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Abstract 
 

 

Falls are common and burdensome accidents among the elderly. About one third of the population aged 65 
years or more experience at least one fall each year. Fall risk assessment is believed to be beneficial for fall 
prevention. This thesis is about prognostic tools for falls for community-dwelling older adults. 

We provide an overview of the state of the art. We then take different approaches: we propose a 
theoretical probabilistic model to investigate some properties of prognostic tools for falls; we present a tool 
whose parameters were derived from data of the literature; we train and test a data-driven prognostic tool. 
Finally, we present some preliminary results on prediction of falls through features extracted from 
wearable inertial sensors. 

Heterogeneity in validation results are expected from theoretical considerations and are observed from 
empirical data. Differences in studies design hinder comparability and collaborative research. According to 
the multifactorial etiology of falls, assessment on multiple risk factors is needed in order to achieve good 
predictive accuracy.  
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Chapter 1 
 
 
 
 
 
 
 
 
This first chapter introduces the theme of prediction in medicine in general, and more in particular it gives 
an overview of fall risk screening and prediction algorithms suggested by clinical guidelines and presented 
in the literature. It closes with a presentation of the following chapters. 
 

Ageing 
Declining mortality and fertility rates are shaping the demographic structure of both developed and less 
developed regions all around the world. It is estimated that during the last 200 years life expectancy at 
birth is doubled, growing at a pace of two years per decade [1]. Since 1950 total fertility rate has halved, 
from 5 children per woman to the current rate of 2.5 [2]. Population ageing has major consequences of 
economic, social and political nature. From an epidemiological perspective, population ageing is 
contributing to the shift of disease burden from communicable, neonatal and maternal diseases to non-
communicable diseases and injuries [3].  

Falls  
Falls are common and burdensome accidents among the older population. About one third of the 
population aged 65 or more experience at least one fall each year [4] and the annual fall rate in this age 
group is about 0.65 falls per person [5]. Fall risk increases with age and is higher in populations of older 
adults hospitalized or living in long-term care institutions. Falls can result in injuries and are a leading cause 
of activity restriction, hospitalization, and disability [6; 7]. Physical injuries due to falls account for 40% of all 
injury deaths [4]. Worldwide, it is estimated that falls are responsible for 35 million disability adjusted life 
years [3]. 

Many preventive strategies have been proposed, and some of them have been shown to be effective [8–
11]. Their implementation, however, has been slow and the coverage insufficient [12–14]. The individual 
and societal costs of these interventions are often among the factors that hinder their implementation. In 
order to make best use of available resources and intervene only with subjects at increased risk, medical 
associations and national health authorities recommend the adoption of fall risk assessment tools [15–19]. 

The expression “fall risk assessment tool” is used in the literature with two different acceptations. Indeed, 
sometimes fall risk assessment tool refers to screening tests whose aim is only to identify subjects at 
increased risk. Other times, by “fall risk assessment” it is meant the act of thoroughly assessing the 
presence of risk factors to target with interventions. The most widely accepted paradigm for fall prevention 



in community-dwelling older adults encompasses both. In particular, it consists of three sequential stages: 
screening for high fall risk; assessment of those at high risk on multiple risk factors; implementation of a 
tailored intervention [11; 15; 18; 20].  

Prediction in medicine 

Prognostic tools 
Let us consider the general case of a user that wants to have information about a health outcome of a 
particular subject (the subject under assessment). By prediction tool we mean any tool that receives 
information about the subject under assessment –and possibly other contextual information, e.g. 
environmental information– and gives the user information about the health outcome of interest. When 
the information that is provided by the tool is about the occurrence of the outcome in the future, we also 
use the term ‘prognostic tool’ (or prognostic model). 

Their objectivity, i.e. their characteristic of providing the output in a user-independent manner, given the 
input information, is of value for evidence-based medicine. 

Their employment is diffuse in clinical practice, public health, and medical research [21–23]. In clinical 
practice, they inform the patient and the physician about the possibility of the occurrence of an adverse 
event (e.g. death or onset of a disease) or of the success or failure of a given therapy; they support 
decisions about the appropriateness of taking further diagnostic tests or beginning a treatment; they help 
communication between physician and patient, and among physicians. In public health, they enable 
policies that target preventive interventions only to subjects at increased risk; they allow comparison 
between and assessment of healthcare providers (e.g. hospitals) adjusting for different case-mix. In medical 
experimental research, they are employed in the design (for patient recruitment [24] and stratification) and 
analysis (adjustment for random imbalance, increase in statistical power) of randomized controlled trials. In 
observational studies investigating the effect of a given treatment, they are used as propensity scores 
(scores expressing the probability of receiving the treatment) to adjust for the potential confounding factor 
of differential treatment. 

Overview of results in the literature 
Though the focus of this thesis is on predictive tools for falls, we like to give a broad and synthetic overview 
of the results that have been published in the literature about prediction of different health outcomes. 

Figure 1 shows the discriminative ability of different prognostic models for the onset of different non-
communicable diseases and the occurrence of accidents. The discriminative ability of the different models 
has been quantified with the Area Under the ROC Curve (AUC) or with different definitions of C-statistics 
for survival models in the presence of censoring [25; 26]. We included only results obtained from external 
validation studies. More details about methods employed to obtain this figure, references and more 
information about these models are included in Appendix 1. 

When drawing comparisons, it should be borne in mind that these discrimination indices were obtained on 
different populations and from follow-ups of different durations. As an example, the follow-ups in studies 
about cardiovascular events are generally of 5-10 years, whereas a common follow-up duration for studies 
about falls is 6-12 months. We can define a prediction task as the task of predicting the occurrence of a 
particular kind of event (e.g. cardiovascular event) over an associated time-span (e.g. 10 years). 

The discriminative-ability values vary across the models, the studies, and even the subpopulations 
considered in a single study. They span from 0.5 to 0.84. However, there seems to be an effect that is 



related to the object of prediction. The AUCs of models predicting cardiovascular events range between 0.7 
and 0.8, whereas the AUCs obtained on models for falls seldom and barely surpass 0.6. The figure thus 
suggests that the actual medical knowledge allows fulfilling some prediction tasks better than others, with 
falls being among the most difficult objects of prediction to deal with. 

 

Figure 1. Area Under the Curve (AUC) or c-statistic of different prognostic models for the onset of different non-communicable 
diseases and the occurrence of accidents. More details in Appendix 1. CVD: cardiovascular disease. 

New biomarkers 
As the technology has progressed, it has offered the possibility of measuring new quantities, often quickly 
and cheaply. Consequently, the space of candidate predictors for given health outcomes has progressively 
enlarged.  

This ‘high-throughput’ revolution and the rush to the discovery of new predictors have in turn challenged 
statistics with problems related to research in high-dimensional spaces (when the number of features is 
high and often much higher than the number of statistical units) [27].  

New biomarkers have been found among DNA sequence variations, differential expression of genes, 
metabolites within the bloodstream, complex structures in bio-signals and bio-images, etc. The 
improvements over predictive tools based on traditional clinical variables have often been judged marginal, 
especially for common, complex health conditions [28; 29]. Since this qualitative judgment depends on the 
metrics used to evaluate this improvement and on personal expectations, research in biostatistics has 
worked to find new ways to measure the added value of new markers. With this regard, incremental AUC 
has been deemed not to be sensible enough for this purpose, and new metrics based on reclassification of 
subjects among risk strata have been introduced [30–32].  

Also research on falls witnesses a ‘high-throughput’ revolution, represented by the employment of 
wearable inertial sensors. Whether general consensus has been reached on some socio-demographic, 
clinical and physiological risk factors, expressed in the form of systematic reviews [33–40], research on new 



markers, especially features of movement analysis coming from wearable inertial sensors, is still in its early 
stages. 

Fall risk assessment 
In this paragraph we review the major tools that have been proposed for fall risk assessment. In particular, 
we list some algorithms issued within guidelines by national and international health authorities, and other 
predictive models proposed in the literature. 

Guidelines 
The American Geriatric Society and the British Geriatric Society issued the last update of the guideline for 
fall prevention in the elderly in 2011 [15]. This guideline is intended to assist healthcare professionals when 
visiting community-dwelling older adults in clinical setting. Figure 2 presents the proposed algorithm. It 
encompasses assessment and intervention. Get Up and Go test, Timed Up and Go Test (TUG), Berg Balance 
test, and the Performance-Oriented Mobility Assessment (also known as Tinetti Scale) [41–44] are 
proposed for the evaluation of gait and balance. The evidence about strengths and limitations of these 
tests are annotated. A thorough multifactorial fall risk assessment is suggested for subjects having 
abnormalities in gait or balance, having experienced two or more falls in the last year, or presenting with an 
acute fall. 

 

Figure 2. Algorithm from the guidelines of the American Geriatric Society and the British Geriatric Society [15; 45].  

The American Centers for Disease Control and Prevention (CDC) published the STEADI (Stopping Elderly 
Accidents, Deaths & Injuries) Tool Kit for Health Care Providers [46; 47]. This encompasses brochures for 
older adults and for healthcare professionals. Among those, there is an algorithm for fall risk assessment, 



reported in Figure 31, and fall risk checklists for patients and physicians. TUG, 30 Second Chair Stands, and 4 
stage balance test are recommended or suggested for evaluating gait, balance and muscle strength. 

Furthermore, the CDC and the Department of Health & Human Services also published a checklist for home 
environmental hazards [48]. 

 

Figure 3. Algorithm for fall risk assessment and intervention issued by the CDC [49]. 

The English National Institute for Health and Care Excellence (NICE) published in June 2013 the guideline 
CG161, extending CG21 published in 2004 [50]. Figure 4 presents a flow chart thereof. The guideline 
explicitly advices against the use of predictive tools for falls to evaluate inpatients’ risk of falling in the 
hospital. There is the advice to assess community-dwelling older adults reporting a fall or considered at risk 
of falling for their walk and balance abilities. It is left to the healthcare professional to judge when to 
consider a subject at risk of falling, and it is not clear whether it is specified or not how to assess gait and 
balance. 

1 We note that in the Algorithm for Fall Risk Assessment and Intervention proposed by the CDC there is a mistake. The 
“or” in “Score<4 or NO to all questions” should be replaced by “and” in order to exclude the possibility to assign one 
subject to two different risk strata 

                                                           



 

Figure 4. Flow chart issued by the NICE. Modified from [51]. 

Following the scheme of the NICE guideline, the Italian Istituto Superiore di Sanità issued in 2007 and 
updated in 2009 a guideline for the prevention of falls at home for the elderly. In order to evaluate the risk 
of falling, the guideline recommends tests that are reliable, easy and quick to administer. The Berg Balance 
Scale, the TUG, and the Tinetti Balance are identified as having these characteristics. These indications are 
labelled with maximum degree of strength of recommendation and maximum degree of evidence [16]. 

More guidelines are collected in the website of ProFouND (Prevention of Falls Network for Dissemination) 
[52].  

Literature 
In the literature there are several reviews about tools for fall risk assessment for community-dwelling older 
adults [53; 54], for older inpatients [55–57], or in general [58–62]. Other reviews are about specific tools, 
e.g. the TUG [63; 64] and, the STRATIFY [65; 66]. Three reviews are about tools employing features from 
inertial sensors [67–69]. 



 

Figure 5. Schematic representation of the literature about tools for fall risk assessment. The blue arrow is the timeline. Text 
boxes below the timeline highlight progress in technology (inertial sensors) and information technology (statistical learning, 
biostatistics) that has influenced research on fall risk assessment. 

Despites all its limitations, Figure 5 may be useful to have a quick and synthetic look at the literature. The 
first tools were published in the late ‘80s and during the ‘90s. Sometimes they were based on subjective 
evaluations, were developed for a more general scope (assessment of functional mobility) and without use 
of statistics, and gave as output a qualitative score that had no probabilistic meaning. We call these first 
tools ‘traditional’. They are so far the ones that have been more extensively validated. Some results from 
external validation studies about these traditional tools are summarized in Figure 6 in terms of points and 
lines on the Receiver Operating Characteristic (ROC) plane. Results are from [70–74]. 

After many years of validation, the results about these traditional tools have been found not to be 
satisfactory. The TUG was proposed as a test for functional mobility in 1991 [42], modifying the Get-Up and 
Go test by Mathias et al [41]. In 2014 Barry et al concluded: “TUG should no longer be used as a falls risk 
assessment in community dwelling elderly people” [63]. Similarly, the STRATIFY (St Thomas's risk 
assessment tool in falling elderly inpatients) was proposed in 1997 as a tool for inpatients [75]. In 2012 
Billington et al concluded: “the diagnostic accuracy of the STRATIFY rule is limited and should not be used in 
isolation for identifying individuals at high risk of falls in clinical practice” [66]. 



 

Figure 6. Sensitivity and specificity of TUG, Tinetti Balance (B), Tinetti Gait (G), Tinetti total score (T), and Berg Balance Test. 

During the last decades, the adoption of results achieved in machine learning and biostatistics has 
improved the practice about how to develop and validate predictive tools. In the meanwhile, research on 
falls has gained more attention. Accordingly, after the first traditional tools, others have been published, 
making use of available methodological improvements (e.g. [76–78]). Among these tools –that we call 
‘second generation tools’– it is worth mentioning the well-known Physiological Profile Assessment (PPA) 
[79]. This tools has been extensively used, as a support to design and analyze clinical trials and for 
observational studies (e.g. [80; 81]). However, to the best of our knowledge, its ability to predict falls has 
not been assessed thoroughly via external validation. 

The present period is dominated by research on ‘sensor-based’ tools –that we also call ‘third generation 
tools’– i.e. tools that assess the risk of falling, receiving in input features extracted from signals recorded by 
wearable inertial sensors. These sensors have been proposed to increase the accuracy in predicting future 
falls while guaranteeing the objectivity of the assessment. Figure 7 presents the results on the ROC planes 
of these sensor-based tools, with a comparison with what achieved by validated traditional tools. Details 
about the studies included in this figure are given in Appendix 1.  

Some issues about this research area have been already introduced above (New biomarkers). Here we add 
that most of these studies have been based on falls assessed retrospectively, and on small sample sizes. 
Furthermore, to the best of our knowledge, none of the proposed tools has been externally validated yet. 
Thus, the results achieved so far cannot be considered definitive or robust. 



 

Figure 7. Sensitivity and specificity of sensor-based tools (orange circles) and externally validated traditional tools (blue 
triangles). More details are given in Appendix 1. 

Impact 
Prognostic models are developed to improve efficiency and safety of care. Impact studies are intended to 
evaluate this effect. Their most preferable study design is a randomized control trial, even though other 
designs are possible. Despite their informative value and the repeated pleas for them, their paucity is a 
hallmark of medical prognostic research [82–85].  
To the best of our knowledge no impact study has ever been carried out for prognostic tools for falls in 
community-dwelling older adults. Two factors may have hindered these kinds of studies: the absence of a 
valid and accurate tool for fall risk, and the cost of conducting clinical trials. 
Meyer et al. led a cluster-randomized control trial assessing the effectiveness of a fall risk assessment tool, 
the Downton Index, in nursing homes [86; 87]. They found no significance difference between the 
intervention and the control group. However, some points are worth discussing. The primary endpoint was 
the number of participants experiencing at least one fall during a 12-month follow-up. Prevention was 
recommended through an educational event delivered in the same way to nurse staff of both groups. 
Nurse staff of the intervention group was given no specific instructions on how to take advantage of the 
outcome of the Downton Index within the preventive initiative. Thus, it seems that in the control group a 
treat-everyone strategy was implemented, whereas in the intervention group the same strategy was 
accompanied by the use of the Downton Index. With this regard, their findings are hardly unexpected. 
Reilly and Evans define and suggest two measures –safety and efficiency– to consider as endpoints of 
impact studies [83]. 
Despite the absence of clinical trials dedicated to the study of the impact of prognostic tools for falls in 
community dwellings, some subgroup analyses from randomized control trials are encouraging. Within a 
Cochrane review, Gillespie et al found that home modification interventions are particularly effective in 
subjects at increased risk, and, in general, targeting specific high-risk groups increases the cost-
effectiveness of preventive programs [9]. Similar results were found also in other studies [88]. 
Some difficulties of rigorous impact studies may be overcome with a modelling approach (for an example in 
another research area see e.g. [89]). Decision analytic models have been developed to evaluate the 



economic impact of fall preventive interventions [90–93]. However, to the best of our knowledge, they did 
not estimate the added value of using prognostic tools for falls. 

Introduction to the following chapters 
The following chapters will present original contributions about predictive tools for falls. 

Chapter 2 will clarify some conceptual issues that arise when assessing the performance of a probabilistic 
tool for fall prediction. We will employ as a model an ideal, perfect probabilistic tools that issues its 
forecasts on a population where risk and falls are distributed according to the classical Greenwood and Yule 
model for accident proneness [94]. We will show that a perfect probabilistic tool does not reach perfect 
discrimination, and that its performance indices are sensible to a number of key factors. 

Chapter 3 will present the development of a predictive tool for falls from the literature, FRAT-up, and its 
validation on three populations. 

In Chapter 4 will present an extensive search over a large dataset (InCHIANTI study, 2313 samples relative 
to 976 subjects, 1010 variables), training and validating a model that issues probabilistic predictions on the 
number of future falls. The model is evaluated on prospective falls and it is benchmarked against other fall 
risk scores: history of falls, gait speed, Short Physical Performance Battery, and FRAT-up. We study the 
tradeoff between two competing requirements for a prognostic tool: to be accurate in its predictions, and 
to be easy and quick to administer. 

Chapter 5 will present some results about prediction of falls via wearable sensors obtained on data from 
InCHIANTI-FARSEEING [95]. 

In Chapter 6 we will give some final remarks. 
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Chapter 2 
 
 
 
 
 
 
 
 
The content of this chapter is mainly taken from [1]. We present a probabilistic model to address critical 
issues about fall prediction through the analysis of the properties of an ideal prognostic tool for falls. 

Introduction 
Besides assessment tools whose principal aim is to identify key risk factors to target factor-specific 
interventions [2; 3] — which will not be dealt with in this Chapter— common prognostic tools either 
produce a continuum score related to the probability of occurrence of one or more falls in a given amount 
of time [4], or are simple categorical prediction tools that stratify the population according to a 
dichotomous “low-versus-high risk” logic [5]. Systematic reviews have generally remarked that: 

- only few tools have been externally validated [6] (i.e. have been evaluated in a population 
different from the one employed in the development phase, see [7; 8] for a comprehensive 
discussion about validation of prognostic models);  

- not a single validated tool has so far shown excellent discriminative properties [5; 6; 9];  
- heterogeneity of population characteristics and study settings affect the predictive properties of 

the tools [5; 10; 11].  

From the literature in biostatistics and epidemiology it is known that even a ‘perfect’ prognostic tool, i.e. a 
tool that assigns each subject their true probability1 to develop the outcome of interest [12], cannot reach 
perfect discrimination [13; 14], and that the upper limit for the area under the receiver operating 
characteristic (ROC) curve (AUC) depends on the distribution of risk in the population [12; 15]. Nevertheless 
the clinical literature about falls has never discussed its results in light of these theoretical considerations 
and some recently-proposed tools incorporating inertial sensors data [16] have shown good but unlikely 
results. Furthermore, it is known that if a clinical or biological marker is used to predict the time until the 
development of a given outcome, the ROC curve of the associated prognostic tool is dependent on the 
censoring time [17]. Finally, the studies that have developed or evaluated fall risk assessment tools have 
considered as outcome of interest the condition of having fallen either at least once (e.g. [18]) or at least 
twice during the follow-up (e.g. [19]). How the follow-up length of a prospective study and the definition of 

1 When referring to ‘true probability’, we adopt the model of probabilities as objective propensity scores.  
                                                           



the outcome of interest impact on the estimated predictive properties of the fall risk tool under evaluation 
has not been investigated yet. 

Objectives 
By means of a probabilistic model we aim to investigate the above mentioned theoretical issues about fall 
prediction. Setting a framework where an ideal prognostic tool for fall risk is evaluated in a population 
enrolled in a hypothetical prospective clinical study, we aim to derive analytically and evaluate 
quantitatively its predictive and discriminative performances, and to investigate how these performances 
are affected by i) the distribution of the fall rate in the population, ii) the follow-up duration, and iii) the 
definition of faller as single faller or multiple faller. 

Methods 

Probabilistic model 
We assume to evaluate a prognostic tool for falls in an infinite population within a prospective study. All 
the subjects 𝜔𝜔1,𝜔𝜔2, … of this population are followed over time, from 𝑡𝑡 = 0, instant of the baseline, until 
𝑡𝑡 = 𝜏𝜏, duration of the follow-up.  

To each subject 𝜔𝜔𝑖𝑖 of the population, we associate two random variables, namely 𝑁𝑁𝑖𝑖  and 𝛬𝛬𝑖𝑖. 𝑁𝑁𝑖𝑖  is a random 
variable accounting for the number of falls that 𝜔𝜔𝑖𝑖 will experience during the follow-up. Conditional on 𝛬𝛬𝑖𝑖, 
𝑁𝑁𝑖𝑖  is assumed independent of any other random variables of the model. With this assumption the number 
of falls that a subject 𝜔𝜔𝑖𝑖 will experience during the follow-up depends only on the value of 𝛬𝛬𝑖𝑖. 𝛬𝛬𝑖𝑖 is the 
expected fall rate of 𝜔𝜔𝑖𝑖 (expressed as the number of falls per year). Then, 𝛬𝛬𝑖𝑖 is interpreted as a measure of 
the proneness to falling of 𝜔𝜔𝑖𝑖. We assume the random variables 𝛬𝛬1, 𝛬𝛬2,… to be independent and identically 
distributed according to a distribution 𝐹𝐹.  

Thus, (𝑁𝑁1,𝛬𝛬1), (𝑁𝑁2,𝛬𝛬2), … are independent and identically distributed (i.i.d.) couples of random variables. 
We call (𝑁𝑁,𝛬𝛬) one of these i.i.d. couples. We assume that 𝑁𝑁 has a conditional Poisson distribution with 
mean 𝜆𝜆𝜆𝜆 given 𝛬𝛬 = 𝜆𝜆. Its conditional probability mass function is thus: 

𝑔𝑔(𝑛𝑛; 𝜆𝜆𝜆𝜆) ≡ 𝑃𝑃(𝑁𝑁 = 𝑛𝑛|𝛬𝛬 = 𝜆𝜆) = 𝑒𝑒−𝜆𝜆𝜆𝜆 (𝜆𝜆𝜆𝜆)𝑛𝑛

𝑛𝑛!
      (1) 

The marginal probability mass function for 𝑁𝑁 is clearly: 

ℎ(𝑛𝑛) ≡ 𝑃𝑃(𝑁𝑁 = 𝑛𝑛) = ∫ 𝑔𝑔(𝑛𝑛; 𝜆𝜆𝜆𝜆)𝑑𝑑𝑑𝑑(𝜆𝜆)+∞
0       (2) 

Equation (2) says that 𝑁𝑁 follows a mixture of Poisson distributions, with mixing distribution 𝐹𝐹. Thus fall 
counts are regarded as arising from a mixture of subjects, each falling according to a Poisson law 
conditioned on their expected fall rate, with the expected fall rate being distributed according to 𝐹𝐹. As 
supported by empirical evidence [20], we hypothesize the marginal distribution for 𝑁𝑁 to be a negative 
binomial:  

𝑁𝑁~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑘𝑘, 𝜇𝜇)         (3) 

k and 𝜇𝜇 being the two real and positive parameters that characterize the distribution. Its probability mass 
function is: 



ℎ(𝑛𝑛) = 𝛤𝛤(𝑛𝑛+𝑘𝑘)
𝑛𝑛!𝛤𝛤(𝑘𝑘)

� 𝜇𝜇
𝜇𝜇+𝑘𝑘

�
𝑛𝑛
� 𝑘𝑘
𝜇𝜇+𝑘𝑘

�
𝑘𝑘

        (4) 

Here we refer to identifiability as the property to univocally determine the mixing distribution (the 
distribution 𝐹𝐹 of 𝛬𝛬) given the mixture distribution (the distribution of 𝑁𝑁) and the conditional distribution, 
𝑁𝑁|𝛬𝛬 = 𝜆𝜆. Since continuous mixtures of Poisson distributions are identifiable [21; 22], we deduce that the 
distribution of 𝛬𝛬, 𝐹𝐹, is a gamma distribution: 

𝛬𝛬~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑘𝑘,𝜃𝜃)          (5) 

with k, shape parameter of the distribution, being equal to the parameter k of the negative binomial 
distribution, and θ, scale parameter of the distribution, being determined by 𝜃𝜃 = µ (𝑘𝑘𝑘𝑘)⁄ . The probability 
density function of 𝛬𝛬, derivative of 𝐹𝐹, is: 

𝑓𝑓(𝜆𝜆) = 𝜆𝜆𝑘𝑘−1𝑒𝑒−𝜆𝜆 𝜃𝜃⁄

𝛤𝛤(𝑘𝑘)𝜃𝜃𝑘𝑘
          (6) 

Its mean is 𝑘𝑘𝑘𝑘 and its variance is 𝑘𝑘𝜃𝜃2. 

Thus, 𝑁𝑁 conforms to the model introduced by Greenwood and Yule for accident-proneness [23]. Appendix 
2 recalls the negative binomial distribution and derives the relation between its parameters and the 
parameters of the gamma mixing distribution. 

We then evaluate the performances of an ideal prognostic tool for falls, 𝑟𝑟. 𝑟𝑟 is the defined as a function 
that assigns to each subject 𝜔𝜔𝑖𝑖 the value of their expected fall rate 𝛬𝛬𝑖𝑖 = λ𝑖𝑖, i.e. 𝑟𝑟(ω𝑖𝑖) = λ𝑖𝑖. Thus, according 
to the definition of a perfect prognostic tool given in the Introduction, 𝑟𝑟 is perfect. The discriminative and 
predictive performances of this prognostic tool are calculated according to the formulas shown in Table 1 
[24]. Following the two alternative approaches usually employed in clinical studies [25], fallers have been 
defined as those that during the follow-up have fallen either at least once (𝑛𝑛� = 0) or at least twice (𝑛𝑛� = 1). 
According to these two definitions, in the following we shall refer to ‘prediction of any fall’ or ‘prediction of 
multiple falls’, respectively. 

Table 1. Formulas defining discriminative and predictive performance indices. 

Sensitivity 𝑆𝑆𝑆𝑆(𝜆𝜆𝑐𝑐) = 𝑃𝑃(𝛬𝛬 > 𝜆𝜆𝑐𝑐|𝑁𝑁 > 𝑛𝑛�) 

Specificity 𝑆𝑆𝑆𝑆(𝜆𝜆𝑐𝑐) = 𝑃𝑃(𝛬𝛬 ≤ 𝜆𝜆𝑐𝑐|𝑁𝑁 ≤ 𝑛𝑛�) 

PPV 𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆𝑐𝑐) = 𝑃𝑃(𝑁𝑁 > 𝑛𝑛�|𝛬𝛬 > 𝜆𝜆𝑐𝑐) 

NPV 𝑁𝑁𝑁𝑁𝑁𝑁(𝜆𝜆𝑐𝑐) = 𝑃𝑃(𝑁𝑁 ≤ 𝑛𝑛�|𝛬𝛬 ≤ 𝜆𝜆𝑐𝑐) 

Accuracy 𝐴𝐴𝐴𝐴𝐴𝐴(𝜆𝜆𝑐𝑐) = 𝑃𝑃(𝑁𝑁 > 𝑛𝑛�,𝛬𝛬 > 𝜆𝜆𝑐𝑐) + 𝑃𝑃(𝑁𝑁 ≤ 𝑛𝑛�,𝛬𝛬 ≤ 𝜆𝜆𝑐𝑐  ) 

AUC 
𝐴𝐴𝐴𝐴𝐴𝐴 = � 𝑆𝑆𝑆𝑆(𝜆𝜆𝑐𝑐)

𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝜆𝜆𝑐𝑐

(𝜆𝜆𝑐𝑐)𝑑𝑑𝜆𝜆𝑐𝑐
+∞

0
 

𝜆𝜆𝑐𝑐 is a given cutoff value on the fall rate. 

 



Parameter estimation and results visualization 
We estimated the distribution 𝐹𝐹 for four different populations of community-dwelling and congregate-
living older adults (Sydney, Melbourne, New Zealand and Atlanta). The data on fall counts were taken from 
[20]. Similarly to what already done in [20], for each population we fitted an intercept-only negative 
binomial regression, estimating the parameters 𝑘𝑘 and 𝜇𝜇. Negative binomial regression was done with the 
function glm.nb of the package MASS of the R software [26]. We then derived the parameter 𝑘𝑘′ and 𝜃𝜃 of 
the distribution of 𝛬𝛬 as 𝑘𝑘′ = 𝑘𝑘 and 𝜃𝜃 = 𝜇𝜇

𝜏𝜏𝜏𝜏
. 

MATLAB (R2011a) [27] has been used to plot and visually inspect the analytical formulas of Table 2. The 
AUC has been calculated via trapezoidal rule for numerical integration with the MATLAB function trapz . 

Results 

Analytic results: performance indices 
Under the parametric assumptions presented in Methods, the joint probability of having a fall rate 
exceeding a given cutoff 𝜆𝜆𝑐𝑐 and experiencing more than 𝑛𝑛� falls is  

𝑃𝑃(𝛬𝛬 > 𝜆𝜆𝑐𝑐 , 𝑁𝑁 > 𝑛𝑛�) = ∫ ∑ 𝑔𝑔(𝑛𝑛; 𝜆𝜆𝜆𝜆)+∞
𝑛𝑛=𝑛𝑛�+1 𝑓𝑓(𝜆𝜆)𝑑𝑑𝑑𝑑+∞

𝜆𝜆𝑐𝑐
      (7) 

whereas the marginal probability of experiencing more than 𝑛𝑛� falls is 

𝑃𝑃(𝑁𝑁 > 𝑛𝑛�) = ∑ ℎ(𝑛𝑛)+∞
𝑛𝑛=𝑛𝑛�+1 = 1 −∑ ℎ(𝑛𝑛)𝑛𝑛�

𝑛𝑛=0 .      (8) 

According to the definition given in Table 1, the sensitivity of the ideal prognostic tool is 

𝑆𝑆𝑆𝑆(𝜆𝜆𝑐𝑐) =  𝑃𝑃(𝛬𝛬>𝜆𝜆𝑐𝑐,𝑁𝑁>𝑛𝑛�)
𝑃𝑃(𝑁𝑁>𝑛𝑛�) =

∫ ∑ 𝑔𝑔(𝑛𝑛;𝜆𝜆𝜆𝜆)+∞
𝑛𝑛=𝑛𝑛�+1 𝑓𝑓(𝜆𝜆)𝑑𝑑𝑑𝑑+∞

𝜆𝜆𝑐𝑐
∑ ℎ(𝑛𝑛)+∞
𝑛𝑛=𝑛𝑛�+1

.     (9) 

We define the upper incomplete gamma function as 𝛾𝛾𝑈𝑈(𝑥𝑥,𝑘𝑘) ≔ 1
𝛤𝛤(𝑘𝑘)∫ 𝑠𝑠𝑘𝑘−1𝑒𝑒−𝑠𝑠𝑑𝑑𝑑𝑑+∞

𝑥𝑥 , 𝛤𝛤 being the gamma 

function, i.e. 𝛤𝛤(𝑘𝑘) = ∫ 𝑠𝑠𝑘𝑘−1𝑒𝑒−𝑠𝑠𝑑𝑑𝑑𝑑+∞
0 . Recalling the relation 𝜇𝜇 = 𝜃𝜃𝜃𝜃𝜃𝜃 and the property ∑ 𝑔𝑔(𝑛𝑛; 𝜆𝜆𝜆𝜆) = 1+∞

𝑛𝑛=0 , 
the computations for the case 𝑛𝑛� = 0 (prediction of any fall) proceeds as follows 

𝑆𝑆𝑆𝑆(𝜆𝜆𝑐𝑐) =  
∫ ∑ 𝑔𝑔(𝑛𝑛;𝜆𝜆𝜆𝜆)+∞

𝑛𝑛=1 𝑓𝑓(𝜆𝜆)𝑑𝑑𝑑𝑑+∞
𝜆𝜆𝑐𝑐

∑ ℎ(𝑛𝑛)+∞
𝑛𝑛=1

=
∫ [1−𝑔𝑔(0;𝜆𝜆𝜆𝜆)]𝑓𝑓(𝜆𝜆)𝑑𝑑𝑑𝑑+∞
𝜆𝜆𝑐𝑐

1−ℎ(0) =

 
1

𝛤𝛤(𝑘𝑘)∫ 𝜃𝜃−𝑘𝑘𝜆𝜆𝑘𝑘−1𝑒𝑒−𝜆𝜆 𝜃𝜃⁄ 𝑑𝑑𝑑𝑑+∞
𝜆𝜆𝑐𝑐

− 1
𝛤𝛤(𝑘𝑘)∫ 𝑒𝑒−𝜆𝜆𝜆𝜆𝜃𝜃−𝑘𝑘𝜆𝜆𝑘𝑘−1𝑒𝑒−𝜆𝜆 𝜃𝜃⁄ 𝑑𝑑𝑑𝑑+∞

𝜆𝜆𝑐𝑐
1−(1+𝜃𝜃𝜃𝜃)−𝑘𝑘 =

1
𝛤𝛤(𝑘𝑘)∫ 𝑠𝑠𝑘𝑘−1𝑒𝑒−𝑠𝑠𝑑𝑑𝑑𝑑+∞

𝜆𝜆𝑐𝑐/𝜃𝜃 −(1+𝜃𝜃𝜃𝜃)−𝑘𝑘

𝛤𝛤(𝑘𝑘) ∫ 𝑠𝑠𝑘𝑘−1𝑒𝑒−𝑠𝑠𝑑𝑑𝑑𝑑+∞
𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1+𝜃𝜃𝜃𝜃)

1−(1+𝜃𝜃𝜃𝜃)−𝑘𝑘 =
𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ ,𝑘𝑘)−(1+𝜃𝜃𝜃𝜃)−𝑘𝑘𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1+𝜃𝜃𝜃𝜃),𝑘𝑘)

1−(1+𝜃𝜃𝜃𝜃)−𝑘𝑘           

     (10) 

Other formulas for the discriminative and predictive performances of the ideal prognostic tool for falls can 
be derived similarly. Their expressions, reported in Table 2, have been obtained for both cases of prediction 
of any fall (𝑛𝑛� = 0), and prediction of multiple falls (𝑛𝑛� = 1). 

 



Table 2. Discriminative and predictive performance indices of the ideal prognostic tool for falls, for the 
two definitions of faller. 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 ∶= {𝝎𝝎𝒊𝒊:𝑵𝑵𝒊𝒊 = 𝒏𝒏𝒊𝒊 > 𝒏𝒏�,   𝒏𝒏� = 𝟎𝟎} 

Sensitivity 
𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ ,𝑘𝑘) − (1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘)

1 − (1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘  

Specificity 𝛾𝛾𝐿𝐿(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘) 

PPV 
𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ ,𝑘𝑘) − (1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘)

𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ , 𝑘𝑘)  

NPV 
(1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘𝛾𝛾𝐿𝐿(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘)

𝛾𝛾𝐿𝐿(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ ,𝑘𝑘)  

Accuracy 𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ ,𝑘𝑘) + (1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘[−1 + 2𝛾𝛾𝐿𝐿(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘)] 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 ∶= {𝝎𝝎𝒊𝒊:𝑵𝑵𝒊𝒊 = 𝒏𝒏𝒊𝒊 > 𝒏𝒏�,   𝒏𝒏� = 𝟏𝟏} 

Sensitivity 
𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ ,𝑘𝑘) − (1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘)− 𝜇𝜇(1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘−1𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘 + 1)

1− (1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘 − 𝜇𝜇(1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘−1  

Specificity 
(1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘𝛾𝛾𝐿𝐿(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘) + 𝜇𝜇(1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘−1𝛾𝛾𝐿𝐿(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘 + 1)

(1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘 + 𝜇𝜇(1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘−1  

PPV 
𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ ,𝑘𝑘) − (1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘)− 𝜇𝜇(1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘−1𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘 + 1)

𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ , 𝑘𝑘)  

NPV 
(1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘𝛾𝛾𝐿𝐿(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘) + 𝜇𝜇(1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘−1𝛾𝛾𝐿𝐿(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘 + 1)

𝛾𝛾𝐿𝐿(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ ,𝑘𝑘)  

Accuracy 
𝛾𝛾𝑈𝑈(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ ,𝑘𝑘) + (1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘[−1 + 2𝛾𝛾𝐿𝐿(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘)]

+ 𝜇𝜇(1 + 𝜃𝜃𝜃𝜃)−𝑘𝑘−1[−1 + 2𝛾𝛾𝐿𝐿(𝜆𝜆𝑐𝑐 𝜃𝜃⁄ (1 + 𝜃𝜃𝜃𝜃),𝑘𝑘 + 1)] 

Notations: 𝛾𝛾𝐿𝐿(𝑥𝑥,𝑘𝑘) = 1
𝛤𝛤(𝑘𝑘)∫ 𝑡𝑡𝑘𝑘−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑𝑥𝑥

0  ; 𝛾𝛾𝑈𝑈(𝑥𝑥,𝑘𝑘) = 1 − 𝛾𝛾𝐿𝐿(𝑥𝑥,𝑘𝑘); 𝛤𝛤(𝑘𝑘) = ∫ 𝑡𝑡𝑘𝑘−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑+∞
0  

 

Analytic results: accuracy maximization 
Following the definition given in Table 1, the accuracy can be computed as:  

𝐴𝐴𝐴𝐴𝐴𝐴(𝜆𝜆𝑐𝑐) = ∑ ∫ 𝑔𝑔(𝑛𝑛; 𝜆𝜆𝜆𝜆)𝑓𝑓(𝜆𝜆)𝑑𝑑𝑑𝑑+∞
𝜆𝜆𝑐𝑐

+∞
𝑛𝑛=𝑛𝑛�+1 + ∑ ∫ 𝑔𝑔(𝑛𝑛; 𝜆𝜆𝜆𝜆)𝑓𝑓(𝜆𝜆)𝑑𝑑𝑑𝑑𝜆𝜆𝑐𝑐

0
𝑛𝑛�
𝑛𝑛=0 .   (11) 

In order to look for a cutoff that maximizes the accuracy, we set its derivative to be zero (necessary 
condition). 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝜆𝜆𝑐𝑐

= −∑ 𝑔𝑔(𝑛𝑛; 𝜆𝜆𝑐𝑐𝜏𝜏)𝑓𝑓(𝜆𝜆𝑐𝑐)+∞
𝑛𝑛=𝑛𝑛�+1 + ∑ 𝑔𝑔(𝑛𝑛; 𝜆𝜆𝑐𝑐𝜏𝜏)𝑓𝑓(𝜆𝜆𝑐𝑐)𝑛𝑛�

𝑛𝑛=0   



 = 𝑓𝑓(𝜆𝜆𝑐𝑐)�−∑ 𝑔𝑔(𝑛𝑛; 𝜆𝜆𝑐𝑐𝜏𝜏)+∞
𝑛𝑛=𝑛𝑛�+1 + ∑ 𝑔𝑔(𝑛𝑛; 𝜆𝜆𝑐𝑐𝜏𝜏)𝑛𝑛�

𝑛𝑛=0 �  

= 𝑓𝑓(𝜆𝜆𝑐𝑐)�−1 + 2∑ 𝑔𝑔(𝑛𝑛; 𝜆𝜆𝑐𝑐𝜏𝜏)𝑛𝑛�
𝑛𝑛=0 � = 0      (12) 

𝜆𝜆𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 that satisfies equation (11) is then determined by  

∑ 𝑔𝑔�𝑛𝑛; 𝜆𝜆𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝜏𝜏�𝑛𝑛�
𝑛𝑛=0 = 1

2
        (13) 

For the case 𝑛𝑛� = 0, 𝜆𝜆𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 is simply log(2) 𝜏𝜏⁄ . It is easy to show that the second derivative of 𝐴𝐴𝐴𝐴𝐴𝐴 in 
𝜆𝜆𝑐𝑐 = 𝜆𝜆𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 given in equation (12) is negative for every 𝑛𝑛� nonnegative integer. Thus 𝜆𝜆𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 maximizes the 
accuracy. This cutoff does not depend on the distribution of the fall rate in the population, but just on 𝑛𝑛� 
and 𝜏𝜏. 

Quantitative results 
The parameters estimates for the distribution of 𝛬𝛬 in the four populations are the following: Sydney k=0.47, 
θ=1.71; Melbourne k=1.14, θ=0.81; New Zealand k=0.80, θ=1.10; Atlanta k=1.70, θ=0.77. These have been 
estimated as explained in Methods and considering that in these studies the follow-up duration 𝜏𝜏 is 
respectively 0.46 years, 1 year, 1 year, and 0.92 years. 

Figure 1 and Table 3 report the discriminative and predictive performances of the ideal tool for different 
values of the parameters 𝑘𝑘 and 𝜃𝜃, a follow-up duration of 1 year and 𝑛𝑛� = 0. The AUC and the maximum 
accuracy are non-linear and non-monotonic functions of the parameters of the fall rate distribution. For the 
four populations the AUC ranges from 0.80 to 0.89. Assuming a cutoff value 𝜆𝜆𝑐𝑐=log(2) falls/year, the 
sensitivity of the tool ranges from 0.71 to 0.84, the specificity from 0.57 to 0.87, the accuracy from 0.74 to 
0.81, the positive predictive value (PPV) from 0.73 to 0.77, the negative predictive value (NPV) from 0.68 to 
0.84. 



 

Figure 1. Performances of the ideal prognostic tool for different parameters (k and θ) of the population fall rate distributions, 
follow-up length τ=1 year, 𝒏𝒏� = 𝟎𝟎 (prediction on any fall). k and θ parameterize the distribution of the fall rate 𝜦𝜦 so that its mean 
is 𝒌𝒌𝒌𝒌 and its variance is 𝒌𝒌𝜽𝜽𝟐𝟐. In panels (a)-(c): the performances of the ideal tool have been evaluated using the estimated shape 
and scale parameters k and θ of the four populations: Sydney, Melbourne, New Zealand, Atlanta. The red dots mark the points 
corresponding to a cutoff value 𝝀𝝀𝒄𝒄=log(2) falls/year. Panels (d), (e): AUC and maximum accuracy (accuracy calculated for 
𝝀𝝀 = 𝝀𝝀𝒄𝒄,𝒎𝒎𝒎𝒎𝒎𝒎) as functions of k and θ. 

 



Table 3. Discriminative and predictive performance of the ideal prognostic tool for falls evaluated on four 
populations (𝝀𝝀𝒄𝒄 = 𝐥𝐥𝐥𝐥𝐥𝐥 (𝟐𝟐)𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝒚𝒚𝒚𝒚𝒚𝒚𝒚𝒚⁄ , 𝝉𝝉 = 𝟏𝟏 𝒚𝒚𝒚𝒚𝒚𝒚𝒚𝒚, 𝒏𝒏� = 𝟎𝟎) 

Population Sensitivity Specificity PPV NPV Accuracy AUC 

Sydney 0.71 0.87 0.77 0.84 0.81 0.89 

Melbourne 0.73 0.74 0.73 0.74 0.74 0.82 

New Zealand 0.72 0.80 0.75 0.78 0.76 0.85 

Atlanta 0.84 0.57 0.76 0.68 0.74 0.80 

 

The sensitivity of the performance indices with respect to the follow-up duration is shown in Figure 2, for 
the representative parameters extracted from the Sydney population. The AUC is only slightly affected, 
ranging from 0.84 at 8 weeks to 0.91 at 2 years. The PPV (NPV) is a monotonically increasing (decreasing) 
function of the follow-up duration. It ranges from 0.22 (0.98) at 8 weeks, to 0.88 (0.77) at 2 years.  



 

Figure 2. Sensitivity of the discriminative and predictive performance indices to the follow-up duration τ. Parameters are 
estimated from the Sydney population (k=0.47, θ=1.71), 𝒏𝒏� = 𝟎𝟎 (prediction on any fall). 

 



Figure 3 shows the discriminative and predictive performances of the tool when prediction is made on any 
fall or multiple falls (𝑛𝑛� = 0 or 𝑛𝑛� = 1), for the representative parameters extracted from the Sydney 
population. The AUC’s for the four populations and the two predictions are: (Sydney, 𝑛𝑛� = 0) = 0.89, 
(Sydney, 𝑛𝑛� = 1) = 0.92; (Melbourne, 𝑛𝑛� = 0) = 0.82, (Melbourne, 𝑛𝑛� = 1) = 0.86; (New Zealand, 𝑛𝑛� = 0) = 
0.85, (New Zealand, 𝑛𝑛� = 1) = 0.89; (Atlanta, 𝑛𝑛� = 0) = 0.80, (Atlanta, 𝑛𝑛� = 1) = 0.83. 

 

Figure 3. Performance indices of the ideal prognostic tool employing the two alternative definitions of fallers, as those fallen at 
least once (solid line, 𝒏𝒏� = 𝟎𝟎, prediction on any fall) or at least twice (dashed line, 𝒏𝒏� = 𝟏𝟏, prediction on multiple falls) during the 
follow-up. Parameters are estimated from the Sydney population (k=0.47, θ=1.71); follow-up length 𝝉𝝉 = 𝟏𝟏 year. 



Discussion 
In this Chapter the predictive and discriminative performances of an ideal prognostic tool for falls have 
been evaluated by means of a probabilistic model. The indices considered for the evaluation have been the 
sensitivity, specificity, AUC, accuracy, and positive and negative predictive values. Although other metrics 
could have been considered (e.g. the Brier score and fractional reduction in entropy [12]), these have been 
chosen because they are by far the most commonly employed. 

Having thus obtained the performances of a perfect prognostic tool for falls allows a critical assessment of 
some results that can be found when evaluating real prognostic tools. While it is known that, despite 
considerable research efforts, externally validated clinical tools still have modest performances [5; 9; 10], it 
is not infrequent that newly-developed tools come up with excellent but unlikely results. Having at hand 
some indicative reference values for the upper bounds of indices quantifying the goodness of the 
prediction is methodologically advisable and can suggest warnings against over-optimism.  

The problem of over-optimism, often affecting newly-developed prognostic tools, has already been 
highlighted in the literature [7; 28]. A well-studied example is the STRATIFY (St Thomas Risk Assessment 
Tool in Elderly Inpatients). Without going into the details of the development and validation of this tool, it is 
worth mentioning that after being tested in several cohorts of older in-patients, a review [9] concluded that 
its prognostic performances are sensibly lower than previously reported by the first studies that led to its 
publication [29]. Another example could be represented by some recent sensor-based tools that have 
shown perfect accuracy [16].  

One of the factors that may influence the reproducibility of prognostic tools (i.e. their capacity to keep their 
performance on subjects not included in the dataset used for original development, but similar for 
characteristics) is a low ratio between number of cases (number of fallers in our case) and number of 
candidate predicting variables available at the development stage (see the number of events per variable, 
EPV, discussed in [7]). This factor is critical in a context, like the development of sensor-based prognostic 
tools for falls, where (as yet) there is high availability of candidate variables. In this case, using statistical 
techniques that properly manage the high dimensionality of the problem (leveraging the so called ‘bias 
versus variance tradeoff’ [30]) and performing appropriately internal validation (e.g. cross-validation) are 
crucial. Furthermore, it is noteworthy that over-optimism may arise in the literature via publication bias 
even applying correct procedures of model fitting and validation. When the sample size is small, the 
estimation of the performance indices is subject to high variability, and studies with better results will be 
more likely published. Finally, we point out that when the sample size is small, because of the variability on 
the estimated performance, even an imperfect prognostic tool for falls can outperform the limits here 
calculated. Reporting confidence intervals for the estimated parameters should hence be recommended in 
real applications. In our study the perfect tool was evaluated in the entire population, i.e. no sampling 
process has been modeled.  

Among the analytic results, we have proven that the cutoff 𝜆𝜆𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 that maximizes the accuracy is 
independent of the population over which the prognostic model is evaluated. This result still holds if the 
accuracy is modified assigning different weights to true positives and true negatives (the two addends at 
the right side of equation (10)). Instead, it may not hold for other quantities (e.g. it does not hold for the 
Youden index). Clinical and economic considerations should lead to key choices for fall prevention 
strategies, as choices on the frequency of the assessment and the definition of faller (in terms of our 
notation, of 𝜏𝜏 and 𝑛𝑛�). Once these are made, our finding legitimates the practice of choosing a cutoff for a 
particular fall risk scale and applying it on different populations.  



The populations in the Sydney, Melbourne and New Zealand studies are composed of community-dwellers 
aged 60, 70 and 80 years or more respectively. The population in the Atlanta study is composed of 
congregate-living, transitionally frail older adults aged 70 years or more. The diversity among these 
populations is reflected in the estimated parameters. As recalled in Methods, the mean of the fall rate 
distribution 𝐹𝐹 is given by the product 𝑘𝑘𝑘𝑘. As expected, this quantity is highest for the Atlanta population 
(1.31 falls/year) and is lowest for Sydney (0.80 falls/year). In turn, this diversity is responsible of the 
heterogeneity in the values of the performance indices shown in Table 3 and Figure 1. As shown in Table 3, 
for a given cutoff, specificity is the parameter that varies most among the four populations, whereas PPV is 
quite stable. The AUC’s that we obtain are much higher than those found on validated clinical tools 
documented in the literature (see e.g. [10]). Thus, as expected, these traditional tools are far from 
providing a perfect probabilistic risk assessment.  

Consistently over the four populations (results shown in Figure 2 only for the Sydney population), the AUC 
increases with the length of the follow-up as the net effect of the increase in specificity and decrease in 
sensitivity. The increase in specificity for a given cutoff can be explained in terms of its components: the 
proportion of true negatives (TN, subjects with fall rate less than the cutoff and never fallen during the 
follow-up) and the proportion of false positives (FP, subjects with fall rate higher than the cutoff but never 
fallen during the follow-up). As the duration of the follow-up increases, more falls occur and both TN and 
FP decrease. However, as FP have higher expected fall rate, their decrease is quicker and this determines a 
net increase in specificity. For similar reasons, true positives (subjects with fall rate higher than the cutoff 
and fallen during the follow-up) and false negatives (subjects with fall rate less than the cutoff and fallen 
during the follow-up) are responsible for a decrease in sensitivity.  

Consistently over the four populations, the AUC is slightly higher when the prediction is made on multiple 
falls (definition of faller with 𝑛𝑛� = 1) than on any fall (𝑛𝑛� = 0), as the net effect of an increase in sensitivity 
and a decrease in specificity. Such results may indicate that one same tool is likely to show better 
discrimination when the prediction is made on multiple falls. This is consistent with what was found and 
commented in [31], although our findings about the predictability of multiple falls have been reached from 
a different perspective, without considering any knowledge other than the estimated distribution of the fall 
rate in the population. Indeed an accurate and accepted definition of who should be classified as a faller is 
still missing, and a matter of discussion in the literature. Lord and colleagues have proposed to define a 
faller as one fallen at least twice during the follow-up to filter out ‘occasional’ falls [2], i.e. with the 
objective to possibly identify falls which were due only to substantial and persistent risk factors.  

Pointing at the distribution of fall rate in the population, the length of the follow-up, and the definition of 
faller as potential sources of heterogeneity for the reported performances of fall risk prognostic tools, this 
study links to the work of Haines et al [28], that explained part of the variability found in the literature in 
terms of differences in study design. Furthermore, in the present study we have showed how the effects of 
these factors on the discriminative and predictive performances of the tools rely on non-linear relations 
that standard models for meta-analysis cannot address. 

All the results here obtained are valid within the hypotheses stated in Methods and the assumption that 
the expected fall rate of each subject is constant over time. However, the choice of a Poisson distribution 
for the conditional number of falls, given the fall rate, accommodates both the scenarios of time-constant 
and time-variable expected fall rate of each subject in the population, provided that the change in the 
expected fall rate is independent of the occurrence of a past fall. In particular, calling 𝑁𝑁𝑖𝑖(𝑡𝑡) the random 
process representing the number of falls from baseline to time 𝑡𝑡 of subject 𝜔𝜔𝑖𝑖, the time-constant fall rate 



scenario is equivalent to assuming 𝑁𝑁𝑖𝑖(𝑡𝑡) as a homogeneous Poisson process with intensity 𝜆𝜆𝑖𝑖, whereas the 
time-varying fall rate scenario is equivalent to assuming 𝑁𝑁𝑖𝑖(𝑡𝑡) as an inhomogeneous Poisson process with 

intensity function 𝜆𝜆𝚤𝚤� (𝑡𝑡), 𝜆𝜆𝑖𝑖 being its mean from baseline to time 𝜏𝜏: 𝜆𝜆𝑖𝑖 = 1
𝜏𝜏 ∫ 𝜆𝜆𝚤𝚤� (𝑢𝑢)𝑑𝑑𝑑𝑑𝜏𝜏

0 . In this second 

scenario 𝜆𝜆𝑖𝑖 is clearly dependent on the length of the follow-up. The sensitivity analysis with respect to the 
length of the follow-up, shown in Figure 2, is no more valid in this second scenario. Therefore, its results 
should be reconsidered if the expected fall rate of the subjects is believed to undergo substantial changes 
during the follow-up. In homogeneous and inhomogeneous Poisson processes the occurrence of an event is 
independent of the occurrence of any other. If this hypothesis is not valid and the change in the expected 
fall rate is supposed to be driven by the occurrence of a previous fall, other models should be considered 
(e.g. pure birth process) [32; 33]. However, it is worth noting that, given only the fall counts in a given time 
period, the identifiability among alternative models is not guaranteed [34]. Thus far, all the clinical tools 
have followed the approach of providing a unique score for the proneness to falling, without discerning for 
scenarios of subject-specific time-varying fall rate during the follow-up, nor has clinical epidemiology 
provided sufficient descriptive evidence for this kind of scenarios. Our choice to give a main focus to the 
case of constant fall rate has to be considered in this light and for the sake of simplicity.  

The gamma distribution for 𝛬𝛬 was deduced from the hypothesis that the marginal distribution of the 
number of falls is of negative binomial type and from the identifiability of continuous mixtures of Poisson 
distributions [21; 22]. The hypothesis for this marginal distribution is supported from the empirical 
evidence shown in [20]. A gamma distribution for the fall rate has already been considered for negative 
binomial regression [35; 36]. The theoretical results about the identifiability of Poisson distributions makes 
the problem of estimating 𝐹𝐹 well posed. However, given a finite number of observations over the 𝑁𝑁𝑖𝑖’s, we 
cannot exclude that other distributions may fit equally well the data.  

Conclusions 
We have proposed the model of an ideal prognostic tool for falls which operates within a population 
according to the Greenwood and Yule scheme for accident proneness. We have derived analytically the 
performance indices of such perfect prognostic tool. We have estimated the parameters of the fall rate 
distribution of four different populations observed in different epidemiological studies, and we have then 
obtained quantitative evaluation of the analytical formulas. In the four considered populations, the AUC of 
the perfect tool, predicting any fall over a follow-up of one year, was estimated to range between 0.80 and 
0.89. 

We have showed that the performance indices of the perfect prognostic tool can be estimated solely from 
falls counts and can be useful reference values for future works introducing new fall risk assessment tools. 
The analytical results give also an indication about how to choose a cutoff that maximizes the accuracy or 
any other weighted function of true positive and true negative rates. The maximum accuracy when 
prediction is made on any fall for a follow-up length 𝜏𝜏 is attained with a cutoff of log (2) 𝜏𝜏⁄ . 

The model has allowed us to identify, analyze and quantify the effect of major factors that account for the 
high heterogeneity of results observed in the literature: i) the fall rate distribution over the population, ii) 
the length of the follow-up, and iii) the definition of faller as single faller or multiple faller. Because of the 
different fall rate distributions, specificity was found to have remarkable variations, varying over the four 
considered populations from 0.57 to 0.87. Predicting on multiple falls was found to have an effect on the 
AUC in terms of an increase of about 0.04 with respect to prediction on any fall. 
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Chapter 3 
 
 
 
 
 
 
 
 

Introduction 
In this Chapter we present the development and validation of a fall risk assessment tool, named FRAT-up 
[1–3]. This tool has been developed within the framework of the EU project FARSEEING in collaboration 
with the group of Artificial Intelligence of the University of Bologna.  

All its parameters are derived exclusively from the literature. Its validation is carried out using data from 
three different epidemiological studies: ‘Invecchiare nel Chianti’ (InCHIANTI) [4; 5], the ActiFE-Ulm study 
[6–8], and the English Longitudinal Study of Ageing (ELSA) [9; 10].  

Architecture 
The architecture of FRAT-up differentiates between risk estimators and risk factors. A sketch is provided in 
Figure 1. Risk estimators are quantitative information from clinical tests or questionnaires that is used to 
derive the exposure of a given subject to a particular risk factor. FRAT-up receives risk estimators in input. It 
then derives exposure to risk factors from estimators, and uses exposure to risk factors to calculate the risk 
of falling at least once in the time span of one year. The addition of an intermediate level between input 
and output (i.e. the risk factors between risk estimators and risk of falling) gives the tool the capability for 
adapting to different inputs after changing only the mapping between the first two layers, i.e. it gives the 
tool the capability of accepting in input new, different risk estimators, given that a function is known for 
deriving the risk factors from the new risk estimators. 



 

Figure 1. Sketch of FRAT-up architecture. 

The list of the risk factors and their types (whether they are continuous or dichotomous) is taken from the 
review and meta-analysis by Deandrea et al [11]. It is reported below in Table 1. Some additional 
information is available in Appendix 3. 

Table 1. List of risk factors for falls considered by FRAT-up. 

Domain Name Type 
Socio-demographic age scalar 
 female sex dichotomous 
 living alone dichotomous 
 history of falls dichotomous 
 physical activity limitation dichotomous 
 physical disability dichotomous 
 instrumental disability dichotomous 
 walking aid use dichotomous 
Medical and psychological cognition impairment dichotomous 
 depression dichotomous 
 history of stroke dichotomous 
 urinary incontinence dichotomous 
 rheumatic disease dichotomous 
 dizziness and vertigo dichotomous 
 diabetes dichotomous 
 comorbidity scalar 
 poor self-perceived health status dichotomous 
 pain dichotomous 
 fear of falling dichotomous 
 Parkinson disease dichotomous 
Medications number of medications scalar 
 use of sedatives dichotomous 
 use of antihypertensives dichotomous 
 use of antiepileptics dichotomous 
Mobility and sensory gait problems dichotomous 
 vision impairment dichotomous 
 hearing impairment dichotomous 

 

Details about the conversion rules from risk estimators to risk factors for three different datasets can be 
found in Appendix 3-InCHIANTI, Appendix 3-ActiFE, Appendix 3-ELSA. 



Model formulation and parameter derivation 

Base model 
Let 0 1, ,..., nE E E  be 1n +  dichotomous random variables with values in { }0;1 , and ( )0 1, ,..., nE E E E= . 

We say that the thi  risk factor is present if 1iE = . Let 0 1, ,..., nd d d  be 1n +  events. We assume the 

following conditional independence relations: 

 | ,i i j jd E d E j i⊥ ∀ ≠  (1). 

We call id  a fall event specific to risk factor iE  (intuitively, we think at id  as a fall caused by iE ). 

Assumptions from Equation (1) can be phrased saying that risk factor-specific falls are mutually 
independent conditional on their associated risk factor. 

We define the event d  as the union of the factor-specific events id ’s:  
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i.e. d  is verified if at least one of the id ’s is. This is an assumption of causal independence where the 

“causes” 0 1, ,..., nE E E  contribute independently to the probability of the effect d ; for a complete formal 

definition see [12]. d  is the presence of at least one fall event during a given time span, while E  is an 
observation of the risk factor exposures of a subject before the time span. 

The conditional probability of d  given E  can then be calculated as follows, by De Morgan laws and 
assumptions in Equation (1): 
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This function, modeling the probability of an event given a set of possible causes, is known as noisy-OR gate 
[13]. 

We assume that  
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iC is the contribution to the probability of the effect d  given by the exposure to the risk factor iE ; a 

method to assign values to the contributions iC  is introduced in the following. Using Equation (3), Equation 

(2) becomes 
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Since we want to model a minimum probability of falling that is applied even in the absence of any 

observation-specific exposures, we assign ( )0 1 1P E = = . 0C  is the risk that is present in this case. 

Parameter derivation 
The contributions iC  of the exposures have been derived from the odds ratios (OR) computed in the meta-

analysis by Deandrea et al [11]. In the following we present the assumptions and the calculations. 

The OR relative to risk factor iE , with 1,...,i n= , is defined as: 
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Note that the condition 0 1E =  is always true and is highlighted above just for convenience. 

We assume that iOR  may be approximated as 
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Informally, this assumption states that the OR computed on the whole population is similar to the OR 
computed restricting the population to subjects having at most one exposure. This is obviously true in 
models where each subject has at most one exposure; otherwise there is a difference in the two values.  

Given assumptions in Equations (1) and (3), 

( )0 0,| 1, 1, 0i j iP d E E E ≠= = = =   

( )0 0 0,| 1, 1, 0i i j iP d d E E E ≠= ∨ = = = =  

( ) ( ) ( ) ( )0 0 0 0 1| 1 | 1 | 1 |i i i iP d E P d E P d E P d E == = + = − = =   

 0 0i iC C C C+ −   (6) 

Substituting Equation (6) in Equation (5) and solving for iC  we finally get 
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and substituting it in Equation (4) 
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0C  was calculated by leaving it as a free parameter and then learning it with an equation-solving algorithm. 

In particular, we used the bisection method, imposing the reported number of total falls from [14]. 

General model 
The model presented above handles only dichotomous risk factors and it requires that we know for every 
risk factor if it is present or not. Here we present the formulas for a more general case that handles risk 
factors with more levels, and missing information on risk factor exposure. 

Let 𝐸𝐸𝑜𝑜, … ,𝐸𝐸𝑛𝑛 be the list of risk factors. Risk factor 𝐸𝐸𝑖𝑖  can take levels 0,1, … , 𝑟𝑟𝑖𝑖. 𝑃𝑃𝑖𝑖𝑖𝑖  is the probability for a 
given subject that 𝐸𝐸𝑖𝑖  takes level 𝑗𝑗. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is the probability in the population for 𝐸𝐸𝑖𝑖  to take the level j. 
Clearly, the followings hold: ∑ 𝑃𝑃𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖
𝑗𝑗=0 = 1, ∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖
𝑗𝑗=0 = 1. 

Let us consider the case of 𝐸𝐸𝑖𝑖  dichotomous risk factor, i.e. 𝑟𝑟𝑖𝑖 = 1. If we know that the subject is exposed to 
risk factor 𝐸𝐸𝑖𝑖, then 𝑃𝑃𝑖𝑖0 = 0 and 𝑃𝑃𝑖𝑖1 = 1. If we know that the subject is not exposed to 𝐸𝐸𝑖𝑖, then 𝑃𝑃𝑖𝑖0 = 1 and 
𝑃𝑃𝑖𝑖1 = 0. If information about the exposure of the subject to 𝐸𝐸𝑖𝑖  is missing, then we state 𝑃𝑃𝑖𝑖0 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖0 =
1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1 and 𝑃𝑃𝑖𝑖1 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1. Similarly it holds for continuous risk factors. If we know that 𝐸𝐸𝑖𝑖  takes the 
value 𝑗𝑗, then 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑘𝑘𝑘𝑘 (𝛿𝛿𝑘𝑘𝑘𝑘 is Kronecker delta). If we do not know the value that 𝐸𝐸𝑖𝑖  takes, then 𝑃𝑃𝑖𝑖𝑖𝑖 =
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖. 

The calculation of the terms 𝑃𝑃𝑖𝑖𝑖𝑖’s is a bit more difficult when we consider 𝐸𝐸𝑖𝑖  being the risk factor 
comorbidity. Let 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗 be these terms, 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 be the vector �𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐,0,𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐,1, … ,𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐,11�, and 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐11 be 
the list of 11 dichotomous risk factors that contribute to risk factor comorbidity (see Appendix 3). Then, 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 = �1− 𝑃𝑃𝑐𝑐1,1, 𝑃𝑃𝑐𝑐1,1� ∗ �1 − 𝑃𝑃𝑐𝑐2,1, 𝑃𝑃𝑐𝑐2,1� ∗ … ∗ �1 − 𝑃𝑃𝑐𝑐11,1, 𝑃𝑃𝑐𝑐11,1�, where ‘∗’ denotes a convolution 
product.  

Finally, Equation (4) generalizes to  
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Validation 
Once developed, most tools never receive external validation, i.e. they are not tested on a sample from a 
population that has not been used for the development of the model itself. This happens because of the 
time and financial cost of collecting new data. Yet, external validation is essential to know the performance 
of a tool. 



The flexibility of FRAT-up expressed by its architecture and its ability to seamlessly deal with missing values 
allowed us to validate it on three large datasets of three epidemiological studies. In the following, we 
present methods and results of this validation. 

Harmonization and description of variables 
Retrospective harmonization is the process of deriving common variables from different existing datasets. 
It allows the utilization of data coming from different sources within one combined analysis [15].  

We call ‘target variables’ the variables that are wanted as result of the harmonization process. We call 
‘source variables’ (or ‘assessment items’) the variables that are native of each dataset and that are used to 
construct the target variables. We distinguish between predictor target variables (all the risk factors 
considered by FRAT-up, see Table 1) and an outcome target variables (the variable that is the object of 
prediction, i.e. occurrence of any fall in a given time span after the assessment). 

For each dataset, processing algorithms were developed and applied —whenever possible and whenever 
needed— to construct the target variables from the source variables. The harmonization process was led 
being blinded to possible influences of the different choices of the harmonization process itself on the 
performance of any predictive model. 

The algorithms to construct the target variables from the source variables of each dataset are given in 
Appendix 3-InCHIANTI, Appendix 3-ActiFE, and Appendix 3-ELSA. On the ELSA dataset it was considered 
impossible to construct the variables “Self-perceived health status”, “Sedatives”, “Antihypertensives”, and 
“Antiepileptics”. 

Characteristics of the populations 
The designs and rationales of the studies ActiFE-Ulm, InCHIANTI, and ELSA are documented in [4; 6; 9].  

The description that is here offered of the ActiFE population is relative to the subjects observed during the 
first wave of the study. The description of the InCHIANTI population is relative to the subjects observed 
during the first wave of the study and aged 65 years or more. The description of the ELSA population is 
relative to the subjects observed during the second wave of the study, aged 65 years or more, and that 
completed the nurse visit. The description of the ELSA population has been carried out using weights, 
furnished along the dataset, and intended to adjust for differential nonresponse rates to the nurse visit. 

Table 2 gives a description of the distributions of the harmonized variables in the three datasets before and 
after excluding those subjects on which there is no information on the outcome variable (‘Prospective falls 
(yes/no)’). 

Table 2. Characteristics of the three populations before and after excluding subjects on which there is no information on the 
outcome variables. 

 ActiFE InCHIANTI ELSA 
 Before 

exclusion 
After 
exclusion 

Before 
exclusion 

After 
exclusion 

Before 
exclusion 

After 
exclusion 

Number of subjects 1506 1416 1155 892 4056 3303 
Age (years): mean (sd) 75.62 

(6.59) 
75.53 
(6.55) 

75.44 
(7.63) 

74.17 
(6.91) 

75.03 
(7.71) 

74.56 
(7.31) 

Sex (women) 0.43 0.43 0.57 0.56 0.56 0.57 
History of falls (yes/no) 0.35 0.35 0.23 0.21 0.35 0.34 
History of falls (number): 0.92 0.87 0.42 0.35 1.07 0.91 



mean (sd) (8.32) (8.40) (1.04) (0.89) (8.05) (4.69) 
Prospective falls (yes/no) 0.32 0.32 0.24 0.24 0.34 0.34 
Prospective falls (number): 
mean (sd) 

0.63 
(1.70) 

0.63 
(1.70) 

0.42 
(0.97) 

0.42 
(0.97) 

0.96 
(5.21) 

0.96 
(5.21) 

Living alone 0.25 0.24 0.19 0.18 0.34 0.34 
Walking aid use 0.02 0.01 0.13 0.08 0.11 0.09 
Urinary incontinence 0.38 0.38 0.37 0.35 0.17 0.17 
Diabetes 0.14 0.13 0.13 0.13 0.11 0.11 
Parkinson disease 0.02 0.02 0.01 0.01 0.01 0.01 
Arthritis or rheumatism 0.49 0.49 0.29 0.30 0.45 0.45 
Cognition impairment 0.01 0.01 0.17 0.11 0.01 0.01 
History of stroke 0.05 0.05 0.05 0.05 0.08 0.07 
Depression 0.11 0.11 0.18 0.18 0.11 0.10 
Poor self-perceived health 
status 0.17 0.16 0.08 0.07 NA NA 

Pain 0.59 0.59 0.87 0.87 0.45 0.43 
Physical disability 0.04 0.03 0.10 0.05 0.21 0.19 
Instrumental disability 0.13 0.12 0.28 0.22 0.17 0.14 
Fear of falling 0.11 0.10 0.38 0.37 0.09 0.07 
Dizziness 0.40 0.40 0.32 0.34 0.24 0.22 
Vision impairment 0.85 0.85 0.55 0.51 0.27 0.25 
Hearing impairment 0.25 0.25 0.28 0.27 0.28 0.27 
Number of medications: 
mean (sd) 

3.67 
(2.94) 

3.62 
(2.91) 

2.34 
(2.08) 

2.25 
(2.04) 

0.71 
(0.97) 

0.69 
(0.95) 

Use of antihypertensives 0.57 0.56 0.43 0.41 NA NA 
Use of sedatives 0.01 0.01 0.06 0.06 NA NA 
Use of antiepileptics 0.02 0.02 0.02 0.01 NA NA 
Physical activity limitations 0.14 0.13 0.24 0.19 0.10 0.08 
Grip strength (Kg): mean (sd) 32.10 

(11.13) 
32.18 
(11.09) 

27.59 
(11.72) 

28.47 
(11.78) 

25.89 
(10.23) 

26.38 
(10.17) 

Gait problems 0.21 0.20 0.24 0.19 0.34 0.32 
Gait speed (m/s): mean (sd) 0.97 

(0.29) 
0.98 
(0.28) 

1.00 
(0.27) 

1.02 
(0.26) 

0.83 
(0.26) 

0.85 
(0.25) 

SPPB_BT score: mean (sd) 3.69 
(0.81) 

3.72 
(0.76) 

3.22 
(1.29) 

3.39 
(1.13) 

3.16 
(1.32) 

3.27 
(1.24) 

SPPB_GST score: mean (sd) 3.62 
(0.89) 

3.65 
(0.84) 

3.51 
(1.02) 

3.66 
(0.82) 

3.41 
(0.94) 

3.47 
(0.89) 

SPPB_CST score: mean (sd) 3.17 
(1.16) 

3.20 
(1.13) 

2.96 
(1.35) 

3.11 
(1.23) 

2.30 
(1.49) 

2.40 
(1.45) 

SPPB score: mean (sd) 10.49 
(2.35) 

10.58 
(2.21) 

9.72 
(3.29) 

10.18 
(2.78) 

9.24 
(2.83) 

9.46 
(2.67) 

 

Performance of FRAT-up 
FRAT-up was evaluated on the three populations. It was applied on the harmonized datasets without any 
previous imputation on missing values, taking advantage of its ability to deal with them. The receiving 
operating characteristic (ROC) curves were computed with the R package ROCR [16]. 95 % confidence 
intervals (CI) for the area under the ROC curves (AUC) were computed from 2000 bootstrap replicates with 
the R package pROC [17]. The Brier score (BS) was computed and decomposed in three terms as proposed 



in [18]. The three terms, namely reliability (REL), generalized resolution (GRES), and uncertainty (UNC), are 
so that BS=REL-GRES+UNC. The BS decomposition and the calibration plots were obtained after dividing the 
samples in deciles according to the FRAT-up risk score. 

The ROC curves are shown in Figure 2. The calibration plots are shown in Figure 3. The BS and its 
components are shown in Table 3. The AUC on ActiFE is 0.567 (95% CI 0.535-0.599), on InCHIANTI is 0.644 
(95% CI 0.601-0.689), on ELSA is 0.704 (95% CI 0.685-0.723). Similarly, the generalized resolution is lowest 
for ActiFE, higher for InCHIANTI and highest for ELSA. The miscalibration on InCHIANTI (REL=0.01) is 
explained by over-estimation of the risk, as evident from the calibration plot. 

More analyses were done in order to get more insights on these results. These analyses are presented in 
the next section. 

 

Figure 2. Receiving operating characteristic (ROC) curves of FRAT-up applied on the three populations. 

 

Figure 3. Calibration plots of FRAT-up applied on the three populations. 



Table 3. Brier score and its components for FRAT-up on the three populations. 

 Brier score Reliability Generalized 
resolution 

Uncertainty 

ActiFE 0.2201179 0.005819622 0.004530492 0.2188288 
InCHIANTI 0.1803304 0.01044918 0.0114689 0.1813501 
ELSA 0.1977321 0.003844301 0.02670226 0.2205901 
 

More insights 

Trained models 
The ActiFE dataset was randomly divided in two disjoint sets, namely a training set and a test set, 
containing respectively about two thirds and one third of the observations. One of the imputed copies of 
the training set was used to fit a logistic ridge regression. This regression model was then used to calculate 
the risk score on the test set of the ActiFE and on the InCHIANTI and ELSA datasets. In particular, the 
regression model was applied on each imputed copy, obtaining 11 risk scores for each subject. These 11 
scores were then averaged to obtain a unique risk score for each subject. This random split of the ActiFE 
dataset as well as the model fitting and model testing were repeated 20 times. The procedure was then 
repeated so that the training was in turn made also on InCHIANTI and ELSA.  

The results in terms of AUC are shown in Figure 4. Similarly to what observed for FRAT-up, the models 
perform best on ELSA, worse on InCHIANTI and worst on ActiFE, regardless of the dataset they were trained 
on. 

This likely indicates that the causes of the heterogeneity in model performance obtained on the three 
datasets have to be sought among the differences of the three datasets rather than be regarded as coming 
from idiosyncrasies of FRAT-up. 

 

Figure 4. Boxplots for the AUCs of the trained models. The three panels contain results relative to models fitted respectively on 
ActiFE, InCHIANTI, and ELSA. When a given dataset was used for training, the AUC was computed only on the testing subset. 
Each boxplot is representative of the AUCs of 20 models, fitted on 20 random splits of the dataset currently used for training. 

Fall calendar vs history of falls at follow-up 
It is known that data about history of falls during anamnesis can be affected by recall bias [19].  



From the ActiFE study, information about falls that occurred after the baseline assessment of the risk 
factors is available from both fall calendars and as history of falls recalled at the first follow-up. Falls 
recorded in the calendar are relative to the 12 months after the baseline assessment. Falls recalled at 
follow-up are relative to the 12 months before the follow-up itself. As the follow-up was carried out about 
36 months after the baseline assessment, different time spans are covered from the two information 
collection methods.  

We applied the FRAT-up on covariate data from the baseline assessment of ActiFE and tested whether the 
performances of the model change substantially if used to predict falls as collected in the fall calendar and 
at the follow-up. Subjects that did not report the fall calendar, that were lost to follow-up, or that died 
before it, were labeled as ‘not available’. 

Table 4 gives the number of subjects that have reported at least one fall according to the two collection 
methods. Figure 5 shows ROC curves and calibration plots.  

The AUC on falls from the calendar is 0.566 (95 % C.I. 53.58-59.78). The AUC on falls from the follow-up is 
0.6258 (95 % C.I. 0.5880-0.6670). This increase in AUC reduces the difference with what attained in 
InCHIANTI and ELSA. 

Table 4. Number of fallers and non-fallers according to information from fall calendars and collected at the follow-up. 

  Follow-up 
  Non fallers Fallers Not available 

Fa
ll 

ca
le

nd
ar

 Non fallers 376 140 442 
Fallers 161 127 170 

Not available 14 10 66 

 

 

Figure 5. ROC curve (left panel) and calibration plots (central and right panel) for FRAT-up applied to the baseline covariates of 
ActiFE to predict falls reported in the fall calendar and at the follow-up. 



Discussions 
Among FRAT-up declared aims there is the characteristic of being flexible enough to allow the use of 
different estimators for each risk factor [2]. The presumption that the tool would operate properly once 
different estimators are available in input comes from the way the parameters were calculated. In 
particular, they were not derived from training on any specific dataset but from the meta-analysis by 
Deandrea[11], where the effect of each risk factor on falls was derived from heterogeneous studies, 
employing different estimators for each risk factor. In this Chapter we have presented FRAT-up and applied 
it on data from three epidemiological studies about ageing, employing different data collection methods.  

The results obtained on the three datasets are substantially heterogeneous. This heterogeneity may be 
imputed to differences among cohorts and differences in data collection methods. For example, ELSA and 
InCHIANTI aim to be representative of the whole older population, whereas ActiFE has some exclusion 
criteria (e.g. having a sever deficit in cognition, vision or hearing) and has a higher participation rate from 
male individuals. Besides differences in risk factors assessment (e.g. three different questionnaires to 
assess disabilities in activities of daily living), great influence could have been played by different methods 
to assess falls [20]. In the ActiFE study occurrence of falls has been ascertained by prospective falls 
calendars, whereas in ELSA and InCHIANTI information about falls is available only through questions about 
history of falls. The analysis presented in section “Fall calendar vs history of falls at follow-up” may suggest 
that this difference could explain part of the heterogeneity. Furthermore, questions about history of falls 
were relative to time intervals of different length (about two years for ELSA, one for ActiFE and InCHIANTI) 
and starting at different time points after the assessment (immediately after the assessment for ELSA, 
about two years later for InCHIANTI and ActiFE).  

In addition to these sources of heterogeneity, we have to consider the criticalities of the process of 
retrospective harmonization. Indeed, whether harmonization for a given target variable was considered 
possible or not, and the choice of processing algorithms to derive it from source variables have been up to 
our subjective evaluation. Some groups have mitigated this degree of subjectivity with use of consensus 
methodologies [21]. Other possible approaches could be based on integration of expert opinions with more 
quantitative tools. For example, the Principal Component Analysis presented in Appendix 3 has highlighted 
differences in the ELSA population along the second principal component. The variables contributing most 
to this component could be submitted to a panel of experts for possible revision of their harmonization 
process. Other quantitative approaches could rely on small pilot populations where different assessment 
items relative to one same target variable are observed on the same subjects. The datasets thus obtained 
would allow to calculate correlations among target variables obtained with different processing algorithms, 
thus having a quantitative validation of the quality of the harmonization.  

Despite the ambition to be flexible with respect to the use of different clinical tests to estimate each risk 
factor [2], FRAT-up web application gives precise guidance about how to enter information about most risk 
factors (e.g. Mini Mental State Examination is required for assessing cognitive impairment) [22]. The 
criticalities discussed about the harmonization process and the yet-unexplained heterogeneity of the 
results obtained suggest that more study is needed before having a validated, fully-flexible tool. 

Heterogeneity in the results is a common finding in reviews of studies validating fall risk tools [23–25]. 
Nowadays, these reviews are available only for few traditional tools and have been published after 20-30 
years after the publication of the tool they refer to (see e.g. paper[26]). Our flexible approach allowed us to 
collect evidence about the performance of FRAT-up on big-size populations using negligible time and 
financial resources. 
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Chapter 4 
 
 
 
 
 
 
 
 
In this Chapter we present a model obtained after extensive search over the InCHIANTI dataset (2313 
samples relative to 976 subjects, 1010 variables). The model issues probabilistic predictions on the number 
of future falls. We benchmark it against other fall risk scores: history of falls, gait speed, Short Physical 
Performance Battery, and FRAT-up. We study the tradeoff between two competing requirements for a 
prognostic tool: to be accurate in its predictions, and to be easy and quick to administer. 

Introduction 
As highlighted in Chapter 1, the most widely accepted paradigm for fall prevention in community-dwelling 
older adults consists of three sequential stages: screening for high fall risk; assessment of those at high risk 
on multiple risk factors; implementation of a tailored intervention [1]. The screening serves to focus time 
and financial resources only on subjects at increased risk, and to relieve low-risk patients from unnecessary 
investigations. It is required to be short and easy to administer. The multifactorial assessment is intended 
to identify the risk factors to be targeted by the intervention. It may be performed by the same healthcare 
professional administering the screening tool, or by a specialist geriatrician. 

Whether most screening algorithms suggested in clinical guidelines are based on a combination of some 
simple questions about history of falls in the previous 12 months and difficulties in walking or balance (e.g. 
AGS/BGS and NICE guidelines [2]), other tools are based on information on multiple risk factors for falls (see 
e.g. the ‘Stay Independent’ brochure issued by the CDC [3; 4]). A previous version of the AGS/BGS guideline 
was testes and it was found to be suboptimal [5; 6]. To the best of our knowledge, no published article 
reports about the predictive accuracy of the actual versions of these screening algorithms.  

This Chapter presents the training and test of a statistical model over the dataset InCHIANTI (2313 samples, 
1010 variables). The scope is to obtain an accurate prediction on the number of falls that a subject will 
experience during a time span of one year after the assessment. We test the model on future falls and we 
benchmark it against other fall risk indicators: history of falls (expressed as number of falls experienced 
during the 12 months before the assessment), gait speed, the Short Physical Performance Battery (SPPB) 
summary score [7; 8], and FRAT-up [9] (presented in Chapter 3).  



A multifactorial assessment provides more information than a simple screening tool. This information can 
improve the accuracy of the prediction but is given at the expense of increased time and financial burden 
for the patient and the health system. We take the number of variables included in the model as a simple 
surrogate of the burden of the assessment and study this accuracy-parsimony tradeoff. 

Methods 

Data 
The dataset comes from the InCHIANTI study, that was already presented in part in Chapter 3. InCHIANTI is 
a population-based cohort study about mobility in the elderly. It consists of four waves, separated by about 
three years one each other. At each wave the subjects are assessed on a number of different domains and 
are asked about falls experienced in the previous 12 months. More details about the study design and its 
rationale can be found in [10; 11] and in Appendix 4. We have extracted samples joining information about 
assessment variables from each wave, and falls reported at the subsequent wave (future falls). We 
excluded samples relative to subjects younger than 65 at the time of the assessment, and samples without 
information about future falls. We thus obtained 2313 samples relative to 976 subjects. 

Every variable from a table of interest was manually annotated for its type, either continuous or 
categorical. We excluded: variables that could be easily detected as non-interesting (e.g. date of the home 
interview), categorical variables with more than two levels, variables with the percentage of missing values 
greater than 50%, and variables where the missing-value-imputation procedure did not converge. We 
added variables computed from other variables and considered of interest (‘derived’ variables, e.g. total 
score on the SAFE scale for fear of falling computed from answers to the questionnaire). Table 1 gives an 
overview of the dataset content and of this variables selection and addition procedure. 

Table 1. Number of variables divided by area before and after the variables selection and addition procedure 

  Number of variables 
Area Brief description Before After 
Home interview MMSE, ADL, IADL, social network, CESD, sleep habits, pain, 

incontinence, physical activity, falls, fear of falling, shoes, 
smoking habits 

985 165 

Clinical visit and disease 
adjudication 

Familiar and personal clinical history, diagnosed medical 
conditions 

1026 151 

Physical exam FICSIT, Purdue Pegboard, Stairs, Repeated Chair Stands, 
several walking tests, joints range of motion, lower limb 
muscle power, muscle strength, SPPB summary 
performance score 

597 380 

Instrumental exams ECG, ENG, anthropometric measures, Eco-Color-Doppler, 
blood pressure, peripheral quantitative computed 
tomography, bioelectrical impedance analysis 

210 111 

Laboratory exams Blood and urine assays 356 103 
Medications Drug classes 88 82 
Derived variables Variables computed from other variables (e.g. living alone 

derived from questions about social network; pain obtained 
from questions about pain in specific body parts, etc.) 

0 18 

 



Model development 
We fit a model that expresses its prediction as a negative binomial distributions on the number of falls, with 
mean determined by the output a Poisson Lasso regression [12] and a dispersion coefficient calculated as 
explained below. Fitting and evaluation are performed with 10-fold cross-validation. The splits of samples 
in folds are done so that all the samples relative to one same subjects are consistently assigned to the same 
fold. The 9 folds that are in turn assigned to training are used to fit the Poisson Lasso regression [13] and to 
calculate the dispersion coefficient. The dispersion coefficient is calculated from the predictions Yh issued 
by the regression model and the observed number of falls Y, using maximum likelihood and assuming the 
number of falls as drawn from a negative binomial distribution with mean equal to YhI (R function theta.ml 
from package MASS [14]). The regression model and the dispersion coefficient are used to issue the 
probabilistic predictions on the test samples.  

Missing data are imputed on each fold with a different imputation model [15], using age, sex, and time for 
walking 7 m at self-selected pace as predictors of missing values. These three variables are associated with 
a number of indicators of health status. The choice of a restricted number of variables for imputing missing 
data was driven by simplicity. 

History of falls (expressed as the number of falls experienced during the 12 months before the assessment), 
self-selected gait speed as measured in a 7m walk test, and SPPB summary score are all variables already 
present in the dataset. FRAT-up risk score is calculated as done in [9] and presented in Chapter 3.  

Model assessment 
We label as fallers (respectively, multiple fallers) all the samples that report at least one fall (two falls) at 
the follow-up after the assessment. We calculate receiver operating characteristic (ROC) curves of the Lasso 
model and the other risk scores for fallers and multiple fallers. The discriminative ability is measured with 
the area under the ROC curve (AUC). The AUC’s are compared with bootstrap tests for paired ROC curves 
[16]. The choice of AUC for comparing the risk scores has a twofold motivation. First of all, it can be 
employed on non-probabilistic risk scores, as long as they are equipped with an order relation. Thus, it is 
suitable for gait speed, history of falls, and the SPPB score. Secondly, AUC is commonly used and well 
known in the field.  

The Lasso model is also evaluated for its calibration (i.e. the agreement between its predictions and the 
observed number of falls) by means of reliability diagram, marginal calibration plot, and probability integral 
transform (PIT). The reliability diagram (also known as calibration plot or attribute diagram) [17] is adapted 
for count data, plotting the observed fall rate against the predicted fall rate in samples grouped according 
to deciles of the expected number of falls. Marginal calibration is evaluated following [18], and defining the 
relative error for each possible outcome (number of falls from 0 to 9) as the difference between observed 
and predicted number of samples with that outcome, divided by the total number of samples. The 
probability integral transform is calculated according to the non-randomized procedure for count data 
described in [18].  

Accuracy-parsimony tradeoff 
The Lasso regression performs at the same time variable selection and parameter estimation. It encourages 
sparse solutions [12; 19]. In order to study how the parsimony of the model impacts on its predictive 
accuracy, we repeat the whole cross-validation procedure multiple times, under constraints on the total 
number of variables to include in the model. We evaluate the accuracy of the models obtained under the 
different constraints. Besides AUC’s for single and multiple fallers, mean square error is employed as 



additional measure of performance, because it is easily interpretable and is a scoring function that is 
consistent for the mean, the mean number of falls being in turn the functional elicited during regression 
[20].  

Results 
The 10 Lasso models fitted within the procedure of 10-fold cross-validation make use of a number of 
variables that ranges between 21 and 41, its mean being 29.4. Details on which variables have been 
selected more frequently and their regression coefficients are given in Appendix 4. 

ROC curves of the tools for single and multiple fallers are shown in Figure 2. The associated AUC’s and the 
results of the hypothesis tests for paired ROC curves are shown in Table 2. 

 

Figure 1. ROC curves for single falls (left) and multiple falls (right).  

 

Table 2. Discriminative ability of five scores for fall risk. Comparison with FRAT-up and Lasso model are drawn with DeLong tests 
for paired AUC’s. * = p<0.01, ** = p<0.001.  

 single falls multiple falls 
 AUC (95% C.I.) p value 

vs FRAT-up / Lasso 
AUC (95% C.I.) p value 

vs FRAT-up/Lasso 
Number of previous 
falls 

0.574 (0.551-
0.597) 

** / ** 0.640 (0.603-0.678) ** / ** 

Gait speed 0.594 (0.566-
0.622) 

** / ** 0.653 (0.615-0.692) ** / * 

SPPB 0.590 (0.563-
0.618) 

** / ** 0.645 (0.604-0.686) ** / ** 

FRAT-up 0.638 (0.610-
0.666) 

– / 0.92 0.713 (0.675-0.752) – / 0.62 

Lasso 0.639 (0.611-
0.667) 

0.92 / – 0.708 (0.669-0.747) 0.62 / – 

 



Figure 2 shows an example of the output of the Lasso model for four representative samples at the 2.5th, 
10th, 90th, and 97.5th percentiles of the Lasso risk score, compared with the distribution of the number of 
falls in the InCHIANTI dataset. 

Reliability diagram, marginal calibration plot, and histogram of the PIT for the Lasso model are given in 
Figure 3. Results for the assessment of marginal calibration are shown more in detail in Appendix 4. 

 

Figure 2. Histogram showing the predictive distributions (probability mass functions) on the number of falls for four samples, 
being at the 2.5th, 10th, 90th, and 97.5th percentiles of the Lasso risk score. These are compared with the distribution of the 
number of falls in the InCHIANTI population. The expected number of falls for the four selected samples is respectively 0.21, 
0.23, 0.66, 1.08. The fall rate in the InCHIANTI population (baseline data) is 0.42 falls/(person · year).  

 

 

Figure 3. Plots assessing the calibration of the Lasso model. Left: reliability diagram; observed vs predicted fall rate, obtained 
from grouping samples according to deciles on the risk score; error bars indicate 95% confidence intervals. Center: marginal 
calibration plot; relative error vs number of falls. Right: histogram of the probability integral transform. 

Figure 4 reports the results of the accuracy-parsimony tradeoff analysis. The mean number of variables 
actually included in the regression model (mean over the 10 models obtained in 10-fold cross-validation) 
increases and the predictive accuracy (measured with AUC for single and multiple fallers, and mean 
squared error) improves when relaxing the constraint on the maximum number of variables to include. The 
AUC’s reach a plateau at about 20 features, the MSE at about 30 features. 

 



 

Figure 4. Performance of the model when constraining the maximum number of variables to be possibly included in the model. 
Left: AUC for single falls (black empty circles), AUC for multiple falls (black filled circles). Right: Mean squared error (MSE, black 
filled circles). The mean number of variables that were actually included in the models (left and right panels, blue circles) refer to 
the axes on the right.  

Discussion 
In this Chapter we have developed a model for fall prediction in a dataset that is large both in terms of 
samples and of variables related to mobility. We have assessed its predictive properties and have 
benchmarked it against four other risk scores. We have further investigated whether and to which degree 
the parsimony of the model, that is required to have a short fall risk screening test, compromises its 
predictive accuracy. 

The four risk scores used for benchmark were: history of falls (expressed as number of falls experienced 
during the 12 months before the assessment), self-selected gait speed measured in a 7 m walking test, the 
SPPB summary score[7], and FRAT-up. History of falls is a strong risk indicator for future falls [1; 21; 22]. 
Clearly, if considered alone, it cannot be used for primary prevention. Gait speed is an indicator of health 
state in geriatric populations [23]. Its prognostic value for future falls has been shown to be equivalent to 
total time to perform the TUG [24]. SPPB is a mobility functional test commonly included in comprehensive 
geriatric assessments [7; 8]. Its association with falls and injurious falls is documented [25; 26]. FRAT-up is 
the tool proposed in Chapter 3 [9]. 

The results show that the AUCs of the Lasso model and of FRAT-up are similar and significantly higher than 
the other risk scores. FRAT-up parameters were derived from the literature, while the approach here 
proposed is strongly data-driven. The equivalence of discriminative ability between Lasso and FRAT-up 
validates the literature-driven approach. More analyses presented in Appendix 4 show that the possible 
dangers of training statistical models in high-dimensional spaces have been avoided. The learning curves, in 
particular, show that it is not likely to achieve substantial improvements on the AUC having the availability 
of more samples for training.  

The Lasso model results to be well calibrated (Figure 3). Calibration refers to different properties of 
statistical consistency between predictions and observations [27; 28]. The reliability diagram shows that the 
number of predicted falls agrees with the number of observed falls on samples grouped in deciles of the 
risk score. It also shows that discrimination among those at low risk is rather poor. The marginal calibration 
plot shows that the model performs fairly well in predicting how many subjects will experience a given 
number of falls (see also Table 3 of Appendix 4). The histogram of the PIT shows that the model is neutrally 



dispersed, i.e. the negative binomial distributions meant to express the predictions have a variance that 
reflects the right amount of uncertainty on the number of falls that the subject will experience [18]. Poisson 
predictions, obtained without calculating the dispersion coefficient, would substantially underestimate the 
number of non-fallers and exhibit under-dispersion (results not shown). Given the unexplained variance in 
falls incidence across different studies [29], the good calibration properties obtained on the InCHIANTI are 
not guaranteed to hold on other datasets. 

Gait speed and the SPPB score (and history of falls) can be interpreted as positively (negatively)-oriented 
performance scores, so that the lower (respectively, the higher), the higher the risk of falling. FRAT-up and 
the Lasso model are instead probabilistic predictions. FRAT-up outputs the probability of falling at least 
once during a time-span of 12 months after the assessment. The Lasso model supplies the distribution on 
the number of falls that will be experienced during the same time-span. Predicting the number of falls 
instead of a dichotomous outcome, as the occurrence of at least one or two falls, gives more information 
without drawbacks. 

Expressing a prediction in probabilistic terms has advantages. Firstly, probabilistic predictions allow 
comparing and aggregating the outcomes of different tools relatives to the same health outcome, and 
comparing the risks of different health outcomes. Secondly, calibrated probabilistic models allow to make 
accurate statements on groups of subjects. Furthermore, probabilistic tools do not need any tool-specific 
knowledge by the user about the semantics of the output. From a psychological perspective, research is 
currently investigating about the best ways to convey predictions, their associated uncertainty, and their 
most influential determinants [30–34]. Usable graphic aids could make a difference in the widespread 
uptake of these prognostic tools. 

The accuracy-parsimony analysis shows that screening tools employing a very small number of variables 
have suboptimal performance. About 20-30 items are required to have good discrimination and accuracy. 
The AGS/BGS guideline suggests a cascade of 1-4 questions and simple assessments: two or more falls in 
previous 12 months, acute fall, self-reported difficulties and assessed abnormalities in gait and balance. The 
‘Stay independent’ brochure [3] by the CDC is made of 12 questions. Its score is integrated with three 
questions directly asked by the clinician and possibly an assessment of gait, balance and strength [4]. FRAT-
up questionnaire is made of 28 items, with the possibility to leave some fields blank [35]. Cognitively 
functional patients can start answering the questionnaire autonomously, while in the waiting room or even 
at home through a web application. As this information is generally already collected during a geriatric 
comprehensive assessment, a fall risk evaluation integrated within this framework should not represent an 
additional burden to patients and healthcare professionals. Therefore, the choice to feed the prognostic 
tool with more than 1-4 variables does not conflict with the need of making rational use of time in clinical 
practice.  

The InCHIANTI dataset allowed us to make an extensive search on different domains related to mobility and 
falls in the elderly. However, we have to acknowledge two main limitations. Firstly, we did not have 
information about environmental hazards. Secondly, samples were done collating information about risk 
factors from one wave of the study, and information about future falls from the subsequent wave. As each 
wave follows the preceding one of about three years, and since at each wave subjects are asked about falls 
occurred within the last 12 months, predictions here have been made on falls occurring at about 24-36 
months after the risk factor assessment. This may be the cause of the relatively low values achieved on the 
AUC. 



Conclusions 
We have presented the development and assessment of a tool that issues probabilistic predictions on the 
number of future falls. We have trained this model over a dataset, that is large both in terms of number of 
samples and number of variables related to mobility and falls. We have benchmarked it against other risk 
scores. After extensive search and using state-of-the-art tools of statistical learning, we were not able to 
reach a better discriminative ability than FRAT-up.  

An accuracy-parsimony analysis has highlighted that simplistic screening tests (1-4 variables) are 
suboptimal in terms of predictive accuracy. Integration of prognostic tools for falls within a geriatric 
comprehensive assessment can improve the prediction without compromising usability. 

References 

1. Ganz DA, Bao Y, Shekelle PG, Rubenstein LZ. Will my patient fall? JAMA 2007 Jan;297 (1):77–86. 
http://www.ncbi.nlm.nih.gov/pubmed/17200478. Accessed 2013-2-1. 

2. Panel of Falls in Older Persons American Geriatrics Society and British Geriatrics Society. Summary of the 
Updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of 
falls in older persons. J. Am. Geriatr. Soc. 2011 Jan;59 (1):148–57. 
http://www.ncbi.nlm.nih.gov/pubmed/21226685. Accessed 2012-3-14. 

3. Centers for Disease Control and Prevention. Stay independent brochure. [date unknown]; 
http://www.cdc.gov/homeandrecreationalsafety/pdf/steadi/stay_independent.pdf. Accessed 2015-2-21. 

4. Centers for Disease Control and Prevention. Algorithm for fall risk assessment & intervention. [date 
unknown]; 
http://www.cdc.gov/homeandrecreationalsafety/pdf/steadi/algorithm_fall_risk_assessment.pdf. Accessed 
2015-2-21. 

5. Lamb SE, McCabe C, Becker C, Fried LP, Guralnik JM. The optimal sequence and selection of screening 
test items to predict fall risk in older disabled women: the Women’s Health and Aging Study. J. Gerontol. 
Med. Sci. 2008;. 

6. Muir SW, Berg K, Chesworth B, Klar N, Speechley M. Application of a fall screening algorithm stratified 
fall risk but missed preventive opportunities in community-dwelling older adults: A prospective study. J. 
Geriatr. Phys. Ther. 2010;33 (4):165–172. http://www.scopus.com/inward/record.url?eid=2-s2.0-
79955118394&partnerID=tZOtx3y1. . 

7. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB. A short 
physical performance battery assessing lower extremity function: association with self-reported disability 
and prediction of mortality and nursing home admission. J. Gerontol. 1994;. 

8. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over 
the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995 Mar;332 (9):556–61. 
http://www.ncbi.nlm.nih.gov/pubmed/7838189. Accessed 2015-1-28. 

9. Cattelani L, Palumbo P, Palmerini L, Bandinelli S, Becker C, Chesani F, Chiari L. FRAT-up, a web-based fall 
risk assessment tool for elderly people living in the community. J. Med. Internet Res. 2015;17 (2). 



10. Ferrucci L, Bandinelli S, Benvenuti E, Di Iorio A, Macchi C, Harris TB, Guralnik JM. Subsystems 
contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice 
in the InCHIANTI study. J. Am. Geriatr. Soc. 2000 Dec;48 (12):1618–25. 
http://www.ncbi.nlm.nih.gov/pubmed/11129752. Accessed 2013-3-11. 

11. InCHIANTI. InCHIANTI Study door. [date unknown]; http://inchiantistudy.net/. Accessed 2013-7-6. 

12. Tibshirani R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B (Statistical 
Methodol. 1996;58 (1):267–288. 

13. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate 
Descent. J. Stat. Softw. 2010 Jan;33 (1):1–22. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2929880&tool=pmcentrez&rendertype=abstr
act. Accessed 2015-1-13. 

14. Venables VN, Ripley BD. Modern Applied Statistics with S. Fourth. New York: Springer; 2002. 
http://www.stats.ox.ac.uk/pub/MASS4. . 

15. Van Buuren S, Groothuis-oudshoorn K. mice : Multivariate Imputation by Chained Equations in R. J. Stat. 
Softw. 2011;45 (3). 

16. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M. pROC: an open-source package 
for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011 Jan;12 (1):77. 
http://www.biomedcentral.com/1471-2105/12/77. Accessed 2013-2-10. 

17. Murphy AH, Winkler RL. Reliability of subjective probability forecasts of precipitation and temperature. 
J. R. Soc. Ser. C (Applied Stat. 1977;41–47. 
http://www.jstor.org/stable/2346866?seq=2#page_scan_tab_contents. Accessed 2015-2-11. 

18. Czado C, Gneiting T, Held L. Predictive model assessment for count data. Biometrics 2009 Dec;65 
(4):1254–61. http://www.ncbi.nlm.nih.gov/pubmed/19432783. Accessed 2014-3-24. 

19. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: Data Mining, Inference, and 
Prediction. Second edi. Springer; 2009. 

20. Gneiting T. Making and Evaluating Point Forecasts. J. Am. Stat. Assoc. 2011 Jun;106 (494):746–762. 
http://amstat.tandfonline.com/doi/abs/10.1198/jasa.2011.r10138#.VIWK7TGG8lI. Accessed 2014-12-3. 

21. Deandrea S, Lucenteforte E, Bravi F, Foschi R, La Vecchia C, Negri E. Risk Factors for Falls in Community-
dwelling Older People: A Systematic Review and Meta-analysis. Epidemiology 2010;21 (5):658–668. 

22. Ambrose AF, Paul G, Hausdorff JM. Risk factors for falls among older adults : A review of the literature. 
Maturitas 2013;75 (1):51–61. http://dx.doi.org/10.1016/j.maturitas.2013.02.009. . 

23. Abellan van Kan G, Rolland Y, Andrieu S, Bauer J, Beauchet O, Bonnefoy M, Cesari M, Donini LM, Gillette 
Guyonnet S, Inzitari M, Nourhashemi F, Onder G, Ritz P, Salva A, Visser M, Vellas B. Gait speed at usual pace 
as a predictor of adverse outcomes in community-dwelling older people an International Academy on 
Nutrition and Aging (IANA) Task Force. J. Nutr. Health Aging 2009 Dec;13 (10):881–9. 
http://www.ncbi.nlm.nih.gov/pubmed/19924348. Accessed 2015-2-5. 

24. Viccaro LJ, Perera S, Studenski S a. Is timed up and go better than gait speed in predicting health, 
function, and falls in older adults? J. Am. Geriatr. Soc. 2011 May;59 (5):887–92. 



http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3522463&tool=pmcentrez&rendertype=abstr
act. Accessed 2013-5-22. 

25. Veronese N, Bolzetta F, Toffanello ED, Zambon S, De Rui M, Perissinotto E, Coin A, Corti M-C, Baggio G, 
Crepaldi G, Sergi G, Manzato E. Association between Short Physical Performance Battery and falls in older 
people: the Progetto Veneto Anziani Study. Rejuvenation Res. 2014 Jun;17 (3):276–84. 
http://www.ncbi.nlm.nih.gov/pubmed/24387140. Accessed 2015-2-18. 

26. Ward RE, Leveille SG, Beauchamp MK, Travison T, Alexander N, Jette AM, Bean JF. Functional 
performance as a predictor of injurious falls in older adults. J. Am. Geriatr. Soc. 2015 Feb;63 (2):315–20. 
http://www.ncbi.nlm.nih.gov/pubmed/25688606. Accessed 2015-2-19. 

27. Gneiting T, Balabdaoui F, Raftery AE. Probabilistic forecasts , calibration and sharpness. J. R. Stat. Soc. 
Ser. B 2007;69:243–268. 

28. Gneiting T, Katzfuss M. Probabilistic Forecasting. Annu. Rev. Stat. Its Appl. 2014;. 

29. Rapp K, Freiberger E, Todd C, Klenk J, Becker C, Denkinger M, Scheidt-Nave C, Fuchs J. Fall incidence in 
Germany: results of two population-based studies, and comparison of retrospective and prospective falls 
data collection methods. BMC Geriatr. 2014 Jan;14:105. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4179843&tool=pmcentrez&rendertype=abstr
act. Accessed 2014-11-18. 

30. Joslyn S, Leclerc J. Decisions with uncertainty : the glass half full. Curr. Dir. Psychol. Sci. 2013;22 (4):308–
315. 

31. Spiegelhalter D, Pearson M, Short I. Visualizing uncertainty about the future. Science 2011 Sep;333 
(6048):1393–400. http://www.sciencemag.org/content/333/6048/1393.abstract. Accessed 2014-10-20. 

32. Edwards A. Explaining risks: turning numerical data into meaningful pictures. BMJ 2002 Apr;324 
(7341):827–830. 
http://www.bmj.com/content/324/7341/827.1?ijkey=685919c5c9016eeb3b049538f47f71263b6aa47e&ke
ytype2=tf_ipsecsha. Accessed 2015-1-26. 

33. Smith AF. Discussion of risk pervades doctor-patient communication. BMJ 2002 Sep;325 (7363):548–
548. http://www.bmj.com/content/325/7363/548.1. Accessed 2015-2-13. 

34. Simila H, Immonen M. Disease state fingerprint for fall risk assessment. Conf. Proc.  ... Annu. Int. Conf. 
IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf. 2014 Aug;2014:3176–9. 
http://www.ncbi.nlm.nih.gov/pubmed/25570665. Accessed 2015-2-13. 

35. Cattelani L, Palumbo P, Palmerini L, Chesani F, Chiari L. FRAT-up Web Application. 2014; 
http://ffrat.farseeingresearch.eu/. .  

 



Chapter 5 
 
 
 
 
 
 
 
 
This chapter presents an exploratory study on employment of features extracted from wearable inertial 
sensors signals for fall prediction. Data have been collected within the FARSEEEING project on subject of 
the InCHIANTI study [1].  

Introduction 
Wearable inertial sensors have been proposed to increase the accuracy in predicting future falls while 
guaranteeing the objectivity of the assessment [2]. An overview of the state of the art has already been 
given in Chapter 1 and Appendix 1. Table 1 below lists all the studies on fall risk that make use of 
information from wearable inertial sensors and that are based on falls observed prospectively, i.e. during a 
time-span after the assessment. Other previous studies were based on falls assessed retrospectively [3; 4].  
 

Table 1. Studies using prospective falls 

Author Year Reference Number of fallers Total number of subjects Notes 
Marschollek et al. 2011 [5; 6] 19 46  
Paterson et al. 2011 [7] 54 97 Community-

dwelling older 
women 

Schwesig et al. 2013 [8] 17 141 Faller= at least 3 
falls in 12 
months 

Doi et al. 2013 [9] 16 73  
Weiss et al. 2013 [10] 12 71  
Weiss et al.  2014 [11] 14 67 Patients with 

Parkinson 
disease 

Schwenk et al. 2014 [12] 28 77 Subjects with 
dementia 

Van Schooten et al. 2015 [13] 59 169  
 



Only few studies have tested the accuracy of their predictive models with techniques for internal 
validation. To the best of our knowledge, only one study has tested a predictive model on an independent 
sample of subjects [8]. They obtained an area under the ROC curve (AUC) significantly lower than what 
obtained in the first study (from 0.791 to 0.587). 

Methods  
Two hundred fifty-seven subjects aged 65 or more and enrolled in the FARSEEING-InCHIANTI study (FU4) 
[14] performed four motor functional tests while wearing a smartphone: Timed Up and Go (TUG), 
Romberg, 5-time repeated chair stand (5RCS), 400 m walk path (400m). A six month follow-up survey 
(monthly telephone interview) was conducted to assess the occurrence of any falls. 
Ninety reliable features were computed from the signals recorded by the inertial sensors embedded in the 
smartphone. The complete list is available in Table 2. 
 
Table 2. Sensor-based features. StW=sit to walk, TtS=turn to sit, RMS=root mean square, HR=harmonic ratio, AP=antero-
posterior, ML=medio-lateral, V=vertical, disp=displacement, accel=acceleration, vel=velocity 

TUG Romberg 5RCS 400m walk (mean across 
the path segments) 

Total duration RMS ML accel Total duration Duration straight path 
Duration StW RMS AP accel Mean stand duration  Velocity straight path 
Duration of turn 180° RMS V accel Max accel AP stand Cadence straight path 
Duration Turn TtS RMS ML gyroscope Max accel V stand Standard deviation 

cadence straight path 
Duration TtS RMS AP gyroscope RMS accel AP stand Variation coefficient 

cadence straight path 
RMS AP accel StW RMS V gyroscope RMS accel ML stand Coordination index 

straight path 
RMS ML accel StW RMS ML disp RMS accel V stand Normalized jerk score AP 

straight path 
RMS V accel StW RMS AP disp Max angular vel AP stand Normalized jerk score ML 

straight path 
RMS AP gyroscope StW RMS V disp Max angular vel ML stand Normalized jerk score V 

straight path 
RMS ML gyroscope StW Sway path V disp Max angular vel V stand HR AP straight path 
RMS V gyroscope StW Ellipse area disp Min angular vel AP stand HR ML straight path 
RMS AP gyroscope TtS Mean velocity ML displ Min angular vel ML stand HR V straight path 
RMS ML gyroscope TtS Mean velocity AP displ Min angular vel V stand Step regularity index AP 

straight path 
RMS V gyroscope TtS Mean velocity V displ Mean sit duration Step regularity index ML 

straight path 
Mean velocity 180° Mean angular velocity ML Max accel AP sit Step regularity index V 

straight path 
Mean velocity TtS Mean angular velocity AP Max accel V sit Stride regularity index AP 

straight path 
Peak velocity 180° Mean angular velocity V RMS accel AP sit Stride regularity index ML 

straight path 
Peak velocity TtS Tremor power % ML RMS accel ML sit Stride regularity index V 

straight path 



 Tremor power % AP RMS accel V sit Symmetry index AP 
straight path 

 Tremor power % V Max angular vel AP sit Symmetry index ML 
straight path 

 RHL ML accel Max angular vel ML sit Symmetry index V 
straight path 

 RHL AP accel Max angular vel V sit Turn duration 
 RHL V accel Min angular vel AP sit Mean turn vel 
  Min angular vel ML sit Peak turn vel 
  Min angular vel V sit Normalized jerk score 

turn 
 
Lasso logistic regression, and linear and quadratic discriminant analysis were applied in order to predict the 
occurrence of any falls during the follow-up. For the linear and quadratic discriminant analysis, a wrapper 
feature selection was applied. Five-fold cross validation was used for model assessment. 
 

Results  
Twenty-five subjects fell at least once during the 6-month follow-up.  
Table 3 shows the features selected by the trained models and the achieved AUC. The features that were 
more recurrently selected by the trained models were: duration of Sit-to-Walk (TUG), root mean square 
(RMS) of the acceleration during chair-rising (vertical and anteroposterior components, 5RCS), total time 
for 5RCS, coefficient of variation of the cadence during straight course (400m).  
The AUC’s for the trained models range between 0.55 and 0.59, with standard deviations between 0.12 and 
0.16. 
 
Table 3. StW=sit to walk, RMS=root mean square, AP=antero-posterior, V=vertical, disp=displacement, accel= acceleration, 
sd=standard deviation. 

 AUC (sd) Features 
Lasso logistic regression 0.58 (0.16) TUG, Duration StW 

5RCS, RMS V accel 
Romberg, Mean velocity AP displ 

Linear discriminant analysis 0.61 (0.12) 5RCS, RMS accel AP stand 
Quadratic discriminant analysis 0.61 (0.15) 5RCS, Total duration 

400m, Variation coefficient cadence straight path 
 

Discussion and conclusions  
The study presented in this chapter is one of the firsts on fall prediction using information on falls collected 
prospectively. We have trained and internally validated three classifiers, and have identified new possible 
inertial sensor-based markers of risk of falling.  

In line with the low fall rate of the InCHIANTI population, out of 257 subjects, only 25 reported at least one 
fall at the 6-month follow-up. The low number of fallers could have limited the discriminative accuracy 
achieved by the classifiers. The AUC may possibly result higher if the follow-up is extended to one year, not 
only thanks to an increase in cases available for training, but also because of what explained in Chapter 2 
[15]. 



In future studies we will study how to integrate sensor-based information with clinical and behavioral 
information in order to improve the discriminative ability of the presented models.  

All the studies so far have made little use of previous literature. Consequently, despite numerous efforts, 
we cannot state that the ability to predict falls from wearable sensors has increased during the last years. In 
our view, the impediments mainly come from the difficulty to align data and results from studies with 
different designs. We join the plea for more collaborative research [2]. 
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Chapter 6 
 
 
 
 
 
 
 
 

Final remarks 

In Chapter 1 we have introduced the topic of this thesis within the wider framework of the demographic 
trend towards an ageing population and of medical research on prognostic tools. We have further reviewed 
current clinical guidelines and the scientific literature about fall risk assessment in community-dwelling 
older adults. The state of the art is characterized by abundancy of newly-developed prognostic tools, 
paucity of validation studies, and absence of impact analyses.  

In Chapter 2 we have developed a probabilistic model that clarifies some conceptual issues about the 
performance indices of prognostic tools for falls. We have adopted as a model an ideal tool, that is perfect 
in a probabilistic way, and that issues predictions over subjects of a population on which fall risk and fall 
counts are distributed according to the classical scheme by Greenwood and Yule for accident proneness. 
We have shown that the tool does not achieve perfect discrimination. We have also highlighted the 
sensitivity of some performance indices to key elements of the design and the analysis of validation studies. 

In Chapter 3 we have presented FRAT-up, a prognostic tool for falls developed within the framework of the 
EU project FARSEEING. The core of the tool is represented by the noisy-or gate. Parameter estimation is 
based exclusively on data from the literature. We have validated FRAT-up on three wide epidemiological 
studies about ageing: Invecchiare nel Chianti (InCHIANTI), the ActiFE-Ulm study, and the English 
Longitudinal Study of Ageing (ELSA). Results are heterogeneous among datasets. For example, the area 
under the ROC curve for single fallers ranges from 0.57 in the ActiFE-Ulm study to 0.70 in ELSA. We have 
shown that these differences can be found also for other prognostic tools.  

In Chapter 4 we have presented a comparison in the same dataset (InCHIANTI) of different fall risk scores: 
history of falls, gait speed, the Short Physical Performance Battery, FRAT-up, and a prediction tool based on 
a Lasso regression. FRAT-up and the Lasso model have equivalent discriminative abilities, and they 
outperform the other simple risk scores. An accuracy-parsimony tradeoff analysis shows that, although 
short screening tests are preferable because of their ease of administration, disregarding information about 
risk factors sensibly affects the predictive accuracy. 



In Chapter 5 we have presented some results about fall prediction from wearable inertial sensors. Data 
have been taken from the last follow-up of the FARSEEING-InCHIANTI study.  

In addition to what already discussed in the single chapters, we highlight here some general considerations.  

Firstly, impact studies quantifying the potential benefits of fall risk assessment are needed. These may be 
either in the form of randomized controlled trials or may be based on a modelling approach.  

Secondly, on the one hand predictive models trained within one same datasets often result to be 
equivalent in terms of their discriminative ability. This has been shown especially in Chapter 5. Although 
FRAT-up has not been trained, also FRAT-up and the Lasso model attain similar AUC on the InCHIANTI 
dataset (Chapter 4). On the other hand, between-dataset differences are remarkable. The cause can be 
true differences among populations and differences in data collection methods. These differences often are 
largely unexplained. They hinder the validation of predictive models on external datasets and are 
responsible for heterogeneity in validation results.  

Thirdly, prediction of falls from extremely simple (1-4 questions) algorithms is suboptimal. Falls have a 
multifactorial etiology. Knowledge about exposure to several risk factors improves the prediction. As this 
information is generally already collected during a geriatric comprehensive assessment, a fall risk 
evaluation integrated within this framework should not represent an additional burden to patients and the 
healthcare professionals. Therefore, the choice to feed the prognostic tool with more than 1-4 variables 
does not conflict with the need of making rational use of time in clinical practice. 

Lastly, research on fall prediction through features extracted from wearable inertial sensors is characterized 
by a high-dimensional search space and low interpretability of the candidate predictors. This situation 
requires large datasets in terms of number of samples. If impact studies support the strategic role of fall 
prediction for fall prevention, efforts should be made to create larger datasets, and to work on 
standardization and comparability among studies, enabling more collaborative research. 
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This appendix contains details and references about Figure 1 and Figure 7 of Chapter 1. 

Figure 1, Chapter 1 
 

Medical 
outcome 

Reference Tool Disease Time 
span 

AUC M/W 

CVD 
 

[1] Framingham Risk 
Score 

CHD (angina, MI, sudden 
death) 

10 years 0.7744 W 

Framingham Risk 
Score 

CHD (angina, MI, sudden 
death) 

10 years 0.7598 M 

Global 
cardiovascular risk 

CHD, stroke, CHF, PVD 10 years  0.793 W 

Global 
cardiovascular risk 

CHD, stroke, CHF, PVD 10 years  0.763 M 

Adult Treatment 
Panel III 

    

SCORE (Systematic 
Coronary Risk 
Evaluation) 

fatal CV events (heart 
attack, stroke, aortic 
aneurism) 

10 years 0.71-
0.80 

 

Reynolds Risk Score MI, stroke, coronary 
revascularization, CV 
death 

10 years 0.808 W 

Reynolds, men MI, stroke, coronary 
revascularization, CV 
death 

10 years 0.7-
0.714 

M 

ASSIGN (Assessing 
Cardiovascular Risk 
to Scottish 
intercollegiate 
guidelines 
Network/SIGN to 
assign preventive 
treatment) 

CV death, CHD admission, 
CABG, PTCA 

10 years 0.7841 W 

ASSIGN (Assessing 
Cardiovascular Risk 
to Scottish 
intercollegiate 
guidelines 
Network/SIGN to 
assign preventive 
treatment) 

CV death, CHD admission, 
CABG, PTCA 

10 years 0.7644 M 

QRISK (QRESEARCH 
Cardiovascular Risk 
Algorithm) 

MI, stroke, CHD, TIA 10 years 0.7879 W 

QRISK (QRESEARCH 
Cardiovascular Risk 
Algorithm) 

MI, stroke, CHD, TIA 10 years 0.7674 M 

Diabetes [2] ARIC 
(Atherosclerosis 
Risk in 
Communities) 

type 2 diabetes  0.84  



Ausdrisk type 2 diabetes  0.78  
Cambridge risk 
score 

type 2 diabetes  0.72  

FINDRISK type 2 diabetes  0.76  
Framingham 
Offspring Study 

type 2 diabetes  0.78  

San Antonio risk 
score 

type 2 diabetes  0.83  

San Antonio risk 
score 

type 2 diabetes  0.78  

QDScore type 2 diabetes  0.8 M 
QDScore type 2 diabetes  0.81 W 

Breast 
cancer 

[3] Gail 1 breast cancer  NA  
Gail 2 breast cancer  0.63  
Colditz and Rosner breast cancer  0.63  
Tyrer and Cuzick breast cancer  0.762  

[4] Petracci breast cancer  0.62 W 
<50 
yr 

Petracci breast cancer  0.57 W 
>=50 
yr 

[5] Pfeiffer breast cancer  0.58 W 
>=50 
yr 

Colorectal 
cancer 

[6] Harvard Cancer Risk 
Index 

  0.71 M 

Harvard Cancer Risk 
Index 

  0.67 W 

Imperiale   0.74  
Freedman   0.61  
Ma   0.64  

Hip fracture [7] FRAX hip fracture 10 years 0.746429  
FRAX without BMD hip fracture 10 years 0.717571  
Garvan FRC hip fracture  0.773333  
QFractureScores hip fracture  0.756  

Falls [8] Tinetti B   0.62  
[9] Tinetti B  1 year 0.559  
[10] TUG   0.66  
[9] Functional reach  1 year 0.509  

 

Meta-analysis performed to assign one value of AUC to Timed-Up and Go Test (TUG). References extracted 
from [10]. 



 

Figure 1. Meta-analysis performed to assign one value of AUC to TUG. 

 

Figure 7, Chapter 1 
Traditional tools [8] 

Reference Tool Sensitivity Specificity 
Bogle Thrbahn Berg balance test 0.56 0.96 
Faber et al 2006 Tinetti total 0.64 0.661 
Faber et al 2006 Tinetti Balance 0.64 0.625 
Raiche et al 2000 Tinetti total 0.70 0.52 
Trueblood 2001 Tinetti balance 0.24 0.91 
Trueblood 2001 Tinetti gait 0.21 0.95 
Trueblood 2001 TUG 0.10 0.95 
Morris et al 2007 5m-TUG 0.949 0.106 

0.718 0.426 
0.513 0.638 
0.385 0.766 
0.333 0.851 
0.205 0.936 
0.128 0.979 

 

Sensor-based tools. Main paper of reference [11]. More than one model was extracted from some paper. 

Author Year Reference Number of fallers Total number of 
subjects 

Caby et al 2011 [12] 15 20 
Marschollek et al  2011 [13] 19 46 



Marschollek et al 2011 [14] 19 46 
O’Sullivan et al 2009 [15] 12 17 
Weiss et al 2011 [16] 23 41 
Greene et al 2010 [17] 207 349 
Riva et al 2013 [18] 42 131 
Greene et al  2014 [19] 11 33 

37 91 
48 124 
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Appendix 2 
  



Here we recall the formula for the probability mass function of a negative binomial distribution and how it 
arises as a mixture of Poisson distributions with a gamma mixing distribution. 

The probability mass function of a negative binomial distribution is 

ℎ(𝑛𝑛) = 𝛤𝛤(𝑛𝑛+𝑘𝑘)
𝑛𝑛!𝛤𝛤(𝑘𝑘) �

𝜇𝜇
𝜇𝜇+𝑘𝑘

�
𝑛𝑛
� 𝑘𝑘
𝜇𝜇+𝑘𝑘

�
𝑘𝑘

,𝑛𝑛 = 0,1,2, …     (A1) 

The mean of this distribution is 𝜇𝜇 and the variance is 𝜇𝜇 + 𝜇𝜇2

𝑘𝑘
. As the parameter 𝑘𝑘 increases, the variance 

shrinks toward the mean and the distribution approaches a Poisson distribution. Accordingly, 1/𝑘𝑘 is often 
referred to as the dispersion parameter. 

Given the conditional distribution for 𝑁𝑁 stated in (1), the assignment of a gamma distribution with shape 
and scale parameters respectively 𝑘𝑘′ and 𝜃𝜃 for the conditioning variable 𝛬𝛬, and the expression of its 
probability density function recalled in (5) (with 𝑘𝑘 substituted by 𝑘𝑘′), the marginal distribution of 𝑁𝑁 is  
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After comparison between (A1) and (A2) we see that marginally 𝑁𝑁 follows a negative binomial distribution, 
whose parameter 𝑘𝑘 is equal to the shape parameter of the gamma distribution 𝑘𝑘′ and whose parameter 𝜇𝜇 
is related to the shape and scale parameters of the gamma distribution 𝑘𝑘′ and 𝜃𝜃, and to the parameter 𝜏𝜏 by 
the relation 𝜇𝜇 = 𝜃𝜃𝜃𝜃𝜃𝜃′. 

The identifiability of Poisson mixture distribution allows to state that the gamma distribution is the only 
mixing distribution that makes the mixture follow a negative binomial distribution. More properties of 
Poisson mixture distributions are reviewed in [1]. 
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Appendix 3 
  



This Appendix contains material supplemental to Chapter 3. In particular, a description of 
FRAT-up risk factors, analyses on the harmonized datasets, a sensitivity analysis on FRAT-up 
performance. Details about source variables, target variables, and harmonization algorithms 
for the three datasets are given in Appendix 3-ActiFE, Appendix 3-ELSA, and Appendix 3-
InCHIANTI. 

Risk factors 

There are two types of risk factors, either dichotomous (supporting missing data, so the 
possible values are “true”, “false”, and “unknown”) and scalar (integer values with the 
possibility of being unknown). Scalar values have a range n,…,m, so a scalar 1,…,3 may take the 
values 1,2,3, and “unknown”. 

FRAT-up supports the same risk factors that were found to be significant in the Deandrea 
meta-analysis [1]. 

Age, number of medications, and comorbidity are scalar risk factors. Age increases of a level 
every five years, starting from level zero at age 65 (e.g. it becomes level 1 at 70), with 4 as the 
maximum level for subjects aged 85 or more. Number of medications ranges from 0 to 10. For 
N=0,…,9, it takes level N on subjects taking N drugs. It takes level 10 on subjects taking 10 or 
more drugs. 

Comorbidity counts the number of morbid conditions from the following list of 11 risk factors: 
cognition impairment, depression, diabetes, dizziness and vertigo, fear of falling, history of 
stroke, pain, Parkinson disease, poor self-perceived health status, rheumatic disease, and 
urinary incontinence. More precisely, it assumes level 0 if there are 0 or 1 exposures, and level 
N-1 otherwise, with N being the number of morbid conditions. It thus can range from 0 to 10. 

Fall risk factor prevalence from literature 

In Table 1, the “Prevalence” column contains the probability to be “true” of dichotomous risk 
factors. The column contains the prevalence of the single levels for scalar risk factors, ordered 
from level zero upward. 

Table 1. Risk factor prevalence from literature, sources and notes 

Name Prevalence Source Notes 
age 0.25, 0.25, 0.20, 

0.16, 0.14 
[2] The distribution of age (divided in 

five years intervals) in the Italian 
population 

cognition 
impairment 

0.19 [3] SPMSQ ≥ 3 

comorbidity Inferred   
depression 0.13 [4] CES-D ≥ 16 



diabetes 0.11 [5]  
dizziness and 
vertigo 

0.20 [6]  

fear of falling 0.33 [7]  
female sex 0.48 [6]  
gait problems 0.42 [8] Difficulty walking 
hearing 
impairment 

0.36 [4] Questioning the participant on 
whether he/she could follow a 
conversation in a group of four 
persons (with a hearing aid if 
needed) 

history of falls 0.31 [9] People 65+ having fallen at least 
once in 12 months 

history of stroke 0.13 [5]  
instrumental 
disability 

0.37 [5] One or more IADL impairment 

living alone 0.32 [6]  
number of 
medications 

0.237, 0.226, 
0.194, 0.133, 
0.081, 0.049, 
0.036, 0.02, 0.01, 
0.007, 0.007 

[10] Using medications in past two 
days, by number of medications, 
household population aged 65 or 
older, Canada excluding territories 

Pain 0.30 [11]  
parkinson 0.008 [5]  
physical activity 
limitation 

0.56 [12] Self-reported physical activity 
levels in adults, by sex and age, 
England 2008, low activity: less 
than 30 minutes or more of 
moderate or vigorous activity on 1 
to 4 days a week 

physical disability 0.11 [3] ADL ≤ 4 
poor self-perceived 
health status 

0.20 [6] Poor subjective health status (≥ 4) 

rheumatic disease 0.47 [13] Arthritis 
urinary 
incontinence 

0.19 [6]  

use of 
antiepileptics 

0.01 [4]  

use of 0.32 [7]  



antihypertensives 
use of sedatives 0.14 [4] Use of benzodiazepines 
vision impairment 0.19 [4] Questioning the participant on 

whether he/she could recognize 
someone’s face at a distance of 4 
meters (with glasses or contact 
lenses if needed) 

walking aid use 0.18 [6]  

Harmonized datasets 

Missing values 

Table 2 gives the frequencies of missing values on the harmonized variables in the three 
datasets before and after excluding those subjects on which there is no information on the 
outcome variable. 

Table 2. Frequency of missing values before and after excluding subjects on which there is no information on the 
outcome variables. 

 ActiFE InCHIANTI ELSA 
 Before 

exclusio
n 

After 
exclusio
n 

Before 
exclusio
n 

After 
exclusio
n 

Before 
exclusio
n 

After 
exclusio
n 

Age 0.000 0.000 0.000 0.000 0.000 0.000 
Sex 0.000 0.000 0.000 0.000 0.000 0.000 
History of falls (yes/no) 0.017 0.013 0.000 0.000 0.001 0.001 
History of falls (number) 0.056 0.053 0.004 0.002 0.004 0.004 
Prospective falls 
(yes/no) 0.060 0.000 0.225 0.000 0.195 0.000 

Prospective falls 
(number) 0.060 0.000 0.228 0.000 0.199 0.000 

Living alone 0.015 0.016 0.000 0.000 0.000 0.000 
Walking aid use 0.088 0.085 0.112 0.064 0.012 0.010 
Urinary incontinence 0.019 0.014 0.002 0.000 0.001 0.001 
Diabetes 0.003 0.003 0.000 0.000 0.000 0.000 
Parkinson disease 0.000 0.000 0.010 0.008 0.000 0.000 
Arthritis or rheumatism 0.003 0.004 0.000 0.000 0.000 0.000 
Cognition impairment 0.082 0.081 0.000 0.000 0.000 0.000 
History of stroke 0.003 0.004 0.003 0.002 0.000 0.000 
Depression 0.063 0.052 0.066 0.025 0.000 0.000 
Poor self-perceived 
health status 0.005 0.005 0.067 0.026 1.000 1.000 



Pain 0.007 0.006 0.078 0.037 0.007 0.005 
Physical disability 0.011 0.010 0.000 0.000 0.000 0.000 
Instrumental disability 0.019 0.019 0.000 0.000 0.000 0.000 
Fear of falling 0.021 0.014 0.003 0.001 0.001 0.001 
Dizziness 0.014 0.010 0.127 0.066 0.027 0.019 
Vision impairment 0.022 0.017 0.207 0.146 0.000 0.000 
Hearing impairment 0.021 0.017 0.104 0.058 0.000 0.000 
Number of medications 0.000 0.000 0.000 0.000 0.005 0.005 
Use of 
antihypertensives 0.000 0.000 0.000 0.000 1.000 1.000 

Use of sedatives 0.000 0.000 0.225 0.000 1.000 1.000 
Use of antiepileptics 0.000 0.000 0.225 0.000 1.000 1.000 
Physical activity 
limitations 0.155 0.143 0.004 0.003 0.001 0.001 

Gait problems 0.029 0.030 0.129 0.080 0.104 0.091 
 
Principal components analysis 

Principal component analysis (PCA) is here performed to complete the description of the 
distribution of the harmonized variables furnished in Chapter 4. 

Three PCAs were performed separately on the correlation matrices of the three datasets. The 
results thereof are shown in Figure 1, Figure 2 and Table 3. One further PCA was performed on 
the correlation matrix of the three datasets stacked together. The results thereof are showed 
in Figure 3, Figure 4 and Table 4. The PCAs were performed on one of the 11 imputed copies of 
the dataset (see the section on missing data imputation). In order to adjust for differential 
nonresponse rates to the nurse visit in the ELSA population, weights were used to calculate the 
correlation matrices. 

Consistently across the datasets, the first PC has greater loadings on age, scores of the SPPB, 
physical activity limitation, and physical and instrumental disability. Interpreting it as a cline for 
functional performance, a ceiling effect is evident from the scatterplots in Figure 2 and Figure 
4. The second PCs of the PCAs performed on the three separate datasets, and the third PC of 
the PCA performed on the datasets stacked together have great loadings on sex and grip 
strength.  

The second PC of the PCA performed on the datasets stacked together discriminates the ActiFE 
and InCHIANTI populations from ELSA. The greatest loadings to this PC are given by pain, vision 
impairment and number of medications. This may be an indication that harmonization of these 
variables was not successful on ELSA. 

 



 

Figure 1. Eigenvalues of the correlation matrices of the three harmonized datasets. 

 

Table 3. Loadings on the harmonized variables of the first and second principal components as calculated 
from PCAs performed separately on the three datasets. 

 Loadings 
 ActiFE InCHIANTI ELSA 
 1st PC 2nd PC 1st PC 2nd PC 1st PC 2nd PC 
       
Age 0.205 0.013 0.242 0.031 0.204 -0.195 
Sex (women) 0.063 -0.543 0.102 -0.442 0.107 -0.542 
Gait speed -0.287 -0.010 -0.306 -0.029 -0.291 0.035 
SPPB_BT score -0.284 -0.127 -0.289 -0.104 -0.273 0.028 
SPPB_GST score -0.315 -0.100 -0.296 -0.171 -0.269 0.020 
SPPB_CST score -0.290 -0.034 -0.287 -0.069 -0.265 0.005 
SPPB score -0.366 -0.100 -0.328 -0.125 -0.340 0.021 
History of falls (yes/no) 0.101 -0.129 0.095 -0.296 0.136 -0.056 
History of falls (number) 0.041 0.033 0.107 -0.275 0.074 0.049 
Grip strength -0.160 0.455 -0.221 0.302 -0.216 0.470 
Walking aid use 0.245 0.161 0.260 0.209 0.241 0.122 
Living alone 0.096 -0.201 0.040 -0.210 0.100 -0.343 
Urinary incontinence 0.086 -0.349 0.149 -0.196 0.101 -0.037 
Diabetes 0.080 0.077 0.030 0.066 0.067 0.267 
Parkinson disease 0.037 0.054 0.046 -0.032 0.046 0.071 
Arthritis or rheumatism 0.041 -0.306 0.080 -0.221 0.147 -0.075 
Cognition impairment 0.101 0.043 0.195 0.116 0.036 0.067 
History of stroke 0.064 0.041 0.095 0.125 0.096 0.142 
Depression 0.119 -0.104 0.105 -0.233 0.109 0.017 
Pain 0.073 -0.211 0.059 -0.237 0.162 0.143 
Physical disability 0.257 0.136 0.234 0.190 0.241 0.125 
Instrumental disability 0.263 -0.024 0.271 0.018 0.255 0.118 



Fear of falling 0.243 -0.022 0.117 -0.257 0.197 0.097 
Dizziness 0.115 -0.220 0.023 -0.248 0.235 0.107 
Vision impairment -0.108 -0.095 0.161 0.032 0.141 0.070 
Hearing impairment 0.137 0.071 0.054 0.024 0.084 0.226 
Number of medication 0.174 -0.034 0.144 -0.054 0.132 0.229 
Physical activity 
limitations 

0.222 0.100 0.231 0.018 0.206 0.141 

 

 

 

Figure 2. Scores on the first and second principal components of the observations from the three harmonized 
datasets. Men in blue, women in red. 

 

 

Figure 3. Eigenvalues of the correlation matrix of the three harmonized datasets stacked together 

 



Table 4. Loadings of the first three PCs of the PCA performed on the three datasets stacked together. 

 1st PC 2nd PC 3rd PC 
Age -0.221 0.028 0.029 
Sex (women) -0.111 0.177 -0.582 
Gait speed 0.297 -0.158 -0.081 
SPPB_BT score 0.291 -0.117 -0.122 
SPPB_GST score 0.292 -0.103 -0.133 
SPPB_CST score 0.279 -0.184 -0.104 
SPPB score 0.352 -0.172 -0.145 
History of falls (yes/no) -0.119 -0.018 -0.154 
History of falls (number) -0.059 -0.045 -0.021 
Grip strength 0.222 -0.211 0.418 
Walking aid use -0.256 0.021 0.166 
Living alone -0.093 0.192 -0.247 
Urinary incontinence -0.106 -0.250 -0.258 
Diabetes -0.055 -0.221 0.121 
Parkinson disease -0.043 -0.064 0.059 
Arthritis or rheumatism -0.112 -0.031 -0.264 
Cognition impairment -0.114 -0.117 0.069 
History of stroke -0.093 -0.043 0.128 
Depression -0.113 -0.143 -0.154 
Pain -0.122 -0.313 -0.154 
Physical disability -0.241 0.055 0.090 
Instrumental disability -0.272 -0.103 0.061 
Fear of falling -0.178 -0.200 -0.081 
Dizziness -0.162 -0.222 -0.119 
Vision impairment -0.077 -0.396 -0.053 
Hearing impairment -0.089 -0.099 0.170 
Number of medication -0.083 -0.478 -0.036 
Physical activity limitations -0.219 -0.147 0.111 
 



 

Figure 4. Scores on the first three principal components of the observations from the three harmonized 
datasets. PCA performed on the three datasets stacked together. Observations from ActiFE, InCHIANTI and 
ELSA are respectively in green, red and blue. 

Associations of covariates with future falls 

The association of the predictor target variables with the outcome target variables was 
quantified on the three populations with logistic and negative binomial regression models. In 
particular, logistic regressions were used for the dichotomous outcome variables “Prospective 
falls (yes/no)” and “Prospective multiple falls (yes/no)”, whereas negative binomial regressions 
were used for the count outcome variable “Prospective falls (number)”. Adjusted quantities 
refer to odds ratios or coefficients of negative binomial regressions where age and sex were 
included as covariates. Results are shown in Table 5, Table 6, and Table 7. Table 5 and Table 6 
also show the unadjusted odds ratios reported in Deandrea et al. [1]. Adjusted odds ratios 
from that same study were not reported because other factors besides age and sex were used 
for adjusting. Weights were used on observations from the ELSA population in order to adjust 
for differential nonresponse rates to the nurse visit. 

Inference on the single calculated quantities can be made using their specified 95 % 
confidence intervals. Statistical significance was more often reached in the ELSA population 
because of its large sample size. Comparisons between the calculated odds ratios and those 
reported in [1] is hindered by the fact that prediction intervals were not available from that 
meta-analysis [14]. 

Table 5. Odds ratios for any fall. 95 % confidence intervals are given in brackets. 

 Deandrea ActiFE InCHIANTI ELSA 
 Unadjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Age (years) 1.02 (1.01-
1.03) 

1.01 (0.99-
1.02)  

1.03 (1.01-
1.06)  

1.06 (1.05-
1.07)  

Sex (women) 1.3 (1.18-
1.42) 

1.4 (1.12-
1.75)  

1.45 (1.05-
1.99)  

1.46 (1.26-
1.69)  

Gait speed (m/s)  0.74 (0.49-
1.11) 

0.82 (0.52-
1.3) 

0.14 (0.07-
0.27) 

0.16 (0.08-
0.35) 

0.2 (0.14-
0.27) 

0.31 (0.22-
0.44) 

SPPB_BT score  0.89 (0.77- 0.91 (0.78- 0.74 (0.65- 0.78 (0.67- 0.7 (0.66- 0.77 (0.72-



1.02) 1.05) 0.84) 0.9) 0.74) 0.82) 

SPPB_GST score  0.96 (0.84-
1.1) 

0.99 (0.86-
1.15) 

0.69 (0.58-
0.82) 

0.74 (0.61-
0.9) 

0.65 (0.6-
0.71) 

0.72 (0.66-
0.79) 

SPPB_CST score  0.84 (0.76-
0.93) 

0.85 (0.76-
0.94) 

0.78 (0.69-
0.88) 

0.82 (0.71-
0.93) 

0.76 (0.72-
0.8) 

0.83 (0.79-
0.88) 

SPPB score  0.93 (0.89-
0.98) 

0.94 (0.89-
0.99) 

0.88 (0.84-
0.93) 

0.9 (0.84-
0.95) 

0.85 (0.82-
0.87) 

0.88 (0.85-
0.91) 

History of falls 
(yes/no) 

2.77 (2.37-
3.25) 

1.57 (1.25-
1.98) 

1.54 (1.22-
1.94) 

1.94 (1.37-
2.75) 

1.75 (1.23-
2.51) 

3.96 (3.39-
4.62) 

3.6 (3.08-
4.22) 

History of falls 
(number) 

 1 (0.99-
1.01) 1 (0.99-1.02) 1.48 (1.26-

1.75) 
1.42 (1.21-
1.68) 

1.48 (1.4-
1.58) 

1.43 (1.34-
1.52) 

Grip strength  0.98 (0.97-
0.99) 0.99 (0.97-1) 0.98 (0.97-

1) 
0.99 (0.97-
1.01) 

0.96 (0.95-
0.97) 

0.97 (0.96-
0.98) 

Walking aid use 2.18 (1.79-
2.65) 

1.84 (0.7-
4.8) 

1.73 (0.65-
4.57) 

1.84 (1.09-
3.09) 

1.45 (0.83-
2.56) 

3 (2.36-
3.83) 

2.19 (1.7-
2.83) 

Living alone 1.33 (1.21-
1.45) 

1.06 (0.81-
1.37) 

0.95 (0.72-
1.25) 

1.36 (0.93-
1.99) 

1.17 (0.79-
1.74) 

1.6 (1.38-
1.86) 

1.24 (1.05-
1.46) 

Urinary 
incontinence 

1.4 (1.26-
1.57) 

1.59 (1.26-
2) 

1.48 (1.16-
1.88) 

1.3 (0.94-
1.78) 

1.08 (0.77-
1.52) 

1.72 (1.43-
2.07) 

1.54 (1.28-
1.87) 

Diabetes 1.19 (1.08-
1.31) 

0.94 (0.67-
1.31) 

0.97 (0.69-
1.35) 

1.24 (0.8-
1.91) 

1.26 (0.81-
1.95) 

1.26 (1-
1.58) 

1.29 (1.02-
1.64) 

Parkinson disease 2.71 (1.08-
6.84) 

1.4 (0.63-
3.15) 

1.43 (0.63-
3.22) 

1.06 (0.29-
3.97) 

1.03 (0.27-
3.86) 

4.08 (1.68-
9.92) 

4.15 (1.69-
10.19) 

Arthritis or 
rheumatism 

1.47 (1.28-
1.70) 

1.34 (1.07-
1.68) 

1.26 (1.01-
1.59) 

1.68 (1.22-
2.32) 

1.55 (1.11-
2.16) 

1.71 (1.48-
1.99) 

1.56 (1.34-
1.82) 

Cognition 
impairment 

1.36 (1.12-
1.65) 

2.1 (0.52-
8.44) 

1.91 (0.47-
7.74) 

1.47 (0.92-
2.35) 

1.12 (0.68-
1.85) 

2.22 (0.92-
5.39) 

1.6 (0.64-
4.03) 

History of stroke 1.61 (1.31-
1.98) 

0.94 (0.57-
1.56) 

0.92 (0.55-
1.54) 

1.04 (0.5-
2.15) 

1.02 (0.49-
2.12) 

1.97 (1.5-
2.59) 

1.77 (1.34-
2.34) 

Depression 1.63 (1.36-
1.94) 

1.15 (0.8-
1.66) 

1.09 (0.75-
1.59) 

2.2 (1.51-
3.19) 

1.92 (1.31-
2.83) 

1.63 (1.29-
2.05) 

1.5 (1.18-
1.9) 

Pain 1.39 (1.19-
1.62) 

1.17 (0.93-
1.48) 

1.13 (0.9-
1.43) 

1.52 (0.91-
2.54) 

1.34 (0.79-
2.26) 

1.66 (1.43-
1.92) 

1.61 (1.38-
1.87) 

Physical disability 1.56 (1.22-
1.99) 

1.55 (0.85-
2.84) 

1.43 (0.77-
2.64) 

2.21 (1.21-
4.02) 

1.85 (0.99-
3.44) 

2.85 (2.38-
3.4) 

2.42 (2.02-
2.91) 

Instrumental 
disability 

1.46 (1.20-
1.77) 

1.25 (0.9-
1.76) 

1.14 (0.79-
1.63) 

2.25 (1.6-
3.18) 

1.95 (1.3-
2.92) 

2.58 (2.12-
3.15) 

2 (1.63-
2.46) 

Fear of falling 1.55 (1.14-
2.09) 

1.42 (0.99-
2.02) 

1.34 (0.93-
1.94) 

1.86 (1.36-
2.54) 

1.59 (1.13-
2.23) 

3.46 (2.64-
4.52) 

2.71 (2.05-
3.58) 

Dizziness 1.80 (1.39-
2.33) 

1.11 (0.89-
1.4) 

1.05 (0.83-
1.33) 

0.98 (0.69-
1.37) 

0.94 (0.66-
1.32) 

2.62 (2.21-
3.11) 

2.23 (1.87-
2.66) 

Vision impairment 1.35 (1.18-
1.54) 

0.95 (0.7-
1.3) 

0.97 (0.7-
1.33) 

1.53 (1.09-
2.15) 

1.32 (0.91-
1.92) 

1.72 (1.46-
2.02) 

1.43 (1.21-
1.69) 

Hearing 
impairment 

1.21 (1.05–
1.39) 

1.24 (0.96-
1.6) 

1.27 (0.97-
1.67) 

1.13 (0.79-
1.61) 

1.07 (0.73-
1.55) 

1.4 (1.2-
1.65) 

1.31 (1.11-
1.55) 

Number of 
medication 

1.06 (1.04–
1.08) 

1.03 (0.99-
1.07) 

1.02 (0.98-
1.07) 

1.12 (1.04-
1.2) 

1.09 (1.01-
1.17) 

1.15 (1.07-
1.24) 

1.14 (1.06-
1.23) 

Physical activity 
limitations 

1.20 (1.04–
1.38) 

1.07 (0.75-
1.52) 

1.01 (0.7-
1.47) 

2.45 (1.71-
3.5) 

2.1 (1.43-
3.1) 

2.26 (1.75-
2.91) 

1.71 (1.31-
2.23) 

Gait problems 2.06 (1.82–
2.33) 

1.02 (0.77-
1.36) 

0.94 (0.69-
1.27) 

2.73 (1.88-
3.97) 

2.43 (1.59-
3.72) 

2.09 (1.78-
2.46) 

1.67 (1.41-
1.99) 

 



Table 6. Odds ratios for multiple falls. 95 % confidence intervals are given in brackets. 

 Deandrea ActiFE InCHIANTI ELSA 
 Unadjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Age (years) 1.02 (1.01-
1.03) 

1.04 (1.02-
1.07)  1.05 (1.02-

1.08)  1.06 (1.04-
1.07)  

Sex 
(women) 

1.34 (1.12–
1.60) 

1.16 (0.84-
1.61)  1.8 (1.11-

2.92)  1.36 (1.12-
1.65)  

Gait speed 
(m/s)  0.43 (0.23-

0.79) 

0.64 
(0.32-
1.26) 

0.12 (0.05-
0.29) 

0.17 
(0.06-
0.52) 

0.13 (0.09-
0.2) 

0.19 
(0.12-
0.3) 

SPPB_BT 
score  0.76 (0.64-

0.9) 

0.82 
(0.68-
0.98) 

0.72 (0.61-
0.86) 

0.78 
(0.63-
0.95) 

0.7 (0.65-
0.74) 

0.75 
(0.7-
0.81) 

SPPB_GST 
score  0.8 (0.68-

0.94) 

0.87 
(0.73-
1.04) 

0.66 (0.53-
0.83) 

0.74 
(0.57-
0.95) 

0.64 (0.58-
0.71) 

0.7 
(0.63-
0.78) 

SPPB_CST 
score  0.76 (0.67-

0.87) 

0.81 
(0.71-
0.93) 

0.73 (0.62-
0.86) 

0.79 
(0.65-
0.96) 

0.69 (0.65-
0.74) 

0.75 
(0.69-
0.8) 

SPPB score 
 0.88 (0.83-

0.93) 

0.9 
(0.85-
0.97) 

0.87 (0.81-
0.93) 

0.9 
(0.83-
0.98) 

0.82 (0.79-
0.85) 

0.84 
(0.81-
0.88) 

History of 
falls (yes/no) 

3.46 (2.85–
4.22) 

2.28 (1.64-
3.17) 

2.16 
(1.55-
3.01) 

3.1 (1.94-
4.96) 

2.71 
(1.68-
4.37) 

5.57 (4.53-
6.84) 

5.11 
(4.14-
6.31) 

History of 
falls 
(number) 

 1.01 (0.99-
1.02) 

1.01 
(0.99-
1.02) 

1.71 (1.41-
2.06) 

1.62 
(1.35-
1.96) 

1.47 (1.38-
1.56) 

1.43 
(1.35-
1.52) 

Grip 
strength  0.98 (0.97-

1) 

0.99 
(0.96-
1.01) 

0.96 (0.94-
0.99) 

0.98 
(0.95-
1.02) 

0.96 (0.95-
0.97) 

0.96 
(0.94-
0.97) 

Walking aid 
use 

3.09 (2.10–
4.53) 

4.14 (1.51-
11.35) 

3.28 
(1.17-
9.13) 

1.86 (0.91-
3.81) 

1.31 
(0.59-
2.88) 

3.58 (2.76-
4.65) 

2.68 
(2.03-
3.53) 

Living alone 1.25 (1.10–
1.43) 

1.39 (0.96-
1.99) 

1.21 
(0.83-
1.78) 

1.5 (0.88-
2.57) 

1.22 
(0.7-
2.11) 

1.38 (1.14-
1.68) 

1.06 
(0.86-
1.32) 

Urinary 
incontinence 

1.67 (1.45–
1.92) 

1.99 (1.43-
2.76) 

1.94 
(1.37-
2.73) 

1.55 (0.98-
2.45) 

1.2 
(0.73-
1.95) 

2.08 (1.67-
2.6) 

1.9 
(1.51-
2.39) 

Diabetes 1.28 (1.09–
1.50) 

1.63 (1.07-
2.49) 

1.61 
(1.05-
2.48) 

1.11 (0.58-
2.11) 

1.13 
(0.59-
2.16) 

1.3 (0.97-
1.73) 

1.33 
(0.99-
1.78) 

Parkinson 
disease 

2.84 (1.77–
4.58) 

3.67 (1.56-
8.65) 

3.24 
(1.36-
7.71) 

0.97 (0.12-
7.64) 

0.94 
(0.12-
7.58) 

4.48 (1.89-
10.6) 

4.41 
(1.85-
10.51) 

Arthritis or 
rheumatism 

1.57 (1.42–
1.73) 

1.36 (0.98-
1.89) 

1.33 
(0.95-
1.86) 

1.63 (1.02-
2.6) 

1.43 
(0.89-
2.31) 

1.7 (1.4-
2.06) 

1.56 
(1.28-
1.9) 

Cognition 
impairment 

1.56 (1.26–
1.94) 

7.62 (1.89-
30.79) 

5.93 
(1.45-
24.31) 

2.01 (1.1-
3.68) 

1.43 
(0.74-
2.76) 

1.98 (0.7-
5.58) 

1.36 
(0.47-
3.97) 

History of 
stroke 

1.79 (1.51–
2.13) 

1.19 (0.6-
2.37) 

1.07 
(0.53-
2.14) 

1.07 (0.37-
3.08) 

1.05 
(0.36-
3.06) 

1.96 (1.42-
2.7) 

1.72 
(1.24-
2.38) 

Depression 1.86 (1.45– 1.58 (0.97- 1.4 2.08 (1.24- 1.66 2.24 (1.72- 2.13 



2.38) 2.56) (0.86-
2.29) 

3.46) (0.98-
2.82) 

2.93) (1.62-
2.8) 

Pain 1.60 (1.44–
1.78) 

1.27 (0.9-
1.78) 

1.22 
(0.87-
1.72) 

1.64 (0.73-
3.65) 

1.32 
(0.58-3) 

1.93 (1.59-
2.34) 

1.89 
(1.55-
2.3) 

Physical 
disability 

2.42 (1.80–
3.26) 

2.56 (1.27-
5.17) 

2.05 (1-
4.2) 

2.4 (1.12-
5.15) 

1.87 
(0.84-
4.16) 

3.3 (2.68-
4.06) 

2.84 
(2.29-
3.52) 

Instrumental 
disability 

2.04 (1.41–
2.95) 

1.79 (1.16-
2.77) 

1.4 
(0.87-
2.24) 

2.79 (1.74-
4.47) 

2.23 
(1.27-
3.93) 

3.26 (2.6-
4.08) 

2.6 
(2.05-
3.29) 

Fear of 
falling 

2.51 (1.78–
3.54) 

1.81 (1.14-
2.87) 

1.52 
(0.94-
2.45) 

2.29 (1.45-
3.62) 

1.81 
(1.11-
2.96) 

3.64 (2.74-
4.83) 

2.9 
(2.16-
3.89) 

Dizziness 2.28 (1.90–
2.75) 

1.8 (1.3-
2.49) 

1.66 
(1.19-
2.31) 

0.98 (0.59-
1.62) 

0.93 
(0.56-
1.55) 

3.2 (2.61-
3.93) 

2.76 
(2.24-
3.42) 

Vision 
impairment 

1.60 (1.28–
2.00) 

0.52 (0.35-
0.77) 

0.58 
(0.39-
0.88) 

2.17 (1.28-
3.67) 

1.94 
(1.09-
3.44) 

1.9 (1.55-
2.32) 

1.59 
(1.29-
1.96) 

Hearing 
impairment 

1.53 (1.33–
1.76) 

1.98 (1.4-
2.79) 

1.76 
(1.22-
2.55) 

1.26 (0.76-
2.09) 

1.17 
(0.68-
2.01) 

1.55 (1.27-
1.9) 

1.43 
(1.16-
1.77) 

Number of 
medication 

1.06 (1.04–
1.08) 

1.08 (1.02-
1.13) 

1.05 (1-
1.11) 

1.1 (0.99-
1.22) 

1.06 
(0.95-
1.18) 

1.21 (1.1-
1.32) 

1.21 
(1.1-
1.33) 

Physical 
activity 
limitations 

 1.37 (0.85-
2.2) 

1.11 
(0.68-
1.84) 

3.08 (1.9-
4.97) 

2.46 
(1.44-
4.17) 

2.8 (2.12-
3.71) 

2.17 
(1.62-
2.91) 

Gait 
problems  1.48 (1.01-

2.16) 

1.16 
(0.77-
1.75) 

3.28 (1.98-
5.45) 

2.73 
(1.51-
4.94) 

2.23 (1.81-
2.76) 

1.82 
(1.45-
2.28) 

 

Table 7. Coefficients from negative binomial regression models for number of falls. 95 % confidence intervals 
are given in brackets. 

 ActiFE InCHIANTI ELSA 
 Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

Age (years) 0.02 (0.01-0.04)  0.03 (0.01-
0.05)  0.02 (0-0.03)  

Sex 
(women) 

0.09 (-0.12-
0.31)  0.28 (-0.04-

0.59)  0.16 (0-0.32)  

Gait speed 
(m/s) 

-0.55 (-0.93--
0.17) 

-0.44 (-0.87--
0.01) 

-1.72 (-2.33--
1.12) 

-1.62 (-2.35--
0.9) 

-1.9 (-2.22--
1.58) 

-1.71 (-2.06--
1.36) 

SPPB_BT 
score 

-0.26 (-0.39--
0.13) 

-0.23 (-0.37--
0.1) 

-0.29 (-0.41--
0.16) 

-0.26 (-0.4--
0.12) 

-0.35 (-0.41--
0.29) 

-0.35 (-0.41--
0.28) 

SPPB_GST 
score 

-0.23 (-0.35--
0.11) 

-0.2 (-0.33--
0.08) 

-0.4 (-0.57--
0.23) 

-0.35 (-0.55--
0.16) 

-0.5 (-0.58--
0.41) 

-0.45 (-0.54--
0.36) 

SPPB_CST 
score 

-0.2 (-0.29--
0.11) 

-0.19 (-0.28--
0.1) 

-0.24 (-0.36--
0.12) 

-0.2 (-0.34--
0.07) 

-0.42 (-0.47--
0.36) 

-0.41 (-0.47--
0.36) 

SPPB score -0.11 (-0.15--
0.06) 

-0.1 (-0.15--
0.05) 

-0.12 (-0.17--
0.07) 

-0.11 (-0.17--
0.05) 

-0.21 (-0.24--
0.18) 

-0.2 (-0.23--
0.16) 

History of 0.71 (0.5-0.92) 0.69 (0.47- 0.88 (0.54- 0.82 (0.48- 1.64 (1.49-1.79) 1.63 (1.48-



falls (yes/no) 0.9) 1.21) 1.16) 1.78) 

History of 
falls 
(number) 

0.1 (0.09-0.11) 0.1 (0.09-
0.11) 

0.42 (0.28-
0.55) 

0.39 (0.26-
0.53) 0.29 (0.28-0.31) 0.29 (0.27-

0.3) 

Grip 
strength 

-0.02 (-0.03--
0.01) 

-0.02 (-0.04--
0.01) 

-0.02 (-0.04--
0.01) 

-0.02 (-0.04-
0) 

-0.02 (-0.03--
0.02) 

-0.04 (-0.06--
0.03) 

Walking aid 
use 

0.84 (-0.02-1.7) 0.76 (-0.1-
1.62) 

0.51 (-0.02-
1.05) 

0.38 (-0.19-
0.95) 1.56 (1.32-1.79) 1.6 (1.36-

1.85) 

Living alone -0.01 (-0.26-
0.24) 

-0.12 (-0.39-
0.14) 

0.27 (-0.11-
0.66) 

0.12 (-0.28-
0.51) 0.02 (-0.15-0.19) -0.08 (-0.26-

0.09) 

Urinary 
incontinence 

0.71 (0.5-0.92) 0.71 (0.48-
0.93) 

0.35 (0.03-
0.66) 

0.22 (-0.11-
0.56) 0.66 (0.47-0.86) 0.65 (0.45-

0.85) 

Diabetes 0.43 (0.13-0.72) 0.43 (0.13-
0.73) 

0.09 (-0.35-
0.54) 

0.15 (-0.29-
0.59) 0.45 (0.2-0.69) 0.43 (0.19-

0.68) 

Parkinson 
disease 

0.85 (0.14-1.56) 0.82 (0.12-
1.53) 

-0.44 (-1.99-
1.11) 

-0.61 (-2.2-
0.99) 1.78 (0.9-2.67) 1.76 (0.88-

2.64) 

Arthritis or 
rheumatism 

0.22 (0.01-0.44) 0.2 (-0.01-
0.42) 

0.43 (0.11-
0.76) 

0.41 (0.09-
0.74) 0.6 (0.44-0.75) 0.63 (0.47-

0.79) 

Cognition 
impairment 

0.77 (-0.5-2.05) 0.55 (-0.73-
1.83) 

0.35 (-0.12-
0.82) 

0.05 (-0.45-
0.55) 

-0.02 (-1.07-
1.03) 

-0.09 (-1.13-
0.96) 

History of 
stroke 

0.68 (0.25-1.11) 0.67 (0.24-
1.1) 

0.07 (-0.65-
0.79) 0.1 (-0.6-0.81) 0.16 (-0.15-0.47) 0.13 (-0.17-

0.44) 

Depression 0.39 (0.05-0.72) 0.33 (-0.01-
0.66) 

0.61 (0.24-
0.99) 

0.52 (0.14-
0.91) 0.61 (0.36-0.86) 0.6 (0.35-

0.85) 

Pain 0.31 (0.09-0.53) 0.31 (0.08-
0.53) 

0.33 (-0.16-
0.82) 

0.22 (-0.28-
0.72) 0.77 (0.62-0.93) 0.83 (0.67-

0.98) 

Physical 
disability 

1.22 (0.71-1.73) 1.19 (0.68-
1.7) 

0.83 (0.23-
1.42) 

0.75 (0.15-
1.35) 1.33 (1.16-1.51) 1.36 (1.18-

1.54) 

Instrumental 
disability 

0.57 (0.27-0.88) 0.49 (0.17-
0.82) 

0.75 (0.41-
1.09) 

0.64 (0.24-
1.04) 1.49 (1.29-1.68) 1.51 (1.31-

1.72) 

Fear of 
falling 

0.75 (0.44-1.07) 0.7 (0.37-
1.02) 0.69 (0.39-1) 0.58 (0.25-

0.92) 1.58 (1.31-1.84) 1.56 (1.29-
1.82) 

Dizziness 0.5 (0.29-0.71) 0.46 (0.24-
0.68) 0 (-0.34-0.34) -0.06 (-0.4-

0.28) 1.38 (1.21-1.55) 1.37 (1.2-
1.55) 

Vision 
impairment 

-0.31 (-0.59--
0.02) 

-0.23 (-0.53-
0.06) 

0.47 (0.13-
0.81) 

0.36 (-0.01-
0.73) 0.39 (0.21-0.56) 0.33 (0.15-

0.51) 

Hearing 
impairment 

0.39 (0.15-0.63) 0.34 (0.08-
0.59) 

0.24 (-0.11-
0.59) 

0.2 (-0.16-
0.57) 0.27 (0.09-0.44) 0.24 (0.07-

0.42) 

Number of 
medication 

0.09 (0.06-0.13) 0.08 (0.05-
0.12) 

0.1 (0.02-
0.17) 0.08 (0-0.15) 0.25 (0.17-0.33) 0.26 (0.18-

0.34) 

Physical 
activity 
limitations 

0.53 (0.22-0.85) 0.47 (0.14-
0.8) 

0.8 (0.45-
1.15) 

0.68 (0.3-
1.06) 1.21 (0.95-1.47) 1.18 (0.91-

1.45) 

Gait 
problems 

0.44 (0.19-0.7) 0.37 (0.09-
0.64) 

0.97 (0.61-
1.33) 

0.9 (0.49-
1.32) 0.97 (0.8-1.13) 0.87 (0.7-

1.05) 

 



Optimum reference 

The performance of a predictive model of interest is often compared to a reference model that 
we intend to outperform (e.g. a dummy or state-of-the-art model) or an ‘optimal’ model that 
we intend to approach. For example, we recall the definition of the skill score (SS) of a forecast 
(see e.g. [15]): 

𝑆𝑆𝑆𝑆 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 

For the AUC, natural lower and upper reference values may be 0.5 and 1. For the BS, they are 
UNC and 0. However, the BS can reach zero only if the model is deterministic. Similarly, the 
AUC of a probabilistic model is expected to be lower than 1. 

In this section, we have taken as optimal reference score the score that our model of interest 
(FRAT-up) would attain if evaluated on the same subjects and under the hypothesis of perfect 
calibration of the model. 

We call 𝑥̅𝑥 the observed 𝑛𝑛-by-𝑝𝑝 matrix of covariates, with 𝑛𝑛 number of subjects of the sample 
and 𝑝𝑝 number of covariates measured on each subject. We call 𝑦𝑦� the 𝑛𝑛-by-1 vector of 1’s and 
0’s that is the target of our prediction. We call 𝑓𝑓 our model of interest and 𝑦𝑦� = 𝑓𝑓(𝑥̅𝑥) our 
probabilistic predictions. In particular, the 𝑖𝑖-th component of 𝑦𝑦� is the probability, assigned by 
the model 𝑓𝑓, for the 𝑖𝑖-th component of 𝑦𝑦� to be 1. We call 𝑆𝑆(𝑦𝑦�,𝑓𝑓(𝑥̅𝑥)) the score assigned to our 
model 𝑓𝑓. For example, 𝑆𝑆 may be the AUC or the BS. 

We propose 𝑆𝑆(𝑌𝑌,𝑓𝑓(𝑥̅𝑥)), with 𝑌𝑌|𝑋𝑋 = 𝑥̅𝑥 ~ 𝑓𝑓(𝑥̅𝑥) as the optimum reference score for a fixed 
dataset of covariates 𝑥̅𝑥. As 𝑌𝑌 is a random quantity, also 𝑆𝑆(𝑌𝑌,𝑓𝑓(𝑥̅𝑥)) is.  

The notation 𝑌𝑌|𝑋𝑋 = 𝑥̅𝑥 ~ 𝑓𝑓(𝑥̅𝑥) means that the 𝑖𝑖-th component of 𝑌𝑌 follows a Bernoulli 
distribution with parameter equal to the 𝑖𝑖-th component of 𝑓𝑓(𝑥̅𝑥), for every 𝑖𝑖 = 1,2, … , 𝑛𝑛. 

In order to estimate the distribution of 𝑆𝑆(𝑌𝑌,𝑓𝑓(𝑥̅𝑥)), we draw a vector 𝑦𝑦𝑘𝑘  from a distribution 
described by 𝑓𝑓(𝑥̅𝑥). We then calculate 𝑠𝑠𝑘𝑘 = 𝑆𝑆( 𝑦𝑦𝑘𝑘 ,𝑓𝑓(𝑥̅𝑥)), and repeat this procedure for 
𝑘𝑘 = 1,2, … ,𝐾𝐾, with 𝐾𝐾 = 2000. The 𝑠𝑠𝑘𝑘’s are then distributed as 𝑆𝑆(𝑌𝑌,𝑓𝑓(𝑥̅𝑥)), for 𝑌𝑌|𝑋𝑋 =
𝑥̅𝑥 ~ 𝑓𝑓(𝑥̅𝑥). 

In Figure 5 the actual values 𝑆𝑆(𝑦𝑦�,𝑓𝑓(𝑥̅𝑥)) are compared to the distributions of the optimum 
quantities 𝑆𝑆(𝑌𝑌,𝑓𝑓(𝑥̅𝑥)), 𝑌𝑌|𝑋𝑋 = 𝑥̅𝑥 ~ 𝑓𝑓(𝑥̅𝑥), for the three datasets and for 𝑆𝑆 being AUC and GRES. 
The optimal median AUCs are ordered as the actual values, with the optimal median AUC for 
ELSA being the highest and the optimal median AUC for ActiFE being the lowest. However, 
they take less extreme values and the distributions are largely overlapped. The same is valid 
for GRES, though the ranking between the median GRES on InCHIANTI and ELSA is inverted. 

These results suggest that the differences in the distributions of the risk factors among the 
three populations only partially explain the differences in the performance that FRAT-up 
attains in the three dataset. 



 

Figure 5. Comparison between optimal and actual values of AUC and GRES attained by FRAT-up on the 
three datasets. The actual values 𝑺𝑺(𝒚𝒚�,𝒇𝒇(𝒙𝒙�)) are marked in red. S is the AUC (left panel) and the GRES (right 
panel). The distributions of the optimal values of AUC and GRES are shown as boxplots computed from the 
𝒔𝒔𝒌𝒌’s, derived as explained in the text. 

 

Sensitivity analysis 

The scope of the sensitivity analysis here presented is to identify FRAT-up most influential 
variables.  

The strategy is to compare the performance of FRAT-up with the performance of some of its 
alterations on the three datasets. The scores that are used to quantify the performance are the 
AUC, and the Brier skill score (BSS). The BSS is defined as 𝐵𝐵𝐵𝐵𝐵𝐵 = 1 − 𝐵𝐵𝑆𝑆/𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟, where 𝐵𝐵𝐵𝐵 is 
the Brier score and 𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟 is the Brier score of a classifier that assigns each subject a risk equal 
to the prevalence in the population. 

The alterations are produced via variable removal and variable permutation.  

• Sensitivity analysis through variable removal. Values of one risk factor are set to not 
available. A score of the performance of the model is calculated. This procedure is 
repeated for each risk factor. 

• Sensitivity analysis through variable permutation. Values of one risk factor are 
permuted 50 times across the samples in the dataset. For each permutation, a score of 
the performance of the model is calculated. A mean score is obtained averaging across 
permutations. The procedure is repeated for each risk factor. 

Results are shown in Table 8, Table 9 and Figure 6.  

 



Table 8. Sensitivity analysis through variable removal. Δ indicates the increase in the performance score. 
Negative values indicate performance decrease in the altered models. 

 Δ AUC Δ BSS 
 ActiFE InCHIANTI ELSA ActiFE InCHIANTI ELSA 
Age 0.0009 -0.0013 -0.0028 0.0026 -0.0011 -0.0021 
Female sex -0.0034 0.0004 -0.0006 -0.0013 0.0025 -0.0011 
Living alone 0.0002 -0.0008 -0.0019 0.0014 -0.0025 -0.0018 
History of falls -0.0124 -0.0059 -0.0404 -0.0019 -0.0109 -0.0365 
Physical activity 
limitation 0.0005 -0.0009 0.0003 0.0012 -0.0041 0.0018 
Physical disability 0.0004 0.0002 -0.0006 0.0010 -0.0012 -0.0028 
Instrumental 
disability 0.0007 -0.0012 0.0009 0.0021 0.0020 -0.0004 
Walking aid use 0.0006 -0.0006 0.0006 0.0016 -0.0029 0.0003 
Cognition 
impairment -0.0001 -0.0005 -0.0001 0.0003 -0.0016 0.0020 
Depression 0.0009 -0.0067 0.0020 0.0030 -0.0017 0.0011 
History of stroke 0.0012 0.0009 -0.0003 0.0018 -0.0011 0.0001 
Urinary 
incontinence -0.0066 0.0035 -0.0012 -0.0019 0.0092 -0.0011 
Rheumatic 
disease -0.0053 -0.0055 0.0005 -0.0010 -0.0075 -0.0009 
Dizziness 0.0041 0.0063 -0.0010 0.0076 0.0149 -0.0045 
Diabetes 0.0007 -0.0001 0.0006 0.0010 0.0004 0.0002 
Poor self-
perceived health 
status 0.0004 -0.0009 NA 0.0038 -0.0045 NA 
Pain 0.0006 0.0006 0.0021 0.0027 0.0166 -0.0017 
Fear of falling -0.0002 -0.0041 -0.0009 0.0029 0.0001 0.0017 
Parkinson disease -0.0012 0.0020 -0.0015 0.0001 0.0022 -0.0014 
Sedatives 0.0004 -0.0001 NA 0.0006 -0.0015 NA 
Antihypertensives 0.0004 -0.0014 NA 0.0010 0.0005 NA 
Antiepileptics -0.0022 -0.0003 NA -0.0012 0.0001 NA 
Gait problems 0.0080 -0.0080 0.0031 0.0093 -0.0149 0.0003 
Vision 
impairment -0.0008 -0.0012 0.0006 -0.0033 0.0043 -0.0006 
Hearing 
impairment -0.0002 0.0001 -0.0001 0.0006 -0.0006 0.0002 
Number of 
medications 0.0007 -0.0008 0.0008 0.0022 0.0007 0.0020 
 



 
Table 9. Sensitivity analysis through variable permutation. Δ indicates the increase in the performance score. 
Negative values indicate performance decrease in the altered models. 

 Δ AUC Δ BSS 
 ActiFE InCHIANTI ELSA ActiFE InCHIANTI ELSA 
Age 0.0009 -0.0021 -0.0037 0.0023 -0.0015 -0.0032 
Female sex -0.0032 0.0002 -0.0013 -0.0015 0.0009 -0.0010 
Living alone 0.0002 -0.0011 -0.0027 0.0011 -0.0008 -0.0022 
History of falls -0.0161 -0.0106 -0.0547 -0.0099 -0.0105 -0.0453 
Physical activity 
limitation 0.0005 -0.0014 0.0001 0.0009 -0.0014 0.0000 
Physical disability 0.0004 -0.0003 -0.0019 0.0008 -0.0016 -0.0025 
Instrumental 
disability 0.0004 -0.0017 0.0000 0.0017 -0.0021 -0.0005 
Walking aid use 0.0006 -0.0016 -0.0021 0.0011 -0.0022 -0.0029 
Cognition 
impairment -0.0001 -0.0012 0.0000 -0.0001 -0.0022 0.0000 
Depression -0.0003 -0.0079 0.0007 0.0013 -0.0052 -0.0001 
History of stroke 0.0009 0.0003 -0.0015 0.0010 0.0011 -0.0017 
Urinary 
incontinence -0.0070 0.0025 -0.0031 -0.0029 0.0020 -0.0026 
Rheumatic 
disease -0.0065 -0.0071 -0.0024 -0.0035 -0.0035 -0.0028 
Dizziness 0.0026 0.0037 -0.0055 0.0050 0.0059 -0.0066 
Diabetes 0.0004 -0.0006 0.0001 0.0006 -0.0006 -0.0002 
Poor self-
perceived health 
status -0.0004 -0.0013 NA 0.0023 -0.0014 NA 
Pain -0.0009 0.0010 -0.0007 0.0019 0.0026 -0.0015 
Fear of falling -0.0005 -0.0053 -0.0016 0.0019 -0.0043 -0.0021 
Parkinson disease -0.0013 0.0013 -0.0022 -0.0004 0.0009 -0.0018 
Sedatives 0.0004 -0.0002 NA 0.0004 -0.0006 NA 
Antihypertensives 0.0004 -0.0015 NA 0.0013 -0.0008 NA 
Antiepileptics -0.0020 -0.0003 NA -0.0011 -0.0001 NA 
Gait problems 0.0070 -0.0105 -0.0037 0.0071 -0.0100 -0.0051 
Vision 
impairment -0.0008 -0.0017 -0.0004 -0.0014 -0.0007 -0.0008 
Hearing 
impairment -0.0003 0.0001 -0.0004 0.0003 0.0001 -0.0004 
Number of 
medications 0.0005 -0.0005 0.0007 0.0023 0.0001 0.0004 
 



 
Figure 6. AUC and Brier skill score of the altered models on the three datasets. Each circle or cross represents 
a risk factor. Circles are relative to model alteration through variable removal. Crosses are relative to model 
alteration through variable permutation. Horizontal and vertical dotted lines indicate performance of the 
unaltered FRAT-up. 
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Appendix 3. ActiFE 
This appendix contains a description of how the variables in the ActiFE dataset have been processed to 
validate FRAT-up. 

The variables of the ActiFE dataset are called ‘source variables’. The variables that are needed in FRAT-up 
are called ‘target variables’. Among the target variables we distinguish the predictor target variables and an 
outcome target variable. In Chapter 4, predictor target variables are also called ‘risk factors’ and the source 
variables used to derive these target variables are called ‘risk factor estimators’. 

For the sake of clarity and brevity, the documentation does not take into account in details how missing 
values (not applicable, refusal, unknown…) are coded and handled. To have this kind of information, please 
refer to the original documentation of the database and contact us for the R scripts. 

Outcome target variable 

Prospective falls (yes/no) 
Source variable: “sturz”.  

Description of “sturz”. Whether the subject reports at least one fall in their fall calendar. Possible values: 0 
(=no fall), 1 (=at least one fall). The fall calendar covers about 12 months after the baseline assessment, but 
the exact time coverage slightly changes among subjects. 

Conversion. Prospective falls (yes/no) = sturz 

Possible values for “Prospective falls (yes/no)”: 0, 1. 

Predictor target variables 

Age 
Source variable: “alter”. 

Description of “alter”. Age at baseline in years. Range of values [65.3, 91.4]. 

Conversion. Age = alter. 

Sex 
Source variable: “sex”. 

Description of “sex”. Gender. Possible values: 1 (=male), 2 (=female). 

Conversion. Sex = sex-1. 

Living situation 
Source variable: “IV1N022”. 

Description of “IV1N022”. Question “Are there any persons you know living in your house?”. Possible 
values: 0 (=no), 1 (=yes). 



Conversion. Living situation = 1 - IV1N022. 

History of falls (yes/no) 
Source variable: “sturz12”. 

Description of “sturz12”. Label in the dataset: fall in the last 12 months (self-report). Possible values: 0 
(=no), 1 (=yes). 

Conversion. History of falls (yes/no) = sturz12. 

History of falls (number) 
Source variable: “sturz12_anz”.  

Description of “sturz12_anz”. Label in the dataset: number of falls in the last 12 months (self-report).  

Conversion. History of falls (number) = sturz12_anz. 

Physical activity limitation 
Source variable: “walktime_daily”. 

Description of “walktime_daily”. Label in the dataset: mean time of walking per day (min) from ActivePal`s. 

Conversion. If walktime_daily <60 { Physical activity limitation = 1} otherwise { Physical activity limitation = 
0 }. 

Physical disability 
Source variable: “adl_aid”. 

Description of “adl_aid”. Label in the dataset: number of activities which require aid (ADL). Possible values: 
0,1,2,3,4,5. Subjects are asked on the following activities: 

• Taking a shower or bath 
• Getting dressed and undressed 
• Sitting on and getting up from a chair 
• Going up and down a staircase with 15 steps without making a break 
• Making a 5-min walk without stopping 

Conversion rule. If adl_aid>=1 {Physical disability = 1}, otherwise { Physical disability = 0}.  

Instrumental disability 
Source variable “iadl_aid”. 

Description of “iadl_aid”. Label in the dataset: number of activities which require aid (IADL). Possible 
values: 0,1,2,3,4,5. Subjects are asked on the following activities: 

• Using their own means of transport (e.g. bicycle, car) or public transport (e.g. bus, train) 
• Doing independently light housework (making beds, washing dishes…) 
• Managing independently the drugs to take 
• Going shopping independently 
• Cutting their own toenails 



Conversion rule. If iadl_aid>=1 {Instrumental disability = 1}, otherwise { Instrumental disability = 0}. 

Cognitive impairment 
Source variable: “mmse”. 

Description of “mmse”. Label in the dataset: ‘Mini-Mental-State-Examination (MMSE)’. Possible values: 
0,1,2,…,30.  

Conversion rule. If mmse<=20 {Cognitive impairment = 1}, otherwise { Cognitive impairment = 0}. 

Depression 
Source variable: “hads_d”. 

Description of “hads_d”. “hads_d” is the depression subscore of the Hospital Anxiety and Depression Scale 
(HADS). Possible values: 0,1,2,…,21.  

Conversion rule. If hads_d>=8 {Depression = 1}, otherwise {Depression = 0}. 

History of stroke 
Source variable: “stroke” 

Description of “stroke”. Question: ‘Has a doctor ever told you that you have or had any of these 
diseases?...Stroke (no TIA)’. Possible values: 0 (=no), 1 (=yes and I am still impaired / yes but it does not 
affect me any more). 

Conversion rule. History of stroke = stroke. 

Urinary incontinence 
Source variable: “IV3N778”. 

Description of “IV3N778”. Question ‘When you lose involuntarily urine?’. 

Conversion rule. If IV3N778=0 (=never - no urine leakage) {Urinary incontinence = 1}, otherwise { Urinary 
incontinence = 0}. See the R code for knowing more. 

Rheumatic disease 
Source variables: “arthritis”, “rheuma”. 

Description of “arthritis”. Question ‘Has a doctor ever told you that you have or had any of these 
diseases?... Arthrosis / arthritis’. Possible values: 0 (=no), 1 (=yes and I am still impaired / yes but it does not 
affect me any more). 

Description of “rheuma”. Question ‘Has a doctor ever told you that you have or had any of these 
diseases?... Rheumatic diseases? As classical rheumatoid or lupus (not arthrosis / arthritis)’. Possible values: 
0 (=no), 1 (=yes and I am still impaired / yes but it does not affect me any more). 

Conversion rule. If arthritis==1 or rheuma==1 { Rheumatic disease = 1}, otherwise { Rheumatic disease = 0} 

Dizziness and vertigo 
Source variable: “IV3N791”. 



Description of “IV3N791”. Question ‘Do you suffer of vertigo’. Possible values: 0 (=never),1-4 (=rarely- 
constantly). 

Conversion rule. If IV3N791==0 {Dizziness and vertigo = 0}, otherwise { Dizziness and vertigo = 1}. 

Diabetes 
Source variable: “diab” 

Description of “diab”. Question: ‘Has a doctor ever told you that you have or had any of these 
diseases?...Diabetes/diabetes mellitus’. Possible values: 0 (=no), 1 (=yes and I am still impaired / yes but it 
does not affect me any more). 

Conversion rule. Diabetes = diab. 

Self-perceived health status  
Source variable: “sah”. 

Description of “sah”. Question ‘How would you describe your health in general?’. Possible values: 0 (=less 
than well, bad), 1(=excellent, very good, good). 

Conversion rule. Self-perceived health status = sah. 

Pain 
Source variables: “pain”, “backpain”. 

Description of “pain”. Question ‘Do you have chronic pain (not back pain, osteoarthritis, arthritis)?’. 
Possible values: 0 (=no), 1 (=yes and I am still impaired / yes but it does not affect me any more). 

Description of “backpain”. Question ‘Do you have back pain?’. Possible values: 0 (=no), 1 (=yes and I am still 
impaired / yes but it does not affect me any more). 

Conversion rule. If pain==1 or backpain==1 { Pain = 1}, otherwise { Pain = 0}. 

Fear of falling 
Source variable: “fesi”. 

Description of “fesi”. Label in the dataset ‘Short FES-I’. Possible values: 7,8,9,…,28. Activities on which 
subjects are asked are: 

• Dressing and undressing 
• Taking a shower 
• Getting up from and sitting down to a chair 
• Going upstairs or downstairs 
• Grasping something above the head or on the floor 
• Moving up or down a slope 
• Going to an event (e.g. a family reunion, an association meeting or a service) 

Conversion rule. If fesi>=11 {Fear of falling = 1}, otherwise {Fear of falling = 0}. 

Parkinson disease 
Source variable: “ATC”. 



Description of “ATC”. ATC codes of the medications used by the subject.  

Conversion rule. If at least one of the ATC codes is in the list ('N04BA02', 'N04BA03', 'N04BA01', 'N04BC01', 
'N04BC06', 'N04BC10', 'N04BC02', 'N04BC05', 'N04BC04', 'N04BC09', 'N04BD02', 'N04BD01', 'N04BX02', 
'N04AA02', 'N04AA11', 'N04AA03', 'N04AA04', 'N04AA01', 'N04BB01', 'N04BX03', 'N04BX01', 'N04BC07') 
{Parkinson = 1}, otherwise {Parkinson = 0}. 

Number of medications 
Source variables: “ATC”. 

Description of “ATC”. ATC codes of the medications used by the subject.  

Conversion rule. Number of medications = number of unique ATC codes associated to a given subject. 

Sedatives 
Source variables: “ATC”. 

Description of “ATC”. ATC codes of the medications used by the subject.  

Conversion rule. If at least one of the ATC codes begins with ‘N05C’ {Sedatives = 1}, otherwise {Sedatives = 
0}. 

Antihypertensives 
Source variables: “ATC”. 

Description of “ATC”. ATC codes of the medications used by the subject.  

Conversion rule. If at least one of the ATC codes is in the list (“C09CA[01-04,06-08]”, “C09DA[01-04,06,08”, 
“C03AA03”, “C03BA04”, “C03BA11”, “C03CA[01,03,04]”, “C03EA01”, “C03EB01”, “QC03CA0”, “C09AA”, 
“C09AA[01-13,15]”, “C09BA[01-09,12]”, “C08CA[01-09,11-13]”, “C08DA01”, “C08DB01”, “C07AA05”, 
“C07AA07”, “C07AA12”, “C07AB[02,03,07,08,12]”, “C07AG02”, “C07CA02”, “C07CB02”, “C07CB03”, 
“C02AC01”, “C02CA04”, “C02CA05”, “C02CA49”, “C02KA49”, “C02KD01”, “C02LA51”, “C03DA[01-03]” { 
Antihypertensives = 1}, otherwise { Antihypertensives = 0}. 

Antiepileptics 
Source variables: “ATC”. 

Description of “ATC”. ATC codes of the medications used by the subject.  

Conversion rule. If at least one of the ATC codes is in the list (“N03AA02”, “N03AA03”, “N03AB02”, 
“N03AB52”, “N03AF01”, “N03AF02”, “N03AG01”, “N03AX12”, “N03AX16”) { Antiepileptics = 1}, otherwise { 
Antiepileptics = 0}. 

Grip strength 
Source variable: “handkraft”. 

Description of “handkraft”. Grip strength was measured two times for each hand, with arm at 90° on the 
table. “handkraft” is the maximum between the mean grip strength measured on the right hand, and the 
mean grip strength measured on the left hand. 

Conversion rule. Grip strength = handcraft. 



Gait speed 
Source variable: “speed”. 

Description of “speed”. Time for walking a giving distance (4 m on some subjects, 3 m on others) at self-
select gait speed was measured twice. “speed” was computed as the distance (4 m or 3 m) divided by the 
mean of the two recorded times. 

Conversion rule. Gait speed = speed. 

SPPB balance 
Source variable: “sppb_bt”. 

Description of “sppb_bt”. Label in the dataset: ‘SPPB-Balance Test’. Possible values: 0,1,2,3,4. It was 
computed from:  

• “iv1n349” (=balance test performed; 0=no, 1=yes),  
• “iv1n350” (=Side by side (feet together) held more than 10 sec?; 1=yes, 0=no, 2=not carried out),  
• “iv1n351” (=Semi-tandem stand held for more than 10 sec; 1=yes, 0=no, 2=not carried out),  
• “iv1n352” (=Tandem stand held for more than 10; 1=yes, 0=no, 2=not carried out),  
• “iv1n353” (=Tandem stand, held time in sec.) 

according to the following algorithm: 

if iv1n349=0 or iv1n350=0 or iv1n350=2                                  then sppb_bt = 0; 

if iv1n350=1 and (iv1n351=0 or iv1n351=2)                               then sppb_bt = 1; 

if iv1n350=1 and iv1n351=1 and (iv1n352=2 or iv1n352=0 or iv1n353 < 3)  then sppb_bt = 2; 

if iv1n350=1 and iv1n351=1 and  iv1n353 >= 3 and iv1n353 < 10           then sppb_bt = 3; 

if iv1n352 = 1                                                          then sppb_bt = 4; 

if iv1n352=.M and iv1n353=.M                                            then sppb_bt = .; 

if iv1n352=0 and iv1n353 in (.M,.A)                                     then sppb_bt = .; 

Conversion rule. SPPB balance = sppb_bt 

SPPB gait 
Source variable: “sppb_gst”. 

Description of “sppb_gst”. Label in the dataset: ‘SPPB-Gait Speed Test’. Possible values: 0,1,2,3,4. Time for 
walking a giving distance (4 m on some subjects, 3 m on others) at self-select gait speed was measured 
twice. “gaitspeed” was computed as the maximum of the two velocities measured from the two trials. 
“sppb_gst” was computed from “gaitspeed” according to the following algorithm: 

if the walking test is not performed           then sppb_gst = 0; 

if gaitspeed <= 0.43 and gaitspeed ne .    then sppb_gst = 1; 

if gaitspeed >  0.43 and gaitspeed <= 0.60 then sppb_gst = 2; 

if gaitspeed >  0.60 and gaitspeed <= 0.77 then sppb_gst = 3; 



if gaitspeed >  0.77                       then sppb_gst = 4; 

Conversion. SPPB gait = sppb_gst. 

SPPB chair standing 
Source variable: “sppb_cst”. 

Description of “sppb_cst”. Label in the dataset: ‘SPPB-Chair Stand Test’. Possible values: 0,1,2,3,4. 
“iv1n367” is the time for standing five time from the chair. “sppb_cst” is calculated according to the 
algorithm: 

if test not performed                               then sppb_cst = 0; 

if iv1n367 >= 16.7                             then sppb_cst = 1; 

if iv1n367 >= 13.6 and iv1n367 < 16.7          then sppb_cst = 2; 

if iv1n367 >= 11.2 and iv1n367 < 13.6          then sppb_cst = 3; 

if iv1n367 < 11.2 and iv1n367 not in (.,.A,.M) then sppb_cst = 4; 

Conversion. SPPB chair standing = sppb_cst. 

SPPB 
Source variable: “sppb”. 

Description of “sppb”. Label in dataset: ‘SPPB’. Possible values: 0,1,2,…,12. “sppb” is the sum of “sppb_bt”, 
“sppb_gst” and “sppb_cst”, whose description is given above. 

Conversion. SPPB = sppb. 

Gait problems 
Source variable: “sppb_gst”. 

Description of “sppb_gst”. It is given above at the paragraph “SPPB gait”. 

Conversion. If sppb_gst<4 {Gait problems = 1}, otherwise { Gait problems = 0}. 

Walking aid use 
Source variable: “IV1N359”. 

Description of “IV1N359”. Walking aid used during the walking test. Possible values: 1 (= no walking aid), 
2,3,4 (= different walking aids). 

Conversion. If IV1N359==1 {Walking aid use = 0}, otherwise { Walking aid use = 1}. 

Vision impairment 
Source variable: “IV3N793”. 

Description of “IV3N793”. Scores according to Jaeger, 35 cm distance.  

Conversion. If IV3N793 < 5 {Vision impairment = 1}, otherwise { Vision impairment = 0}. 



Hearing impairment 
Source variable: “IV3N792”. 

Description of “IV3N792”. How well the subject hears, rated by the interviewer. Possible values: 4 (=very 
good), 3 (=good), 2 (=fair), 1 (=poor). 

Conversion. If IV3N792== 1 or 2 { Hearing impairment = 1}, otherwise { Hearing impairment = 0}. 



Appendix 3. ELSA 
This appendix contains a description of how the variables in the ELSA dataset have been processed to 
validate FRAT-up. 

The variables of the ELSA dataset are called ‘source variables’. The variables that are needed in FRAT-up are 
called ‘target variables’. Among the target variables we distinguish the predictor target variables and an 
outcome target variable. In Chapter 4, predictor target variables are also called ‘risk factors’ and the source 
variables used to derive these target variables are called ‘risk factor estimators’. 

For the sake of clarity and brevity, the documentation does not take into account in details how missing 
values (not applicable, refusal, unknown…) are coded and handled. To have this kind of information, please 
refer to the original documentation of the database and contact us for the R scripts. 

The outcome variable is taken from ELSA wave 3. Predictor variables are taken from ELSA wave 2. Wave 2 is 
chosen as baseline assessment because it is the first wave during which a nurse visit was carried out. Wave 
3 was carried out about 2 years after wave 2. 

Outcome target variable 

Prospective falls (yes/no) 
Source variable: “hefla” 

Description of “hefla”. Whether the subject has ever fallen down since the last interview. Possible values: 1 
(=yes), 2 (=no). 

Conversion. If hefla==1 { Prospective falls (yes/no) = 1}, otherwise { Prospective falls (yes/no) = 0}. 

Predictor target variables 

Age 
Source variable: “indager”. 

Description of “indager”. Label in the dataset: ‘Definitive age variable collapsed at 90 plus’. Possible values: 
non-negative integers less than 90. 

Conversion. Age = indager. 

Sex 
Source variable: “indsex”. 

Description of “indsex”. Label in the dataset: ‘Definitive sex variable’. Possible values: 1 (=male), 2 
(=female). 

Conversion. Sex = indsex – 1. 

Living situation 
Source variable: “DhR”, “DhR[2-12]” 



Description of “DhR” and “DhR[2-12]”. Relationship of the subject with person i in the household, i=1,…,12. 
Possible values: 1 (=husband/wife), 2 (=partner/cohabitee), …, 96 (=self). 

Conversion. The number of source variables that are not left blank is used to determine the number of 
subjects in the same household. If there is only one subject for a given household, {Living situation = 1}, 
otherwise { Living situation = 0}. 

History of falls (yes/no) 
Source variable: “HeFla”. 

Description of “HeFla”. Whether the subject has ever fallen down since the last interview. Possible values: 1 
(=yes), 2 (=no). 

Conversion. If HeFla==1 { History of falls (yes/no) = 1}, otherwise { History of falls (yes/no) = 0}. 

History of falls (number) 
Source variable: “HeFla”, “HeFlb”. 

Description of “HeFla” is given above. 

Description of “HeFlb”. Number of falls experienced since the last interview. 

Conversion. If HeFla == 2 { History of falls (number) = 0}, otherwise { History of falls (number) = HeFlb}. 

Physical activity limitation 
Source variable: “palevel”. 

Description of “palevel”. Derived variable. Label in the dataset: ‘Physical activity summary’. Possible values: 
0 (=Sedentary), 1 (=Low), 2 (=Moderate), 3 (=High). Description of variable from the ELSA documentation: 
“This variable summarises the answers to the level of work activity (WPJACT) in the work and pensions 
section and three questions on physical activity “in daily life” in the health section (HEACTA - HEACTC). It 
approximates as closely as possible the classification used in the Allied Dunbar Survey of Fitness. [Reference 
Activity and Health Research (1992) Allied Dunbar National Fitness Survey: main findings, London: Sports 
Council and Health Education Authority.] Levels used in this variable are defined as follows 

• Sedentary: Not working or sedentary occupation, engages in mild exercise 1–3 times a month or 
less, with no moderate or vigorous activity. 

• Low: Standing occupation, engages in moderate leisure-time exercise once a week or less and no 
vigorous activity; OR engages in mild leisure-time activity at least 1–3 times a month, moderate 
once a week or less and no vigorous; OR has a sedentary or no occupation and engages in 
moderate leisure-time activity once a week or 1–3 times a month, with no vigorous activity. 

• Moderate: Does physical work; OR engages in moderate leisure-time activity more than once a 
week; OR engages in vigorous activity once a week to 1–3 times a month. 

• High: Heavy manual work or vigorous leisure activity more than once a week.” 

For knowing the exact algorithm, please refer to the ELSA documentation. 

Conversion. If palevel == 0 { Physical activity limitation = 1}, otherwise { Physical activity limitation =0}. 



Physical disability 
Source variables: “headb[01-13]”. 

Description of “headb[i]”, i=01,02,…,13. Label in the dataset ‘IADL: activity has problem with due to 
health/physical problem (i-th mention)’. Possible values: 

• 1 = Dressing, including putting on shoes and socks 
• 2 = Walking across a room 
• 3 = Bathing or showering 
• 4 = Eating, such as cutting up your food 
• 5 = Getting in or out of bed 
• 6 = Using the toilet, including getting up or down 
• 7 = Using a map to get around in a strange place 
• 8 = Preparing a hot meal 
• 9 = Shopping for groceries 
• 10 = Making telephone calls 
• 11 = Taking medications 
• 12 = Doing work around the house or garden 
• 13 = Managing money, eg paying bills & keeping track ofexpenses 
• 96 = None of these 

Conversion. If at least a problem is recorded on any of the activities marked by values 2-6 { Physical 
disability = 1}, otherwise { Physical disability = 0}. 

Instrumental disability 
Source variable: “headb[01-13]”. 

Description of these variables is given above. 

Conversion. If at least a problem is recorded on any of the activities marked by values 8-13 { Physical 
disability = 1}, otherwise { Physical disability = 0}. 

Cognitive impairment 
Source variable: “hedibde”. 

Description of “hedibde”. This variable shows whether a respondent has ever reported dementia (senility 
or another serious memory impairment) and if so, by which wave. Label in the dataset: ‘Ever reported 
dementia or memory impairment (diagnosed)’. Derived from question like ‘Has a doctor told you (or name 
of the subject) that you have any of the conditions in this card? …Dementia, senility or another serious 
memory impairment’. Possible values: 0 (=neither waves), 1 (=by wave 1), 2 (=by wave 2). 

Conversion. If hedibde == 1 or 2 { Cognitive impairment =1}, otherwise { Cognitive impairment =0}. 

Note. Another source could be “cfind”. Label of “cfind”: ‘Total Cognitive Index (Memory + Executive)’. Brief 
description: ‘This variable gives the total cognitive score, which is the sum of the Memory and Executive 
indices’. Maybe this would be more appropriate. 

Depression 
Source variable: “totpsc”. 



Description of “totpsc”. Total score on 8-item CESD scale. Label in the dataset ‘Eligibility for psfeel (Sum of 
all eight CES-D items, psceda - pscedh)’. Possible values: 0, 1, 2,…, 8.  

Conversion. If totpsc >= 5 {Depression = 1}, otherwise {Depression = 0}. Threshold taken from the 
questionnaire, 5050_Wave_2_Documentation.pdf page 416/953. 

History of stroke 
Source variable: “hedimst”.  

Description of “hedimst”. This variable shows whether a respondent has ever reported a stroke (cerebral 
vascular disease) and if so, by which wave. Possible values: 0 (=neither waves), 1 (=by wave 1), 2 (=by wave 
2). 

Conversion. If hedimst == 1 or 2 { History of stroke =1}, otherwise { History of stroke =0}. 

Urinary incontinence 
Source variable: “HeInct”. 

Description of “HeInct”. Question: ‘We would like to ask you about incontinence. During the last 12 
months, have you lost any amount of urine beyond your control?’. Possible values: 1 (=yes), 2 (=no). 

Conversion. If HeInct == 1 { Urinary incontinence =1}, otherwise { Urinary incontinence =0}. 

Rheumatic disease 
Source variable: “hedibar”. 

Description of “hedibar”. This variable shows whether a respondent has ever reported arthritis (including 
osteoarthritis and rheumatism) and if so, by which wave. Possible values: 0 (=neither waves), 1 (=by wave 
1), 2 (=by wave 2). 

Conversion. If hedibar == 1 or 2 { Rheumatic disease =1}, otherwise { Rheumatic disease =0}. 

Dizziness and vertigo 
Source variables: “HeFunc”, “HeAtt[01-14]”, “HeDiz”. 

Description of “HeFunc”. Question: ‘By yourself and without using any special equipment, how much 
difficulty do you have walking for a quarter of a mile?’ Possible values: 1 (=no difficulty), 2(=some difficulty), 
3 (=much difficulty), 4 (=unable to do this). 

Description of “HeAtt[i]”, i=01, 02,…, 14. Label: ‘Symptoms that make walking 1/4 mile difficult (i-th 
mention)’. Possible values:  

• 1 = Chest pain 
• 2 = Fatigue/too tired 
• 3 = Shortness of breath 
• 4 = Tremor(s) 
• 5 = Pain in leg or foot 
• 6 = Swelling in leg or foot 
• 7 = Incontinence or fear of incontinence 
• 8 = Seeing difficulty 



• 9 = Hearing difficulty 
• 10 = Confusion 
• 11 = Difficulty concentrating 
• 12 = Memory problems 
• 13 = Unsteady on feet or balance problems 
• 14 = Lightheaded or dizziness 
• 15 = Fear of falling 
• 16 = Anxiety or fear 
• 17 = Amputation 
• 95 = Some other problem or symptom 

Description of “HeDiz”. Question: ‘How often do you have problems with dizziness when you are walking 
on a level surface?’. Possible values: 1 (= Always), 2 (= Very often), 3 (= Often) 4 (= Sometimes), 5 (= Never) 
6 (= SPONTANEOUS: Never walks), 7 (= SPONTANEOUS: Can’t walk). 

Conversion.  

difficulty = (HeFunc == 2 or 3 or 4). 

If (difficulty is true and any of the HeAtt[i] == 13 or 14) or (HeDiz == 1 or 2 or 3 or 4) { Dizziness and vertigo 
=1}, otherwise { Dizziness and vertigo =0}. 

Diabetes 
Source variable: “hedimdi”. 

Description of “hedimdi”. Label: ‘Ever reported diabetes or high blood sugar (diagnosed)’. This variable 
shows whether a respondent has ever reported diabetes or high blood sugar and if so, by which wave. 
Possible values: 0 (=neither waves), 1 (=by wave 1), 2 (=by wave 2). 

Conversion. If hedimdi == 1 or 2 { Diabetes =1}, otherwise { Diabetes =0}. 

Note. Other possible source variables: “hedbts” (‘Ever reported diabetes (diagnosed)’), “fglu” (Blood 
glucose level (mmol/L) - fasting samples only), “hba1c” (‘Blood glycated haemoglobin level (%)’). 

Self-perceived health status  
Source variable: none found. 

Harmonization not possible. 

Pain 
Source variables: “HeYRa”, “claud”, “HePain”. 

Description of “HeYRa”. Label: ‘Whether had angina or chest pains in last 2 years’. Possible values: 1 (=yes), 
2 (=no). 

Description of “claud”. This variable gives the summary value for the Edinburgh claudication scale, which 
relies on report of symptoms. To qualify as having claudication a respondent has to i) experience pain or 
discomfort on walking ii) not get it when standing still or sitting iv) the pain disappears in 10 minutes or less 
when stop v) experience the pain in the calf. Grade 1 applies if experiences the pain when walking uphill or 



when in a hurry; grade 2 applies if experiences the pain when walking at an ordinary pace on level ground. 
Possible values: 0 (=none), 1 (=grade 1), 2 (=grade 2). 

Description of “HePain”. Question: ‘Are you often troubled with pain?’. Possible values: 1 (=yes), 2 (=no). 

Conversion.  

Chest_pain = (HeYRa == 1) 

Claudication = (claud == 1 or 2) 

Generic_pain = (HePain == 1) 

If Chest_pain or Claudication or Generic_pain is true {Pain = 1}, otherwise {Pain = 0}. 

Note. Chest pain is excluded when constructing Pain in InCHIANTI. 

Fear of falling 
Source variables: “HeFunc”, “HeAtt[01-14]”. 

Descriptions of “HeFunc” and “HeAtt[01-14]” are given in section about Dizziness and vertigo. 

Conversion. 

difficulty = (HeFunc == 2 or 3 or 4). 

If (difficulty is true and any of the HeAtt[i] == 15) { Fear of falling =1}, otherwise { Fear of falling =0}. 

Parkinson disease 
Source variable: “hedibpd”. 

Description of “hedibpd”. This variable shows whether a respondent has ever reported Parkinson’s disease 
and if so, by which wave. Possible values: 0 (=neither waves), 1 (=by wave 1), 2 (=by wave 2). 

Conversion. If hedibpd == 1 or 2 { Parkinson disease =1}, otherwise { Parkinson disease =0}. 

Number of medications 
Source variables: “Hemda”, “HeBetb”, “HeMdb”, “HeIns”, “HeAcea”, “Hehrtb”, “HeLng”, “HeAma”, 
“HeOstea”, “HeOstec”, “HePsya”, “HePsyb”, “HePad”, “Hehrtb2”, “Henictk”, “PsPsya”, “PsPsyb”. 

Description of “Hemda”. Label: ‘High blood pressure: whether taking medication’. Possible values: 1 (yes), 2 
(=no). 

Description of “HeBetb”. Label: ‘Myocardial infarction: whether taking beta-blocker (coded by 
interviewer)’. Possible values: 1 (=taking beta-blockers), 2 (=not taking beta-blockers), 3 (=Taking other 
beta-blocker not on the showcard). 

Description of “HeMdb”. Label: ‘Diabetes: whether taking medication’. Possible values: 1 (=yes), 2 (=no). 

Description of “HeIns”. Label: ‘Diabetes: whether currently injects insulin’. Possible values: 1 (=yes), 2 (=no). 



Description of “HeAcea”. Label: ‘Diabetes: whether taking ACE inhibitor or A2 receptor blocker’. Possible 
values: 1 (=Taking ACE inhibitor or A2 receptor blocker), 2 (=not taking ACE inhibitor or A2 receptor 
blocker), 3 (Taking ACE inhibitor not on the showcard). 

Description of “Hehrtb”. Label: ‘Angina or MI: whether taking anticoagulant medication’. Possible values: 1 
(=yes), 2 (=no). 

Description of “Hehrtb2”. Label: ‘Angina-type pain: whether taking anticoagulant medication’. Possible 
values: 1 (=yes), 2 (=no). 

Description of “HeLng”. Label: ‘Whether taking medication for lung condition’. Possible values: 1 (=yes), 2 
(=no). 

Description of “HeAma”. Label: ‘Whether taking medication for asthma’. Possible values: 1 (=yes), 2 (=no). 

Description of “HeOstea”. Label: ‘Osteoporosis: whether takes calcium pills or vitamin D’. Possible values: 1 
(=yes), 2 (=no). 

Description of “HeOstec”. Label: ‘Osteoporosis: whether taking medication’. Possible values: 1 (=yes), 2 
(=no). 

Description of “Henictk”. Label: ‘Smoking: whether taking medication to help stop’. Possible values: 1 
(=yes), 2 (=no). 

Description of “HePad”. Label: ‘Hip or knee pain: whether taking medication or doing exercise’. Possible 
values: 1 (=yes), 2 (=no). 

Description of “HePsya”. Label: ‘Depression: action recommended by doctor (medication and/or 
counselling)’. Possible values: 1 (=medication), 2 (=counseling), 3 (=both medication and counseling), 4 
(=none). 

Description of “HePsyb”. Label: ‘Depression: whether started treatment within 2 weeks of it being offered’. 
Possible values: 1 (=yes), 2 (=no). 

Description of “PsPsya”. Label: ‘Whether doctor/nurse suggested takes medication or sees specialist’. 
Possible values: 1 (=medication), 2 (=counseling), 3 (=both medication and counseling), 4 (=none). 

Description of “PsPsyb”. Label: ‘Whether respondent started treatment within 2 weeks of being offered it’. 
Possible values: 1 (=yes), 2 (=no). 

Conversion. 

If Hemda==1 {medpress=1}, otherwise {medpress=0}. Similarly, meddiab, medins, medantic1, medantic2, 
medlung, medasth, medost1, medost2, medhkp, medsmok are constructed respectively from HeMdb, 
HeIns, Hehrtb, Hehrtb2, HeLng, HeAma, HeOstea, HeOstec, HePad, Henictk. 

If HeBetb==1 or 3 {medbblock=1}, otherwise { medbblock=0}. Similarly meddiabACE is constructed from 
HeAcea. 

If (HePsya==1 or 3) and (HePsyb==1) {meddep1 = 1}, otherwise {meddep1 = 0}. Similarly, meddep2 is 
constructed from PsPsya and PsPsyb. 



Number of medications is constructed as the sum of medpress, meddiab, medins, medantic1, medantic2, 
medlung, medasth, medost1, medost2, medhkp, medsmok, medbblock, meddiabACE, meddep1, meddep2. 

Note. The construction of this variable is particularly complex. It is likely that it underestimates the real 
number of medications because subjects are not asked on all the drug classes. Furthermore, on the 
principal component analysis led on the three datasets stacked together, “Number of medications” has the 
highest loading on the second principal component. As the second principal component well separates the 
ELSA population from the other two, this is likely to be a sign that the construction of the variable “Number 
of medication” was not successful on the ELSA dataset. One possibility could be just to drop this target 
variable from ELSA and say that in ELSA harmonization on this variable is not believed possible. 

Sedatives 
Source variable: none found. 

Harmonization not possible. 

Antihypertensives 
Source variable: none found. 

Harmonization not possible. 

Antiepileptics 
Source variable: none found. 

Harmonization not possible. 

Grip strength 
Source variables: “mmgsd1”, “mmgsn1”, “mmgsd2”, “mmgsn2”, “mmgsd3”, “mmgsn3”. 

Description of “mmgsd1”, “mmgsn1”, “mmgsd2”, “mmgsn2”, “mmgsd3”, “mmgsn3”. Isometric handgrip 
strength measure, obtained with a grip gauge. Three measures are obtained from the dominant hand 
(“mmgsd[1-3]”), and three from the non-dominant hand (“mmgsn[1-3]”). Unit of measurement: Kg.  

Conversion. Grip strength is computed as the maximum between the mean grip strength measured on the 
dominant hand, and the mean grip strength measured on the non-dominant hand. 

Gait speed 
Source variables: “MMWlkA”, “MMWlkB”. 

Description of “MMWlkA”, “MMWlkB”. Time to complete 8 feet (= 2.4384 m) walking test at self-selected 
gait speed, first and second trial. 

Conversion.  

speed_8f = 2 * 2.4384/ (MMWlkA + MMWlkB) 

If speed_8f < 1 {Gait speed = 0.01 + 1.052 * speed_8f}, otherwise { Gait speed = 0.481 + 0.581 * speed_8f}.  

Note. This formula, used to compare gait speed obtained from 8-feet test to one obtained from a 4-m test, 
was proposed in Guralnik et al 2000, ‘Lower Extremity Function and Subsequent Disability : Consistency 



Across Studies , Predictive Models , and Value of Gait Speed Alone Compared With the Short Physical 
Performance Battery’ and was further used in Studenski et al 2011, ‘Gait speed and survival in older adults.’ 

SPPB balance 
Source variables: “mmssre”, “mmstre”, “mmftti”, “mmftre2”. 

Description of “mmssre”. Label: ‘Side-by-side stand: Outcome’. Possible values: 1 (=Held for 10 seconds), 2 
(= Held for less than 10 seconds), 3 (= Not attempted). 

Description of “mmstre”. Label: ‘Semi-tandem stand: Outcome’. Possible values: 1 (=Held for 10 seconds), 2 
(= Held for less than 10 seconds), 3 (= Not attempted). 

Description of “mmftti”. Label: ‘Full tandem stand: Time position held (seconds)’. 

Description of “mmftre2”. Label: ‘(D) Outcome of full tandem stand according to age’. Possible values: -1 
(=Ineligible - did not hold semi-tandem stand for 10 seconds), 1 (=Held for 10 seconds, respondent aged 70 
or over), 2 (=Held for less than 10 seconds, respondent aged 70 or over), 3 (=Held for 30 seconds, 
respondent aged less than 70), 4 (=Held for less than 30 seconds, respondent aged less than 70), 5 (=Stand 
not attempted). 

Conversion. 

If side-by-side not attempted or held for less than 10 s (i.e. if mmssre== 2 or 3).{SPPB balance = 0}. 

If side-by-side held for 10 s but semi-tandem not attempted or held for less than 10 s (i.e. if mmssre==1 and 
mmstre == 2 or 3) {SPPB balance = 1}. 

If side-by-side and semi-tandem successfully held for 10 s, but tandem test not attempted or held for less 
than 3 s {SPPB balance = 2}. 

If side-by-side and semi-tandem successfully held for 10 s, and tandem held for at least 3 s but less than 10 
s {SPPB balance = 3}. 

If side-by-side, semi-tandem, and tandem successfully held for 10 s {SPPB balance = 4}. 

SPPB gait 
Source variables: “MmTrya”, “MmTryb”, “MMWlkA”, “MMWlkB”. 

Description of “MmTrya”, “MmTryb”. Outcome of first and second walk respectively. Possible values: 1 (= 
Completed successfully), 2 (= Attempted but unable to complete), 3 (= Stopped by the interviewer because 
of safety reasons), 4 (= Respondent refused). 

Description of “MMWlkA”, “MMWlkB” is already given in section about Gait speed. 

Conversion. 

maxspeed_8f = 2.4384/ min(MMWlkA, MMWlkB) 

If maxspeed_8f < 1 {maxspeed = 0.01 + 1.052 * maxspeed_8f}, otherwise { maxspeed = 0.481 + 0.581 * 
maxspeed_8f}. [see section on Gait speed for more clarifications]. 

If MmTrya or MmTryb == 2 or 3 {SPPB gait = 0}. 



If maxspeed <= 0.43 {SPPB gait = 1}. 

If maxspeed > 0.43 and maxspeed <= 0.60 {SPPB gait = 2}. 

If maxspeed >0.60 and maxspeed <= 0.77 {SPPB gait = 3}. 

If maxspeed > 0.77 {SPPB gait = 4}. 

SPPB chair standing 
Source variables: “mmrrre”, “mmcrav”, “mmcrna”, “mmrrna”, “mmrrfti”. 

Description of “mmrrre”. Label: ‘Chair rise: Outcome of multiple chair rises (number of rises completed)’.  

Description of “mmcrav”. Label: ‘Chair rise: Whether suitable chair available’. 

Description of “mmcrna”. Label: ‘Chair rise: Reason single chair rise not attempted’. 

Description of “mmrrna”. Label: ‘Chair rise: Reason multiple chair rises not attempted’. 

Description of “mmrrfti”. Label: ‘Chair rise: Time to complete 5 rises (seconds)’. 

Conversion. 

Variables “mmcrav”, “mmcrna”, “mmrrna” are used to determine when SPPB chair standing is not 
available. 

If mmrrre < 5 {SPPB chair standing = 0}. 

If mmrrfti >= 16.7 { SPPB chair standing = 1}. 

If mmrrfti >= 13.6 and mmrrfti < 16.7 { SPPB chair standing = 2}. 

If mmrrfti >= 11.2 and mmrrfti < 13.6 { SPPB chair standing = 3}. 

If mmrrfti < 11.2 { SPPB chair standing = 4}. 

SPPB 
Source variable: harmonized variables “SPPB balance”, “SPPB gait”, “SPPB chair standing”. 

Description of the harmonized variables “SPPB balance”, “SPPB gait”, “SPPB chair standing” is given above. 

Conversion. SPPB = SPPB balance + SPPB gait + SPPB chair standing. 

Gait problems 
Source variable: harmonized variable “SPPB gait”. 

Description of “SPPB gait” is given above. 

Conversion. If SPPB gait < 4 {Gait problems = 1}, otherwise {Gait problems = 0}. 

Walking aid use 
Source variables: “HeAid[1:5, 9:12, 17:22]”, “MmAid”. 



Description of “HeAid[1:5, 9:12, 17:22]”. Label: ‘Walking aids used’, different mentions and in different 
parts of the questionnaire (disability, balance, ADL-IADL). Possible values: 96 (= None of these), 1(= A cane 
or walking stick), 2 (= A zimmer frame or walker), 3 (= A manual wheelchair), 4 (= An electric wheelchair), 5 
(= A buggy or scooter), 6 (= Special eating utensils), 7 (= A personal alarm), 8 (= Elbow crutches). 

Description of “MmAid”. Type of aid used during the walking test.  1.0 (= None), 2 (= Walking stick or 
cane), 3 (= Elbow crutches), 4 (= Walking frame), 5 (= Other), 85 (= Other answer - not codeable 01 to 04), 
86 (= Irrelevant response - not codeable 01 to 04). 

Conversion. If (any of the HeAid[1:5, 9-12, 17:22] == 1, 2, 3, 4, 5 or 8) or (MmAid == 2, 3, 4, 5 or 85) 
{Walking aid use = 1}, otherwise {Walking aid use = 0}. 

Vision impairment 
Source variable: “Heeye”, “heoptgl”, “heoptdi”, “heoptmd”. 

Description of “Heeye”. Label: ‘Self-reported eyesight (while using lenses, if appropriate)’. Possible values:  
1 (= excellent), 2 (= very good), 3 (= good), 4 (= fair), 5 (=poor), 6 (= SPONTANEOUS: Registered or legally 
blind).  

Description of “heoptgl”. This variable shows whether a respondent has ever reported glaucoma and if so, 
by which wave. Possible values: 0 (=neither waves), 1 (=by wave 1), 2 (=by wave 2). 

Description of “heoptdi”. This variable shows whether a respondent has ever reported diabetic eye disease 
and if so, by which wave. Possible values: 0 (=neither waves), 1 (=by wave 1), 2 (=by wave 2). 

Description of “heoptmd”. This variable shows whether a respondent has ever reported macular 
degeneration and if so, by which wave. Possible values: 0 (=neither waves), 1 (=by wave 1), 2 (=by wave 2). 

Conversion.  

If Heeye == 4 or 5 or 6 {imp1 = 1}, otherwise {imp1 = 0}. 

If heoptgl == 1 or 2 {glaucoma = 1}, otherwise {glaucoma = 0}. Similarly, diabeticed and maculardeg are 
constructed from heoptdi and heoptmd. 

If imp1 or glaucoma or diabeticed or maculardeg == 1, {Vision impairment =1}, otherwise {Vision 
impairment = 0}. 

Note. Similarly to Number of medication, Vision impairment has a great loading on the second principal 
component of the PCA run on the three datasets stacked together.  

Other possible source variables: 

• “Hefrnd” (Eyesight for recognition of friend across street) 
• “Hepap” (Eyesight for reading ordinary newspaper print) 
• “fqhelp” (Any help respondent needed with reading the showcards during the interview) 
• “heoptca” ((D) Ever reported cataract (diagnosed)). 

Hearing impairment 
Source variable: “Hehear”. 



Description of “Hehear”. Self-reported hearing (while using hearing aid if appropriate). Possible values:  1 (= 
excellent), 2 (= very good), 3 (= good), 4 (= fair), 5 (=poor). 

Conversion. If Hehear == 4 or 5 {Hearing impairment = 1}, otherwise {Hearing impairment = 0}. 

 



Appendix 3. InCHIANTI 
This appendix contains a description of how the variables in the InCHIANTI dataset have been processed to 
validate FRAT-up. 

The variables of the InCHIANTI dataset are called ‘source variables’. The variables that are needed in FRAT-
up are called ‘target variables’. Among the target variables we distinguish the predictor target variables and 
an outcome target variable. In Chapter 4, predictor target variables are also called ‘risk factors’ and the 
source variables used to derive these target variables are called ‘risk factor estimators’. 

For the sake of clarity and brevity, the documentation does not take into account in details how missing 
values (not applicable, refusal, unknown…) are coded and handled. To have this kind of information, please 
refer to the original documentation of the database and contact us for the R scripts. 

Outcome target variable 

Prospective falls (yes/no) 
Source variable: “IY15_V1” 

Description of “IY15_V1”. Question asked at follow-up 1: ‘Did you ever fall down in the last 12 months?’. 
Follow-up 1 was led about 3 years after the baseline assessment. Possible values: 0 (=no), 1 (=yes). 

Conversion. Prospective falls (yes/no) = IY15_V1 

Predictor target variables 

Age 
Source variable: “IXAGE”. 

Description of “IXAGE”. Age in years at interview. Possible values: non-negative integers. 

Conversion. Age = IXAGE. 

Sex 
Source variable: “SEX” 

Description of “SEX”. Gender. Possible values: 1 (=male), 2 (=female). 

Conversion. Sex = SEX-1. 

Living situation 
Source variables: “IX3_V[11+i 5]”, “IX3_V[12+i 5]”, i =0,1,2,…,11. 

Description of “IX3_V[11+i 5]”, i =0,1,2,…,11. Question: ‘Indicate each person you live with or see regularly 
(Person i+1)’. Possible values: 1 (=spouse), 2 (=son), etc. 

Description of “IX3_V[12+i 5]”, i =0,1,2,…,11. Question: ‘Person i+1: Is this person living with you or not?’. 
Possible values: 0 (=not co-habitant), 1 (=co-habitant). 



Conversion. If at least one person of the ones indicated in IX3_V[11+i 5] is co-habitant, as indicated in 
IX3_V[12+i 5], then Living situation = 1, otherwise, Living situation = 0. 

History of falls (yes/no) 
Source variable: “IX15_V1”. 

Description of “IX15_V1”. Question: ‘Did you ever fall down in the last 12 months?’. Possible values: 0 
(=no), 1 (=yes). 

Conversion. History of falls (yes/no) = IX15_V1. 

History of falls (number) 
Source variables: “IX15_V1”, “IX15_V3”. 

Description of “IX15_V1” is given above. 

Description of “IX15_V3”. Question: ‘How many times did you fall down in the last 12 months?’. Possible 
values: 1,2,…,9. 

Conversion. If IX15_V1==0 { History of falls (number) = 0}, otherwise { History of falls (number) = IX15_V3}. 

Physical activity limitation 
Source variable: “IX14_V26”. 

Description of “IX14_V26”. Question: ‘Physical activity level last year’. Possible values:: 1=almost no activity 
(driven in bed or almost); 2=sitting for most of the time, rarely a short walk or other non-demanding 
activity; 3=low-intensity exercise (walking, dancing, hunting or fishing, do the shopping without car) at least 
2-4 hours a week; 4=moderate-intensity exercise (running, walking uphill, swimming, gymnastic, hoeing in 
the garden, riding a bike uphill, etc.) for at least 1-2 hours a week or low-intensity exercise (see 3)  for more 
than 4 h/week; 5=moderate-intensity exercise for more than 3h/week; 6=intense physical exercise, 
regularly, many times a week; 7=use this code for people that have walk much (at least 5Km/day), regularly 
(at least 5 days/week) and for long (at least for 5 consecutive years). 

Light-intensity exercise is defined as the exercise that does not come with sweating and can also be 
practiced while talking with another person; moderate-intensity exercise as the exercise that is associated 
with sweating and does not allow talking at the same time; intense exercise is the maximal one, to the limit 
of endurance. 

Conversion. If IX14_V26 <= 2 { Physical activity limitation = 1}, otherwise { Physical activity limitation = 0}. 

Physical disability 
Source variable: “IXADL_T”. 

Description of “IXADL_T”. Number of activity-of-daily-living (ADL) disabilities. Possible values: 0,1,2,…,6. 
Subjects are asked on the following activities: 

• WHO activity 6: Any difficulty washing face and arms? 
• WHO activity 19: Any difficulty controlling urination and bowel movements? 
• WHO activity 8: Any difficulty dressing and undressing? 
• WHO activity 12: Any difficulty getting in and out of bed? 



• WHO activity 9: Any difficulty eating (e.g., holding a fork, cutting food, drinking from a glass)? 
• WHO activity 11: Any difficulty using the toilet? 

Conversion. If IXADL_T > 0 { Physical disability = 1}, otherwise { Physical disability = 0}. 

Instrumental disability 
Source variable: “IXIADL_T”. 

Description of “IXIADL_T”. Number of instrumental-activity-of-daily-living (IADL) disabilities. Possible 
values: 0,1,2,…,8. Subjects are asked on the following activities: 

• WHO activity 20: Any difficulty using the telephone? 
• WHO activity 22: Any difficulty using public transportation? 
• WHO activity 10: Any difficulty cooking a simple meal? 
• WHO activity 13: Any difficulty doing light housework (e.g., doing dishes, light cleaning)? 
• WHO activity 14: Any difficulty doing heavy housework (e.g., washing windows, floor)? 
• WHO activity 23: Any difficulty taking medications correctly? 
• WHO activity 24: Any difficulty managing home finances? 
• WHO activity 5: Any difficulty shopping daily for basic necessities? 

Conversion. If IXIADL_T > 0 { Instrumental disability = 1}, otherwise { Instrumental disability = 0}. 

Cognitive impairment 
Source variable: “IXMMSECR”. 

Description of “IXMMSECR”. Mini-mental state examination (MMSE) raw score. Possible values: =0, 1, 2, …, 
30. 

Conversion. If IXMMSECR <= 20 {Cognitive impairment = 1}, otherwise { Cognitive impairment = 0}. 

Depression 
Source variable: “IXCESD_T”. 

Description of “IXCESD_T”. Total score on 20-item CESD scale. Possible values: 0, 1, 2, …, 60. 

Conversion. If IXCESD_T > 21 { Depression = 1}, otherwise { Depression = 0}. 

History of stroke 
Source variable: “AXSTROKE”. 

Description of “AXSTROKE”. Ascertained history of stroke. Possible values: 0 (=no evidence), 1 (=definite), 2 
(=possible), 3 (=TIA). 

Conversion. If AXSTROKE == 1 { History of stroke = 1}, if AXSTROKE == 2 { History of stroke = not available}, if 
AXSTROKE == 0 or 3 { History of stroke = 0}. 

Urinary incontinence 
Source variable: “IX13_V6”. 



Description of “IX13_V6”. Question: ‘Over the last year did you ever lose control of urine? (for example, 
while coughing)’. Possible values: 0 (=no), 1 (=yes). 

Conversion. Urinary incontinence = IX13_V6. 

Rheumatic disease 
Source variables: “AXGONART”, “AXANCART”. 

Description of “AXGONART”. Knee arthritis. Possible values: 0 (=no evidence), 1 (=Knee replacement/ Pain + 
stiffness), 2 (=Pain OR stiffness, not both). 

Description of “AXANCART”. Hip arthritis. Possible values: 0 (=no evidence), 1 (=Hip replacement/ Pain + 
stiffness), 2 (=Pain OR stiffness, not both). 

Conversion. If ((AXGONART == 1 or 2) or (AXANCART == 1 or 2)) { Rheumatic disease = 1}, otherwise { 
Rheumatic disease = 0}. 

Dizziness and vertigo 
Source variable: “VX10_V22”. 

Description of “VX10_V22”. Question ‘Have you ever experienced dizziness or unsteadiness in last year?’. 
Possible values: 0 (=no), 1 (=yes). 

Conversion. Dizziness and vertigo = VX10_V22. 

Diabetes 
Source variable: “AXDIAB2A”. 

Description of “AXDIAB2A”. Diabetes mellitus (incl. bl glucose>=126). Possible values: 0 (=no evidence), 1 
(=definite), 2 (=possible). 

Conversion. If AXDIAB2A == 0 { Diabetes = 0}, otherwise { Diabetes = 1}. 

Self-perceived health status  
Source variable: “IX8_V1”. 

Description of “IX8_V1”. Question: ‘How would you evaluate your current health? How do you feel now?’. 
Possible values: 1 (=very poor), 2 (=poor), 3 (=fair, so and so), 4 (=good), 5 (=very good). 

Conversion. If IX18_V1 <= 2 { Self-perceived health status = 1}, otherwise { Self-perceived health status = 0}. 

Pain 
Possible source variables: “VX8_V26”, “VX11_V9”, “VX12_V6”, “VX16_V1”, “VX17_V3”, “IX12_V15”, 
“IX19_V11”, “IX19_V12”. 

Description of “VX8_V26”. Question: ‘Stomach pain in last year...how severe?’. Possible values: 0 (=No 
problem), 1 (=Light, only aware if think about it), 2 (=Moderate, does not interfere w/ life), 3 (=Interferes 
with daily living), 4 (=Severe, unable to have a normal life). 

Description of “VX11_V9”. Chest pain resting/following exertion. Possible values: 0 (=no), 1 (=yes). 



Description of “VX12_V6”. Question ‘Ever had pain in the legs while walking?’. Possible values: 0 (=no), 1 
(=yes, currently), 2 (=yes, in the past). 

Description of “VX16_V1”. Question ‘Ever had back pain in last 12 months?’ Possible values: 0 (=no), 1 
(=yes). 

Description of “VX17_V3”. Question ‘During the last 5 years, have you had pain in knees/hips requiring 
medications?’. Possible values: 0 (=no), 1 (=yes). 

Description of “IX12_V15”. Question ‘How often in the last month did you have pain while sleeping (e.g., 
muscular cramps)?’. Possible values: 1 (=Never during the past month), 2 (=Less than once a week), 3 
(=Once or twice a week), 4 (=Three or more times a week). 

Description of “IX19_V11” (“IX19_V12”). Question ‘At present, do you ever experience pain in the right 
(left) foot?’. Possible values: 1 (=Never), 2 (=Sometimes), 3 (=Often), 4 (=Always). 

Conversion. 

legpain =  VX12_V6==1   

backpain = VX16_V1==1  

kneehippain = VX17_V3==1  

sleeppain = IX12_V15>=2  

rfootpain = IX19_V11>=2  

lfootpain = IX19_V12>=2  

If legpain or backpain or kneehippain or sleeppain or rfootpain or lfootpain is true {Pain = 1}, otherwise 
{Pain = 0}. 

Note. “VX8_V26” and “VX11_V9” not used. 

Fear of falling 
Source variables: “IX16_V[1+i 4]”, “IX16_V[2+i 4]”, “IX16_V[4+i 4]”, for i=0,1,2,…,10. 

Description of “IX16_V[1+i 4]”. Question ‘Do you usually do activity i?’. Possible values: 0 (=no), 1 (=yes). 

Description of “IX16_V[2+i 4]”. Question ‘If you usually do activity i, are you afraid of falling while doing it?’. 
Possible values: 0 (=no), 1 (=yes). 

Description of “IX16_V[4+i 4]”. Question ‘If you do not do activity i, don’t you do it because you are afraid 
of falling?’. Possible values: 0 (=no), 1 (=yes). 

The activities on which subjects are asked are: 

• going out to shop 
• cooking their meals 
• bathing or showering without help 
• getting out of the bed without help 
• taking a walk outside the house without help 



• walking on slippery surfaces without help 
• going to visit relatives or friends without help 
• reaching up by themselves for something located high over their head 
• going to crowded places by themselves 
• taking long walks (1 hour or more) by themselves (without help) 
• bending down to pick up an object from the floor 

The whole questionnaire is one version of the SAFE (Survey of Activities and Fear of Falling in the Elderly). 

Conversion. If there is at least one activity that is not performed because of fear of falling { Fear of falling = 
1}, otherwise { Fear of falling = 0}. 

Parkinson disease 
Source variable: “AXPARK”. 

Description of “AXPARK”. Parkinson's disease. Possible values: 0 (=no evidence), 1 (=definite), 2 (=possible). 

Conversion. If AXPARK == 0 { Parkinson disease = 0}, if AXPARK == 1 { Parkinson disease = 1}, if AXPARK == 2 
{ Parkinson disease = not available}. 

Number of medications 
Source variable: “IXN_FARM”. 

Description of “IXN_FARM”. Number of medications. Possible values: 0, 1, 2, …, 10. 

Conversion. Number of medications = IXN_FARM. 

Sedatives 
Source variable: “IXATC_[i]”, for i=1,2,…,10.. 

Description of “IXATC_[i]”. ATC code of the medications used by the subject. 

Conversion. If for any i=1,2,…,10 IXATC_[i] starts with “N05C” {Sedatives = 1}, otherwise {Sedatives = 0}. 

Antihypertensives 
Source variable: “IXATC_[i]”, for i=1,2,…,10.. 

Description of “IXATC_[i]” is given above. 

Conversion. If at least one of the ATC codes is in the list (“C09CA[01-04,06-08]”, “C09DA[01-04,06,08”, 
“C03AA03”, “C03BA04”, “C03BA11”, “C03CA[01,03,04]”, “C03EA01”, “C03EB01”, “QC03CA0”, “C09AA”, 
“C09AA[01-13,15]”, “C09BA[01-09,12]”, “C08CA[01-09,11-13]”, “C08DA01”, “C08DB01”, “C07AA05”, 
“C07AA07”, “C07AA12”, “C07AB[02,03,07,08,12]”, “C07AG02”, “C07CA02”, “C07CB02”, “C07CB03”, 
“C02AC01”, “C02CA04”, “C02CA05”, “C02CA49”, “C02KA49”, “C02KD01”, “C02LA51”, “C03DA[01-03]” { 
Antihypertensives = 1}, otherwise { Antihypertensives = 0}. 

Antiepileptics 
Source variable: “FX1_N3”. 

Description of “FX1_N3”. Use of antiepileptics. Possible values: 0 (=no), 1 (=yes). Constructed from 
“IXATC_[i]” (described above) with comparison with the list of ATC codes (“N03AA02”, “N03AA03”, 



“N03AB02”, “N03AB52”, “N03AF01”, “N03AF02”, “N03AG01”, “N03AX12”, “N03AX16”). If at least one of 
the “IXATC_[i]” is in the above list, then “FX1_N3” is set to 1. 

Conversion. Antiepileptics = FX1_N3. 

Grip strength 
Source variables: “PX10_V[37-40]”. 

Description of “PX10_V[37-40]”. Hand grip strength measured with a dynamometer. Unit of measurement: 
Kg. Hand grip is measured twice on the left hand (“PX10_V[38, 40]”) and twice on the right hand 
(“PX10_V[37, 39]”). 

Conversion. Grip strength is computed as the maximum between the mean grip strength measured on the 
right hand, and the mean grip strength measured on the left hand 

Gait speed 
Source variables: “PXWLK1A”, “PXWLK1B”. 

Description of “PXWLK1A” and “PXWLK1B”. Time for walking 4 m at usual pace, measured on two trials. 
Unit of measurement: s.  

Conversion. Gait speed = 4 * 2 / (PXWLK1A + PXWLK1B). 

Note. Conversion rule taken for consistency with ActiFE. It can be changed in (4/PXWLK1A + 4/PXWLK1B)/2. 

SPPB balance 
Source variable: “PXSPSB”. 

Description of “PXSPSB”. Label in the dataset: ‘EPESE Performance Balance Sub-score (0 - 4)’. Possible 
values: 0,1,2,3,4. 

Conversion. SPPB balance = PXSPSB. 

SPPB gait 
Source variable: “PXSPSW”. 

Description of “PXSPSW”. Label in the dataset: ‘EPESE Performance Walking Sub-score (0 - 4)’. Possible 
values: 0,1,2,3,4. 

Conversion. SPPB gait = PXSPSW. 

SPPB chair standing 
Source variable: “PXSPSC”. 

Description of “PXSPSC”. Label in the dataset: ‘EPESE Performance Repeated Chair Stands Sub-score (0 - 4)’. 
Possible values: 0,1,2,3,4. 

Conversion. SPPB chair standing = PXSPSC. 

 



SPPB 
Source variable: “PXSPS”. 

Description of “PXSPS”. Label in the dataset: ‘EPESE Summary Performance Score (0 - 12)’. Possible values: 
0, 1, 2, …, 12. 

Conversion. SPPB = PXSPS. 

Gait problems 
Source variable: “PXSPSW”. 

Description of “PXSPSW” already given above. 

Conversion. If PXSPSW < 4 {Gait problems = 1}, otherwise {Gait problems = 0}. 

Walking aid use 
Source variable: “PX1_V10”. 

Description of “PX1_V10”. Whether the subject walks independently (without aids, orthoses, prostheses), 
assessed during the physical therapy visit. Possible values: 0 (=no), 1 (=yes). 

Conversion. If PX1_V10 == 0 {Walking aid use = 1}, otherwise {Walking aid use = 0}. 

Vision impairment 
Source variables: “VX24_V[36-46]” 

Description of “VX24_V36”. Label in the dataset: ‘Visual acuity,3 meter(Monoyer 1/10-11/10)’. Possible 
values: 1(=1/10), 2 (=2/10), …11 (=11/10). 

Description of “VX24_V37”. Label in the dataset: ‘Contrast sensitivity (0.05-2.0)’.  

Description of “VX24_V[38-46]”. Nine tests of visual stereognosis. Possible values for each variable: 0 (= 
incorrect), 1 (= correct). 

Conversion.  

acuity_impairment = VX24_V36 <= 5  

contrast_sensitivity_impairment = VX24_V37 <= 1.6 

stereo_total_score = sum(VX24_V[38-46]) 

stereo_impairment = stereo_total_score <= 3 

If acuity_impairment or contrast_sensitivity_impairment or stereo_impairment is true { Vision 
impairment = 1}, otherwise { Vision impairment = 0}. 

Hearing impairment 
Source variables: “VX15_V1”. 

Description of “VX15_V1”. Question ‘Do you have any trouble hearing?’. Possible values: 0 (=No), 1 (=Slight 
deafness), 2 (=Severe deafness), 3 (=Conversation impossible). 



Conversion. If VX15_V1 >= 1 { Hearing impairment = 1}, otherwise { Hearing impairment = 0}. 



 
 
 
 
 
 
 

Appendix 4 
 

  



InCHIANTI SAS database 
 

Table 1. List of all the tables of the SAS database. The extension of the files is sas7bdat. 

Name of the table (number of variables) Brief description 
Ana_raw (76)    Vital status 
Hosp2kxg (56)    Hospitalizations 
Relatives (8)    Relatives 
     
Baseline Follow-up 1 Follow-up 2 Follow-up 3  
Int_rawe (892) Inf1rawe (840) Inf2rawe (862) Inf3rawe (865) Home interview 
Cli_rawe (785) Clf1rawe (761) Clf2rawe (761) Clf3rawe (761) Clinical visit 
Adju_ana (50) Adjf1ana (31) Adjf2ana (31) Adjf3ana (31) Diseases 

adjudicated via 
algorithms 

Per_ana (100) Pef1_ana (93) Pef2_ana (100) Pef3_ana (100) Physical Exam 
(Performance 
based tests of 
balance, gait, 
manual dexterity, 
ROM, muscle 
strength and 
muscle power) 

Per_rawe (435) Pef1rawe (401) Pef2rawe (440) Pef3rawe (471) 

Fmc_ana (88) Fmcf_ana (88) Fmcf2ana (88) Fmcf3ana (90) Drugs 
Sup_raw (43) Supf1raw (43) Supf2raw (43) Supf3raw (43) Dietary 

supplements 
Labo_raw (331) Labf1raw (113) Labf2raw (119) Labf3raw (81) Laboratory assays 
Oldtnfa (8) Othassay (7)   
Mar_raw (74) Marf1raw (96) Marf2raw (102) Marf3raw (102) Instrumental 

exams (ECG, ENG, 
anthropometric 
measures, Eco-
Color-Doppler, 
Blood pressure) 

Pqct_raw (66) Pqcf1raw (61) Pqcf2rwn (61) Pqcf3raw (61) Peripheral 
quantitative 
computed 
tomography 

  Biaf2rwn (42) Biaf3raw (42) Bioelectrical 
impedance 
analysis 

Nutr_raw (48) Nutf1raw (47) Nutf2raw (47) Nutf3raw (47) Nutrition (EPIC 
questionnaire, 
nutrition habits, 
macro- and micro-
nutrients intake) 

Alim_raw (126) Alif1raw (124) Alif2raw (124) Alif3raw (124) 
Epic_raw (486) Epif1raw (484) Epif2raw (484) Epif3raw (484) 

Ped_rawe (410)    Podiatry 
assessment 

 



Lasso model 
Table 2. Variables that have been selected more frequently in the 10-fold validation procedure of the Lasso model, and their 
standardized regression coefficients. 

 Number of times it was selected Mean standardized regression 
coefficient 

Number of previous falls 10 0.17 
Number of drugs 10 0.08 
Self-perceived health status 10 -0.07 
Previous falls (yes/no) 10 0.06 
Drugs for dementia (yes/no) 10 0.06 
CESD depressed mood scale (0-28) 10 0.04 
Q: “If you are retired, do you have 
a veteran pension?” (yes/no) 

10 0.03 

Q: “Can you walk 300 meters 
twice without stopping?” (yes/no) 

10 -0.03 

Gait speed, 4m usual pace 6 -0.03 
anti-hypertensive (yes/no) 7 0.02 
Q: “Do you have difficulty walking 
400 meters on rough terrain?” 

6 0.02 

Psychoanaleptics: antidepressants 
(yes/no) 

6 0.02 

Walking posture: cautious 
attitude? (yes/no) 

6 0.02 

Family med hx: siblings diabetic? 
(yes/no) 

7 0.02 

Q: “Must you hold onto 
something (e.g., bannister) while 
climbing stairs?” (yes/no) 

8 0.02 

Quinolone antibacterials (yes/no) 6 0.02 
Miscellaneous antihypertensives 
including alpha-blocking agents 
(yes/no) 

6 8·10-6 

 

Table 3. Marginal calibration assessment. Observed and predicted number of samples reporting a given number of falls. Error = 
observed – predicted. Relative error= (observed - predicted)/total number of samples. 

Number of 
falls 

0 1 2 3 4 5 6 7 8 9 or 
more 

Total 

Observed 1814 303 91 52 23 12 2 0 3 13 2313 
Predicted 1780.0 328.6 112.3 46.0 21.0 10.4 5.6 3.2 1.9 4.1  
Error 34.0 -25.6 -21.3 6.0 1.2 1.6 -3.6 -3.2 1.1 8.9  
Relative error 
(x 100) 

1.5 -1.1 -0.9 0.3 0.1 0.1 -0.2 -0.1 0.0 0.4  

 

Learning curves 
A sensitivity analysis of the performance of the Lasso model to the number of samples available in the 
training dataset is carried out with repeated random sub-sampling validation. The data are split in a training 



set and a test set. The split is repeated assigning different percentages of samples to the training test. For 
each percentage of samples included in the training test, the split is repeated randomly 162 times. Each 
time, the Lasso model is fitted in the training set and assessed in the test set. For each percentage of 
samples assigned to the training set, the performance of the model is taken as the mean of the 
performance achieved across the random splits. 

All splits in folds, training and test sets are done so that all the samples relative to one same subjects are 
consistently assigned to the same set. 

 

Figure 1. Learning curves. Sensibility of the performance of the trained models on the sample size of the training set. Left: AUC. 
Right: MSE. 
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