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ATTIVITÀ DI RICERCA 

 

Durante il Dottorato di Ricerca mi sono occupato dello studio della regolazione genica in 

Neisseria meningitidis. In particolare, ho studiato la risposta in termini di espressione genica alla 

disponibilità di glucosio, identificando un regolatore trascrizionale HexR che coordina il 

metabolismo centrale di meningococco. Ho caratterizzato le interazioni molecolari tra la 

proteina HexR e i suoi geni target, e ho studiato l’impatto della regolazione mediata da HexR 

sulla capacità di N. meningitidis di causare batteremia in un modello murino di infezione. 

In parallelo, ho indagato il ruolo dei piccoli RNA non codificanti nella regolazione genica di 

meningococco. Tramite sequenziamento dell’RNA ad alta risoluzione ho identificato e mappato 

nuovi trascritti potenzialmente regolatori, e ho studiato l’impatto di candidati selezionati sulla 

batteremia di N. meningitidis. Infine, ho iniziato la caratterizzazione molecolare di un nuovo 

piccolo RNA unico di meningococco, strettamente associato a geni rilevanti per le Neisseriae 

patogene. 
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1 Abstract 

Neisseria meningitidis, the leading cause of bacterial meningitis, can adapt to different host 

niches during human infection. Both transcriptional and post-transcriptional regulatory 

networks have been identified as playing a crucial role for bacterial stress responses and 

virulence. We investigated the N. meningitidis transcriptional landscape both by microarray 

and by RNA sequencing (RNAseq).  

Microarray analysis of N. meningitidis grown in chemically defined medium in the presence 

or absence of glucose allowed us to identify genes regulated by carbon source availability. In 

particular, we identified a glucose-responsive hexR-like transcriptional regulator in  

N. meningitidis. Deletion analysis showed that the hexR gene is accountable for a subset of 

the glucose-responsive regulation, and in vitro assays with the purified protein showed that 

HexR binds to the promoters of the central metabolic operons of meningococcus, by 

targeting a DNA region overlapping putative regulatory sequences.  Our results indicate that 

HexR coordinates the central metabolism of meningococcus in response to the availability of 

glucose, and N. meningitidis strains lacking the hexR gene are also deficient in establishing 

successful bacteremia in a mouse model of infection.  

In parallel, RNAseq analysis of N. meningitidis cultured under standard or iron-limiting  

in vitro growth conditions allowed us to identify novel small non-coding RNAs (sRNAs) 

potentially involved in N. meningitidis regulatory networks. Manual curation of the RNAseq 

data generated a list of 51 sRNAs, 8 of which were validated by Northern blotting. Deletion 

of selected sRNAs caused attenuation of N. meningitidis infection in a murine model, leading 

to the identification of the first sRNAs influencing meningococcal bacteraemia. Furthermore, 

we describe the identification and initial characterization of a novel sRNA unique to 

meningococcus, closely associated to genes relevant for the intracellular survival of 

pathogenic Neisseriae.  

Taken together, our findings could help unravel the regulation of N. meningitidis adaptation 

to the host environment and its implications for pathogenesis. 
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2 Introduction 

2.1 Meningococcal disease 

Neisseria meningitidis is a strictly human pathogen responsible for meningitis and sepsis, 

two devastating diseases that can kill children and young adults within hours, despite the 

availability of effective antibiotics. The meningococcal disease was first discovered in 1887 

by Anton Weichselbaum, who described the meningococcal infection of the cerebrospinal 

fluid of a patient (1). The meningococcal disease occurs mainly as sporadic cases in 

industrialized countries, even if small regions suffer from epidemic outbreaks (e.g. New 

Zealand). On the contrary, it is largely epidemic in the so-called “meningitidis belt” in the 

sub-Saharan Africa. Studies performed in Europe (2) have demonstrated that carriage rates 

are very low in the first few years of life, but sharply rise during adolescence, peaking at 10–

35% in 20–24-year olds, then decreasing to less than 10% in older age groups (2, 3). The 

reported annual incidence of meningococcal disease varies from 0.5 to 10 per 100,000 

persons; however, during epidemics the incidence can rise above 1 per 1,000 (4, 5). The case 

fatality rate ranges from 5 to 15%, and approximately 11 to 19% of individuals surviving the 

disease often suffer from permanent sequelae, including neurodevelopmental deficits, 

hearing loss, seizures, ataxia, hemiplegia as well as amputation of limbs (6-10). What 

changes the colonization state of the organism into a disease state is not entirely clear. Most 

cases of meningococcal disease occur in otherwise healthy individuals without identified risk 

factors and for reasons not fully understood. However, certain biological, environmental and 

social factors have been associated with an increased risk of disease. Infants under 1 year of 

age, with a peak between 0 and 7 months, are the population at highest risk of infection due 

to their immature immune systems (6.33-7.08 cases per 100,000). A second peak in 

incidence is observed in adolescents and young adults (14-24 years; 0.75 cases per 100,000) 

(11). Microbial virulence factors, environmental conditions facilitating exposure and/or 

acquisition, impaired immune system, human genetic polymorphisms as well as naso- and 

oro-pharyngeal irritation caused by smoking and/or respiratory tract infection represent 

important factors for disease development (6, 12-17). Diagnosis of meningococcal disease 

can be challenging as its classic signs and symptoms, such as rash, fever, and headache are 

unspecific especially in the early course of the illness, and may be diagnosed as a more 

http://en.wikipedia.org/wiki/Anton_Weichselbaum


6 

 

benign infection. Due to the rapid progression of meningococcal disease, however, if 

appropriate treatment is delayed it can lead to death within 24 to 48 hours from the first onset 

of symptoms (7).  

 

2.2 Neisseria meningitidis: pathogen and pathogenesis 

2.2.1 The pathogen 

N. meningitidis is a β-proteobacterium, Gram-negative diplococcus (Figure 1 ). It is aerobic, 

non-motile, non-sporulating, usually encapsulated and piliated. It is surrounded by an outer 

membrane composed of lipids, outer membrane proteins (OMPs), and lipooligosaccharide 

(LOS), a peptidoglycan layer and an inner membrane. Some meningococcal strains have a 

polysaccharide capsule attached to their outer membrane, and pathogenic strains are almost 

always encapsulated. The invasive potential of non-encapsulated disease isolates has recently 

been reported (18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1  Immuno-gold labelling and transmission electron microscopy of Neisseria meningitidis. Analysis of the strain 

was performed with antisera raised against the NadA adhesin. Scale bars: 200 nm (19).  

 

Traditionally, N. meningitidis strains are classified into serogroups according to the 

immunological reactivity of their capsules. With this method 13 different serogroups have 

been identified, although only the A, B, C, Y, X and W135 serogroups commonly cause 

invasive infections (Figure 1). Meningococci are further classified into serotype and 

serosubtype, based on antigenic differences in their major OMPs, PorA and PorB. The 

serological classification system, however, is limited due to high frequency of phase and 
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antigenic variation of outer-membrane structures, which has led to the development of DNA-

based approaches to characterize meningococcal strains. A genetic typing system based upon 

polymorphisms in seven housekeeping genes called Multilocus Sequence Typing (MLST) is 

now the golden standard for molecular typing and epidemiologic studies (20). Menigococci 

can thus be classified into lineages, termed clonal complexes. A clonal complex is a group of 

sequence types (STs) that share at least four of the seven loci in common with a central 

ancestral genotype (21). MLST technique has shown that the majority of disease associated 

isolates cluster into a minority of STs called hyperinvasive lineages (22). Why hyperinvasive 

meningococcal lineages are more pathogenic than others still remains unknown. 

 

 

 

 

Figure 1 Global distribution of invasive meningococcal serogroups. Graphical representation of serogroup-specific 

incidence in different geographical areas of the world (adapted from www.meningitisinfo.com). 

 

 

 

 

 

 

http://www.meningitisinfo.com/
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2.2.2 Colonization and invasion 

N. meningitidis colonizes the upper respiratory tract in about 25% of the human population 

where it can live as commensal. This carrier state represents a successful commensal 

relationship between the host and the bacterium: it provides the only known reservoir for the 

human-adapted meningococcal infection and may also contribute to establishing host 

immunity (23). For largely unknown reasons, in a small subset of carriers meningococcus 

can invade the pharyngeal mucosal epithelium and disseminate into the bloodstream, causing 

septicemia. In a subset of cases, the bacteria can also cross the blood-brain barrier and infect 

the cerebrospinal fluid, causing meningitis.  

The pathogenesis of N. meningitidis is a complex multi-stage process (Figure 2). 

Meningococci may be acquired via respiratory droplets or saliva. Colonization of the upper 

respiratory mucosal surfaces by N. meningitidis is the first step in establishment of both the 

human carrier state and the invasive meningococcal disease (23). The first step in 

meningococcal colonization is the initial contact with nasopharyngeal epithelial cells 

mediated by Type IV pili, which may recognize the host receptor CD46 (24), then bacteria 

proceed to proliferate on the surface of human non-ciliated epithelial cells, forming small 

microcolonies at the site of initial attachment (23). After the initial colonization, there is a 

loss or down-regulation of the capsule, whose presence masks the outer membrane proteins 

by steric hindrance. This event can occur both via cell-contact induced repression (24) and 

by selection of low or no-capsule expressing bacteria due to phase variation (25). Close 

adherence of meningococci to host epithelial cells is then mediated by a variety of possibly 

redundant adhesins that were previously masked by the capsule. One trigger of 

meningococcal internalization is represented by interaction of the bacterial opacity proteins, 

Opa and Opc, with CD66/CEACAMs and integrins, respectively, on the surface of the 

epithelial cell (26). This results in the appearance of cortical plaques and the recruitment of 

factors leading to the formation and extension of epithelial cell pseudopodia within 

intracellular vacuoles (27). Once internalized in the epithelial cells, meningococcal survival 

depends on factors such as the IgA1 protease, which degrades lysosome-associated 

membrane proteins (28). Meningococci are capable of intracellular replication and this is due 

in part to the capacity of the organism to acquire iron through specialized transport systems, 

such as the hemoglobin binding receptor (HmbR), transferring binding protein (TbpAB) and 

lactoferrin binding protein (LbpAB) (29). This intracellular lifestyle gives the bacteria an 
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opportunity to evade the host immune response as well as to find new sources of nutrients, 

and is also a way to cross the epithelium and enter the bloodstream (23). In healthy 

individuals, bacteria that cross the mucosal epithelium are eliminated by serum bactericidal 

activity. However, in susceptible individuals meningococcus can occasionally cross the 

mucosal epithelial barrier, either through transcytosis or directly following damage to the 

monolayer integrity, or through phagocytes (30). Eventually, bacteria enter the bloodstream 

and have to evade the host defence mechanisms using strategies such as up-regulation of 

capsule expression, which can prevent antibody and complement deposition (31) and is both 

anti-opsonic and anti-phagocytic (30). Meningococcus can also recruit negative regulators of 

the complement cascade such as factor H, recruited by the factor H-binding protein (fHBP) 

(32), and complement regulators such as the C4-binding protein (C4bp) bound by PorA 

porins (33). Once inside the bloodstream, bacteria either multiply slowly, eventually passing 

across the brain vascular endothelium or the epithelium of the choroid plexus, resulting in 

infection of the meninges and the cerebrospinal fluid (34), or they undergo rapid 

multiplication in the bloodstream, resulting in clinical features of bacterial septicemia or 

meningococcemia (35).  

 

Figure 2 Stages in the pathogenesis of Neisseria meningitidis. Schematic representation of the steps of meningococcal 

colonization and infection (adapted from (30)). 

 

Meningococcal adaptation to the different host niches also occurs at the level of metabolism 

(36). Therefore, acquisition of nutrients that enable the bacterium to sustain growth and 

multiply is critical for the outcome of meningococcal disease. In fact, N. meningitidis is 

capable of adapting to different anatomical compartments of the host (37), where the 
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availability of key nutrients such as carbon sources is diverse. However, this bacterium 

requires a restricted variety of substrates such as glucose, lactate or pyruvate as sole carbon 

sources to initiate growth (38, 39). Glucose is one of the few carbon energy sources that N. 

meningitidis can use as sole energy source, and the preferred carbon substrate for growth of 

meningococcus in terms of biomass yield (40). Lactate has been shown to be essential for 

effective colonization and its acquisition has been implicated in the virulence of N. 

meningitidis (41). Studies of N. gonorrhoeae have shown that in media containing glucose, 

lactate stimulates metabolism and that this could affect pathogenicity (42). Nevertheless, 

glucose is the predominant carbon source in blood as well as in the cerebrospinal fluid (43), 

the two main niches of meningococcal infection. Moreover, about half of the genes essential 

for systemic infection encode enzymes involved in the metabolism and transport of nutrients 

(44). The ability to obtain and synthesize nutrients is therefore essential for meningococcus 

to survive in the different microenvironments that it encounters within the human host during 

the course of infection. 

Overall, the onset of meningococcal disease can be seen as a failed relationship between the 

meningococcus and the host. While factors that trigger meningococcal entrance in the 

bloodstream are not yet fully understood, they are likely dependent on both the host and 

pathogen sides and include impairing of the integrity of the human nasopharyngeal mucosa, 

the lack of a protective immune response and microbial factors influencing virulence (4, 5). 

 

2.2.3 Virulence factors  

The major virulence factor of N. meningitidis is the polysaccharide capsule (Figure 3), which 

plays a crucial role in meningococcal fitness, protecting the bacterium during airborne 

transmission between hosts (45), and facilitating colonization and virulence by protecting the 

meningococcus from desiccation and the host innate and adaptive immune effector 

mechanisms such as phagocytic killing, opsonization, antimicrobial peptides and 

complement-mediated bactericidal killing (46, 47). Like many other virulence factors its 

expression is phase variable (25) and capsule switching between one serogroup to another 

provides a selective advantage that allows the bacterium to evade opsonization or 

neutralization by natural or vaccine-induced protective anti-capsular antibodies (48). 

The lipo-polysaccharides of meningococcus are more accurately referred to as lipo-

oligosaccharide (LOS), because of the presence of repeating short saccharides instead of 
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long chain saccharides (Figure 3). LOS are the major constituent of the outer leaflet of the 

meningococcal outer membrane, responsible for the physical integrity and proper 

functioning of the membrane and required for resistance of N. meningitidis to complement 

(49). Phase and antigenic variations lead to different saccharide chains altering dramatically 

the antigenic properties of LOS and enabling individual meningococci to display a repertoire 

of multiple LOS structures simultaneously (50). 

 

Figure 3 Meningococcal cell compartments. Schematic representation of the different bacterial compartments and of the 

main components of the outer membrane, together with their known functions (adapted from (6)). 

 

Another group of major virulence factors involved in the interface between the bacterium 

and the host are the pili (Figure 3), long surface proteins that extend from the bacterial 

surface beyond the capsule (51, 52). The pilus is composed of identical subunits of pilin, 

expressed from the pilE locus. The pilE gene undergoes sequence variation due to 

homologous recombination with multiple non-expressed truncated pilS genes, resulting in 

different adhesive and immunogenic pili variants (53). Meningococcal pili belong to type IV 

pilus family, members of which undergo rapid extension and retraction. They represent the 

major contributor to adhesive property of the capsule and are involved in the initiation of the 

meningococcus-host cell interaction (54, 55). Together with the outer membrane adhesins, 

pili facilitate adhesion to host tissues having a crucial role in the initial establishment of 

encapsulated bacteria on mucosal surfaces, helping the penetration of the negatively charged 

barrier at the host-pathogen interface (56). In addition to adhesion, pili are involved in 

several other functions such as facilitating the uptake of foreign DNA from the extracellular 
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environment, a property that contributes to virulence by promoting genetic adaptability (57). 

Twitching motility generated by pilus retraction is important for passage through the 

mucosal layer, movement over epithelial surface and micro-colonies formation (58).  

N. meningitidis has evolved a number of other surface structures that mediate interaction 

with host cells. The two opacity proteins (Opa and Opc) are integral outer membrane 

proteins that mediate pathogen-host interaction (Figure 3), adhering to and invading of 

epithelial and endothelial cells (52). Numerous adhesins are generally expressed at low 

levels during in vitro growth but may be important during in vivo infections. Furthermore, 

several adhesins are subject to antigenic variation and/or phase variation, which allow 

bacteria to generate a broad and variable repertoire of surface structure that facilitates 

evasion of immune effectors mechanisms and adaptation to different niches (30). The 

neisserial adhesin A (NadA) was firstly identified during a bioinformatic analysis of the 

genome of a virulent N. meningitidis B strain looking for novel vaccine candidates (19). 

NadA is a surface-exposed member of the oligomeric coiled-coil adhesin family of bacterial 

trimeric autotransporter adhesins, such as YadA of Yersinia spp. (59) and HadA of 

Haemophilus influenzae biogroup aegyptius (60). It has been shown that NadA mediates 

adhesion to and invasion of human epithelial cells (61), suggesting a key role of NadA in 

bacterial adhesion to the naso- and oro-pharyngeal epithelia during meningococcal 

colonization of the human upper respiratory tract. NadA is a risk factor for the development 

of meningococcal disease, as it is present in 50% of the disease-associated strains and 

overrepresented, almost 100%, in hypervirulent meningococcal lineages (62, 63). Several 

other minor adhesins belong to the family of autotransporter adhesin. Among them, 

Neisseria Hia homologue A (NhhA), mediates low levels of adhesion to epithelial cells and 

to extracellular matrix components (64). The adhesion penetration protein (App), an 

autotransporter protein with a highly conserved aminoacid sequence, has been shown to 

mediate bacterial interaction to epithelial cells during the early stages of colonization. At 

later stages, App autocleavage may allow bacterial detachment, therefore facilitating 

bacterial spread (65). Meningococcal serine protease A (MspA) is homologous to App and 

may also be cleaved and secreted (66). The multiple adhesin family (Maf) is a family of 

glycolipid adhesins, characterised first in gonococci, which may play a role in Opa-

independent cell invasion (67).  
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PorA and PorB are the most abundant proteins present in the meningococcal outer membrane 

(Figure 3). These antigens comprise regions of relatively conserved sequence, which are 

predicted to form the beta-barrel structure of the proteins, interspersed with more variable 

regions, which form the putative surface-exposed loops. The monomers associate in trimers 

creating pores for the passage of small hydrophilic solutes necessary for bacterial 

metabolism. While not considered adhesins, they interact with numerous human cell types 

and proteins (68). PorA elicits a protective immune response in humans (69), while the role 

of PorB in stimulating immune protection is less clear, being immunogenic but poorly 

accessible for antibodies (70). 

The ability to escape the elaborate machinery of the human immune system is a key 

determinant in the virulence of human pathogens. Many factors contribute to the virulence of 

N. meningitidis, involving mechanism to face antimicrobial peptides, reactive nitrogen and 

oxygen species, complement-mediated killing and, ultimately, the humoral and cellular 

components of the immune system. Efflux pump have been shown to have a critical 

contribution to antimicrobial peptide resistance (71). Enzymes such as catalases (Kat), 

superoxide dismutase (SodB and SodC), nitrite reductase (AniA) and nitric oxide reductase 

(NorB) neutralize the toxic effects of reactive oxygen and nitrogen species generated by 

neutrophilis and macrophages (72-74). Also the complement system, an essential component 

of the innate immune response, plays a significant role in defence against meningococcal 

infection, as indicated by the increased susceptibility to N. meningitidis infections of patients 

with complement deficiencies (75). The complement system consists of a well-balanced 

network of circulating and cell surface-bound proteins that act as substrates, enzymes or 

modulators of a hierarchical series of extracellular proteolytic cascades. The complement 

activation is initiated by the classical (CP) or the lectin (LP) pathways and is amplified by 

the alternative pathway (AP). All of these pathways converge at the level of the C3 complex, 

leading to cleavage of C3 to C3b by C3 convertases. Deposition of C3b on the surface of an 

invading pathogen results
 
in its elimination through phagocytosis or lysis following assembly

 

of the membrane attack complex (MAC). N. meningitidis uses a variety of mechanisms to 

survive to the bactericidal action of the complement system, involving its capsule, LOS and 

other factors (47). One such factor is fHBP, a surface-exposed lipoprotein which binds 

human factor H (fH), the main inhibitor of the complement AP (76). Sequestering fH allows 

meningococci to use this down-regulator to limit complement activation on their surface. In 
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addition, the Neisserial Heparin-Binding Antigen (NHBA) has been described to bind 

heparin, which may increase bacterial serum resistance due to the potential interactions of 

heparin with fH (77). 

 

2.3 Meningococcal vaccines  

Meningococcal disease progresses rapidly and in its early stages it is easily misdiagnosed (6, 

7), making vaccination the best public health option worldwide and the most effective way to 

prevent outbreaks. No broadly protective vaccine is currently available to provide protection 

against all serogroups of N. meningitidis. Capsular polysaccharides have been successfully 

used as antigens to produce polysaccharide and glycoconjugate vaccines against four of the 

five disease-associated serogroups A, C, W-135 and Y. Quadrivalent vaccines against 

serogroups A, C, W-135 and Y include the conjugate vaccines Menactra (Sanofi Pasteur) 

and Menveo (Novartis), and the polysaccharide vaccine Menomune (Sanofi Pasteur) and 

Mencevax (GlaxoSmithKline) (78). A vaccine called MenAfriVac has been developed 

through a program called the Meningitis Vaccine Project to prevent meningitis group A 

infections in the African ‘meningitidis belt’ (79). 

In contrast, the group B capsule polysaccharide is not suitable as vaccine antigen because it 

consists of a homolinear polymer of α(2→8)N-acetyl neuraminic acid, also known as 

polysialic acid, which is structurally similarity to the sialic acid found in human neural tissue 

(80, 81). Consequently, it is a poor immunogen in humans and may elicit autoantibodies. 

Therefore, efforts to develop a group B vaccine focused mainly on non-capsular antigens, 

such as proteins or LOS. Detergent-extracted Outer Membrane Vesicles (dOMV) have been 

successfully used in Norway (82), Cuba (83), Chile (84) and New Zealand (85) to control 

epidemic disease outbreaks caused by specific MenB strains. 

A significant limitation of these vaccines is the breadth of coverage provided. The detergent 

treatment extracts the toxic LOS, but it also extracts other desirable antigens such as fHbp. 

Consequently, the porin protein PorA results to be the immuno-dominant antigen (86, 87). 

However, PorA is antigenically variable (88) so the immune response elicited is effective 

only against strains expressing the same PorA serosubtypes. 

The availability of whole genome sequences has contributed radically to change the 

approach to vaccine development, laying the fundaments for an in silico genome-based 

approach named Reverse Vaccinology (RV). RV aims to identify surface-exposed non-

http://en.wikipedia.org/wiki/MenAfriVac
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capsular antigens that are antigenically conserved among strains and that elicit a bactericidal 

serum response. This approach has led to the development of the recombinant protein 

vaccine 4CMenB (89, 90). The 4CMenB vaccine contains five genome-derived Neisseria 

antigens (GNA), which are formulated together. The vaccine formulation joins NadA (61, 

91), as well as two recombinant fusion proteins of fHbp (92, 93) and NHBA (77, 94) fused 

to the conserved meningococcal gene products GNA2091 and GNA1030, respectively. The 

vaccine formulation also includes detergent-extracted outer membrane vesicles (dOMVs) 

from the NZ98/254 strain (87). The 4CMenB vaccine was licensed as Bexsero in 2013, 

following its progression through clinical trials that have demonstrated its safety (95, 96) and 

its efficacy in inducing a protective immune response in infants, children, adolescents and 

adults against the majority of MenB strains (97, 98). 

Another licensed vaccine against meningococcal serogroup B is the recombinant protein-

based vaccine composed of equal amounts of lipidated fHbp variants from different 

subfamilies. This vaccine was licensed in October 2014 in the US for a target population of 

adolescents and young adults. In preclinical study, the bivalent vaccine elicited high 

bactericidal titers against different MenB strains, suggesting a good breadth of coverage 

(99). In a phase I trial, it was assessed that the vaccine was well tolerated in adults, 

adolescents and young children (99). However, it is not suitable for use in infants 

considering that it consists or purified lipoproteins known as TLR-2 agonists (100). In 

addition, the in vivo level of fHbp expression strongly affects the effectiveness of the 

bivalent vaccine.  

 

2.4 Genetics of N. meningitidis 

Genome sequences are available for a growing number of N. meningitidis strains. These data 

show that the meningococcal chromosome is between 2.0 and 2.2 megabases in size and 

contains about 2000 genes (101-104). The meningococcus shares about 90% nucleotide 

homology with either N. gonorrhoeae or the commensal N. lactamica. While approximately 

70% of the genome encodes for essential metabolic functions, about 10% of the genome is 

represented by mobile elements such as IS elements and prophage sequences (101), leading 

to DNA transfer between meningococci, gonococci, commensal spp. as well as other bacteria 

(105). Another evident characteristic of the neisserial genome is the high abundance of 

repetitive DNA sequences, polymorphic regions and genetic switch mechanisms (e.g. 
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slipped-strand mispairing) which lead to genetic instability, facilitating duplication or 

deletion of regions in the genome, as well as recombination (105). Except for the IHT-A1 

capsule locus, no specific core pathogenome has been identified (106), suggesting that 

virulence may be dependent on multiple redundant genes. The GC percentage is variable 

along the chromosome with an average of 51.63%, with defined regions of low GC content 

that likely have been acquired by relatively recent horizontal gene transfer events (107). 

These events are relatively common in N. meningitidis due to its natural transformation 

competence (108). For example, the acquisition of the capsule locus by horizontal gene 

transfer, possibly from Pasteurella multocida or P. hemolytica (104), appears to be a major 

event in the evolution of the pathogenicity of the meningococcus from an un-encapsulated 

ancestor (23). A central characteristic of the genome is its plasticity contributing to the non-

clonal behavior of meningococcus and its phenotypic diversity, which allow the bacteria to 

successfully adapt to the host.  

 

2.5 Gene regulation and adaptation to the host environment 

During infection, N. meningitidis can invade diverse sites within the human host, which 

represent different niches with respect to nutrient availability, environmental stress factors 

and competing microorganisms. Therefore meningococcus is subjected to constant selective 

pressures and its ability to rapidly adapt its metabolism and cellular composition to 

environmental changes is essential for its survival (109). Bacteria achieve adaptation to the 

environment either by changing their genotype (genome plasticity) or by transient alterations 

in gene expression. These two mechanisms are complementary and both lead to phenotypic 

variations.  

 

2.5.1 Genome plasticity 

The high natural competence of meningococci is a leading cause of horizontal gene transfer 

and therefore genome variability (110). In addition, the abundance of repetitive DNA 

sequences contributes to meningococcal genome plasticity. The most frequent repeat 

sequence element is the neisserial DNA uptake sequence (DUS). Nearly 2000 copies of this 

12-bp sequence involved in recognition and uptake of DNA from the environment (111) are 

found in the N. meningitidis genome. On the other hand, the 20-bp long dRS3 elements 
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promote both permanent genomic changes, such as insertions and chromosomal 

rearrangements (104) and recombination with exogenous DNA (103). Correia elements are 

mobile elements of 100-150 bp, which carry transcription initiation sequences as well as 

binding sites for DNA bending protein, suggesting that they may have a role in modulating 

the expression of nearby genes (112).  Finally, the meningococcal genome is also littered 

with insertion sequences (IS) and other repeat sequences whose function has not been 

completely determined yet, such as AT-rich repeats (101) and REP2 repeats (113). 

Another major source of genome plasticity is phase variation (PV), the adaptive process by 

which bacteria undergo frequent and reversible phenotypic changes resulting from genetic 

alterations in specific loci of their genomes. Short tandem sequence repeats are the basis for 

PV, which can occur during replication through slipped-strand mispairing, altering the unit 

number of these repeats. The presence of repeat units may cause a slippage during 

replication of either the synthesis strand, leading to addition events, or the template strand, 

leading to deletions in the newly synthesized filament (105). When occurring in the coding 

sequence of a gene or within its promoter region, PV can change the transcriptional and 

translational state of the gene by introducing frameshift mutations or changing the spacing 

between critical promoter elements. It has been proposed that in N. meningitidis over 100 

genes are potentially phase variable, altering mainly virulence-associated, surface-exposed 

molecules such as outer membrane proteins PorA, Opc, Opa, pili and adhesins, as well as 

LOS and capsule (105, 114-116). Meningococcal strains associated with disease have high 

frequency of PV, indicating that varying surface-exposed components provides substantial 

benefits during transmission between hosts (117). 

Distinct from phase variation, antigenic variation is a mechanism of immune evasion where 

bacteria express different moieties of functionally conserved molecules that are antigenically 

distinct within a clonal population. This process is distinct from phase variation, as only one 

variant is expressed at any given time, although the cell still contains the genetic information 

to produce a whole range of antigenic variants. In the pathogenic Neisseria species, antigenic 

variation occurs in several surface components, including type IV pili, LOS and Opa proteins 

(105). 
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2.5.2 Transcriptional regulators 

Survival under the rapidly changing conditions encountered within the host requires timely 

alterations in gene expression. Several environmental signals have been shown to have an 

impact on the N. meningitidis transcriptional regulation during host infection, such as iron 

(118, 119), zinc (120), nitric oxide (121) human saliva (122) and human blood (123, 124). At 

the transcriptional level, these alterations could be controlled by global factors, for example 

through changes in associations between different alternative sigma factors and core RNA 

polymerase, which reprogram the specificity of promoter recognition by the enzyme to allow 

expression of entirely new sets of target genes (125). In addition, different transcriptional 

regulators activated by various stresses can regulate the transcription of many genes 

important for survival and virulence. Although extensive transcriptional regulation is 

expected to accompany the infection process of N. meningitidis, only 36 putative 

transcriptional regulators are encoded by the meningococcal genome. This number is 

especially striking if compared to Escherichia coli, which harbors more than 200 

transcriptional regulators. This striking limitation for transcriptional regulation is possibly 

related to the restricted ecological niches of the Neisseriaceae (126). Only 5 of the predicted 

regulators have been characterized so far, and the regulons of 4 have been dissected in detail. 

Bacterial pathogenesis and survival are dependent on the ability to acquire iron (127), which 

is limiting during human infection being sequestrated by host iron-binding proteins. 

Although N. meningitidis does not produce siderophores for iron acquisition, it possesses 

outer membrane receptors that have been postulated to scavenge the iron-loaded 

siderophores secreted by other bacteria colonizing the nasopharyngeal tract (128) such as the 

hemoglobin binding receptor (HmbR), transferring binding protein (TbpAB) and lactoferrin 

binding protein (LbpAB) (29). However, since iron overload results in toxicity for the 

bacterium, meningococcus tightly regulates iron uptake by the ferric uptake regulator Fur 

(129). The Fur protein senses the intracellular iron concentration and binds to and represses 

iron uptake genes using ferrous iron as a co-repressor (118, 119, 130). Fur has been also 

reported to act positively in the expression of certain genes. The regulon of Fur comprises 

more than 200 genes (131) regulated either directly or by an indirect mechanism which 

involves a Fur-repressed small regulatory RNA named NrrF (132, 133). 

During colonization and infection, N. meningitidis is also exposed to highly divergent partial 

pressures of oxygen (72). The fumarate and nitrate reductase regulator protein (FNR) is a 
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transcriptional activator that enables meningococci to survive under oxygen limitation by 

inducing sugar fermentation and denitrification pathways, utilizing nitrite and nitric oxide as 

electron acceptors (134, 135). Under oxygen limitation, FNR binds to DNA and activates 

target genes as a dimer containing a [4Fe-4S] cluster. This cluster dissociates in the presence 

of oxygen, destabilizing the dimer, with loss of FNR activity (135, 136). Interestingly, the 

mediator of complement evasion fHBP has been shown to be positively regulated by oxygen 

limitation through a FNR dedicated promoter (137).  

N. meningitidis is often exposed to the gaseous free-radical nitric oxide (NO), generated both 

internally by its own metabolism and externally by the human host tissue, which is rich in 

macrophages, a potent source of NO during infection (138). The nitric oxide sensitive 

repressor (NsrR) is the major NO-responsive transcriptional regulator, repressing a small 

regulon of 4 genes.  As NO concentration increases, NsrR is specifically inactivated through 

the alteration of its iron-sulfur cluster, thus leading to up-regulation of denitrifying genes 

(121, 139). Another regulator potentially relevant to the infection process is the Neisserial 

adhesin Regulator (NadR), a MarR-like protein demonstrated to regulate expression of both 

the phase-variable meningococcal adhesin NadA (116, 140, 141) and the MafA1 and MafA2 

adhesins, shown to adhere to glycolipid receptors on human cells (142, 143). These genes are 

affected by NadR in opposing ways, depending on their specific promoter architectures 

(122). As typical of MarR-like proteins, a small molecule ligand, the 4-hydroxyphenylacetic 

acid (4HPA) catabolite of aromatic amino acids found in human saliva (144), acts as signal 

to alter the DNA binding activity of NadR in vivo, leading to repression or activation of its 

target genes (122, 145). Other transcriptional regulators of N. meningitidis include the LysR-

type regulator CrgA, that is upregulated upon contact with human epithelial cells and acts as 

a repressor of its own transcription and type IV pili subunits (146, 147); AsnC is a global 

regulator that controls the response to poor nutrient conditions by binding to leucine and 

methionine, two amino acids representing general nutrient abundance (148); the Zinc uptake 

regulator (Zur) is a Fur-like regulator that responds specifically to zinc and controls zinc 

uptake by regulating a TonB-dependent receptor that allows high affinity zinc acquisition 

(149, 150). 
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2.5.3 Small regulatory RNAs  

Small non coding RNAs (sRNAs) are regulatory elements whose essential role is well-

established in all organisms (151). In pathogenic bacteria, regulatory sRNAs are a 

heterogeneous group of transcripts, which modulate a wide range of physiological processes 

through different mechanisms (152, 153). These regulators often function as coordinators of 

adaptation and/or virulence, integrating environmental signals and controlling target gene 

expression (154-156). sRNAs are commonly classified according to their mechanism of 

action within bacterial cells. Riboswitches are RNA sequences within the 5’-untranslated 

region (UTR) of the messenger RNAs (mRNAs) they regulate, that can adopt different 

conformations in response to environmental changes or the binding of metabolites (157). 

RNA thermometers are structured cis-regulatory elements that alter the efficiency of 

translational initiation in response to temperature (158, 159). The CRISPR (clustered 

regularly interspaced short palindromic repeats) RNAs contain short regions of homology to 

foreign DNA sequences and can interfere with bacteriophage infection, plasmid conjugation 

and natural transformation (160-162). In a recent publication, an archaeal CRISPR system 

has been reported to target both RNA and DNA molecules (163). Some sRNAs can bind 

proteins and alter their functions (164). Finally, the most extensively studied class are 

sRNAs modulating translation and stability of target mRNAs through direct base pairing. 

This class of regulatory RNAs can be further divided into two distinct broad classes: the cis-

acting antisense sRNAs, encoded from the strand of DNA opposite to their mRNA targets 

and having extensive complementarity to these (165), and the trans-acting sRNAs, acting on 

multiple distal targets with a limited complementarity (153). RNA base-pairing interactions 

are usually in the 5-UTR of the target mRNA and have been shown to alter mRNA structure 

ultimately leading to changes in translation efficiency and, as a consequence, mRNA 

stability (154, 164). However, sRNAs can also interact with coding regions, regulating their 

targets not by translational control but by accelerating decay of the sRNA-mRNA duplex 

through RNase E, often in concert with the RNA chaperone Hfq (166-169). The majority of 

the regulation by the known trans-encoded sRNAs is negative (155, 170): base pairing with 

the target mRNA usually leads to repression of protein levels through translational 

inhibition, mRNA degradation, or both (171-173). However, activation of gene expression 

by sRNAs has also been reported (174). In such cases, base pairing of the sRNA disrupt an 

inhibitory secondary structure which sequesters the ribosome binding site (155, 175, 176). In 
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addition to their function as post-transcriptional regulators, some sRNAs may also encode 

for protein functions, providing for a dual role within the cell (177).  

The role of many different sRNAs in pathogenic bacteria has been elucidated so far, and 

sRNAs have been found to be involved in a number of cellular mechanisms, from 

remodelling of the metabolism and regulation of homeostasis (178), to repression of outer 

membrane protein synthesis (179-183), to adaptation and resistance to stress (184-186), to 

virulence and pathogenesis (184, 187-190), as well as biofilm formation (191) and quorum 

sensing system regulation (184, 192). Interestingly, in recent years evidence of regulation of 

host transcripts by pathogen- or symbiont-encoded sRNAs had been arising (163, 193), 

indicating that sRNA-mediated regulation could extend outside the bacterial cell and play a 

role in cross-communication between invading bacteria and their host. 

Activity of trans-encoded base-pairing sRNAs in Gram-negative bacteria often depends on 

the hexameric RNA chaperone Hfq, a homologue of the Sm-like proteins involved in 

splicing and mRNA decay in eukaryotes (168, 170). The Hfq protein is conserved in a wide 

range of bacteria and ranges in length from 70 to 100 amino acids (194). In all cases, the Sm 

motif is located in the N-terminal region of the molecule. The C-terminal domain seems not 

to play a significant role in the major functions of Hfq. In fact, a C-terminal truncated form 

of the E. coli Hfq lacking the C-terminal amino acids can replace the intact E. coli Hfq (195). 

The main role of Hfq in assisting sRNA regulation is to promote sRNA-mRNA base pairing 

via multiple mechanisms: it increases the annealing rates of RNA molecules (196-198), 

stabilizes cognate sRNA-mRNA duplexes (199), promotes the structural remodelling of 

sRNA and target mRNAs (200), and increases the local concentration of both RNA species 

(201). The centrality of Hfq in assisting regulatory circuits involved in fitness and virulence 

is highlighted by the pleiotropic effects of Hfq-KO in many pathogens, whose phenotypes 

include increased sensitivity to host defence mechanisms and attenuation in animal models 

(133, 202-205). Hfq–independent post-transcriptional regulation by sRNAs has been shown 

to occur in Gram-positive bacteria such as Staphylococcus aureus and Bacillus subtilis, even 

though Hfq is present in these organisms (206, 207).  

The role of sRNA-mediated regulation in N. meningitidis has been investigated only in the 

last decade. Even as more and more high-resolution transcriptomic analyses of pathogenic 

Neisseriae become available (208-211), only few sRNAs have been characterized to date in 

meningococcus or the closely related gonococcus, and are involved in a number of critical 
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pathogenic processes including regulation of gene expression, natural transformation and 

antigenic variation (133, 162, 212-214). The trans-acting sRNA NrrF is synthesized during 

iron starvation and is involved in controlling iron metabolism and maintaining homeostasis 

(132, 133, 215). AniS, another trans-acting sRNA, was identified by a microarray screening 

of differentially expressed transcripts between N. meningitidis wild type and ∆hfq mutant 

strains, is induced under anoxia and may be involved in down regulation of FNR-repressed 

genes (212). A third sRNA had been identified in N. meningitidis strain H44/76 by 

RNAsequencing of a mutant in which σ
E
 is highly expressed (209). This was subsequently 

clarified to be the tracrRNA of the Type II CRISPR/Cas system of meningococcus, which 

has been recently shown to limit natural transformation of the bacterium (162). In addition, 

RNA thermometers have been identified in the 5’-UTRs of three meningococcal genes that 

are essential for resistance against immune killing (213). Interestingly, another novel sRNA 

has been proposed to facilitate the formation of a G-quadruplex DNA structure involved in 

antigenic variation of the pilus in gonococcus (214).  

 

2.5.4 Identification of novel sRNAs  

Despite the critical regulatory roles they play in many bacterial processes, non-coding 

regulatory sRNAs have not been readily identified and annotated within available bacterial 

genome sequences. Because of this, experimental strategies paired with bioinformatics 

analyses have become increasingly important for sRNA discovery (216, 217). The first 

sRNAs were fortuitously discovered using genetic screens, or through radiolabeling of total 

RNA and subsequent isolation of short-length fractions from gels (218). It was only very 

recently that many new sRNAs have been identified and characterized in a wide range of 

bacterial species. This was mainly possible thanks to the increased availability of novel 

technologies such as computational predictions of sRNAs (219, 220), high density (tiling) 

microarrays (208) and high-throughput cDNA sequencing (RNAseq) that are used to study 

sRNAs at the genome-wide level (221, 222). These latter techniques not only allow the 

identification of novel sRNAs, but also the analysis of the whole transcriptome of bacteria 

under different growth conditions. Tiling arrays carry up to hundreds of thousands of DNA 

oligonucleotides systematically covering the sense and antisense strand of a genome, 

including the intergenic regions (IGRs) from which most known sRNAs are expressed (219). 

An important issue with this kind of technique, as well as with RNAseq, is choosing 
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physiologically significant conditions to assess expression of sRNAs. Genomic tiling arrays 

have been successfully used to study the transcriptome of Neisseria meningitidis (208), 

Listeria monocytogenes (223), Bacillus subtilis (224), Halobacterium salinarum (225) and 

Mycoplasma pneumoniae (226), as well as specific genomic features in Escherichia coli 

(227) and Caulobacter crescentus (228). However, array-based approaches require hundreds 

of thousands probes and are limited by background noise and cross hybridization, and 

therefore requires extensive normalization (229). On the other hand, the RNAseq approach 

directly determines the cDNA sequence. A population of RNA is converted to a library of 

cDNA fragments with appropriate adaptors attached to one or both ends. Each molecule is 

then sequenced at a high-throughput rate, generating extremely high numbers of short reads, 

which are subsequently mapped to the reference genome to assemble a transcriptome map. 

In principle, any high-throughput sequencing technology can be used for RNAseq, and the 

Illumina, SOLiD and Roche 454 Life Science systems have already been applied for this 

purpose in bacteria (210, 230-235). A transcriptome analysis at nucleotide resolution can be 

used to improve genome annotation by facilitating the discovery of new genes or transcripts, 

the correction of gene annotation, the detection of UTRs and transcription start sites and the 

determination of operon structure (229). Furthermore, whole-transcriptome analysis now 

allows the global interrogation of sRNA abundance and antisense RNAs by allowing 

detection of transcripts arising from non-coding regions. For example, Perkins et al. detected 

55 intergenic regions that are likely to encode new sRNAs in Salmonella Typhi Ty2 (236), 

and the number of known sRNAs in L. monocytogenes has been more than doubled by a 

tiling-array based study (223). Recently, high-density arrays together with a new 

bioinformatic tool named chipSAD revealed the presence of 91 differentially expressed 

putative sRNAs after incubation of N. meningitidis in whole human blood (208). RNAseq 

studies have become increasingly widespread in recent years, allowing the identification of 

more putative sRNAs in various bacterial species ranging from B. subtilis (237) to 

Helicobacter pylori (232) and the related Campylobacter jejuni (238), to Vibrio cholerae 

(191) L. monocytogenes (239) and N. gonorrhoeae (210). Interestingly, RNAseq also 

allowed for the exploration of the relationship between sRNAs and the Hfq protein by co-

immunoprecipitation  (231, 240, 241).  

In conclusion, the technical evolution of whole-transcriptome analyses during recent years 

made possible to study in detail, possibly down to single-nucleotide resolution, the 
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involvement of elements such as transcriptional regulators, sRNAs, riboswitches and cis-

antisense regulators in the physiology and pathogenicity of any prokaryote. 

 

2.6 Objective of the study 

The aim of this work is to investigate the N. meningitidis transcriptome and global regulation 

under infection-relevant conditions, both at the transcriptional and post-transcriptional level.  

Here we assess for the first time the effect of glucose on N. meningitidis at the transcriptional 

level. Following this, we identify and characterize a HexR-like transcriptional regulator 

implicated in the glucose-responsive regulation, and we show that this regulator has an 

impact on the fitness of N. meningitidis during infection.  

In order to identify novel post-transcriptional regulators in N. meningitidis, we perform 

curated RNAseq analysis of meningococci grown under in vitro conditions. From this 

approach we derive a list of 42 putative small non-coding RNAs potentially involved in N. 

meningitidis regulatory networks. Deletion analysis of selected candidates leads us to the 

identification of the first sRNAs influencing meningococcal bacteraemia. Furthermore, we 

describe the initial characterization of a novel sRNA unique to meningococcus, closely 

associated to genes relevant for the intracellular survival of pathogenic Neisseriae.  
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3 Results I 

3.1 Global analysis of Neisseria meningitidis expression in response to 

glucose  

In order to investigate the effect of glucose on global transcription in Neisseria meningitidis 

and its involvement in the regulation of metabolic and cellular processes, we compared the 

expression profiles of bacteria grown in the presence or absence of glucose to exponential 

growth phase using custom Agilent oligonucleotide microarrays (212). A gene was 

considered differentially expressed when it displayed more than two-fold induction or 

repression in the glucose samples compared to the reference samples (t-test p ≤ 0.05). The 

global gene expression could be grouped in 13 functional categories (Figure 5). Four 

categories are found over-represented: energy metabolism (30%), hypothetical proteins 

(26%), transport and binding proteins (11%) and cell envelope (9%).  

 

 

 

Figure 4 Graphical representation of genes differently expressed in presence of glucose. Genes are grouped in 

functional categories according to the classification of TIGRfams. Transcriptional regulators found differently expressed are 

highlighted. 
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Growth of N. meningitidis MC58 strain in the presence of glucose altered the expression of 

82 genes (3.8% of the MC58 genome). Among these, 49 and 33 genes were up- and down-

regulated, respectively (Figure 5A). Those contiguous genes present in the same orientation 

and that exhibit similar regulation have been grouped into likely operons. The majority of the 

genes found to respond to glucose belong to energy metabolism. We found genes belonging 

to the Entner-Doudoroff (ED) pathway (zwf, pgl, edd, eda), the pentose phosphate pathway 

(tal) and the catabolic branch of the Embden–Meyerhof–Parnas (EMP) pathway (pgi1, gapB, 

pykA) to be highly up-regulated. On the other hand, genes belonging to the anabolic branch 

of the EMP pathway (pgi2, gapA) were found to be down-regulated. The presence of glucose 

therefore up-regulates genes that encode functions leading to sugar catabolism, and down-

regulates genes whose products catalyze the inverse reactions, thus promoting the utilization 

of available sugar energy sources. We also observed down-regulation of all genes involved 

in the tricarboxylic acids cycle (aldA, prpB, prpC, lpdA3, sdhABCD, sucCD) as well as in 

acetate production (ackA2). Genes related to aminoacid metabolism and transport were also 

differentially expressed. The NADPH-specific glutamate dehydrogenase (gdhA) was found 

up-regulated, together with genes related to aminoacid metabolism (trpF, purF). On the 

other hand, the NADH-specific counterpart to gdhA (gluD) was found downregulated, as 

well as the proline importer protein (putP). Coherently with the availability of a highly 

energetic carbon source such as glucose, we also found the lactate importer protein (lctP) to 

be down-regulated, together with a gene encoding a putative uracil permease (NMB1048), 

possibly the first step in the pyrimidine salvage pathway. 

In addition to metabolic changes, we also observed genes related to meningococcal 

pathogenesis being induced by glucose (Figure 5A). For instance, nspA encoding the 

Neisseria surface protein A implicated in binding of factor H and therefore immune evasion, 

was up-regulated by glucose as well as the capsule gene NMB0067 (siaD). Furthermore, 

several surface exposed proteins with immunogenic properties and proposed as vaccine 

candidates such as NMB0390 and NMB1468 were up- and down-regulated in the presence 

of glucose, respectively. Genes coding for proteins involved in the contact and interaction 

with the host were also differentially expressed in presence of glucose. As an example, the 

loci NMB0375 and NMB0652 encoding for the mafA (multiple adhesion family A), were up-

regulated by glucose. Interestingly, also NMB1214 encoding for a hemagglutinin/hemolysin-

related protein (Hrp), an adhesin highly immunogenic (242) was up-regulated in presence of 
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glucose. Other factors related to the cell envelope were found down-regulated in presence of 

glucose, such as NMB1807 (ponA) encoding penicillin-binding protein 1 and NMB0342 

(ispA) encoding intracellular septation protein A. Interestingly, both these genes have been 

found down-regulated in the glucose-rich human blood (124). 

Taken together, our data indicate that glucose is not only involved in the regulation of gene 

expression related to metabolism, but it also impacts on other majors pathways that are 

important during N. meningitidis interaction with the host.  

In order to confirm the results obtained in the microarrays expression profiling, we selected a 

subset of eight genes with fold change values ranging from highly up-regulated to down-

regulated and performed real-time quantitative PCR (qRT-PCR) (Figure 5B). The results 

obtained are similar to the microarray data with a good coefficient of correlation (r
2
=0.82) 

(Figure 5C). 

 

3.2 NMB1389, a HexR transcriptional regulator 

Having mapped the transcriptomic profile of N. meningitidis in response to glucose, we 

moved to an in silico analysis looking for potential glucose-responsive regulators involved in 

this molecular mechanism. Analysis of the N. meningitidis strain MC58 genome identified 

two potential carbon-related transcriptional regulators that were also differentially expressed 

in response to glucose: NMB1711 (gdhR) was down-regulated by glucose and has been 

previously described to be involved in the regulation of glutamate transport (243), and 

NMB1389 was up-regulated in presence of glucose (Figure 5 and Figure 6). We also 

searched for potential orthologues of the cAMP receptor protein (Crp) and the catabolic 

repressor/activator protein (Cra) in the N. meningitidis genome, however orthologues of 

these major carbon-source responsive regulators were not found. 

The NMB1389 gene encodes for a HexR-like transcriptional regulator from the RpiR family, 

whose members are often involved in sugar catabolism regulation in proteobacteria. It 

contains two domains, a helix-turn-helix (HTH) binding domain at the N-terminal region and 

a Sugar Isomerase (SIS) domain at the C-terminal region, which is predicted to bind 

phosphosugars. The NMB1389 (hexR) nucleotide sequence is highly conserved among the 

available N. meningitidis  genome sequences and is present in several species of the 

Neisseria genus such as N. gonorrhoeae, N. lactamica, N. macacae, N. sicca, N. mucosa, N, 

flavescens and N. elongata. 
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Figure 5 Transcriptional profile of N. meningitidis MC58 in response to glucose. (A) The relative ratios of the 

microarray competitive hybridizations are shown for glucose-responsive expression (MC58 +Glc versus MC58 -Glc). 

Differentially expressed  genes are shown with fold change larger than 2-fold and p ≤ 0.05. ED, Entner-Doudoroff pathway; 

PP, pentose phosphate pathway; EMP, Embden–Meyerhof–Parnas pathway; TCA, tri-carboxylic acids. (B) Comparison of 

microarray (grey bars) and qRT-PCR (black bars) expression data for eight selected genes. (C) Correlation between 

microarray and qRT-PCR results for the eight genes shown in (B).  
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In order to assess the role of HexR in meningococcal carbon metabolism regulation, we 

generated a knockout ΔhexR strain and we performed a global transcriptional analysis of 

wild type MC58 strain and its isogenic ΔhexR mutant strain grown in modified Catlin 6 

medium (C6) or in C6 with 1% glucose (C6+Glc) until mid-logarithmic growth phase. 

Thirty-six genes were found to be differentially expressed in the ΔhexR strain compared to 

the wild type in at least one condition, with a fold change threshold of two-fold and t-test p ≤ 

0.05 (Table 1). Although only 27% of the total glucose-regulated genes in N. meningitidis 

are also controlled by HexR, this regulator controls the majority (60%) of the glucose-

regulated genes belonging to the functional category “energy metabolism”. Interestingly, all 

genes differently expressed in the ΔhexR mutant grown in presence of glucose were found 

up-regulated (with the exception of pgi1, that is in operon with hexR and therefore 

susceptible to polar effects of the deletion), suggesting that HexR represses a variety of 

genes in response to glucose (Table 1). On the other hand, in the absence of glucose within 

the growth medium, the lack of hexR induced both up- and down-regulation of its target 

genes. Finally, we could observe 13 genes regulated by HexR and found with a fold change 

below the threshold in the wild type strain grown in presence or in absence of glucose, 

therefore suggesting that their control by HexR is not glucose-mediated (Table 1).  

In order to validate the results obtained in the hexR microarray experiments, we selected six 

genes showing diverse fold change levels across the two experimental conditions (C6 in the 

presence or absence of glucose) and performed qRT-PCR on RNAs extracted from the 

ΔhexR and the WT strains under those conditions. Results show good agreement with the 

microarray data (Figure 6A). We also performed the same analysis comparing the ΔhexR 

strain to either the WT strain or the complemented c-hexR strain in which expression of 

HexR had been induced with 1 mM IPTG. We observed similar trends and expression levels 

for the selected genes in the ΔhexR strain, whether comparing it to the WT or the c-hexR 

strain (Figure 6B). Taken together, these results confirm that the expression of these genes is 

regulated by HexR. 

 



30 

 

Table 1 List of genes differentially expressed in the ΔhexR mutant strain in the absence or in the presence of glucose.  

 
aMicroarray results are average values from three separate experiments (p ≤ 0.05).

Gene ID Gene name Function Putative Operon fold change p fold change p fold change p

NMB1393 edd phosphogluconate dehydratase NMB1393-1394 52,2 3,1E-10 4,8 2,2E-06 9,7 4,0E-05

NMB1394 eda 4-hydroxy-2-oxoglutarate aldolase NMB1393-1394 45,9 4,6E-04 5,9 4,8E-02 7,4 3,2E-02

NMB1392 zwf glucose-6-phosphate 1-dehydrogenase NMB1392-1387 8,5 0,0E+00 3,1 0,0E+00 2,7 0,0E+00

NMB2159 gapB glyceraldehyde 3-phosphate dehydrogenase NMB2159 7,2 4,2E-10 1,8 2,0E-05 6,7 1,4E-07

NMB0089 pykA pyruvate kinase NMB0089-0088 6,6 1,4E-07 1,6 8,4E-04 3,1 2,5E-05

NMB1391 pgl 6-phosphogluconolactonase NMB1392-1387 6,2 5,6E-05 2,0 1,0E-02 2,5 3,0E-04

NMB1390 glk glucokinase NMB1392-1387 4,5 2,3E-03 1,4 4,0E-01 2,4 1,4E-02

NMB0351 tal transaldolase NMB0351-0349 4,0 3,3E-08 1,5 7,8E-04 2,3 4,6E-06

NMB0350 hypothetical protein NMB0351-0349 2,4 2,2E-02 1,4 4,7E-01 2,3 1,0E-02

NMB1624 nirV putative nitrite reductase NMB1623-1624 2,2 4,5E-02 -1,2 6,8E-01 2,0 1,7E-02

NMB0207 gapA glyceraldehyde 3-phosphate dehydrogenase NMB0207 1,9 1,9E-02 11,6 2,0E-05 -5,7 1,3E-03

NMB1476 gluD glutamate dehydrogenase, NAD-specific NMB1477-1476 1,2 3,9E-01 3,2 2,0E-04 -7,3 6,0E-07

NMB0429 hypothetical protein NMB0429-0434 1,1 6,7E-01 7,1 2,5E-06 -3,3 3,6E-13

NMB0334 pgi2 glucose-6-phosphate isomerase NMB0334-0336 1,1 6,2E-01 2,1 9,8E-04 -4,2 1,3E-08

NMB1968 aldA aldehyde dehydrogenase A NMB1968 -1,2 2,6E-01 3,2 8,2E-05 -5,6 4,5E-07

NMB0430 prpB 2-methylisocitrate lyase NMB0429-0434 -1,4 7,2E-02 6,1 7,8E-05 -3,7 1,1E-06

NMB0432 conserved hypothetical protein NMB0429-0434 -1,4 1,3E-01 4,0 5,5E-05 -2,8 3,6E-04

NMB0431 prpC methylcitrate synthase NMB0429-0434 -1,6 3,6E-02 7,0 7,5E-05 -4,5 1,2E-06

NMB0433 acnA aconitate hydratase NMB0429-0434 -1,7 2,5E-01 3,6 2,0E-02 -2,4 9,2E-02

NMB0435 ackA2 acetate kinase NMB0435 -2,6 3,1E-02 3,0 1,5E-02 -2,2 4,1E-03

NMB1048 hypothetical protein, putative integral membrane protein NMB1048 -2,9 4,5E-02 -1,5 4,2E-01 -16,9 9,5E-05

NMB0792 transporter, NadC family NMB0794-0792 2,2 2,0E-03 3,6 1,5E-06 -1,9 6,4E-02

NMB0791 ppiB peptidyl-prolyl cis-trans isomerase NMB0791-0790 1,5 4,1E-02 2,2 2,0E-03 1,1 5,1E-01

NMB0401 putA proline dehydrogenase NMB0401 1,1 6,2E-01 2,2 1,4E-04 -1,7 1,8E-02

NMB0434 prpF putative AcnD-accessory protein NMB0429-0434 -1,4 5,0E-01 2,4 1,3E-02 -1,8 1,0E-01

NMB1088 conserved hypothetical protein NMB1088 -2,0 1,0E-02 1,2 3,6E-01 -1,5 1,8E-03

NMB2095 putative adhesin complex protein NMB2095 -2,0 1,1E-03 -1,1 6,8E-01 -1,6 5,9E-03

NMB0866 hypothetical protein, putative periplasmic protein NMB0866-0864 -2,0 4,4E-02 1,2 5,1E-01 -1,2 5,3E-01

NMB0763 cysK cysteine synthase NMB0761-0763 -2,1 6,5E-03 -1,2 2,6E-01 -1,7 4,4E-02

NMB1154 cysD sulfate adenylyltransferase, subunit 2 NMB1158-1151 -2,2 1,2E-04 -1,3 1,2E-01 -1,2 4,8E-01

NMB1191 cysN sulfate adenylyltransferase, subunit 1 NMB1196-1189 -2,2 7,5E-07 -1,2 3,0E-01 -1,2 4,7E-01

NMB1189 cysI sulfite reductase hemoprotein, beta-component NMB1196-1189 -2,3 1,6E-08 -1,2 2,6E-01 -1,8 1,7E-05

NMB1151 cysI sulfite reductase hemoprotein, beta-component NMB1158-1151 -2,4 3,8E-08 -1,2 8,3E-02 -1,7 2,3E-05

NMB0865 hypothetical protein NMB0866-0864 -2,5 5,0E-03 1,1 6,7E-01 -1,9 6,4E-02

NMB1388 pgi1 glucose-6-phosphate isomerase NMB1392-1387 -1,9 2,5E-02 -3,9 4,4E-04 3,5 4,0E-04

NMB1389 hexR RpiR/YebK/YfhH family protein transcriptional regulator NMB1392-1387 -154,1 2,3E-09 -166,7 6,6E-12 2,5 1,7E-05

Transcriptome analysisa

 ΔhexR vs MC58 in C6  ΔhexR vs MC58 in C6+Glc MC58 C6+Glc vs.C6 



31 

 

 

 

 

 
 
Figure 6 Validation of the ΔhexR microarray data. (A) Comparison of microarray (grey bars) and qRT-PCR (black bars) 

expression data for six selected genes, under glucose-lacking (left) or glucose-replete (right) conditions. (B) Comparison of 

qRT-PCR expression levels for the same genes as in (A), in the ΔhexR strain versus the WT strain (grey bars) and in the 

ΔhexR strain versus the complemented strain (black bars). 
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3.2.1 HexR directly binds to edd and zwf promoter regions 

The meningococcal hexR gene co-localizes with genes of the central carbohydrate 

metabolism (Figure 8A). We first expressed HexR as a fusion protein to a N-terminal 

histidine tag, and purified it by nickel affinity chromatography. We obtained good purity of 

the His-HexR protein and stability across dialysis steps as assessed by SDS-PAGE (Figure 

8B). We then analyzed the binding of purified HexR to the promoter regions of the central 

carbon metabolism genes we had found differently expressed in the ΔhexR transcriptional 

analysis. DNase I footprinting experiments showed that HexR is able to bind the promoter 

regions of the two divergent operons that control central carbohydrate metabolism in N. 

meningitidis . Specifically, HexR is able to protect a region inside the promoter of zwf, as 

well as two regions inside the promoter of edd (Figure 8A and C). However, the affinity of 

HexR for the mapped sites seems to be different between the two promoters. In fact, we 

identified a higher affinity site in the zwf promoter overlapping a putative -10 box and 

transcriptional start site (protected at 100 nM HexR) as well as a similar affinity site in the -

35 box of the edd promoter (protected at 128 nM); on the other hand, higher concentrations 

of HexR were needed to protect the region overlapping the -10 box and the +1 site of the edd 

promoter (640 nM) (Figure 8C). 

 

3.2.2 In silico prediction of N. meningitidis HexR DNA-binding consensus sequence 

From DNase I footprinting analysis we were able to identify three HexR-binding sites. These 

three operators were used to define a HexR-binding consensus sequence with a 17-bp 

pseudopalindromic motif (KTGTANTWWWANTACAM) (Figure 8D). This consensus 

sequence resembles the in-silico predicted HexR binding motif for Betaproteobacteria in the 

RegPrecise database (245). We then used this motif to search in silico for similar HexR-

binding sites in the N. meningitidis MC58 genome and correlated the results with our 

transcriptome data (Table 1). We identified five HexR-regulated operons with a potential 

HexR-binding site overlapping their promoter region (Figure 8E). This is the case of the 

central carbon metabolism genes zwf and edd (part of the ED pathway), gapB and pykA (part 

of the glycolytic branch of the EMP pathway) and tal (part of the pentose phosphate 

pathway). 
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Figure 7 (cont.) HexR directly binds to the promoter regions of genes involved in the central carbon metabolism. (A) 

Genetic organization of hexR locus and sequence of zwf-edd intergenic region. Bent arrows indicate operon transcriptional 

start sites identified by RNA sequencing experiment (data not shown). Putative promoter sequences are underscored. Probes 

used for DNase I footprinting experiments are highlighted. Bars indicate regions protected against DNase I digestion by 

HexR. (B) SDS-PAGE analysis of fractions from nickel-affinity chromatography of the HexR recombinant protein. SOL, 

soluble fraction after sonication; INS, insoluble pellet after sonication; FT, flow-through; 1-10, washing step fractions; E1-

10 POOL, pooled eluates; POST1-4, pooled eluates after each dialysis step. (C) DNase I footprinting of HexR binding to 

zwf and edd promoter regions. (D) HexR-binding consensus sequence derived from mapped sites on zwf and edd promoters 

(WebLogo 3.2). (E) Sequences matching HexR-binding consensus found upstream of HexR-regulated operons (fuzznuc, 

EMBOSS). Brackets indicate predicted HexR-binding sequences overlapping putative promoter elements. 

 

 

3.2.3 HexR binding affinity is not altered by KDPG (2-keto-3-deoxy-6-

phosphogluconate) 

Since HexR mainly regulates gene expression encoding for the central carbon metabolism, it 

is reasonable to speculate that one or more of the intermediate products of carbon 

metabolism could be an effector for HexR action. Therefore we tested several carbon 

metabolic intermediates such as keto-deoxy-6-phosphogluconate (KDPG), glucose-6-

phosphate, fructose-1,6-diphosphate and 6-phosphogluconic acid as putative effectors for N. 

meningitidis HexR binding in vitro. However, we could not observe any difference on the 

HexR binding affinity to its cognate targets in the presence of any of these molecules (Figure 

9). On the other hand, in P. putida and S. oneidensis, KDPG was reported to dissociate HexR 

from the target DNA (244). When we compared protein sequences, N. meningitidis HexR 

shows 41% identity with its orthologue in P. putida and 40% with S. oneidensis (strain MR-

1), whereas P. putida and S. oneidensis proteins have higher reciprocal identity (58%) 

(Figure 9). This difference may explain why we did not observe an effect for KDPG on 

HexR DNA-binding affinity under the in-vitro conditions used. Differences in the 

phosphosugar-binding C-terminal region of the protein could imply that N. meningitidis  

HexR may use a different effector than other proteobacteria. 
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Figure 8 HexR binding to the promoter region of zwf is unaffected by addition of phosphosugars. (A) DNase I 

footprinting of HexR binding to zwf promoter region. Bars indicate regions protected against DNase I digestion by HexR. 

Increasing concentrations of HexR protein were incubated with radiolabeled DNA in the presence of 400 µM of the 

indicated phosphosugars, representing intermediates of the central carbon metabolism pathways. KDPG, 3-Deoxy-2-keto-6-

phosphogluconic acid; G6P, glucose 6-phosphate; FBP, fructose 1,6-diphosphate; 6-PGA, 6-phosphogluconic acid. (B) 

Increasing concentrations of KDPG were incubated with radiolabeled DNA in the presence of a binding concentration of 

HexR protein. 
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Figure 9 Comparison of HexR proteins in proteobacteria. Multiple alignment of HexR protein sequences (Clustal 

Omega). Common amino acids among the three protein sequences are shaded in grey. 

 

 

 

3.2.4 HexR deletion does not alter N. meningitidis resistance to oxidative stress 

The expression of nirV (NMB1624), encoding for a putative nitrite reductase, was found up-

regulated by glucose through HexR. Furthermore, upstream of NMB1624 it is located aniA 

(copper-containing nitrite reductase), and the aniA-nirV operon has been shown to be 

involved in N. meningitidis anaerobic respiration (121). Since anaerobic respiration also 

contributes to the ability of N. meningitidis to tolerate oxidative stress (121), we decided to 

test if the absence of HexR could affect sensitivity to oxidative stress agents, like H2O2 or 

paraquat. We performed disc-diffusion stress assays following the Kirby-Bauer method, but 

we did not observe any difference between the wild type and the ΔhexR mutant strains under 

the conditions used (data not shown).  
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3.2.5 HexR deletion impairs survival of N. meningitidis during infection in vivo 

In order to assess the viability of the ΔhexR mutant strain in vivo, a competitive index (CI) 

assay was performed in infant rats to determine the fitness of the mutant relative to the wild 

type strain. Growth curves in GC rich medium as well as in C6 medium with and without 

glucose showed no significant differences for the ΔhexR mutant as compared to the wild type 

strain (data not shown). The median CI observed for the challenged infant rats in the hexR 

experiment is larger than 1, indicating that more wild type bacteria (approximately 10-fold) 

survived in the animal model than ΔhexR mutant bacteria. As a comparison, the median CI 

for an unrelated KO strain that has no effect on meningococcal fitness in vivo is very close to 

1 (Figure 10). This suggests that the lack of HexR expression significantly affects the 

survival of N. meningitidis during in vivo infection. 

 

 

 

Figure 10 Deletion of hexR impairs survival during infection in vivo. Individual competitive indices (CI) from 

intraperitoneal challenge of infant rats with N. meningitidis WT and hexR-KO strains at a 1:1 ratio are shown. Circles 

indicate individual animals. Solid line indicates median, dashed line indicates CI=1. A CI >1 means the WT is more 

competitive than the mutant. Statistical significance was assessed with the Mann-Whitney test (ns, not significant). 
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4 Results II 

4.1 Deep sequencing analysis of N. meningitidis identifies novel putative 

small RNAs  

In order to explore the transcriptional landscape of N. meningitidis at nucleotide resolution, 

we performed RNAsequencing analysis (RNAseq) on total RNAs extracted from N. 

meningitidis MC58 strain cultured under standard or iron-limiting in vitro growth conditions, 

using a custom Illumina pipeline (ref. Materials and Methods).  

After read mapping and assembly, the resulting dataset was manually curated in search of 

novel small transcripts. As a proof of concept, we could detect the known iron-responsive 

regulatory small RNA (sRNA) NrrF (132) being more expressed under iron limitation 

(Figure 12A, left panel), as well as another meningococcal sRNA regulator, AniS (212), 

being repressed under iron limitation (Figure 12B, left panel). These findings are in line with 

previous reports and with Northern blot experiments performed under the same conditions as 

our RNAseq (Figure 12A-B, right panels). We could also detect the expected expression 

profiles of various housekeeping bacterial sRNAs, such as the 6S RNA known to regulate 

RNA polymerase activity (246) (Figure 12C) and the transfer-messenger RNA involved in 

the rescue of stalled ribosomes (247) (Figure 12D). Taken together, these findings 

highlighted the power of our RNAseq analysis in identifying sRNAs. 

In curating our dataset, we selected areas of transcription longer than 50 base pairs (bp) that 

did not fall entirely within annotated open reading frames (ORFs) or tRNA genes on the 

same strand. Then we looked for promoter-like elements in the vicinity of each putative 

transcriptional start site, and for sequences capable of rho-independent termination near the 

end of identified transcripts. We also annotated the presence of known neisserial repeat 

sequences within each area of transcription. In total, we found 51 non-ORF, non-tRNA 

associated transcripts expressed in the MC58 strain of N. meningitidis (Table 2). These 

include transcripts of known function such as the 4.5S signal recognition particle RNA 

(248), the RNase P ribozyme (249) and the tracrRNA of the minimal Type II CRISPR/cas 

system of N. meningitidis, which has been shown to limit natural transformation of the 

bacterium (162). We also found known meningococcal sRNAs within our analysis, such as 

the abovementioned NrrF and AniS (Table 2). Interestingly, we found two sRNAs (BNS1 
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and BNS2) reported to be induced upon exposure of N. meningitidis to human whole blood 

(208) to be also synthesized under standard in vitro conditions (Table 2).  

Overall, this analysis identified 42 previously unreported transcripts expressed by N. 

meningitidis during in vitro growth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Examples of RNA sequencing profiles for known small RNAs. Read mapping (upper panel), schematic 

representation of locus (lower panel) and Northern blot (right panel) for the regulatory sRNAs NrrF (A) and AniS (B), as 

well as the two housekeeping sRNAs 6S (C) and tmRNA (D). GC, mid-log sample; Dip 1-2, dipyridyl-treated samples.  



41 

 

Table 2 List of sRNAs identified by manual curation of the RNA sequencing dataset. 

 

 
 

a : > and < indicate the forward and the reverse strand, respectively .       

b : genomic coordinate of the first nucleotide giving a signal peak in the RNA sequencing dataset (MC58 genome)  

c : genomic coordinate of the last nucleotide giving a signal peak in the RNA sequencing dataset (MC58 genome).  

d : Fagnocchi et al., PLoS One submitted  

        

No. UP ORF DOWN ORF Orientationa Signal startb Signal Endc Length (nt) Terminator Notes
Common to tiling 

microarray analysisd

1 0011 0012 <<< 9156 8896 260 Y Y

2 0018 0019 <>< 18388 18686 298 N NIME-associated

3 0019 0020 <>< 18958 19276 318 Y NIME-associated

4 0021 0022 <>< 19660 19730 70 N NIME-associated

5 0022 0023 <>< 21179 21281 102 N NIME-associated

6 0049 0050 <>< 51720 52011 291 Y NIME-associated

7 0049 0050 <>< 52504 52835 331 N NIME-associated

8 0064 0065 <>> 74158 74482 324 N long 5'UTR

9 0224 0225 ><< 233537 233291 246 Y

10 0225 0226 <>< 234513 234974 461 Y

11 0322 0323 >>< 333019 333143 124 Y

12 0444 0445 >>> 458754 458970 216 Y

13 0754 0755 ><> 783335 783130 205 Y

14 0837 0838 >>> 864414 864529 115 N long 5'UTR Y

15 0882 0883 ><> 903783 903587 196 N

16 0898 0899 >>> 918175 918349 174 Y Y

17 0899 0900 >>> 919118 919351 233 Y Y

18 0914 0915 <>< 928073 928413 340 N

19 0997 0998 <<> 1014714 1014620 94 Y = 4.5S RNA

20 0999 1000 ><> 1020376 1020304 72 N Y

21 1000 1001 ><< 1022632 1021864 768 Y Y

22 1015 1016 ><< 1031165 1030805 360 Y = tmRNA

23 1022 1023 <>< 1038476 1038565 89 Y

24 1039 1040 ><> 1054878 1054824 54 Y

25 1049 1050 ><< 1067603 1067433 170 N

26 1069 1070 <>> 1090231 1090427 196 N

27 1205 1205 <<< 1210463 1210346 117 Y = AniS Y

28 1205 1206 <>< 1210426 1210498 72 Y

29 1251 1252 <>< 1258764 1258851 87 Y

30 1400 1401 <>< 1431963 1432411 448 N Y

31 1410 1411 ><< 1439977 1439888 89 N Y

32 1563 1564 <>< 1624303 1624382 79 Y = BNS1 Y

33 1649 1650 <>< 1717408 1717469 61 Y

34 1649 1650 <>< 1717607 1717669 62 Y

35 1650 1651 <>> 1718351 1718539 188 N long 5'UTR Y

36 1752 1753 <>> 1834475 1834684 209 N long 5'UTR Y

37 1787 1788 ><< 1876028 1875800 228 N NIME-associated

38 1787 1788 ><< 1875788 1875559 229 N NIME-associated

39 1787 1788 ><< 1875507 1875299 208 Y NIME-associated

40 1826 1827 <>> 1919690 1919756 66 Y = tracrRNA (CRISPR) Y

41 1880 1881 ><> 1985617 1985247 370 N Y

42 1923 1924 ><< 2022033 2021848 185 Y Y

43 1941 1942 <<< 2038729 2038619 110 N Y

44 1969 1970 ><> 2064856 2064740 116 Y

45 1982 1983 >>> 2081647 2082159 512 Y NIME-associated

46 2057 2058 <<< 2179866 2179624 242 Y = 6S RNA

47 2062 2063 >>< 2185395 2185493 98 Y = BNS2 Y

48 2073 2074 >>< 2195867 2195996 129 Y = NrrF Y

49 2132 2133 <<< 2240181 2240094 87 Y

50 2137 2138 ><< 2251791 2251410 381 Y = RNase P

51 2149 2150 <<< 2260429 2260231 198 N
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4.1.1 Validation of novel meningococcal small RNAs 

In a parallel study to our RNAseq, we performed tiling microarray analysis of in vitro 

cultured meningococcus to assess differential expression of transcripts arising from 

intergenic regions (IGRs) under seven conditions mimicking physiologically relevant 

stresses (Fagnocchi et al., submitted). Interestingly, 18 out of the 51 putative sRNAs 

identified by RNAseq were also found in the tiling microarray dataset (Table 2), suggesting 

that these transcripts are being synthesized during in vitro growth, and further up-regulated 

under specific stress conditions. 

We selected 8 putative sRNAs for validation, comprising 2 BNS previously validated by 

RACE (208) as well as 6 putative new transcripts. From the tiling microarray dataset we 

derived the conditions that induced maximal expression of each of these sRNAs and 

validated their presence by Northern blot (Figure 13). We obtained positive signals for all of 

the candidate sRNAs analyzed, corresponding to small transcripts in the range of 100-400 

nucleotides (nt) in length (Figure 13, left panel). As expected from the microarray data, the 

signal from sRNA0837-0838 was detected only in RNA extracted from logarithmic phase, 

while the other signals from sRNA0898-0899, sRNA0899-0900, sRNA1400-1401 and BNS2 

were significantly induced in stationary phase (Figure 13, left panel). sRNA1880-1881 and 

sRNA1923-1924 instead showed similar expression levels both in logarithmic and in 

stationary phase samples. A signal for BNS1 was detected only in Northern blot performed 

on total RNA from C6 minimal medium supplemented with glucose (Figure 13, left panel), a 

condition in which it shows induction in the microarray results. All of the validated sRNAs 

appear to be short intergenic transcripts having their putative promoters, transcriptional start 

sites and putative terminator sequences located in the IGR between two flanking ORFs. The 

exception to this is sRNA0837-0838, which is detected as a specific transcript of about 100 

nt possibly arising from the processing of a longer primary transcript that encompasses also 

NMB0838 (Figure 13, right panel).  

Putative ORFs have been identified only within the sequence of validated sRNA0899-0900, 

raising the question whether this transcript may code for a small protein or peptide. 

However, no ribosomal binding site could be identified upstream of the start codon for this 

ORF, and no function could be inferred from the predicted amino acid sequence (data not 

shown). 
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Altogether, experimental validation by Northern blot confirmed the identification by 

RNAseq of 6 novel and 2 previously identified meningococcal sRNAs. 

 

4.1.2 Deletion of selected sRNAs impairs meningococcal fitness in vivo 

In order to assess the role of validated sRNAs in meningococcal fitness in vivo, we generated 

knockout mutants in N. meningitidis strain 2996 and performed a competitive index (CI) 

assay was performed in infant rats to determine the viability of each mutant relative to the 

wild-type strain. We successfully deleted six validated sRNAs, comprising the two BNS 

(Figure 14A). Growth curves in GC medium showed no significant differences for the 

sRNA-KO mutants as compared to the wild type strain (data not shown). The median CI 

observed for the challenged infant rats in 3 out of 6 sRNA-KO experiments (BNS1, 

sRNA0898-0899 and sRNA1400-1401) is significantly larger than 1, indicating that more 

wild type bacteria survived in the infant rat blood than sRNA-KO bacteria (Figure 14B). 

This suggests that lack of expression of these sRNAs affects in vivo survival of N. 

meningitidis in the bacteraemia model. The remaining 3 sRNA-KO strains (BNS2, 

sRNA0899-0900, sRNA1923-1934) exhibit CIs not significantly different from 1, indicating 

that lack of their expression is not sufficient to alter meningococcal fitness in vivo.  
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Figure 13 Experimental validation of novel meningococcal small RNAs. Northern blot analysis (left), read mapping 

(upper right) and schematic representation of locus (lower right) for newly discovered N. meningitidis MC58 sRNAs. GC, 

mid-log sample; Dip 1-2, dipyridyl-treated samples. Conditions of maximum sRNA expression used for Northern blot 

validation were derived from a parallel analysis of the MC58 strain using tiling microarrays (Fagnocchi et al., PLoS One 

submitted). 
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Figure 13 (continued) Experimental validation of novel meningococcal small RNAs. Northern blot analysis (left), read 

mapping (upper right) and schematic representation of locus (lower right) for newly discovered N. meningitidis MC58 

sRNAs. GC, mid-log sample; Dip 1-2, dipyridyl-treated samples. Conditions of maximum sRNA expression used for 

Northern blot validation were derived from a parallel analysis of the MC58 strain using tiling microarrays (Fagnocchi et al., 

PLoS One submitted). 
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Figure 14 Deletion of sRNAs impairs meningococcal fitness in vivo. (A) Northern blot validation of the indicated sRNAs 

KO strains. RNAs were extracted from N. meningitidis  WT and relative KO strains each grown in the condition of maximal 

sRNA expression (ref. Figure 13). (B) Competitive indices (CI) from intraperitoneal infection of infant rats with N. 

meningitidis WT and the indicated sRNA KO strains at a 1:1 ratio. Circles indicate individual animals. Solid line indicates 

median, dashed line indicates mean. A CI >1 means the WT is more competitive than the mutant. The numerosity of each 

group and the results of statistical analysis are shown above the graph (*, p ≤ 0.05; ns, not significant). 
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4.2 sRNA1880-1881 is a novel small RNA unique to meningococcus that 

closely associates with pathogen-specific genes 

In our RNAseq results, the novel sRNA1880-1881 appears as two peaks next to each other 

of approximately 160 nt in length, suggesting that the NMB1880-1881 IGR might actually 

harbor more than one sRNA transcript (Figure 15A). However, Northern blot validation of 

sRNA1880-1881 detected a single signal close to 400 nt in length (Figure 13). To elucidate 

the nature of the transcript arising from this IGR, we generated a knockout mutant of 

sRNA1880-1881 in the MC58 strain of N. meningitidis, and probed total RNAs from both 

the mutant and the wild type strain with two different probes, each specific for one of the 

peaks detected in the RNAseq. Our results show that both probes detect the same specific 

signal close to 400 nt, a length compatible with the 370 nt that a transcript spanning both 

peaks would cover according to RNAseq (Figure 15B). Sequence analysis of the validated 

sRNA1880-1881 shows that this sRNA has putative promoter elements in the vicinity of its 

transcriptional start site as defined by RNAseq, and its sequence harbors two long 

complementary GC-rich stretches that are predicted to form a highly stable structure (Figure 

15C). The operon surrounding sRNA1880-1881 is absent in commensal Neisseriae and 

horizontally acquired by pathogenic species (250) and has been shown to be associated with 

the intracellular survival of invading gonococci (251). Analysis of the conservation of the 

locus in available neisserial genomes showed that the sRNA sequence is not present in  

N. gonorrhoeae and is exclusive to N. meningitidis, and is often subject to duplication across 

meningococcal strains (Figure 16). Interestingly, duplication of sRNA1880-1881 is always 

associated with sequence changes upstream of the +1 site of the newly inserted sRNA copy 

(Figure 16). These changes disrupt the predicted sRNA promoter by altering the spacing 

between its -10 and -35 elements (Figure 15C), possibly affecting expression of the 

duplicated sRNA copy in these strains. The sRNA1880-1881 gene also shows sequence 

variability across meningococcal genomes, as short deletions of 12-55 bp in length that are 

not exclusively associated with duplication events (Figure 16). Interestingly, deletions 

always affect the region between the two complementary GC-rich stretches located at the 

opposite ends of the sRNA sequence (Figure 15C), raising the question whether conservation 

of structural elements may be relevant for the function of sRNA1880-1881. However, 

searches for sRNA1880-1881 against the Rfam database of RNA families (252) returned no 
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results (data not shown), indicating that this small transcript is not found in any other 

bacterium. 

 

 

Figure 15 Validation of sRNA1880-1881 and generation of sRNA KO strain. (A) Schematic representation of 

sRNA1880-1881 locus and its expression profile on RNAseq. White and grey arrows indicate ORFs and sRNAs, 

respectively. Putative promoters are indicated by a bent arrow. Approximate positions of probes used for Northern blot 

experiments are highlighted. (B) Northern blot for sRNA1880-1881 expression in N. meningitidis WT and sRNA KO 

strains, using probes mapping on different regions of the RNAseq signal area. (C) Sequence (left) and predicted structure 

(right) of sRNA1880-1881. Putative regulatory and structural elements are highlighted.  
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Figure 16 sRNA1880-1881 is unique to meningococcus and closely associated with pathogen-specific genes. Schematic 

representation of sRNA1880-1881 locus and its conservation across Neisseria species. White and grey arrows indicate 

ORFs and sRNAs, respectively. Putative promoters are indicated by a bent arrow. Deletions in the sRNA sequence and 

changes in the putative promoter sequences are highlighted. 

 

 

 

 

 

 



50 

 

When amplifying across the NMB1880-1881 IGR, multiple PCR bands could be observed 

arising from N. meningitidis MC58 genomic DNA (Figure 17A). This suggests that 

amplicons of different sizes are present within the DNA population, reflecting variability in 

the IGR structure. Sequencing of cloned PCR products from NMB1880-1881 IGR 

amplification confirmed the presence of a duplicated sRNA1880-1881 sequence in our 

MC58 strain (Figure 17B), including the changes in the promoter sequence that are specific 

to strains harboring duplications (Figure 16). These findings indicate that the sRNA-

encoding NMB1880-1881 IGR is a locus of high plasticity and subject to both in-strain and 

between-strain duplication events. 

Taking our results together, we identified and validated a unique meningococcal sRNA that 

is closely associated to pathogen-specific genes and is prone to genetic rearrangement. 

 

 

 

Figure 17 Evidence for in-strain duplication of sRNA1880-1881. (A) PCR amplification strategy for sRNA1880-1881 

locus. (B) Schematic representation of expected locus sequence based on MC58 genome data and experimental results for 

sequencing of main IGR PCR band obtained in (A). White and grey arrows indicate ORFs and sRNAs, respectively. 

Putative promoters are indicated by a bent arrow. Changes in the putative promoter sequences are highlighted. 
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4.2.1 sRNA1880-1881 is not part of a regulatory network under in vitro conditions 

To better understand the role of sRNA1880-1881 within the regulatory networks of 

meningococcus, we tested its expression by Northern blot on total RNAs from  

N. meningitidis exposed to different in vitro conditions mimicking physiologically relevant 

stresses, or from mutant strains lacking known regulators or factors involved in sRNA 

activity and stability. Our results indicate that sRNA1880-1881 is stably transcribed across 

all conditions tested, and shows little or no changes in expression compared to known 

regulated sRNAs such as NrrF (Figure 18A). Having already generated a knockout mutant of 

sRNA1880-1881 in the MC58 strain of N. meningitidis (Figure 15B and Figure 18B), we 

compared the expression profiles of the sRNA1880-1881 KO to the wild type strain using 

custom Agilent oligonucleotide microarrays (212). However, deletion of this sRNA did not 

impact global gene expression at either logarithmic or stationary phase of growth, apart from 

a polar effect of the resistance marker used in engineering the KO strain (Figure 18C).  

Taken together, these results indicate that during in vitro growth sRNA1880-1881 does not 

integrate into a global regulatory network, either upstream or downstream of itself. 

Therefore, we hypothesized that this sRNA may have functional interactions with the 

pathogen-specific operon it is closely associated with. 

 

 

Figure 18 sRNA1880-1881 is not part of a 

regulatory network under in vitro 

conditions. (A) Northern blot showing 

expression of sRNA1880-1881 compared to 

the known regulated sRNA NrrF. (B) 

Genetic makeup of the MC58 sRNA KO 

strain used for microarray experiments. (C) 

Representation of microarray results 

comparing MC58 WT and sRNA KO strains 

at logarithmic or stationary phase of growth 

(p ≤ 0.05). Red and green circles indicate the 

threshold used for calling genes up- and 

down-regulated, respectively. 
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4.2.2 Expression of sRNA1880-1881 limits transcription of neighboring genes in vitro.  

As the NMB1880-1881-1882 operon is not expressed in vitro according to our RNAseq 

(Figure 19A), any effect of the sRNA1880-1881 deletion on the surrounding genes is 

difficult to measure. To elucidate the relationship between the sRNA and its neighboring 

genes, we generated a set of isogenic mutants of N. meningitidis strain MC58 driving 

inducible expression of the operon surrounding the sRNA. All the mutants in our panel 

express the NMB1880-1881-1882 genes under the control of a lac-repressed Ptac promoter, 

and they differ only by the architecture of the NMB1880-1881 IGR. In addition to 

reconstructing the wild-type IGR (sRNA wt strain) and generating a complete deletion 

mutant of sRNA1880-1881 (sRNA null strain), we also introduced engineered copies of 

sRNA1880-1881, carrying multiple point mutations in the putative promoter (sRNA mutP 

strain) or in the GC-rich stretches (sRNA mutGC strain) which are predicted to disrupt 

transcription of the sRNA and its structural features, respectively (Figure 19B). We induced 

expression of the operon from the isogenic mutants and compared the level of steady-state 

RNA for each gene to the wild type MC58 strain by qRT-PCR. Interestingly, in the sRNA wt 

strain we observed operon and sRNA expression at a very similar level to that of MC58, 

confirming that our isogenic mutants are correctly reproducing the functional architecture of 

this region in meningococcus (Fig. 19C, first and second cluster). Changing the putative 

promoter sequence from the optimal consensus reduces sRNA transcription almost as 

dramatically as a complete deletion, as we observed in strains sRNA mutP and sRNA null, 

respectively (Figure 19C, third and fourth cluster). This result highlights the relevance of the 

identified promoter elements for sRNA expression. On the other hand, disrupting the GC-

rich structural features as in the sRNA mutGC strain does not seem to impact the steady-state 

level of sRNA1880-1881 in a significant way (Figure 19C, fifth cluster). Regarding 

NMB1880-1881-1882 expression, we observe that lack of transcription of the sRNA 

increases IPTG induction of the operon RNA (Figure 19C, third and fourth cluster), 

suggesting that active transcription of sRNA1880-1881 may limit operon expression, either 

by interfering with the transcription machinery on the opposite DNA strand or by modulating 

the steady-state level of the operon messenger RNA.  

Further studies will be needed to elucidate the molecular mechanisms governing the 

functional interaction of sRNA1880-1881 with its neighboring genes, and to identify the 

physiological relevance of this regulation for meningococcus. 
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Figure 19 Expression of sRNA1880-1881 limits transcription of neighboring genes in vitro. (A) Schematic 

representation of sRNA1880-1881 locus and its expression profile on RNAseq. Solid and striped arrows indicate ORFs and 

sRNA, respectively. (B) Schematic representation of MC58 isogenic mutants for inducible expression of the NMB1880-

1881-1882 operon. Squares indicate elements of the inducible Pind promoter system. Engineered mutations in the sRNA 

promoter and in the GC-rich sequence are highlighted. (C) qRT-PCR expression levels for sRNA1880-1881 and the 

surrounding genes in the same panel of strains as in (B), upon induction of the Pind promoter with 1 µM IPTG.  
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5 Discussion 

The ability of microorganisms to detect and respond to variable external conditions, such as 

environmental stress and carbon sources availability in different niches, requires a 

coordination of sensing mechanisms and regulatory circuits (253) and is often crucial for the 

adaptation of pathogenic bacteria to the host environment. 

In the first part of this work, we show the transcriptional profile of N. meningitidis in 

response to glucose, one of the main carbon sources that meningococcus encounters in its 

different niches of colonization. Glucose induces the differential expression of a high 

number of genes, and interestingly some of them are found to have the same trend of 

regulation in response to human blood (123), where glucose is abundant. In N. meningitidis, 

glucose is mainly metabolized through the Entner–Doudoroff (ED) pathway and to a lesser 

extent by the pentose phosphate (PP) pathway (254, 255), while the Embden-Meyerhof-

Parnas (EMP) pathway is not fully functional, because it lacks the phosphofructokinase gene 

(40). Similarly, in Pseudomonas putida the ED pathway synthesizes the major part of the 

pyruvate (67-87%) and the PP pathway accounts for the remaining part (256). Accordingly, 

in our microarray analysis we found genes driving glucose catabolism through these 

pathways (glk, zwf, edd, eda, pgl, pgi1, gapB, pykA) to be highly up-regulated by the 

presence of glucose (Figure 20). On the other hand, genes from the gluconeogenesis (pgi2, 

gapA) are down-regulated in presence of glucose (Figure 20). This can have physiologically 

relevant consequences since gapA was shown to play a role also in adhesion (257) and is 

controlled by the repressor NadR (122). Furthermore, also the acetate kinase ackA2, involved 

in acetate production from acetyl-coenzyme-A (acetyl-CoA), was down-regulated by glucose 

(Figure 20). Since the catabolism of glucose results in the accumulation of acetate, a 

feedback effect of acetate surplus could explain this observation. Similarly, other pathways 

that would be directly affected by an overabundance of acetyl-CoA are found repressed in 

presence of glucose, such as the tricarboxylic acid (TCA) cycle enzymes prpB, prpC, lpdA3, 

sdhABCD and sucCD (Figure 20). Indeed, growth on glucose has been reported to reduce the 

levels of TCA cycle enzymes also in gonococci (258, 259). Interestingly, the glucose-

repressed genes encoding for the TCA cycle enzymes are also repressed in the glucose-rich 

human blood (123, 124) and in a recent report, the TCA cycle prp operon has been suggested 
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to help N. meningitidis in colonization of the propionate-rich and glucose-poor oral cavity of 

adults (260). Also the NADH-specific glutamate dehydrogenase gludD was found repressed 

in presence of glucose as well as the putP-putA operon involved in glutamate degradation 

and proline utilization. This suggests an interconnection between the carbon catabolism and 

the nitrogen metabolism in response to carbon source availability. On the other hand, the 

NADPH-specific gdhA was up-regulated by glucose. High-level expression of gdhA is 

dependent on ammonia assimilation from the TCA cycle intermediate 2-oxoglutarate and 

may result in growth advantages when glucose concentration is higher than that of lactate 

(261), such as in human whole blood, where gdhA has been found upregulated (123). 

Overall, we observed that N. meningitidis response to glucose modulates a higher number of 

genes compared to its response to other environmental signals such as zinc (17 genes, (120)), 

lactate (23 genes, data not shown) or iron (83 genes, (118, 119)). Furthermore, 11 genes 

found differentially expressed in presence of glucose show a similar pattern of expression 

when N. meningitidis is exposed to lactate (data not shown), suggesting that these genes 

respond to the availability of a carbon source rather than to the type of sugar added. Most of 

these genes encode for hypothetical proteins, but also proteins related to cell envelope such 

as NMB0342 (ispA), NMB1729 (exbB) and NMB0543 (lctP).  

This work identified a RpiR-family HexR regulator controlling the central carbon 

metabolism of N. meningitidis in response to glucose (Figure 20). The number of genes 

differentially expressed in a ΔhexR strain of N. meningitidis is similar to what has beeen 

reported for other proteobacteria (262). In other species, members of this family can be 

repressors such as RpiR in Escherichia coli (263), transcriptional activators like the GlvR of 

B. subtilis that modulates maltose metabolism (264) or dual-purpose transcriptional factors 

like HexR in Pseudomonas putida (244), P. aeruginosa (265) and Shewanella oneidensis 

(262). The N. meningitidis HexR acts as a repressor by binding specific DNA sequences 

within the promoters of its target genes, albeit with different affinities. In our DNA-protein 

footprinting experiments, we identified a 100 nM HexR affinity site within the promoter of 

zwf as well as a similar affinity site (128 nM) in the edd promoter, while a second site within 

the edd promoter required 640 nM HexR for protection. Similar results were obtained in P. 

putida, where 100 nM - 3μM of HexR were necessary to bind to the operators within the zwf 

and edd/gap-1 promoter regions by DNA footprinting (244). Perhaps interestingly, when 

looking at the transcriptome data the fold change for edd containing two HexR operators is 
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almost double that for zwf, where only one operator was identified. Overall, our in vitro data 

agree with what has been reported for HexR in other proteobacteria species, where it directly 

regulates the transcription of central carbon metabolism encoding genes (262). This is the 

case of P. putida, where HexR binds to the promoter region of the zwf-1 gene and functions 

as a repressor (266) or in S. oneidensis, where HexR was shown to bind to DNA regions of 

several genes including the zwf-pgl-edd-eda operon (262). In other species, HexR glucose-

responsive binding to the promoters of its target genes has been shown to be mediated by the 

ED pathway metabolite KDPG. Since the N. meningitidis HexR protein is divergent from its 

homologs in P. putida and S. oneidensis, this could explain why we did not observe an effect 

for KDPG on HexR DNA-binding affinity under the in vitro conditions used. Nevertheless, 

the HexR-binding DNA consensus is very similar between N. meningitidis, P. putida and 

Shewanella spp. , and common HexR-responsive genes are found between these species 

(244). 

 

 

Figure 20 Model of glucose- and HexR-mediated regulation in N. meningitidis. Schematic representation of the main 

metabolic pathways affected by glucose availability. Genes significantly up- (red) and down-regulated (green) by glucose 

are shown. Genes subject to glucose-responsive HexR repression are highlighted. ED, Entner-Doudoroff pathway; PP, 

pentose phosphate pathway; EMP, Embden–Meyerhof–Parnas pathway; TCA, tri-carboxylic acids cycle. 
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In E. coli, expression of the enzymes in the ED pathway is essential for the colonization of 

the gastrointestinal tract (267), whereas in P. putida the ED pathway plays an important role 

for the generation of redox currency that is required to counteract oxidative stress (268). 

Similarly, our results indicate that a meningococcal strain lacking hexR shows reduced 

fitness during in vivo infection, indicating the importance of this transcriptional regulator not 

only in the metabolic adaptation but also in the survival of N. meningitidis within the host. It 

would be interesting to investigate during which steps of the infection, such as adhesion, 

colonization, and/or multiplication is HexR mostly expressed in vivo and therefore regulating 

its targets. 

It is interesting to note that although N. meningitidis inhabits different niches in the host 

(such as the nasopharynx, blood or meninges) where nutrient availability is very diverse, it 

uses a restrict range of carbon sources, does not have a complete EMP pathway for carbon 

metabolism and has no equivalent to known global carbon catabolite regulators. This means 

that meningococcus does not follow the same paradigm of carbon catabolite repression 

(CCR) as reported for Enterobacteria or gram-positive low G+C bacteria, and that HexR 

plays a major role in the biology of N. meningitidis by regulating its central carbon 

metabolism in response to environmental signals. However, we have also shown that not all 

glucose responsive genes are regulated through HexR, such as nspA, suggesting that other 

mechanisms either transcriptional or post-transcriptional could impact gene expression in 

response to glucose.  

In the second part of this work, we report the curated identification of novel non-coding 

transcripts in N. meningitidis. RNAseq experiments are the de facto golden standard for 

discovery of novel small non-coding RNAs (221, 269, 270). We chose to explore the 

transcriptome of meningococci grown either under standard in vitro conditions or under iron 

limitation. Iron-regulated genes of N. meningitidis are both relevant to the infection process 

(109) and well characterized in the literature (118, 119, 132), providing us with solid 

benchmarks against which to validate our analyses. The number of small intergenic 

transcripts identified by curation of our RNAseq data is in line with recent findings on in 

vitro cultured Neisseria (210). In another recent report, a notably larger number of candidate 

sRNAs has been reported in gonococcus (211), highlighting the stringency of the criteria 

applied to our RNAseq curation. We identified different classes of sRNA transcripts, the 

most numerous being intergenic sRNAs, but we also identified 4 particularly long (100-300 
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nt) 5’-untranslated regions (UTRs) of genes. These may have regulatory functions in cis as 

riboswitches or thermosensors (158, 271) or even act as independent sRNAs after processing 

of a primary longer transcript (272). Interestingly, we also identified 10 putative transcripts 

of diverse lengths (70-500 nt) arising from the NIME repeat regions of the meningococcal 

genome (101). In order to validate our candidates, we derived information from a microarray 

analysis of meningococcal sRNAs differentially expressed under diverse in vitro conditions 

(Fagnocchi et al., submitted). In this report, the stationary phase of growth represents the 

condition in which most differentially expressed intergenic transcripts were identified, 

comprising 68% and 76% of total up- and down-regulated putative sRNAs, respectively. 

Accordingly, in our Northern blot experiments we could confirm the identification of 5 novel 

and 1 previously reported meningococcal sRNAs being induced in stationary phase, 1 novel 

sRNA arising from the processing of a 5’-UTR being repressed in stationary phase, as well 

as 1 previously identified sRNA expressed in presence of glucose. It should be noted that 

while putative sRNAs were identified based on the RNAseq profile of a standard mid-

logarithmic in vitro growth, Northern blot experiments for 4 out of the 8 tested sRNAs did 

not detect any signal from log phase total RNA samples. Due to the large difference in 

sensitivity between the two techniques, even a high number of reads for a sRNA in the mid-

logarithmic RNAseq dataset does not necessarily correlate to a commensurate Northern blot 

signal, in particular when the level of expression in the condition of maximum induction (i.e. 

stationary phase) is many fold higher than in the reference condition.  

Our in vivo experiments using a murine model of bacteremia showed that knocking out three 

sRNAs (BNS1, sRNA0898-0899 and sRNA1400-1401) affects the in vivo survival of  

N. meningitidis. Interestingly, the knockout of BNS1 generated the lergest CI values, 

suggesting a relevant role for this sRNA on meningococcal survival during infection. A 

genome-wide screening of insertional mutants of N. meningitidis (44) identified 73 genes 

that are essential for bacteremia, comprising genes involved in the same processes in which 

BNS1 has been implicated through microarray experiments: energy metabolism and 

transport of metabolic molecules, amino acid biosynthesis and purine, pyrimidine, 

nucleosides and nucleotides biosynthesis (Fagnocchi et al., submitted). Taken together with 

the results of HexR deletion in the same model of bacteremia, this highlights the tight 

correlation between the carbon metabolism of N. meningitidis and its survival in the host 

environment during infection. Several studies describe the emergence of sRNAs as 
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regulators of metabolism, with several found to act at the interface of bacterial metabolism 

and virulence factor expression. For instance, the E. coli Spot42 sRNA selectively turns off 

the synthesis of enzymes required for galactose metabolism when a preferred carbon source 

is available (273) and synergizes with the global transcriptional regulator Crp to contribute to 

the overall efficiency of CCR (274). Since there is no evidence of CCR regulators in the  

N. meningitidis genome, this highlights the importance of other mechanisms for regulation of 

metabolism, such as the HexR and BNS1/GntR regulatory networks. Furthermore, although 

deletion of three more sRNAs (BNS2, sRNA0899-0900, sRNA1923-1934) does not alter 

meningococcal fitness in this model, we cannot exclude that they may be involved in 

functions related to meningococcal pathogenesis that are not assessed by the model used. 

In this study we also report the discovery and initial characterization of a novel sRNA unique 

to meningococcus, transcribed antisense to an operon silent in vitro. The sequence of 

sRNA1880-1881 harbors two long complementary GC-rich stretches and is highly 

susceptible to copy number variation (CNV) both between different N. meningitidis strains 

as well as within different clones of the same strain. Recently, another sRNA harboring a 

GC-rich sequence capable of forming a complex secondary structure has been implicated in 

the antigenic variation of the gonococcal pilus via a recombination-dependent mechanism 

(214). The gonococcal pilE sRNA and the novel sRNA1880-1881 share no similarities apart 

from the presence of one or more GC-rich sequences. However, since these sequences are 

highly conserved across meningococcal genomes even when other parts of sRNA1880-1881 

may differ, it would be interesting to investigate whether CNV of this sRNA depends on the 

formation of secondary structures similarly to what has been reported for N. gonorrhoeae, or 

meningococcus uses a different mechanism altogether.  

The sRNA locus includes two operons: the NMB1880-1881-1882 operon comprises two 

genes encoding a putative iron-uptake system and a short hypothetical protein, while the 

diverging NMB1878/1879 gene is a member of the AraC family of transcriptional regulators 

(275). The homologue of the NMB1882 gene in N. gonorrhoeae has been shown to associate 

with the intracellular survival of invading gonococci (251). On the other hand, the AraC-like 

regulator is a homologue of MpeR in N. gonorrhoeae, which has been shown to activate 

expression of genes involved in iron uptake and antibiotic resistance (276, 277). The 

meningococcal MpeR has been shown to bind to the divergent promoter region of 

NMB1880, however transcriptional profiling could not detect any gene differentially 
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expressed upon deletion or overexpression of MpeR (278). This strongly suggests that the 

meningococcal MpeR protein is not active in regulating gene expression under in vitro 

conditions. On the contrary, sRNA1880-1881 is stably expressed under all the in vitro 

conditions tested, including iron limitation and lack of the Fur iron-responsive regulator. 

Furthermore, the steady-state transcript level of sRNA1880-1881 is not affected by deletion 

of the hfq gene, indicating that Hfq is likely not involved in the stability and/or turnover of 

this sRNA (168). Transcriptome profiling indicates that sRNA1880-1881 is not affecting 

global gene expression in vitro, however expression of this sRNA limits IPTG-induced 

transcription of the NMB1880-1881-1882 operon on the opposite strand. This suggests that 

the sRNA may have a role in tightly controlling the expression of the neighboring genes it is 

closely associated to, under conditions that do not require their activity. Since this operon is 

required for intracellular survival of invasive Neisseriae (251), it is tempting to speculate 

that the lack of activity of the MpeR regulator and the stable expression of sRNA1880-1881 

observed under in vitro conditions may be reversed during invasion of cells in the host, 

possibly leading to activation of an intracellular iron scavenging system. Further experiments 

will be needed to elucidate during which steps of the infection, such as adhesion and/or 

invasion of epithelial cells, may expression of sRNA1880-1881 and its surrounding genes be 

regulated. 
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6 Materials and Methods 

6.1 Bacterial strains and culture conditions 

N. meningitidis strains (Table 3) were routinely cultured in GC-based (Difco) agar medium 

supplemented with Kellogg's supplement I (279). Liquid cultures were grown to mid-

logarithmic or stationary phase in GC-based medium with Kellogg’s supplement I or in 

Catlin 6 modified medium (C6) with/without the addition of 1% glucose (w/v) (280) at 37°C 

in a 5% CO2 atmosphere. Strains were stocked in GC medium with 15% glycerol and stored 

at −80°C. When required, erythromycin (5 μg/ml), chloramphenicol (5 μg/ml), kanamycin 

(100 μg/ml) and/or isopropylβ-D-1-thiogalactopyranoside (IPTG) (1 mM) were added to 

culture media at the indicated final concentrations. For RNA sampling under different stress 

conditions, N. meningitidis was exposed to stresses as follows: 1) iron limitation: mid-

logarithmic cultures in GC medium exposed for 5 min to 250 µM 2,2-dipyridyl (Sigma), 2) 

heat shock: mid-logarithmic GC cultures exposed for 10 min to 44°C in a water bath. 3) 

minimal medium: mid-logarithmic cultures grown in C6 minimal medium, 4) glucose 

availability: mid-logarithmic cultures in C6 medium with the addition of 1% glucose (w/v), 

5) stationary phase: RNA collected from cultures 3 hours past mid-logarithmic phase, 6) late 

stationary phase: RNA collected from cultures 6 hours past mid-logarithmic phase. 

Escherichia coli DH5α (281) and BL21 (DE3) strains (282) were grown in Luria-Bertani 

medium, and when required, ampicillin and/or IPTG were added to achieve a final 

concentration of 100 μg/ml and 1 mM, respectively. 

 

6.2 Construction of mutant and complementation strains 

DNA manipulations were carried out routinely as described for standard laboratory methods 

(283). In order to obtain a hexR mutant of the MC58 and 2996 strains by replacing it with a 

kanamycin cassette, the pGEMT-hexRKO::Kan plasmid was constructed. The downstream 

region of the hexR gene containing 176 bp of NMB1388 and 119 bp of the hexR gene was 

amplified by PCR with primers HexR1/HexR2 generating a XbaI/BamHI fragment (Table 

4). Then the upstream region of hexR containing 311 bp of NMB 1390 and 90 bp of the hexR 

gene was amplified by PCR with primers HexR3/HexR4 generating a BamHI/HindIII 
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fragment (Table 4). Both fragments were inserted into pGEMT vector (Promega), and a 

kanamycin cassette was inserted into the BamHI site, between the flanking regions, 

generating pGEMT-hexRKO::Kan (Table 3). The plasmid was then linearized and used for 

transformation to make a hexR knockout mutant by selection on kanamycin leading to the 

generation of MC58 ΔhexR and 2996 ΔhexR strains, respectively (Table 3). 

 For the complementation of the MC58 ΔhexR null mutant, the hexR gene under the control 

of the  Ptac promoter and the lacI repressor was re-inserted into the intergenic region between 

the converging open reading frames (ORFs) NMB1428 and NMB1429, by transforming with 

pComCmrPind-hexR (Table 3), a derivative plasmid of the pSLComCm
R
 (284), in which the 

hexR gene was amplified from the MC58 strain with the primers GG006/GG007 (Table 4) 

and cloned as a 849 bp NdeI/NsiI fragment downstream of the Ptac promoter. This plasmid 

was transformed into the MC58 ΔhexR strain and transformants were selected on 

chloramphenicol.  

To generate sRNA-KO mutant strains, the upstream and downstream flanking regions of 

each sRNA were amplified by PCR with specific primer pairs (Table 4). Then the respective 

upstream and downstream flanking regions were fused through self-priming PCR, amplified 

with external primer pairs and cloned as PCR products carrying a BamHI or XmaI restriction 

site between upstream and downstream flanking regions in the pGEMT (Promega) or 

pBluescript (Novagen) vector. The plasmids containing the sRNA flanking regions were 

digested with BamHI or XmaI and an erythromycin cassette  was inserted generating 

pGEMT- or pBluescript-sRNAKO plasmids (Table 3). Following linearization these 

plasmids were used to transform MC58 and 2996 strains, generating the corresponding 

ΔsRNA strains (Table 4).  

In order to construct MC58 isogenic mutants for inducible expression of the NMB1880-

1881-1882 operon, a KO mutant of the region of interest was generated. The pGEMT-

1880KO::Ery plasmid was constructed as follows: flanking regions comprising the 

NMB1878-1879 and NMB1881-1882 sequences were amplified from genomic DNA with 

oligos GG180/GG181 and GG186/GG188 respectively (Table 4), then fused through self-

priming PCR, amplified with external primer pairs and cloned as a PCR product carrying a 

BamHI restriction site between upstream and downstream flanking regions into pGEMT 

vector (Promega), generating pGEMT-FLA-1880 (Table 3); then an erythromycin cassette 

was inserted into the BamHI site, between the flanking regions, generating pGEMT-
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1880KO::Ery (Table 3). The plasmid was linearized and used for transformation to generate 

a MC58 1880KO knockout mutant (Table 3) by selection on erythromycin. To construct the 

isogenic complementation mutants, first the pCOM1880-Pind-null construct was generated. 

Flanking regions comprising the NMB1878-1879 and NMB1881-1882 sequences were 

amplified from genomic DNA with oligos GG180/GG185 and GG187/GG188 respectively 

(Table 4), while the NMB1880 gene was amplified with oligos GG189/GG190 (Table 4). 

The three PCR products were then cloned into pComCmrPind as XmaI/XbaI, NsiI/SpeI and 

NdeI/NsiI fragments respectively, generating pCOM1880-Pind-null (Table 3). In vitro 

synthesis (Life Technologies) produced plasmids pMK-sRNAwt, pMK-sRNAmutP and 

pMK-sRNAmutGC, each harboring one copy of sRNA1880-1881 with either the wild type 

sequence, or a sequence with mutations in the promoter elements or in the GC-rich stretches 

(Table 3). Subcloning of these sequences into pCOM1880-Pind-null as XhoI/NsiI fragments 

generated pCOM1880-Pind-sRNAwt, pCOM1880-Pind-sRNAmutP and pCOM1880-Pind-

sRNAmutGC respectively (Table 3). The four plasmid were linearized and used for 

transformation to generate the MC58 isogenic mutants of the same name (Table 3) by 

selection on chloramphenicol. All transformants were verified by PCR analysis for the 

correct insertion by a double homologous recombination event. 

 

6.3 RNA preparation 

Bacterial cultures were grown in liquid medium to an OD600 of 0.5-0.7 and then added to 

equal volume of frozen medium to bring the temperature immediately to 4ºC. Cells were 

harvested by centrifugation at 3400 g for 20 minutes. In preparation for transcriptome 

experiments, total RNA was isolated using the RNeasy Mini kit (Qiagen) following the 

manufacturer’s instructions. Total RNA was extracted from three independent bacterial 

cultures and 15 μg of each sample were pooled together. Three independent RNA pools were 

prepared for each condition tested.  

For Northern blot analysis of sRNA expression, total RNA was isolated using TRIzol 

reagent (Life Technologies) following the manufacturer’s instructions. Briefly, bacterial 

pellets were resuspended in 1 ml of TRIzol reagent and incubated at room temperature for 5 

minutes. Then the aqueous phase was extracted by adding 0.2 ml of chloroform (Sigma), 

thouroughly mixing, and centrifuging at 12000 x g for 15 minutes. Nucleic acids were then 

precipitated from the aqueous phase by adding 1 volume of 100% ethanol and 0.1 volumes 
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of 3 M sodium acetate (Sigma) (pH 5.2) and incubating 30 minutes on dry ice. After 

incubation, samples were centrifuged again at 12000 x g for 30 minutes, washed with 1 

volume of 70% ethanol in water (v/v), and dried at room temperature. Pellets containing 

nucleic acids were added of 80 µl of DEPC-treated water (Ambion) and left to resuspend 

overnight, then treated with 10 µl RQ1 DNase (Promega) for 1 hour at 37°C. The DNA-free 

RNA was then extracted with phenol:chloroform:isoamylalcohol (Sigma) and precipitated as 

above. Dried RNA pellets were left to resuspend overnight in DEPC-treated water, then 

stored at -80°C. 

 

6.4 Northern blot 

Northern blot analysis was carried out using the Northern-Max kit (Ambion) according to the 

manufacturer’s instructions. In brief, 3-5 µg of total DNA-free RNA were fractionated on 

1% agarose-formaldehyde gel and transferred onto an Hybond XL nylon membrane (GE 

Healthcare) through capillary blotting. Then 5 pmol of radioactively labeled primers (Table 

4) were used as probes. Hybridization was performed at 37°C overnight, low-stringency 

washes at room temperature. 

 

6.5 Microarray procedures, hybridization and analysis 

DNA microarray analysis was performed using an Agilent custom-designed oligonucleotide 

arrays. Briefly, cDNA probes were prepared from 5 μg of RNA pools and hybridized as 

described previously (212). Three hybridizations were performed using cDNA probes from 

three independent pools. Differentially expressed genes were assessed by grouping all log2 

ratios of the Cy5 and Cy3 values corresponding to each gene, within experimental replicas 

and spot replicas, and comparing them against the zero value by Student’s t test statistics 

(one tail). 

 

6.6 RNA sequencing 

Whole transcriptome pair-ended cDNA libraries were synthesized using the Ambion 

RNAseq Library Construction Kit (Life Technologies) from total RNAs extracted from  

N. meningitidis cultures grown to mid-logarithmic phase under standard in vitro conditions 
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or exposed to iron limitation. Libraries were sequenced with a HiSeq2000 platform 

(Illumina). Reads were mapped with bowtie 0.12.7 (285) on the Neisseria meningitidis 

MC58 reference genome NC_003112.2 (NCBI), then visualized on the Artemis genome 

browser (286). 

 

6.7 Quantitative real-time PCR (qRT-PCR ) experiments 

2 μg of total RNA treated with Tubo-free DNase (Ambion) was reverse transcribed using 

random hexamer primers and M-MLV reverse transcriptase (Promega) following the 

manufacturer’s instructions. Real-time quantitative RT-PCR was performed with triplicate 

biological samples in a 25 μl reaction mixture containing 80 ng of cDNA, 1X Brilliant II 

SYBR green quantitative PCR master mixture (Agilent) and 0.2 μM of gene-specific primers 

(Table 3). Amplification and detection of specific products were performed with an 

LightCycler 480 Real-Time PCR system  (Roche) using the following procedure: 95ºC for 

10min, followed by 40 cycles of 95ºC for 30 s, 55ºC for 1 min and 72ºC for 30 s then ending 

with a dissociation curve analysis. The 16S rRNA gene was used as the endogenous 

reference control and the relative transcript change was determined using the 2
-ΔΔCt

 relative 

quantification method (287). Student’s t-test was used to calculate statistical significance (p 

< 0.05). 

 

6.8 Expression and purification of recombinant HexR 

The hexR gene was amplified from the MC58 genome using primers GG012/GG013 (Table 

3) and cloned as a 843 bp fragment into pET15b(+) (Life Technologies) vector via the 

polymerase-incomplete primer extension (PIPE) enzyme-free cloning method (288), 

generating pET15b-HexR plasmid (Table 4). This plasmid was transformed into the E. coli 

BL21(DE3) strain and the expression of a recombinant HexR protein containing a N-

terminal histidine tag (His-tag), was induced by the addition of 1 mM IPTG and grown at 

25°C for 6 h, and the protein was purified by Ni-NTA (Qiagen) affinity chromatography 

under non-denaturing conditions according to the manufacturer’s instructions. In brief, 

IPTG-induced E. coli cultures from above were concentrated in Lysis Buffer (20 mM Tris, 

500 mM NaCl, 10 mM imidazole, chicken egg lysozyme 1 mg/ml), supplemented with 

Complete EDTA-Free Protease Inhibitor Cocktail (Roche) and incubated 30 min at 4°C. 
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Lysis was then performed by sonication, and cleared, filtered supernatants were applied to 

the column for nickel-affinity purification. After washing the Ni-NTA resin with 12.5 

volumes of Wash Buffer (20 mM Tris, 500 mM NaCl, 25 mM imidazole), the His-HexR 

protein was eluted with 2.5 volumes of Elution Buffer (20 mM Tris, 500 mM NaCl, 250 mM 

imidazole). Eluted fractions were collected and pooled together, and protein concentrations 

were determined by the Bradford colorimetric method (Bio-Rad). Pooled eluates were then 

dialyzed four times against 150 volumes of Storage Buffer (20 mM Tris-HCl pH 8.0, 100 

mM NaCl, 1 mM DTT, 10-50% glycerol) increasing the concentration of glycerol stepwise, 

up to 50% final glycerol. 

 

6.9 DNase I Footprinting 

The zwf and edd promoter regions were amplified with the primer pairs GG034/GG035 and 

GG036/GG037 respectively. The PCR products were purified and cloned into pGEMT 

vector (Promega) as 321 bp and 386 bp fragments generating pGEMT-Pzwf and pGEMT-Pedd 

respectively. Two pmol sample of each plasmid was end labeled by T4 polynucleotide 

kinase with [γ
-32

] ATP after digestion at either the XhoI or BamHI site introduced by PCR 

with the oligos above. Following a second digestion with either BamHI or XhoI, the labeled 

probes were purified by polyacrylamide gel electrophoresis (PAGE) as described previously 

(116). DNA-protein binding reactions were carried out for 15min at room temperature in 

footprinting buffer (20 mM Tris HCl pH 8, 50 mM KCl, 5 mM MgCl2, 1 mM CaCl2, 1 mM 

DTT, 0.05% Nonidet-40) containing 60 fmol of labeled probe, 100 ng of salmon sperm DNA 

and a range of HexR concentrations as indicated in the figures. Samples were then treated 

with 0.3 U of DNase I (Roche) for 2 min at room temperature. DNase I digestion were 

stopped and samples purified loaded and run on a 8 M urea 6% polyacrylamide gel as 

described previously (289). Where indicated, reactions were supplemented with the 

phosphosugars 3-Deoxy-2-keto-6-phosphogluconic acid (Sigma), glucose 6-phosphate 

(Sigma), fructose 1,6-diphosphate (Sigma) or 6-phosphogluconic acid (Sigma) at 

concentrations of 400 – 4000 µM prior to addition of the labeled probe. A G+A sequence 

reaction (290) was performed for each probe and run in parallel to the footprinting reactions.  
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6.10 Bioinformatic analysis of the HexR binding site 

The HexR-binding consensus sequence was derived from aligning the three 17-bp sites 

mapped on the zwf and edd promoters by DNase I footprinting. The sequence of each 

intergenic region from the MC58 strain genome was extracted and scanned in silico for the 

presence of HexR-binding motifs via the EMBOSS fuzznuc algorithm (Alan Bleasby, 2000). 

Structure of operons and putative transcriptional start sites were determined based on the 

RNA sequencing experiment.  

 

6.11 Bioinformatic analyses of small RNAs 

Open reading frames were predicted by submitting the sRNA sequence to the NCBI ORF 

Finder. Results were then manually curated by analyzing the sequence upstream of each 

putative ORF looking for matches to the consensus Shine-Dalgarno ribosomal binding 

sequence (AGGAGGU) around 6 bp upstream of the predicted starting codon. ORFs lacking 

a good RBS or predicted to be shorter than 10 aminoacids were discarded from the analysis. 

RNA secondary structures were predicted with the mfold web server (291). Conservation 

analysis of sRNA1880-1881 was performed by aligning the NMB1877-NMB1882 genomic 

region from MC58 strain with the homologous regions in available neisserial genomes. 

Results were visualized and interpreted by means of Geneious software (BioMatters). 

 

6.12 Amplification and sequencing of NMB1880-1881 intergenic region 

The intergenic region harboring sRNA1880-1881 was amplified from the MC58 strain with 

the primers GG103/GG106 (Table 4). Multiple products arising from Taq PCR amplification 

were separated on agarose gel, purified and TA-cloned into the pGEM-T vector (Promega).  

Clones positive for the presence of an insert in the pGEM-T multiple cloning site were 

sequenced with different oligos spanning across the NMB1880-1881 IGR (Table 4) and the 

resulting reads were assembled to reconstruct the IGR sequence of our MC58 clone. 
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6.13 Disc diffusion viability assays 

Sensitivity of N. meningitidis strains to different stress agents was assayed by means of a 

modified Kirby-Bauer disc diffusion method (292). In brief, approximately 5 x 10
8
 bacteria 

from mid-logarithmic phase cultures were inoculated in 6 ml of GC soft agar (8 g/l) and 

poured onto square GC plates (25 ml). After 30 min, up to five Whatman paper discs (6-mm 

diameter; GE Healthcare) were applied to the plate and 10 μl of the agent to be tested was 

applied to each disc. The plates were incubated for 24 h at 37°C, 5% CO2 and then the 

diameter of growth inhibition was recorded. At least three plates were prepared for each 

agent tested, and we measured the growth inhibition zone twice for each disc. Each 

experiment was performed at least two times on different days. The results were averaged, 

and the error bars represent the standard deviation of the mean. All the agents tested were 

obtained from Sigma-Aldrich. 

 

6.14 In vivo infant rat model 

The infant rat model was used as previously described (293). Briefly, bacteria were grown to 

mid-log phase in GC medium, washed, and resuspended at the desired concentration in PBS. 

Six to eight-day-old pups from litters of outbred Wistar rats (Charles River) were challenged 

intraperitoneally with the 2996 wild-type and the isogenic knockout mutant strains at a 1:1 

ratio to establish mixed infections. Groups of infant rats were used for each infectious dose 

of 4.5 x 10
3
 or 4.5 x 10

4
 CFUs respectively. A control group of 9 infant rats was injected 

with PBS. After 18h post bacterial challenge, blood samples were obtained by cheek 

puncture, and aliquots (100 μl of undiluted sera as well as 1/10 and 1/100 dilutions) were 

plated onto columbia agar supplemented with 5% horse blood with or without kanamycin for 

viable cell counting. The number of CFU/ml found in blood was determined after overnight 

incubation of the plates at 37 ◦C in a 5% CO2 atmosphere. Enumeration of wild-type 

bacteria and mutant bacteria allowed to determine the competitive index (CI) ratio using the 

following formula: CI=(WT output/mutant output)/(WT input/mutant input). Observed CIs 

from the two infectious doses follow the same statistical distribution and were pooled to 

increase the power of the analysis. Statistical significance was assessed with the Mann-

Whitney test. 
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6.15 Ethics statement 

All animal trials were carried out in compliance with current Italian legislation on the care 

and use of animals in experimentation (Legislative Decree 116/92) and with the Novartis 

Animal Welfare Policy and Standards. Protocols were approved by the Italian Ministry of 

Health (Authorization D.M. n. 166/2012 - B) and by the local Novartis Animal Welfare 

Body (Research Project AWB 201202). Following infection, animals were clinically 

monitored daily for criteria related to their ability to feed, reactivity and motility, and 

cutaneous redness. After 18 hours all animals were alive and normally reactive, and were 

euthanized by cervical dislocation, as pre-established in agreement with Novartis Animal 

Welfare Policies. 
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 Table 3 Plasmids and strains used in this study. 

 

  

Name Description Antibiotic resistance Reference

pGEMT Cloning vector Ampicillin Promega

pGEMT-hexRKO::Kan Plasmid for deletion of Nm hexR  gene by homologous recombination Ampicillin, Kanamycin This study

pGEMT-Pzwf Plasmid harboring 321 bp promoter fragment upstream of zwf  gene Ampicillin This study

pGEMT-Pedd Plasmid harboring 386 bp promoter fragment upstream of edd  gene Ampicillin This study

pGEMT-FLA-s17 pGEMT containing the flanking region of sRNA0899-0900 with a BamHI site in the middle Ampicillin This study

pGEMT-s17KO::Ery pGEMT-FLA-s17 derivative in which a 1200bp Ery cassette was cloned as a BamHI fragment between flanking regions Ampicillin, Erythromycin This study

pGEMT-FLA-s27 pGEMT containing the flanking region of sRNA1400-1401 with a BamHI site in the middle Ampicillin This study

pGEMT-s27KO::Ery pGEMT-FLA-s27 derivative in which a 1200bp Ery cassette was cloned as a BamHI fragment between flanking regions Ampicillin, Erythromycin This study

pGEMT-FLA-s38 pGEMT containing the flanking region of sRNA1923-1924 with a BamHI site in the middle Ampicillin This study

pGEMT-s38KO::Ery pGEMT-FLA-s38 derivative in which a 1200bp Ery cassette was cloned as a BamHI fragment between flanking regions Ampicillin, Erythromycin This study

pGEMT-FLA-SRS3 pGEMT containing the flanking region of sRNA1880-1801 with a BamHI site in the middle Ampicillin This study

pGEMT-SRS3::Ery pGEMT-FLA-SRS3 derivative in which a 1200bp Ery cassette was cloned as a BamHI fragment between flanking regions Ampicillin, Erythromycin This study

pGEMT-FLA-1880 pGEMT containing the flanking regions of NMB1880 and sRNA1880-1881 with a BamHI site in the middle Ampicillin This study

pGEMT-1880KO::Ery pGEMT-FLA-1880 derivative  in which a 1200bp Ery cassette was cloned as a BamHI fragment between flanking regions Ampicillin, Erythromycin This study

pBluescript (pBS-KS) Cloning vector Ampicillin Novagen

pBS-KS-FLA-IG26 pBS-KS containing the flanking region of sRNA0898-0899 with a XmaI site in the middle Ampicillin This study

pBS-KS-IG26::Ery pBS-KS-FLA-IG26 derivative in which a 1200bp Ery cassette was cloned as a XmaI fragment between flanking regions Ampicillin, Erythromycin This study

pBS-KS-FLA-BNS1 pBS-KS containing the flanking region of BNS1 with a XmaI site in the middle Ampicillin This study

pBS-KS-BNS1::Ery pBS-KS-FLA-BNS1 derivative in which a 1200bp Ery cassette was cloned as a XmaI fragment between flanking regions Ampicillin, Erythromycin This study

pBS-KS-FLA-BNS2 pBS-KS containing the flanking region of BNS2 with a XmaI site in the middle Ampicillin This study

pBS-KS-BNS2::Ery pBS-KS-FLA-BNS2 derivative in which a 1200bp Ery cassette was cloned as a XmaI fragment between flanking regions Ampicillin, Erythromycin This study

pMK Cloning vector Kanamycin Life Technologies

pMK-sRNAwt Vector harboring one copy of sRNA1880-1881, derived from in vitro  synthesis Kanamycin This study

pMK-sRNAmutP Vector harboring one copy of sRNA1880-1881 with mutations disrupting its promoter sequence, derived from in vitro  synthesis Kanamycin This study

pMK-sRNAmutGC
Vector harboring one copy of sRNA1880-1881 with mutations disrupting pairing of its GC-rich stretches, derived from in vitro 

synthesis
Kanamycin This study

pET15b(+) Plasmid for inducible expression of histidine-tagged recombinant proteins in E. coli Ampicillin Life Technologies

pET15b(+)-hexR Plasmid for expression and purification of histidine-tagged HexR in E. coli Ampicillin This study

pComCmrPind

Plasmid for allelic replacement at a chromosomal location between ORFs NMB1428 and NMB1429 and inducible expression 

under the control of the P tac  promoter and the lacI  repressor
Ampicillin, Chloramphenicol Ieva et al., J Bacteriol 2005

pComCmrPind-hexR Plasmid for complementation of HexR null mutant, derivative of pComCmrP ind containing a copy of hexR  gene Ampicillin, Chloramphenicol This study

pCOM1880-Pind-null 
Plasmid for complementation of NMB1880 + sRNA1880-1881 null mutant, derivative of pComCmrP ind containing a copy of 

NMB1880 gene and no copy of sRNA1880-1881
Ampicillin, Chloramphenicol This study

pCOM1880-Pind-sRNAwt
Plasmid for complementation of NMB1880 + sRNA1880-1881 null mutant, derivative of pComCmrP ind containing a copy of 

NMB1880 gene and one copy of sRNA1880-1881
Ampicillin, Chloramphenicol This study

pCOM1880-Pind-sRNAmutP
Plasmid for complementation of NMB1880 + sRNA1880-1881 null mutant, derivative of pComCmrP ind containing a copy of 

NMB1880 gene and one copy of sRNA1880-1881 with mutations disrupting its promoter sequence
Ampicillin, Chloramphenicol This study

pCOM1880-Pind-sRNAmutGC
Plasmid for complementation of NMB1880 + sRNA1880-1881 null mutant, derivative of pComCmrP ind containing a copy of 

NMB1880 gene and one copy of sRNA1880-1881 with mutations disrupting pairing of its GC-rich stretches
Ampicillin, Chloramphenicol This study

MC58 Nm  laboratory-adapted reference strain - Tettelin et al., Science 2000

MC58 ΔFur MC58 derivative, lacking fur  gene Kanamycin Delany et al., J Bacteriol 2003

MC58 Δhfq MC58 derivative, lacking hfq  gene Chloramphenicol Fantappiè et al., Infect Immun 2009

MC58 ΔhexR MC58 derivative, lacking hexR  gene Kanamycin This study

MC58 ΔhexR c-hexR MC58 derivative, lacking hexR  gene, with a copy of  hexR  reintroduced out-of-locus under control of inducible P tac promoter Kanamycin, Chloramphenicol This study

MC58 ΔsRNA1880-1881 MC58 derivative, lacking sRNA1880-1881 Erythromycin This study

MC58 1880KO MC58 derivative, lacking NMB1880 gene and sRNA1880-1881 Erythromycin This study

MC58 sRNAnull MC58 derivative, with the NMB1880 gene under control of inducible P tac promoter, no sRNA in NMB1880-1881 IGR Chloramphenicol This study

MC58 sRNAwt MC58 derivative, with the NMB1880 gene under control of inducible P tac promoter, one wt copy of sRNA in NMB1880-1881 IGR Chloramphenicol This study

MC58 sRNAmutP
MC58 derivative, with the NMB1880 gene under control of inducible P tac promoter, one copy of sRNA in NMB1880-1881 IGR 

with mutations disrupting its promoter sequence
Chloramphenicol This study

MC58 sRNAmutGC
MC58 derivative, with the NMB1880 gene under control of inducible P tac promoter, one copy of sRNA in NMB1880-1881 IGR 

with mutations disrupting pairing of its GC-rich stretches
Chloramphenicol This study

2996 Clinical isolate - Comanducci et al., J Exp Med. 2002

2996 ΔsRNA0898-0899 2996 derivative, lacking sRNA0898-0899 Erythromycin This study

2996 ΔsRNA0899-0900 2996 derivative, lacking sRNA0899-0900 Erythromycin This study

2996 ΔsRNA1400-1401 2996 derivative, lacking sRNA1400-1401 Erythromycin This study

2996 ΔBNS1 2996 derivative, lacking BNS1 Kanamycin This study

2996 ΔsRNA1923-1924 2996 derivative, lacking sRNA1923-1924 Erythromycin This study

2996 ΔBNS2 2996 derivative, lacking BNS2 Erythromycin This study
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Table 4 Oligonucleotides used in this study. 

 

 
 

a: underscored letters indicate restriction enzyme sites. 

 

Name Sequencea
Restriction Sites Application

Hex-R1 ATTCG TCTAGA GGTTTCGTCGTTGATGCGGTTTTTG XbaI

Hex-R2 CAAATGGTTCG GGATCC GTTGCCACACAGGAAAATG BamHI

Hex-R3 CTGTGTGGCAAC GGATCC CGAACCATTTGGGTTCCGC BamHI

Hex-R4 ATTCG AAGCTT TCACGGAAAAGGCTTTGAGC HindIII

GG006 ATATCATATGTTAAGCAAAATCAGCGAATCACTG NdeI

GG007 ATATATGCATTCAATCTTTGTCGTAATCGATGTGC NsiI

GG012 CTGTACTTCCAGGGCTTAAGCAAAATCAGCGAATCACTG -

GG013 AATTAAGTCGCGTTAATCTTTGTCGTAATCGATGTGC -

GG034 CTCGAGCGTCTGAAAGTGGGAAGCGG XhoI

GG035 GGATCCGTACTCATCGTATTATCTCGTCAGG BamHI

GG036 CTCGAGCCCCTATTCCGTTACAACAATCG XhoI

GG037 GGATCCTTCACGGTCGGTCTCCTGTC BamHI

0089RT-F GAAACGATGCTGGTGGAAC -

0089RT-R CCGCTGGTAATGATGTATTGG -

0207RT-F TGACCAAATTCGACACCGT -

0207RT-R ATCGACACCGAGTTCTTTCC -

0334RT-F ATTTTGATTGACCGCCTCAC -

0334RT-R CACTGATCGAAGGGGTTGAC -

0663RT-F TATGCCGTTACCCCGAATGT -

0663RT-R CAGTGTTGACTTTGCCGATG -

1389RT-F ATGGTTTCCCGCCTCTTG -

1389RT-R CGATGTGCTTGTTGTGTATGCT -

1392RT-F AGCCTGTGAAAACCTTGCTG -

1392RT-R TTGATTTGCTGGGAAGAAGC -

1393RT-F TTGAAAAGCGAAATGGGTTC -

1393RT-R GGTGTAAGGGTGGACGAAGG -

1476RT-F ACGTTGCCATTTACAACGAA -

1476RT-R GTTCGGCGTTGGTAATTTCT -

1710RT-F GCAAATGAGTTCCGCCATC -

1710RT-R ATAGGCAGGGTGGTCAAGG -

1968RT-F TCAAACAAGGTGCGAAATTG -

1968RT-R CCATACTGTTGTCGGTGTCG -

2159RT-F GTTATCTCCGCCGCTTCCT -

2159RT-R GCTGTTGGGCACGATGTT -

1880RT-F ATTGAAGGCGCAGATTGAC -

1880RT-R CGTGTATCCAACTTGCCAAC -

1881RT-F ACGGATACAGCGACAAAGTG -

1881RT-R CTCGCGTATCGTCATGCT -

1882RT-F CAACGACGGCTACACTGTTT -

1882RT-R CATTTGTTGCGATGTGATGA -

RT-SRS3NEW-F GACTGCCATCGGTCTGAATC -

RT-SRS3NEW-R CTCCGTTTTAGCTTCGCAGA -

16SRT-F ACGTAGGGTGCGAGCGTTAATC -

16SRT-R CTGCCTTCGCCATCGGTATTCCT -

hexR  KO

hexR  complementation

PIPE cloning of hexR

zwf  promoter probe

edd  promoter probe

qRT-PCR
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Table 4 (continued) Oligonucleotides used in this study. 

 

 

  

a: underscored letters indicate restriction enzyme sites.  

Name Sequencea
Restriction Sites Application

nrrF-NB GTATGTCTCGTATATGCCGACTCCAAGTGTGAAAGTGATGATGGGGAAAT - NrrF NB

1205-3 GGCAGCCACACCCAAACAC - AniS NB

sRNA10-R CCAGCTTGATATACTCGGCGGAT - sRNA0837-0838 NB

SRS19-R4 GAATAAATATGTCCCATTGTCATCCCCTTAAGCTGATG - sRNA0898-0899 NB

sRNA17-R2 ATCGTGTGGATATACGCTGTTTGTCAGGTGTTTTCAAGCACCGTGGGAAA - sRNA0899-0900 NB

GG075 GCTCCATAAGACATAATCAACTGTG - sRNA1400-1401 NB

Bns1_p  CCTCCCGAATATATCTGCCTGCTGTTTCCTCTTTATTCAG - BNS1 NB

GG052 cacccgagtttatgcggcaaacagcg -

GG054 ttaacttcgttgaagctgcgatttcagaagct -

GG087 AGTATGAATGGTCAATACATTGCGG - sRNA1923-1924 NB

SRS17-R4 CACATTACGGGGAAAACGTTTTACTCAATGAG - BNS2 NB

UP_IG26F   GCTCTAGAGAAACAGGCACAACGGCAAA             XbaI

UP_IG26R   TCCCCCGGGCTTAAATCGCCCGTTAAGGC         XmaI

DW_IG26F TCCCCCGGGTTTATTTTCAACATCAGCTTAAGG   XmaI

DW_IG26R  CCGCTCGAGCTTTTTCTTCCATTTTCGGGCT         XhoI

FLA-UP17F CGAATACTCCATGCTGTTACGTG                                      -

FLA-UP17R TTTCTGCAAGCGGATCCGGAAATGTGTCAAGAGAATTAGCCC BamHI

FLA-DO17F GACACATTTCCGGATCCGCTTGCAGAAAATAGAAAGATTGG   BamHI

FLA-DO17R CACGATAACTATTTGATTTGCTTCCG                                 -

flaUP1400F CCAAAGATTTGGCGGCTAACAGCC -

flaUP1400R GTCCCGACAGCGGATCCATATACAGATATTTCAGGCTGCCTG BamHI

flaDO1401F TATCTGTATATGGATCCGCTGTCGGGACGGTGTGCCGAAG BamHI

flaDO1401R TTCGGCAGTCCTGTTCTACCGC -

UP_bns1F GCTCTAGACGACAATCTTGTCGTGCG XbaI

UP_bns1R TCCCCCGGGGAGAATCCCGTTATTTTAAG XmaI

DW_bns1F TCCCCCGGGCTTCAGACGGTATCAGCC XmaI

DW_bns1R CCGCTCGAGCCGTTTTGTCCATATTTCTGC XhoI

GG103 GCGGTTGGCAAGTTGGATACAC -

GG104 GGATCCttgaaaccgcactttagcttcgc BamHI

GG105 gcggtttcaaGGATCCaaagcagcctgcaacgaagcc BamHI

GG106 CGGACGGGTCGGACAACTC -

flaUP1923F TTGTACTGTCTTCGGCTTCGTCG -

flaUP1923R AAACCAATAGGGGATCCGCACGTTGAAAATGCCGTCTGAAC BamHI

flaDO1924F TTTCAACGTGCGGATCCCCTATTGGTTTTCCCGTATCCAC BamHI

flaDO1924R GTCGATCCGATAGACGGGACGAAC -

UP_bns2F GCTCTAGACGCCTGAAACGCATCAACC XbaI

UP_bns2R TCCCCCGGGGATGCCGTCTGAAACGGC XmaI

DW_bns2F TCCCCCGGGGTTCCATCGGATAAAAGGC XmaI

DW_bns2R CCGCTCGAGGATGGTGCTGTAAATGGACG XhoI

GG149 TTAAAAAGGCAGAACCCGTTGCG -

GG150 AGGTGCTGTTTCAGGTTGATGG -

GG172 GGCTTACCGCCCTCTCCCTAAC -

GG173 CGAATTGAAAAGCAGCCTGTATGTTG -

GG180 aaCCCGGGGCGTTTTGCGCCAGCCGTTGCAG XmaI

GG181 GGATCCATGAACACCGCCGCCATCTACCG BamHI

GG186 CGGTGTTCATGGATCCACCCAACCCATAGGAGAACCCCATG BamHI

GG188 aaACTAGTTCTGAAACAGAAACATCGGCCTG SpeI

GG185 aaTCTAGAATGAACACCGCCGCCATCTACCG XbaI

GG187 aaATGCATACCCAACCCATAGGAGAACCCCATG NsiI

GG189 aaCATATGAAACCGCGTTTTTATTGGGCAGC NdeI

GG190 aaATGCATaaaCTCGAGCTACTTTTTCCCCGCCGCAACGG NsiI, XhoI

sRNA0899-0900 KO

sRNA1400-1401 KO

BNS1 KO

sRNA1923-1924 KO

BNS2 KO

sRNA1880-1881 KO

Isogenic mutants of 

NMB1880-1881-1882 operon 

and sRNA

sRNA0898-0899 KO

sRNA1880-1881 NB

Sequencing of NMB1880-

1881 IGR



75 

 

7 Bibliography 

1. Weichselbaum A. 1887. Ueber die Aetiologie der akuten meningitis cerebrospinalis. 

Fortschr Med 5. 

2. Caugant DA, Nicolas P. 2007. Molecular surveillance of meningococcal meningitis 

in Africa. Vaccine 25 Suppl 1:A8-11. 

3. Claus H, Maiden MC, Wilson DJ, McCarthy ND, Jolley KA, Urwin R, Hessler F, 

Frosch M, Vogel U. 2005. Genetic analysis of meningococci carried by children and 

young adults. The Journal of infectious diseases 191:1263-1271. 

4. Stephens DS, Greenwood B, Brandtzaeg P. 2007. Epidemic meningitis, 

meningococcaemia, and Neisseria meningitidis. Lancet 369:2196-2210. 

5. Caugant DA, Maiden MC. 2009. Meningococcal carriage and disease--population 

biology and evolution. Vaccine 27 Suppl 2:B64-70. 

6. Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM. 2001. 

Meningococcal disease. The New England journal of medicine 344:1378-1388. 

7. Thompson MJ, Ninis N, Perera R, Mayon-White R, Phillips C, Bailey L, 

Harnden A, Mant D, Levin M. 2006. Clinical recognition of meningococcal disease 

in children and adolescents. Lancet 367:397-403. 

8. World Health Organization. 2010. Meningococcal meningitidis Fact Sheet N°141. 

In (WHO) WHO (ed.). 

9. Kaplan SL, Schutze GE, Leake JA, Barson WJ, Halasa NB, Byington CL, 

Woods CR, Tan TQ, Hoffman JA, Wald ER, Edwards KM, Mason EO, Jr. 2006. 

Multicenter surveillance of invasive meningococcal infections in children. Pediatrics 

118:e979-984. 

10. Brandtzaeg P, van Deuren M. 2005. Meningococcal infections at the start of the 

21st century. Advances in pediatrics 52:129-162. 

11. Cohn AC, MacNeil JR, Harrison LH, Hatcher C, Theodore J, Schmidt M, 

Pondo T, Arnold KE, Baumbach J, Bennett N, Craig AS, Farley M, Gershman 

K, Petit S, Lynfield R, Reingold A, Schaffner W, Shutt KA, Zell ER, Mayer LW, 

Clark T, Stephens D, Messonnier NE. 2010. Changes in Neisseria meningitidis 

disease epidemiology in the United States, 1998-2007: implications for prevention of 

meningococcal disease. Clinical infectious diseases : an official publication of the 

Infectious Diseases Society of America 50:184-191. 

12. Brigham KS, Sandora TJ. 2009. Neisseria meningitidis: epidemiology, treatment 

and prevention in adolescents. Current opinion in pediatrics 21:437-443. 

13. Goldschneider I, E. C. Gotschlich, and M. S. Artenstein. 1969. Human immunity 

to the meningococcus. II. Development of natural immunity. J Exp Med. 

14. Gotschlich EC, I. Goldschneider, and M. S. Artenstein. 1969. Human immunity to 

the meningococcus. V. The effect of immunization with meningococcal group C 

polysaccharide on the carrier state. J Exp Med. 

15. Harrison LH. 2006. Prospects for vaccine prevention of meningococcal infection. 

Clinical microbiology reviews 19:142-164. 

16. Imrey PB, Jackson LA, Ludwinski PH, England AC, 3rd, Fella GA, Fox BC, 

Isdale LB, Reeves MW, Wenger JD. 1995. Meningococcal carriage, alcohol 

consumption, and campus bar patronage in a serogroup C meningococcal disease 

outbreak. Journal of clinical microbiology 33:3133-3137. 



76 

 

17. Zuschneid I, Witschi A, Quaback L, Hellenbrand W, Kleinkauf N, Koch D, 

Krause G. 2008. Invasive meningococcal disease with fatal outcome in a Swiss 

student visiting Berlin. Euro surveillance : bulletin Europeen sur les maladies 

transmissibles = European communicable disease bulletin 13:pii: 19031. 

18. Johswich KO, Zhou J, Law DK, St Michael F, McCaw SE, Jamieson FB, Cox 

AD, Tsang RS, Gray-Owen SD. 2012. Invasive potential of nonencapsulated 

disease isolates of Neisseria meningitidis. Infection and immunity 80:2346-2353. 

19. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M, 

Jennings GT, Baldi L, Bartolini E, Capecchi B, Galeotti CL, Luzzi E, Manetti R, 

Marchetti E, Mora M, Nuti S, Ratti G, Santini L, Savino S, Scarselli M, Storni E, 

Zuo P, Broeker M, Hundt E, Knapp B, Blair E, Mason T, Tettelin H, Hood DW, 

Jeffries AC, Saunders NJ, Granoff DM, Venter JC, Moxon ER, Grandi G, 

Rappuoli R. 2000. Identification of vaccine candidates against serogroup B 

meningococcus by whole-genome sequencing. Science 287:1816-1820. 

20. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, 

Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG. 1998. 

Multilocus sequence typing: a portable approach to the identification of clones within 

populations of pathogenic microorganisms. Proceedings of the National Academy of 

Sciences of the United States of America 95:3140-3145. 

21. Urwin R, Maiden MC. 2003. Multi-locus sequence typing: a tool for global 

epidemiology. Trends in microbiology 11:479-487. 

22. Maiden MC. 2008. Population genomics: diversity and virulence in the Neisseria. 

Current opinion in microbiology 11:467-471. 

23. Stephens DS. 2009. Biology and pathogenesis of the evolutionarily successful, 

obligate human bacterium Neisseria meningitidis. Vaccine 27 Suppl 2:B71-77. 

24. Deghmane AE, Giorgini D, Larribe M, Alonso JM, Taha MK. 2002. Down-

regulation of pili and capsule of Neisseria meningitidis upon contact with epithelial 

cells is mediated by CrgA regulatory protein. Molecular microbiology 43:1555-1564. 

25. Hammerschmidt S, Muller A, Sillmann H, Muhlenhoff M, Borrow R, Fox A, 

van Putten J, Zollinger WD, Gerardy-Schahn R, Frosch M. 1996. Capsule phase 

variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the 

polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak 

of meningococcal disease. Molecular microbiology 20:1211-1220. 

26. Gray-Owen SD, Blumberg RS. 2006. CEACAM1: contact-dependent control of 

immunity. Nature reviews. Immunology 6:433-446. 

27. Doulet N, Donnadieu E, Laran-Chich MP, Niedergang F, Nassif X, Couraud PO, 

Bourdoulous S. 2006. Neisseria meningitidis infection of human endothelial cells 

interferes with leukocyte transmigration by preventing the formation of endothelial 

docking structures. The Journal of cell biology 173:627-637. 

28. van Ulsen P, Tommassen J. 2006. Protein secretion and secreted proteins in 

pathogenic Neisseriaceae. FEMS microbiology reviews 30:292-319. 

29. Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I. 2004. Iron transport systems 

in Neisseria meningitidis. Microbiology and molecular biology reviews : MMBR 

68:154-171. 

30. Virji M. 2009. Pathogenic neisseriae: surface modulation, pathogenesis and infection 

control. Nature reviews. Microbiology 7:274-286. 

31. Achtman M. 1995. Epidemic spread and antigenic variability of Neisseria 

meningitidis. Trends in microbiology 3:186-192. 



77 

 

32. Madico G, Welsch JA, Lewis LA, McNaughton A, Perlman DH, Costello CE, 

Ngampasutadol J, Vogel U, Granoff DM, Ram S. 2006. The meningococcal 

vaccine candidate GNA1870 binds the complement regulatory protein factor H and 

enhances serum resistance. Journal of immunology 177:501-510. 

33. Jarva H, Ram S, Vogel U, Blom AM, Meri S. 2005. Binding of the complement 

inhibitor C4bp to serogroup B Neisseria meningitidis. Journal of immunology 

174:6299-6307. 

34. Nassif X. 2009. A revolution in the identification of pathogens in clinical laboratories. 

Clinical infectious diseases : an official publication of the Infectious Diseases Society 

of America 49:552-553. 

35. Tinsley C, Nassif X. 2001. Meningococcal pathogenesis: at the boundary between 

the pre- and post-genomic eras. Current opinion in microbiology 4:47-52. 

36. Exley RM, Shaw J, Mowe E, Sun YH, West NP, Williamson M, Botto M, Smith 

H, Tang CM. 2005. Available carbon source influences the resistance of Neisseria 

meningitidis against complement. J Exp Med 201:1637-1645. 

37. Nassif X, Bourdoulous S, Eugene E, Couraud PO. 2002. How do extracellular 

pathogens cross the blood-brain barrier? Trends in microbiology 10:227-232. 

38. Leighton MP, Kelly DJ, Williamson MP, Shaw JG. 2001. An NMR and enzyme 

study of the carbon metabolism of Neisseria meningitidis. Microbiology 147:1473-

1482. 

39. Smith H, Tang CM, Exley RM. 2007. Effect of host lactate on gonococci and 

meningococci: new concepts on the role of metabolites in pathogenicity. Infection 

and immunity 75:4190-4198. 

40. Baart GJ, Zomer B, de Haan A, van der Pol LA, Beuvery EC, Tramper J, 

Martens DE. 2007. Modeling Neisseria meningitidis metabolism: from genome to 

metabolic fluxes. Genome biology 8:R136. 

41. Exley RM, Goodwin L, Mowe E, Shaw J, Smith H, Read RC, Tang CM. 2005. 

Neisseria meningitidis lactate permease is required for nasopharyngeal colonization. 

Infection and immunity 73:5762-5766. 

42. Gao L, Parsons NJ, Curry A, Cole JA, Smith H. 1998. Lactate causes changes in 

gonococci including increased lipopolysaccharide synthesis during short-term 

incubation in media containing glucose. FEMS microbiology letters 169:309-316. 

43. Smith H, Yates EA, Cole JA, Parsons NJ. 2001. Lactate stimulation of gonococcal 

metabolism in media containing glucose: mechanism, impact on pathogenicity, and 

wider implications for other pathogens. Infection and immunity 69:6565-6572. 

44. Sun YH, Bakshi S, Chalmers R, Tang CM. 2000. Functional genomics of Neisseria 

meningitidis pathogenesis. Nature medicine 6:1269-1273. 

45. Romero JD, Outschoorn IM. 1997. The immune response to the capsular 

polysaccharide of Neisseria meningitidis group B. Zentralblatt fur Bakteriologie : 

international journal of medical microbiology 285:331-340. 

46. Vogel U, Frosch M. 1999. Mechanisms of neisserial serum resistance. Molecular 

microbiology 32:1133-1139. 

47. Schneider MC, Exley RM, Ram S, Sim RB, Tang CM. 2007. Interactions between 

Neisseria meningitidis and the complement system. Trends in microbiology 15:233-

240. 

48. Swartley JS, Marfin AA, Edupuganti S, Liu LJ, Cieslak P, Perkins B, Wenger 

JD, Stephens DS. 1997. Capsule switching of Neisseria meningitidis. Proceedings of 

the National Academy of Sciences of the United States of America 94:271-276. 



78 

 

49. Geoffroy MC, Floquet S, Metais A, Nassif X, Pelicic V. 2003. Large-scale analysis 

of the meningococcus genome by gene disruption: resistance to complement-

mediated lysis. Genome research 13:391-398. 

50. Jennings MP, Srikhanta YN, Moxon ER, Kramer M, Poolman JT, Kuipers B, 

van der Ley P. 1999. The genetic basis of the phase variation repertoire of 

lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology 145 ( Pt 

11):3013-3021. 

51. Pinner RW, Spellman PA, Stephens DS. 1991. Evidence for functionally distinct 

pili expressed by Neisseria meningitidis. Infection and immunity 59:3169-3175. 

52. Virji M, Alexandrescu C, Ferguson DJ, Saunders JR, Moxon ER. 1992. 

Variations in the expression of pili: the effect on adherence of Neisseria meningitidis 

to human epithelial and endothelial cells. Molecular microbiology 6:1271-1279. 

53. Segal E, Hagblom P, Seifert HS, So M. 1986. Antigenic variation of gonococcal 

pilus involves assembly of separated silent gene segments. Proceedings of the 

National Academy of Sciences of the United States of America 83:2177-2181. 

54. Stephens DS, McGee ZA. 1981. Attachment of Neisseria meningitidis to human 

mucosal surfaces: influence of pili and type of receptor cell. The Journal of infectious 

diseases 143:525-532. 

55. Virji M, Kayhty H, Ferguson DJ, Alexandrescu C, Heckels JE, Moxon ER. 1991. 

The role of pili in the interactions of pathogenic Neisseria with cultured human 

endothelial cells. Molecular microbiology 5:1831-1841. 

56. Heckels JE, Blackett B, Everson JS, Ward ME. 1976. The influence of surface 

charge on the attachment of Neisseria gonorrhoeae to human cells. Journal of general 

microbiology 96:359-364. 

57. Helaine S, Dyer DH, Nassif X, Pelicic V, Forest KT. 2007. 3D structure/function 

analysis of PilX reveals how minor pilins can modulate the virulence properties of 

type IV pili. Proceedings of the National Academy of Sciences of the United States 

of America 104:15888-15893. 

58. Merz AJ, So M, Sheetz MP. 2000. Pilus retraction powers bacterial twitching 

motility. Nature 407:98-102. 

59. El Tahir Y, Skurnik M. 2001. YadA, the multifaceted Yersinia adhesin. 

International journal of medical microbiology : IJMM 291:209-218. 

60. Serruto D, Spadafina T, Scarselli M, Bambini S, Comanducci M, Hohle S, 

Kilian M, Veiga E, Cossart P, Oggioni MR, Savino S, Ferlenghi I, Taddei AR, 

Rappuoli R, Pizza M, Masignani V, Arico B. 2009. HadA is an atypical new 

multifunctional trimeric coiled-coil adhesin of Haemophilus influenzae biogroup 

aegyptius, which promotes entry into host cells. Cellular microbiology 11:1044-1063. 

61. Capecchi B, Adu-Bobie J, Di Marcello F, Ciucchi L, Masignani V, Taddei A, 

Rappuoli R, Pizza M, Arico B. 2005. Neisseria meningitidis NadA is a new invasin 

which promotes bacterial adhesion to and penetration into human epithelial cells. 

Molecular microbiology 55:687-698. 

62. Comanducci M, Bambini S, Caugant DA, Mora M, Brunelli B, Capecchi B, 

Ciucchi L, Rappuoli R, Pizza M. 2004. NadA diversity and carriage in Neisseria 

meningitidis. Infection and immunity 72:4217-4223. 

63. Wang X, Cohn A, Comanducci M, Andrew L, Zhao X, MacNeil JR, Schmink S, 

Muzzi A, Bambini S, Rappuoli R, Pizza M, Murphy E, Hoiseth SK, Jansen KU, 

Anderson AS, Harrison LH, Clark TA, Messonnier NE, Mayer LW. 2011. 



79 

 

Prevalence and genetic diversity of candidate vaccine antigens among invasive 

Neisseria meningitidis isolates in the United States. Vaccine 29:4739-4744. 

64. Scarselli M, Serruto D, Montanari P, Capecchi B, Adu-Bobie J, Veggi D, 

Rappuoli R, Pizza M, Arico B. 2006. Neisseria meningitidis NhhA is a 

multifunctional trimeric autotransporter adhesin. Molecular microbiology 61:631-644. 

65. Serruto D, Adu-Bobie J, Scarselli M, Veggi D, Pizza M, Rappuoli R, Arico B. 

2003. Neisseria meningitidis App, a new adhesin with autocatalytic serine protease 

activity. Molecular microbiology 48:323-334. 

66. Turner DP, Marietou AG, Johnston L, Ho KK, Rogers AJ, Wooldridge KG, 

Ala'Aldeen DA. 2006. Characterization of MspA, an immunogenic autotransporter 

protein that mediates adhesion to epithelial and endothelial cells in Neisseria 

meningitidis. Infection and immunity 74:2957-2964. 

67. van Putten JP, Duensing TD, Cole RL. 1998. Entry of OpaA+ gonococci into HEp-

2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin 

receptors. Molecular microbiology 29:369-379. 

68. Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, Abouseada N, 

Oldfield NJ, Self T, Ala'Aldeen DA, Tuomanen EI. 2009. Laminin receptor 

initiates bacterial contact with the blood brain barrier in experimental meningitis 

models. The Journal of clinical investigation 119:1638-1646. 

69. Holst J, Martin D, Arnold R, Huergo CC, Oster P, O'Hallahan J, Rosenqvist E. 

2009. Properties and clinical performance of vaccines containing outer membrane 

vesicles from Neisseria meningitidis. Vaccine 27 Suppl 2:B3-12. 

70. Michaelsen TE, Aase A, Kolberg J, Wedge E, Rosenqvist E. 2001. PorB3 outer 

membrane protein on Neisseria meningitidis is poorly accessible for antibody binding 

on live bacteria. Vaccine 19:1526-1533. 

71. Tzeng YL, Ambrose KD, Zughaier S, Zhou X, Miller YK, Shafer WM, Stephens 

DS. 2005. Cationic antimicrobial peptide resistance in Neisseria meningitidis. Journal 

of bacteriology 187:5387-5396. 

72. Archibald FS, Duong MN. 1986. Superoxide dismutase and oxygen toxicity 

defenses in the genus Neisseria. Infection and immunity 51:631-641. 

73. Stevanin TM, Moir JW, Read RC. 2005. Nitric oxide detoxification systems 

enhance survival of Neisseria meningitidis in human macrophages and in 

nasopharyngeal mucosa. Infection and immunity 73:3322-3329. 

74. Seib KL, Tseng HJ, McEwan AG, Apicella MA, Jennings MP. 2004. Defenses 

against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: 

distinctive systems for different lifestyles. The Journal of infectious diseases 

190:136-147. 

75. Figueroa J, Andreoni J, Densen P. 1993. Complement deficiency states and 

meningococcal disease. Immunologic research 12:295-311. 

76. Schneider MC, Prosser BE, Caesar JJ, Kugelberg E, Li S, Zhang Q, Quoraishi S, 

Lovett JE, Deane JE, Sim RB, Roversi P, Johnson S, Tang CM, Lea SM. 2009. 

Neisseria meningitidis recruits factor H using protein mimicry of host carbohydrates. 

Nature 458:890-893. 

77. Serruto D, Spadafina T, Ciucchi L, Lewis LA, Ram S, Tontini M, Santini L, 

Biolchi A, Seib KL, Giuliani MM, Donnelly JJ, Berti F, Savino S, Scarselli M, 

Costantino P, Kroll JS, O'Dwyer C, Qiu J, Plaut AG, Moxon R, Rappuoli R, 

Pizza M, Arico B. 2010. Neisseria meningitidis GNA2132, a heparin-binding protein 



80 

 

that induces protective immunity in humans. Proceedings of the National Academy 

of Sciences of the United States of America 107:3770-3775. 

78. Gasparini R, Panatto D. 2011. Meningococcal glycoconjugate vaccines. Human 

vaccines 7:170-182. 

79. Frasch CE, Preziosi MP, LaForce FM. 2012. Development of a group A 

meningococcal conjugate vaccine, MenAfriVac(TM). Human vaccines & 

immunotherapeutics 8:715-724. 

80. Finne J, Leinonen M, Makela PH. 1983. Antigenic similarities between brain 

components and bacteria causing meningitis. Implications for vaccine development 

and pathogenesis. Lancet 2:355-357. 

81. Finne J, Bitter-Suermann D, Goridis C, Finne U. 1987. An IgG monoclonal 

antibody to group B meningococci cross-reacts with developmentally regulated 

polysialic acid units of glycoproteins in neural and extraneural tissues. Journal of 

immunology 138:4402-4407. 

82. Fredriksen JH, Rosenqvist E, Wedege E, Bryn K, Bjune G, Froholm LO, 

Lindbak AK, Mogster B, Namork E, Rye U, et al. 1991. Production, 

characterization and control of MenB-vaccine "Folkehelsa": an outer membrane 

vesicle vaccine against group B meningococcal disease. NIPH annals 14:67-79; 

discussion 79-80. 

83. Sierra GV, Campa HC, Varcacel NM, Garcia IL, Izquierdo PL, Sotolongo PF, 

Casanueva GV, Rico CO, Rodriguez CR, Terry MH. 1991. Vaccine against group 

B Neisseria meningitidis: protection trial and mass vaccination results in Cuba. NIPH 

annals 14:195-207; discussion 208-110. 

84. Boslego J, Garcia J, Cruz C, Zollinger W, Brandt B, Ruiz S, Martinez M, 

Arthur J, Underwood P, Silva W, et al. 1995. Efficacy, safety, and immunogenicity 

of a meningococcal group B (15:P1.3) outer membrane protein vaccine in Iquique, 

Chile. Chilean National Committee for Meningococcal Disease. Vaccine 13:821-829. 

85. Oster P, Lennon D, O'Hallahan J, Mulholland K, Reid S, Martin D. 2005. 

MeNZB: a safe and highly immunogenic tailor-made vaccine against the New 

Zealand Neisseria meningitidis serogroup B disease epidemic strain. Vaccine 

23:2191-2196. 

86. Tappero JW, Lagos R, Ballesteros AM, Plikaytis B, Williams D, Dykes J, 

Gheesling LL, Carlone GM, Hoiby EA, Holst J, Nokleby H, Rosenqvist E, Sierra 

G, Campa C, Sotolongo F, Vega J, Garcia J, Herrera P, Poolman JT, Perkins 

BA. 1999. Immunogenicity of 2 serogroup B outer-membrane protein meningococcal 

vaccines: a randomized controlled trial in Chile. Jama 281:1520-1527. 

87. Martin DR, Ruijne N, McCallum L, O'Hallahan J, Oster P. 2006. The VR2 

epitope on the PorA P1.7-2,4 protein is the major target for the immune response 

elicited by the strain-specific group B meningococcal vaccine MeNZB. Clinical and 

vaccine immunology : CVI 13:486-491. 

88. van der Ley P, Heckels JE, Virji M, Hoogerhout P, Poolman JT. 1991. Topology 

of outer membrane porins in pathogenic Neisseria spp. Infection and immunity 

59:2963-2971. 

89. Giuliani MM, Adu-Bobie J, Comanducci M, Arico B, Savino S, Santini L, 

Brunelli B, Bambini S, Biolchi A, Capecchi B, Cartocci E, Ciucchi L, Di 

Marcello F, Ferlicca F, Galli B, Luzzi E, Masignani V, Serruto D, Veggi D, 

Contorni M, Morandi M, Bartalesi A, Cinotti V, Mannucci D, Titta F, Ovidi E, 

Welsch JA, Granoff D, Rappuoli R, Pizza M. 2006. A universal vaccine for 



81 

 

serogroup B meningococcus. Proceedings of the National Academy of Sciences of 

the United States of America 103:10834-10839. 

90. Giuliani MM, Biolchi A, Serruto D, Ferlicca F, Vienken K, Oster P, Rappuoli R, 

Pizza M, Donnelly J. 2010. Measuring antigen-specific bactericidal responses to a 

multicomponent vaccine against serogroup B meningococcus. Vaccine 28:5023-5030. 

91. Comanducci M, Bambini S, Brunelli B, Adu-Bobie J, Arico B, Capecchi B, 

Giuliani MM, Masignani V, Santini L, Savino S, Granoff DM, Caugant DA, 

Pizza M, Rappuoli R, Mora M. 2002. NadA, a novel vaccine candidate of Neisseria 

meningitidis. J Exp Med 195:1445-1454. 

92. Masignani V, Comanducci M, Giuliani MM, Bambini S, Adu-Bobie J, Arico B, 

Brunelli B, Pieri A, Santini L, Savino S, Serruto D, Litt D, Kroll S, Welsch JA, 

Granoff DM, Rappuoli R, Pizza M. 2003. Vaccination against Neisseria 

meningitidis using three variants of the lipoprotein GNA1870. J Exp Med 197:789-

799. 

93. Beernink PT, Granoff DM. 2008. Bactericidal antibody responses induced by 

meningococcal recombinant chimeric factor H-binding protein vaccines. Infection 

and immunity 76:2568-2575. 

94. Welsch JA, Moe GR, Rossi R, Adu-Bobie J, Rappuoli R, Granoff DM. 2003. 

Antibody to genome-derived neisserial antigen 2132, a Neisseria meningitidis 

candidate vaccine, confers protection against bacteremia in the absence of 

complement-mediated bactericidal activity. The Journal of infectious diseases 

188:1730-1740. 

95. Beeretz I, M. Snape, A. Finn, P. Heath, A. Collinson, G. Bona, S. Esposita, P. 

Dull, E. Ypma, D. Toneatto, A. Kimura, C. Oeser, M. West, T. John, A. J. 

Pollard, and t. E. M. B. V. S. Group. 2011. Reactogenicity and safety of 

multicomponent meningococcal serogroup B vaccine (4CMENB) administred with 

or without routine infant vaccinations in different schedules. 29th European Society 

for Paediatric Infectious Diseases (ESPID) Meeting. 

96. Esposito S, T. Vesikari, A. Kimura, Ypma E., D. Toneatto, and P. Dull. 2010. 

Tolerability of a Three-dose Schedule of an Investigational, Multicomponent 

Meningococcal Serogroup B Vaccine and Routine Infant Vaccines in a Lot 

Consistency Trial. 17th International Pathogenic Neisseria Conference (IPNC). 

97. Findlow J, Borrow R, Snape MD, Dawson T, Holland A, John TM, Evans A, 

Telford KL, Ypma E, Toneatto D, Oster P, Miller E, Pollard AJ. 2010. 

Multicenter, open-label, randomized phase II controlled trial of an investigational 

recombinant Meningococcal serogroup B vaccine with and without outer membrane 

vesicles, administered in infancy. Clinical infectious diseases : an official publication 

of the Infectious Diseases Society of America 51:1127-1137. 

98. Snape MD, Dawson T, Oster P, Evans A, John TM, Ohene-Kena B, Findlow J, 

Yu LM, Borrow R, Ypma E, Toneatto D, Pollard AJ. 2010. Immunogenicity of 

two investigational serogroup B meningococcal vaccines in the first year of life: a 

randomized comparative trial. The Pediatric infectious disease journal 29:e71-79. 

99. Jiang HQ, Hoiseth SK, Harris SL, McNeil LK, Zhu D, Tan C, Scott AA, 

Alexander K, Mason K, Miller L, DaSilva I, Mack M, Zhao XJ, Pride MW, 

Andrew L, Murphy E, Hagen M, French R, Arora A, Jones TR, Jansen KU, 

Zlotnick GW, Anderson AS. 2010. Broad vaccine coverage predicted for a bivalent 

recombinant factor H binding protein based vaccine to prevent serogroup B 

meningococcal disease. Vaccine 28:6086-6093. 



82 

 

100. Richmond PC, Marshall HS, Nissen MD, Jiang Q, Jansen KU, Garces-Sanchez 

M, Martinon-Torres F, Beeslaar J, Szenborn L, Wysocki J, Eiden J, Harris SL, 

Jones TR, Perez JL, Study I. 2012. Safety, immunogenicity, and tolerability of 

meningococcal serogroup B bivalent recombinant lipoprotein 2086 vaccine in healthy 

adolescents: a randomised, single-blind, placebo-controlled, phase 2 trial. The Lancet. 

Infectious diseases 12:597-607. 

101. Parkhill J, Achtman M, James KD, Bentley SD, Churcher C, Klee SR, Morelli G, 

Basham D, Brown D, Chillingworth T, Davies RM, Davis P, Devlin K, Feltwell T, 

Hamlin N, Holroyd S, Jagels K, Leather S, Moule S, Mungall K, Quail MA, 

Rajandream MA, Rutherford KM, Simmonds M, Skelton J, Whitehead S, 

Spratt BG, Barrell BG. 2000. Complete DNA sequence of a serogroup A strain of 

Neisseria meningitidis Z2491. Nature 404:502-506. 

102. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, 

Ketchum KA, Hood DW, Peden JF, Dodson RJ, Nelson WC, Gwinn ML, DeBoy 

R, Peterson JD, Hickey EK, Haft DH, Salzberg SL, White O, Fleischmann RD, 

Dougherty BA, Mason T, Ciecko A, Parksey DS, Blair E, Cittone H, Clark EB, 

Cotton MD, Utterback TR, Khouri H, Qin H, Vamathevan J, Gill J, Scarlato V, 

Masignani V, Pizza M, Grandi G, Sun L, Smith HO, Fraser CM, Moxon ER, 

Rappuoli R, Venter JC. 2000. Complete genome sequence of Neisseria meningitidis 

serogroup B strain MC58. Science 287:1809-1815. 

103. Bentley SD, Vernikos GS, Snyder LA, Churcher C, Arrowsmith C, 

Chillingworth T, Cronin A, Davis PH, Holroyd NE, Jagels K, Maddison M, 

Moule S, Rabbinowitsch E, Sharp S, Unwin L, Whitehead S, Quail MA, 

Achtman M, Barrell B, Saunders NJ, Parkhill J. 2007. Meningococcal genetic 

variation mechanisms viewed through comparative analysis of serogroup C strain 

FAM18. PLoS genetics 3:e23. 

104. Schoen C, Blom J, Claus H, Schramm-Gluck A, Brandt P, Muller T, Goesmann 

A, Joseph B, Konietzny S, Kurzai O, Schmitt C, Friedrich T, Linke B, Vogel U, 

Frosch M. 2008. Whole-genome comparison of disease and carriage strains provides 

insights into virulence evolution in Neisseria meningitidis. Proceedings of the 

National Academy of Sciences of the United States of America 105:3473-3478. 

105. Davidsen T, Tonjum T. 2006. Meningococcal genome dynamics. Nature reviews. 

Microbiology 4:11-22. 

106. Dunning Hotopp JC, Grifantini R, Kumar N, Tzeng YL, Fouts D, Frigimelica E, 

Draghi M, Giuliani MM, Rappuoli R, Stephens DS, Grandi G, Tettelin H. 2006. 

Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal 

transfer and pathogen-specific genes. Microbiology 152:3733-3749. 

107. Schoen C, Tettelin H, Parkhill J, Frosch M. 2009. Genome flexibility in Neisseria 

meningitidis. Vaccine 27 Suppl 2:B103-111. 

108. Maiden MC. 1993. Population genetics of a transformable bacterium: the influence 

of horizontal genetic exchange on the biology of Neisseria meningitidis. FEMS 

microbiology letters 112:243-250. 

109. Hill DJ, Griffiths NJ, Borodina E, Virji M. 2010. Cellular and molecular biology 

of Neisseria meningitidis colonization and invasive disease. Clinical science 

118:547-564. 

110. Rotman E, Steven Seifert H. 2014. The genetics of Neisseria species. Annual 

review of genetics 48:405-431. 



83 

 

111. Ambur OH, Frye SA, Tonjum T. 2007. New functional identity for the DNA 

uptake sequence in transformation and its presence in transcriptional terminators. 

Journal of bacteriology 189:2077-2085. 

112. Buisine N, Tang CM, Chalmers R. 2002. Transposon-like Correia elements: 

structure, distribution and genetic exchange between pathogenic Neisseria sp. FEBS 

letters 522:52-58. 

113. Morelle S, Carbonnelle E, Nassif X. 2003. The REP2 repeats of the genome of 

Neisseria meningitidis are associated with genes coordinately regulated during 

bacterial cell interaction. Journal of bacteriology 185:2618-2627. 

114. Feil EJ, Spratt BG. 2001. Recombination and the population structures of bacterial 

pathogens. Annual review of microbiology 55:561-590. 

115. Moxon ER, Lenski RE, Rainey PB. 1998. Adaptive evolution of highly mutable 

loci in pathogenic bacteria. Perspectives in biology and medicine 42:154-155. 

116. Metruccio MM, Pigozzi E, Roncarati D, Berlanda Scorza F, Norais N, Hill SA, 

Scarlato V, Delany I. 2009. A novel phase variation mechanism in the 

meningococcus driven by a ligand-responsive repressor and differential spacing of 

distal promoter elements. PLoS pathogens 5:e1000710. 

117. Richardson AR, Yu Z, Popovic T, Stojiljkovic I. 2002. Mutator clones of Neisseria 

meningitidis in epidemic serogroup A disease. Proceedings of the National Academy 

of Sciences of the United States of America 99:6103-6107. 

118. Delany I, Grifantini R, Bartolini E, Rappuoli R, Scarlato V. 2006. Effect of 

Neisseria meningitidis fur mutations on global control of gene transcription. Journal 

of bacteriology 188:2483-2492. 

119. Grifantini R, Sebastian S, Frigimelica E, Draghi M, Bartolini E, Muzzi A, 

Rappuoli R, Grandi G, Genco CA. 2003. Identification of iron-activated and -

repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis 

group B. Proceedings of the National Academy of Sciences of the United States of 

America 100:9542-9547. 

120. Pawlik MC, Hubert K, Joseph B, Claus H, Schoen C, Vogel U. 2012. The zinc-

responsive regulon of Neisseria meningitidis comprises 17 genes under control of a 

Zur element. Journal of bacteriology 194:6594-6603. 

121. Heurlier K, Thomson MJ, Aziz N, Moir JW. 2008. The nitric oxide (NO)-sensing 

repressor NsrR of Neisseria meningitidis has a compact regulon of genes involved in 

NO synthesis and detoxification. Journal of bacteriology 190:2488-2495. 

122. Fagnocchi L, Pigozzi E, Scarlato V, Delany I. 2012. In the NadR regulon, adhesins 

and diverse meningococcal functions are regulated in response to signals in human 

saliva. Journal of bacteriology 194:460-474. 

123. Echenique-Rivera H, Muzzi A, Del Tordello E, Seib KL, Francois P, Rappuoli R, 

Pizza M, Serruto D. 2011. Transcriptome analysis of Neisseria meningitidis in 

human whole blood and mutagenesis studies identify virulence factors involved in 

blood survival. PLoS pathogens 7:e1002027. 

124. Hedman AK, Li MS, Langford PR, Kroll JS. 2012. Transcriptional profiling of 

serogroup B Neisseria meningitidis growing in human blood: an approach to vaccine 

antigen discovery. PloS one 7:e39718. 

125. Kazmierczak MJ, Wiedmann M, Boor KJ. 2005. Alternative sigma factors and 

their roles in bacterial virulence. Microbiology and molecular biology reviews : 

MMBR 69:527-543. 



84 

 

126. Schielke S, Spatz C, Schwarz RF, Joseph B, Schoen C, Schulz SM, Hubert K, 

Frosch M, Schubert-Unkmeir A, Kurzai O. 2011. Characterization of FarR as a 

highly specialized, growth phase-dependent transcriptional regulator in Neisseria 

meningitidis. International journal of medical microbiology : IJMM 301:325-333. 

127. Andrews SC, Robinson AK, Rodriguez-Quinones F. 2003. Bacterial iron 

homeostasis. FEMS microbiology reviews 27:215-237. 

128. Carson SD, Klebba PE, Newton SM, Sparling PF. 1999. Ferric enterobactin 

binding and utilization by Neisseria gonorrhoeae. Journal of bacteriology 181:2895-

2901. 

129. Delany I, Ieva R, Alaimo C, Rappuoli R, Scarlato V. 2003. The iron-responsive 

regulator fur is transcriptionally autoregulated and not essential in Neisseria 

meningitidis. Journal of bacteriology 185:6032-6041. 

130. Delany I, Rappuoli R, Scarlato V. 2004. Fur functions as an activator and as a 

repressor of putative virulence genes in Neisseria meningitidis. Molecular 

microbiology 52:1081-1090. 

131. Grifantini R, Frigimelica E, Delany I, Bartolini E, Giovinazzi S, Balloni S, 

Agarwal S, Galli G, Genco C, Grandi G. 2004. Characterization of a novel 

Neisseria meningitidis Fur and iron-regulated operon required for protection from 

oxidative stress: utility of DNA microarray in the assignment of the biological role of 

hypothetical genes. Molecular microbiology 54:962-979. 

132. Mellin JR, Goswami S, Grogan S, Tjaden B, Genco CA. 2007. A novel fur- and 

iron-regulated small RNA, NrrF, is required for indirect fur-mediated regulation of 

the sdhA and sdhC genes in Neisseria meningitidis. Journal of bacteriology 

189:3686-3694. 

133. Metruccio MM, Fantappie L, Serruto D, Muzzi A, Roncarati D, Donati C, 

Scarlato V, Delany I. 2009. The Hfq-dependent small noncoding RNA NrrF directly 

mediates Fur-dependent positive regulation of succinate dehydrogenase in Neisseria 

meningitidis. Journal of bacteriology 191:1330-1342. 

134. Rock JD, Mahnane MR, Anjum MF, Shaw JG, Read RC, Moir JW. 2005. The 

pathogen Neisseria meningitidis requires oxygen, but supplements growth by 

denitrification. Nitrite, nitric oxide and oxygen control respiratory flux at genetic and 

metabolic levels. Molecular microbiology 58:800-809. 

135. Bartolini E, Frigimelica E, Giovinazzi S, Galli G, Shaik Y, Genco C, Welsch JA, 

Granoff DM, Grandi G, Grifantini R. 2006. Role of FNR and FNR-regulated, 

sugar fermentation genes in Neisseria meningitidis infection. Molecular microbiology 

60:963-972. 

136. Kiley PJ, Beinert H. 2003. The role of Fe-S proteins in sensing and regulation in 

bacteria. Current opinion in microbiology 6:181-185. 

137. Oriente F, Scarlato V, Delany I. 2010. Expression of factor H binding protein of 

meningococcus responds to oxygen limitation through a dedicated FNR-regulated 

promoter. Journal of bacteriology 192:691-701. 

138. Lundberg JO. 1996. Airborne nitric oxide: inflammatory marker and aerocrine 

messenger in man. Acta physiologica Scandinavica. Supplementum 633:1-27. 

139. Rock JD, Thomson MJ, Read RC, Moir JW. 2007. Regulation of denitrification 

genes in Neisseria meningitidis by nitric oxide and the repressor NsrR. Journal of 

bacteriology 189:1138-1144. 

140. Schielke S, Huebner C, Spatz C, Nagele V, Ackermann N, Frosch M, Kurzai O, 

Schubert-Unkmeir A. 2009. Expression of the meningococcal adhesin NadA is 



85 

 

controlled by a transcriptional regulator of the MarR family. Molecular microbiology 

72:1054-1067. 

141. Martin P, Makepeace K, Hill SA, Hood DW, Moxon ER. 2005. Microsatellite 

instability regulates transcription factor binding and gene expression. Proceedings of 

the National Academy of Sciences of the United States of America 102:3800-3804. 

142. Deal CD, Krivan HC. 1990. Lacto- and ganglio-series glycolipids are adhesion 

receptors for Neisseria gonorrhoeae. The Journal of biological chemistry 265:12774-

12777. 

143. Stromberg N, Deal C, Nyberg G, Normark S, So M, Karlsson KA. 1988. 

Identification of carbohydrate structures that are possible receptors for Neisseria 

gonorrhoeae. Proceedings of the National Academy of Sciences of the United States 

of America 85:4902-4906. 

144. Takahama U, Oniki T, Murata H. 2002. The presence of 4-hydroxyphenylacetic 

acid in human saliva and the possibility of its nitration by salivary nitrite in the 

stomach. FEBS letters 518:116-118. 

145. Fagnocchi L, Biolchi A, Ferlicca F, Boccadifuoco G, Brunelli B, Brier S, Norais 

N, Chiarot E, Bensi G, Kroll JS, Pizza M, Donnelly J, Giuliani MM, Delany I. 
2013. Transcriptional regulation of the nadA gene in Neisseria meningitidis impacts 

the prediction of coverage of a multicomponent meningococcal serogroup B vaccine. 

Infection and immunity 81:560-569. 

146. Deghmane AE, Petit S, Topilko A, Pereira Y, Giorgini D, Larribe M, Taha MK. 

2000. Intimate adhesion of Neisseria meningitidis to human epithelial cells is under 

the control of the crgA gene, a novel LysR-type transcriptional regulator. The EMBO 

journal 19:1068-1078. 

147. Deghmane AE, Giorgini D, Maigre L, Taha MK. 2004. Analysis in vitro and in 

vivo of the transcriptional regulator CrgA of Neisseria meningitidis upon contact 

with target cells. Molecular microbiology 53:917-927. 

148. Ren J, Sainsbury S, Combs SE, Capper RG, Jordan PW, Berrow NS, Stammers 

DK, Saunders NJ, Owens RJ. 2007. The structure and transcriptional analysis of a 

global regulator from Neisseria meningitidis. The Journal of biological chemistry 

282:14655-14664. 

149. Stork M, Bos MP, Jongerius I, de Kok N, Schilders I, Weynants VE, Poolman 

JT, Tommassen J. 2010. An outer membrane receptor of Neisseria meningitidis 

involved in zinc acquisition with vaccine potential. PLoS pathogens 6:e1000969. 

150. Stork M, Grijpstra J, Bos MP, Manas Torres C, Devos N, Poolman JT, Chazin 

WJ, Tommassen J. 2013. Zinc piracy as a mechanism of Neisseria meningitidis for 

evasion of nutritional immunity. PLoS pathogens 9:e1003733. 

151. Cech TR, Steitz JA. 2014. The noncoding RNA revolution-trashing old rules to 

forge new ones. Cell 157:77-94. 

152. Gottesman S, Storz G. 2011. Bacterial small RNA regulators: versatile roles and 

rapidly evolving variations. Cold Spring Harbor perspectives in biology 3. 

153. Storz G, Vogel J, Wassarman KM. 2011. Regulation by small RNAs in bacteria: 

expanding frontiers. Molecular cell 43:880-891. 

154. Wassarman KM. 2002. Small RNAs in bacteria: diverse regulators of gene 

expression in response to environmental changes. Cell 109:141-144. 

155. Gottesman S. 2004. The small RNA regulators of Escherichia coli: roles and 

mechanisms*. Annual review of microbiology 58:303-328. 



86 

 

156. Weiberg A, Bellinger M, Jin H. 2015. Conversations between kingdoms: small 

RNAs. Current opinion in biotechnology 32C:207-215. 

157. Breaker RR. 2011. Prospects for riboswitch discovery and analysis. Molecular cell 

43:867-879. 

158. Krajewski SS, Narberhaus F. 2014. Temperature-driven differential gene 

expression by RNA thermosensors. Biochimica et biophysica acta 1839:978-988. 

159. Weber GG, Kortmann J, Narberhaus F, Klose KE. 2014. RNA thermometer 

controls temperature-dependent virulence factor expression in Vibrio cholerae. 

Proceedings of the National Academy of Sciences of the United States of America 

111:14241-14246. 

160. Sampson TR, Weiss DS. 2014. CRISPR-Cas systems: new players in gene 

regulation and bacterial physiology. Frontiers in cellular and infection microbiology 

4:37. 

161. Al-Attar S, Westra ER, van der Oost J, Brouns SJ. 2011. Clustered regularly 

interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious 

antiviral defense mechanism in prokaryotes. Biological chemistry 392:277-289. 

162. Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, 

Vogel J, Sontheimer EJ. 2013. Processing-independent CRISPR RNAs limit natural 

transformation in Neisseria meningitidis. Molecular cell 50:488-503. 

163. Peng W, Feng M, Feng X, Liang YX, She Q. 2015. An archaeal CRISPR type III-B 

system exhibiting distinctive RNA targeting features and mediating dual RNA and 

DNA interference. Nucleic acids research 43:406-417. 

164. Waters LS, Storz G. 2009. Regulatory RNAs in bacteria. Cell 136:615-628. 

165. Brantl S. 2007. Regulatory mechanisms employed by cis-encoded antisense RNAs. 

Current opinion in microbiology 10:102-109. 

166. Wagner EG. 2013. Cycling of RNAs on Hfq. RNA biology 10:619-626. 

167. Sauer E. 2013. Structure and RNA-binding properties of the bacterial LSm protein 

Hfq. RNA biology 10:610-618. 

168. Vogel J, Luisi BF. 2011. Hfq and its constellation of RNA. Nature reviews. 

Microbiology 9:578-589. 

169. Pfeiffer V, Papenfort K, Lucchini S, Hinton JC, Vogel J. 2009. Coding sequence 

targeting by MicC RNA reveals bacterial mRNA silencing downstream of 

translational initiation. Nature structural & molecular biology 16:840-846. 

170. Aiba H. 2007. Mechanism of RNA silencing by Hfq-binding small RNAs. Current 

opinion in microbiology 10:134-139. 

171. Vecerek B, Moll I, Blasi U. 2007. Control of Fur synthesis by the non-coding RNA 

RyhB and iron-responsive decoding. The EMBO journal 26:965-975. 

172. Sharma CM, Darfeuille F, Plantinga TH, Vogel J. 2007. A small RNA regulates 

multiple ABC transporter mRNAs by targeting C/A-rich elements inside and 

upstream of ribosome-binding sites. Genes & development 21:2804-2817. 

173. Lavi-Itzkovitz A, Peterman N, Jost D, Levine E. 2014. Quantitative effect of target 

translation on small RNA efficacy reveals a novel mode of interaction. Nucleic acids 

research 42:12200-12211. 

174. Frohlich KS, Vogel J. 2009. Activation of gene expression by small RNA. Current 

opinion in microbiology 12:674-682. 

175. Hammer BK, Bassler BL. 2007. Regulatory small RNAs circumvent the 

conventional quorum sensing pathway in pandemic Vibrio cholerae. Proceedings of 

the National Academy of Sciences of the United States of America 104:11145-11149. 



87 

 

176. Urban JH, Vogel J. 2008. Two seemingly homologous noncoding RNAs act 

hierarchically to activate glmS mRNA translation. PLoS biology 6:e64. 

177. Vanderpool CK, Balasubramanian D, Lloyd CR. 2011. Dual-function RNA 

regulators in bacteria. Biochimie 93:1943-1949. 

178. Richards GR, Vanderpool CK. 2011. Molecular call and response: the physiology 

of bacterial small RNAs. Biochimica et biophysica acta 1809:525-531. 

179. Johansen J, Eriksen M, Kallipolitis B, Valentin-Hansen P. 2008. Down-regulation 

of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP- and 

sigmaE-dependent CyaR-ompX regulatory case. Journal of molecular biology 383:1-

9. 

180. Papenfort K, Pfeiffer V, Lucchini S, Sonawane A, Hinton JC, Vogel J. 2008. 

Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved 

CRP-dependent riboregulator of OmpX synthesis. Molecular microbiology 68:890-

906. 

181. De Lay N, Gottesman S. 2009. The Crp-activated small noncoding regulatory RNA 

CyaR (RyeE) links nutritional status to group behavior. Journal of bacteriology 

191:461-476. 

182. Figueroa-Bossi N, Valentini M, Malleret L, Fiorini F, Bossi L. 2009. Caught at its 

own game: regulatory small RNA inactivated by an inducible transcript mimicking 

its target. Genes & development 23:2004-2015. 

183. Overgaard M, Kallipolitis B, Valentin-Hansen P. 2009. Modulating the bacterial 

surface with small RNAs: a new twist on PhoP/Q-mediated lipopolysaccharide 

modification. Molecular microbiology 74:1289-1294. 

184. Zhou Y, Xie J. 2011. The roles of pathogen small RNAs. Journal of cellular 

physiology 226:968-973. 

185. Vogt SL, Evans AD, Guest RL, Raivio TL. 2014. The Cpx envelope stress 

response regulates and is regulated by small noncoding RNAs. Journal of 

bacteriology 196:4229-4238. 

186. Gomez-Lozano M, Marvig RL, Tulstrup MV, Molin S. 2014. Expression of 

antisense small RNAs in response to stress in Pseudomonas aeruginosa. BMC 

genomics 15:783. 

187. Danger JL, Cao TN, Cao TH, Sarkar P, Trevino J, Pflughoeft KJ, Sumby P. 

2015. The small regulatory RNA FasX enhances group A Streptococcus virulence 

and inhibits pilus expression via serotype-specific targets. Molecular microbiology. 

188. Toledo-Arana A, Repoila F, Cossart P. 2007. Small noncoding RNAs controlling 

pathogenesis. Current opinion in microbiology 10:182-188. 

189. Romby P, Vandenesch F, Wagner EG. 2006. The role of RNAs in the regulation of 

virulence-gene expression. Current opinion in microbiology 9:229-236. 

190. Porcheron G, Habib R, Houle S, Caza M, Lepine F, Daigle F, Masse E, Dozois 

CM. 2014. The small RNA RyhB contributes to siderophore production and 

virulence of uropathogenic Escherichia coli. Infection and immunity 82:5056-5068. 

191. Papenfort K, Forstner KU, Cong JP, Sharma CM, Bassler BL. 2015. Differential 

RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of 

biofilm formation. Proceedings of the National Academy of Sciences of the United 

States of America 112:E766-775. 

192. Feng L, Rutherford ST, Papenfort K, Bagert JD, van Kessel JC, Tirrell DA, 

Wingreen NS, Bassler BL. 2015. A qrr noncoding RNA deploys four different 

regulatory mechanisms to optimize quorum-sensing dynamics. Cell 160:228-240. 



88 

 

193. Mayoral JG, Hussain M, Joubert DA, Iturbe-Ormaetxe I, O'Neill SL, Asgari S. 

2014. Wolbachia small noncoding RNAs and their role in cross-kingdom 

communications. Proceedings of the National Academy of Sciences of the United 

States of America 111:18721-18726. 

194. Valentin-Hansen P, Eriksen M, Udesen C. 2004. The bacterial Sm-like protein Hfq: 

a key player in RNA transactions. Molecular microbiology 51:1525-1533. 

195. Sonnleitner E, Moll I, Blasi U. 2002. Functional replacement of the Escherichia coli 

hfq gene by the homologue of Pseudomonas aeruginosa. Microbiology 148:883-891. 

196. Hwang W, Arluison V, Hohng S. 2011. Dynamic competition of DsrA and rpoS 

fragments for the proximal binding site of Hfq as a means for efficient annealing. 

Nucleic acids research 39:5131-5139. 

197. Hopkins JF, Panja S, Woodson SA. 2011. Rapid binding and release of Hfq from 

ternary complexes during RNA annealing. Nucleic acids research 39:5193-5202. 

198. Fender A, Elf J, Hampel K, Zimmermann B, Wagner EG. 2010. RNAs actively 

cycle on the Sm-like protein Hfq. Genes & development 24:2621-2626. 

199. Soper T, Mandin P, Majdalani N, Gottesman S, Woodson SA. 2010. Positive 

regulation by small RNAs and the role of Hfq. Proceedings of the National Academy 

of Sciences of the United States of America 107:9602-9607. 

200. Maki K, Morita T, Otaka H, Aiba H. 2010. A minimal base-pairing region of a 

bacterial small RNA SgrS required for translational repression of ptsG mRNA. 

Molecular microbiology 76:782-792. 

201. Brennan RG, Link TM. 2007. Hfq structure, function and ligand binding. Current 

opinion in microbiology 10:125-133. 

202. Ding Y, Davis BM, Waldor MK. 2004. Hfq is essential for Vibrio cholerae 

virulence and downregulates sigma expression. Molecular microbiology 53:345-354. 

203. Kulesus RR, Diaz-Perez K, Slechta ES, Eto DS, Mulvey MA. 2008. Impact of the 

RNA chaperone Hfq on the fitness and virulence potential of uropathogenic 

Escherichia coli. Infection and immunity 76:3019-3026. 

204. Pichon C, Felden B. 2005. Small RNA genes expressed from Staphylococcus aureus 

genomic and pathogenicity islands with specific expression among pathogenic strains. 

Proceedings of the National Academy of Sciences of the United States of America 

102:14249-14254. 

205. Sittka A, Pfeiffer V, Tedin K, Vogel J. 2007. The RNA chaperone Hfq is essential 

for the virulence of Salmonella typhimurium. Molecular microbiology 63:193-217. 

206. Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, 

Chevalier C, Helfer AC, Benito Y, Jacquier A, Gaspin C, Vandenesch F, Romby 

P. 2007. Staphylococcus aureus RNAIII coordinately represses the synthesis of 

virulence factors and the transcription regulator Rot by an antisense mechanism. 

Genes & development 21:1353-1366. 

207. Heidrich N, Moll I, Brantl S. 2007. In vitro analysis of the interaction between the 

small RNA SR1 and its primary target ahrC mRNA. Nucleic acids research 35:4331-

4346. 

208. Del Tordello E, Bottini S, Muzzi A, Serruto D. 2012. Analysis of the regulated 

transcriptome of Neisseria meningitidis in human blood using a tiling array. Journal 

of bacteriology 194:6217-6232. 

209. Huis in 't Veld RA, Willemsen AM, van Kampen AH, Bradley EJ, Baas F, 

Pannekoek Y, van der Ende A. 2011. Deep sequencing whole transcriptome 

exploration of the sigmaE regulon in Neisseria meningitidis. PloS one 6:e29002. 



89 

 

210. Remmele CW, Xian Y, Albrecht M, Faulstich M, Fraunholz M, Heinrichs E, 

Dittrich MT, Muller T, Reinhardt R, Rudel T. 2014. Transcriptional landscape 

and essential genes of Neisseria gonorrhoeae. Nucleic acids research 42:10579-

10595. 

211. McClure R, Tjaden B, Genco C. 2014. Identification of sRNAs expressed by the 

human pathogen Neisseria gonorrhoeae under disparate growth conditions. Frontiers 

in microbiology 5:456. 

212. Fantappie L, Oriente F, Muzzi A, Serruto D, Scarlato V, Delany I. 2011. A novel 

Hfq-dependent sRNA that is under FNR control and is synthesized in oxygen 

limitation in Neisseria meningitidis. Molecular microbiology 80:507-523. 

213. Loh E, Kugelberg E, Tracy A, Zhang Q, Gollan B, Ewles H, Chalmers R, Pelicic 

V, Tang CM. 2013. Temperature triggers immune evasion by Neisseria meningitidis. 

Nature 502:237-240. 

214. Cahoon LA, Seifert HS. 2013. Transcription of a cis-acting, noncoding, small RNA 

is required for pilin antigenic variation in Neisseria gonorrhoeae. PLoS pathogens 

9:e1003074. 

215. Jackson LA, Pan JC, Day MW, Dyer DW. 2013. Control of RNA stability by NrrF, 

an iron-regulated small RNA in Neisseria gonorrhoeae. Journal of bacteriology 

195:5166-5173. 

216. Zhang Z, Qi S, Tang N, Zhang X, Chen S, Zhu P, Ma L, Cheng J, Xu Y, Lu M, 

Wang H, Ding SW, Li S, Wu Q. 2014. Discovery of replicating circular RNAs by 

RNA-seq and computational algorithms. PLoS pathogens 10:e1004553. 

217. Tsai CH, Liao R, Chou B, Palumbo M, Contreras LM. 2015. Genome-wide 

analyses in bacteria show small-RNA enrichment for long and conserved intergenic 

regions. Journal of bacteriology 197:40-50. 

218. Wassarman KM, Zhang A, Storz G. 1999. Small RNAs in Escherichia coli. Trends 

in microbiology 7:37-45. 

219. Raghavan R, Kacharia FR, Millar JA, Sislak CD, Ochman H. 2015. Genome 

rearrangements can make and break small RNA genes. Genome biology and 

evolution 7:557-566. 

220. Righetti F, Narberhaus F. 2014. How to find RNA thermometers. Frontiers in 

cellular and infection microbiology 4:132. 

221. Creecy JP, Conway T. 2015. Quantitative bacterial transcriptomics with RNA-seq. 

Current opinion in microbiology 23C:133-140. 

222. Fonseca NA, Marioni J, Brazma A. 2014. RNA-Seq gene profiling--a systematic 

empirical comparison. PloS one 9:e107026. 

223. Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, 

Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, 

Nahori MA, Soubigou G, Regnault B, Coppee JY, Lecuit M, Johansson J, 

Cossart P. 2009. The Listeria transcriptional landscape from saprophytism to 

virulence. Nature 459:950-956. 

224. Rasmussen S, Nielsen HB, Jarmer H. 2009. The transcriptionally active regions in 

the genome of Bacillus subtilis. Molecular microbiology 73:1043-1057. 

225. Koide T, Reiss DJ, Bare JC, Pang WL, Facciotti MT, Schmid AK, Pan M, 

Marzolf B, Van PT, Lo FY, Pratap A, Deutsch EW, Peterson A, Martin D, 

Baliga NS. 2009. Prevalence of transcription promoters within archaeal operons and 

coding sequences. Molecular systems biology 5:285. 



90 

 

226. Guell M, van Noort V, Yus E, Chen WH, Leigh-Bell J, Michalodimitrakis K, 

Yamada T, Arumugam M, Doerks T, Kuhner S, Rode M, Suyama M, Schmidt S, 

Gavin AC, Bork P, Serrano L. 2009. Transcriptome complexity in a genome-

reduced bacterium. Science 326:1268-1271. 

227. Selinger DW, Cheung KJ, Mei R, Johansson EM, Richmond CS, Blattner FR, 

Lockhart DJ, Church GM. 2000. RNA expression analysis using a 30 base pair 

resolution Escherichia coli genome array. Nature biotechnology 18:1262-1268. 

228. McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, Tan MH, Hillson NJ, Hu 

P, Shapiro L, McAdams HH. 2007. High-throughput identification of transcription 

start sites, conserved promoter motifs and predicted regulons. Nature biotechnology 

25:584-592. 

229. Sorek R, Cossart P. 2010. Prokaryotic transcriptomics: a new view on regulation, 

physiology and pathogenicity. Nature reviews. Genetics 11:9-16. 

230. Passalacqua KD, Varadarajan A, Ondov BD, Okou DT, Zwick ME, Bergman 

NH. 2009. Structure and complexity of a bacterial transcriptome. Journal of 

bacteriology 191:3203-3211. 

231. Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, Hinton 

JC, Vogel J. 2008. Deep sequencing analysis of small noncoding RNA and mRNA 

targets of the global post-transcriptional regulator, Hfq. PLoS genetics 4:e1000163. 

232. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas 

S, Reiche K, Hackermuller J, Reinhardt R, Stadler PF, Vogel J. 2010. The 

primary transcriptome of the major human pathogen Helicobacter pylori. Nature 

464:250-255. 

233. Yoder-Himes DR, Chain PS, Zhu Y, Wurtzel O, Rubin EM, Tiedje JM, Sorek R. 

2009. Mapping the Burkholderia cenocepacia niche response via high-throughput 

sequencing. Proceedings of the National Academy of Sciences of the United States of 

America 106:3976-3981. 

234. Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R. 2010. A single-base 

resolution map of an archaeal transcriptome. Genome research 20:133-141. 

235. Szafranska AK, Oxley AP, Chaves-Moreno D, Horst SA, Rosslenbroich S, 

Peters G, Goldmann O, Rohde M, Sinha B, Pieper DH, Loffler B, Jauregui R, 

Wos-Oxley ML, Medina E. 2014. High-resolution transcriptomic analysis of the 

adaptive response of staphylococcus aureus during acute and chronic phases of 

osteomyelitis. mBio 5. 

236. Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD, Yu L, Assefa SA, 

He M, Croucher NJ, Pickard DJ, Maskell DJ, Parkhill J, Choudhary J, 

Thomson NR, Dougan G. 2009. A strand-specific RNA-Seq analysis of the 

transcriptome of the typhoid bacillus Salmonella typhi. PLoS genetics 5:e1000569. 

237. Irnov I, Sharma CM, Vogel J, Winkler WC. 2010. Identification of regulatory 

RNAs in Bacillus subtilis. Nucleic acids research 38:6637-6651. 

238. Dugar G, Herbig A, Forstner KU, Heidrich N, Reinhardt R, Nieselt K, Sharma 

CM. 2013. High-resolution transcriptome maps reveal strain-specific regulatory 

features of multiple Campylobacter jejuni isolates. PLoS genetics 9:e1003495. 

239. Behrens S, Widder S, Mannala GK, Qing X, Madhugiri R, Kefer N, Abu 

Mraheil M, Rattei T, Hain T. 2014. Ultra deep sequencing of Listeria 

monocytogenes sRNA transcriptome revealed new antisense RNAs. PloS one 

9:e83979. 



91 

 

240. Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S. 2003. 

Global analysis of small RNA and mRNA targets of Hfq. Molecular microbiology 

50:1111-1124. 

241. Chao Y, Papenfort K, Reinhardt R, Sharma CM, Vogel J. 2012. An atlas of Hfq-

bound transcripts reveals 3' UTRs as a genomic reservoir of regulatory small RNAs. 

The EMBO journal 31:4005-4019. 

242. Schielke S, Frosch M, Kurzai O. 2010. Virulence determinants involved in 

differential host niche adaptation of Neisseria meningitidis and Neisseria 

gonorrhoeae. Medical microbiology and immunology 199:185-196. 

243. Pagliarulo C, Salvatore P, De Vitis LR, Colicchio R, Monaco C, Tredici M, Tala 

A, Bardaro M, Lavitola A, Bruni CB, Alifano P. 2004. Regulation and differential 

expression of gdhA encoding NADP-specific glutamate dehydrogenase in Neisseria 

meningitidis clinical isolates. Molecular microbiology 51:1757-1772. 

244. Daddaoua A, Krell T, Ramos JL. 2009. Regulation of glucose metabolism in 

Pseudomonas: the phosphorylative branch and entner-doudoroff enzymes are 

regulated by a repressor containing a sugar isomerase domain. The Journal of 

biological chemistry 284:21360-21368. 

245. Novichkov PS, Laikova ON, Novichkova ES, Gelfand MS, Arkin AP, Dubchak I, 

Rodionov DA. 2010. RegPrecise: a database of curated genomic inferences of 

transcriptional regulatory interactions in prokaryotes. Nucleic acids research 

38:D111-118. 

246. Steuten B, Schneider S, Wagner R. 2014. 6S RNA: recent answers--future 

questions. Molecular microbiology 91:641-648. 

247. Ramrath DJ, Yamamoto H, Rother K, Wittek D, Pech M, Mielke T, Loerke J, 

Scheerer P, Ivanov P, Teraoka Y, Shpanchenko O, Nierhaus KH, Spahn CM. 
2012. The complex of tmRNA-SmpB and EF-G on translocating ribosomes. Nature 

485:526-529. 

248. Peluso P, Herschlag D, Nock S, Freymann DM, Johnson AE, Walter P. 2000. 

Role of 4.5S RNA in assembly of the bacterial signal recognition particle with its 

receptor. Science 288:1640-1643. 

249. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. 1983. The RNA 

moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849-857. 

250. Snyder LA, Saunders NJ. 2006. The majority of genes in the pathogenic Neisseria 

species are present in non-pathogenic Neisseria lactamica, including those designated 

as 'virulence genes'. BMC genomics 7:128. 

251. Hagen TA, Cornelissen CN. 2006. Neisseria gonorrhoeae requires expression of 

TonB and the putative transporter TdfF to replicate within cervical epithelial cells. 

Molecular microbiology 62:1144-1157. 

252. Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, 

Gardner PP, Bateman A. 2013. Rfam 11.0: 10 years of RNA families. Nucleic 

acids research 41:D226-232. 

253. Chubukov V, Gerosa L, Kochanowski K, Sauer U. 2014. Coordination of 

microbial metabolism. Nature reviews. Microbiology 12:327-340. 

254. Holten E. 1974. Glucokinase and glucose 6-phosphate dehydrogenase in Neisseria. 

Acta pathologica et microbiologica Scandinavica. Section B: Microbiology and 

immunology 82:201-206. 



92 

 

255. Holten E, Jyssum K. 1974. Activities of some enzymes concerning pyruvate 

metabolism in Neisseria. Acta pathologica et microbiologica Scandinavica. Section B: 

Microbiology and immunology 82:843-848. 

256. del Castillo T, Ramos JL, Rodriguez-Herva JJ, Fuhrer T, Sauer U, Duque E. 

2007. Convergent peripheral pathways catalyze initial glucose catabolism in 

Pseudomonas putida: genomic and flux analysis. Journal of bacteriology 189:5142-

5152. 

257. Tunio SA, Oldfield NJ, Ala'Aldeen DA, Wooldridge KG, Turner DP. 2010. The 

role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria 

meningitidis adherence to human cells. BMC microbiology 10:280. 

258. Hebeler BH, Morse SA. 1976. Physiology and metabolism of pathogenic neisseria: 

tricarboxylic acid cycle activity in Neisseria gonorrhoeae. Journal of bacteriology 

128:192-201. 

259. Morse SA, Hebeler BH. 1978. Effect of pH on the growth and glucose metabolism 

of Neisseria gonorrhoeae. Infection and immunity 21:87-95. 

260. Catenazzi MC, Jones H, Wallace I, Clifton J, Chong JP, Jackson MA, 

Macdonald S, Edwards J, Moir JW. 2014. A large genomic island allows Neisseria 

meningitidis to utilize propionic acid, with implications for colonization of the 

human nasopharynx. Molecular microbiology 93:346-355. 

261. Schoen C, Kischkies L, Elias J, Ampattu BJ. 2014. Metabolism and virulence in 

Neisseria meningitidis. Frontiers in cellular and infection microbiology 4:114. 

262. Leyn SA, Li X, Zheng Q, Novichkov PS, Reed S, Romine MF, Fredrickson JK, 

Yang C, Osterman AL, Rodionov DA. 2011. Control of proteobacterial central 

carbon metabolism by the HexR transcriptional regulator: a case study in Shewanella 

oneidensis. The Journal of biological chemistry 286:35782-35794. 

263. Sorensen KI, Hove-Jensen B. 1996. Ribose catabolism of Escherichia coli: 

characterization of the rpiB gene encoding ribose phosphate isomerase B and of the 

rpiR gene, which is involved in regulation of rpiB expression. Journal of bacteriology 

178:1003-1011. 

264. Yamamoto H, Serizawa M, Thompson J, Sekiguchi J. 2001. Regulation of the glv 

operon in Bacillus subtilis: YfiA (GlvR) is a positive regulator of the operon that is 

repressed through CcpA and cre. Journal of bacteriology 183:5110-5121. 

265. Hager PW, Calfee MW, Phibbs PV. 2000. The Pseudomonas aeruginosa 

devB/SOL homolog, pgl, is a member of the hex regulon and encodes 6-

phosphogluconolactonase. Journal of bacteriology 182:3934-3941. 

266. Kim J, Jeon CO, Park W. 2008. Dual regulation of zwf-1 by both 2-keto-3-deoxy-

6-phosphogluconate and oxidative stress in Pseudomonas putida. Microbiology 

154:3905-3916. 

267. Chang DE, Smalley DJ, Tucker DL, Leatham MP, Norris WE, Stevenson SJ, 

Anderson AB, Grissom JE, Laux DC, Cohen PS, Conway T. 2004. Carbon 

nutrition of Escherichia coli in the mouse intestine. Proceedings of the National 

Academy of Sciences of the United States of America 101:7427-7432. 

268. Chavarria M, Fuhrer T, Sauer U, Pfluger-Grau K, de Lorenzo V. 2013. Cra 

regulates the cross-talk between the two branches of the phosphoenolpyruvate : 

phosphotransferase system of Pseudomonas putida. Environmental microbiology 

15:121-132. 

269. Vogel J, Sharma CM. 2005. How to find small non-coding RNAs in bacteria. 

Biological chemistry 386:1219-1238. 



93 

 

270. Altuvia S. 2007. Identification of bacterial small non-coding RNAs: experimental 

approaches. Current opinion in microbiology 10:257-261. 

271. Ramesh A, Winkler WC. 2014. Metabolite-binding ribozymes. Biochimica et 

biophysica acta 1839:989-994. 

272. Miyakoshi M, Chao Y, Vogel J. 2015. Regulatory small RNAs from the 3' regions 

of bacterial mRNAs. Current opinion in microbiology 24C:132-139. 

273. Beisel CL, Storz G. 2011. The base-pairing RNA spot 42 participates in a 

multioutput feedforward loop to help enact catabolite repression in Escherichia coli. 

Molecular cell 41:286-297. 

274. Beisel CL, Updegrove TB, Janson BJ, Storz G. 2012. Multiple factors dictate 

target selection by Hfq-binding small RNAs. The EMBO journal 31:1961-1974. 

275. Egan SM. 2002. Growing repertoire of AraC/XylS activators. Journal of 

bacteriology 184:5529-5532. 

276. Folster JP, Shafer WM. 2005. Regulation of mtrF expression in Neisseria 

gonorrhoeae and its role in high-level antimicrobial resistance. Journal of 

bacteriology 187:3713-3720. 

277. Hollander A, Mercante AD, Shafer WM, Cornelissen CN. 2011. The iron-

repressed, AraC-like regulator MpeR activates expression of fetA in Neisseria 

gonorrhoeae. Infection and immunity 79:4764-4776. 

278. Fantappie L, Scarlato V, Delany I. 2011. Identification of the in vitro target of an 

iron-responsive AraC-like protein from Neisseria meningitidis that is in a regulatory 

cascade with Fur. Microbiology 157:2235-2247. 

279. Kellogg DS, Jr., Peacock WL, Jr., Deacon WE, Brown L, Pirkle DI. 1963. 

Neisseria Gonorrhoeae. I. Virulence Genetically Linked to Clonal Variation. Journal 

of bacteriology 85:1274-1279. 

280. Koeberling O, Delany I, Granoff DM. 2011. A critical threshold of meningococcal 

factor H binding protein expression is required for increased breadth of protective 

antibodies elicited by native outer membrane vesicle vaccines. Clinical and vaccine 

immunology : CVI 18:736-742. 

281. Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. 

Journal of molecular biology 166:557-580. 

282. Studier FW, Moffatt BA. 1986. Use of bacteriophage T7 RNA polymerase to direct 

selective high-level expression of cloned genes. Journal of molecular biology 

189:113-130. 

283. Sambrook J FE, Maniatis T. 1989. Molecular cloning: a laboratory manual. Cold 

Spring Harbor Laboratory 2nd ed. 

284. Ieva R, Alaimo C, Delany I, Spohn G, Rappuoli R, Scarlato V. 2005. CrgA is an 

inducible LysR-type regulator of Neisseria meningitidis, acting both as a repressor 

and as an activator of gene transcription. Journal of bacteriology 187:3421-3430. 

285. Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome biology 

10:R25. 

286. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. 2012. Artemis: an 

integrated platform for visualization and analysis of high-throughput sequence-based 

experimental data. Bioinformatics 28:464-469. 

287. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using 

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-

408. 



94 

 

288. Klock HE, Lesley SA. 2009. The Polymerase Incomplete Primer Extension (PIPE) 

method applied to high-throughput cloning and site-directed mutagenesis. Methods in 

molecular biology 498:91-103. 

289. Delany I, Spohn G, Rappuoli R, Scarlato V. 2001. The Fur repressor controls 

transcription of iron-activated and -repressed genes in Helicobacter pylori. Molecular 

microbiology 42:1297-1309. 

290. Maxam AM, Gilbert W. 1977. A new method for sequencing DNA. Proceedings of 

the National Academy of Sciences of the United States of America 74:560-564. 

291. Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization 

prediction. Nucleic acids research 31:3406-3415. 

292. Ferguson GP, Roop RM, 2nd, Walker GC. 2002. Deficiency of a Sinorhizobium 

meliloti BacA mutant in alfalfa symbiosis correlates with alteration of the cell 

envelope. Journal of bacteriology 184:5625-5632. 

293. Seib KL, Oriente F, Adu-Bobie J, Montanari P, Ferlicca F, Giuliani MM, 

Rappuoli R, Pizza M, Delany I. 2010. Influence of serogroup B meningococcal 

vaccine antigens on growth and survival of the meningococcus in vitro and in ex vivo 

and in vivo models of infection. Vaccine 28:2416-2427. 

 


	Thesis Giacomo frontespizio
	Thesis Giacomo dichiarazione iniziale
	Thesis Giacomo merge_v1.4_final
	1 Abstract
	2 Introduction
	2.1 Meningococcal disease
	2.2 Neisseria meningitidis: pathogen and pathogenesis
	2.2.1 The pathogen

	Figure 1  Immuno-gold labelling and transmission electron microscopy of Neisseria meningitidis. Analysis of the strain was performed with antisera raised against the NadA adhesin. Scale bars: 200 nm (19).
	Figure 1 Global distribution of invasive meningococcal serogroups. Graphical representation of serogroup-specific incidence in different geographical areas of the world (adapted from www.meningitisinfo.com).
	2.2.2 Colonization and invasion
	2.2.3 Virulence factors

	Figure 3 Meningococcal cell compartments. Schematic representation of the different bacterial compartments and of the main components of the outer membrane, together with their known functions (adapted from (6)).
	2.3 Meningococcal vaccines
	2.4 Genetics of N. meningitidis
	2.5 Gene regulation and adaptation to the host environment
	2.5.1 Genome plasticity
	2.5.2 Transcriptional regulators
	2.5.3 Small regulatory RNAs
	2.5.4 Identification of novel sRNAs

	2.6 Objective of the study

	3 Results I
	3.1 Global analysis of Neisseria meningitidis expression in response to glucose
	3.2 NMB1389, a HexR transcriptional regulator
	Figure 5 Transcriptional profile of N. meningitidis MC58 in response to glucose. (A) The relative ratios of the microarray competitive hybridizations are shown for glucose-responsive expression (MC58 +Glc versus MC58 -Glc). Differentially expressed  g...
	Table 1 List of genes differentially expressed in the ΔhexR mutant strain in the absence or in the presence of glucose.
	aMicroarray results are average values from three separate experiments (p ≤ 0.05).
	Figure 6 Validation of the ΔhexR microarray data. (A) Comparison of microarray (grey bars) and qRT-PCR (black bars) expression data for six selected genes, under glucose-lacking (left) or glucose-replete (right) conditions. (B) Comparison of qRT-PCR e...
	3.2.1 HexR directly binds to edd and zwf promoter regions
	3.2.2 In silico prediction of N. meningitidis HexR DNA-binding consensus sequence

	Figure 7 (cont.) HexR directly binds to the promoter regions of genes involved in the central carbon metabolism. (A) Genetic organization of hexR locus and sequence of zwf-edd intergenic region. Bent arrows indicate operon transcriptional start sites ...
	3.2.3 HexR binding affinity is not altered by KDPG (2-keto-3-deoxy-6-phosphogluconate)

	Figure 8 HexR binding to the promoter region of zwf is unaffected by addition of phosphosugars. (A) DNase I footprinting of HexR binding to zwf promoter region. Bars indicate regions protected against DNase I digestion by HexR. Increasing concentratio...
	3.2.4 HexR deletion does not alter N. meningitidis resistance to oxidative stress
	3.2.5 HexR deletion impairs survival of N. meningitidis during infection in vivo

	Figure 10 Deletion of hexR impairs survival during infection in vivo. Individual competitive indices (CI) from intraperitoneal challenge of infant rats with N. meningitidis WT and hexR-KO strains at a 1:1 ratio are shown. Circles indicate individual a...

	4 Results II
	4.1 Deep sequencing analysis of N. meningitidis identifies novel putative small RNAs
	Figure 11 Examples of RNA sequencing profiles for known small RNAs. Read mapping (upper panel), schematic representation of locus (lower panel) and Northern blot (right panel) for the regulatory sRNAs NrrF (A) and AniS (B), as well as the two housekee...
	Table 2 List of sRNAs identified by manual curation of the RNA sequencing dataset.
	a : > and < indicate the forward and the reverse strand, respectively .
	b : genomic coordinate of the first nucleotide giving a signal peak in the RNA sequencing dataset (MC58 genome)
	c : genomic coordinate of the last nucleotide giving a signal peak in the RNA sequencing dataset (MC58 genome).
	d : Fagnocchi et al., PLoS One submitted
	4.1.1 Validation of novel meningococcal small RNAs
	4.1.2 Deletion of selected sRNAs impairs meningococcal fitness in vivo

	Figure 13 Experimental validation of novel meningococcal small RNAs. Northern blot analysis (left), read mapping (upper right) and schematic representation of locus (lower right) for newly discovered N. meningitidis MC58 sRNAs. GC, mid-log sample; Dip...
	Figure 13 (continued) Experimental validation of novel meningococcal small RNAs. Northern blot analysis (left), read mapping (upper right) and schematic representation of locus (lower right) for newly discovered N. meningitidis MC58 sRNAs. GC, mid-log...
	Figure 14 Deletion of sRNAs impairs meningococcal fitness in vivo. (A) Northern blot validation of the indicated sRNAs KO strains. RNAs were extracted from N. meningitidis  WT and relative KO strains each grown in the condition of maximal sRNA express...
	4.2 sRNA1880-1881 is a novel small RNA unique to meningococcus that closely associates with pathogen-specific genes
	Figure 15 Validation of sRNA1880-1881 and generation of sRNA KO strain. (A) Schematic representation of sRNA1880-1881 locus and its expression profile on RNAseq. White and grey arrows indicate ORFs and sRNAs, respectively. Putative promoters are indic...
	Figure 16 sRNA1880-1881 is unique to meningococcus and closely associated with pathogen-specific genes. Schematic representation of sRNA1880-1881 locus and its conservation across Neisseria species. White and grey arrows indicate ORFs and sRNAs, respe...
	Figure 17 Evidence for in-strain duplication of sRNA1880-1881. (A) PCR amplification strategy for sRNA1880-1881 locus. (B) Schematic representation of expected locus sequence based on MC58 genome data and experimental results for sequencing of main IG...
	4.2.1 sRNA1880-1881 is not part of a regulatory network under in vitro conditions
	4.2.2 Expression of sRNA1880-1881 limits transcription of neighboring genes in vitro.

	Figure 19 Expression of sRNA1880-1881 limits transcription of neighboring genes in vitro. (A) Schematic representation of sRNA1880-1881 locus and its expression profile on RNAseq. Solid and striped arrows indicate ORFs and sRNA, respectively. (B) Sche...

	Figure 18 sRNA1880-1881 is not part of a regulatory network under in vitro conditions. (A) Northern blot showing expression of sRNA1880-1881 compared to the known regulated sRNA NrrF. (B) Genetic makeup of the MC58 sRNA KO strain used for microarray e...
	5 Discussion
	Figure 20 Model of glucose- and HexR-mediated regulation in N. meningitidis. Schematic representation of the main metabolic pathways affected by glucose availability. Genes significantly up- (red) and down-regulated (green) by glucose are shown. Genes...

	6 Materials and Methods
	6.1 Bacterial strains and culture conditions
	6.2 Construction of mutant and complementation strains
	6.3 RNA preparation
	6.4 Northern blot
	6.5 Microarray procedures, hybridization and analysis
	6.6 RNA sequencing
	6.7 Quantitative real-time PCR (qRT-PCR ) experiments
	6.8 Expression and purification of recombinant HexR
	6.9 DNase I Footprinting
	6.10 Bioinformatic analysis of the HexR binding site
	6.11 Bioinformatic analyses of small RNAs
	6.12 Amplification and sequencing of NMB1880-1881 intergenic region
	6.13 Disc diffusion viability assays
	6.14 In vivo infant rat model
	6.15 Ethics statement
	Table 3 Plasmids and strains used in this study.
	Table 4 Oligonucleotides used in this study.
	a: underscored letters indicate restriction enzyme sites.
	Table 4 (continued) Oligonucleotides used in this study.
	a: underscored letters indicate restriction enzyme sites.

	7 Bibliography




