 

4.1.1 and compared with those of biochar from corn stalk (CS400, CS500, CS600). As 

expected, the chemical characteristics of the biochars were dependent on the original 

biomass and the pyrolysis conditions. In particular, the H/C and O/C ratios decreased with 

increasing pyrolysis temperature, while the content of ash increased as observed with the 

same pyrolysis unit under the same conditions (Conti et al. 2014). Biochar from poultry 

litter contained higher levels of nitrogen, sulphur and ash, derived from the manure 

fraction, as demonstrated by comparative studies on manure and lignocellulosic biochars 

(Novak et al., 2014). In general, the elemental composition, ash content and the trends with 

pyrolysis conditions of the poultry litter chars here investigated were comparable to those 

reported in the literature (Chan et al. 2008, Cimò et al., 2014, Song et al., 2012, Van 

Zwieten et al., 2013). 
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Extractable compounds 

The concentrations of specific potentially toxic extractable compounds, namely PAHs, 

VFAs and ammonium are reported in Table 4.1.2. Solvent extractable PAHs occurred 

within the range of 0.7 - 1.7 mg kg 
-1

, values that were typical of biochars from different 

origins (Hale et al., 2012; Fabbri et al., 2013; Hiber et al., 2012). PAHs concentration can 

be considered negligible for acute effect lower than typical values in soils, Bucheli et al., 

2004. Generally, naphthalene was the most abundant PAHs followed by phenanthrene and 

fluorene, the level of benzo[a]pyrene was in the 5-65 ng g
-1

 range.  

The concentration of VFAs was significant higher in poultry litter biochars (4-9 mg kg
-

1
) in comparison to those from cornstalk. (2-4 mg kg

-1
). Acetic acid was always the most 

abundant VFA. VFAs derived from feedstock fermentation during silage in poultry litter 

and the new formation of fatty acids from the thermal degradation of lipids. 

Ammonium was not detected in cornstalk biohar, whereas it was abundant in biochars 

from poultry litter with higher concentrations in the less carbonised biochars. 
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Table 4.1.1. Yields, water-holding capacity, elemental analysis and ash (% wt dry weight mean values ± s.d. n=4) and elemental molar ratios of 1 
biochars from the pyrolysis of corn stalk (CS) and poultry litter (PL)  at different conditions (400 °C/20 min, 500 °C/10 min, 600 °C/5 min). 2 

Biochar 
Yield 

(% wt) 

water-

holding 

capacity 

(%)
 

Elemental content (%) 
Ash 

(%) 

Molar 

ratios 

C H N O S 
H/C 

          CS400 38.3±0.9 69.5 50±2.1 3.3±0.1 0.96±0.03 15±1.9 0.07±0.01 28.95±0.01 0.79 

CS500 33±1.6 81.1 51±1.6 2.7±0.1 0.91±0.04 14.9±0.1 0.03±0.04 30.14±0.02 0.63 

CS600 31.4±0.5 73.7 50.7±0.3 2.4±0.1 0.81±0.03 13±1.6 - 32.30±0.02 0.57 

PL400 49±3.4 88.6 33±4.7 2.7±0.5 3.6±0.8 11±2.1 1.7±0.5 46.64±0.01 0.98 

PL500 41.4±0.9 94.1 33±1.0 2.1±0.1 3.4±0.1 6.5±0.9 2.2±0.1 52.29±0.04 0.76 

PL600 39.5±0.5 92.3 31.4±0.5 1.7±0.1 3.2±0.5 4.6±0.3 2.3±0.1 56.82±0.01 0.65 

 3 

 4 

 5 

 6 
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Table 4.1.2. Molecular analysis of extractable compounds and volatile matter by Py-GC-

MS of biochar from corn stalk (CS) and poultry litter (PS) (mean values and s.d. from two 

replicates, T/N toluene/naphthalene ratio). 

 

Extractable Py-GC-MS 

Biochar PAHs VFAs NH4
+
   

 

mg kg
-1

 mg g
-1

 mg kg
-1 

 

% 

charred 

T/N 

CS400 0.72±0.06 3.8±1.2 - 53±3 8.5±0.7 

CS500 1.09±0.05 0.9±0.3 - 80±3 5.4±1.5 

CS600 0.84±0.01 2.6±0.1 - 92±3 3.0±1.7 

PL400 1.7±0.2 9.3±0.3 45 88±9
 

13±10 

PL500 0.88±0.05 4.3±2.0 25 90±3 12±6 

PL600 0.79±0.01 6.8±1.8 14 88±3 11±2 

 

 

Py-GC-MS. Thermolabile fraction 

The molecular composition of the thermally labile fraction could be inferred from the 

structural identification of the compounds identified in the pyrolysates (Conti et al., 2014, 

Fabbri et al., 2013, Kaal and Rumpel, 2009). The pyrolysate of CS400 was characterised 

by a complex pattern of compounds dominated by phenols and methoxyphenols associated 

to the presence of partially charred lignin, while the pyrolysate of CS600 contained few 

peaks due to the hydrocarbons associated to more heavily charred fraction (Fig. 4.1.1). 

Proxies of the degree of carbonisation established in previous studies (Conti et al., 2014) 

for lignocellulosic biomass were confirmed in this study for corn stalk biochar: the 

toluene/naphthalene ratio and the relative abundance of compounds representative of the 

charred fraction (% charred) exhibited a clear trend with H/C ratios (Table 4.1.2). 

However, biochar samples from poultry litter did not exhibit significant changes with the 

H/C ratios and the variability was higher. This finding would suggest that the pyrolysis 

proxies developed for lignocellulosic biochar could not be valid for biochar containing 

charred proteins and lipids. 

The occurrence of partially charred components from proteins and lipids were clearly 

evidenced in the pyrolysates of biochar. Phenols and methoxyphenols were detected in 

PL400 as well as in CS400 in accordance to the fact that the original substrates contained a  
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Figure 4.1.1. Total ion chromatograms from Py-GC-MS of poultry litter (PL) and 

cornstalk (CS) biochars. 
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lignocellulosic component. The distinctive signature of PL pyrolysate was the occurrence 

of nitrogen-containing compounds (NCCs) from proteins and a pattern of n-alkanes/n-alk-

1-enes assigned to the thermal cracking of bound or free fatty acids. The occurrence of 

saturated alkyl domains was confirmed by 
13

C-NMR studies on poultry manure biochars 

that disappear after carbonisation and may play a role in the availability of sorbed 

compounds (Cimò et al., 2014). Among the tentatively identified NCCs, pyrrole, pyridine, 

(iso)quinoline and carbazole along with their alkyl derivatives are indicative of partially 

charred proteinaceous matter. It worthwhile to note that NCCs were also identified in the 

volatile fraction by SPME as described in the next section.  

 

SPME-GC-MS. Volatile and water soluble compounds 

Information on the molecular characteristics of the mobile fraction was gathered by 

HS-SPME (volatile) and DI-SPME (water soluble). The attention was specifically focused 

to organic compounds, being reported that heavy metals are generally present below the 

limits causing adverse effects and loosely bioavailable (Cely et al., 2015). Moreover, 

Bastos et al. 2014 argued that in aqueous extracts PAHs and metals might occur at 

concentrations below the level to pose detrimental effects, at least for woody biochar up to 

80 t ha
-1

; however, it is to be remarked that the biological response depended on the 

organisms selected in the bioassay (Bastos et al., 2014). 

SPME was applied to sample PL400 that was utilised in post-treatment studies. The 

results are shown in figure 2 for the analysis of volatile organic compounds (VOCs) by 

HS-SPME (fig. 4.1.2A) and DI-SPME of aqueous extracts (fig. 4.1.2B), respectively. The 

VOCs were characterised by the presence of a wide array of compounds deriving from the 

thermal degradation of polysaccharides (e.g. cyclopentenones, furans), lignin (e.g. 4-

vinylphenol, guaiacol), NCCs (e.g. pyrroles, pyridines, indole), lipids (e.g. VFAs, acetic 

acid is also derived from hemicellulose). Alkylated pyrazines and acetamide were probably 

derived from Maillard reactions between carbohydrates and proteins.  

Notably, a suite of short chain n-alkanes/alkenes was identified supporting Py-GC-MS 

results and literature data about the occurrence of aliphatic components in poultry litter 

biochar (Cimò et al., 2014). It is expected that the polar fraction of VOCs will be 

preferentially distributed into the aqueous phase in comparison to non-polar constituents. 

In fact, the SPME-GC-MS analysis of the PL400 water extract showed a predominance of 

organic acids, including C2-C10 aliphatic and C7-C9 aromatic acids (Figure 4.1.2B). 
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Figure 4.1.2. Total ion chromatograms obtained after (A) HS-SPME of volatile organic 

compounds and (B) DI-SPME of water extract of poultry litter biochar (PL400).   

 

 

 

4.1.3.2. Effect of biochar on seed germination  

The pH and EC of the biochar/water suspensions utilized in germination tests are 

reported in Table 4.1.3. The pH values were higher for the suspensions with the more 

carbonized biochars from the same feedstock and increased for each biochar type with 

increasing concentration. Under the same conditions, the pH was higher in the suspensions 

with poultry litter biochar, in accordance to previous studies (Novak et al., 2014). 

The EC values of the suspensions increased with increasing biochar concentration and, 

at the same concentrations, the biochar from poultry litter had much higher (from 4 to 40 
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times for the same condition) EC values than the CS suspensions. Salinity can have a 

detrimental effect on seed germination and plant growth, especially in the seedling stage, 

though the response of various plant species to salinity differs considerably (Mengel and 

Kirkby, 1987). In general, salinity effects are mostly negligible in extracts with EC 

readings of 2000 µS cm
-1

 or less (Hoekstra et al. 2002). This critical level was exceeded in 

poultry litter biochar at 40 g L 
-1

. The toxicity of inorganic nitrogen results mainly from 

ammonia (NH3) which affects plant growth and metabolism at low concentration levels at 

which NH4
+ 

is not harmful (Mengel and Kirkby, 1987). At concentrations of 0.15-0.20 

mM, which are comparable to those calculated in the 40 g l
-1

 biochar/water mixtures, NH3 

could be toxic (Bennett and Adams, 1970). 

The effect of the biochar suspensions on seed germination of cress (Lepidium sativum 

L.) is presented in Table 4.1.4 in terms of percent seed germination with respect to control 

(deionised water only). 

The assay results in this work suggested that all the cornstalk biochar suspensions had 

little impact on seed germination as one-way ANOVA analysis showed no significant 

difference between control group and test groups (p > 0.05). Noticeably, CS400 was 

almost non-toxic to germination even if used as the growth substrate (UNI test, table 

4.1.3). 

On the contrary, all the biochar samples from poultry litter inhibited significantly the 

seed germination at the highest level of 40 g L
-1 

in water suspensions. At the harsh 

conditions of the UNI test the germination was totally suppressed. 

The comparison with cornstalk suggested that the toxicity of biochar from poultry litter 

could be explained by some distinctive chemical components originated from this 

feedstock. Compounds derived from lignin and cellulose/hemicellulose could be excluded 

on the ground that biochar samples from corn stalk did not suppress seed germination in 

water suspensions. The suspensions of biochars from both substrates presented similar pH 

values, thus this parameter is not involved in toxicity. This in accordance to the findings by 

Gell et al. 2011 who did not evidenced clear trends of pH and short term phytotoxicity in 

biochars of different origins, at least under neutral/basic conditions. Similarly, the 

concentration of solvent extractable PAHs was similar in PL and CS biochars, thus PAHs 

cannot be responsible of the observed toxicity. Acetic acid was present in all the biochars 

and at similar levels, partly due to the decomposition of cellulose/hemicellulose. The suite 

of alkanes/alkenes characterising the Py-GC-MS pyrolysates of poultry litter biochar 
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samples would suggest the presence of a lipid fraction producing shorter chain fatty acids 

by thermal degradation as confirmed by SPME-GC-MS on PL400. 

The main differences between the CS and PL biochars were the higher content of 

elemental nitrogen (table 4.1.1) and ammonium (table 4.1.2), and the presence of a 

thermally labile fraction derived from proteins and lipids (Py-GC-MS data).  

 

Table 4.1.3. Results from chemical analysis of biochars and relative water suspensions. 

Biochar pH   

Electrical conductivity  

(mS cm
−1

) 

 

2 g l
-1

 5 g l
-1

 40 g l
-1

    2 g l
-1

 5 g l
-1

 40 g l
-1

 

CS400 7.6 8.0 8.5    16 75 1.8 10
3
 

CS500 8.2 8.5 9.3    72 76 1.9 10
3
 

CS600 8.4 8.9 10.1    1.9 10
2
 3.5 10

2
 1.9 10

3
 

PL400 8.0 9.0 9.7    7.1 10
2
 1.3 10

3
 7.3 10

3
 

PL500 8.4 9.3 10.2    8.7 10
2
 1.5 10

3
 7.7 10

3
 

PL600 9.4 9.8 10.3    9.3 10
2
 2.0 10

3
 8.1 10

3
 

 

 

4.1.3.3. Germination tests after biochar post-treatment  

A selected sample of poultry litter biochar (PL400) was extracted with water followed 

by methanol extraction, the extracts and the residue were utilized in germination tests. 

Germination tests were also performed to PL400 after treatment with sewage sludge to 

assess the effect of biodegradation. The quantity of extracts and the residues corresponded 

to the biochar loading level of 40 g l
-1

. The results are presented in figure 4.1.3. The cress 

germination rate in the water extracts was similar to that of the original biochar 

suspensions indicating inhibition due to some components in the water extracts. The 

germination rates increased significantly to values similar to the control when the 

suspension was made with the biochar left after solvent extraction. These observations are 

supported by the results of Rogovska et al. (2012), who showed that growth inhibition no 

longer occurred when biochars were washed prior to germination. 
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Biochar suspensions treated with an active sludge for almost two weeks displayed a 

germination rate similar to the extracted biochar (figure 4.1.3). The reduced toxicity could 

be ascribed to microbial degradation of some noxious components as suggested by 

Bargmann et al. (2013). 

 

Table 4.1.4. Relative seed germination (% of control) of cress (Lepidium sativum L.) in 

biochar:deionized water suspensions (2, 5, 40 g l
-1

) and phytoxicity tests (% seed 

germination with respect to control) according to UNI 11357:2010 (mean values and s.d. 

from four replicates). The percent seed germination in pure deionised water (control) is 

also reported.  

 

Biochar 

Id. 

Germination (%) 

   

 2 g l
-1 

5 g l
-1 

40 g l
-1 

UNI 

Control 96±2  97±2 98±2 94±2 

CS400 98±2 93±1 96±4 81±3 

CS500 97±5 98±1 96±2 41±3 

CS600 95±4 95±2 96±1 14±4 

Control 92±2 92±2 92±2 94±1 

PL400 83±4 74±3 53±19 no germination 

PL500 77±2 73±2 47±10 no germination 

PL600 77±3 74±3 53±7 no germination 

 

 

4.1.4. Discussion 

The results showed in Figure 4.1.3 indicated that the relative seed germination of water 

extracts is low and comparable to that of the original biochar strongly supporting the 

hypothesis that the polar/ionic constituents ending up in water are responsible to the 

observed biochar toxicity. Similarly, Bargmann et al., 2013 applying germination tests to 

hydrochars from various origins demonstrated that the inhibiting effects were caused by 

some water soluble substances. These authors hypothesized that organic acids could be 

possibly responsible of the toxicity of the water extractable fractions. The potential of 

microbial detoxification was evidenced by Busch et al. (2013) who observed that the 

genotoxicity of hydrochar mixed with compost became lower than that of pure hydrochar. 
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Figure 4.1.3. Seed germination rates relative to control of original poultry litter biochar 

(PL400), water extracts and PL400 after post-treatments (solvent extraction and treatment 

with active sludge). Gerimantion tests referred to a biochar load of 40 g l
-1

. The 

germination rate of control (water only) is reported for comparison. 

 

 

 

Gell et al., 2011 showed that the short term phytotoxicity of biochar is dependent on the 

feedostock and is probably associated to ionic water soluble constituents rather than the 

less polar organic compounds composing tars. In accordance, the methanolic extract of 

biochar after water extraction exhibited a seed germination rate of 93% (not reported in 

figure 4.1.3) higher than that measured in the water extracts. Interestingly, among the 

various biochars investigated by Gell et al. (2011) those obtained from poultry biochar 

exhibited positive effects (radish roosh elongation) and acted in decreasing phytotoxicity 

of digestates. The calculated concentrations of VFAs in biochar suspensions (from data of 

table 4.1.2) were higher than those that may cause detrimental effects, for instance 

calculated PL400 VFAs at 40 g l
-1

 (374 µg g
-1

 ) was higher than 252 µg g
-1

 EC50 values 

for plant growth (Himanen et al., 2012). Probably because different factors are governing 

the physiological response of VFA including pH and bio-availability (Paavola and Rintala, 

2008; Himanen et al., 2012). In addition, the occurrence of aromatic acids was identified 

by DI-SPME along with VFAs.  
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These results of this study suggested that toxic compounds responsible for the toxicity 

of PL400 were water extractable and biodegradable. The SPME analysis of the water 

extracts (figure 4.1.3) evidenced that aliphatic and aromatic carboxylic acids were the 

dominant compounds. Py-GC-MS and HS-SPME analyses evidenced the presence of 

NNCs that seemingly were not partitioned into the water phase. The role of PAHs can be 

excluded as they are not water soluble and occurred at low, and comparable to cornstalk, 

levels in PL400.  

Biochar has a potential as a soil amendment for improving soil quality, decrease 

fertilizers losses and store carbon into the soil. Nevertheless, as soil additive, the absence 

of phytotoxicity is the minimal requirement. Biochar from poultry litter may exert negative 

effect at least at the relatively high level of soil amendment (40 t ha
-1

) due to the presence 

of water soluble and biodegradable components, probably derived from the thermal 

decomposition of proteins and lipids. However, the toxicity can drastically be reduced by 

means of washing with water or mixing with biologically active material. Whereas 

leaching (accompanied by wastewater generation) would be not an applicable option, 

biological treatment (e.g. composting or mixing with activated sludge) of phytotoxic 

biochars could be a simple and economic solution for increase the agronomic performance 

of biochar characterized by toxicity issues. Results obtained shows that biochar are not an 

“intrinsically safe” material, and every biochar (from different process and/or feedstock) 

has to be evaluated, checked and eventually treated before the agronomic application. 
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5. Application of analytical pyrolysis methods to the characterization of 

organic carbon in biochar 
 

5.1. Characterisation of soil and biochar amended soil by hydropyrolysis 

 

5.1.1. Introduction 

Strategies to improve soil quality and increase the soil organic carbon (SOC) in 

agricultural soils receive a lot of attention. SOC is an important soil constituent influencing 

soil and water quality, farming practices and ultimately food production (Bruce et al., 

1998). Besides its significance to soil quality and food production, soil carbon pool plays 

an important role in the overall global carbon budget. 

A possible way to increase SOC content is to add biochar to soil (Lehmann et al., 2006; 

Lehmann, 2007). Biochar is carbonaceous product of biomass pyrolysis which attracts 

research interest due to its potential value for long-term carbon sequestration with 

additional agronomic benefits. The application of biochar to soil has been proposed for 

increasing the SOC and restraining the growth of atmospheric CO2 concentration 

(Lehmann, 2007). Although our understanding of biochar stability has improved in recent 

years (Ameloot et al., 2013), there is limited research on the effects of biochar on native 

SOC and biochar carbon stability in soils in environmental conditions over a longer time-

scale. It is well known that a variable component of biochar is labile (degradable on 

annual/decadal timescales) and hence, only a proportion of total carbon in biochar provides 

long-term carbon sequestration.  

Actually, an increasing number of observations suggests that biochar can be degraded, 

by both biotic and abiotic processes (Hamer et al., 2004; Cheng et al., 2008; Guggenberger 

et al., 2008). However, in most of the studies the stability of biochar was assessed during 

laboratory incubations, with fresh biochars added to soil (Zavalloni et al., 2011; Ameloot et 

al. 2013). The duration of these experiments ranges from several weeks (Cross and Sohi, 

2011) to several years (Kuzyakov et al., 2009 and Kuzyakov et al., 2014), allowing to 

understand biochar stability under controlled laboratory conditions. Moreover, in recent 

studies various analytical techniques have been applied to investigate stability of biochar 

(De la Rosa et al., 2008; Kaal et al., 2008, 2009; McBeath and Smernik, 2009; Michel et 

al., 2009; Conti et al., 2014).  

However, there are only few studies estimating biochar degradation rates in soil 

(Kuzyakov et al., 2009; Hilscher and Knicker, 2011) and the long-term stability of biochar 
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in soils. This is because the changes of biochar content are too small for any practical 

experimental period. Many studies estimating the decomposition rates of biochar in soil are 

based on changes of CO2 efflux after biochar application. This approach is unsuitable to 

estimate biochar decomposition because of the much higher contribution of soil organic 

matter and plant residues mineralization of the CO2 compared to biochar.  

Therefore, our study addresses the separation and determination of labile and resistant 

carbon fractions in soils and biochar amended soils for the quantification of stabile fraction 

(black carbon). An emerging pyrolytic approach isolating and quantifying BC in soils and 

chars is hydropyrolysis combined with GC-MS. This analytical method has not yet been 

applied to biochar amended soils in long term studies. 

HyPy is pyrolysis assisted by high hydrogen pressures (150 bar) in presence of a 

dispersed sulphided molybdenum catalyst. Application of HyPy to sediments, soils or 

organic matter results in the reductive removal of all labile organic matter (defined as non-

BCHyPy) (Wuster et al., 2012), so isolating a highly stable portion of the BC (BCHyPy) that is 

predominantly composed of >7 ring aromatic domains (Meredith et al., 2012). The high 

hydrogen pressure and slow heating rate employed, together with the presence of a 

sulphided molybdenum catalyst, prevent the generation of secondary char (Love et al., 

1995) that is encountered with other chemical or thermal oxidative methods. In general, 

HyPy offers a potential mean to discriminate between bound and adsorbed organic species. 

As a result, the technique has been used to remove adsorbed products, facilitating analysis 

of organic carbon in samples (Brocks et al., 2003). 

It was also observed that HyPy appeared able to discriminate between relatively labile 

biochars reporting low BCHyPy values and more refractory, high-BCHyPy soot in pure 

samples, and between environmental samples from industrial sites with BC predominantly 

derived from combustion of fossil fuels and agricultural sites dominated by the burning of 

vegetation (Meredith et al., 2012). 

The aim of the study consists of the identification of the BC and characterization of the 

labile organic carbon in biochar amended soils in a four years field study. Here, for the first 

time, we present the molecular composition of labile fraction of soil with biochar by HyPy. 
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5.1.2. Materials and methods  

5.1.2.1. Soils collection and incubation experiment 

The field experiment was setup in a vineyard at the “Marchesi Antinori - La Braccesca 

Estate”, Montepulciano, Tuscany, Italy (43°10′15″ N, 11°57′43″ E). A randomized plot 

experiment, with three treatments and five replicates, was setup in 2009. Each plot, 15 in 

total, had a surface area of 225 m
2
 (7.5 m in width and 30 m in length) including 4 

vineyard rows and 3 inter-rows. The treatments were: two biochar applications at a rate of 

22 t ha
-1

 each, in 2009 and 2010 (BB); and a control (C). Biochar was applied in the inter-

row space of the vineyard using a spreader and it was incorporated into the soil using a 

chisel plow tiller at 0.15 m depth. 

Untreated soil (control) and soil treated by biochar amendment were sampled four 

times from 2011 to 2013 (August 2011, December 2011, May 2012 and May 2013). Forty 

samples (5 replicates x 2 treatments x 4 sampling seasons) were examined, each sample 

was dried at 40 °C, sieved (mesh size: 2 mm) in order to obtain homogeneous samples free 

of stones, larger roots and other coarse fragments, and stored at - 20 °C.  

 

5.1.2.2. Soils, biochar amended soils and biochar characterization 

The soil is a sandy-clay-loam (USDA, 2005) from the 0−30 cm horizon of the 

vineyard. It was air-dried (72 h) and then sieved (2 mm). The contents of carbon, nitrogen, 

hydrogen and sulfur of soil and biochar amended soil were determined by an elemental 

analyzer (Thermo Scientific, FLASH 2000 Series). As the carbonate concentration of the 

soils was negligible, the total measured C concentration was considered to represent TOC. 

The pH, was measured potentiometrically in a 1:2.5 soil–water suspension. The CEC 

analysis was performed by saturation with barium–chloride at pH 8.2, displacement of 

adsorbed barium by 0.05 M MgSO4 and titration of the Mg remaining in solution with 

0.025M EDTA (Gessa and Ciavatta, 2000). The texture of the vineyard soil was composed 

of 15% clay, 15% silt, and 70% sand. 

The biochar used in the experiment is a commercial charcoal provided by “Romagna 

Carbone s.n.c.” (Italy) obtained from orchard pruning biomass through a slow pyrolisis 

process at temperature of 500 °C in a transportable ring kiln of 2.2 m in diameter and 
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holding around 2 t of feedstock. The biochar at the end of the pyrolisis was crushed into 

particles smaller than 5 cm of diameter before the soil application.  

The contents of carbon, nitrogen, hydrogen and sulfur of biochar were determined by 

combustion using a Thermo Scientific FLASH 2000 Series CHNS/O Elemental Analyzer. 

Ash content of the biochar was measured by heating samples in a muffle at 550 °C for 6 

hours, as proposed by ANPA (2001). The oxygen content was calculated from mass 

balance: %O=100-% (C+H+N+ash). The pH of biochar was measured (1:10 wt/wt ratio of 

biochar with deionized water) by a digital pH meter (HI 98103, Checker®, Hanna 

Instruments) at room temperature. Prior to this analyses, biochar was sieved at 2 mm and 

oven dried at 40 °C for 72 h. 

 

5.1.2.3. Hydropyrolysis  

Hydropyrolysis (HyPy) tests were performed using the procedure described in detail in 

a number of publications (e.g. by Ascough et al., 2009; Meredith et al., 2012). Briefly, 50-

100 mg of biochar sample and 3-4 g of biochar amended soil were loaded with a Mo 

catalyst using an aqueous/methanol 0.2 M solution of ammonium dioxydithiomolybdate 

[(NH4)2MoO2S2]. Catalyst weight was ~ 5% of the sample weight for soil and biochar 

amended soil,  ~ 10% for biochar. The catalyst loaded biochar samples were placed within 

shortened borosilicate pipette ends (20 mm long), plugged at each end with pre-cleaned 

quartz wool and then placed in the HyPy reactor. The catalyst loaded soil and biochar 

amended soil samples instead were placed directly in the reactor with steel wool on the 

bottom. We used the recommended temperature program previously optimized for 

pyrogenic carbon quantification where the samples are heated at rate of 300°C min
-1 

from 

50 to 250°C, then heated at 8 °C min 
-1 

from 250°C until the final temperature of 550°C for 

2 min (Ascough et al., 2009; Meredith et al., 2012), all under a hydrogen pressure of 15 

MPa. A hydrogen sweep gas flow of 5 L min
-1

, measured at ambient temperature and 

pressure, ensured that the products were quickly removed from the reactor vessel, and 

subsequently trapped in a silica gel-filled trap cooled by dry ice.   

 

5.1.2.4 Black carbon quantification 

The BC (reported as BCHyPy) content of each sample was derived by comparing the 

organic carbon (OC) content of the catalyst loaded samples prior to HyPy with those of 
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their HyPy residues (Eq. (1)). Elemental composition (HCNS) was determined by 

combustion using a Thermo Scientific Flash 2000 series analyzer.  

 

BCHyPy (BC=OC%) = 
Residual OC (mg C in HyPy residue including spent catalyst) 

Initial OC (mg C in sample including catalyst)
 x 100 

 

 

As the carbonate concentration of the soils was negligible, the total measured C 

concentration was considered to represent total organic carbon (TOC). The TOC content 

was determined on 5 samples of biochar amended soil and 5 control soil according to the 

Ministero per le Politiche Agricole (1999), Method VII.1. Samples were pre-treated with 

HCl 1.5 M (40 uL in 2-3 g of sample), heated at 60 °C for 1 hour; this procedure was 

repeated for 4-5 times, till the samples stop reacting with HCl. Determinations were made 

using a Thermo Scientific FLASH 2000 Series CHNS/O Elementar Analyzer. 

 

5.1.2.5. Non-BCHyPy fraction characterisation  

The non-BCHyPy fraction (hydropyrolysate) from the soil, biochar amended soil and 

biochar samples were desorbed from the silica recovered from the trap with 10 ml aliquots 

of n-hexane and dichloromethane (DCM). The eluents were evaporated to 1 ml at room 

temperature for 12 h prior to analysis. GC–MS analyses in full scan mode (m/z 35–650) 

were performed on 6850 Agilent HP gas chromatograph connected to a 5975 Agilent HP 

quadrupole mass spectrometer (EI mode, 70 eV), equipped with an autosampler and a 

split/splitless injector. Analytes were separated by a HP-5MS fused silica capillary column 

(stationary phase poly[5% diphenyl/95%dimethyl]siloxane, 30 m × 0.25 mm i.d., 0.25 mm 

film thickness), using helium as the carrier gas, and an oven programme of 50°C (hold for 

2 min) to 300°C (hold for 33 min) at 5°C min
-1

. Samples (1 µl) were injected under 

splitless conditions (1 min, then split ratio 1:50 to the end of analysis) with an injector 

temperature of 280°C. The abundance of the individual n-alkanes were quantified from the 

m/z 57 mass chromatograms, and for the PAHs the mass chromatograms of the molecular 

ion of each compound was used, following the addition of 100 µl of hexatriacontane (100 

mg l
-1

, Sigma-Aldrich) and 100 µl of 1,3,5-tri-tert-butylbenzene (TTB, 100 mg l
−1 

Sigma-

Aldrich) respectively as internal standards, assuming a response factor for each compound 

of 1. 
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The PAHs were identified by matching the retention times of each peak in the sample 

chromatogram with those of a standard solution. Interfering coelution problems were 

evaluated in the samples by comparing mass spectra of the samples with those of the 

standards as well as with those from the NIST mass spectra library (NIST MS Search r. 

2.0).  

 

5.1.2.6. Statistical analysis  

Quantitative data are presented as mean values ± standard deviation (n = 5). An 

analysis of variance (ANOVA) was undertaken to determine significant difference between 

control and soil with biochar. A significant difference was statistically considered at level 

of p < 0.05.  

 

5.1.3. Results and discussions  

5.1.3.1. Properties of the soil and biochar 

The study was carried out using an agricultural soil classified as sandy-clay-loam 

(USDA, 2005) textured with 70% sand, 15% silt and 15% clay. The soil characteristics 

were as follows: pH 5.37, total C 0.77%, total N 0.24%, total H 0.43%, and cation 

exchange capacity of 12.1 meq 100 g
-1

 

Results of biochar characterizations are reported in Table 5.1.1. The biochar used for 

soil amendment had a total content of C, N, H, and O of 71.4%, 0.7%, 1.5%, 5.9%, 

respectively, an ash content of 19.9% and a pH of 9.8 (Table 5.1.1). The biochar had a 

molar H/C ratio of 0.26 and molar O/C ratio of 0.06, indicating a comparably high 

aromaticity of the biochar carbon (Zimmerman et al., 2013). All the US EPA PAHs were 

detected in the utilised biochar and summed up to 3.5 μg g
-1

, with naphthalene as the most 

abundant species followed by phenanthrene. With this concentration would pass current 

quality standards by the European Biochar Certificate (2013, 12 μg g
-1

) and the 

International Biochar Initiative (2012, 20 μg g
-1

). Additional details about the 

physicochemical properties of the biochar are presented in Baronti et al. (2014). 
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Table 5.1.1. Chemical characteristics of biochar applied in the field experiment. 

  
 

Value 

C (%)  71.4 

H (%)  1.54 

N (%)  0.72 

S (%)  0.59 

O (%)  5.9 

H/C (molar)  0.26 

O/C (molar)  0.06 

Ash  19.9 

pH  9.8 

Charred (%)  97.6 

 
 

5.1.3.2  Stable carbon fraction  

It is important to determine how much of the carbon contained in biochar is potentially 

stable over long periods of time as there are likely to be various fractions, differing in their 

stability, ranging from very unstable (labile) fractions to very recalcitrant (stable) fractions. 

The HyPy method has been demonstrated to remove almost all labile organic carbon, 

leaving a residue of highly stable with the average ring structures greater than 7 fused rings 

(Meredith et al., 2012; Wuster et al., 2012). The low molecular weight non-BCHyPy that are 

removed by HyPy along with any other residual labile organic compounds are unlikely to 

be stable on centennial timescales due to their susceptibility to biological and chemical 

oxidation (Ascough et al., 2008).  

We used the HyPy to quantify the effect of biochar addiction in soils on the level of 

BC. Obviously, the effect of biochar addition in soils on the level of BC will depend on the 

background level of BC in the soil before treatment, the BC in the original biochar, and the 

quantity of added biochar. Then, environmental processes (evaporation, biodegradation, or 

abiotic degradation) will affect the fate and levels of BC in amended soil. 

The high BCHyPy value found for biochar sample (83±3.3%) and the very high stability 

of this fraction under HyPy conditions (17±1.2%) seen in this study suggest that it is 
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composed predominantly of soot-derived BC and that carbon added with biochar should be 

quite recalcitrant to degradation.  

 

Table 5.1.2. Weight loss (%) of the soil and biochar amended soil during HyPy treatment. 

Sample 

Weight loss (%) 

Aug 2011 Dec 2011 May 2012 May 2013 

Biochar amended soil 6.2±0.7 6.9±0.4 5.8±0.8 7.7±1.2 

Soil 7.0±0.8 7.1±0.5 7.4±0.3 6.6±0.4 

 
 

Mass losses during HyPy of the samples were c. 7.7–5.8% w/w and no difference was 

found observed between biochar amended soil and soil without biochar (Table 5.1.2). On 

the contrary, the results show a significant difference in BCHyPy concentration during four 

years of biochar experiment (Fig. 5.1.1). The BCHyPy concentration in amended soils, one 

year after the application in August 2011, was approximately 20 times higher than the 

control soil (79% ± 4.0% vs. 5.4% ± 1.3%). For the soil samples the BCHyPy content is 

6.1% (±2.1%), which is comparable with range of BC contents reported by Hammes et al. 

(2007) for a sand-rich soil (Chernozem) and a clay-rich soil (Vertisol). The carbon present 

in control without biochar was very labile during HyPy, with complete conversion 

apparent at 550°C, and therefore a BCHyPy content very low (BC/OC = 5.2-8.0%). The low 

BCHyPy reported for soil samples suggests that is composed predominantly of 

lignocellulosic material and humic acids.  
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Figure 5.1.1. Black carbon (BC) as proportion of organic carbon (OC) as measured by 

HyPy of the soil (C), biochar amended soil (BB) and biochar.  

 

 
 

The BCHyPy concentration in biochar amended soils in the 4-year study ranged between 

79% ± 4.0% and 61% ± 2.4% (Fig. 5.1.1) The change BCHyPy as a function of time for the 

biochar amended soils and reference soils without biochar are presented in Fig. 5.1.1. It is 

interesting to note that the labile carbon during the first year was 21% and that really 21% 

and 24% of total organic carbon has been lost after 2 e 3 years, respectively (Fig. 5.1.1). 

However, table 5.1.2 shows that in biochar amended soil the BCHyPy decreased during the 

three years following biochar application. The BCHyPy loss during the experiment was 13 ± 

8.5% after 2 years and 18 ± 2.4% after 3 years comparing with the first year value. 

Therefore, one possible explanation for the organic carbon decrease is the organic 

degradation combined with the leaching of a small part of the BCHyPy fractions in the 

biochar amended soil after four years of weathering.  

 

5.1.3.3. Labile fraction 

The non-stable fraction is also very important and, in addition to the quantification of 

the BCHyPy fraction, HyPy also allows the molecular characterisation of the labile fraction 

defined as non-BCHyPy fraction. The labile fraction is the part of the biochar that during its 

storage in soil is released by predominantly microbial activity within the first few weeks or 

months after the application of biochar (Masek et al., 2013). Therefore, the labile fraction 

that evolves from biochar during its storage in soil is highly likely to impact on microbial 
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activity, and therefore affects the functioning of the soil as a whole. Some studies have 

examined the non-BCHyPy fraction from soils (Meredith et al., 2013). These fractions are 

likely to be dominated by products of decomposition of labile organic matter such as 

lignocellulosic material and humic acids. However, there are not researches that identifie 

labile organic compounds in biochar amended soils. Moreover, the HyPy allows to 

characterize these materials with better preservation than typically encountered with more 

traditional pyrolytic methods. 

 

5.1.3.4 Aromatic hydrocarbon non-BCHyPy fraction  

As well as isolating the BCHyPy fraction, HyPy also allows the characterisation of the 

non-BCHyPy material at a molecular level by GC-MS analysis. The remaining material that 

was labile under HyPy conditions, as so is defined as non-BCHyPy can be recovered and 

characterised. The mass chromatograms of the non-BCHyPy fraction (Fig. 5.1.2) derived 

from soil and biochar amended soil contain a high abundance of PAHs, predominantly 

fluoranthene and pyrene. The PAHs released and trapped following HyPy treatment can be 

considered as part of the BC continuum. Their presence in the non-BCHyPy fraction will be 

due to their greater volatility relative to the larger more condensed and refractory aromatic 

domains which form the BCHyPy.  
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Fig. 5.1.2. Total ion chromatograms from HyPy of biochar amended soil and soil (non-

BCHyPy fraction). 
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Table 5.1.3. Concentration of PAHs (µg g
-1

) released by the HyPy of biochar amended 

soil. 

PAHs 

Biochar amended soil 

Aug 2011 Dec 2011 May 2012 May 2013 

Naphthalene 0.15±0.32 n.d. n.d. n.d. 

Acenaphthene  0.33±0.32 n.d. n.d. n.d. 

Fluorene 0.13±0.06 0.10±0.13 0.09±0.02 0.08±0.12 

Phenanthrene 1.4±1.1 1.7±1.7 0.89±0.68 0.91±0.42 

Anthracene 0.05±0.03 0.05±0.02 0.08±0.03 0.14±0.07 

Fluoranthene 3.0±1.5 3.3±1.4 2.9±0.9 2.4±1.1 

Pyrene 33.2±17.6 36.3±15.5 38.0±14.3 30.3±12.8 

Chrysene n.d. n.d. n.d. n.d. 

Benzo[a]anthracene  n.d. n.d. n.d. n.d. 

Methylchrysene 0.43±0.12 0.56±0.34 0.55±0.39 0.43±0.06 

Benzo[b]fluoranthene n.d. n.d. n.d. n.d. 

Benzo[k]fluoranthene n.d. n.d. n.d. n.d. 

Benzo[a]pyrene  n.d. n.d. 0.02±0.04 n.d. 

Indeno[1,2,3-cd]pyrene n.d. n.d. 0.15±0.33 n.d. 

Dibenzo[a,h]anthracene n.d. n.d. n.d. n.d. 

Benzo[ghi]perylene 0.29±0.25 0.40±0.37 0.30±0.21 0.18±0.23 

     

Total PAHs
 38.9±20.5 42.4±19.3 42.9±16.4 34.5±14.3 

 

Notes: Values in the tables are the mean value ± standard deviation from five replicates. 
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Table 5.1.4. Concentration of PAHs (µg g
-1

) released by the HyPy of soil. 

PAHs 

Soil 
 

Aug 2011 Dec 2011 May 2012 May 2013 

Naphthalene n.d. n.d. n.d. n.d. 

Acenaphthene  n.d. n.d. n.d. n.d. 

Fluorene 0.13±0.02 0.13±0.05 n.d. n.d. 

Phenanthrene 0.75±0.17 0.44±0.13 0.27±0.07 0.22±0.10 

Anthracene 0.09±0.05 0.09±0.08 0.05±0.01 0.06±0.02 

Fluoranthene 1.84±0.53 1.57±0.62 1.55±0.18 1.51±0.32 

Pyrene 20.5±6.3 17.5±6.6 15.9±2.2 16.7±4.2 

Chrysene n.d. n.d. n.d. n.d. 

Benzo[a]anthracene  n.d. n.d. n.d. n.d. 

Methylchrysene 0.27±0.11 0.39±0.21 0.30±0.04 0.13±0.08 

Benzo[b]fluoranthene n.d. n.d. n.d. n.d. 

Benzo[k]fluoranthene n.d. n.d. n.d. n.d. 

Benzo[a]pyrene  n.d. n.d. n.d. n.d. 

Indeno[1,2,3-cd]pyrene n.d. n.d. n.d. n.d. 

Dibenzo[a,h]anthracene n.d. n.d. n.d. n.d. 

Benzo[ghi]perylene 0.17±0.15 0.18±0.08 0.11±0.09 n.d. 

     

Total PAHs
 23.9±7.2 20.6±7.8 18.2±2.4 18.7±4.4 

 

Notes: Values in the tables are the mean value ± standard deviation from five replicates. 

 

 

The PAHs detected and quantified in amended and untreated soils ranged from 2-ring 

compounds (naphthalene) to 6-ring compounds (benzo[ghi]perylene), with the 4-ring 

compound pyrene being the most abundant (Table 5.1.3 and Table 5.1.4). In almost all of 

the soils, fluorene, phenanthrene, anthracene, fluoranthene and pyrene were detected. This 

range of ring size is consistent with the PAHs distribution found in the non-BCHyPy fraction 

generated by the HyPy of soil samples (Meredith et al., 2013), and the definition of BCHyPy 

as being composed of PAHs with >7 rings proposed by Meredith et al. (2013). However, in 

Meredith et al. (2013) has been reported a bigger average ring distribution.  
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We found that biochar amendment influence soil PAHs concentration during the 

incubation period (Fig. 5.1.3). The total mean concentration value of PAHs in the amended 

soils resulted higher than those of untreated soils during the 4 years of experiment (Fig. 

5.1.3). The total PAHs concentration in untreated soils ranged between 10.4 and 31.9 µg g
-

1 
and in biochar amended soils between 16.1 and 75.2 µg g

-1
 (Table 5.1.3 and Table 5.1.4). 

In addition, in the amended soils the concentrations of the PAHs did not decrease during 

the four years following biochar application (Fig. 5.1.3). However, the differences were 

not statistically significant due to the high dispersion of PAH values between samples 

withdrawn from the same parcel (n = 5) (Table 5.1.3). 

 
Figure 5.1.3. Concentration of PAHs (µg g

-1
) released by the HyPy of soil and biochar 

amended soil 

 

 

 

A detailed analysis of the contribution of the individual PAHs in biochar not subject to 

environmental degradation and biochar amended soil indicated a similar distribution 

profile in the non-BCHyPy fraction, with dominance of fluoranthene and pyrene in all the 

samples studied (Table 5.1.3 and Table 5.1.5). However, also in the control soils, 

fluoranthene and pyrene dominated the PAH profiles, supplying 7.6 ± 2% and 85 ± 8% of 

the total PAH concentrations, respectively. Therefore, the distribution profiles of PAHs, 

which comprise approximately 5-10% by weight of the non-BCHyPy, do not reflect biochar 

modification.  

Moreover, these long term field trials did not allowed to observe systematic changes in 

the PAH distribution of the non-BCHyPy fractions. Four years after the addition of biochar 
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to agricultural soils, the PAHs not were degraded and the distribution profile is the same 

during the 4 years of experiment.  

 

Table 5.1.5. Observed concentration of PAHs released by the HyPy of biochar and a 

corresponding biochar amended soil (2.22% (w/w) of reference biochar ). 

PAHs 
Biochar 

(µg g
−1

) 

a
Soil + biochar 

(µg g
−1

) 

Naphthalene n.d. n.d. 

Acenaphthene  4.7±0.6 0.24 

Fluorene 17±3.5 0.30 

Phenanthrene 419±79.0 5.45 

Anthracene 10±1.7 0.19 

Fluoranthene 149±23.3 3.41 

Pyrene 468±110 23.28 

Chrysene n.d. n.d. 

Benzo[a]anthracene  n.d. n.d. 

Methylchrysene 7.0±1.6 0.35 

Benzo[b]fluoranthene n.d. n.d. 

Benzo[k]fluoranthene n.d. n.d. 

Benzo[a]pyrene  n.d. n.d. 

Indeno[1,2,3-cd]pyrene n.d. n.d. 

Dibenzo[a,h]anthracene n.d. n.d. 

Benzo[ghi]perylene n.d. 0.13 

   

Total PAHs
 1075±217 33.2 

 
Notes: Values in the tables are the mean value ±1 standard deviation from five replicates. 

The last column reports the relative percent difference between the measured and expected 

value. 
a
The expected value is the concentration calculated from the PAH concentration 

obtained by summing the soil and biochar contributions. 
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5.1.3.Aliphatic hydrocarbons non-BCHyPy fraction  

Fig. 5.1.2. shows mass chromatograms of the non-BCHyPy fraction derived from soil 

and biochar amended soil, which was found to contain, in addition to PAHs, a high 

abundance of n-alkanes, predominantly even numbered homologs. The n-alkanes comprise 

approximately 10-20% by weight of the non-BCHyPy fraction. 

The concentrations and diagnostic indices of n-alkanes in non-BCHyPy fraction of the 

soil and biochar amended soil are presented in Table 5.1.6. and Table 5.1.7. The labile 

fraction generated by the HyPy of soil (Fig. 5.1.4.) and biochar amended soil (Fig. 5.1.5) is 

dominated by n-alkanes in the range nC13 to nC27 (the low carbon number compounds 

having been lost to evaporation), with a distribution having maxima at nC16 to nC18, and a 

even/odd predominance (C14 to C26 homologues CPI = 0.21 soil, CPI = 0.23 amended soil). 

The total concentrations of n-alkanes in soil were higher than ones in the biochar amended 

soil during the 4 years of experiment (Fig. 5.1.6). In untreated soils concentrations of n-

alkanes (nC13 to nC27) ranged from 64.2 µg g
-1 

to 130.7 µg g
-1 

and in amended soils from 

18.2 µg g
-1

 to 72.9 µg g
-1 

(Table 5.1.6. and Table 5.1.7). After almost one year following 

biochar application, the total mean concentration values of n-alkanes in biochar amended 

soils was approximately 3 times higher than the control soil, both in August (37.2 vs. 106.7 

µg g
-1

) and December (44.4 vs. 102.6 µg g
-1

) (Fig. 5.1.6).  

 

Figure 5.1.4. Soil GC-MS mass chromatograms. Reconstructed ion chromatogram m/z 57 

showing the n-alkane distribution present in the non-BCHyPy fraction.  
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Fig. 5.1.5. Biochar amended soil GC-MS mass chromatograms Reconstructed ion 

chromatogram m/z 128 + 154 + 166 + 178 + 202 + 231 + 242 + 276 showing the major 

PAHs present in thenon-BCHyPy  fraction.  

 

 

 

 

 

Figure 5.1.6. Concentration of n-alkanes (µg g
-1

) released by the HyPy of soil and biochar 

amended soil. 
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The characteristic relative distribution of n-alkanes in soil (Fig. 5.1.4) is not affected by 

biochar modification. The effect of biochar on soil reduces the n-alkanes concentrations, 

but both biochar amended soils and untreated soils are dominated by the same aliphatic 

compounds. In particular, n-alkanes are characterized by a higher abundance of medium 

chain homologues (nC16, nC18, nC20, nC22 and nC24) and are dominated by nC16 and nC18. 

The Carbon Preference Indices (CPI) which expresses the ratio of odd-carbon 

numbered to even-carbon-numbered n-alkanes is useful to determine the degree of 

biogenic versus petrogenic input (Simoneit and Mazurek, 1982; Simoneit, 1989; Zheng et 

al., 2000; Young, 2002). (Mazurek and Simoneit, 1984). n-alkanes originate from 

epicuticular waxes of terrestrial plants and exhibit high values of CPI (CPI >1), whereas 

CPI values for vehicular emissions and other anthropogenic activities are close to unit (CPI 

~1).  

The calculated CPI values for soil (0.21) and for biochar amended soil (0.23) are 

similar (Table 5.1.8) and comparable to those observed for soil dichromate residue in 

Meredith et al. (2013). This even numbered distribution, with a CPI of the C14 to C24 

homologues of 0.21 and 0.23 indicates the importance of anthropogenic activities. These n-

alkanes were not predominantly original constituents of the soil organic matter. The n-

alkanes found in terrestrial soils are commonly dominated by odd-carbon-numbered n-

alkanes in the nC23–nC33 range derived from the epicuticular waxes of higher plants (Zelles 

et al., 1999). However, a more probable source is from biolipids which exhibit an even/odd 

preference, and typically include a high abundance of the C16 homologue, hexadecanoic 

(palmitic) acid, in the short-chained (C10 to C20) fraction which is predominantly derived 

from microbial biomass. The acidic species are known to be hydrogenated under HyPy 

conditions to form the corresponding even-numbered n-alkanes (Meredith et al., 2006).  
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Table 5.1.6. Concentration of n-alkanes (µg g
-1

) released by the HyPy of biochar amended 

soil.  

n-alkanes 

Biochar amended soil 

Aug 2011 Dec 2011 May 2012 May 2013 

nC13 0.52±0.26 0.003±0.002 0.003±0.001 0.024±0.003 

nC14 2.8±1.0 0.037±0.017 0.002±0.001 1.04±10.02 

nC15 3.5±0.9 1.62±0.9 0.19±0.11 2.8±1.7 

nC16 14±5.5 11.3±6.9 7.6±5.3 16±6.7 

nC17 2.8±1.2 2.9±0.9 3.4±1.6 3.2±1.1 

nC18 12±6.9 18±6.9 20±10 14±5.8 

nC19 0.78±0.38 1.4±0.5 1.9±0.9 1.1±0.4 

nC20 1.73±1.18 3.2±1.3 4.1±2.6 2.5±1.1 

nC21 0.46±0.29 0.81±0.30 1.08±0.7 0.68±0.31 

nC22 1.0±1.0 2.9±1.3 3.98±1.9 2.46±1.24 

nC23 0.28±0.21 0.60±0.37 0.71±0.55 0.51±0.28 

nC24 0.61±0.50 1.1±0.8 1.34±1.42 1.02±0.48 

nC25 0.11±0.07 0.14±0.06 0.24±0.20 0.21±0.05 

nC26 0.13±0.10 0.16±0.09 0.30±0.26 0.27±0.10 

nC27 0.05±0.03 0.17±0.07 0.16±0.15 0.17±0.13 

     

Total nC13-nC27 40.5±17.8 44.4±11.6 45.1±24.0 46.1±18.6 

CPI nC12-nC24 
a 

0.26 0.20 0.23 0.20 

a 
Carbon preference index (CPI) formula of Bray and Evans (1961). 

 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

117 

Table 5.1.7. Concentration of n-alkanes (µg g
-1

) released by the HyPy of soil.  

n-alkanes 

Soil 

Aug 2011 Dec 2011 May 2012 May 2013 

nC13 0.59±0.07 0.91±0.58 0.004±0.003 0.064±0.06 

nC14 2.6±0.95 3.1±2.1 0.025±0.014 1.1±0.7 

nC15 5.3±1.3 5.7±1.2 1.1±0.3 3.0±0.9 

nC16 30±5.6 26±2.0 18.8±0.4 25±5.1 

nC17 5.3±3.0 5.6±0.8 6.06±0.5 6.1±1.5 

nC18 34±8.9 29±3.6 36±2.4 35±11.4 

nC19 2.5±0.4 2.1±0.7 2.99±0.3 2.42±1.1 

nC20 4.2±3.6 8.0±1.4 9.78±0.8 7.2±3.3 

nC21 2.38±0.6 2.4±0.5 3.04±0.4 1.7±0.9 

nC22 10±4.2 11±3.1 14±2.3 7.6±4.4 

nC23 2.2±1.0 2.1±0.8 2.2±1.3 1.4±0.9 

nC24 4.8±2.7 4.9±2.5 6.3±1.1 2.8±1.8 

nC25 0.73±0.41 0.66±0.42 0.92±0.19 0.41±0.29 

nC26 1.11±0.72 1.01±0.65 1.27±0.3 0.56±0.38 

nC27 0.37±0.23 0.32±0.20 0.47±0.33 0.17±0.10 

     

Total nC13-nC27 107±16.7 103±17.7 102±8.0 93.8±18.6 

CPI nC12-nC24 
a 

0.22 0.24 0.19 0.19 

a 
Carbon preference index (CPI) formula of Bray and Evans (1961). 

 

 

5.1.4. Conclusions  

A short-term incubation study was carried out to investigate the effect of biochar 

addition to soil on the level of organic carbon and to study the persistence and resistance of 

biochar in the environment. Although the carbon added with biochar should be quite 

recalcitrant to degradation, it is well known that a variable component of biochar is labile 

(degradable on annual/decadal timescales) and hence, only a proportion of total carbon in 

biochar provides long-term carbon sequestration.  
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Previous studies reported that HyPy is potentially a precise method for BC 

measurements in soil, lignocellulosic material, coals, and petroleum source rocks. The 

results presented in this study suggest that HyPy provides a rapid and convenient technique 

for the quantification of BC and determination of the stable carbon in soil treated with 

biochar. The ability of the method to determine BC in the biochar amended soil was 

evaluated. The findings of this study showed that biochar amendment significantly 

influence soil BC concentration during the incubation period. In particular, the obtained 

concentrations of BC in the amended soil are significantly higher than that in the untreated 

soil. Obviously, the effect of biochar addition in soils on the level of BC will depend on the 

BC in the original biochar. The high BCHyPy value found for biochar (83±3.3%) used in this 

study suggests that it should be quite recalcitrant to degradation.  

Moreover, the HyPy allowed the characterisation on a molecular level of labile fraction 

defined as non-BCHyPy fraction. In addition to a number of PAHs, the non-BCHyPy fraction 

was also found to contain a significant abundance of n-alkanes, with a marked 

predominance of even-numbered homologues. These compounds are probably derived 

from lipids, hydrogenated during HyPy. However, further researches are need to 

characterise the BCHyPy residues and more fully confirm that they are entirely free of non-

BC material.  

 

 

 

 

 

  



 
 

 

119 

5.2. Characterization of biochar stability by hydropyrolysis and 

pyrolysis-GC/MS 

 

5.2. Biochar stability characterization by hydropyrolysis and pyrolysis-GC/MS 

 

5.2.1. Introduction   

Biochar is carbonaceous solid formed by the pyrolysis of biomass which attracts 

research interest due to its potential value for long-term carbon sequestration. The addition 

of biochar to soil has been proposed as strategy that not only sequesters carbon in soils but 

also at the same time mitigates different environmental issues. Research has demonstrated 

that biochar has considerable potential as a sustainable tool for carbon sequestration, soil 

amelioration, greenhouse gas emissions reduction and fertilizer runoff reduction, as well as 

waste management (Glaser et al., 2002; Lehmann et al., 2009; Sohi et al., 2010; Woolf et 

al., 2010; Zavalloni et al., 2011; Galinato et al., 2011; Kookana et al 2011; Yao et al., 

2012).  

A key requirement for the use of biochar as tool for environmental management is that 

the carbon in the biochar is stable, meaning that a substantial fraction of the carbon 

sequestered is not re-mineralized on at least centennial timescales (Gurwick et al., 2013). 

However, a variable component of the carbon in many biochars is degradable on annual to 

decadal timescales and hence, only a proportion of total carbon in biochar provides long-

term carbon sequestration (Bird et al., 1999; Zimmermann et al., 2012). Although our 

understanding of biochar carbon stability has improved in recent years (Ameloot et al., 

2013), there is limited research on process conditions to produce a biochar suitable and 

highly stable for the long-term carbon sequestration (Conti et al., 2014; McBeath et al., 

2015). The properties of biochar, including stability, depend on the type of feedstock, 

pyrolysis temperature and pyrolysis method (Labbe et al., 2006; Nguyen and Lehmann, 

2009; Singh et al., 2012). However, biochar stability depends also on the environmental 

factors (temperature, rainfall, soil type) of the site where the biochar is incorporated into 

the soil (Czimczik and Masiello, 2007). 

A number of approaches have been proposed to assess biochar stability. However, there 

is no agreed methodology for determining the long-term stability of biochar yet. The 

methods which have been proposed to assess biochar stability include solid state nuclear 
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magnetic resonance spectroscopy (solid state 
13

C NMR) (McBeath and Smernik, 2009), 

Fourier transform infrared spectroscopy (FTIR) (Michel et al., 2009), proximate analysis 

using the fixed carbon as a measure of stability (ASTM Standard D3175; 2007), thermal 

analysis (thermogravimetry, TG; de la Rosa et al., 2008), molecular markers by means of 

pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS; Kaal et al., 2008, 2009, 

Conti et al., 2014), benzene polycarboxylic acid method (Brodowski et al., 2005), O:C or 

H:C molar ratios (Spokas, 2010; Enders et al., 2012; IBI Guidelines, 2012) and chemical 

oxidation (Cross and Sohi, 2013). Many studies reported that chemical oxidants, such as 

K2Cr2O7, KMnO4, HNO3, and H2O2, could be used to evaluate the oxidative nature of 

biochar and reflect the long-term stability of biochar (Trompowsky et al., 2005; Knicker et 

al., 2007; Calvelo Pereira et al., 2011; Li et al., 2014). In Masek et al. (2013) stable carbon 

in biochar was determined using an accelerated ageing assay. This assay involved the 

thermal and chemical oxidation of milled biochar samples. Samples were placed in 5% 

hydrogen peroxide and heated to 80 °C, and carbon stability then was calculated 

gravimetrically using the %C data of samples before and after oxidation. This approach is 

considered to be more representative of the degradation processes to which biochar would 

be subjected in the environment. The results of the accelerated ageing experiments have 

demonstrated for a range of biochars chemical behaviours consistent with the hypothesis 

that biochars produced at higher temperatures exhibit more resistance to oxidative 

degradation carbon (black carbon) fractions in biochar. Black carbon (BC) is an important 

component of organic carbon (OC), and it is defined as the carbon-rich (>60%) product of 

the incomplete combustion of fossil fuels and biomass (Goldberg, 1985), that includes a 

range of products such as char, charcoal, ash, and soot (Preston and Schmidt, 2006). 

An emerging pyrolytic approach isolating and quantifying BC in a range of 

environmental matrices is hydropyrolysis (HyPy) combined with GC-MS (Ascough et al., 

2009; Meredith et al., 2012; Wurster et al., 2013). These studies have shown that the HyPy 

method removes all labile organic matter (defined as non-BCHyPy) (Wuster et al., 2012), so 

isolating a highly stable portion of the BC (BCHyPy) predominantly composed of >7 ring 

aromatic domains (Meredith et al., 2012). The high hydrogen pressure and slow heating 

rate employed, together with the presence of a sulphided molybdenum catalyst, prevent the 

generation of secondary char (Love et al., 1995) encountered with other chemical or 

thermal oxidative methods. In addition to the quantification of the BCHyPy fraction, HyPy 
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also allows the molecular characterisation of the biochar labile fraction defined as non-

BCHyPy fraction. 

The molecular signature of the thermally labile fraction of biochar was also examined 

by pyrolysis-GC/MS and its association to the stability of the carbon in biochar 

investigated (Pereira et al., 2011; Conti et al., 2014). In particular, the GC-MS traces 

(pyrograms) of biochar were featured by peaks associated with benzene, toluene, 

naphthalene, biphenyl, dibenzofuran and benzonitrile (Kaal et al., 2009). These pyrolysis 

products were assumed to represent the charred fraction abundant of aromatic structures 

that occur in a thermally labile form in the carbonaceous matrix. In addition, pyrolysis 

product ratios representing the relative abundance of alkylated and parent compounds (e.g., 

benzene/toluene peak area ratio) were proposed as indicators for the presence of saturated 

alkyl bridges between polyaromatic structures and hence a measure of the charring 

intensity (Kaal et al., 2012). Therefore, Py-GC-MS is able to provide molecular indices of 

biochar stability. However, there are no studies aimed at comparing these indices to those 

arising from HyPy.  

The aim of the present study is to assess the impact of production conditions on biochar 

stability, providing moreover a comparison between molecular analysis by Py-GC-MS and 

HyPy on biochar samples produced from three feedstock and the same pyrolysis unit. 

Different process conditions, charring temperature and residence time, were utilised to 

obtain biochars with different degrees of charring. 

 

5.2.2. Experimental section  

5.2.2.1. Samples 

Three different types of biomass were used as feedstock materials: pine wood chips – 

with an average size of 3 cm × 2 cm × 0.5 cm – from Robeta Holz OHG, Milmersdorf, 

Germany; beech wood spheres – with a diameter of 25 mm –, provided by Meyer and 

Weigand Gmbh, Nordlingen, Germany; corn digestate derived from maize silage. 

Biochar samples were produced by pyrolysis of sample using a stainless steel fixed-bed 

reactor of 102.5 cm height and 22 cm of internal diameter. The inert atmosphere is 

provided by a N2 flow entering the reactor (20 L min
-1 

and 50 L min
-1

) from the bottom 

through a stainless steel grate to get an uniformly distributed flow. The samples (in the 

range of kilograms) were uniformly placed inside the reactor in a stainless steel container 
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of 21 cm of diameter and 56 cm height which is placed directly on the previously 

mentioned grate. The reactor is externally heated with a wire heater with a maximum 

power of 3000 W placed on the external reactor wall. Both flanges in the reactor are also 

heated and insulated to reduce heat losses. The N2 flow is preheated before entering the 

reactor as well. The temperature operation of this preheater is 600 °C.  

Pyrolyses were performed at three different temperatures, 340 °C, 400 °C and 600 °C. 

The biochar samples obtained were labeled as PW ID 1, PW ID 2, BW ID 1, BW ID 2, CD 

EU 1 and CD EU 2 (where PW, BW, CD stand for pine wood, beech wood and corn 

digestate, respectively; 1 and 2 indicated the highest and lowest pyrolysis temperatures, 

respectively; ID and EU, see Table 5.2.1).  

 

Table 5.2.1. Biomass feedstock and pyrolysis conditions of biochar samples. (# : Sample 

identifiers). 

# 
Raw 

material 

Volatiles 

% 

Max T  

°C 

N2 flow 

L/min 

PW ID 1 Pine wood 10.30 600 20 

PW ID 2 Pine wood 33.70 400 20 

CD EU 1 Corn digestate 12.66 600 20 

CD EU 2 Corn digestate 15.93 400 20 

BW ID 1 Beech wood 9.93 600 20 

BW ID 2 Beech wood - 340 50 

 
 

 

5.2.2.2. Biochar bulk characterization 

The pH of the biochar samples was determined by adding biochar to deionized water at 

1:10 wt/wt mass ratio and pH measured at room temperature with a digital pH meter (HI 

98103, Checker®, Hanna Instruments). Elemental composition (HCNS) was determined 

by combustion using a Thermo Scientific Flash 2000 series analyzer. Ash was determined 

as the residual mass left after exposure at 600 °C for 5 hours. The oxygen content was 

calculated from the mass balance: Oxygen (%) = 100 - Ash content (%) - C (%) – H (%) - 

N (%).  Moisture contents were determined (ASTM D-3173) at 105 °C.  
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5.2.2.3. Polycyclic aromatic hydrocarbons (PAHs) 

The content of PAHs in biochars was measured in triplicate as described in Fabbri et 

al., (2013), but using 16 PAHs surrogate of each of the 16 US EPA PAHs instead of 3 

PAHs surrogate. The measured PAHs included naphthalene, acenaphthylene, 

acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, 

benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, 

benzo(a)pyrene, dibenz(ah)anthracene, benzo(ghi)perylene, and indeno(1,2,3-c,d)pyrene. 

Briefly, about 0.5 g of biochar was spiked with 0.1 mL of a 5 mg l
-1

 solution of 

surrogate 16 EPA PAHs (prepared from Dr. Ehrenstorfer PAH-Mix 9 deuterated, 10 ng µl
-

1
) and soxhlet extracted with acetone/cyclohexane (1:1, v/v) for 36 hours. The solution was 

filtered, added with 1 ml of n-nonane (keeper), carefully evaporated by rotatory vacuum 

evaporation at 40 °C and cleaned up by solid phase extraction onto a silica gel cartridge 

before analysis with a Agilent HP 6850 GC coupled to a Agilent HP 5975 quadrupole mass 

spectrometer; GC-MS conditions were those detailed in Fabbri et al., (2013). Recovery of 

surrogate PAHs was determined with respect to the internal standard tri-tert-butylbenzene. 

Results are reported as averages of three replicates analyses. 

 

5.2.2.4. Pyrolysis-GC/MS 

Py-GC-MS analyses were performed using an electrically heated platinum filament 

CDS 1000 pyroprobe valved interfaced to a Varian 3400 GC equipped with a GC column 

(HP-5-MS; Agilent Technologies 30 m × 0.25 mm, 0.25 μm) and a mass spectrometer 

(Saturn 2000 ion trap, Varian Instruments) set at an electron ionization at 70 eV in full 

scan acquisition (10–450 m/z). A quartz sample tube containing of weighed biochar sample 

(5-10 mg) added with 1 µL of internal standard solution (o-isoeugenol at 1000 mg L
-1

 in 

methanol) was inserted into the Py-GC interface (300 °C) and then pyrolysed at 900 °C 

(set temperature) for 100 s with helium as carrier gas (100 ml min
-1

). The following 

thermal program was used: 35 °C to 310 °C at 5°C min
-1

. 

Yields were estimated from the ratio of the peak area integrated in the mass 

chromatogram of a characteristic ion of the selected pyrolysis product and the peak area of 

the internal standard, the quantity of added internal standard and the amount of sample 

pyrolysed (Torri et al., 2010). An unitary relative response factor was assumed for all the 

quantified compounds on the basis that our objective was the comparison between samples 
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on a quantitative base rather than the knowledge of the absolute yield of each pyrolysis 

product. Total yields were the summed yields of all the selected pyrolysis products. 

A set of 38 pyrolysis products among the most abundant and representative of 

biological precursors was selected on the basis of a previous work (Fabbri et al., 2012) 

(Table 5.2.2). On each biochar sample was carried out a single analysis and  the pyrolysis 

products were quantified both in terms of yields (µg g
-1

) and relative abundance 

considering a relative standard deviation (RSD) between 8-36 % that is typical of Py-GC-

MS analysis. 

 

Table 2. Pyrolysis products of biochar, the mass to charge ratio (m/z) of the quantitation 

ion and their predominant origin: C, charred biomass; H holocellulose (sugars); L, lignin; 

P, proteins (nitrogen-containing compounds). 

# Pyrolysis product m/z origin # Pyrolysis product m/z origin 

1 Benzene 78 C 20 2-ethylphenol 122 L 

2 Hydroxyacetone 75 H 21 2,5-dimethylphenol 122 L 

3 Dimethylfuran 96 H 22 2,3-dimethylphenol 122 L 

4 Pyrrole 67 P 23 3-ethylphenol 122 L 

5 Toluene 91 C 24 Naphthalene 128 C 

6 2-Methyltiophene 98 P 25 Catechol 110 L 

7 o-Xylene 91 C 26 2-methylnaphthalene 142 C 

8 Fufurilic alcool 98 H 27 1-methylnaphthalene 142 C 

9 m/p-Xylene 91 C 28 4-methylguaiacol 138 L 

10 Styrene 104 C 29 4-vinylguaiacol 150 L 

11 Ethylbenzene 91 C 30 Syringol 154 L 

12 Phenol 94 L 31 Biphenyl 154 C 

13 Benzofuran 118 C 32 4-ethylguaiacol 137 L 

14 Benzonitrile 103 C 33 4-methylsyringol 168 L 

15 Indole 117 P 34 Fluorene 164 C 

16 3-methylphenol 108 L 35 Phenanthrene 178 C 

17 4-methylphenol 107 L 36 Anthracene 178 C 

18 Guaiacol 109 L 37 Fluoranthene 202 C 

19 Methyl-benzofurans (3 isomers) 132 C 38 Pyrene 202 C 

 
 

5.2.2.5. Hydropyrolisis 

Hydropyrolysis (HyPy) tests were performed using the procedure described in detail in 

a number of publications (e.g. by Ascough et al., 2009; Meredith et al., 2012). Briefly, 50-

100 mg of biochar sample were loaded with a Mo catalyst using an aqueous/methanol 0.2 
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M solution of ammonium dioxydithiomolybdate [(NH4)2MoO2S2]. Catalyst weight was ~ 

10% of the sample weight. The catalyst loaded biochar samples were placed within 

shortened borosilicate pipette ends (20 mm long), plugged at each end with pre-cleaned 

quartz wool and then placed in the HyPy reactor. We used the recommended temperature 

program previously optimized for pyrogenic carbon quantification where the samples are 

heated at rate of 300°C min
-1 

from 50 to 250°C, then heated at 8 °C min 
-1 

from 250°C until 

the final temperature of 550°C for 2 min (Ascough et al., 2009; Meredith et al., 2012), all 

under a hydrogen pressure of 15 MPa. A hydrogen sweep gas flow of 5 L min
-1

, measured 

at ambient temperature and pressure, ensured that the products were quickly removed from 

the reactor vessel, and subsequently trapped in a silica gel-filled trap cooled by dry ice.   

 

5.2.2.6. Black carbon quantification 

The BC (reported as BCHyPy) content of each sample was derived by comparing the 

organic carbon (OC) content of the catalyst loaded samples prior to HyPy with those of 

their HyPy residues (Eq. (1)). Elemental composition (HCNS) was determined by 

combustion using a Thermo Scientific Flash 2000 series analyzer.  

 

BCHyPy (BC=OC%) = 
Residual OC (mg C in HyPy residue including spent catalyst) 

Initial OC (mg C in sample including catalyst)
 x 100              (1) 

 

5.2.2.7. Non-BCHyPy fraction characterisation  

The non-BCHyPy fraction (hydropyrolysate) from the soil, biochar amended soil and 

biochar samples were desorbed from the silica recovered from the trap with 10 ml aliquots 

of n-hexane and dichloromethane (DCM). The eluents were evaporated to 1 ml at room 

temperature for 12 h prior to analysis. GC–MS analyses in full scan mode (m/z 35-650) 

were performed on 6850 Agilent HP gas chromatograph connected to a 5975 Agilent HP 

quadrupole mass spectrometer (EI mode, 70 eV), equipped with an autosampler and a 

split/splitless injector. Analytes were separated by a HP-5MS fused silica capillary column 

(stationary phase poly[5% diphenyl/95%dimethyl]siloxane, 30 m × 0.25 mm i.d., 0.25 mm 

film thickness), using helium as the carrier gas, and an oven programme of 50°C (hold for 

2 min) to 300°C (hold for 33 min) at 5°C min
-1

. Samples (1 µl) were injected under 

splitless conditions (1 min, then split ratio 1:50 to the end of analysis) with an injector 
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temperature of 280°C. For the quantification of PAHs the mass chromatograms of the 

molecular ion of each compound was used, following the addition of 100 µl of 1,3,5-tri-

tert-butylbenzene (TTB, 100 mg l
−1 

Sigma-Aldrich) as internal standards, assuming a 

response factor for each compound of 1. 

The PAHs were identified by matching the retention times of each peak in the sample 

chromatogram with those of a standard solution. Interfering coelution problems were 

evaluated in the samples by comparing mass spectra of the samples with those of the 

standards as well as with those from the NIST mass spectra library (NIST MS Search r. 

2.0).  

 

5.2.2.8. Statistical Analysis 

Quantitative data are presented as mean values ± standard deviation (n = 2). Recovery 

of surrogate PAHs was (mean ± %RSD for all the data set): 80% ± 6% naphthalene-d8, 

69% ± 27% acenaphthylene-d8, 91% ± 4% acenaphthene-d10, 88% ± 21% fluorene-d10, 

90% ± 17% phenanthrene-d10, 70% ± 23% anthracene-d10, 88% ± 10% fluoranthene-d10, 

87% ± 9% pyrene-d10, 83% ± 18% chrysene-d12, 84% ± 10% benzo(a)anthracene-d12, 87% 

± 11% benzo(b)fluoranthene-d12, 79% ± 15% benzo(k)fluoranthene-d12, 79% ± 23% 

benzo(a)pyrene-d12, 75% ± 22% indeno(1,2,3-c,d)pyrene-d12, 82% ± 12% 

dibenz(ah)anthracene-d14 and 77% ± 19% benzo(ghi)perylene-d12. Student t tests were 

conducted with Excel (2011) to evaluate significant difference between two parameters of 

biochar. Linear (Pearson) correlation coefficient between two variables r(df), where df 

stands for degrees of freedom, was determined for all the investigated parameters. Two set 

of data were assumed to be correlated when the absolute value of r was larger than the 

critical value at the level of significance p = 0.01 for two-tailed test.  

5.2.3. Results and discussion  

5.2.3.1 Biochar characteristic   

Results of biochar characterizations are reported in Tables 5.2.3 and 5.2.4. The biochars 

had a range of 46.4–91.6% carbon; 1.1–47.3% ash; 0.2–1.9% nitrogen; 3.8–22.9% oxygen. 

The biochars showed profound differences in properties, depending on feedstock and 

pyrolysis temperature (Table 5.2.3). Pyrolysis temperature showed significant effect on 
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elemental compositions of wood biochars and to a lesser extent on that of corn digestate 

biochars. In particular, the data showed that carbon content of wood biochar increased with 

temperature, while the oxygen and hydrogen contents decreased. This resulted in lower 

H/C and O/C atomic ratio values at increasing final temperature (Table 5.2.3).  

The degree of carbonisation of chars is generally expressed by molar H/C (Calvelo Pereira 

et al., 2011; Enders et al., 2012) or O/C ratios (Spokas et al., 2010; Brodowski et al., 2005). 

The O/C ratios here investigated chars ranged from 0.04 (PW ID 1) to 0.24 (PW ID 2) in 

accordance to the loss of oxygenated functionalities with increasing carbonisation (Krull et 

al., 2009), and were strongly correlated with molar H/C ratios (R = +0.96, Table 5.2.3).  

However the carbon and oxygen contents of beech and pine wood biochar was higher 

compared to that of corn digestate biochar. On the contrary, the corn digestate biochar 

showed higher ash and nitrogen contents. The differences in ash and carbon contents can 

be linked to the chemical composition differences between wood and corn digestate. Wood 

contains more cellulose and hemicelluloses and during high temperature pyrolysis (> 500 

°C), the components are reduced to carbon thus the higher carbon content in wood biochar 

(Ahamedna et al., 2000, Keiluweit et al., 2010, Al-Wabel et al., 2013).  

The ash content of biochar samples was influenced mainly by feedstock and to a lesser 

extent by pyrolysis temperature with ash content increasing with pyrolysis temperature. 

The increase in ash content should result from progressive concentration of minerals and 

destructive volatilization of lignocelluloses matters as temperature increased (Tsaia et al., 

2012). However, the ash content of corn digestate biochar was much higher (up to 47.27%) 

than that in beech and pine wood (up to 1.51%). 
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Table 5.2.3. Elemental composition of biochar samples (# : Sample identifiers). Mean 

values and % relative standard deviation (rsd) from two replicates.  

# 
H/C 

(molar) 

O/C 

(molar) 

C  

(%) 

H  

(%) 

N 

 (%) 

O 

 (%) 

Ash  

(%) 

Moisture  

(%) 

         

PW ID 1 0.33 0.04 91.6 ± 2.3 2.50 ± 0.069 0.21 ± 0.017 4.4 ± 2.4 1.32 ± 0.04 0.10 ± 0.001 

PW ID 2 0.70 0.24 71.7 ± 0.81 4.20 ± 0.064 0.18 ± 0.011 22.9 ± 0.89 1.06 ± 0.02 0.19 ± 0.026 

         

CD EU 1 0.22 0.06 46.4 ± 0.37 0.86 ± 0.019 1.58 ± 0.004 3.87 ± 0.43 47.27 ± 0.04 0.13 ± 0.014 

CD EU 2 0.30 0.06 48.0 ± 0.82 1.21 ± 0.074 1.91 ± 0.048 3.80 ± 1.0 45.07 ± 0.05 0.08 ± 0.004 

         

BW ID 1 0.29 0.08 87.6 ± 2.8 2.14 ± 0.18 0.19 ± 0.047 9.3 ± 2.0 1.51 ± 0.04 0.13 ± 0.006 

BW ID 2 0.72 0.23 71.9 ± 2.4 4.33 ± 0.092 0.18 ± 0.005 22.4 ± 2.4 1.14 ± 0.08 0.18 ± 0.014 

 

 
The concentrations of PAHs ranged between 2.2 (BW ID 2) and 18.9 µg g

-1
 (PW ID 2) 

(Table 5.2.4. and Figure 5.2.1.), thus not all the biochars were below the levels 

recommended by IBI or EBC (4-12 µg g
-1

). However, it is interesting to note that despite 

the difference in feedstock at 600 °C the PAH levels were quite similar (2.2-2.9 µg g
-1

), 

while were significantly different at low temperature (340-400°C). Therefore, the influence 

of feedstock type on PAHs concentration is evidenced by results obtained from biochar 

produced at low temperature. PAH levels tended to increase with decreasing H/C ratios, 

indicating that a multitude of factors could influence the occurrence of PAHs in biochar 

(Schimmelpfennig and Glaser, 2012). In fact, different trends were reported in the 

literature (Hale et al., 2012; Keiluweit et al., 2012; Schimmelpfennig and Glaser, 2012), 

such as decreasing or increasing PAH concentrations with increasing pyrolysis 

time/temperature for slow and fast pyrolysis, respectively (Hale et al., 2012), or PAH 

concentrations peaking at 500 °C in grass biochars produced in the 100-700 °C pyrolysis 

interval (Keiluweit et al., 2012). For beech wood and corn digestate biochar, naphthalene 

was the most abundant PAH, in accordance to previous studies (Hale et al., 2012; Hilber et 

al., 2012; Schimmelpfennig and Glaser, 2012; Freddo, et al., 2012; Fabbri et al., 2013), 

followed by phenanthrene. While for the pine wood biochar the most abundant PAH was 

phenanthrene, followed by naphthalene in BW ID 1 and by fluoranthene and pyrene in BC 

ID 2.  
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Table 5.2.4. Concentrations of the 16 US-EPA PAHs in biochar. Mean values in ng g
-1 

d.w. and standard deviation from two replicates. 

Sample Id. PW ID 1 PW ID 2 CD EU 1 CD EU 2 BW ID 1 BW ID 2 

PAHs ng g
-1

 ng g
-1

 ng g
-1

 

Naphthalene 617 ± 8.1 423 ± 64 1512 ± 15 6039 ± 635 1132 ± 12 1204 ± 3.2 

Acenaphthylene 49 ± 11 145 ± 29 243 ± 4.5 613 ± 52 326 ± 41 173 ± 31 

Acenaphthene 119 ± 16 546 ± 24 144 ± 7.2 113 ± 16 176 ± 18 273 ± 57 

Fluorene 273 ± 4.9 745 ± 2.4 124 ± 0.6 148 ± 6.5 292 ± 19 147 ± 22 

Phenanthrene 778 ± 188 10244 ± 233 135 ± 19 130 ± 0.6 274 ± 37 183 ± 34 

Anthracene 81 ± 7.1 824 ± 77 23 ± 23 22 ± 0.1 20 ± 2.3 23 ± 0.8 

Fluoranthene 207 ± 46  3355 ± 135 61 ± 13 41 ± 0.3 74 ± 0.8 41 ± 4.2 

Pyrene 45 ± 9.1 1732 ± 209 48 ± 9.3 44 ± 12 81 ± 4.3 48 ± 9.3 

Chrysene 229 ± 12  181 ± 18 41 ± 6.6 12 ± 3.3 94 ± 7.8 6.4 ± 0.7 

Benzo[a]anthracene 183 ± 24 341 ± 62 27 ± 5.9 23 ± 1.6 8.0 ± 0.5 20 ± 0.7 

Benzo[b]fluoranthene 288 ± 30 197 ± 4.0 89 ± 18 33 ± 2.7 79 ± 15 32 ± 8.0 

Benzo[k]fluoranthene 76 ± 15 37 ± 2.4 34 ± 3.0 35 ± 3.0 40 ± 6.8 12 ± 2.1 

Benzo[a]pyrene 19 ± 2.6 25 ± 5.0 44 ± 7.7 20 ± 1.7 117 ± 11 79 ± 15 

Indeno[1,2,3-cd]pyrene n.d. 38 ± 6.0 n.d. n.d. n.d. n.d. 

Dibenzo[a,h]anthracene n.d. n.d. n.d. n.d. n.d. n.d. 

Benzo[ghi]perylene n.d. 70 ±  5.2 n.d. n.d. n.d. n.d. 

       

Σ 16 EPA PAHs 2964 ± 290 18905 ± 290 2524 ± 41 7274 ± 710 2730 ± 14 2240 ± 45 
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Figure 5.2.1. Concentrations of the 16 US-EPA PAHs in biochar. Mean values in µg g
-1 

d.w. and standard deviation from two replicates. 

 

 
 

 

 

5.2.3.2. Biochar carbon thermal stability stability determination via HyPy  

It is important to determine how much of the carbon contained in biochar is potentially 

stable over long periods of time as there are likely to be various fractions, differing in their 

stability, ranging from very unstable (labile) fractions to very recalcitrant (stable) fractions. 

The HyPy method has been demonstrated to remove almost all labile organic carbon, 

leaving a highly stable residue with average polycondensed structures greater than 7 fused 

rings (Meredith et al., 2012; Wuster et al., 2012). The low molecular weight non-BCHyPy 

that are removed by HyPy along with any other residual labile organic compounds are 

unlikely to be stable on centennial timescales due to their susceptibility to biological and 

chemical oxidation (Knicker et al., 2008; Ascough et al., 2008).  

Table 5.2.5 and Figure 5.2.2 show the results obtained from analysis of the biochar 

samples using HyPy. It can be seen a significant difference in BCHyPy concentration and 

mass losses during HyPy of the biochar samples. The feedstock source and pyrolysis 

temperature clearly influenced the proportion of BC and the degree of condensation of 

aromatic C (Table 5.2.5 and Figure 5.2.2). The wood biochars produced at 340-400 °C 

contained the lowest proportions of BCHyPy fraction (15.7 – 20.5%), with the pine wood 

biochar having lower proportions (15.7 ± 0.54%) than the biochar produced from beech 
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wood (20.5 ± 5.0%) (Table 5.2.5). The BCHyPy fraction of the 600 °C wood biochars 

(Figure 5.2.2) contained the highest proportions of BCHyPy fraction (89.7-95.9%), with the 

pine wood biochar again having higher proportions (95.9 ± 0.69%) than the biochar 

produced from beech wood (89.7 ± 1.7%) (Table 5.2.5). Therefore, the fraction of BC as 

proportion of total organic carbon, as determined by the HyPy method, increases from 

15.7% at 400 °C to 95.9% at 600 °C for wood biochars, demonstrating that pyrolysis 

temperature exerts a strong control on the formation of BC (Figure 5.2.2 and Table 5.2.5).  

 

 

Table 5.2.5. Weight loss (%) during HyPy treatment and black carbon (BC) from HyPy of 

the biochars. Mean values and standard deviation from two replicates. 

Sample BCHyPy (BC/OC) Weight loss 

% sd % sd 

PWID1 95.9 0.69 20.0 2.2 

PWID2 15.7 0.54 82.9 0.11 

BWID1 89.7 1.7 16.1 3.2 

BWID2 20.5 5.0 76.4 3.1 

CDEU1 96.7 2.1 12.7 3.2 

CDEU2 91.0 1.7 16.1 4.0 

 
 

The relatively low BCHyPy contents of the BW ID 2 and PW ID 2 biochars are to be 

expected given that the temperature of formation for these samples was only 340 and 400 

°C, respectively, which may have allowed for products of the incomplete thermal 

degradation of cellulose and lignin to be preserved in biochar (Hammes et al., 2007). These 

findings are consistent with those of some researches (McBeath and Smernik, 2009; 

Nguyen et al., 2010; Masek et al., 2013) who also observed an increase in aromaticity and 

aromatic condensation of biochars with increasing pyrolysis temperature. However, PW ID 

2 and BW ID 2 biochars do not meet the quality criteria of the European Biochar 

Certificate, which sets a range of minimum allowed threshold values for the black carbon 

content in the biochars (10 - 40% of overall carbon). 

The influence of feedstock type on the degree of carbonisation is evidenced by results 

HyPy obtained from biochar of corn digestate. This feedstock at 400 °C produced a 

thoroughly carbonised biochar, compared with BW ID 2 and PW ID 2. This was reflected 

in (i) a low mass losses during HyPy; (ii) a high value of black carbon by HyPy; (iii) a low 

value of non-BCHyPy fraction produced (Figure 5.2.2).  



 
 

 

132 

The BCHyPy content was inversely correlated with H/C and O/C ratios (R = -0.99 in 

both cases, Table 5.2.3) confirming as biochars with low H/C and O/C values are graphite-

like materials (i.e. soot, black carbon, activated carbon), they are expected to be more 

stable and less prone to degradation (Masiello, 2004).  

 

Figure 5.2.2. Black carbon (BC) as proportion of organic carbon (OC) as measured by 

HyPy of the biochar.  

 

 

 

 

5.2.3.3. Biochar carbon thermal stability stability determination Py-GC-MS  

The analysed biochar samples produced different pyrolysate patterns when subjected to 

Py-GC-MS. Some typical pyrograms resulting from Py-GC-MS of biochar samples are 

depicted in Fig. 5.2.3, the numbers in which refer to the pyrolysis product list (Table 

5.2.2). Samples with low BCHyPy values produced complex pyrolysates with intense peaks 

assignable to the pyrolysis products of hemicelluose, cellulose or lignin, on the contrary 

samples with high BCHyPy ratios produced simple pyrograms with weak peaks of aromatic 

hydrocarbons.  
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Figure 5.2.3. Total ion chromatograms from Py–GC–MS of biochar BW ID 2, BW ID 1, 

PW ID 1, PW ID 2, CD EU 2 and CD EU 1. Peak attribution: (1), benzene; (2), toluene; 

(3), m,p-xylene; (4), styrene; (5) ethylbenzene; (6), phenol; (7), indole; (8), 3-

methylphenol; (9). 4-methylphenol (10), guaiacol; (11), 2,5-dimethylphenol; (12), 2,3-

dimethylphenol; (13), naphthalene; (14), catechol. Internal standard: (i.s.) o-isoeugenol. 
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The list of 38 pyrolysis products with corresponding retention times, m/z fragments 

used for quantification and the total yields are provided in Table 5.2.2. These pyrolysis 

products, as described in Conti et al. (2014), were grouped into three thermolabile class 

fractions: highly carbonised (charred), weakly carbonised hemi/cellulose and weakly 

carbonised lignin (see experimental part). The grouping of pyrolysis products into the 

fraction was specified in Section 5.2.2.4. 

The quantity of evolved pyrolysis products was expressed in terms of “yield” to give a 

rough estimate of the mass fraction that was analysed by GC–MS. Table 5.2.6 shows that 

the summed yields varied over three orders of magnitude, spanning from 2,6 10
6
 µg g

-1
 

(PW ID 2, pyrolysis of pine wood at 400 °C) down to 192 µg g 
-1

 for the biochar 

characterized by the highest temperature production and the highest content of ash (corn 

digestate biochar). Not surprisingly, the highest yields were obtained with low 

temperatures (340 and 400 °C). The biochar synthesized at 600°C and at high ash contents 

(corn digestate) gave very weak signals (Figure 5.2.3) because of high thermal stability and 

therefore limited the ‘‘pyrolysability’’ of large polyaromatic clusters. Fig. 5.2.3 shows 

more details on the yield of biochar as a function of temperature, as well as the charred 

content of biochar produced under the different conditions. It can be seen that the yield of 

biochar decreases while the BC increases with the pyrolysis temperature in the studied 

range.  

The influence of feedstock type on the degree of carbonisation is evidenced by results 

Py-GC-MS obtained from biochar of corn digestate. This feedstock at 400 °C produced a 

thoroughly carbonised biochar with the high charred percentage and the almost complete 

disappearance of phenol and methoxyphenols from the pyrolysates (Fig. 5.2.3). This result 

could be explained also by the fact that the corn digestate biochar is characterized by the 

relatively high content of ash. Moreover, it is interesting to note that biochars more instable 

(PW ID 2 and BW ID 2) are those with the higher level of PAHs (PW ID 2) and lower 

level (BW ID 2).  

In summary, these two techniques provided detailed and consistent information 

concerning the chemical characterisation and the stability of biochar samples. For 

pyrolysis-GC/MS, the sum of the charred products is a representative parameter of the 

relative proportion of BC in biochar. While for HyPy, the stable fraction of biochar can be 

defined as the portion of the biochar stable under HyPy conditions (BCHyPy). The degree of 

carbonisation, based mainly on the characterisation of the samples using Py-GC-MS and 
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HyPy, increased in the order PWID2 ~ BWID2 < BWID1 ~ CDEU2 < PWID1 ~ CDEU2; 

his was corroborated by the elemental analysis. It can also be inferred from the results that, 

for a more complete carbonisation of the biochar, it is important the feedstock type and the 

final pyrolysis temperature, but also that at high temperature the chemical characteristics of 

biochar are influence to a lesser extent by feedstock. In particular, the concentrations of 

PAHs ranged between 2.2 (BW ID 2) and 2.9 µg g
-1

 (PW ID 1), thus always below the 

levels recommended by International Biochar Initiative or European Biochar Certificate (4-

12 µg g
-1

). Therefore, pyrolysis processes will need to be set up to maximise the overall 

benefit, not only the yield of stable biochar, and will therefore be very case specific. 

 

Table 5.2.6. Yields in µg g
-1

 and benzene/toluene ratio (B/T) from Py–GC–MS of 

biochars. 

Sample 

 

 

Temp. 

°C 

 

Py-GC-MS yields 

(µg g
-1

) 

 

Charred 

% 

 

Lignin 

% 

 

Proteins 

% 

 

Holocellulose 

% 

 

B/T 

 

 
PW ID 1 600 192 

 

99.5 - 0.5 - 3.2 

PW ID 2 400 2654434 

 

36.6 61.9 0.2 1.4 0.49 

CD EU 1 600 572 

 

86.6 13.4 - - 2.6 

CD EU 2 400 283 

 

96.1 3.6 0.3 - 6.0 

BW ID 1 600 502 

 

99.8 - 0.2 - 8.9 

BW ID 2 340 66152 

 

37.4 62.5 0.001 0.001 0.49 

 
 
 

5.2.3.4. HyPy and Py-GC-MS: molecular characterization of labile fraction of biochar  

As highlighted in the previous section, the stable fraction of biochar is one of the key 

parameters to be considered in defining biochar production conditions. However, the labile 

fraction, which evolves during its storage in soil, is also very important. This fraction is 

highly likely to impact on microbial activity (Lehmann et al., 2011, Ameloot et al., 2013), 

and therefore affects the functioning of the soil as a whole, including the balance of 

indigenous labile pools (de Graaff et al., 2010, Ameloot et al., 2014). In fact, the 

microorganisms can utilize a number of labile biochar constituents as an energy source 

(Cross and Sohi, 2011). These are presumably either relatively untransformed biomass 

components that have not been subjected to volatilization during pyrolysis (Ronsse et al., 
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2013) or volatilized compounds that have recondensed in the biochar matrix during 

pyrolysis (Imam and Capareda, 2012; Kloss et al., 2012). Moreover, many biochar 

associated labile components have biocidal activity (Graber et al., 2010), which may 

increase its stability against biotic decomposition.  

As well as isolating the BCHyPy fraction, HyPy also allows the characterisation of the 

non-BCHyPy material at a molecular level by GC-MS analysis. Fig. 5.2.5 shows mass 

chromatograms of the non-BCHyPy fraction derived from biochars, which was found to 

contain a high abundance of PAHs. The PAHs detected and quantified (Table 5.2.7) in the 

biochars ranged from 2-ring compounds (naphthalene) to 7-ring compounds (coronene), 

with the 4-ring compound pyrene being the most abundant. This range of ring size is 

consistent with the PAHs distribution found in the non-BCHyPy fraction generated by the 

HyPy of 5 archaeological charcoals (Ascough et al., 2010), and the definition of BCHyPy as 

being composed of PAHs with >7 rings proposed by Meredith et al. (2012). Their presence 

in the non-BCHyPy fraction will be due to their greater volatility relative to the larger more 

condensed and refractory aromatic domains which form the BCHyPy. 

 

Figure 5.2.5. Concentrations of PAHs released by the HyPy of biochar. Mean values in µg 

g
-1 

d.w. and standard deviation from two replicates. 

 

 

 

 

The total mean concentration value of PAHs in biochars (HyPy determination) ranged 

between 7531 (PW ID 2) and 43 µg g
-1 

(CD EU 1) (Table 5.2.7 and Fig. 5.2.5). However, 

it is interesting to note that at high temperature also the concentrations of PAHs in labile 
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fraction of biochar determinate by HyPy are influence to a lesser extent by feedstock. 

Moreover,
 
the biochars produced at 600 °C, as for the PAHs concentration determined by 

soxhlet extraction, have the PAH levels lower (43-1520 µg g
-1

) than that at low 

temperature (920-7531 µg g
-1

). 

Almost all PAHs were detected and quantified in the biochars at lower temperature 

(Table 5.2.2), while in all of the biochars at 600 °C, naphthalene, acenaphthylene, 

acenaphthene, methylchrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, 

benzo(a)pyrene, dibenz(a,h)anthracene, benzo(ghi)perylene, indeno(1,2,3-c,d)pyrene and 

coronene were not detected. The individual concentrations of the PAHs in biochars are 

presented in Table 5.2.7 and typical distribution profiles are shown in Fig. 5.2.6. A detailed 

analysis of the contribution of the individual PAHs in biochars produced at 600 °C 

indicated the dominance of phenanthrene (8-32% of the total PAHs), fluoranthene (15-28% 

of the total PAHs) and pyrene (36-61% of the total PAHs) in all the samples studied. While 

in the wood biochars at lower temperature the PAHs with 5–7 rings composed almost the 

majority of PAHs (PW ID 2 = 48%, BW ID 2 = 55%). Therefore, it can be assumed that 

biochar generated at a temperature of 340-400 °C will have an aromatic structure that is 

not sufficiently condensed to be entirely captured in the analytical window of HyPy. 

However, also in the biochar CD EU 2 (400 °C), phenanthrene, fluoranthene and pyrene 

dominated the PAH profiles, supplying 28 %, 14 % and 40% of the total PAH 

concentrations, respectively. This result could be explained also by the fact that the corn 

digestate biochar is characterized by the relatively high content of ash.  

The distribution of pyrolysis products is sensitive to the feedstock, as well as 

production conditions (Figure 5.2.4 and Table 5.2.8). The pyrolysates of all biochar 

samples were featured by the presence of aromatic hydrocarbons including benzene, 

benzene derivatives, and polycyclic aromatic hydrocarbons (PAHs; e.g., naphthalene, 

phenanthrene). Aromatic hydrocarbons (e.g., benzene, toluene, C2-benzenes, naphthalene, 

phenanthrene, diphenyl) along with benzofurans were grouped into a single family of 

compounds representing the charred fraction of biochar (C in Table 5.2.5). The high 

proportion of these products in the pyrolysates (% charred) which ranged from 36.6% (PW 

ID 2) to >99% (PW ID 1 – BW ID 1), indicative of charred biomass. This is in accordance 

to Kaal et al. (2009) who proposed that benzene, toluene, naphthalene, diphenyl and 

benzofuran could be associated specifically to the charred fraction of BC. 
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In addition, the degree of de-alkylation might be a proxy of thermal alteration (Kaal et 

al., 2012). The de-alkylation degree can be estimated in Py–GC–MS from the ratio of 

parent/alkylated compound, such as benzene/toluene (B/T), ratios. B/T ratios for the 

biochar pyrolysates ranged between 0.49 and 8.9 (Table 5.2.5) and tended to increase with 

decreasing overall yields and with increasing the relative abundance of pyrolysis products 

indicative of charring (% charred). 

The pyrolysis products lignin markers, represented by 2-methoxyphenols (guaiacols), 

4-vinylguaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-methylsyringol and 2,5-

dimethoxyphenols (syringols), were abundant in the pyrolysate of PW ID 2 and BW ID 2 

biochar, while these lignin markers (Ralph and Hatfield, 1991) were not detected in PW ID 

1, BW ID 1, CD EU 1 and CD EU 2. The phenols and methylphenols, which are less 

specific lignin markers, were abundant in PW ID 2 and BW ID 2, but were detected also in 

corn digestate biochars. In this case, the phenols and methylphenols are therefore of little 

diagnostic value with respect to highly or weakly pyrolysed lignin.  

 

Figure 5.2.6. Total ion chromatograms from HyPy of biochars PW ID 2 and BW ID 2 

showing the PAHs present in the non-BCHyPy fraction.  
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Table 5.2.7. Observed concentration of PAHs released by the HyPy of biochar samples. 

PAHs Mol. Wt. Rings 
PW ID 1 

(µg g
−1

) 

PW ID 2 

(µg g
−1

) 

CD EU 1 

(µg g
−1

) 

CD EU 2 

(µg g
−1

) 

BW ID 1 

(µg g
−1

) 

BW ID 2 

(µg g
−1

) 

Naphthalene 128 2 n.d. 57 ± 30 n.d. n.d. n.d. 8.0 ± 3.8 

Biphenyl 154 2 n.d. 96 ± 24 n.d. n.d. n.d. 28.0 ± 0.5 

Acenaphthene  154 3 n.d. 77 ± 11 n.d. n.d. n.d. 47.5 ± 2.2 

Fluorene 166 3 3.70 ± 0.7 416 ± 45 n.d. 14.2 ± 0.9 14.4 ± 0.16 161 ± 33.9 

Phenanthrene 178 3 186 ± 41.4 1019 ± 32 3.4 ± 0.07 257 ± 46.1 579 ± 9.2 335 ± 80.4 

Anthracene 178 3 20.5 ± 0.7 166 ± 9 1.3 ± 0.01 13.4 ± 2.1 18.4 ± 0.3 74 ± 14.7 

Fluoranthene 202 4 111 ± 7.3 548 ± 27 11.9 ± 2.8 126 ± 5.2 225 ± 7.1 289 ± 61.1 

Pyrene 202 4 239 ± 49.2 938 ± 14 26.0 ± 6.3 406 ± 71.6 540 ± 14.5 432 ± 102 

Chrysene 228 4 19.8 ± 1.4 265 ± 24 n.d. 5.87 ± 0.7 53.2 ± 3.5 186 ± 45 

Benzo[a]anthracene  228 4 10.7 ± 1.3 346 ± 13 n.d. 18.3 ± 3.3 19.0 ± 0.4 150 ± 26.0 

Methylchrysene 242 4 n.d. 311 ± 6 n.d. 10.0 ± 1.5 14.0 ± 0.2 234 ± 22.7 

Benzo[b]fluoranthene 252 5 n.d. 734 ± 30 n.d. 21.5 ± 1.0 32.9 ± 0.9 384 ± 59.9 

Benzo[k]fluoranthene 252 5 n.d. 470 ± 18 n.d. 17.4 ± 1.8 24.4 ± 1.7 266 ± 58.6 

Benzo[a]pyrene  252 5 n.d. 463 ± 26 n.d. 8.1 ± 1.2 n.d. 243 ± 45.0 

Indeno[1,2,3-cd]pyrene 276 6 n.d. 601 ± 56 n.d. 4.76 ± 0.7 n.d. 346 ± 28.8 

Dibenzo[a,h]anthracene 278 6 n.d. 159 ± 16 n.d. 2.65 ± 0.04 n.d. 102 ± 7.8 

Benzo[ghi]perylene 276 6 n.d. 682 ± 86 n.d. 15.8 ± 1.2 n.d. 378 ± 51.8 

Coronene 300 7 n.d. 186 ± 16 n.d. n.d. n.d. 115 ± 2.1 

         

Total PAHs
   591 ± 93.7 7531 ± 270 43 ± 9.1 920 ± 131 1520 ± 10.8 3778 ± 593 
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Table 5.2.8. Concentrations of the pyrolysis products of biochar. Mean values (µg g
-1

) and 

standard deviation from two replicates. 

Sample Id. BW ID 1 BW ID 2 PW ID 1 PW ID 2 CD EU 1 CD EU 2 

Compound name 

µg g
-1 

pyrolysed 

µg g
-1 

pyrolysed 

µg g
-1 

pyrolysed 

Benzene 341 ± 83 4592 ± 771 109 ± 6.8 265527 ± 39092 237 ± 10 

2 
91 ± 16 

Hydroxyacetone n.d. n.d. n.d. n.d. n.d. n.d. 

Dimethylfuran n.d. 773 ± 23 n.d. 17.2 ± 1.5 n.d. n.d. 

Pyrrole n.d. n.d. n.d. 30 ± 18 n.d. n.d. 

Toluene 38 ± 9.5 9452 ± 1106 34 ± 5.6 544318 ± 61563 91 ± 42 15.3 ± 1.3 

2-Methyltiophene n.d. n.d. n.d. n.d. n.d. n.d. 

Furaldehyde n.d. 136 ± 34 n.d. n.d. n.d. n.d. 

o-Xylene 3.9 ± 1.1 909 ± 40 6.3 ± 1.4 51.4 ± 4.2 14.4 ± 1.0 1.18 ± 0.01 

m-p-Xylene 3.7 ± 0.2 3274 ± 385 4.8 ± 1.2 183801 ± 16905 15.2 ± 0.3 1.55 ± 0.05 

Styrene 22.8 ± 1.1 830 ± 34 7.9 ± 0.7 51.4 ± 1.9 23 ± 5.4 10.7 ± 2.3 

Ethyl-benzene n.d. 79 ± 5.1 n.d. n.d. n.d. n.d. 

Phenol n.d. 15620 ± 2701 n.d. 662373 ± 470703 n.d. n.d. 

Benzofuran n.d. 1345 ± 137 5.5 ± 0.6 79.1 ± 2.5 17 ± 3.0 n.d. 

Benzonitrile n.d. n.d. 0.90 ± 0.14 n.d. 17.6 ± 0.9 35 ± 8.0 

Indole 2.4 ± 0.3 99.0 ± 0.7 0.39 ± 0.02 4.8 ± 0.2 n.d. 0.94 ± 0.36 

3-Methylphenol n.d. 4340 ± 249 n.d. 279125 ± 86793 17 ± 13 2.84 ± 0.08 

4-Methylphenol n.d. 7307 ± 92 n.d. 497598 ± 265920 27 ± 26 4.24 ± 0.18 

Guaiacol n.d. 1563 ± 41 n.d. 81.3 ± 1.2 n.d. n.d. 

Methyl-benzofuran(1) n.d. 319 ± 12 0.34 ± 0.08 19.3 ± 1.7 n.d. n.d. 

Methyl-benzofuran(2) n.d. 660 ± 1 1.1 ± 0.22 18.5 ± 1.6 n.d. 5.3 ± 1.3 

Methyl-benzofuran(3) n.d. 911 ± 43 1.1 ± 0.22 51.7 ± 3.8 n.d. 6.7 ± 1.8 

2-Ethylphenol n.d. 312 ± 11 n.d. 18.6 ± 7.5 n.d. n.d. 

2,5-Dimethylphenol n.d. 2910 ± 18 n.d. 220813 ± 88639 11 ± 8.3 0.92 ± 0.11 

2,3-Dimethylphenol n.d. 2082 ± 13 n.d. 25.6 ± 10.1 10 ± 7.5 1.16 ± 0.15 

3-Ethylphenol n.d. 620 ± 22 n.d. 27.4 ± 6.3 11 ± 7.6 0.93 ± 0.09 

Naphthalene 63 ± 8.7 863 ± 74 15.5 ± 0.05 50.4 ± 9.3 50 ± 4.9 76 ± 20 

Catechol n.d. 4149 ± 1047 n.d. 129 ± 13.1 n.d. n.d. 

2-Methylnaphthalene 5.2 ± 0.8 526 ± 53 1.60 ± 0.03 31.9 ± 8.5 6.4 ± 2.1 14.1 ± 3.3 

1-Methylnaphthalene 5.6 ± 0.4 264 ± 29 1.92 ± 0.07 17.0 ± 5.6 6.4 ± 1.7 9.4 ± 1.9 

4-Vinylguaiacol n.d. 46.1 ± 0.1 n.d. 2.3 ± 0.2 n.d. n.d. 

4-Methylguaiacol n.d. 1001 ± 192 n.d. 125 ± 31.6 n.d. n.d. 

Syringol n.d. n.d. n.d. n.d. n.d. n.d. 

Biphenyl 8.7 ± 1.1 44.5 ± 1.5 1.53 ± 0.09 4.1 ± 1.6 9.4 ± 0.8 4.38 ± 0.99 

4-Ethylguaiacol n.d. 995 ± 111 n.d. 31.9 ± 11.7 n.d. n.d. 

4-Methylsyringol n.d. n.d. n.d. n.d. n.d. n.d. 

o-Isoeugenol (i.s.) 71 ± 1.1 60 ± 3.1 22 ± 2.3 15.7 ± 4.8 61 ± 9.3 74 ± 18 

Fluorene 2.4 ± 0.12 94 ± 7.1 n.d. 3.1 ± 0.5 3.9 ± 0.1 0.93 ± 0.11 

Phenanthrene 2.5 ± 0.05 16.8 ± 0.6 n.d. 6.2 ± 0.8 3.9 ± 1.9 0.25 ± 0.02 

Anthracene 2.4 ± 0.20 12.4 ± 2.0 n.d. 1.3 ± 0.2 n.d. n.d. 

Fluoranthene n.d. 3.8 ± 1.1 n.d. 0.9 ± 0.1 n.d. n.d. 

Pyrene n.d. 3.4 ± 1.0 n.d. 0.7 ± 0.1 n.d. n.d. 
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5.2.4. Conclusions  

The aim of this study was to examine molecular proxies of the thermal stability of the 

carbon in biochar produced from different feedstocks and under different production process 

and in the context of its carbon sequestration potential. HyPy was applied to isolate the carbon 

component most likely stable in the environment on centennial timescales and the Py-GC-MS 

providing qualitative and quantitative information on stability of biochar. 

The results presented in this study demonstrated that HyPy is a rapid and convenient 

technique for the quantification of BC and determination of the stable carbon in biochar. In 

support of HyPy method, a strong relationship was found between the H/C and O/C values of 

biochar samples and the BCHyPy values found. Moreover, the ability of the HyPy method to 

determine BC in the biochar was evaluated comparing the results with Py-GC-MS. The 

results showed that these two techniques provided detailed and consistent information 

concerning the chemical characterisation and the stability of biochar samples. As well as 

isolating the BCHyPy fraction, HyPy also allows the characterisation of the non-BCHyPy 

material at a molecular level by GC-MS analysis.  

The influence of feedstock type and pyrolysis conditions on the degree of carbonisation and 

other biochar properties was evidenced by HyPy and Py-GC-MS. In particular, the fraction of 

BC in wood biochar increases with increasing pyrolysis temperature levelling the biochar 

characteristics from the feedstock. The levels of solvent extractable PAHs and HyPy evolved 

PAHs were higher in biochars produced at the lower temperatures. This means that biochar 

exposed to higher pyrolysis temperatures contains a higher proportion of the stable fraction 

than biochar produced at low temperatures suggesting that, from a carbon sequestration point 

of view, high temperature pyrolysis biochar is preferable. However, studies indicate that from 

the point of view of sequestering maximum amount of carbon per unit of feedstock, low-

temperature conversion processes might perform as effectively as higher temperature 

pyrolysis processes. Therefore, this aspect requires further investigations. 
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6. Conclusions 

The study presented in this thesis was targeted to expand our understanding on the 

application of biochar in the environment. In particular, focusing on the potential risks 

associated to the application of biochar in soil biochar due to the presence of harmful 

substances as well on the stability of biochar.  

To the purpose of evaluating the potential risks arising from the occurrence of 

polycyclic aromatic hydrocarbons (PAHs) sorbed onto biochar, an analytical method was 

developed for the determination of the 16 USEPA-PAHs in the original biochar and soil 

containing biochar. The concentration of these PAHs along with the 15 EU-PAHs, priority 

hazardous substances in food, was determined in a suite of currently available biochars for 

agricultural field applications, which were derived from a variety of parent materials and 

pyrolysis conditions. The method consisted in surrogate PAH spiking, prolonged soxhlet 

extraction with acetone-cyclohexane, SPE clean-up and GC-MS analysis. The method was 

successfully validated with a certified reference material for the soil matrix. In the absence 

of commercially available reference materials for charcoal the method could not be fully 

validated for biochar. However, the recoveries of surrogate (perdeuterated) PAHs were 

satisfactory for almost all of the many investigated biochars from different substrates and 

synthesis conditions. The participation to a laboratory exercise within the EU-COST 

TD1107 enabled a comparison of the method with methods in use in other laboratories.  

All the biochars analyzed in this thesis contained the USEPA, as well as some of the 

EU-PAHs at detectable levels ranging from 1.2 to 19 µg g
-1

. Results have indicated that, 

considering an application of 20-60 t biochar ha
-1

, the degree of PAH contamination will 

be dependent on both the presence of background PAHs in soil and the concentrations of 

sorbed PAHs on the biochar. Moreover, along with PAH levels determined in other 

studies, our data suggested that biochars produced by slow pyrolysis from woody biomass 

possessed the lowest level of sorbed PAHs (< 10 µg g
-1

). 

Once spread in the soil, biochar could be a source or a sink of PAHs. The 

environmental fate of biochar-associated PAHs is still poorly understood due to the paucity 

of long-term in-field studies on this topic. Therefore, it is necessary to improve knowledge 

of the role biochar plays in sorbing PAHs and on microbial activity and how this 

influences the concentration of PAHs in soil and their persistence in the environment. 

The changes in PAH content and distribution was examined in a four year study 

following biochar addition in soils in a vineyard (CNR IBIMET). The obtained results 
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showed that the biochar addition determined an increase of the amount of PAHs. However, 

the levels of PAHs in the soil remained within the maximum acceptable concentration for a 

number of European countries. Moreover, the biochar did not reduce the degradation of 

PAHs in the investigated agricultural soil, a conspicuous fraction of PAHs was degraded 

bringing the PAH levels close to those of the untretaed soil. The absence of an increasing 

concentration trend with time indicated that biochar did not act as a sink of environmental 

(e.g. atmospheric) PAHs. Therefore, the impact attributable to PAHs following biochar 

application to soil can be minimal. 

The four years sampling of vineyard soil performed by CNR-IBIMET was exploited to 

study the environmental stability of biochar and its impact on soil organic carbon. In the 

literature, several approaches have been proposed to assess biochar stability. Yet, there is 

no agreed methodology for determining the long-term stability of biochar. In this research, 

the stability of biochar produced from different feedstock and under different production 

processes was investigated by analytical pyrolysis (Py-GC-MS) and pyrolysis in the 

presence of hydrogen (HyPy). In particular, HyPy was applied to isolate the carbon 

component most likely to be stable in the environment on a centennial timescales The 

findings of this study showed that biochar amendment significantly influence soil stable 

carbon fraction concentration during the incubation period. In particular, the obtained 

concentrations of stable carbon fraction in the amended soil are significantly higher than 

those in the untreated soil. Obviously, the effect of biochar addition in soils on the level of 

stable carbon will depend on the BC in the original biochar. The high stable carbon value 

found for biochar (83±3.3%) used in this study suggests that it should be quite recalcitrant 

to degradation. 

Moreover, the HyPy allowed the characterisation on a molecular level of labile carbon 

fraction defined as non-BCHyPy fraction. In addition to a number of PAHs, the non-BCHyPy 

fraction was also found to contain a significant abundance of n-alkanes, with a marked 

predominance of even-numbered homologues. These compounds are probably derived 

from lipids, hydrogenated during HyPy. 

The results presented in this study demonstrated that HyPy is a valid technique for 

isolating and quantifying stable carbon in soil matrices treated with biochar. Moreover, the 

ability of the HyPy method to determine stabile carbon fraction in the biochar was 

evaluated comparing the results with flash analytical pyrolysis (Py-GC-MS) on a variety of 

biochars. In fact, Py-GC-MS can provide information on the thermal labile fraction of 
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biochar at a molecular level. HyPy and Py-GC-MS were applied to biochars deriving from 

three different feedstock (woody, herbaceouse and digestate biomass) at two different 

pyrolysis temperatures. HyPy and Py-GC-MS evidenced the influence of feedstock type 

and pyrolysis conditions on the degree of carbonisation and other biochar properties. In 

particular, the stable fraction in wood biochar increases with increasing pyrolysis 

temperature levelling the biochar characteristics from the feedstock. This means that, from 

a carbon sequestration point of view, a high temperature pyrolysis biochar is preferable. 

In general, the obtained results showed that these two techniques provided detailed and 

consistent information concerning the chemical characterisation and the stability of biochar 

samples. By isolating the stable fraction, HyPy also allowed the characterisation of the 

labile carbon fraction at a molecular level by GC-MS analysis. 

Biochar has potential as soil amendment for improving soil quality, decreasing 

fertilizers losses and store carbon into the soil. Nevertheless, as soil additive, the absence 

of phytotoxicity is the minimal requirement. We have showed above that the concentration 

of PAHs in biochars from slow pyrolysis of lignocellulosic feedstock is generally 

sufficiently low to keep the degree of contamination in soils at safe levels. However, 

biochars from sources other than woody or herbaceous biomass could exhibit detrimental 

effects on plants. In this context, biochar from poultry litter was investigated in this thesis. 

Biochars were prepared by intermediate pyrolysis at different temperatures and compared 

with biochars from corn stalk prepared under the same pyrolysis conditions. The 

phytotoxicity of these biochars was estimated by means of seed germination tests on cress 

(Lepidium sativum L.).  

Results obtained show that biochar from poultry litter may exert negative effect at least 

at the relatively high level of soil amendment (40 t ha
-1

). The role of PAHs in the inhibition 

of seed germination was excluded. Instead, potential candidates of toxicity were identified 

in water soluble and biodegradable components, probably derived from the thermal 

decomposition of proteins and lipids. In supporting this hypothesis, the toxicity was 

drastically reduced by water extraction or mixing with biologically active materials, while 

the water extracts inhibited the germination. Therefore, biochar is not an “intrinsically 

safe” material, and every biochar from different processes and/or feedstock has to be 

evaluated, checked and possibly treated before the agronomic application. 
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