
 1 

Alma Mater Studiorum – Università di Bologna 
 
 

DOTTORATO DI RICERCA IN 

SCIENZE MEDICHE GENERALI E DEI SERVIZI 

ODONTOIATRIA PER DISABILI 

Ciclo XXVII 

 
Settore Concorsuale di afferenza: 06/F1 
 
Settore Scientifico disciplinare: MED/28 

 
 

TITOLO 

BONE-IMPLANT INTERFACE. EVALUATION OF 

OSTEOBLASTIC CELLS BEHAVIOUR ON NANOPATTERNED 

TITANIUM SURFACES: AN IN VITRO ANALYSIS. 

 
 

 
Presentata da: CANDIDA PARISI 
 
 
 
Coordinatore Dottorato                                                                  Relatore 
 
Prof. Nicola Rizzo                            Prof. Gabriela Piana 
 
 

 
 

Esame finale anno accademico 2013-2014 
 



 2 

INDEX 
Pag. 

Introduction…………………………………….……………………..………………………...4 

 

Chapter 1. Analysis of implant-healing related factors ……………..…………7 

1.1 Osseointegration and biocompatibility………………………...............................7 

1.2 The role of proteins……………………………………………...............................8 

1.3 Implant surface modifications……………………………………………………...10 

1.4 Impact of nanotopography on the osteogenesis events 

     and nano-patterning techniques…………………………………………………...11 

1.5 Experimental hypothesis………………………………..………………………….16 

 
Chapter 2. In vitro study…………………………………………………...….…………..18 

2.1 Abstract…………………………………………………………….........................18 

2.2 Objective of the study…………………………..…………………………………..21 

2.3 In vitro experiments………………………………………...………………………21 

 

 Chapter 3. Materials and methods.………………………….……………………….22 

3.1 Substrates…………………………………………………............………………..22 

3.2 Cell cultures……………………………………………………………………….…23 

3.3 Experimental conditions……………………………………………………….......24 

3.4 Considerations about cells used for in vitro experiments……………………....24 

3.5 Qualitative analysis of cells………………………………………..………………25 

3.6 Cells immunolabeling and staining procedures………………………………….26 

3.7 Morphological analysis……………………………………………………………..27 

3.8 Quantitative analysis……………………………………………….……………….28 

3.9 Statistical analysis…………………………………………………………………..29 

 

Chapter 4. Results……………………..………………………………….………………...30 

4.1 Surface features….………………………………………………...……………….30 

4.2 Cell morphology…………………………………………………….…………….…30 

4.2.1 Optical microscope………..…………………….……………………….…..33 

4.2.2 SEM imaging…………………………………………………….…………...33 



 3 

4.3 Quantitative results…………………………………………………………………35 

4.3.2. Alamar Blue assay………….……………………………....………………35 

4.3.2.1 Alamar Blue results for 1h/3h experiments at day 3………………..35 

      4.3.2.2 Alamar blue results for 1h/24h experiments at day 3…………….…36 

4.3.2.3 Alamar Blue results for 1h/3h experiments at day 7…………….….36 

4.3.2.4 Alamar Blue results for 1h/24h experiments at day 7………….…...37 

4.3.3 MTT assay…………………………………………………..........................37 

4.3.3.1 MTT results for 1h/3h experiments at day 3…………………….…...38 

4.3.3.2 MTT results for 1h/24h experiments at day 3………………….........38 

4.3.3.3 MTT results for 1h/24h experiments at day 7……………................38 

4.3.4 Ki-67 results…………………………………………….…..........................39 

4.3.5 Alizarin red results………………………………………….........................39 

 

Chapter 5. Discussion………………….…………………………………………………...40 

 

Chapter 6. Comparison with in vivo studies………….………………………….……46 

6.1 Advantages/Disadvantages of in vitro studies.……..………..………………….46 

6.2 Brief analysis of in vivo studies on different implant surfaces..........................47 

6.3 Potential impact in the field of implantology for  

      medically compromised patients….…….………………………………………...49 

 

Chapter 7. Conclusions………………….………………………………...…………….…52 

 

References………….……………………………………….………………………….……...54 

Figures and graphics…………………….……………………………………….………..70 

Acknowledgements………………..………………………………….………….………...92 

 
 

 

 

 

 

 



 4 

Introduction 

 
The replacement of missing teeth by means of endosseous titanium implants has become 

an evidence-based treatment modality for both completely and partially edentulous 

patients, (Jemt, Chai et al. 1996, Lindquist, Carlsson et al. 1996, Buser, Mericske-Stern et 

al. 1997, Lambrecht, Filippi et al. 2003). The benefit of better mastication provided by 

implant-supported prostheses improves the quality of life and has an important impact on 

the overall health of the patient. Short- and long-term success of this implant-supported 

dental prosthetic treatments depend on a multitude of factors, which are related to the host 

general and local health’s conditions and to the biological and mechanical characteristics 

of the biomaterial which constitutes the implants. Notably, bone quantity and quality are 

pivotal factors in determining the eligibility of each patient for the implant therapy. 

Moreover, surgical technique, type of dental implants adopted - including material, shape 

and chemical and topographical surface characteristics - and mechanical load conditions 

at the implant site represent key factors influencing a dental implant treatment plan, 

(Variola, Brunski et al. 2011).  

For these reasons, dental implants are generally limited to patients with ‘‘good bone 

quality’’, leaving out a large segment of the population that has lost supporting jaw bone 

with age or due to medically compromised conditions, such as chronic diseases or 

chromosomical and genetical syndromes affecting bone microstructure as well as bone 

remodelling rates. 

Treatment outcomes have become highly predictable in healthy patients, with success 

rates of 95.9–97.9% reported after 10 years (Priest 1999, Ferrigno, Laureti et al. 2002, 

Karoussis, Salvi et al. 2003, Rasmusson, Roos et al. 2005, Schwartz-Arad, Kidron et al. 

2005, Blanes, Bernard et al. 2007). Endosseous implants preserve the adjacent teeth, 

offer good functional and aesthetic outcomes, and prevent disuse atrophy of the alveolar 
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bone (Isidor 2006). However, the therapeutic use of dental implants is often 

contraindicated (Smith, Berger et al. 1992) in medically compromised patients (MCP).  

In patients with chromosomical and/or genetical syndromes, multiple systemic diseases 

i.e., congenital heart diseases, as well as diabetes mellitus, deficit of the immune or 

muscle-skeletal systems, etc. are often associated. The prosthetic rehabilitation supported 

by endosseous dental implants present several contraindications and the elected 

treatment plan rather includes the use of removable or fixed partial dentures on natural 

teeth. Nevertheless, in these patients, the lack of single or multiple dental elements is 

often observed, generally due to congenital agenesis, (i.e. in Down’s Syndrome patients), 

(Russell and Kjaer 1995, de Moraes, de Moraes et al. 2007), or to traumatic injuries. 

Hence, contiguous teeth are found intact and in function. In this contest, a dental implant 

treatment preserving the integrity of the adjacent teeth is particularly desirable. 

Endosseous implants guarantee a conservative approach towards residual teeth and an 

improved function and stability of the oral prostheses. Not less importantly, especially for 

syndromic patients, who are often young adults, the implant treatment may also contribute 

to a better psychological and social adaptation of the patients towards the oral prosthetic 

rehabilitation. 

Noteworthy, as well as for the general population, patients suffering for genetical and/or 

chromosomical syndromes have nowadays an improved life expectancy. Down’s 

Syndrome (or Trisomy 21) represents the most frequent chromosomical syndrome, with an 

incidence of 1 over 800-1000 born alive. Currently, patients affected by Trisomy 21 have a 

mean life length till the age of 55-65 years, (Siffel, Correa et al. 2004, 2006, Shin, Besser 

et al. 2009), thanks to the progress achieved in the diagnoses and in the therapy of the 

associated diseases.   
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Thus, it is imperative that oral prosthetic treatments, including dental implants, which 

guarantee optimal masticatory function and long-term durability, may be offered to a larger 

segment of the population, regardless its general and/or specific anamnesis. 
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Chapter 1 

Analysis of implant-healing related factors  

 

 

 

 

 

 

 

 

1.1 Osseointegration and biocompatibility 

The treatment concept of implant-supported dental prostheses is based on the biologic 

phenomenon of osseointegration, which indicates a direct structural and functional 

connection between living bone and the surface of a load-bearing implant. A prerequisite 

for a successful osseointegration is the establishment of a direct bone-to-implant contact 

(BIC) without the interposition of any other tissue (Branemark, Adell et al. 1969, 

Albrektsson 1983, Davies 1998). 

In fact, it is well known that the implant surface status is one of the influential factors for 

osseointegration, thus significant attention has been devoted towards enhancing its 

biocompatibility and osteoconductivity, (Albrektsson and Wennerberg 2004, Albrektsson 

and Wennerberg 2004, Buser, Broggini et al. 2004, Butz, Aita et al. 2006). Pure titanium 

(Ti) and its alloys are considered the best metallic materials for dental implants, since 

titanium show a high and proved biocompatibility. Biocompatibility is defined as the natural 
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ability of a biomaterial to accomplish specific biomedical functions, without stimulation of 

any pathologic immune or tissutal reaction (Brunski, Puleo et al. 2000, Vetrone, Variola et 

al. 2009). Biocompatibility of a titanium dental implant is mainly related to the initial bone-

implant interaction, that takes place immediately after its surgical insertion. It is 

represented by a complex series of cascade events, closely related to the specific 

biomaterial properties, both chemical and physical. 

Since the implant surface is the first component that directly contacts the host tissue, its 

biocompatibility and its properties are determinant for the achievement of a rapid and 

successful osseointegration. Thus, in the attempt to guide and control the oteogenesis 

events, the implant surface must be considered. Recently, several surface modifications, 

whether topographical or chemical have been proposed with the aim of enhancing and 

accelerate the tissues healing responses. However, the exact mechanism by which the 

implant surface interacts with the surrounding tissues is not yet fully clarified (Anselme and 

Bigerelle 2006, Liu and Webster 2007, Vetrone, Variola et al. 2009).  

Significant progresses have been made in this research field during last decades, in the 

attempt to achieve shortened and controlled tissues healing responses by means of 

implant surface modifications which may exert a favourable effect on the osteogenesis 

events. 

 

1.2 The role of proteins 

The first event taking place at the implant surface is the protein adsorption from tissue 

fluids. It is well documented that protein adsorption onto metal surfaces occurs 

immediately following implantation of a biomaterial, (Walivaara, Aronsson et al. 1994, 

Horbett 2003). Irrespective of the biomaterial and its topography, proteins will be attracted 

from blood at the implant site; the adsorption process takes place spontaneously in the 

range of milliseconds (Turbill, Beugeling et al. 1996). Yet a little later, cell extensions, cell 
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membrane and cell receptors, mainly integrins, recognize and bind specific active sites on 

the proteins molecules, thus initiating the bone formation process (Rupp, Scheideler et al. 

2004, Jimbo, Ono et al. 2011). In fact, it has been suggested that protein adsorption play a 

key role in the osteoconduction stage of osseointegration (Reddi 1985, Park and Davies 

2000, Akagawa, Kubo et al. 2009) and that some proteins significantly enhance initial 

adhesion, growth and differentiation at the bone-implant interface (Jimbo, Sawase et al. 

2007). Proteins deriving from plasma, extracellular matrix and bone are dynamic, as each 

one constantly changes position and orientation, depending on the molecular weight 

(Vroman and Adams 1969). A mixture of proteins adsorbs onto titanium surfaces and may 

undergo to conformational changes, denaturation, and/or replacement by the so-called 

Vroman effect, suggesting that proteins play different roles in the bone-implant healing 

response. The resulting adsorbed protein layer is probably never static, but subjected to 

changes in composition and conformational state during the whole healing period, 

(Kasemo and Gold 1999). It has been reported that the main salivary proteins that adsorb 

onto titanium in vitro and in vivo are amylase and albumin (Kohavi, Klinger et al. 1995, 

Steinberg, Klinger et al. 1995). Sela et al. (Sela, Badihi et al. 2007) found that fibronectin is 

the most adsorbed protein onto differently treated (smooth, etched and etched plus 

sandblasted) titanium surfaces as compared to other proteins alone, (such as Albumin, 

IgG, and fibrinogen), or contained in plasma where competing conditions with different 

proteins are present. Fibronectin, a high molecular weight glycoprotein, is one of the 

earliest cell-binding proteins produced by osteoblasts and is involved in cell adhesion 

(Proctor 1987). 

Fibronectin is reported (Yang, Cavin et al. 2003) to favourably influence the osteoblast 

cells migration and attachment at the implant site and to act as bone density regulator, 

(Bentmann, Kawelke et al. 2010, Miyamoto, Lafrenie et al. 1998). Moreover, fibronectin 

and fibronectin receptors were preferentially found at the osteoblasts-titanium surface 
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contact sites, (Meyer, Joos et al. 2004). Similarly, but with opposed mechanism, vitronectin 

has a positive influence on the bone-implant healing, as it reduces the undesirable 

attachment of epithelial cells on dental implants whereas type IV collagen adsorption 

should be avoided, as it may help the epithelial cells to attach and grow onto titanium 

surfaces, negatively affecting the oteogenesis events, (Park, Kim et al. 1998).  

 

1.3 Implant surface modifications  

Clinical success of an implant is related to its surface properties. For this reason, a 

multitude of surface modifications, have been attempted to increase its osteoconductive 

properties and enhance the biological responses to implants, (Buser, Broggini et al. 2004, 

Lemons 2004, Ong, Carnes et al. 2004). Commonly utilized modifications of titanium 

implants are alterations in chemistry and surface texture (Buser, Broggini et al. 2004, 

Lemons 2004, Ong, Carnes et al. 2004).  

In fact, it has been reported that chemical and physical properties of a biomaterial surface, 

such as chemical composition, curvature, porosity, roughness, energy, etc. may strongly 

influence the cellular response surrounding dental implants. (Brunski, Puleo et al. 2000, 

Engler, Bacakova et al. 2004, Anselme and Bigerelle 2006, Vetrone, Variola et al. 2009). 

Chemical modifications, aiming to impact the surface chemistry, include acid etching 

(Nanci, Wuest et al.1998, Sandrini, Giordano et al. 2007, Giordano, Sandrini et al. 2006), 

plasma treatment, (Itala, Ylanen, et al. 2002, Nitschke, Schmack et al. 2002), etc. Plasma 

techniques provide simple in situ process for chemically tailoring surfaces without 

compromising the inherent favourable bulk properties of the biomaterial, (Lin, Cheng et al. 

2005). Plasma treatments may provide enhanced surface cleaning and decontamination. 

Topographical (physical) modifications include mechanical roughening, (i.e. polishing, 

grinding, machining, (Cassinelli, Morra et al. 2003, Xavier, Carvalho et al. 2003), 

sandblasting, (Anseleme Bigarelle 2006, Guizzardi, Galli et al. 2004) elettro-erosion and 
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acid etching, which produce surface patterning at the micro- and nano- scales.  

Although micro-patterned surfaces can impact the tissue healing and the micromechanical 

retention of an implant to the surrounding tissues, they may have a minor direct effect on 

the molecular and cell activities, (Buser, Schenk, 1991, Abrahamsson, Berglundh et al. 

2004). 

The most correct approach to modify implant surfaces is combining chemical and 

topographical surface modifications, considering surface chemistry and micro-architecture 

as important properties that synergistically influence the tissue response, (Kasemo and 

Gold 1999). 

 

1.4 Impact of nanotopography on the osteogenesis events and nano-patterning 

techniques  

Currently, nan-topography has received increased attention as it has proven to 

significantly enhance osseointegration (Wennerberg and Albrektsson, 2010). Several 

studies have shown that nanostructured implant surfaces modifications may improve 

osteoblast adhesion and spreading in vitro (Raimondo et al. 2010, Gittens et al. 2011) and 

bone responses in vivo, (Bjursten et al. 2010; Jimbo et al. 2012). The beneficial effects of 

these alterations may be in part related to their ability to mimic the nanoscale architectural 

environment in which cells reside. In fact, cell-substrate interactions are mainly governed 

by nanometric surface cues as proteins, cell membrane receptors and filipodia are in the 

order of few tenths of nanometer, (Puleo and Nanci 1999, Whitesides 2003, Lord et al. 

2006, Curtis et al. 2004, Kriparamanan et al. 2006). These biological entities regulate cell 

attachment, migration, proliferation and differentiation, (Curtis and Wilkinson 1999, de 

Oliveira and Nanci 2004).  

More recently, efforts have focused on the attempt of realizing new “intelligent” 

biomaterials for dental implants, such as bioactive titanium surfaces, which may be able to 
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specifically control the first event taking place at the implant surface: the protein adsorption 

from tissue fluids.  

Ideally, such modified implant surfaces are able to selectively adsorb beneficial molecules 

for the osteogenesis events. The objective is thus to promote growth and differentiation of 

osteoblastic cells and inhibit that of other cell lines, as fibroblastic or epithelial cells, which 

prevent the ideal osseointegration process at the bone-implant interface. Physical and 

mechanical principles must be taken into account in the attempt to regulate the newly 

formed tissues at bone-implant interface; however biological principles presiding over this 

process can’t be excluded. 

The application of nanotopography to implant surfaces is currently considered core 

concept of biomimetic engeneering.  

Topographical surface modifications at the nano-scale level aim to match the biological 

entities and produce an enhanced affinity between the substrate and the cells, thus 

guiding desired and controlled biological reactions, (Curtis and Wilkinson 1999, de Oliveira 

and Nanci 2004, Kiparamanan et al. 2006, Curtis et al. 2004, Lord et al. 2006).  

Nano-modified titanium surfaces may be produced by several methods, i.e. 

photolithography (Flemming, Murphy et al. 1999) electron beam lithography (Kasemo and 

Gold 1999) chemical oxidation (Nanci, Wuest et al. 1998, de Oliveira and Nanci 2004, de 

Oliveira, Zalzal et al. 2007), particle deposition (Lipski, Jaquiery et al. 2007, Kasemo and 

Gold 1999).  

The size ranges of interest include the smallest proteins (∼1 nm) and the largest cells 

(<100µm). The smallest feature size obtainable by conventional photolithography is 

around 0.3µm, while electron beam lithography can produce features down to 10 nm, 

depending on processing procedures and materials being patterned. The principle of 

lithography is to covering the surface with a radiation-sensitive film, (usually a polymer), 

then expose certain areas of the film to a beam of radiation and finally remove these 
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exposed and modified areas of the film, leaving a film that serves as a mask for following 

treatment of the remained uncoated areas. The following treatment may be an etching 

treatment, or deposit of thin film, etc. Photolithography is one of the most popular and 

conventional techniques from the onset of micro-nano-fabrication as it is a quick method 

through which many features can be patterned at once (Singh et al. 2013).  It uses 

radiation sources of different wavelengths: when features of small dimensions are being 

patterned, such as nanometers, radiation sources with wavelengths similar to those of the 

desired feature sizes must be used. In this technique, the electron beam hits only desired 

areas of the polymer film. Then, the modified polymer serves as mask for the surface. For 

example, micropatterned surfaces characterized by micro-cubes can be created by ion-

beam-etching the biomaterial surface following its masking with the patterned polymer film, 

(i.e., a matrix pattern of 5-µm squares). It is possible to vary the cube dimensions and 

spacing by changing the pattern definition (i.e., the mask) and etching time. Features on 

this size scale can influence the adsorption of proteins at the surface, for both 

topographical as well as chemical reasons. One drawback of electron beam lithography is 

that it is slow and very difficult to execute on non-planar surfaces, due to focusing 

problems, (Kasemo and Gold 1999).. 

A simple chemical method for surface nanopatterning is represented by the acid treatment 

which uses a solution of equal volumes of sulphuric acid (H2SO4) and 30% aqueous 

hydrogen peroxide (H2O2), as proposed by Nanci et al. (1998). This treatment determines 

de-oxidation and controlled re-oxidation of titanium surfaces and yields a clean surface 

without contaminants. It generates a reproducible titanium oxide surface layer 

characterized by nanopitted topography with increased roughness. The produced nano-

pits have a size range of 20-100 nm in diameter, depending on the etching time and the 

volumetric ratio between the acid and the oxidative agent used (Vetrone et al. 2009). 
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Several studies have already demonstrated how these nano-modified titanium surfaces 

accelerate the osteogenic potential in vitro: they provide an improved osteoblast adhesion 

and spreading and upregulate the early expression of bone-marker proteins in osteogenic 

cell cultures) (de Oliveira and Nanci 2004, de Oliveira, Zalzal et al. 2007, Richert, Vetrone 

et al. 2008).  

Thus, nanoscale surface roughness may play a decisive role in the osteogenesis events 

because the size of cell adhesion mediating structures matches those of nanotextured 

surfaces. Although histological evaluations carried out in several studies have proved that 

nanometer length scale modification effectively enhanced osseointegration, some other 

studies did not detect the effects of nano-scale modification; hence, further understanding 

of these delicate alterations are needed (Svanborg, Hoffman et al. 2011, Coelho, 

Cardaropoli et al. 2009).  

Furthermore, nanotopographical surfaces factors have been reported to contribute to 

differences in the adsorption of proteins. (Jimbo Coelho et al. 2011a, Jimbo, Sotres et al. 

2012, Puckett, Taylor et al. 2010, Mac-Donald, Markovic et al. 1998, MacDonald, Rapuano 

et al. 2004; Eriksson, Nygren et al. 2004).   

In particular, Deligianni et al. (2001) found higher amount of Fibronectin adsorbed to rough 

titanium surfaces than smooth surfaces and demonstrated that both protein adsorption 

process and cell attachment and differentiation are roughness sensitive. Accordingly, Sela 

et al. (2007) found significantly higher rate of proteins adsorption to acid-etched and 

blasted surfaces as compared to smooth ones and attributed this finding to the increased 

roughness of the former surfaces. However, the interfacial interactions between the nano-

structures and the osteogenic cells have not been clarified to a full extent. As said, it is 

widely believed that the protein adsorption play a critical role on the initial osteoblasts 

adhesion by the advantageous interaction between nanosize irregularities of the 

biomaterial surface and adsorbed cell-adhesion mediating molecules.  
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Moreover, an increased roughness of the substrate surface in the nano-scale presumably 

allows higher volumes of adsorbed proteins by the increased available surface (Keller, 

Schneider et al. 2003, Xavier, Carvalho et al. 2003). 

Both protein-surface and cell-surface interactions are influenced by the surface micro- and 

nano-topography. Curvatures, pits and protrusions that have sizes comparable with those 

of biological components (proteins ∼1-10nm, cells 1-100 µm) will induce different biological 

interactions.  

More recently, surface-coating with osteoconductive proteins, growth factors, peptides, 

etc., have also been investigated (Yoo et al. 2014, Jimbo, Sotres et al. 2012). The surface 

releases of ions or more complex organic molecules that penetrate the cells membrane or 

activate cell receptors may strongly stimulate the cell and ultimately the global tissue 

response. Hence, it is widely believed that intentionally doping implant surfaces with 

molecules that have a positive effect on the osteogenesis events, may improve and 

shorten the osseointegration process (Jimbo, Sotres et al. 2012, Rammelt et al. 2006, 

Hilbig et al. 2007). 

In addition, based on the favourable outcomes showed by surfaces with increased 

roughness, osteoconductive protein-coating has been associated to nanopatterned dental 

implants, in the attempt to further enhance the effect of adsorbed protein layer (Schwartz-

Filho et al. 2012, Schlegel et al. 2013, Lutz et al. 2013, Liu, Enggiest et al. 2007). 

A recent study (Yoo et al. 2014) compared the in vivo outcome of implants coated or not 

with Bone morphogenetic Protein 2 (BMP-2.). However, the major problem reported was 

the osteogenic protein release rate (Liu, Enggiest et al. 2007, Kempen, Lu et al. 2008). 

The most of the adsorbed protein was diffused away or competitively replaced by other 

proteins present at the implantation site within the first hour after implantation in vivo 

(Leonard and Vroman 1991), thus limiting the enhancing osteogenesis effect at the earlier 

period. On the other hand, excessive dosage and consequent not controlled, long-term 
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release of osteogenetic factors may yield undesirable events, such as recruitment and 

activation of osteoclast cells (Liu, Enggist et al. 2007, Liu, Huse et al. 2007).  

 

1.5 Experimental hypothesis 

When a surface comes in contact with the biological environment, the first event that takes 

place in the range of milliseconds (Webster et al. 2001) is the protein adsorption. The 

resulting protein adlayer will act as a framework on which cells can adhere, spread and 

proliferate. Despite numerous studies conducted in the field, there are still questions about 

the degree of influence that the protein adsorption has on the initial cellular events, 

particularly when the surface exhibits topography (Nakanishi et al. 2001, Brynda et al. 

2005, Kasemo and Gold 1999). Up to date, it still remains to be elucidated whether the 

cellular effects are solely mediated by the adsorbed protein layer or whether essential 

cuing may be provided by the physical surface of the biomaterials. Only few studies have 

tested the outcome of cells under conditions in which there is no initial protein adsorption, 

(Brynda et al. 2005). 

Despite numerous studies in the field, there are still questions about the degree of 

influence that the protein adsorption has on the initial cellular events, particularly when the 

surface exhibits topography (Nakanishi et al. 2001, Brynda et al. 2005, Kasemo and Gold 

1999).  

To investigate this question, we compared the in vitro outcome of osteogenic cells 

exposed or not during the initial culture phase to serum proteins derived from foetal bovine 

serum (FBS), which was added to the culture medium. The osteogenic cells were growth 

onto polished and nanoporous titanium surfaces and glass as standard culture substrate. 

The hypothesis is that physical-chemical properties of titanium surfaces without mediation 

by proteins are sufficient to sustain osteogenic cell culture.  
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This may not be crucial to achieve optimal implant osteointegration in healthy patients, but 

may have an important effect in medically compromised individuals in whom the 

composition of tissue fluids, with their extracellular matrix proteins content, is altered and 

the initial healing phases may be impaired. Ideally, a specifically modified implant surface 

should improve clinical implant success, regardless the medical conditions of the patients. 
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Chapter 2 

In vitro study 

 

 

 

 

 

 

 

 

2.1 Abstract 

Statement of the problem:  

Protein adsorption occurs immediately following implantation of a biomaterial, and it is 

widely assumed that this will have an influence on the subsequent cellular response. 

Despite numerous studies, there are still questions on the degree of influence that this 

process has on initial cellular events, particularly when the surface exhibits topography.  

To investigate this question, it has been compared the osteoblastic cell growth onto 

polished and nanoporous titanium substrates and glass as control, by modulating the 

exposure to serum-derived proteins (FBS) during the initial phase of cell culture. 

Materials and methods: 

Substrates consisted of: 1) commercial grade 2 titanium disks polished to a mirror finish, 

(Poli-Ti), 2) polished disks nanotextured by treatment with H2SO4/H2O2 for 2h, (Nano-Ti), 

and 3) glass coverslips as control, (GC). In the pre-adsorption phase, substrates were 

treated for 1h with alpha Minimum Essential Medium (αMEM) alone (M-noFBS) or with 

αMEM supplemented with 10% foetal bovine serum (M-FBS), as serum-derived proteins.  
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Mouse calvaria-derived osteoblastic cells (MC3T3-EI) were seeded on these pre-treated 

substrates and cultured for 3h and 24h, in M-noFBS and M-FBS. After this initial seeding 

period, the culture medium was replaced with MS and cultures were maintained for 3 and 

7 days. Cell number was evaluated using Alamar blue and 3-(4,5-Dimethylthiazol-2-yl)-2,5-

Diphenyltetrazolium Bromide (MTT) assays.  

Cell activity was evaluated through the fluorescence optical microscope imaging for: cell 

division activity by immunolabeling for Ki-67 nuclear protein; cell shape at day 1 and 3 by 

actin staining; osteogenic cell activity by immunolabeling for Osteopontin (OPN) and 

staining with alkaline phosphatase (ALP), as bone marker proteins.  

SEM imaging was also used to evaluate cellular morphology at 3h, at day 1 and at day 3. 

In an additional experiment, the same substrates (n=24 for each) were treated under same 

conditions, as described above and then maintained in culture with a special osteogenic 

media for 30 days. At day 30 the osteogenic cell activity was determined through the 

quantitative evaluation of cell mineral production by staining with Alizarin Red. Data were 

analysed using the ANOVA test and Bonferroni multiple comparison test. Values of p<0.05 

were considered significant. 

Results: 

At day 3 and day 7, under all cell culture conditions tested, the presence or absence of 

serum-derived proteins during the pre-adsorption phase had not a significant effect on cell 

number, regardless the substrate. Moreover, either after 3 or 7 days, only the presence or 

absence of FBS during 24h of culture significantly affected the cell number (p<0.0001), 

whereas no effect was detected for its presence or absence during 3h.  

At day 3, both titanium surfaces performed better than glass, (p<0.01), regardless the 

presence or absence of FBS during the pre-adsorption or during 3h/24h culture. At day 7 

Poli-Ti performed better than Nano-Ti and Glass, (p<0.0001), regardless the presence or 

absence of FBS during the pre-adsorption or during 3h/24h culture. 
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The growth rate of cells between day 3 and day 7 was not affected by the initial absence 

of FBS, either for 3h or 24h. In fact, on each substrate, a significant increase in cell 

number was observed for each condition, as compared to day 3, (p<0.0001). 

Staining with ALP and immunolabeling for OPN and Ki-67 showed that the osteogenic 

activity and mitotic activity were ongoing at 72h, irrespective of the substrate.  

The morphological analysis through SEM imaging revealed that the absence of FBS for 3h 

or 24hours had no major influence on cell shape and spreading. 

At day 30, the Alizarin Red staining results showed that either in the absence or in the 

presence of FBS during the pre-adsorption phase or during the first 3h of culture, cells on 

titanium surfaces had a significantly higher mineralizing capacity than on glass (p<0.0001). 

Discussion and Conclusions: 

The presence or absence of FBS and any resulting protein adsorption is not critical for the 

initial cell interactions with the tested substrates. This fact is intriguing and suggests that 

physico-chemical interactions without mediation by proteins are sufficient to sustain the 

initial phase of culture and guide osteogenic cells toward differentiation. This observations 

applie to MC3T3 cell line tested, thus the universality of our results should be validated 

with other cell lines. The challenge is avoiding adsorption of ‘undesirables’ molecules that 

may negatively impact on the cueing that cells receive from the surface. This may not be a 

problem in healthy patients, but may have an important role in medically compromised 

individuals in whom the composition of tissue fluids is altered. Notably, attention must be 

paid when translating these results to in vivo conditions, since the composition of tissues 

fluids is complex and dynamic and in vitro studies are not able to fully demonstrate the 

complex tissue response to biomaterials. Thus, it is strongly recommended that these 

topics be further investigated through in vivo studies on animals and eventually on humans. 
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2.2 Objective of the study 

The objective of the study was to compare the osteoblastic cell growth onto polished and 

nanoporous titanium and glass as control, by modulating the exposure to serum-derived 

proteins during the initial phase of cell culture. 

The null hypothesis is that the initial protein adsorption onto titanium and glass surfaces 

has an effect on the early adhesion, spreading and growth of osteogenic cells in vitro and 

that there is no difference in the cell culture outcomes among the tested substrates. 

 

2.3 In vitro experiments  

The in vitro experiments were performed in the Laboratory for the Study of Calcified 

Tissues and Biomaterials of the Faculty of Dentistry, (Department of Stomatology), of the 

University of Montreal (QC, Canada). 
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Chapter 3 

Materials and methods  

 

 

 

 

 

 

 

 

3.1 Substrates  

The substrates consisted of commercial grade 2 titanium (Ti) disks (12-mm in diameter 

and 2 mm in thickness) and round glass coverslips (GC) of same diameter (Fisher 

Scientific, Nepean, ON, Canada). Glass surface (Glass) was used as standard culture 

substrate and represented the control group. 

Ti-disks were polished to a mirror finish (Poli-Ti) by means of 3 abrasive carpets with 

decreasing granulometry (Carbon carpet 240/P280 PSA, Diamond Carpet 12” Text Met C 

PSA; Silica Carpet 12” Microcloth PSA, Buehler, Illinois, USA) mounted on a polishing 

machine. Poli-Ti disks were then washed in 70% ethanol, rinsed in sterile distilled water 

(dH2O) and stored under ultraviolet light. 

Half of the disks were subsequently nanotextured (Nano-Ti) by treatment with a mixture of 

equal volumes of concentrated H2SO4 and 30% aqueous H2O2 for 2h at room temperature 

(RT), as described above, (Nanci et al. 1998). In order to assure sterile conditions during 

the chemical etching, all procedures were performed in a laminar flow cabinet. This 

oxidative treatment generated a unique surface layer topography characterized by 



 23 

nanosized tips of approximately 20 nm in diameter and increased roughness. The 

cleaned, oxidized samples were rinsed with sterile dH2O, air-dried and stored under 

ultraviolet light.  

Characterization of some Poli- and Nano-Ti disks was verified at JEOL JSM-7400F field 

emission scanning electron microscope (SEM) operated at 1–2 kV. 

 

3.2 Cell cultures  

The experimental protocols started with a pre-adsorption phase. During the pre-adsorption 

phase the three substrates (GC, Poli-Ti and Nano-Ti) were immersed at 37°C in humidified 

atmosphere with 5% of CO2, in 24-well-plates containing 500ml/well of alpha Minimum 

Essential Medium (αMEM, Gibco) alone (M-NoFBS) or enriched with 10% foetal bovine 

serum (M-FBS).   

Mouse calvaria-derived osteogenic cells (MC3T3-E1) were seeded on these pre-treated 

substrates with an initial cell density of 30.000 and 60.000 cells/well and cultured in M-

noFBS and M-FBS for 3h and 24h, (1h/3h and 1h/24h experiments). 

After this initial seeding period, the culture medium was replaced with M-FBS and cell 

cultures were maintained for 3 and 7 days at 37°C in a humidified atmosphere with 5% 

CO2, (Fig.1). 

In an additional experiment, GC, Poli-Ti and Nano-Ti substrates, (n=24 for each), were 

exposed to the pre-adsorption phase, as described above for 1h/3h experiments: 

immersion for 1h in M-FBS or M-NoFBS; after that, the MC3T3-EI cells were seeded at a 

cell density of 30.000 cells/well on these pre-treated substrates and cultured for 3h in M-

FBS or M-NoFBS; subsequently, cells were maintained in culture with M-FBS for 72h. 

Then the culture media was replaced with a special osteogenic media, M-FBS 

supplemented with ascorbic acid (50 µgr/ml) and beta-glycero-phosphate (3mM), which 

was changed 3 times/week, and cells were maintained in culture for 30 days at 37°C in a 
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humidified atmosphere with 5% CO2. At day 30 the osteogenic cell activity was determined 

through the quantitative evaluation of cell mineral production by staining with Alizarin Red. 

 

3.3 Experimental conditions  

To summarize, the FBS/NoFBS experimental conditions of the 1h/3h and 1h/24h 

experiments were analysed for each tested substrate (GC, Poli-Ti, Nano-Ti) as follows: 

a) 1h pre-adsorption in M-FBS followed by 3h/24h cell culture in M-NoFBS or M-FBS 

(FBS-preadsorp); 

b) 1h pre-adsorption in M-NoFBS followed by 3h/24h cell culture in M-NoFBS or M-

FBS, (NoFBS-preadsorp); 

c) 1h pre-adsorption in M-FBS or M-NoFBS followed by 3h/24h cell culture in M-FBS, 

(FBS-culture); 

d) 1h pre-adsorption in M-FBS or M-NoFBS followed by 3h/24h cell culture in M-

NoFBS, (NoFBS-culture). 

 
Every experiment was repeated at least twice with a minimum of 6 samples for each 

substrate and condition.  

 

3.4 Considerations about cells used for in vitro experiments.  

MC3T3-E1 cells, as well as other osteoblasts cells models, are developed due to limited 

availability of primary human osteoblast cells.  

Primary cells behaviour is more reflective of the in vivo situation; thus they are more 

relevant for preclinical and clinical studies. However, they require long isolation procedures 

and their phenotype and behaviour is sensitive to donor-related factors, (i.e. gender, age, 

skeletal location, etc.). Moreover, primary cultures with cells isolated from tissues are more 

difficult to grow and they may loose phenotypic specificity when they are passaged in 

culture (Variola et al, 2011).  
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Human osteosarcoma cells may represent a good choice for osteogenic in vitro cultures. 

In fact, they are available in unlimited number, without the need for time-consuming 

isolation procedures or ethical approval. They also present the advantage of more reliable 

reproducibility. Transformed cells lines, in large part reflect the activity of the cell type from 

which they derive, although they may not necessarily produce similar biological outcomes 

as primary human osteoblast cells.  

On the other hand, primary mouse derived cells are easily available and present the 

possibility to control the selection of the donor-animals. Moreover, cells can be extracted 

from all bones in skeleton, although they may present some sign of replicative senescence, 

particularly when cultured for more than 40 passages. Nevertheless, MC3T3 mouse 

calvaria-derived osteogenic cells, which are originally with a fibroblast-like phenotype, are 

capable of differentiating from pre-osteoblasts into mature osteoblasts in appropriate 

culture environments. Moreover, they exhibit a similar grow rate as human osteoblasts 

(Czekanska et al.2012). 

 

3.5 Qualitative analysis of cells 

Cell activity was evaluated on each substrate and condition through imaging at optical 

microscope for: 

a) Cell shape at day 1 and day 3 by actin staining with Rhodamine-Phalloidin. 

b) Cell division activity at day 1 and day 3 by immunolabeling for Ki-67 nuclear protein. 

This protein is related to proliferative cell activity. 

c) Osteogenic cell activity at day 3 by immunolabeling for Osteopontin (OPN) and 

staining with alkaline phosphatase (ALP). OPN and ALP are bone specific matrix 

proteins, which are synthesized and secreted during the process of osteoblast 

differentiation and mineralization (Thorwarth et al. 2005, Liu and Webster 2007). 
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3.6 Cells immunolabeling and staining procedures  

Cells were fixed for 15min at RT using 4% paraformaldehyde in 0.1 Molar (M) sodium 

phosphate buffer (PB), pH 7.2. After washing in PB, they were processed for 

immunofluorescence labeling. They were permeabilized with 0.5% Triton X-100 in PB for 

10min, followed by blocking of non-specific sites with 5% skim milk in PB for 30min. 

Subsequently, the samples have been incubated in 0.5% solution of Skim milk in PB 

containing 1/150 dilution Rhodamin-phalloidin, (Molecular Probes, Invitrogen) to visualize 

the actin cytoskeleton and primary monoclonal antibody to Ki-67 (dilution 1:200, Bio 

Markers, Fremont, Canada) or OPN (dilution: 1/800, Bio Markers, Fremont, Canada) to 

visualize respectively the proliferative and the osteogenic activity of the cells. The samples 

were then incubated with the corresponding Alexa Fluor 488 (green fluorescence)—

conjugated goat secondary antibody (Molecular Probes, Eugene, OR) at a dilution of 

1:500. Replacement of the primary antibody with PB was used as control. All antibody 

incubations were performed for 1h at RT in humidified environment. Between each 

incubation step, the samples were washed in PB (3x5min). Before mounting for 

microscope observation, samples were briefly washed with dH2O. Metal disks were 

mounted facing up on glass slides, while a glass coverslip was mounted on the surface 

containing cells using DAPI mounting medium (Prolong antifade 4’,6-diamidino-2-phenyl-

indole, dihydrochloride, Molecular Probes, Invitrogen). This product allows the visualization 

of the cell nuclei under fluorescence optical microscope. Control GCs were mounted face 

down with DAPI mounting medium on glass slides. The samples were then examined by 

epiluminescence under a conventional fluorescence microscope (Axiophot; Carl Zeiss, 

Oberkochen, Germany), using Plan-Neofluar objectives (x10/0.25, x20/0.40).  

 

For ALP staining, after fixing the samples with ethanol, cells were permeabilized with 0.2% 

Tween solution in PB for 10min, then washed with dH2O and stained with ALP (Sigma 
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B5655) dissolved in dH2O. To stop stain development, samples were washed with warm 

phosphate buffered saline (PBS) and then stained with 0.9% Neutral Red for 10min. 

Finally, samples were rinsed with dH2O, dehydrated with 100% ethanol and analysed at 

the optical microscope (Bright field, 20X).  

For Alizarin red staining, after fixing the samples with ethanol, cells were washed with PBS 

and dH2O at RT for 5min each. The samples were then stained a 2% solution of Alizarin 

Red (A-5533, Sigma) in dH2O at RT for 15min under constant stirring. Subsequently, 

samples were washed 5 times with dH2O at RT for 5min each, then washed with PBS and 

finally with dH2O at RT for 5min each. 

 

3.7 Morphological analysis 

SEM imaging was used to evaluate cellular morphology and spreading for each substrate 

and condition at 3h, at day 1 and at day 3. For the SEM morphological analysis cells were 

fixed for 1h at RT in 2.5% glutaraldehyde (Electron Microscopy Sciences, Hatfield, PA), 

then osmificated with 1% Osmium (Osmium tetroxide, Electron Microscopy Sciences) at 

RT for 1h under controlled conditions in a laminar flow cabinet. Samples were then 

progressively dehydrated at RT in solutions of ethanol at 30% to 100% concentration, for 

15min each. Finally, the samples were processed inside a critical point drying machine 

(BALZERS CPD 030 Critical Point Dryer, BAL-TEC, AG), (Nanci, Zalzal et al. 1996, Irie, 

Zalzal et al. 1998). Before examination at JEOL JSM-7400F SEM, Glass samples were 

coated at the carbon-coating machine, whereas Poli-Ti and Nano-Ti samples were 

examined without coating. 
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3.8 Quantitative analysis  

At day 3 and day 7 a quantitative analysis of the cell number was performed using two 

different methods: a) Alamar blue assay and b) 3-(4,5-Dimethylthiazol-2-yl)-2,5-

Diphenyltetrazolium Bromide (MTT) assay. 

a) The Alamar Blue assay uses a non-toxic reagent for continuously monitoring cell 

viability. Healthy living cells maintain a reducing state within their cytosol. This 

reducing potential of cells converts the Alamar blue reagent into a detectable 

fluorescent product. Viable cells continuously convert the blue reagent into a red 

fluorescent product, thereby generating a quantitative measure of viability. 

Fluorescence is then monitored into a fluorescence plate reader at the wavelength 

range of 560-590 nm.  

b) The MTT assay is used as final readout of a cell population in culture. MTT is a 

water-soluble tetrazolium dye that produces a yellowish solution when dissolved in 

culture media or in saline solutions. Only living cells will reduce it to a purple 

formazan product that is read into the absorbance plate reader (Mosmann 1983). 

MTT viability test is based on the amount of formazan generated and consequently 

is directly proportional to the number of viable cells. The MTT assay is an indirect 

marker for cytotoxicity. 

For quantitative analysis of cell proliferative activity, Ki-67 expression at day 1 was 

measured on 3 randomly selected microscopic images per sample at 20X. Three samples 

for each substrate were examined. The proportion of immune-reactive cells over total 

number of cells was calculated at day 1 by means of image analysing software (Image J 

method) and expressed as mean values±standard deviations for each substrate and 

condition (von Wilmowsky et al. 2009, de Oliveira and Nanci 2004). 
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The quantification of the Alizarin red to evaluate the osteogenic cell activity was performed 

at day 30 through dissolution of the Alizarin Red dye from the mineral production of the 

cells and subsequent measurement at the spectrophotometer (Stanford, Jacobson et al. 

1995). 

 

3.9 Statistical analysis 

Numerical data were analysed using the ANOVA test and Bonferroni multiple comparison 

test to analyse the effect on the osteogenic cells outcome of the following parameters: 

initial cell density (30.000 and 60.000 cells/well), the substrate (GC, Poli-Ti, Nano-Ti), the 

presence or absence of serum-derived proteins during the pre-adsorption phase (FBS-

/NoFBS- preadsorp) and during the first 3 or 24 hours of culture (FBS-/NoFBS- culture). 
Values of p<0.05 were considered significant. 
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Chapter 4 

Results 

 

 

 

 

 

 

 

 

4.1 Surface features 

Surface characterization by SEM confirmed that the machined and polished titanium 

surface exhibited a smooth appearance as compared with the nanotextured titanium 

surface. At high magnification the polished surface did not reveal any topographical 

feature (Fig.2A). Surface chemical treatment with the H2SO4/H2O2 oxidative solution 

created a reproducible nanopitted surface texture characterized by uniformly distributed 

pores of approximately 20-nm-diameter size (Fig.2B). 

Glass surface has been used as reference material, as it represent a commonly used 

smooth substrate for in vitro cell culturing. 

 

4.2 Cell morphology 

4.2.1 Optical microscope  

Cell morphology was assessed at the optical miscroscope for: 

a) Cell shape by actin staining with Rhodamine-Phalloidin at day 1 and 3. 

b)  Dividing cells by immunolabeling for ki-67 nuclear protein at day 1 and 3. 
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c) Osteogenic cell activity by immunolabeling for OPN and staining with ALP at 

day 3. 

 

a) Cell outlines and spreading was examined at fluorescence optical microscope 

through cell nuclei labelling and actin staining, which highlighted the cell contours and 

filaments.  

At day 1 of 1h/24h experiments, actin staining revealed that cells were attached 

and partially spread both on metal and glass substrates in all conditions (FBS- and 

NoFBS-culture, FBS- and NoFBS-preadsorp), except for Glass in NoFBS CULTURE 

condition. In this case, only few cells were found on the examined samples, thus 

proper morphological analysis was not possible (Fig.3). 

In the FBS culture condition, cell spreading was mostly concentrated in the central 

area of each sample. Cells predominantly showed a polygonal shape. Some fusiform 

cells were also observed. Cytoskeleton was properly developed and spread, with 

uniform and dense pericellular actin network. A lot of cells also emitted thick and long 

fibrillar extensions, mostly those on metal substrates. Cells on Poli-Ti presented thick 

focal adhesions at cell edges, not observed instead on Nano-Ti (Fig.4).  

For each substrate in NoFBS culture condition, irregular stellate and fusiform cells 

were often observed. Cell dimensions were smaller and actin extensions were 

shorter and thinner as compared to those observed in FBS culture condition (Fig.5). 

Moreover, it was noticed that cells on Poli-Ti presented a considerable number of 

very short actin filaments (dots) inside the cytoskeleton, not observed on Nano-Ti 

(Fig. 6). 

Irrespective of the substrate, cells presented increased dimensions and longer actin 

filaments in the FBS-preadsorp as compared to NoFBS-preadsorp condition. 
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Cells grown both on Ti and GC became progressively more spread all over the 

samples surface from the day1 to the day3 of culture period.  

At day 3 of 1h/3h experiments, for each substrate, cells were similarly spread in 

FBS-culture (Fig.7) and NoFBS-culture conditions (Fig.8). However, in NoFBS-

culture cells grown on Nano-Ti and Poli-Ti were more spread than on Glass (Fig.9). 

At day 3 of 1h/24h experiments, in NoFBS-culture condition the cells cytoskeleton 

was less spread, with some wrinkles, as compared to FBS-culture condition, 

regardless the substrate (Fig.10, 11). 

Cells on Nano-Ti and Poli-Ti presented longer filaments than on Glass in all 

experiments and conditions. For all substrates and conditions at day 3 cells were 

grown on multiple layers as compared to day 1, except for Glass in NoFBS-culture 

where cells were spread on a single or only few layers (for 1h/24h experiments 

compare Fig.4-5 and Fig.12, 13 at day 1 with Fig.10, 11 at day3).  

 

b) At day 1 of 1h/24h experiments, immunolabeling for Ki-67 nuclear protein 

showed that a considerable amount of diving cells were present on all substrates in 

FBS-culture, in NoFBS-preadsorp and in FBS-preadsorp conditions, on Poli- and 

Nano-Ti substrates in NoFBS-culture condition, whereas it was not possible to 

identify Ki-67 positive cells on Glass in NoFBS-culture condition (Fig.12, 13). 

At day 3 of both 1h/3h and 1h/24h experiments ki-67 positive cells were still 

evident in all conditions, irrespective of the substrate (Fig. 7-11). 

 

c) At day3 of 1h/3h experiments, staining with ALP and immunolabeling for OPN 

showed that the osteogenic activity was ongoing in all conditions, irrespective of the 

substrate (Fig.14, 15). However, when FBS was omitted during the pre-adsorption 

phase or from the culture medium, (in NoFBS-preadsorp and NoFBS-culture 
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conditions), expression of ALP and OPN decreased on all substrates. In all cases, 

Glass surfaces showed the least ALP and OPN positive cells as compared to 

titanium surfaces. 

 

4.2.2 SEM imaging 

SEM imaging of cell morphology was performed: 

a) at 3h for 1h/3h experiments; 

b) at 1 day for 1h/24h experiments; 

c) at 3 days for 1h/3h experiments. 

 

a) On all substrates, the evaluation at SEM at 3h showed some differences in cell 

shape and spreading between FBS and NoFBS conditions.  

In FBS-culture, cells presented larger dimension as compared to those on NoFBS-

culture condition. Cells generally showed a round shape in FBS-culture condition, 

although some of them presented irregular shapes (Fig.16). Actin filaments were 

noticed in considerable number and although thin and veil-like, some could reach the 

closest cells (Fig.17). In NoFBS-culture condition cells shape was often similar to 

irregular asterisks. Cytoskeleton was not largely developed on the surfaces and 

rather concentrated around the peri-nuclear area. Few, thin filipodia were also 

observed, (Fig.18).  

b) At day 1, the absence of FBS had no a major effect on cell shape and spreading, 

irrespective of the substrate (Fig19). SEM analysis revealed no significant differences 

in cell shapes between glass control, nanotextured and polished titanium surfaces for 

each condition. However, cell dimensions were larger as compared to those 

observed at 3h, irrespective of the substrate and condition. Actin extensions and 

focal adhesions of the cells appeared more abundant at 1day than at 3h. Even in the 
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absence of FBS for 24h of culture, cells were able to grow on each substrate after 

they adhered to the substrates within the first 3h. Moreover, numerous cytoplasmatic 

interconnections among adjacent cells were observed, regardless the presence or 

absence of FBS during the pre-adsorption or the culture period (Fig. 20). 

The predominant cell shape at day 1 was polygonal (Fig.19), with some cells 

showing long-limbed or stellate profiles, the latter characterized by numerous thin 

projections (Fig. 21A). Other cells presented instead a uniform, perinuclear actinc 

spreading (Fig.21B). At higher magnification, some projections appeared long and 

thin (Fig. 20D), others were larger or finger-like (Fig.20C, 22A). It was also noticed on 

both metal surfaces the presence of numerous filipodia along the periphery of the 

cells (Fig.22B, 23). Although cytoplasmatic projections and filipodia were found on 

glass control surfaces as well (Fig.24), they were more abundant on nanotextured 

and polished ones. On Poli-Ti these filipodia had a linear aspect (Fig. 22B), whereas 

on Nano-Ti they appeared rather corrugates (Fig.23). Their aspect was porous and 

extremely fine, which allowed the underlying nanotexture to appear through them 

(Fig. 23C). Moreover, a noteworthy structural cell feature was the release of multiple 

lateral extensions from the main cytoplasmatic projections (Fig.23). These lateral 

filipodia seemed to span some of the larger surface topographical features. Their 

outlines appeared to follow the walls of the nanocavitations created by the etching 

treatment. Some of the cells irregularities attached to the edges of the 

nanocavitations created by the etching treatment (Fig.23D). 

c) At day 3, cells dimensions were bigger than those observed at day 1, spread on 

the whole available surface and superimposing to each other, regardless the 

substrate and condition. Cell nuclei appeared bigger than those observed at 3h and 

day1. Abundant cytoplasmatic extensions and interconnections among cells were still 
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evident. Moreover, extracellular accumulation of matrix was noticed on each 

condition, mainly on Nano-Ti surfaces (Fig.25, 26). 

 

4.3 Quantitative results 

4.3.1 Influence of Cell density 

The influence of the initial cell density on the cell culture outcomes was analysed for 

1h/3h and 1h/24h experiments by means of Alamar Blue test at day 3. 

In the 1h/3h experiments a significant interaction was found between cell density and 

substrates: when a 60.000c/w cell density was used Poli- and Nano-Ti substrates 

showed significant more cells than GC (Nano-Ti vs GC: p=0.003; Poli-Ti vs GC: 

p=0.006); when a 30.000 c/w cell density was used the substrates did not show a 

significant difference in cell number. 

In the 1h/24h experiments, instead, a significant interaction was found between cell 

density and FBS/NoFBS-culture: for each initial cell density, a significant higher cell 

number was detected in FBS-culture than in NoFBS-culture condition (p<0.0001). 

 

4.3.2 Alamar Blue assay  

4.3.2.1 Alamar Blue results for 1h/3h experiments at day 3 

At day 3, with both initial cell density of 30.000 or 60.000 cells/well, Alamar 

Blue results did not allow to discern any difference in cell number between Nano-

Ti and Poli-Ti surfaces. However, when using an initial cell density of 60.000 

cell/well, glass surfaces exhibited significantly lower cell number than metal 

surfaces (Nano-Ti vs GC: p=0.003; Poli-Ti vs GC: p=0.006), regardless the pre-

adsorption or the culture conditions (FBS/NoFBS). Differences in cell number 

among glass and metal surfaces were not detected when an initial cell density of 

30.000 c/w was used, regardless the pre-adsorption or the culture condition. 
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The presence or absence of FBS during the pre-adsorption phase or during the 

first 3h of culture had no an effect on the cell number, irrespective of the substrate, 

(Graphic 1). 

 

4.3.2.2 Alamar blue results for 1h/24h experiments at day 3 

At day 3, as for 1h/3h experiments, for 1h/24 experiments either with 30.000c/w 

or 60.000c/w cell density, the presence or absence of FBS during the pre-

adsorption phase had no effect on cell number, regardless the substrates. 

Differently, the absence of FBS during the first 24h of culture significantly affected 

the number of cells on all substrates, (*p<0.0001, Graphic 2). 

 

At day 3, with an initial cell density of 60.000 c/w, when considering the 

combination of 1h/3h and 1h/24h experiments, it was found that both metal 

surfaces performed significantly better than glass surfaces, irrespective of the 

presence of absence of FBS during the pre-adsorption or culture (Graphic 3). 

 

4.3.2.3 Alamar Blue results for 1h/3h experiments at day 7 

At day 7, as at day 3, Alamar Blue assay showed that with an initial cell density 

of 30.000c/w the presence or absence of FBS during the pre-adsorption phase or 

during the first 3h of culture had no effect. A significant increase in cell number 

was observed for each condition as compared to day 3, (p<0.0001, Graphic 4). 

Both titanium substrates performed better than glass, regardless the pre-

adsorption or the culture conditions (Nano-Ti>GC: p=0.023; Poli-Ti>GC: p<0.0001; 

Poli-Ti>Nano-Ti: p=0.001).  
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4.3.2.4 Alamar Blue results for 1h/24h experiments at day 7 

At day 7, with an initial cell density of 30.000 c/w, cell number results were 

similar to 3-days-outcomes: the presence or absence of FBS during the pre-

adsorption phase had no effect on cell number, regardless the substrates; 

differently, the absence of FBS during the first 24h of culture significantly affected 

the number of cells on all substrates (Graphic 4). However, each substrate 

showed a significant increase in cell number from day 3 to 7 (p<0.0001), 

regardless the presence or absence of FBS during the pre-adsorption phase or 

during the first 3h or 24h of culture (Graphic 4, 5).  

Moreover, Poli-Ti performed better than Nano-Ti, regardless the presence or 

absence of FBS during culture (p=0.002), while each titanium surface had a 

similar cell number as compared to Glass, regardless the presence or absence of 

FBS during pre-adsorption or during culture. 

 

At day 7, with an initial cell density of 30.000 c/w, when considering the 

combination of 1h/3h with 1h/24h experiments, Poli-Ti performed better than 

Nano-Ti and Glass, (p<0.0001), whereas no differences in cell number were 

detected between Nano-Ti and Glass, regardless the presence or absence of FBS 

during the pre-adsorption or during culture (Graphic 6).  

 

4.3.3 MTT assay 

MTT assay was used as final readout of cell population in cell cultures for 1h/3h 

experiments at day 3 and for 1h/24 experiments at day 3 and 7. 

 

4.3.3.1 MTT results for 1h/3h experiments at day 3 
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At day 3, MTT results were similar to those obtained with Alamar blue test. 

MTT test showed for 1h/3h experiments with initial cell density of 60.000c/w, that 

the presence or absence of FBS during the pre-adsorption or during culture had 

no effect on the amount of cells counted (Graphic 7, 8). On the other hand, the 

substrate had a significant effect on the cell number: Nano-Ti and Poli-Ti surfaces 

presented significantly higher cell number than Glass surfaces (p=0.0001, Graphic 

9). 

 

4.3.3.2 MTT results for 1h/24h experiments at day 3 

At day 3, for 1h/24 experiments with initial cell density of 60.000 c/w, MTT 

results slightly differed from those obtained with Alamar blue test. MTT test 

showed that the presence or absence of FBS during the pre-adsorption or during 

culture had no effect on the cell number (Graphic 7, 8). Differently, Alamar Blue 

test had detected a significant effect of FBS/NoFBS during culture. 

The substrate significantly influenced the cell outcome, as a higher cell number 

was observed on Nano-Ti than on GC (p=0.018). 

 

4.3.3.3 MTT results for 1h/24h experiments at day 7 

At day 7, with an initial cell density of 30.000 c/w, the presence or absence of 

FBS during the pre-adsorption phase and during the first 24h of culture had a 

significant effect on the cell number. Actually, a significantly lower cell number was 

observed in NoFBS conditions for each substrate (NoFBS- vs FBS-preadsorp: 

p<0.006, Graphic 10; NoFBS- vs FBS-culture: p<0.0001, Graphic 11). Differently, 

Alamar Blue test results did not detect any effect of the FBS-/NoFBS-preadsorp 

conditions, but of the FBS-/NoFBS-culture conditions. 
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Moreover, MTT results showed that both titanium substrates performed better than 

glass, irrespective of the presence or absence of FBS during pre-adsorption 

(p<0.0001). Similarly, Poli-Ti performed better than Glass, regardless the 

presence or absence of FBS during culture, (p<0.0001), whereas Nano-Ti had a 

higher cell number than glass in the presence of FBS during culture (p<0.0001), 

but similar to Glass in the absence of FBS during culture. Differently from Alamar 

Blue test results, which not always revealed significant differences in cell number 

between metal and glass surfaces, MTT test results highlighted the tendency for 

both metal substrates to perform better than glass (Graphic 12). 

 

4.3.4 Ki-67 results 

At day 1, the presence or absence of FBS during the pre-adsorption phase had not 

an effect on the dividing cell rate obtained, irrespective of the substrate. However, the 

culture condition (FBS-/NoFBS-culture during 24h) significantly influenced the 

outcome: for Glass substrate, it was found a significantly lower proportion of dividing 

cells in NoFBS-culture than on FBS-culture (p=0,004), while for metal substrates a 

similar proportion was found in FBS- and NoFBS-culture conditions. However a 

similar number of proliferative cells were found among substrates for each condition. 

 

4.3.5 Alizarin red results 

At day 30, the Alizarin Red staining results showed that either in the absence or in 

the presence of FBS during the pre-adsorption phase, cells on Ti-surfaces showed a 

significant higher mineralizing capacity than on Glass (p<0.0001). 

Moreover, in the presence or absence of FBS during the first 3h of culture, cells on 

Nano-Ti surfaces showed a significantly higher mineralizing capacity than on Glass 

(p<0.0001), while cells on Poli-Ti revealed a similar behaviour as those on Glass and 
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Nano-Ti. Surprisingly, cells on Nano-Ti showed a significant higher mineralizing 

capacity in NoFBS-preadsorp than in FBS-preadsorp, (p=0.004, Graphic 13). 
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Chapter 5 

Discussion 

 

 

 

 

 

 

 

 

The null hypothesis that the protein adsorption onto titanium and glass surfaces has an 

effect on the early cellular events was rejected. Both the pre-adsorption of the 

substrates before seeding the cells and the adsorption for 3h or 24h of culture with 

serum-derived proteins did not affect the attachment and growth of MC3T3 cells on the 

tested substrates (Glass, Poli-Ti and Nano-Ti). Although the proteins adsorption during the 

first 24h of culture had a significant influence on the cell number, cells fared well in every 

condition. In fact, a significant increase in cell number was recorded on each substrate 

from day 3 to day 7, both for 1h/3h and 1h/24h experiments. This demonstrates a recovery 

ability of MC3T3 cells on each substrate, even when cultured in not ideal conditions. 

It may be hypothesized that this trend could be maintained over longer periods of culture, 

to the point where a similar amount of cells would be found for culture conditions with and 

without FBS during the first 24h. 

It has been previously reported that treatments such as acid etch and blast may cause 

significant changes in topographic characteristics and roughness values of the modified 
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biomaterial, but minor alterations in the chemical composition of the surfaces (Sela et al. 

2007). Hence, the authors concluded that the observed differences in adsorption of 

proteins by these modified surfaces were mainly but not solely due to changes in their 

physical properties. Differently, in the present study, both titanium substrates (treated and 

non treated) performed well either in presence or in absence of FBS, suggesting that the 

cell attachment and initial growth is not necessarily related to the specific topographical 

characteristics of titanium surfaces. However, both metal surfaces showed better 

performances as compared to glass, suggesting that the early cellular events are related 

to physical as well as chemical properties of the substrate.  

Cells number was not affected by the absence of proteins during the pre-adsorption or 

during 3h of culture, regardless the substrate.  

Nanotextured titanium surfaces has been claimed to allow increased layers of adsorbed 

proteins, as compared to smooth titanium surfaces, which in turn mediate en enhanced 

cells affinity for the implant surface (Deligianni et al. 2001, Sela et al. 2007). Although the 

amount of adsorbed proteins was not addressed in the present study, most experiments 

did not show significant differences in cell number between Poli-Ti and Nano-Ti and cells 

outcomes were optimal irrespective of the presence or absence of FBS on every substrate.  

This suggests that the presence of serum derived proteins and any resulting protein 

adsorption is not essential for the early cell attachment and growth on the tested 

substrates. Cell attachment seems not to be mediated by protein adsorption, although it 

can’t be excluded that higher volumes are adsorbed onto nanopatterned than smooth 

surfaces.  

The challenge to achieve effective improvements of titanium biocompatibility and 

osteoconductivity should be rather avoiding the adsorption of molecules that may 

negatively impact the cueing that cells receive from the surface. 
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Initial cellular events are related to the physical-chemical characteristics of the substrate, 

as both titanium surfaces performed significantly better than glass, regardless the 

conditions. 

In accordance with the quantitative analysis of cell number, the absence of serum-derived 

proteins did not affect the mitotic and osteogenic activities of the cells on metal substrates, 

but it did affect them on glass, as evaluated through quantification of Ki-67 expression 

(day 1) and mineral production of the cells (day 30).  

OPN is one of the abundant noncollagenous proteins in bone matrix; it is able to bind to 

integrins, thus mediating bone cells adhesion to the mineralized matrix (Denhardt and 

Noda 1998). Recently, nanotexured surfaces have been found to enhance the adsorption 

and/or retention of specific extracellular matrix proteins, such as Osteopontin (OPN) and 

Bone Sialoprotein, both important osteoconductive proteins (de Oliveira and Nanci 2004, 

Vetrone, Variola et al. 2009). The authors hypothesized that the physical characteristics of 

the substrate, mainly due to its increased roughness and nanopitted topography, could 

selectively allow higher amounts of adsorbed proteins and that chemical properties of the 

surface may play a less important role.  

Differently, the immunolabeling results of the present study did not reveal any 

considerable variance in OPN expression between Poli-Ti and Nano-Ti surfaces. Moreover, 

SEM analysis did not highlighted major differences in cell spreading and shape between 

metal surfaces, regardless the conditions. At day 1, notwithstanding the continuous 

absence of FBS for 24h, cell dimensions were increased as compared to those at 3h of 

culturing. SEM analysis also revealed that in absence of FBS during 3h and 24h the cell 

density was lower on glass than on metal surfaces. Moreover, cells were able to grow in 

dimensions and to better spread on metal surfaces than on glass after 3 days.  

Thus, the optical and scanning electron microscopes qualitative analysis results are in 

accordance with the quantitative analysis results and confirm that the protein adsorption 
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on titanium surfaces seems not to be essential for cell adhesion and growth. Physical-

chemical properties of the surfaces, rather than the presence or absence of specific serum 

proteins must be taken into account to achieve improvements in the osteogenesis events.  

The presence of thickened cellular edges on Poli-Ti surfaces as revealed at optical 

microscope (Fig.4A) suggests that cells may need higher volumes of actin filaments to 

adequately adhere onto smooth than nanopatterned titanium surfaces. On the other hand, 

as highlighted by SEM, the cytoplasmatic extensions may hide inside the nano-holes and 

mould following the surface nano-cavities of the treated titanium surfaces (Fig.23). An 

increased cell surface area comes in contact with the nanotextured substrates, thus 

requiring less actin focal adhesions to attach on the nano-pitted than smooth titanium 

surfaces. The nanopitted topography with its enhanced roughness and higher surface area, 

can provide for more available sites for cell attachment. As described, nanotopograghy is 

ideal to match cell structures used to interact with the external environment and 

biomaterials. It may produce an enhanced affinity between the substrate and the cells, 

thus guiding desired and controlled biological reactions (de Oliveira and Nanci 2004, 

Curtis and Wilkinson 1999). For example, this may lead to mechanical modification of the 

cells shape and cytoskeleton, which may interfere on the cell growth and differentiation. 

Actually, it is well known that not only biological/chemical but also mechanical cuing may 

influence the cellular behaviors. Micromovements and primary stability are important 

factors in determining the clinical implant success. Thus, a further objective of 

nanomodifications for titanium surfaces may aim to influence mechanical stimulation of the 

osteogenic cells in order to guide their differentiation and maturation process. Host’s 

quality and quantity bone defects could be then overcome as contraindication to the 

implant therapy. Proper implant osseointegration might be merely related to the type of 

titanium implants used, while clinical success would become independent from host-

related factors. 
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It should be pointed out that the presented results pertain to MC3T3 cell line tested, and 

the universality of these results should be validated with other cell lines and in vivo. 

Moreover, assays readings must be cautiously interpreted, since different assays (MTT 

and Alamar Blue assays) used to test the same variable can lead to divergent results. 

Finally, a great attention must be paid when translating these results to in vivo conditions, 

since the composition of tissues fluids is complex and dynamic and in vitro studies are not 

able to fully demonstrate the complex tissue response to biomaterials. 
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Chapter 6 

Comparison with in vivo studies 

 

 

 

 

 

 

 

 

6.1 Advantages/Disadvantages of in vitro studies  

Differently from the general documented belief that protein adsorption play a key role in 

the osteogenesis events (Lord et al 2008, Kasemo and Gold 1999, Liu and Webster 2006), 

the presented in vitro results showed that the presence or absence of serum proteins and 

any resulting protein adsorption was not critical for the initial cell interactions with the 

tested substrates. The physical-chemical properties of the biomaterials appear to be 

mainly responsible for the osteoblast cell adhesion without protein promoted mechanism.  

Nevertheless, these results are limited to in vitro experiments outcomes. Although cell 

culture testing methods provide relevant information, they must be considered within the 

limits of acute toxicity testing (Granchi et al. 1995). In vitro studies are popular for the 

characterization of bone-contacting materials. They generate information about the 

immediate tissue response to avoid the unnecessary use of animals in the testing of 

cytologically inappropriate materials. However, as in vitro cell culture is based on growth of 

cells which are no longer organized into tissues, it is not helpful in studying the complex 
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interactions between material and host tissues (Hauman and Love 2003), thus being often 

inappropriate to be extrapolated to the in vivo situation. 

In vitro assays are not able to demonstrate the complex tissue response to biomaterials in 

the body and are limited to acute studies of cytotoxic effects due to the relatively short 

lifespan of cultured cells (Pizzoferrato et al. 1994). Nevertheless, in vitro experiments have 

the advantage of ease of control of experimental factors, which is one of the most 

significant problems when performing experiments in vivo. They are also rapid, cheap and 

reproducible. Moreover, in vitro methods are frequently more sensitive and easily 

quantifiable than in vivo assays. For these reasons they are essential for evaluating 

biocompatibility and tissue response of biomaterials, prior of any clinical application on 

animals first, and finally on humans.  

 

6.2 Brief analysis of in vivo studies on different implant surfaces 

The success of the dental implants is related to the osseointegration that is defined as a 

direct bone-to-implant contact without interposition of any other tissue (Brånemark et al. 

1969). The implant surface is the first component of dental implant that directly contacts 

with the surrounding tissues, thus a great interest has been grown towards improving its 

properties to enhance the tissues response. However, the quest for an optimal implant 

surface is still underway, especially for acceleration of the healing period and for 

compromised conditions. 

For example, recent studies reported that the addition of bioactive substances might 

increase the osteoconductive property of the implant (Yoo et al. 2014, Jimbo, Sotres et al. 

2012). Recent in vivo studies have shown that nanostructured implant surfaces enhance 

bone responses and promote interfacial strength (Wazen et al. 2013, Bjursten et al. 2010). 

Puckett et al. (2010) reported reduced bacterial attachment on nano-scale rough surfaces 
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than on other surfaces; furthermore, the same nano-scale surface showed higher affinity 

to fibronectin, which is essential for the initial osseointegration process (Jimbo et al. 2007).  

Meirelles et al. (2008) conducted an animal study with nanostructured and polished 

implants, and found that the former had higher bone-to-implant contact than the latter 

implant surfaces. This suggests that cells, particularly osteoblasts, respond to 

topographical alterations at the nanometer scale. A selective adsorption of beneficial 

molecules may be achieved as a result of implant surface modifications (Dee and Bizios 

1996). Also, it was reported that nanoscale structures on Ti surfaces could selectively 

increase the adhesion and proliferation behaviors of pre-oesteoblasts, but not fibroblasts 

(Variola et al. 2008). Hence, nanoscale surface roughness may represent a pivotal factor 

in determining the bone and soft tissues healing around implants. 

As said, the role of protein adsorption in the cell-substrate interactions is not yet clarified to 

a full extent. A recent study evaluated the in vivo effect of local application of the 

osteogenesis-promoting laminin-1 protein on bone healing response of nanotextured 

implants (Schwartz-Filho et al. 2012). The authors failed in demonstrating any significant 

difference in the osseointegration process around coated and noncoated implants. 

Moreover, in most studies concerning protein doping of implant surfaces, the beneficial 

enhancements were primarily restricted to the initial stages of healing and have been 

shown to have smaller effects when longer periods of experimental time were observed. 

(Schwartz-Filho et al. 2012, Yoo et al. 2014). A previous study showed that nanostructured 

surfaces allowed for less protein adsorption (Kam et al. 2014) resulting in decreased 

fibroblast proliferation, and induced lower gene expression of epidermal growth factor, key 

factors associated with an adverse fibrotic response. Thus, as also suggested by the 

present results, selected modified titanium surfaces (i.e. nanostructured) could be used to 

modulate the fibrotic behavior in cells and have the potential to be used as anti-fibrotic 

architecture for dental implants.  
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6.3 Potential impact in the field of implantology for medically compromised patients 

The new goal of implant surface alterations should be controlling the early cellular events 

so that nonspecific adsorption of proteins would be minimized. In particular, the adsorption 

of molecules that may negatively affect the implant outcome would be avoided. This may 

play an important role in medically compromised patients (MCP), in which the composition 

of tissue fluids is altered. In contrast with the documented attempts in the literature to 

control cellular events and improve implant outcomes using the protein coating of titanium 

surfaces (Jimbo, Sotres et al. 2012, Rammelt et al. 2006, Hilbig et al. 2007), our results 

suggest that protein adsorption is not essential for the cellular events at the substrate-cell 

interface. Moreover, intentionally doping implant surfaces show some practical limits, such 

as the necessity of intermediary passages to obtain the surface coating prior to chirurgical 

implantation, whereas clinicians would preferably deal with ready-to-use implants. Several 

extra-cellular matrix proteins, such as vitronectin, fibronectin and collagen type-I, have 

been proven to promote adherence of potential pathogenic bacteria to titanium surfaces in 

vitro. Adhesion of bacteria, such as Prevotella denticola and Porfiromonas gingivalis, 

should be limited in order to reduce risk for peri-impantitis, which is particularly high in 

MCP, (Mahmoud et al. 2012). Some results that have shown opposing behavior of human 

osteoblasts and Staphylococcus epidermidis (Colon et al. 2006) or E. coli (Ploux et al. 

2009) on nanostructured materials are particularly interesting, since they demonstrate that 

materials could be specifically designed to promote osteoblast function while reducing 

bacterial colonization. Such considerations together with the presented results indicating 

that protein adsorption does not have an effect on the osteogenic cells outcomes may 

have a relevant impact on the clinical application of dental implant therapy, especially for 

MCP.  The therapeutic use of dental implants is often contraindicated for MCP (Smith et al. 

1992). 
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MCP are at higher risk of implant loss, particularly when the general medical situation is 

associated with increased susceptibility to periodontal disease. (Morris et al. 2000; Olson 

et al. 2000). Because most inflammatory diseases are linked to a higher risk for peri-

implant infections, which represents one of the main reasons for long-term implant loss, it 

becomes clear that these patients are at a higher risk of secondary implant failure, too 

(Renvert and Persson 2009). Patients suffering from diabetes mellitus, for example, are at 

a higher risk for post-surgical infection and typically present lower cicatrization rates 

(Goodson and Hunt 1979). Most studies suggest that implants may be used in diabetic 

patients, but only when their illness is well under control, (Balshi and Wolfinger 1999). 

Diabetes mellitus is one of the most common chronic metabolic disorders, and third 

common causes of disability and morbidity in the western world (Wild et al. 2004). The 

majority of experimental studies show that the effect of Diabetes mellitus on the implant 

osseointegration has been associated with impaired osseous wound and bone healing, 

decreased bone density and increased susceptibility to periodontal disease (Taylor et al. 

2004). 

Similarly, implant therapy is often contraindicated in aged individuals and patients suffering 

of osteoporosis or other diseases associated to poor bone quality, (Shapiro 1992). A lack 

of implant healing may be encountered. Osteoporosis is often observed among patients of 

advanced age, and in a population that lives longer, the possibility to offer them an implant 

therapy is becoming urgent.  

The results of the presented in vitro study suggest that protein adsorption does not 

influence the implant outcome and physical-chemical cueing of nanomodified and 

conventional titanium surfaces may be sufficient to sustain the osteogenesis events. A 

previous in vivo study demonstrated that modified sandblasted and etched titanium 

surfaces that show increased hydrophilicity compensated for the negative influence of 

diabetes mellitus on osseointegration (Schlegel et al. 2013). Accordingly to the preliminary 
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in vitro results presented above, the improved osseointegration reported for these MCP 

has been solely related to enhanced surface properties of the implant surfaces, even if the 

protein adsorption effect was not investigated by the authors. If the presented in vitro 

results will be confirmed by in vivo studies and particularly in medically compromised 

situations, it might be expected that specifically phisico-chemically modified implant 

surfaces, capable of avoiding adsorption of undesirable molecules, may be helpful for a 

safe use of implant-supported prosthesis even in MCP. Such surfaces would be 

simultaneously capable of promoting bone healing and improving implant integration in not 

ideal medical conditions. 

The opportunity to enlarge dental prosthetic options for individuals with compromised 

health conditions has important long-term effects, including a reduced incidence of 

complications related to the main disease that reflects a considerable improvement of the 

quality of life of these patients. 
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Chapter 7 

Conclusions 

 

 

 

 

 

 

 

• The fact that cells fared well under all conditions, and in particular in the total 

absence of FBS during the first 3h, suggests that physico-chemical interactions 

without mediation by proteins are sufficient to sustain this initial phase of culturing 

(day 3 and day 7) and guide osteogenic cells toward differentiation (day 30). 

• Our results also suggest that topographical modifications of biomaterials, such as 

an increased nano-sized roughness of titanium surfaces, should not aim to enhance 

a wide spectrum protein adsorption, as this event may not be necessary to achieve 

a better implant outcome in normal serum conditions. The challenge is actually 

avoiding adsorption of molecules that may negatively impact the cueing that cells 

receive from the surface. This may not be a problem in healthy patients, but may 

have an important effect in medically compromised individuals in whom the 

composition of tissue fluids is altered.  

• Finally, further studies analysing micro- and nano- surface modifications of 

biomaterials for implantations and their interactions with specific proteins are 

needed to better grasp the impact such modifications might have on the initial 
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healing phases, particularly for medically compromised patients. Thus, it is strongly 

recommended that these topics be further investigated through in vivo studies on 

animals and eventually on humans. 
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Figures and graphics 

 

Fig.1 Schematic drawing of experiments protocol 

 

 

 

Fig.2 SEM images of Polished A) and Nanotextured B) substrates. 
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Fig.3 Fluorescence optical microscope imaging: Mosaic at 10X magnification of osteogenic cells grown on 

Poli-Ti (A) and Glass (B) in NoFBS-culture condition at day 1 of 1h/24 experiment. 

A 
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Fig.4 Immunolabeled preparation of osteogenic cells grown on Poli-Ti (A) and Nano-Ti (B) in FBS-culture 

condition at day 1 of 1h/24 experiment (20X). Actin cell outlines (red) and cell nuclei (blue) are well 

evidenced. On both surfaces cell shape was predominantly polygonal. A) Focal adhesions at cell edges were 

often observed on polished surfaces (arrows). 
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Fig.5 Immunolabeled preparation of osteogenic cells grown on Poli-Ti (A) and Nano-Ti (B) in NoFBS-culture 

condition at day 1 of 1h/24 experiment (20X): On both surfaces cell dimensions were smaller as compared to 

FBS-culture condition (Fig.4A and B). 

A B 

 

 

Fig.6 Immunolabeled preparation of osteogenic cells grown on Poli-Ti (A) and Nano-Ti (B) in NoFBS-culture 

condition at day 1 of 1h/24 experiment (10X). A) Short actin filaments, similar to dots, have been observed 

onto polished substrates (arrows); B) fusiform cells observed in absence of FBS during 24h of culture (arrow). 
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Fig7 Immunolabeled preparation of osteogenic cells grown on Poli-Ti (A) and Nano-Ti (B) surfaces in FBS-

culture condition at day 3 of 1h/3h experiments (20X): Actin cell oulines (red), cell nuclei (blue), Ki-67 nuclear 

protein (green). Dividing cells (arrows) are present in both metal surfaces in all conditions (compare with 

Fig.8). 
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Fig.8 Immunolabeled preparation of osteogenic cells grown on Poli-Ti (A) and Nano-Ti (B) in NoFBS-culture 

condition at day 3 of 1h/3h experiments (20X): Actin cell oulines (red), cell nuclei (blue), Ki-67 nuclear protein 

(green). 
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Fig.9 Immunolabeled preparation of osteogenic cells grown on Glass in NoFBS-culture condition at day 3 of 

1h/3h experiments (20X): Actin cell outlines (red), cell nuclei (blue), Ki-67 nuclear protein (green). Dividing 

cells (arrows) are evident; cells on glass are less spread than on metal substrates (compare with Fig.8). 

 

 

 

 

 

 

 

 

 

 

Fig.10 Immunolabeled preparation of osteogenic cells grown on Poli-Ti (A) and Nano-Ti (B) in FBS-culture 

condition at day 3 of 1h/24h experiments (20X): Actin cell outlines (red), cell nuclei (blue), Ki-67 nuclear 

protein (green). 
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Fig.11 Immunolabeled preparation of osteogenic cells grown on Poli-Ti (A) and Nano-Ti (B) in NoFBS-

culture condition at day 3 of 1h/24h experiments (20X): Actin cell outlines (red), cell nuclei (blue), Ki-67 

nuclear protein (green). Some wrinkles in the cell cytoskeleton were observed, regardless the substrate 

(arrows). 

A B 

 

 

Fig.12 Immunolabeled preparation of osteogenic cells grown on Nano-Ti (A) and Glass (B) in NoFBS-

preadsorp condition at day 1 of 1h/24h experiment (20X): Actin cell outlines (red), cell nuclei (blue), Ki-67 

nuclear protein (green). Mitotic activity (green nuclei) was evident on all substrates in NoFBS-preadsorp 

condition. 

A B  
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Fig.13 Immunolabeled preparation of osteogenic cells grown on Poli-Ti in FBS-culture (A) and NoFBS-

culture (B) at day 1 of 1h/24h experiment (20X): Actin cell outlines (red), cell nuclei (blue), Ki-67 nuclear 

protein (green). Mitotic activity (green nuclei) was evident on all substrates in NoFBS-culture condition except 

for Glass. 

A B 

 

 

Fig.14 Osteogenic cells at day 3 of 1h/3h experiment (20X). A) Immunolabeled preparation on Poli-Ti in 

FBS-culture: Actin cell outlines (red), cell nuclei (blue), Osteopontin (OPN) bone related protein (green).  

B) Staining for alkaline phosphatase (ALP) bone-marker protein (blue) and actin (pink) on Nano-Ti in FBS-

culture. OPN (arrows in A) and ALP (arrows in B) positive cells indicate initial osteogenic activity on metal 

surfaces.  
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Fig.15 Single channel (green) image of immunolabeled preparation for OPN of osteogenic cells on Poli-Ti in 

FBS-culture (A) and in NoFBS-culture (B) at day 3 of 1h/3h experiment (20X): bright green dots (arrows) 

highlight the OPN positive cells.  
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Fig.16 Scanning electron micrographs of osteogenic cells grown on Titanium surfaces at 3h of 1h/3h 

experiment, 500X: A) Poli-Ti in NoFBS-preadsorp; B) Nano-Ti in FBS-culture; C) Nano-Ti in NoFBS-culture. 

Round and irregular cell shape. 

A  B  C  
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Fig.17 Scanning electron micrographs of osteogenic cells grown on Titanium surfaces at 3h of 1h/3h 

experiment: A) Poli-Ti in NoFBS-preadsorp; B) Nano-Ti in FBS-culture; A) Numerous, veil-like actin filaments 

at the periphery of the cell. B) Abundant cytoplasmatic interconnections among adjacent cells. 

 

 

 

Fig.18 Scanning electron micrographs of osteogenic cells grown on Nano-Ti in NoFBS-culture at 3h of 1h/3h 

experiment: A) 200X: Irregular cells of small dimension; B) 1000X: Short actin filaments, most cytoskeleton 

concentrated around the cell nuclei. 
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Fig.19 Scanning electron micrographs of osteogenic cells grown on Poli-Ti at day 1 of 1h/24h experiment, 

500X: A) FBS-culture; B) NoFBS-culture. Predominant polygonal cell shape. 
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Fig.20 Scanning electron micrographs of osteogenic cells grown on Poli-Ti (A and C) and Nano-Ti (B and D) 

in FBS-culture (A and B, 1000X) and NoFBS-preadsorp (C and D, 5000X) at day 1 of 1h/24h experiment.  

A, B) Cells on metal surfaces extended numerous projections. C, D) Higher magnification of large cell 

projections (star in C) and multiple thinner interconnections among cells (arrows in D). 
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Fig.21 Scanning electron micrographs of osteogenic cells grown on Nano-Ti (A) in NoFBS-culture and in 

NoFBS-preadsorp (B) at day 1 of 1h/24h experiment, 1000X. A) Stellate cell shape with numerous thin 

lateral extensions. B) Uniform perinuclear actin spreading. 

 

 

Fig.22 Scanning electron micrographs of osteogenic cells grown on Poli-Ti in NoFBS-preadsorp (A) and 

FBS-culture (B) at day 1 of 1h/24h experiment. A) 1000X. Large cytoplasmatic projection. B) 5000X. Higher 

magnification of long and straight filipodia emitted along the periphery of the cells, 
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Fig.23 Scanning electron micrographs of osteogenic cells grown on Nano-Ti in NoFBS-preadsorp at day 1 of 

1h/24h experiment. A) 1500X, co-presence of large, almost transparent projections and long thin filaments. 

B,C,D) Higher magnifications of the rectangular area in A. B) 10.000X. C) 30.000X. D) 60.000X. Little lateral 

filipodia (arrows in D) extending from the main filaments, attached and followed the underlying nanocavities 

of the surface. 
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Fig.24 Scanning electron micrographs of osteogenic cells grown on Glass in FBS-culture at day 1 of 1h/24h 

experiment. A) 1000X. B) 3000X. Less abundant cytoplasmatic projections observed on Glass than on metal 

surfaces.  
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Fig.25 Scanning electron micrographs of osteogenic cells grown on titanium surfaces in NoFBS-culture at 

day 3 of 1h/3h experiment, 1000X. A) Poli-Ti. B) Nano-Ti. Cell nuclei (N). Cells superimposed each other 

and were more spread on the available surface than at day 1. 
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Fig.26 Scanning electron micrographs of osteogenic cells grown on titanium surfaces in NoFBS-culture at 

day 3 of 1h/3h experiment 5000X. A) Poli-Ti. Numerous cytoplasmatic interconnections. B) Nano-Ti. 

Extracellular accumulation of matrix (star). 
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Graphic 1 Summary statistics of cell number (mean value ± standard deviation) as a function of FBS/NoFBS 

condition and substrate. Alamar Blue assay at day 3 of 1h/3h experiment. No significant differences were 

observed among conditions on each substrate. 

 

 

  

Graphic 2 Summary statistics of cell number (mean value ± standard deviation) as a function of culture 

condition and substrate. Alamar Blue assay at day 3 of 1h/24h experiment. A significantly different cell 

number was observed between FBS-culture and NoFBS-culture condition on each substrate (blue bars, 

*p<0.0001). Pink and green bars refer to comparison with Graphic 4. 
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Graphic 3 Summary statistics of cell number (mean value ± standard deviation) as a function of substrate. 

Alamar Blue assay at day 3 of 1h/3h and 1h/24h experiments. Metal surfaces performed significantly better 

than glass surfaces. A significantly higher cell number was observed for Nano-Ti and Poli-Ti relative to Glass 

substrate; the number of asterisks depicts statistically homogeneous groups, (Ti vs Glass: p<0.01). 

 

 

 

Graphic 4 Summary statistics of cell number (mean value ± standard deviation) as a function of FBS/NoFBS 

condition and substrate. Alamar Blue assay at day 7 of 1h/3h experiment. No significant differences were 

observed between conditions on each substrate. A significant increase in cell number was observed for each 

condition as compared to day 3 in Graphic 1, (*p<0.0001).  
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Graphic 5 Summary statistics of cell number (mean value ± standard deviation) as a function of culture 

condition and substrate. Alamar Blue assay at day 7 of 1h/24h experiment. A significantly higher cell number 

was observed for the FBS-culture condition relative to the NoFBS-culture condition (blue bars, *p<0.0001) 

and for each culture condition as compared to day 3 in Graphic 2 (pink and green bars, **p<0.0001). 

 

 

Graphic 6 Summary statistics of cell number (mean value ± standard deviation) as a function of substrate. 

Alamar Blue assay at day 7 of 1h/3h and 1h/24h experiments. A significantly higher cell number was 

observed for Poli-Ti relative to Nano-Ti and Glass substrates; the number of asterisks depicts statistically 

homogeneous groups, (p<0.0001). 
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Graphic 7 Summary statistics of cell number (mean value ± standard deviation) as a function of pre-

adsorption condition. MTT assay at day 3 of 1h/3h and 1h/24h experiments. No significant difference was 

observed between FBS-preadsorp and NoFBS-preadsorption condition, regardless the substrate.  

 

 

 

Graphic 8 Summary statistics of cell number (mean value ± standard deviation) as a function of culture 

condition. MTT assay at day 3 of 1h/3h and 1h/24h experiments. No significant difference was observed 

between FBS-culture and NoFBS-culture condition, regardless the substrate.  
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Graphic 9 Summary statistics of cell number (mean value ± standard deviation) as a function of substrate. 

MTT assay at day 3 of 1h/3h experiment. A significantly higher cell number was observed for Nano-Ti and 

Poli-Ti relative to Glass substrate; the number of asterisks depicts statistically homogeneous groups, (Nano-

Ti and Poli-Ti vs Glass: p<0.0001). 

 

 

Graphic 10 Summary statistics of cell number (mean value ± standard deviation) as a function of pre-

adsorption condition. MTT assay at day 7 of 1h/24h experiments. A significantly higher cell number was 

observed for the FBS-preadsorp relative to the NoFBS-preadsorp condition, on each substrate, (*p<0.006).  
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Graphic 11 Summary statistics of cell number (mean value ± standard deviation) as a function of culture 

condition. MTT assay at day 7 of 1h/24h experiments. A significantly higher cell number was observed for the 

FBS-culture as compared to NoFBS-culture condition, on each substrate, (*p<0.001).  

 

 

Graphic 12 Summary statistics of cell number (mean value ± standard deviation) as a function of substrate. 

MTT assay at day 7 of 1h/24h experiment. A significantly higher cell number was observed for Nano-Ti and 

Poli-Ti relative to Glass substrate; the number of asterisks depicts statistically homogeneous groups, 

(p<0.0001).  
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Graphic 13 Summary statistics of cells mineral production (mean value ± standard deviation) as a function 

of condition and substrate. Alizarin red reading at day 30 of 1h/3h experiment. Cells on titanium substrates 

produced significantly more minerals than on glass under all conditions tested. Bars highlight the statistically 

different substrates, within each condition (blue and red bars, *p<0.0001), and among conditions (green bar, 

**p=0.004).  
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