Tailoring, synthesis and structure-property relationships of 2,3-thienoimide based molecular materials

Durso, Margherita (2015) Tailoring, synthesis and structure-property relationships of 2,3-thienoimide based molecular materials, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Chimica, 27 Ciclo. DOI 10.6092/unibo/amsdottorato/6979.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (13MB) | Anteprima

Abstract

Organic molecular semiconductors are subject of intense research for their crucial role as key components of new generation low cost, flexible, and large area electronic devices such as displays, thin-film transistors, solar cells, sensors and logic circuits. In particular, small molecular thienoimide (TI) based materials are emerging as novel multifunctional materials combining a good processability together to ambipolar or n-type charge transport and electroluminescence at the solid state, thus enabling the fabrication of integrated devices like organic field effect transistors (OFETs) and light emitting transistor (OLETs). Given this peculiar combination of characteristics, they also constitute the ideal substrates for fundamental studies on the structure-property relationships in multifunctional molecular systems. In this scenario, this thesis work is focused on the synthesis of new thienoimide based materials with tunable optical, packing, morphology, charge transport and electroluminescence properties by following a fine molecular tailoring, thus optimizing their performances in device as well as investigating and enabling new applications. Investigation on their structure-property relationships has been carried out and in particular, the effect of different π-conjugated cores (heterocycles, length) and alkyl end chain (shape, length) changes have been studied, obtaining materials with enhanced electron transport capability end electroluminescence suitable for the realization of OFETs and single layer OLETs. Moreover, control on the polymorphic behaviour characterizing thienoimide materials has been reached by synthetic and post-synthetic methodologies, developing multifunctional materials from a single polymorphic compound. Finally, with the aim of synthesizing highly pure materials, simplifying the purification steps and avoiding organometallic residues, procedures based on direct arylation reactions replacing conventional cross-couplings have been investigated and applied to different classes of molecules, bearing thienoimidic core or ends, as well as thiophene and anthracene derivatives, validating this approach as a clean alternative for the synthesis of several molecular materials.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Durso, Margherita
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze chimiche
Ciclo
27
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Organic semiconductors, thienoimide materials, molecular materials design, structure-property relationships, ambipolarity, electroluminescence, organic field effect transistors, organic light emitting transistors, chemically induced polymorphism, time temperature integrators, direct arylation
URN:NBN
DOI
10.6092/unibo/amsdottorato/6979
Data di discussione
7 Aprile 2015
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^