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Notation

Sets and vector spaces
R Set of real numbers
R

+ Set of positive real numbers
R

n Space of real vectors of dimension n
R

m×n Space of m× n real matrices
Pk Space of polynomials of degree at most k

Matrices and vectors
In Identity matrix of order n
blkdiag(A,B, . . .) Block diagonal matrix with blocks A, B,...
diag(A) Diagonal matrix derived from the diagonal of A
diag(v) Diagonal matrix with vector v on the diagonal
nnz(A) Number of nonzero entries of A
rank(A) Rank of matrix A
κ(A) Condition number of matrix A
Aij Entry of matrix A in the i−th row and j−th column
vmax Maximum entry of vector v
vmin Minimum entry of vector v
vi i−th entry of vector v

Eigenvalues and singular values
spec(A) spectrum of A
λmax(A) Maximum eigenvalue of matrix A with real spectrum
λmin(A) Minimum eigenvalue of matrix A with real spectrum
λi(A) i−th eigenvalue of a matrix A with real spectrum,

sorted in ascending order
σmax(B) Maximum singular value of matrix B
σmin(B) Minimum singular of matrix B
σi(B) i−th singular value of matrix B, in descending order

iii
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Subspaces
ker(A) Null space of matrix A
range(A) Range of matrix A
span{v1, v2, . . .} Linear space of vectors v1, v2,...

Given column vectors x and y, we write (x, y) for the column vector given by
their concatenation, instead of using [xT , yT ]T . Given A and B two square
symmetric matrices, we write A � B to intend that A−B is positive semidef-
inite, and A ≻ B to intend that A − B is positive definite. The Euclidean
norm of a vector v ∈ R

n is defined as ‖v‖ :=
√
vTv. The matrix norm

induced by the Euclidean norm is defined as ‖B‖ := max
v∈Rn,v 6=0

‖Bv‖
‖v‖ , where

B ∈ R
m×n. Note that we use the same symbol, ‖·‖, to denote both the

vector and the matrix norm, as there is no ambiguity between them. Given
a symmetric and positive definite matrix D ∈ R

n×n, we define the associated
vector norm as ‖v‖D =

√
vTDv for v ∈ R

n, and the matrix norm induced by

it as ‖A‖D := max
v∈Rn,v 6=0

‖Av‖D
‖v‖D

for A ∈ R
n×n



Chapter 1

Introduction

We are interested in the numerical solution of the linear system

Av = b

where A ∈ R
N×N is nonsingular and b ∈ R

N . This problem arises very
frequently in all areas of scientific computing. Indeed, numerical methods
often reduce the solution of more complex problems, like the solution of
nonlinear equations or differential equations, to the solution of one or more
linear systems. As a consequence, the solution (possibly many) linear systems
often constitutes the main computational effort when numerical methods are
applied on real-world problems, and the importance of having fast algorithms
dealing with such problems cannot be overestimated.

Despite the seeming simplicity of linear systems, the actual computation
of their solution can be extremely hard when the dimension of the problem
N is large. Nowadays applications often lead to very large linear system, but
these are typically sparse and/or have some special structure which can be
exploited by modern algorithms to gain in efficiency. Of course, the properties
and the structure of a linear systems depend on the nature of the original
problem.

In this thesis, we focus on linear systems stemming from optimization
problems of the form

minimize
x∈Rn

1
2
xTAx− cTx

s. t. Bx = d (1.1)

Dx ≥ f

where A ∈ R
n×n is symmetric and positive semidefinite, B ∈ R

m×n with
m ≤ n, D ∈ R

l×n, c ∈ R
n, d ∈ R

m, f ∈ R
l, and the inequality between

1



2 1. Introduction

vectors is intended componentwise. Such problems are referred to as convex
Quadratic Programming (QP) problems (cf. [95, Chapter 16]).

The numerical solution of (1.1) often requires the solution of (one or
more) symmetric indefinite linear systems having a peculiar block structure.
As an example, consider the simplified case when D = 0 and f = 0, i.e.
when there are no inequality constraints. If we introduce the vector p ∈ R

m

of Lagrange multipliers, the first order optimality conditions for (1.1) read

Ax+ BTp = c,

Bx = d,

or, written in matrix form
[
A BT

B 0

] [
x
p

]
=

[
c
d

]
. (1.2)

Thus, the solution of the optimization problem is equivalent to the solution
of the above linear system. A system whose coefficient matrix has the struc-
ture given in (1.2) is referred to as a saddle point system. Such systems
form a very important family, whose relevance is not limited to optimization
problems. Indeed, saddle point systems arise naturally in many areas of com-
putational science and engineering, such as fluid dynamics, linear elasticity,
electromagnetism, and many others. As a consequence, the literature on this
topic is vast and often focused on particular applications. In the next chap-
ter, we will discuss the main properties of saddle point systems and review
some well-known approaches to solve them. For the moment, it is enough to
mention that solving saddle point systems is often a challenging task.

When solving a linear system, one has to choose between a direct or an
iterative method. Direct methods, which include the LU and Cholesky fac-
torization, are characterized by the property of delivering the exact solution
(if rounding errors are not considered) in a finite number of steps. Direct
methods are considered robust and predictable, and they typically are the
method of choice when A is dense and has small dimension.

On the other hand, when direct methods are applied to large and sparse
systems, a complication arising is that some entries which are zero in A may
become nonzero in the factors. This phenomenon, known as fill-in, may
greatly increase the memory storage and the computational cost. Fill-in can
be reduced using appropriate strategies, giving rise to the so-called sparse
direct methods.

Nevertheless, when A is large and sparse, iterative methods are often pre-
ferred. These methods compute a sequence of approximate solutions (vk)k∈N
which should converge to the exact solution.
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Krylov subspace methods, or, in short, Krylov methods, are a very pop-
ular family of iterative methods. They take their name from the so-called
Krylov subspaces, which are defined as

Kk(A, r0) = span
{
r0,Ar0, . . . ,Ak−1r0

}

where r0 = b−Av0 is the initial residual. In Krylov methods, at each iteration
the approximate solution vk is sought in the k−dimensional affine subspace
v0 +Kk(A, r0).

The actual expression of vk depends on the particular Krylov method
employed. In many important cases, vk satisfies some optimality property;
for example, in minres [99] and gmres [115], vk is the vector of v0+Kk(A, r0)
which minimizes the Euclidean norm of the residual rk = b−Avk.

The eigenvalue distribution of the system matrix often plays a crucial role
in Krylov methods. This is especially true when A is symmetric, as in (1.2).
Indeed, the rate of convergence of Krylov methods for symmetric systems
can be bounded by a term that depends only on the extreme eigenvalues
of A. As an example, consider minres, a Krylov method often employed
in the context of saddle point systems. In minres, if the spectrum of A is
contained in the set [−d,−c]∪ [c, d], where d > c > 0, then the following can
be shown ( see e.g. [64, (3.15)]):

‖rk‖
‖r0‖

≤ 2

(
d/c− 1

d/c+ 1

)[k/2]

, k = 1, 2, . . . (1.3)

where [·] denotes the integer part. It is apparent that, if d/c ≈ 1 convergence
will be fast; if, on the other hand, d/c ≫ 1 then a slow convergence might
be observed. Generally speaking, in the symmetric case, the more clustered
the eigenvalues of A the faster the convergence.

The rate of convergence of Krylov methods can be improved (sometimes
drastically) using a preconditioning strategy. By preconditioning, it is meant
that the original problem is replaced with another one, which is equivalent
but easier to solve. More precisely, instead of solving Av = b, we solve for
example the equivalent system

P−1Av = P−1b (1.4)

where P ∈ R
N×N is an invertible matrix called preconditioner. Two are

the features of a good preconditioner. First, since at each iteration of a
Krylov method we need to compute a matrix-vector product involving P−1

(or, equivalently, we need to solve a linear system with coefficient matrix P),
this operation must be sufficiently cheap. Second, the system P−1A must
have better spectral properties than the original system A.
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System (1.4) is referred to as left preconditioning. Other reformulations
for the system Av = b using the same P are possible, and will be discussed
in the next chapter. For the moment we just note that, even if the original
system matrix A is symmetric, such property may not hold for the precon-
ditioned system.

When a Krylov method is applied to a nonsymmetric system, the role
of the eigenvalues of A is less clear and no simple bound like (1.3) can be
found. In some cases, the eigenvalue distribution may even be misleading.
Consider for example the gmres method. It has been proved in [65] that
any nonincreasing convergence curve is possible for this method, regardless
of the eigenvalues of the system matrix A. Though this result might seem
catastrophic at first, it is been observed that for many practical problems
well-clustered eigenvalues (away from 0) still result in fast convergence, even
in the nonsymmetric case.

As a consequence of the relation between the eigenvalues and the rate
of convergence, it is extremely important to have meaningful spectral esti-
mates for the matrices involved. What we mean here is that the estimates
should accurately reflect the eigenvalue distributions of such matrices. In-
deed, meaningful spectral estimates for P−1A give a precise idea of the worst-
case scenario one can get when attempting to solve the linear system, and
hence they can be considered a measure of the preconditioner quality. This
is true even in the nonsymmetric case, although here information on the
spectrum has to be coupled with some other information.

We emphasize that even spectral estimates for the unpreconditioned sys-
tem may be useful, for a general reason not directly related with Krylov
methods. If A is symmetric, as the matrices that will be discussed in this
thesis, then spectral bounds for the unpreconditioned system give also an
upper bound for its condition number, which in turn can be used to estimate
the stability of numerical methods employed for its solution.

1.1 Aims and outline

The optimization problems that will be discussed in this thesis can be
divided into two classes. First, we consider Quadratic Programming problems
of the form (1.1) whenD = In and f = 0, i.e. when the inequality constraints
are just x ≥ 0. These are known as QP problems in standard form.

The second class of problems considered in this thesis stems from the
discretization of certain PDE-constrained optimal control problems, with
possible further inequality constraints on the control and/or on the state.
In these cases, the variable x in (1.1) can be splitted in two parts, namely
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x = (u, y) ∈ R
2s, and the matrices A,B,D are chosen so that the whole

problem (1.1) takes the form

minimize
y,u∈Rs

1
2
(y − yd)

TM(y − yd) +
ν
2
uTMu

s. t. Lx = Mu− d (1.5)

a ≤ αuu+ αyy ≤ b

with M,L ∈ R
s×s, a, b, d, yd ∈ R

s, ν > 0 and αu, αy ≥ 0. Although prob-
lems of the form (1.5) are technically a subgroup of Quadratic Programming
problems, because of their peculiar structure and other special features they
deserve a separate treatment. More details about optimal control problems
and their discrete version will be given in Part II.

The aim of this thesis is also twofold. First, we explore new precon-
ditioning strategies for saddle point systems arising from the two classes
of optimization problems just mentioned. Second, we derive novel spectral
bounds for some of the matrices involved, both in the preconditioned and
unpreconditioned case. The specific objectives are discussed below, in the
description of each chapter.

The purpose of Part I is to present the main theoretical tools that will be
used throughout the thesis. In Chapter 2, we review part of the theory about
saddle point systems and their spectral properties, iterative Krylov methods
and some well-known preconditioners for saddle point systems. In Chapter
3, we focus on the so-called augmented block diagonal preconditioner. After
a review of the known results, we show spectral estimates for the precon-
ditioned system when the (2,2) block of the original system is nonzero and
discuss how the building blocks of the preconditioner should be chosen. This
analysis first appeared in [91].

In Part II, we consider saddle point systems stemming from optimal con-
trol problems constrained by PDEs. In Chapter 4, we review an approach
proposed in [117], based on a preconditioned Conjugate Gradient method
implemented in a non-standard inner product. We present new and more ac-
curate spectral estimates for the preconditioned system, and show how these
estimates help understand the rate of convergence of the method. Most of
these results have been published in [128]. In Chapter 5, we add control and
state constraints to the optimal control problem, and consider the sequence
of saddle point systems obtained when an active-set Newton method is ap-
plied to the discrete problem. We present two new preconditioners based on
a full block matrix factorization of the Schur complement of the Jacobian
matrix. We also derive spectral estimates for the preconditioned system and
discuss the robustness of our approach with respect to the problem parame-
ters, both theoretically and experimentally. We finally validate our approach
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with numerical experiments on 3D problems, comparing our strategy with
one of the state-of-the-art approaches. These results first appeared in [107].

Part III is devoted to sequences of saddle point systems obtained by ap-
plying an Interior Point (IP) method to a convex Quadratic Programming
problem in standard form. Such systems have a natural 3 × 3 block struc-
ture, but a common approach is to deal with these systems in reduced form,
by taking one or more steps of block Gaussian elimination. However, the
reduced formulation becomes increasingly ill-conditioned as the IP iterates
approach the exact solution, and some authors raised the question about
which formulation should be preferred. Our contribution here aims at fur-
ther exploring the features of the two approaches. In Chapter 6 we present
new spectral estimates which confirm that, under suitable assumptions, the
condition number of the unreduced formulation is bounded even when the it-
erates are close to the exact solution. The spectral analysis presented, which
first appeared in [91], improves and completes the one recently given in [66].
The sharpness of the new estimates is illustrated by numerical experiments.
In Chapter 7, we elaborate further on the comparison between reduced and
unreduced formulation and discuss how their relation is affected by precondi-
tioning. We consider some well-known preconditioners for saddle point sys-
tems (namely, constraint and augmented) and prove a spectral equivalence
result which suggests that the unreduced formulation does not necessarily
have better spectral properties than the reduced one, when preconditioning
is considered. These results were first presented in [92]. Finally, we carry out
an experimental analysis, to assess which of the two formulations should be
preferred when solving large scale problems.



Part I

Numerical linear algebra
preliminaries
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Chapter 2

Saddle point systems and
Krylov methods background

In this chapter we introduce the main subjects of this thesis, namely sad-
dle point systems, discuss their main properties and present some approaches
commonly employed in their solution. In Section 2.1 we clarify what a saddle
point system is, give conditions for its nonsingularity and analyze its spectral
properties. In Section 2.2, we briefly discuss Krylov methods, in particular
cg, minres and gmres and their main features. Finally, in Section 2.3 we
present some well-known preconditioners for saddle point systems, and give
details on their applicability and spectral properties of the preconditioned
systems.

We remark that all the results presented here are taken from other sources.
In particular, the whole chapter was inspired by the survey paper written
by Benzi et al. [11]. We hence refer to that work and references therein
for a more detailed discussion on saddle point systems and their numerical
solution.

2.1 Saddle point systems

Consider a symmetric matrix having the following block structure

A =

[
A BT

B −C

]
, (2.1)

where A ∈ R
n×n is symmetric and positive semidefinite, B ∈ R

m×n with
n ≥ m, and C ∈ R

m×m symmetric and positive semidefinite. An important

9



10 2. Saddle point systems and Krylov methods background

special case occurs when the C block is zero, i.e. A has the form

A =

[
A BT

B 0

]
. (2.2)

As we saw in the Introduction, this is the coefficient matrix of the linear
system arising from the optimization problem

minimize
x∈Rn

1
2
xTAx− cTx,

s. t. Bx = d.

The solution (x∗, p∗) of the system

[
A BT

B 0

] [
x
p

]
=

[
c
d

]
. (2.3)

where p is the vector of Lagrange multipliers, is hence a saddle point for the
Lagrangian function L(x, p) associated to (2.3), that is

L(x∗, p) ≤ L(x∗, p∗) ≤ L(x, p∗) ∀ x ∈ R
n, p ∈ R

m.

Due to this interpretation, system (2.3) is referred to as saddle point system,
and the matrix (2.3) is sometimes called saddle point matrix.

Linear systems with coefficient matrix of the form (2.1) appear in dif-
ferent contexts, for example in the solution of mixed finite elements when a
stabilization term is added to the problem (see e.g. [20, Chapter 3, Section
4], [42, Chapter 3]), or in Interior Point methods with regularization (see e.g.
[1, 53] and Chapter 7 of this thesis). Probably due to these interpretations,
matrices of the form (2.1) have been referred to as “stabilized” [61] or “reg-
ularized” saddle point matrices[32]. To keep the nomenclature as simple as
possible, in this thesis we will use the term “saddle point matrix” to refer to
a matrix of the more general form (2.1), whether C = 0 or not.

We observe that the block structure expressed by (2.1)-(2.2) is fairly gen-
eral, and saddle point systems arise very frequently not only in constrained
optimization or mixed finite elements, but also in many different areas of com-
putational science and engineering. In [11, Section 2], the authors present a
list of 16 different fields where saddle point systems naturally arise. In Part
II and Part III of this thesis we will discuss two of these applications, and
describe how they give rise to saddle point systems. In particular, the saddle
point systems considered in Part II, which stem from optimal control prob-
lems, will be of the form (2.2). Instead, the saddle point systems considered
in Part III, which stem from QP problems in standard form solved with an
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Interior Point method, will be of the more general form (2.1), with a nonzero
C.

We mention that in the literature matrices with a block structure similar
to (2.1)-(2.2), but nonsymmetric, have often been referred to as generalized
saddle point matrices [25]. These, however, will not be discussed here.

2.1.1 Nonsingularity

The first questions that arise when one has to solve the linear system
Ax = b are whether this system has a solution and whether this solution is
unique. We therefore recall the conditions that ensure nonsingularity of A.

We start by supposing that A, the (1,1) block of A, is positive definite.
Then A can be written as

[
A BT

B −C

]
=

[
In 0

BA−1 Im

] [
A 0
0 −S

] [
In A−1BT

0 Im

]
, (2.4)

where S = C + BA−1BT is the (negative) Schur complement1 of A in A.
This important factorization shows in particular that A is nonsingular if and
only if S is positive definite, that is, if and only if ker(C) ∩ ker(BT ) = 0. In
particular, A is nonsingular if ker(BT ) = 0

If C is positive definite, then there exists a factorization analogous to
(2.4), showing that A is nonsingular if and only if A+BTC−1B, i.e. the Schur
complement of C in A, is positive definite, that is if and only if ker(B) ∩
ker(A) = 0.

If both A and C are singular, then none of the above conditions can be
used to assess if A is nonsingular. We hence consider the following proposi-
tion.

Proposition 2.1.1. [5, Lemma 2.1] Let A be a saddle point matrix of the
form (2.1) with A and C symmetric and positive semidefinite. Then A is
nonsingular if and only if all the following conditions are satisfied

1. ker(A) ∩ ker(B) = 0

2. ker(BT ) ∩ ker(C) = 0

3. range

[
A
B

]
∩ range

[
BT

−C

]
= 0

1For the rest of the thesis, we will drop the adjective “negative” and refer to S as the
Schur complement of A in A.
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The above proposition is very general, as neither A nor C needs to be
nonsingular, but its usefulness in practice is limited. An example of nonsin-
gular saddle point system with A and C singular and ker(BT ) 6= 0 will be
discussed in Chapter 6.

In the special case when ker(BT ) = 0 and C = 0, the conditions of
the above proposition become simpler, and we have the following important
result.

Proposition 2.1.2. (see e.g. [11, Theorem 3.2]) Let A be a saddle point
matrix of the form (2.2), with A symmetric and positive semidefinite and
suppose ker(BT ) = 0. Then A is nonsingular if and only if ker(A)∩ker(B) =
0. In particular, if A is positive definite then A is nonsingular.

2.1.2 Spectral properties

We now focus on the spectral properties of A, and we assume for simplic-
ity that A is nonsingular. Saddle point matrices are indefinite, i.e. they have
both positive and negative eigenvalues. Indeed, if A is positive definite, it
follows from the factorization (2.4) and from Sylvester’s Law of Inertia that

A has the same signature as the block diagonal matrix

[
A 0
0 −S

]
. Since A is

nonsingular, then S must be positive definite, implying that A has exactly
n positive eigenvalues and m negative ones. Using a simple continuity argu-
ment it can be shown that this property holds even when A is singular. We
summarize this result in the next proposition.

Proposition 2.1.3. see e.g. [11, pag. 21] Suppose that A given by (2.1) is
nonsingular. Then it has exactly n positive eigenvalues and m negative ones.

Saddle point systems are sometimes said to be highly indefinite (see e.g.
[11]), which means that A has many eigenvalues of both signs (unless of
course m is very small compared to n).

In the literature, it is possible to find different results describing the eigen-
value distribution of saddle point matrices, depending on the assumptions on
A that are considered. In 1992, Rusten and Winther [113], provided spectral
estimates for A when C = 0, A is positive definite and B has full rank.
In 1994, Silvester and Wathen [120] extended their result to the case when
C 6= 0. In 2009, Gould and Simoncini [61] were able to relax the assump-
tion of positive definiteness on A. Their result holds in the more general
case when ker(A) ∩ ker(B) = 0, although a condition on the norm of C is
required. All these results express bounds for the eigenvalues of A that de-
pend on parameters relative to the single blocks A, B and C, such as their
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minimum and maximum eigenvalue or singular value. We also mention the
works of Bai, Ng and Wang [6], and of Bai [5], where the authors derive
spectral estimates for A in a general setting, that depend on the eigenvalues
of A, of its Schur complement and of the matrix BA−2BT .

Below we recall the original result given by Rusten and Winther.

Theorem 2.1.4. [113, Lemma 2.1] Let A be as in (2.2), with A symmetric
and positive definite and ker(BT ) = 0. Let λmin and λmax be the minimum
and maximum eigenvalues of A, and let σmin and σmax be the minimum and
maximum singular value of B. Then it holds

spec(A) ⊆ I− ∪ I+,

where

I− =

[
1

2

(
λmin −

√
λ2
min + 4σ2

max

)
,
1

2

(
λmax −

√
λ2
max + 4σ2

min

)]
,

and

I+ =

[
λmin,

1

2

(
λmax +

√
λ2
max + 4σ2

max

)]
.

We now make a few comments about why the numerical solution of saddle
point systems is often considered a challenging problem. First, although
saddle point systems are symmetric, their indefiniteness is considered an
unfavorable property (see the next section). Second, one can use the results
of Theorem 2.1.4 to gain insight into the condition number of A, which can
be written as

κ(A) = ‖A‖
∥∥A−1

∥∥ =

max
λ∈spec(A)

|λ|

min
λ∈spec(A)

|λ| .

Unfortunately, in many applications the conditioning of A can be very high,
and it often depends on some parameters of the problem. For example, in
the optimal control problems discussed in Part II of this thesis, the blocks of
A stem from the discretization of differential operators. As a consequence,
both σmin and λmin go to zero as h, the mesh size parameter, goes to zero;
this means that the condition number of A (and the rate of convergence
of Krylov methods) worsens as the problem size increases. Moreover, the
choice of other parameters (such as the regularization parameter) may affect
the conditioning of A.

A different cause for the ill-conditioning of A can be observed when In-
terior Point methods are used to solve QP problems, as will be discussed in
Part III. In this case, a popular formulation for the linear system that has to
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be solved at each iteration of the method is a saddle point system where λmax

goes to infinity (and possibly λmin goes to zero) as the method approaches
the exact solution of the QP problem.

Before the end of this section, we present an additional proposition which
fully characterizes the eigenvalues of A when, in addition to the assumptions
of Theorem 2.1.4, it holds A = In. We include this result as it will be used
in Chapter 5.

Proposition 2.1.5. [44, Lemma 2.1] Let A be as in (2.2), with A = In.
Then A has the eigenvalue 1 with multiplicity n − m. Moreover, if σi, i =
1, . . . ,m denote the singular values of B, then the remaining 2m eigenvalues
are given by:

1

2

(
1±

√
4σ2

i + 1

)
i = 1, . . . , n.

2.2 Krylov methods

In this section we summarize some results about iterative Krylov methods
for the solution of linear systems, and in particular cg, minres, gmres. Our
goal is to mention the principal features of the particular methods that will
be used throughout the thesis. For more details on the subject of Krylov
methods, we refer to the monographs [64, 89, 114, 133, 85].

Given the linear system Av = b, with A ∈ R
N×N and b ∈ R

N , all Krylov
methods produce a sequence of approximate solutions vk such that

vk ∈ v0 +Kk(A, r0), k = 1, 2, . . . , (2.5)

where v0 is the initial guess for the solution and

Kk(A, r0) = span
{
r0,Ar0,A2r0, . . . ,Ak−1r0

}
(2.6)

is the k-th Krylov subspace generated by A and r0. For ease of notation, when
there is no ambiguity we will simply write Kk. Since Kk is the linear space
of k vectors, its dimension dk is at most k. We suppose for the moment that
dk = k. In some Krylov methods, the k−th iterate vk is uniquely determined
by the requirement that the new residual rk := b − Avk is orthogonal to
another subspace of dimension k, which is sometimes called the constraint
space. The choice of this space plays a crucial role in Krylov methods. Two
popular orthogonality conditions are:

(i) b−Avk ⊥ Kk,

(ii) b−Avk ⊥ AKk.
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It is always possible to construct a Krylov method whose iterates satisfy
property (ii), provided that A is nonsingular. On the other hand, it turns
out that a vector vk of the form (2.5) with property (i) does not necessarily
exist. An assumption that guarantees the existence of vk is such case is that
A is symmetric and positive definite (spd) [114, Proposition 5.1].

An orthogonality requirement on the residual rk may correspond to an
optimality property for the approximate solution vk. This is indeed the case
for (i) and (ii), as stated by the next theorem. Here and throughout, given
an spd matrix A we define the associated A-norm as ‖v‖A :=

√
vTAv for

v ∈ R
N .

Theorem 2.2.1. [114, Proposition 5.2 and Proposition 5.3] Let vk ∈ v0+Kk.
Then, the following statements hold.

(i) If rk ⊥ Kk with A symmetric and positive definite, and v∗ denotes the
exact solution of Av = b, then

‖ek‖A := ‖v∗ − vk‖A = min
v∈v0+Kk(A,r0)

‖v∗ − v‖A ,

i.e. vk minimizes the A−norm of the error over v0 +Kk.

(ii) If rk ⊥ AKk with A nonsingular, then

‖rk‖ = ‖b−Avk‖ = min
v∈v0+Kk(A,r0)

‖b−Av‖ ,

i.e. vk minimizes the Euclidean norm of the residual over v0 +Kk.

The Conjugate Gradient (cg) method [70], is characterized by the prop-
erty (i), and thus to be applied it requires A to be spd. Of course, saddle
point systems are not positive definite, however we will show in Chapter 4
that a variant of the cg method can be applied to preconditioned saddle
point systems, by using an inner product different from the Euclidean one.

If the dimension of Kk is strictly smaller than k, than it can be shown
that the exact solution v∗ belongs to Kk−1 [114, Proposition 5.6], and hence
any approximate solution vk−1 satisfying (i) or (ii) is necessarily the exact
solution. This means in particular that, in exact precision arithmetic, the
corresponding Krylov methods always converge in a finite number of steps.
This feature is known as finite termination property. More precisely, if dA
denotes the degree of the minimum polynomial of A (which is the polynomial
of least degree such that p(A) = 0), then it can be shown that the dimension
of Kk cannot exceed dA, meaning that vdA = v∗.
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Nevertheless, since dA is typically very large, it would be unpractical
to compute iterates until the exact solution is found. Moreover, the user
might not even need the exact solution, but rather be satisfied with a good
enough approximation. Thus, it is extremely important to estimate how fast
a Krylov methods converges, in order to predict how many steps are required
to ensure that a suitable measure of the error is below the given tolerance.

To continue our analysis and also discuss other features of Krylov meth-
ods, we have to distinguish the case when A is symmetric from the case when
A is nonsymmetric. We remark that, although this thesis is devoted to the
solution of symmetric systems, the nonsymmetric case is still very important,
since by preconditioning the symmetry of the original problem might be lost
(see Section 2.3).

2.2.1 The symmetric case

We first note that Kk can be written as

Kk = {p(A)r0 | p ∈ Pk−1} = {Ap(A)e0 | p ∈ Pk−1} ,

where Pk−1 is the space of polynomials of degree at most k − 1.
If A is symmetric, than we can write A = V ΛV T with Λ diagonal and

V orthogonal. We first suppose that A is also positive definite and let ek be
the error at step k of the cg method. We observe that, if vk = v0+Aq(A)e0
with q ∈ Pk−1, then we have

ek = v∗ − vk = v∗ − v0 +Aq(A)e0 = (IN +Aq(A)) e0 = p(A)

where p ∈ Pk such that p(0) = 1. By varying q ∈ Pk−1, any polynomial
p ∈ Pk with this restriction can be obtained. Then it holds

‖ek‖A = min
v∈v0+Kk

‖v∗ − v‖A = min
p∈Pk,p(0)=1

‖p(A)e0‖A =

= min
p∈Pk,p(0)=1

∥∥p(A)A1/2e0
∥∥ ≤ min

p∈Pk,p(0)=1
‖p(A)‖ ‖e0‖A =

= min
p∈Pk,p(0)=1

‖p(Λ)‖ ‖e0‖A = min
p∈Pk,p(0)=1

max
λ∈spec(A)

|p(λ)| ‖e0‖A .

(2.7)

It can be shown that bound (2.7) on the A−norm of ek is sharp, in the sense
that for any given matrix A and any given index k strictly less than the
number of distinct eigenvalues of A, there exists an initial error such that
the above relation holds with equality [63]. Note that if k is greater than or
equal to the number of distinct eigenvalues of A, and hence to the degree
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of its minimum polynomial, then necessarily ek = 0 as a consequence of the
finite termination property.

We can derive a similar relation for a Krylov method with property (ii),
when A is symmetric. This is the case of the Minimum Residual (minres)
method [99]. If rk is the residual at step k of minres, we have

‖rk‖ = min
v∈v0+Kk

‖b−Av‖ = min
p∈Pk,p(0)=1

‖p(A)r0‖ ≤

≤ min
p∈Pk,p(0)=1

‖p(A)‖ ‖r0‖ = min
p∈Pk,p(0)=1

‖p(Λ)‖ ‖r0‖ =

= min
p∈Pk,p(0)=1

max
λ∈spec(A)

|p(λ)| ‖r0‖ ,

(2.8)

and this bound is sharp in the same sense as (2.7). We remark that the
sharpness of inequalities (2.7) and (2.8) shows that in the symmetric case
the worst-case scenario for the convergence of Krylov method is completely
determined by the eigenvalues of A.

We now report a more explicit expression for the bounds on the error
and on the residual. Unfortunately, although the polynomial that solves the
min−max problems (2.7)-(2.8) is known [63], the value of the min−max
itself cannot be easily expressed. Thus, a common approach is to replace
the maximum over the set of the eigenvalues of A with the maximum over
a larger set. In the case of cg this set is the convex hull of spec(A), which
we denote with [λmin, λmax] (recall that in the cg method A has to be spd).
More precisely,

‖ek‖A
‖e0‖A

≤ min
p∈Pk,p(0)=1

max
λ∈spec(A)

|p(λ)| ≤ min
p∈Pk,p(0)=1

max
λ∈[λmin,λmax]

|p(λ)| . (2.9)

The new min−max problem is solved by a scaled and shifted Chebyshev
polynomial of the first kind (see e.g. [114, Theorem 6.25]) and the corre-
sponding bound on the relative error reads

‖ek‖A
‖e0‖A

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

, where κ(A) =
λmax

λmin

. (2.10)

In the min−max problem (2.8), A is not restricted to be positive definite.
Thus, we have to distinguish between the case when the eigenvalues of A are
all positive and the case when A is indefinite. In the first case, a bound
analogous to (2.10) can be derived for the Euclidean norm of the residual. In
the second case, suppose spec(A) ⊆ [a, b] ∪ [c, d], with a, b < 0 and c, d > 0.
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It holds

‖rk‖
‖r0‖

≤ min
p∈Pk,p(0)=1

max
λ∈spec(A)

|p(λ)| ≤ min
p∈Pk,p(0)=1

max
λ∈[a,b]∪[c,d]

|p(λ)| .

An explicit bound for
‖rk‖
‖r0‖

can be obtained by assuming that b − a = d −
c, i.e., that the two spectral intervals have the same length. In this case,
the solution of the above problem is again given by a scaled and shifted
Chebyshev polynomial of the first kind. The obtained bound is (see e.g. [64,
(3.14)])

‖rk‖
‖r0‖

≤ 2

(√
|ad| −

√
|bc|√

|ad|+
√
|bc|

)[k/2]

, (2.11)

where [·] denotes the integer part. In particular, if a = −d and b = −c, i.e.
if the spectral intervals are symmetric with respect to the origin, the above
bound reduces to

‖rk‖
‖r0‖

≤ 2

(
d/c− 1

d/c+ 1

)[k/2]

. (2.12)

If we look at both (2.10) and (2.12) (or (2.11)), it is apparent that a
sufficient (but not necessary) condition to observe fast convergence is that
the eigenvalues of A are clustered. Indeed, if this is case, in both formulas
the right-hand side becomes small very quickly as k increases. However, a
comparison of the two bounds suggests that indefinite problems may pose
a more serious challenge. Indeed, as pointed out in [64, Section 3.1], (2.12)
is the bound one would obtain at step [k/2] for a positive definite system
with condition number of d2/c2, which is the square of the actual condition
number.

Before turning to the nonsymmetric case, we discuss another important
feature of Krylov methods for symmetric systems. As it generally happens
in iterative methods, the approximate solution at step k + 1 can be written
as

vk+1 = vk + αkpk, (2.13)

where αk ∈ R
+ and pk ∈ Kk+1(A, r0)\Kk(A, r0). It is then apparent that the

set of vectors {p0, . . . , pk} form a basis for the Krylov subspace Kk+1(A, r0).
In the cg method, if w ∈ Kk+1 from the orthogonality condition (i) we

infer

0 = wT rk+1 = wT (b−A (vk + αkpk)) = wT (rk − αkApk) = wT rk−αkw
TApk.

In particular, if we take w ∈ Kk then we have wT rk = 0 from the previous
step, and hence the above formula reduces to αkw

TApk = 0. Since αk 6= 0,
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we have that pk must be A-orthogonal to Kk, or equivalently to all its basis
vectors p0, . . . , pk−1. Note that αk can be set to ensure that the orthogonality
condition is satisfied even for w ∈ Kk+1(A, r0) \ Kk(A, r0).

A possible way to construct pk is to compute the matrix-vector product
Apk−1 and then orthogonalize the resulting vector against all the previous
pi, i = 1, . . . , k − 1. This operation seemingly requires the storage of all
the previous basis vectors and a computational effort which increases with
k. However, the symmetry of the matrix A leads to the interesting prop-
erty that Apk−1 is already A−orthogonal to p1, . . . , pk−3, and hence only the
orthogonality with respect to pk−1 and pk−2 has to be imposed. As a con-
sequence, the basis vectors of the Krylov subspace can be generated using a
short-term recurrence, allowing a significant saving of memory and computa-
tional cost. This very important property holds also for the minres method,
and in general for any Krylov method for symmetric systems.

It should be pointed out that the above discussion holds if exact arith-
metic is assumed. Indeed, in finite precision arithmetic, algebraic errors may
cause the basis vectors pi to lose their A-orthogonality quite soon. This was
already noticed in the original paper of 1952 by Hestenes and Stiefel [70, Sec-
tion 8], where the CG method was first presented. This loss of orthogonality
in turn may cause a delay in the convergence of the method. We refer the
reader to [64, Chapter 4], [85, Section 5.9] for a discussion on the behavior
of cg and minres in finite precision arithmetic.

2.2.2 The nonsymmetric case

When A is nonsymmetric, or more precisely nonnormal (that is ATA 6=
AAT ), the convergence analysis of Krylov methods is harder than in the
symmetric case. Here we consider the case of a Krylov method satisfying
property (ii), such as the Generalized Minimum Residual (gmres) method
[115]. For simplicity we suppose that A is diagonalizable, i.e., A = XΛX−1.
Then we have

‖rk‖ = min
p∈Pk,p(0)=1

‖p(A)r0‖ ≤ min
p∈Pk,p(0)=1

‖p(A)‖ ‖r0‖ =

= min
p∈Pk,p(0)=1

∥∥Xp(Λ)X−1
∥∥ ‖r0‖ ≤ κ(X) min

p∈Pk,p(0)=1
max

λ∈spec(A)
|p(λ)| ‖r0‖ .

(2.14)
We first assume that A is normal, that is ATA = AAT . Then X is unitary,
implying that κ(X) = 1, and the above bound is sharp in the same sense
as (2.7)-(2.8), and convergence can be analyzed exactly as in the symmetric
case. If, on the other hand, A is nonnormal, the bound is not guaranteed to
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be sharp. In particular, if κ(X) ≫ 1 then (2.14) might be a large overestimate
of the true residual norm, even in the worst-case scenario.

As a consequence, in the nonnormal case information on the spectrum of
A is not enough to predict the (worst-case) behavior of a Krylov method.
Even worse, in some cases such information might be misleading. Indeed,
as mentioned in the Introduction, it has been proved that for gmres, any
nonincreasing curve of relative residual norms is possible regardless of the
eigenvalues of A [65].

We mention that (2.14) is not the only possible bound for the conver-
gence of gmres. Indeed, other bounds have been shown and analyzed in
the literature, based not on the conditioning of the eigenvector matrix, but
rather on the field of values or on the pseudospectrum of A [39, 94, 37, 38, 7].
An analysis of the convergence of gmres that takes into account the initial
residual can be found, e.g., in [82, 83, 84, 81, 129].

Another complication arising when a Krylov method is applied to a non-
symmetric system is that in general it is not possible to generate iterates
with property (ii) using just a short-term recurrence for the update pk in
(2.13), as in the symmetric case. Indeed, in general all the basis vectors pj,
j = 1, . . . , k, need to be stored and used to construct an optimal approximate
solution vk+1, as it happens in the standard implementation of gmres. This
fact may substantially increase the memory storage and the computational
cost of the method, in particular if the iteration step k is high. Thus, the
standard gmres method is feasible only if we expect that only a moder-
ate number of iterations is required to achieve convergence (which typically
means that we have a good preconditioner at hand). If the iteration step
k gets too high, a common approach is to restart gmres, using the last
approximate solution as the new initial guess.

It is still possible to devise a Krylov method for nonsymmetric systems
which relies on a short-term recurrence, but then the optimality properties (i)
or (ii) cannot be achieved. Krylov methods belonging to this class include the
Biconjugate Gradient method (BiCG) [45], its stabilized version (BiCGStab)
[132] and the Induced Dimnsion Reduction (IDR) method [135, 123], where
the basis vectors of the Krylov subspace still satisfy an orthogonality con-
dition [45, 122]. Other Krylov methods with short-term recurrence but no
optimality property include the Quasi-Minimal Residual method (QMR) [52],
and its transpose-free variant (TFQMR) [51]. None of these methods, how-
ever, will be further discussed in this thesis.

We finally mention that, in some cases, a possible approach to work
around the limitations of nonsymmetry is to employ a method for symmetric
systems implemented in a nonstandard inner product. See Section 4.2 for
more details on this approach.
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2.3 Preconditioners for saddle point systems

In practical computations, Krylov methods are very rarely applied with-
out any preconditioning strategy. This is especially true in the case of saddle
point systems, because the indefiniteness and the (typically high) condition
number of A would make the convergence of Krylov methods unacceptably
slow. As a consequence, a great deal of research is devoted to the develop-
ment of efficient and reliable preconditioners.

2.3.1 Right, left and split preconditioners

Given the system Av = b, we consider the left-preconditioned system

P−1Av = P−1b (2.15)

where P is a nonsingular matrix, known as preconditioner. It is apparent
that system (2.15) has the same solution of the original system. Note that
if we attempt to solve (2.15) with an iterative method, the preconditioned
system does not need to be actually formed, as the coefficient matrix is
needed only to compute matrix-vector products. Thus, at each iteration of
the method, one matrix-vector product involving A and one involving P−1

(or, equivalently, one solve with P) have to be computed.
If P−1A has more favorable spectral properties (e.g., more clustered eigen-

values) than A, and the computational cost of applying P−1 to a vector is
affordable, then it might be advantageous apply a Krylov method on (2.15)
rather than on the original system.

Instead of (2.15), we can also consider the right-preconditioned system

AP−1u = b with u = Pv (2.16)

Note that in this case, from the iterates uk corresponding to the new system,
we can recover the iterates vk we are interested in with one additional solve
with P (this is typically done only once at the end of the method).

If P is positive definite, then using the Cholesky factorization P = LLT

we can also consider the split-preconditioned system

L−1AL−Tu = L−1b, with u = LTv. (2.17)

Thus, once a preconditioner has been selected, one has to choose how to
apply it to the system. A first observation shows that all the preconditioned
matrices P−1A, AP−1 and L−1AL−T are similar, and hence they have the
same eigenvalues. Still, there are differences that can make one approach
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preferable over the others, depending on the properties of A and P and on
the Krylov method employed.

Suppose that A is symmetric. Then if P is positive definite, the split-
preconditioned (2.17) system is still symmetric. This fact allows the use of
Krylov method for symmetric systems, like minres or cg, whose iterates
can be generated using a short-term recurrence and whose convergence can
be bounded as in (2.10) or (2.11). A very important feature of this approach
is that there the Cholesky decomposition of A does not need to be actually
computed, nor linear systems involving L have to be actually solved. Instead,
the generation of the Krylov subspace associated with (2.17) can be done
implicitly, and only matrix-vector products involving P−1 or A have to be
computed. We refer to [64, Chapter 8] for the implementation details for cg
and minres.

If the chosen preconditioner P is not spd then (2.17) cannot be used and
the preconditioned system is in general nonsymmetric. As a consequence, an
iterative method for nonsymmetric systems, like gmres, has to be employed.
When gmres is considered, it is still important to distinguish between the
different formulations (2.15) and (2.16). To show the difference between the
two approaches, let vLk and uR

k be the approximate solutions at step k gen-
erated respectively by left-preconditioned and right-preconditioned gmres.
We suppose for simplicity v0 = 0 (equivalently, r0 = b) and observe that

vLk ∈ Kk(P−1A,P−1b) = span
{
P−1b,P−1AP−1b, . . . ,

(
P−1A

)k−1P−1b
}
,

and
uR
k ∈ Kk(AP−1, b) = span

{
b,AP−1b, . . . ,

(
AP−1

)k−1
b
}
.

Writing vRk = P−1uR
k , we have

vRk ∈ P−1Kk(AP−1, b) = span
{
P−1b,P−1AP−1b, . . . ,P−1

(
AP−1

)k−1
b
}
=

= span
{
P−1b,P−1AP−1b, . . . ,

(
P−1A

)k−1P−1b
}
.

It is then apparent that vRk and vLk belong to the same subspace. We recall
from the previous section that the gmres iterates minimize the residual
norm over the appropriate Krylov subspace. However, the residuals of the
two systems (2.15) and (2.16) are different, and thus vRk and vLk minimize
different quantities. More precisely, vRk is the vector ofKk(P−1A,P−1b) which
minimizes the Euclidean norm of b − AP−1u = b − Av, i.e., the residual
of the original system. On the other hand, vLk is the vector of the same
subspace which minimizes the norm of P−1 (b−Av), which is the residual
of an “artificial” system. As a consequence, when using gmres the right-
preconditioned system (2.16) is typically preferred.
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2.3.2 Some well-known preconditioners

We now report three well-known classes of preconditioners, very popular
in the context of saddle point systems, that will be used in the rest of the
thesis. We also mention the spectral properties of their ideal versions.

Consider a saddle point matrix of the form (2.1). For the rest of the
chapter, we will assume that the (1,1) block, A, is positive definite (see
Chapter 3 for a preconditioning strategy that can also be applied when A is
singular). The block diagonal preconditioner for A is defined as:

PD =

[
A 0
0 S

]
(2.18)

where, as before, S = C + BA−1BT is the Schur complement of A. We
recall that S is positive definite if and only if A is nonsingular. Under this
assumption, we note that PD is symmetric and positive definite, thus it has
the important property of preserving the symmetry of A. The following
theorem characterizes the spectral properties of the preconditioned system
in the special case when C = 0.

Proposition 2.3.1. [93, Proposition 1] Let A be a saddle point matrix with
A positive definite, ker(BT ) = 0 and C = 0, and let PD as in (2.18). Then,
if M = P−1

D A, it holds

(M− I)

(
M− 1 +

√
5

2
I

)(
M− 1−

√
5

2
I

)
= 0.

In particular, M is diagonalizable and spec(M) =

{
1,

1±
√
5

2

}
.

The above Theorem shows that minres (or gmres) applied to the pre-
conditioned system P−1

D Av = P−1
D b converges in at most three iterations.

If, on the other hand, C 6= 0, then the spectral properties of P−1
D A are

not so favorable. Nevertheless, the following theorem can be proved.

Proposition 2.3.2. [61, Proposition 4.2] Let A be a nonsingular saddle point
matrix with A positive definite, and let PD be as in (2.18). Moreover, let Θ
be the set of finite eigenvalues of the matrix pencil

(
C + BA−1BT , C

)
. Then

spec(P−1
D A) =

{
1,

1±
√
5

2

}
∪
{

1

2θ

(
θ − 1±

√
(1− θ)2 + 4θ2

)
| θ ∈ Θ

}
.
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We emphasize that (2.18) represents an ideal preconditioner. Indeed, the
application of the block diagonal preconditioner as it is in (2.18) would be
almost as expensive as the actual computation of the inverse of A (see e.g.
[11, Section 10.1.1]).

Thus, in practical computations the matrices A and S in (2.18) have to

be replaced with easy-to-invert approximations, which we denote with Â and
Ŝ. This necessity holds for all the preconditioners presented in this section;
indeed, the main difficulty associated with their use in practice is finding
good enough approximations for A and S which are at the same time com-
putationally cheap. This task requires a deep knowledge on the origin and
properties of the blocks of A, and as a consequence the choice of Â and Ŝ is
strongly problem-dependent. Algebraic preconditioners, such as incomplete
factorizations, sparse approximate inverses and multigrid methods might be
helpful in some important cases (see Chapters 5 and 7 for two examples).
We refer to [11, Section 10.1.3] and references therein for a review of some
techniques employed in different contexts. Here we just mention that finding
a suitable Ŝ is typically a much harder problem than finding a suitable Â.

Next, we consider the (ideal) block triangular preconditioner

PT =

[
A BT

0 −S

]
. (2.19)

To apply the inverse of PT to a vector we can use the following factorization

P−1
T =

[
A−1 0
0 Im

] [
In BT

0 −Im

] [
In 0
0 S−1

]
,

which shows that the main computational effort required to apply P−1
D is one

solve with A and one with S, with the understanding that, as before, A and S
have to be replaced with suitable approximations. Thus, the computational
cost associated with PT is very similar to the one associated with PD.

We now give a proposition which characterizes the eigenvalues of P−1
T A.

Proposition 2.3.3. [73, Proposition 2] Let A be a nonsingular saddle point
matrix with A positive definite, and let PT be as in (2.19). Then it holds

(
P−1

T A− I
)2

= 0.

In particular, spec(P−1
T A) = {1}.

This result shows that gmres applied to the system P−1
T Av = P−1

T b
converges in at most two iterations.
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Unlike PD, PT is not spd and thus the preconditioned system is nonsym-
metric. The use of a nonsymmetric solver, like gmres, is then required. This
can be regarded as a disadvantage, but in fact if the method converges in few
iterations the extra computational cost required for gmres is negligeable.

Finally, if Â denotes an approximation of A, which for simplicity we
assume to be symmetric and positive definite, we define the constraint pre-
conditioner as

PC =

[
Â BT

B −C

]
(2.20)

This preconditioner takes its name by the fact that if v∗ is a solution for the
system PCv = b, then v∗ satisfies also the second equation of the original
saddle point system, which in many applications represents some sort of
constraint.

Even more so than in the previous cases, in PC linear systems involving
Â must be inexpensive to solve. This a consequence of the factorization

P−1
C =

[
In −Â−1BT

0 Im

] [In 0

0 −
(
C + BÂ−1BT

)−1

] [
In 0
−B Im

] [
Â−1 0
0 Im

]

which shows that two solves with Â are needed at each application of the
preconditioner. Thus, Â is often taken as a diagonal matrix. One solve
with C +BÂ−1BT has to be carried out as well, and this matrix is typically
replaced with some suitable approximation.

To analyze the spectral properties P−1
C A, we assume C = 0. We also

assume m < n (the case n = m is trivial). Then the following proposition
hold.

Theorem 2.3.4. [77, Theorem 2.1] Let A be a saddle point matrix with A
positive definite, ker(BT ) = 0, C = 0 and m < n. Let PC be as in (2.20),
and suppose it is nonsingular. Moreover, let Z ∈ R

n×(n−m) be a matrix whose
columns form a basis for ker(B). Then the matrix P−1

C A has the eigenvalue 1
with multiplicity 2m. Then the remaining n−m eigenvalues are the solution
of the generalized eigenvalue problem

ZTAZv = λZT ÂZv v ∈ R
n−m

In particular, P−1
C A has real and positive eigenvalues.

When C 6= 0 the eigenvalues of P−1
C A are more difficult to analyze (unless

C is positive definite, see [32, Theorem 3.1]). As a consequence, spectral
estimates for this case are more complicated, and we do not show them here
for the sake of simplicity. We instead refer the reader to [6, Theorem 3.1 and
Theorem 4.1].



26 2. Saddle point systems and Krylov methods background



Chapter 3

The augmented block diagonal
preconditioner1

The development of solvers for saddle point systems is a very active area
of research, and as a consequence a variety of preconditioning techniques have
been proposed in the literature. Some of them, such as the block diagonal,
block triangular and constraint preconditioners were discussed in the previous
chapter. In this chapter we introduce another kind of preconditioner, the
augmented block diagonal.

This preconditioner is based on the “augmentation” of the (1,1) block of
the original system, which allows it to cope with the possible high singularity
of both diagonal blocks. Moreover, it is symmetric and positive definite,
so that it preserves the symmetry of the problem. This preconditioner was
proposed in 2006 by Greif and Schötzau [68], although back to 2003 the same
preconditioner (for a particular choice of W ) was presented by Powell and
Silvester [108, Section 2], in the context of second-order elliptic problems
discretized using Raviart-Thomas mixed formulation. This approach was
further studied in [110, 67]. In [24], Cao extended it to the nonsymmetric
case.

To our knowledge, however, only the case C = 0 has been considered in
the literature (i.e. the saddle point system has a zero (2,2) block). The main
purpose of this chapter is to fill this gap, by providing spectral estimates for
the preconditioned system in the case C 6= 0. In Section 3.1 we introduce
the preconditioner and review the known spectral results. In section 3.2 we
generalize these estimates and discuss some the optimal theoretical choices
for the augmentation. Finally, in Section 3.3 we show some numerical exper-
iments which illustrate the quality of our estimates, using the KKT systems

1The results presented in this chapter are taken from [91].
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discussed in Chapters 6 and 7 as test matrices.

3.1 The preconditioner

Consider a nonsingular saddle point system of the form
[
A BT

B −C

] [
x
y

]
=

[
f
g

]
, (3.1)

where, as usual, A ∈ R
n×n symmetric and positive semidefinite, B ∈ R

m×n

with n ≥ m, and C ∈ R
m×m symmetric and positive semidefinite. We are

mainly interested in the case when the (1,1) of the matrix is singular or very
ill-conditioned. None of the preconditioners discussed in the previous chapter
(namely the block diagonal, block triangular and constraint preconditioner)
can be applied in this case, as they all require A to be nonsingular.

A possible way to work around this limitation is to use augmented La-
grangian techniques, that is, to replace the original system with an equivalent
one where the (1,1) block is positive definite. Namely, if C = 0, then the

system A
[
x
y

]
=

[
f
g

]
is replaced with the “augmented” system

[
A+ BTW−1B BT

B 0

] [
x
y

]
=

[
f + BTW−1g

g

]
,

where W ∈ R
m×m, symmetric and positive definite. Then any of the precon-

ditioners discussed in Chapter 2 can be applied on the augmented system (of
course taking into account the new form of the (1,1) block), see [54, 55, 13, 14]
and references therein. We give a special mention to [14], where a similar
technique is applied when C 6= 0.

A related but different approach is to let the original system unchanged
and still consider the augmentation in the preconditioner, that is

PAD =

[
A+ BTW−1B 0

0 W

]
. (3.2)

Note that the condition ker(A)∩ker(B) = 0 implies that PAD is nonsingular.
It is apparent that PAD is symmetric and positive definite. This important

property allows the preservation of the symmetry of the original problem, as
discussed in Chapter 2. Thus, a short-term recurrence like minres can be
applied on the preconditioned system and its rate of convergence can be
bounded by a term which depends only on the eigenvalues of the coefficient
matrix.
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At each application of the preconditioner, a linear system with coefficient
matrix A + BTW−1B has to be solved. This may be extremly costly, also
because A + BTW−1B could be much denser than each of its terms [110].
In fact PAD in (3.2) is just an “ideal” preconditioner; in practice, some
form (symmetric) approximation for the inverse of A + BTW−1B has to
be considered, which takes into account the specific application data. In
any case, the matrix W has to be inexpensive to invert, e.g. diagonal, or a
multiple of the identity matrix.

The spectral properties of this preconditioner have been studied in the
case when C = 0 [68, 67]. Note that in this case we have to assume that BT

has full column rank to ensure the nonsingularity of A. We report the fol-
lowing result regarding the eigenvalues of the preconditioned system. Recall
that the nullity of a matrix if defined as the dimension of its null space.

Theorem 3.1.1. [68, Theorem 2.2] Suppose ker(BT ) = 0 and that A is
positive semidefinite with nullity r. Then P−1

ADA has the eigenvalue θ = 1 with
algebraic multiplicity n and the eigenvalue θ = −1 with algebraic multiplicity
r. The remaining m − r eigenvalues belong to the open interval (-1,0) and
satisfy

θi = − φi

φi + 1
, i = 1, . . . ,m− r (3.3)

where the φi are the m − r positive solutions of the generalized eigenvalue
problem

φAv = BTW−1Bv. (3.4)

According to this theorem, the greater the nullity of A, the greater the
multiplicity of the eigenvalue −1 for the preconditioned system. If the nullity
of A is equal to m (the maximum possible if A is nonsingular) then P−1

ADA
has only two distinct eigenvalues.

If A is nonsingular, then the m positive φ that satisfy (3.4) are the gen-
eralized eigenvalues of

φWu = BA−1BTu.

If, moreover, W = γI with γ > 0, then the eigenvalues of P−1
ADA different

from ±1 are (cf. [67, Theorem 2.4])

θi = − φi

φi + γ
, i = 1, . . . ,m,

where the φi are the eigenvalues of BA−1BT . The above relation allows us to
make some comments on the choice of γ. As argued in [67], a small value of
γ leads to a clustering of the negative eigenvalues in a neighborhood of −1.
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However, if a too small value of γ is chosen, the preconditioner (3.2) may
become very ill-conditioned. Thus, one has to chose a compromise value; see
[68, 67, 110] for some empirical choices of γ. We also mention that a thorough
algebraic analysis on the choice of W can be found in [54, 55], where however
the focus was not the use of W within the context of (3.2).

We conclude this section, we mention that the possibility to augment the
(1,1) block of the preconditioner is not restricted to the block diagonal case.
Indeed, an augmented block triangular preconditioner has been introduced in
[110]. In [119], Shen et al. studied its spectral properties for C 6= 0. See also
[24, 28, 72] for some related preconditioning strategies. We will not discuss
further this class of preconditioners in this chapter, although we will use it
later in Chapter 7.

3.2 New spectral estimates for the case C 6= 0

We first give spectral bounds for the preconditioned matrix, which appear
to be new for augmentation type preconditioned matrices with nonzero (2,2)
block. In light of this analysis, we then discuss the choice of the matrix W .

The spectral estimates derived in this section hold for a general saddle
point matrix like the one appearing in (3.1). However, differently from the
convention, we do not require that n ≥ m. We recall that, when C 6= 0, the
condition ker(B)T = 0 is no longer necessary to ensure the nonsingularity of
A. Thus, we assume instead that the conditions of Proposition are satisfied.

3.2.1 Spectral estimates for BT of full column rank

We first consider the case when ker(BT ) = {0}.

Theorem 3.2.1. Let A be a nonsingular saddle point system (3.1) with
A ∈ R

n×n, C ∈ R
m×m be symmetric and positive semidefinite, B ∈ R

m×n

and suppose that ker(BT ) = {0}. Let W ∈ R
n×n be symmetric and positive

definite.

Let c0 = λmin (W
−1C), c1 = λmax (W

−1C), b0 = λmin

(
W−1BBT

)
and

b1 = λmax

(
W−1BBT

)
. Then, given PAD in (3.2), it holds

spec(P−1
ADA) ⊆ I− ∪ I+ = [ξ1, ξ2] ∪ [ξ3, 1] ,
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where

ξ1 =
(1− c1)s− c1 −

√
((1− c1)s− c1)

2 + 4(1 + c1s)(1 + s)

2(1 + s)
,

ξ2 =
1− tc0 −

√
(1− tc0)

2 + 4t (t− 1 + c0)

2t
,

ξ3 =
(1− c1)s− c1 +

√
((1− c1)s− c1)

2 + 4(1 + c1s)(1 + s)

2(1 + s)
,

with s =
λmin(A)

b1
and t = 1 +

b0
‖A‖ .

Moreover, if ℓ denotes the nullity of B, then P−1
ADA has the eigenvalue 1

with multiplicity ℓ.

Proof. We first observe that the hypothesis on B yields b0 > 0.

Consider the generalized eigenvalue problem A
[
u
v

]
= θPAD

[
u
v

]
, i.e.

Au+ BTv = θ
(
A+ BTW−1B

)
u, (3.5)

Bu− Cv = θWv (3.6)

and first suppose that θ > 0. Since any vector (u, 0) with u ∈ ker(B) satisfies
(3.5) and (3.6) with θ = 1, P−1

ADA has the eigenvalue one with multiplicity ℓ.
Suppose now u /∈ ker(B). Since θW+C is positive definite, we eliminate v

from (3.6) and substitute it into (3.5). Further, we premultiply the resulting
equation by uT and obtain

uT (A+ BT (θW + C)−1 B)u = θuT
(
A+ BTW−1B

)
u. (3.7)

By using the inequality (θW + C)−1 � 1

θ
W−1, and after some rearrangement

we get
(1− θ)uT

(
θA+ (1 + θ)BTW−1B

)
u ≥ 0.

Noting that
(
θA+ (1 + θ)BTW−1B

)
is positive definite, it follows θ ≤ 1.

To show the lower bound for the positive eigenvalues, we reformulate (3.7)
as

uTBTW−1/2

(
θIm −

(
θIm + C̃

)−1
)
W− 1

2Bu = (1− θ)uTAu,

where C̃ = W− 1

2CW− 1

2 and note that

A � λmin(A)In, θIm−
(
θIm + C̃

)−1

�
(
θ − 1

θ + c1

)
Im, BTW−1B � b1In,
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where the last inequality follows from the fact that BTW−1B and W−1BBT

admit the same maximum eigenvalue. Using these inequalities and dividing
by ‖u‖2, we find that θ satisfies

(
θ − 1

θ + c1

)
b1 ≥ (1− θ)λmin(A),

which is equivalent to

θ2 (1 + s) + θ ((c1 − 1)s+ c1)− (1 + c1s) ≥ 0,

with s = λmin(A)/b1. The expression of the left extreme of I+ readily follows.
Let us now consider θ < 0. Equation (3.5) can be rewritten as

(
(1− θ)A− θBTW−1B

)
u = −BTv,

and the matrix on the left-hand side is now positive definite. This implies
that v 6= 0 otherwise we would also have u = 0. If we eliminate u from (3.5),

substitute into (3.6) and premultiply the resulting equation by W− 1

2 we get

B̃
(
(1− θ)A− θB̃T B̃

)−1

B̃Tw + C̃w = −θw, (3.8)

where v = W− 1

2w, C̃ = W− 1

2CW− 1

2 , B̃ = W− 1

2B. It holds

B̃
(
(1− θ)A− θB̃T B̃

)−1

B̃T � B̃
(
(1− θ)λmin(A)In − θB̃T B̃

)−1

B̃T

� b1
(1− θ)λmin(B)− θb1

Im,

since the eigenvalues of B̃
(
‖A‖ (1− θ)In − θB̃T B̃

)−1

B̃T are of the form

σ2/((1−θ) ‖A‖−θσ2), with σ being a singular value of B̃T . We now multiply

(3.8) by wT and use the above inequality as well as C̃ � c1Im. Then, after
some rearrangements we obtain

θ2 (1 + s) + θ ((c1 − 1)s+ c1)− (1 + c1s) ≤ 0,

with s as above, from which the lower bound for the negative eigenvalues
follows.

To conclude, we prove the upper bound for the negative eigenvalues. We
have C̃ � c0Im, as well as

B̃
(
(1− θ)A− θB̃T B̃

)−1

B̃T � B̃
(
‖A‖ (1− θ)In − θB̃T B̃

)−1

B̃T

� b0
(1− θ) ‖A‖ − θb0

Im,
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using again the form of the eigenvalues of B̃
(
‖A‖ (1− θ)In − θB̃T B̃

)−1

B̃T .

We now multiply (3.8) from the left by wT . Using the above inequalities and
dividing by ‖w‖2, we obtain

b0
(1− θ) ‖A‖ − θb0

+ c0 ≤ −θ,

which implies
tθ2 − (1− tc0) θ − t+ 1− c0 ≥ 0,

with t = 1+
b0
‖A‖ , and the stated expression for the right extreme of I−.

We now show that our estimates are consistent with the ones given by
Theorem 3.1.1 when C = 0. In this special case, the bounds of Theorem
3.2.1 reduce to

I− =

[
− 1

1 + s
, −t− 1

t

]
, I+ = {1} .

The interval I+ and the left extreme of I− coincide with the corresponding
bounds in Theorem 3.1.1, when A is singular, i.e. s = 0.

The comparison between the right extreme of I− and the expression for
the negative eigenvalues provided by equations (3.3) and (3.4) requires a
longer discussion. We first show that λ ≥ b0/‖A‖. Indeed, if in (3.4) we write
u = u1 + u2, with u1 ∈ ker(B) and u2 ∈ ker(B)⊥ (note that if (3.4) holds,
then u2 6= 0) and premultiply it by uT

1 , we obtain φuT
1Au1 + φuT

1Au2 = 0,
which shows that uT

1Au2 is nonpositive. Premultiplying (3.4) by uT
2 we obtain

φuT
2A(u1 + u2) = uT

2B
TW−1Bu2.

By using the inequalities

uT
2Au1 ≤ 0, uT

2Au2 ≤ ‖A‖ ‖u2‖2 and uT
2B

TW−1Bu2 ≥ b0 ‖u2‖2 ,
we can conclude that φ ≥ b0/‖A‖. Finally, we observe that the function
−φ/(1 + φ) is monotonically decreasing, so that we get

θ ≤ −

b0
‖A‖

1 +
b0
‖A‖

. (3.9)

This bound coincides with the right extreme of I−. If C is nonzero but
singular, the upper bound for the negative eigenvalues is again given by
(3.9). Analogously, if A is nonsingular, so that λmin(A) > 0, we get φ ≤
b1/λmin(A) = 1/s, and the monotonicity of −λ/(1 + λ) ensures that θ ≥
−1/(1 + s), which is the left extreme of I− above.
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3.2.2 Spectral estimates for BT column-rank deficient

In Theorem 3.2.1 we supposed b0 > 0 to ensure that the left extreme of
I− is meaningful. Indeed, if b0 were zero the upper bound for the negative
eigenvalues would reduce to θ ≤ −c0, which vanishes if C is singular. Even
in case C is positive definite, c0 may be very small in practice, making the
bound little representative of the largest negative eigenvalue of P−1

ADA. Thus,
when C is singular the preceding upper bound for the negative eigenvalues
has to be refined.

Theorem 3.2.2. Let A ∈ R
n×n and C ∈ R

m×m be symmetric and positive
semidefinite, B ∈ R

m×n, A in (3.1) nonsingular. Let W ∈ R
m×m be sym-

metric and positive definite and c1 = λmax (W
−1C). Suppose that BT has a

nontrivial null space, define

min
06=x∈ker(BT )

xTCx

xTWx
= c∗ > 0,

and let b+ be the minimum positive eigenvalue of W−1BBT . For PAD the
matrix in (3.2), it holds

spec(P−1
ADA) ⊆ I− ∪ I+ = [ξ1, min {η, ξ2}] ∪ [ξ3, 1] ,

where ξ1, ξ2 and ξ3 are given in Theorem 3.2.1, and η ≥ −c∗ is the largest
negative root of the cubic polynomial

q(θ) = t+θ
3+ θ2 ((c1 + c∗)t+ − 1)− θ (c1 + c∗ − 1 + t+)− (t+ − 1) c∗, (3.10)

with t+ = 1 +
b+
‖A‖ .

Proof. We only need to prove the upper bound for the negative eigenvalues.
From the proof of Theorem 3.2.1 we infer that if θ is a negative eigenvalue
of P−1

ADA, then θ ≤ ξ2 = −c0.

Consider equation (3.8) and suppose that w ∈ ker(B̃T ). Hence, we have

wT C̃w = −θ ‖w‖2, which implies θ ≤ −c∗.

We now suppose θ > −c∗, (hence, w /∈ ker(B̃T )), and write w = w0 +w1,

with w0 ∈ ker(B̃T ) and w1 ∈ ker(B̃T )⊥. We premultiply equation (3.8) by
wT

0 to get

wT
0 C̃w1 = −wT

0 C̃w0 − θ ‖w0‖2 ≤ −
(
1 +

θ

c∗

)
wT

0 C̃w0,
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from which, using the inequality wT
0 C̃w1 ≥ −

(
wT

0 C̃w0

)1/2 (
wT

1 C̃w1

)1/2
we

infer

−
(
wT

0 C̃w0

)1/2
≥ − c∗

c∗ + θ

(
wT

1 C̃w1

)1/2
.

Note that this inequality holds also when C̃w0 = 0. Thus,

wT
0 C̃w1 ≥ −

(
wT

0 C̃w0

)1/2 (
wT

1 C̃w1

)1/2
≥ − c∗

c∗ + θ
wT

1 C̃w1. (3.11)

We then premultiply equation (3.8) by wT
1 , and we bound the leftmost term

as follows:

wT
1 B̃
(
(1− θ)A− θB̃T B̃

)−1

B̃Tw1 ≥ wT
1 B̃
(
‖A‖ (1− θ)In − θB̃T B̃

)−1

B̃Tw1

≥ b+
(1− θ) ‖A‖ − θb+

‖w1‖2 ,

where the last inequality is justified by the fact that w1 is orthogonal to the

null space of B̃
(
‖A‖ (1− θ)In − θB̃T B̃

)−1

B̃T , and that the eigenvalues of

such matrix are of the form
σ2

(1− θ) ‖A‖ − θσ2
, where σ is a singular value

of B̃T . Therefore, we obtain

b+
(1− θ) ‖A‖ − θb+

‖w1‖2 + wT
1 C̃(w0 + w1) ≤ −θ ‖w1‖2 . (3.12)

According to the inequality (3.11), it holds

wT
1 C̃(w0 + w1) ≥

(
1− c∗

c∗ + θ

)
wT

1 C̃w1 ≥
c1θ

c∗ + θ
‖w1‖2 .

Thus, after dividing (3.12) by ‖w1‖2, we obtain

b+
(1− θ) ‖A‖ − θb+

+
c1θ

c∗ + θ
≤ −θ,

and, after some rearrangements,

θ3t+ + θ2 ((c1 + c∗)t+ − 1)− θ (c1 + c∗ + t+ − 1)− (t+ − 1) c∗ ≥ 0.

where t+ = 1 +
b+
‖A‖ . If we call q(θ) the above cubic polynomial and η its

largest negative root, then it holds that θ ≤ η. Since q(−c∗) ≥ 0, then
−c∗ ≤ η.
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3.2.3 An improvement of the upper bound on the pos-
itive eigenvalues

It turns out that if ker(B) = 0 and C is positive definite, then the upper
bound on the positive eigenvalues shown in Theorems 3.2.1 and 3.2.2 can be
improved, as stated by the following result.

Theorem 3.2.3. Let A ∈ R
n×n be symmetric and positive semidefinite,

C,W ∈ R
m×m be symmetric and positive definite. Let B ∈ R

m×n, and
assume that ker(B) = 0 and that A in (3.1) nonsingular.

Let c0 = λmin(W
−1C) > 0 and b0 = λmin(B

TW−1B) > 0. Then, if θ is a
positive eigenvalue of P−1

ADA, with PAD as in (3.2), it holds

θ ≤ 1− c0t+
√

(1− c0t)2 − 4t(1− t− c0)

2t
,

with t = 1 +
b0

‖A‖ .

Proof. We consider again equation (3.7) and reformulate it to obtain

(1− θ)uTAu+ uT B̃T

((
θIm + C̃

)−1

− θIm

)
B̃u = 0

where, as before, C̃ = W−1C and B̃ = W−1/2B. Using
(
θIm + C̃

)−1

�
1

θ + c0
Im, and then multiplying by θ + c0, we obtain

(1− θ)(θ + c0)u
TAu+

(
−θ2 − c0θ + 1

) ∥∥∥B̃u
∥∥∥
2

≥ 0. (3.13)

Now let ν1 =

(
−c0

2
+

√
c20
4
+ 1

)
< 1 be the positive root of p1(θ) := −θ2 −

c0θ+1. Assume ν1 < θ ≤ 1 (otherwise θ ≤ ν1), which implies that p1(θ) < 0.

Using uTAu ≤ ‖A‖ ‖u‖2,
∥∥∥B̃u

∥∥∥ ≥ b0 ‖u‖2 in (3.13), dividing by ‖u‖2 and

rearranging we find that θ satisfies

tθ2 − (1− c0t) θ + 1− t− c0 ≤ 0

with t =
b0

‖A‖ . We denote with p(θ) the above quadratic polynomial and

with ν its positive root. Then θ ≤ ν.
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So far we showed that either θ ≤ ν1 or θ ≤ ν, and hence θ ≤ max {ν1, ν}.
We now show that ν ≥ ν1. It holds

p(ν1) = −tp1(ν1) + 1− c0 − ν1 = 1− c0 − ν1 = 1− c0
2
−
√

c20
4
+ 1 < 0.

Thus, we can conclude that the positive root of p is greater than ν1 and the
proof is complete.

3.2.4 On the choice of W

The previous spectral analysis on the preconditioned matrix allows us to
make some comments on the choice of W . We are interested in identifying
the choices of W which are “optimal”, in the sense that the eigenvalues of the
preconditioned matrix are bounded by constants that do not depend on any of
the parameters of the problem (e.g., the spectral properties of the blocks), as
opposed to the spectral intervals of the original (unpreconditioned) problem.

If C is positive definite, then the choice W = C leads to the familiar
block diagonal preconditioner, where the Schur complement is computed with
respect to the (2,2) block instead of the (1,1) one. In this case, we have
c0 = c1 = c∗ = 1, and the expression for I− and I+ reduces to:

ξ1 = −1 +
√

1 + 4(1 + s)2

2(1 + s)
≥ −1

2

(
1 +

√
5
)
,

ξ2 =
(1− t)−

√
(1− t)2 + 4t2

2t
≤ −1,

ξ3 =
−1 +

√
1 + 4(1 + s)2

2(1 + s)
≥ 1

2

(
−1 +

√
5
)
,

regardless of the nullity of BT , yielding an optimal W . We emphasize that
the above bounds are consistent with the known results for the block diagonal
preconditioner (see Proposition 2.3.2) when C 6= 0. However, this choice is
feasible only if C is positive definite. If, on the other hand, C is singular or
very ill-conditioned, we consider instead

W = C +
1

‖A‖BBT ,

and show that this choice of W is also optimal, with similar spectral interval
bounds.
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Theorem 3.2.4. Let A ∈ R
n×n and C ∈ R

m×m be symmetric and positive

semidefinite, B ∈ R
m×n, A in (3.1) nonsingular. Given W = C +

1

‖A‖BBT

and PAD in (3.2), it holds that spec(P−1
ADA) ⊆ I− ∪ I+ with

I− =

[
−1 +

√
1 + 4(1 + a)2

2(1 + a)
, −1

2

]
⊆
[
−1

2

(
1 +

√
5
)
, −1

2

]
,

I+ =

[
−1 +

√
1 + 4(1 + a)2

2(1 + a)
, 1

]
⊆
[
1

2

(
−1 +

√
5
)
, 1

]

and a =
λmin(A)

‖A‖ .

Moreover, if ℓ denotes the nullity of BT , then P−1
ADA has the eigenvalue

−1 with multiplicity ℓ.

Proof. Direct calculation shows that any vector of the form (0, v), with v ∈
ker(BT ) is an eigenvector of P−1

ADA of eigenvalue −1.

Let c1 = λmax (W
−1C). Since W � C, it follows c1 ≤ 1. Moreover,

c1 ≥ c∗ = min
06=x∈ker(BT )

xTCx

xT
(
C + 1

‖A‖BBT
)
x
= 1.

and as a consequence c1 = c∗ = 1.

From the relationW � 1

‖A‖BBT , we obtain BTW−1B � ‖A‖ In and thus

s = λmin(A)/b1 ≥ λmin(A)/‖A‖. Then all bounds except the left extreme of
I− follow from Theorem 3.2.1.

Regarding the upper bound for the negative eigenvalues, we start again
from equations (3.5) and (3.6) and suppose v /∈ ker(BT ) (if v ∈ ker(BT ) we
immediately have that θ = −1). If we eliminate u from (3.5) and substitute
into (3.6), we obtain

B

((
(1− θ)A− θBTW−1B

)−1
+

θ

‖A‖In
)
BTv + (1 + θ)Cv = 0.

Let us now multiply the above equation by vT from the left. Assuming that
θ ≥ −1, it holds that (1 + θ)vTCv ≥ 0 and we get

vTB

((
(1− θ)A− θBTW−1B

)−1
+

θ

‖A‖In
)
BTv ≤ 0.
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Since v /∈ ker(BT ), the minimum eigenvalue of
(
(1− θ)A− θBTW−1B

)−1
+

θ

‖A‖In must be nonpositive. Thus, again by BTW−1B � ‖A‖ In and A �
‖A‖ In, it follows

0 ≥ λmin

((
(1− θ)A− θBTW−1B

)−1
+

θ

‖A‖In
)

≥ 1

(1− 2θ) ‖A‖ +
θ

‖A‖ .

Rearranging the above equation we obtain −2θ2 + θ + 1 ≤ 0 from which it

follows θ ≤ −1

2
.

As already discussed in Section 3.1, a major consideration in the choice
of W is that both W and A + BTW−1B should be cheap to invert, and the

choices discussed above, in particular W = C +
1

‖A‖BBT , are likely to be

infeasible in practical computations. However, we argue that this optimal
choice should be regarded as an ideal one, and should drive the choices of
more economical approximations. Our spectral estimates no longer apply
when approximations to PAD are performed. However, since the precondi-
tioned matrix remains symmetric, we expect to obtain small perturbations
of these estimates as the approximate preconditioner slightly deviates from
the ideal one.

We refer to Chapter 7 for an experimental discussion on the choice of a
diagonal W in the context of systems arising from Quadratic Programming
problems.

3.3 Numerical illustration

In this section we illustrate the quality of the spectral estimates derived
for the proposed class of preconditioners. To construct the saddle point
system A, we consider a regularized Linear Programming problem of the
form

min
x,r

cTx+
1

2
ρ‖x‖2 + 1

2
‖r‖2 subject to Jx+

√
δr = b, x ≥ 0, (3.14)

where J ∈ R
m×n, n ≥ m, ρ and δ are nonnegative regularization parameters,

b ∈ R
m and c ∈ R

n. We refer to Chapter 6 and 7 for more details about such
problems and their numerical solution via Interior Point (IP) methods. Here
we just mention that the numerical solution of (3.14) with an IP method re-
quires the solution of a sequence of linear systems, whose coefficient matrices
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can be expressed in the form

K3,reg =




ρIn JT −Z1/2

J −δIm 0
−Z1/2 0 −X


 .

Here X = diag(x), where x is the current approximation for the exact so-
lution x̂ of (3.14), and Z = diag(z) where z is the dual variable associated
with the inequality constraints. The properties of IP methods ensure that
x and z have strictly positive components, and hence X and Z are positive
definite.

Note that for K3,reg the role of A, B and C is not fixed. In the first set
of experiments, we considered the block reordering

A =

[
δIm 0
0 X

]
, C = ρIn, B =

[
−J Z1/2

]
, (3.15)

while in the second one,

A = ρIm, C =

[
δIm 0
0 X

]
, B =

[
J

−Z1/2

]
, (3.16)

Note that in (3.15), we have n > m and ker(BT ) = {0}, whereas in (3.16)
we have n < m and ker(BT ) 6= {0}.

Various choices for the matrix W were considered, namely,

W = C, W = C +
1

‖A‖BBT , W = Im, W = RTR,

whereR is anm×mmatrix with normally distributed random entries (Mat-

lab function randn, [88]). In the setting (3.16), we also considered the choice
W = C + C0, where

C0 =

[
γ1Im 0
0 γ2In

]
with γ1 = min

{
1,

1

ρ

}
, γ2 = γ1 ·min {1,mean(Z)} ,

and mean(Z) denotes the algebraic mean of the diagonal elements of Z. We
motivate this selection by pointing out that we will use an analogous selection
in the numerical experiments of Chapter 7.

As a model problem, we used as J the matrix in LPnetlib/lp scagr7 [131]
with full row rank, n = 185 and m = 129 . The actual matrix blocks were
taken from the fifth iteration of the IP method. In all the experiments, we
set ρ = 10−6, so that γ1 = 106. We also set δ = 0, except for the case (3.16)
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W I−
[
λ1(P−1

ADA), λm(P−1

ADA)
]

C [−1.61803, −1.61595] [−1.61803, −1.61803]

C +
1

‖A‖BBT [−1.00144, −0.5] [−1.00000, −0.52722]

Im
[
−1.0000, −3.47771 · 10−4

] [
−1.0000, −3.89544 · 10−4

]

RTR
[
−1.00011,−2.07795 · 10−6

] [
−1.00011, −2.34485 · 10−6

]

W I+
[
λm+1(P−1

ADA), λn+m(P−1

ADA)
]

C [0.61803, 1] [0.61803, 1.00000]

C +
1

‖A‖BBT [0.99856, 1] [0.99901, 1.00000]

Im [1.00000, 1] [1.00000, 1.00000]

RTR [0.99989, 1] [0.99989, 1.00000]

Table 3.1: Setting (3.15). Comparison between the intervals I− and I+ and
the true extremal eigenvalues of P−1

ADA.

with W = C, because then C = δIm is required to be positive definite; for
this latter case we set δ = 10−6.

Tables 3.1 and 3.2 show the comparison between the intervals I− and I+

provided by Theorem 3.2.1, Theorem 3.2.2 and Theorem 3.2.4 and the true
extremal eigenvalues of the matrix P−1

ADA.
In general the tested matrices W provided a very favorable setting for our

estimates, yielding rather sharp bounds for all interval extremes. Note that in
the caseW = C ≻ 0 of setting (3.16) (Table 3.2) the assumptions of Theorem
3.2.3 are satisfied, and hence the bound provided by that result was reported.
The less satisfactory estimates occurred on the negative eigenvalues for set-
ting (3.16) and W chosen randomly or such that W = C +1/‖A‖BBT . It is
also clear that both the random choice and the identity matrix give spectral
intervals that would be too large for minres to achieve fast convergence.

We also refer to Chapter 7, where the performance of the augmented
preconditioner is tested in the solution of saddle point systems (with C 6= 0)
stemming from Quadratic Programming problems.

3.4 Conclusions

In this chapter, we have addressed the class of augmented block diagonal
preconditioners. Such preconditioners cope with the (possibly high) singu-
larity of the diagonal blocks of a saddle point system and also preserve the
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W I−
[
λ1(P−1

ADA), λm(P−1

ADA)
]

C [−1.61803, −1.00000] [−1.61803, −1.00000]

C +
1

‖A‖BBT [−1.28078, −0.5] [−1.00000, −0.50000]

Im [−3.04766, −0.01264] [−2.82702, −0.01310]

RTR
[
−99.6126,−5.32932 · 10−6

] [
−99.6126, −4.29594 · 10−5

]

C + C0 [−1.58842, −0.02797] [−1.58334,−0.02316 ]

W I+
[
λm+1(P−1

ADA), λn+m(P−1

ADA)
]

C [0.61803, 0.61874] [0.61803, 0.61874]

C +
1

‖A‖BBT [0.78078, 1] [0.99915, 1.00000]

Im [0.32812, 1] [0.35692, 1.00000]

RTR [0.01004, 1] [0.01178, 1.00000]

C + C0 [0.62956, 1 ] [0.63150, 0.99999 ]

Table 3.2: Setting (3.16). Comparison between the intervals I− and I+ and
the true extremal eigenvalues of P−1

ADA.

symmetry of the problem. General spectral bounds for the preconditioned
matrix were derived. These new bounds significantly extend results in the
literature, as we are unaware of spectral estimates that cover the case of both
nonzero diagonal blocks. We also derived theoretical choices for the matrix
W for which the eigenvalues of the preconditioned system are bounded in-
dependently of any problem parameter. Finally, we presented numerical ex-
periments on saddle point systems stemming from regularized LP problems,
which showed the quality of our spectral estimates.



Part II

Saddle point systems arising in
PDE-constrained optimization
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Chapter 4

Refined spectral estimates for a
preconditioned system in a
nonstandard inner product1

When a symmetric system, for example a saddle point system, is solved
using a symmetric and positive definite (spd) preconditioner, then the sym-
metry of the problem is preserved. As a consequence, a short term iter-
ative system solver like minres can be used. On the other hand, it has
been observed that indefinite preconditioners may lead to very efficient so-
lution methods. Various strategies have been proposed to cope with the
resulting nonsymmetry, that aim to exploit the still rich algebraic struc-
ture [11, 86, 77, 111]. Since the paper by Bramble and Pasciak in 1988
[21], attention has also been given to strategies that allow one to use an
iterative solver for positive definite matrices with short-term recurrences,
by using a non-standard inner product during the iterative procedure, see
[35, 69, 104, 117, 125, 126, 101, 102, 105, 79]. These approaches rely on
elegant theoretical properties of Krylov subspace methods that allow the
simplification of the general recurrence, whenever some symmetry relations
can be exploited [75, 43, 2].

In this chapter, we consider saddle point system stemming from a family
of PDE-constrained optimal control problems, and we concentrate on the
strategy developed for these systems by Schöberl and Zulehner [117], where
a cg method in a non-standard inner product is employed. Our main goal
here is to refine the spectral analysis provided in that work. Moreover, we
will experimentally show how this analysis may provide new insight in the
understanding the performance of the linear system solver.

1The results presented in this chapter are taken from [128].
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nonstandard inner product

The chapter is organized as follows: in Section 4.1 we introduce the opti-
mal control problem. In Section 4.2 we briefly review the theory of Conjugate
Gradient methods in a nonstandard inner product, and in particular the ap-
proach proposed in [117]. Section 4.3 is the core of this chapter, and it is
devoted to the derivation of the new spectral bounds. In Section 4.4 we show
some numerical experiments and finally we draw the conclusions.

4.1 An optimal control problem with PDE

constraints

We consider the following optimization problem on a Hilbert space. Find
y ∈ H1(Ω) and u ∈ L2(Ω) that solve the minimum problem

min
y,u

1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω)

s.t.

{ −∆y + y = u in Ω
∂y

∂n
= 0 on ∂Ω,

(4.1)

where ν ∈ R
+ is a regularization parameter, yd ∈ H1(Ω) is a given function

representing the desired state, and Ω is a domain in R
d with d = 2, 3. The

function y, called state, and the function u, called control, are constrained
to satisfy an elliptic partial differential equation with Neumann boundary
conditions. For a detailed treatment of optimal control problems, we refer to
[130].

The weak formulation of the differential equation in (4.1) reads:
∫

Ω

∇y(x) · ∇v(x)dx+

∫

Ω

y(x)v(x)dx =

∫

Ω

u(x)v(x)dx ∀ v ∈ H1(Ω)

Note that there is no integral over ∂Ω, because of the condition
∂y

∂n
= 0.

To solve (4.1), we follow a discretize-then-optimize approach. In other
words, we first transform the original continuous problem into a standard
Quadratic Programming (QP) problem by finite element discretization, and
then we numerically solve the first-order conditions of the fully discretized
optimization problem. Here we will not discuss in detail the finite element
method; instead, we refer to the vast literature on the subject (see e.g. the
monographs [20],[22],[98]).

Let Vh and Uh be finite dimension subspaces of H1(Ω) and L2(Ω), respec-
tively. In this chapter, we take Vh = Uh the space of continuous and piecewise
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linear functions on a simplicial subdivision of Ω. Here h is the discretization
parameter, which is a measure of the refinement of the mesh and determines
the dimension of the subspaces.

Let {φ1, . . . , φn} be a basis for Vh, we define the mass matrix M ∈ R
n×n,

the stiffness matrix K ∈ R
n×n and the vector yd ∈ R

n as

Mij =

∫

Ω

φi(x)φj(x)dx Kij =

∫

Ω

∇φi(x) · ∇φj(x)dx i, j = 1, . . . , n

(yd)i =

∫

Ω

yd(x)φi(x)dx i = 1, . . . , n.

Then the discretization of problem (4.1) reads [42, Section 5.2]:

min
y,u∈Rn

Q(u, y) =
1

2
(y − yd)

T M (y − yd) +
ν

2
uTMu

s.t. Ly = Mu

(4.2)

where L = K +M .
We note that (4.2) is a QP problem with no inequality constraints. As

such, it is possible to solve it using the method of Lagrange multipliers. We
introduce the Lagrangian function

L(u, y, p) = 1

2
(y − yd)

T M (y − yd) +
ν

2
uTMu− pT (Ly −Mu) ,

where p ∈ R
n is the vector of Lagrange multipliers. Since the function to be

minimized in (4.2) is convex, we simply look for a triple (u, y, p) ∈ R
3n that

satisfies the first-order optimality condition ∇L(u, y, p) = 0, i.e.

LTu+M(y − yd) = 0

νMu−Mp = 0

Ly −Mu = 0

or, written in matrix form,


M 0 LT

0 νM −M
L −M 0





y
u
p


 =



Myd
0
0


 . (4.3)

Note that, in our problem, both L and M are symmetric, so the transposition
in the (1,3) block is purely conventional. When a different differential equa-
tion is considered (e.g. convection-diffusion, see the next chapter), L might
become nonsymmetric. The system matrix appearing in (4.3) is apparently
a saddle point system with blocks:

A =

[
M 0
0 νM

]
BT =

[
LT

−M

]
C = 0.
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nonstandard inner product

4.2 Conjugate Gradient in a nonstandard in-

ner product

Consider the linear system

Ax = b (4.4)

with A ∈ R
N×N nonsingular and b ∈ R

N . As it is well-known (see Chapter
2), if one wants to apply the standard Conjugate Gradient (cg) method to
solve (4.4), then A has to be symmetric and positive definite.

The standard definitions of symmetry and positive definiteness, however,
are strongly tied to the choice of the standard Euclidean inner product, and
different choices are possible. Let B ∈ R

N×N be an spd matrix. The inner
product associated to B is defined as

〈v, w〉B := vTBw ∀ v, w ∈ R
N

We say that A is symmetric and positive definite in the inner product defined
by B if

B − symmetry: 〈x,Ay〉B = 〈Ax, y〉B ∀x, y ∈ R
N

B − positive definiteness: 〈x,Ax〉B > 0 ∀ x ∈ R
N

Note that by taking B = IN we recover the standard definitions of symmetry
and positive definiteness. It can be shown that if a matrix A is symmetric
and positive definite with respect to B, then it is diagonalizable and its
eigenvalues are real and positive. Moreover, the matrix X of eigenvectors for
A can be chosen to be B-orthogonal, i.e., XTBX = IN .

It is possible to define a variant of the standard cg method, implemented
in the B-inner product. Such method can be applied to solve the system
(4.4), provided that A is symmetric and positive definite with respect to B.
This idea, in fact, can be tracked back to the original paper by Hestenes and
Stiefel [70, Section 10] where the cg method was first presented.

We refer to [2] for a full taxonomy of cg methods in nonstandard inner
products. One such method, relative to the inner product defined by B, is an
iterative Krylov method (that is, the k-th iterate xk lies in xk + Kk(A, r0),
where r0 is the initial residual), which minimizes at each iteration the B-norm
of the error

‖ek‖B := ‖x∗ − xk‖B = min
x∈x0+Kk

‖x∗ − x‖B ;

As in the case of standard cg, by exploiting some orthogonality properties
the approximate solution at the k-th is obtained from the previous iterates.
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This leads to a short-term recurrence, and only a small number of vectors
need to be stored in memory.

Necessary and sufficient conditions on B and A for a cg method to be
computable were discussed by Faber and Manteuffel [43]. In our context,
these conditions are met if B = DA, with D spd and if Dsi can be efficiently
computed at every step of the algorithm, where si is the ith residual.

In nonstandard cg, the following a-priori estimate on the B-norm of the
error cg, analogous to (2.10), holds:

‖ek‖B
‖e0‖B

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

(4.5)

where κB(A) = ‖A‖B ·‖A−1‖B = λmax(A)/λmin(A) is the B-condition number
of A. Note that κB(A) is well defined, as the eigenvalues of A are real and
positive.

The estimate in (4.5) shows that the error B-norm is bounded by a quan-
tity that only depends on the eigenvalues A, and the use of the B−norm is
key for this happen. Recall that for a nonsymmetric matrix A convergence
bounds for “standard” Krylov methods cannot be given by using eigenvalues
only. Indeed, such bounds relies also on different information, for example
on the eigenvectors of A (see (2.14)).

As already discussed, when attempting to solve a linear system with it-
erative methods, a preconditioner if often needed to improve the spectral
properties of the system matrix. This is the case also when dealing with
nonstandard cg methods. Thus, if we want to apply one such method
to solve (4.4), we need to find a preconditioner P and an spd matrix B,
such that the preconditioned system P−1A is symmetric and positive defi-
nite in the B−inner product. Only then a cg method can be applied to solve
P−1Ax = P−1b.

To solve the saddle point system (4.3), Schöberl and Zulehner in [117]
considered the following symmetric and indefinite preconditioner:

PSZ =

[
Â BT

B BÂ−1BT − Ŝ

]
,

where Â and Ŝ are spd matrices which approximate A and BÂ−1BT , respec-
tively, and satisfy

A < Â and αxT Âx ≤ xTAx ∀ x ∈ kerB, α < 1, (4.6)

Ŝ < BÂ−1BT ≤ βŜ, β > 1. (4.7)
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nonstandard inner product

The actual values of α and β are problem and method dependent. Estimates
of these quantities can be derived, for instance, Â is obtained by an algebraic
multigrid when A is the Laplace operator [19]. Ruge and Stuben [112] pro-
vides more details on algebraic multigrids. In [117], the building blocks of the
preconditioner are taken as approximations of the matrices which represent
an inner product in the underlying function spaces. The parameters α and
β are estimated accordingly.

We recall the following result from [117].

Theorem 4.2.1. Let (4.6) and (4.7) hold. Then D := PSZ −A is spd and
DP−1

SZA is spd. Moreover,

λmax(P−1
SZA) ≤ β(1 +

√
1− 1/β) (4.8)

λmin(P−1
SZA) ≥ 1

2

(
2 + α− 1/β −

√
(2 + α− 1/β)2 − 4α

)
. (4.9)

Theorem 4.2.1 allows one to use cg to solve the system P−1
SZAx = P−1

SZb,
which, at every step, minimizes the error in the norm defined by B = DP−1

SZA.
The same result can be employed to give an estimate of the convergence rate,
according to (4.5).

4.3 Refined spectral estimates

We next give a refined result, where we do not restrict ourselves to the
saddle point structure.

Proposition 4.3.1. Let Â,A ∈ R
N×N be nonsingular symmetric matrices,

such that D = Â − A � 0. We suppose that both Â and A have n positive
eigenvalues and m = N −n negative ones. Then Â−1A has real and positive
eigenvalues. Moreover, if D is positive definite, Â−1A is diagonalizable and
has n eigenvalues strictly smaller than 1 and m eigenvalues strictly greater
than 1. If, on the other hand, D has the eigenvalue 0 with multiplicity ℓ,
then Â−1A has ℓ eigenvectors associated with the eigenvalue 1.

Proof. We first assume that D is positive definite. Then D defines an inner
product on R

N . Since DÂ−1A = (Â−A)Â−1A = A−AÂ−1A is symmetric,

there exists a D-orthogonal matrix X of eigenvectors for Â−1A. Therefore

IN = XTDX = XT (Â − A)X = XT Â(IN − Â−1A)X = XT ÂX(IN − Λ),

and hence XT ÂX = (IN − Λ)−1 and is thus diagonal. Since Â has m neg-
ative and n positive eigenvalues, the Sylvester Law of Inertia ensures that
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XT ÂX has m negative and n positive diagonal entries. Then Λ must have
m eigenvalues greater than 1, and n smaller than 1. Similarly,

IN = XT (Â − A)X = XTA(A−1Â − IN)X = XTAX(Λ−1 − IN),

from which we deduce XTAX = (Λ−1 − IN)
−1 = Λ(IN − Λ)−1, and thus

XTAX is also diagonal. Moreover, this equation shows that Λ must have n
eigenvalues lying in the interval ]0, 1[ and m eigenvalues lying outside [0, 1].
Adding these conditions to the previous ones, we conclude that Λ has n
eigenvalues lying in ]0, 1[ and m eigenvalues lying in ]1,+∞[.

We now consider the case where D is positive semidefinite. We define
Âǫ = Â + ǫIN and Dǫ = Âǫ − A for ǫ > 0. Since Dǫ is symmetric and
positive definite, from the first part of the proof we deduce that Â−1

ǫ A has

real and positive eigenvalues. Since Â−1
ǫ A ǫ→0+−→ Â−1A, for the continuity

of the eigenvalues we conclude that Â−1A (which is nonsingular) has real

and positive eigenvalues. Finally, from the relation D = Â(I − Â−1A) one

deduces that Dv = 0 if and only if Â−1Av = v.

A saddle point matrix of the form (4.3) has n positive and m negative
eigenvalues; the same holds for PSZ . Thus, if we consider Theorem 4.3.1
taking Â = PSZ we infer

spec(P−1
SZA) ⊆ [λ1, λn] ∪ [λn+1, λn+m] (4.10)

with 0 < λ1 ≤ λn < 1 < λn+1 ≤ λn+m.
The result above shows that the spectral interval used in the convergence

rate estimate is actually given by the union of two intervals, which do not
include the value 1. We are interested in better understanding how far these
intervals lie from 1, and whether this distance may influence convergence. In
the following we provide new bounds for λn and λn+1, and also a new lower
bound for λ1. We first need to define two new quantities:

a = λmax

(
Â−1A

)
, s = λmax

(
(BÂ−1BT )−1Ŝ

)
, (4.11)

with α ≤ a < 1 and 1/β < s < 1 from (4.6) and (4.7). Since D = PSZ −A,

Az = λPSZz is equivalent to Az = µDz, with µ =
λ

1− λ
. (4.12)

We have that λ < 1 if and only if µ > 0, and λ > 1 if and only if µ < −1.
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Lemma 4.3.2. Let a, s be as in (4.11). Let µ be an eigenvalue of Az = µDz.
Then either µ− ≤ µ < −1 or 0 < µ ≤ µ+, with

µ± =
1

2


 a

1− a
±
√(

a

1− a

)2

+
4

(1− a)(1− s)


 .

Proof. Let z = [x; y] be an eigenvector associated with µ. Then

Ax+ BTy = µ(Â− A)x (4.13)

Bx = µEy, (4.14)

with E = BÂ−1BT − Ŝ. Note that x 6= 0, otherwise equation (4.13) would
give BTy = 0, and since BT is full column rank, this would imply y = 0.
Equation (4.14) is used to find y, which is then substituted into equation
(4.13) to obtain

Ax+
1

µ
BTE−1Bx = µ(Â− A)x.

Reordering the terms and premultiplying by µxT we obtain

µ2xT Âx− (µ2 + µ)xTAx− xTBTE−1Bx = 0.

Since µ ∈]−∞,−1[∪]0,+∞[, µ2 + µ > 0. Moreover, xTAx ≤ axT Âx. Thus,

(1− a)µ2xT Âx− aµxT Âx− xTBTE−1Bx ≤ 0. (4.15)

It holds that

xTBTE−1Bx ≤ 1

(1− s)
xTBT (BÂ−1BT )−1Bx ≤ 1

(1− s)
xT Âx.

Using this inequality in (4.15) and dividing by (1− a)xT Âx, we find:

µ2 − µ
a

1− a
− 1

(1− a)(1− s)
≤ 0,

from which both extremes µ− and µ+ are derived.

We emphasize that the bounds of Lemma 4.3.2 are sharp. Indeed, let us
consider the case n = 2, m = 1, with

A =

[
1 0
0 1− ǫA

]
, BT =

[
0
1

]
, Â =

[
2 0
0 1

]
, Ŝ = 1− ǫS,
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with ǫA < 1
2
and ǫS < 1. Clearly, a = λmax(Â

−1A) = 1 − ǫA and s =

λmax((BÂ−1BT )−1Ŝ) = 1− ǫS. The eigenvalues of the matrix

D−1/2AD−1/2 =



1 0 0
0 1−ǫA

ǫA
(ǫSǫA)

−1/2

0 (ǫSǫA)
−1/2 0




satisfy the characteristic equation

(µ− 1)

(
µ2 − µ

1− ǫA
ǫA

− 1

ǫAǫS

)
= 0,

whose solutions are µ = 1 and both bounds µ = µ−, µ = µ+.

Proposition 4.3.3. Let λn and λn+1 as in (4.10). Then

λn ≤ 1− 2(1− a)
√
1− s

(2− a)
√
1− s+

√
a2(1− s) + 4(1− a)

≤ 1− (1− a)
√
1− s√

1− s+
√
1− a

(4.16)

and

λn+1 ≥ 1 +
(2− a)(1− s) +

√
a2(1− s)2 + 4(1− a)(1− s)

2s

≥ 1 +
(1− s)

(
2a
√
(1− s)(1− a) + 2− a

)

2s
≥ 1 +

1− s

2s
.(4.17)

Proof. Using Lemma 4.3.2 we find that

λn ≤ µ+

1 + µ+

= 1− 1

1 + µ+

, λn+1 ≥
µ−

1 + µ−
= 1− 1

1 + µ−
.

Bounds (4.16) and (4.17) follow from simple, though tedious, calculations.

Proposition 4.3.3 shows that the distance of λn+1 from 1 depends linearly
on s, the eigenvalue of (BÂ−1BT )−1Ŝ closest to 1, while the distance of λn

from 1 depends nonlinearly on s and a. While it can be shown that the upper
bound (4.8) is sharp, the lower bound (4.9) will be improved. The approach
we follow deviates from that originally proposed in [117].
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Proposition 4.3.4. Let (4.6) and (4.7) hold. Let λ be an eigenvalue of
P−1

SZA. Then

λ ≥ min
{
α, λ̄

}
where λ̄ =

1

2

(
2β + α− 1−

√
(2β + α− 1)2 − 4αβ

)
.

(4.18)

Proof. We consider the generalized eigenvalue problem A
[
x
y

]
= λPSZ

[
x
y

]
,

i.e.,

Ax+ BTy = λ
(
Âx+ BTy

)
(4.19)

By = λ (Bx+ Ey) (4.20)

with E = BÂ−1BT − Ŝ ≻ 0. We observe that x 6= 0, otherwise it would
follow λ = 0. We find y from the equation (4.20) and we substitute it into
equation (4.19), giving

(
λÂ− A

)
x =

(1− λ)2

λ
BTE−1Bx (4.21)

We first consider the case x ∈ kerB. Premultiplying the last equation by xT

we have

0 = xT
(
λÂ− A

)
x ≤

(
λ

α
− 1

)
xTAx,

and then λ ≥ α. In the general case, we write x = x1 + x2, with x1 ∈ kerB

and 0 6= x2 ∈ (kerB)⊥Â :=
{
u ∈ R

n | uT Âv = 0 ∀v ∈ kerB
}
, which is well-

defined since Â induces a scalar product in R
N . Note that x2 = Â−1BTw for

some w ∈ R
m.

We premultiply equation (4.21) by xT
1 and by xT

2 , and obtain (note that

xT
1 Âx2 = 0)

xT
1

(
λÂ− A

)
x1 − xT

1Ax2 = 0, (4.22)

xT
2

(
λÂ− A

)
x2 − xT

2Ax1 =
(1− λ)2

λ
xT
2B

TE−1Bx2. (4.23)

We first consider the right-hand side of equation (4.23). Using (4.7), we write

E ≤ (β − 1)/βBT Â−1B. Hence, xT
2BE−1BTx2 ≥ cβx

T
2B

T (BÂ−1BT )−1Bx2,
where cβ = β/(β − 1). Moreover, we have

xT
2B

T (BÂ−1BT )−1Bx2 = xT
2 Â
(
Â−1BT (BÂ−1BT )−1B

)
x2 = xT

2 Âx2.

(4.24)
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We now turn to the left-hand side of equation (4.23). We consider

−xT
2Ax1 = xT

2 (Â− A)x1 ≤
(
xT
1 (Â− A)x1

)1/2 (
xT
2 (Â− A)x2

)1/2

≤
√
1− α

(
xT
1 Âx1

)1/2 (
xT
2 Âx2

)1/2
. (4.25)

From (4.22) and condition (4.6) we deduce that −xT
2Ax1 ≥ (α− λ) xT

1 Âx1.
We suppose λ < α (if not, α is the sought after extreme). The last inequality,
added to (4.25), shows that

(
xT
1 Âx1

)1/2
≤

√
1− α

α− λ

(
xT
2 Âx2

)1/2
.

Note that this inequality also holds for x1 = 0. Returning to inequality (4.25)

we now conclude that −xT
2Ax1 ≤ (1− α)/(α− λ)xT

2 Âx2, and thus

xT
2

(
λÂ− A

)
x2 − xT

2Ax1 ≤
(
λ+

1− α

α− λ

)
xT
2 Âx2

=
(1− λ)(λ− α + 1)

α− λ
xT
2 Âx2. (4.26)

Collecting inequalities (4.24) and (4.26) we find that λ satisfies

λ− α + 1

α− λ
≥ (1− λ)

λ
cβ,

or, after some algebra, λ2−(2β+α−1)λ+αβ ≤ 0. We denote this polynomial
by p(λ). Since p(0) = αβ > 0 then the smallest positive root of p(λ), which
is precisely λ̄, is a lower bound for λ, when λ̄ < α.

We next analyze the quality of λ̄ by comparing it with the lower bound
in Theorem 4.2.1, which will be denoted by λ̄SZ in the following. We note
that λ̄SZ is the smallest positive root of a second degree polynomial, i.e.,
pSZ(λ) = λ2 − (2 + α − 1/β)λ + α. We observe that p(λ) − pSZ(λ) = (β −
1) [(1/β − 2)λ+ α]. Therefore, p(λ) > pSZ(λ) if and only if λ < α/(2−1/β).
If we show that λ̄SZ < α/(2− 1/β), then necessarily λ̄SZ < λ̄, and thus λ̄ is
a sharper lower bound for the eigenvalues of P−1

SZA. Let ρ = 2 − 1/β. Our
condition reads

1

2

(
ρ+ α−

√
(ρ+ α)2 − 4α

)
<

α

ρ
,

which is equivalent to

(
ρ+ α− 2α

ρ

)
−
√(

ρ+ α− 2α

ρ

)2

+ 4
α2

ρ

(
1− 1

ρ

)
< 0,

which holds since ρ > 1, so that (1− 1/ρ) > 0.
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Figure 4.1: Blue dots are eigenvalues of P−1
SZA

. The solid lines are the upper and lower bounds and the dashed lines are
the interior bounds. The dash-dot lines is the improved lower bound.

4.4 Numerical experiments

In this section we report on some of our numerical experiments to illus-
trate our theoretical results. All computations were performed using Mat-

lab [88].

We considered the PDE-constrained optimal control problem described
in Section 4.1, which is the same considered in [117]. The data we used
to construct K, M and yd were taken from [127, Target 1 – 2D]. We first
consider the second level of discretization, that is, the dimension of A is
675× 675.

Following Schöberl and Zulehner, we set

Â =
1

σ

[
Ŷ 0

0 M̂

]
, Ŝ =

σ

τν
Ŷ . (4.27)

where M̂ and Ŷ are spd preconditioners for M and Y :=
√
νL + M re-

spectively, while σ and τ are positive parameters, whose choice is crucial to
obtain good values of α and β, and also to ensure that D is positive definite.

The above choice for Â and Ŝ was guided by the properties of suitable
inner products in the function spaces in which the state, control and Lagrange
multiplier are sought; we refer again to [117] for a discussion. To actually

construct M̂ we used three Gauss-Seidel iterations, while for Ŷ we used
algebraic multigrid [19].
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We set σ = 0.9, τ = 1.1 · 4
3
, ν = 10−4 [117, page 770, middle example, and

page 768]; the value of ν does not seem to affect their analysis [117, Table 6.2].
Figure 4.1 shows the eigenvalues of P−1

SZA, together with the upper bound
(4.8) and both interior bounds (4.16) and (4.17). We see that the estimates
give a very realistic idea of the location of the true eigenvalues. For this
example, we also observe that the bound (4.9) (lower solid line) is not sharp.
Bound (4.18), represented by the dash-dotted line, slightly improves it.

The two parameters a and s, which are quality measures of the precon-
ditioners Â and Ŝ (and thus of PSZ), affect the distance of the eigenvalues
of P−1

SZA from 1, according to Proposition 4.3.3. More precisely, if a and s
are close to 1, that is PSZ is a good enough preconditioner for A, the two
spectral intervals [λ1, λn] and [λn+1, λn+m] will be close to each other. Oth-
erwise, if a and s are away from 1, the two intervals will be more distant.
We also remark that, when Â and Ŝ are constructed as proposed in [117],
a is proportional to σ, and s is proportional to 1/τ . Numerical experiments
show that parameter ν also has an influence on the distance between the two
intervals; indeed, in our setting the distance is greater when ν ≈ 1.

The well-known bound (4.5) for the cg method considers only the ex-
treme eigenvalues of a matrix A. As such, it may overly pessimistic (even in
the worst-case scenario), if the eigenvalues A are far from being uniformly
distributed in the interval [λmin, λmax]. This is the case, for example, when A
has a few eigenvalues far away from the others. In such cases, the real conver-
gence is typically much faster than the one predicted by (4.5). Nevertheless,
it is often possible to obtain more descriptive bounds by exploiting the pe-
culiar spectral properties of the matrix considered, in case such information
is available.

In 1977, Axelsson [3] showed a bound for cg that takes into account the
presence of two separated spectral intervals of the same length. We report it
here in the case of a non-standard inner product.

Theorem 4.4.1. [3, Section 4.1] Let M be symmetric and positive definite
with respect to the inner product defined by D, and suppose spec(M) ⊆
[a, b] ∪ [c, d], with 0 < a < b < c < d. We further suppose that b− a = d− c.
Then a cg method in the D-inner product satisfies

‖e2k‖B
‖e0‖D

≤ 2

(√
κ̃− 1√
k̃ + 1

)k

with κ̃ =
bc

ad
, B = DA. (4.28)

Note that if the spectral intervals of A are not of the same length, it is
still possible to apply this result by simply “expanding” the smaller interval
to match the larger one, although this may cause the bound to be less tight.
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Figure 4.2: Convergence history and theoretical bound for σ = 0.9, τ = 1.1· 4
3
,

ν = 10−4 (left); and σ = 0.5, τ = 2 · 4
3
, ν = 1 (right).

Figure 4.2 displays the convergence history of the method, in terms of the
relative error B-norm, namely ‖ek‖B/‖e0‖B, along with the upper bounds
(4.5) and (4.28). We used the same model previously considered in this
Section but with a finer discretization, yielding A of size 11907. We used
x∗ = randn(N, 1) as the exact solution, and x0 = 0 as the initial guess.

We emphasize that, since (4.28) is defined only for even iterations, we
considered the bound

‖e2k+1‖B
‖e0‖B

≤ min



2

(√
κ̃− 1√
k̃ + 1

)k

, 2

(√
κ(A)− 1√
κ(A) + 1

)2k+1




for odd iterations.
The left plot of Figure 4.2 considers the first choice of values for σ, τ and

ν. We see that the observed behavior is in good agreement with both the-
oretical bounds. For this problem, the spectral intervals are spec(P−1

SZA) ⊆
[0.5821, 0.9396] ∪ [1.1553, 2.2891], and hence they are very close. The right
plot refers instead to realistic values of the parameters that somewhat deviate
from the ideal ones presented in [117]: σ = 0.5, τ = 2 · 4

3
, ν = 1. In this case

we see that the standard bound (4.5) fails to predict the rate of convergence of
the method. On the other hand, bound (4.28), while not completely accurate,
is a better approximation of the real rate of convergence. For this problem,
the spectral intervals are spec(P−1

SZA) ⊆ [0.4576, 0.6037] ∪ [3.7977, 4.7748].
They are quite separated, and this fact explain why (4.28) is more repre-
sentative. Their length, however, is quite different, and this fact probably
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motivates the distance between bound (4.28) and the real convergence curve.

4.5 Conclusions

We derived new sharper bounds for the spectrum of the preconditioned
coefficient matrix of a saddle point linear system, that are used to analyze the
convergence of cg in a non-standard inner product. In particular, we empha-
sized the presence of the union of two intervals containing the spectrum. Our
results indicate that the standard theoretical estimates for the error energy
norm at each iteration may not be representative of the actual convergence
rate when the distance between these two intervals is sizable, and the bound
(4.28) for two spectral intervals is a somewhat better approximation.

The recent surge of interest about cg methods in nonstandard inner
products, in the context of saddle point systems, could motivate further work
on this topic. In particular, one question that naturally arises is whether the
use of the B−norm might be beneficial when one is interested in reducing
some different measure of the error, such as its Euclidean norm. Indeed,
unlike the standard cg method [70, Theorem 6.5], the Euclidean norm of
the error is not restricted to decrease at every iteration when a different
inner product is considered. Moreover, even though the bound (4.5) does
not depend on the conditioning of the (nonsymmetric) system matrix, the
norm in which this convergence is achieved does, and may actually be very
ill-conditioned. All these issues could be investigated in future work.
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Chapter 5

New preconditioning strategies
for optimal control problems
with inequality constraints1

In the previous chapter, we considered a class of PDE-constrained op-
timal control problems, and we saw that the optimality conditions for the
discretized problems lead to the solution of a single linear system of saddle
point type. In this chapter we consider a similar class of problems, but this
time box inequality constraints are imposed on the state and on the control.
As a result of these additional constraints, the optimality conditions for the
discretized problem now form a system of nonlinear equations. We empha-
size that its dimension may be very large as soon as the desired accuracy
requires a fine discretization of the partial differential equation.

If a Newton-type approach is applied to the nonlinear system, the method
generates a sequence of sparse saddle point systems that have to be solved. It
is well-known that a computationally effective solution of the linear algebra
phase is crucial for the practical implementation of such approach and, if a
Krylov method is employed, it is widely recognized that preconditioning is a
critical ingredient of the inner solver.

Existing preconditioners for constrained optimal control problems have
been tailored for specific elements of the family (5.1) and are generally
suitable for problems where the operator characterizing the PDE is self-
adjoint. Moreover, implementations based on preconditioned cg methods in
a nonstandard inner product, analogous to the one described in the previ-
ous chapter, have often been preferred, in spite of possible strong limitations
[69, 100, 126]. The works [100, 126] are for problems governed by symmet-

1The results presented in this chapter are taken from [107].
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ric PDEs with box constraints on the control variables, while [69] considers
problems with constraints (5.2)-(5.4) but mostly focuses on β = 0. In partic-
ular, our contribution was motivated by the problematic numerical behavior
of the preconditioners proposed in [69] for β 6= 0.

In this chapter we present two new preconditioners, an indefinite pre-
conditioner and a symmetric positive definite block diagonal preconditioner.
Both strategies rely on a general factorized approximation of the Schur com-
plement, and embed newly formed information of the nonlinear iteration,
so that they dynamically change as the nonlinear iteration proceeds. The
proposed preconditioners are very versatile, as they allow to handle mixed
constraints as well as the corresponding limit cases, that is control and state
constraints. In particular, we derive optimality and robustness theoretical
properties for the spectrum of the preconditioned matrices, which hold for
a relevant class of problem parameters; numerical experiments support this
optimality also in terms of CPU time. A broad range of numerical exper-
iments on three test problems is reported, for a large selection of the four
problem parameters, indicating only a mild sensitivity of the preconditioner
with respect to these values, especially when compared with existing ap-
proaches (for the parameters for which these latter strategies are defined).
In addition, in most cases the indefinite preconditioner outperforms by at
least 50% the block diagonal preconditioner, for the same Schur complement
approximation.

The outline of this chapter is as follows. Sections 5.1 describes the prob-
lem and its formal numerical solution by an active-set Newton method. Sec-
tion 5.2 reviews the preconditioning strategies that have been devised to solve
(5.1) for some choices of the selected parameters. In Section 5.3 a new gen-
eral approximation to the Schur complement is introduced and theoretically
analyzed, while its impact on the new global preconditioners is investigated
in Section 5.4. Section 5.5 is devoted to a wide range of numerical results. In
particular, in Section 5.5.1 we discuss some algorithmic details, while in Sec-
tion 5.5.2 we report on our numerical experiments on three model problems.
Section 5.6 summarizes our conclusions.



5.1 The problem 63

5.1 The problem

The optimal control problems considered in this chapter have the form

min
y,u

1

2
‖y − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Ω)

s.t.





−∆y − β · ∇y = u in Ω
y = ȳ on ∂Ω
a ≤ αuu + αyy ≤ b a.e. in Ω,

(5.1)

As in the previous chapter, ν ∈ R
+ is a regularization parameter, yd is the

desired state, and Ω is a domain in R
d with d = 2, 3. The state y and

the control u are linked via an elliptic convection-diffusion equation with
convection direction β ∈ R

d. Dirichlet boundary conditions are assumed.
The main difference between (4.1) and (5.1) is the presence of box con-

straints of the form a ≤ αuu + αyy ≤ b a.e. in Ω, where we assume a(x) < b(x)
a.e. in Ω and αu, αy nonnegative scalars such that max{αy, αu} > 0. By vary-
ing the parameters αu, αy, we obtain optimal control problems with different
inequality constraints. In particular, we will consider three specific choices
which yield well studied problems. The first is (αu, αy) = (1, 0), that is

a ≤ u ≤ b a.e. in Ω, (5.2)

which is refereed to as the optimal control problem with Control Constraints
(CC). The second one is (αu, αy) = (ǫ, 1) yielding an optimal control problem
with Mixed Constraints (MC) of the form

a ≤ ǫu + y ≤ b a.e. in Ω. (5.3)

The third choice is (αu, αy) = (0, 1) yielding optimal control problems with
State Constraints (SC)

a ≤ y ≤ b a.e. in Ω. (5.4)

Mixed Constraints (5.3) are commonly employed as a form of regularization
of the state-constrained problem, where ǫ > 0 represents the regularization
parameter [90]. Indeed, pure state constrained problems are more compli-
cated than control constrained ones, as in general the Lagrange multiplier
associated with state constraints is only a measure, and therefore regularized
versions with better regularity properties are needed [26, 74]; in the follow-
ing we shall see the purely state-constrained problem as the limit case of
the mixed-constrained one. As such, it may provide helpful information as
a computational reference for the mixed-constrained problem when ǫ is very
small.
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5.1.1 The discrete optimization problem

We again follow a discretize-then-optimize approach to transform problem
(5.1) into a discrete optimization problem. Issues related to the commuta-
tivity between the discretize-then-optimize and the optimize-then-discretize
approach for convection diffusion control equations have been addressed in
[102].

Let M represent the lumped (diagonal) mass matrix in an appropriate
finite element space, and let L be the discretization of the differential operator
L(y) = −∆y+ β · ∇y; in particular, L is a nonsymmetric matrix of the form
L = K + C, where K is the symmetric and positive definite discretization
of the negative Laplacian operator and C is the “convection” matrix. In the
following we shall assume that L+LT � 0 2 Moreover, let nh be the dimension
of the discretized space depending on the mesh size h and let y, u, a, b ∈ R

nh

be the coefficients of y, u, a, b in the chosen finite element space basis. Then,
the discretization of problem (5.1) is given by

min
y,u

Q(u, y) =
1

2
(y − yd)

TM(y − yd) +
ν

2
uTMu

s.t.

{
Ly = Mu− d
a ≤ αuu+ αyy ≤ b

(5.5)

where d represents the boundary data.

This is a convex Quadratic Programming problem with both linear equal-
ity and inequality constraints on variables. We now recall a well-known the-
orem which gives optimality conditions that characterize the solution of such
problems. We state the theorem in a more general setting than the one de-
scribed by (5.5), in order to include also the QP problems in standard form
that will be discussed in Part III of this manuscript.

Theorem 5.1.1. (see e.g. [138, Theorems A.1 and A.2]) Consider the fol-
lowing optimization problem

min
x∈Rn

1
2
xTAx− cTx

s. t. Bx = d (5.6)

Dx ≥ f

2This requirement is satisfied when, for instance, upwind finite differences over a regular
grid, or upwind-type finite elements are used, with Dirichlet boundary conditions; see, e.g.,
[42, Chapter 6], [56].
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where A ∈ R
n×n is symmetric and positive semidefinite, B ∈ R

m×n with
m ≤ n, D ∈ R

l×n, c ∈ R
n, d ∈ R

m, f ∈ R
l. Moreover, let

L(x, p, q) = 1

2
xTAx− cTx− pT (Bx− d)− qT (Dx− f) ,

be Lagrangian function associated with (5.6), where p ∈ R
m and q ∈ R

l are
referred to as Lagrange multipliers or dual variables.

Then, x̂ ∈ R
n is a solution for (5.6) if and only if there exist Lagrange

multiplier vectors p̂ ∈ R
m and q̂ ∈ R

l such that the following conditions hold:

∇xL = Ax̂− BT p̂−DT q̂ − c = 0, (5.7a)

Bx̂ = d, (5.7b)

Dx̂ ≥ f, (5.7c)

q̂ ≥ 0, (5.7d)

q̂T (Dx̂− f) = 0. (5.7e)

Conditions (5.7a)-(5.7e) are known as the Karush-Kuhn-Tucker condi-
tions, or KKT conditions for short. In particular, (5.7e) is known as comple-
mentarity condition; it states that either constraint i is active (i.e. the i− th
inequality of the system Dx̂ ≥ f holds with equality) or q̂i = 0 (possibly
both).

Note that, in the setting of problem (5.5), we have x = (u, y) ∈ R
2nh .

Moreover, the Lagrange multiplier q can be splitted in two parts as well,
namely q = (µa, µb), where µa is associated with the lower constraint αuu+
αyy ≥ a, whereas µb is associated with the upper constraint αuu+ αyy ≤ b.

The Lagrangian function for problem (5.5) reads

L(u, y, p, q) = Q(u, y)+(Ly−Mu+d)Tp+(αuu+αyy−b)Tµb+(αuu+αyy−a)Tµa.

The corresponding KKT conditions are

∇yL = M(y − yd) + LTp+ αy(µb + µa) = 0
∇uL = νMu−Mp+ αu(µb + µa) = 0
Ly −Mu+ d = 0
µb ≥ 0, αuu+ αyy ≤ b, µT

b (αuu+ αyy − b) = 0
µa ≤ 0, a ≤ αuu+ αyy, µT

a (a− αuu− αyy) = 0.

(5.8)

5.1.2 The active-set Newton method

If we set µ = (µb + µa), the complementarity condition in (5.8) can be
equivalently stated as the following nonlinear system

C(u, y, µ) = 0
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with C the following complementary function

C(u, y, µ) = µ−max{0, µ+c(αuu+αyy−b)}−min{0, µ+c(αuu+αyy−a)},
(5.9)

with c > 0. Therefore, the KKT system (5.8) can be reformulated as the
following nonlinear system

F (y, u, p, µ) =




M(y − yd) + LTp+ αyµ
νMu−Mp+ αuµ

Ly −Mu+ d
C(u, y, µ)


 = 0 (5.10)

with F : R4nh → R
4nh , y, u, p, µ ∈ R

nh .
In the following we recall a possible derivation of an active-set Newton

type method for the solution of the KKT nonlinear system (5.10) following
the description made in [71] where nonsmooth analysis was used.

Let us define the sets of active and inactive indices at the (discrete) op-
timal solution (û, ŷ)

A∗ = Ab
∗ ∪ Aa

∗ and I∗ = {1, . . . , nh} \ A∗, (5.11)

where Ab
∗,Aa

∗ are the sets

Ab
∗ = {i | µ̂i + c(αuûi + αyŷi − bi) > 0},

Aa
∗ = {i | µ̂i + c(αuûi + αyŷi − ai) < 0}.

The nonlinearity and nonsmoothness of the function F in (5.10) are clearly
gathered in the last block containing the complementarity function C(u, y, µ)
defined in (5.9). Hintermüller et al. showed in [71] that the functions v →
min{0, v} and v → max{0, v} from R

n → R
n are slantly differentiable with

slanting functions given by the diagonal matrices Gmin(v) and Gmax(v) with
diagonal elements

Gmin(v)ii =

{
1 if vi < 0
0 else

, Gmax(v)ii =

{
1 if vi > 0
0 else

.

The above choice of Gmin and Gmax suggests to use the following element
F ′(ŷ, û, p̂, µ̂) ∈ R

4nh×4nh of the generalized Jacobian ∂F (ŷ, û, p̂, µ̂) (see [29])

F ′(ŷ, û, p̂, µ̂) =




M 0 LT αyI
0 νM −M αuI
L −M 0 0

cαyΠA∗
cαuΠA∗

0 ΠI∗


 , (5.12)
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to construct a “semismooth” Newton scheme. Here ΠC denotes a diagonal
binary matrix with nonzero entries in C, and the sets A∗, I∗ are given in
(5.11).

Given the kth iterate (yk, uk, pk, µk), let Ak and Ik be the current active
and inactive sets where

Ak = Ab
k ∪ Aa

k, Ik = {1, . . . , nh} \ Ak (5.13a)

Ab
k = {i | (µk)i + c(αu(uk)i + αy(yk)i − bi) > 0} (5.13b)

Aa
k = {i | (µk)i + c(αu(uk)i + αy(yk)i − ai) < 0} (5.13c)

and let nAk
= card(Ak) be the current number of active constraints. Using

the Jacobian F ′ in (5.12), the semismooth Newton iteration [71] applied to
system (5.10) is the following:




M 0 LT αyI
0 νM −M αuI
L −M 0 0

cαyΠAk
cαuΠAk

0 ΠIk







yk+1

uk+1

pk+1

µk+1


 =




Myd
0
d

c(ΠAb
k
b+ΠAa

k
a)


 .

Setting (µk+1)Ik = 0 (the multiplier associated with the inactive inequality
constraints) and eliminating this variable, we obtain the sequence of Newton
structured equations

Jkxk+1 = fk, k = 1, 2, . . . (5.14)

where xk+1 = (yk+1, uk+1, pk+1, (µk+1)Ak
) ∈ R

3nh+nAk ,

fk =




Myd
0
d

PAb
k
b+ PAa

k
a


 , Jk =




M 0 LT αyP
T
Ak

0 νM −M αuP
T
Ak

L −M 0 0
αyPAk

αuPAk
0 0


 , (5.15)

where PC is a rectangular matrix consisting of those rows of ΠC which belong
to the indices in C; with this notation, ΠC = P T

C PC. We remark that the
value of c has no influence on the solution of the Newton equation (5.14) but
affects the updating of the active sets Ak in (5.13).

The above semismooth Newton scheme was proved to be equivalent to
the Primal-Dual active-set method for solving constrained optimal control
problems in [71] and this equivalence allowed to establish superlinear local
and also global convergence results [71, 90, 80]. In fact, the active-set strat-
egy works as a prediction technique in the sense that it is proved that if
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(uk, yk, pk, µk) → (û, ŷ, p̂, µ̂), then there exists an index k̄ such that Ak̄ = A∗
and Ik̄ = I∗ [71, Remark 3.4].

Given xk, the next iterate xk+1 is commonly computed by applying an
iterative solver (in our case a preconditioned Krylov subspace method) to the
Newton equation (5.14), and then generating a sequence of (inner) iterations
{xj

k+1}j≥0. The inner iteration is started with x0
k+1 = xk and stopped for

j∗ > 0 such that
‖Jkxj∗

k+1 − fk‖ ≤ ηk‖Jkx0
k+1 − fk‖ (5.16)

and the next iterate xk+1 is set equal to xj∗
k+1. The scalar ηk > 0 controls the

accuracy in the solution of the unpreconditioned linear system. The choice
ηk = ηEk with

ηEk = τ1, (5.17)

k ≥ 1, with a small τ1 (e.g. τ1 = 10−10) allows us to compare various precon-
ditioning techniques in solving the linear system (5.14), while the nonlinear
iteration remains substantially unaffected by the use of each different inner
strategy. This stopping criterion was used in all our numerical experiments
of Sections 5.5.2 and 5.5.2.

Occasionally, for some choice of problem parameters we have experienced
slow convergence of the Newton method in the solution of CC problems. This
prompted us to also consider the adaptive choice ηk = ηIk

ηI0 = τ2, ηIk = min{ηIk−1, τ3‖F (uk, yk, pk, µk)‖2}, (5.18)

k ≥ 1 (e.g. with τ2 = 10−4, τ3 = 10−2), which gives rise to the “inexact”
solution of the Newton system [40, 76, 106]. In particular, (5.18) is intended
to give the desirably fast local convergence near a solution and, at the same
time, to minimize the occurrence of problem oversolving. We remark that
the global convergence of the active set Newton method is no longer guaran-
teed if inexact steps are computed, but it is anyway expected for small values
of the initial forcing term ηI0 [76]. Numerical tests with (5.18) are reported
in Section 5.5.2.

The key step in the overall process is the efficient iterative solution of
the linear systems (5.14), for which preconditioning is mandatory. The rest
of the chapter is thus devoted to the analysis of effective preconditioning
strategies.

5.2 Overview of the current approaches

In this section we review some of the preconditioning strategies that have
been explored in the literature for the solution of CC, MC and SC problems.
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In particular we consider the proposals [69, 126] both based on the use of
the Preconditioned Conjugate Gradient method with a nonstandard inner
product for the solution of the saddle point linear systems arising in the
active-set Newton method for solving (5.10). This approach (from now on
named bpcg), which is discussed in more detail in Chapter 4, was originally
used in the context of saddle point systems by Bramble and Pasciak in [21],
and then subsequently used in different settings where similar linear systems
arise; see Chapter 4 of this thesis and references therein.

Herzog and Sachs in [69] consider the solution of CC, MC and SC prob-
lems by partitioning the Jacobian matrix Jk as follows

Jk =




M 0 LT αyP
T
Ak

0 νM −M αuP
T
Ak

L −M 0 0
αyPAk

αuPAk
0 0


 =

[
A BT

k

Bk 0

]
, (5.19)

and therefore considering (αy, αu) = (0, 1) in the CC case, (αy, αu) = (1, ǫ)
in the MC case and (αy, αu) = (1, 0) in the SC case. Following the approach
presented in [117] and discussed in the previous chapter, Herzog and Sachs
proposed the indefinite preconditioner

PHS
k =

[
Â BT

k

Bk −Ŝk

]
, (5.20)

where Â is an approximation of the (1,1) block A and Ŝk is an approximation

of BkÂ
−1BT

k . A feature of this approach is that Â and Ŝk are block diagonal
and their blocks can be chosen as (approximations of) the inner product
matrices of the spaces where the continuous unknowns (y, u) and (p, µ) are
sought. In particular (cf. (4.27)),

Â = Â(σ) =
1

σ

[
K 0
0 M

]
and Ŝk = Ŝk(σ, τ) =

σ

τ

[
K 0
0 PAk

M−1P T
Ak

]
,

where, as before, K represents the discretization of the (negative) Laplacian.
Here σ and τ are positive scalars, whose choice is crucial for the method.
Indeed, these parameters have to ensure that Â > A and BkÂ

−1BT
k > Ŝk, so

that the preconditioned matrix (PHS
k )−1Jk is positive definite with respect

to the inner product defined by

Dk = PHS
k − Jk =

[
Â− A 0

0 BkÂ
−1BT

k − Ŝk

]
.
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Under these conditions, the cg method in this non-Euclidean inner prod-
uct can be used. We mention that the choice of σ and τ can sometimes be
estimated analytically, by considering the bilinear forms that underlies the
problem. However, such estimates are not always available, and the numeri-
cal estimation of σ and τ might be computationally costly or cause a lack of
stability in the bpcg approach.

The spectral analysis provided in [69, Corollary 2.3] for L symmetric
(β = 0) shows that the eigenvalues of (PHS

k )−1Jk are bounded independently
of h, while they depend on ν in such a way that the condition number of the
preconditioned matrix is proportional to 1/ν; also verified experimentally.
Moreover, the authors show that the (preconditioned) condition number in
MC problems scales like ǫ−2 for small ǫ, making the use of the proposed
preconditioner prohibitive for values of ǫ smaller than 10−3. Regarding the
analysis for problems with β = (β1, 0, 0), β1 > 0, a deterioration of the
convergence behavior for large values of β1 was theoretically analyzed for CC
problems and confirmed in the few reported experiments. The difficulties in
solving these problems are illustrated in the plots of Figure 5.1 which are in
complete agreement with [69, Figure 4], and were obtained with the same
codes3, though on a different machine. In particular, we emphasize the strong
dependence on β and h of the preconditioned strategy.

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

state dimension n
h

C
P

U
 t
im

e

 

 

β
1
 = 10

β
1
 = 100

β
1
 = 1000

0 500 1000 1500 2000 2500 3000
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

inner iteration #

B
P

C
G

 r
e

s
id

u
a

l

 

 

h = 2−2

h = 2−3

h = 2−4

Figure 5.1: Unconstrained problem with convection (problem CC-pb1 de-
scribed in Section 5.5). Left: CPU time for a single Newton step vs. the
discretized state space dimension, for β = (β1, 0, 0) with β1 = 10, 100, 1000.
Right: bpcg residual convergence history for various grid levels (β1 = 1000).

In [126] CC problems with a self-adjoint and positive definite elliptic

3We thank Roland Herzog for providing us with all Matlab codes used in [69].
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operator as constraint is considered. Differently from [69], at each nonlinear
iteration a saddle point system is obtained by eliminating (µk+1)Ak

from the
system (5.14) and therefore solving a system of reduced dimensions with the
following coefficient matrix

Jk,red =



M 0 −LT

0 νMAk,Ak
MAk,:

−L M:,Ak
0


 ,

whereMCr,Cc is the submatrix ofM obtained by taking the rows whose indices
belong to the set Cr and the columns whose indices belong to the set Cc.
Here, ‘:’ denotes the set of all indices 1, . . . , nh. However, the authors of
[126] preferred to work with the full 3× 3 block system,

JF :=



M 0 −LT

0 νM M
−L M 0


 , (5.21)

which they considered to be more practical to handle within the semismooth
Newton method, than a system whose full dimension depends on the number
of indices in the active sets. To solve these complete systems, the following
block triangular preconditioner PBT and inner product matrix H are intro-
duced in [126]:

PBT =



A0 0 ·
0 A1 0
−L M −S0


 , H =



M − A0 0 0

0 νM − A1 0
0 0 S0


 , (5.22)

where A0 and A1 are appropriate approximations of M and νM , respec-
tively, so that the matrix H is positive definite; moreover, S0 = LM−1L
approximates the following true Schur complement of JF :

SF = LM−1L+ ν−1M. (5.23)

Note that the preconditioner PBT does not depend on the nonlinear iteration
k, and therefore on the current active set.

As in the previous approach, the preconditioned system
(
PBT

)−1
JF is

symmetric and positive definite with respect to the inner product associated
with H and a cg method can be applied. In Section 5.5 we will report
on the performance of the preconditioners PBT , compared with our new
preconditioners.

In our analysis, we found the work [101] particularly inspiring, although
a simplified setting was considered: a positive definite self-adjoint elliptic
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operator in the equality constraint, and no bound-constraints. Under these
hypotheses, the KKT conditions give a saddle point system with the coef-
ficient matrix JF in (5.21). In [101] the following factorized approximation
to the Schur complement SF in (5.23) is introduced (the scaling factor 1

ν
is

omitted):

ŜF = (
√
νL+M)M−1(

√
νL+M), (5.24)

which appears to possess nice independence properties with respect to the
problem parameters: the eigenvalues of Ŝ−1

F SF lie in the interval
[
1
2
, 1
]
in-

dependently of the values of h and ν [101, Theorem 4]. In the following we
shall broadly generalize this idea so as to cover our more complete framework.
Optimality results will also be discussed.

The Schur complement approximation (5.24) was also used in [102] in
the solution of convection-diffusion (equality constrained) control problems
where the authors generalized the above mentioned spectral properties of
Ŝ−1
F SF to the case where L is nonsymmetric.

5.3 A new approximation to the active-set

Schur complement

In agreement with other commonly employed preconditioning strategies,
the preconditioners we are going to present in Section 5.4 strongly rely on the
quality of the used approximation to the Schur complement of the coefficient
matrix Jk. In this section we introduce this approximation and analyze its
spectral properties. In the following we shall make great use of the fact that
M is a lumped mass matrix, and thus diagonal. This way, M and ΠAk

can
commute and formulas simplify considerably. For ease of notation, we shall
use the short-hand notation Πk = ΠAk

and drop the subscript that identifies
the dimension of the identity matrix.

Using the same partitioning as in (5.19), the active-set Schur complement
associated with Jk, and its block factorization are given by

Sk = BkA
−1BT

k =
1

ν

[
νLM−1LT +M (αyνLM

−1 − αuI)P
T
Ak

PAk
(αyνM

−1LT − αuI) (α2
yν + α2

u)PAk
M−1P T

Ak

]

=
1

ν
Rk

[
Sk 0
0 (α2

yν + α2
u)PAk

M−1P T
Ak

]
RT

k ,

with

Rk =

[
I 1

α2
yν+α2

u
(αyνLM

−1 − αuI)ΠkMP T
Ak

0 I

]
, (5.25)



5.3 A new approximation to the active-set Schur complement 73

and

Sk = νLM−1LT+M− 1

α2
yν + α2

u

(αyνLM
−1−αuI)ΠkMΠk(αyνLM

−1−αuI)
T .

We define the following factorized approximation of Sk:

Ŝk := L1M
−1LT

1 , (5.26)

where
L1 =

√
νL (I − γ1Πk)

1

2 + (I − γ2Πk)
1

2 M, (5.27)

and

γ1 =
α2
yν

α2
yν + α2

u

, γ2 =
α2
u

α2
yν + α2

u

. (5.28)

Note that γ1 + γ2 = 1, which implies

(I − γ1Πk)
1

2 (I − γ2Πk)
1

2 =
√
γ1γ2 Πk + (I − Πk), (5.29)

a property that will be used in the sequel. Moreover both (diagonal) matrices
under square root have strictly positive diagonal elements for γ1, γ2 6= 1, i.e.,
for αu 6= 0 and αy 6= 0, respectively. If γ1 = 1 (or γ2 = 1), then (I − γ1Πk)

1

2

(or (I − γ2Πk)
1

2 ) reduces to (I − Πk).

Remark 1. Our approach uses the fact that M is diagonal, both from a com-
putational and a theoretical point of view. If the employed discretization is
such that M is no longer diagonal, then we could define the preconditioner
with diag(M) in place of M . As an alternative, we could keep M in the pre-
conditioner, and solve systems with PAk

M−1P T
Ak

as discussed in [69, (3.10)],
and possibly also approximate the action of M−1 by a Chebyshev polyno-
mial [134]. For the sake of simplicity we refrain from further exploring these
possibilities.

We proceed with an analysis of the quality of the proposed Schur com-
plement preconditioner.

Proposition 5.3.1. Let Sk and Ŝk be as defined above. Then

Ŝk = Sk +
√
ν(L(I − Πk) + (I − Πk)L

T ).

Proof. The result follows from

Sk = νLM−1LT +M − 1

α2
yν + α2

u

(α2
uΠkM + α2

yν
2LΠkM

−1LT − αyαuν(ΠkL
T + LΠk))

= νL(I − γ1Πk)M
−1LT + (I − γ2Πk)M +

√
ν(L

√
γ1γ2 Πk +

√
γ1γ2 ΠkL

T ),
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and

Ŝk = (
√
νL (I − γ1Πk)

1

2 + (I − γ2Πk)
1

2 M)M−1(
√
νL (I − γ1Πk)

1

2 + (I − γ2Πk)
1

2 M)T

= νL(I − γ1Πk)M
−1LT + (I − γ2Πk)M +

√
νL (I − γ1Πk)

1

2 (I − γ2Πk)
1

2 +
√
ν (I − γ1Πk)

1

2 (I − γ2Πk)
1

2 LT

= νL(I − γ1Πk)M
−1LT + (I − γ2Πk)M +

+
√
νL (

√
γ1γ2 Πk + (I −Πk)) +

√
ν (

√
γ1γ2 Πk + (I −Πk))L

T ,

where (5.29) was used.

Note that the difference between the true and the approximate Schur com-
plement does not depend on the γ’s. The following special case of Proposition
5.3.1 occurs when all indices are active, so that Πk = I.

Corollary 5.3.2. If Ak = {1, . . . , nh}, then Ŝk = Sk.

The Schur complement approximation specializes when particular choices
of αu and αv are made. In the CC case, that is for (αu, αy) = (1, 0), we
obtain

L1 =
√
νL+ (I − Πk)M.

In the case of L symmetric and no bound constraints, that is for Ak = ∅,
we obtain L1 =

√
νL + M , which corresponds to the factor in (5.24), as

introduced in [101]. In the Mixed Constraints case, that is for (αu, αy) =
(ǫ, 1), we obtain

L1 =
√
νL

(
I − 1

1 + γ
Πk

) 1

2

+

(
I − γ

1 + γ
Πk

) 1

2

M,

with γ = ǫ2/ν. Note that both (diagonal) matrices under square root have
strictly positive diagonal elements for γ > 0. Finally, in the pure State
Constraints case, i.e. for (αu, αy) = (0, 1), we obtain

L1 =
√
νL (I − Πk) +M.

In the next proposition we derive general estimates for the inclusion in-
terval for the eigenvalues of the pencil (Sk, Ŝk), whose extremes depend on
the spectral properties of the nonsymmetric matrix L and on M , for general
Ak. Special cases will then be singled out.
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Proposition 5.3.3. Assume that Ŝk is nonsingular. Let

Gk := F (I − Πk) + (I − Πk)F
T , (5.30)

where F =
√
νM− 1

2LM− 1

2 , with F nonsingular, and

Hk := F (I − γ1Πk)F
T + (I − γ2Πk) +

√
γ1γ2(FΠk +ΠkF

T ), (5.31)

with γ1, γ2 as defined in (5.28). Then

αmin := min
z 6=0

zTGkz

zTHkz
> −1, (5.32)

and the eigenvalues λ of the pencil (Sk, Ŝk) satisfy λ ∈
[
1
2
, 1
1+αmin

]
.

Proof. For the sake of readability, we omit the subscript k within this proof.
The matrix H in (5.31) satisfies H = M− 1

2SM− 1

2 . Let

Ĥ = M− 1

2 ŜM− 1

2 . (5.33)

Then by Proposition 5.3.3 we have that G,H in (5.30) and (5.31) satisfy Ĥ =

H+G. Therefore the problem Sx = λŜx can be written as Hz = λ(H+G)z,

with z = M
1

2x, and for z 6= 0 we can write

λ =
1

1 + zTGz
zTHz

.

For z 6= 0 we have zTGz
zTHz

> −1 if and only if zT (G + H)z > 0. The latter

inequality is satisfied since G +H = M− 1

2 ŜM− 1

2 , and Ŝ is positive definite.
This proves the upper bound for λ.

To prove the lower bound, we first consider the case γ2 6= 1. We define
W := (I − γ2Π)

− 1

2F (I − γ1Π)
1

2 and notice that

(I − γ2Π)
− 1

2 Ĥ(I − γ2Π)
− 1

2 = (W + I)(W + I)T ,

while

(I − γ2Π)
− 1

2H(I − γ2Π)
− 1

2

= WWT + I +
√
γ1γ2

(
WΠ(I − γ1Π)

− 1

2 (I − γ2Π)
− 1

2 + (I − γ2Π)
− 1

2 (I − γ1Π)
− 1

2ΠWT
)

= WWT + I + (WΠ+ΠWT ),

where the relation (5.29) was used. For x 6= 0 we can thus write

λ =
xT

Sx

xT Ŝx
=

yT (WW T + I + (WΠ+ ΠW T ))y

yT (W + I)(W + I)Ty
,
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where y = (I − γ2Π)
1

2M
1

2x. Therefore, λ ≥ 1
2
if and only if

yT (WW T + I + (WΠ+ ΠW T ))y

yT (W + I)(W + I)Ty
≥ 1

2

which is equivalent to

1

2
yT (WW T + I +W (2Π− I) + (2Π− I)W T )y ≥ 0.

Noticing that I = (2Π− I)(2Π− I), it holds

WW T +I+W (2Π−I)+(2Π−I)W T = (W +(2Π−I))(W +(2Π−I))T � 0.

Therefore, the last inequality is always verified, proving the lower bound for
λ.

Consider now the case γ2 = 1 (which implies γ1 = 0). We define W :=
F−1(I − Π). For x 6= 0 we can write

λ =
xT

Sx

xT Ŝx
=

zT (FF T + (I − Π))z

zT (F + (I − Π))(F + (I − Π))T z
=

yT (WW T + I)y

yT (W + I)(W + I)Ty
,

where z = M
1

2x and y = F T z. As above, λ ≥ 1
2
if and only if

yT (WW T + I)y

yT (W + I)(W + I)Ty
≥ 1

2

which holds since 2(WW T+I)−(W+I)(W+I)T = (W−I)(W−I)T � 0.

Proposition 5.3.3 reformulates the eigenvalue problem with the precondi-
tioned Schur complement in terms of the eigenvalue problem with a different
Rayleigh quotient, which seems to be easier to interpret. Numerical experi-
ments confirm the sharpness of the lower extreme (see below); for the upper
bound more insightful estimates can be given under additional hypotheses,
and these are explored in the following.

Corollary 5.3.4. [102, Theorem 4.1] Assume L + LT � 0 and let Ak = ∅.
Then the eigenvalues λ of the pencil (Sk, Ŝk) satisfy λ ∈

[
1
2
, 1
]
.

The result of Corollary 5.3.4 generalizes the result of [101] to nonsym-
metric and positive semidefinite L, showing the optimality and robustness of
the approximation with respect to the problem parameters.

To be able to analyze another interesting special case, we first need an
auxiliary lemma whose proof is postponed to Appendix A.
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Lemma 5.3.5. Let F ∈ R
n×n be such that F + F T � 0. Then

i) ‖(F + I)−1(F − I)‖ ≤ 1;
ii) ‖(F + I)−1(F + F T )(F + I)−T‖ ≤ 1

2
.

We can now estimate the eigenvalues of (Sk, Ŝk) for a particular choice of
γ1, γ2.

Proposition 5.3.6. Assume L + LT � 0 and let γ1 = γ2 = 1
2
. Then the

eigenvalues λ of the pencil (Sk, Ŝk) satisfy λ ∈
[
1
2
, 3
]
.

Proof. For the sake of readability, we omit the subscript k within this proof.
We only have to prove the upper bound. Let F =

√
νM− 1

2LM− 1

2 , so that
F+F T � 0. Proceeding as in the proof of Proposition 5.3.3, the eigenproblem
Sx = λŜx can be transformed into

Hy = λ(H +G)y, (5.34)

with y = M
1

2x, where H and G are given in (5.31) and (5.30), respectively.
For γ1 = γ2 = 1

2
, we have H + G = (F + I)

(
I − 1

2
Π
)
(F + I)T , while

H = (F − I)
(
I − 1

2
Π
)
(F − I)T + F + F T , which can be readily verified.

Therefore, problem (5.34) can be written as
(
(F − I)

(
I − 1

2
Π

)
(F − I)T + F + F T

)
y = λ(F+I)

(
I − 1

2
Π

)
(F+I)Ty,

or equivalently, with u = (F + I)Ty, as

(F + I)−1
(
(F − I)

(
I − 1

2
Π
)
(F − I)T + F + F T

)
(F + I)−Tu

= λ
(
I − 1

2
Π
)
u.

(5.35)

We then multiply (5.35) from the left by uT 6= 0,

uT (F + I)−1
(
(F − I)

(
I − 1

2
Π
)
(F − I)T + F + F T

)
(F + I)−Tu

= λuT
(
I − 1

2
Π
)
u,

(5.36)

and we note that uT
(
I − 1

2
Π
)
u ≥ 1

2
‖u‖2. Moreover, using Lemma 5.3.5

uT (F + I)−1(F − I)(I − 1

2
Π)(F − I)T (F + I)−Tu

≤ ‖
(
I − 1

2
Π

)
‖‖(F − I)T (F + I)−T‖2‖u‖2 ≤ ‖u‖2,

and uT (F + I)−1(F + F T )(F + I)−Tu ≤ 1
2
‖u‖2. Therefore, using these last

bounds in (5.36) we obtain ‖u‖2 + 1
2
‖u‖2 ≥ λ1

2
‖u‖2, with ‖u‖ 6= 0, from

which the upper estimate follows.
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In the notation of Proposition 5.3.3, for γ1 = γ2 we bounded αmin by −2
3
.

Remark 2. The case γ1 = γ2 comprises MC problems where αu = ǫ and
αy = 1, so that the equality ν = ǫ2 holds. Therefore, for ν = ǫ2 Proposition
5.3.6 ensures a clustered spectrum of the preconditioned Schur complement,
and this also strongly influences the spectrum of the overall preconditioned
matrix - see Section 5.4 - predicting fast convergence of the iterative methods.
From an application perspective, these experiments show that if ν ≈ ǫ2 in
the given model, then a good performance of the solver is expected.

The good behavior for ν = ǫ2 discussed in the remark above is confirmed
by our numerical experiments (see Example 5.3), where problems with MC
constraints (5.3) are tested for all combinations of values of ν and ǫ: the best
performance is indeed obtained for ν = ǫ2. It is also interesting to observe
that our findings are in agreement with similar experimental observations
reported in [17], where the case ν ≈ ǫ2 ensured the best performance of a
multigrid solver for the MC problem.

Tables 5.1-5.3 display the spectral intervals for Ŝ−1
k Sk for the three con-

sidered model problems (see Table 5.4). In all tables, the minimum and max-

imum eigenvalues are reported for the kth iteration for which λmax(Ŝ
−1
k Sk) is

maximum. The CC case shows the largest, though still extremely modest,
dependence of λmax on the problem parameters, and this dependence quickly
fades as β1 increases. On the other hand, λmin remains largely insensitive
to parameter variations, with a small benign increase from the bound 1

2
for

ν = 10−2 as β1 grows. In the mixed case and ν = ǫ2, λmax remains well below
the upper estimate 3, for a variety of mesh parameter values.

ν = 10−2 ν = 10−6

β1 h k |Ik| λmin λmax k |Ik| λmin λmax

0 2−2 1 98 0.51 1.24 3 25 0.55 4.7
2−3 3 895 0.51 1.27 17 24 0.5 13.14

10 2−2 1 73 0.64 1.18 5 57 0.54 5.32
2−3 1 891 0.61 1.24 6 44 0.50 10.72

100 2−2 1* 0 1 1 4 49 0.51 4.82
2−3 1 120 0.95 1.01 6 201 0.5 6.64

1000 2−2 1* 0 1 1 2 49 0.6 1.39
2−3 1* 0 1 1 2 675 0.58 1.63

* Newton terminates in 2 steps.

Table 5.1: Control-Constraints: Extreme eigenvalues of Ŝ−1
k Sk, Newton it-

eration k, and dimension of the Inactive set, |Ik|, as the mesh size h, the
regularization parameter ν and the convection parameter β = (β1, 0, 0) vary.
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ν = 10−2 ν = 10−6

β1 h ǫ k |Ik| λmin λmax ǫ k |Ik| λmin λmax

0 2−2 10−1 1 196 0.53 1.10 10−1 2 165 0.64 1.97
10−2 1 294 0.51 1.51 10−2 1 196 0.75 1.10
10−3 2 303 0.50 1.93 10−3 1 196 0.75 1.01

2−3 10−1 2 2242 0.52 1.16 10−1 3 1212 0.51 2.63
10−2 3 2782 0.51 1.97 10−2 1 1800 0.51 1.29
10−3 3 3030 0.51 3.37 10−3 1 1800 0.51 1.03

10 2−2 10−1 1 315 0.53 1.05 10−1 2 147 0.57 3.28
10−2 0* 343 0.53 0.93 10−2 1 196 0.69 1.37
10−3 0* 343 0.53 0.93 10−3 1 196 0.69 1.03

2−3 10−1 1 2549 0.56 1.18 10−1 3 1406 0.50 5.20
10−2 1 3135 0.53 1.55 10−2 2 1631 0.50 1.71
10−3 1 3303 0.53 2.45 10−3 1 1800 0.50 1.08

100 2−2 10−1 0* 343 0.84 0.98 10−1 2 196 0.51 4.40
10−2 0* 343 0.84 0.98 10−2 2 196 0.51 2.49
10−3 0* 343 0.84 0.98 10−3 1 147 0.51 1.24

2−3 10−1 1 3299 0.84 1.01 10−1 2 1575 0.50 5.9
10−2 1 3367 0.84 1.12 10−2 2 1519 0.50 3.25
10−3 0* 3375 0.84 0.99 10−3 2 1800 0.50 1.42

1000 2−2 10−1 0* 343 0.98 0.99 10−1 1 294 0.51 1.22
10−2 0* 343 0.98 0.99 10−2 1 294 0.51 1.22
10−3 0* 343 0.98 0.99 10−3 1 294 0.52 1.24

2−3 10−1 0* 3375 0.98 0.99 10−1 2 2475 0.52 1.40
10−2 0* 3375 0.98 0.99 10−2 2 2644 0.52 1.34
10−3 0* 3375 0.98 0.99 10−3 2 2925 0.51 1.31

* Newton terminates in 1 step.

Table 5.2: Mixed-Constraints: Extreme eigenvalues of Ŝ
−1
k Sk, Newton it-

eration k, and dimension of the Inactive set, |Ik|, as the mesh size h, the
regularization parameters ν, ǫ and the convection parameter β = (β1, 0, 0)
vary.

The dependence of λmax on the parameters in the CC and SC cases can be
analyzed by using the following result, whose proof is postponed to Appendix
A.

Proposition 5.3.7. Let λ be an eigenvalue of Ŝ−1
k Sk. Then in the CC and

SC case it holds

λ ≤ ζ2 + (1 + ζ)2,

with
i) If (αu, αy) = (1, 0) (CC case), then

ζ = ‖M 1

2

(√
νL+M(I − Π)

)−1 √
νLM− 1

2‖;



80
5. New preconditioning strategies for optimal control problems with

inequality constraints

ν = 10−2 ν = 10−6

β1 h k |Ik| λmin λmax k |Ik| λmin λmax

0 2−2 2 303 0.50 2.01 1 196 0.75 1.00
2−3 3 3030 0.51 3.65 1 1800 0.51 1.02

10 2−2 0* 343 0.53 0.93 1 196 0.69 1.02
2−3 1 3319 0.52 2.94 1 1800 0.50 1.06

100 2−2 0* 343 0.84 0.98 1 196 0.50 1.23
2−3 0* 3375 0.84 0.99 2 2250 0.50 1.56

1000 2−2 0* 343 0.98 0.99 0* 343 0.51 0.84
2−3 0* 3375 0.98 0.99 0* 3375 0.51 0.91

* Newton terminates in 1 step.

Table 5.3: State-Constraints: Extreme eigenvalues of Ŝ−1
k Sk, Newton iter-

ation k, and dimension of the Inactive set, |Ik|, as the mesh size h, the
regularization parameter ν and the convection parameter β = (β1, 0, 0) vary.

Moreover, if L + LT ≻ 0, then for ν → 0, ζ is bounded by a constant
independent of ν;
ii) If (αu, αy) = (0, 1) (SC case), then

ζ = ‖(I +√
νM− 1

2LM− 1

2 (I − Πk))
−1‖;

Moreover, ζ → 1 for ν → 0.

The boundedness of ζ as ν → 0 in both the CC and SC cases justifies the
good behavior of the eigenvalues shown in Tables 5.1 and 5.3.

5.4 New preconditioners for the active-set New-

ton method

In this section we propose two classes of preconditioners, which can be
used throughout the nonlinear iterations, and automatically modified as the
system dimensions dynamically change due to the different number of active
indices. More precisely, for the problem partitioned as in (5.19) we consider
the following block diagonal preconditioner PBDF

k , and indefinite precondi-
tioner PCPF

k :

PBDF
k =

[
A 0

0 Ŝk

]
, (5.37)

and

PCPF
k =

[
I 0

BkA
−1 I

] [
A 0

0 −Ŝk

] [
I A−1BT

k

0 I

]
, (5.38)
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where in both cases, the matrix Ŝk is factorized as

Ŝk =
1

ν
Rk

[
Ŝk 0
0 (α2

yν + α2
u)PAk

M−1P T
Ak

]
RT

k ,

with Ŝk = L1M
−1LT

1 , and Rk and L1 given in (5.25) and (5.27), respectively.
The following result can be readily proved from Proposition 5.3.3.

Proposition 5.4.1. Assume that Ŝk is nonsingular and let αmin be as defined
in (5.32). Then the eigenvalues λ of the pencil (Jk,PBDF

k ) satisfy

λ
(
Jk, PBDF

k

)
∈
{
1,

1±
√
5

2

}
∪ I− ∪ I+,

where

I− =

[
1

2

(
1−

√
1 +

4

(1 + αmin)
2

)
,
1−

√
2

2

]
,

I+ =

[
1 +

√
2

2
,
1

2

(
1 +

√
1 +

4

(1 + αmin)
2

)]
.

The eigenvalues λ of the pencil (Jk,PCPF
k ) satisfy

λ(Jk,PCPF
k ) ∈ {1} ∪

[
1

2
,

1

1 + αmin

]
.

Proof. We observe that the pencil
(
Jk, PBDF

k

)
has the same eigenvalues as:

(
PBDF

k

)−1/2
Jk
(
PBDF

k

)−1/2
=

[
I A−1/2BT

k Ŝ
−1/2
k

Ŝ
−1/2
k BkA

−1/2 0

]
.

Using 2.1.5, the eigenvalues of the pencil (Jk, PBDF
k ) are either 1 or have

the form 1
2

(
1±

√
1 + 4σ2

)
, where σ is a singular value of Ŝ

−1/2
k BkA

−1/2,

that is, σ2 is an eigenvalue of Ŝ−1
k Sk. Considering that spec

(
Ŝ−1
k Sk

)
=

{1} ∪ spec
(
Ŝ
−1
k Sk

)
, we have

λ
(
Jk, PBDF

k

)
∈
{
1,

1±
√
5

2

}
∪
{
1

2

(
1±

√
1 + 4σ2

)
| σ2 ∈ spec

(
Ŝ
−1
k Sk

)}
.
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The claim thus follows from Proposition 5.3.3.
As for the pencil

(
Jk, PIPF

k

)
, we have the factorization

(
PIPF

k

)−1
Jk =

[
I −A−1Bk

0 I

] [
I 0

0 Ŝ−1
k Sk

] [
I A−1Bk

0 I

]
. (5.39)

Again, the result follows from Proposition 5.3.3.

Under the stated hypotheses, refined bounds for the eigenvalues of the
indefinitely preconditioned problem can be derived using the bounds for the
eigenvalues of Ŝ−1

k Sk obtained in Corollary 5.3.4, Proposition 5.3.6 and Propo-
sition 5.3.7.

When the indefinite preconditioner is considered, the preconditioned ma-

trix
(
PIPF

k

)−1
Jk has real spectrum (see Theorem 2.3.4), however it is no

longer symmetric so that in general, a nonsymmetric solver needs to be ap-
plied. In our numerical experiments we used gmres, for which it is known
that the eigenvalues alone may not be sufficient to predict convergence, but
that also eigenvectors play a role. In addition, indefinite preconditioners are
often plagued by the presence of Jordan blocks, whose sensitivity may influ-
ence the use of inexact strategies; see, e.g., [118] for a detailed discussion.
Fortunately, since the (1,1) block of Jk is reproduced exactly in the precondi-
tioner, in our setting the spectral structure is considerably simplified, and in
particular, Jordan blocks do not occur. The following proposition determines
the complete eigenvector decomposition of the preconditioned matrix.

Proposition 5.4.2. Let Ŝ−1
k SkX = XΛ be the eigendecomposition of Ŝ−1

k Sk,
with X = [X1, X2] and Λ = blkdiag(I,Λ2) partitioned so that X1 contains the
eigenvectors corresponding to the unit eigenvalue. Then the preconditioned

matrix
(
PIPF

k

)−1
Jk admits the following eigenvalue decomposition

(
PIPF

k

)−1
Jk = Q



I

I
Λ2


Q−1,

with

Q =

[
I 0 −A−1BkX2

0 X1 X2

]
, Q−1 =




I A−1BkX2X
T
2 Ŝk

0 XT
1 Ŝk

0 XT
2 Ŝk


 .

Proof. Writing

(
PIPF

k

)−1
Jk =

[
I A−1Bk(I − Ŝ−1

k Sk)

0 Ŝ−1
k Sk

]
,
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the decomposition can be explicitly verified upon substitution. The nonsin-
gularity of Q follows from that of X = [X1, X2]. The inverse of Q can be

derived by observing that X can be chosen so that XT ŜkX = I.

The explicit form of Proposition 5.4.2 allows one to use standard results
to bound the gmres residual norm, by providing bounds for the norm of
Q and its inverse Q−1, and exploiting the fact that the spectrum of the
preconditioned matrix is real (recall (2.14)).

5.5 Numerical experiments

In this section we provide a detailed performance analysis of the proposed
preconditioners PCPF

k in (5.38) and PBDF
k in (5.37) for the active-set New-

ton method and use problems with constraints in (5.2)-(5.4) as prototypical
problems. In particular, the analysis of the pure State Constraints case (5.4)
will be analyzed as the limit case of the MC constraints (5.3) for ǫ → 0.

label Ω a b yd
CC-Pb1 (−1, 1)3 0 2.5 1 for |x1| ≤ 1

2
, −2 otherwise

CC-Pb2 (0, 1)3 1
10
exp(−‖x‖2) 1

2
exp(−64‖x− 1

2
‖2)

MC-Pb1 (−1, 1)3 −∞ 0 1 for |x1| ≤ 1
2
, −2 otherwise

Table 5.4: Problem data for the numerical experiments. Here x =
(x1, x2, x3) ∈ Ω.

In all our examples, we use the three-dimensional data for the discretized
problem generated by the codes in [69]. The matrices stem from the dis-
cretization by upwind finite differences on a uniform three-dimensional grid
(so that L + LT ≻ 0). Zero Dirichlet boundary conditions, that is ȳ = 0
in (5.1), were used throughout. In Table 5.4 information on the data used
in our numerical experiments can be found, for two test cases with con-
trol constraints, and one test case for mixed and state constraints; here
x = (x1, x2, x3) is an element of Ω. The mesh parameter in each direction
was taken as h ∈ {2−2, 2−3, 2−4, 2−5} which corresponds to a dimension for
the state or control vectors nh ∈ {343, 3375, 29791, 250047}. The total linear
system dimension is thus between 3nh and 4nh, depending on the number of
indices in the active set at each Newton iteration.

5.5.1 Algorithmic considerations

Throughout this section we consider the implementation of the active-set
Newton method with the following solvers and preconditioning strategies:
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as-gmres-ipf Active-set Newton method with linear solver gmres
preconditioned with PCPF

k ;
as-minres-bdf Active-set Newton method with linear solver minres

preconditioned with PBDF
k ;

as-bpcg-bt Variant of active-set Newton method as proposed
in [126], with bpcg preconditioned with PBT defined
in (5.22).

The application of the Schur complement approximation Ŝk requires solv-
ing with L1 and its transpose in (5.27). These solves were replaced by the
use of an algebraic multigrid operator (hsl-mi20, [19]), which needs to be
recomputed at each Newton iteration. hsl-mi20 is used with all default pa-
rameters except for the value control.st parameter=10−4. Moreover, we
set the number of pre/post smoothing steps equal to 5 for all the experi-
ments with the MC problems, while with CC problems only for the finest
mesh h = 2−5. Although in most cases satisfactory results were obtained
with this software, we did experience some anomalous behavior when strong
convection was used. In these cases, ad-hoc algebraic multigrid strategies
should be adopted. We also recall that both Πk and M are diagonal, there-
fore L1 is obtained from the convection-diffusion matrix by scaling, and then
modifying its diagonal.

According to [134], we used A0 = 0.9M and A1 = 0.9(ν M) for the param-
eterized preconditioners in (5.22) within the bpcg iteration. Systems with
L to apply S0 in (5.22) are approximately solved with the aforementioned
hsl-mi20 code.

We set a limit of 80 gmres iterations and 1000 minres and bpcg it-
erations. If a solver reaches the maximum number of iterations, the last
computed iterate is used as the next Newton iterate.

As for the nonlinear iteration, in all tests we set the parameter c in the
definition of the active-set strategy (5.13) equal to one, and we use a null
starting guess x0 in the Newton iteration, which by (5.13) implies thatA0 = ∅
in all settings. As already mentioned, we used the stopping criterion (5.16)
with ηk = ηEk in (5.17) where we further included the safeguard τs = 10−10

as follows

‖Jkxj∗
k+1 − fk‖ = max{τs, ηEk ‖Jkx0

k+1 − fk‖}, (5.40)

k ≥ 1, with the tight tolerance τ1 = 10−10 in (5.17) [40]. While the resid-
ual 2-norm in (5.40) can be cheaply evaluated for gmres when using right
preconditioning, in the case of minres we explicitly computed the (unpre-
conditioned) residual vector at each iteration, and then computed its norm;
for minres we thus slightly modified the code available in [41].
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In the numerical tests in Section 5.5.2 we also experimented with the
adaptive choice ηk = ηIk in (5.18), with τ2 = 10−4, τ3 = 10−2, together with
the above safeguard threshold τs. We experimentally verified that this choice
of tolerances preserved the global convergence of the active set Newton pro-
cedure.

Concerning the outer iteration, we followed [69] and we declare conver-
gence when the nonlinear residual is sufficiently small, i.e.

‖F (uk, yk, pk, µk)‖ ≤ τf , with τf = 10−8.

We verified that this criterion was equivalent to terminating the iteration as
soon as the active sets stay unchanged in two consecutive steps as proved
in [16, 90]. On the contrary, any run performing more than 200 nonlinear
iterations is considered a failure and will be denoted with the symbol ‘-’ in
the forthcoming tables.

All numerical experiments were performed on a 4xAMD Opteron 850,
2.4GHz, 16GB of RAM using Matlab R2012a [88].

5.5.2 Numerical results

The presentation of the numerical results is organized as follows. Section
5.5.2 is devoted to the comparison of as-gmres-ipf and as-minres-bdf

with as-bpcg-bt (see Section 5.2 and (5.22)) on symmetric CC problems.
Section 5.5.2 collects the numerical results of the new proposals as-gmres-
ipf and as-minres-bdf on symmetric and nonsymmetric problems for a
variety of problem parameters. Finally, in Section 5.5.2 an inexact active set
approach is considered in the solution of nonsymmetric CC problems.

In some cases, a comparative computational analysis is carried out by
using performance profiles for a given set of test problems and a given selec-
tion of algorithms [31]. For a problem P in our testing set and an algorithm
A, we let tiP,A denote the total CPU time employed to solve problem P
using algorithm A and tiP be the total CPU time employed by the fastest
algorithm to solve problem P . As stated in [31], the CPU time performance
profile is defined for algorithm A as

πA(τ) =
number of problems s.t. tiP,A ≤ τ tiP

number of problems
, τ ≥ 1,

that is the probability4 for solver A that a performance ratio tiP,A/tiP
is within a factor τ of the best possible ratio. The function πA(τ) is the
(cumulative) distribution function for the performance ratio.

4Or, more precisely, the frequency.
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In the upcoming tables of results the following data will be reported: the
average number of linear inner iterations (li), the number of nonlinear outer
iterations (nli in brackets), the average elapsed CPU time of the inner solver
(cpu), and the total elapsed CPU time (tcpu).

Finally, to be able to evaluate the effectiveness of the preconditioned linear
solvers, we take as reference the computational cost of solving the whole
system with a sparse direct solver (“backslash” in Matlab). For the finest
mesh, corresponding to h = 2−5, the compiled direct solver takes 611 seconds
to solve a single linear system with Ak = ∅ for some k (ν = 10−2, β = 0). We
note that this corresponds to the cost of the first iteration when the active
set Newton algorithm is applied to every problem of the family (5.1). For
comparison purposes, multiplying by the number of nonlinear iterations, the
total cost of the process when the inner system is solved with a sparse direct
method can be derived.

as-gmres-ipf as-minres-bdf as-bpcg-bt

ν h li (nli) cpu tcpu li (nli) cpu tcpu li (nli) cpu tcpu

10−2 2−2 9.6(3) 0.1 0.2 20(3) 0.1 0.2 11.3(3) 0.1 0.2
2−3 9.5(4) 0.8 3.2 19.5(4) 1.1 4.2 10.7(4) 0.7 2.7
2−4 8.5(4) 1.5 8.5 18.7(4) 2.5 9.9 10.0(4) 6.7 26.8
2−5 8.0(4) 12.1 48.2 19.2(4) 36.1 144.4 9.5(4) 17.5 69.9

10−4 2−2 6.5(7) 0.1 0.11 13.8(7) 0.1 0.2 17.5(7) 0.2 1.3
2−3 11.2(11) 0.7 8.1 23.8(11) 1.3 14.4 21.1(11) 1.3 14.7
2−4 10.7(17) 1.8 30.1 23.5(17) 3.1 51.6 18.0(17) 4.7 80.1
2−5 10.3(15) 16.1 241.4 24.3(15) 31.6 474.3 18.2(15) 30.9 463.3

10−6 2−2 10.3(9) 0.1 0.2 22.7(9) 0.1 0.35 41.1(9) 0.1 0.7
2−3 16.0(19) 1.1 21.5 34.6(19) 1.9 35.8 99.0(19) 6.1 115.6
2−4 17.6(54) 2.9 160.7 44.9(54) 5.7 289.8 93.5(54) 13.6 735.6
2−5 22.0(68) 38.4 2608.4 56.3(89) 63.2 5627.2 102.1(68) 136.7 9293.6

10−8 2−2 11.1(9) 0.1 0.2 25.4(9) 0.1 0.4 58.6(9) 0.1 1.0
2−3 18.3(27) 0.7 20.2 40.1(27) 2.1 57.6 133.2(27) 8.3 224.1
2−4 30.3(74) 7.3 540.5 72.1(66) 9.2 513.4 385.0(66) 60.1 3962.8
2−5 - - - - - - - - -

Table 5.5: Comparison among as-gmres-ipf, as-minres-bdf and as-

bpcg-bt. Test problem CC-Pb1 for a variety of h and ν (L symmetric,
i.e., β = 0).

Comparison with the BPCG approach

In order to make comparisons with as-bpcg-bt in the setting used in
[126], we restrict our testing set to symmetric CC problems CC-Pb1 and
CC-Pb2 with β = 0. Numerical results are reported in Tables 5.5 and 5.6.
The number of nonlinear iterations remains quite low for most choices of
the parameters, except for the finest grid and the limit case ν = 10−8. All
methods seem to show some ν-dependence both in the (inner) linear solver,
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as-gmres-ipf as-minres-bdf as-bpcg-bt

ν h li (nli) cpu tcpu li (nli) cpu tcpu li (nli) cpu tcpu

10−2 2−2 8.75(4) 0.1 0.2 18(4) 0.1 0.2 10.0(4) 0.03 0.10
2−3 8.0(5) 0.2 0.8 16.8(5) 0.9 4.7 9.0(5) 0.2 0.99
2−4 7.4(5) 1.3 6.5 16.2(5) 2.2 11.1 9.2(5) 1.8 8.77
2−5 7.4(5) 11.3 56.4 16.6(5) 19.4 96.7 8.4(5) 15.2 76.1

10−4 2−2 11.1(9) 0.1 0.2 23.2(9) 0.1 0.4 28.4(7) 0.1 0.6
2−3 12.9(13) 0.3 3.8 27.7(13) 1.5 19.8 24.4(13) 0.5 6.4
2−4 13.0(14) 2.1 29.5 28.7(14) 3.7 52.1 20.0(14) 3.6 50.1
2−5 11.7(13) 18.5 240.8 27.5(13) 32.0 416.1 20.5(13) 28.2 367.5

10−6 2−2 12.2(12) 0.1 0.3 26.6(12) 0.1 0.5 52.2(12) 0.1 1.3
2−3 16.8(22) 0.4 8.8 36.8(22) 2.0 44.6 115.5(22) 2.1 46.7
2−4 18.2(35) 3.1 106.9 43.5(36) 5.7 204.8 118.5(35) 19.3 675.2
2−5 20.0(41) 34.6 1416.9 52.5(53) 59.5 3151.9 84.3(40) 109.2 4367.1

10−8 2−2 10.4(11) 0.1 0.2 23.2(11) 0.1 0.4 64.3(11) 0.1 1.6
2−3 15.7(19) 0.4 8.2 35.5(19) 1.9 37.1 195.1(19) 3.8 71.2
2−4 27.6(55) 5.3 289.1 69.0(63) 9.1 572.0 360.5(54) 55.9 3021.7
2−5 41.0(156) 90.7 14156.0 - - - 343.3(131) 438.2 57406.9

Table 5.6: Comparison among as-gmres-ipf, as-minres-bdf and as-

bpcg-bt. Test with CC-Pb2 for a variety of h and ν (L symmetric, i.e.,
β = 0).

and in the (outer) nonlinear iteration; however, while in both problems for
as-gmres-ipf and as-minres-bdf such dependence is rather mild, this is
significantly more evident for as-bpcg-bt. Large values of li for as-bpcg-
bt in the tables correspond to runs where the maximum number of inner
iterations is reached. This shortcoming makes as-bpcg-bt not competitive
in almost all parameter combinations, with timings that differ significantly
from the other methods, up to at most one order of magnitude. Finally, we
recall that at each iteration as-gmres-ipf and as-minres-bdf solve linear
systems of dimension 3nh+nAk

, whereas as-bpcg-bt solves systems of fixed
dimension 3nh. The numbers in Tables 5.5 and 5.6 show that an appropriate
explicit treatment of the active-set information within the preconditioner is
capable of making up for the larger problem size, yielding an overall signifi-
cant gain in CPU time.

Dependence on the problem parameters

We tested the new preconditioners on CC, MC and SC problems by an-
alyzing their dependence on the parameters of the discretized problem, i.e.
the regularization parameter ν, the convection coefficient β, the mesh size h
and, for the MC case, the regularization parameter ǫ.

Example 5.1. For the CC problems, we varied h ∈ {2−2, 2−3, 2−4, 10−5}, ν ∈
{10−2, 10−4, 10−6, 10−8}, and we set β = (β1, 0, 0) with β1 ∈ {0, 10, 100, 1000}.
We remark that ν = 10−8 was included for completeness, however it will be
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ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8

β1 h li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu

0 2−2 9.6(3) 0.2 6.5(7) 0.1 10.3(9) 0.2 11.1(9) 0.2
2−3 9.5(4) 3.2 11.2(11) 8.0 16.0(19) 21.5 18.3(27) 20.2
2−4 8.5(4) 8.5 10.7(17) 30.1 17.6(54) 160.7 30.3(74) 540.5
2−5 8.0(4) 48.2 10.3(15) 241.4 22.0(68) 2608.4 - -

10 2−2 9.0(3) 0.1 8.3(10) 0.2 10.4(10) 0.3 11.3(10) 0.3
2−3 8.5(4) 0.7 10.5(13) 3.0 15.4(18) 6.8 19.8(19) 10.7
2−4 8.5(4) 6.1 10.8(13) 25.3 18.6(41) 135.9 23.8(109) 509.1
2−5 8.0(4) 53.6 11.0(15) 277.6 20.9(47) 1810.7* 36.9(164) 13203.7*

100 2−2 5.0(3) 0.1 7.0(4) 0.1 10.0(6) 0.1 13.7(8) 0.3
2−3 6.0(3) 0.4 9.6(5) 0.9 12.3(12) 3.5 23.7(19) 12.9
2−4 5.3(3) 2.9 8.8(6) 8.9 15.1(14) 41.4 34.3(46) 337.9
2−5 7.3(3) 40.3 10.0(6) 108.2 14.4(19) 690.5* 40.0(81) 8383.7*

1000 2−2 3.0(2) 0.1 4.5(2) 0.1 6.0(4) 0.1 8.8(6) 0.2
2−3 4.0(2) 0.2 5.0(2) 0.2 5.8(6) 0.8 16.3(18) 7.6
2−4 4.5(2) 1.7 6.5(2) 2.4 8.1(6) 9.1 18.0(14) 53.2
2−5 4.5(2) 29.3 5.6(3) 53.5 7.2(7) 156.5 25.0(26) 2517.2*

ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8

β1 h li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu

0 2−2 8.7(4) 0.2 11.1(9) 0.2 12.1(12) 0.4 10.4(11) 0.3
2−3 8.0(5) 0.8 12.9(13) 3.8 16.8(22) 8.8 15.7(19) 8.2
2−4 7.4(5) 6.5 13.0(14) 29.5 18.2(35) 106.9 27.6(55) 289.1
2−5 7.4(5) 56.4 11.7(13) 240.8 20.0(41) 1416.9 41.0(156) 14156.0

10 2−2 8.0(4) 0.1 10.6(10) 0.3 13.8(15) 0.5 15.1(15) 0.6
2−3 8.0(4) 0.7 13.1(12) 3.5 19.3(31) 14.7 24.6(30) 21.5
2−4 6.4(5) 6.7 13.5(12) 28.7 20.6(46) 167.6 34.1(67) 449.5
2−5 6.6(5) 59.1 12.3(13) 273.1 21.7(58) 2291.8 41.4(162) 15118.4*

100 2−2 4.5(2) 0.1 9.8(6) 0.2 12.3(10) 0.3 15.5(12) 0.5
2−3 4.3(2) 0.3 10.3(6) 1.1 15.7(16) 5.2 27.2(24) 18.5
2−4 4.6(3) 2.7 9.6(6) 9.7 18.4(20) 61.5 33.2(47) 321.4
2−5 5.6(3) 69.3 8.5(7) 196.7 17.6(23) 907.8 34.3(82) 7428.8

1000 2−2 3.0(2) 0.1 5.0(3) 0.1 10.1(7) 0.2 13.6(9) 0.3
2−3 2.5(2) 0.1 5.0(3) 0.3 10.1(7) 1.4 22.3(12) 6.8
2−4 2.5(2) 0.2 4.5(4) 3.7 9.5(7) 12.1 21.1(15) 58.9
2−5 3.0(2) 25.9 4.2(4) 66.4 8.2(8) 237.4 19.3(17) 2277.6*

Table 5.7: as-gmres-ipf for a variety of values for h, ν and β. The symbol
‘*’ denotes runs where an hsl-mi20 warning occurred; in some of these
cases, much larger timings were observed. Top: CC-Pb1. Bottom: CC-Pb2.
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ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8

β1 h li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu

0 2−2 20.0(3) 0.2 13.8(7) 0.2 22.7(9) 0.4 25.4(9) 0.4
2−3 19.5(4) 4.2 23.8(11) 14.4 34.6(19) 35.8 40.1(27) 57.6
2−4 18.7(4) 9.9 23.5(17) 51.6 44.9(54) 289.8 72.1(66) 513.4
2−5 19.2(4) 144.4 24.3(15) 474.3 56.3(89) 5627.2 - -

10 2−2 18.3(3) 0.1 18.3(10) 0.3 25.3(10) 0.5 29.0(10) 0.5
2−3 17.7(4) 4.2 24.6(13) 19.0 37.7(18) 39.7 50.6(19) 56.7
2−4 17.7(4) 10.8 26.5(13) 40.0 53.7(33) 245.7 87.7(42) 500.7
2−5 19.2(4) 98.4 29.5(15) 550.6 63.1(74) 5572.9 174.1(146)† > 5h*†

100 2−2 10.5(2) 0.1 14.0(4) 0.1 20.5(6) 0.2 31.5(8) 0.4
2−3 11.6(3) 1.8 20.2(5) 5.2 27.1(12) 17.4 53.5(19) 54.3
2−4 11.6(3) 5.3 20.5(6) 17.8 37.0(14) 72.8 93.5(40) 546.5
2−5 98.3(3) 737.3 28.5(6) 382.7 74.8(19)† 2988.0*† 180.2(80)† > 5h*†

1000 2−2 6.5(2) 0.1 8.5(2) 0.1 11.5(4) 0.1 17.5(6) 0.2
2−3 7.5(2) 0.9 10.5(2) 1.1 11.8(6) 4.0 29.0(8) 13.5
2−4 9.5(2) 3.1 13.5(2) 4.3 16.8(6) 15.6 41.1(10) 61.7
2−5 9.5(2) 79.4 11.6(3) 146.3 19.0(7) 549.3 42.1(16) 3036.1*

ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8

β1 h li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu

0 2−2 18.0(4) 0.2 23.2(9) 0.4 26.5(12) 0.6 23.1(11) 0.5
2−3 16.8(5) 4.7 27.7(13) 19.8 36.8(22) 44.6 35.5(19) 37.1
2−4 16.2(5) 11.1 28.7(14) 52.1 43.5(36) 204.8 69.0(63) 572.0
2−5 16.6(5) 96.7 27.5(13) 416.1 52.5(53) 3152.0 123.2(133)† > 5h†

10 2−2 16.7(4) 0.1 23.0(10) 0.4 32.4(15) 0.9 37.4(15) 1.0
2−3 16.5(4) 4.0 30.6(12) 21.7 52.2(30) 90.8 70.3(30) 122.1
2−4 14.2(5) 10.8 32.0(12) 54.6 63.7(47) 409.8 108.2(79) 1151.1
2−5 14.8(5) 98.8 33.0(13) 533.3 78.4(100) > 5h 194.2(159)† > 5h*†

100 2−2 9.5(3) 0.1 20.6(6) 0.2 27.1(10) 0.4 35.6(12) 0.7
2−3 9.0(3) 1.5 22.0(6) 7.0 37.3(16) 31.5 66.2(25) 86.9
2−4 9.6(3) 4.7 22.1(6) 19.1 47.1(20) 138.3 90.9(56) 744.5
2−5 226.0(3) 1206.2 112.5(7) 1411.8 109.2(23)† 4762.4† - -

1000 2−2 5.5(2) 0.1 10.3(3) 0.1 21.0(7) 0.3 28.4(9) 0.5
2−3 5.5(2) 0.6 10.3(3) 1.8 20.4(7) 7.7 49.6(11) 31.3
2−4 5.5(2) 2.3 10.0(4) 6.6 19.5(7) 21.2 63.8(15)† 699.3†
2−5 6.5(2) 71.1 8.0(5) 8.3 25.5(8)† 828.3† 67.7(26)† 7897.7†

Table 5.8: as-minres-bdf for a variety of values for h, ν and β. The symbol
‘*’ denotes runs where an MI20 warning occurred; in some of these cases,
much larger timings were observed (> 5h means that the CPU is larger than
5 hours). Top: CC-Pb1. Bottom: CC-Pb2.
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considered as a limit case because it is rather small. Analogously, β1 = 1000
makes the operator very convection-dominated, providing anomalous behav-
iors in some exceptional cases; we did not explore whether for this extreme
value of β1 the upwind discretization was sufficient in these cases to damp
the well-known numerical instabilities arising in the discretization phase. In
fact, the value β1 = 1000 was only considered for consistency with respect to
the experiments carried out in [69]. In the same lines, we prefer to limit our
speculations on the dependence with respect to β to the empirical level, as
a deeper analysis would require a thorough discussion of both the discretiza-
tion strategy and the employed convection; this is clearly beyond the scope
of this paper.

We collect the results obtained with as-gmres-ipf and as-minres-bdf

for the problems CC-Pb1 and CC-Pb2 in Tables 5.7-5.8 and the correspond-
ing total CPU time performance profile is displayed in Figure 5.2 (left plot)
varying all the parameters for a total of 128 runs. The average number of
inner iterations is quite homogeneous with respect to h and slightly depen-
dent on ν and β. A comparison of Tables 5.7-5.7 and 5.8-5.8 shows that
the number of nonlinear iterations is quite different between as-gmres-ipf

and as-minres-bdf when h is small and ν ∈ {10−6, 10−8}. For these values
the preconditioner in as-minres-bdf is rather ill-conditioned and its per-
formance deteriorates. In this case, the Newton steps computed with the
two preconditioned solvers, using the stopping criterion (5.40), might differ
so greatly that different convergence histories take place. Unfortunately, this
resulted in the as-minres-bdf failure in 10 instances. We recovered 9 over
10 failures by imposing the stricter tolerances τs = τ1 = 10−12 in (5.40) (this
runs are marked with the symbol ‘†’ in Table 5.8). A few unexpected large
values of li can still be observed in Table 5.8 for β = 100 and h = 2−5, which
can be presumably ascribed to an inaccuracy of the multigrid operator.

The superiority of as-gmres-ipf is also evident in the left plot of Fig-
ure 5.2, which reveals that as-gmres-ipf is much more efficient than as-

minres-bdf in terms of total CPU time and that in the 55% of the runs,
the CPU time employed by as-minres-bdf is within a factor 2 of the time
employed by as-gmres-ipf.

Finally, for the sake of completeness, we also carried out experiments
on CC-pb1 using the agmg algebraic multigrid operator [96, 97] in place of
the hsl-mi20 in the solution of systems with L1. The implementation of
agmg requires the use of the “flexible” variant of the linear system solver
since the application of multigrid preconditioner is the result of an iterative
process and therefore it changes step by step [114]. Table 5.9 shows the
results obtained using Flexible gmres (fgmres) in combination with hsl-

mi20 (first two columns) and agmg (last two columns) in the application of
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the PCPF
k preconditioner. We only report experiments with ν ∈ {10−6, 10−8},

as for larger values the performance with the two multigrid preconditioners
is very similar. For ν = 10−6 the overall performance in terms of CPU time
is still somewhat comparable, whereas it is clearly in favor of agmg in the
extreme case ν = 10−8. On the other hand, the average number of iterations
(li) with hsl-mi20 is in general lower, showing that the latter preconditioner
is more effective in terms of approximation properties, but more expensive
to apply.

as-fgmres-ipf with hsl-mi20 as-fgmres-ipf with agmg

ν = 10−6 ν = 10−8 ν = 10−6 ν = 10−8

β1 h li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu

0 2−2 10.3(9) 0.3 11.1(9) 0.4 17.0(9) 0.3 18.7(9) 0.3
2−3 16.0(19) 21.3 18.3(27) 36.4 23.7(19) 12.3 28.5(27) 27.4
2−4 17.6(54) 223.6 28.5(57) 351.6 28.5(54) 157.4 41.7(57) 286.7
2−5 21.9(68) 2794.9 38.7(190) 17457.3 44.8(68) 3766.9 53.3(189) 14250.8

10 2−2 10.4(10) 0.2 11.3(10) 0.4 19.0(10) 0.2 20.7(10) 0.3
2−3 15.4(18) 20.9 19.7(19) 31.1 25.0(18) 11.5 31.7(19) 23.1
2−4 18.6(41) 132.6 26.4(42) 239.4 25.0(41) 79.1 35.4(42) 272.3
2−5 20.9(47) 1938.1 37.9(138)* 12582.4* 39.3(47) 1951.3 50.2(147) 10105.1

100 2−2 10.0(6) 0.1 13.7(8) 0.5 16.0(6) 0.1 20.3(8) 0.3
2−3 12.3(12) 10.5 23.7(19) 36.5 20.5(12) 7.5 31.5(19) 24.4
2−4 15.1(14) 39.8 36.8(34) 321.0 28.7(14) 37.6 39.4(34) 153.3
2−5 14.4(19)* 776.0* 38.8(82) 9172.9* 39.2(19) 755.6 50.2(81) 5658.0

1000 2−2 6.0(4) 0.1 8.8(6) 0.37 8.2(4) 0.1 12.3(6) 0.2
2−3 5.8(6) 2.1 14.1(8) 9.3 9.8(6) 1.2 18.7(8) 5.1
2−4 8.1(6) 8.5 20.1(10) 43.2 12.0(6) 5.1 26.3(10) 31.6
2−5 7.2(7) 150.1 19.6(16)* 1660.9* 13.1(7) 43.9 26.6(16) 600.6

Table 5.9: as-fgmres-ipf (flexible variant) using hsl-mi20 (left) and agmg

(right) for a variety of values of h and β, and small values of ν. The symbol
‘*’ denotes runs where an hsl-mi20 warning occurred; Test problem CC-Pb1.

Example 5.2. We further investigate the reliability of our proposals consid-
ering problem CC-pb2 with the following nonconstant convection parameter

β(x, y, z) =




−2x(1− x)(2y − 1)z
(2x− 1)y(1− y)

(2x− 1)(2y − 1)z(1− z)


 ; (5.41)

see example 3D1 in [96]. The performance of as-gmres-ipf and as-minres-

bdf is analogous to that showed in Tables 5.7-5.8 for the constant and uni-
directional β = (β1, 0, 0); a sample of this behavior for as-gmres-ipf is
reported in Table 5.10 as ν and h vary.
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as-gmres-ipf on CC-Pb2 with convection (5.41)
ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8

h li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu

2−2 5.0(3) 0.3 9.0(8) 0.4 12.4(19) 0.5 14.5(19) 0.7
2−3 5.0(3) 2.2 9.4(8) 5.4 15.1(32) 34.2 20.1(41) 66.9
2−4 4.7(3) 5.9 8.3(9) 14.6 15.4(39) 133.2 26.5(92) 528.8
2−5 5.0(3) 42.2 7.8(9) 139.9 14.9(36) 1089.0 28.6(137) 9643.7

Table 5.10: as-gmres-ipf on problem CC-Pb2 with convection β given in
(5.41).

Example 5.3. For the MC and SC problems, we considered h ∈ {2−2, 2−3, 2−4},
ν ∈ {10−2, 10−4, 10−6, 10−8}, β = (β1, 0, 0) with β1 ∈ {0, 10, 100, 1000}, and
ǫ ∈ {10−1, 10−2, 10−3, 10−4, 10−8, 0}, where the values ǫ ∈ {10−8, 0} are in-
cluded to comprise the SC problems. We thus obtained a set of 288 runs. The
numerical results for these problems do not significant differ from those of the
CC problem, at least for the larger values of ǫ in the set. Therefore, to avoid
proliferation of tables, we prefer not to include them, and report instead the
overall performance profile in the right plot of Figure 5.2. For all considered
runs, the profile clearly shows that as-gmres-ipf is the fastest in the 96%
of the runs and that as-minres-bdf is within a factor 2 of as-gmres-ipf
for the majority (93%) of the runs.
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Figure 5.2: Total CPU time performance profile for as-gmres-ipf and as-

minres-bdf. Left: CC-Pb1 and CC-Pb2. Right: MC-Pb1.

A deeper exploration deserves the dependence on ǫ, and the mutual in-
fluence of ǫ and ν. In Tables 5.11 and 5.12 we report the average number of
inner iterations for h = 2−4 obtained with as-gmres-ipf and as-minres-

bdf, resp., as ν and ǫ vary.
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β1 = 10 β1 = 100
ǫ -1 -2 -3 -4 -8 −∞ ǫ -1 -2 -3 -4 -8 −∞
ν ν

-2 10.3 14.3 35.3 32.5 34.1 34.1 -2 6.0 7.7 8.7 9.0 9.7 9.0
-4 13.5 13.3 16.6 20.2 21.0 21.3 -4 12.3 13.3 16.3 22.3 26.6 26.4
-6 19.5 16.0 14 13.5 13.5 13.5 -6 21.6 19.8 14.7 17.7 16.7 16.7
-8 25.8 18.4 12.0 10.5 10.5 10.5 -8 40.4 34.2 18.0 14.0 13.5 13.5

Table 5.11: Mixed Constraints MC-Pb1: Average number of gmres iterations
using as-gmres-ipf with h = 2−4 and varying ν and ǫ (log10 values of ν, ǫ).

β1 = 10 β1 = 100
ǫ -1 -2 -3 -4 -8 −∞ ǫ -1 -2 -3 -4 -8 −∞
ν ν

-2 22.0 32.1 60.7 86.2 91.6* 93.8* -2 14.0 17.3 19.2 20.0 22.6 21.3
-4 27.8 27.0 34.4 42.2 44.1 44.8 -4 27.0 28.0 33.7 44.2 56.0 55.2
-6 45.3 33.2 27.5 27.5 21.5 27.5 -6 49.4 41.4 29.7 36.0 34.7 34.7
-8 65.7 39.8 24.5 21.5 21.5 21.5 -8 93.6 71.9 36.3 28.5 27.5 27.5

* 6 pre/post smoothing steps set in hsl-mi20

Table 5.12: Mixed Constraints MC-Pb1: Average number of minres iterations
using as-minres-bdf with h = 2−4 and varying ν and ǫ (log10 values of ν, ǫ).

We observe that for β = 10 the average number of inner iterations be-
comes large when ǫ is small and ν is large (top right corner) whereas for
β = 100 the increase in iteration number is more evident in the opposite
setting (bottom left corner). Overall, the variation of the reported values
is quite modest and smallest values are located on the diagonal of the ta-
ble (shaded cells), i.e. when ν = ǫ2. We recall that ν = ǫ2 corresponds
to γ1 = γ2 = 1

2
in the block L1 of the Schur approximation (5.27), so that

Proposition 5.3.6 holds (see Remark 2). We also notice that the variation
in the number of iterations is significantly less pronounced for the indefinite
preconditioner than for the block diagonal preconditioner. In particular, for
a fixed ν, the average number of iterations for as-gmres-ipf varies very
mildly. More significant variations for fixed ν are visible for as-minres-bdf,
see Table 5.12. Moreover, we observe that the behavior of the proposed
preconditioner does not deteriorate for ǫ → 0 and, in particular, fully satis-
fying results are obtained for ǫ = 0, i.e. in the solution of State Constrained
problems.

We point out that similar digits were observed when using a direct solver
(not reported here) in place of hsl-mi20 within the preconditioners. There-
fore, the different performance as the parameters deviate from ν = ǫ2 is not
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due to the preconditioner inexactness, but rather, to the different quality of
the (exact) preconditioner itself. The only exception is given by the two runs
marked with the symbol ‘*’ in Table 5.12, for which a lower average num-
ber of minres iterations was observed when using a direct solver in place of
hsl-mi20.

The inexact active-set Newton method for CC problems

Performing the experiments on problems with CC constraints (5.2), we
observed different trends in the nonlinear iteration progress varying the pa-
rameters ν and β, see e.g. the values of nli in Table 5.7. To clarify this issue,
we plot in Figure 5.3 the convergence history of as-gmres-ipf on CC-Pb1

with mesh size h = 2−4 varying β1 ∈ {0, 10, 100, 1000} and setting ν = 10−2

in the left plot and ν = 10−6 in the right plot.
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Figure 5.3: Convergence history of as-gmres-ipf for the CC-pb1 with h =
2−4. Left: ν = 10−2. Right: ν = 10−6.

Looking at each plot we note that the number of nonlinear iterations
decreases as β becomes larger; moreover, comparing the two plots, we observe
an increase of Newton steps for a smaller ν. More interestingly, the right plot
in Figure 5.3 shows a long stagnation phase in the nonlinear process before
reaching the local area of fast Newton convergence. In this first phase, away
from a solution, choosing an ηk too small (as in (5.40)) can lead to oversolving
the Newton equation (5.14): the corresponding step may result in little or
no progress toward a solution, while involving pointless expense.

We therefore combined the active-set method with the inexact adaptive
choice (5.18). We report in Table 5.13 the results of as-gmres-ipf using
the adaptive value ηk = ηIk in (5.18) on problem CC-Pb1 with h ∈ {2−4, 2−5},
β1 ∈ {0, 10, 100, 1000} and ν ∈ {10−2, 10−4, 10−6, 10−8}.
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ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8

β1 h li(nli) tcpu li(nli) tcpu li(nli) tcpu li(nli) tcpu

0 2−4 3.2(5) 3.2 4.5(18) 15.9 7.0(60) 77.1 13.1(131) 281.9
2−5 4.0(6) 59.1 2.7(16) 102.0 3.5(92) 646.4 - -

10 2−4 3.5(4) 3.2 3.2(14) 11.1 5.2(60) 65.9 112.7(101) 233.9
2−5 4.0(5) 39.6 2.9(15) 100.7 3.0(53) 377.7* - -

100 2−4 3.0(3) 1.8 3.3(6) 4.1 11.6(14) 30.4 10.6(51) 100.5
2−5 4.3(3) 25.4 3.1(6) 42.1 2.9(27) 332.4* - -

1000 2−4 2.5(2) 1.1 3.3(3) 2.1 7.5(6) 8.5 20.4(10) 45.1
2−5 2.5(2) 18.1 3.0(3) 31.6 2.5(7) 67.3 8.1(18) 924.1

Table 5.13: as-gmres-ipf on CC-Pb1 for h ∈ {2−4, 2−5} and a variety of
values for ν and β. The symbol ‘*’ denotes runs where an hsl-mi20 warning
occurred.

Let us compare values in Table 5.13 with the corresponding values in Ta-
ble 5.7 (top table) obtained with ηEk . The average number of linear iterations
is smaller in Table 5.13 than in Table 5.7 while the number of nonlinear iter-
ations is larger in 15 over 29 successful runs. Overall, the saving in number of
inner iterations of as-gmres-ipf with ηIk makes it faster than as-gmres-ipf

with ηEk in all runs. Two extra failures occur when ηIk is used in the limit
case ν = 10−8.

Summarizing, the inexact strategy is both cheaper and more effective in
solving problem (5.10), especially for ν ∈ {10−4, 10−6} and β1 ≤ 10, that
is values for which the stagnation phase is longer. Note that in particular,
a less stringent inner accuracy allows a fast solution also in the limit case
β1 = 1000.

5.6 Conclusions

We have proposed two classes of preconditioners (a positive definite one
and an indefinite one) for efficiently solving problem (5.1) by means of an
active-set Newton method. Both acceleration strategies rely on a new ef-
fective approximation to the Schur complement of the Jacobian matrix, for
which spectral estimates are provided.

A large set of numerical experiments shows the great potential of these
preconditioners for a large range of all problem parameters. As opposed to
the current literature, we cope with the indefiniteness of the problem by ap-
propriately choosing the structured preconditioner, and we include active set
information explicitly in the preconditioning blocks to exploit this informa-
tion at later stages. Therefore, the preconditioner adapts dynamically with
the modification of the active sets. This procedure allowed us to devise a
general and simple to implement acceleration strategy, that can be employed
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either within minres (in the block diagonal form) or within gmres (in the
indefinite factorized form). The latter formulation outperforms minres in all
test cases, and shows significantly lower sensitivity to the extreme values of
the parameters. In general, memory requirements of gmres remain modest,
as the number of iterations stays quite small throughout the nonlinear pro-
cess. For the smallest values of ν, however, the number of gmres iterations
may make its memory requirements undesirably high. In this case, a short-
term recurrence such as the symmetric version of qmr could be considered as
an alternative; see, e.g., [103] for a discussion and related numerical experi-
ments. We also mention that a dimension reduction could be employed in the
original system (5.14). This strategy is discussed in [121] in the case when
no bound constraints are imposed, and it could be naturally generalized to
our setting.

Although some of the preconditioner blocks need to be recomputed at
each Newton iteration, this cost does not seem to penalize the overall per-
formance of the preconditioned solver. Numerical comparisons with state-of-
the-art methods available in the literature support these claims.

Finally, we mention that more general regularization terms could be con-
sidered for the cost functionals, for instance, by enforcing sparsity constraints,
see, e.g., [124]. We aim to address this important aspect in future research.



Part III

Saddle point systems arising in
the solution of Quadratic
Programming problems
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Chapter 6

Spectral estimates for
unreduced symmetric systems1

This chapter is devoted to the study of saddle point systems stemming
from convex Quadratic Programming (QP) problems in standard form, i.e.

min
x

cTx+
1

2
xTHx subject to Jx = b, x ≥ 0, (6.1)

where J ∈ R
m×n has full row rank m ≤ n, H ∈ R

n×n is symmetric and
positive semidefinite, x, z, c ∈ R

n, y, b ∈ R
m.

Interior Point (IP) methods are effective iterative procedures for solving
such problems, possibly of very large dimension, see [8, 12, 59, 48, 86, 138]
and references therein. Since they are second-order methods, a linear algebra
phase constitutes their computational core and its practical implementation
is crucial for the efficiency of the overall optimization procedure. Therefore,
linear algebra of IP methods has been extensively studied in all algorith-
mic issues, including formulation of the systems arising at each iteration,
employment of direct and iterative solvers, preconditioning, inertia control.

The application of a primal-dual IP method gives rise, at each iteration, to
a nonsymmetric 3×3 block system of dimension 2n+m, sometimes referred to
as KKT system [46, 49, 30]. Such system allows for alternative formulations
differing for dimension, conditioning and definiteness [48, 49, 136].

The nonsymmetric 3×3 block matrix can be easily symmetrized without
increasing the conditioning of the system [46], and here we will refer to the
resulting symmetric matrix as the unreduced matrix. On the other hand, by
exploiting the structure of the nonsymmetric 3 × 3 block matrix and block
elimination, it is common to use a linear system of dimension n+m with a
reduced (or augmented) symmetric 2× 2 block saddle point matrix.

1The results presented in this chapter are taken from [91].
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The focus of this chapter is the theoretical and numerical study of the
unreduced 3 × 3 formulation and, in some respects, a comparative analysis
with the reduced 2× 2 formulation.

Unlike the reduced 2 × 2 matrix, under suitable conditions on both the
problem (6.1) and the solution, the unreduced matrix has condition number
asymptotically uniformly bounded, and typically remains well-conditioned as
the solution is approached [46, 48]. Motivated by this feature, in a very recent
paper Greif et al. [66] presented a spectral analysis for the 3× 3 matrix and
claimed that this formulation can be preferable to the reduced one in terms
of eigenvalues and conditioning, The study in [66] covers also regularized
variants of KKT matrices arising from regularizations of the optimization
problem.

The study conducted in [66] has renewed the interest in the unreduced
formulation but leaves some issues open, that need to be addressed before any
thorough comparison with the reduced formulation can be started. Specif-
ically, some eigenvalue bounds presented in [66] may be overly pessimistic
and not tight for the unregularized 3× 3 matrix; in fact they may not reflect
the nonsingularity of the matrix. In this chapter we aim at filling these gaps
and offering new spectral bounds which improve results in [66].

We will not discuss preconditioning here, but this will be the main topic
of the next chapter, where we will offer a comprehensive study of the impact
of the system formulation on preconditioning techniques. Numerical exper-
iments that compare the two formulations are also postponed to the next
chapter.

The reminder of this chapter is organized as follows. In Section 6.1 we
introduce the problem and briefly detail how the application of an IP method
leads to the solution of the KKT system. In section 6.2 we introduce the
different formulations of the system and report the main results presented in
[66]. In Section 6.3 we give new estimates on the bounds of the unreduced
KKT matrix and perform the analysis for the early and middle stage of the
IP method, and for the late stage of the IP method, separately. In Section
6.4 we show numerical validation of the bounds obtained. Final conclusions
are drawn in Section 6.5.

Notation. For any x ∈ R
n and set of indices C ⊂ {1, 2, . . . , n}, we write

xC for the subvector of x having components xi with i ∈ C. Further, if B is a
matrix we write BC for the submatrix of the columns of B with indices in C.



6.1 Interior Point methods 101

6.1 Interior Point methods

We start this section by briefly reviewing the theory on the numerical
solution of QP via Interior Point methods. For a more detailed treatment
we refer to the monographs [138, 18, 95].

Similarly as done in Chapter 5, we introduce the Lagrangian function
associated with the QP problem (6.1), that is

L(x, y, z) = 1

2
xTHx+ cTx− yT (Jx− b)− zTx.

Here, y is the Lagrange multiplier (or dual variable) associated with the
equality constraints, while z is the Lagrange multiplier associated with the
inequality constraints. Note that we use different names for the dual variables
with respect to Theorem 5.1.1, to be consistent with the standard notation
found in the optimization literature. The resulting KKT conditions, which
characterize the primal-dual solution (x̂, ŷ, ẑ) of (6.1) (cf. (5.7)) read:

∇xL = Hx̂− JT ŷ − ẑ + c = 0, (6.2a)

Jx̂ = b, (6.2b)

x̂ ≥ 0, (6.2c)

ẑ ≥ 0, (6.2d)

x̂T ẑ = 0. (6.2e)

Interior Point methods generate a sequence of approximate solution (x, y, z)
for the above equations for which the inequality constraints (6.2c) and (6.2d)
are strictly satisfied, i.e. (x, z) > 0. The name “Interior Point” actually
comes from this fundamental property.

We now report a possible derivation of these methods. To this end, we
first introduce the notion of Central Path. Given a positive scalar τ , known
as barrier parameter, we consider the following equations:

Hx− JTy − z + c = 0, (6.3a)

Jx = b, (6.3b)

x > 0, (6.3c)

z > 0, (6.3d)

xT z = τ . (6.3e)

These conditions are the same as the KKT conditions, except that now x and
z have strictly positive components and the complementarity condition has
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been replaced with xT z = τ . If we assume that there exists a triple (x, y, z)
that satisfies the first four conditions (6.3a)-(6.3d), then equations (6.3) have
a unique solution (xτ , yτ , zτ ) for any given value of τ . The Central Path is
then defined as

C = {(xτ , yτ , zτ ) | (xτ , yτ , zτ ) satisfies (6.3), τ > 0} .

It is apparent that all the points of the Central Path satisfy (x, z) > 0, i.e.,
they lie in the interior of the set (x, z) ≥ 0. Moreover, if we assume that the
solutions of (6.3) converge as τ goes to 0, then they necessarily converge to
an exact solution of (6.3).

The idea of Interior Point methods is to find approximate solutions which
“follow” the Central Path towards the exact solution of the problem. To this
end, at each iteration we take a Newton step towards the point (xτ , yτ , zτ ).
The barrier parameter τ is gradually reduced to 0 as the method progresses,
to ensure the convergence of the method to the solution of (6.2).

More precisely, if we introduce the nonlinear function

Fτ (x, y, z) =



Hx− JTy − z + c

Jx− b
XZe− τe




where X̂ = diag(x) and Z = diag(z), then at each iteration of the method
we have to solve the linear system

J (x, y, z)



∆x
∆y
∆z


 = −Fτi(x, y, z),

where (x, y, z) is the current iterate and J denotes the Jacobian matrix of
Fτi , i.e., 


H JT −I
J 0 0
−Z 0 −X





∆x
∆y
∆z


 =



−Hx+ JTy + z − c

−Jx+ b
−XZe− τe


 . (6.4)

The next iterate is then computed as

(x+, y+, z+) = (x, y, z) + α(∆x,∆y,∆z)

where α > 0 is the step length, chosen to ensure (x+, z+) > 0 and possibly
other conditions.

Typically, τ = σµ, where σ ∈ [0, 1] is known as centering parameter
and µ = xT z/n is the duality measure of the current iterate. The duality
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measure tells us how much the complementarity condition (6.2e) is violated
in the approximate solutions, The centering parameter, whose actual value
depends on the specific Interior Point method considered, plays a crucial role
since it governs the reduction of the duality measure and the distance from
the Central Path of the subsequent iteration. Indeed, we observe that we
are taking a Newton step towards the Central Path point (xσµ, yσµ, zσµ). If
σ = 0, we are actually moving in the direction of the exact solution (x̂, ŷ, ẑ).
However, since we are not following the Central Path, we are often forced to
take a very small step in that direction (α ≪ 1) to ensure that the condition
(x+, z+) > 0 holds. On the other hand, if we take σ = 1, we are moving
towards the point (xµ, yµ, zµ) which lies in a much “central” zone, but it
is characterized by having the same duality measure as the current iterate.
Most Interior Point methods seek a compromise between these two extremes.

6.2 The KKT system

We now focus on the linear system (1.2), which in the literature is some-
times referred to as the KKT system (see e.g. [46, 49, 30]). Unsurprisingly,
the numerical solution of KKT systems constitutes the computational core of
Interior Point methods. As stated in the introduction of this chapter, differ-
ent formulations for this system are possible. Indeed, the coefficient matrix
that appears in (6.4), say K3,uns, is symmetrizable by setting

K3 = R−1K3,unsR, where R =



In 0 0
0 Im 0

0 0 Z
1

2


 , (6.5)

see [46]. Thus, we can consider the system equivalent to (6.4) with matrix2

K3 =




H JT −Z
1

2

J 0 0

−Z
1

2 0 −X


 , (6.6)

Due to the presence of zero and diagonal blocks in (6.4), it is very common
to eliminate ∆z from the third equation and to obtain a KKT system of
dimension n+m with matrix

K2 =

[
H +X−1Z JT

J 0

]
. (6.7)

2There are other ways to symmetrize K3; the symmetrization considered does not suffer
inevitable ill-conditioning as the solution is approached [46, 48].
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One further block elimination step yields the normal equation with matrix
K1 = J(H+X−1Z)−1JT . In the rest of the paper, we focus on the symmetric
matrices K2 and K3 and start by noticing that both matrices have a saddle
point structure. Under the assumption that H is positive semidefinite and
J has full rank, and as long as X and Z are diagonal with positive entries,
K2 and K3 are nonsingular; K2 has n positive and m negative eigenvalues,
while K3 has n positive and n+m negative eigenvalues, see e.g. [12, Lemma
4.1], [66, Lemma 3.5, 3.8].

We concentrate on the use of the 3 × 3 formulation and investigate its
spectral properties and preconditioning issues, as compared with the 2 × 2
formulation. A key issue is the behavior of the matrices in the limit of the IP
procedure. We denote with A∗ and I∗ respectively the active and inactive
sets at the exact solution x̂, i.e. the sets

A∗ := {i = 1, . . . , n | x̂i = 0} , I∗ := {1, . . . , n} \ A∗. (6.8)

As stated by (6.2e), x̂ and ẑ are complementary, that is x̂iẑi = 0 for every
i = 1, . . . , n. We also say that vectors x̂, ẑ are strictly complementary if
ẑi > 0, for all i ∈ A∗, that is, for every index i = 1, . . . , n it holds either
x̂i > 0 or ẑi > 0.

As a consequence of complementarity, when the IP iterates approach a
solution, some entries of X−1Z tend to zero while others tend to infinity and
the eigenvalues of the (1, 1) block in K2 may spread from zero to infinity. The
effect of this feature on the conditioning of K2 can be formally described in
the situation where

min
1≤i≤n

zi
xi

= O(µ), and max
1≤i≤n

zi
xi

= O(µ−1),

and µ is the duality measure, which as already discussed goes to 0 as the
IP iterates approach the exact solution. These asymptotic estimates hold
when strict complementary is in place, A∗ 6= ∅, I∗ 6= ∅, and the iterates are
restricted to a suitable neighborhood of the central path, see, e.g., [66, 59]. As
a consequence of these assumptions, the asymptotic condition number of K2

may get as large as O(µ−2), [66, Corollary 5.2], [59, Lemma 2.2]. Remedies to
this occurrence may consist either in scalings of K2 [50] or in regularization
strategies [59, 53, 116]. For sake the of completeness, we recall here that
ill-conditioning of the matrix is usually not harmful in case direct methods
are applied [47, 138].

Under suitable conditions stated below, the unreduced matrix K3 can
be well conditioned eventually and nonsingular in the limit although the
diagonal scaling (6.5) used for forming the right-hand side of the system and
unscaling the variables remains benignly ill-conditioned [46, 48]. Therefore, a
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spectral analysis of the originalK3 may give insight into both its conditioning
and the necessity of regularization strategies.

Let q be the cardinality of the set A∗. Without loss of generality, suppose
that the zero components of x̂ are its first q elements. Hence, if x̂ and ẑ are
strictly complementary by (6.8) we have

x̂ = (0, x̂I∗), ẑ = (ẑA∗
, 0), x̂I∗ > 0, ẑA∗

> 0, (6.9)

where x̂I∗ ∈ R
n−q, ẑA∗

∈ R
q. We now give a definition that will be used in

the following.

Definition 6.1. The Linear Independence Constraint Qualification (LICQ)
is satisfied at x̂ if the matrix

[
JT −IA∗

]
has full column rank.

Note that a necessary condition for the LICQ condition to be satisfied at
any point is that J has full row rank.

It is useful to make some comments on the matrices K3,uns and K3 eval-
uated at x = x̂, z = ẑ. To this end, we let

K̂3,uns =




H JT −In
J 0 0

−Ẑ 0 −X̂


 , K̂3 =




H JT −Ẑ
1

2

J 0 0

−Ẑ
1

2 0 −X̂


 , (6.10)

where X̂ = diag(x̂), Ẑ = diag(ẑ). Throughout the paper, K̂3 and K3 will
denote the coefficient matrices at the QP solution and during the iterations,
respectively.

The systems involving matrices K3,uns and K3 are formally equivalent
also at the exact solution (x̂, ẑ), at least after the natural elimination of some
equations. Indeed, let us assume for simplicity that x̂ and ẑ are partitioned as
in (6.9) and strictly complementary. Then, if in equation (6.4) we substitute

x = x̂ and z = ẑ, K̂3,uns is block upper triangular and upon reduction of the
components of ∆z with indices in I∗, we get a system with matrix




H
JT
A∗

−Iq
JT
I∗ 0

JA∗
JI∗ 0 0

−ZA∗
0 0 0




and JA∗
∈ R

m×q , JI∗ ∈ R
m×(n−q) and ZA∗

= diag(ẑA∗
) ∈ R

q×q. By using the
similarity transformation with a matrix of the form (6.5), namely



In 0 0
0 Im 0

0 0 Z
1

2

A∗


 ,
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the resulting system is symmetric with matrix obtained by removing in K̂3

the last block row and column associated to the set I∗.
We also observe that K̂3 and K̂3,uns have the same eigenvalues. Indeed,

by (6.5) K3 and K3,uns have the same eigenvalues for every strictly positive x
and z. A continuity argument shows that they also coincide when taking the
limit as x → x̂ and z → ẑ. The following theorem states conditions under
which K̂3 is nonsingular, see, e.g., [66, Theorem 3.10].

Theorem 6.2.1. Suppose H is symmetric and positive semidefinite, X̂ and
Ẑ are diagonal with nonnegative entries. Then K̂3 in (6.10) is nonsingular
if and only if

1. x̂ and ẑ are strictly complementary,

2. the LICQ is satisfied at x̂,

3. the null spaces of matrices H, J, Ẑ satisfy

ker(H) ∩ ker(J) ∩ ker(Ẑ) = {0}. (6.11)

In the next theorem we summarize the bounds for the eigenvalues of K3

given in [66, Corollary 5.3 and Corollary 5.4]. To simplify the notation we
let λmin and λmax be the minimum and maximum eigenvalues of H and σmin

and σmax be the minimum and maximum singular values of J .

Theorem 6.2.2 ([66]). Suppose H is symmetric and positive semidefinite
and let K3 be as in (6.6).

i) If θ−In+X is nonsingular for all the negative eigenvalues θ− of K3, then
θ− ∈ [ζ, 0), where

ζ = min

{
1

2

(
λmin −

√
λ2
min + 4σ2

max

)
, min
{j|xj+θ−<0}

θ∗j

}
, (6.12)

and θ∗j is the smallest negative root of the cubic polynomial

pj(θ) = θ3 + (xj − λmin)θ
2 − (σ2

max + zj + xjλmin)θ − xjσ
2
max. (6.13)

ii) If J has full rank and X and Z are diagonal with positive entries, then
the positive eigenvalues θ+ of K3 satisfy θ+ ∈ [θ3, θ4], where

θ3 = min
1≤j≤n

1

2

(
λmin − xj +

√
(λmin + xj)2 + 4zj

)
, (6.14)

θ4 =
1

2

(
λmax +

√
λ2
max + 4(σ2

max + zmax)
)
. (6.15)
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Note that the definition of ζ in (6.12) depends on the eigenvalue θ− con-
sidered, and as such it cannot be computed without some knowledge on
the eigenvalue itself. To obtain a computable lower bound on the negative
eigenvalues of K3, following [66] we define

θ1 := min

{
1

2

(
λmin −

√
λ2
min + 4σ2

max

)
,min

j
θ∗j

}
,

with θ∗j defined as in (6.13).
In [66, Section 5.2] Greif et al. observe that the lower bound in Theorem

6.2.2(i) is established excluding that some eigenvalue θ− of K3 belong to the
spectrum of −X but this assumption may fail both in the course of iterations
and in the limit if there are inactive bounds. They also note that the zero
upper bound in Theorem 6.2.2(i) is not particularly meaningful either in the
case where (x, z) > 0 or in the limit. Finally, they point out that the lower
bound θ3 in Theorem 6.2.2(ii) is strictly positive as long as (x, z) > 0 but
in the limit it reduces to λmin and may be overly pessimistic if λmin = 0. In
particular, the nonsingularity of K3 stated in Theorem 6.2.1 is not reflected
by this spectral analysis. In the next section we find new bounds for the
spectrum of K3 which clearly improve upon the existing results.

6.3 Spectral estimates

In this section we give new bounds for the eigenvalues of K3 and distin-
guish between the matrix arising at a generic IP iteration and the matrix
arising asymptotically or in the limit of the IP method. Therefore, first we
only assume strict positivity of x and z. Then, we suppose that the as-
sumptions in Theorem 6.2.1 hold and that (x, z) is either a positive vector
approaching (x̂, ẑ) or that it coincides with (x̂, ẑ).

General IP iterations. For positive x and z we fill the incomplete analysis
on the negative eigenvalues of K3 given in [66]. If the leading block of K3 is
positive definite, an upper bound for the negative eigenvalues can be found
in [120, Lemma 2.2], but this analysis does not apply to our case where
H is only positive semidefinite. In [61, Proposition 3.2, Proposition 3.3],
the authors derive eigenvalue bounds for general saddle point systems with
possibly indefinite and also singular (1,1) block. Their results require that
the (1,2) block of the saddle point matrix have full rank; this can be satisfied
in our setting by a simple reordering of the blocks. However, they also require
strong assumptions on the norm of the (2,2) block, which in our numerical
experiments (see section 6.4) do not hold except during the very first few
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iterations. We begin by investigating the lower bound, and work without
assuming the nonsingularity of X + θIn.

Theorem 6.3.1. Suppose that H is symmetric and positive semidefinite,
J has full rank and X and Z are diagonal with positive entries. Then the
negative eigenvalues θ− of matrix K3 given in (6.6) satisfy

θ− ≥ θ1 := min
1≤j≤n

θ∗j , (6.16)

where θ∗j is the smallest negative root of the cubic polynomial (6.13).

Proof. Consider the eigenvalue problem for K3.




H JT −Z
1

2

J 0 0

−Z
1

2 0 −X





u
v
w


 = θ



u
v
w


 ,

and the block equations therein,

Hu+ JTv − Z
1

2w = θu, (6.17)

Ju = θv, (6.18)

−Z
1

2u−Xw = θw. (6.19)

Necessarily u 6= 0; otherwise (6.18) gives v = 0, and by the positive
definiteness of Z, (6.17) yields w = 0, which is a contradiction. Similarly, w
must be nonzero since otherwise, (6.19) implies u = 0.

Since θ < 0, the matrix H − θIn is positive definite, thus by eliminating
u from (6.17) and substituting in (6.18) and (6.19) we obtain

−SSTv + SRξ = θv, (6.20)

Z
1

2RSTv − Z
1

2R2ξ = (θIn +X)Z− 1

2 ξ, (6.21)

where R = (H − θIn)
− 1

2 , S = JR, w = Z− 1

2 ξ. Let us now suppose

θ < γ0 :=
1

2

(
λmin −

√
λ2
min + 4σ2

max

)
,

otherwise, γ0 provides the sought after lower bound for θ. Under this as-
sumption, the matrix SST + θIm is negative definite and (6.20) gives v =
(SST + θIm)

−1SRξ. Then, substituting v in (6.21) and premultiplying by

ξTZ− 1

2 we obtain

ξTR
[
In − ST (θIm + SST )−1S

]
Rξ + ξTZ− 1

2 (θIn +X)Z− 1

2 ξ = 0. (6.22)
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In order to bound the left-hand side of the above equation, first note that

ξTZ− 1

2 (X + θIn)Z
− 1

2 ξ =
n∑

i=1

xi + θ

zi
ξ2i (6.23)

where ℓ = arg(maxj
xj+θ

zj
). We then note that the eigenvalues of SST + θIm

are of the form
σ2
i (S)

σ2
i (S) + θ

and by the negative definiteness of the matrix, it

follows that σ2
i + θ < 0, i = 1, . . . , n, and

ST (θIm + SST )−1S ≥ σ2
max(S)

σ2
max(S) + θ

. (6.24)

Using inequalities (6.23) and (6.24), as well as ξTR2ξ ≤ λ2
max(R) ‖ξ‖2 and

‖ξ‖2 > 0, equation (6.22) becomes

θ λ2
max(R)

σ2
max(S) + θ

+
xℓ + θ

zℓ
≥ 0. (6.25)

By σ2
max(S) ≤

σ2
max

λmin − θ
and λ2

max(R) =
1

λmin − θ
,

θ(
σ2
max

λmin − θ
+ θ

)
(λmin − θ)

+
xℓ + θ

zℓ
≥ 0,

which is equivalent to pℓ(θ) ≥ 0, where pℓ(θ) is the polynomial (6.13) for j =
ℓ. The polynomial pℓ(θ) has two negative roots since pℓ(0) = −xℓσ

2
max < 0

and pℓ(−xℓ) = xℓzℓ > 0, and the product of the roots is negative. Hence,
letting θ∗ℓ < −xℓ be the smallest negative root of pℓ(θ) it follows θ ≥
min {θ∗ℓ , γ0}. Repeating the same arguments and letting θ∗j be the smallest
negative root of pj(θ), 1 ≤ j ≤ n, we can conclude that θ ≥ min {θ∗ℓ , γ0} ≥
min

{
minj θ

∗
j , γ0

}
and

min
j

θ∗j < −xmax. (6.26)

To complete the proof, it remains to show that θ∗j ≤ γ0 for every j = 1, . . . , n.
To this end, for any j we write pj(θ) as

pj(θ) = (θ + xj)(θ
2 − λminθ − σ2

max)− zjθ,

and note that pj(γ0) = −zjγ0 > 0, i.e. the smallest root of pj(θ) is smaller
than γ0.



110 6. Spectral estimates for unreduced symmetric systems

In (6.16) it is possible to remove the dependence on j by noting that if
θ < −xmax then (6.26) implies

xj + θ

zj
≤ xmax + θ

zmax

.

Using this inequality in (6.25) and repeating the same arguments as in The-
orem 6.3.1, we find that the negative eigenvalues of K3 are bounded from
below by the smallest negative root θ∗ of the cubic equation

θ3 + (xmax − λmin)θ
2 − (xmaxλmin + σ2

max + zmax)θ − σ2
maxxmax = 0.

However, this bound may be not as sharp as (6.16) as it is unlikely that
xj = xmax and zj = zmax for the same index j.

We now turn on the problem of deriving an upper bound for the negative
eigenvalues. If the leading block of K3 is positive definite, one such bound
can be found in [120, Lemma 2.2], but this analysis does not apply to our case
where H is only positive semidefinite. In [61, Proposition 3.2, Proposition
3.3], the authors derive eigenvalue bounds for general saddle point systems
with possibly indefinite and also singular (1,1) block. Their results require
that the (1,2) block of the saddle point matrix have full rank; this can be
satisfied in our setting by a simple reordering of the blocks. However, they
also require strong assumptions on the norm of the (2,2) block, which in our
numerical experiments (see section 6.4) do not hold except during the very
first few iterations. In the following theorem we determine an upper bound
for the negative eigenvalues of K3 under weaker hypotheses, by exploiting
the structure of the blocks.

Theorem 6.3.2. Suppose that H is symmetric and positive semidefinite, J
has full rank and X and Z have positive diagonal entries. Then the negative
eigenvalues θ− of K3 given in (6.6) satisfy

θ− ≤ θ2 = γ, (6.27)

where γ is the largest negative root of the cubic polynomial

p(θ) = θ3 + (xmin − λmax)θ
2 − (xminλmax + σ2

min + zmax)θ − σ2
minxmin, (6.28)

with γ > −xmin.

Proof. Consider equations (6.17), (6.18), (6.19), with θ < 0. As before, we
have u, w 6= 0. We first assume that u ∈ ker(J). From (6.18) we infer that
v = 0. The first and second equations now read

Hu− Z
1

2w = θu, −Z
1

2u−Xw = θw.



6.3 Spectral estimates 111

If we determine u from the first equation above, substitute it in the second
one, and multiply the resulting equation from the left by wT , we obtain

wTZ
1

2 (H − θIn)
−1Z

1

2w + wTXw + θ ‖w‖2 = 0.

Thus, using Rayleigh quotient arguments, we obtain zmin/(λmax−θ)+xmin+
θ ≤ 0, and

θ ≤ γ1 :=
1

2

(
λmax − xmin −

√
(λmax + xmin)2 + 4zmin

)
. (6.29)

We now suppose u /∈ ker(J), and write u = u1 + u2, with u1 ∈ ker(J) and
0 6= u2 ∈ ker(J)⊥. Moreover, we suppose θ > −xmin (otherwise, −xmin is
the sought after upper bound), so that the matrix X + θIn is also positive
definite. From (6.18) and (6.19) we respectively obtain

v =
1

θ
Ju, w = −(X + θIn)

−1Z
1

2u.

If we substitute in (6.17) and premultiply it by uT
1 and uT

2 , we respectively
obtain:

uT
1H(u1 + u2) + uT

1Z
1

2 (X + θIn)
−1 Z

1

2 (u1 + u2)− θ ‖u1‖2 = 0,

uT
2H(u1 + u2) +

1

θ
‖Ju2‖2 + uT

2Z
1

2 (X + θIn)
−1 Z

1

2 (u1 + u2)− θ ‖u2‖2 = 0.

Subtracting the two equations,

uT
2Hu2 − u1Hu1 +

1

θ
‖Ju2‖2 + uT

2Z
1

2 (X + θIn)
−1 Z

1

2u2+

−uT
1Z

1

2 (X + θIn)
−1 Z

1

2u1 − θ ‖u2‖2 + θ ‖u1‖2 = 0.

Since −uT
1Hu1 , −uT

1Z
1

2 (X + θIn)
−1 Z

1

2u1 and θ ‖u1‖2 are nonpositive, it
holds

uT
2

(
H +

1

θ
JTJ + Z

1

2 (X + θIn)
−1 Z

1

2 − θIn

)
u2 ≥ 0,

from which we obtain
(
λmax +

σ2
min

θ
+

zmax

xmin + θ
− θ

)
‖u2‖2 ≥ 0.

Dividing by ‖u2‖2 and multiplying by −θ(θ + xmin), we find that θ satisfies
p(θ) ≥ 0 where p(θ) is the cubic polynomial in (6.28). Noting that p(0) =
−σ2

minxmin < 0 and p(−xmin) = zmaxxmin > 0, it follows that θ ≤ γ, where
γ is the largest negative root of p(θ), and γ > −xmin. By (6.29) and γ1 <
−xmin < γ, we can conclude that θ ≤ max {γ1, γ} = γ.
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Combining the above results with the bounds for the positive eigenvalues
given in Theorem 6.2.2, we obtain

spec(K3) ⊆ I− ∪ I+ = [θ1, θ2] ∪ [θ3, θ4], (6.30)

where θ1 is as in (6.16), and θ2 is as in (6.27). The new estimate in Theo-
rem 6.3.2 provides a significant upper bound for the negative eigenvalues, as
compared with the analysis given in [66]; see also Theorem 6.2.2.

The estimate θ2 in Theorem 6.3.2 goes to zero with xmin. This fact can
also be appreciated by writing the polynomial p(θ) in the theorem statement
as

p(θ) = (θ + xmin)(θ
2 − λmaxθ − σ2

min − zmax) + zmaxxmin,

so that p(θ) differs by zmaxxmin from a polynomial having −xmin as one of
its roots. Such a property shows the inadequacy of this technique to derive
spectral estimates at later stages of the IP iterations, when the coefficient
matrix remains fairly well conditioned.

Asymptotic IP iterations and limit point. The bounds in (6.30) are mean-
ingful as long as (x, z) are either early or middle stage iterates of the IP
method, or (x, z) are late stage iterates and K3 tends to singularity. How-
ever, if (x, z) approaches a solution (x̂, ẑ) satisfying the conditions in Theorem
6.2.1, then the bounds are unsatisfactory. Indeed, K̂3 is nonsingular whereas
the upper negative eigenvalue θ2 tends to 0 as xmin tends to 0, and so does
the lower bound θ3 on the positive eigenvalues if λmin = 0. We thus make
a further step and focus on the case when K̂3 is nonsingular. It is therefore
useful to analyze the assumptions made in Theorem 6.2.1. Considering the
partitioning in (6.9) we can write

J =
[
JA∗

JI∗
]
,

[
JT −IA∗

]
=

[
JT
A∗

−Iq
JT
I∗ 0

]
,

with JA∗
∈ R

m×q and JI∗ ∈ R
m×(n−q). The LICQ condition is satisfied at x̂

if and only if JT
I∗ has full column rank. This fact implies that JI∗ is a large

or square matrix, i.e. q ≤ n−m, and that σmin(JI∗) > 0.
Concerning condition (6.11), we have that

ker(Ẑ) =
{
(0, y) ∈ R

n | y ∈ R
(n−q)

}
,

and the vectors of ker(J)∩ ker(Ẑ) are of the form (0, y) with y ∈ ker(JI∗). If

q = n−m then JI∗ is square and ker(JI∗) = {0}; thus ker(J)∩ ker(Ẑ) = {0}
and (6.11) is met. Otherwise, if q < n−m, then ker(J)∩ker(Ẑ) is a nontrivial
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subspace and condition (6.11) is equivalent to

min
06=x∈ker(J)∩ker(Ẑ)

xTHx

xTx
= λ∗ > 0. (6.31)

Using the above properties, we prove nontrivial and sharp bounds for K3

in the late stage of the IP method and for K̂3. To this end, the following
technical lemma is needed. It provides bounds for the singular values of B,
which will be used for later estimates; its proof is postponed to Appendix A.

Lemma 6.3.3. Suppose that x̂ and ẑ are strictly complementary, and A∗
and I∗ are the index sets of active and inactive bounds at x̂ defined in (6.8).
Further, suppose that x̂ and ẑ are partitioned as in (6.9), the LICQ condition
is satisfied at x̂, and (6.11) holds. Let ZA∗

∈ R
q×q be a diagonal positive

definite matrix and

B =

[
JA∗

JI∗

−Z
1

2

A∗
0

]
. (6.32)

Then

σ2
min(B) ≥ 1

2

(
χ−

√
χ2 − 4σ2

min(JI∗)(zA∗
)min

)
,

σ2
max(B) ≤ 1

2

(
(zA∗

)max + σ2
max +

√
((zA∗

)max − σ2
max)

2 + 4(zA∗
)maxσ2

max(JA∗
)

)

≤ σ2
max + (zA∗

)max,

with χ = σ2
max(JA∗

) + σ2
min(JI∗) + (zA∗

)min.

The following theorem provides bounds for all eigenvalues ofK3 under the
stated assumptions; these bounds are based on perturbation theory results
for symmetric matrices and on estimates in [61, 78].

Theorem 6.3.4. Let H be symmetric and positive semidefinite with nontriv-
ial null space, x̂ and ẑ strictly complementary, A∗ and I∗ be the index sets
of active and inactive bounds at x̂ defined in (6.8). Further, suppose that
the cardinality of A∗ is equal to q, x̂ and ẑ are partitioned as in (6.9), the
LICQ condition is satisfied at x̂, and condition (6.11) holds. Let x and z be
sufficiently close to x̂ and ẑ and be such that x = (xA∗

, xI∗), z = (zA∗
, zI∗)

with xA∗
≥ 0, xI∗ > 0, zA∗

> 0, zI∗ ≥ 0. Then

spec(K3) ⊆ [µ1, µ2] ∪ [µ3, µ4] ,
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where µ1, µ2 < 0 and µ3, µ4 > 0 are given by

µ1 = min

{
−(xI∗)max,

1

2

(
λmin −

√
λ2
min + 4σ2

max(B)

)}

−max
{
(xA∗

)max,
√
(zI∗)max

}
,

µ2 = max

{
−(xI∗)min,

1

2

(
λmax −

√
λ2
max + 4σ2

min(B)

)}
+
√

(zI∗)max,

µ3 = µ∗
3 − (xA∗

)max,

µ4 =
1

2

(
λmax +

√
λ2
max + 4σ2

max(B)
)
+
√
(zI∗)max.

If q < n−m, the scalar µ∗
3 is the smallest positive root of the cubic equation

µ3 − λmaxµ
2 − σ2

min(B)µ+ λ∗σ2
min(B) = 0,

where λ∗ is defined as in (6.31). If q = n−m we have instead

µ∗
3 =

1

2

(
λmin +

√
λ2
min + 4σ2

min(B)

)
.

Proof. We write K3 in extended form

K3 =




H
JT
A∗

−Z
1

2

A∗
0

JT
I∗ 0 −Z

1

2

I∗
JA∗

JI∗ 0 0 0

−Z
1

2

A∗
0 0 −XA∗

0

0 −Z
1

2

I∗ 0 0 −XI∗



,

withXA∗
= diag(xA∗

) ∈ R
q×q,XI∗ = diag(xI∗) ∈ R

n−q×n−q, ZA∗
= diag(zA∗

) ∈
R

q×q, ZI∗ = diag(zI∗) ∈ R
n−q×n−q, and observe that

K3 = K̃3 +∆K (6.33)

=




H
JT
A∗

−Z
1

2

A∗
0

JT
I∗ 0 0

JA∗
JI∗ 0 0 0

−Z
1

2

A∗
0 0 0 0

0 0 0 0 −XI∗



+




0
0 0 0

0 0 −Z
1

2

I∗
0 0 0 0 0
0 0 0 −XA∗

0

0 −Z
1

2

I∗ 0 0 0



.

Standard perturbation arguments for symmetric matrices ensure that
(see, e.g., [57, Theorem 8.1.5])

λi(K̃3) + λmin(∆K) ≤ θ ≤ λi(K̃3) + λmax(∆K), i = 1, . . . 2n+m. (6.34)
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Thus, estimates for θ can be derived from spectral information on K̃3 and
∆K , where

λmin(∆K) = −max
{
(xA∗

)max,
√

(zI∗)max

}
, λmax(∆K) =

√
(zI∗)max.

As for K̃3, we have that σ
(
K̃3

)
= σ (−XI∗)∪ σ

(
Ǩ
)
, where Ǩ is the saddle

point matrix

Ǩ =

[
H BT

B 0

]
,

with B given in (6.32). By Lemma 6.3.3 we know that BT has full column

rank. Moreover, ker(B) = ker(J)∩ker(Ẑ), and by (6.11) either ker(B) = {0}
(if B is square, i.e. q = n−m) or H is positive definite on ker(B). Thus, Ǩ
satisfies the hypothesis of [61, Proposition 2.2], and the expressions of µ1, µ2

and µ4 are a direct consequence of that result.
A slightly different approach is needed to obtain µ3. We consider the

principal submatrix K̄ of K3 obtained by taking its first n+m+ q rows and
columns, i.e.

K̄ =




H
JT
A∗

−Z
1

2

A∗

JT
I∗ 0

JA∗
JI∗ 0 0

−Z
1

2

A∗
0 0 −XA∗


 .

It holds that K3 has n positive and n + m negative eigenvalues, and K̄
has n positive eigenvalues and m + q negative ones [66, Lemma 3.8]. Using
interlacing properties of the eigenvalues and again the standard perturbation
bounds for symmetric matrices, we infer

λ+
min(K3) ≥ λ+

min(K̄) ≥ λ+
min(Ǩ)− (xA∗

)max,

where the symbol λ+
min(·) indicates the smallest positive eigenvalue of a ma-

trix. If q = n − m we can use again [61, Proposition 2.2] to obtain the
expression of µ∗

3. If q < n−m, since we supposed H singular we can instead
use the lower bound of the positive eigenvalues of Ǩ given in [78, Theorem
2] to obtain the final result.

It is interesting to observe that, whenever x and z are sufficiently close
to x̂ and ẑ, then (xA∗

)max and (zI∗)max are small enough to guarantee that
the intervals [µ1, µ2] and [µ3, µ4] are nontrivial, i.e., µ2 is strictly negative
and µ3 is strictly positive.

Theorem 6.3.4 covers both the case where (x, z) is strictly positive and
close enough to (x̂, ẑ), and the case where (x, z) = (x̂, ẑ). Thus, these bounds
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are valid for the matrices K3 occurring in the late stage of the IP method,
and also for K̂3. The proof of this theorem relies on the perturbation theory
for symmetric eigenvalue problems, and involves K̃3 and the scalars (xA∗

)max

and (zI∗)max which approach zero when (x, z) tends to (x̂, ẑ). Hence, the
smaller (xA∗

)max and (zI∗)max, the closer µ1, µ2, µ3, µ4 are to the spectral

bounds for K̃3, for which bounds are available [61, 78].

Remark 3. In Theorem 6.3.4, for the case q < n − m, the value of µ∗
3 re-

lies on results from [78] and it holds for H singular. If H is nonsingu-
lar and q < n − m then it holds that µ∗

3 = max {λmin, γ}, where γ is the
smallest positive root of the cubic polynomial p3(µ) = µ3 − (λmin + λ∗)µ2 +
(λminλ

∗ − λ2
max − σmin(B)2)µ + λ∗σ2

min(B). This follows from applying [61,
Proposition 2.2] and [113, Lemma 2.1] to the matrix Ǩ in the proof of Theo-
rem 6.3.4. We also emphasize that all other bounds given by Theorem 6.3.4
still hold when H is positive definite.

6.4 Validation of the spectral bounds for K3

We analyze the quality of our bounds by first using two examples with
small matrices. In the first case, H is positive definite, while in the second
H is only positive semidefinite.

Example 6.1. Given positive scalars λ, σ, ρ, let

H =

[
λ 0
0 λ

]
, JT =

[
0
σ

]
, x =

[
0
ρ

]
, z =

[
σ
0

]
, so that B =

[
0 σ
−σ 0

]
.

The characteristic polynomial ofK3 is given by π(θ) = (θ+ρ) (θ2 − λθ − σ2)
2
.

The eigenvalues of K3 are −ρ, 1
2

(
λ−

√
λ2 + 4σ2

)
, 1

2

(
λ+

√
λ2 + 4σ2

)
, and

the bounds in Theorem 6.3.4 are sharp (note that q = n−m).

In this second example, we have q < n−m and show that the estimates
µ1 and µ3 can be sharp.

Example 6.2. Given positive scalars λmax, λ∗, σ, xmin xmax, λmax > λ∗, let

H =




λmax − λ∗ √
λ∗(λmax − λ∗) 0√

λ∗(λmax − λ∗) λ∗ 0
0 0 0


 , JT =



0
0
σ


 ,

z =



σ
0
0


 , x =




0
xmin

xmax


 , so that B =

[
0 0 σ
−σ 0 0

]
.
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The characteristic polynomial of K3 is

π(θ) = (θ + xmin)(θ + xmax)(σ
2 − θ2)(θ3 − λmaxθ

2 − σ2θ + λ∗σ2).

Since λmin = 0 and q < n−m, the bounds µ1 and µ3 are sharp.

6.4.1 Numerical validation: regularized LP problems

We then proceed by analyzing the quality of our spectral estimates on
benchmark Linear Programming (LP) problems with primal regularization:

min
x∈Rn

cTx+ ρ ‖x‖2 , subject to Jx = b, x ≥ 0,

where n = 185, m = 129, J ∈ R
m×n is the matrix in LPnetlib/lp scagr7 [131]

with full row rank, b and c are fixed so that the x̂ = (0, 1n−q) and ẑ = (1q, 0)
are exact primal and dual solutions, ρ ≥ 0 is a regularization parameter. The
value of q is varied and it may affect the fulfillment of the LICQ condition
at x̂. It is apparent that regularized LP problems are just QP problem with
H = ρIn. Note, moreover, that this is the same setting already considered
for the numerical experiments presented in Chapter 3.

The problems were solved with the PDCO solver [109] and sequence of
iterates approaching x̂ and ẑ were computed and stored. Then, for each
iterate we formed matrix K3, letting ρ = 10−6. The eigenvalues of the
resulting matrices were computed and compared with the bounds given in
(6.30) and in Theorem 6.3.4 with µ∗

3 as in Remark 3. Regarding the actual
computation of the bounds, singular values σmin(J), σmax(J), σmin(B) and
σmax(B) were computed while λmin = λmax = λ∗ = ρ.

In our numerical experiments, bounds θ1 and θ4 are very similar to µ1 and
µ4, therefore we do show them in the plots. On the other hand, µ3, µ2 were
plotted only when meaningful, that is only when appearing with positive and
negative sign, respectively.

We start by reporting on the accuracy of θ2 in Theorem 6.3.2. For this
purpose we set q = n − m, which makes the matrix JI∗ , and thus B, rank
deficient. The absolute value of the largest negative eigenvalue λn+m(K3)
(solid line), and its bound θ2 are displayed in Figure 6.1, showing that the
estimate matches quite well the true eigenvalue of K3.

Let fix(·) be the function that rounds its argument to the nearest integer
towards zero. We then set q = fix((n − m)/2) so that the assumptions of
Theorem 6.3.4 hold; indeed, with this choice the matrix JI∗ , and thus B,
have full rank. In the left plot of Figure 6.2, for each iterate on the x-axis,
the minimum positive eigenvalue λn+m+1(K3), and its bounds θ3 and µ3 are
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Figure 6.1: Negative eigenvalue of K3 closest to zero (solid line) and its
bound at every iteration, q = n−m.

displayed; θ3 is a good lower bound and µ3 is sharp as well during the later
ones. Similarly, in the right plot of Figure 6.2 we report the absolute value
of the negative eigenvalue λn+m(K3) closest to zero, along with the bounds
θ2 and µ2. As expected, µ2 is sharp during the final iterations, unlike θ2.

It is worth testing the validity of µ3 when H is semidefinite. For this
reason, let us consider a QP problem where J is the same matrix as before
and let the orthonormal columns of V span ker(J). Then by taking H in the
form

H =
[
V Q

] [ρIn−m 0
0 0

] [
V T

QT

]
, (6.35)

where ρ is positive and [V Q] is an orthogonal matrix, we ensure that λ∗ =
λmax. It holds that λmin = 0 and λmax = ρ. Finally, the QP problem is built
setting ρ = 1, so that x̂ = (0, 1n−q) and ẑ = (1q, 0) are exact primal and dual
solutions with q = fix((n−m)/2).

The QP problem was solved with PDCO and a sequence of iterates
approaching x̂, ẑ was formed. Figure 6.3 displays the positive eigenvalue
λn+m+1(K3) of the matrices with the bounds θ3, and µ3, as the iterations
proceed. Since λ∗ = λmax and µ∗

3 = min {σmin(B), ρ}, during the last itera-
tions of the interior point method, µ3 gets close to µ∗

3 and is sharp whereas
eventually θ3 is not representative of the minimum eigenvalue.
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Figure 6.2: Eigenvalues of K3 closest to zero (solid line) and their bounds
at every iteration, q = fix((n − m)/2) and H nonsingular. Left: positive
eigenvalues. Right: negative eigenvalues.

6.4.2 Numerical validation: QP problems

We now extend the numerical validation of our estimates to more realistic
QP problems. Here we consider problems taken from the Maros and Meszaros
collection [87], which we report below together with their dimensions

(1) stcqp2 n = 4097 m = 2052
(2) au3d n = 3873 m = 1000
(3) cont-050 n = 2597 m = 2401

Note that all these problems have larger dimension than the ones consid-
ered in Section 6.4.1. In all the chosen problem, the matrix B is nonsingular,
in late iterations.

A crucial issue when applying the results of Theorem 6.3.4 to practical
computations is the choice of the two sets A∗ and I∗; indeed, the values of
xA∗

should be well-separated from the values of xI∗ , and this should hold
also for zA∗

and zI∗ . Motivated by this, we choose A∗ and I∗ so that the
distance between the two sets of values xA∗

and xI∗ is maximized.

The three problems where were chosen so that, for the above of A∗ and
I∗, the matrix B is nonsingular in late iterations.

We also found that scaling the problem has some effect on the quality

of our bounds. More precisely, by considering the scaled variables x̃ =
x

sx
,
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Figure 6.3: Minimum positive eigenvalue of K3 and its bounds for H singular
as in (6.35), ρ = 1, q = fix((n−m)/2).

z̃ =
z

sz
, where sx and sz are positive parameters, the linear system



H JT −I
J 0 0
−Z 0 −X





∆x
∆y
∆z


 =



−Hx+ JTy + z + c

−Jx+ b
−XZe− τe


 (6.36)

is replaced with the equivalent one



H̃ JT −I
J 0 0

−Z̃ 0 −X̃





∆x̃
∆ỹ
∆z̃


 =



−H̃x̃+ JT ỹ + z̃ + c̃

−Jx̃+ b̃

−X̃Z̃e− τ̃ e


 , (6.37)

where H̃ =
sx
sz
H, c̃ =

c

sz
, b̃ =

b

sx
, X̃ = diag(x̃), Z̃ = diag(z̃). We mention

that if the unreduced formulation is considered, a scaling of the variables
may have a great impact on the conditioning of the system matrix; indeed,
sz and sx are often chosen to reduce the condition number of the (1,1) block
of K2. This, however, does not apply here, since we are working with the
unreduced formulation.

To explain why scaling may effect the bounds consider the expression of
µ2 from Theorem 6.3.4. This bound will be meaningful only if

√
(zI∗)max ≤ min

{
(xI∗)min,

1

2

(√
λ2
max + 4σ2

min(B)− λmax

)}
(6.38)
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, which in particular means that
√
(zI∗)max ≤ (xI∗)min. But if the variables

are scaled, this relation is substituted by:

√
(z̃I∗)max ≤ (x̃I∗)min ⇐⇒

√
(zI∗)max ≤

√
sz
sx

(xI∗)min.

It is apparent that the greater the ratio

√
sz
sx

, the more likely this relation will

be satisfied. A similar observation applies also to the other term appearing in
(6.38). Indeed,

√
λ2
max + 4σ2

min(B)−λmax is a monotonic decreasing function
of λmax and a monotonic increasing function of σmax(B), and it holds

λmax(H̃) =
sx
sz
λmax(H) < λmax(H),

if
sz
sx

> 1, and

σmin

([
JA∗

JI∗
Z̃A∗

0

])
= σmin

([
JA∗

JI∗
sZZA∗

0

])
≥ σmin

([
JA∗

JI∗
ZA∗

0

])
,

if sz ≥ 1.
On the other hand, a too small value of sx may cause the lower bound

on the positive eigenvalues to become meaningless, as the value of µ∗ is

perturbed by the quantity (x̃A∗
)max =

1

sx
(xA∗

)max. However, we recall that

µ3 is useful only when θ3 is not representative of λn+m+1(K3).
Below we report the scaling we used for each problem, along with the

tolerances on complementarity OptTol (indeed, a necessary condition for
PDCO to stop is that maxi xizi ≤ OptTol) that were set. We emphasize
that these tolerances apply to the original variables, and not to the scaled
ones.

(1) stcqp2 sx = 10−1 sz = 103 tol = 10−6

(2) aug3d sx = 10−2 sz = 102 tol = 10−6

(3) cont-050 sx = 1 sz = 1 tol = 10−10

The results are displayed in Figures 6.4-6.6. As before, we show only the
eigenvaluesK3 closest to 0, namely λm+n(K3) and λm+n+1(K3), together with
their bounds θ2, θ3, µ2 and µ3. The results are similar to the ones considered
for the LP problems: θ2 and θ3 are good approximation for the true eigen-
values in early and middle iterations, and also in late iterations in the left
plot of Figure 6.5, where eigenvalues approach 0 in the limit, and in the left
plot of Figure 6.4. On the other hand, in late iterations µ2 and µ3 are often
more representative. A particularly interesting case occurs for the positive
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Figure 6.4: Problem stcqp2: eigenvalues ofK3 closest to zero (solid line) and
their bounds at every iteration. Left: positive eigenvalues. Right: negative
eigenvalues.

eigenvalues of problem cont-050, shown in the left plot of Figure 6.6. Here
H is positive definite, and hence in the last iterations θ2 ≈ λmin(H) > 0.
However, the real minimum positive eigenvalue K3 appears to be several or-
ders of magnitude greater than λmin(H), and hence θ2 cannot describe it. On
the other hand, µ2 is a very good approximation for λn+m(K3), in the last
iterations. We emphasize that, only for this problem, we observed q = n−m,
and so the second expression of µ∗

3 from Theorem 6.3.4 was used.

6.5 Conclusions

In this chapter we have studied symmetric unreduced KKT systems, as
they arise in the solution of convex quadratic programming problems solved
by IP methods, and we have characterized the spectrum of the corresponding
matrices.

In the unpreconditioned case, we distinguished between two stages of the
IP method: generic iterations, and late or final stage. A spectral analysis
should be able to reflect the peculiarities of each of these two phases, and
in particular to capture the potential nonsingularity of the matrices at the
limit. For the generic iteration, we were able to measure the distance from
singularity for the negative eigenvalues. By appropriately partitioning the
coefficient matrix, we were also able to characterize the spectral properties in
the late stage of the IP iterations and at the solution, giving novel estimates
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Figure 6.5: Problem aug3d: eigenvalues of K3 closest to zero (solid line) and
their bounds at every iteration. Left: positive eigenvalues. Right: negative
eigenvalues.
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Figure 6.6: Problem cont-050: eigenvalues of K3 closest to zero (solid
line) and their bounds at every iteration. Left: positive eigenvalues. Right:
negative eigenvalues.
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in this delicate case.



Chapter 7

Preconditioning for the reduced
and unreduced formulation1

In the previous chapter, discussed Interior Point (IP) methods and their
application to large-scale Quadratic Programming problems of the form ((6.1)).
As already mentioned, the efficiency of such methods heavily depends on the
per-iteration cost and this is mainly constituted by the solution of a struc-
tured algebraic linear system, namely the KKT system (6.4). Therefore,
much effort has been devoted to developing properly tailored preconditioned
iterative solvers, whose computational cost and memory requirements may
be lower than those of direct solvers. The analysis and development of these
resulting inexact IP methods have covered several different aspects such as
the level of accuracy in the solution of linear systems, the design of suit-
able iterative methods and preconditioners, and the convergence analysis of
the inexact IP solver, including worst-case iteration complexity, see, e.g.,
[15, 23, 30, 33, 36, 49, 59, 60, 110].

Two different and well-established formulations for the KKT system have
been introduced in the previous chapter, which we called reduced and unre-
duced formulation. The aim of this chapter is to study the effect of pre-
conditioning strategies on their relation. This analysis will be helpful in
assessing which of the two formulations should be preferred when solving
large scale problems. Relevant alternative formulations, possibly definite,
such as condensed systems and doubly augmented systems (see, e.g., [49])
are not considered in this work.

The reduced systems become increasingly ill-conditioned in the progress
of the IP iterations, though such ill-conditioning is benign if suitable direct
methods are used [47, 137, 139]. On the other hand, as discussed in the

1The results presented in this chapter are taken from [91].

125
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previous chapter, the unreduced systems may be well-conditioned throughout
the IP iteration and nonsingular even in the limit; this distinguishing feature,
observed in [46, 48] and supported by spectral analysis presented in [66]
and in Chapter 6 of this thesis, motivates our interest in this possibly less
exercised formulation.

A large number of papers have developed and analyzed preconditioning of
indefinite systems in optimization see, e.g., the surveys [11, 30, 58]; however,
a theoretical and experimental comparison of the reduced and unreduced
formulations in the preconditioned regime has not been performed. We aim
to assess whether the use of unreduced systems may still offer some advantage
with respect to the reduced ones in terms of eigenvalues and conditioning as
occurs in the unpreconditioned case.

Our study adopts a general form of the systems which includes the case
where regularizations are applied to the QP problem, and investigates the
use of constraint and augmented preconditioners. The analysis conducted
shows that, for some frequently employed preconditioners, the two formu-
lations remain strictly related, both in terms of spectra of the precondi-
tioned matrices, and of the preconditioned systems. In particular, for typical
constraint preconditioners, spectral invariance holds between the two for-
mulations considered along with equality of equations in the preconditioned
systems, making the use of the unreduced formulation questionable when
using this class of preconditioners. On the other hand, these relations are
no longer valid for augmented (diagonal or triangular) preconditioners; for
these, an experimental comparison is performed in the context of the IP
solver pdco [109], so as to better assess the merits of each of the two for-
mulations. Ad-hoc augmentation matrices are proposed for the reduced and
unreduced forms. Numerical experiments confirm that the conditioning of
the unreduced systems varies slowly with the IP iterations and may remain
considerably smaller than the conditioning of the reduced formulation; this
feature is shared by the corresponding augmented preconditioners. However,
these better spectral properties do not seem to play a role as long as the
systems are numerically nonsingular and the IP implementations with the
unreduced and reduced formulations are both successful. In this case, the
preconditioned linear solvers and the IP solvers behave similarly; thus the
smallest dimension of the reduced systems makes such formulation preferable
in terms of computational time. On the other hand, a potential benefit of
the unreduced formulation may be observed in terms of robustness of the IP
solver when the reduced systems become severely ill-conditioned.

The chapter is organized as follows. In Section 7.1 we introduce the
regularized systems under study and state which classes of preconditioners
we will consider. In Section 7.2 we show that the unreduced and reduced
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formulations are closely related when some of these classes are used, and that
only certain types of preconditioners allow to preserve differences between
the two formulations. In Section 7.3 we experimentally compare the two
formulations and their iterative solution in an IP solver and finally in Section
7.4 we draw our conclusions.

7.1 Preliminaries

We have seen in the previous chapter that when an Interior Point method
is applied to the QP problem

min
x

cTx+
1

2
xTHx subject to Jx = b, x ≥ 0, (7.1)

then each iteration requires the solution of the KKT system, which we report
here for the convenience of the reader:



H JT −I
J 0 0
−Z 0 −X





∆x
∆y
∆z


 =



−Hx+ JTy + z + c

−Jx+ b
−XZe− τe


 . (7.2)

In order to provide a comprehensive analysis of the symmetric 3 × 3
systems, it is useful to consider the case where regularizations are applied to
the optimization problem (7.1). Several regularization techniques have been
proposed in order to improve the numerical properties of the KKT systems
and for details we refer to [1, 27, 53, 109, 116]. Here we focus on primal-dual
regularizations such that system (7.2) becomes



H + ρIn JT −In

J −δIm 0
−Z 0 −X






∆x
−∆y
∆z


 =



fx
fy
fz


 , (7.3)

where δ, ρ ≥ 0 and the right-hand side vectors fx, fz ∈ R
n and fy ∈ R

m are
appropriately computed, see e.g. [53, 66, 109]. Using again the block diagonal
matrix R in (6.5), the corresponding symmetric formulation is given by

K3,reg ∆3 = f3, (7.4)

where

K3,reg =



H + ρIn JT −Z

1

2

J −δIm 0

−Z
1

2 0 −X


 , (7.5)
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and

∆3 =




∆x
−∆y

Z− 1

2∆z


 , f3 =




fx
fy

Z− 1

2fz


 .

Further, upon reduction of ∆z, system (7.2) becomes

K2,reg ∆2 = f2, (7.6)

with

K2,reg =

[
H + ρIn +X−1Z JT

J −δIm

]
, ∆2 =

[
∆x

−∆y

]
, f2 =

[
fx −X−1fz

fy

]
.

(7.7)
For δ, ρ ≥ 0, throughout the chapter we will refer to K2,reg and K3,reg

as the reduced and unreduced matrices and recover K2 and K3 by setting
δ = ρ = 0 (analogously the systems (7.6) and (7.4) will be denoted reduced
and unreduced systems, respectively). Clearly K3,reg can be cast into KKT
form by proper block reordering. For later convenience, we observe that as
long as X is nonsingular, these matrices are mathematically related by means
of a congruence transformation. Indeed, setting

L =




I 0 0
0 I 0

X−1Z
1

2 0 I


 , (7.8)

it holds (see, e.g., [66])

K3,reg =



I 0 Z

1

2X−1

0 I 0
0 0 I




 K2,reg

0
0

0 0 −X






I 0 0
0 I 0

X−1Z
1

2 0 I




= LT


 K2,reg

0
0

0 0 −X


L. (7.9)

The following theorem characterizes the nonsingularity ofK2,reg andK3,reg.

Theorem 7.1.1. Suppose that H is symmetric and positive semidefinite, X
and Z are diagonal with positive entries. Let K2,reg and K3,reg be given in
(7.7) and (7.5). Then K2,reg and K3,reg are nonsingular if and only if either
δ > 0, or δ = 0 and J has full row rank.

Proof. See e.g. [66, Corollary 3.4, Corollary 3.6, Theorem 3.9].
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The use of the 2 × 2 formulation is supported by its reduced dimension
and by the variety of direct solvers, iterative solvers and preconditioners
available for its numerical solution [11]. However, the presence of matrix
X−1Z may cause ill-conditioning of K2,reg while a solution is approached,
and it represents the key difference between K2,reg and K3,reg.

As we have seen in the previous chapter, under specific assumptions the
unreduced matrix is nonsingular throughout the IP iterations and remains
well-conditioned; at this regard, it is important to recall that ill-conditioning
occurs in the matrix R defined in (6.5), see [46, 48], but the square root in
the (3, 3) block has a damping effect on ill-conditioning at the final stage of
the IP process. These properties may favor the use of unreduced systems and
have indeed motivated the study of spectral estimates for K3,reg [66]. On the
other hand, when the system (7.4) is solved iteratively and preconditioning
is required, assessing the advantages of the unreduced formulation over the
reduced one is still an open issue. Therefore, in this paper we study, both
theoretically and computationally, systems (7.6) and (7.4) preconditioned by
preconditioners in a same class and attempt to establish their distinguishing
features.

We conclude this section by listing a few suitable preconditioners for our
systems that will be analyzed in the following: constraint preconditioners
and preconditioners based on augmentation of the (1, 1) block.

In order to handle systems (7.4) and (7.6) simultaneously, we consider
the general formulation for a saddle point matrix

M =

[
A BT

B −C

]
,

with A ∈ R
n1×n1 and C ∈ R

n2×n2 both positive semidefinite, B ∈ R
n2×n1 .

We suppose that M is nonsingular and allow any relation between n1 and
n2.

A suitable definite preconditioner is the augmented block diagonal and
positive definite matrix

PAD =

[
A+ BTW−1B 0

0 W

]
, (7.10)

where W ∈ R
n2×n2 is a symmetric positive definite matrix. This precon-

ditioner and its features have been discussed in Chapter 3 of this thesis.
We recall that the use of PAD may be advantageous over preconditioners
based on the Schur complement of A, when the (1,1) block is singular or
ill-conditioned. Interestingly, this may be the case for both the reduced and
unreduced matrices, as the (1,1) block may be ill-conditioned in K2,reg at the
late stage of the IP method and singular in K3 at any IP iteration.
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Constraint preconditioners for M are commonly used in optimization,
see, e.g., [15, 23, 32, 33, 34, 36, 49, 77, 86]. We already introduced this class
of preconditioners in Chapter 2; they take the form

PC =

[
Â BT

B −C

]
, (7.11)

where Â is a symmetric approximation of A.
Alternatively, block triangular preconditioners based on the augmenta-

tion of the (1, 1) block can be defined; see, e.g., [4, 24, 110, 119], where
however most of the results are for a zero (2,2) block. In this nonsymmetric
framework, one option is to set

PAT =

[
A+BTW−1B κBT

0 −W

]
, (7.12)

where κ is a scalar and W ∈ R
n2×n2 is a symmetric positive definite ma-

trix. Clearly, setting κ = 0, PAT is block diagonal and indefinite. Another
possibility is to consider

TW =

[
A+ BTW−1B κBT

0 −(W + C)

]
, (7.13)

where κ is a scalar and W ∈ R
n2×n2 is symmetric positive definite. This

preconditioner was introduced in [119] with κ = 2.

7.2 Standard preconditioners for the

unreduced systems

In this section we show that, for some of the preconditioners of type
(7.10), (7.11) and (7.12), the unreduced formulation does not offer any ad-
vantage over the 2× 2 reduced one. In particular, we establish two different
results on the relationship between preconditioned 2× 2 and 3× 3 formula-
tions. The first result (Theorems 7.2.1 and 7.2.2) holds for specific constraint
preconditioners and augmented triangular preconditioners; invariance of the
spectra of the preconditioned matrices and correspondence of block equa-
tions in the preconditioned systems are shown. The second result (Theorem
7.2.3) is valid for specific augmented diagonal and triangular preconditioners
and indicates that, by applying the same elimination of ∆z as in (7.4), the
system P−1

3,ATK3,reg∆3 = P−1
3,ATf3 reduces to P−1

2,ATK2,reg∆2 = P−1
2,ATf2.

In view of such close relationships between the preconditioned systems
(7.6) and (7.4) and the larger dimension of the latter system, we conclude
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that there is no motivation for using the unreduced formulation. On the other
hand, these results do not exclude the existence of effective preconditioners
which preserve differences between the two formulations and may make the
unreduced system preferable to the reduced one; this topic will be explored
in Section 7.3.

7.2.1 Equivalence properties of preconditioned 2 × 2
and 3× 3 formulations

In this section we study the application of specific occurrences of pre-
conditioners (7.11) and (7.12) to the systems (7.6) and (7.4), establishing
spectral correspondences between the preconditioned matrices, and equiva-
lences between the associated linear systems.

The constraint preconditioners analyzed for K3,reg and K2,reg are of the
form

P2,C =

[
diag(H + ρIn +X−1Z) JT

J −δIm

]
, (7.14)

P3,C =



diag(H + ρIn) JT −Z

1

2

J −δIm 0

−Z
1

2 0 −X


 (7.15)

= LT


 P2,C

0
0

0 0 −X


L, (7.16)

where the last factorization is analogous to that for K3,reg in (7.9) and follows
from the trivial equality diag(H + ρIn + X−1Z) = diag(H + ρIn) + X−1Z.
Constraint preconditioners where the (1, 1) block is approximated by retain-
ing its main diagonal are widely used, see, e.g., [15, 77, 86].

Augmentation in (7.12) is performed on the (1, 1) of K2,reg and K3,reg as
follows. Let Rd ∈ R

m×m be positive definite and such that

Rd = δIm, if δ > 0.

Moreover, let W =

[
Rd 0
0 X

]
for system (7.4), and W = Rd for system (7.6).

Then, the augmented block triangular preconditioners P2,AT , P3,AT are of
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the form

P2,AT =

[
H + ρIn +X−1Z + JTR−1

d J κJT

0 −Rd

]
, (7.17)

P3,AT =



H + ρIn +X−1Z + JTR−1

d J κJT −κZ
1

2

0 −Rd 0
0 0 −X


 (7.18)

=


 P2,AT

−kZ
1

2

0
0 0 −X


 , (7.19)

In the next two theorems we analyze the systems (7.6) and (7.4) pre-
conditioned by the constraint preconditioners (7.14), (7.15) and the trian-
gular preconditioners (7.17), (7.19) with κ = 1 and prove strong results
which are straightforward consequences of the congruence between the re-
duced and unreduced formulations. Specifically, first we prove that, apart
from the multiplicity of the unit eigenvalue, the eigenvalues of precondi-
tioned K3,reg and K2,reg coincide. Second we show that the first two block
equations of P−1

3,CK3,reg∆3 = P−1
3,Cf3 (P−1

3,ATK3,reg∆3 = P−1
3,ATf3) are equal to

P−1
2,CK2,reg∆2 = P−1

2,Cf2 (P−1
2,ATK2,reg∆2 = P−1

2,ATf2) and the third equation is
equivalent to the third equation in (7.4).

Theorem 7.2.1. Suppose that H is symmetric and positive semidefinite, X
and Z are diagonal with positive entries, K2,reg and K3,reg given in (7.7) and
(7.5) are nonsingular. Let P2,C and P3,C be the preconditioners (7.14) and
(7.15) respectively, and consider the systems (7.4) and (7.6). Then

i) θ ∈ spec(P−1
3,CK3,reg) if and only if either θ = 1 or θ ∈ spec(P−1

2,CK2,reg).

ii) Solving P−1
3,CK3,reg∆3 = P−1

3,Cf3 reduces to solving P−1
2,CK2,reg∆2 = P−1

2,Cf2
and recovering ∆z from the third equation in (7.4).

Proof. To show i), consider the generalized eigenvalue problem K3,regu =
θP3,Cu with u ∈ R

2n+m. Using (7.9) and (7.16), we have K3,regu = θP3,Cu if
and only if

LT


 K2,reg

0
0

0 0 −X


Lu = θLT


 P2,C

0
0

0 0 −X


Lu,

and the result readily follows from the nonsingularity of L.
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Concerning ii) we use again (7.9) and (7.16) and note that P−1
3,CK3,reg∆3 =

P−1
3,Cf3 if and only if


 P2,C

0
0

0 0 −X




−1 
 K2,reg

0
0

0 0 −X


 (L∆3) =


 P2,C

0
0

0 0 −X




−1

L−Tf3.

Hence, the result follows from explicitly writing

L∆3 = (∆x,−∆y,X−1Z
1

2∆x+ Z− 1

2∆z) = (∆2, X
−1Z

1

2∆x+ Z− 1

2∆z),
(7.20)

L−Tf3 = (fx −X−1fz, fy, Z
− 1

2fz) = (f2, Z
− 1

2fz), (7.21)

with ∆2 and f2 given in (7.7).

We observe that the spectral properties of P−1
2,CK2,reg have been studied

in a variety of papers, e.g. [15, 32, 33, 34, 77, 86], and in light of Theorem
7.2.1, these results apply to P−1

3,CK3,reg. In terms of performance, the result
of Theorem 7.2.1 shows that little can be gained by the unreduced formu-
lation when the popular constraint preconditioner is employed. Additional
comments in this direction are postponed to the end of this section.

The second proof uses similar arguments.

Theorem 7.2.2. Suppose that H is symmetric and positive semidefinite, X
and Z are diagonal with positive entries, K2,reg and K3,reg given in (7.7) and
(7.5) are nonsingular. Let P2,AT and P3,AT be the preconditioners (7.17) and
(7.19) respectively with κ = 1, and consider the systems (7.4) and (7.6).
Then

i) θ ∈ spec(P−1
3,ATK3,reg) if and only if either θ = 1 or θ ∈ spec(P−1

2,ATK2,reg).

ii) Solving P−1
3,ATK3,reg∆3 = P−1

3,ATf3 reduces to solving P−1
2,ATK2,reg∆2 =

P−1
2,ATf2 and recovering ∆z from the third equation in (7.4).

Proof. To characterize the spectrum of P−1
3,ATK3,reg, we first observe that for

L given in (7.8),

L−TP3,ATL
−1 =


 P2,AT

0
0

Z
1

2 0 −X


 , (7.22)

and that the eigenvalue problem K3,regu = θP3,ATu, u ∈ R
2n+m can be

written as

LT


 K2,reg

0
0

0 0 −X


Lu = θLTL−TP3,ATL

−1Lu.



134 7. Preconditioning for the reduced and unreduced formulation

Thus, by using (7.22)


 K2,reg

0
0

0 0 −X


Lu = θ


 P2,AT

0
0

Z
1

2 0 −X


Lu. (7.23)

Setting û = Lu = (û1, û2) with û1 ∈ R
n+m, û2 ∈ R

n, the first block row
gives the eigenproblem K2,regû1 = θP2,AT û1 while the second block row gives

−Xû2 = θ([Z
1

2 , 0]û1 −Xû2). Therefore, all eigenvalues of (K2,reg,P2,AT ) are
also eigenvalues of the unreduced problem with û2 given by the second block
row. The remaining eigenvalues are obtained for û1 = 0, which gives θ = 1.
Note that if θ = 1 is also an eigenvalue of (K2,reg,P2,AT ), then the matrix
pencil in (7.23) is not diagonalizable.

We now prove item ii). By multiplying from the left by L in (7.8) and us-
ing (7.9), the preconditioned system P−1

3,ATK3,reg∆3 = P−1
3,ATf3 can be written

as

LP−1
3,ATL

T


 K2,reg

0
0

0 0 −X


L∆3 = LP−1

3,ATL
TL−Tf3.

Since LP−1
3,ATL

T = (L−TP3,ATL
−1)−1 and L−Tf3 = (f2, Z

− 1

2fz), from (7.22)
it follows that the system can be rewritten as


 P2,AT

0
0

Z
1

2 0 −X



−1 
 K2,reg

0
0

0 0 −X


L∆3 =


 P2,AT

0
0

Z
1

2 0 −X




−1 
 f2

Z− 1

2fz


 .

By (7.20) the first block equation coincides with the reduced preconditioned
system while the third block equation is equivalent to the third equation in
(7.4).

Characterizations of the eigenvalues for P−1
2,ATK2,reg can be found in [24,

61, 110]. The above theorem is valid as long as κ = 1 and the matrix W is
the one employed so far. It does not further hold if the (3, 3) block is different
from X or if augmentation is performed using only the Schur complement
JTR−1

d J .
We conclude this part by making some comments on the given correspon-

dence results. They show that for the types of preconditioners considered,
the spectral properties of the preconditioned 2 × 2 and 3 × 3 matrices are
the same. As a consequence, the computational performance of an iterative
solver, at least in terms of number of iterations, is expected to be the same for
the reduced and unreduced systems. Taking into account that the unreduced
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formulation requires larger memory allocations and computational costs per
iteration, we claim that there does not seem to be any advantage in using it.

In looking for effective preconditioners for which the use of the unreduced
formulation will pay off, more sophisticated preconditioning strategies should
be explored. Such an experimental analysis is performed in Section 7.3.

7.2.2 Further relations between the 2× 2 and 3× 3
preconditioned systems

Further relationships between the systems (7.4) and (7.6) preconditioned
by augmented diagonal and triangular preconditioners are shown in this sec-
tion. The triangular preconditioners are as in (7.17), (7.19), and here we are
interested in the case κ 6= 1. The diagonal preconditioners given in (7.10)
are defined by using the same augmentation, thus,

P2,AD =

[
H + ρIn +X−1Z + JTR−1

d J 0
0 Rd

]
, (7.24)

P3,AD =



H + ρIn +X−1Z + JTR−1

d J 0 0
0 Rd 0
0 0 X


 =


 P2,AD

0
0

0 0 −X


 .

(7.25)
We remark that in the regularized case, W is equal to the (2, 2) block of

the matrices and this is an “optimal” choice for the diagonal preconditioner
in terms of spectral distribution (see Section 3.2.4).

We now show that, upon reduction of ∆z, the 3×3 preconditioned system
reduces to the 2× 2 preconditioned system.

Theorem 7.2.3. Suppose that H is symmetric and positive semidefinite, X
and Z are diagonal with positive entries, K2,reg and K3,reg given in (7.7) and
(7.5) are nonsingular. Let P2,AT and P3,AT be the preconditioners in (7.17)
and (7.19) respectively, with κ ∈ R.

Then, by applying the same elimination of ∆z as in K3,reg∆3 = f3, the
system P−1

3,ATK3,reg∆3 = P−1
3,ATf3 reduces to P−1

2,ATK2,reg∆2 = P−1
2,ATf2.

The same feature holds with P2,AD, P3,AD in (7.24), (7.25).

Proof. We first observe that

P−1
3,AT =


P

−1
2,AT −κP−1

2,AT

[
X−1Z

1

2

0

]

0 0 −X−1


 .
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Then, by using (7.9) the preconditioned system P−1
3,ATK3,reg∆3 = P−1

3,ATf3 can
be written as

P−1
3,ATL

T

[
K2,reg 0
0 −X

]
L∆3 = P−1

3,ATL
TL−Tf3,

and takes the form

P

−1
2,ATK2,reg −(1− κ)P−1

2,AT

[
Z

1

2

0

]

0 0 Im


L∆3 =


P

−1
2,AT (1− κ)P−1

2,AT

[
X−1Z

1

2

0

]

0 0 −X−1


L−Tf3.

Finally, by (7.20) and (7.21) it readily follows that by back substitution of ∆z
the first block equation coincides with the reduced preconditioned system.

The claim for the diagonal preconditioners P2,AD, P3,AD in (7.24), (7.25)
can be proved by repeating the above arguments.

7.3 Qualitatively different preconditioning

strategies

Our previous results show that the reduced and unreduced formulations
are closely related, also when a large class of preconditioning strategies is
used. Therefore, to be able to investigate the true potential of the unre-
duced formulation we need to select the free parameters of these acceleration
strategies in a way that is peculiar to the 3×3 problem. To this end, we exper-
imentally compare the use of both the reduced and unreduced formulations
in an IP method for problem (7.1). The aim of our numerical experiments is
twofold. First, we wish to compare the performance of the augmented block
diagonal and block triangular preconditioners of the form (7.10) and (7.13),
respectively, on the unreduced systems; second we wish to assess whether
the unreduced formulation can be advantageous in terms of conditioning and
execution time with respect to the reduced one.

The numerical experiments were conducted using Matlab R2012a on a
4xAMD Opteron 850, 2.4GHz, 16GB of RAM processor. Elapsed times were
measured by the tic and toc Matlab commands.

Our numerical experiments were based on six convex QP problems from
the CUTEr collection [62], whose matrix information is summarized in Table
7.1. All these datasets are characterized by a sufficiently large number of
nonzeros in H so as to justify the use of an iterative solver.

The QP problems were solved by the Matlab code pdco (Primal Dual
interior method for optimization with Convex Objectives) developed by Michael
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Problem n m nnz(H) nnz(J)
cvxqp1 10000 5000 69968 14998
cvxqp2 10000 7500 69968 7499
cvxqp3 10000 7500 69968 22497
stcqp1 a 8193 4095 106473 28865
stcqp1 b 16385 8190 229325 61425
stcqp2 16385 8190 229325 61425

Table 7.1: Test problems: values of n, m, nonzeros in H and in J

Saunders, and available in [109]. For stability purposes, problem (7.1) is reg-
ularized as

min
x,r

cTx+
1

2
xTHx+

1

2
‖D1x‖2 +

1

2
‖r‖2 subject to Jx+D2r = b, x ≥ 0,

where D1 and D2 are positive definite diagonal matrices specified by the
user. pdco implements an IP method, and it follows the general structure
described in Section 6.1. Therefore, letting D1 =

√
ρIn and D2 =

√
δIm

for positive ρ and δ, the unreduced and reduced coefficient matrices of the
systems to be solved take the form K2,reg and K3,reg respectively. In all our
runs, we set δ = ρ = 10−6 and solved the problems with no variable scaling.

pdco allows one to work with two alternative linear system formulations:
one employs a reduced form with matrix K2,reg, the other one is a condensed
formulation where the coefficient matrix is a Schur complement. Symmetric
indefinite systems are solved by a direct solver whereas for condensed systems
both direct and iterative solvers are available. pdco was modified so that the
unreduced regularized formulation with matrix K3,reg could also be explicitly
formed. In the following we report statistics on the results obtained and put
emphasis on the solution of the sequence of linear systems generated with
each formulation.

The systems in the sequence were solved by using either Matlab sparse
direct solver (function “\”), minres coupled with a diagonal augmented
preconditioner PAD of the form (7.10), or gmres coupled with a triangular
augmented preconditioner TW of the form (7.13), where in the unreduced
case we have

A = H + ρIn, B =

[
J

−Z
1

2

]
, C =

[
δIm 0
0 X

]
,

while in the reduced case we have

A = H + ρIn +X−1Z, B = J, C = δIm.
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Following [119], we set κ = 2 in (7.13) and consequently

TW =

[
A+ BTW−1B 2BT

0 −(W + C)

]
. (7.26)

For both minres and gmres, the stopping criterion was based on the rela-
tive norm of the unpreconditioned system residual, with stopping tolerance
equal to 10−6. The ideal versions of PAD and TW were replaced by practical
ones, where A + BTW−1B was replaced by its incomplete Cholesky factors
(Matlab function ichol), with truncation threshold 10−4.

From a computational point of view, it is convenient to choose the matrix
W to be diagonal so that it is inexpensive to invert. For the effectiveness
of PAD and TW , the choice of W is crucial and optimal choices in terms of
eigenvalue distribution of the preconditioned matrices have been discussed
in [119] and in Section 3.2.4 of this thesis. In the presence of regularization
in the (2, 2) block, one of such choices is W = C. In fact, this setting has
provided fast convergence in our numerical experiments but revealed to be
unsatisfactory in terms of conditioning, particularly when solving the unre-
duced systems. Indeed, as the IP iterates approach the exact solution, some
components of x, and hence some entries of C, tend to become very small.
As a consequence, the condition number of PAD and TW tends to become
much larger than the condition number of K3,reg. Clearly, this occurrence is
especially undesired in the unreduced formulation since it is expected to be
better conditioned than the reduced one.

Alternative approximations such as W = γIn+m with γ equal to either
the arithmetic mean, geometric mean or median of diag(C) actually led to
slower convergence of preconditioned minres and gmres.

For the unreduced system K3,reg, an effective choice of W was obtained
by setting

W = C + Γ = C +

[
γ1Im 0
0 γ2In

]
=

[
δIm + γ1Im 0

0 X + γ2In

]
, (7.27)

where γ1 and γ2 are given by

γ1 = min

{
1,

1

‖H + ρIn‖F

}
, γ2 = γ1 ·mean(z),

and ‖ · ‖F is the Frobenius norm. This choice aims at exploiting the parti-
tioning of the original matrix, by giving different weights at the two diagonal
blocks.

For the reduced system K2,reg, we instead set

W = C + γIm = (δ + γ)Im, γ =
1

‖H + ρIn +X−1Z‖F
. (7.28)
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We point out that, due to the magnitude of the elements in X−1Z for
all problems we worked with, this choice of γ always gave a value less than
one. For different data, the minimum between this value and one could be
considered, as for K3,reg.

A first set of experiments was performed running pdco with accuracy
on feasibility (FeaTol) equal to 10−6; the complementary tolerance (OptTol)
was set to 10−3 for problems in the stcqp group, and to 1 for problems
cvxqp1-cvxqp3 2. We used different values of OptTol for the two data
sets to generate sequences of systems with conditioning at most comparable
with the reciprocal of the machine precision. The chosen values depended
on the fact that problems stcqp1 a, stcqp1 b and stcqp2 are well-scaled,
whereas in cvxqp1-cvxqp3 the largest value of x and z at the solution is
O(1) and O(104), respectively.

Table 7.2 displays statistics for the solution of the sequences of unreduced
systems by preconditioned minres and gmres. We report the minimum,
maximum and average (min/max/avg) number of linear iterations performed
through the IP iterations and the minimum and maximum condition number
of K3,reg and of the preconditioner during the IP iterations. Note that al-
though different when using different inner solvers, the condition number of
K3,reg did not vary significantly, therefore we report only the values obtained
when using Matlab’s direct solver. All condition numbers were estimated3

by the Matlab function condest and only the first significant digit is re-
ported. In Table 7.3 we compare the number of IP (outer) iterations (i.e.,
the number of linear systems to be solved in each sequence) and the execu-
tion times in seconds for solving the systems with either the direct solver,
preconditioned gmres or preconditioned minres. Execution times in the
iterative solvers include the time needed to form the preconditioner, that is
to compute the incomplete Cholesky factorization of the preconditioner (1,1)
block. Tables 7.4 and 7.5 show analogous statistics for the reduced systems.

The reported results show that the condition number of K3,reg varies in
a small range during the IP iterations and the maximum value attained is

2pdco stops when all the following conditions, based on the KKT conditions (6.2), are
satisfied:

∥∥Hx̂− JT ŷ − ẑ − c
∥∥
∞

≤ FeaTol

‖Jx− b‖
∞

≤ FeaTol

max
i

xizi ≤ OptTol

3The estimation is based on the original preconditioning matrix, before the incomplete
Cholesky factor is computed.
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K3,reg , PAD-minres K3,reg , TW -gmres
Problem condest(K3,reg) Inner It condest(PD) Inner It condest(TW )

min/max min/max/avg min/max min/max/avg min/max

cvxqp1 5 · 1011/7 · 1011 21/42/35.6 4 · 1013/4 · 1013 10/17/13.9 2 · 1013/2 · 1013
cvxqp2 1 · 1011/1 · 1011 20/41/30.6 3 · 1013/3 · 1013 9/19/13.3 2 · 1013/2 · 1013
cvxqp3 4 · 1011/7 · 1011 23/47/37.4 5 · 1013/5 · 1013 10/18/15.4 3 · 1013/3 · 1013
stcqp1 a 1 · 1010/2 · 1010 12/25/19.8 2 · 1010/2 · 1010 9/13/11.0 2 · 1010/2 · 1010
stcqp1 b 2 · 1010/3 · 1010 14/26/21.1 6 · 1010/6 · 1010 11/14/12.1 6 · 1010/6 · 1010
stcqp2 6 · 106 /7 · 106 11/25/20.6 7 · 10 9/7 · 10 9 8/12/10.0 7 · 10 9/7 · 10 9

Table 7.2: Results from the iterative solution of the unreduced systems,
with preconditioners PAD and TW for K3,reg. Here W = C + Γ (see (7.27)).
Number of iterations and conditioning.

K3,reg , PAD-minres K3,reg , TW -gmres K3,reg , Backslash
Outer Time Outer Time Outer Time

Problem It min/max/avg It min/max/avg It min/max/avg
cvxqp1 14 0.27/0.58/0.46 14 0.20/0.34/0.28 13 0.85/1.10/0.97
cvxqp2 15 0.13/0.22/0.18 15 0.10/0.18/0.14 13 0.56/0.81/0.64
cvxqp3 14 0.42/0.77/0.67 14 0.30/0.46/0.42 13 0.91/1.18/1.08
stcqp1 a 24 0.13/0.19/0.17 24 0.13/0.19/0.15 24 0.11/0.12/0.12
stcqp1 b 28 0.41/0.60/0.52 28 0.41/0.47/0.44 28 0.35/0.37/0.36
stcqp2 33 0.16/0.48/0.31 33 0.16/0.37/0.25 33 0.70/1.21/0.94

Table 7.3: Results from the iterative solution of the unreduced systems,
with preconditioners PAD and TW for K3,reg. Here W = C + Γ (see (7.27)).
Number of linear systems and CPU times in seconds for their solution.

of several orders of magnitude smaller than that of K2,reg. The conditioning
of PAD and TW for K3,reg shows little changes too, and remains considerably
smaller than the conditioning of the preconditioners for K2,reg for the stcqp
dataset. As expected, K2,reg is increasingly ill-conditioned, together with the
corresponding matrices PAD and TW . In both formulations, the precondi-
tioners PAD and TW are very effective in solving the systems. Preconditioner
TW is more efficient than PAD in terms of linear iterations and provides some
savings in the computational time when the unreduced formulation is used.
It is also interesting to note that the iterative solution of the systems does
not deteriorate the overall performance of the IP method, as shown by the
comparison of the outer iterations in Tables 7.3 and 7.5. Moreover, in most
runs, the use of the reduced formulation slightly increases the number of
outer iterations. This might be related to the fact that in the reduced case,
Z is not estimated explicitly by the inner solver, but recovered from the
reduction step.

The sparse direct solver is compiled in Matlab whereas the implemented
iterative solvers are based on interpreted, thus slower, commands. Nonethe-
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K2,reg , PAD-minres K2,reg , TW -gmres
Problem condest(K2,reg) Inner It condest(PAD) Inner It condest(TW )

min/max min/max/avg min/max min/max/avg min/max

cvxqp1 6 · 1011/2 · 1016 17/26/21.6 5 · 1013/7 · 1013 6/10/8.7 3 · 1013/3 · 1015
cvxqp2 1 · 1011/2 · 1015 12/19/15.1 3 · 1013/1 · 1016 6/ 9/7.7 2 · 1013/6 · 1015
cvxqp3 7 · 1011/5 · 1015 20/28/23.3 6 · 1013/5 · 1015 8/11/9.6 4 · 1013/2 · 1015
stcqp1 a 1 · 1010/7 · 1015 4/11/8.6 2 · 1010/6 · 1015 3/ 9/6.8 2 · 1010/3 · 1015
stcqp1 b 2 · 1010/2 · 1016 4/13/9.9 6 · 1010/9 · 1015 3/10/8.0 6 · 1010/4 · 1015
stcqp2 6 · 106 /4 · 1012 4/11/7.5 7 · 10 9/1 · 1015 3/ 8/5.4 7 · 10 9/7 · 1014

Table 7.4: Results from the iterative solution of the reduced systems, with
preconditioners PAD and TW for K2,reg. Here W = (δ + γ)Im (see (7.28)).
Number of iterations and conditioning.

K2,reg , PAD-minres K2,reg , TW -gmres K2,reg , Backslash
Outer Time Outer Time Outer Time

Problem It min/max/avg It min/max/avg It min/max/avg
cvxqp1 17 0.22/0.32/0.27 17 0.16/0.23/0.19 13 0.76/0.96/0.87
cvxqp2 17 0.08/0.12/0.09 17 0.06/0.15/0.07 13 0.58/0.71/0.64
cvxqp3 17 0.36/0.56/0.44 17 0.26/0.39/0.30 13 0.84/1.02/0.95
stcqp1 a 26 0.08/0.13/0.10 26 0.08/0.16/0.11 24 0.10/0.22/0.21
stcqp1 b 30 0.27/0.41/0.35 30 0.27/0.40/0.35 28 0.30/0.80/0.77
stcqp2 33 0.09/0.35/0.18 33 0.09/0.33/0.18 33 0.74/0.83/0.77

Table 7.5: Results from the iterative solution of the unreduced systems, with
preconditioners PAD and TW for K2,reg. Here W = (δ + γ)Im (see (7.28)).
Number of linear systems and CPU times in seconds for their solution.

less, the iterative methods are able to largely overcome this disadvantage,
leading to an overall much better performance than with the sparse direct
solver: Table 7.6 displays the total execution time for solving the sequences
of systems either by preconditioned gmres, or by the sparse direct solver
(Matlab’s backslash operator). Except for stcqp1 a and stcqp1 b with
K3,reg, the use of preconditioned iterative solvers speeds the solution of the
linear algebra phase. Moreover, we notice that the fastest runs are those
performed with the reduced systems. This last fact is not surprising, as pre-
conditioned gmres behaves very similarly in the two formulations in terms
of number of iterations, while the reduced formulation deals with vectors of
smaller dimensions.

On the other hand, the unreduced formulation seems to offer some ad-
vantages when more stringent complementary tolerances are used. Indeed,
we performed an additional set of experiments with problems stcqp1 a,
stcqp1 b, and stcqp2 using a complementary tolerance equal to 10−6, and
with problems cvxqp1-cvxqp3 using a tolerance equal to 10−4. The con-
sidered smaller tolerances are still within the suggested complementary toler-
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Total execution times
K3,reg K2,reg

Problem TW -gmres Backslash TW -gmres Backslash
cvxqp1 3.89 12.62 3.15 11.31
cvxqp2 2.05 8.37 1.26 8.31
cvxqp3 5.91 13.98 5.02 12.40
stcqp1 a 3.63 2.81 2.82 5.10
stcqp1 b 12.21 10.02 10.53 21.42
stcqp2 8.31 30.96 5.90 25.48

Table 7.6: Total execution times for the sequence of systems generated during
the IP method. Preconditioned gmres and Matlab sparse direct solver for
the unreduced (left) and reduced (right) systems.

ance intervals suggested in pdco. pdco implemented with K2,reg and solved
by preconditioned gmres failed to solve cvxqp1-cvxqp3, whereas the other
approaches succeeded. The results in Table 7.9 show the conditioning of the
matrices and the solution statistics; as before, the condition numbers re-
ported refer to the implementation with Matlab’s direct solver. Failures
are indicated with the symbol ‘*’. We omit statistics on the number of linear
iterations performed since the behavior of the iterative solver is very similar
to that of the previous set of experiments. We observe that the conditioning
of K3,reg remains bounded and pdco implemented with K3,reg is as robust
as pdco with direct solver, though faster. On the contrary, K2,reg tends to
become numerically singular and the implementation of pdco with precon-
ditioned gmres fails in three runs out of six since the maximum number of
linesearch backtracks is reached. These failures occurred at the late stage of
the IP iterations and seem to indicate lack of precision in the computation
of the steps with the current tolerance.

Since the cost of the application of PAD and PAT is strongly related to
the sparsity level of the (1,1) block A + BTW−1B, and, more directly, of
its incomplete Cholesky factor LIC . For this reason in Table 7.3 we report
minimum and maximum number of nonzero entries of LIC , throughout the
IP iteration, for K3,reg amd K2,reg. We also show the number of nonzero
entries of A+BTW−1B, which is reported only once for each problem as it is
independent of the IP iteration and of whether we are using the reduced or
unreduced formulation. This can be seen by exploiting the actual structure
of A, B and W in the two cases. The number of nonzero entries of the
(complete) Cholesky factor of A+BTW−1B is also reported for a comparison.
For each problem, the variation of this number with respect to iteration
numeber and formulation is negligeable, and the number reported refers to
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the first iteration in the unreduced formulation. For problems cvxqp1 and
cvxqp3 the number of nonzero entries in the incomplete factor is quite
large, while in other cases it remains within a factor of two from the number
of nonzero entries in the original matrix.

It is worthwile to compare the performance of our strategies with the one
observed using the constraint preconditioner PC coupled with gmres, as this
preconditioner is very popular in the context of KKT systems. We do this for
the unreduced formulation, and to approximate the ideal preconditioner PC

defined in (7.15) we again used an Incomplete Cholesky factorization to solve
the system with the Schur complement. For problems of the stcqp family,
we set 10−4 as dropping tolerance for ichol, while for problems cvxqp1-

cvxqp3 the stricter tolerance 10−6 was needed to avoid failures of ichol.
The results are shown in Table 7.7. In one problem, we observed that the
maximum number of gmres iteration, set to 50, was reached.

K3,reg, PC-gmres
Outer Inner It Total

Problem It min/max/avg Time
cvxqp1 14 9/29/20.4 2.29
cvxqp2 14 11/27/21.0 1.94
cvxqp3 14 9/31/22.1 3.93
stcqp1 a 24 14/44/29.7 11.93
stcqp1 b 28 28/50/36.7 39.65
stcqp2 33 3/25/14.2 6.89

Table 7.7: Results from the iterative solution of the unreduced system using
the constraint preconditioner PC and gmres

Since the cost of the application of the preconditioner is strongly related
to the sparsity level of the (1,1) block A + BTW−1B, and, more directly,
of its incomplete Cholesky factor L. For this reason in Table 7.3 we report
minimum and maximum number of nonzero entries of L, throughout the
IP iteration, for K3,reg amd K2,reg. We also show the number of nonzero
entries of A+BTW−1B, which is repoted only once for each proble,m as it is
independent of the IP iteration and of whether we are using the reduced or
unreduced formulation. This can be seen by exploiting the actual structure
of A, B and W in the two cases. The number of nonzero entries of the
(complete) Cholesky factor of A+BTW−1B is also reported for a comparison.
For each problem, the variation of this number with respect to iteration
numeber and formulation is negligeable, and the number reported refers to
the first iteration in the unreduced formulation. For problems cvxqp1 and
cvxqp3 the number of nonzero entries in the incomplete factor is quite
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large, while in other cases it remains within a factor of two from the number
of nonzero entries in the original matrix.

Problem nnz(A+ BTW−1B) nnz(LC) nnz(LIC)
Unreduced Reduced

min max min max
cvxqp1 99946 233440 282173 355051 264721 346446
cvxqp2 84960 749178 104399 132270 75771 128860
cvxqp3 114924 1444660 426783 539124 411303 530397
stcqp1 a 106629 3662714 154535 160891 143434 160728
stcqp1 b 229507 2559272 412669 432796 394330 432795
stcqp2 330033 3984326 112657 371027 63259 370949

Table 7.8: Sparisty of the preconditioner (1,1) block A + BTW−1B and its
complete and incomplete Choelsky factor, respectively LC and LIC , through-
out the IP iteration.

7.3.1 Updating technique for the (1,1) block of PAD

and TW
In this section we explore a different approach for approximating the

(1,1) block of the preconditioners PAD and TW . Instead of computing the
Incomplete Cholesky factorization of the (1,1) block of each preconditioner
from scratch, we exploit an updating preconditioner technique proposed in
[9].

Updating techniques aim at building preconditioners for a sequence of
matrices at a low computational cost. Let {Ak} = {A0 + Σk}, k ≥ 1, be
a sequence where A0 is a symmetric positive definite seed matrix, available
in factorized LDLT form, and Σk is a diagonal positive semidefinite matrix.
Then, the LDLT factorization of matrices Ak can be formed by updating the
factorization of the seed matrix as proposed in [9]. Given the factorization
A0 = L0D0L

T
0 , the factorization LkDkL

T
k of Ak is obtained by updating that

of A0, at a cost which is linear in the number of nonzero entries of Σk for
buildingDk, and linear in the number of nonzero entries of L0 for building Lk.
The appealing feature of such an approach is that the Incomplete Cholesky
factorization is computed only for the seed matrix; successively, its update is
expected to be cheaper than the computation of a new incomplete factoriza-
tion from scratch. Thus, as long as the updated approximate factorization
remains sufficiently accurate, computational time savings can be obtained.
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K3,reg , TW -gmres K3,reg , Backslash
condest(K3,reg) Outer Time Outer Time

Problem min/max It min/max/avg It min/max/avg

cvxqp1 4 · 1011/7 · 1011 20 0.21/0.46/0.31 20 0.81/1.40/1.08
cvxqp2 1 · 1011/1 · 1011 21 0.10/0.36/0.17 21 0.54/0.90/0.72
cvxqp3 4 · 1011/7 · 1011 20 0.31/0.97/0.58 20 1.09/1.69/1.24
stcqp1 a 1 · 1010/2 · 1010 30 0.13/0.17/0.15 30 0.11/0.12/0.11
stcqp1 b 2 · 1010/3 · 1010 34 0.39/0.48/0.44 34 0.35/0.37/0.36
stcqp2 6 · 106 /7 · 106 39 0.15/0.39/0.25 39 0.70/1.22/0.98

K2,reg , TW -gmres K2,reg , Backslash
condest(K2,reg) Outer Time Outer Time

Problem min/max It min/max/avg It min/max/avg

cvxqp1 5 · 1011/7 · 1019 * * 20 0.76/1.02/0.91
cvxqp2 1 · 1011/4 · 1019 * * 21 0.55/0.74/0.67
cvxqp3 6 · 1011/4 · 1019 * * 36 0.84/1.11/0.98
stcqp1 a 1 · 1010/1 · 1019 30 0.07/0.13/0.10 30 0.10/0.22/0.21
stcqp1 b 2 · 1010/2 · 1019 34 0.24/0.38/0.33 34 0.31/0.82/0.78
stcqp2 6 · 106 /7 · 1015 39 0.09/0.33/0.16 39 0.74/0.81/0.78

Table 7.9: Results from the iterative and direct solution of the unreduced
systems (upper table) and reduced ones (lower table) obtained with more
stringent complementarity tolerances. Conditioning of the matrices, number
of linear systems and CPU times in seconds. Failures of pdco are indicated
by ‘*’.

The sequence of the (1,1) blocks of both PAD and TW may fit into the
sequence of matrices described above. In the unreduced setting, the (1,1)
block of both PAD and TW reads

H + ρIn +
1

δ + γ1
JTJ + Z (X + γ2In)

−1 .

Since we set γ1 constant throughout the outer IP iterations, matrix H +

ρIn +
1

δ + γ1
JTJ is fixed and may play the role of the seed matrix A0, while

Z (X + γ2In)
−1 is a diagonal and positive definite matrix which changes at

every IP iteration and may represent the diagonal modification Σk.
If we consider the reduced formulation, the (1,1) block of PAD and TW

reads

H + ρIn +
1

δ + γ
JTJ +X−1Z,

and in the previous experiments γ changed at every IP iteration. In order to
apply the updating strategy we reconsidered the choice of this parameter and

fixed γ =
1∥∥H + ρIn +X−1

0 Z0

∥∥
F

, where X0 and Z0 are the diagonal matrices
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K3,reg

PAD-minres TW -gmres
Problem Inner It Total execution Inner It Total execution

min/max/avg time min/max/avg time
stcqp1 a 12/27/21.7 3.10 9/13/11.7 2.45
stcqp1 b 14/30/23.2 10.49 11/15/12.8 7.87
stcqp2 11/27/22.6 10.26 8/13/10.8 7.06

K2,reg

PAD-minres TW -gmres
Problem Inner It Total execution Inner It Total execution

min/max/avg time min/max/avg time
stcqp1 a 3/16/10.6 1.49 3/10/7.9 1.50
stcqp1 b 3/18/12.4 5.80 3/12/9.5 5.50
stcqp2 1/16/11.0 5.23 2/10/7.7 4.78

Table 7.10: Numerical results for the unreduced systems (upper table) and
reduced ones (lower table) obtained using the updating technique to approx-
imate the (1,1) block of PAD and TW

associated with the initial guesses x0 and z0. This way, H + ρIn +
1

δ + γ
JTJ

can be used as the seed matrix and X−1Z is the positive definite diagonal
modification Σk.

Experiments were performed with the first practical update from the
paradigm given in [9, Section 3]. Table 7.10 displays the results obtained
on the sequences of systems arising from problems stcqp1 a, stcqp1 b
and stcqp2 with OptTol equal to 10−3, i.e. the same sequences reported
in Tables 7.2–7.6. The minimum, maximum and average (min/max/avg)
number of iterations performed and the total execution times for both K3,reg

and K2,reg are reported. Comparing these results with those in Tables 7.2–
7.6, we note that the number of linear iterations is only slightly affected by
the use of the updating strategy, while the computational time is reduced.

On the contrary, the updating strategy was not beneficial in the solution
of problems from the cvxqp family. Loss of accuracy in the approximated
factorization with respect to the Incomplete Cholesky factorization was ob-
served and this deteriorated the performance of the preconditioned iterative
solvers. Combining the updating strategy with low-rank matrix corrections
may enhance the efficiency of the procedure [10], but this issue is beyond the
scope of this chapter.
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7.4 Conclusions

Classically, the high sparsity structure of KKT systems arising in the
numerical solution of quadratic programming problems by means of interior
point method encourages the use of reduction strategies before solving the
systems. For stability purposes, however, the unreduced formulation may be
appealing. Following previous analysis in [46, 49, 66], the aim of Chapter
6 and Chapter 7 of this work was to explore the actual advantages of the
unreduced strategy.

In this chapter we have shown that when preconditioning is employed,
much care must be put in even devising mathematically different problems.
Moreover, once specifically designed preconditioners are used, and as long as
implementations with the unreduced and reduced formulations are successful,
the performance seems in favor of the latter in view of the smaller dimensions.
The use of recently developed updating techniques provides similar saving
for both formulations, thus not changing their computational comparison.
On the other hand, the unreduced formulation may maintain better spectral
properties than the reduced one and its use may enhance the robustness
of the interior point solver when the reduced systems become severely ill-
conditioned, or even numerically singular.

Numerical results on the considered datasets show that the upper tri-
angular preconditioner is somewhat more efficient than the block diagonal
one, although it requires additional memory allocations if the optimal solver
gmres is employed. In both preconditioners, our selection of generic aug-
mentation matrix W seems to be well suited for all test cases.
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Appendix A

Technical proofs

In this appendix we prove the most technical results used throughout this
thesis.

Proof of Lemma 6.3.3. Matrix B has dimension (m+q)×n where q is
the cardinality of the active set A∗ at x̂. By the LICQ condition, q ≤ n−m
and JT

I∗ has full column rank. Consequently, BT has full column rank.

We provide estimates for σmax(B) and σmin(B) by using the relations
σ2
max(B) = λmax(BBT ) and σ2

min(B) = λmin(BBT ) and considering the eigen-
value problem for BBT , that is

[
JA∗

JT
A∗

+ JI∗J
T
I∗ −JA∗

Z
1

2

A∗

−Z
1

2

A∗
JT
A∗

ZA∗

] [
u
v

]
= λ

[
u
v

]
. (A.1)

If v = 0, then from the first equation we find σ2
min(JI∗) ≤ λ ≤ σ2

max(JI∗).
Then, we first focus on σmin(B) and consider the case where v 6= 0 and
λ < σ2

min(JI∗), otherwise σ
2
min(JI∗) is the requested bound. By the first block

equation in (A.1)

u =
(
JA∗

JT
A∗

+ JI∗J
T
I∗ − λIm

)−1
JA∗

Z
1

2

A∗
v.

Then, the second block equation of (A.1) becomes

−Z
1

2

A∗
JT
A∗

(
JA∗

JT
A∗

+ JI∗J
T
I∗ − λIm

)−1
JA∗

Z
1

2

A∗
v + ZA∗

v − λv = 0.

and premultiplying it by vT we get

vTZ
1

2

A∗

[
Iq − JT

A∗

(
JA∗

JT
A∗

+ JI∗J
T
I∗ − λIm

)−1
JA∗

]
Z

1

2

A∗
v − λ ‖v‖2 = 0, (A.2)

149



150 A. Technical proofs

Now we observe that

(
JA∗

JT
A∗

+ JI∗J
T
I∗ − λIm

)
�

(
JA∗

JT
A∗

+ (σ2
min(JI∗)− λ)Im

)
,

and

JT
A∗

(
JA∗

JT
A∗

+ JI∗J
T
I∗ − λIm

)−1
JA∗

� JT
A∗

(
JA∗

JT
A∗

+ (σ2
min(JI∗)− λ)Im

)−1
JA∗

.

Then

wTJT
A∗

(
JA∗

JT
A∗

+ (σ2
min(JI∗)− λ)Im

)−1
JA∗

w ≤ max
i

σ2
i (JA∗

)

σ2
i (JA∗

) + σ2
min(JI∗)− λ

‖w‖2

=
σ2
max(JA∗

)

σ2
max(JA∗

) + σ2
min(JI∗)− λ

‖w‖2

where w ∈ R
q and (A.2) gives

(zA∗
)min −

(zA∗
)minσ

2
max(JA∗

)

σ2
max(JA∗

) + σ2
min(JI∗)− λ

− λ ≤ 0,

which is equivalent to

r(λ) = λ2 − (σ2
max(JA∗

) + σ2
min(JI∗) + (zA∗

)min)λ+ (zA∗
)minσ

2
min(JI∗) ≤ 0.

Since r(0) > 0 and r (σ2
min(JI∗)) < 0, then σ2

min(JI∗) is greater than the
smallest root of r(λ) and the stated bound on σmin(B) follows.

Finally, if w ∈ R
q, ŵ ∈ R

n−q we have

∥∥∥∥B
[
w
ŵ

]∥∥∥∥
2

=

∥∥∥∥J
[
w
ŵ

]∥∥∥∥
2

+
∥∥∥Z

1

2

A∗
w
∥∥∥
2

≤
(
‖J‖2 + ‖ZA∗

‖
) ∥∥∥∥
[
w
ŵ

]∥∥∥∥
2

,

from which the looser bound for σmax(B) follows.
The sharper bound for σmax(B), although more complicated, can be de-

rived as follows. We start again from (A.1) and suppose λ > σ2
max, which in

particular implies v 6= 0. As before, we find u from the first equation (note
that JA∗

JT
A∗

+ JI∗J
T
I∗ = JJT ) and substitute into the second one. Premulti-

plying for vT we obtain again equation (A.2). This time we use

JT
A∗

(
λIm − JJT

)−1
JA∗

�σ2
max(JA∗

)

λ− σ2
max

Iq.

Proceeding as above, we derive the inequality

(zA∗
)max +

(zA∗
)maxσ

2
max(JA∗

)

λ− σ2
max

− λ ≥ 0,
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which is equivalent to

q(λ) := λ2 −
(
(zA∗

)max + σ2
max

)
λ+ (zA∗

)max

(
σ2
max − σ2

max(JA∗
)
)
≤ 0.

Since q (σ2
max) < 0, then σ2

max is smaller than the largest root of q(λ). We
thus obtain

σ2
max(B) ≤ 1

2

(
(zA∗

)max + σ2
max +

√
((zA∗

)max − σ2
max)

2
+ 4(zA∗

)maxσ2
max(JA∗

)

)
.

Since σ2
max − σ2

max(JA∗
) ≥ 0, this bound is sharper than the simpler one.

Proof of Lemma 5.3.5 From F + F T � 0 it also follows that F + I is
nonsingular.

i) We consider the eigenvalue problem (F + I)−1(F − I)(F − I)T (F +
I)−Tx = θx with θ ≥ 0, or, equivalently, (F−I)(F−I)Ty = θ(F+I)(F+I)Ty
with y = (F + I)−Tx. The largest eigenvalue coincides with ‖(F + I)−1(F −
I)‖2. We have (F − I)(F − I)T = FF T + I −F −F T and (F + I)(F + I)T =
FF T + I + F + F T . Substituting and rearranging terms gives

(1− θ)(FF T + I)y = (θ + 1)(F + F T )y.

We multiply from the left by yT . Since FF T + I ≻ 0, F + F T � 0 and
θ + 1 > 0, it must be that 1− θ ≥ 0, that is θ ≤ 1.

ii) We proceed in a similar way. Let us now consider (F+I)−1(F+F T )(F+
I)−Tx = θx, with θ > 0, which is equivalent to (F+F T )y = θ(F+I)(F+I)Ty,
with y = (F + I)−Tx. Therefore, (1 − θ)(F + F T )y = θ(FF T + I)y. We
premultiply by yT and rearrange to obtain

1− θ

θ
=

yT (FF T + I)y

yT (F + F T )y
.

From the relation (F − I)(F − I)T � 0 it follows that
yT (FF T + I)y

yT (F + F T )y
≥ 1.

Thus,
1− θ

θ
≥ 1 which implies θ ≤ 1

2
.

Proof of Proposition 5.3.7. Let F =
√
νM− 1

2LM− 1

2 .
i) For αu = 1 and αy = 0 we have γ1 = 0 and γ2 = 1, so thatM− 1

2SM− 1

2 =
FF T + (I − Π), and

M− 1

2 ŜM− 1

2 = (F + (I − Π))(F + (I − Π))T ,

where we used the fact that (I − Π)
1

2 = (I − Π). From M− 1

2SM− 1

2x =

λM− 1

2 ŜM− 1

2x we obtain for y = M
1

2x

(F + (I − Π))−1(FF T + (I − Π))(F + (I − Π))−Ty = λy. (A.3)
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Since F is nonsingular, we have

(F + (I − Π))−1(FF T + (I − Π))(F + (I − Π))−T

= (F + (I − Π))−1F (I + F−1(I − Π)(I − Π)F−T )F T (F + (I − Π))−T

= (I + F−1(I − Π))−1(I + F−1(I − Π)(I − Π)F−T )(I + F−1(I − Π))−T

=: (I + Z)−1(I + ZZT )(I + Z)−T ,

with Z = F−1(I − Π). Therefore, from (A.3) it follows

λ ≤ ‖(I + Z)−1(I + ZZT )(I + Z)−T‖ ≤ ‖(I + Z)−1‖2 + ‖(I + Z)−1Z‖2
= ‖(I + Z)−1‖2 + ‖I − (I + Z)−1‖2
≤ ‖(I + Z)−1‖2 + (1 + ‖(I + Z)−1‖)2. (A.4)

We then recall that Z = F−1(I − Π) = 1√
ν
M

1

2L−1M
1

2 (I − Π), so that

‖(I + Z)−1‖ = ‖(I + 1√
ν
M

1

2L−1M
1

2 (I − Π))−1‖

= ‖M 1

2

(√
νL+M(I − Π)

)−1 √
νLM− 1

2‖.

To analyze the behavior for ν → 0, let us suppose that L + LT ≻ 0,

and write Z = 1√
ν
F̃−1(I − Π); without loss of generality also assume that

I − Π = blkdiag(Iℓ, 0). The eigendecomposition of F̃−1(I − Π) is given by1

F̃−1(I − Π) = XΛX−1 where Λ = diag(λi) and λi ∈ spec((F̃−1)11) ∪ {0}.
Here (F̃−1)11 is the top left ℓ × ℓ block of F̃−1. Note that all eigenvalues of

(F̃−1)11 have strictly positive real part, thanks to the condition L+ LT ≻ 0.
Therefore

‖(I + Z)−1‖ = ‖X(I +
1√
ν
Λ)−1X−1‖ ≤ κ(X)max





1

min
λ∈spec((F̃−1)11)

|1 + λ/
√
ν| , 1





.

We thus have

max





1

min
λ∈spec((F̃−1)11)

|1 + λ/
√
ν| , 1





→ 1 for ν → 0,

so that ‖(I + Z)−1‖ ≤ η κ(X) with η → 1 for ν → 0.

1In the unlikely case of a Jordan decomposition, the proof proceeds with the maximum
over norms of Jordan blocks inverses, which leads to the same final result.
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ii) For αu = 0 and αy = 1 we have γ1 = 1 and γ2 = 0, so that

M− 1

2SM− 1

2 = F (I − Π)F T + I, and

M− 1

2 ŜM− 1

2 = (F (I − Π) + I)(F (I − Π) + I)T .

As before, setting this time Z = F (I −Π) we obtain the bounds (A.4) for λ

with ‖(I +Z)−1‖ = ‖(I +√
νM− 1

2LM− 1

2 (I −Π))−1‖. Finally, it is apparent
from the above expression that ‖(I + Z)−1‖ → 1 as ν → 0.
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an efficient AMG preconditioner for finite element problems in 3D.
Internat. J. Numer. Methods Engrg., 82(1):64–98, 2010.

[20] Dietrich Braess. Finite elements: Theory, fast solvers, and applications
in solid mechanics. Cambridge University Press, 2001.



BIBLIOGRAPHY 157

[21] James H. Bramble and Joseph E. Pasciak. A preconditioning technique
for indefinite systems resulting from mixed approximations of elliptic
problems. Math. Comp., 50(181):1–17, 1988.

[22] Susanne C. Brenner and Ridgway Scott. The mathematical theory of
finite element methods. Springer, 2008.

[23] Sonia Cafieri, Marco D’Apuzzo, Valentina De Simone, and Daniela
Di Serafino. On the iterative solution of KKT systems in potential
reduction software for large-scale quadratic problems. Comput. Optim.
Appl., 38(1):27–45, 2007.

[24] Zhi-Hao Cao. Augmentation block preconditioners for saddle point-
type matrices with singular (1, 1) blocks. Numer. Linear Algebra Appl.,
15(6):515–533, 2008.

[25] Zhi-Hao Cao. A note on spectrum distribution of constraint precondi-
tioned generalized saddle point matrices. Numer. Linear Algebra Appl.,
16(6):503–516, 2009.

[26] Eduardo Casas. Control of an elliptic problem with pointwise state
constraints. SIAM J. Control Optim., 24(6):1309–1318, 1986.

[27] Jordi Castro and Jordi Cuesta. Quadratic regularizations in an interior-
point method for primal block-angular problems. Math. Program.,
130(2):415–445, 2011.

[28] Guang-Hui Cheng, Ting-Zhu Huang, and Shu-Qian Shen. Block trian-
gular preconditioners for the discretized time-harmonic Maxwell equa-
tions in mixed form. Comput. Phys. Comm., 180(2):192–196, 2009.

[29] Frank H. Clarke. Optimization and Nonsmooth Analysis. Wiley New
York, 1983.

[30] Marco D’Apuzzo, Valentina De Simone, and Daniela di Serafino. On
mutual impact of numerical linear algebra and large-scale optimiza-
tion with focus on interior point methods. Comput. Optim. Appl.,
45(2):283–310, 2010.

[31] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization
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[52] Roland W Freund and Noël M Nachtigal. QMR: a quasi-minimal
residual method for non-Hermitian linear systems. Numer. Math.,
60(1):315–339, 1991.

[53] Michael P. Friedlander and Dominique Orban. A primal–dual regu-
larized interior-point method for convex quadratic programs. Math.
Program. Comput., 4(1):71–107, 2012.

[54] Gene H. Golub and Chen Greif. On solving block-structured indefinite
linear systems. SIAM J. Sci. Comput., 24(6):2076–2092 (electronic),
2003.

[55] Gene H. Golub, Chen Greif, and James M. Varah. An algebraic analysis
of a block diagonal preconditioner for saddle point systems. SIAM J.
Matrix Anal. Appl., 27(3):779–792, 2005.



160 BIBLIOGRAPHY

[56] Gene H. Golub, David J. Silvester, and Andrew J. Wathen. Diago-
nal dominance and positive definiteness of upwind approximations for
advection diffusion problems. In Numerical analysis, pages 125–131.
World Sci. Publ., River Edge, NJ, 1996.

[57] Gene H. Golub and Charles F. Van Loan. Matrix computations. JHU
Press, 2012.

[58] Jacek Gondzio. Interior point methods 25 years later. European J.
Oper. Res., 218(3):587–601, 2012.

[59] Jacek Gondzio. Matrix-free interior point method. Comput. Optim.
Appl., 51(2):457–480, 2012.

[60] Jacek Gondzio. Convergence analysis of an inexact feasible interior
point method for convex quadratic programming. SIAM J. Optim.,
23(3):1510–1527, 2013.

[61] Nicholas I. M. Gould and Valeria Simoncini. Spectral analysis of saddle
point matrices with indefinite leading blocks. SIAM J. Matrix Anal.
Appl., 31(3):1152–1171, 2009.

[62] Nicholas I.M. Gould, Dominique Orban, and Philippe L. Toint. CUTEr
and SifDec: A constrained and unconstrained testing environment, re-
visited. ACM Trans. Math. Software, 29(4):373–394, 2003.

[63] Anne Greenbaum. Comparison of splittings used with the conjugate
gradient algorithm. Numer. Math., 33(2):181–193, 1979.

[64] Anne Greenbaum. Iterative methods for solving linear systems. SIAM,
1997.

[65] Anne Greenbaum, Vlastimil Pták, and Zdeněk Strakoš. Any nonin-
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[117] Joachim Schöberl and Walter Zulehner. Symmetric indefinite precondi-
tioners for saddle point problems with applications to PDE-constrained
optimization problems. SIAM J. Matrix Anal. Appl., 29(3):752–773
(electronic), 2007.

[118] Debora Sesana and Valeria Simoncini. Spectral analysis of inexact
constraint preconditioning for symmetric saddle point matrices. Linear
Algebra Appl., 438(6):2683–2700, 2013.

[119] Shu-Qian Shen, Ting-Zhu Huang, and Jian-Song Zhang. Augmentation
block triangular preconditioners for regularized saddle point problems.
SIAM J. Matrix Anal. Appl., 33(3):721–741, 2012.

[120] David J. Silvester and Andrew J. Wathen. Fast iterative solution of sta-
bilised Stokes systems. II. Using general block preconditioners. SIAM
J. Numer. Anal., 31(5):1352–1367, 1994.

[121] Valeria Simoncini. Reduced order solution of structured linear systems
arising in certain PDE-constrained optimization problems. Comput.
Optim. Appl., 53(2):591–617, 2012.

[122] Valeria Simoncini and Daniel B Szyld. Interpreting IDR as a Petrov-
Galerkin method. SIAM J. Sci. Comput., 32(4):1898–1912, 2010.

[123] Peter Sonneveld and Martin B. van Gijzen. IDR (s): A family of simple
and fast algorithms for solving large nonsymmetric systems of linear
equations. SIAM Journal on Scientific Computing, 31(2):1035–1062,
2008.

[124] Georg Stadler. Elliptic optimal control problems with L 1-control cost
and applications for the placement of control devices. Comput. Optim.
Appl., 44(2):159–181, 2009.

[125] Martin Stoll and Andy Wathen. The Bramble-Pasciak+ preconditioner
for saddle point problems. SIAM J. Matrix Anal. Appl., 30(2):582–608,
2008.

[126] Martin Stoll and Andy Wathen. Preconditioning for partial differential
equation constrained optimization with control constraints. Numer.
Linear Algebra Appl., 19(1):53–71, 2012.



166 BIBLIOGRAPHY

[127] H. Sue Thorne. Distributed control and constraint preconditioners.
Comput. & Fluids, 46(1):461–466, 2011.

[128] Mattia Tani and Valeria Simoncini. Refined spectral estimates for pre-
conditioned saddle point linear systems in a non-standard inner prod-
uct. ANZIAM J., 54:C291–C308, 2013.

[129] David Titley-Peloquin, Jennifer Pestana, and Andrew J Wathen. GM-
RES convergence bounds that depend on the right-hand-side vector.
IMA J. Numer. Anal., 34(2):462–479, 2014.
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