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Abstract

THE idea of balancing the resources spent in the acquisition and
encoding of natural signals strictly to their intrinsic information

content has interested nearly a decade of research under the name
of compressed sensing. In this doctoral dissertation we develop some
extensions and improvements upon this technique’s foundations, by
modifying the random sensing matrices on which the signals of interest
are projected to achieve different objectives.

Firstly, we propose two methods for the adaptation of sensing
matrix ensembles to the second-order moments of natural signals.
These techniques leverage the maximisation of different proxies for
the quantity of information acquired by compressed sensing, and are
efficiently applied in the encoding of natural signals with minimum-
complexity digital hardware.

Secondly, we focus on the possibility of using compressed sensing
as a method to provide a partial, yet cryptanalysis-resistant form of
encryption. In this context, we also show how a random matrix
generation strategy with a controlled amount of perturbations can
be used to distinguish between multiple user classes with different
quality of access to the encrypted information content.

Finally, we explore the application of compressed sensing in the
design of a multispectral imager by implementing an optical scheme
for compressive imaging. This design entails a coded aperture array
and Fabry-Pérot spectral filters. The signal recoveries obtained by
processing real-world measurements show promising results, that leave
room for an improvement in terms of an accurate calibration of the
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sensing matrix as applied by the devised imager at the optical level.







Acknowledgements

APPROACHING the defence of a doctoral thesis is a privilege and a
magical moment: after slightly more than three years of rushing

between paper drafts, absurd reviews, small successes and plenty of
unfinished ideas, it’s time to look back and thank the people who have
led me in this here and now.

First and foremost, this thesis would not have been possible without
the guides: Prof. Riccardo Rovatti and Prof. Gianluca Setti. You have
supervised me in my efforts with attention and sheer interest, and have
been two very distinct, yet equally great role models, that in many
senses have shaped and enriched my scientific character.

In this adventure of a thesis, I also had many great comrades who
made laboratory life challenging, stimulating and fun: Salvatore
Caporale, Mauro Mangia, Fabio Pareschi, Carlos Formigli, Javier
Haboba. Dear friends, I did learn from you a lot; sharing doubts,
scepticism, different attitudes and brilliant ideas was an important part
of this experience that, I hope, has left you as much as it has left me.

During my 2014 visiting period at IMEC in Leuven, Belgium (the
first research experience abroad, leaving me wanting for more) I have
been hosted by incredibly kind, friendly and expert scientists. It really
was a defining experience, for which I would like to thank Andy
Lambrechts, Bert Geelen, and the rest of the Integrated Imaging team
(Klaas, Pilar, Bart, Carolina, Murali, Geert, Richard). At that time, I
also had the pleasure of working with Prof. Gauthier Lafruit, who
involved me to participate in the fascinating endeavour that is only
partly reported in the final Chapter of this thesis; the same gratitude

ix



x

goes to Prof. Laurent Jacques (who also kindly accepted to review this
thesis) and Kévin Degraux.

I would also like to thank the Reading Committee for providing
many helpful comments, as well as suggestions for future improve-
ments upon this thesis.

On a more personal note, my whole family (a certain black
cat included) has been supportive throughout this experience, and
deserves enormous thanks. I finally apologise to my dearest friends
and loved ones, for showing understanding when I devoted more
and more spare time to finishing papers rather than nurturing our
relationships and shared passions; thank you for making every bit of
time unique.







Table of Contents

List of Figures xv

List of Statements xviii

List of Acronyms xxi

Introduction 1

1 Elements of Sparse Signal Models and Compressed Sensing 7
1.1 Low-Dimensional Signal Models . . . . . . . . . . . . . 11
1.2 Sensing Operators and their Properties . . . . . . . . . 23
1.3 Signal Recovery Algorithms . . . . . . . . . . . . . . . 36

I Adaptive and Efficient Matrix Designs for Com-
pressed Sensing 51

2 Maximum Energy Sensing Matrix Designs for Localised
Signals 53
2.1 Sparse and Localised Signals . . . . . . . . . . . . . . . 54
2.2 Rakeness and the Rationale of Energy Maximisation . 58
2.3 Maximum Energy Sensing Matrix Designs . . . . . . . 62
2.4 Performance Evaluation . . . . . . . . . . . . . . . . . 73

3 Low-Complexity Digital Signal Compression by Com-
pressed Sensing 77
3.1 Lossy Compression Schemes for Biosignals . . . . . . . 79
3.2 Performance Evaluation . . . . . . . . . . . . . . . . . 86

4 Maximum Entropy Sensing Matrix Designs for Localised
Signals 93

xiii



xiv TABLE OF CONTENTS

4.1 Compressed Sensing with Deterministic Ensembles . . 94
4.2 Entropy Considerations on Localised Signals . . . . . . 95
4.3 Maximum Entropy Sensing Matrix Designs . . . . . . . 96
4.4 Performance Evaluation . . . . . . . . . . . . . . . . . 99

II Low-Complexity Security by Compressed Sensing 107

5 Average Recovery Performances in the Presence of Ran-
dom Matrix Perturbations 109
5.1 Compressed Sensing with Matrix Perturbations . . . . 110
5.2 Average Performances with Matrix Perturbations . . . 113
5.3 Performance Evaluation . . . . . . . . . . . . . . . . . 115

6 Low-Complexity Multiclass Encryption by Compressed
Sensing 123
6.1 Principles of Multiclass Encryption . . . . . . . . . . . 125
6.2 Recovery Error Guarantees and Bounds . . . . . . . . . 131
6.3 Performance Evaluation . . . . . . . . . . . . . . . . . 142

7 A Statistical Cryptanalysis of Compressed Sensing 153
7.1 Security Limits . . . . . . . . . . . . . . . . . . . . . . 153
7.2 Achievable Security Properties . . . . . . . . . . . . . . 155

8 A Computational Cryptanalysis of Compressed Sensing 167
8.1 A Theory for Known-Plaintext Attacks . . . . . . . . . 168
8.2 Signal Recovery-Based Class-Upgrade Attacks . . . . . 188
8.3 Performance Evaluation . . . . . . . . . . . . . . . . . 192

III A Multispectral Compressive Imager by Random
Convolution 199

9 A Multispectral Compressive Imager by Random Convo-
lution 201
9.1 Imaging by Random Convolution . . . . . . . . . . . . 203
9.2 Out-of-Focus Random Convolution . . . . . . . . . . . 208
9.3 Design and Implementation . . . . . . . . . . . . . . . 215
9.4 Performance Evaluation . . . . . . . . . . . . . . . . . 220

Conclusions 229

Bibliography 235



List of Figures

1.1 A standard Nyquist-rate sensing scheme . . . . . . . . . . 9
1.2 A generic compressed sensing scheme . . . . . . . . . . . 9
1.3 The mathematical elements that define the framework of

compressed sensing . . . . . . . . . . . . . . . . . . . . . 10
1.4 The “Fresh Fruit” MS sample image . . . . . . . . . . . . . 19
1.5 Representation of a MS image on a sparsity basis obtained

by Kronecker product of a 2D Haar DWT and a DCT basis 20
1.6 Evaluation of the compressible and low-rank behaviour of

a MS image . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.7 Empirical distribution of the singular values of the RGE . . 31
1.8 Empirical distribution of the singular values of the RBE . . 32
1.9 The Donoho-Tanner phase transition curve . . . . . . . . . 35
1.10 Geometric interpretation of LLS and OLS . . . . . . . . . . 43
1.11 Geometric interpretation of BP and BPDN . . . . . . . . . 44

2.1 A centred multivariate Gaussian mixture defined on two
subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2 Probability of successful recovery by a selection of maxi-
mum energy measurements . . . . . . . . . . . . . . . . . 61

2.3 Synthesis of maximum energy random sensing matrices . 67
2.4 Empirical distribution of the singular values of an exem-

plary aRGE . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.5 A comparison of the sequences of eigenvalues output from

the solution of maximum energy optimisation problems . 70
2.6 The minimum number of measurements needed by an

exemplary maximum energy sensing matrix design to attain
probability 0.9 of successful reconstruction . . . . . . . . . 72

2.7 Empirical phase transition boundaries for maximum energy
aRGE versus RGE . . . . . . . . . . . . . . . . . . . . . . . 74

xv



xvi LIST OF FIGURES

3.1 A standard sensor node – processing node pair . . . . . . 78
3.2 Block diagram of the three evaluated compression schemes 80
3.3 A digital hardware implementation of the CS encoding

stage with RBE matrices . . . . . . . . . . . . . . . . . . . 83
3.4 Correlation matrices related to a maximum energy aRBE

encoding matrix design . . . . . . . . . . . . . . . . . . . 85
3.5 Average SNR for a lossy compression based on CS with

different encoding matrices and quantisation policies . . . 88
3.6 Achieved code rates of the evaluated compression schemes:

first quantisation policy . . . . . . . . . . . . . . . . . . . 90
3.7 Achieved code rates of the evaluated compression schemes:

second quantisation policy . . . . . . . . . . . . . . . . . . 91

4.1 Empirical PDFs of two orthonormal projections of natural
images and their Gaussianity . . . . . . . . . . . . . . . . 101

4.2 Signal recovery of handwritten digits from maximum and
non-maximum entropy sensing matrices . . . . . . . . . . 102

4.3 Signal recovery of electrocardiographic tracks from maxi-
mum and non-maximum entropy sensing matrices . . . . 104

5.1 MSNR curves used to set m beyond the phase transition of
a perfectly informed BP . . . . . . . . . . . . . . . . . . . 116

5.2 Comparison of the MSNR estimate with the recovery
performances under DGA perturbation . . . . . . . . . . . 118

5.3 Comparison of the MSNR estimate with the recovery
performances under DUM perturbation . . . . . . . . . . . 119

5.4 Comparison of the MSNR estimate with the recovery
performances under SSF perturbation . . . . . . . . . . . 120

6.1 An overview of two-class encryption by CS . . . . . . . . . 126
6.2 Encoding matrix generator architecture . . . . . . . . . . 130
6.3 A single-transmitter, multiple-receiver multiclass CS network130
6.4 Empirical evaluation of the perturbation constants for a

two-class recovery error upper bound . . . . . . . . . . . . 140
6.5 Multiclass CS of speech signals . . . . . . . . . . . . . . . 145
6.6 Multiclass CS of ECG signals . . . . . . . . . . . . . . . . . 147
6.7 Multiclass CS of images . . . . . . . . . . . . . . . . . . . 150

7.1 Outcome of second-level KS statistical tests to distinguish
between two orthogonal plaintexts x′,x′′ . . . . . . . . . . 159



LIST OF FIGURES xvii

7.2 Estimated Kullback-Leibler divergence between the proba-
bility distributions of two ciphertext elements correspond-
ing to different original signals . . . . . . . . . . . . . . . 161

7.3 Empirical evaluation of the convergence rate constant . . 163

8.1 A two-class encryption scheme and the known-plaintext
attacks being analysed from an eavesdropper (Eve) and a
second-class user (Steve) . . . . . . . . . . . . . . . . . . 170

8.2 Empirical average number of solutions for Eve’s KPA
compared to the theoretical approximation of (8.4) . . . . 174

8.3 Gaussian approximation of the expected number of solutions176
8.4 Empirical average number of solutions for Eve’s KPA at

Hamming distance h from the true one, compared to the
theoretical approximation of (8.9) . . . . . . . . . . . . . 182

8.5 Empirical average number of solutions for Steve’s KPA
compared to the theoretical approximation of (8.16) . . . 186

8.6 Average SNR performances of a class-upgrade known-
ciphertext attack using signal recovery under matrix un-
certainty algorithms . . . . . . . . . . . . . . . . . . . . . 190

8.7 Effectiveness of Eve and Steve’s KPA in recovering a hidden
ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.8 Effectiveness of Eve and Steve’s KPA in recovering hidden
image blocks . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.1 A FP-filtered sensor array . . . . . . . . . . . . . . . . . . 203
9.2 Optical scheme of a panchromatic compressive imager by

out-of-focus random convolution . . . . . . . . . . . . . . 208
9.3 Optical scheme of a multispectral compressive imager by

out-of-focus random convolution . . . . . . . . . . . . . . 210
9.4 Simulated recovery performances of a multispectral com-

pressive imager by out-of-focus random convolution . . . 213
9.5 Pictures of the designed imaging system on the optical table 217
9.6 Point Spread Function estimation for the out-of-focus

multispectral compressive imager . . . . . . . . . . . . . . 219
9.7 Recovered panchromatic images as a function of the

undersampling rate . . . . . . . . . . . . . . . . . . . . . . 223
9.8 Recovered MS image slices using 25% of the Nyquist-rate

measurements . . . . . . . . . . . . . . . . . . . . . . . . 225
9.9 Recovered MS image slices using 50% of the Nyquist-rate

measurements . . . . . . . . . . . . . . . . . . . . . . . . 226



List of Statements

1.1 Theorem (WKS Sampling Theorem [36]) . . . . . . . . 8
1.1 Definition (Kolmogorov Complexity [39]) . . . . . . . 11
1.2 Definition (p-norm) . . . . . . . . . . . . . . . . . . . . 12
1.3 Definition (k-sparse signal) . . . . . . . . . . . . . . . 12
1.4 Definition ((k, ϑ)-compressible signal) . . . . . . . . . 14
1.5 Definition (Total Variation) . . . . . . . . . . . . . . . 15
1.6 Definition (Mixed (p, q)-norm) . . . . . . . . . . . . . . 16
1.7 Definition (Jointly k-sparse signals) . . . . . . . . . . . 17
1.2 Theorem (Singular value decomposition) . . . . . . . . 17
1.8 Definition ((%̌, ϑ)-low rank signals) . . . . . . . . . . . 18
1.9 Definition (Restricted Isometry Property [12]) . . . . . 24
1.1 Problem (Computation of the k-RIC) . . . . . . . . . . 25
1.10 Definition (Coherence [46]) . . . . . . . . . . . . . . . 26
1.11 Definition (Sub-Gaussian random variable) . . . . . . 29
1.12 Definition (Sub-Gaussian Random Vector) . . . . . . . 29
1.3 Theorem (Singular Values of RsGEs with i.i.d. rows [82,

Theorem 5.39]) . . . . . . . . . . . . . . . . . . . . . . 30
1.4 Theorem (Singular Values of RMEs with i.i.d. entries

[85, Theorem 1]) . . . . . . . . . . . . . . . . . . . . . 30
1.5 Theorem (RIP of the RsGE [82]) . . . . . . . . . . . . 33
1.2 Problem (Linear Least-Squares) . . . . . . . . . . . . . 38
1.6 Theorem (Uniqueness of a k-sparse solution [15,106]) 39
1.3 Problem (Sparsest Solution of a Linear System) . . . . 39
1.4 Problem (Oracle Least-Squares) . . . . . . . . . . . . . 39
1.5 Problem (Basis Pursuit) . . . . . . . . . . . . . . . . . 40
1.6 Problem (Basis Pursuit with Denoising) . . . . . . . . . 41
1.7 Problem (Least Absolute Shrinkage and Selection Oper-

ator) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.8 Problem (Signal Recovery by Convex Optimisation) . . 45
1.7 Theorem (Exact Solution by BP (via coherence) [106]) 46

xviii



LIST OF STATEMENTS xix

1.8 Theorem (Exact Solution by BP (via the RIP) [64,
Theorem 1.1]) . . . . . . . . . . . . . . . . . . . . . . 46

1.9 Theorem (Stable Recovery by BPDN from Noisy Mea-
surements [64, Theorem 1.2]) . . . . . . . . . . . . . . 47

2.1 Definition (Localisation [2]) . . . . . . . . . . . . . . . 57
2.2 Definition (Rakeness (single R.V. case [29])) . . . . . . 58
2.3 Definition (Rakeness (multiple R.V. case)) . . . . . . . 59
2.1 Problem (Maximum Energy Sensing Matrix Design (i.i.d.

rows case)) . . . . . . . . . . . . . . . . . . . . . . . . 62
2.1 Proposition (Eigenvalue form of Problem 2.1) . . . . . 63
2.2 Proposition (Closed-form Solution of Problem 2.1) . . 64
2.2 Problem (Maximum Energy Sensing Matrix Design

(general case)) . . . . . . . . . . . . . . . . . . . . . . 65
2.3 Proposition (Particular cases of Problem 2.2) . . . . . . 65
2.4 Definition (Anisotropic Random Gaussian Ensemble) . 66
2.4 Proposition (Synthesis of an aRGE) . . . . . . . . . . . 66
2.5 Definition (Anisotropic Random Bernoulli Ensemble) . 67
2.5 Proposition (Synthesis of an aRBE by the arcsine law) 67
2.3 Problem (Maximum Energy Sensing Matrix Design

(with minimum allocation constraint)) . . . . . . . . . 71

4.1 Problem (Maximum Entropy Sensing Matrix Design
(deterministic rows case)) . . . . . . . . . . . . . . . . 96

5.1 Definition (Perturbation Constants [91]) . . . . . . . . 111
5.1 Theorem (Stable Recovery by BPDN in the Presence of

Perturbations [91, Theorem 2]) . . . . . . . . . . . . . 111

6.1 Theorem (Second-class recovery error lower bound
(non-asymptotic case)) . . . . . . . . . . . . . . . . . . 133

6.2 Theorem (Second-class recovery error lower bound
(asymptotic case)) . . . . . . . . . . . . . . . . . . . . 133

7.1 Proposition (Non-Perfect Secrecy of CS [26]) . . . . . 154
7.1 Definition (Asymptotic spherical secrecy) . . . . . . . . 156
7.2 Proposition (Asymptotic spherical secrecy of i.i.d. RsGE

encoding matrices) . . . . . . . . . . . . . . . . . . . . 157
7.3 Proposition (Rate of convergence with i.i.d. RsGE

encoding matrices) . . . . . . . . . . . . . . . . . . . . 164

8.1 Problem (Subset-Sum Problem) . . . . . . . . . . . . . 171
8.1 Proposition (Eve’s Known-Plaintext Attack) . . . . . . 172



xx LIST OF STATEMENTS

8.1 Theorem (Expected number of solutions for Eve’s KPA) 173
8.2 Theorem (Expected number of solutions for Eve’s KPA

at a given Hamming distance from the true one) . . . . 177
8.2 Problem (γ-cardinality Subset-Sum Problem) . . . . . 183
8.2 Proposition (Steve’s Known-Plaintext Attack) . . . . . 184
8.3 Theorem (Expected number of solutions for Steve’s KPA)185



List of Acronyms

aBPDN Analysis BPDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

AES Advanced Encryption Standard . . . . . . . . . . . . . . . . . . . . . 123

APD Automatic Peak Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 148

aRBE Anisotropic Random Bernoulli Ensemble . . . . . . . . . . . . . 67

aRGE Anisotropic Random Gaussian Ensemble . . . . . . . . . . . . . 66

ASR Automatic Speech Recognition . . . . . . . . . . . . . . . . . . . . . 146

AWGN Additive White Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . 74

BPDN Basis Pursuit with Denoising . . . . . . . . . . . . . . . . . . . . . . . . . 41

BP Basis Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

CDF Cumulative Distribution Function . . . . . . . . . . . . . . . . . . 162

CoSaMP Compressive Sampling Matching Pursuit . . . . . . . . . . . .144

CRC Consecutively Recognised Characters . . . . . . . . . . . . . . . 149

CS Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

DCT Discrete Cosine Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

DFT Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 15

DGA Dense Gaussian Additive . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

DUM Dense Uniform Multiplicative . . . . . . . . . . . . . . . . . . . . . . 116

DWT Discrete Wavelet Transform. . . . . . . . . . . . . . . . . . . . . . . . . .22

ECG Electrocardiographic Track . . . . . . . . . . . . . . . . . . . . . . . . . . 57

EMG Electromyographic Track . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

FPA Focal Plane Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

FP Fabry-Pérot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

FT Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

GAMP Generalised Approximate Message-Passing. . . . . . . . . .144

xxi



xxii LIST OF ACRONYMS

HC Huffman Coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

i.i.d. independent and identically distributed . . . . . . . . . . . . . . 27

KKT Karush-Kuhn-Tucker conditions . . . . . . . . . . . . . . . . . . . . . . 64

KLT Karhunen-Loève Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 17

KPA Known-Plaintext Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

KS Kolmogorov-Smirnov. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160

LASSO Least Absolute Shrinkage and Selection Operator . . . . 42

LFSR Linear Feedback Shift Register . . . . . . . . . . . . . . . . . . . . . . 129

LLS Linear Least-Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

MGF Moment-Generating function . . . . . . . . . . . . . . . . . . . . . . . . 29

MSB Most Significant Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

MSE Mean-Square Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

MS MultiSpectral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

MU-GAMP Matrix Uncertainty-GAMP . . . . . . . . . . . . . . . . . . . . . . . . . . 189

OCR Optical Character Recognition . . . . . . . . . . . . . . . . . . . . . . 149

OLS Oracle Least-Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ONB Orthonormal Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

PCM Pulse Code-Modulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

PDF Probability Density Function . . . . . . . . . . . . . . . . . . . . . . . . . 29

PFE Partial Fourier Ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

PHE Partial Hadamard Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . 28

PMF Probability Mass Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

PRNG Pseudo-Random Number Generator . . . . . . . . . . . . . . . . 125

PSD Positive-Semidefinite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

PSF Point Spread Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203

RBE Isotropic Random Bernoulli Ensemble . . . . . . . . . . . . . . . 27

RGE Isotropic Random Gaussian Ensemble . . . . . . . . . . . . . . . .27

k-RIC Restricted Isometry Constant of order k . . . . . . . . . . . . . . 24

RIP Restricted Isometry Property . . . . . . . . . . . . . . . . . . . . . . . . .24

RME Random Matrix Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

R.P. Random Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

RsGE Random sub-Gaussian Ensemble . . . . . . . . . . . . . . . . . . . . .28



LIST OF ACRONYMS xxiii

RTE Isotropic Random Ternary Ensemble . . . . . . . . . . . . . . . . . 28

R.V. Random Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

r.v. Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

SLM Spatial Light Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

SNR Signal-to-Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

SPGL1 Spectral Projected Gradient for `1 minimisation . . . . . . 42

SPIHT Set Partitioning In Hierarchical Trees . . . . . . . . . . . . . . . . 82

SSF Sparse Sign-Flipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

SSP Subset-Sum Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

S-TLS Sparsity-cognisant Total Least-Squares . . . . . . . . . . . . . .189

SVD Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . 17

TV Total Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

UDWT Undecimated DWT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

URA Uniformly Redundant Array . . . . . . . . . . . . . . . . . . . . . . . . 205



List of Symbols

ι The imaginary unit.

Z,Z+ The set of integers and positive integers respec-
tively.

R,C The fields of real and complex numbers respec-
tively.

Rn,Cn An n-dimensional vector space defined over real
or complex numbers respectively.

`p(Z) The Lebesgue space of p-summable sequences.

Lp(R) The Lebesgue space of p-summable functions.

x Functions, variables or constants (lowercase).

X Sets (uppercase).

x Vectors or tensors (boldface, lowercase). x is a
column vector unless specified.

X Matrices (boldface, uppercase).

xj , Xj,l, xj,l,... The j-th element of a vector x, (j, l)-th element
of a matrix, (j, l, . . .)-th element of a tensor.

{·}, {·}+∞j=0 Sets and sequences of mathematical entities such
as indices, variables, vectors, matrices.

| · | The absolute value of the scalar or vector argu-
ment, or the cardinality of a set argument.

· c, ·⊥ The complement of the set, or orthogonal com-
plement of the subspace at the argument.

xxiv



LIST OF SYMBOLS xxv

· T , · S The restriction of the vector or set argument to a
subset of indices collected in a set T . In the case
of matrices, a column submatrix is indicated by
· T , a row submatrix is indicated as · S .

supp (·) The support of the argument over its domain: for
a vector, {j ∈ {0, . . . , n − 1} : xj 6= 0}; for a
function, {u ∈ R : x(u) 6= 0}).

sign (·) The sign operator on a scalar, vector or matrix
argument.

vec (·) The mapping of a tensor at the argument into a
column vector.

diag (·) The column vector corresponding to the diagonal
of a matrix argument, or a diagonal matrix having
the vector argument as its diagonal.

X>, X∗ Matrix or vector transpose (non-Hermitian and
Hermitian, respectively).

X−1, X† The inverse and Moore-Penrose pseudoinverse of
a matrix, respectively.

tr (X) The trace of a matrix.

det(X) The determinant of a matrix.

λmin, λmax, λj(X) The minimum, maximum and j-th eigenvalue of
a matrix (non-increasing order).

σmin, σmax, σj(X) The minimum, maximum and j-th singular value
of a matrix (non-increasing order).

‖X‖2 The spectral norm of a matrix, ‖X‖2 =
√
σmax(X).

‖X‖F The Frobenius norm of a matrix, ‖X‖F =
√

tr (X∗X).

‖X‖∞ The entrywise ∞-norm of a matrix, ‖X‖∞ =
max|Xj,l|.

XY, X ◦Y, X⊗Y The matrix, Hadamard (element-wise) and Kro-
necker product of two matrices X,Y of suitable
dimensions.



xxvi LIST OF SYMBOLS

sed
= ,

svd
= The eigendecomposition of a symmetric matrix

K
sed
= UΛU∗, and singular value decomposition

of a matrix X
svd
= UΣV∗.

In The n-dimensional identity matrix.

0n,1n A column vector or tensor of the specified di-
mensions, whose elements are all zeros or ones,
respectively.

x̂, x̌, x̃ An estimate of a vector x, its best approximation
with |supp x̌| = k, and a quantisation respectively.

P [·] , P̂ [·] The probability, or empirical probability of the
event specified in the argument.

→
dist.

Convergence in distribution.

f(·), f̂(·) The probability density function, or empirical
probability density function of the random vari-
able or vector specified in the argument (joint, if
not otherwise noted).
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INTRODUCTION

THE ubiquitous use of sensor data in modern engineering applica-
tions highlights a large number of cases in which a considerable

amount of resources such as acquisition time, power and analog or
optical hardware are spent to implement relatively high-resolution
sensing interfaces that provide a lossless discrete representation of a
continuously varying quantity of interest.

However, in many cases this representation shows an intrinsic
redundancy that is effectively exploited by data compression algorithms
to reduce the length of the binary string that encodes the salient
information content. This redundancy can be seen as a manifestation
of an underlying stationarity, repeatability, or in general terms structure
that is found in natural signals, with the noteworthy exception of noise.

Among the methods used to highlight such a structure, the
application of linear transforms is widely recognised as a mean to
describe a signal in a domain where it is accurately represented by a
relatively small number of non-zero coefficients. This basic concept
of a sparse signal model leads to understanding that, even prior to its
acquisition, a signal could be accurately described by capturing these
coefficients, whose number or sparsity serves as an index for a signal’s
complexity.

In the last decade the idea that the sensing method used to acquire

1
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a signal should be strictly balanced to this notion of complexity has
gained overwhelming attention under the name of Compressed Sensing
(CS) [11]. This framework for signal acquisition and processing
rephrases the problem of sampling as a dimensionality reduction,
i.e., a linear operator that maps a full-resolution representation of
the signal of interest into an undersampled set of measurements. Some
fundamental theoretical results [12–16] showed that, while such a
dimensionality reduction generally implies inevitable information loss,
when a signal is sufficiently sparse it may also be recovered perfectly
from its undersampled measurements by means of a suitable signal
recovery algorithm.

With even more surprise, a non-adaptive, universal approach to
this dimensionality reduction amounts to applying a suitable random
matrix [17, 18] in the signal domain. In this view CS could be
summarised as the fascinating idea of sensing reality by means of a
random code.

While the rich mathematical foundations of this theory are now
consolidated, “second-generation” issues arise in how this paradigm
should be implemented to address the difficulties and open challenges
of modern scientific data acquisition interfaces, as well as how it could
improve upon the state-of-the-art of engineering applications. In fact,
while theoretical results on CS proliferate in the literature, the actual
implementation of this technique has been slow and cautious for a
number of reasons.

The first reason is that the application of a random code in the
analog or optical domain often leads to non-trivial sensing interface
designs; these have to be justified by remarkable undersampling
regimes paired with accurate recovery of the acquired signal (e.g.,
[19, 20]), or equivalently by the possibility of attaining otherwise
unachievable high resolution with existing technologies, i.e., the so-
called super-resolution.

The second reason is that a sparse signal model per se is often
insufficient to guarantee signal recovery with acceptable performances;
in fact, there is much more structure to leverage in natural signals
than sparsity, which is by itself a strictly deterministic signal model.
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Fortunately, the literature does not fall short of model-based extensions
(see, e.g., [21–23]) of sparsity to improve signal recovery. However, it
is here advocated that with a change in the signal model a modification
of the random code should also follow, i.e., that adaptive sensing
operator designs can lead to higher undersampling rates or equivalently
to more accurate signal recoveries.

The third reason is that CS is effectively applied only when it
truly represents a low-complexity alternative to reducing the resources
spent in tasks that are related to the manipulation and transmission
of sensor data. In fact, while some negative results [24, 25] have
suggested the contrary, an embodiment of CS to encode a signal after
its acquisition holds some value as a non-adaptive technique for lossy
signal compression using an extremely simple multiplierless digital
architecture. In addition, early contributions [12, 26] envision the
possibility of using it as a mean to provide some encryption capabilities
by using random codes, thus integrating some security properties
directly in the sensing process.

Contributions and Outline

This thesis substantially aims at addressing these challenges by means
of some methods and matrix designs that allow the introduction of
specific features in the random code. In particular, we move in the two
directions of efficient and secure Compressed Sensing, where the first
direction indicates the possibility of finding adaptive matrix designs
that efficiently allow the achievement of improved undersampling rates
when compared with those attained by standard CS. On the other
hand, the second direction aims at using CS as a method to provide
a low-complexity encryption that is integrated in its linear encoding
stage.

The general procedure adopted in this work involves the develop-
ment of some theory, methods (at times supported by accurate and
thorough numerical simulation and proof sketches) and heuristics on
(i) how to obtain signal-adaptive sensing matrix designs and (ii) what



4 INTRODUCTION

security properties can be provided in a secure communication scheme
based on CS.

In particular, this work is organised as follows:

I Chapter 1 presents an overview of Compressed Sensing and
its fundamentals, with the aim of providing a standalone
background to this thesis. While no novel material is presented in
this Chapter, its role is essential in agreeing on the notation and
concepts addressed by the author in the rest of this manuscript.

I Part I generally addresses the adaptation of sensing matrices
to the task of acquiring localised signals, i.e., signals with a
strongly non-white correlation matrix. The objective of this
Part is promoting some proxies for the concept of “information
extraction” in the presence of a localised signal. Chapter 2
presents some random sensing matrix designs based on maximis-
ing the compressive measurements’ average energy, a proxy that
is enforced by the concept of rakeness as initially developed
in [27–29]; the author has rephrased this maximisation in
terms of localisation, as formally introduced in [2], and has
provided some substantial evidence that rakeness operates in
absence of noise, on exactly sparse signals and in a fashion that
is linked to localisation. Chapter 3 proposes an application
of maximum energy sensing matrix designs to the task of
encoding biosignals [3,9], showing how a code rate reduction
is possible by means of such adaptive designs with respect to
standard sensing (or encoding) matrices, approaching the rates
of higher-complexity, higher-performances algorithms. Chapter
4 addresses a different perspective in sensing matrix design,
i.e., the problem of finding an optimal subset of deterministic
vectors to form a random matrix by selection in this design space;
the rationale adopted here is a maximisation of the compressive
measurements’ differential entropy as a proxy for the amount of
information embedded into them. This is shown to correspond to
an optimisation problem whose solution yields a sensing matrix
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design which outperforms randomly constructed matrices in the
same design space [4].

I Part II addresses the study of an encryption protocol based on CS
and its sensitivity to matrix perturbations. Chapter 5 discusses
this aspect of sensitivity, and provides a method to evaluate
the average performances of CS under matrix perturbations
[8], e.g., caused by missing information on the sensing matrix.
Chapter 6 exploits this decoder-side sensitivity to introduce a
multiclass encryption scheme [5] by which different users are
provably capable of recovering a signal only up to a prescribed
quality level, thus creating different classes of access to the
information content encoded by the compressive measurements;
this is seen by developing some recovery error bounds for lower-
class users. The matter of assessing the security of such a
simple encryption scheme is addressed separately in Chapter
7 and Chapter 8. The former is concerned with providing
evidence on a statistical cryptanalysis of CS as provided by a
broad class of random matrices, showing how the requirement
for perfect secrecy can be relaxed (both asymptotically and non-
asymptotically) into a notion of secrecy conditioned only on
the power or energy of the plaintext. Chapter 8 focuses on
computational cryptanalysis techniques in the form of Known-
Plaintext Attacks, i.e., once the attacker is provided with one
plaintext-ciphertext pair. This is mutuated by [6]. We will
show by a theoretical analysis (accurately matched by numerical
evidence) that the number of sensing matrix configurations
corresponding to such a pair is very large, and in absence of
side-information a decision in favour of a particular solution
cannot be made. This fact holds, with different solution sets,
for both eavesdroppers and non-perfectly informed, lower-class
users performing an attack to upgrade their recovery quality.

I Part III, solely comprised of Chapter 9, is a treatment on the
design of a multispectral compressive imager, as part of the
collaboration of the author with the Integrated Imagers Division
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of IMEC, Belgium. The designed imager extends the concept
of random convolution [30–32] to the case of multispectral
imaging, with the aim of providing a reduction in the active
pixel count of a specific class of multispectral CMOS sensors [7].
An overview of the challenges in the realisation of a prototype
for this multispectral imaging architecture is presented, along
with the problem of completing its mathematical model by
estimating its Point Spread Function, that is crucial in improving
the attained recovery quality. Some early recovery results are
presented and leave room for future improvement, in pursuit of
a novel multispectral imager design as a candidate application
for Compressed Sensing.



ELEMENTS OF

SPARSE SIGNAL MODELS

AND COMPRESSED SENSING

1

THE problem of accurately acquiring and digitising a continuous
signal, i.e., a source of information in the form of a function

x(u) ∈ R defined, e.g., on a one-dimensional continuum u ∈ R
(such as time) subtends fundamental challenges in empirical sciences,
where experiments that gather knowledge about physical phenomena
require an abundance of measurements. Clearly, these must be
acquired by accurate interfaces between the analog and digital domain,
where most of the information processing, storage and transmission
occurs. Such operations are carried out on samples x(uj) ∈ R that
represent x(u) in a sequence {x(uj)}j∈Z defined on a discrete sampling
grid {uj}j∈Z, uj ∈ R. To complete a digital representation of the
sequence, each sample will be mapped to a symbol in some finite set
or alphabet X that allows a quantisation1 of the continuous-valued
samples as x̃(uj) = Q [x(uj)] ,Q : R→ X . Very generally, this pair of
operations may be denoted as the composition of a sensing operator2

A : L2(R) → `2(Z) depending on the chosen sampling method and
grid, followed by the scalar quantiser Q. These few sentences open

1Only scalar quantisers [33] are assumed by this definition. Vector quantisers [34]
operating on the sequence are normally applied after a first scalar quantisation of a
continuous signal, and lie outside the topics discussed in this thesis.

2The concepts of Lebesgue spaces, p-summable functions and sequences are not
reviewed here but found in [35, Chap. 3].

7
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a number of problems such as: what properties should the sensing
operator A be endowed with in order to determine unequivocally x(u)

by its samples? And what quantiser Q allows the minimum loss of
information with respect to (w.r.t.) continuous-valued samples? The
following result of Whittaker-Kotel’nikov-Shannon (WKS) is a classic,
broadly applicable answer to the first question.

Theorem 1.1 (WKS Sampling Theorem [36]). Let x(u) ∈ L2(R) have
Fourier Transform (FT)

F : L2(R)→ L2(R),F [x] (v)=

∫
R
x(u)e−ι2πuvdu

which is compactly supported, i.e., suppv∈R (|F [x](v)|) ⊆ [−β, β] for
some finite β > 0. Consider a sequence of samples uniformly and
equally spaced by τ > 0, i.e.,

{x(uj)}j∈Z = {x(jτ)}j∈Z

If τ ≤ 1
2β then

x(u) =
∑
j∈Z

x(jτ)sinc
(u
τ
− j
)

(1.1)

Thus, a sufficient condition to ensure that a signal is perfectly
represented by its samples is that the sensing operator A must
not introduce aliasing (i.e., superposition in the FT-domain and
consequent information loss), therefore implying lossless recovery
of x(u) from its samples by the interpolation formula (1.1). Most
modern signal acquisition interfaces therefore operate at or above
the Nyquist rate fN = 2β, so that a finite-length3 observation in
u ∈ [0, n2β ] maps to at least n samples collected in a vector x =[
x(u0) x(u1) · · · x(un−1)

]>
= A[x(u)], u ∈ [0, n2β ]. We let this discrete

signal x ∈ Rn be the Nyquist-rate representation4 of x(u), denoting its
quantised version as x̃ = Q[x] ∈ Xn. When more prior information is

3The careful discussion of a more general sampling theorem is found in [37].
4x is considered a perfect representation of the continuous signal by Theorem 1.1.

Continuous signals and transforms are not used for a large part of this thesis. x is
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x(u)

supp |F [x]| ⊆
[−β, β]

Analog domain

A
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τ ≤ 1
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Alphabet X

x̃
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x

Figure 1.1: A standard Nyquist-rate sensing scheme.

x(u) ≈ x

Low-dimensional
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Linear sensing
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Information-
preserving
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Q

Scalar quantiser

Alphabet Y

∆

Signal recovery
(decoder)

Recovery
guarantees

x̂ ≈ x

Digital domain

y ỹ

Figure 1.2: A generic compressed sensing scheme

available in the form of a signal model alternatives to the conditions of
Theorem 1.1 can be envisioned, by which a smaller number of samples
could suffice to recover a nearly-lossless approximation of the original
signal. Model-based sensing methods that exploit additional priors
on x to select an efficient operator A have been the subject of intense
research in the last decade under the common name of CS [11,38]. The
elements that interact in this mathematical framework are summarised
as follows (see Fig. 1.2, 1.3):

I Low-Dimensional Signal Models: the definition of a sensing
method requires a prior model describing how the information
content in x is distributed (e.g., in a suitable transform domain).
In particular, the classic theory of CS leverages deterministic5

low-dimensional signal models, i.e., signal representations by
which x ∈ Rn truly lies in a subspace with significantly smaller
dimensionality;

I Sensing Operators and Properties: a linear sensing operator
A : Rn → Rm,m < n is used to acquire x, performing a

referred to as the acquired signal or simply the signal.
5In the sense that no explicit hypothesis is made a priori on the probability

distribution of x.
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Figure 1.3: The mathematical elements that define the framework of
compressed sensing.

dimensionality reduction that maps it to a measurement vector
y = A(x) ∈ Rm. The aim of this operation is minimising the
resources spent by the sensing operator. This setting is similar to
many other inverse problems if not for the fact that, since m < n,
the problem of recovering x from y is ill-posed. In spite of this,
the design of A will verify some information-preserving properties
related to the prior model on x and ensuring its bounded-error
recoverability from y;

I Signal Recovery Algorithms: if the above properties are
verified, theoretical guarantees will ensure that an estimate x̂ of
x can be inferred from y by means of suitable signal recovery
algorithms (∆ in Fig. 1.2) even when the measurements are
subject to additive noise, such as that introduced by a quantiser
(Q in Fig. 1.2) yielding ỹ or, e.g., when the sensing operator is
perturbed. Signal recovery is here reviewed in terms of convex
optimisation problems that explicitly enforce a low-dimensional
model in the approximation of x and can be solved by existing
algorithms for this problem class. In addition, fast greedy
algorithms exist to minimise the computational complexity of
signal recovery by accepting a heuristic solution.

Each of the highlighted parts is comprised of a dense, rapidly evolving
literature of which only the fundamentals are reviewed in the following
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Sections as a background to this thesis.

We remark that the purpose of CS is to provide a solid mathematical
background for the design of signal acquisition methods, i.e., describing
new sensing operators and their corresponding signal recovery
procedures prior to any implementation-level consideration. The
emphasis of this review Chapter is on taking a user’s perspective
and understanding the relationships between a plethora of existing
mathematical tools; for this reason, we do not delve at this level
into either technical proofs (well documented in the references) or
specific analog-to-digital or digital-to-digital applications of CS that
will naturally, albeit non-trivially follow.

1.1 Low-Dimensional Signal Models

Among the possible a priori hypotheses that can be made on a signal,
the ones analysed here share a general and common notion of low
complexity, whose motivation may be found in the following definition.

Definition 1.1 (Kolmogorov Complexity [39]). Let Υ be a universal
computer [40] that processes any finite binary string s̃ ∈ {0, 1}ls̃ of
arbitrary length ls̃ providing a description of x̃ ∈ Xn. The Kolmogorov
complexity of x̃ is

min
s̃
ls̃ s.t. Υ(s̃) = x̃

According to this statement, x̃ is only as complex as its shortest
binary description that programs Υ to produce it at the output. This
early, very general and incomputable definition (clearly different from
Shannon’s practical notion of entropy as a probabilistic measure of
information [41]) expresses the idea that the information content in an
object decreases as its intrinsic, deterministic structure (repeatability,
redundancy) increases.

In the case of x ∈ Rn, we here review some deterministic models
in which a signal is described with the least possible number of
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dimensions6, in analogy with Definition 1.1. Deterministic sparse
and low-rank models are here introduced to find low-dimensional
descriptions by which x is accurately and succinctly represented. Many
other methods exist to exploit such structures in the approximation of
a signal; their review is left to [23,43–45] and references therein.

1.1.1 Sparse Signal Models

Firstly, we recall the notion and notation of p-norm.

Definition 1.2 (p-norm). The p-norm (also `p-norm) of a vector x ∈
Rn is defined as

‖x‖p =

n−1∑
j=0

|xj |p
 1

p

(1.2)

Note that for

• p =∞, ‖x‖∞ = maxj∈{0,...,n−1} |xj |;

• p = 0, ‖x‖0 =
∣∣∣suppj∈{0,...,n−1} (x)

∣∣∣ is a pseudo-norm;

• p ≥ 1, (1.2) is a convex function (see [35, Def. 3.1]);

• p ∈ [0, 1), (1.2) is a non-convex function.

We now proceed to reviewing sparse signal models.

Sparse Signals

A straightforward model to define a low-complexity description of x is
based on sparsity, as summarised by the following definition.

Definition 1.3 (k-sparse signal). Consider a sparsity basis or dictionary
of Rn whose vectors (or atoms) {dj}p−1

j=0 are collected in a matrix

D =
[
d0 · · · dp−1

]
∈ Rn×p, p ≥ n.

A signal x ∈ Rn is k-sparse w.r.t. D if there exists a vector s ∈ Rp

6Other noteworthy connections can be made with the statistical principle of
minimum description length [42].
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for which x = D s and ‖s‖0 = k with k � n.

Thus, x is formed by a linear combination of some {dj}j∈T , T =

supp(s) = {j ∈ {0, . . . , p− 1} : sj 6= 0} as x = DT sT . Equivalently, x

is described by s ∈ Σk,Σk ⊂ Rn with

Σk =
⋃

T⊆{0,...,p−1},|T |=k

UT , UT ⊆ Rk

denoting the union of all
(
p
k

)
k-dimensional canonical subspaces

UT . Sparsity is therefore a measure of a signal’s complexity by the
cardinality of its description w.r.t. a suitable transform, in a fashion
similar to Definition 1.1.

A distinction must then be made between sparsity in a basis (p = n)
or an overcomplete dictionary (p > n). In the former case and assuming
an Orthonormal Basis (ONB) the corresponding D is unitary (D−1 =

D∗) and the relation s = D∗x is invertible. In the latter case the
inverse of D is undefined, and x = D s is an underdetermined system
of equations (i.e., a non-injective linear transformation) with infinite
solutions s among which the sparsest is sought [46].

This problem can be tackled by using the prior ‖s‖0 = k to perform
a combinatorial search w.r.t.T , testing whether

s =

sT = D†T x, |T | = k

sT c = 0p−k, T c = {0, . . . , p− 1} \ T
(1.3)

is a solution to x = D s for each of
(
p
k

)
possible supports, noting

that x = DT sT is an overdetermined system of equations (i.e., a non-
surjective linear transformation). However (i) unsurprisingly this test
leads to an NP-hard problem [47] and (ii) even if such a computational
complexity was affordable, uniqueness conditions for sparse solutions
would still have to be proved. Since this problem is analogous to those
imposed by CS, we postpone to Section 1.3 the discussion of when and
how the sparsest s may be found by polynomial-complexity algorithms.
Admitting that they exist, sparsity in such overcomplete dictionaries
often leads to values of k smaller than with an ONB.
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This brief summary of sparse signal modelling is carried out from
the so-called synthesis perspective, referring to the synthesis transform
x = Ds of a pair (D?,D); D? is the corresponding analysis transform
such that s? = D?x (in general, s 6= s?). When overcomplete
dictionaries are considered, searching for either sparse s or s? leads to
very different approximation performances, as noted in the literature
[45, 48–50]. The analysis perspective will be explicitly used and
expanded where needed, along with specifications on how the above
(D?,D) are chosen.

Compressible Signals

While exactly k-sparse representations of x are infrequently found
when sampling physical quantities, it is very often verified that an
accurate k-sparse approximation can be obtained from a non-sparse s

by thresholding all but the k � p elements with the largest absolute
value, i.e., sorting the indices {j0, . . . , jp−1} so that |sj0 | ≥ |sj1 | ≥ . . . ≥
|sjp−1 | and letting

š =

šT = sT , T = {j0, . . . , jk−1}

šT c = 0p−k, T = {0, . . . , p− 1} \ {j0, . . . , jk−1}
(1.4)

More generally, and among many alternatives [43,51], the following
definition indicates when a signal is compressible, i.e., effectively ap-
proximated with high accuracy by a k-sparse representation.

Definition 1.4 ((k, ϑ)-compressible signal). A signal x ∈ Rn is (k, ϑ)-
compressible w.r.t. D if the best k-sparse approximation

š = argmin
ξ∈Σk

‖x−Dξ‖2 (1.5)

is so that
‖x−Dš‖2 ≤ ϑ‖x‖2, ϑ ≥ 0
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This definition indicates that the resulting approximation Signal-to-
Noise Ratio (SNR),

SNRš,s = 20 log10

(
‖s‖2
‖š− s‖2

)
is as large as set by ϑ. In addition, it must be noted that the same
SNR is observed in the signal domain only when D is an ONB. On
the contrary, when D is an overcomplete dictionary the SNRx̌,x of
x̌ = Dš will have to be calculated; moreover, in that case (1.4) will
not necessarily solve (1.5).

This compressibility property has been observed, e.g., in the
representation of natural images by means of a suitable Discrete
Wavelet Transform (DWT, see [52] for a comprehensive review) whose
transform-domain coefficients exhibit a rapid decay in absolute value,
i.e., a relatively small number of them accurately describe the salient
information content in an image. For such non-sparse signals, a notion
of power-law decay may also be used to quantify compressibility (see
the review in [43]).

Total Variation-Sparse Signals

A common alternative to orthonormal transforms such as the Discrete
Fourier Transform (DFT) or DWT is the Total Variation (TV) of x,
defined as follows in the general case of a three-dimensional (3D)
tensor.

Definition 1.5 (Total Variation). Let x ∈ Rn×m×q be a 3D tensor. We
define anisotropic total variation as

‖x‖TV =

n−1∑
i=0

m−1∑
j=0

q−1∑
l=0

|xi+1,j,l − xi,j,l|+

+ |xi,j+1,l − xi,j,l|+ |xi,j,l+1 − xi,j,l| (1.6)
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and isotropic total variation as

‖x‖TVi =
n−1∑
i=0

m−1∑
j=0

q−1∑
l=0

(
|xi+1,j,l − xi,j,l|2+

+|xi,j+1,l − xi,j,l|2 + |xi,j,l+1 − xi,j,l|2
) 1

2 (1.7)

This semi-norm7 measures the piecewise-smoothness of x in its
domain; in this model, a signal can be regarded as sparse w.r.t. TV
if it is piecewise-constant (in the case of images, this is the so-called
“cartoon” model). Clearly, when two-dimensional (2D) images or one-
dimensional signals are considered (1.6), (1.7) will drop the terms
related to the unneeded dimensions. Both (1.6) and (1.7) are widely
used as cost functions for signal recovery since their introduction for
image denoising applications [53].

Joint-Sparse Signals

The simplest case of a sparse signal model capable of leveraging the
dependence between multiple instances of x, collected in the columns
of a matrix X =

[
x0 x1 · · · xw−1

]
,X ∈ Rn×w, is that of joint-sparsity.

The following definition is commonly employed in joint-sparse models.

Definition 1.6 (Mixed (p, q)-norm). The mixed (p, q)-norm of a matrix
X ∈ Rn×w is defined as

‖X‖p,q =

n−1∑
j=0

(
w−1∑
l=0

|X|pj,l

) q
p


1
q

In particular, for p = 2, q = 0 the pseudo-norm

‖X‖2,0 =

∣∣∣∣∣∣ supp
j∈{0,...,n−1}


√√√√w−1∑

l=0

|X|2j,l

∣∣∣∣∣∣
7A basic property of norms is not verified since ‖x‖TV = 0 6=⇒ x = 0n×m×q .
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is non-convex.

The notion of joint-sparsity recalled here is also known in the literature
as JSM-2 [54,55].

Definition 1.7 (Jointly k-sparse signals). A matrix of signal instances
X ∈ Rn×w is jointly k-sparse w.r.t. D if there exists a set of sparse
vectors S ∈ Rp×w for which X = D S and ‖S‖2,0 = k.

Thus, it is assumed that a common k-sparse support is shared between
the representations of multiple instances of the same signal, either
due to their similarity or to physically distinct sensors simultaneously
acquiring the same quantity in a distributed scheme. Extensions of this
model are, e.g., reviewed in [44].

1.1.2 Low-Rank Signal Models

The previously introduced model of joint-sparsity assumed a particular
structure in X = DS by promoting the similarity between the column
supports of S. More generally, factorising a matrix of observations
as a product of structured matrices is ubiquitous in data analysis.
Singular Value Decomposition (SVD)8 is perhaps the most basic of such
methods [56–58].

Theorem 1.2 (Singular value decomposition). Let X ∈ Rn×w be a
rectangular matrix. X admits a singular value decomposition of the
form

X
svd
= UΣV∗ =

%−1∑
j=0

ujσj(X)v∗j

where

• % = rank (X) ≤ min{n,w};

• Σ ∈ Rn×w is a rectangular diagonal matrix collecting the

8It is also widely known as principal components analysis or Karhunen-Loève
Transform (KLT), where SVD is the method used to compute this transform on statistical
data samples.
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singular values σj(X) =
√
λj(X∗X) =

√
λj(XX∗) ≥ 0 in a

non-increasing sequence {σj(X)}min{n,w}−1
j=0 ;

• U ∈ Rn×n, V ∈ Rw×w are unitary matrices collecting the left-
and right-singular vectors of X, i.e., {uj}n−1

j=0 and {vj}w−1
j=0 such

that X vj = σj(X) uj and u∗j X = σj(X) vj respectively.

This statement follows by application of the spectral theorem [59, Chap.
1] to the symmetric matrices XX∗ and X∗X. In addition, a consequent
result of Eckart and Young [60] proves that when X is a %-rank matrix
its best %̌-rank approximation X̌ (in the least-squares sense9) with
%̌ < % is X̌

svd
= UΣ̌V∗, where Σ̌ collects the %̌ largest singular values

in Σ, setting the remaining %− %̌ to 0. A definition of such a low-rank
approximation for multiple signal instances follows.

Definition 1.8 ((%̌, ϑ)-low rank signals). A matrix of signal instances
X has a (%̌, ϑ)-low rank if its best %̌-rank approximation,

X̌ = argmin
Ξ∈Rn×q
%̌=rank(Ξ)

‖Ξ−X‖F
svd
= UΣ̌V∗ =

%̌−1∑
j=0

ujσj(X)v∗j

is such that
‖X̌−X‖F ≤ ϑ‖X‖F , ϑ ≥ 0

Thus, the resulting SNRX̌,X = 20 log10
‖X‖F
‖X̌−X‖F

is as large as set by %̌.

1.1.3 An Example: Low-Dimensional Models of Multispec-
tral Data

As a practical example of sparse signal modelling we here consider the
case of a MultiSpectral (MS) image or cube, i.e., a 3D tensor in which
each voxel represents a light intensity corresponding to two spatial
coordinates and a specific wavelength in the electromagnetic spectrum.
Such data volumes have very large dimensionality, and carry highly

9Minimising the sum of square residuals between an approximation or estimate and
the actual quantity; in this case, ‖X̌−X‖F .
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(a) RGB colour image of the scene.

(b) 3D visualisation of x. The wavelength indices are
mapped to the matching colour; the voxel transparency is
proportional to xi,j,l. Structure in the wavelength domain
can be visually appreciated in the data volume.

Figure 1.4: The “Fresh Fruit” MS sample image.
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(a) 3D visualisation of s. The voxel transparency and colour
are proportional to |si,j,l|.

(b) 3D visualisation of š obtained as the best k = 19073-
sparse approximation so that SNRš,s = 40 dB.

Figure 1.5: Representation of a MS image on a sparsity basis D
obtained by Kronecker product of a 2D Haar DWT and a DCT basis.
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Figure 1.6: Evaluation of the compressible and low-rank behaviour of
a MS image.
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structured information suitable for material and chemical compound
identification purposes.

We here consider the “Fresh Fruit” sample from the SCIEN dataset
[61] as acquired by a high-resolution MS imaging device operating
in the Visible Near-Infrared (VNIR) light range, i.e., sampling light at
a wavelength of 400 ∼ 900 nm. For this example, the MS cube is
resized to x ∈ Rnx×ny×nλ , where nλ = 32 bands are taken in the
Visible (VIS) range (400 ∼ 700 nm), and the spatial resolution is set
to nx × ny = 128 × 128 pixel. This sample is depicted in Red-Green-
Blue (RGB) colour in Fig. 1.4a and visualised as a data volume in Fig.
1.4b.

Such MS cubes may be decomposed by considering the sparsity
basis D as separable by a Kronecker product D = Dx,y ⊗ Dλ of a
spatial-domain basis Dx,y = Dx ⊗Dy and a wavelength-domain basis
Dλ. Provided that all the involved bases are ONBs, D is unitary and
s = D∗vec (x). The optimal choice of these bases will depend on the
spatial- and wavelength-domain nature of the scene being considered.
While it is reasonable to assume Dx,y as a 2D wavelet basis (e.g., Haar
or Daubechies 2D orthonormal wavelets [62]), Dλ depends more
specifically on the spectral properties of the MS cube. As an example,
some gaseous compounds are known to have line spectra (e.g., the
examples in [63]) that may be regarded as sparse in the canonical basis,
Dλ = Inλ . Other MS cubes will require a more careful choice of Dλ

that yields the sparsest approximation in the wavelength domain, such
as scenes that can be sparsely modelled by taking Dλ as the Discrete
Cosine Transform (DCT) since the corresponding spectral signatures
are comprised of smooth profiles.

By choosing Dx,y as the Haar 2D Discrete Wavelet Transform (DWT)
of Rnx×ny , and Dλ as the DCT of Rnλ we obtain the sparse coefficients
s depicted in Fig. 1.5a. While the representation s of x w.r.t. D is not
k-sparse, its best k-sparse approximation š (Fig. 1.5b) obtained by
taking the k = 19073 largest magnitude coefficients has an SNRš,s ≈
40 dB, i.e., only 4% of n = 219 coefficients represent the MS cube with
acceptable dynamic range (Fig. 1.6a); thus, according to Definition
1.4, this signal is (k = 19073, ϑ = 0.01)-compressible.
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Alternatively, we may model each slice of the MS cube (i.e., the
tensor xl ∈ Rnx×ny corresponding to a fixed wavelength index l),
mapping x to X =

[
vec (x0) · · · vec (xnλ−1)

]
∈ Rnxny×nλ . If linear

dependencies exist between the nλ slices X will be rank-deficient,
i.e., % < nλ. The low-rank model of Definition 1.8 allows us to exploit
the redundancy between slices without requiring any knowledge of
the sources (i.e., what spectral signatures combine to form X). For
an example, we apply the SVD to X, yielding the singular values
reported in Fig. 1.6b. Remarkably, by truncating the decomposition
to the %̌ = 4 largest singular values, an approximation X̌ having an
SNRX̌,X > 40 dB is obtained.

Thus, real-world MS cubes are redundant data volumes that comply
with the above low-dimensional signal models, and as such may be
acquired by sensing operators that verify sparsity-related properties
that are introduced in the next Section.

1.2 Sensing Operators and their Properties

As anticipated, x ∈ Rn is here acquired by applyingA : Rn → Rm,m <

n that performs a dimensionality reduction which maps x to y = A(x).
We here let A be linear, therefore corresponding to a sensing matrix
A ∈ Rm×n such that y = A x. This linear encoding on x may be
implemented in the analog domain, as part of the acquisition of a
continuous signal, or in the digital domain, once the samples of x have
already been represented and stored in a quantised form.

Moreover, if x has a k-sparse representation w.r.t. D one may write
y = Ws, W = AD ∈ Rm×p; a recovery algorithm will then be used to
revert this mapping and approximate x by enforcing the sparsity prior.

In this Section we summarise some classical approaches to the
design of sensing matrices which rely on the definition of some
properties to test whether the mapping of s ∈ Σk to y occurs
without loss of information. These will be connected to some essential
performance bounds on sparse signal recovery algorithms, emphasising
the relationship in Fig. 1.3.
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1.2.1 Restricted Isometries

Let us assume for simplicity that D is an ONB of Rn. Since W has
an (n−m)-dimensional kernel (denoted as Ker (W)), the Euclidean
distance between any two s′, s′′ ∈ Rn will not be generally preserved in
the corresponding y′,y′′ ∈ Rm, indicating at least partial information
loss. However, when s′, s′′ ∈ Σk, their distance could still be preserved
w.r.t. the union of subspaces in which they lie. In this view, the choice
of a sensing operator essentially consists in ensuring that W is an
approximate isometry w.r.t. all k-dimensional canonical subspaces of
Rn, i.e., that W must preserve, up to a negligible scaling factor, the
distances between k-sparse vectors. This intuition is formalised in the
Restricted Isometry Property (RIP) [12,64,65] as follows.

Definition 1.9 (Restricted Isometry Property [12]). Let W ∈ Rm×n be
a generic matrix; W is endowed with the RIP of constant δk ∈ [0, 1) if√

1− δk‖s‖2 ≤ ‖Ws‖2 ≤
√

1 + δk‖s‖2 (1.8)

is verified for all s ∈ Σk.

Thus the Restricted Isometry Constant of order k (k-RIC), i.e., δk should
be as close to 0 as possible; in particular, if any two s′, s′′ ∈ Σk of
supports T ′, T ′′ so that T ′ ∩ T ′′ = ∅ are considered, a sufficiently
small value of δ2k will ensure that they will be distinguishable by the
Euclidean distance ‖y′ − y′′‖2 > 0 of their images y′,y′′; in a sense,
this is analogous to a non-aliasing condition on the images of k-sparse
vectors.

In general, finding the value of δk amounts to testing, for all k-
cardinality supports T , if√

1− δT ‖sT ‖2 ≤ ‖WT sT ‖2 ≤
√

1 + δT ‖sT ‖2 (1.9)

holds for some δT = max
{

1− (σmin(WT ))
2
, (σmax(WT ))

2 − 1
}
∈

[0, 1), i.e., to computing the extreme singular values of WT for which

σmin(WT ) ≤ ‖WT sT ‖2
‖sT ‖2

≤ σmax(WT ) (1.10)
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This operation is summarised in the following problem.

Problem 1.1 (Computation of the k-RIC). Let W ∈ Rm×n be a generic
matrix; its k-RIC is the solution of

δk = max
T⊆{0,...,n−1},|T |=k

max
{

1− (σmin(WT ))
2
, (σmax(WT ))

2 − 1
}

As may be expected, testing this property for a generic sensing matrix
requires the computation of the singular values of all its

(
n
k

)
k-column

submatrices, and is NP-hard [66]. Thus, the verification of the
RIP is normally carried out by bounding in probability the extreme
singular values in (1.10) when W is drawn from special Random
Matrix Ensembles (RMEs) as shown in [17,65,67,68] and recalled in
Section 1.2.3. In this view the RIP is only guaranteed in probability,
whereas deterministic constructions of W with this property have been
envisioned in [69–72]. Alternative forms and extensions of it also
appear in [70,73,74].

A number of limits may also be evinced from Definition 1.9, as
aside from not being computable the RIP is defined as a non-adaptive
criterion for k-sparse vectors. In fact (1.9) could hold for W having
generally low δT ≥ max

{
1− (σmin(WT ))

2
, (σmax(WT ))

2 − 1
}

for
typical supports T , with the exception of some critical T which force
δk ≥ δT . Thus, the RIP complies with a worst-case analysis, as will be
often confirmed by numerical evidence on the effective recoverability of
k-sparse vectors. As a consequence RIP-based performance guarantees
are usually strict, and this figure of merit is only recommended for its
theoretical appeal in connection with the properties of RMEs as will
be specified in Section 1.2.3.

1.2.2 Coherence

Another method to assess the information-preserving properties of
sensing matrices is defined as follows.
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Definition 1.10 (Coherence [46]). Let W ∈ Rm×n be a generic matrix
of columns {wj}n−1

j=0 ; we define coherence (also mutual coherence [14])
as

µ = max
(j,l)∈{0,...,n−1}2

j 6=l

|w∗jwl|
‖wj‖2‖wl‖2

or, when W collects the normalised columns of W,

µ = ‖W∗
W − In‖∞ (1.11)

Coherence is essentially an index of linear dependence between the
columns of W and should be made as small as possible as to guarantee
the recoverability of sparse vectors, as cleared out in Section 1.3.

Moreover, the value of µ can be bounded as follows: since

‖W∗
W‖2F ≥

(
tr
(
W
∗
W
))2

m
=
n2

m

and
‖W∗

W‖2F ≤ n+ n(n− 1)µ2

we obtain

µ ∈
[√

n−m
(n− 1)m

, 1

]
This lower bound was found by Welch [75,76] and is achieved when
{wj}n−1

j=0 are so that the off-diagonal entries of W
∗
W are all identical.

A connection with the RIP may also be made by noting that, using
a simple manipulation of (1.8), the k-RIC is also given by

δk = max
T⊆{0,...,n−1},|T |=k

‖W∗
TWT − Ik‖2

Since (1.11) may be written equivalently as

µ = max
T⊆{0,...,n−1},|T |=k

‖W∗
TWT − Ik‖∞

and using the inequality between the entrywise ∞-norm and the
spectral norm, i.e.,

‖W∗
TWT − Ik‖∞ ≤ ‖W

∗
TWT − Ik‖2 ≤ k ‖W

∗
TWT − Ik‖∞



SENSING OPERATORS AND THEIR PROPERTIES 27

it follows that δk ≤ k µ. Thus, a choice of (A,D) so that µ achieves
its lower bound also hints at a low k-RIC, but the bound on δk is not
tight10.

Contrarily to the RIP, coherence has however the benefit of
being computable on any instance of W, and is also related to
the performances of many signal recovery algorithms [46, 78]; it is
therefore recommended as a figure of merit that should be made
as small as possible to guarantee that a generic A and, e.g., an
overcomplete dictionary D allow for the recovery of a sparse vector s.

1.2.3 Sensing Matrices for Compressed Sensing

The properties introduced so far quantify whether W suitably extracts
the information content of a k-sparse s. In particular, both A and
D contribute to the k-RIC and µ; however A is generally chosen in
a form that is convenient at the application level, whereas D is set
depending on the sparsity of x w.r.t. it. To summarize, it is desirable
to choose A independently of D and so that W is still endowed with
either low coherence or the RIP; to do so, rather than recurring to
special deterministic designs W is generally drawn as a random matrix
from one of the RMEs described below.

Random Matrix Ensembles

We here list the most common RMEs known to verify the aforemen-
tioned properties (see [17,65,79]). A normalisation factor (e.g., 1/

√
m

or 1/
√
n) on W may also be considered.

I Isotropic Random Gaussian Ensemble (RGE): W ∈ Rm×n with
independent and identically distributed (i.i.d.) entries following a
univariate Gaussian distribution, i.e., ∀(j, l) ∈ {0, . . . ,m− 1} ×
{0, . . . , n− 1}, Wj,l ∼ N

(
0, 1

m

)
;

I Isotropic Random Bernoulli Ensemble (RBE): W ∈ {−1,+1}m×n

with i.i.d. entries following a symmetric Bernoulli distribution,

10A slightly sharper result may be found by using Gershgorin’s circle theorem [77] as
indicated in [72].
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i.e.,∀(j, l) ∈ {0, . . . ,m − 1} × {0, . . . , n − 1}, P [Wj,l = −1] =

P [Wj,l = +1] = 1
2 ;

I Random sub-Gaussian Ensemble (RsGE): W ∈ Rm×n with either
(i) i.i.d. entries or (ii) i.i.d. row vectors following a sub-Gaussian
distribution, i.e., whose moments are bounded by those of a
suitable Gaussian distribution. One such example, aside from the
RGE and RBE, is the Isotropic Random Ternary Ensemble (RTE),
i.e., W ∈ {−1, 0, 1}m×n with i.i.d. entries distributed as ∀(j, l) ∈
{0, . . . ,m− 1} × {0, . . . , n− 1},P [Wj,l = −1] = P [Wj,l = +1] =
1
6 ,P [Wj,l = 0] = 2

3 ;

I Partial Fourier Ensemble (PFE): W ∈ Cm×n whose rows
{wj}m−1

j=0 are chosen uniformly at random from the basis vectors
of the DFT matrix Fn of entries Fj,l = e−ι

2π
n jl, i.e., W = PΩFn

with PΩ a selection matrix11;

I Partial Hadamard Ensemble (PHE): W ∈ {−1,+1}m×n whose
rows {wj}m−1

j=0 are chosen uniformly at random from the basis
vectors of the Hadamard matrix12 Hn, i.e., W = PΩHn.

Clearly W will have different k-RIC values depending on the chosen
RME, with the RGE generally being taken as a reference for achieving
minimum δk for fixed (m,n). In addition, the sensing matrix applied
on x (i.e., in the signal domain) is A, so for W to belong to the above
ensembles the pair (A,D) must be carefully chosen: in the case of
a PHE (or PFE) either A is drawn from the ensemble and D = In,
vice versa A = PΩ and D = Hn (or Fn); in most other cases A will
be drawn from the above ensembles, and it must be verified that the
rotation of the rows of A caused by D does not significantly increase
δk or µ. It is also worth noting that the RIP can be slightly modified to
include the case of overcomplete D (see [50,80]).

11An m× n selection matrix PΩ is obtained by extracting m rows corresponding to
the random indices in Ω ⊆ {0, . . . , n− 1}, |Ω| = m from the identity matrix In.

12Hadamard matrices of order n, i.e., Hn ∈ {−1,+1}n×n so that H∗nHn = nIn,
were shown to exist for n = 4q, q ∈ Z+. The O(n logn) complexity computation of this
transform requires n = 2q , q ∈ Z+.
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Finally, it must be noted that many other RMEs were shown to have
the above properties: among a growing literature, a proof of the RIP
for circulant random matrices related to convolution operators appears
in [31,81].

Sub-Gaussian Random Matrix Ensembles and the RIP

A common case in which RMEs are endowed with the RIP is that of
RsGEs: the purpose of this Section is to justify this statement with a
sufficient level of detail. In particular, we now specify in a simplified
fashion the elements that form a RsGE.

Definition 1.11 (Sub-Gaussian random variable). Let w ∈ R be a
Random Variable (r.v.) witha Probability Density Function (PDF) f(w)

and µw = 0, and recall the Moment-Generating function (MGF) of a
r.v. g ∼ N (0, σ2), E[eτg] = e

τ2σ2

2 , τ ∈ R; w (f(w)) is a sub-Gaussian
r.v. (distribution) if there exists a finite quantity σ ≥ 0 such that
∀τ ∈ R,E[eτw] ≤ eτ2σ2

.

This definition is extended to Random Vectors (R.V.s) as follows.

Definition 1.12 (Sub-Gaussian Random Vector). Let w ∈ Rn be a R.V.
with PDF f(w); w is sub-Gaussian if for all T ⊆ {0, . . . , n − 1} the
marginal PDFs fwT

(wT ) are sub-Gaussian.

Noteworthy distributions agreeing with this definition are (i) multivari-
ate Gaussian R.V.s, i.e., w ∼ N (µw,Kw) and (ii) symmetric Bernoulli
ones, i.e., w ∈ {−1,+1}n : ∀j ∈ {0, . . . , n − 1},P[wj = −1] = P[wj =

+1] = 1
2 . Thus, constructing a matrix W (or A) as a collection of

sub-Gaussian entries or row vectors forms a RsGE.
Another important property of sub-Gaussian R.V.s is that they

are rotationally invariant [82, Lemma 5.9], i.e., if a R.V. a ∈ Rn is
sub-Gaussian then for any d ∈ Rn \ {0n}, w = a∗d is in turn a
sub-Gaussian r.v. (in analogy with the rotational invariance of the
multivariate Gaussian distribution). This property is crucial since
we have so far referred to W drawn from a RsGE, while A will
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truly be generated by it in practice. Due to rotational invariance,
∀j ∈ {0, . . . ,m − 1}, l ∈ {0, . . . , n − 1}, Wj,l = a∗jdl will still have
a sub-Gaussian distribution, so we may claim that if D is an ONB
W = AD is a RsGE.

The relevance of RsGEs to verifying the RIP follows from the next
statements, which relate the extreme singular values appearing in
(1.10) with specific RsGEs.

Theorem 1.3 (Singular Values of RsGEs with i.i.d. rows [82, Theorem
5.39]). Let W ∈ Rm×k be a RsGE whose rows {wj}m−1

j=0 are i.i.d.
copies of a sub-Gaussian R.V. w ∈ Rk with Kw = Ik. For any τ ≥ 0,

P
[
σmin(W) ≥

√
m− cw

√
k − τ

]
≥ 1− 2e−c

′
wτ

2

P
[
σmax(W) ≤

√
m+ cw

√
k + τ

]
≥ 1− 2e−c

′
wτ

2
(1.12)

with cw, c′w positive constants depending on the MGF of {wj}m−1
j=0 .

In particular, this improves on previous asymptotic results [83–85].

Theorem 1.4 (Singular Values of RMEs with i.i.d. entries [85, Theorem
1]). Let W ∈ Rm×k be a RME whose i.i.d. r.v.s Wj,l are such that
∀(j, l) ∈ {0, . . . ,m−1}×{0, . . . , k−1}, µWj,l

= 0, σ2
Wj,l

= 1,E[W 4
j,l] <

+∞. For m, k →∞ as k/m→ r,

P[
√
m−

√
k ≤ σmin(W) ≤ σmax(W) ≤

√
m+

√
k] ' 1 (1.13)

A numerical evaluation of these singular values’ distribution is reported
for the RGE (Fig. 1.7) and RBE (Fig. 1.8) with m = 28, k =

{2, 4, . . . , 128, 192} and over 220 trials. As can be seen from Fig. 1.7b,
1.8b the extreme singular values detach from 1 for both RMEs as k
approaches m (i.e., the k-RIC corresponding to a submatrix of such
dimensions increases).

aThis definition can be extended to variables with µw 6= 0, however only the
zero-mean case is here reviewed for the sake of simplicity.
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Figure 1.7: Empirical distribution of the singular values of the RGE
corresponding to a k-column submatrix, with m = 28 as k varies.
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By comparing (1.12) (or (1.13)) with (1.9) a strategy to verifying
the RIP in probability emerges. Theorem 1.3 is applied to all k-column
submatrices WT ∈ Rm×k of a RsGE W ∈ Rm×n. Thus WT is plugged
in (1.12), and by taking the union bound over all T the RIP can be
bounded in probability. Omitting the technical details of this proof
(found in [82]) the following result concludes this review of sub-
Gaussian matrix ensembles and their importance for CS.

Theorem 1.5 (RIP of the RsGE [82]). Let W ∈ Rm×n be a RsGE
whose rows {wj}m−1

j=0 are i.i.d. copies of a sub-Gaussian R.V. of Rn

with Kwj
= 1√

m
In. Then for any k ∈ {1, . . . , n} and a value δ ∈ (0, 1)

m ≥ m⇒ P[δk ≤ δ] ≥ 1− 2e−cwmδ
2

m = c′w
k

δ2
log
(
e
n

k

) (1.14)

with cw, c′w positive constants depending on the MGF of {wj}m−1
j=0 .

Thus, once the above constants are found and arbitrary values (δ, k)

are set, it is possible to find a critical value m = O(k log n/k) (i.e., a
minimum number of measurements) for which the RIP is guaranteed
with δk ≤ δ and high probability. Moreover, once A is drawn from a
RsGE to have the RIP, by rotational invariance W maintains the same
k-RIC for any ONB D [65]. Since this choice of A is agnostic of D,
RsGEs are said to provide a universal encoding [17].

Other Ensembles and the RIP

Clearly, the PFE and PHE as mentioned above are not RsGEs
(i.e., attempting to qualify them as such leads to very weak moment
bounds). For these specific RMEs it can be shown by a similar
procedure [82, Theorem 5.71] thatm ≥ m⇒ E[δk] ≤ δ for a minimum
of

m = O
(
k

δ2
log(n) log3(k)

)
(1.15)

randomly selected DFT or Hadamard measurements. By qualitative
comparison of (1.14) with (1.15) it is clear that RsGE matrices are
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capable of providing the RIP with relatively smaller undersampling
rates m/n (although the value of c′w should be validated for finite
dimensions); nevertheless, the low implementation complexity of the
PHE and the PFE will make them appealing alternatives in many
applications.

As a remark, to extend and improve their applicability so that A

can be drawn as a PFE or PHE and D may be arbitrary, an additional
randomisation step may be introduced to produce two new RMEs
by means of a diagonal matrix B ∈ {−1, 0, 1}n×n of i.i.d. non-zero
entries ∀i ∈ {0, . . . , n− 1},P[Bi,i = +1] = P[Bi,i = −1] = 1

2 , i.e., A =

PΩHnB (similarly to [87,88]) and

A = PΩFnB (1.16)

which will be used as a computationally efficient reference in Chapter
9 (this is also known as a spread-spectrum ensemble in [89]).

Summarising, we conclude that the reviewed ensembles show a
common concentration feature that makes (1.8) hold for most s ∈ Rn

with a minimum of m = O(k log n) measurements. This avoids the
verification of δk by Problem 1.1, yet some limits of the RIP approach
stand, as (1.14) and (1.15) depend on some universal constants
which should be anyway numerically verified for finite (m,n) by a
large-scale Monte Carlo simulation. Thus, we will ultimately rely
on a numerical evaluation to find m for the chosen setting based on
the actual capability of recovering s from y = Ws. This empirical
approach is supported by a peculiar geometric behaviour discussed in
the next Section.

1.2.4 Donoho-Tanner Phase Transition

While the properties of Definition 1.9, 1.10 have a simple algebraic
form, the Donoho-Tanner phase transition [18,79,90] requires deeper
mathematical notions. In words, this phase transition is observed when
assessing the solvability of a sparsity-promoting convex optimisation
problem as its dimensions vary. This problem is here kept implicit
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2 for RGE matrices is overlaid in red.

and denoted as a function ∆y=Ws yielding an estimate ŝ that is a
counterimage of the measurements y w.r.t. W.

In more detail, we let W be drawn from a RME and s be any sparse
vector, then consider a diagram (phase space, see Fig. 1.9) reporting the
probability that any instance of y = Ws is solved by ŝ = ∆y=Ws(d, r)

as a function of d = m/n ∈ (0, 1) and r = k/m ∈ (0, 1), i.e., that the
sparse solution to any such underdetermined linear system of equations
is found. A sharp transition curve is empirically observed [79] on the
phase space when evaluating P[ŝ = s]: this curve separates a “0”
region (i.e.,P[ŝ = s] ' 0) from a “1” region (i.e.,P[ŝ = s] ' 1), its
shape depending on the objective of ∆y=Ws as well as the RME from
which W is drawn.

Remarkably, this curve is connected with the number of k-
dimensional faces of a convex polytope Q ⊆ Rn that survive13 after

13Projection by means of W may only reduce the number of faces.
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random projection by W as k-dimensional faces of P = {y ∈ Rm :

y = Ws, s ∈ Q}. In particular, the reference case here takes
Q = {x ∈ Rn : ‖x‖1 ≤ 1} (the n-dimensional equivalent of an
octahedron) and W drawn from the RGE.

Asymptotically in (m,n, k) and as (d, r) vary, the ratio between the
k-dimensional faces of P and Q corresponds to P[ŝ = s], ‖s‖0 = k [79,
Lemma 2.2, Theorem 2.3]. Even more surprisingly, the same behaviour
is empirically observed for finite n at P[ŝ = s] = 1

2 [90] and does
not change substantially for many non-Gaussian RMEs such as those
mentioned in Section 1.2.3.

Aside from the theoretical depth of these results (only outlined here
for the sake of brevity) the practical relevance of this approach is in that
it provides the tightest estimates w.r.t. the recoverability of a k-sparse
s as the dimensions of W vary; this is highlighted in [90, Section
X]. In fact, when compared with the Donoho-Tanner phase transition,
the RIP only provides a lower bound, i.e., it delineates a significantly
smaller “1” region in the phase space [73]. An empirical evaluation
of the phase transition of ∆y=Ws(d, r) w.r.t. W from different RMEs
is in many senses preferable to attempting a computation of the RIP.
The clear drawback of this approach is that it still requires a large
computational effort (i.e., a large-scale Monte Carlo simulation) to
accurately trace the phase space, and it must be repeated for any finite
n.

1.3 Signal Recovery Algorithms

The purpose of the properties introduced in Section 1.2 is to find A

(W) so that the linear encoding y = Ax (y = Ws) robustly embeds
the information in x; in order to revert it, some optimisation problems
are here solved by enforcing one of the signal models in Section 1.1,
yielding an estimate x̂ (or equivalently, of its sparse representation ŝ).
In particular, the models in Definition 1.3-1.5,1.7,1.8 imply non-convex
objective functions. Broadly speaking, convexity is fundamental in the
solution of mathematical programming problems, as it guarantees the
existence of a global minimum and of numerical methods to achieve it
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exactly. Thus, the general strategy adopted to promote such models is
convex relaxation, i.e., their non-convex objective functions are relaxed
into convex ones. A particular emphasis is deserved by the relaxation of
‖ · ‖0, which measures sparsity in Definition 1.3, to ‖ · ‖1. Fundamental
results exist [12, 16] implying the so-called “`0 = `1” equivalence,
i.e., the fact that the k-sparse solution to an underdetermined linear
system can be found by means of this relaxation. Remarkably, the
conditions for this equivalence may be verified in terms of any of the
properties in Section 1.2.

These problems shall also take into account the corruption
caused by additive noise ν ∈ Rm on the measurements, i.e., y =

Ax + ν, noting that this noise term may also be dependent w.r.t. x.
Such disturbances are inevitable when a physical or finite-precision
implementation of a sensing operator is considered. Even in this case,
some guarantees exist [13,64,91] and ensure that at least a bounded-
error approximation ŝ of s can be recovered when y is acquired by a
suitable sensing matrix.

In terms of algorithms to solve such convex problems, different
approaches have been used in this thesis and are explicitly specified
where needed; as a general guideline, once a convex formulation of
a problem is found (eventually testing it with the aid of modelling
languages such as CVX [92]), frameworks such as GUROBI [93]
or CPLEX [94] allow its solution by means of general solvers that
handle linear or quadratic programming (see [95]). In particular, a
variety of solvers is available for problems in continuous, integer or
mixed variables, linear or quadratic objective functions and whose
solution space is a convex set. Although the computational complexity
of such problems is polynomial in their dimensionality, the general
solvers’ computational requirements as n increases suggest that specific
algorithms should be adopted for very large-scale optimisation. In this
context, solvers such as proximal algorithms (see [96,97]) or similarly
projected gradient-based methods [98] have gained popularity for their
efficiency and robustness.

Nevertheless, different perspectives on signal recovery exist, the
most popular alternatives to convex problems being either greedy
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optimisation techniques, i.e., iterative algorithms that promote the
above models by computing a local heuristic (i.e., a proxy) at each
iteration [99–102] as well as probabilistic inference algorithms [22,103–
105]. Since our purpose is to adapt the design of sensing matrices to
specific tasks, only the principles, problems and guarantees of sparse
signal recovery by convex optimisation are reviewed below with the
objective of providing a complete background for a fair evaluation of
special matrix designs.

1.3.1 Sparse Signal Recovery by Convex Optimisation

Sparse Signal Recovery

We now recall some forms of the signal recovery problem that
depend on the amount of information available to the decoder, i.e., the
algorithm that processes y to yield ŝ. Throughout this section, we let
x ∈ Rn, s ∈ Rp : x = Ds,D ∈ Rn×p; y ∈ Rm : y = Ax,A ∈ Rm×n

or equivalently y = Ws,W ∈ Rm×p. A common approach to
approximating the solution of a non-invertible system of equations is
that of linear least-squares, yielding the minimum 2-norm solution by
means of the Moore-Penrose pseudoinverse.

Problem 1.2 (Linear Least-Squares). The Linear Least-Squares (LLS)
solution to an underdetermined linear system of equations y = Ws is

ŝ = argmin
ξ∈Rn

‖ξ‖2 s.t. y = Wξ (1.17)

whose closed-form expression ŝ = W†y.

An interpretation of this problem in R3 is reported in Fig. 1.10a; from
this, it can be evinced that adopting ‖ · ‖2 as the objective function
tends to promote the unique minimum energy solution regardless of
the sparsity of s. Clearly, this does not contemplate the fact that the
exact s is sparse, and ‖ŝ− s‖2 may become arbitrarily large. Thus, this
approach is clearly unsuitable for sparse signal recovery.
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Moving to a formulation that leverages sparsity, once it is known
that a k-sparse solution exists (i.e., that k < m and rank (W) = m), its
unicity must also be verified.

Theorem 1.6 (Uniqueness of a k-sparse solution [15, 106]). Let y =

Ws have a solution s, ‖s‖0 = k and let µ be the coherence of W. If
k < 1

2

(
1 + 1

µ

)
then ∀s′ ∈ Rn, s′ 6= s : y = Ws′, ‖s′‖0 > k.

When such a sparse solution is sought under these basic conditions,
we face the following combinatorial problem.

Problem 1.3 (Sparsest Solution of a Linear System). The sparse
solution to an underdetermined linear system of equations y = Ws is

s = ∆0(y,W) = argmin
ξ∈Rn

‖ξ‖0 s.t. y = Wξ (1.18)

Problem 1.3 is clearly equivalent to testing whether

ξ =

ξT = (WT )†y, T = supp(ξ), |T | = k

ξT c = 0n−k, T c = {0, . . . , n− 1} \ supp(ξ)

is such that y = Wξ for each sparsity level k and over
(
n
k

)
possible

supports T . This problem is also known as `0-minimisation, and is
NP-hard (it is identical to (1.3)). If, however, an oracle supplied
T = supp(s) the problem would be substantially solved.

Problem 1.4 (Oracle Least-Squares). The Oracle Least-Squares (OLS)
solution to an underdetermined linear system of equations y = Ws

where s ∈ Σk and T = supp(s) is known a priori is

ŝ = ∆OLS(y,W, T ) = argmin
ξ∈UT

‖ξ‖2 s.t. y = Wξ (1.19)
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whose closed-form expression

ŝ =

ŝT = (WT )†y, T = supp(s)

ŝT c = 0n−k, T
c

= {0, . . . , n− 1} \ supp(s)
(1.20)

The simple geometry of this problem is reported in Fig. 1.10b: once
the subspace UT in which s lies is known, it can be trivially recovered
as in (1.20). Thus, the problem of inferring it from y is only a matter
of knowing T = supp(s); many algorithms leverage local heuristics
that aim to detect T [46,99,100,107,108].

We now perform a convex relaxation of ‖ · ‖0 in (1.18) by replacing
it with ‖·‖1 (i.e., the closest convex p-norm); in this case, the solution of
the relaxed problem will be an approximation of s, eventually equalling
it under special conditions on the geometry of the underdetermined
system. This relaxed, `1-minimisation problem follows.

Problem 1.5 (Basis Pursuit). The Basis Pursuit (BP) solution to an
underdetermined linear system of equations y = Ws is

ŝ = ∆BP(y,W) = argmin
ξ∈Rn

‖ξ‖1 s.t. y = Wξ (1.21)

The analysis form of this problem is

x̂ = argmin
ξ∈Rn

‖D?ξ‖1 s.t. y = Aξ (1.22)

with D? ∈ Rn×p the corresponding analysis transform.

A geometric intuition of this problem is reported in Fig. 1.11a; it is
now clear that the convex polytope Q anticipated in Section 1.2.4 is
the cross-polytope of Rn that delineates the level curves of the objective
function in (1.21). It may now be specified that the Donoho-Tanner
phase transition is indeed observed for this convex problem, and that
the values of P[s = ∆BP(y,W)] are those that guarantee, at least
in probability, the equivalence ŝ = ∆BP(y,W) = ∆0(y,W) = s. In
particular, the procedure of evaluating the empirical phase transition of
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BP when W is varied for different (m,n, k) will subtend some findings
in this thesis.

Moreover, the analysis form of BP may also be adopted when
overcomplete dictionaries D are considered. In this case the geometry
of the problem is slightly different, as ‖ · ‖1 is not enforced in the
signal domain but in that of D?. TV minimisation also falls in this case,
replacing ‖ · ‖1 by ‖ · ‖TV (evaluated in a suitable number of tensor
dimensions).

The process of acquiring measurements y = Ax + ν about
some quantity x is always, to some extent, subject to noise sources
here summarised as ν ∈ Rm. Such disturbances may be due to
physical-level signal-independent phenomena such as thermal effects
in the acquisition device, as well as signal-dependent ones such as
quantisation, multiplicative noise or miscalibration effects on A. For
this reason the equality condition y = Ax is often relaxed to a data
fidelity constraint, ‖y−Ax‖2 ≤ ε, admitting some uncertainty between
the measurements and the actual solution. This translates into the
following optimisation problem.

Problem 1.6 (Basis Pursuit with Denoising). The Basis Pursuit with
Denoising (BPDN) solution to an underdetermined linear system of
equations y = Ws + ν affected by additive noise such that ‖ν‖2 ≤ ε
is

ŝ = ∆BPDN(y,W, ε) = argmin
ξ∈Rn

‖ξ‖1 s.t. ‖y −Wξ‖2 ≤ ε (1.23)

The analysis form of this problem is

x̂ = argmin
ξ∈Rn

‖D?ξ‖1 s.t. ‖y −Aξ‖2 ≤ ε (1.24)

with D? ∈ Rn×p the corresponding analysis transform.

A geometric intuition of this problem is reported in Fig. 1.11b. There,
the quadratic constraint replaces the flat y = Ws by an n-dimensional
tube of radius ε, Tε. Clearly, the noise threshold ε should be suitably
chosen for each problem instance to exceed ‖ν‖2 so that s is still in
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the solution space of Problem 1.6. Estimating ε is therefore important:
a “genie”-tuning will be mentioned in this thesis, i.e., when ε? = ‖ν‖2
is known exactly for each problem instance.

A further relaxation of BPDN (that in fact preceded it as a method
for sparse statistical regression [109]) is given by the following
problem.

Problem 1.7 (Least Absolute Shrinkage and Selection Operator). The
Least Absolute Shrinkage and Selection Operator (LASSO) solution to an
underdetermined linear system of equations y = Ws or y = Ws + ν

is
ŝ = argmin

ξ∈Rn
‖ξ‖1 + γ‖y −Wξ‖22 (1.25)

for some γ > 0, or

ŝ = argmin
ξ∈Rn

‖y −Wξ‖22 s.t. ‖ξ‖1 ≤ τ (1.26)

for some τ > 0.

It can also be shown that some γ and τ exist for which (1.25) and
(1.26) yield the same solution as BPDN for some noise threshold ε

(see, e.g., [98]).

The main limitation of this approach is clearly the choice of γ (or
τ), as it strongly influences the outcome of LASSO. A popular criterion
involves varying γ in a suitable range to balance the weight between
the first and second addend in (1.25) [110].

The problems introduced so far may all be cast into GUROBI by
simple manipulations: (1.21) is a linear program, while (1.23) is a
quadratically-constrained linear one; (1.26) is a linearly-constrained
quadratic program, while (1.25) is an unconstrained quadratic one.
These problems are also efficiently solved by Spectral Projected Gradient
for `1 minimisation (SPGL1) [111]; such solvers are practically required
for tackling large-scale cases with several thousands of variables in a
relatively small computation time.
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(a) The LLS solution ŝ is found on the smallest ball Bρ`2 =
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(b) The OLS solution ŝ is found on the smallest ball Bρ`2
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the subspace U2 (i.e.,T = {2}).

Figure 1.10: Geometric interpretation of the LLS and OLS problems
in R3.
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ŝ = s
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Wξ‖2 ≤ ε}. The solution on Bρ`2 is also reported.

Figure 1.11: Geometric interpretation of the BP and BPDN problems
in R3.



SIGNAL RECOVERY ALGORITHMS 45

Joint-Sparse and Low-Rank Signal Recovery

The aforementioned problems specifically concentrate on the recovery
of a single sparse vector; the straightforward extension to the case of
recovering multiple sparse vectors from multiple observations collected
as Y = WS,S ∈ Rn×w allows one to envision more advanced models
that promote the solutions’ linear dependence in a convex problem.
In fact, any non-convex mixed norm in Definition 1.6 can be replaced
by the closest convex mixed (p, q)-norm, e.g., ‖Ξ‖2,0 can be relaxed
to ‖Ξ‖2,1 to enforce joint-sparsity on a candidate solution Ξ ∈ Rn×w.
With little effort, the similar notion of group sparsity can also be
promoted [44].

Similarly to Problem 1.3, finding a low-rank approximation X̂,
i.e., minimising the rank of a matrix also leads to an NP-hard problem
in general [112, Section 7.3], the cost function rank (Ξ) being non-
convex. However, it is well known that this cost function can be
relaxed to the nuclear norm ‖Ξ‖∗ =

∑n−1
j=0 σj(Ξ) = tr

(√
Ξ∗Ξ

)
, which

is convex. Along with the other relaxations, this adds to an extended
set of methods to enforce low-dimensional signal models by convex
functions. This general look at signal recovery is given by the following
problem.

Problem 1.8 (Signal Recovery by Convex Optimisation). The solution
Ŝ to a generic signal recovery problem with convex objective on a
convex set is

Ŝ = argmin
Ξ∈Rn×w

P−1∑
i=0

γiPi(Ξ) s.t.

C−1⋂
i=0

Ci(Y,W,Ξ) (1.27)

where {Pi}P−1
i=0 is a family of convex cost functions of weights γi ≥ 0,

while {Ci}C−1
i=0 is a family of convex constraints.

This general problem can be tackled by a number of algorithms; aside
from the aforementioned SPGL1 that effectively applies to a subset of
such problems, proximal algorithms [96, 97] are a class of efficient
iterative solvers with guaranteed convergence for any problem of the
form (1.27); a typical example of such methods is Douglas-Rachford
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splitting [113, 114]. These can be used as solvers once a problem
is suitably cast with its standard “resolvent operators” (namely, the
proximity operator of any objective and projection operator of any
constraint), their review being left to the given references as lying
outside the focus of this thesis.

1.3.2 Recovery Guarantees for Compressed Sensing

We now summarise some results on the recoverability of a single
sparse vector from a small number of measurements. These provide
a connection between signal recovery algorithms, sensing matrix
properties and sparsity. Firstly, a link between the coherence of W and
the recoverability of s is made.

Theorem 1.7 (Exact Solution by BP (via coherence) [106]). Let y =

Ws, s ∈ Σk and W have coherence µ < 1
2k−1 (see Theorem 1.6);

then ŝ = ∆BP(y,W) is so that ŝ = s.

A celebrated result for BP may then be found [13, 64] by relying on
the small k-RIC of the sensing matrix.

Theorem 1.8 (Exact Solution by BP (via the RIP) [64, Theorem 1.1]).
Let y = Ws; and W verify the RIP with constant δ2k <

√
2− 1. Then

ŝ = ∆BP(y,W) is so that

‖ŝ− s‖2 ≤ c0
‖š− s‖1√

k
(1.28)

for a positive constant

c0 = 2
1 + (

√
2− 1)δ2k

1− (
√

2 + 1)δ2k
(1.29)

Thus, if a signal x has an exactly k-sparse representation, and once
W has sufficiently large m to ensure that the k-RIC is smaller than√

2 − 1 (e.g., as in (1.14)) exact, lossless signal recovery is possible
even if m < n, i.e., in an undersampling (or compression, if thought as
a coding scheme) regime. When a signal is (k, ϑ)-compressible, (1.28)
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ensures that the estimate’s recovery error norm w.r.t. the solution s is
at most as large as set by the residual coefficients w.r.t. its k-sparse
approximation. The next Theorem extends (1.28) to evaluate the
worst-case recovery error of ŝ w.r.t. s when the measurements are
affected by additive bounded-energy noise and BPDN is used to decode
them.

Theorem 1.9 (Stable Recovery by BPDN from Noisy Measurements [64,
Theorem 1.2]). Let y = Ws + ν be noisy measurements with additive,
independent noise ν ∈ Rm so that ‖ν‖2 ≤ ε; W verify the RIP with
constant δ2k <

√
2− 1. Then ŝ = ∆BPDN(y,W, ε) is so that

‖ŝ− s‖2 ≤ c0
‖š− s‖1√

k
+ c1ε (1.30)

for

c0 = 2
1 + (

√
2− 1)δ2k

1− (
√

2 + 1)δ2k
, c1 = 4

√
1 + δ2k

1 + (
√

2 + 1)δ2k
(1.31)

An important extension of this Theorem also accounts for cases in
which a perturbation matrix is superimposed to W, and is reviewed in
Chapter 5.

Moreover, Theorems 1.8 and 1.9 are based on the RIP, with their
error norm bounds depending on the actual value of δ2k in the form of
some constants c0(δ2k), c1(δ2k). Nevertheless the provided conditions
are only sufficient, and (1.30) loosely predicts the typical recovery
Mean-Square Errors (MSEs) or SNRs as can be numerically verified by
simple experiments.

Thus, once a signal is k-sparse w.r.t. some ONB D and A is chosen
from a RsGE, a minimum value of m can be anticipated from (1.14) so
that δ2k of W is small enough for Theorems 1.8,1.9 to hold. However,
such a matrix design is limited by the fact that the RIP considers
the worst possible case among all supports of s, regardless of their
actual significance in the instance at hand. We therefore stress the
need to validate the performances of a CS-based approach to signal
acquisition (as in Fig. 1.2) prior to its application by large-scale
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numerical experiments that ensure accurate signal recovery in typical
cases, at least for what concerns the effect of choosing a sensing matrix
against another one.

Finally, the performance index that we will use abundantly in the
rest of this thesis is SNRx̂,x or SNRŝ,s for single instances; to make
some considerations on typical recoveries, we will use the average
recovery SNR

ASNRx̂,x = 20 log10 Ê
[
‖x‖2
‖x̂− x‖2

]
dB (1.32)

or equivalently

ASNRŝ,s = 20 log10 Ê
[
‖s‖2
‖ŝ− s‖2

]
dB (1.33)

where the empirical average Ê[·] is taken over large sets of instances,
against which the performances of a particular recovery algorithm,
sensing matrix or signal class is tested.

Summary

I CS is a mathematical framework that allows for a generalised
view on the problem of sensing a discrete or continuous signal
with an undersampled set of measurements. It leverages the
synergy of low-dimensional signal models, sensing operator
properties and signal recovery algorithms for which recovery
guarantees are provided.

I Low-dimensional signal models provide low-complexity descrip-
tions of natural and man-made signals. The core principle of
sparsity, i.e., the fact that a signal can be decomposed as a
linear combination of a few basis elements, can be declined
into a number of definitions that quantify how well a signal is
represented by a sparse vector in a suitable basis. An extension
to multiple instances is also possible; moreover, low-rank models
conceptually replace sparsity by the rank of a matrix being
recovered. Both models apply to any number of dimensions
as shown in a MS imaging example.
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I The sensing operators used in CS perform a dimensionality
reduction, and cause loss of information in general. A number of
properties, such as the RIP and coherence have been introduced
with the purpose of verifying if a given configuration of a sensing
operator can avoid such information losses w.r.t. a specific signal
class, i.e., that of sparse signals. The RMEs that are commonly
used in CS were briefly reviewed, as well as some insight
on why randomness actually provides a suitable method for
dimensionality reduction.

I Some elementary forms of signal recovery algorithms were
reviewed, in the specific case of convex optimisation problems.
Although not unique, this class of problems and their related
solvers allows for an intuitive geometric analogue as to why
sparsity can be replaced by a convex proxy. In particular, BP and
BPDN will be mentioned as reference decoders several times in
this thesis.

I The fundamental guarantees for an exact solution of BP and a
bounded-error approximation of the original signal by BPDN
were briefly recalled without their technical proof. Their
significance is mostly theoretical, as they provide some loose
bounds that underestimate the typical performances observed
after signal recovery.
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ACCORDING to the connection between Theorems 1.5, 1.8 a
universal design of the sensing matrix A ∈ Rm×n is guaranteed to

preserve the information in x once (i) the sparsity basis or dictionary
D on which x is supposedly k-sparse does not alter its k-RIC, (ii) A

is drawn from a RsGE whose distribution behaves as close as possible
to a RGE, (iii) m ≥ m(k, n) with m essentially determined by the
distribution and dimensions of W as in (1.12).

While this approach holds with no further hypotheses, it does
not leverage very simple structures that are often present in most
natural signals. In fact, if one looks at a k-sparse signal model there
is no explicit mention at how the support or the values of its sparse
representation are statistically distributed, or, e.g., whether its most
significant coefficients are more likely to appear in some supports
rather than others. This has inspired a number of contributions that
focus on exploiting similar statistical properties in signal recovery
[21,22,115]; probabilistic signal models that harness further structure
in a sparse or compressible signal are still a subject of intense research
[23,43]. In addition, since the aforementioned fundamental results of
CS are only stated for compressible signals, providing actual recovery
guarantees based on additional priors is a non-trivial matter.

In this Chapter we aim at adapting a RsGE to the correlation

53
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matrix of a signal Cx (or equivalently of its sparse coefficients
Cs); the rationale of this optimisation is energy maximisation of
the random measurements y = Ax (i.e., y = Ws) as a proxy for
their optimality w.r.t. the chosen signal model; this approach stems
from [2,27,29,116]. In particular, the evidence presented here shows
that (i) natural signals exhibit localisation, i.e., the fact that their
average energy is spread along a few directions in the signal domain
w.r.t. its dimensionality, (ii) maximising the average energy of the
random measurements empirically leads to an observable improvement
in signal recovery by BP, (iii) sensing matrix designs based on
maximising the measurements’ average energy may be devised by
introducing the concept of rakeness and using it to formulate some
optimisation problems; these output the optimal correlation matrix
w.r.t. this criterion for the rows of W, that is therefore generated as
a RME with non-i.i.d. entries. Finally, some considerations on the
RIP of such matrices illustrate the specificity of such an adaptation.
This treatment is completed by some numerical evidence on the phase
transition of BP w.r.t. maximum energy sensing matrices as applied on
sparse and localised signals.

2.1 Sparse and Localised Signals

Deterministic k-sparse signal models essentially make no assumptions
on the statistical properties of either x or s once they are considered
as R.V.s from a suitable probability space1. Without further priors, this
could conform to a case in which each of

(
n
k

)
supports for ‖s‖0 = k

has equal probability; nevertheless, this rarely occurs when the signal
of interest carries information content. We now discuss a simple
simulation model for vectors that are sparse and non-white.

1With slight abuse, random vectors [117] and specific instances share the same
notation and disambiguation is made explicit where needed.
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2.1.1 A Generative Model for Synthetic Sparse and Non-
White Signals

In general, the problem of defining a PDF that generates k-sparse
vectors is non-trivial [23,118]; the purpose of this Section is to define
a PDF associated with a k-sparse and non-white R.V. s, i.e., so that such
a vector can be generated for simulation purposes.

To do so, we let the Probability Mass Function (PMF) of a support
T ⊆ {0, . . . , n− 1} be

P[T = supp(s)] = γT ,
∑

T⊆{0,...,n−1}
|T |=k

γT = 1

For a given value of T , sT is then taken as a R.V. of Rk with suitable
PDF; this method corresponds to generating a multivariate mixture

s ∼
∑

T⊆{0,...,n−1}
|T |=k

γT δ(sT c) f(sT ) (2.1)

where δ(sT c) is the Dirac delta in Rn−k and f(sT ) is the PDF of sT

(i.e., conditioned to the support T ). Moreover, if we let all sT have
mean µsT = 0k, the covariance of s is

Ks =
∑

T⊆{0,...,n−1},|T |=k

γTKsT

As an example, a common way of generating a k-sparse vector takes
γT =

(
n
k

)−1
, sT ∼ N (0k,KsT ) where the covariance matrix KsT =

1
k Ik; thus (2.1) generates k-sparse vectors whose covariance Ks =(
n
k

)−1 (n−1
k−1)
k In = 1

nIn, i.e., this choice generates a white R.V. s.
With the exception of the latter case, (2.1) is impractical to

implement for a large number of supports, yet it serves the purpose
of showing how both the support and coefficient distributions of s

can be controlled, at least with the aim of altering the second-order
moments in Ks: any significant change in the probability assignment
γT or covariance KsT for some T will lead to a non-white k-sparse
R.V., opening the possibility of simulating it.
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Figure 2.1: A centred multivariate Gaussian mixture defined on two
subspaces UT ′ , UT ′′ : samples in T ′ = {0, 1} (blue dots) and T ′′ =
{0, 2} (purple dots); the ellipsoid {s ∈ Rn : s∗K−1

s s = c} for some
c > 0 (overlay).

This approach merely attempts to emulate what happens in natural
signals that verify a sparse signal model in each of their instances, yet
maintain a non-white correlation matrix. Thus, the simulation method
discussed here may be avoided in favour of using real-world datasets,
since the adaptation discussed in this Chapter requires the knowledge
of Ks (or Cs).

2.1.2 Localisation

We now move the focus to discussing the correlation matrix of a R.V.
s regardless of its sparsity. This symmetric Positive-Semidefinite (PSD)
matrix contains valuable information on it: by the spectral theorem for
symmetric matrices Cs

sed
= UsΛsU

∗
s the n orthonormal eigenvectors in

Us describe how the R.V. is distributed in Rn. In particular, if s follows
an elliptically-contoured distribution2 Cs is directly related to the
shape of the level curves of f(s); if not, the eigenvectors in Us simply
indicate the directions along which s spreads out on-average. For this

2In a simplified fashion, whose PDF f(s) ∝ g(s∗K−1
s s) for g verifying some

integrability conditions [119].
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geometric intuition it is common to adopt the following terminology:
we define zero-mean (i.e., centred) white R.V.s as isotropic, and any
non-centred or non-white R.V. as anisotropic.

To fix ideas, one could consider a centred k-sparse vector s

distributed as (2.1) over two possible supports with probability γT ′ =

γT ′′ = 1
2 , setting the others to 0. An instance of such a vector would

then occupy two subspaces UT ′ , UT ′′ and have mixture covariance
Ks = 1

2

(
KsT ′ + KsT ′′

)
. In the case of a centred Gaussian mixture this

example is reported in Fig. 2.1 where it is visually appreciated that the
distribution is strongly anisotropic, as the depicted instances of s are
indeed on-average concentrated along the eigenvector corresponding
to λmax(Ks). In this context we introduce the following definition to
quantify the anisotropy of s.

Definition 2.1 (Localisation [2]). Let s ∈ Rn be a R.V. with correlation
matrix Cs

sed
= UsΛsU

∗
s of eigenvalues Λs and average energy Es =

tr (Cs). We define localisation as

L(s) = tr

[(
Λs

Es
− 1

n
In

)2
]

(2.2)

Thus L(s) simply measures a deviation in the suitably normalised
eigenvalues of Cs from the white case. Note that L(s) ∈ [0, n−1

n ],
i.e., minimum localisation corresponds to the white case, i.e., ∀j ∈
{0, . . . , n− 1}, λj (Cs) = Es

n , while maximum localisation is obtained
when rank (Cs) = 1, that is when λmax(Cs) = λ0(Cs) = Es and
∀j ∈ {1, . . . , n− 1}, λj(Cs) = 0.

To see if natural signals are localised, we let D be an ONB and
x = Ds, so L(x) = L(s). Thus, we may evaluate their localisation by
populating a matrix X ∈ Rn×w with a large number w of instances of
the R.V. x, and estimate quite simply the sample correlation matrix
as Ĉx = 1

wXX∗, which is then used to compute L(x). Applying
this procedure to a variety of Electrocardiographic Tracks (ECGs) and
Electromyographic Tracks (EMGs) from [120], as well as 10 ms-long
speech segments from [121] and greyscale images of letters generated
as in [29] yields the values reported in Table 2.1.
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Signal Class Sampling Rate n L(x)

ECG 720 Hz 360 0.187
Speech segments 20 KHz 200 0.069

EMG 400 Hz 200 0.021
Grayscale printed letters 24× 24 pixel 576 0.016

Table 2.1: Estimation of L(x) for some real-world signal classes.

From this empirical evaluation we may safely conclude that natural
signals are indeed localised according to Definition 2.1, and that when
Cx (or Cs) is a stationary property of n-dimensional R.V.s extracted
from the process that generates x an adaptation of the sensing matrix
w.r.t. this feature is indeed possible, as explained in the next Section.

2.2 Rakeness and the Rationale of Energy Maximisa-
tion

The problem of extracting the maximum amount of information from
a k-sparse and localised R.V. s involves defining (i) a figure of merit
to evaluate the RME from which W is drawn as a sensing operator
and (ii) a verification that once the chosen figure of merit attains its
optimal value, this corresponds to an improvement in terms of MSE
(i.e., of SNRŝ,s) attained by a suitable signal recovery algorithm. We
here discuss the choice of rakeness as this figure.

2.2.1 Rakeness

The definition of rakeness was developed in a number of contributions
[2,27–29] to reach the following forms.

Definition 2.2 (Rakeness (single R.V. case [29])). Let s,w ∈ Rn be
independent R.V.s with correlation matrices Cs and Cw respectively.
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We define rakeness asa

Rs(w) = Ew,s[|w∗s|2] =
n−1∑
j=0

n−1∑
l=0

(Cw ◦Cs)j,l = tr (CwCs) (2.3)

Note that (2.3) amounts to the Frobenius scalar product between Cw

and Cs. The above definition is extended to a set of m R.V.s as follows.

Definition 2.3 (Rakeness (multiple R.V. case)). Let s ∈ Rn be a R.V.
with correlation matrix Cs; W ∈ Rm×n be a RME where each row is
drawn from a different R.V. in {wi}m−1

i=0 with correlation matrix Cwi
;

W and s be independent. We define rakeness as

Rs(W) = EW,s[‖Ws‖22] =

m−1∑
i=0

Rs(wi) (2.4)

Thus, (2.3) measures the average energy extracted from s by means of
linear projection over another R.V.. Clearly, Definition 2.2 applies to
evaluating this quantity for a single R.V. or a sensing matrix W drawn
from a RME with i.i.d. rows. Definition 2.3 merely extends the same
concept to RMEs with non-i.i.d. rows.

2.2.2 The Rationale of Energy Maximisation

We have previously mentioned the role of the RIP in CS as a method
to ensure that the pairwise distances between any two s′, s′′ ∈ Σk

are preserved. Clearly, the essential purpose of this property is that
‖W(s′ − s′′)‖22 = 0 never occurs for any two k-sparse vectors – a
complete aliasing of their images y′ = y′′ would otherwise imply no
recovery algorithm is able to retrieve s′, s′′. In fact, an asymmetric
formulation of the RIP takes this into account [73] and distinguishes
between the lower and upper bound of (1.8); as a partial guarantee
that y′ 6= y′′ for s′, s′′ ∈ Σk, we could require that

P
[
‖W(s′ − s′′)‖22 ≥ ζ‖s′ − s′′‖22

]
' 1, ζ ∈ (0, 1] (2.5)

aThe final form uses the identity 1∗n (U ◦V) 1n = tr (UV∗) [59, Section 5.7].
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for some ζ as close to 1 as possible. Rather than a probability bound for
sparse vectors in Σk, we further approximate the concept of (2.5) as
follows. Assuming that s′ and s′′ are independent copies of a R.V. s with
mean µs and covariance Ks we evaluate EW,s′,s′′

[
‖W(s′ − s′′)‖22

]
. By

expanding this in the case of a centred RME W whose rows have
correlations and covariances both equal to {Cwi

}n−1
i=0 , we see that

EW,s′,s′′
[
‖W(s′ − s′′)‖22

]
= 2

(
RW(s)−

m−1∑
i=0

µ∗sCwi
µs

)
(2.6)

Clearly (2.5) is a much stronger statement to verify, yet (2.6)
communicates that

EW,s′,s′′
[
‖W(s′ − s′′)‖22

]
∝
m−1∑
i=0

Rs(wi)

so the more rakeness is made large, the higher the average energy
attained by the measurements. Thus, maximising rakeness (2.6) by
acting on W could indeed mitigate (in expectation) the chance that the
images of two s′, s′′ that comply with the hypothesis have Euclidean
distance significantly smaller than ‖s′−s′′‖2. However, since no explicit
relation to sparsity is made here, one could doubt that a maximisation
of the measurements’ energy (as implied by maximising rakeness as
in (2.6)) has little effect on the recoverability of s; or, perhaps, that it
could even limit the performances of a recovery algorithm.

We now propose some reassuring evidence that maximising the
measurements’ energy does improve signal recovery; to show this, we
perform a numerical experiment that does not rely on localisation,
but on a simple a posteriori selection of sets of measurements with
maximum energy. We consider R.V.s s with k-sparse realisations,
having i.i.d. supports T and generated as sT ∼ N (0k,

1
k ). We let

W ∈ Rm×n be drawn from the RGE and collect y = Ws, where
n = 256, m = 104, i.e., we collect a large number of Gaussian
random measurements. On these, we apply two a posteriori selections:
we either (i) take y′ ∈ Rm as the first m components of y ∈ Rm

(thus reproducing the standard setting); or (ii) we use the m largest
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Figure 2.2: Probability of successful recovery for maximum energy y′′

(solid lines) versus classic y′ (dotted lines) at different sparsity levels.

components of y, thus maximising the energy of the corresponding
y′′ ∈ Rm.

Two reconstructions of s are then performed by solving BP with
CPLEX [94], depending on whether (1.21) is solved w.r.t. y′ or y′′.
The probability of successful recovery of s will indeed depend on
k = ‖s‖0 and m. The results are reported in Fig. 2.2 in terms of
the empirical probability P̂[‖ŝ − s‖2 ≤ 10−6] as a function of k =

{4, 8, 16, 32}, the number of measurements m ∈
{

1, . . . , n2
}

, and the
choice of y′,y′′. We emphasise that the latter vectors are both noiseless,
same-dimensionality observations of the same s with L(s) = 0.

The evidence indicates that, even in a noiseless configuration and
with a white R.V. s, choosing a posteriori the measurements with the
largest energy moves P̂[‖ŝ−s‖2 ≤ 10−6] = 1

2 to lower m. Although this
is not a rigorous proof and this toy example has no practical advantage
(as it relies on selecting the best m out of 104 � n projections), we
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still have a clear indication that increasing the measurements’ energy
enhances the probability of successful signal recovery, provided that k
is sufficiently small. Since rakeness is a proxy for the measurements’
average energy w.r.t. localised signals, its maximisation is expected to
have a beneficial effect on the recoverability of k-sparse signals.

2.3 Maximum Energy Sensing Matrix Designs for
Compressed Sensing

The next step is ensuring that a behaviour such as that of Fig. 2.2 can
be obtained by maximising (2.4), i.e., by adapting the second-moments
of W to those of s. Thus, we approach the formulation of an energy
maximisation problem in which L(s) plays a fundamental role.

2.3.1 Energy Maximisation Problems

The i.i.d. rows case

We first introduce an optimisation problem that yields a covariance
matrix Cw maximising (2.3), therefore producing a requirement on a
R.V. w by which, e.g., RMEs with i.i.d. rows can be designed.

Problem 2.1 (Maximum Energy Sensing Matrix Design (i.i.d. rows
case)). Let s,w ∈ Rn be independent R.V.s with correlation matrices
Cs

sed
= UsΛsU

∗
s and Cw

sed
= UwΛwU∗w respectively. A design of w

that maximises (2.3) is obtained by letting

C(τ)
w = argmax

Cw�0
Rw(s) (2.7)

s.t.

Ew = 1 (2.8)

L(w) ≤ τL(s) (2.9)

with the whiteness parameter τ ∈ [0, 1].



MAXIMUM ENERGY SENSING MATRIX DESIGNS 63

This seemingly complicated optimisation problem has an extremely
simple closed-from solution, as detailed in the following Proposition.

Proposition 2.1 (Eigenvalue form of Problem 2.1). The solution of
Problem 2.1 is equivalent to C

(τ)
w

sed
= UsΛ

(τ)
w U∗s where

Λ(τ)
w = argmax

Λw�0
tr (ΛwΛs) (2.10)

s.t.

Ew = 1 (2.11)

tr
(
Λ2

w

)
≤ τ

tr
(
Λ2

s

)
E2

s

+
1− τ
n

(2.12)

We now illustrate how each part of Problem 2.1 and its eigenvalue
form may be derived.

Proof of Problem 2.1. We begin by recalling that Cw,Cs are by def-
inition symmetric PSD, so Cw

sed
= UwΛwU∗w,Cs

sed
= UsΛsU

∗
s with

Uw,Us both unitary matrices containing the eigenvectors of Cw,Cs.
In this setting, the Wielandt-Hoffman inequality [122] (reported as [59,
Theorem 4.3.53]) grants that

tr (CsCw) ≤ tr (ΛsΛw) (2.13)

where equality (2.13) is only attained when Uw = Us. Thus, starting
from the unconstrained, unbounded problem

C(τ)
w = argmax

Cw�0
Rw(s)

= argmax
Uw∈Rn:U∗wUw=In

Λw�0

tr (UsΛsU
∗
sUwΛwU∗w)

= argmax

Cw
sed
= UsΛwU∗s
Λw�0

tr (ΛwΛs) (2.14)

where we have let Uw = Us. Since the constraints (2.8),(2.9) do not
affect the choice of Uw the latter form of (2.14) is equivalent to the
objective (2.7), and Problem 2.1 may be fully recast in terms of the
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eigenvalues in the diagonal matrix Λw � 0. The constraint (2.8) (or
(2.11)) is then added to fix the average energy Ew = tr (Λw) = 1, thus
making (2.14) bounded.

Without further constraints, it can be simply shown by the Karush-
Kuhn-Tucker conditions (KKT) [95, Section 5.5.3] that the solution
would be letting λmax(Cw) = 1, λj(Cw) = 0, j ∈ {1, . . . , n − 1},
i.e., rakeness is maximised by projecting s along the eigenvector in
Uw corresponding to λmax(Cw). To prevent this over-tuning and
preserve the information distributed along all eigenvectors associated
to non-zero eigenvalues in Cs we introduce a localisation constraint
on w as L(w) ≤ τL(s) yielding (2.12); this behaviour is regulated by
a factor τ ∈ [0, 1] in (2.9), (2.12).

An intuitive geometric interpretation of this optimisation problem
is that Cw and Cs define centred ellipsoids of Rn, and maximising
the trace in (2.7) with Cs fixed is indeed a problem of rotating
the principal axes defined by Uw and altering the semi-axis lengths
in Λw = diag

(
{λj(Cw)}n−1

j=0

)
so that the two centred ellipsoids

are aligned. The constraints simply impose that this alignment is
normalised, and that the eccentricity of the ellipsoid corresponding to
Cw is always less than that of Cs.

Even if Problem 2.1 has been verbosely presented, we are
substantially dealing with a simple quadratically-constrained linear
program in n variables; a closed-form solution exists, as shown below.

Proposition 2.2 (Closed-form Solution of Problem 2.1). Problem 2.1
is solved by letting C

(τ)
w

sed
= UsΛwU∗s where

Λw =
√
τ

Λs

Es
+

1−
√
τ

n
In (2.15)

for τ ∈ [0, 1]. In particular, there exists τ? =
(

1− nλmin(Cs)
Es

)−2

so
that for τ < τ?, (2.15) is strictly positive.

Without further constraints, Problem 2.1 is simply solved by a linear
combination between Λs and the normalised identity matrix In/n.
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Proof of Proposition 2.2. The proof of (2.15) follows by simple, stan-
dard application of the KKT to the eigenvalue form of Problem 2.1. τ?

follows by setting ∀j ∈ {0, . . . , n − 1}, (Λw)j,j > 0 and checking the
one corresponding to the smallest eigenvalue in Λs.

The independent, non-identically distributed rows case

An extension of Problem 2.1 to the more general case of a RME with
independent, non-i.i.d. rows follows.

Problem 2.2 (Maximum Energy Sensing Matrix Design (general case)).
Let s ∈ Rn be a R.V. with correlation matrix Cs; let W ∈ Rm×n be a
RME with m ≤ n independent rows, each drawn from a different R.V.
in {wi}m−1

i=0 with correlation matrices {Cwi}m−1
i=0 . A design of W that

maximises (2.4) is obtained by letting

{C(τ)
wi
}m−1
i=0 = argmax

{Cwi
}m−1
i=0 ,Cwi

�0

RW(s) (2.16)

s.t.

∀i ∈ {0, . . . ,m− 1}, Ewi
= 1 (2.17)

L(wi) ≤ τL(s) (2.18)

∀(i, j) ∈ {0, . . . ,m− 1}2,Rwi
(wj) ≤ γ (2.19)

with the whiteness parameter τ ∈ [0,+∞) and the similarity
parameter γ ∈ [0, 1].

Problem 2.2 is a semidefinite programming problem [112]; its
derivation is analogous to Problem 2.1, which is actually a particular
case.

Proposition 2.3 (Particular cases of Problem 2.2). Consider any
instance of Problem 2.2. Then

• for γ = 1, τ ∈ [0, 1] the constraint (2.19) is inactive, and the
problem can be separated in m identical sub-problems that are
instances of Problem 2.1, i.e.,∀i ∈ {0, . . . ,m− 1},C(τ)

wi = C
(τ)
w

solved as in (2.15);
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• for γ = 0, τ = +∞ the constraint (2.19) imposes E
[
|w∗iwj |2

]
=

0, i.e., the m R.V.s by which W is drawn have zero inner product
in expectation. The optimal solution follows by assuming ∀i ∈
{0, . . . ,m− 1},Cwi = uiu

∗
i with ui ∈ Rn an eigenvector in Us

corresponding to the i-th largest λi(Cs).

Although no closed-form solution is discussed here, we anticipate that
this problem can be written in a semidefinite programming solver to
deliver a set of m R.V.s that, aside from maximising (2.4), verify a
constraint on their similarity. In practice, since there is no evidence
that introducing (2.19) has a beneficial effect on signal recovery, we
will assume γ = 1, and synthesise R.V.s with the correlation matrix
obtained from (2.15).

2.3.2 Synthesis of Maximum Energy Random Sensing Ma-
trices

We now define two RMEs that lend themselves to producing realisa-
tions having a given correlation matrix Cw.

Definition 2.4 (Anisotropic Random Gaussian Ensemble). We define
Anisotropic Random Gaussian Ensemble a RME W ∈ Rm×n whose
i.i.d. rows are copies of a R.V. w ∼ N (µw,Kw) with correlation
matrix Cw = Kw + µwµ∗w.

The synthesis method that allows the generation of a W implementing
the C

(τ)
w resulting from Problem 2.1 is straightforward for Anisotropic

Random Gaussian Ensembles (aRGEs).

Proposition 2.4 (Synthesis of an aRGE). An aRGE with row mean
µw = 0n, row correlation matrix Cw may be synthesised from a RGE
T ∈ Rm×n by letting

W = T (Cw)
1
2 (2.20)

While the synthesis of an aRGE is extremely simple (see the scheme in
Fig 2.3a), the following ensemble is significantly more appealing as it
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Cs (or Cx) Problem 2.1

τ

√
· × W (or A) : aRGE

T : RGE

C
(τ)
w

(a) Synthesis of an aRGE

Cs (or Cx) Problem 2.1

τ

× sin
(
π
2 ·
)

Ct

n

C
(τ)
w

Ct � 0
√
· × sign (·) W (or A) : aRBE

T′ : RGE

T : aRGE

(b) Synthesis of an aRBE

Figure 2.3: Synthesis of maximum energy random sensing matrices.

uses only two antipodal symbols and is therefore more favourable in
the perspective of devising a convenient analog or digital implementa-
tion.

Definition 2.5 (Anisotropic Random Bernoulli Ensemble). We define
Anisotropic Random Bernoulli Ensemble a RME W ∈ Rm×n whose
i.i.d. rows are copies of a R.V. w ∈ {−1,+1}n with correlation matrix
Cw = Kw+µwµ∗w : ∀j ∈ {0, . . . , n−1}, (Cw)j,j = 1. A normalisation
factor on W may also be considered.

The problem of synthesising an Anisotropic Random Bernoulli Ensemble
(aRBE) with a given Cw is non-trivial and spans a number of existing
contributions which cover some special cases [123–125]; clearly, not all
Cw can be synthesised and a general condition for this to occur is not
known. We only report for its simplicity the following result descending
from the arcsine law [126,127], noting that the most general approach
to this synthesis is the solution of a computationally-intensive discrete
optimisation problem [125].

Proposition 2.5 (Synthesis of an aRBE by the arcsine law). An aRBE
W with row correlation matrix Cw : ∀j ∈ {0, . . . , n− 1}, (Cw)j,j = 1
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may be synthesised if

Ct = sin
(π

2
Cw

)
� 0 (2.21)

by letting T ∈ Rm×n be an aRGE with row correlation matrix Ct anda

W = sign (T).

The arcsine law approach is summarised in the scheme in Fig.
2.3b. As a final remark, the requirement {Cw � 0 : ∀j ∈ {0, . . . ,m−
1}, (Cw)j,j = 1} can be turned into an additional constraint3 for
Problem 2.1, specialising it to the design of correlation matrices
that comply with at least one of the conditions of Proposition 2.5.
However, this invalidates both (2.15) and the eigenvalue formulation
(i.e., the problem cannot be separated as in (2.14)). The consequent
problem will become a semidefinite programming one, and will require
a suitable solver: this approach is outside the scope of this thesis and
will be pursued in a future communication.

2.3.3 Some Intuition on Maximum Energy Random Sens-
ing Matrices and the RIP

The matter of computing the RIP for maximum energy sensing matrices
W is non-trivial, even in the particular but significant case of an aRGE;
in fact, most existing techniques for proving the RIP [17,65] rely on
the fact that W is drawn from an isotropic RME, and a modification of
these arguments to account for the anisotropic case is not yet available
to the best of the author’s knowledge. What can be said is that,
when Cw � 0 is the row correlation matrix of an aRGE W = TC

1
2
w

with T drawn from a RGE (e.g., as output from (2.15) with τ < τ?),
we have that by matrix similarity λj(C

1
2
wT∗TC

1
2
w) = λj(T

∗TCw)

and ∀j ∈ {0, . . . , n − 1}, λmin(Cw)λj(T
∗T) ≤ λj(CwT∗T) ≤

λmax(Cw)λj(T
∗T) by application of [128, Theorem 8.12] to the

symmetric PSD matrices T∗T and Cw. This shows how the eigenvalues
of Cw alter the distribution of those of T∗T by modifying their spread.

aHence the name arcsine law, since Cw = 2
π

arcsin (Ct).
3In that case, the energy constraint will be Ew = n instead of Ew = 1.
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Figure 2.4: Empirical distribution of the singular values of an
exemplary aRGE with Cw � 0 corresponding to a k-column submatrix,
with m = 28 as k varies.
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Figure 2.5: A comparison of the sequence of n = 256 eigenvalues
of an exemplary Cs (triangles) with those output from the solution
of Problem 2.1 with τ = 1/2 (squares) and Problem 2.3 with θ = 1/4
(circles).

The same effect can be seen when computing the singular values of
WT as in Fig. 2.4, where Cw was generated with an exponentially
decreasing eigenvalue sequence between λmin(Cw) = 0.8957 and
λmax(Cw) = 4.1286, attaining L(w) = 0.0031. The extreme singular
values reported in Fig. 2.4b differ significantly from those in Fig. 1.7,
i.e., they have a larger gap due to effects of the above observation.
We can therefore expect an increase in the k-RIC depending on the
eigenvalues of Cw.

This is only reasonable, as the implicit information that the RIP
would neglect is that, when W is drawn from an aRGE designed with
the criteria discussed in this Chapter, the test vectors for a restricted
isometry should not only be sparse but also suitably localised with
the same Cs by which W was designed; and even so, one could
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specifically select a k-sparse instance of s aligned to the eigenvector
of Cw corresponding to λmin(Cw) and see that the amount of energy
collected by y from such a vector is typically lower than the white case.
This indicates that the RIP is unsuitable for evaluating the improvement
of a maximum energy sensing matrix designed for a specific signal
class having sparse and localised representations.

While a rigorous theory linking these two aspects is not provided
here, we propose a variation of Problem 2.1 so that it verifies a simple
constraint on the minimum eigenvalue of Cw as follows.

Problem 2.3 (Maximum Energy Sensing Matrix Design (with minimum
allocation constraint)). Let s,w ∈ Rn be independent R.V.s with
correlation matrices Cs

sed
= UsΛsU

∗
s and Cw

sed
= UwΛwU∗w

respectively. A design of w that maximises (2.3) is obtained by letting
C

(θ)
w

sed
= UsΛ

(θ)
w U∗s , where

Λ(θ)
w = argmax

Λw�0
tr (ΛwΛs)

s.t.

Ew = 1

L(w) ≤ L(s)

Λw ≥
θ

n
In (2.22)

with minimum allocation parameter θ ∈ (0, 1).

Thus, θ in (2.22) ensures that a minimum amount of energy is
allocated to each of the subspaces spanned by the eigenvectors in
Us. The difference in the result of this choice and Problem 2.1 can
be appreciated in the example of Fig. 2.5, as, e.g., solved by CVX. A
performance comparison between Problem 2.3 and 2.1 in critical cases
where s has a different correlation matrix w.r.t. that used in solving the
above problems is left for a future case study.
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Figure 2.6: The minimum number of measurements needed by
maximum energy sensing matrix design to attain probability 0.9 of
successful reconstruction as a function of L(s).
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2.4 Performance Evaluation

To demonstrate the effectiveness of the approach discussed in this
Chapter, we now test some maximum energy sensing matrices W

generated by Problem 2.1 on synthetic k-sparse and localised signals.
We modulate the localisation of these signals by drawing the indices
in each support T, |T | = k with a non-equal assigned marginal
probability: in our case, this probability assignment is taken with
a doubly-triangular profile with maxima in n/4 − 1 and 3n/4 − 1

and varying widths for the corresponding triangles; then we take
sT ∼ N (0k,

1
k Ik), thus producing different values for L(s) depending

on the probability assignment. This choice allows the generation of
k-sparse test signals with a variable amount of localisation. For each
value of k and L(s), we generate 2000 instances of s and calculate
the sample correlation Ĉs; this information is input to the scheme in
Fig. 2.3a. By letting4 τ = 1/2 in the solution of Problem 2.1 we obtain
W drawn from an aRGE that maximises the measurements’ average
energy. Then we evaluate the probability of successful recovery from
y = Ws, i.e., by BP; performing the same operation with a RGE (with
i.i.d. entries, as obtained when τ = 0 in Problem 2.1) allows us to
draw a comparison between the two ensembles on the chosen sparse
and localised signal class.

Fig. 2.6 plots the minimum number of measurements needed
to attain probability 0.9 that the generated k-sparse instances are
successfully recovered as a function of L(s) when a maximum energy
W is used. Note that a classical RGE sensing matrix here corresponds
to L(s) = 0 and needs a minimum number of measurements for
successful reconstruction corresponding to the value of the curves at
that abscissa. The results are specifically reported:

I in the noiseless case, i.e., acquiring y = Ws and decoding it by
BP as solved by CPLEX [94], setting a recovery SNR requirement
of SNRŝ,s ≥ 120 dB. This yields in the performances of Fig. 2.6a;

4We have found this mid-range choice to be suitable to observe signal recovery
improvements without requiring any particular refinement of τ .
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Figure 2.7: Empirical phase transition boundaries of BP for the
anisotropic, maximum energy aRGE (triangles) versus the RGE (circles)
as applied to a R.V. with n = 256, L(s) = 0.03. The filled regions
indicate P[ŝ = s] ' 1 for the two ensembles.

I when the input signal is perturbed as y = Ws + ν, with ν

Additive White Gaussian Noise (AWGN) setting a measurement
SNR of 30 dB. In this case, signal recovery is carried out by BPDN
as solved by CPLEX and considered successful when the recovery
SNR is above a much lower requirement of SNRŝ,s ≥ 20 dB. This
yields the performances of Fig. 2.6b.

Note how in both cases even relatively small localisation values
(in agreement with those reported in Table 2.1) can be exploited
to substantially decrease the number of measurements needed for
successful recovery of the signal, and that the benefit increases as k
increases.

As a final measure of performance and an at least partial recovery
guarantee when the acquired signal complies with Cs used to solve
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Problem 2.1, Fig. 2.7 reports a comparison of the phase transition
boundary resulting from a maximum energy sensing matrix design
(synthesised by an aRGE) against that attained by the RGE; the former
design is here obtained when L(s) = 0.03 for s of dimensionality n =

256 and various levels of k. The empirical phase transition boundaries
are reported in the same phase space described in Section 1.2.4 and
correspond to cases of (m,n, k) in which 90% of the reconstructions
of a noiseless signal (under the same conditions of Fig. 2.6a) are
successful. Note how the maximum energy aRGE largely dominates
the RGE in a fair comparison w.r.t. a sparse and localised signal, since
the same number of measurements m allows the recovery of signals
with a significantly larger k.

Summary

I The concept of localisation was introduced as an index to assess
the deviation of a R.V. from the white case. It is here conjectured
that such a property can be exploited to adapt the design of
sensing matrices when the signal being acquired follows such
a model, i.e., the more a signal ensemble is localised, the more
information can be extracted by means of a suitably adapted
sensing matrix design.

I Sparse and localised R.V. are not trivially generated, yet are
ubiquitous in most applications as the distribution of sparse
representations is rarely isotropic for signal ensembles of interest.
We here presented a generative model as a simulation method
for such R.V.s; it is only a simplification w.r.t. the significantly
more complex concept of PDFs for compressible and localised
signals, that would provide a better model for natural signals.

I The proxy for “information extraction” adopted in the proposed
adaptive sensing matrix designs is rakeness, i.e., the average
energy extracted from a R.V. representing a signal by another
independent R.V. from which the rows of the sensing matrix are
drawn. We provided some numerical evidence that maximising
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the measurements’ energy improves the probability of successful
reconstruction of BP, as well as some intuition on the fact that
doing so in expectation may improve the mapping of R.V.s with
suitable localisation in their domain.

I Maximum energy sensing matrix design was reviewed as
introduced by some prior contributions in the context of this
research; the solution of the related optimisation problem yields
a correlation matrix according to which a sensing operator should
be designed.

Some variations on the existing framework [29] were presented
with the aim of stating the optimisation problems in terms of
the formal definition of localisation. The synthesis procedures
for aRGE and aRBE sensing matrices, as adapted to the target
correlation matrix, were also reviewed to provide a complete
view of the design procedure.

I A relationship with the RIP was numerically illustrated by
highlighting how the extreme singular values of a RGE are
modified by the non-white correlation matrix of an aRGE. A
rigorous proof of the RIP would yield higher k-RIC values due
to sparse R.V. in disagreement with the additional hypothesis
of localisation; thus, a validation by the Donoho-Tanner phase
transition is recommended to explain the improvement seen in
the numerical evidence presented in this Chapter.

I The link between rakeness-based sensing matrix design and
localisation was quantified by some extensive simulations, closing
a design flow for CS with maximum energy aRGE and aRBE
sensing matrices. When the sparse representation of a signal is
localised and such matrices are used to form the measurements,
the empirical Donoho-Tanner phase transition w.r.t. BP was
shown to improve w.r.t. the RGE.



LOW-COMPLEXITY

DIGITAL SIGNAL COMPRESSION

BY COMPRESSED SENSING

3

WIRELESS sensor networks [129] represent a relatively recent
paradigm in information technology that poses some significant

design challenges; each sensor node in a network must operate
on a tight resource budget, the most limiting constraint being low
power consumption in the acquisition, encoding and transmission
of acquired data. To understand what terms concur in the resource
budget of a sensor node, we report the traditional scheme of Fig.
3.1: a sensor node digitises an analog signal by means of Nyquist-
rate Analog-to-Digital (A/D) conversion; the acquired samples are
compressed on-board by a lossy and/or lossless encoder that most
often operates in a suitable transform domain (e.g., derived from a
DCT or DWT), quantising the transformed coefficients and performing
lossless encoding to eliminate residual redundancy in the encoded
bitstream; the result is then transmitted to a remote location or stored
on a suitable local memory. The received (or stored) data will then be
processed by an off-board processing node to decode the information
content up to the data fidelity allowed by measurement noise and lossy
encoding.

Since power consumption in a sensor node is generally dominated
by data transmission, minimising its rate by suitable lossy or lossless
encoding stages is critical in administering the nodes’ resources.

77
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Figure 3.1: A standard sensor node – processing node pair,
highlighting the role of digital signal compression prior to transmission.
Channel coding is regarded as part of the transmitter/receiver.

We here assume that signal acquisition and data compression are
performed by low-power, low-complexity sensor nodes that transmit
their encoded bitstreams to a processing node providing much larger
computational power. Such an extreme resource asymmetry limits the
use of multimedia compression schemes designed on the opposite
assumption that the encoding is performed only once (therefore
as computationally demanding as required) whereas decoding is
performed multiple times as users access the information content
(therefore as lightweight as possible).

Compression schemes that exploit only a few very elementary
computations, e.g., easily implemented in low-complexity fixed-point
digital architectures are appealing to cope with such resource con-
straints. In this view, CS could be seen as a lossy compression scheme
whose encoding stage is obtained by simple projection of the signal
onto a small number of antipodal-valued vectors, i.e., the rows of
the RBE or aRBE discussed in Section 1.2.3; thus, its computational
and digital hardware complexity is expected to be minimum. On the
other hand and in an asymmetric fashion, its decoding stage would
require the computational effort of solving some convex optimisation
problems mentioned in Section 1.3 (with the alternative of using
greedy algorithms, e.g., as reviewed in [102]).



LOSSY COMPRESSION SCHEMES FOR BIOSIGNALS 79

Existing investigations that analyse CS as a digital-to-digital lossy
compression (see [25]) show that its rate-distortion performances
[130] are asymptotically sub-optimal w.r.t. common transform-coding
techniques. Although correct, these analyses do not account for the
digital hardware requirements of such transforms, that often require
floating-point multiplications. This would make CS with the RBE
(or aRBE) an extremely lightweight multiplierless option to standard
compression schemes. In addition, CS may be paired with further
compression stages such as simple lossless Huffman coding to attain
lower code rates.

Thus, the task of encoding a signal by CS is well-suited to the tight
resource requirements of sensor nodes, whereas signal recovery will
be carried out by a central node receiving the encoded bitstreams.
By making this analogy between the asymmetry in the requirements
of sensor networks and CS, we here explore the possibility of using
the latter as a digital signal compression scheme whose complexity is
well-matched by its effectiveness as a lossy compression.

As a practical illustration of this application, we compare the
performances of CS with some reference compression schemes as
applied to the particular, yet significant case of ECG signal compression;
in addition, we show that a direct application of the principles
developed in Chapter 2 allows a further, significant code rate reduction
for the proposed compression scheme.

3.1 Lossy Compression Schemes for Biosignals

We here consider the specific case of ECG signals as a relevant example
for the development of wireless sensors. The appeal of such signals is
due to the fact that they exhibit a quasi-stationary behaviour over time,
as they convey information on an essentially periodic phenomenon.
Thus, n-samples windows x (i.e., when they are considered as a R.V.)
of this signal class are typically compressible w.r.t. a suitable DWT with
a sparsity level k having only minor fluctuations.

The standard approach to acquiring such signals is depicted in
Fig. 3.1: the analog ECG is first acquired by A/D conversion that
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Figure 3.2: Block diagram of the three evaluated compression
schemes. Channel coding is regarded as part of the transmit-
ter/receiver.

discretises it into n Nyquist-rate samples collected in x. Moreover,
the A/D converter embeds a quantisation of the signal range into the
Pulse Code-Modulated (PCM) samples x̃ = Qbx̃(x), with Qbx̃ denoting
uniform1 scalar quantisation with bx̃ bits per sample (bps) tuned to fit
the full signal range. The task of encoding x prior to transmission can
be divided in two stages (the bitstream lengths are denoted by B·):

1. a lossy encoding stage that allows for a reduced-size bitstream ỹ

by accepting some information loss w.r.t. x̃. This is divided in a
discrete transform that maps x̃ in a domain where a compressible
behaviour is observed (as in Definition 1.4) followed by an

1The integration of non-uniform, minimum-distortion quantisers at the A/D
converter is generally a technologically complex task; for this reason, we limit this
study to uniform quantisers.
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additional quantisation step, where information loss is allowed
with the purpose of reducing the code rate;

2. a lossless encoding stage that eliminates the remaining redun-
dancy in ỹ by operating on its bitstream, returning a compressed
binary string v at the output. A typical example of such a stage
is any entropy coding scheme [131].

The two stages achieve for an n-samples window a code rate of
r = Bv/nbps with a total of Bv bits in the encoded bitstream. In
particular, we here evaluate the possibility of using CS as digital signal
compression scheme which applies a dimensionality reduction on x̃,
that is suitably used as a discrete transform in the scheme of Fig.
3.1. We now proceed as follows: firstly, we introduce two common
compression techniques (one lossless, and one lossy w.r.t. x̃) that may
be considered as terms of comparison for this task; then we discuss a
lossy compression scheme based on CS and tune it to attain optimal
performances; finally, we compare the three techniques as optimally
tuned .

3.1.1 Huffman Coding

A low-complexity lossless compression scheme considered for this
comparison amounts to processing the PCM samples in x̃ with standard
Huffman Coding (HC) [131]; this entropy coding technique takes a
binary string as an input, and encodes it by a prefix-free variable-
length code. This code is based on the construction of an optimal
codebook based on the probability distribution of the input, i.e., the
most probable symbol in the input string is encoded by the shortest
codeword, and so forth in the construction of a binary tree that
uniquely encodes all non-zero probability symbols.

The codebook is here assumed to be known a priori and is
practically trained on the empirical distribution of a very large set
of PCM samples (in particular, of a large dataset of ECG samples).
Since this training set might not contain all possible words an escape
codeword is added to the codebook, followed by dlog2 qe bits to
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represent all of the q symbols not appearing in the above set. Thus, the
“quality loss” here is only due to the inevitable uniform quantisation of
x into x̃ caused by A/D conversion.

This compression scheme requires a minimum amount of compu-
tational resources: after the signal is quantised, we straightforwardly
encode x̃ by using a lookup table that maps its fixed-length words
to variable-length codewords in the encoded bitstream v. Thus, if
sufficient memory is available at the sensor node to store the optimal
codebook, HC achieves a code rate rHC with no fixed-point signal
processing operation involved. This scheme is depicted in Fig. 3.2a.

3.1.2 Set Partition Coding of Wavelet Coefficients

To the other end of our comparison, we consider the application of Set
Partitioning In Hierarchical Trees (SPIHT) [132] that serves as a basic
building block for many wavelet-domain digital signal compression
schemes (see Fig. 3.2b). The SPIHT encoder operates on the DWT
coefficients of x̃ (in particular, the authors of [132] recommend 9/7
biorthogonal wavelets [52]) by constructing a map of their significance
w.r.t. their magnitudes and dependencies in a tree representation of
the wavelet coefficients.

The critical arithmetic complexity in this lossy encoding is in
implementing the chosen DWT that, as efficient [133] and specific
[134] as can be made, requires fixed-point multiplications with
quantised filter coefficients. Such a complexity is considered high
for straightforward integration into low-resources digital processing
stages for sensor nodes; we will report its attained code rates rSP as a
reference case that is expected to outperform the other schemes, with
the purpose of showing how CS is capable of achieving acceptable
rates with a low-complexity multiplierless transform.



LOSSY COMPRESSION SCHEMES FOR BIOSIGNALS 83

Input
Buffer (Bx̃)

x̃

From
A/D

+/−

+

/

x̃l

bx̃

Latch/
by

Latch/
by

Projection
Buffer (By)

y

To
quantiser

or
channel
coding÷n

/

yj

by

Symbol
Buffer (mn)

A

/
1

Aj,l

Reset

Clock

Figure 3.3: A digital, multiplierless hardware implementation of the
CS encoding stage with RBE matrices, using a single accumulator and
fixed-point arithmetic; the buffers are local registers of size denoted
by (·) bit; the dashed lines denote synchronisation signals.

3.1.3 Lossy Compression by Compressed Sensing

The Encoding Stage

As mentioned in Section 3.1.3 a dimensionality reduction is simply
obtained as y = Ax; in this Chapter, we will refer to A as the
encoding matrix to emphasise that it is implemented in a digital-to-
digital fashion; in particular, we let A ∈ {−1,+1}m×n,m < n since
we want to implement it in very low-complexity digital hardware.

The proposed encoding stage is reported in Fig. 3.2c and
summarised as follows. As dimensionality reduction is here performed
in the digital domain, we will operate on quantised x̃; thus, the
encoding operation is actually y = Ax̃ represented by m digital words.
Their wordlength will be at most by = bx̃ + dlog2 ne bits since each yj
is obtained by an inner product of the PCM samples in x̃ with a vector
of sign changes, i.e., yj = ±x̃0 ± x̃1 ± . . .± x̃n−1. This operation can
be conveniently mapped on mn cycles of a single accumulator, i.e., by
an extremely simple multiplierless fixed-point digital scheme (see Fig.
3.3).

To reduce the rate of the encoded bitstream, we quantise y by
a second uniform scalar quantiser as ỹ = Qbỹ(Ax̃) with bỹ ≤ by;
Qbỹ is scaled to operate in the range of y but keeps only bỹ Most
Significant Bits (MSBs) from each yj . We also note that the alternative
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of a non-uniform, minimum-distortion scalar quantiser (i.e., a Lloyd-
Max quantiser [135]) could indeed be pursued here as only requiring
the implementation of a suitable pre-distortion prior to uniform
quantisation, whereas vector quantisation commonly requires more
computational effort on the encoder [34]. In a low-complexity
perspective we assume that a uniform quantiser is the simplest choice
for this task, although this alternative is indeed worth exploring (and
has already been addressed in some works [136,137]).

To further compress the encoded bitstream we also evaluate the
option of applying lossless HC with an optimal codebook trained on the
empirical PMFs of each element of ỹ, that are approximately Gaussian-
distributed due to the mixing effect of A (this assumption will be
further cleared out later in Section 7.2). Thus, the encoded bitstream
v attains a code rate rCS that depends on (m, bx̃, bỹ), the choice of A

and the presence or absence of HC.

Maximum Energy Encoding Matrices

We now proceed to discussing a further degree of freedom in the choice
of A as drawn from a suitably chosen maximum energy aRBE rather
than the classic choice of an RBE. Although assuming A as drawn
from the RBE fits equally well any kind of signal [17], we have shown
how localisation can be leveraged to design A from anisotropic RMEs
to maximise the average energy of y. As explored in Fig. 2.7, this
rakeness-based approach to compressed sensing was empirically shown
to lower the requirements on the minimumm to attain successful signal
recovery; we therefore use it as another encoder-side option to reduce
the code rate.

To carry out this adaptation, we recall that the quasi-stationary
behaviour of ECGs allows for a meaningful estimation of the signal’s
correlation matrix Cx

sed
= UxΛxU∗x, where Ux may be used to perform

optimal transform-coding by the KLT [138]. In many applications,
the stationarity of Cx over time is insufficient, and the update and
transmission of its estimate Ĉx makes the KLT usually disadvantageous
w.r.t. computing other transforms. However, for this particular type of
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Figure 3.4: Correlation matrices related to a maximum energy aRBE
encoding matrix design.

signal the estimated Cx is not only stable, but typically attains high
values of L(x) in (2.2).

To do so, given the quasi-stationary behaviour of ECGs, we here
apply the synthesis scheme of Fig. 2.3b initialising it with the sample
correlation matrix Ĉx depicted in Fig. 3.4a as estimated from a large
training set of 104 instances of x. The synthesis problem is solved with
the purpose of obtaining an aRBE from which A can be drawn: by
(2.15) we obtain C

(τ)
a for τ = 1/2, then we proceed to fulfilling the

synthesis condition of Proposition 2.5 (i.e., the input matrix should
have only ones on its diagonal) by scaling the matrix C

(τ)
a with γ =

diag
(
C

(τ)
a

)−1

(i.e., the element-wise inverse of the diagonal of the

latter correlation matrix), Γ = diag
(
γ

1
2

)
, letting Ca = ΓC

(τ)
a Γ; this

intermediate matrix is reported in Fig. 3.4b. The scaling allows us to
obtain Ct by plugging Ca in (2.21) and is pictorially reported in Fig.
3.4c; the final verification that Ct � 0 allows us to conclude that A

can indeed be generated by an aRBE using the scheme at the bottom of
Fig. 2.3b. In a sense, this synthesis strategy can be considered similar
to a KLT with antipodal-valued random projection vectors, yet more
robust due to how Problem 2.1 is solved with a localisation constraint.

Thus, the resulting maximum energy y will have by design (i.e., by
the very definition of the optimisation criterion (2.4)) a larger variance
than that produced by the classic RBE case, so the following quantiser
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and Huffman code in Fig. 3.2c will require an adaptation to the new
distribution of y.

The Decoding Stage

Since A is a dimensionality reduction and y undergoes a second
quantisation, this scheme is by definition lossy. However, we have
previously recalled some theoretical guarantees that relate the sparsity
of x w.r.t. D and the minimum number of measurements m =

O(k log(p/k)) ensuring that x may be stably recovered from ỹ even
in the presence of quantisation noise. This guarantee allows us to
consider the possibility that, when x is sufficiently sparse w.r.t. D, some
denoising may indeed be possible by a suitable choice of dictionary
and recovery algorithm.

The decoding stage discussed in this Section is reported in Fig. 3.2d.
As a recovery algorithm we have considered Analysis BPDN (aBPDN),
i.e., (1.24) with ε ≥ 0 essentially set in excess of the quantisation noise
variance introduced by Qbx̃ and Qbỹ on x.

As for (D,D?) we assume they are the synthesis and analysis
operators of an Undecimated DWT (UDWT) that is obtained from
an orthonormal DWT by essentially removing the decimation and
upsampling operations in its filterbank. This arrangement of a signal
recovery algorithm and analysis-sparsity was shown to be robust
w.r.t. additive noise in several contributions [49, 50, 139]; we aim
at leveraging this robustness to mitigate the impact of quantisation on
the quality of x̂.

3.2 Performance Evaluation

In this Section we evaluate the performances after decoding of the
schemes in Fig. 3.2, with an emphasis on CS and its variants. We
adopt the average SNR of the decoded signal, ASNRx̂,x in (1.32) as a
performance index, where x̂ is the corresponding decoded output of
each of the considered techniques.
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3.2.1 Signal Generation

We here use a synthetic ECG generator [140] to produce 104 training
instances of x with n = 256, corresponding to 1 s windows sampled at
256 Hz. The parameters of the generator are randomly drawn to obtain
a training set oscillating at various heart rates and not corrupted by
intrinsic or quantisation noise. Each window is then quantised to its
PCM samples x̃ at bx̃ bits per sample. Since the ECG PCM samples
generally have a high crest factor CF = 20 log10

√
n‖x‖∞
‖x‖2 ≈ 11 dB

they are non-uniformly distributed in the quantiser range. Thus, the
SNR w.r.t. uniform white quantisation noise is estimated as SNRQbx̃ =

10 log10
Ê[‖x‖22]

Ê[‖x̃−x‖22]
≈ 6.02 bx̃ − 11 dB (as will be reported in Fig. 3.6,

3.7) where the second term is indeed due to the ECG signals’ high crest
factor.

3.2.2 Some Details on the Decoder

The choice of a suitable wavelet family for the UDWT and of a decoding
algorithm for solving (1.24) are crucial for a fair evaluation of CS. We
here assume that (D,D?) are those of the Symmlet-6 UDWT with
J = 4 sub-bands (i.e., p = (J + 1)n) [52, Chapter 5.2], and adopt this
transform for signal recovery. For what concerns aBPDN, we solve
(1.24) by the UnLocBox [141] implementation of Douglas-Rachford
splitting [113] with the data fidelity constraint of (1.24) tuned to the
noise norm ε = ‖ỹ −Ax‖2 and ensuring that the algorithm converges
up to a relative variation of 10−7 in the objective function.

3.2.3 Measurements’ Quantisation Effects

The main noise sources in the schemes considered here are the
uniform PCM quantisers Qbx̃ ,Qbỹ . While the former is common to
all evaluated schemes, the latter is only used in the CS encoding to
reduce each element of y to bỹ < by bits. Since these measurements
are approximately Gaussian-distributed (as will be discussed in Section
7.2) by = bx̃ + dlog2 ne might exceed the precision actually required
to represent y with negligible losses. Thus, to explore the effect of bỹ
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aRBE (solid) CS with different quantisation policies. For both figures
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we (i) encode by CS the ECG training set and train Qbỹ with either
bỹ = bx̃ or bỹ = bx̃ + d 1

2 log2 ne (ii) apply the same operation on 64

new test instances, solve (1.24) and compute ASNRx̂,x while varying
m = 20, . . . , 128 (up to m = n/2), bx̃ = 6, . . . , 16. Moreover, we run
the very same procedure for rakeness-based CS trained as in Section
3.2.2 and with a suitably scaled range for Qbỹ to compensate for the
fact that the measurements have a larger average energy.

The results of this procedure are reported in Fig. 3.5, and allow
us to observe that (i) rakeness-based CS with maximum energy aRBE
outperforms standard CS with the i.i.d. RBE in all the examined
cases; (ii) the quality gain obtained by using more bits for both
(bx̃, bỹ) progressively saturates at an ASNRx̂,x limit imposed by the
sparsity level of ECG signals; (iii) for a fixed value of bx̃, the total
bit budget Bỹ = mbỹ required to reach an ASNRx̂,x target hints
at how redundant the chosen quantisation policy is. This quantity
is highlighted in both Fig. 3.5a,3.5b, and shows how the quality
improvement of choosing a more accurate quantiser Qbỹ for ỹ must be
matched with a smaller m, and in particular that bỹ = bx̃ is a better
choice for achieving lower code rates with CS.

3.2.4 Rate Performances

Given the observed quantisation effects, to understand which uniform
scalar quantiser Qbỹ enables the lowest code rate, ỹ must be post-
processed by optimally-trained HC. In addition, we here assess
how this attained rate, rCS, compares with the rate performances
achieved by the other schemes (Fig. 3.2) at some fixed target decoding
performances, i.e., ASNRx̂,x = {25, 30, 35, 40, 45, 50} dB. For a fair
comparison, SPIHT for ECGs [132] is run from the authors’ code by
fitting instances of x̃ into full frames of 1024 PCM samples quantised
at different bx̃. The SPIHT encoder takes rSP as an input, which we
vary in [1/n, 2]; the minimum rSP that guarantees the target ASNRx̂,x

after decoding is then reported in Fig. 3.6, 3.7. As a further reference,
we report the rates of uniform PCM quantisation and its optimal HC,
achieving a rate rHC; since it is lossless, achieving an ASNRx̂,x target
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Figure 3.6: Achieved code rates of the evaluated compression schemes
and their variants for the chosen ASNRx̂,x target specifications; the
CS measurements ỹ are quantised with bỹ = bx̃; the value of bỹ that
allows a given rate is reported to the right of each marker.

depends on bx̃. While the average codeword length (and rHC) could be
estimated as the entropy of PCM samples, to account for the presence
of escape symbols we run this encoding to find the actual rHC of the
test set.

These two reference methods are compared with various embod-
iments of CS (i.e., with or without HC; with different quantisation
policies; with or without a rakeness-based, maximum energy aRBE
encoding matrix design) in Fig. 3.6, 3.7. It is observed that the rates
attained in Fig. 3.6 are generally lower than those in Fig. 3.7, thus
confirming the benefits of assuming bỹ = bx̃. In addition, (i) the
use of HC on the measurements reduces significantly the code rate of
CS, as also does the use of rakeness-based encoding matrices (ii) by
considering rCS of rakeness-based CS with HC, Fig. 3.6 shows that an
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Figure 3.7: Achieved code rates of the evaluated compression schemes
and their variants for the chosen ASNRx̂,x target specification; the CS
measurements ỹ are quantised with bỹ = bx̃ + d 1

2 log2 ne; the value of
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ASNRx̂,x ≈ 25 dB is achieved at bỹ = bx̃ = 10 bit by rCS ≈ 1.41 bps,
while rHC = 3.27 bps. At higher ASNRx̂,x targets, CS is increasingly
advantageous, placing itself at less than 50% of the code rate of PCM
with optimal HC.

Thus, we conclude that as a lossy compression CS can achieve low
code rates; at the same time, its computational complexity on the
encoder side is extremely low and requires no multiplication. Given
these low requirements, it lends itself as an agile lossy scheme for
resource-constrained signal compression applications. This said, many
degrees of freedom are still to be explored to improve upon these
results; as mentioned, since the second scalar quantiser is fully digital
and can be arbitrarily tuned, Lloyd-Max quantisation could be used to
reduce the measurements’ distortion for a given code rate, exploiting
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the fact that their statistics are well approximately Gaussian-distributed.
In addition, we expect a the choice of a closer modelling of quantisation
noise in the signal recovery problem [142] to enable even lower code
rates for the chosen distortion specifications.

Summary

I CS may be used as a lossy digital signal compression algorithm,
with the aim of reducing the transmission rate of a sensor node.
The advantage of CS is having an extremely low-complexity
digital implementation potentially requiring a single accumulator
and no floating-point multiplication when an RBE or aRBE is
used as a sensing matrix.

I Reducing the length of the encoded bitstream is possible by
combining CS with HC and with aRBE maximum energy sensing
matrices.

I The trade-off between the number of measurements collected by
CS and their quantisation must be carefully administered, as both
terms concur in the total bit budget of the encoded bitstream.

I A comparison with a classical signal compression algorithm such
as SPIHT shows that the rates attained by CS are sub-optimal,
yet the complexity reduction provided by the latter is still an
appealing asset for the design of a compression scheme at a
negligible cost.



MAXIMUM ENTROPY

SENSING MATRIX DESIGNS

FOR LOCALISED SIGNALS

4

WE now investigate the design of random sensing matrices
constructed from a deterministic, fixed set of vectors, e.g., as

the PHE or PFE discussed in Section 1.2.3. In continuity with Chapter
2 the property leveraged in this context is localisation; however, the
proxy adopted to optimise this class of sensing matrices leverages the
maximum entropy principle [143] with the aim of selecting an optimal
set of m vectors based on the analysis of their covariance.

Since the exact solution of the resulting selection problem is NP-
hard due to the nature of the maximum entropy sampling problem
a lightweight heuristic algorithm is introduced to generate a pool of
sensing matrices belonging to the PHE (or any similarly constructed
ensemble) yielding m near-maximum entropy measurements. The
criterion and its heuristic implementation allow us to devise a strategy
to determine optimal sensing matrices in the PHEs; some results are
provided when applying our method to CS of small images and ECGs.
The improvements found in terms of signal recovery performances,
despite the non-minimum coherence between the sensing matrix and
the chosen sparsity bases, indicates a partial overcoming of the non-
universality of the PHE.

93
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4.1 Compressed Sensing with Deterministic Ensem-
bles

We here focus on deterministic ensembles, i.e., RMEs constructed from
deterministic sets of vectors such as the PHE, that become of practical
interest when the choice of sensing vectors is fixed or constrained by
the acquisition mechanism – the most celebrated application related to
this scenario is magnetic resonance imaging by CS [19], which uses
the PFE.

Thus, we assume to be limited to an orthonormal design space
of feasible sensing vectors {aj}n−1

j=0 ,aj ∈ Rn collected in the rows of
a full-rank An×n. The sensing matrix, which we now denote AS ,
is constructed by extracting m row vectors at random from A with
indices in the subset S = {0, . . . ,m− 1}, |S| = m. In absence of
other assumptions, the

(
n
m

)
possible AS are considered equally good

candidates in the corresponding RME. Throughout this Chapter, the
notation ·S will indicate the selection of m-cardinality row submatrices
or subsets S in a matrix or vector, and by ·? optimal values.

Although coherence between the sensing matrix A and the
dictionary D should be made as small as possible as recalled in Section
1.2, it is suggested [50] that it only needs to be bounded in many cases.
Since the design space is considered fixed, e.g., by the properties of the
acquisition mechanism, and the sparsity basis is set by the nature of
the signal being sampled, coherent pairs of (A,D) will occur in some
prospective applications of CS.

In particular, we here emphasise the case of the Hadamard matrix
Hn that forms the sensing vectors of the PHE, as introduced in Section
1.2.3. This transform is particularly suitable to both analog, optical
and digital implementations. Due to its recursive structure it can
also be fully computed by a divide-and-conquer algorithm [144] in
O(n log2 n) instead of O(mn) = O(nk log2 n) floating point operations.
This appealing low-complexity property drives the idea of finding
optimal PHE sensing matrices AS for generic dictionaries D (here
assumed to be ONBs for the sake of simplicity), noting that AS will
exhibit non-minimum coherence w.r.t. D 6= In.
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4.2 Entropy Considerations on Localised Signals

We here add some considerations to the sparse and localised signal
model of Section 2.1.2. Firstly, let the R.V. s have mean µs =

0n and covariance Ks; consider WS = ASD, yielding the R.V.
of measurements yS = WS s. This corresponds to a randomly
chosen subset S of a full set of n measurements y = W s, where
the deterministic full-rank matrix W = AD. The measurements’
covariance matrix KyS = WSKs

(
WS

)∗
will be non-white in general,

as localised s imply localised measurements. Moreover, ∀S ⊆
{0, . . . ,m− 1}, KyS are the principal submatrices of Ky.

As an example, we may let yS follow an anisotropic multivariate
Gaussian distributionN (0,KyS ). Then localisation would directly indi-
cate that the acquisition process represented by WS is not maximising
the quantity of information embedded in the measurements; this is
seen by considering their differential entropy,

h(yS) =

∫
Rm

f(yS) log f(yS)dyS (4.1)

as [130, Theorem 9.4.1] states that

h(yS) = 1
2 log ((2πe)m det KyS ) ≤ 1

2 log
(

2πe
EyS
m

)m
(4.2)

which by [130, Theorem 16.8.4] attains the upper bound in (4.2) only
when yS is white for a fixed amount of average energy EyS = tr (KyS ).

Clearly, the particular yet suggestive case of exactly Gaussian-
distributed yS would rigorously correspond to projecting s ∼ N (0n,Ks)

over a deterministic WS; since this is not necessarily the case for k-
sparse signals in conjunction with the use of PHE or PFE sensing
matrices, the implicit yet reasonable hypothesis used here is that the
distribution of yS is at least elliptically-contoured. Thus, the objective
of our optimisation of the sensing matrix will substantially entail a
selection of S that brings h(yS) in the approximation of (4.2) as close
as possible to its upper bound.
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4.3 Maximum Entropy Sensing Matrix Designs for
Compressed Sensing

The previous example indicates that the measurements yS will not
achieve the white-case entropy upper bound in (4.2) when the original
signal is localised and yS are obtained from sensing matrices AS in
the PHE (or similarly constructed ensembles). In such a constrained
setting, we aim at finding the optimal AS in the design space which
conveys the maximum achievable quantity of information in the
measurements yS .

4.3.1 A Maximum Entropy Problem

In general, we are searching for the m-cardinality subset yS? of the full
measurements’ R.V. y = Ws which attains the maximum differential
entropy h(yS?), i.e., we solve

S? = argmax
S⊆{0,...,n−1},|S|=m

h(yS) (4.3)

In a Gaussian context, let y ∼ N (0,Ky) with Ky = WKsW
∗.

Then h(yS) is given in (4.2) where KyS is a principal minor of Ky

(i.e., KyS = (Ky)
S
S = PSKy(PS)∗) corresponding to the subset S of

the full measurements’ R.V. y. Thus, if a Gaussianity hypothesis for y

holds, (4.3) amounts to solving the following problem.

Problem 4.1 (Maximum Entropy Sensing Matrix Design (deterministic
rows case)). Let s ∈ Rn be a R.V. with covariance matrix Ks; let W ∈
Rn×n be a deterministic full-rank matrix; let y = Ws with covariance
matrix Ky. A design of WS that maximises (4.1) is obtained by
letting

S? = argmax
S⊆{0,...,n−1},|S|=m

log det KyS (4.4)

More realistically y will only be approximately Gaussian and
substantially depend on the distribution of s, thus requiring the more
general solution of (4.3). While generally non-Gaussian, the density
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of s corresponding to natural signals decomposed on a sparsity basis
is often approximated by multivariate Gaussian mixtures analogous
to (2.1) for many natural signals such as images [145]. Differential
entropy bounds tailored to the density of s would be required to
rigorously expand (4.3) instead of (4.2); yet, bounding the differential
entropy of such mixtures is an open problem [146].

In a distribution-agnostic fashion we still choose to solve problem
(4.4): while the solution S? might not achieve globally maximum
entropy, by the well-known connection between Gaussian-case entropy
maximisation and optimal linear prediction the corresponding yS? will
be the subset of measurements having least linear predictability (or
equivalently maximum prediction error) from one another [147, Sec.
2.4.3 and 6.6]. Note that in Section 4.4 we also report reassuring
evidence that natural signals considered in our experiments indeed
produce approximately Gaussian y, thus suggesting that (4.4) is
well-posed for finding Hadamard sensing vectors that maximise the
measurements’ entropy.

4.3.2 A Heuristic Solution to Maximum Entropy Sensing
Matrix Design

On the computational side, solving (4.4) amounts to finding the
maximum-determinant principal minor KyS? . When Ky is diagonal
this is straightforwardly solved by

S? = argmax
S⊆{0,...,n−1},|S|=m

tr (KyS )

i.e., by choosing the m largest-variance components of y).
When this is not verified (4.4) is a well-known combinatorial

problem. In [148] Ko et al. proved its hardness and proposed an exact
branch-and-bound algorithm. Since in natural signals fluctuations in
Ks will occur and eventually require an update in S? we propose to
use a lightweight genetic algorithm [149] to find a heuristic solution
to Problem 4.1.

The evolutionary analogue is obtained by mapping the i-th subset
S(i), |S(i)| = m into a length n, binary-valued chromosome τ(i) = IS(i)
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Procedure 1 Evolutionary Heuristic Solution of Problem 4.1.
Require: Kn×n (covariance matrix), m, Ngen, Npop, Npar, Nchi, Pmut

1: τ(0) = IS(0)
∈ Ω(0), S(0) = argmaxS⊆{0,...,n−1},|S|=m tr

(
KS
S

)
2: for all τ(i) ∈ Ω(0), i > 0 do {Random initialisation}
3: Generate random τ(i) = IS(i)

, S(i) ⊆ {0, . . . , n− 1}, |S(i)| = m.
4: end for
5: for l = 0 to Ngen − 1 do {Genetic search}
6: for all τ(i) ∈ Ω(l) do {Fitness evaluation}

7: Calculate the fitness f(i) = 2tr
(

log diag
(
LS(i)

))
8: end for
9: Sort τ(i) ∈ Ω(l) in descending order w.r.t. their fitness f(i)

10: Ωpar ← {τ(i)}
Npar−1
i=0 {Parents selection}

11: for k = 0 to Nchi − 1 do {Mating phase}
12: Randomly pick τ(i), τ(j) ∈ Ωpar

13: o← random index in {1, . . . , n− 1}
14: τ(Npar+k) ←

[
(τ(i))0,...,o−1 (τ(j))o,...,n−1

]
{Crossover}

15: r ← uniform random real in [0, 1]
16: if r < Pmut then {Mutation}
17: Shuffle random (0, 1) pairs in τ(Npar+k)

18: end if
19: if |S(Npar+k)| −m > 0 then {Well-formed check}
20: Remove |S(i)| −m exceeding ones in (τ(Npar+k))o,...,n−1

21: else
22: Add m− |S(Npar+k)| missing ones in (τ(Npar+k))o,...,n−1

23: end if
24: end for
25: Eliminate duplicates and replenish the pool Ω(l+1) {Uniqueness check}
26: end for
27: return S? ← supp τ(0), τ(0) ∈ Ω(Ngen−1)

(the indicator function of S(i)), whose fitness function is simply f(i) =

log det KyS(i)
. Since covariance matrices are symmetric PSD, by using

the Cholesky factorisation log det KyS(i)
= 2 log det LS(i)

where LS(i)

is lower triangular. This allows fast and accurate computation of the
i-th fitness f(i) = 2tr

(
log diag

(
LS(i)

))
.

The algorithm is implemented as in Proc. 1 for a generic covariance
matrix K and controlled by the global parameters Ngen (number of
generations), Npop (population size at each generation). We note the
use of a warm start by including in the initial population Ω(0) the
element τ(0) = IS(0)

initialised to the indices of the m largest variances
in K.

At each generation, mating occurs between the Npar =
Npop

3

highest-fitness parent chromosomes such that their Nchi =
2Npop

3
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Procedure 2 Maximum Entropy Hadamard Sensing of Localised
Signals.

1: Estimate K̂y and Ey = tr
(
K̂y

)
(either by direct observation or by setting K̂y =

WK̂sW∗ with K̂s the sparse coefficients’ sample covariance matrix)
2: Evaluate Ky = (1− γ)K̂y + γ

Ey√
n

In

3: Solve Problem 4.1 by running Proc. 1 on Ky

4: Update the Hadamard sensing matrix AS?

5: loop
6: Acquire yS? = AS?x

7: Recover ŝ by BP from (AS? ,yS?)
8: end loop

children are m-cardinality subsets. An elitist policy grants survival
to the parent chromosomes until they are replaced by fitter children.
To avoid possible stagnation in the population we have introduced
common genetic operators such as one-point random crossover,
random mutation with probability Pmut and a final uniqueness check
to avoid clones in the population.

Thus, the algorithm yields a near-optimal S? depending on the
chosen parameters, which we use to construct a single WS? = AS?D.
Setting large (Ngen, Npop) increases the complexity of this procedure
but typically leads to a larger fitness gap between any random index
subset S and the final S?. Moreover, rather than using a single S?

one may choose S from the high-entropy final population Ω(Ngen−1),
which we refer to as the MaxDet pool for the following experimental
evaluation.

4.4 Performance Evaluation

We here assess the near-optimality of the MaxDet pool against
random PHE sensing matrices by observing the ASNRx̂,x (as in (1.32))
attained by BP from the corresponding measurements yS . The signal
classes tested here are natural images and ECGs taken from public-
domain databases. To efficiently recover these signals by BP we used
SPGL1, while identical results were obtained by linear programming
in GUROBI [93].



100 MAXIMUM ENTROPY SENSING MATRIX DESIGNS

m MaxDet pool PHE Random PHE RBE

1024 (n/4) 36.57 1.51 20.63
1365 (bn/3c) 39.63 2.89 26.08

Table 4.1: Comparison of PHE and RBE sensing matrices on the
USPS handwritten digits dataset: ASNRx̂,x over 20 sample images; 25
MaxDet pool PHE, 25 random PHE and 50 RBE sensing matrices.

The experiments are carried out by following the proposed
Hadamard sensing design strategy as summarised in Proc. 2 with
heuristic parameters Ngen = 200, Npop = 50, Pmut = 0.1. Due to the
importance of correctly inferring Ky we note the use of the shrinkage
covariance estimator

Ky = γK̂y + (1− γ)
tr
(
K̂y

)
n

In, γ ∈ [0, 1)

which safely balances the sample covariance matrix K̂y with the same-
energy white case. This covariance estimator leads (with suitable γ)
to a full-rank Ky in the presence of additive measurement noise and
from limited or linearly-dependent instances of y.

Practical applications will also require an update in S? to track
statistically significant variations in the statistics of s (or x). This
update will be triggered whenever the recovered sparse coefficients
are classified as outliers w.r.t. Ks. However, we leave the analysis of
online updates to future investigations.

4.4.1 Handwritten digits

The first experiment is carried out on image samples from the USPS
handwritten digits database [150]. We estimate K̂s on a training set
of 2000 images resized to 64× 64 pixel (n = 4096) and with D the 2D
DCT on which on-average k = 467 coefficients represent 95% of the
original images’ energy, thus complying with a compressible signal
model as in Definition 1.4.

To show that the corresponding y can be considered Gaussian, we
collect the full set of n Hadamard transform coefficients y for 4000
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Figure 4.1: Empirical PDFs of p′, p′′ and their Gaussian approximation
with σ2

p′ = 0.02, σ2
p′′ = 0.13.

images in the database and project them on two randomly chosen, fixed
orthonormal vectors p′,p′′ ∈ Rn. The resulting empirical densities
of p′ = (p′)∗y, p′′ = (p′′)∗y are reported in Fig. 4.1 for 32 histogram
bins and fit by univariate Gaussian distributions. Albeit with different
variances, p′, p′′ are very well-fit by a Gaussian PDF; since these finite-n
linear combinations of the coefficients in y are approximately Gaussian,
as a result it is sensible that y has an approximately Gaussian behaviour
and thus the entropy of yS can be maximised by solving Problem 4.1.

By running Proc. 2 (1:-4:) with γ = 10−12 we obtain MaxDet
pools Ω(Ngen−1) and near-optimal solutions S? yielding high-entropy
measurements for m = 1024, 1365. For each of 20 test images, we
simulate CS by three sets of sensing matrices: 25 PHE matrices from
the MaxDet pool (including the optimal AS?), 25 randomly chosen PHE
matrices and 50 RBE matrices. Signal recovery is then performed by
BP from these sets of measurements. The results in terms of ASNRx̂,x



102 MAXIMUM ENTROPY SENSING MATRIX DESIGNS

(a) Original image; n =
4096 pixel.

(b) S? PHE; ASNRx̂,x =
36.82 dB.

(c) Random PHE; ASNRx̂,x =
1.88 dB.

(d) RBE; ASNRx̂,x = 19.85 dB.

Figure 4.2: Signal recovery of handwritten digits from maximum
and non-maximum entropy sensing matrices; in the reported case
n = 4096,m = 1024.
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m MaxDet pool PHE Random PHE RBE

64 (n/4) 15.12 2.68 6.94
85 (bn/3c) 17.20 3.73 11.11

Table 4.2: Comparison of PHE and RBE sensing matrices on the
PhysioNet ECG dataset: ASNRx̂,x over 20 sample ECG; 25 MaxDet
pool PHE, 25 random PHE and 50 RBE sensing matrices.

are documented in Table 4.1, where measurements obtained by the
MaxDet pool Hadamard sensing matrices outperform both randomly
selected PHE and RBE sensing matrices. Fig. 4.2 illustrates this
observable improvement in terms of typical ASNRx̂,x performances
for a sample digit in the dataset and m = 1024.

4.4.2 Electrocardiographic tracks

In this second experiment we illustrate Hadamard sensing of ECG
tracks from the PhysioNet database [120]. K̂s is estimated on a
training set of 180 ECG fragments of dimensionality n = 256 and with
D the Coiflet-3 orthonormal DWT [52], on which on-average k = 39

coefficients represent 95% of the original signal energy, thus verifying
a compressible signal model. Although we omit their histogram, y can
also be considered approximately Gaussian in this case.

Proc. 2 (1:-4:) with γ = 10−12 yields MaxDet pools Ω(Ngen−1) and
near-optimal solutions S? for m = 64, 85 (a strongly undersampled
setting). Signal recovery is then performed in the same fashion of the
first example for 50 sample ECGs. The results in terms of ASNRx̂,x

are reported in Tab. 4.2, while Fig.4.3 illustrates the typical ASNRx̂,x

performances for a sample ECG in the dataset and m = 85.

From this further experimental evidence, we can conclude that the
method described in this Chapter improves by a non-negligible amount
the information conveyed by a localised signal into the measurements,
allowing the selection of an optimal subset of the

(
n
m

)
matrices that

can be randomly constructed from the Hadamard matrix Hn.
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(a) S? PHE; ASNRx̂,x = 15.94 dB.
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(b) Random PHE; ASNRx̂,x = 7.40 dB.
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(c) RBE, ASNRx̂,x = 12.85 dB

Figure 4.3: Signal recovery of ECGs from maximum and non-
maximum entropy sensing matrices; in the reported case n = 256,m =
85.
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Summary

I The design of RMEs from a finite set of deterministic sensing
vectors (i.e., a deterministic RME) matches some applications in
which they are hard-coded in the analog or optical domain. This
problem is of particular concern when the sparsity dictionary of
the signal being acquired is correlated w.r.t. the sensing vectors.

I When the signals being acquired by CS are localised, an adaptive
sensing matrix design criterion for this setting was proposed;
the proxy for “information extraction” in this context is a
maximisation of the measurements’ differential entropy. In the
context of choosing from a finite set of deterministic sensing
vectors, this amounts to solving a maximum entropy problem by
selecting an optimal set of row vectors to maximise this proxy.

I Due to the computational hardness of this maximisation, we have
applied a heuristic algorithm to choose near-optimal sensing ma-
trices in the corresponding deterministic ensemble. Experiments
on two signal classes have shown that measurements provided
by such matrices yield positive signal recovery performance
increments w.r.t. randomly selected matrix designs.
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5

THE sensitivity of recovery algorithms w.r.t. a perfect knowledge of
the sensing matrix is a general issue in many application scenarios

in which CS is an option to acquire, or actually encode by means of
low-complexity operations as in Chapter 3, natural signals complying
with a sparse signal model.

Quantifying this sensitivity in order to predict the result of signal
recovery is therefore valuable when no a priori information can
be exploited, e.g., when the encoding matrix is randomly perturbed
without any exploitable structure. In this Chapter we focus on
this aspect by means of a simplified least-squares model for the
signal recovery problem, which enables the derivation of its average
performance estimate that depends only on the interaction between
the encoding and perturbation matrices.

The effectiveness and stability of the resulting heuristic in CS
configurations where this evaluation is meaningful is demonstrated by
numerical exploration of signal recovery under three simple random
perturbation matrix models in a variety of cases; the aim of this
treatment is to develop a sense of the fact that this observation can be
leveraged to introduce a CS-based data protection scheme that exploits
this sensitivity to missing information.

109
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5.1 Compressed Sensing in the Presence of Perturba-
tions

In some applications the knowledge of the sensing (or encoding)
matrix may be imperfect due to perturbations; these may either be
caused by the nature of the physical mechanism by which the sensing
matrix is applied [151, 152] or to intentionally missing information
at the decoder, i.e., when the latter only knows the encoding matrix
up to a certain degree of accuracy. In particular, while calibration
[153,154] may be attempted in the first case, the latter case could be
designed to minimise the possibility of recovering missing information
on the encoding matrix (as will, in fact, be done in Chapter 6). Thus,
understanding the effects of a perturbation in the encoding matrix is a
valuable information in most applications of CS.

5.1.1 Recovery Guarantees with Matrix Perturbations

We here assume that the encoding matrix can be decomposed as1

A(1) = A(0) + ∆A, where A(0) ∈ Rm×n is known to the decoder while
∆A ∈ Rm×n is a perturbation matrix; in this case any clue on ∆A is
generally unavailable, and the corresponding term of y = A(1)x =

A(0)x + ∆Ax is signal-dependent noise. We here let D be a known
ONB that is available to the decoder, leaving the uncertainty to a
perturbation matrix ∆A and the actual sparse vector ŝ so that x̂ = Dŝ.

In terms of evaluating the effect of such matrix perturbations a
first fundamental result was given by Herman et al. [91], extending
the established theoretical signal recovery guarantees for convex
optimisation [13] to such perturbed cases; the following definition is
required for a summary of this result.

1The reason for the notation (1) and (0) will be cleared out later; here it substantially
indicates two levels of information, where the former denotes perfect knowledge of the
truth and the latter a partial version of it.
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Definition 5.1 (Perturbation Constants [91]). Let

σ
(k)
min /max(A) = min /max

T⊆{0,...,n−1},|T |=k
σmin /max(AT )

denote the extreme singular values among all k-column submatrices
of a matrix A ∈ Rm×n. We define the perturbation constants

ε
(k)

A(1) ≥
σ

(k)
max(∆AD)

σ
(k)
max(A(1)D)

εA(1) ≥
σmax(∆AD)

σmax(A(1)D)
≥ ε(k)

A(1)

(5.1)

The modification of Theorem 1.9 is here rephrased for the recovery of
k-sparse vectors in absence of other noise sources.

Theorem 5.1 (Stable Recovery by BPDN in the Presence of Perturbations
[91, Theorem 2]). Let y = (A(0)+∆A)x ∈ Rm be noisy measurements
with additive perturbation noise ∆Ax ∈ Rm; x = Ds with D an ONB
and s ∈ Rn : ‖s‖0 = k; A(1) = A(0) + ∆A ∈ Rm×n verify the RIP

with constant δ2k <
√

2
(

1 + ε
(2k)

A(1)

)−2

− 1 and ε(2k)

A(1) < 2
1
4 − 1. Then

ŝ = ∆BPDN(y,A(0)D, γ) with noise threshold

γ = ε
(k)

A(1)

√
1 + δk
1− δk

‖y‖2

is so that
‖ŝ− s‖2 ≤ c′1γ (5.2)

where

c′1 =
4
√

1 + δ2k

(
1 + ε

(2k)

A(1)

)
1− (

√
2 + 1)

[
(1 + δ2k)

(
1 + ε

(2k)

A(1)

)2

− 1

] (5.3)

While formally correct, as in most other analyses based on the RIP
once the error norm bound in (5.2) is actually computed the typical
performances of signal recovery are much more accurate than those
anticipated by Theorems 1.9, 5.1. In particular, the average MSE or
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SNR performances rather than their worst-case upper bounds could be
a useful tool in prospective applications (provided that the variance of
such quantities is also limited). While prior works exist exploring the
MSE lower bound for sparse signal recovery [155,156] the particular
case of matrix perturbations is covered in some important contributions
[157, 158] we here seek a design criterion following the principle
that, in the generally complex behaviour of sparse signal recovery
algorithms, an approach based on sensible mathematical intuition and
sufficiently motivated by simulation delivers applicable results.

5.1.2 Signal Recovery Algorithms with Matrix Perturba-
tions

With the basic information that noise is present on the measurements,
a decoder may either:

1. choose to be naive and estimate ŝ = ∆BP(y,A(0)D) in the
erroneous assumption that the measurements are not affected
by noise, forcing y = A(0)x̂;

2. in a more informed fashion, attempt to guess a noise threshold
ε so that ŝ = ∆BPDN(y,A(0)D, ε) actually attempts denoising
with the prior information that the solution is sparse. The noise
threshold must be set so that the norm ‖∆Ax‖2 ≤ ε. In a
particularly optimistic case, the actual norm ε? = ‖∆Ax‖2 is
here assumed to be known in the usual “genie”-tuning fashion;

3. in an ideal setting be provided with the actual support of s in
D, T , so that it may estimate ŝ = ∆OLS(y,A(0)D, T ). Note that
this non-perfectly informed oracle solution is missing any prior on
∆A, therefore yielding the solution ŝ that minimises the amount
of error w.r.t. the components in T .

A variety of algorithms and problem formulations tackle the
general case of signal recovery under perturbations [159,160], where
significant improvements are therein shown to be possible when some
structure in ∆A can be leveraged. However, we explicitly focus on the
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case in which ∆A is drawn from a RME with i.i.d. entries that changes
at each instance of x; as noted in [160], signal recovery performances
in this case are substantially limited to those of the aforementioned
non-perfectly informed OLS.

5.2 An Average Performance Estimate in the Presence
of Perturbations

The relative sophistication of Problems 1.5, 1.6 prevents an average
analysis of the sensitivity w.r.t. the perturbation matrix in typical
recovery problems. For this reason, in a simplified model we assume
that (i) (A(0),∆A) are drawn from two RMEs with known and i.i.d.
distributions of entries, (ii) an approximation of x̂ = Dŝ is obtained
by solving ∆BP(y,A(0)D) to satisfy y = A(0)x̂. Pairing this with the
original y = A(1)x and with ∆A = A(1) −A(0) we obtain

A(0)∆x = ∆Ax, ∆x = x̂− x (5.4)

Starting from this, we further assume that ∆A is indeed a perturbation,
i.e., that its entity is small w.r.t. A(0). In this way, the least-squares
approximation error ∆x is supposed to be small, so we could assume
that x̂ lies in a ball centred on x, and minimise its radius under the
constraint (5.4), yielding the LLS solution

∆x = argmin
∆ζ∈Rn

‖∆ζ‖22 s.t. A(0)∆ζ = ∆Ax (5.5)

that is ∆x = (A(0))†∆Ax. To investigate the expectation of ∆x when
considered as a R.V., i.e., the MSE of such a solution, we may then
compute

E
[
‖∆x‖22

]
=tr (C∆x)

=tr
(
EA(0),∆A,x

[
(A(0))†∆Axx∗∆A∗

[
(A(0))†

]∗])
=tr

(
EA(0),∆A

[
(A(0))†∆ACx∆A∗

[
(A(0))†

]∗])
(5.6)
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in the assumption that A(0) and ∆A are drawn from RMEs that are
independent of x, so the ratio

E
[
‖∆x‖22

]
E [‖x‖22]

= tr

(
EA(0),∆A

[
(A(0))†∆A

Cx

Ex
∆A†

[
(A(0))†

]†])
(5.7)

where the energy-normalised correlation matrix Cx/Ex takes into
account the second-order moments of the signal to acquire. Since
D is assumed an ONB we may adopt a sparse signal model where each
of
(
n
k

)
supports of s has the same probability (see Section 2.1.1), and

its k non-zero components are i.i.d. zero-mean r.v.s. With this, the
correlation matrix Cs/Es = 1

nIn and Cx = DCsD
∗ = Es

n In. In this
particular case, a simplified evaluation of the mean-signal-to-noise ratio

of the recovery2, MSNRx̂,x =
E[‖x‖22]
E[‖∆x‖22]

due to a perturbation of the

encoding matrix is possible, yielding

MSNRx̂,x = n
[
tr
(
EA(0),∆A

[
(A(0))†∆A∆A∗

[
(A(0))†

]∗])]−1

(5.8)
The expectation on A(0) and ∆A depends on the CS configuration
we are considering and may be effectively computed in an empirical
fashion by Monte Carlo simulations for any RME of interest. On the
other hand, the more suggestive and equivalent

MSNRx̂,x =

EA(0),∆A

 1

n

n−1∑
j=0

[
σj

(
(A(0))†∆A

)]2−1

(5.9)

links the expected performance to the average of the singular values
of
(
A(0)

)†
∆A, yet it is much less attractive in terms of computational

requirements for a numerical exploration.
Note that such an estimate has a number of clear limitations:

1. since it focuses on non-denoising recovery (i.e., the solution of
∆BP(y,A(0)D)) it underestimates the attained recovery quality
when the disturbance due to the perturbation can be compen-
sated by the relative abundance of information on the problem

2Note that MSNRx̂,x 6= ASNRx̂,x, since the expectation of a ratio is not in general
the ratio of the numerator and denominator’s expectations. Nevertheless, this is a
completely sensible performance index.
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due to (i) the availability of a large number of measurements in
excess of the minimum required for recovery (therefore allowing
efficient denoising) and (ii) knowing each instance’s error norm
ε? = ‖∆Ax‖2 with which ∆BPDN(y,A(0)D, ε?) may be solved;

2. the estimate will lose its validity for small values of m that do not
allow an effective recovery, i.e., when even the perfectly informed
∆BP(y,A(1)D) fails. In this case it is not sensible to assume
that either (1.21) or (1.23) identify a good approximation of the
true signal; the intrinsic reason is that ‖∆x‖2 is not small (as
the least-squares hypothesis in the neighbourhood of x will not
hold3) and the estimate will not yield a relevant prediction of
the recovery quality.

Thus (5.8) and the more general (5.7) are expected to be most
effective when m is sufficiently large, so that the phase transition of
∆BP(y,A(1)D) to the “1” region has occurred (see Section 1.2.4) but
not much larger than the minimum m required to achieve it. Actually,
this is how efficient CS configurations will be designed and why (5.8)
will match the examples presented below.

5.3 Performance Evaluation with Random Matrix Per-
turbations

In this Section we choose different RMEs from which ∆A is drawn,
and introduce the projection-to-perturbation ratio,

PPRA(0),∆A =
E[‖A(0)‖2F ]

E[‖∆A‖2F ]

indicating the relative average energy of A(0) w.r.t. ∆A to control its
impact.

3Actually, upon writing this thesis the author found that a very similar existing
intuition drives some of the considerations in [156], albeit tackling a slightly different
problem.
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Figure 5.1: MSNRx̂,x curves used to setm beyond the phase transition
of ∆BP(y,A(1)D).

5.3.1 Perturbation Models

In particular, we here discuss three perturbation models:

1. Dense Gaussian Additive (DGA): ∆A is drawn from the RGE with
i.i.d. entries of variance σ2

∆A = 1
PPR

A(0),∆A

;

2. Dense Uniform Multiplicative (DUM): ∆A = U ◦A(0), where U

is drawn from a RME that is independent of A(0) and has i.i.d.
entries distributed as Uj,l ∼ U

(
−β2 ,

β
2

)
and β = 2

√
3

PPR
A(0),∆A

;

3. Sparse Sign-Flipping (SSF): a random set of index pairs C is
independently generated so that each entry

∆Aj,l =

−2A
(0)
j,l , (j, l) ∈ C

0, (j, l) /∈ C
(5.10)
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corresponds to a sign flipping of an element of A(0), where each
pair of {0, . . . ,m−1}×{0, . . . , n−1} has a probability η of being
chosen. The resulting sparse RME has a density η = 1

4 PPR
A(0),∆A

which controls σ2
∆A = 4η.

5.3.2 Experiments and Estimates

In this numerical experiment we consider a simple setting of dimen-
sionality n = 256 and assume D is the DCT; we generate s as a white
R.V. by assuming equal probability of each of its

(
n
k

)
possible supports,

letting its k non-zero components be i.i.d. r.v.s distributed as N (0, 1/k).
We consider k = 8, 16, 32 as prototypes of high-, medium-, and low-
sparsity signals.

The matrix A(0) ∈ Rm×n is here drawn from the RGE with unit-
variance entries. As noted in the previous Section, we expect the
estimate (5.8) to apply after a perfectly informed BP yields a solution
with sufficiently large m.

For a quantitative evaluation of this aspect, we generate 200

instances of s, encode them with no perturbation and then apply
∆BP(y,A(1)D) to measure the MSNRx̂,x with different values of m by
means of SPGL1. Given that the precision setting of the solver allows a
maximum SNR of ≈ 120 dB, by looking at the evidence in Fig. 5.1 we
derive that a target MSNRx̂,x level of 110 dB is reached when m = 103

for k = 8, m = 138 for k = 16 and m = 184 for k = 32, at which it is
safe to assume that the decoder is operating after the phase transition.

At these (m, k) pairs we explore the effect of perturbations and
how closely it is predicted by (5.8); we choose the distribution
parameters of the three models in Section 5.3.1 to obtain a given
PPRA(0),∆A ∈ {0, 5, . . . , 80} dB. For the chosen (m, k), we generate
200 instances of (s,A(0),∆A), encode x = Ds with A(1) = A(0) + ∆A

and attempt to recover ŝ by ∆BP(y,A(0)D), ∆BPDN(y,A(0)D, ε?) and
the non-perfectly informed ∆OLS(y,A(0)D, T ). These three results
are compared with the outcome of a Monte Carlo simulation of our
estimate in (5.8) averaged over 200 instances of (A(0),∆A).
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(a) MSNRx̂,x versus PPRA(0),∆A for k = 8.
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(b) MSNRx̂,x versus PPRA(0),∆A for k = 16.

0

20

40

60

80

100

0 20 40 60 80

M
S

N
R

x̂
,x

(d
B

)

PPRA(0),∆A(dB)

∆BP(y,A(0)D)

∆BPDN(y,A(0)D, ε?)

∆OLS(y,A(0)D, T )

Eq. (5.8)

(c) MSNRx̂,x versus PPRA(0),∆A for k = 32.

Figure 5.2: Comparison of the average performance estimate in (5.8)
(dashed) against ∆BP(y,A(0)D) (empty circles), ∆BPDN(y,A(0)D, ε?)
(filled circles), ∆OLS(y,A(0)D, T ) (solid line) for the DGA perturba-
tion.
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(a) MSNRx̂,x versus PPRA(0),∆A for k = 8.
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(b) MSNRx̂,x versus PPRA(0),∆A for k = 16.
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(c) MSNRx̂,x versus PPRA(0),∆A for k = 32.

Figure 5.3: Comparison of the average performance estimate in (5.8)
(dashed) against ∆BP(y,A(0)D) (empty circles), ∆BPDN(y,A(0)D, ε?)
(filled circles), ∆OLS(y,A(0)D, T ) (solid line) for the DUM perturba-
tion.
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(a) MSNRx̂,x versus PPRA(0),∆A for k = 8.
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(b) MSNRx̂,x versus PPRA(0),∆A for k = 16.
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(c) MSNRx̂,x versus PPRA(0),∆A for k = 32.

Figure 5.4: Comparison of the average performance estimate in (5.8)
(dashed) against ∆BP(y,A(0)D) (empty circles), ∆BPDN(y,A(0)D, ε?)
(filled circles), ∆OLS(y,A(0)D, T ) (solid line) for the SSF perturbation.
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The results are depicted in Fig. 5.2b,5.3b,5.4b for fixed k = 16 and
the three different perturbation models; the MSNRx̂,x of each decoder
can be compared with the estimate as the PPRA(0),∆A increases
(i.e., the perturbation is made progressively smaller).

Moreover, since the estimate has negligible variations w.r.t. the
perturbation model, we fix the latter to DGA and explore the effect of
different sparsity levels at values for which the phase transition has
occurred; the results are reported in Fig. 5.2a,5.2b and 5.2c. Note that,
although it is only an estimate, (5.8) appears to be quite effective in
anticipating the average performances right between ∆BP(y,A(0)D)

and ∆BPDN(y,A(0)D, ε?). This is coherent with its derivation that
starts from a non-denoising, naive BP but assumes that the recovery
has the ability of coming as close as possible to the true solution in the
least-squares sense.

As a result of this performance estimate, we can conclude that the
estimate in (5.8) (or its extension to non-white signals in (5.7)) is in-
deed sufficiently accurate to predict the average recovery performances
of signal recovery algorithms under matrix perturbations right between
∆BP(y,A(0)D) and ∆BPDN(y,A(0)D, ε?), and in particular when the
configuration of CS being used is operating in the appropriate region
of the phase space, i.e., when the set of (m,n, k) is so that recovery by
BP is always feasible.

In the next Chapter, we will focus on SSF as a method to introduce a
controlled, conveniently generated perturbation in an encoding matrix
to deliver data protection embedded in the sensing or encoding process;
hence the interest in the devised estimate, that serves as a design
formula for a lightweight encryption protocol.

Summary

I Matrix perturbations have a strong effect on the recovery
performances of BPDN, and quantifying their effect is important
when they cannot be overcome by calibration procedures.

I An estimate of the average recovery performances attained by CS
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in the presence of a random matrix perturbation was proposed.
Our performance index is simply calculated by estimating the
effect of the perturbation on the singular values with Monte Carlo
trials, and requires no prior information on the signal support.
However, the performance estimate applies only after the phase
transition of the corresponding recovery problem, i.e., where CS
will actually be used in practice.

I The estimate was shown to be numerically stable w.r.t. a variety
of different matrix perturbations. One particular perturbation,
i.e., Sparse Sign-Flipping has a fundamental role in this thesis as
a method to provide a multiclass encryption mechanism that will
be devised in the following Chapter.



LOW-COMPLEXITY

MULTICLASS ENCRYPTION

BY COMPRESSED SENSING

6

WITH the rise of paradigms such as wireless sensor networks,
whose lightweight node requirements have been anticipated

in Chapter 3, the matter of defending the privacy of digital data
gathered and distributed by such networks is a relevant issue, of
even more concern when such networks acquire sensitive information
such as biometric signals used in health monitoring applications.
This data protection is normally granted by means of encryption
stages securing the transmission channel [161] that is implemented
in the digital domain after A/D conversion of the signal. Due to
their complexity, cryptographic modules (e.g., those implementing the
Advanced Encryption Standard (AES) [162]) may require a considerable
amount of resources, especially in terms of power consumption.

In this Chapter, we investigate on the possibility of using CS with
encoding matrices drawn from the RBE as a physical-layer method to
embed security properties directly into the acquisition process. Such
an almost-zero cost encryption mechanism is an appealing option
that could be applied seamlessly in a digital-to-digital fashion, as it is
perfectly integrated into the scheme of Fig. 3.2c.

Although it is well known that, due to its linearity, CS cannot be
regarded as a mean to provide perfect secrecy [26], Chapters 7 and 8
will thoroughly address the fact that both computational and weak

123
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theoretical secrecy conditions hold.

The proposed encryption strategy relies on the fact that any receiver
attempting to decode the reduced-dimensionality measurements
produced by applying a RBE encoding matrix must know the true
instance of the latter as used in the acquisition process to attain
exact signal recovery. In absence of this information, it will suffer the
equivalent of a matrix perturbation, whose decoder-side sensitivity has
been anticipated by the analysis in Chapter 5. We will actually exploit
this sensitivity to provide multiple recovery quality-based access levels,
i.e., classes of access to the information content embedded in the signal.
In fact, when the true encoding matrix is completely unknown the
signal is fully encrypted, whereas a receiver that knows the encoding
matrix up to some random perturbations indeed will see the quality
degradation anticipated in the previous Chapter.

We therefore aim to control the recovery performances of users
(receivers) belonging to the same class by exploiting their ignorance
of the true encoding matrix. Since these encoding matrices and
the corresponding perturbations are generated from the available
private keys at the corresponding decoders, high-class receivers are
given a complete key and thus the true encoding matrix, while lower-
class receivers are given an incomplete key resulting in a partially
corrupted encoding matrix, with no clue on where the perturbations
have occurred. To ensure that this mismatch is undetected by lower-
class receivers, we will only alter the sign of a randomly chosen
subset of the entries of the true encoding matrix, i.e., we apply a
SSF perturbation (as defined in the previous Chapter) that ensures
undetectability since the encoding matrix is drawn from the RBE.

To quantify in a more precise manner the capabilities of the
proposed multiclass encryption scheme we will (i) provide upper-
and lower-bound analyses on the recovery error norm suffered by
lower-class receivers depending on the chosen amount of perturbation
(ii) evaluate exemplary applications of multiclass CS to concealing
sensitive information in images, ECGs and speech signals. The attained
recovery performances are also evaluated in a signal processing
perspective by means of automatic feature-extraction algorithms
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to prove the efficacy of this strategy at integrating some security
properties in the sensing or encoding process.

6.1 Principles of Multiclass Encryption by Compressed
Sensing

We here discuss the introduction of a novel lightweight scheme for
data protection, namely, multiclass encryption by CS.

6.1.1 Secrets, Bits and Compressed Sensing

Standard CS has been previously interpreted [26,163] as a private-key
cryptosystem where x is the plaintext, the measurement vector y is
the ciphertext and the encryption algorithm is the linear transformation
operated by the encoding matrix A. In the classic setting, Alice would
acquire a plaintext x by CS using A and send to Bob the ciphertext
y; Bob is therefore able to successfully recover x from y if he is
provided with A, or equivalently the encryption key or shared secret
required to generate it. In fact, CS may be regarded as similar to a Hill
cipher [164, Section 2.7], where the main difference is the fact that the
encoding matrix is non-invertible and decryption is actually conditional
to (i) the sparsity of the plaintext w.r.t. a suitable basis (here assumed
an ONB for the sake of simplicity) and (ii) the knowledge of A, that is
necessary in the recovery of x from y.

Focusing on A, we know that any error in its entries reflects on the
quality of the reconstructed signal as discussed in Chapter 5. Since
private-key communications operate by agreeing on a finite number
of bits that form the above secret, the mn symbols that comprise
A ∈ Rm×n will be extracted from a pseudo-random sequence of
bits that is obtained from the initial seed. In our case, the seed is
given by the secret itself, and depending on the number of its bits the
expanded pseudo-random binary sequence will eventually repeat. In
the following we will assume that the period of the pseudo-random
sequences generated by algorithmic expansion of the secret (e.g., by
a Pseudo-Random Number Generator (PRNG)) is sufficiently long as to
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x × y

◦PRNG PRNG Key(A(0))Key(C(0))

A(1)

C(0) A(0)

(a) The encoder; × here denotes the matrix-vector product, ◦ the composition
by (6.1).

y +

ε = ∆Ax

∆BP(y,A(0)D)

Key(A(0))

x̂

(b) A second-class decoder; the virtual effect of missing
information on the encoding matrix at the decoder is
highlighted in red.

Figure 6.1: An overview of two-class encryption by CS.

guarantee that in an observation time of interest the same A will never
occur twice. This hypothesis is fundamental to ensure that A cannot be
recovered from the knowledge of a sufficient number of plaintexts and
ciphertexts, a simple observation first made by Drori [165] together
with an analogy with the one-time pad [164, Section 2.9].

Since both the RGE and RBE are suitable ensembles to extract the
encoding matrices we assume that the A of interest are all drawn
from the RBE. This choice is motivated by the fact that the number of
bits required to produce a single encoding matrix symbol is therefore
maximised, as the bits output by the PRNG before repetition are a
precious resource. With this hypothesis, we will let any instance of any
RBE encoding matrix be a generic, unique element in a long-period
repeatable sequence.

6.1.2 Multiclass Compressed Sensing

Let us now consider a scenario where multiple users receive the same
ciphertext y = A(1)x, know the ONB D in which the plaintext x is
k-sparse, but are made different by the fact that some of them know
the true A(1) whereas the others only know an approximate version
of it, i.e., A(0). The resulting mismatch between A(1) and A(0), which
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will be used in the decoding process by the latter set of receivers, will
limit the quality of their signal recovery as detailed below.

A Two-Class Encryption Scheme

With this principle in mind a straightforward, undetectable method to
introduce controlled perturbations is flipping the sign of a subset of
the entries of the encoding matrix in a random pattern. More formally,
let A(0) ∈ {−1,+1}m×n denote the initial encoding matrix and C(0) be
a subset of c < mn index pairs chosen at random for each A(0). We
therefore construct the true encoding matrix A(1) by

∀(j, l) ∈ {0, . . . ,m− 1} × {0, . . . , n− 1},

A
(1)
j,l =

A
(0)
j,l , (j, l) /∈ C(0)

−A(0)
j,l , (j, l) ∈ C(0)

(6.1)

and use it to encode x by y = A(1)x. Although this alteration simply
involves inverting c randomly chosen sign bits in a buffer ofmn pseudo-
random symbols, we will use its linear perturbation model

A(1) = A(0) + ∆A (6.2)

as in Chapter 5, where ∆A is a c-sparse random matrix1

∀(j, l) ∈ {0, . . . ,m− 1} × {0, . . . , n− 1},

∆Aj,l =

0, (j, l) /∈ C(0)

−2A
(0)
j,l , (j, l) ∈ C(0)

(6.3)

or equivalently

∀(j, l) ∈ {0, . . . ,m− 1} × {0, . . . , n− 1},

∆Aj,l =

0, (j, l) /∈ C(0)

2A
(1)
j,l , (j, l) ∈ C(0)

(6.4)

1To be specific, it can be seen as drawn from a ternary-valued RME ∆A ∈
{−2, 0, 2}m×n constructed from all the equiprobable assignments of c non-zero
elements verifying (6.3). In a simplifying view, we let it have i.i.d. entries ∀(j, l) ∈
{0, . . . ,m − 1}, {0, . . . , n − 1},P[∆Aj,l = −2] = P[∆Aj,l = 2] = η

2
,P[∆Aj,l = 0] =

1− η, so the density parameter is actually controls the probability assignment.
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with SSF density η = c
mn . By doing so, any receiver is still provided

an encoding matrix differing from the true one by an instance of ∆A.
This perturbation is undetectable, i.e., A(1) and A(0) are statistically
indistinguishable since they are equal-probability realisations of the
same RBE, with all points in {−1,+1}m×n having the same probability.

A first-class user receiving y = A(1)x = (A(0) +∆A)x and knowing
A(1) is therefore able to recover, in absence of other noise sources and
with m sufficiently larger than the sparsity k : x = Ds, ‖s‖0 = k, the
exact sparse solution ŝ = s by solving ∆BP(y,A(1)D). A second-class
user only knowing y and A(0) is instead subject to an equivalent signal-
and perturbation-dependent, non-white noise term ε due to missing
pieces of information on A(1), that is

y = A(1)x = A(0)x + ε (6.5)

where ε = ∆Ax is a pure disturbance since both ∆A and x are
unknown to the second-class receiver. Its approximation x̂ is obtained
the solution of, e.g., ∆BP(y,A(0)D) or ∆BPDN(y,A(0)D, ε?) with ε? =

‖ε‖2, where the considerations made in Chapter 5 seamlessly apply;
performing signal recovery in the erroneous assumption that y =

A(0)x̂, i.e., with a corrupted encoding matrix will lead to a noisy x̂ =

Dŝ.
In terms of recovery guarantees, while upper bounds on the

recovery error norm ‖x̂ − x‖2 have been anticipated in the form
of Theorem 1.9 and 5.1, the crucial matter in this Chapter will be
finding a lower bound to the error norm, i.e., a best-case analysis of
the second-class recovery error. We anticipate that this will depend
on the perturbation density η, which will be suitably chosen to fix
the desired quality range for each class. This is precisely obtained in
Section 6.2, together with a quantification of the upper bound by a
direct application of Theorem 5.1.

A Multiclass Encryption Scheme

The two-class scheme may be iterated to devise an arbitrary number
of user classes: a SSF can be applied on disjoint subsets of index pairs
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C(u), u ∈ {0, . . . , w − 2} of A(0) so that

A
(u+1)
j,l =

A
(u)
j,l , (j, l) /∈ C(u)

−A(u)
j,l , (j, l) ∈ C(u)

yielding the corresponding {A(u)}w−1
u=0 , each in turn associated with

one of w user classes that progressively complete the knowledge of the
true encoding A(w−1). Thus, if the plaintext x is encoded with A(w−1)

we may distinguish high-class users knowing the complete encoding
A(w−1), low-class users knowing only A(0) and mid-class users knowing
A(u+1) with u = 0, . . . , w − 3. This simple technique can be applied
to provide multiple classes of access to the information in x granting
different signal recovery performances at the decoder.

A System Perspective

The strategy described in this Section provides a multiclass encryption
architecture where the shared secret between the CS encoder and
each receiver is distributed depending on the quality level granted
to the latter. In particular, the full encryption key of a w-class
CS scheme is composed of w seeds, i.e., low-class users are pro-
vided the secret Key(A(0)), class-1 users are provided Key(A(1)) =(
Key(C(0)),Key(A(0))

)
up to high-class users with

Key(A(w−1)) =
(

Key(C(w−2)), · · · ,Key(C(0)),Key(A(0))
)

An exemplary network implementing this policy is depicted in Fig.
6.3. This is reduced to the simple scheme of Fig. 6.1 in the case of
a two-class encryption, where Key(C(0)),Key(A(0)) fully define the
key-agreement.

From the resources point of view, multiclass CS can be implemented
with practically zero computational overhead. The encoding matrix
generator is substantially a PRNG (e.g., a Linear Feedback Shift Register
(LFSR)) and is structurally identical at both the encoder and high-class
decoder side, whereas lower-class decoders may use the same encoding
matrix generation scheme but are unable to rebuild the true one due
to the missing pieces of the shared secret, i.e., Key(C(u)).
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PRNG

PRNG

Key(A(0))

{Key(C(u))}w−2
u=0

A(0)

A(w−1)

Figure 6.2: Encoding matrix generator architecture.

x(u) ≈ x Encoder

Single Encoder

Key(A(w−1))

y

Decoder

High-class

Key(A(w−1))

x
y

Decoder

Mid-class

Key(A(1))

x̂(1)
y

...

Decoder

Low-class

Key(A(0))

x̂(0)
y

Figure 6.3: A single-transmitter, multiple-receiver multiclass CS
network: the encoder acquires an analog signal x(u) by CS and
transmits the measurement vector y. Low-quality decoders reconstruct
a signal approximation with partial knowledge of the encoding,
resulting in perturbation noise and leading to an approximate solution
x̂(u) for the u-th user class.
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The initial matrix A(0) is, as anticipated, updated from a pseudo-
random binary stream generated by expanding Key(A(0)) with a PRNG.
The introduction of sign-flipping is a simple post-processing step
carried out on the stream buffer by reusing the same PRNG architecture
and expanding the corresponding Key(C(u)), thus having minimal
computational cost (see Fig. 6.2). Of course, the PRNGs have to be
carefully chosen to avoid cryptanalysis [166]; however, since the values
generated by this PRNG are never exposed, cryptographically-secure
PRNGs [167] or security-enhancing primitives on the output [168]
may be avoided to save resources, provided that the period with which
the matrices are reused is kept sufficiently large.

6.2 Recovery Error Guarantees and Bounds

We now analyse the properties of multiclass CS starting from some
statistical priors on the signal being encoded. Rather than relying on
its a priori distribution, our analysis uses general moment assumptions
that may correspond to many probability distributions on the signal
domain. We will therefore adopt the following models:

(m1) for finite n, we let x = {xj}n−1
j=0 be a real-valued R.V.. Its

realisations are finite-length plaintexts denoted by the same
letter x, and are assumed to have finite energy Ex = ‖x‖22.
We will let each x = Ds with D an ONB and s being k-sparse
to comply with sparse signal recovery guarantees. x is mapped
to the measurements’ R.V. y = {yj}m−1

j=0 whose realisations are
the finite-length ciphertexts denoted by the same letter y as
y = A(1)x;

(m2) for n → ∞, we let X = {xj}+∞j=0 be a real-valued Random
Process (R.P.). Its realisations or infinite-length plaintexts x are
assumed to have finite power Wx = limn→∞

1
n

∑n−1
j=0 x

2
j . We

may denote them as sequences x = {x(n)}+∞n=0 of finite-length
plaintexts x(n) =

[
x0 · · · xn−1

]
. X is mapped to either a R.V. y

of finite-length ciphertexts for finite m, or a R.P. Y = {yj}+∞j=0 of
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infinite-length ciphertexts for m,n→∞, mn → q. Both cases are
comprised of2 r.v.s yj = 1√

n

∑n−1
l=0 A

(1)
j,l xl.

When none of the above models is specified, a single instance of
y = A(1)x is considered as in the standard CS framework.

In order to quantify the recovery quality performance gap between
low- and high-class users receiving the same measurements y = A(1)x,
we now provide performance bounds on the recovery error in the
simple two-class case, starting from the basic intuition that if the
sparsity basis of x is not the canonical basis, then most plaintexts
x /∈ Ker (∆A) so the perturbation noise ε 6= 0m.

6.2.1 Second-Class Recovery Error Norm: Lower Bound

The following results aim at predicting the best-case recovery quality
of any second-class decoder that assumes y was encoded by A(0),
whereas y = A(1)x in absence of other noise sources and regardless
of the sparsity of x. Since A(1) is drawn from the RBE any exact
signal recovery guarantee based on the properties of this matrix
ensemble holds when encoding x by A(1). By such guarantees, the
dimensionalitym of the measurement vector y must exceed the sparsity
k by a quantity depending on the rate k/n. In the following, we
will assume that m/n and k/n grant that a decoder knowing the true
encoding A(1) is able to accurately reconstruct the original signal by
∆BP(y,A(1)D).

We now introduce a result that shows how the recovery error
norm suffered by a second-class receiver is at least (rather than at
most, as is usually the case for performance guarantees in CS) a certain
quantity essentially depending on the nature of the perturbation ∆A =

A(1) −A(0); this will serve as a basic design guideline for multiclass
encryption schemes.

2The 1/
√
n scaling is not only theoretically needed for normalisation purposes, but

also practically required in the design of quantiser ranges.
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Theorem 6.1 (Second-class recovery error lower bound (non-asymptotic
case)). Let:

• A(0),A(1) ∈ {−1,+1}m×n be drawn from the RBE and ∆A be
as in (6.3) with density η ≤ 1

2 ;

• x ∈ Rn be as in (m1) with finite Ex = E[
∑n−1
j=0 x

2
j ], Fx =

E[(
∑n−1
j=0 x

2
j )

2].

For any θ ∈ (0, 1), and any instance of y = A(1)x, x̂ that satisfies
y = A(0)x̂ is such that

P
[
‖x̂− x‖22 ≥

4ηmEx
σmax(A(0))2

θ

]
≥ ζ (6.6)

where
ζ =

1

1 + (1− θ)−2
[[

1 + 1
m

(
3
2η − 1

)]
Fx

E2x
− 1
] (6.7)

This is extended to the asymptotic case (i.e., model (m2)) as follows.

Theorem 6.2 (Second-class recovery error lower bound (asymptotic
case)). Let:

• A(0),A(1),∆A, η be as in Theorem 6.1 as m,n→∞, mn → q;

• X be as in (m2) , α-mixing [117, (27.25)], with finite Wx =

limn→∞
1
nE
[∑n−1

j=0 x
2
j

]
and uniformly-bounded E[X4

j ] ≤ mx for
some mx > 0.

For any θ ∈ (0, 1), and any instance of y = 1√
n
A(1)x, x̂ that satisfies

y = 1√
n
A(0)x̂ is such thata

P
[
Wx̂−x ≥

4ηqWx

(1 +
√
q)2

θ

]
' 1 (6.8)

aClearly the recovery error power Wx̂−x = limn→∞
1
n

∑n−1
j=0 (x̂j − xj)2.
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The proof of these statements is given below. Simply put, Theorems
6.1 and 6.2 state that a second-class decoder recovering with any
algorithm x̂ such that y = A(0)x̂ is subject to a recovery error whose
norm, with high probability, exceeds a quantity depending on the
density η of the perturbation ∆A, the undersampling rate m/n and
the average energy Ex or power Wx respectively. In particular, the
non-asymptotic case in (6.6) is a probabilistic lower bound: as a
quantitative example, by assuming it holds with probability ζ = 0.98

and that Fx

E2x
= 1.0001, n = 1024,m = 512, σmax(A(0)) '

√
m +

√
n

(i.e., as in Theorem 1.4) one could take an arbitrary θ = 0.1 ⇒ η =

0.1594 to obtain ‖x̂− x‖22 ≥ 0.0109 w.r.t. R.V.s having average energy
Ex = 1. In other words, with probability 0.98 a perturbation of density
η = 0.1594 will cause a minimum recovery error norm of 19.61 dB.

A stronger asymptotic result holding with probability 1 on the
recovery error power Wx̂−x is then reported in Theorem 6.2 under
broadly verified assumptions on the R.P. X , where θ can be arbitrarily
close to 1 and only affecting the convergence rate to this lower bound.
The bounds in (6.6) and (6.8) are adopted as reference best-cases in
absence of other noise sources for the second-class decoder, which
actually exhibits higher recovery error for most problem instances
and reconstruction algorithms as well illustrated in the exemplary
applications of Section 6.3.

Proof of the Second-Class Recovery Error Lower Bound

In this Section we give a technical proof of Theorems 6.1 and 6.2. We
first introduce a Lemma that gives a self-contained probabilistic result
on the Euclidean norm of ε in (6.5).

Lemma 6.1. Let:

• ξ ∈ Rn be a R.V. with Eξ = E[
∑n−1
j=0 ξ

2
j ], Fξ = E[(

∑n−1
j=0 ξ

2
j )2];

• ∆A ∈ {−2, 0, 2}m×n be the sparse random matrix in (6.3)
drawn from a RME with i.i.d. entries and density η = c

mn ≤
1
2 .
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If ξ and ∆A are independent, then for any θ ∈ (0, 1)

P
[
‖∆Aξ‖22 ≥ 4mη Eξθ

]
≥ ζ (6.9)

with

ζ =

{
1 + (1− θ)−2

[(
1 +

1

m
(

3

2η
− 1)

)
Fξ

E2
ξ

− 1

]}−1

(6.10)

Proof of Lemma 6.1. Consider

‖∆Aξ‖22 =

m−1∑
j=0

n−1∑
l=0

n−1∑
i=0

∆Aj,l∆Aj,iξlξi

We now derive the first and second moments of this positive r.v.
as follows; ∆A is drawn from a RME of i.i.d. entries with mean
µ∆A = 0, variance σ2

∆A = 4η and ∀(j, l) ∈ {0, . . . ,m−1}×{0, . . . , n−
1},E[∆A4

j,l] = 16η. Using the independence between ξ and ∆A, and
the fact that ∆A is drawn from a RME with i.i.d. entries we have that
the first moment

E
[
‖∆Aξ‖22

]
=

m−1∑
j=0

n−1∑
l=0

n−1∑
i=0

E[∆Aj,l∆Aj,i]E[ξlξi]

=

m−1∑
j=0

n−1∑
l=0

n−1∑
i=0

σ2
∆Aδ(l, i)E[ξlξi] =

m−1∑
j=0

σ2
∆A

n−1∑
l=0

E[ξ2
l ] = 4mη Eξ

For the aforementioned properties of ∆A we also have

E[∆Aj,l∆Aj,i∆Av,h∆Av,o] =



σ4
∆A,


j 6= v, l = i, h = o

j = v, l = i, h = o, l 6= h

j = v, l = h, i = o, l 6= i

j = v, l = o, i = h, l 6= i

E[∆A4
j,l], j = v, l = i = h = o

0, otherwise
(6.11)
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illustrating the expectation of all possible 4-ples of entries of ∆A. After
some cumbersome but straightforward calculations that involve the
substitution of (6.11) into E

[
(‖∆Aξ‖22)2

]
we obtain

E
[
(‖∆Aξ‖22)2

]
= 16mη(η(m− 1)Fξ + 3η(Fξ − Gξ) + Gξ)

where Gξ = E
[∑n−1

j=0 ξ
4
j

]
. We are now in the position of using a one-

sided version of Chebyshev’s inequality for positive r.v.s, i.e., any r.v.
z ≥ 0 verifies

∀θ ∈ (0, 1), P [z ≥ θE[z]] ≥ (1− θ)2µ2
z

(1− θ)2µ2
z + σ2

z

(6.12)

By applying this inequality to ‖∆Aξ‖22 we have that, ∀θ ∈ (0, 1),

P
[
‖∆Aξ‖22 ≥ θE[‖∆Aξ‖22]

]
≥
[
1 + (1− θ)−2

[
E[(‖∆Aξ‖22)2]

E[‖∆Aξ‖22]2
− 1

]]−1

=

[
1 + (1− θ)−2

[(
1− 1

m

)
Fξ

E2
ξ

+
3η(Fξ − Gξ) + Gξ

ηmE2
ξ

− 1

]]−1

which yields (6.10) by considering that when η ≤ 1
2 , 3η(Fξ−Gξ)+Gξ ≤

3
2Fξ.

We are now in the position of proving Theorem 6.1.

Proof of Theorem 6.1. Since all decoders receive in absence of other
noise sources the same measurements y = A(1)x, a second-class
decoder would naively assume y = A(0)x̂ with x̂ an approximation of
x obtained by a decoder that satisfies this equality, e.g., as the naive BP
in Section 5.1.2. Since A(1) = A(0) + ∆A, if we define ∆x = x̂−x we
may write A(0)x+∆Ax = A(0)x̂ and thus A(0)∆x = ∆Ax. ‖∆x‖22 can
then be bounded straightforwardly as σmax(A(0))2‖∆x‖22 ≥ ‖∆Ax‖22
yielding

‖x̂− x‖22 ≥
‖∆Ax‖22

σmax(A(0))2
(6.13)

By applying the probabilistic lower bound of Lemma 6.1 on ‖∆Ax‖22
in (6.13), we have that ‖∆Ax‖22 ≥ 4mη Exθ for θ ∈ (0, 1) and a
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given probability value exceeding ζ in (6.10). Plugging the right-hand
side (RHS) of this inequality in (6.13) yields (6.6).

The following Lemma applies to finding the asymptotic result (6.8)
of Theorem 6.2.

Lemma 6.2. Let X be an α-mixing R.P. with uniformly-bounded
fourth moments E[x4

j ] ≤ mx for some mx > 0. Define

Ex = E

n−1∑
j=0

x2
j


and

Fx = E


n−1∑
j=0

x2
j

2


If
Wx = lim

n→∞

1

n
Ex > 0

then
lim
n→∞

Fx

E2
x

= 1

Proof of Lemma 6.2. Note first that from Jensen’s inequality Fx ≥
E2

x, so limn→∞
1
nEx > 0 also implies that limn→∞

1
n2 E2

x > 0 and
limn→∞

1
n2Fx > 0. Since limn→∞

1
n2 E2

x =W2
x > 0 we may write

lim
n→∞

Fx

E2
x

= 1 +
limn→∞

1
n2Fx − 1

n2 E2
x

W2
x

(6.14)

and observe that ∣∣∣∣ 1

n2
Fx −

1

n2
E2

x

∣∣∣∣ ≤ 1

n2

n−1∑
j=0

n−1∑
l=0

|Ξj,l|

where

Ξj,l = E[x2
jx

2
l ]− E[x2

j ]E[x2
l ] = E[(x2

j − E[x2
j ])(x

2
l − E[x2

l ])]
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From the α-mixing assumption we know that |Ξj,l| ≤ α(|j − l|) ≤ mx

with the sequence α(h) vanishing to 0 as h→∞. Hence,∣∣∣∣ 1

n2
Fx −

1

n2
E2

x

∣∣∣∣≤ 1

n2

n−1∑
j=0

|Ξj,j |+
2

n2

n−1∑
h=1

n−h−1∑
j=0

|Ξj,j+h|

≤nmx

n2
+

2

n2

n−1∑
h=1

(n− h)α(h) ≤ mx

n
+

2

n

n−1∑
h=1

α(h)

(6.15)

The thesis of this Lemma follows from the fact that the upper bound
in (6.15) vanishes to 0 as n→∞. This is obvious when

∑+∞
h=0 α(h) is

convergent. Otherwise, if
∑+∞
h=0 α(h) is divergent we may resort to the

Stolz-Cesàro theorem to find limn→∞
1
n

∑n−1
h=1 α(h) = limn→∞ α(n) =

0.

We are now in the position of proving Theorem 6.2, that is a mere
extension of the proof of Theorem 6.1 to the asymptotic case.

Proof of Theorem 6.2. The inequality (6.13) in the proof of Theorem
6.1 is now modified for the asymptotic case, i.e., for a R.P. X . Note
that A(0) is drawn from the RBE with zero mean, unit variance entries;
thus, when m,n→∞ with m/n→ q the value

√
nσmax(A(0)) is known

from [83] (i.e., as in Theorem 1.4) since all its singular values belong
to the interval

[
1− 1√

q , 1 + 1√
q

]
. We therefore assume σmax(A(0)) '

√
m+
√
n and take the limit of (6.13) normalised by 1/n for m,n→∞,

i.e., the recovery error power

Wx̂−x = lim
n→∞

1

n

n−1∑
j=0

(x̂j − xj)2 ≥ lim
m,n→∞

∥∥∥∆Ax(n)
√
n

∥∥∥2

2

(
√
m+

√
n)

2 (6.16)

with x(n) the n-th finite-length term in a plaintext x = {x(n)}+∞n=0 of
X . We may now apply Lemma 6.1 in ξ = x(n)

√
n

for each ‖∆Aξ‖22 at
the numerator of the RHS of (6.16) with Fξ = 1

n2Fx, Eξ = 1
nEx and

Ex,Fx as in Lemma 6.2. For m,n→∞ and η ≤ 1
2 , the probability in

(6.10) becomes

∀θ ∈ (0, 1), lim
m,n→∞

ζ =

[
1 + (1− θ)−2

[
lim
n→∞

1
n2Fx

1
n2 E2

x

− 1

]]−1
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Since X also satisfies by hypothesis the assumptions of Lemma 6.2, we
have that

lim
n→∞

Fξ

E2
ξ

= 1

and thus limm,n→∞ ζ = 1. Hence, with m/n→ q and probability 1 the
RHS of (6.16) becomes

∀θ ∈ (0, 1), lim
m,n→∞

‖∆Aξ‖22
n(1 +

√
m
n )2

= lim
m,n→∞

4mηEx
n2(1 +

√
m
n )2

θ

and the recovery error power is shown to satisfy (6.8).

Thus, Theorems 6.1 and 6.2 were shown to hold in the respective
cases.

6.2.2 Second-Class Recovery Error Norm: Upper Bound

The second-class recovery error norm is substantially bounded from
above by direct application of Theorem 5.1. To apply it, we have to
compute ε(k)

A(1) , ε
(2k)

A(1) in our particular case. Theoretical results exist
for estimating their value by bounding the extreme singular values in
(5.1), since both A(1) and ∆A are drawn from i.i.d. RMEs.

To estimate ε(k)

A(1) we may proceed in the following fashion: since
∆A is drawn from a RME with i.i.d. zero-mean entries for which

∀(j, l) ∈ {0, . . . ,m− 1} × {0, . . . , n− 1},

E[∆A2
j,l] = 4η,E[∆A4

j,l] = 16η

we may use [169, Theorem 2] to find

E[σ(k)
max(∆A)] = 2c′(

√
kη +

√
mη + (mkη)

1
4 ) (6.17)

for c′ > 0 a universal constant. Then, using the non-asymptotic
estimate of Theorem 1.3, we may assume σ(k)

max(A(1)) = c′′(
√
k +
√
m)

for another universal constant c′′ > 0. Thus, we have

ε
(k)

A(1) ' 2c

√
kη +

√
mη + (mkη)

1
4

√
k +
√
m

(6.18)
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Figure 6.4: Empirical evaluation of the constants in Theorem 5.1 based
on a large number of A(1),∆A with m = 512, η ∈ [5 · 10−4, 10−2] and
D a random ONB. The forbidden areas in the statement of Theorem
5.1 are marked with stripes.
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for c = c′

c′′ > 0 a universal constant, where the approximation is due
to the fact that (6.17) actually yields an expectation of the maximum.
However, this estimate is easily applicable only when D is the canonical
basis; since in many practical cases this does not hold, we simply resort
to a Monte Carlo simulation of ε(k)

A(1) with, e.g., D a random ONB. As
an example of such a numerical analysis, we calculate (5.1) for 104

instances of submatrices of A(1) and ∆A withm = 512, k = 2, 4, . . . , 64

and η ∈ [5 · 10−4, 10−2]. This allows us to find typical values of ε(k)

A(1) as
reported in Fig. 6.4a. In this test case, we have found that c ≈ 0.5741 in
(6.18) would match the simulations. In the same setting ε(k)

A(1) < 2
1
4 −1

only when η ≤ 8 · 10−3. In Fig. 6.4b we report the corresponding
range of allowed constants δ(2k) ≤ δ

(2k)
max that comply with Theorem

5.1, i.e., the RIP constraints the encoding matrices must meet so that
(5.2) holds.

Once again, RIP-based analyses provide very strong sufficient
conditions for signal recovery, which in our case result in establishing
a formal upper bound for a small range of η. As observed by the very
authors of [91], typical recovery errors are substantially smaller than
this upper bound. We will therefore rely on another less rigorous, yet
practically effective least-squares approach using the same hypotheses
of Theorem 6.1 to bound the average recovery quality performances,
as presented in the following Section.

6.2.3 Average Signal-to-Noise Ratio Bounds

We have already discussed how the perturbation density η is the main
design parameter for the proposed multiclass encryption by CS, and
have presented in Chapter 5 a method to predict the average recovery
performances under a variety of perturbations, including the SSF which
is at the heart of our encryption scheme. To provide criteria for the
choice of η we adopt two ASNRx̂,x bounds derived as follows.

The Lower Bound

Although rigorous, the second- (or lower-) class recovery error upper
bound derived by applying Theorem 5.1 is only compatible with small
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values of (k, η), as shown by the evidence gathered in Fig. 6.4. To
bound the typical recovery performances in a larger range we follow
a method similar to the one used in Section 5.2, i.e., we analyse the
behaviour of a lower-class decoder that naively recovers x̂ such that
y = A(0)x̂ = (A(0) + ∆A)x and A(0)(x̂ − x) = ∆Ax. In most cases,
such a recovery produces x̂ lying close to x, so we approximate x̂−x =

(A(0))†∆Ax, i.e.,

‖x̂− x‖22
‖x‖22

≤ σmax((A(0))†∆A)2

By taking an empirical expectation on both sides, our criterion becomes
ASNRx̂,x > LB(m,n, η) where

LB(m,n, η) = −10 log10 Ê
(
σmax((A(0))†∆A)2

)
dB (6.19)

(6.19) is then calculated by a thorough Monte Carlo simulation of
σmax((A(0))†∆A).

The Upper Bound

The opposite criterion is found by assuming ASNRx̂,x < UB(m,n, η)

where
UB(m,n, η) = −10 log10

4ηm

(
√
m+

√
n)2

dB (6.20)

that is obtained from a simple rearrangement of (6.8) with θ ' 1. We
will see how (6.19) and (6.20) fit well the ASNRx̂,x performances of
the examples, and enable a sufficiently reliable estimate of the range
of performances of lower-class receivers from a given configuration of
(m,n, η)

6.3 Performance Evaluation

In this section we detail some example applications for the multiclass
CS scheme we proposed. For each exemplary case, we study the
recovery quality attained by first-class receivers against second-class
ones in the two-class scheme for the sake of simplicity; these
results encompass the multiclass setting since high-class receivers will
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correspond to first-class recovery performances (i.e., at a perturbation
density η = 0), while lower-class users will attain the performances of
a second-class receiver at a fixed η > 0.

6.3.1 Experimental Framework

For each plaintext x = Ds being reconstructed and each approximation
x̂ = Dŝ, we evaluate once again the ASNRx̂,x of (1.32); this average
performance index is compared against (6.19) and (6.20) with the
purpose of choosing a suitable perturbation density η so that lower-
class recovery performances are set to the desired quality level. In
particular, each example reports (6.19) obtained by a Monte Carlo
simulation of the singular values of (A(0))†∆A over 5 · 103 cases.

Since our emphasis is on showing that, despite its simplicity, our
method is effective in avoiding the access to high-quality information
content for lower-class receivers, we complement the ASNRx̂,x

evidence of each example with an automated assessment of the
information content intelligible from x̂ by means of feature-extraction
algorithms. These are equivalent to partially informed attacks to the
encryption, attempting to expose the sensitive content inferred from
the recovered signal. More specifically, we will try to recover an English
sentence from a speech segment, the location of the PQRST peaks in
an ECG, and printed text in an image.

6.3.2 Recovery Algorithms

While we have widely discussed the use of BP and BPDN in this
thesis, and in particular w.r.t. their sensitivity to matrix perturbations
in Section 5.1. These convex problems are often replaced in practice
by a variety of high-performance algorithms, and in detail probabilistic
inference algorithms such as those in [104,105] are capable of solving
BPDN with statistical priors on the nature of noise; thus, they are
particularly well-fit to our application if we want to assess the best
achievable performances of lower-class decoders. For completeness, as
reference cases for most common algorithmic classes we preliminarily
tested the solution of BPDN as implemented in SPGL1; this was
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compared to the greedy algorithm Compressive Sampling Matching
Pursuit (CoSaMP) [99] and the Generalised Approximate Message-
Passing (GAMP) algorithm [105].

To optimise these preliminary tests, the algorithms were optimally
tuned in a “genie” fashion: BPDN was solved as ∆BPDN(y,A(0)D, ε?),
i.e., as if ε? = ‖∆Ax‖2 was known beforehand; CoSaMP was initialised
with the exact sparsity level k for each case; GAMP was run with the
sparsity-enforcing, i.i.d. Bernoulli-Gaussian prior (see, e.g., [170])
and initialised with the exact sparsity ratio k/n of each instance, and
the exact mean and variance of each considered test set. Moreover,
signal-independent parameters were hand-tuned in each case to yield
optimal recovery performances.

For the sake of brevity, in each example we select and report the
algorithm that yields the most accurate recovery quality at a lower-
class decoder as the amount of perturbation varies. We found that
GAMP achieves the highest ASNRx̂,x in all the settings explored in
the examples, consistently with the observations in [170] that assess
the robust recovery capabilities of this algorithm under a broadly
applicable sparsity-enforcing prior. Moreover, as ∆A verifies [160,
Proposition 2.1] the perturbation noise ε is approximately Gaussian
for large (m,n) and thus GAMP tuned as above yields the optimal
performances as expected.

Note that recovery algorithms which attempt to jointly identify
x and ∆A [159, 160] can be seen as explicit attacks to multiclass
encryption and are thus evaluated in Chapter 7, anticipating that their
performances are compatible with those of GAMP.

6.3.3 Speech Signals

We consider a subset of spoken English sentences from the PTDB-
TUG database [171] with original sampling frequency fs = 48 kHz,
variable duration and sentence length. Each speech signal is divided
in segments of n = 512 samples and encoded by two-class CS with
m = n

2 measurements. We obtain the sparsity basis D by applying
principal component analysis to 500 n-dimensional segments yielding
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Figure 6.5: Multiclass CS of speech signals: (a) ASNRx̂,x as a function
of the perturbation density η ∈ [0, 0.1] (solid) and second-class SNRx̂,x

upper bound (dashed); (b) Ratio of words correctly recognised by
ASR in η ∈ [0, 0.1] (bottom) and typical recovered instances for η =
{0, 0.03} (top).
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an ONB. The encoding matrix A(1) is generated from A(0) drawn from
the RBE, by adding to the latter a SSF perturbation ∆A chosen as in
(6.3) with density η. The encoding in (6.5) is simulated in a realistic
setting, where each window x of n samples is acquired with a different
instance of A(1) yielding m measurements per speech segment. As for
the decoding stage, we apply GAMP as specified above to recover x̂

given A(1) (first-class) and A(0) (second-class).

For a given encoding matrix a first-class receiver is capable of
decoding a clean speech signal with ASNRx̂,x = 38.76 dB, whereas
a second-class receiver is subject to significant ASNRx̂,x degradation
when η increases, as shown in Fig. 6.5a. Note that while the SNRx̂,x

for η = 0 has a relative deviation of 2.14 dB around its mean (i.e., the
ASNRx̂,x), as η increases the observed relative deviation is less than
0.72 dB due to the perturbation becoming the dominant effect in
limiting the recovery quality w.r.t. the fact that x are compressible
by Definition 1.4, but not k-sparse. Note how the ASNRx̂,x values lie
in the highlighted range between (6.19), (6.20).

To further quantify the limited quality of attained recoveries, we
process the recovered signal with the Google Web Speech interface
[172,173] which provides basic Automatic Speech Recognition (ASR).
The ratio of words correctly recognised by ASR for different values of η
is reported in Fig. 6.5b; there we also depict a typical recovered signal
instance, on which a first-class user (i.e., η = 0) attains SNRx̂,x =

36.58 dB, whereas a second-class decoder only achieves SNRx̂,x =

8.42 dB when η = 0.03. The corresponding ratio of recognised words
is 14/14 against 8/14. In both cases the sentence is intelligible to a
human listener, yet the second-class decoder recovers a signal that is
sufficiently corrupted to avoid straightforward ASR.

6.3.4 Electrocardiographic Signals

We now process a large subset of ECGs from the PhysioNet database
[120] sampled at fs = 256 Hz. In particular, we report the case
of a typical 25-minutes ECG (sequence e0108) and encode windows
of n = 256 samples by two-class CS with m = 90 measurements,
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Figure 6.6: Multiclass CS of ECG signals: (a) ASNRx̂,x as a function of
the perturbation density η ∈ [0, 0.05] (solid) and second-class SNRx̂,x

upper bound (dashed); (b) Time displacement (left) of the R (solid)
and P,Q,S,T (dashed) peaks as evaluated by APD for η ∈ [0, 0.05] with
typical recovered instances (right) for first-class (top) and second-class
(bottom) users.
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amounting to a dataset of 1500 ECG instances. The encoding and
decoding scheme is identical to that of Section 6.3.3, and we assume
the Symmlet-6 orthonormal DWT [52] as the sparsity basis D.

In this configuration the first-class decoder is able to reconstruct
the original signal with ASNRx̂,x = 25.36 dB, whereas a second-
class decoder subject to a perturbation of density η = 0.03 achieves
an ASNRx̂,x = 11.08 dB; the recovery degradation depends on η

as reported in Fig. 6.6a. As an additional quantification of the
encryption at second-class decoders we apply PUWave [174], an
Automatic Peak Detection (APD) algorithm, to first- and second-class
signal reconstructions. In more detail, PUWave is used to detect the
position of the P,Q,R,S and T peaks, i.e., the sequence of pulses whose
positions and amplitudes summarise the diagnostic properties of an
ECG.

The application of this APD yields the estimated peak instants
t̂P,Q,R,S,T for each of J = 1500 reconstructed signal windows and each
decoder class, which are afterwards compared to the corresponding
peak instants as detected on the original signal prior to encoding. Thus,

we define the average time displacement σt =
√

1
J

∑J−1
i=0 (t̂(i) − t(i))2

and evaluate it for tR and tPQST. A first-class receiver is subject to a
displacement σtR = 0.6 msrms of the R-peak and σtPQST

= 9.8 msrms

of the remaining peaks w.r.t. the original signal. On the other hand, a
second-class user is able to determine the R-peak with σtR = 4.4 msrms

while the displacement of the other peaks is σtPQST
= 55.3 msrms. As η

varies in [0, 0.05] this displacement increases as depicted in Fig. 6.6b,
thus confirming that a second-class user will not be able to accurately
determine the position and amplitude of the peaks with the exception
of the R-peak.

6.3.5 Sensitive Text in Images

In this final example we consider an image dataset of people holding
printed identification text and apply multiclass CS to selectively
hide this sensitive content to lower-class users. The 640 × 512 pixel

images are encoded by CS in 10 × 8 blocks each of 64 × 64 pixel
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while the two-class strategy is only applied to a relevant image area
of 3 × 4 blocks. We adopt as sparsity basis the 2D Daubechies-4
orthonormal DWT [52] and encode each block of n = 4096 pixels

with m = 2048 measurements; two-class encoding is then applied with
a SSF perturbation density η ∈ [0, 0.4].

The ASNRx̂,x performances of this example are reported in Fig.
6.7a as averaged on 20 instances per case, showing a rapid degradation
of the ASNRx̂,x as η is increased. This degradation is highlighted in
the typical case of Fig. 6.7b for η ∈ {0.03, 0.2}.

In order to assess the effect of our encryption method with an
automatic information extraction algorithm, we have applied Tesseract
[175], an Optical Character Recognition (OCR) algorithm, to the images
reconstructed by a second-class user. The text portion in the recovered
image data is preprocessed to enhance their quality prior to OCR: the
images are first rotated, then we apply standard median filtering to
reduce the highpass noise components. Finally, contrast adjustment
and thresholding yield the two-level image which is processed by
Tesseract. To assess the attained OCR quality we have measured the
average number of Consecutively Recognised Characters (CRC) from the
decoded text image. In Fig. 6.7b the average CRC is reported as a
function of η: as the perturbation density increases the OCR fails to
recognise an increasing number of ordered characters, i.e., a second-
class user progressively fails to extract text content from the decoded
image.

Summary

I Although not perfectly secure, the extremely simple encoding
process entailed by CS yields some encryption capabilities with
no additional computational complexity, thus providing a limited
but zero-cost form of encryption which might be of interest in
the design of secure yet resource-limited sensing interfaces.

I The linear random encoding provided by RBE was modified to
envision a multiclass encryption scheme in which all receivers
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Figure 6.7: Multiclass CS of images: (a) ASNRx̂,x as a function of the
perturbation density η ∈ [0, 0.4] (solid) and second-class SNRx̂,x upper
bound (dashed); (b) Average CRC by OCR for η ∈ [0, 0.4] (bottom)
and typical recovered instances for η ∈ {0, 0.03, 0.2} (top).
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are given the same set of measurements, but are only enabled
to reconstruct the original signal with a decoding quality that
depends on their class, i.e., on the private key they possess. This
additional design option amounts to the ability of applying SSF
to the elements of the encoding matrix, and thus represents
an appealing alternative to balance the trade-off between the
security of the encoded signal and the resources required to
provide it.

I The capabilities of multiclass CS were exemplified by simulating
the acquisition of sources such as speech segments, ECGs and
images with the additional security provided by the devised
encryption method.





A STATISTICAL CRYPTANALYSIS

OF COMPRESSED SENSING

7

WE now focus on a generic CS configuration y = Ax in the
perspective of Section 6.1.1 that linearly encodes a plaintext

x into a ciphertext y, and investigate from a statistical perspective
the security properties and limits of such linear measurements by
letting x,y be realisations of either R.V.s or R.P.s (i.e., (m1) and (m2)

of Section 6.2) with their respective a priori distributions as in the
classic Shannon definition of secrecy [176]. The aim of this Chapter
is to provide insight on the achievable security properties that are
granted by a scheme as simple CS with RBE encoding matrices; this is
carried out by evaluating separately the security limits and properties
in asymptotic and non-asymptotic configurations of CS.

7.1 Security Limits

The encoding performed by CS is a linear mapping, and as such it
cannot completely hide the information contained in a plaintext x.
This has two main consequences. Firstly, linearity propagates scaling;
hence, it is simple to distinguish a plaintext x′ from another x′′ if
it is known in advance that x′′ = αx′ for some scalar α. For the
particular choice of α = 0 this leads to a known argument of Rachlin
et al. [26, Lemma 1] against the fundamental requirement for secrecy

153
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in the Shannon sense.

Proposition 7.1 (Non-Perfect Secrecy of CS [26]). Let x ∈ Rn,y =

Ax ∈ Rm be R.V.s representing a plaintext and a ciphertext, A ∈
Rm×n,m < n be any random or deterministic encoding matrix.
CS does not have perfect secrecy, i.e., the PDF of the ciphertext
conditioned on the plaintext, f(y|x) 6= f(y).

To provide some insight on the main security limit of CS, we also
conveniently report the proof given in [26] with a very slight variation
in notation.

Proof of Proposition 7.1. Assume there exists at least one plaintext x′ /∈
Ker (A) : f(x = x′) > 0. Consider the ciphertext y = 0m; then

f(y = 0m) =

∫
Ker(A)⊆Rn

f(y = 0m|x)f(x)dx =

∫
Ker(A)⊆Rn

f(x)dx < 1

and for any plaintext x′′ ∈ Ker (A),

f(y = 0m|x′′) = 1⇒ f(y = 0m|x′′) 6= f(y = 0m)

Note how this proof simply relies on the existence of Ker (A) (or
equivalently of Ker (W)).

However, will show with a slightly different argument that the
information leaking into the ciphertext by means of a linear encoding
is the energy of the plaintext, as was partly confirmed in [1, 26].
Moreover, we will prove that with any i.i.d. RsGE encoding matrix a
scaling factor α is actually all that can be inferred from the statistical
analysis of CS-encoded ciphertexts.

Secondly, linearity implies continuity. Hence, whenever x′ and x′′

are close to each other for a fixed A, the corresponding y′ and y′′ will
also be close to each other. This fact goes against the analog version
of the diffusion (or avalanche effect) requirement for digital-to-digital
ciphers [176], i.e., the fact that a change of one symbol in the plaintext
does not reflect into the change of all symbols in the ciphertext. If
the encoding process did not entail a dimensionality reduction, this
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fact could be exploited every time a plaintext-ciphertext pair x′,y′

is known. If a new ciphertext y′′ is available and known to lie close
to y′, then the corresponding plaintext x′′ must be close to x′ thus
yielding a good starting point for, e.g., a brute-force Known-Plaintext
Attack (KPA).

The fact that m < n would however complicate this setting since
the counterimages of y′′ through A belong to a subspace in which
points arbitrarily far from x′ exist in principle (i.e., Ker (A) 6= ∅). Yet,
encoding matrices A are chosen by design (i.e., by the RIP) so that
the probability of their null space aligning with x′ and x′′ (that are
k-sparse w.r.t. a certain D) is overwhelmingly small.

Hence, even if with some relaxation from the quantitative point
of view, neighbouring ciphertexts still strongly hint at neighbouring
plaintexts. As an objection to this seemingly unavoidable, issue note
that the previous argument only holds when the encoding matrix
remains the same for both plaintexts, while by our assumption of
Section 6.1.1 on the very large period of the generated sequence of
pseudo-random encoding matrices two neighbouring plaintexts x′,x′′

will most likely be mapped by different encoding matrices A′,A′′

to non-neighbouring ciphertexts y′,y′′ by the fact that on-average
mn/2 symbols will differ between A′ and A′′, ensuring a diffusion-like
property on the linear encoding performed by CS.

7.2 Achievable Security Properties

The achievable security properties are shown in asymptotic and non-
asymptotic configurations of CS, i.e., for n → ∞ and finite n in full
analogy with the models in Section 6.2. No guarantee of perfect
secrecy1 is given here, on the basis that caution must be adopted
for a linear encoding. We also remark that the presented evidence

1A recent contribution by Bianchi et al. [177] states that perfect secrecy for finite
n is achievable by a suitable energy normalisation of the measurements in the RGE
encoding matrix case. While this circumvents Proposition 7.1 in the mathematical
sense, such a normalisation would imply a loss of relevant information if the energy
is not transmitted, otherwise it would delegate the perfect secrecy requirement to a
side-channel, leaving its verification completely open.
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corresponds to statistical ciphertext-only attacks [164] to multiclass
encryption by CS.

7.2.1 A Notion and Verification of Asymptotic Secrecy

While perfect secrecy is unachievable, we now introduce the notion
of asymptotic spherical secrecy2 and show that CS with i.i.d. RsGE
encoding matrices has this property, i.e., no information can be inferred
on a plaintext x in model (m2) from the statistical properties of all
its possible ciphertexts but its power. The implication of this property
is the basic guarantee that a malicious eavesdropper intercepting the
measurement vector y will not be able to extract any information on
the plaintext except for its power.

Definition 7.1 (Asymptotic spherical secrecy). Let X be a R.P. whose
plaintexts have finite power 0 < Wx < ∞, Y be the R.P. of the
corresponding ciphertexts. A cryptosystem has asymptotic spherical
secrecy if for any of its plaintexts x = {x(n)}+∞n=0 and ciphertexts
y = {y(m)}+∞m=0 we have

fY|X (y|x)−→
dist.

fY|Wx
(y) (7.1)

where the subscripts of f· indicate the joint and conditional PDFs
of the respective R.P.s, fY|Wx

denotes conditioning over plaintexts x

with identical power Wx, and −→
dist.

denotes convergence in distribution
as m,n→∞.

From an eavesdropper’s point of view, asymptotic spherical secrecy
means that given any ciphertext y we have

fX |Y (x|y) '
fY|Wx

(y)

fY(y)
fX (x)

implying that any two different plaintexts with an identical, prior and
equal power Wx will remain approximately indistinguishable from

2That is a weak form of secrecy, similar in principle to that of Wyner [178], yet
posing an emphasis on same-power plaintexts.
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their ciphertexts. In this asymptotic setting, the following proposition
holds.

Proposition 7.2 (Asymptotic spherical secrecy of i.i.d. RsGE encoding
matrices). Let X be a R.P. with bounded-value plaintexts of finite
power Wx, yj any r.v. in the RP Y as in (m2). For n→∞ we have

fyj |X (yj)−→
dist.
N (0,Wx) (7.2)

Thus, i.i.d. RsGE encoding matrices provide independent, asymptoti-
cally spherical-secret measurements as in (7.1).

Since the rows of A are independent, yj |Wx are also independent and
Proposition 7.2 asserts that, although not secure in the Shannon sense,
CS with suitable encoding matrices is able to conceal the plaintext up
to the point of guaranteeing its security for n→∞. The proof of this
statement follows.

Proof of Proposition 7.2. The proof is given by simple verification of the
Lindeberg-Feller central limit theorem (see [117, Theorem 27.4]) for
yj in Y conditioned on a plaintext x of X in (m2). By the hypotheses,
the plaintext x = {xl}n−1

l=0 has power 0 < Wx < ∞ and ∀l ∈ {0, n −
1}, x2

l ≤ Mx for some finite Mx > 0. Any yj |X = limn→∞
∑n−1
l=0 zj,l

where all zj,l = Aj,l
xl√
n

is a sequence of independent, non-identically

distributed r.v.s of moments µzj,l = 0, σ2
zj,l

=
x2
l

n . By letting the partial

sum S
(n)
j =

∑n−1
l=0 zj,l, its mean µ

S
(n)
j

= 0 and σ2

S
(n)
j

= 1
n

∑n−1
l=0 x

2
l .

Thus, we verify the necessary and sufficient condition [117, (27.19)]

lim
n→∞

max
l=0,...,n−1

σ2
zj,l

σ2

S
(n)
j

= 0

by straightforwardly observing

lim
n→∞

max
l=0,...,n−1

x2
l

n
1
n

∑n−1
l=0 x

2
l

≤ Mx

Wx
lim
n→∞

1

n
= 0
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The verification of this condition guarantees that yj |X = limn→∞ S
(n)
j

is normally distributed with µyj = 0 and variance

σ2
yj |X = lim

n→∞
E[(S

(n)
j )2] = Wx

yielding (7.2).

Summarising, the asymptotic regime allowed the derivation of
a weak notion of secrecy that shows how the information leakage
from the plaintext into the ciphertext is only limited to Wx when the
encoding matrices are i.i.d. RsGEs.

7.2.2 A Verification of Non-Asymptotic Secrecy

Since prospective applications of multiclass encryption by CS, and in
general CS with i.i.d. RsGE encoding matrices will entail finite-size
configurations eventually requiring n on the order of a few hundreds, it
is of primary concern to show what security properties are still granted
in a non-asymptotic setting. The achievable security properties are
tested below by two empirical methods and one theoretical result, that
guarantees an extremely sharp rate of convergence to (7.2) for finite
n.

Statistical Cryptanalysis by Hypothesis Testing

As a first empirical illustration of the consequences of asymptotic spher-
ical secrecy for finite n, we consider an attack aiming at distinguishing
two orthogonal plaintexts x′ and x′′ from their encryption (clearly,
finite energy must be assumed as in (m1)). The attacker has access to a
large number of ciphertexts collected in a set Y ′ obtained by applying
different, randomly generated RBE encoding matrices to a certain x′.
Then, the attacker collects another set Y ′′ of ciphertexts, all of them
corresponding either to x′ or to x′′, and attempts to distinguish which
is the true plaintext between the two.

This reduces the attack to an application of statistical hypothesis
testing [130, Section 11.7], the null assumption being that the
distribution underlying the statistical samples in Y ′′ is the same as that
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Figure 7.1: Outcome of second-level KS statistical tests to distinguish
between two orthogonal plaintexts x′,x′′; in (a) x′,x′′ haveEx′ = Ex′′ ,
spherical secrecy applies and the uniform distribution of p-values shows
that the corresponding ciphertexts are statistically indistinguishable.
In (b) x′,x′′ have Ex′ 6= Ex′′ , spherical secrecy does not apply and the
distribution of p-values shows that the corresponding ciphertexts are
distinguishable.
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underlying the statistical samples in Y ′. For maximum reliability we
adopt a two-level testing approach: we repeat the above experiment for
many instances of random orthogonal plaintexts x′ and x′′, performing
a two-way Kolmogorov-Smirnov (KS) test to compare the empirical
distributions obtained from Y ′ and Y ′′ produced by such orthogonal
plaintexts.

Each of the above KS tests yields a p-value quantifying the
probability that two data sets coming from the same distribution exhibit
larger differences w.r.t. those at hand. Given their meaning, individual
p-values could be compared against a desired significance level to
give a first assessment whether the null hypothesis (i.e., equality in
distribution) can be rejected.

Yet, since it is known that p-values of independent tests on
distributions for which the null assumption is true must be uniformly
distributed in [0, 1] we collect P of them and feed this second-level set
of samples into a one-way KS test to assess uniformity at the standard
significance level 5%.

This testing procedure is done for n = 256 in the cases Ex′ =

Ex′′ = 1 (same energy plaintexts) and Ex′ = 1, Ex′′ = 1.01, i.e., with a
1% difference in energy between the two plaintexts. The resulting p-
values for P = 5000 are computed by matching pairs of sets containing
5 · 105 ciphertexts, yielding the p-value histograms depicted in Fig. 7.1.
We report these empirical PDFs of the p-values in the two cases along
with the p-value of the second-level assessment, i.e., the probability
that samples from a uniform distribution exhibit a deviation from a
flat histogram larger than the observed one. When the two plaintexts
have the same energy, all evidence concurs to say that the ciphertext
distributions are statistically indistinguishable. In the second case, even
a small difference in energy causes statistically detectable deviations
and leads to a correct inference of the true plaintext between the two.

Statistical Cryptanalysis by the Kullback-Leibler Divergence

To reinforce even further the fact that any two plaintexts x′,x′′ ∈ Rn

under different i.i.d. RsGE encoding matrices cannot be inferred by a
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Figure 7.2: Estimated Kullback-Leibler divergence between the
probability distributions of two ciphertext elements corresponding
to different original signals.

statistical analysis of their ciphertexts y′,y′ ∈ Rm even for finite n, we
here attempt to do so by recalling the Kullback-Leibler divergence3 [130,
(8.46)] of any two r.v.s a, b, i.e.,

D (a‖b) =

∫ +∞

−∞
f(a) log

(
f(a)

f(b)

)
dadb (7.3)

that is a simple measure of similarity between the PDF of a and b. We
now evaluate D(y′j |x′‖y′′j |x′′) in (7.3) by considering two plaintexts
x′,x′′ ∈ R2500 and extracting sequences of n = {50, 100, 150, . . . , 2500}
samples from each of them. For every n the two sample collections
are normalised to Ex′ = Ex′′ = 1 and projected along 108 i.i.d. R.V.s
drawn as rows of a RBE, forming a large set of instances of y′j |x′, y′′j |x′′.

3This quantity is closely related to the concept of mutual information [130, Section
8.5], which is also used in the basic proof of non-perfect secrecy of CS given by Rachlin
et al. [26].



162 STATISTICAL CRYPTANALYSIS

These samples are used to form the empirical4 PDF f̂(y′j |x′), f̂(y′′j |x′′)
and thus estimate the Kullback-Leibler divergence that is plotted in Fig.
7.2 against the value of n.

As a reference, we also report the theoretical expected value of the
divergence estimated using two sets of n samples drawn from N (0, 1),
i.e., due to the bias of the histogram estimator β ' 3.67× 10−6 bit. It
is clear that the distributions of the ciphertexts become statistically
indistinguishable for n above a few hundreds, since the number of bits
of information that can be apparently inferred from their differences
(about 10−5 bit for n > 500) is mainly due to the bias β and thus
cannot support a statistical cryptanalysis.

Rate of Convergence for Finite Dimensions

By now, we have observed with two methods how asymptotic spherical
secrecy has finite n effects; from a more formal point of view, we
now evaluate the convergence rate of (7.2) for finite n to conclude
with a guarantee that an eavesdropper intercepting the ciphertext will
observe samples of an approximately Gaussian R.V. bearing very little
information in addition to the energy of the plaintext. We hereby
consider x a R.V. as in (m1), for which a plaintext x of energy Ex

lies on the sphere Σn−1
Ex

=
{
x ∈ Rn : ‖x‖22 ≤ E2

x

}
. The procedure to

verify the rate of convergence of (7.2) in this specific case substantially
requires a study of the distribution of a linear combination of r.v.s,
yj =

∑n−1
l=0 Aj,lxl conditioned on x = {xl}n−1

l=0 ∈ Σn−1
Ex

.
The most general convergence rate for sums of i.i.d. r.v.s is given

by the well-known Berry-Esseen Theorem [179] as O(n−
1
2 ). In our

case we apply a recent, remarkable result of [180] that improves
and extends this convergence rate, i.e., that addresses the case of
inner products of i.i.d. R.V.s (i.e., any row of A) and vectors (i.e., the
plaintexts x) uniformly distributed on Σn−1

Ex
.

4In order to enhance this evaluation, an optimal non-uniform binning is applied in
the estimation of the histograms, since the PDFs are expected to be distributed asN (0, 1).
This binning amounts to taking the inverse Cumulative Distribution Function (CDF) of the
standard normal distribution to obtain 256 uniform-probability bins, thus maximising
their entropy.
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Proposition 7.3 (Rate of convergence with i.i.d. RsGE encoding
matrices). Let x,y be R.V.s as in (m1) with A drawn from a RsGE with
i.i.d. entries having zero-mean, unit-variance, finite fourth-moment
entries. For any ρ ∈ (0, 1), there exists a subset B ⊆ Σn−1

Ex
with a

probability measure σn−1(B) ≥ 1− ρ such that all yj in y verify

sup
α<β

∣∣∣∣∣
∫ β

α

f(yj |x ∈ B)dyj −
1√
2π

∫ β

α

e−
t2

2Ex dt

∣∣∣∣∣ ≤ C(ρ)

n
(7.4)

for C(ρ) a non-increasing function of ρ.

Proposition 7.3 with ρ sufficiently small means that it is most likely
(actually, with probability exceeding 1 − ρ) to observe an O(n−1)

convergence between f(yj |x) and the limiting distribution N (0, Ex).
The function C(ρ) is loosely bounded in [180], so to complete this
analysis we performed a thorough Monte Carlo evaluation of its
possible values. In particular, we have taken 104 instances of a R.V. x

uniformly distributed on Σn−1
1 for each n = 24, 25, . . . , 210. The PDF

f(yj |x) is estimated with the following procedure: we generate 5 · 107

rows of an i.i.d. RBE encoding matrix and perform the usual linear
encoding, thus yielding the same number of instances of yj for each x

and n. On this large sample set we are able to accurately estimate the
previous PDF on 4096 equiprobable intervals, and compare it to the
same binning of the normal distribution as in the left-hand side (LHS)
of (7.4) for each (x, n). This method yields sample values for (7.4),
allowing an empirical evaluation of the quantity C(ρ). In this example,
when ρ ≥ 10−3 Proposition 7.3 holds with C(ρ) = 1.34 · 10−2.

Proof of Proposition 7.3. We start by considering yj in y of model
(m1) conditioned on a given x with finite energy Ex. Each of such
variables is a linear combination of n i.i.d. r.v.s Aj,l with zero-mean,
unit-variance and finite fourth-moments. The coefficients of this
linear combination are the plaintext x, which by now we assume
to have Ex = 1, i.e., to lie on the unit sphere Σn−1

1 of Rn. Define

γ =
(

1
n

∑n−1
l=0 E[A4

j,l]
) 1

4

< ∞, which for RBE matrices is γ = 1,
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whereas for RGE matrices γ = 3
1
4 . This setting verifies [180, Theorem

1.1]: for any ρ ∈ (0, 1) there exists a subset B ⊆ Σn−1
1 with a probability

measure µ(B) such that σn−1(B) = µ(B)

µ(Σn−1
1 )

≥ 1− ρ and if x ∈ B, then

sup
(α,β)∈R2

α<β

∣∣∣∣∣P
[
α ≤

n−1∑
l=0

Aj,lxl ≤ β

]
− 1√

2π

∫ β

α

e−
t2

2 dt

∣∣∣∣∣ ≤ C(ρ)γ4

n

(7.5)
with C(ρ) a positive, non-increasing function. An application of this
result to x with energy Ex, i.e., on the sphere of radius

√
Ex, γ = 1 (A

RGE) can be done by straightforwardly scaling the standard normal
PDF in (7.5) to N (0, Ex), thus yielding the statement of Proposition
7.3.

7.2.3 Statistical Cryptanalysis and Multiclass Encryption

Contextualising the above findings to multiclass encryption by CS, we
have shown how a malicious eavesdropper attempting to break the
encoding by means of a straightforward statistical analysis of y is
effectively presented with Gaussian-distributed ciphertexts when the
encoding matrix is drawn from an i.i.d. RsGE.

In addition, one could consider the threat of a malicious second-
class user attempting to upgrade itself to the knowledge of the true
encoding matrix A(1) given A(0). Letting A(0),A(1) be drawn from
RBEs, in the worst-case we may also assume that this attacker has
access to ε = ∆Ax, and is able to compute f(ε) for a statistical
cryptanalysis. Clearly, this will depend on the density of ∆A = A(1) −
A(0), that is a SSF drawn from a RME with i.i.d. entries. Informally and
intuitively, this will result in f(ε|x)−→dist.N (0m,Kε) where Kε =

σ2
∆AExIm where σ2

∆A = 4η and Ex = ‖x‖22, i.e., the information that
leaks to a malicious second-class user is the SSF density η as well as the
energy of the plaintext. A more thorough verification can be derived
by application of the procedures detailed in this Section. Hence, the
ciphertext is statistically indistinguishable from the one that could be
produced by encoding the same plaintext with A(0) instead of A(1),
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and such second-class users will be unable to exploit the statistical
properties of y to upgrade their encoding matrix to A(1).

Thus, we may safely conclude that straightforward statistical
attacks to multiclass encryption based on CS only extract very limited
information from the ciphertext; the more threatening case of Known-
Plaintext Attacks is expanded in the next Chapter.

Summary

I CS is not perfectly secret in the Shannon sense in general.
However, a definition of asymptotic secrecy allows one to specify
which feature of the plaintext leaks into the ciphertext, i.e., the
power of the plaintext as n→∞. Thus, we have shown how CS
solely leaks this information in the asymptotic case.

I In the more concerning non-asymptotic case in which practical
encryption based on CS will operate, we have shown that
different approaches to the statistical analysis of the ciphertexts
yield no information but the energy of the plaintext.

I An O(n−1) convergence rate to the limiting distribution of the
measurements, i.e., a simple Gaussian distribution was shown to
hold for any i.i.d. RsGE encoding matrix, thus implying that an
eavesdropper performing a statistical cryptanalysis is presented
with i.i.d. Gaussian ciphertexts whose variance depends on the
energy of the plaintext. Since this information is not sufficient
for performing a cryptanalysis, we may consider multiclass
encryption by CS a reliable method for non-critical security
applications.



A COMPUTATIONAL CRYPTANALYSIS

OF COMPRESSED SENSING

8

DESPITE the linearity of its encoding, we have shown how CS pro-
vides a limited form of secrecy when some i.i.d. RsGE encoding

matrices are used to produce sets of ciphertexts (i.e., measurements).
In this Chapter we quantify the resistance of the least complex form
of this kind of encoding, i.e., CS with RBE encoding matrices, against
Known-Plaintext Attacks (KPAs). These represent the most threatening
form of cryptanalysis such a scheme will suffer. The properties and
results of these attacks are fully explored here by theoretical means,
as they can be mapped to a combinatorial optimisation problem that
models the most informed attack a malicious user may attempt.

For both standard CS and its multiclass encryption embodiment,
we show how the average number of candidate encoding matrix rows
that match a plaintext-ciphertext pair is huge, thus making the search
for the true encoding matrix inconclusive. Such a conclusion was
somehow anticipated by [26, 163], where the presented evidence
essentially addressed brute-force enumeration; the main difference
with our approach is that our quantification is theoretical, and yet
matches with surprising precision the odds of empirical attacks. Thus,
the findings support a notion of computational security for CS-based
encryption schemes.

Still in computational security terms, since missing information on

167
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the encoding matrices might be treated as a perturbation matrix, we
attempt an additional computational attack specifically targeted to a
multiclass scheme and attempting to nullify its effect. This form of
attack is carried out by a second-class user that attempts to upgrade its
knowledge by using signal recovery algorithms specifically accounting
for encoding matrix uncertainty [159, 160]. As expected from the
random nature of the perturbation introduced in Chapter 6 the results
will however show no practical improvement w.r.t. the bounds and
performances illustrated in Section 6.3.

Some practical computational attacks are then exemplified by
applying CS as an encryption scheme to the same signal classes of
Chapter 6, showing how the extracted information on the true encoding
matrix from a plaintext-ciphertext pair leads to no significant signal
recovery quality increase. This theoretical and empirical evidence
clarifies that, although not perfectly secure, both standard CS and
multiclass encryption based on it feature a noteworthy level of security
against KPAs, thus increasing its appeal as a zero-cost encryption
method for resource-limited sensor nodes.

8.1 A Theory for Known-Plaintext Attacks

We here focus on encoding matrices A(0),A(1) ∈ {−1,+1}m×n drawn
from the RBE, as they are remarkably simple and therefore suitable to
be generated, implemented and stored in digital devices. Due to their
simplicity these matrices are more easily subject to cryptanalysis; on the
contrary, if many symbols were used in each element of A(0),A(1) this
would cause a rapid consumption of the bits generated by expansion
of the secret as discussed in Section 6.1.1. Thus, the RBE encoding
matrix case and its use in two-class encryption by CS serves as a
basic reference for other RMEs and more complex configurations of
multiclass encryption by CS.

To understand the relevance of the security issues addressed in
this Section, let us consider a first sequence of matrices

{(
A(0)

)
t

}
t∈Z

obtained by pseudo-random expansion of a seed Key
(
A(0)

)
. In

parallel, a sequence of index pair sets
{(
C(0)

)
t

}
t∈Z ,

(
C(0)

)
t
⊆
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{0, . . . ,m−1}×{0, . . . , n−1} is obtained by pseudo-random expansion
of a seed Key

(
C(0)

)
. We then generate a second sequence of matrices{(

A(1)
)
t

}
t∈Z whose elements

(
A(1)

)
t

are obtained by combining(
A(1)

)
t
,
(
C(0)

)
t

by (6.3). Clearly, the strong assumption that any
encoding matrix is never reused in the encoding (Section 6.1.1) is
incompatible with the use of such sequences, as they will eventually
repeat due to their pseudo-random nature; nevertheless, we may
assume that the sequences’ period is sufficiently long to avoid repetition
in the attacker’s observation time. But even with this assumption
standing, if an attacker was able to recover even a few elements in
the above matrix sequences, this would potentially enable, e.g., PRNG
cryptanalysis strategies (e.g., [166] for LFSRs) to break the cipher by
retrieving the seeds in Fig. 6.1.

Hence, to avoid such an event we focus on showing that a single,
generic instance of A(1) in y = A(1)x cannot be recovered even with
the highest level of information, i.e., given x and y. We consider for
the sake of simplicity a fixed cardinality c for every

(
C(0)

)
t
, recall that

η = c/mn is the SSF density (i.e., the number of non-zeros in ∆A =

A(1) −A(0)), and let A(0),A(1), C(0) be generic, unique instances of
the above sequences of pseudo-random matrices and index pair sets
respectively.

Thus, we are considering a threatening situation in which an
attacker has gained access to a known plaintext x corresponding
to a known ciphertext y. Based on these priors, the attacker aims
at computing the true encoding A(1) by carrying out a KPA. In the
following we will consider this attack by assuming that only one (x,y)

pair is known for a certain A(1), consistently with the hypothesis that
the same A(1) only reappears after a long period1.

Starting from a single pair (x,y), depending on the level of
information available to the attacker we obtain two KPA perspectives
(see Fig. 8.1): the first is that of a pure eavesdropper, Eve, and
addresses the problem of retrieving A(1) given (x,y); the second is

1Note that if n independent (x,y) pairs were known for the same A(1), one could
resort to elementary linear algebra and infer the true encoding matrix by solving a
simple linear system.
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x ×

◦PRNG PRNG Key(A(0))Key(C(0))

Steve

Eve

Â(1)

Â(1)

y

A(1)

C(0) A(0)

Figure 8.1: A two-class encryption scheme and the known-plaintext
attacks being analysed from an eavesdropper (Eve) and a second-class
user (Steve).

that of a second-class receiver, Steve, that faces the same problem of
retrieving A(1) given (x,y,A(0)), where A(0) is partially correct and
chosen as in the two-class scheme of Chapter 6. This second form is
also referred to as class-upgrade.

Since the attacks we discuss rely on deterministic knowledge of
x and y, we assume throughout this Chapter that both plaintexts
and ciphertexts are represented by digital words. This quantisation
is unavoidable as x and y will be stored and processed on a digital
architecture from which the attacks are carried out. For simplicity,
we let x = {xl}n−1

l=0 be such that xl ∈ {−L, . . . ,−1, 0, 1, . . . , L} for
some L ∈ Z+ (i.e., we take x = x̃ in the fashion of Chapter 3). Note
that the number of bits representing the plaintext in this fashion is
at least bx = dlog2(2L + 1)e, so we may assume bx is less than a few
tens in typical embodiments (actually, bx ≤ 16 bit if the plaintext was
previously generated by a common A/D converter). Consequently,
the ciphertext will be represented by y = {yl}m−1

l=0 , each yl quantised
with as many bits as needed to avoid any information loss. In this
necessarily digital-to-digital perspective, we will see how the solutions
in A(1) are also a function of the number of bits representing the
plaintext (and consequently the ciphertext).

Our KPA analysis applies on a single row2 of A(1), i.e., A(1)
j .

2Aj here denotes the j-th row of a matrix A.
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Furthermore, we note that the analysis is carried out in full compliance
with Kerckhoffs’s principle [181], i.e., , the only information that the
attackers are missing is their respective part of the encryption key, while
any other detail on the sparsity basis, as well as two-class encryption
specifications is here regarded as known. The actual breaking of the
encryption protocol would entail iterating the following attack for all
m rows of many of the matrices in the sequence, thus requiring an
even larger effort than the one described below. Nevertheless, even
knowing one row without uncertainty could lead to a decryption of
the pseudo-random sequence generating A(1), hence the relevance of
this simplified case.

8.1.1 Eavesdropper’s Known-Plaintext Attack

Given a plaintext x and the corresponding ciphertext y = A(1)x we
now assume the perspective of Eve and attempt to recover A

(1)
j with

a set of symbols Â
(1)
j = {Â(1)

j,l }
n−1
l=0 ∈ {−1,+1}n such that the j-th

symbol in the ciphertext,

yj =

n−1∑
l=0

A
(1)
j,l xl =

n−1∑
l=0

Â
(1)
j,l xl (8.1)

Moreover, to favour the attacker3 we assume all xl 6= 0. We now
introduce a combinatorial optimisation problem at the heart of the
analysed KPAs.

Problem 8.1 (Subset-Sum Problem). Let {ul}n−1
l=0 , ul ∈ {1, . . . , L} and

υ ∈ Z+. We define Subset-Sum Problem (SSP) [182, Chap. 4] the
problem of assigning n binary variables bl ∈ {0, 1}, l = {0, . . . , n− 1}
so that

υ =

n−1∑
l=0

blul (8.2)

3If any xl = 0 each corresponding term would give no contribution to the sum
(8.1), thus making Â(1)

j,l an undetermined variable in the attack. Hence, the sparsity of
x would actually be an issue for the attacker, which is why the sparsity basis D never
appears in the present evaluation.
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We define solution any {bl}n−1
l=0 verifying (8.2). In this configuration,

the density of this combinatorial problem is defined as [183]

δ(n,L) =
n

log2 L
(8.3)

Although in general a SSP is NP-complete, not all of its instances are
equally hard. In fact, it is known that high-density instances (i.e., with
δ(n,L) > 1) have plenty of solutions found or approximated by,
e.g., dynamic programming, whereas low-density instances are harder,
although for special cases polynomial-time algorithms have also been
found [183]. On a historical note, such low-density hard SSP instances
have been used in cryptography to develop the family of public-key
knapsack cryptosystems [184, 185] although most have been broken
with polynomial-time algorithms [186]. Problem 8.1 finds a direct
application to model Eve’s KPA as follows.

Proposition 8.1 (Eve’s Known-Plaintext Attack). The KPA to A
(1)
j

given (x,y) is equivalent to a SSP where each ul = |xl|, the variables

bl =
1

2

(
sign (xl) Â

(1)
j,l + 1

)
and the sum

υ =
1

2

(
yj +

n−1∑
l=0

|xl|

)

This SSP has a true solution {b̄l}n−1
l=0 that is mapped to the row A

(1)
j ,

and other candidate solutions that verify (8.2) but correspond to
matrix rows Â

(1)
j 6= A

(1)
j .

We also define (x,y,A
(1)
j ) a problem instance. This mapping is obtained

as follows.

Proof of Proposition 1. Define the binary variables bl ∈ {0, 1} so that
sign (xl) Â

(1)
j,l = 2bl− 1 and the positive coefficients ul = |xl|. With this

choice (8.1) is equivalent to yj =
∑n−1
l=0 (2bl − 1)ul which leads to a

SSP with υ = 1
2

(
yj +

∑n−1
l=0 |xl|

)
. Since we know that each ciphertext

entry yj must correspond to the inner product between x and the
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row A
(1)
j , the latter’s entries are straightforwardly mapped to the true

solution of this SSP, i.e., {b̄l}n−1
l=0 .

In our case we see that the density (8.3) is high since n is large and
log2 L is fixed by the digital representation of x (e.g., so that bx ≤ 64).
We are therefore operating in a high-density region of problem (8.2).
In fact, the resistance of the analysed embodiment of CS to KPAs is not
due to the hardness of the corresponding SSP but, as we show below,
to the huge number of candidate solutions as n increases, among which
an attacker should find the true solution to guess a single row of A(1).
Since no a priori criterion exists to select them, we consider them
indistinguishable.

The next Theorem calculates the expected number of candidate
solutions to Eve’s KPA by applying the theory developed in [187].

Theorem 8.1 (Expected number of solutions for Eve’s KPA). For large n,
the expected number of candidate solutions of the KPA in Proposition
8.1, in which (i) all the coefficients {ul}n−1

l=0 are i.i.d. uniformly drawn
from {1, . . . , L}, and (ii) the true solution {b̄l}n−1

l=0 is drawn with
equiprobable and independent binary values, is

SEve(n,L) ' 2n

L

√
3

πn
(8.4)

The proof of Theorem 8.1 is given in the next Section. This result
(as well as the whole statistical mechanics framework from which it is
derived) gives no hint on how much (8.4) is representative of finite-n
behaviours. To compensate for that, we enumerated the solutions of
several randomly generated small-n problem instances by using CPLEX
as a binary programming solver [94] and forcing the computation of
the full solution pool; this allowed a verification of the asymptotic
expression of (8.4) by comparing its expected number of solutions
with those effectively yielded by a computational implementation of
Eve’s KPA.

Such numerical evidence is reported in Fig. 8.2, where the
empirical average number of solutions ŜEve(n,L) to 50 problem
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Figure 8.2: Empirical average number of solutions for Eve’s KPA
compared to the theoretical approximation of (8.4) for L = 104.
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instances with L = 104 and n = {16, . . . , 32} is plotted and compared
with (8.4). The remarkable matching observed there allows us to
estimate, for example, that a KPA to the encoding of a grayscale image
of n = 64× 64 pixel quantised with bx = 8 bit (unsigned) would have
to discriminate on the average between 1.25 · 101229 equally good
candidate solutions for each of the rows of the encoding matrix. This
number is not far from the total possible rows, 24096 = 1.04 · 101233.
Hence, any attacker using this strategy is faced with a deluge of
candidate solutions, from which it would choose one presumed to
be a piece of the encoding matrix to attempt a guess on A(1).

A Proof of Theorem 8.1

Firstly, we introduce a technical definition that is used in the proof of
Theorem 8.1, as well as that of Theorem 8.3.

Definition 8.1. We define the functions

Fp(a, b) =

∫ 1

0

ξp

1 + eaξ−b
dξ (8.5)

Gp(a, b) =

∫ 1

0

ξp

(1 + eaξ−b) (1 + eb−aξ)
dξ (8.6)

We now proceed to proving the main statement by means of an
interface with the theory developed by Sasamoto et al. [187] on
the number of solutions of the SSP.

Proof of Theorem 8.1. Let us first note that, for large n, υ in Proposition
8.1 is an integer in the range [0, nL/2], with the values outside this
interval being asymptotically unachievable as n → ∞ (see [187,
Section 4]). We let τ = υ/nL, τ ∈ [0, 1/2], and a(τ) be the solution in
a of the equation τ = F1(a, 0) (i.e., [187, (4.2)]) that is unique since
Fp(a, 0) in (8.5) is monotonically decreasing in a.

From [187, (4.1)] the number of solutions of a SSP with integer
coefficients {ul}n−1

l=0 uniformly distributed in [1, L] is

SEve(τ, n, L) ' en[a(τ)τ+
∫ 1
0

log(1+e−a(τ)ξ)dξ]√
2πnL2G2(a(τ), 0)
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Figure 8.3: Gaussian approximation of SEve(τ, n, L) for n = 64, L =
104 by letting σ2 ≈ 1/12n.

that we anticipate to have an approximately Gaussian profile (see Fig.
8.3).

We now compute the average of SEve(τ, n, L) in τ , that clearly
depends on the probability of selecting any value of υ ∈ [0, nL2 ],
i.e., of τ ∈ [0, 1

2 ]. Since υ is the result of a linear combination, the
probability that a specific value appears in a random instance of the
SSP is proportional to the number of solutions associated to it. In
normalised terms, the PDF of τ must be proportional to SEve(τ, n, L),
i.e., τ is distributed as

fτ (t) =
1∫ 1

2

0
SEve(ξ, n, L)dξ

SEve(t, n, L), 0 ≤ t ≤ 1
2

0, otherwise

With fτ (t) we can compute the expected number of solutions:

Eτ [SEve(τ, n, L)] =

∫ 1
2

0
S2

Eve(ξ, n, L)dξ∫ 1
2

0
SEve(ξ, n, L)dξ

(8.7)

Although we could resort to numerical integration, (8.7) can be
simplified by exploiting what noted above, i.e., that SEve(τ, n, L) has
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an approximately Gaussian profile in τ (Fig. 8.3) with a maximum in
τ = 1/4. Hence, the expectation in τ becomes

Eτ [SEve(τ, n, L)] ' SEve

(
1

4
, n, L

) ∫∞−∞
(
e−

(ξ− 1
4 )

2

2σ2

)2

dξ

∫∞
−∞ e−

(ξ− 1
4 )

2

2σ2 dξ

= SEve

(
1

4
, n, L

)
1√
2

=
2n

L

√
3

πn
(8.8)

that is actually independent of the σ2 used in the Gaussian approxima-
tion, and in which we have exploited a(1/4) = 0 to obtain the statement
of the Theorem.

8.1.2 Expected Distance of an Eavesdropper’s KPA Solu-
tions

A legitimate concern when Eve is presented with a large set of solutions
output from a complete KPA to a row of A(1) is that most of them
could be good approximations of the true encoding matrix row. To
see whether this is the case, we quantify the difference between A

(1)
j

and the corresponding candidate Â
(1)
j resulting from a KPA in terms

of their Hamming distance, i.e., as the number of entries in which they
differ.

Theorem 8.2 (Expected number of solutions for Eve’s KPA at a given
Hamming distance from the true one). The expected number of
candidate solutions at Hamming distance h from the true solution of
the KPA in Proposition 8.1, in which (i) all the coefficients {ul}n−1

l=0 are
i.i.d. uniformly drawn from {1, . . . , L}, (ii) the true solution {b̄l}n−1

l=0

is drawn with equiprobable and independent binary values, is

S(h)
Eve(n,L) =

(
n

h

)
Ph(L)

2hLh
(8.9)

where Ph(L) is a polynomial in L whose coefficients are reported in
Table 8.1 for h = {2, . . . , 15}.
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The proof of this Theorem and the derivation of Table 8.1 are reported
in the next Section. We now collect some empirical evidence that
the expression in (8.9) correctly anticipates the expected number
of solutions at a given Hamming distance. The procedure simply
entails processing the enumerated solutions in Section 8.1.1. Thus,
Fig. 8.4 reports for n = {21, 23, . . . , 31} the empirical average, over
50 problem instances, of the number of solutions to Eve’s KPA whose
Hamming distance from the true one is a given value h = {2, . . . , 15},
as compared against the value predicted by (8.9) with the polynomial
coefficients in Table 8.1. The remarkable matching we observe allows
us to estimate that, in the case of a grayscale image (n = 4096, L =

128), only 1.95 ·1041 candidate solutions out of the average 1.25 ·101229

are expected to have a Hamming distance h ≤ 16, while 6.33 · 1076

attain a Hamming distance h ≤ 32. Since these results apply to each
row of the matrix being inferred, this indicates how the chance that a
randomly chosen candidate solution is (or is close to) the true one is
negligible.

A Proof of Theorem 8.2

We present a proof of the result in (8.9) based on a counting argument.

Proof of Theorem 8.2. We here concentrate on counting the number
of candidate solutions {bl}n−1

l=0 to Eve’s KPA that differ from the true
one, {b̄l}n−1

l=0 , by exactly h components (at Hamming distance h). We
assume that K ⊆ {0, . . . , n − 1} is the set of indices for which there
is a disagreement, i.e., for all l ∈ K we have bl = 1 − b̄l; this set
has cardinality h, and is one among

(
n
h

)
possible sets. Since both

{bl}n−1
l=0 and {b̄l}n−1

l=0 are solutions to the same SSP, and that bl = b̄l are
identical for l /∈ K,

∑
l∈K

(
1− b̄l

)
ul =

∑
l∈K b̄lul must hold, implying

the equality ∑
l∈K
b̄l=0

ul −
∑
l∈K
b̄l=1

ul = 0 (8.10)

Although (8.10) recalls the well-known partition problem, in our case
K is chosen by each problem instance that sets all ul and b̄l. Thus,
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(8.10) holds in a number of cases that depends on how many of the
2hLh possible assignments of all ul and b̄l satisfy it. The only feasible
cases are for h > 1, and to analyse them we assume K = {0, . . . , h−1}
(the disagreements occur in the first h ordered indices) without loss of
generality.

Moreover, when (8.10) holds for some {b̄l}n−1
l=0 it also holds for

{1− b̄l}n−1
l=0 . Hence, we may count the configurations that verify (8.10)

with b̄0 = 0, knowing that their number will be only half of the total.
With this, the configurations with b̄0 = 0 must have b̄l = 1 for at least
one l > 0 in order to satisfy (8.10), giving 2h−1−1 total cases to check.

The following paragraphs illustrate that, for h < L, the number
of configurations that verify (8.10) can be written as a polynomial of
order h−1. With this in mind we can start with the explicit computation
for h = {2, 3}.

1. for h = 2, there is only one feasible assignment for the {b̄l}n−1
l=0 ,

so u0 = u1 in (8.10), which makes 2L cases out of 22L2;

2. for h = 3, one has 3 feasible assignments for the {b̄l}n−1
l=0 . Due

to the symmetry of (8.10) all the configurations have the same
behaviour and we may focus on, e.g., b̄0 = b̄1 = 0 and b̄2 = 1⇒
u0 +u1 = u2; this can be satisfied only when u0 +u1 ≤ L, i.e., for
L(L−1)/2 configurations. This makes a total of 2 · 3 · L(L−1)

2 =

3L(L− 1) over the 23L3 possible configurations;

3. for h > 3, this procedure is much less intuitive; nevertheless,
we can at least prove that the function Ph(L) counting the
configurations for which (8.10) holds is a polynomial in L of
degree h− 1. To show this, let us proceed in three steps.

a) Indicate with πb̄ the (h − 1)-dimensional subspace of Rh

defined by
∑

l∈K
b̄l=0

ξl−
∑

l∈K
b̄l=1

ξl = 0, ξ ∈ Rh. The intersection

αb̄(L) = [1, L]h ∩ πb̄ is such that each assignment of
{ul}h−1

l=0 ∈ [1, L]h satisfying (8.10) is an integer point in
αb̄. To count those points define βb̄(L) = [0, L+ 1]∩ πb̄ and
note that the number of integer points in αb̄ is equal to the
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number of integer points in the interior of βb̄ (the points on
the frontier of βb̄ have at least one coordinate that is either
0 or L+ 1).

Note how [0, L + 1]h scales linearly with L + 1 while πb̄
is a subspace and therefore scale-invariant. Hence, their
intersection βb̄(L) is an h − 1-dimensional polytope that
scales proportionally to the integer L + 1, as required by
Ehrhart’s theorem [188]. The number Eb̄(L) of integer
points in βb̄(L) is then a polynomial in L + 1 (and so L)
of degree equal to the dimensionality of βb̄(L), i.e.,h − 1.
From Ehrhart-Macdonald’s reciprocity theorem [189] we
know that the number of integer points in the interior of βb̄
and thus in αb̄ is (−1)h−1Eb̄(−L), that is also a polynomial
in L of degree h− 1.

b) If two different assignments {b̄′l}
h−1
l=0 and {b̄′′l }

h−1
l=0 are

considered, then αb̄′(L) ∩ αb̄′′(L) = [1, L]h ∩ πb̄′ ∩ πb̄′′ . The
same argument we used above tells us that the number of
integer points in such an intersection is a polynomial in L
of degree h− 2 and, in general that the number of integer
points in the intersection of any number of polytopes αb̄(L)

is a polynomial of degree not larger than h− 1.

c) The number of configurations of {ul}h−1
l=0 and {b̄l}h−1

l=0

that satisfy (8.10) w.r.t. . the above K is the number of
integer points in the union of all possible polytopes αb̄,
i.e.,

⋃
{b̄l}h−1

l=0
αb̄(L). Such a number can be computed by

the inclusion-exclusion principle that amounts to properly
summing and subtracting the number of integer points in
those polytopes and their various intersections. Since sum
and subtraction of polynomials yield polynomials of non-
increasing degree, we know that number is the evaluation
of a polynomial Ph(L) with degree not greater than h− 1.

Let us finally write Ph(L) =
∑h−1
j=0 p

h
jL

j . In order to compute its
coefficients phj we may fix a binary configuration {bl}h−1

l=0 , count the
points {ul}h−1

l=0 ∈ Zh+ for which (8.10) is verified by means of integer
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Ŝ(h)
Eve(27, L)
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Hamming distance h from the true one, compared to the theoretical
approximation of (8.9) for L = 104 and n = 21, 23, . . . , 31.
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partition functions (that also have a polynomial expansion), and
subtract the points in which {ul}h−1

l=0 /∈ [1, L]h. By summation over all
binary configurations, one can extract the coefficients associated with
Lj for each h. Table 8.1 reports the result of this procedure as carried
out by symbolic computation for h ≤ 15.

8.1.3 Class-Upgrade Known-Plaintext Attack

A KPA may also be attempted by Steve, a malicious second-class
receiver aiming to improve its signal recovery performances with the
intent of reaching the same quality of a first-class receiver. In this KPA,
a partially correct encoding matrix A(0) that differs from A(1) by c
entries is also known in addition to x and y. With this prior, Steve may
compute ε = y −A(0)x = ∆Ax where ∆A = A(1) −A(0) here is an
unknown matrix with ternary-valued entries, i.e., ∆A ∈ {−2, 0, 2}m×n.
Hence, Steve performs a KPA by searching for a set of ternary symbols
{∆Aj,l}n−1

l=0 such that each entry of ε,

εj =

n−1∑
l=0

∆Aj,lxl (8.11)

of which it is known a priori that ∆Aj,l 6= 0 only in c cases. Moreover,
to ease the solution of this problem and make it row-wise separable, we
assume that Steve gains access to an even more accurate information,
i.e., the exact number cj of non-zero entries for each row ∆Aj or
equivalently the number of SSFs mapping A

(0)
j into the corresponding4

A
(1)
j . By assuming this, we may prove the equivalence between Steve’s

KPA to each row of A(1) and a slightly adjusted SSP.

Problem 8.2 (γ-cardinality Subset-Sum Problem). Let {ul}n−1
l=0 , ul ∈

{1, . . . , Q}, γ ∈ {1, . . . , n} and υ ∈ Z+. We define γ-cardinality
SSP (γ-SSP) the problem of assigning n binary variables bl ∈ {0, 1},

4Clearly, the total number of non-zero entries in ∆A is c =
∑m−1
j=0 cj .
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l = 0, . . . , n− 1 so that

υ =
n−1∑
l=0

blul (8.12)

γ =

n−1∑
l=0

bl (8.13)

We define solution any {bl}n−1
l=0 verifying (8.12) and (8.13).

Again, a mapping of Steve’s KPA to Problem 8.2 is easily obtained.

Proposition 8.2 (Steve’s Known-Plaintext Attack). The KPA to A
(1)
j

given (x,y,A(0), cj), is equivalent to a γ-SSP where γ = cj , Q = 2L,
ul = −A(0)

j,l xl + L, the variables

bl =
1

2

(
1−

Â
(1)
j,l

A
(0)
j,l

)

and the sum
υ =

1

2
εj + Lcj

This SSP has a true solution {b̄l}n−1
l=0 that is mapped to the row

A
(1)
j , and other candidate solutions that verify (8.12) and (8.13) but

correspond to matrix rows Â
(1)
j 6= A

(1)
j .

We also define (x,y,A
(0)
j ,A

(1)
j ) a problem instance; Steve can therefore

use the result of (8.12) to obtain the perturbation entries ∆Aj,l =

−2A
(0)
j,l bl. The derivation of Proposition 8.2 is obtained as follows.

Proof of Proposition 2. In this case the attacker knows (A(0),x,y), and
is able to calculate ε = y − A(0)x, i.e., εj = yj −

∑n−1
l=0 A

(0)
j,l xl =∑n−1

l=0 ∆Aj,lxl where all the entries ∆Aj,l are unknown. For the j-th
row, the attacker also knows there are cj non-zero elements in ∆Aj,l =

−2A
(0)
j,l bl with bl ∈ {0, 1} binary variables that are 1 if the flipping

occurred and 0 otherwise. Note that from the above information
cj =

∑n−1
l=0 bl.
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With this we define a set of even weights Dl = −2A
(0)
j,l xl ∈

{−2L, . . . ,−2, 0, 2, . . . , 2L} so the KPA is defined by satisfying the
equalities

εj =

n−1∑
l=0

Dlbl (8.14)

cj =

n−1∑
l=0

bl (8.15)

To obtain a standard γ-SSP with positive weights and γ = cj we sum
2L to all Dl so (8.14) becomes εj + 2L

∑n−1
l=0 bl =

∑n−1
l=0 (Dl + 2L)bl.

Multiplying both sides by 1/2 and using (8.15) yields υ = 1
2εj + Lcj =∑n−1

l=0 ulbl where ul = −A(0)
j,l xl + L ∈ {0, . . . , Q}. Q = 2L. Finally, we

note the exclusion of ul = 0 to facilitate the attack.

In the following, we will denote with r = cj/n the row-density of
perturbations. Since in [187] the γ-cardinality SSP case is obtained as
an extension of the results on the unconstrained SSP, we obtain the
following Theorem.

Theorem 8.3 (Expected number of solutions for Steve’s KPA). For
large n, the expected number of candidate solutions of the KPA in
Proposition 8.2, in which (i) all the coefficients {ul}n−1

l=0 are i.i.d.
uniformly drawn from {1, . . . , 2L}, and (ii) the true solution {b̄l}n−1

l=0

is drawn with equiprobable independent binary values, is

SSteve(n,L, r) '
√

3

2

r−1−nr (1− r)−1−n(1−r)

2πnL
(8.16)

The proof of Theorem 8.3 is reported in the next Section. The number
of candidate solutions found by Steve’s KPA is by many orders of
magnitude smaller than Eve’s KPA, the reason being that Steve requires
much less information to achieve complete knowledge of the true
encoding A(1). In order to provide numerical evidence, we simulate
Steve’s KPA on a set of 50 randomly generated problem instances with
row-density of perturbations r = {5/n, 10/n, 15/n} for n = {20, . . . , 32}
and L = 5 · 103; the problem is still formulated as binary programming
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Figure 8.5: Empirical average number of solutions for Steve’s KPA
compared to the theoretical approximation of (8.16) for L = 5 · 103

with row-density of perturbations r = 5/n, 10/n, 15/n.
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in CPLEX, albeit with the additional equality constraint (8.15); the full
solution pool can still be populated for the given dimensions5.

The empirical average number of solutions ŜSteve(n,L, r) reported
in Fig. 8.5 is well predicted by the theoretical value in (8.16); note
that this approximation is increasingly accurate for large n. Moreover,
by resuming the previous example our n = 64 × 64 pixel grayscale
image quantised at bx = 8 bit and encoded with two-class CS using
∆A with r = 0.03 will have on-average 6.25 · 10234 candidate solutions
of indistinguishable quality.

The previous analysis hinges on a counting argument in a general
setting, without any other prior assumption on the structure of A(1)

or ∆A. This class-upgrade KPA has been examined by assuming very
accurate prior information on the number of perturbations per row,
thus implying a best-case situation for the attacker. As we will show
in the experiments of Section 8.3, these attacks yield no advantage in
terms of recovery performances to unintended receivers.

A Proof of Theorem 8.3

The following proof draws again from the work of Sasamoto et al.
[187] and is therefore similar in principle to that of Theorem 8.1, i.e., it
is merely an interface to existing results on the γ-SSP. It is worth
noting that the proof draws on Definition 8.1.

Proof of Theorem 8.3. Assume Fp(a, b) and Gp(a, b) as in (8.5),(8.6).
Define the normalised constraint r =

cj
n and two quantities a(τ, r) and

b(τ, r) that are the solutions of the following system of equalities

r = F0(a, b)

τ = F1(a, b)

that are respectively equivalent to [187, (5.3-4)]. We also define

G(τ, r) =

[
G0(a (τ, r) , b (τ, r)) G1(a (τ, r) , b (τ, r)

G1(a (τ, r) , b (τ, r) G2(a (τ, r) , b (τ, r))

]
5In the first case, full enumeration is still feasible in an acceptable computation time

for n = 48.
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With this, [187, (5.8-9)] prove that the number of solutions of
a γ-SSP with integer coefficients {ul}n−1

l=0 uniformly distributed in
{1, . . . , Q}, Q = 2L, γ = cj is

SSteve(τ, n, L, r) =
en(a(τ,r)τ−b(τ,r)r)

4πnL
√

det (G(τ, r))
en

∫ 1
0

log[1+eb(τ,r)−a(τ,r)ξ]dξ

(8.17)

Using the same arguments as in the proof of Theorem 8.1, we average
on τ and obtain an expression identical to (8.7) for the computation
of Eτ [SSteve(τ, n, L, r)]. Since SSteve(τ, n, L, r) has once again an
approximately Gaussian profile in τ with a maximum in τ = r

2 we
approximate the expectation in τ ,

Eτ [SSteve(τ, n, L, r)] ' SSteve

(r
2
, n, L, r

) 1√
2

=

√
3

2

r−1−nρ (1− r)−1−n(1−r)

2πnL
(8.18)

by using the fact that a
(
r
2 , r
)

= 0 and b
(
r
2 , r
)

= log
(

r
1−r

)
.

8.2 Signal Recovery-Based Class-Upgrade Attacks

Class-upgrade attacks to two-class encryption by CS (Section 6.1.2)
are closely related to a recovery problem that has attracted some
attention in past contributions, i.e., sparse signal recovery under matrix
uncertainty, as was partly introduced in Chapter 5. In this case, we
assume the perspective of Steve and let A(1) = A(0) + ∆A be the
encoding matrix, where A(0) is known a priori and ∆A is an unknown
random SSF perturbation matrix. This qualifies as a class-upgrade
known-ciphertext attack, as Steve is given (y,A(0)) and no other
information – if x was also provided, the best approach would still be
the KPA in Proposition 8.2.

Steve’s information could be paired with a sparsity prior on x to
attempt the joint recovery of x and ∆A, eventually leading to a mere
refinement of the estimate x̂ instead of an actual estimate of ∆A.
Two main algorithms specifically address this problem setup for a
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generic ∆A, namely Matrix Uncertainty-GAMP (MU-GAMP) [160] and
Sparsity-cognisant Total Least-Squares (S-TLS) [159].

Although appealing in principle, this joint recovery approach can be
anticipated to fail for multiple reasons. First, this attack is intrinsically
harder than Steve’s KPA in that the true plaintext x here is unknown.
Whatever ∆A is a candidate solution to Steve’s KPA given x, it will
also be possible solution of joint recovery with the same x. Since we
know from Section 8.1.3 that Steve’s KPA typically has a huge number
of indistinguishable and equally-sparse candidate solutions, at least
as many will verify the joint recovery problem when the plaintext is
unknown. Hence, this approach has negligible odds of yielding more
information on ∆A than Steve’s KPA.

Furthermore, note that joint recovery amounts to solving y =

A(0)x + ∆Ax with ∆A and x unknown, that is clearly a non-linear
equality involving non-convex/non-concave operators; in general, this
is a hard problem that can only be solved in a relaxed form (as, in fact,
does S-TLS).

The aforementioned algorithms are indeed able to compensate
matrix uncertainties when ∆A depends on a low-dimensional, deter-
ministic set of parameters. However such a model does not apply
to two-class encryption by CS: even if ∆A is c-sparse, it has no
deterministic structure to leverage in the attack – to make it so, one
would need to know the exact set C(0) of c index pairs at which the
sign-flipping randomly occurred, which by itself entails a combinatorial
search.

In fact, ∆A is uniform in the sense of [160] since it is a realisation
of a RME with i.i.d. entries having zero-mean and bounded variance.
Hence, we expect the accuracy of the estimate x̂ with joint recovery
(both using S-TLS and MU-GAMP) to agree with the uniform matrix
uncertainty case of [160], where negligible improvement is shown
w.r.t. . the (standard, non-joint) recovery algorithm GAMP [105].
The advocated reason is that the perturbation noise ε = ∆Ax is
asymptotically Gaussian for a given x [160, Proposition 2.1]; thus,
it is reasonable that a suitably-tuned application of GAMP attains
near-optimal performances.
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We now provide some empirical evidence on the ineffectiveness
of joint recovery as a class-upgrade attack for finite n,m and sparsity
k. As an example, we let n = 256, m = 128, k = 20 and η = c

mn ∈
[0.005, 0.1] and generate 100 random instances of x = Ds with x being
k-sparse w.r.t. a randomly chosen orthonormal basis D. For each η, we
also generate 100 pairs of matrices (A(0),A(1)) related as (6.2) and
encode x by y = A(1)x.

Signal recovery is performed by MU-GAMP, S-TLS and GAMP. To
maximise their performances, each of the algorithms is “genie”-tuned
to reveal the exact value of the required features of x. In particular,
MU-GAMP and GAMP are provided with an i.i.d. Bernoulli-Gaussian
sparsity-enforcing signal model [105, 170] having the exact mean,
variance and sparsity level of the instances s. As far as the perturbation
∆A is concerned, MU-GAMP is given the PMF of its i.i.d. entries. On
the other hand, GAMP is initialised with the noise variance of ε =

∆Ax, that is assumed as AWGN. S-TLS is run in its locally-optimal,
polynomial-time version [159, Section IV-B] and fine-tuned w.r.t. its
regularisation parameter as η varies.

Since the typically very low accuracy of the recovered ∆A is not
as relevant to a class-upgrade attack as improving the estimate of x̂,
we here focus on measuring the usual ASNRx̂,x, as reported in Fig.
8.6. The standard deviation from the average is less than 1.71 dB

in all the reported curves. The maximum ASNRx̂,x performance gap
between GAMP and MU-GAMP is 1.22 dB while S-TLS attains generally
lower performances for high values of η. These observed performances
confirm what is also found in [160], i.e., that GAMP, MU-GAMP and
S-TLS substantially attain the same performances under uniform matrix
uncertainty. As expected, class-upgrade attacks based on joint recovery
are ineffective even for finite n and m, since GAMP under the same
conditions is the reference case adopted in Section 6.3 for the design
of two-class encryption by CS.
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8.3 Performance Evaluation of Practical Known-Plaintext
Attacks

In this Section we exemplify KPAs in a common framework which
entails the following procedure. When Eve is performing a KPA as
in Section 8.1, it knows a single plaintext-ciphertext pair (x′,y′) and
attacks a matrix A(1) row-by-row; we here infer each row A

(1)
j by

generating random instances of an i.i.d. RBE matrix until a chosen
number of candidate rows Â

(1)
j that verify y′j = Â

(1)
j x′ has been found.

Thus, the inferred Â(1) is actually composed by collecting the outputs
of m random searches. This approach is preferable to solving Eve’s
KPA by means of linear programming as in Section 8.1 for two reasons.

Firstly, it is known from Theorem 8.1 that the expected number of
solutions is very large and thus the probability of success of a random
search is far from being negligible, while its computational cost is
relatively low.

Secondly, the theoretical conditions of Section 1.3.2 that guarantee
when x′ can be retrieved from y′ despite the dimensionality reduction
are applicable when A(1) is drawn from the RBE. On the contrary, the
CPLEX integer programming solver explores solutions in a systematic
way, and while crucial in the enumeration of all candidate solutions as
in Section 8.1 (with computational cost growing exponentially in n)
it tends to generate them in an ordered fashion. When only some of
these solutions are considered (as obliged when n is large) this results
in sets of Â

(1)
j that could be very distant from A

(1)
j .

To test the obtained guess Â(1), Eve may then pretend to ignore
x′ and recover its approximation x̂′ from (y′, Â(1)) by using a high-
performance signal recovery algorithm such as GAMP [105] optimally
tuned as in Section 8.2. This sets the SNRx̂′,x̂ level which is adopted
as a quality indicator for Â(1).

Then, Eve attempts signal recovery from a second ciphertext y′′ =

A(1)x′′ where the plaintext x′′ is unknown, i.e., as if somehow A(1)

was reused twice. In this case, and if Eve’s KPA was successful in
retrieving Â(1), the recovery x̂′′ obtained by means of GAMP would
yield a new SNRx̂′′,x′′ ≈ SNRx̂′,x′ . To remark what is shown below, we
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evaluate how the (SNRx̂′,x′ ,SNRx̂′′,x′′) pairs are distributed w.r.t. fixed
plaintexts x′,x′′ encoded with the same A(1) and candidate solutions
Â(1) are considered in the decoding; if Eve is successful, an SNRx̂′′,x′′

compatible with SNRx̂′,x′ must be observed.
The examples of class-upgrade KPAs follow the same procedure

as those performed by Eve, with the exception that Steve generates
the rows of Â(1) by random search of the index set C(0)

j that maps

the known A
(1)
j to Â

(1)
j that verifies y′j = Â

(1)
j x′. Coherently with the

theoretical setting of Section 8.1.3, we also assume that Steve knows
exactly cj entries are flipped in each row. Repeating this search for
m rows provides the candidate solutions Â(1), of which we will study
how the corresponding (SNRx̂′,x′ ,SNRx̂′′,x′′) pairs are distributed as
mentioned above.

8.3.1 Electrocardiographic Signals

We now consider ECG signals in the same conditions of Section 6.3,
focusing on two windows x′,x′′ of n = 256 samples quantised with
bx = 12 bit; these correspond to the measurement vectors y′,y′′ of
dimensionality m = 90. Signal recovery is allowed by the sparsity
level of the windowed signal when decomposed with D chosen as a
Symmlet-6 orthonormal DWT [52].

We generate 2000 candidate solutions for both Eve and Steve’s
KPA that correspond to the recovery performances reported in Fig.
8.7. While both malicious users are able to reconstruct the known
plaintext x′ with a relatively high6 average SNRx̂′,x′ ≈ 25 dB, on the
second window of samples x′′ the eavesdropper achieves an average
SNRx̂′′,x′′ ≈ −0.20 dB (Fig. 8.7a), whereas the second-class decoder
achieves an average SNRx̂′′,x′′ ≈ 12.15 dB (Fig. 8.7b) when the two-
class encryption scheme is set to a sign flipping density η = c/mn =

0.03 between A(1) and A(1). In this case, the nominal second-class
RSNR = 11.08 dB when reconstructing x′′ from y′′ with A(1), while
the correlation coefficient between SNRx̂′,x′ and SNRx̂′′,x′′ is 0.0140;
these figures clearly highlight the ineffectiveness of KPAs at inferring

6Their KPAs indeed yield solutions to y′ = Â(1)x′.
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Figure 8.7: Effectiveness of (a) Eve and (b) Steve’s KPA in
recovering a hidden ECG. Each point is a guess of the encoding
matrix A(1) whose quality is assessed by decoding the ciphertext y′

corresponding to the known plaintext x′ (SNRx̂′,x′) and by decoding
a new ciphertext y′′ (SNRx̂′′,x′′). The Euclidean distance from the
average (SNRx̂′,x′ ,SNRx̂′′,x′′) is highlighted by colour gradient.
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A(1) in this case. This is also confirmed by the perceptual quality of x̂′′

corresponding to the maximum SNRx̂′′,x′′ highlighted in Fig. 8.7.

8.3.2 Sensitive Text in Images

In this example we consider the same test images used in Section
6.3, i.e., 640× 512 pixel grayscale images of people holding a printed
identification text concealed by means of two-class encryption. To
reduce the computational burden of KPAs we assume a block size of
64× 64 pixel, bx = 8 bit per pixel, and encode the resulting n = 4096

pixels into m = 2048 measurements. Signal recovery is performed by
assuming the blocks have a sparse representation on a 2D Daubechies-
4 orthonormal DWT [52]. Two-class encryption is applied on the
blocks containing printed text: we choose two adjacent blocks x′,x′′

containing some letters and encoded with the same A(1); in this
case, the second-class decoder nominally achieves RSNR = 12.57 dB

without attempting class-upgrade due to the flipping of c = 251658

entries (corresponding to a perturbation density η = 0.03) in the
encoding matrix.

In order to test Eve and Steve’s KPA we randomly generate 2000

solutions for the j-th row of the encoding given x′,y′: it is worth
noting that while in the previous case the signal dimensionality is
sufficiently small to produce a solution set in less than two minutes, in
this case generating 2000 different solutions for a single row may take
up to several hours for some particularly hard instances. By using these
candidate solutions to find x̂′, x̂′′ we obtain the results of Fig. 8.8:
while both attackers attain an average SNRx̂′,x′ ≈ 33 dB on x′, Eve is
only capable of reconstructing x′′ with an average SNRx̂′′,x′′ ≈ 0.14 dB

where Steve reaches an average SNRx̂′′,x′′ ≈ 12.80 dB with η = 0.03.

Note also that, although some lucky guesses exist with SNRx̂′′,x′′ >

12.57 dB, it is impossible to identify them by looking at SNRx̂′,x′

since the correlation coefficient between SNRx̂′,x′ and SNRx̂′′,x′′ is
−0.0041. Thus, Steve cannot rely on observing the SNRx̂′,x′ to choose
the best performing solution Â(1), so both Eve and Steve’s KPAs
are inconclusive. As a further perceptual evidence of this, the best
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Figure 8.8: Effectiveness of (a) Eve and (b) Steve’s KPA in recovering
hidden image blocks. Each point is a guess of the encoding
matrix A(1) whose quality is assessed by decoding the ciphertext y′

corresponding to the known plaintext x′ (SNRx̂′,x′) and by decoding
a new ciphertext y′′ (SNRx̂′′,x′′). The Euclidean distance from the
average (SNRx̂′,x′ ,SNRx̂′′,x′′) is highlighted by colour gradient.
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recoveries according to the SNRx̂′′,x′′ are reported in Fig. 8.8.

Summary

I We have analysed KPAs as they may be carried out on standard
CS schemes with RBE encoding matrices as well as on the
particular multiclass protocol developed in Chapter 6. In
particular, the analysis was carried out from the two perspectives
of an eavesdropper and a second-class user trying to guess the
true encoding matrix.

I A theoretical approach to KPAs shows how they can be mapped
into two versions of the SSP, with the aim of counting the
candidate encoding matrices that match a given plaintext-
ciphertext pair.

I In the eavesdropper case we have found that for each row the
expected number grows as O(2n n−

1
2 ); thus, finding the true

solution among such huge sets is infeasible.

A further study of the candidate solutions’ Hamming distance
from the true one showed that, as the dimensionality n increases,
the expected number of solutions close to the true one is only a
small fraction of the solution set.

I As for the second-class user we have shown that depending on the
available information on the true encoding matrix, the expected
number of solutions is significantly smaller, yet sufficiently high
for large n to reassure that a second-class user will not be able
to perform class-upgrade.

I Signal recovery-based class-upgrade attacks were attempted by
using recovery algorithms that account for matrix perturbations;
these were here shown to yield almost identical performances to
those of a standard decoding algorithm because of the random
nature of the SSF perturbation matrix.
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I Finally, we showed some practical KPAs on real-world signals
such as ECG traces and images by running a random search for a
solution set corresponding to realistic plaintext-ciphertext pairs,
and afterwards tested whether any of the returned candidate
solutions could lead to finding the true encoding matrix by testing
them on a successive ciphertext encoded with the same matrix.

In all the observed cases, we have found that the decoding
performances match the ASNRx̂,x level prescribed by the multi-
class encryption protocol, i.e., both malicious users are unable to
successfully decode other plaintexts with significant and stable
quality improvements w.r.t. their available prior information.



A MULTISPECTRAL

COMPRESSIVE IMAGER

BY RANDOM CONVOLUTION

III





A MULTISPECTRAL

COMPRESSIVE IMAGER

BY RANDOM CONVOLUTION

9

Computer vision applications entail the acquisition of high-resolution
scenes comprised of objects, shapes and landscapes which are
identified by simple morphological features defining their information
content. These scenes are very often accurately represented by
means of the techniques described in Section 1.1.1; in fact, lossy
digital image compression schemes [131] explicitly leverage the
principle of compressibility (as in Definition 1.4), enabling efficient
and compact storage of compressed images with negligible perceptual
quality losses w.r.t. uncompressed, raw frames acquired from imaging
sensors. Regardless of the redundancy indicated by the existence
of a low-dimensional model, state-of-the-art imaging sensors rely on
increasingly large pixel counts to acquire raw frames.

This quest for high-resolution sensors becomes even more relevant
when MS imaging is considered. This imaging technique is commonly
implemented by spatially or spectrally multiplexing the acquisition of
parts of a MS data volume on a standard imaging sensor. To do so, both
spatial [63,190] and spectral [191] multiplexing architectures exist1,
yet they require accurate dispersive optics (such as prisms, gratings or
tunable optical filters) to separate the spectral components of a scene.
In addition, precise mechanical scanning elements are often needed to

1Reviews on imaging spectrometry may be found in [192,193].
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complete the acquisition, consequently causing motion artefacts in the
presence of rapid temporal variations in the scene.

Recent developments [194, 195] have shown that MS image
acquisition can be performed in a more agile fashion by using Fabry-
Pérot (FP) spectral band-pass filters [196] deposited directly above a
standard CMOS imaging sensor (i.e., as in Fig. 9.1), paired with a lens
array that replicates the MS cube on the FP-filtered imaging sensor.
The introduction of this technology allows the removal of dispersive
optics and scanning elements from the optical system, thus increasing
its compactness and reducing the acquisition time required to sample
a single cube to that of acquiring a single frame (i.e., a snapshot). The
price of this major simplification is a limit in the spatial resolution of
the data volume, since the total pixel count of the sensor is partitioned
by the number of wavelengths being acquired at each snapshot. Thus,
snapshot MS imagers are generally more limited in resolution than
their scanning counterparts, and would therefore benefit the most from
the use of sensing techniques that increase the spatial-domain data
volume resolution.

In this Chapter we document some advancements and findings
regarding the development, implementation and experimental testing
of a MS imager based on CS and the above FP-filtered imaging sensors.
Our imager is based on the principle of random convolution, which
provides a convenient sensing operator for CS [30]. This principle was
recently applied by Björklund and Magli [32] to devise a panchromatic
single-snapshot imaging scheme based on CS. Starting from the
latter, we here extend their design to the task of MS imaging with
FP-filtered sensors and show by simulation how single- and multi-
snapshot acquisition can be flexibly used to sample MS cubes with
accuracy depending on their complexity. Moreover, we here bring
this optical design into a prototype that uses some standard optical
components, a programmable light modulator and a FP-filtered sensor
array.

We anticipate that our scheme applies random convolution indepen-
dently on each slice of the data volume, and therefore introduces no
CS in the wavelength domain; this choice favours lower system-level
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Figure 9.1: A Fabry-Pérot-filtered sensor array; image courtesy of
IMEC, Belgium.

complexity and the removal of complex dispersive optical elements
(contrarily to the MS imaging schemes in [197,198]).

A fundamental role will also be played by the discrepancy between
the ideal sensing operator model and its optical implementation, that
will affect the sensing scheme and require at least a Point Spread
Function (PSF) estimation step to refine the ideal model. At the
present state, this discrepancy limits the quality of the recovery results
obtained from both a panchromatic compressive imager based on
random convolution and its MS companion; yet, it is on this estimation
and calibration step that future improvements will focus.

9.1 Compressive Imaging by Random Convolution

Compressed Sensing as illustrated in Chapter 1 can be implemented
in the optical domain by a variety of schemes devised in recent
contributions [20,197,199–201] (see also the tutorial in [151], and
references therein). Some of these specifically address the choice of
a random convolution sensing operator [30, 199, 202] which is the
core of the MS imager we here develop. The appeal of such a scheme
is in the parallelism provided by the convolution operation in the
optical domain, as opposed to the operation mode of the single-pixel
camera [20] where the acquisition of m measurements is completely
serialised in time. In particular, while optical convolution schemes may
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be devised by using the Fourier-transforming property of lenses [203,
Section 5.2] the main novelty of the scheme explored by Björklund and
Magli [32], on which our MS imager is based, is that it uses an out-of-
focus coded aperture array. This and other concepts will be cleared out
in this Section as a background to the simulation and implementation
of our MS imager.

9.1.1 Coded Aperture Imaging

The convolution operator ∗ is a fundamental tool in optical and digital
image processing, as it implements elementary linear filtering that
allows the extraction of relevant spatial information from the scene
being imaged. In the continuous, two-dimensional spatial domain it is
defined as

y(u, v) = [x ∗ h](u, v) =

∫
R2

x(u− ξ, v − ζ)h(ξ, ζ)dξdζ (9.1)

where h(u, v) is the convolution kernel or PSF and x(u, v) is the
light intensity of the scene being imaged. This operator allows the
description of linear shift-invariant filters in the optical domain2.

In particular, (9.1) models image formation schemes that use spatial
filters as optical processing elements, e.g., apertures or aperture arrays.
The simplest example of such a scheme is the pinhole camera, in which
images of a scene are produced on an observation plane by blocking
the incident light rays with an opaque screen, with the exception
of a very small aperture (i.e., a pinhole). The passage of light rays
propagating from the scene through this aperture can be modelled as
a convolution of the scene with a kernel h(u, v), which is commonly
chosen as a 2D Gaussian profile of unit amplitude and width at half-
maximum depending on the radius of the aperture. Clearly, the smaller
the radius, the lower the light intensity transmitted from the source
to the observation plane; however, the larger the radius, the blurrier

2More generally, the theory of Fourier optics describes wave propagation by means
of Fourier transforms and convolution operators; see [203] for an in-depth introduction
to the topic.
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the image obtained on the observation plane, indicating a trade-off
between light transmittance3 and resolution.

Coded aperture imaging was devised to overcome this transmit-
tance decrement, and is a valuable technique in cases where image
formation by pinholes is more feasible than with standard lenses.
Coded apertures are opaque screens with arrays of pinholes; these
process incident light rays by forming shifted-and-superimposed copies
of a scene on an observation plane (for a review of the topic, see [204]).

Clearly, this multiplicity augments light transmittance proportion-
ally to the number of pinholes, while making the measurements
indirect, i.e., the image of a scene is not formed as in standard imaging
systems, but rather recovered from the convolved measurements by
means of a suitable algorithm which essentially inverts the effect of a
sensing operator A (similarly to the principle of CS in Fig. 1.2).

The optical operation performed by a pinhole array can be modelled
by a convolution kernel such as the ideal4 Dirac pulse train h(u, v) =∑np−1
j=0 δ(u−uj , v− vj) where δ(u, v) is the 2D Dirac delta and (uj , vj)

denote the centre coordinates of each of np pinholes. In this way, the
convolved image at the observation plane is a superposition of shifted
and spatially-filtered versions of the original object.

A deconvolution algorithm will then operate on a discrete model
of the optical processing chain, i.e., y = M ∗ x. Here we let M ∈
{0, 1}sx×sy represent a uniform grid of square apertures, that is a
discretisation of the convolution kernel of the aperture array; x ∈
Rnx×ny is the Nyquist-rate representation of a scene and ∗ denotes a
discrete 2D convolution. Depending on the boundary conditions on
x, the linear convolution y ∈ Rnx+sx−1×ny+sy−1 is obtained under
zero boundary values, whereas circular convolution is obtained when
cyclic boundary values are assumed (i.e., as by the 2D DFT) yielding
y ∈ Rsx×sy where sx ≥ nx, sy ≥ ny.

In addition, special kernels exist for which the deconvolution
algorithm is replaced by a circular convolution: Uniformly Redundant

3The ratio of transmitted light intensity from the source to the observation plane.
4A more realistic model can be derived by using a similar train of Gaussian-shaped

apertures.
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Arrays (URAs) [205] are designed on the principle that a comple-
mentary kernel G ∈ {−1, 1}sx×sy exists, for which the convolution
∀(j, l) ∈ {0, . . . , sx − 1} × {0, . . . , sy − 1}, (G ∗M)j,l = δ(j, l). Simply
put, the cross-correlation of G and M is a 2D Kronecker delta; such
apertures can be constructed for a prime number sx = sy. Using
this scheme, deconvolving x is as simple as applying another circular
convolution: when the measurements y = M ∗x +ν, with ν ∈ Rsx×sy

denoting, e.g., AWGN noise, one may deconvolve x̂ = G∗y = x+G∗ν.
A residual noise term is therefore present in (and may eventually be
accentuated by) this deconvolution process.

More complex methods for the solution of a linear inverse problem
such as those outlined in Section 1.3 may also be applied to recover x

given (y,M), although the measurements y here are not undersampled
w.r.t. the dimensionality of x. URA coded apertures will find application
as a calibration tool for the proposed imager.

9.1.2 Compressed Sensing by Random Convolution

The connection between coded aperture imaging and CS is quite
immediate by considering as a sensing operator the matrix A ∈ Rm×n

that corresponds to a 2D cyclic or linear convolution by some M ∈
Rsx×sy followed by a further operation that reduces the convolution
elements’ dimensionality. Starting from a full-size linear convolution
M ∗ x of dimensions nx + sx − 1× ny + sy − 1 in a 2D domain, by a
suitable selection of its elements5 we obtain the sensing operator

y = A(x) = PΩ [vec (M ∗ x)] ∈ Rm (9.2)

where
PΩ ∈ {0, 1}m×q, q = (nx + sx − 1)(ny + sy − 1)

is a randomly chosen selection matrix (as used in defining the PFE in
Section 1.2.3), i.e., |Ω| = m; note that the measurements are denoted
in vector form, but may be equivalently mapped to y ∈ Rmx×my ,m =

5While the full-size linear convolution has dimensions nx + sx − 1× ny + sy − 1,
assuming sx > nx, sy > ny only sx − nx + 1 × sy − ny + 1 of these elements are
obtained with M and x completely overlapping.
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mxmy. Since a full-size linear convolution has a matrix representation
M comprised of Toeplitz blocks [206, Section 2.8], verifying that A is
a valid sensing operator amounts to evaluating whether A = PΩ M

has the RIP. Remarkably, the answer is positive: Rauhut [81, Theorem
1.1] showed that a partial circulant Toeplitz matrix A, as originated by
(9.2) with M drawn from the RBE and PΩ an m-dimensional selection
matrix, is still endowed with the RIP; its k-RIC is so that P[δk ≤ δ] ' 1

provided that m ≥ m, with

m = O
(

max
{
δ−1k

3
2 (log n)

3
2 , δ−2k(log k)2(log n)2

})
(9.3)

This same observation holds equivalently for Toeplitz-block sensing
matrices (i.e., 2D convolutions). Regrettably, a direct comparison of
(9.3) with the behaviour of RsGE sensing matrices in (1.14) shows
how (9.2) is strongly sub-optimal w.r.t. them; yet, aside from the
undersampling implied by PΩ, A is a simple convolution by an RBE
matrix M.

In more detail, since M will be implemented by a coded aperture
in the optical domain, its negative values cannot be physically
represented. Thus, the effective coded aperture pattern will be
M+ ∈ {0, 1}sx×sy ,M+ = 1

2

(
M + 1sx×sy

)
. Hence, by the linearity

of (9.2), we will map the positive measurements y+ = PΩvec (M+ ∗ x)

to y by considering6:

1. the difference between positive and negative measurements, i.e.,

y = y+ − y− = PΩvec
(
(M+ −M−) ∗ x

)
,M− = 1sx×sy −M+

(9.4)
if it is conveniently implemented in the analog domain;

2. the difference between positive measurements and a reference,
i.e., y = 2 y+ − yw with yw = PΩvec

(
1sx×sy ∗ x

)
, where the

additional reference measurement is obtained with a fully open
coded aperture M = 1sx×sy .

6It is also worth noting that both the proposed strategies neglect the impact of noise,
that will differ in the acquisition of each instance of y+,y− and yw.
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Figure 9.2: Optical scheme (sagittal section) of a panchromatic
compressive imager by out-of-focus random convolution. The rays
traced before the coded aperture are coloured depending on their
angle w.r.t. the optical axis.

Both alternatives result in the same measurements and the same
sensing matrix A, yet correspond to different optical (or analog)
acquisition methods.

9.2 An Out-of-Focus Random Convolution Scheme for
Multispectral Compressive Imaging

The Panchromatic Case

Given the sensing operator in (9.2) we now proceed to implementing
it in an optical scheme as in [32]. Consider the acquisition of a
panchromatic scene x ∈ Rnx×ny (i.e.,n = nxny). We aim at acquiring
m = mxmy measurements by random convolution of the scene, and
assume that these correspond to mx ×my pixels taken from a single
snapshot with a low-resolution sensor, i.e., the Focal Plane Array (FPA).
From (9.2) we assume a coded aperture M of size sx = nx + mx −
1, sy = ny +my − 1 so that the central part of the linear convolution
M ∗x will correspond to mx×my measurements obtained with x fully
lapped over the coded aperture.

An imaging architecture that implements this operation is depicted
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in Fig. 9.2: from left to right, an image of the scene x is formed on
an aperture plane, in front of the coded aperture. The size of this
image must match the spatial resolution (i.e., the size of the pixels) of
the coded aperture. This image irradiates toward the coded aperture
M, that is placed out-of-focus so that each nx × ny sub-pattern of
coded aperture elements is illuminated by a replica of x. Finally, a lens
focusing at∞ is set after the coded aperture, so that every ray that hits
and passes it at a certain angle θ w.r.t. the optical axis is focused on the
same point at the focal plane. Neglecting the impact of diffraction at
the aperture, in this geometrical model each sensor pixel in the FPA
sees the sum of the intensity values of a scene x(u, v) ≈ x modulated
by an nx × ny submatrix of M, i.e., it measures one element of the
convolution M ∗ x.

To finalise the implementation of the sensing operator, a simple
choice is represented by taking PΩ in (9.2) as a selection matrix so
that Ω corresponds to the central elements of M ∗ x, i.e., those that
overlap with the mx ×my pixels of the FPA. This choice of Ω strongly
increases the correlation between measurements; it is worth noting
that this correlation plays a fundamental role in reducing the quality of
the recovered MS cube, and as a general guideline strategies should be
adopted to minimise it. This observation is also noted by the authors
of [32], where it is argued that either a 25% fill-factor sensor or pixel
binning (i.e., averaging the outputs of multiple sensor pixels) should
be used.

In addition, this correlation will only be made worse by the PSF
of the focusing lens and the convolution kernel caused by diffraction,
that will inevitably arise as a result of placing the coded aperture out-
of-focus in the optical scheme. While a physical optics model of these
effects may be conceived, we will opt for a simpler, non-parametric
estimate of the PSF seen at the FPA.

A numerical evaluation of this scheme is provided in [32]; our
emphasis is on the evaluation and development of our MS version of
this optical scheme, which follows in the next Section.
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Figure 9.3: Optical scheme (sagittal section) of a multispectral
compressive imager by out-of-focus random convolution. The rays
traced before the coded aperture are highlighted with the colour of
the corresponding FP-filtered sensor pixel.

The Multispectral Case

The extension of the previous scheme to the MS case, i.e., to the
acquisition of a data volume x ∈ Rnx×ny×nλ is obtained by placing a
MS snapshot sensor such as that described in [195] at the focal plane
of the previous scheme. Clearly, the nλ spectral bands on which the
FP-filters deposited on the sensor are tuned must be aligned with those
that are assumed of interest in the sensing operation. By doing so,
each pixel on the FPA sees a different slice of the cube (see Section
1.1.3) modulated by the coded aperture, i.e., the sensing operator of
(9.2) is extended by two considerations:

1. since a total of m measurements is required from the FPA, the
latter would produce m/nλ measurements per band in a single
snapshot acquisition. Rather than doing so, we here consider
the possibility of partitioning the acquisition of y ∈ Rm by
taking multiple snapshots with ms different aperture patterns,
i.e., {M(t)}ms−1

t=0 . This implies the use of a programmable
coded aperture. For each band, only m/nλms measurements
are therefore required at each snapshot. In addition, taking
multiple snapshots with different aperture patterns will reduce
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the measurements’ correlation;

2. different arrangements of the FP-filters will affect the correlation
properties of y. We could either (i) assume a tiled layout, i.e., a
set of square FP-filtered tiles on the FPA mapped to sensing a
single wavelength; (ii) opt for a mosaic layout, i.e., the iteration
of a pattern of different FP-filters across the whole sensor area.
Both FP-filter layout options are simply modelled by a set of
selection matrices PΩl , with Ωl the sensor pixels corresponding
to the l-th FP-filter wavelength. In addition, the mosaic layout
intrinsically decorrelates measurements of the same band by
forcing a spatial gap between them; it is therefore expected to
achieve better performances in the implementation of a random
convolution scheme.

The acquisition of the data volume is again described as y = A(x)

with y ∈ Rm,m = mxmyms being the measurements sampled by the
sensor in all ms snapshots. These measurements are partitioned by the
FP-filters in nλ wavelengths, with A : Rnx×ny×nλ → Rm describing
this mapping. This can be obtained from (9.2) by letting y(l,t) denote
the measurements related to the l-th wavelength and t-th snapshot,
i.e.,

y(l,t) = PΩlvec
(
M(t) ∗ x

)
, y(l,t) ∈ R

mxmy
nλ (9.5)

where the 2D linear convolution ∗ is applied separately and identically
to each slice of x. Thus, y is obtained by collecting and ordering all
the y(l,t) for l = {0, . . . , nλ − 1}, t = {0, . . . ,ms − 1}. This results in

y = A(x) =



PΩ0vec
(
M(0) ∗ x

)
...

PΩnλ−1vec
(
M(0) ∗ x

)
PΩ0vec

(
M(1) ∗ x

)
...

PΩnλ−1vec
(
M(ms−1) ∗ x

)


(9.6)

which fully describes the optical processing performed by the scheme
in Fig. 9.3 when ms snapshots of a MS image x are captured.
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Performance Evaluation by Simulation

The scheme of Fig. 9.3 is here simulated for an ideal, tiled FP-filtered
sensor with mx = my = 256 partitioned in nλ = 64 different FP filters.
Thus, each snapshot collects mxmy/nλ = 1024 new measurements
per wavelength (i.e., in 32 × 32 pixel tiles). To test the capabilities
of (9.6) as a sensing operator we consider two synthetic MS images
of nx × ny × nλ = 256 × 256 × 64 voxel with different prior models
that will be specified below. By varying the number of snapshots
ms = {1, 4, 9, . . . , 36} we therefore explore the undersampling rates of
m/n = {1/64, . . . , 36/64} w.r.t.n = 222 voxel.

As usual, the simulation procedure entails applying y = A(x) with
A as in (9.6) and estimating x̂ (or its transform-domain representation
ŝ) with a suitable convex optimisation algorithm, that in this case
depends on the chosen signal model. In more detail, we assumed:

1. a “Mondrian” data volume x comprised of eight randomly
generated cubes with piecewise-constant values, that exhibits
by definition a sparse model w.r.t. TV as defined in (1.6). To
provide an accurate recovery of the data volume, we considered
the general form of Problem 1.8 with a penalty P0(ξ) = ‖ξ‖TV,
along with P1(ξ) = ‖y−A(ξ)‖22 in (1.27). To handle the solution
of this specific problem, we used the TwIST solver [207] with
the weights γ0 = 1 and γ1 in (1.27) hand-tuned to yield optimal
reconstruction performances;

2. a “Smiley” data volume x comprised of a grayscale cartoon
image modulated in the wavelength domain by four randomly-
generated spectral profiles; this implies a low-rank signal model
with rank % = 4. In addition to the low-rank prior on the data
volume x when suitably rearranged in slices, we applied (see,
e.g., [208]) a joint-sparse signal model by decomposing the MS
image slices separately in the spatial domain with D = Dx,y⊗Inλ ,
Dx,y = Dx ⊗Dy a 2D Haar orthonormal DWT. Thus, for the
l-th slice xl we have sl = D∗x,yvec (xl) and by Definition 1.7 we
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Figure 9.4: Simulated recovery performances of a multispectral
compressive imager by out-of-focus random convolution versus the
spread-spectrum PFE; AWGN is added to attain a measurement SNR
of 20 dB (squares) and 80 dB (triangles).
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obtain S = {sl}nλ−1
l=0 with joint-sparsity level k = ‖S‖2,0 = 4096

(i.e., k/n = 1/1024).

As for the recovery algorithm, we plug into Problem 1.8 the
penalties P0(Ξ) = ‖D∗x,yΞ‖2,1 for joint-sparsity, and the nuclear
norm P1(Ξ) = ‖Ξ‖∗ to promote a low-rank model. The
formulation of this recovery problem is completed with the data
fidelity constraint C(ξ) = {ξ ∈ Rnx×ny×nλ : ‖y −A(ξ)‖22 ≤ ε2},
where A is the sensing operator described by (9.6). The weights
were chosen as γ0 = 1, γ1 = %, and the solver of reference for
this case was the algorithm by Chambolle and Pock [209].

For a fair comparison given these priors, we compared the sensing
operator in (9.6) against the spread-spectrum PFE [89] of the same size
and undersampling rate (i.e., as in (1.16)) as applied separately to each
slice in the MS cube; this RME is here adopted as a computationally
lightweight alternative to the ideal RGE of the same dimensions.
Finally, two noise levels were tested to investigate the robustness of this
sensing operator to AWGN when recovered with the same methods,
since an analog-domain implementation of (9.6) will be affected by a
non-negligible amount of noise.

The results are reported in terms of SNRx̂,x as a function of the
undersampling rate in Fig. 9.4b, 9.4a. There, it can be seen that higher
SNRx̂,x values are achieved by the spread-spectrum PFE in all cases as
m increases; this recovery quality quickly saturates at the maximum
SNRx̂,x level imposed by the presence of AWGN. When comparing
the SNR performances as a function of m, the same quality level is
achieved for significantly larger values in the case of (9.6). This only
confirms that the random convolution operator is a sub-optimal choice
in the RIP sense. In addition, there is a strong variability in the SNRx̂,x

between the two signal models adopted for this evaluation; thus, the
required number of snapshots will depend on the complexity of the
data volume being acquired.

Even with the anticipated quality limits of Fig. 9.4b, 9.4a we
favour the simplicity of the layout in Fig. 9.3 and proceed to its
implementation as a proof-of-concept of MS imaging by CS.
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9.3 Design and Implementation of a Prototype for
Compressive Imaging by Out-of-Focus Random
Convolution

9.3.1 The Optical System

The implementation details of this imager lie outside of the signal
processing perspective of this thesis, and are therefore only summarised
here. The main step in its optical-level design is the selection of a
suitable Spatial Light Modulator (SLM), i.e., a programmable coded
aperture whose technology, resolution and size are critical and must
be carefully matched with the FPA. Digital micro-mirror SLMs such as
those used in the implementation of the single-pixel camera [20] are
not suitable for a realisation of out-of-focus random convolution, as
they introduce some angular uncertainty due to micro-mirror tilting.
This limit makes such a technology incompatible with the principle
of Fig. 9.2,9.3 where different angles encode different convolution
elements. Thus, we chose a liquid-crystal-on-silicon SLM for its high
light transmittance performances [210] and the capability of mounting
and aligning it with suitable precision.

By matching the chosen SLM with the available FP-filtered sensor
arrays, an optical system providing a random convolution was
assembled as in Fig. 9.5a and 9.5b. Note that by replacing the FP-
filtered FPA with a standard one we seamlessly obtain a panchromatic
imager that substantially realises with a programmable SLM the
scheme in [32].

Since the SLM operates on polarised light, a polarising beam-splitter
(see [211]) must be introduced and forces a layout in which the scene is
reflected toward the SLM (i.e., a reflective layout); with this, the optical
design assumes an “L” configuration, as can be seen in the implemented
scheme. As a result, the alignment of the optical elements is slightly
more complex and requires considering that a residual mismatch will
always exist between the ideal operator (either (9.2) or (9.6)) and its
actual optical-level effect. In the following, this mismatch is modelled
by the estimation of a PSF.
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We note that up to this point we have omitted any resolution
specification, as the assembled prototype is intended as a platform
for testing a variety of resolution configurations in a flexible manner,
i.e., the total area of the SLM and FPA exceeds the active area used in
the evaluation. The resolution parameters will be specified in Section
9.4.

9.3.2 Diffraction Kernel and Point Spread Function Estima-
tion

As well anticipated by [32], the main optical-level limitation of this
scheme is the impact of diffraction that inevitably occurs at the coded
aperture, which is essentially an array of random square apertures on a
uniform grid. By Fourier optics [203, Chapter 4] when a single square
aperture of small width is illuminated by a spatially and temporally
coherent plane wave, a Fraunhofer (i.e., far-field) diffraction pattern is
formed at the focal plane of a lens focusing objects at infinity (i.e., as the
one placed in front of the FPA in Fig. 9.2, 9.3). Thus, the optical system
must account for the presence of an additional 2D convolution kernel
that describes the diffraction pattern produced by a single element of
the coded aperture on the focal plane when illuminated with spatially
incoherent light; in other words, the effect of diffraction at a single
aperture element is here modelled as an optical filter (see [203]), as
partially explained in [32].

However, in addition to this expected effect the PSF of the lens
should also be taken into account, as well as possible focusing errors
and the wavelength dependency of both the lens’ PSF and the above
diffraction kernel. The composition of these three effects is not trivially
modelled; thus, we here assume a system-level perspective and aim at
estimating (under a linear shift-invariant hypothesis) a single PSF ĥ ∈
Rnh×nh discretised at the spatial resolution of the FPA and modelling
all the aforementioned non-idealities. This is done by means of a
panchromatic FPA, with which a more realistic panchromatic-case
sensing operator is

y = PΩvec
(
ĥ ∗ [M ∗ x]

)
+ ν, y,ν ∈ Rm (9.7)
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(b) Top view

Figure 9.5: A picture of the designed imaging system on the optical
table; the figure also depicts the SLM control board and the camera on
which the IMEC FP-filtered sensor array is mounted.
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Two procedures may then be applied to estimate ĥ:

1. the first procedure entails injecting into the optical system some
known, printed or displayed test patterns so that their image
is correctly focused at the aperture plane, and measuring their
response at the FPA with a full-size Nyquist-rate sampling. Thus,
given a known test pattern x ∈ Rnx×ny and the ideal coded
aperture pattern M ∈ {−1,+1}sx×sy programmed7 on the SLM
we measure y as in (9.7) with m = mxmy = n, i.e., at Nyquist
rate. Once these measurements are collected we substantially
have to solve a linear inverse problem with ĥ as the unknown;

2. as an alternative, we could resort to taking the same amount
of Nyquist-rate measurements with a URA pattern at the SLM,
as mentioned in Section 9.1.1. This would yield an estimate
x̂ ≈ ĥ ∗ x by deconvolving the measurements. Moreover, when
the SLM is illuminated by x(u, v) ≈ δ(u, v), i.e., by a point source
such as an optical fibre placed at the aperture, this will yield
x̂ ≈ ĥ.

Thus, both methods substantially yield a set of Nyquist-rate
measurements y ∈ Rn that verify (9.7) with ĥ ∈ Rnr×nr as the only
unknown; we may then use sparsity to promote a rapid DFT magnitude
decay of the solution. Given its nature the kernel ĥ is indeed expected
to have a low-pass profile w.r.t. the 2D DFT. Thus, PSF estimation is
rephrased as

ĥ = argmin
ξ∈Rnh×nh

‖(Fnh ⊗ Fnh)vec (ξ)‖1 + γ ‖y − vec ([M ∗ x] ∗ ξ)‖22
(9.8)

which is a standard convex optimisation problem; when (9.8) is
plugged into the general (1.27) and solved with, e.g., Douglas-Rachford
splitting [113] we obtain the desired estimate of ĥ.

This PSF estimation procedure was applied by using a URA pattern
(yet observing that a similar PSF was produced by the other estimation

7As mentioned, this actually involves capturing two frames per pattern as in (9.4).
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procedure) in the system configuration of Fig. 9.5b, yielding ĥ as
reported in Fig. 9.6a and refined by (9.8) (here nh = 70).

From the 2D DFT of this PSF we observe a substantially low-pass
response, indicating that the effect of the latter is substantially that of
limiting the bandwidth of the sensing operator A; thus, the effective
random convolution operator in (9.7) modulates the scene at a rate
smaller than the Nyquist rate of x. This will cause a further decrease
in the performances of random convolution, as the measurements will
be even more correlated than the ideal models (9.2) and (9.6).

With this information on the PSF at hand, a closer-to-reality sensing
operator model is available in the form of (9.7); it is then possible
to proceed to an experimental phase in which the actual, achievable
capabilities of the imager are tested against the impact of noise and
diffraction. Other mismatches, such the calibration of different gains
at each sensor pixel, are left for future improvements.

9.4 Performance Evaluation of Panchromatic and Mul-
tispectral Imaging

The experiments illustrated in this Chapter refer to the measurements
obtained by two configurations of the scheme in Fig. 9.5b, depending
on the type of sensor used as a FPA (either panchromatic or FP-
filtered). Since the non-idealities encountered during calibration
become critical in the implementation of a high-resolution scheme
for either panchromatic or multispectral compressive imaging, the
spatial resolution documented here is significantly lower than the one
anticipated in the simulations of Section 9.2. In addition, the maximum
number of wavelengths considered by the FP-filtered sensor used in
these experiments is nλ = 16. The most accurate results obtained so
far are therefore documented, leaving a large room for improvement
and some notes on how it may be obtained by refining the sensing
operator models to match the reality of their physical implementation.
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9.4.1 Panchromatic Compressive Imager

In the case of a panchromatic imager using the hardware architecture
in Fig. 9.5b we target a scene resolution8 of nx × ny = 128× 128 pixel.
With this scene resolution, we consider collecting a variable amount
of measurements at the FPA given the programmable nature of the
prototype; this implies a flexible reconfiguration of the coded aperture
pattern programmed at the SLM, of dimensions sx × sy = nx +mx −
1×ny +my−1. This allows us to acquire an increasingly large fraction
of the n = nxny = 16384 Nyquist-rate values in x ∈ Rnx×ny as in
(9.7).

The scenes evaluated here are comprised of objects illuminated
with a halogen light bulb, irradiating high-intensity white light on each
test image; for each case we collect y+ and y− with the same policy
of (9.4), yet accounting for the estimated PSF as in (9.7); this yields
a measurement vector y. As test images we use (i) a printed white
“λ” on a black background and (ii) a paper cup. To perform signal
recovery of a scene x̂ we solve aBPDN in (1.24); to reduce the impact of
noise [139] and promote sparsity in an overcomplete dictionary, we let
(D,D?) be the synthesis and analysis operators of the 2D Daubechies-4
UDWT with J = 9 sub-bands, p = (J + 1)n. The inequality constraint
of BPDN is hand-tuned to yield the best visual quality, and corresponds
to a measurement noise norm ‖ν‖2 ≤ ε where ε− 25 dB. The chosen
solver for Problem 1.6, in which this configuration is plugged, is the
algorithm of Chambolle and Pock [209].

Regrettably, evaluating the SNRx̂,x is not reliable, as an exact
ground truth for x is not available in the exact position of the test
targets (and even a small shift or rotation of the actual scene w.r.t. the
assumed ground truth could lead to small SNRs). A visual assessment
of the recovery performances can however be given from the results
in Fig. 9.7. From these, it can be seen that the recovery quality does
not improve after capturing 31.25% of the Nyquist-rate measurements,
i.e., it saturates to a scene showing some residual error in the form

8To reduce the impact of diffraction, each SLM pixel is actually a block of 4 × 4
physical pixels; the FPA readings are similarly obtained by binning a block of 4 × 4
physical pixels. This does not change the compression rate of the scheme.
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of blurred, low-pass noise; this effect is compatible with residual
noise and mismatches in the sensing operator, as increasing the
measurements’ dimensionality does not significantly mitigate its impact
(as it would for non-sparse signals). In order to improve upon these
results, a more accurate calibration procedure will be required to refine
the sensing operator A; such a one-time calibration could, e.g., rely on
another SLM injecting a large number of test patterns directly at the
aperture plane, in a fashion similar to [212]. This will eventually allow
a higher scene resolution by correcting the ideal sensing operator (9.2)
into a model that is more accurate than (9.7).

9.4.2 Multispectral Compressive Imager

In the MS case, the panchromatic sensor is replaced by a FP-filtered
one as manufactured by IMEC in the camera of Fig. 9.5b. The FP filter
pattern is a mosaic of 4× 4 pixel, each sensing a different wavelength.
This elementary pattern is here defined as a macropixel. At each
snapshot we sample mx ×my = 64× 64 macropixel = 256× 256 pixel

partitioned in nλ = 16 wavelengths.

Thus, we target the recovery of a scene of nx × ny × nλ =

128×128×16 voxel with 16 VIS bands, as allowed by the chosen sensor9.
This will require coded apertures of size sx × sy = 383 × 383 pixel

and a maximum of ms < 4 snapshots (also corresponding to a
maximum of four programmable coded aperture patterns), with
ms = 4 corresponding to a Nyquist-rate sampling of the MS cube.

Clearly, this system can be configured to have larger coded
apertures, larger FPAs and less snapshots, or conversely smaller coded
apertures, smaller FPAs and more snapshots, in a completely flexible
manner; it is worth noting that actually, partitioning the acquisition
between many snapshots reduces the measurements’ correlation, and
is therefore expected to have a beneficial effect on the recovery quality.

However, the application of FP filters reduces the amount of
photons received at each pixel during the exposure; thus, the general

9Two bands were actually excluded in the sensing, due to the redundancy of two FP
filters according to the sensor’s specifications.
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(a) Recoveries of the “λ” example
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(b) Recoveries of the “Cup” example

Figure 9.7: Recovered panchromatic images as a function of the
undersampling w.r.t. the Nyquist rate; the estimated PSF is used in
the sensing model to improve the recovery quality.
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impact of measurement noise is expected to be higher, at the expense of
a lower recovery quality. In addition, the estimated PSF ĥ is practically
downsampled as an effect of the spatial distance between pixels of the
same wavelength; thus, the sensing operator becomes

y = A(x) =



PΩ0vec
(
ĥ ∗M(0) ∗ x

)
...

PΩnλ−1vec
(
ĥ ∗M(0) ∗ x

)
PΩ0vec

(
ĥ ∗M(1) ∗ x

)
...

PΩnλ−1vec
(
ĥ ∗M(ms−1) ∗ x

)


(9.9)

where ∗ still denotes 2D linear convolution as applied separately
to each of the slices of x. We note that, although slightly more
complicated, a more rigorous estimation of the polychromatic PSF
as a function of the wavelength will be required to further refine the
sensing model in (9.9).

In this case, the chosen example scene is a colour chart illuminated
with a white halogen light bulb. The ground truth corresponding to it
is not available for an evaluation of the SNRx̂,x; we therefore simply
illustrate the visual accuracy of the experimental results obtained by
plugging the measurements, as modelled by (9.9), in (1.24). In terms
of dictionary, (D,D?) are taken so that the wavelength domain is
analysed with Dλ being the DCT of dimensionality nλ = 16, while
(Dxy,D

?
xy) are chosen as the above 2D Daubechies-4 UDWT with 9

sub-bands.
The recovery results are here provided by solving aBPDN initialised

with the chosen dictionary and a data fidelity constraint set to ε =

−13 dB; its solution with the Chambolle and Pock algorithm [209]
yields the MS images depicted in Fig. 9.8 for ms = 1 (25% of Nyquist
rate), Fig. 9.9 for ms = 2 (50% of Nyquist rate) snapshots. There,
the squares depicted in the colour chart can be appreciated. It must
however be noted that only a slight variability in the slices is perceived;
this is mainly due to the fact that light leakage from wavelengths
outside the VIS range has not been suitably removed by a global VIS
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band-pass cut-off filter in these experiments. This causes the observed
visual similarity between the slices, although they differ both in terms
of total light intensity per wavelength, as well as in the spatial domain.
Thus, a MS sensing capability is provided by the scheme in Fig. 9.5b
when using a FP-filtered FPA.

The recoveries of Fig. 9.8, 9.9 display some sharp borders in the
colour chart squares; thus, we may conclude that the devised MS
imager is capable of operating in an undersampling regime, although
the observed recovery quality is indeed limited by the mentioned non-
idealities. An improvement w.r.t. the present quality will be possible by
addressing them with a more accurate calibration procedure, as well
as the addition of a suitable cut-off filter in front of the relay lens in
Fig. 9.5b to emphasise the difference between the recovered MS slices.

Summary

I CS may be performed by random convolution, a sensing operator
that is particularly convenient to implement in an optical scheme.

I An optical scheme for MS imaging by random convolution was
built by following the initial observations of [32]. The scheme
involves the use of a FPA that is filtered by a layer of Fabry-Pérot
cavities. A numerical simulation of the scheme shows that an
undersampling regime is possible even when CS is not applied
in the wavelength domain.

I A prototype implementing random convolution by means of
a SLM was assembled and evaluated. Some alignment and
calibration procedures were introduced to verify that the optical
setup implements one-to-one the expected sensing operator. A
particular emphasis was dedicated to the impact of diffraction,
modelled as a convolution that was jointly estimated with other
non-idealities in a non-parametric PSF.

I A performance assessment of this prototype was carried out
with a panchromatic sensor and using simple test scenes. The
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experimental results showed limited recovery quality, where it is
seen that the losses of due to undersampling are dominated
by those due to measurement noise and sensing operator
mismatches, i.e., setting the undersampling rate up to the Nyquist
rate of the image does not improve the recovery.

I A similar assessment was carried out with a FP-filtered FPA; the
recovery of a MS image is indeed possible with higher visual
recovery quality due to the redundancy of the data volume in
the wavelength domain. However, little variability is seen due
to light leakage from outside the pass-band of the FP filters.
Nevertheless, this variability is present and a suitable calibration
against a white reference and the addition of spectral cut-off
filters will yield full MS sensing capability.

I While there are clear limits in these early results, a large
margin of improvement remains to reach stable signal recovery
performances. In fact, it is in the matching between the optical
effect of the setup and the mathematical model, which was only
outlined here, that the main issues and discrepancies arise: the
investigation of new calibration procedures for a refinement
of the sensing operator is therefore crucial to attain near-ideal
performances after signal recovery.



CONCLUSIONS

IN this thesis we have presented a number of extensions and methods
that elaborate the concept of Compressed Sensing into a variety

of improvements for prospective applications; in particular, we have
focused on:

I Maximum Energy Sensing Matrix Designs: we have proposed
a method for the design of random sensing matrix ensembles
based on a proxy for information extraction, namely, a maximi-
sation of the measurements’ energy. The a priori hypothesis
made on the signal ensemble being acquired is that it is localised,
i.e., unevenly distributed in its domain so that by a simple analysis
of its correlation matrix an improvement can be obtained in
adapting the statistical distribution of the row vectors of a
random sensing matrix.

Thus, some formulations (some pre-existing, some novel) of
optimisation problems were presented as possible approaches
to this energy maximisation problem. The non-trivial matter of
showing the optimality of this choice was numerically explored
by means of the Donoho-Tanner empirical phase transition
w.r.t. Basis Pursuit and against sparse and localised random
vectors on which the adaptation was carried out. Intuition on

229
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how this design is advantageous only when the signal ensemble
complies with the hypothesis was provided.

The experimental results highlight a significant improvement in
the capability of recovering sparse and localised vectors from
statistically designed Random Matrix Ensembles with adapted
second-moments. This choice allows to recover signals with less
sparse representations if they are sufficiently localised, and vice
versa of recovering sparse vectors with less measurements. These
results are related to [2].

I Maximum Entropy Sensing Matrix Designs: another adap-
tation of sensing matrix designs w.r.t. localised signals was
explored, in the particular case of a fixed design space of
deterministic sensing vectors that are not necessarily incoherent
w.r.t. the atoms of the dictionary in which a signal is analysed. In
this case, the measurements’ differential entropy was used as a
proxy for information extraction. This led to the formulation of
an entropy maximisation problem, whose solution is NP-hard in
general. To overcome this issue, we have proposed a heuristic
algorithm to construct a pool of sensing matrices by selection of
a fixed-cardinality subset of sensing vectors.

The result of this lightweight procedure is an optimised sensing
matrix w.r.t. a localised signal ensemble. Some experimental
results also highlight that the adapted sensing matrix is capable
of delivering high-quality signal recovery from the same amount
of measurements as an Isotropic Random Bernoulli Ensemble.
This indicates that an increment of the measurements’ entropy
augments the amount of information embedded in a set of
undersampled measurements. These results are related to [4].

I Low-Complexity Signal Encoding: an immediate application
of the design flow in [2] is in the possibility of using Compressed
Sensing as a digital-to-digital encoding technique, with the
non-negligible advantage of using only O (kn log n/k) additions
and subtractions when a suitably adapted Anisotropic Random
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Bernoulli Ensemble is used to draw sensing (i.e., encoding)
matrices. In addition, adopting such a maximum energy
encoding matrix design when the correlation matrix of the signal
being compressed can be regarded as a stationary property is in a
sense analogous to performing a Karhunen-Loève Transform,
yet with antipodal-valued projection vectors that allow its
implementation by low-complexity multiplierless operations.

The result of applying Compressed Sensing with maximum
energy encoding matrices was explored in comparison with Set
Partitioning In Hierarchical Trees, a highly efficient algorithm for
digital signal compression, as well as traditional, yet optimally-
tuned Huffman Coding of the PCM representation of ECG signals.
Particular emphasis was deserved to the choice of a quantisation
policy for compressive measurements. This led to observing
compression rates that approach those of Set Partitioning In
Hierarchical Trees, yet are capable of being implemented with a
minimum amount of digital computations (i.e., by a single digital
accumulator) [3,9].

I Average Recovery Performances in the Presence of Pertur-
bations: the matter of predicting the average performances of
Compressed Sensing in the presence of matrix perturbations
was taken into consideration, as a useful quantification for
prospective applications of Compressed Sensing that are subject
to disturbances. In this context, an index of the average
performances of Basis Pursuit and Basis Pursuit with Denoising
was formulated in the hypothesis that a perturbation of relatively
small entity is suffered by the entries of the sensing matrix.

The devised index requires a singular value estimation step that
is related to the sensing and perturbation matrix; in absence
of alternatives, this estimation must be done by Monte Carlo
simulation of the involved Random Matrix Ensembles. As
an assessment of the configurations in which the obtained
performance estimate is reliable, we have provided an extensive
dataset for different perturbation matrices and showed how their
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effect is well anticipated by the proposed average performance
index [8].

I Multiclass Encryption by Compressed Sensing: in the context
of providing information security and data protection by means
of Compressed Sensing, we have evaluated the properties of an
encryption scheme based on the latter when Isotropic Random
Bernoulli Ensemble encoding matrices are used. The added value
of this approach is in that the same low-complexity observed
in signal compression by Compressed Sensing actually grants
some security properties directly in the sensing or encoding
process. A multiclass extension of this policy allows to distinguish
different access modes to the encrypted information content by
means of intentional, undetectable and pseudo-random matrix
perturbations in the encoding matrices supplied to the receivers.

We have presented some bounds on the performances of multi-
class encryption, with an emphasis on guaranteeing that lower-
class receivers have guaranteed performances falling within a
prescribed range, i.e., that their quality is set and controlled by
the amount of perturbation introduced in their encoding matrix
as a mismatch w.r.t. the true one.

In order to verify that this scheme cannot be statistically
cryptanalysed, while in the presence of a non-perfectly secret
cryptosystem, we have provided some theory and evidence
that the ciphertexts, i.e., the compressive measurements with
Isotropic Random Bernoulli Ensemble encoding matrices follow
an independent and identically distributed Gaussian distribution
conditioned on the power (asymptotic case) or energy (non-
asymptotic case) of the plaintext, that is the encoded signal.
These findings are documented in [5].

On the other hand, while a statistical cryptanalysis yields no
useful results to an attacker aside from the energy of the
plaintext (that does not per se allow a recovery of either
the private key or the plaintext) we proposed a theoretical
perspective on computational cryptanalysis by counting the
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number of encoding matrices that match a plaintext-ciphertext
pair, i.e., we performed Known-Plaintext Attacks. This class of
attacks involved enumerating the solutions of two versions of
the subset-sum problem depending on the considered type of
malicious user. In fact, we showed (i) how the number of
solutions yielded by a Known-Plaintext Attack is very large
in the case of an eavesdropper attempting to break a single
row vector of the true encoding matrix; (ii) how a smaller, yet
still very large amount of solutions is presented to a malicious
lower-class user attempting to upgrade its knowledge of the true
encoding matrix. This last attack was sided by a signal recovery
approach to breaking this matrix, leading to no appreciable
quality improvement due to the random nature of the chosen
matrix perturbation [6].

I A Multispectral Compressive Imager by Random Convolu-
tion: as part of a collaboration with the Integrated Imagers
Division of IMEC, Belgium, the task of designing a multispectral
snapshot imager based on Compressed Sensing was undertaken.
The chosen optical system architecture was mutuated from a
previous panchromatic imager design leveraging the principle
of random convolution; yet, the sensing model was extended to
account for multispectral Fabry-Pérot-filtered sensors and system-
level non-idealities such as the Point Spread Functions of the
elements on the optical path.

In this thesis, a partial set of results was reported as early
evidence of a proof of concept, that leaves large room for
improvement; future work in this sense will entail a new
approach to calibration in order to compensate for mismatches
between the mathematical model of the optical system and the
actual effect of the optical processing chain on incident light.
In this case, a publication of the experimental findings will
follow [7].
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