
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

DOTTORATO DI RICERCA IN
Ingegneria Elettronica, Informatica e delle Telecomunicazioni

CICLO 27

Settore Concorsuale di afferenza: 09/H1

Settore Scientifico disciplinare: ING-INF/05

SCENE RECONSTRUCTION AND

UNDERSTANDING BY RGB-D SENSORS

Presentata da: NICOLA FIORAIO

Coordinatore Dottorato: Relatore:

Chiar.mo Prof. Alessandro Vanelli-Coralli Chiar.mo Prof. Luigi Di Stefano

ESAME FINALE ANNO 2015

To my parents, my sister Michela

and Serena

may my heart always be open to little

birds who are the secrets of living

whatever they sing is better than to know

and if men should not hear them men are old

may my mind stroll about hungry

and fearless and thirsty and supple

and even if it’s sunday may i be wrong

for whenever men are right they are not young

and may myself do nothing usefully

and love yourself so more than truly

there’s never been quite such a fool who could fail

pulling all the sky over him with one smile

E. E. Cummings

Acknowledgements

Questa tesi di dottorato è il risultato di tre anni di lavoro di ricerca al
Computer Vision Lab dell’Università di Bologna, sotto la determinante
supervisione del prof. Luigi Di Stefano, i cui insegnamenti, intuizioni e
parole di incoraggiamento anche nei momenti più faticosi mi hanno per-
messo di raggiungere questo traguardo. Non meno importanti sono stati
anche i suggerimenti e l’esperienza di tutti i membri del CVLab, pas-
sati e presenti: Samuele Salti, Federico Tombari, Alessandro Franchi,
Alioscia Petrelli, Alessandro Lanza, Tommaso Cavallari, Fabio Bruè.
La stima che ho nei loro confronti va oltre il semplice rapporto lavora-
tivo.

In questi anni di grandi cambiamenti ho trovato sempre un sostegno
sicuro in mio padre, mia madre e mia sorella Michela. La loro presenza,
il loro interesse ed il loro affetto sono sempre stati per me uno stimolo
a proseguire e non li ringrazierò mai abbastanza per questo. Allo stesso
modo, Serena è stata sempre al mio fianco condividendo tutti i momenti
felici e anche quelli più impegnativi. Per questi motivi, a loro dedico
questa tesi.

I would like also to thank Dr. Shahram Izadi, who enthusiastically ac-
cepted my application for an internship at Microsoft Research. His
intuitions, deep knowledge and competence made me grow as a PhD
student. The time spent there has been invaluable and I would like to
thank all the people at Microsoft Research Cambridge for their scien-
tific advice and friendship, especially Yani Ioannou, Sean Ryan Fanello,
Qinxun “Jerry” Bai, Mohammad Rastegari, Sameh Khamis, Mingsong

iii

iv ACKNOWLEDGEMENTS

Dou, Jonathan Taylor, Andrew Fitzgibbon, Sebastian Nowozin, Peter
Kontschieder, Antonio Criminisi.

Finally, I would like to thank prof. Luca Iocchi and prof. Juergen Gall
for having reviewed this thesis, giving helpful comments and sugges-
tions.

Abstract

This thesis investigates interactive scene reconstruction and understand-
ing using RGB-D data only. Indeed, we believe that depth cameras will
still be in the near future a cheap and low-power 3D sensing alterna-
tive suitable for mobile devices too. Therefore, our contributions build
on top of state-of-the-art approaches to achieve advances in three main
challenging scenarios, namely mobile mapping, large scale surface re-
construction and semantic modeling.

First, we will describe an effective approach dealing with Simultane-
ous Localization And Mapping (SLAM) on platforms with limited re-
sources, such as a tablet device. Unlike previous methods, dense re-
construction is achieved by reprojection of RGB-D frames, while lo-
cal consistency is maintained by deploying relative bundle adjustment
principles. We will show quantitative results comparing our technique
to the state-of-the-art as well as detailed reconstruction of various envi-
ronments ranging from rooms to small apartments.

Then, we will address large scale surface modeling from depth maps
exploiting parallel GPU computing. We will develop a real-time cam-
era tracking method based on the popular KinectFusion system and an
online surface alignment technique capable of counteracting drift errors
and closing small loops. We will show very high quality meshes out-
performing existing methods on publicly available datasets as well as
on data recorded with our RGB-D camera even in complete darkness.

Finally, we will move to our Semantic Bundle Adjustment framework
to effectively combine object detection and SLAM in a unified system.

v

vi ABSTRACT

Though the mathematical framework we will describe does not restrict
to a particular sensing technology, in the experimental section we will
refer, again, only to RGB-D sensing. We will discuss successful im-
plementations of our algorithm showing the benefit of a joint object
detection, camera tracking and environment mapping.

Being SLAM an interactive problem, we provide additional video re-
sults for the described approaches at this web address:

http://vision.deis.unibo.it/research/104-nfioraio-thesis

http://vision.deis.unibo.it/research/104-nfioraio-thesis

Contents

Acknowledgements iii

Abstract v

List of Figures ix

1 Introduction 1

1.1 Camera Tracking And Mapping 5

2 RGB-D SLAM For Mobile Devices 9

2.1 Real-time RGB-D SLAM 11

2.2 Mobile RGB-D SLAM 13

2.3 The SlamDunk Algorithm 14

2.3.1 Local Mapping 19

2.3.2 Camera Tracking 20

2.3.3 Local Optimization 22

2.3.4 Loop Closures 27

2.4 SlamDunk For Mobile Devices 28

2.5 Experimental Results 31

vii

viii CONTENTS

3 Large Scale Surface Reconstruction 43

3.1 Surface Reconstruction And Submapping 46

3.2 Depth Map Fusion 48

3.3 Subvolume Reconstruction 52

3.3.1 Low-drift Local Modeling 55

3.3.2 Online Subvolume Registration 56

3.3.3 Surface Reconstruction By Subvolume Blending 62

3.4 Results . 65

4 Semantic Bundle Adjustment 85

4.1 Scene Understanding And Mapping 88

4.2 Joint Detection, Tracking And Mapping 89

4.2.1 The Validation Graph 90

4.2.2 Object Detection 93

4.2.3 Semantic Optimization 94

4.3 Semantic KinectFusion 96

4.4 Results . 100

5 Conclusion 113

Bibliography 117

Author’s Publications During The PhD Course 133

List of Figures

1.0.1 Nowadays, a number of mobile platforms need to solve
the SLAM problem for enhanced operations. Left: the
NASA rover “Curiosity”, landed on Mars on 6th August
2012, equipped with sensors for obstacle avoidance and
autonomous navigation. Middle: the Dyson 360 Eye™
vacuum cleaner, a first example of an autonomous robot
at home using a 360° vision system for mapping and
navigation. Right: the Google’s driverless car uses a 3D
laser range scanner and a set of cameras for autonomous
driving. 2

1.0.2 The Microsoft Kinect (left) and the Asus Xtion PRO
Live (right) are RGB-D cameras based on structured
light technology. 2

1.0.3 Smartphones (left), tablets (middle) and smart glasses
(right) are personal devices equipped with cameras and
positioning sensors useful for perceiving and understand-
ing the world. 3

1.0.4 The Structure sensor (left) is an active depth camera de-
vise for enhancing tablet vision capability, while Google
Project Tango (right) aims at integrating such sensors
into the device. 3

ix

x LIST OF FIGURES

2.0.1 SlamDunk allows a user with commodity hardware and
a RGB-D camera to scan in real-time small objects and
various indoor environments. 10

2.3.1 The SlamDunk pipeline encompasses three main mod-
ules: Local Mapping (blue dotted line, see Sec. 2.3.1),
Camera Tracking (red dashed line, see Sec. 2.3.2) and
Local Optimization (green dash-dot line, see Sec. 2.3.3). 15

2.3.2 Camera tracking is often addressed by building a lo-
cal map. Here we compare our quadtree-based method
(a) with the window-approach proposed by Strasdat et

al. [87] (b). 18

2.3.3 We can define one-to-one mapping between a cost func-
tion in the form of Eq. (2.3.6) and an undirected graph.
For instance, the graph shown in this figure represents
the cost function ‖e0 (T0,T1)‖2+‖e1 (T0,T1)‖2+‖e2 (T1,T2)‖2+

‖e3 (T0,T3)‖2. 26

2.3.4 We devise a local optimization approach: starting from
the root node (“root” - green), we include into the op-
timization problem its neighbors (“R1”, “R2” - orange)
up to a certain ring. Then, a final ring of fixed vertexes
(“F” - purple) is considered for global consistency. All
other vertexes (“out” - white) does not contribute at all
to the minimization problem. 26

2.3.5 SlamDunk tracks features within an active window of
neighboring keyframes. Thus, a loop can be implicitly
closed (left image) by a camera frame (green) matching
temporally distant keyframes (orange). Also, if these
new links would significantly reduce the distant between
the two ends of the loop (right image), a local optimiza-
tion is triggered. 27

LIST OF FIGURES xi

2.4.1 SlamDunk has been embedded in a mobile application
for Android devices. Three main threads decouple im-
age acquisition (left), actual SLAM application (center)
and instant visualization of the 3D reconstruction (right). 28

2.4.2 Application interface for the Android implementation
of SlamDunk. The incremental reconstruction is ren-
dered within a 3D window, while the current RGB im-
age is displayed in the bottom left corner. 29

2.5.1 SlamDunk (desktop): robot navigation through an apart-
ment. 33

2.5.2 SlamDunk (desktop): detailed reconstruction of a room. 34

2.5.3 SlamDunk (Android): additional qualitative results. . . 37

2.5.4 A Structure depth sensor [68] has been attached to the
tablet body and calibrated with the integrated RGB cam-
era. 38

2.5.5 Preliminary results on a tablet device obtained combin-
ing a Structure sensor [68] with the on-board RGB cam-
era. 38

3.0.1 After a complete loop, drift errors may generate a dis-
crepancy (a). Purposely, we consider smaller low-drift
subvolumes (F1-F7) and refine their poses (b). How-
ever, beside inter-volume alignment, intra-volume sur-
face deformation is still there and might be corrected by
non-rigid pose estimation (c). 45

3.3.1 Copyroom (top) and Stonewall (bottom) sequences from
[106]: the reference moving volume KinectFusion ap-
proach is hindered by the accumulated drift, leading to
complete failures (top) or inconsistent reconstructions
(bottom). 54

xii LIST OF FIGURES

3.3.2 Wrokflow of the proposed system for low-drift camera
tracking and surface reconstruction. 55

3.3.3 Subvolumes are low-drift TSDF volumes built from K

frames (here, K = 50). (a)-(f) show surfaces extracted
as zero-level set from subvolumes, (g) shows the final
reconstruction of the Stonewall sequence introduced in
[106]. 58

3.3.4 From each point pb
i (black diamonds) sampled on the

zero-level set of Fb (dashed yellow line) we move ac-
cording to the distance function Fa and its gradient ∇̂Fa

(blue-white-red color gradient) to find a match (black
circles). 60

3.3.5 Building a single global volume ψg by subvolume av-
eraging forces to traverse the whole collection even for
zero-weight voxels. Therefore, computation time is strongly
affected by relative positions of subvolumes, so that
evaluation of the global volume shown on the left is
faster than the one on right including the same subvol-
umes with the same extent but different poses. 62

3.3.6 Stonewall sequence from [106]: Optimized subvolumes
still exhibit surface deformations (left), while our blend-
ing approach (right) overcomes these issues. 63

3.4.1 Stonewall sequence from [106], top view: online opti-
mization of subvolumes’ poses counteracts drift error.
Left: without optimization. Right: with optimization.
No volume blending applied. 66

3.4.2 Stonewall sequence from [106], left-most column: on-
line optimization of subvolumes’ poses counteracts drift
error. Left: without optimization. Right: with optimiza-
tion. No volume blending applied. 67

3.4.3 Continued from Fig. 3.4.2 68

LIST OF FIGURES xiii

3.4.4 Final reconstruction of the stonewall sequence from [106],
front view. 70

3.4.5 Final reconstruction of the stonewall sequence from [106],
top view. 71

3.4.6 Final reconstruction of the stonewall sequence from [106],
top view. 72

3.4.7 Final reconstruction of the copyroom sequence from [106],
top view. 73

3.4.8 Final reconstruction of the copyroom sequence from [106],
detail of the copying machine. 74

3.4.9 Final reconstruction of the copyroom sequence from [106],
detail of the corner. 75

3.4.10Final reconstruction of the lounge sequence from [106]. 76

3.4.11Final reconstruction of the burghers sequence from [106],
front view. 77

3.4.12Final reconstruction of the burghers sequence from [106],
rear view. 78

3.4.13Final reconstruction of the bookshop 1 (top) and book-

shop 2 (bottom) sequences. 80

3.4.14Final reconstruction of the dark room sequence. Due to
the lack of RGB-D data, existing RGB-D SLAM sys-
tem, including [106, 107, 30], would have failed. . . . 81

3.4.15Number of iterations (top) and time (bottom) spent by
subvolume optimization in stonewall (blue squares), copy-

room (red triangles) and bookshop 1 (yellow circles) se-
quences for increasing number of subvolumes. 82

xiv LIST OF FIGURES

4.0.1 Classical approaches to the SLAM problem constrain
camera poses without any assumption about the seman-
tic of the scene under exploration (top). Using cali-
brated views may improve object feature matching across
multiple frames (middle), which provides additional in-
formation that we exploit by jointly estimating camera
and object poses (bottom). 86

4.0.2 A schematic view of our joint detection, tracking and
mapping approach. 87

4.2.1 A toy example illustrating the validation graph for 2D
(a) and 3D (b) SLAM problems. See Sec. 4.2 for details. 91

4.3.1 The generic “SLAM Engine” and “Semantic Optimiza-
tion” blocks in Fig. 4.0.2 have been adapted so as to
integrate the KinectFusion camera tracking system. . . 97

4.3.2 Our proposed matching strategy exploits information
stored into the TSDF volume to find possible matches.
In this example, we move from T0 camera frame to T1

and T2, then we perform a local search on the image
plane for the best corresponding point. 98

4.3.3 After a successful optimization, the TSDF volume has
to be reconstructed from keyframes’ depth maps. How-
ever, the loss of data, i.e. all the frames which are not
keyframes, generates holes and noise in the distance
function. Left: a surface, extracted as the zero-level set,
before keyframe optimization. Right: the same surface
after the reconstruction from keyframes only. 99

4.4.1 The full 3D meshes of the seven objects used through-
out our experiments. 101

LIST OF FIGURES xv

4.4.2 We performed ICP-like refinement on the fr1/floor se-
quence of the RGB-D benchmark dataset [89] to im-
prove ground truth poses. (a) Left: original frames.
Right: optimized poses. Compare the right wall. (b)
Top: original frames. Bottom: optimized poses. Com-
pare the floor and the blue robot. 102

4.4.3 Final semantic reconstruction for the 4-objects sequence.
Bounding boxes aligned according to estimated poses
are shown around detected objects. 103

4.4.4 Detecting the same object instance in multiple views
helps counteract the drift error, especially at loop clo-
sures. Top: a detail from the 7-objects sequence recon-
structed by the basic SLAM engine without deployment
of semantic information about the objects. Bottom: the
same sequence reconstructed by our semantic bundle
adjustment approach. Bounding boxes aligned accord-
ing to estimated poses are shown around detected objects.104

4.4.5 We performed a complete loop with a Kinect camera
capturing the object Doll at the beginning and at the end
of the sequence. While a basic SLAM engine, (a) and
(c), accumulates drift, our semantic approach, (b) and
(d), implicitly closes the loop by detecting the object.
In this experiment we have deployed the Color-SHOT
descriptor [94] rather than Spin Images so to rely on
more distinctive features. 105

4.4.6 4-objects sequence: (top) rotation error, in degrees, and
(bottom) translation error, in meters, for every frame
and detected objects. Blue triangles: plain SLAM. Red
squares: semantic bundle adjustment. The numbers de-
note the frame indexes while the letters the four objects
(cfr. Fig. 4.4.1). 106

xvi LIST OF FIGURES

4.4.7 7-objects sequence: (top) rotation error, in degrees, and
(bottom) translation error, in meters, for every frame
and detected objects. Blue triangles: plain SLAM. Red
squares: semantic bundle adjustment. The numbers de-
note the frame indexes while the letters the seven ob-
jects (cfr. Fig. 4.4.1). 107

4.4.8 Estimating object poses in the 3D environment allows
for object-aware augmentation. In this example a red
umbrella is rendered, with occlusion handling, near the
Doll, even when the object is not visible. Top: 3D re-
construction. Bottom: two augmented frames. In this
experiment we have deployed the Color-SHOT descrip-
tor [94] for matching object feature. 110

4.4.9 Results on augmented sequences from the RGB-D bench-
mark dataset [89] for our semantic extension to Kinect-
Fusion. Left: fr1/360. Middle: fr1/desk. Right: fr1/floor. 111

Chapter 1

Introduction

Perceiving and understanding the world through a sensor or a combi-
nation of sensing devices is a challenging task which includes localiza-
tion of the sensing platform w.r.t. some global reference, reconstruction
of the environment and semantic segmentation of the scene. Classi-
cally, these tasks have been addressed separately, as localization within
a known map, reconstruction by fusing a set of calibrated measurements
and semantic interpretation of static scenes as a batch process. Never-
theless, certain applications, such as autonomous robot exploration, call
for a joint solution. Indeed, while moving within an unknown environ-
ment, a robot constantly needs, on one hand, an up-to-date map to plan
its motion and, on the other hand, an accurate and real-time localiza-
tion of itself within that map. When motion estimation is performed
alongside with mapping, the problem is called Simultaneous Localiza-

tion And Mapping (SLAM).

The SLAM problem introduces a number of issues, mostly due to the
inevitable propagation of estimation errors. Indeed, sensor position can
be estimated from a partial map only with some uncertainty, which
then propagates into the same map again when updating the reconstruc-
tion by fusing measurements according to the current pose estimate.
Therefore, many techniques have been investigated to tackle such is-
sues, so that in the last decades many technological advances dealing

1

2 CHAPTER 1. INTRODUCTION

Figure 1.0.1: Nowadays, a number of mobile platforms need to solve
the SLAM problem for enhanced operations. Left: the NASA rover
“Curiosity”, landed on Mars on 6th August 2012, equipped with sensors
for obstacle avoidance and autonomous navigation. Middle: the Dyson
360 Eye™ vacuum cleaner, a first example of an autonomous robot at
home using a 360° vision system for mapping and navigation. Right:
the Google’s driverless car uses a 3D laser range scanner and a set of
cameras for autonomous driving.

Figure 1.0.2: The Microsoft Kinect (left) and the Asus Xtion PRO Live
(right) are RGB-D cameras based on structured light technology.

3

Figure 1.0.3: Smartphones (left), tablets (middle) and smart glasses
(right) are personal devices equipped with cameras and positioning sen-
sors useful for perceiving and understanding the world.

Figure 1.0.4: The Structure sensor (left) is an active depth camera de-
vise for enhancing tablet vision capability, while Google Project Tango
(right) aims at integrating such sensors into the device.

with SLAM problems have come to light, including toy robots, vacuum
cleaners, space exploration rovers and autonomous cars (see Fig. 1.0.1),
and many more are expected in the near future. Moreover, if nowadays
robots are designed for solving specific problems, there is a trend in the
research community towards general purpose platforms, which could
effectively interact with the surrounding world [60, 99]. This requires
detailed geometry reconstruction and semantic understanding through,
e.g., object detection and localization. Therefore, many efforts are be-
ing made today to achieve, on one hand, consistent online surface re-
construction at large scale and, on the other hand, a joint approach to
the detection and mapping problems. Recently, impressive results have
been obtained by deploying RGB-D cameras only (see Fig. 1.0.2) for
such tasks and, due to their wide availability, good performance and
low cost, in this thesis we will pursue this direction. Accordingly, we
will generally assume to work with a RGB-D sensor freely moving in an
unknown environment, with no other information, such as, e.g., wheel
odometry or inertial data.

4 CHAPTER 1. INTRODUCTION

At the other end of the spectrum, the emerging field of personal mobile
devices, such as smartphones, tablets and smart glasses (see Fig. 1.0.3),
opens new challenging opportunities, from real-time scene reconstruc-
tion to user-centered context-specific Augmented Reality (AR). How-
ever, existing approaches usually does not suit the limited resources
available on such platforms, so that new strategies have to be investi-
gated. Again, RGB-D cameras are promising tools which, in the future,
could be integrated into mobile devices for improved sensing capabil-
ities. First examples recently announced are, e.g., the Structure sensor
[68] and Google Project Tango [33] (see 1.0.4), which add depth estima-
tion to the usual color vision. In Chap. 2 we will show preliminary re-
sults obtained by attaching a Structure camera to a tablet device. More-
over, smartphones with 3D capabilities have been already launched, e.g.
the HTC One M8, and other 3D technologies are also emerging, such
as light-field cameras1.

In this thesis we will focus on how a RGB-D camera can be used to
effectively perceive the world. Accordingly, we will address three main
open challenges, namely mobile mapping, large scale surface recon-
struction and semantic understanding. As for the mobile mapping, in
Chap. 2 we will describe SlamDunk [111, 108], a scalable and lightweight
RGB-D SLAM system, developed both for desktop and Android plat-
forms. We will show that, unlike existing approaches, SlamDunk grace-
fully handle even large workspaces without significant hindering of the
overall performances. However, to comply with the strict requirements
of a mobile device, SlamDunk does not reconstruct the sensed surface,
but simply creates a dense point cloud by 3D projection of significant
frames. Therefore, in Chap. 3 we will move to more powerful architec-
tures, i.e. GPU accelerators, to address large scale surface modeling. To
this end, we will describe an effective approach which outperforms the
state-of-the-art in terms of real-time camera tracking and high-quality,
online surface reconstruction especially in presence of loop closures.

1e.g. the Pelican array camera http://www.pelicanimaging.com [96]

http://www.pelicanimaging.com

1.1. CAMERA TRACKING AND MAPPING 5

This work is the result of a six-month internship at Microsoft Research
Cambridge (UK) with the supervision of Dr. Shahram Izadi and it has
been recently accepted for publication at the upcoming 2015 Computer
Vision and Pattern Recognition international conference (CVPR) [112].
Finally, the synergistic integration of SLAM and semantic information
is addressed in Chap. 4. Most of the previous findings will be here
exploited to achieve joint object detection, camera tracking and envi-
ronment mapping by means of a novel Semantic Bundle Adjustment
framework [110]. Also, we will adapt the KinectFusion camera tracker
so as to include semantic information [109]. Indeed, we believe that
a tight integration of these three processes will result more and more
in the forthcoming future a major research topic in both the computer
vision and robotics communities.

In the next section we will briefly review the visual SLAM literature,
emphasizing the milestones on the path from early researches to today.
More details on relevant works will be given at the beginning of every
chapter.

1.1 Camera Tracking And Mapping

The origins of visual SLAM can be dated back to the seventies [91, 12]
with early works about min-max error bounds for representing spatial
uncertainty. The first probabilistic approach deploying a multivariate
representation of both position and orientation is probably due to Smith
et al. [83, 82], where an Extended Kalman Filter (EKF) performs state
estimation of camera pose as well as landmark positions, i.e. features
tracked in different acquired images. Then, together with the increasing
availability of digital cameras, filtering methods became the de facto

standard for SLAM applications [51, 9, 21, 62, 92, 23]. The idea was to
estimate a joint state probability with Gaussian uncertainty of both the
current 6-DOF pose of the sensor and the 3D locations of a set of interest
points detected in different image frames, so that repeated observations

6 CHAPTER 1. INTRODUCTION

would eventually shrink such uncertainties.

Due to the filtering approach, previous poses on the camera path are
marginalized out in the probability formulation, while other techniques
from different fields, such as, e.g., photogrammetry and structure-from-
motion, suggest that a joint estimation is possible and may even improve
the final solution. The former field is related to the extraction of geo-
metric information from aerial photographs, while the latter perform
3D reconstruction from a set of images. To this end, overlapping pic-
tures have to be aligned together by finding corresponding points and
a point cloud is reconstructed by point triangulation. Key is the bundle
adjustment technique [95], a non-linear iterative optimization method
which aims at minimizing a cost function defined as a sum of squares
of reprojection errors. Recent achievements include the “Rome in a
day” project [1], where an entire city is built from an unorganized col-
lections of images gathered from internet services such as Flickr.com.
However, the task is cast as an offline process and may take many hours
to complete. Conversely, SLAM typically deals with incremental es-
timation and online refinement as soon as new measurements become
available. While structure-from-motion is usually solved from scratch
using batch approaches focused on accuracy, SLAM iteratively updates
a probability distribution over the current pose and landmark map. Nev-
ertheless, both methods minimize a similar cost function, i.e. a sum of
squares of reprojection errors, and in the last decade this close relation-
ship has been discovered and exploited [24, 40, 80]. In particular, Nister
et al. [67] introduced the concept of “Visual Odometry”, where bundle
adjustment is applied over a sliding window.

A breakthrough contribution in the SLAM field has been Parallel Track-
ing And Mapping (PTAM), presented in [45]. The authors devised a
novel system by decoupling the camera tracking and the mapping tasks
in two concurrent threads. Given a 3D model of the scene, i.e. a col-
lection of landmarks, incoming frames are aligned by inexpensive fea-
ture tracking. In this way, a pose for the current camera is estimated

1.1. CAMERA TRACKING AND MAPPING 7

in real-time from hundreds of observations. Then, keyframes are se-
lected among all the acquired images to cover the workspace under
exploration and, whenever possible, bundle adjustment optimization is
performed to jointly estimate keyframe poses and landmark positions.
Since this optimization need not be carried out in real-time, the frame-
work has been effectively adopted for AR games, even on smartphones
[46], while continuously updating the map. However, a large number of
keyframes still set forth a complex optimization problem for the back-
end so that, eventually, the computational requirements restrict the area
of operation to room-size environments. Some alternatives have been
proposed, based either on reducing the feature match cost terms to sim-
pler pose-pose constraints [47] or deploying locality principles [81, 87].

Strasdat et al. [88] made a rigorous comparison between filtering and
keyframe bundle adjustment, showing a preference for the latter. In-
deed, for increasing number of points, Gaussian filtering reaches bun-
dle adjustment accuracy, while the more keyframes are used the more
robustness is achieved. However, the former shows a cubic cost in the
number of landmarks, while the same cost is linear for the latter. More-
over, [88] showed that there exist particular situations where Gaussian
filters perform constantly worse than bundle adjustment, therefore in
this thesis we will always use a BA-style formulation for camera path
estimation.

Lately, the arrival of the Microsoft Kinect camera in November 2010
paved the way for novel real-time approaches to the camera tracking
and mapping problems based on the RGB-D frames delivered by the
sensor. Indeed, a RGB-D frame comprises two VGA images acquired
at 30Hz: a standard RGB image and a depth map giving the metric
distance of every pixel from the camera. Due to their low cost, low
power and wide availability, RGB-D cameras have quickly gained in-
terest from the scientific community, since 3D colored point clouds can
be easily computed from every acquired frame while freely moving the
sensor through the scene. Beside feature based methods [35, 30], high-

8 CHAPTER 1. INTRODUCTION

quality dense surface reconstruction has been demonstrated by Kinect-
Fusion [64, 38], which will be discussed in detail in Chap. 3. While
dense reconstruction with monocular camera setting had already been
proposed before [63, 65], they did not attain instant surface modeling.
Moreover, the KinectFusion framework allows for reconstructing even
in completely dark environment by using only active depth measure-
ments, thus improving over other methods based on color information
[35, 30, 43, 84].

The relative maturity of visual SLAM has encouraged the community
to move towards new directions. On one hand, mobile platforms are
seen as the next step for combining visual SLAM with on-board sen-
sors, such as GPS and inertial data [46, 90]. We will discuss this topic
in Chap. 2, though mainly addressing a RGB-D SLAM scenario with-
out any form of sensor fusion. On the other hand, the semantic under-
standing of the scene is a valued achievement and, recently, results have
shown tight correlation with the SLAM problem. From a structure-
from-motion perspective, Bao et al. [6, 4, 5] have successfully detected
object categories and jointly estimated 6-DOF camera poses with object
localization on image plane, while from a SLAM perspective few works
try to integrate these two tasks, e.g. [19, 17]. In Chap. 4 we will dis-
cuss all these approaches, highlighting also the differences between our
Semantic Bundle Adjustment method [110] and SLAM++ [76], both
published at the 2013 Computer Vision and Pattern Recognition inter-
national conference (CVPR).

Chapter 2

RGB-D SLAM For Mobile
Devices

Over the years, the problem of exploring and simultaneously mapping
an unknown environment has been addressed from a variety of ap-
proaches. Results on laser scanner data feature high precision and de-
tailed reconstructions [61, 11], although the size and cost of the de-
vices as well as computational issues significantly reduce the applica-
tion scenarios. On the other hand, monocular and stereo visual SLAM
[67, 22, 45, 47, 87] exploits only color images and has proved to be re-
liable in a diversity of contexts, e.g. augmented reality or large outdoor
navigation. However, most systems still rely on sparse feature track-
ing techniques and require hardware acceleration to attain 3D surface
reconstruction [63, 65]. We believe that both approaches, i.e. 3D laser
scanner-based and RGB visual SLAM, are suitable for robotic platforms
and desktop computers, but they have not been conceived for mobile
devices, such as smart phones and tablets. Therefore, we investigated
a new approach designed to be scalable, efficient and with low compu-
tational requirements. Due to its versatility and ease of use, we dub it
SlamDunk [111, 108].

A key aspect of the developed algorithm is the use of RGB-D data,

9

10 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

Figure 2.0.1: SlamDunk allows a user with commodity hardware and
a RGB-D camera to scan in real-time small objects and various indoor
environments.

i.e. frame pairs including a standard RGB image and a Depth map which
encodes, pixel-by-pixel, the distance from the camera to the nearest sur-
face. Indeed, low-cost RGB-D sensors such as the Microsoft Kinect or
the Asus Xtion PRO Live provides VGA frames at 30Hz with mini-
mal power consumption, thus making possible to retrieve 3D measure-
ments at high frame rate on a mobile platform. Nevertheless, these
devices, which are based on a structured light system, introduce a sig-
nificant amount of noise in the estimation of pixel depths, thus harm-
ing an accurate reconstruction, though impressive results have been re-
ported with dedicated hardware [64]. We propose to reduce complex-
ity and improve scalability by exploiting the local mapping paradigm
[81, 87, 10], whereby a global adjustment is always avoided in favor
to a local optimization of the estimated camera poses. To this aim, the
camera path is simplified into a skeleton of keyframes [47], representing
the map, and a subset is selected for real-time localization of the camera
sensor. Therefore, our multi-view feature tracking scheme with robust
pose estimation naturally adapts to both very loopy trajectories in small
workspaces, such as AR applications, and large exploratory sequences.
Then, if a tracked frame brings new information about the scene, a new
keyframe is spawn and a local optimization is performed. This way, we
achieve local consistency, while reducing problem complexity, making
SlamDunk suitable for both object reconstruction and indoor mapping
(see Fig. 2.0.1).

In this chapter we will describe the SlamDunk framework, its mobile

2.1. REAL-TIME RGB-D SLAM 11

implementation and show the results obtained on various datasets. First,
in Sec. 2.1 and 2.2 we will review the main proposals and highlight
similarities and differences of our approach. Then, in Sec. 2.3, we will
discuss our real-time solution for desktop platforms [111]. In Sec. 2.4,
we will present how the same algorithm has been implemented on an
Android platform for interactive and effective 3D reconstruction on a
mobile platform [108]. Finally, we close the chapter with experimental
results for both the architectures in Sec. 2.5. Though in these experi-
ments we will always make use of either the Kinect or the Xtion sen-
sors, we point out that the recent availability of depth cameras designed
for tablet devices, e.g. the Structure sensor [68] and the Google Project
Tango [33], may pave the way, in the near future, for the integration
of similar capabilities on mobile devices. As we believe that the Slam-
Dunk framework could be a first attempt in that direction, we are going
to release under an open-source license both our desktop and Android
implementations.

2.1 Real-time RGB-D SLAM

Beside 3D reconstruction from laser scans integrated with the help of
GPS and/or IMU data, the field of visual SLAM, i.e. SLAM based only
on visual input, has addressed for many years the monocular camera
setting, where a single RGB sensor is freely moved through the environ-
ment. Most techniques, based on filtering approaches [23, 22, 27, 18],
are able to produce and refine in real-time a sparse feature map, with
no notion about the dense 3D geometry of the scene. Indeed, real-time
dense reconstruction from a monocular camera has been achieved only
leveraging on GPU acceleration [63, 65].

The introduction of the RGB-D cameras, most notably the Microsoft
Kinect, has immediately drawn the attention of the research community
for its potential in 3D real-time scanning. Dense tracking and mapping
has been deployed on GPU [64, 38, 102, 101, 98, 13], while few tech-

12 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

niques have been proposed for standard commodity hardware. RGB-D
Mapping [35] and RGB-D SLAM [30] fill this gap with two similar
visual mapping systems. Visual features [57, 103, 7, 73] are extracted
from the incoming frame and matched to find correspondences with the
previous one (or the previous keyframe). Then, 2D point features are
projected in the 3D space by exploiting the known relationship between
the color and depth image, and camera pose is robustly estimated by a
RANSAC-based absolute orientation algorithm [3]. Then, [35] further
refines the estimated pose by an additional ICP-like alignment, yield-
ing improvements in low-light conditions or texture-less scenes. So,
both systems rely on frame-to-frame matching, which may fail if the
reference frame is not informative enough, while SlamDunk adopts a
multi-view approach to increase tracking accuracy. Furthermore, we
foster the creation of links by selecting neighboring keyframes on a
metric distance basis, rather than following the actual camera path (see
Sec. 2.3.1). We will show how this technique is also useful for metric
loop closure handling, while [35] and [30] explicitly look for similar
keyframes by frame-to-frame feature matching. Pose graph relaxation
is carried out to reduce the overall reconstruction error. However, while
[35] and [30] reduce the problem to a sum of pose-pose error terms,
we always consider all the 3D point-point constraints associated to the
relevant feature matches, with no marginalization or approximation to a
single lighter connection per frame pair. Finally, they achieve real-time
operation only when using binary features [73] or GPU acceleration
[103].

Other relevant approaches for RGB-D SLAM include the dense visual
odometry estimation proposed by Kerl et al. [44] and Steinbruecker et

al. [86]. In these works camera pose estimation is addressed as a pair-
wise frame tracking problem, by densely minimizing a cost function
defined over the whole image. The method has proven to reduce drift
error compared to state-of-the-art camera tracking approaches, but it
lacks a full-fledge SLAM framework. Keyframes are created by look-

2.2. MOBILE RGB-D SLAM 13

ing at the entropy of the distribution of pose parameters, thus possibly
wasting memory on loopy browsing. Moreover, metric loop closure de-
tection is handled as a separate step of the pipeline by considering a
subset of candidate keyframes, while SlamDunk, as already mentioned,
foster the creation of links between distant frames as part of the camera
tracking step.

As described in Sec. 2.3.3, we developed a local optimization of camera
poses inspired by Sibley et al. [81] and Strasdat et al. [87]. The former
proposes a relative bundle adjustment approach which is then used by
the latter within a double window framework. However, camera track-
ing relies on matching keyframes along the camera path and metric loop
closure is detected by a different matching stage.

As for other real-time RGB-D SLAM systems running on a CPU sys-
tem, Scherer and Zell [77] embeds PTAM [45] in a relative bundle
adjustment framework [81]. They developed a pairwise frame reg-
istration approach between the incoming camera frame and the best
keyframe selected by visual feature reprojection. Although the pose
is robustly estimated by a sparse optical flow and RANSAC, we argue
that using multiple keyframes, as in SlamDunk, leads to higher accu-
racy. Moreover, while both [77] and [45] rely on monocular camera
frames, we leverage on RGB-D measurements. Dryanovski et al. [26]
align each frame to a sparse map of 3D landmarks by means of an ICP-
like approach. The proposed system runs in real-time, though with
QVGA image resolution, while SlamDunk deploys full VGA images.
Furthermore, landmarks’ positions are integrated with new measure-
ments through Kalman filtering, which is usually less accurate than
least-squares optimization [88].

2.2 Mobile RGB-D SLAM

The SLAM and reconstruction problems have been always perceived
as computationally demanding, hence not suitable for mobile devices.

14 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

However, recent technological advances have fostered the development
of lightweight approaches specifically designed to exploit all the avail-
able resources. Klein and Murray [46] proposed an implementation
of PTAM [45] on an Apple iPhone 3G. Purposely, they simplified the
original algorithm by extracting less visual features and requiring rich
textures in the scene to robustly estimate camera movements. Never-
theless, the bundle adjustment step may require seconds to complete.
Conversely, SlamDunk reduces the problem complexity by reprojecting
2D matching features according to the measured depth and estimating
camera poses only. Wendel et al. [97] propose a similar system, but
the processing is distributed between a tablet and a dedicated server pc.
This is very different from our settings, where all the computation is car-
ried out on the device. Similarly, [50] relies on a remote server for pose
estimation and instant feedback. Large 3D reconstruction on a mobile
phone has been demonstrated by Pan et al. [69]. However, the system is
conceived for interactive AR scenarios and the reconstruction pipeline
does not run in real-time. Finally, Tanskanen et al. [90] combines RGB
images with inertial measurements, thus achieving real-time tracking.
However, the system is designed for capturing small objects and, also,
the 3D model reconstruction runs at a much lower frame rate, i.e. 0.3 -
0.5Hz. Instead, SlamDunk leverages on RGB-D data and provides 3D
reconstruction of the explored scene at interactive frame rate.

2.3 The SlamDunk Algorithm

Our proposed pipeline, sketched in Fig. 2.3.1, includes three different
modules: Local Mapping (Sec. 2.3.1), Camera Tracking (Sec. 2.3.2)
and Local Optimization (Sec. 2.3.3). RGB-D frames, retrieved from the
sensing device, are aligned to the current map model, which includes a
selected subset of camera frames, i.e. keyframes. Moreover, following
[81, 87], we consider only the local workspace for tracking and dy-
namically maintain an active window of neighboring keyframes, which

2.3. THE SLAMDUNK ALGORITHM 15

Figure 2.3.1: The SlamDunk pipeline encompasses three main modules:
Local Mapping (blue dotted line, see Sec. 2.3.1), Camera Tracking (red
dashed line, see Sec. 2.3.2) and Local Optimization (green dash-dot
line, see Sec. 2.3.3).

16 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

enables a robust multi-view feature tracking scheme (Sec. 2.3.2). If
the processed frame is classified as a keyframe, it is saved and added
to the map, immediately refined by the Local Optimization module
(Sec. 2.3.3). Again, camera path is optimized only locally, keeping
problem complexity low, while reducing drift and tracking errors. Fi-
nally, the Local Mapping module (Sec. 2.3.1) moves the active window
and update the local map model.

At each time stamp i there exist a 3-channel color image Ci and a depth
map Di such that, for each pixel (u,v), the sensed surface is represented
in camera reference frame as

p = K−1

u

v

1

Di (u,v) (2.3.1)

where K is a projection matrix, e.g.

K =

fx 0 cx

0 fy cy

0 0 1

 , (2.3.2)

being (fx, fy) and (cx,cy), respectively, the focal lengths and the optical
centers of the camera sensor. We also assume that the two images have
been registered together, so that the depth map matches the color image
pixel-by-pixel.

We reconstruct the explored environment by online estimation of the
camera path. Thus, we aim at recover the 3D camera pose at each time
stamp i as a rigid transformation mapping 3D points from the camera
reference frame to the world reference frame. Such a transformation

2.3. THE SLAMDUNK ALGORITHM 17

can be defined as a 4×4 matrix

Ti =

Ri ti

0 1

 , (2.3.3)

where Ri is a 3× 3 rotation matrix and ti is a 3× 1 translation vector.
Therefore, we can apply Ti to a given x ∈ R3 as

π3 (Ti [x]), π3

Ti

x

1

= Rix+ ti, (2.3.4)

where [·] : R3 → R4 is the homogeneous operator and π3 : R4 → R3

is such that π3 (x,y,z,w) := (x/w, y/w, z/w). In the following, to improve
readability, we will generally omit both the homogeneous operator and
its inverse. Finally, we observe that y = Rx+ t implies x = R>y−R>t,
so that we define the inverse of a camera pose as

T−1
i =

R>i −R>i ti

0 1

 . (2.3.5)

A real-time visualization of the map is generated by reprojection of the
RGB-D keyframes and transformation of the point cloud then obtained
(Eq. (2.3.1) and (2.3.4)). On one hand, point density of the final model
cannot be easily controlled by this method, no surface lattice is pro-
duced and, moreover, the final reconstruction does not filter noise arti-
facts from the original keyframe collection. A common solution is to in-
tegrate the RGB-D frames by pixel ray-tracing through an octree-based
probabilistic 3D representation of the environment [37, 30], which in-
herently enables noise reduction, fixed resolution and efficient memory
occupancy. However, our frequent pose updates due to the online op-
timization of the camera path would often invalidate the reconstruction
and require a new integration of the keyframes. On the other hand, a
map created as the reprojection of every keyframe is modeled by sim-

18 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

(a) SlamDunk indexes keyframes’
poses within a quadtree structure. A
local map (blue cameras) is built
by querying a squared window (red
square) centered at a given pose (red
camera).

FR

A

(b) Strasdat et al. [87] propose to con-
sider all the keyframes connected to the
reference keyframe FR (blue cameras).
However, this approach cannot directly
handle small loop closures, e.g., by in-
cluding the keyframe A into the local
map.

Figure 2.3.2: Camera tracking is often addressed by building a lo-
cal map. Here we compare our quadtree-based method (a) with the
window-approach proposed by Strasdat et al. [87] (b).

ply update of the camera poses in the visualization pipeline. Therefore,
this approach is more suited to show a camera path which is constantly
refined by a SLAM engine, as in SlamDunk. Also, the reconstruc-
tion quality is not reduced, as vouched by the experimental results (see
Sec. 2.5).

In the next sections we will discuss the various steps of the pipeline,
namely Local Mapping, Camera Tracking, Local Optimization and met-
ric loop closure detection. Then, in Sec. 2.4 we will present a mobile
implementation on a Android platform, highlighting the limitations of
the architecture and the adopted solutions. Finally, we will report quan-
titative and qualitative experiments in Sec. 2.5.

2.3. THE SLAMDUNK ALGORITHM 19

2.3.1 Local Mapping

SlamDunk tracks camera movements by means of a subset of the keyframe
map. The creation of this local map is key for real-time operation and
correct estimation of camera pose, so we developed a method which,
unlike previous proposals [81, 87], does not take into account the spe-
cific camera path nor the particular problem configuration as defined in
Sec. 2.3.3. Instead, as shown in Fig. 2.3.2a, we index two coordinates
of the estimated camera translation into a quadtree structure approxi-
mately parallel to the ground floor. Then, we include into our local map
all the keyframes within a squared window, i.e. the active window.

A quadtree data structure enables both faster insertion and retrieval than
other indexes, such as octrees or KD-Trees, and allows for efficient
handling of loopy trajectory. Different approaches based on the spe-
cific path followed by the camera, see, e.g., Fig. 2.3.2b, usually need
to explicitly detect small loop closures in order to find connection with
previous keyframes. The query is performed whenever a new keyframe
is spawn, or if the camera pose estimate is too far from the center of the
current active window. Indeed, when the sensor explores an area which
has been already mapped, usually we only need to localize the camera
and the active window would follow its movements.

As described in Sec. 2.3.2, camera tracking is based on a multi-view
feature matching approach. Therefore, every time a new keyframe is
inserted into the quadtree, we save also visual features and correspond-
ing 3D points; then, when the active window is updated, these features
are gathered from all the selected keyframes and indexed into a single
KD-Tree structure, i.e. the Feature Pool in Fig. 2.3.1. Though, in prin-
ciple, this task may be carried out after every frame, the creation of
the tree is usually costly and, if the active window is large enough, it
may not give any improvements to the tracking process. Accordingly,
we update the Feature Pool only upon keyframe spawning or when the
relative translation between the currently estimated pose and the active
window center is large, i.e. above a threshold.

20 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

2.3.2 Camera Tracking

We estimate camera pose for each frame grabbed from the sensor using
a multi-view feature tracking scheme. Visual features, such as SURF
[7] or SIFT [57], are extracted from the RGB image and matched to
the Feature Pool which indexes features from the keyframes in the ac-
tive window (see Sec. 2.3.1). To improve matching reliability, we have
adopted the ratio criterion presented in [57], i.e. we accept a match with
distance d0 iff the distance d1 to the next-closest feature is such that
d0/d1 is below a given threshold θ . However, since our KD-Tree in-
dex is built from different images, the first two matches could refer to
the same feature detected from two different point of views, so that the
d0/d1 ratio almost equals 1 even in presence of a perfect match. There-
fore, we retrieve the parent keyframe of the first match and look for the
next-closest feature extracted from the same keyframe.

The ratio threshold θ can be tuned for high confidence matching or to
get a large number of correspondences. In both cases, the presence of
outliers must be explicitly addressed to avoid incorrect estimation of the
camera pose. Therefore, first we project each 2D point feature accord-
ing to its measured depth and camera parameters (see Eq. 2.3.1), then
we filter the list of 3D point matches by means of a RANSAC-based
Absolute Orientation procedure [3], as outlined in Alg. 2.1. Every iter-
ation three point pairs are randomly drawn and a unique transformation
is computed by SVD least-squares fitting. The transformation is ap-
plied to each match in order to count the number of pairs belonging to
the consensus set. The consensus set related to the most voted pose if
finally used to refine the estimate by SVD least-squares fitting.

The multi-view feature matching scheme followed by the 3D RANSAC-
based pose estimation procedure has proven to be fast, lightweight and
accurate enough for tracking camera movements in a small mapped
workspace. As long as new information about the scene is carried by the
tracked RGB-D frame, a new keyframe should be spawn and added to
our model of the environment. On one hand, a fine keyframe sampling

2.3. THE SLAMDUNK ALGORITHM 21

Algorithm 2.1 Incorrect correspondences are detected and discarded by
a RANSAC-based outlier rejection algorithm. Then, correct matches
provide the camera pose estimate.
Require: Imax: max number of iteration
Require: τ: max distance between two correct matches
Require: M: set of 3D point matches
Require: pM: probability of drawing an inlier from M
Ensure: M̃ contains correct 3D point matches

1: N← SizeOf(M), i← 0, imax← Imax
2: Sbest← 0, Tbest← I4×4
3: while i < imax do . RANSAC outlier rejection
4: Scurrent← 0, Tcurrent← I4×4
5: Draw three matches (p0,q0) ,(p1,q1) ,(p2,q2) ∈M
6: p̂← p0+p1+p2

3
7: q̂← q0+q1+q2

3
8: H ← (q0− q̂) · (p0− p̂)> + (q1− q̂) · (p1− p̂)> + (q2− q̂) ·

(p2− p̂)>

9: Find matrices U,D,V such that H = U ·D ·V>
10: R← V ·U>
11: if |R|< 0 then
12: V← [v0,v1,−v2], where v j is the jth column of matrix V
13: R← V ·U>
14: end if

15: Tcurrent←

[
R p̂−Rq̂
0 1

]
16: for all (p,q) ∈M do
17: if ‖Tcurrent [q]−p‖< τ then
18: Scurrent← Scurrent +1
19: end if
20: end for
21: if Scurrent > Sbest then
22: Sbest← Scurrent, Tbest← Tcurrent
23: if Sbest = N then
24: imax← 0
25: else
26: imax←min

{
Imax,

log(1−pM)

log(1−(Sbest/N)3)

}
27: end if
28: end if
29: i← i+1
30: end while
31: for all (p,q) ∈M do
32: if ‖Tbest [q]−p‖< τ then
33: M̃← M̃∪{(p,q)}
34: end if
35: end for

22 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

strategy could waste memory with no real reconstruction or localization
improvements, while keeping too few keyframes may lead to a track-
ing failure [45, 47, 30]. Being our approach based on feature matching,
we decided to rely on the amount of overlapping between the RGB-D
frame and the local map. More precisely, we consider R×C cells of
equal size on the RGB image, e.g. R = C = 4, and count how many
such cells contain more than F matched features classified as inliers: if
this number is below a threshold, we create a new keyframe from the
current RGB-D frame.

2.3.3 Local Optimization

SlamDunk performs camera tracking as a localization task within a
model of the local neighborhood, i.e. the active window. This model
is fixed and it does not integrate new information from tracked frames
in order to improve the overall reconstruction. Though, when a new
keyframe is detected and added to the map, matched features bring in
new constraints that can be used to update the camera path and reduce
drift error [95, 45, 47, 87, 31, 49, 29]. Following Kümmerle et al. [49],
we define a cost function as the sum of weighted squared errors

F (T0, . . . ,Tn−1) =
|C |−1

∑
i=0

wi ‖ei‖2 (2.3.6)

where {T0, . . . ,Tn−1} are the unknown camera poses and C is the list of
constraints, i.e. the feature matches. The cost term wi ‖ei‖2 represents
the error introduced by the ith feature match, with ei ∈ C and wi ∈ [0,1]
weighting the confidence of the match, e.g. (1− d0/d1) (see Sec. 2.3.2).
Knowing the mapping function from the RGB to the depth frame, we
can turn each feature match (fa, fb) in a 3D point pairs (pa,pb) ex-
pressed in their own camera reference frame (cfr. Eq. 2.3.1). Then, we
compute the reconstruction error by applying the estimates of the cor-

2.3. THE SLAMDUNK ALGORITHM 23

responding camera poses

ei = e(Tia,Tib) = pia−T−1
ia Tibpib. (2.3.7)

Finally, using Eq. (2.3.6) and (2.3.7) we state our optimization problem
as

argmin
{T0,...,Tn−1}

F (T0, . . . ,Tn−1) = argmin
{T0,...,Tn−1}

|C |−1

∑
i=0

wi ‖ei‖2

= argmin
{T0,...,Tn−1}

|C |−1

∑
i=0

wi ‖e(Tia,Tib)‖
2

= argmin
{T0,...,Tn−1}

|C |−1

∑
i=0

wi
∥∥pia−T−1

ia Tibpib

∥∥2
. (2.3.8)

The minimization problem in Eq. (2.3.8) is usually solved by finding
the point where the derivative of the cost function is zero, i.e.

{T0, . . . ,Tn−1} such that
∂F

∂ (T0, . . . ,Tn−1)
= 0. (2.3.9)

Therefore, given a good initial guess
{

T̂0, . . . , T̂n−1
}

such as the poses
estimated by the camera tracking module, we linearize each error term
around such point by its first order Taylor expansion

e
(
T̂ia +∆Tia, T̂ib +∆Tib

)
' êi +Jia∆Tia +Jib∆Tib , (2.3.10)

where êi = e
(
T̂ia, T̂ib

)
, Jia , Jib are the Jacobian of e computed at, respec-

tively, T̂ia and T̂ib . Substituting in Eq. (2.3.6) the linear approximation
in Eq. (2.3.10), we obtain

F
(
T̂0 +∆T0, . . . , T̂n−1 +∆Tn−1

)
=
|C |−1

∑
i=0

wi
∥∥e
(
T̂ia +∆Tia, T̂ib +∆Tib

)∥∥2

'
|C |−1

∑
i=0

wi ‖êi‖2 +2wiê>i Jia∆Tia

24 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

+2wiê>i Jib∆Tib

+wi∆T>ia J>ia Jia∆Tia

+wi∆T>ib J>ib Jib∆Tib

+wi∆T>ia J>ia Jib∆Tib

+wi∆T>ib J>ib Jia∆Tia

= c+2b>∆T+∆T>H∆T (2.3.11)

where c = ∑
|C |−1
i=0 wi ‖êi‖2, ∆T =

(
∆T>0 , . . . ,∆T>n−1

)> concatenates the
increments for each camera pose, b is the cumulative vector

b =

(

∑
|C |−1
i=0 wiê>i Jiaδia,0 +wiê>i Jibδib,0

)>
...(

∑
|C |−1
i=0 wiê>i Jiaδia,n−1 +wiê>i Jibδib,n−1

)>
 (2.3.12)

with δ j,k =

1 if j = k

0 ow
and H is a matrix of n×n blocks such that the

block h jk is defined as

h jk =
|C |−1

∑
i=0

(
wiJ>ia Jiaδia, j +wiJ>ib Jibδib, j

)
δ j,k

+wiJ>ia Jibδia, jδib,k +wiJ>ib Jiaδib, jδia,k. (2.3.13)

Applying the result in Eq. (2.3.11) to Eq. (2.3.9) we get the linear sys-
tem

H∆T =−b. (2.3.14)

with solution ∆T?. The popular Gauss-Newton method iteratively lin-
earizes the cost function (Eq. (2.3.11)), solve the linear system (Eq. (2.3.14))
and update the solution estimate to

T? = T̂+∆T?, (2.3.15)

2.3. THE SLAMDUNK ALGORITHM 25

which is used as the new linearization point for the next iteration. To
control the convergence of the algorithm, we deploy the Levenberg-
Marquardt (LM) variation [53, 59, 56] by modifying Eq. (2.3.14) in

(H+λ I)∆T =−b, (2.3.16)

where λ is a dumping factor which controls the increment ∆T?: if the
new solution is lower than the previous one, λ is decreased for the next
step, otherwise the update is reverted and λ is increased.

We find the iterative LM solution by means of the G2O hyper-graph

solver [49]. To deal with the non-Euclidean SO3 state variables, [49]
represents the rotational part of the incremental solutions ∆T? as a 3D
vector, e.g. the complex part of a normalized quaternion. Indeed, using
an over-parametrized representation in Eq. (2.3.14) and (2.3.15) would
break the required normalization constraints. However, a minimal rep-
resentation does not correctly encode the connectivity of the manifold
and may lead to singular values. While ∆T? is usually small and thus
far from singularities, this assumption may not be true for the state vari-
able T?, whose rotation is therefore expressed in an over-parametrized
space, e.g. as a 3×3 orthogonal matrix. Then, before the update step in
Eq. (2.3.15) ∆T? is mapped to the same over-parametrized space of T?

and the sum operator is implemented as the usual motion composition
operator.

Fig. 2.3.3 shows how the problem stated in Eq. (2.3.8) can be visual-
ized as an undirected graph. We create a node for every unknown and
map every cost term to an edge connected to the corresponding camera
poses. Solving for the whole camera path has a linear to cubic complex-
ity, depending on the topology of the graph, hence it is not suitable for
online mapping. Instead, we argue that a better user experience can be
achieved by considering only the local area currently under exploration
and ignoring the relationships beyond a certain distance. Inspired by
[81, 87], we perform a breadth-first search from the last added keyframe
(the “root” node in Fig. 2.3.4) and include into the cost function all the

26 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

T1

T0

T3
T2

e

e

e
e0

1

2

3

F (T0,T1,T2,T3) =‖e0 (T0,T1)‖2+

‖e1 (T0,T1)‖2+

‖e2 (T1,T2)‖2+

‖e3 (T0,T3)‖2

Figure 2.3.3: We can define one-to-one mapping between a cost func-
tion in the form of Eq. (2.3.6) and an undirected graph. For in-
stance, the graph shown in this figure represents the cost function
‖e0 (T0,T1)‖2 +‖e1 (T0,T1)‖2 +‖e2 (T1,T2)‖2 +‖e3 (T0,T3)‖2.

root

R1

R2

R2

R1
R2

R1

F

F
F

out

Figure 2.3.4: We devise a local optimization approach: starting from
the root node (“root” - green), we include into the optimization prob-
lem its neighbors (“R1”, “R2” - orange) up to a certain ring. Then, a
final ring of fixed vertexes (“F” - purple) is considered for global con-
sistency. All other vertexes (“out” - white) does not contribute at all to
the minimization problem.

2.3. THE SLAMDUNK ALGORITHM 27

Figure 2.3.5: SlamDunk tracks features within an active window of
neighboring keyframes. Thus, a loop can be implicitly closed (left im-
age) by a camera frame (green) matching temporally distant keyframes
(orange). Also, if these new links would significantly reduce the distant
between the two ends of the loop (right image), a local optimization is
triggered.

feature match constraints connected to the first ring of neighbors. Then,
we iterate up to a certain ring R, e.g. R = 3 in Fig. 2.3.4, and set as fixed

the last ring of vertexes. In this way, the edges connected to a fixed ver-
tex contribute to the cost function, but the camera pose does not change,
so that we keep the local map consistent with the whole camera path.
Should the Rth ring be empty, we fix the root node in order to avoid
gauge freedom.

2.3.4 Loop Closures

As discussed in Sec. 2.3.1, the keyframes which contribute to the Fea-

ture Pool are chosen for their spatial proximity, rather than their mutual
distance on the pose graph (see Sec. 2.3.3). This way, during a loopy
browsing of a small scene, a naturally dense connection of keyframes
arises and enables fast and accurate camera localization. Also, small to
medium size loop closures are implicitly handled by the system, while
other approaches require a dedicated step in the pipeline [35, 44, 30].
However, while camera tracking benefits from old keyframes entering
the active window, a local optimization of the camera path is triggered
only when a new keyframe is spawn, i.e. when the overlapping between

28 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

RGB-D
Frame

Grabber
Application
Manager

Renderer

SlamDunk

Acquisition
Thread

Processing
Thread

Visualization
Thread

Figure 2.4.1: SlamDunk has been embedded in a mobile application for
Android devices. Three main threads decouple image acquisition (left),
actual SLAM application (center) and instant visualization of the 3D
reconstruction (right).

the last tracked frame and the local map is low (see Sec. 2.3.2). Hence,
drift errors are not corrected if such event does not happen. Therefore,
we also explicitly detect loop closures by measuring the keyframe dis-
tance on the pose graph. More precisely, after a successful tracking, we
consider the set of tracked features and collect their parent keyframes
in the active window. Then, for each possible pair of keyframes, we
compute their distance on the pose graph (see Fig. 2.3.5) and, if above
a threshold, we create a new keyframe from the last tracked camera
frame and perform a local optimization as discussed in Sec. 2.3.3. Be-
ing this process closely related to the size of the subgraph we optimize,
we found a proper value for the keyframe distance threshold to be equal
to the number of rings R introduced in Sec. 2.3.3.

2.4 SlamDunk For Mobile Devices

The SlamDunk system described in Sec. 2.3 exhibits low memory con-
sumption and low computational complexity, due to the smart keyframe
detection policy and the local mapping paradigm. Therefore, it rep-
resents a natural candidate for a novel mobile RGB-D SLAM appli-
cation. We have chosen the popular Android operating system due to
its widespread availability, but we plan to release an implementation

2.4. SLAMDUNK FOR MOBILE DEVICES 29

Figure 2.4.2: Application interface for the Android implementation of
SlamDunk. The incremental reconstruction is rendered within a 3D
window, while the current RGB image is displayed in the bottom left
corner.

for iOS and Windows Phone operating systems with minimal chang-
ing in the near future. The software architecture is organized in three
modules, running on concurrent threads, which are named in Fig. 2.4.1
as Acquisition Thread, Processing Thread and Visualization Thread.
These modules asynchronously process and share data through double
buffer interfaces. A screenshot of the running application is shown in
Fig. 2.4.2.

The application is conceived for both testing and live data process-
ing. Purposely, the Acquisition Thread is built around a Grabber entity
which abstracts from the actual image source. Thus, RGB-D frames are
gathered from a real sensor, i.e. a Microsoft Kinect or a Asus Xtion PRO
Live, or read from a recorded sequence at a given frame rate and written
in a concurrent double buffer. This buffer is always up-to-date with the
latest available data, so that the Processing Thread simply skips frames
if running at a lower rate, instead of queuing and lagging. Though a
similar approach may harm SLAM systems based on pairwise tracking,

30 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

as long as the camera does not exit the active window SlamDunk is not
affected by the amount of motion between two successive frames (see
Sec. 2.3.2).

The Processing Thread hosts the Application Manager and it is the most
resource consuming thread. It receives RGB-D image pairs through a
shared buffer interface and runs the SlamDunk algorithm, which returns
the estimated camera pose. If a local optimization has been run (see
Sec. 2.3.3), it retrieves also a list of refined keyframe poses. Then, we
iterate through the current depth map and, for each valid pixel measure-
ment Di (u,v) we compute the point

p̆ =

u ·Di (u,v)

v ·Di (u,v)

Di (u,v)

1

 , (2.4.1)

which is a 3D point in homogeneous coordinates. Let the corresponding
estimated pose be the 4× 4 transformation matrix Ti (cfr. Eq. (2.3.3)),
then, recalling Eq. (2.3.1), the world coordinates for the point (u,v)
would be

p = Ti ·

K−1 0

0 1

 · p̆ (2.4.2)

expressed in 3D homogeneous coordinates. However, for efficiency, in
the output buffer we only list points as in Eq. (2.4.1) together with the
4×4 matrix

Ti ·

K−1 0

0 1

 , (2.4.3)

leaving to the Visualization Thread the final projection and transfor-
mation. This module, then, updates the poses refined during the opti-
mization step and shows the last tracked frame for instant feedback. In
our implementation the rendering pipeline has been developed using the

2.5. EXPERIMENTAL RESULTS 31

OpenGL ES framework [79].

In the original SlamDunk proposal, described in Sec. 2.3, we have cho-
sen to track SIFT [57] or SURF [7] features. However, both these algo-
rithms do not suit a mobile platform for the following reasons:

• the extraction and description pipeline requires more computa-
tional power and cannot be run at interactive frame rate;

• the feature descriptor is long (up to 128 floating-point numbers),
thus limiting the speed of the feature matching stage (see Sec. 2.3.2)
due to the time consuming calculation of Euclidean distances.

Therefore, we considered many other keypoint detectors and feature de-
scriptors proposed by the scientific community and compared efficiency
and effectiveness on this specific use case. The most promising variants
we found are the following:

• ORB as keypoint detector and feature descriptor [73];

• ORB as keypoint detector [73] and BRISK as feature descriptor
[52];

• Upright-SURF (U-SURF) as keypoint detector [7] and BRISK as
feature descriptor [52].

The SURF keypoint detector has been deployed with no computation of
the feature orientation, i.e. the upright variant, and, also, exploiting the
ARM NEON instruction set for fast computation. Finally, we point out
that all the three variants produce binary vectors, which can be easily
matched by computing the Hamming distance, rather than the slower
Euclidean distance.

2.5 Experimental Results

The SlamDunk RGB-D SLAM system has been evaluated both quanti-
tatively and qualitatively. In particular, in this section we will report the

32 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

Table 2.5.1: SlamDunk (desktop) compared to RGB-D SLAM. RMS of
absolute trajectory error (meters) on four sequences from the RGB-D
benchmark dataset [89] using a Microsoft Kinect camera.

Sequence
SD

SIFT
SD

SURF64
SD

SURF128
RGB-D
SLAM

RGB-D
SLAM

w/ EMM

fr1/xyz 0.017 0.016 0.016 0.021 <0.02

fr1/360 0.111 0.101 0.084 0.103 <0.07
fr1/desk 0.022 0.027 0.025 0.049 0.026

fr1/floor 0.044 0.052 0.042 0.055 <0.05

AVERAGE 0.048 0.049 0.042 0.057

results obtained on various sequences from the widely adopted RGB-
D benchmark dataset introduced by Sturm et al. [89], which provides
color and depth image pairs acquired at full resolution from a Microsoft
Kinect and an Asus Xtion PRO Live cameras, together with ground
truth data estimated by a motion capture system tracking the camera
movements. Though sometimes lacking accuracy, mainly due to the
complexity of the system, still the available reference trajectory is use-
ful to fairly compare different methods.

In Tab. 2.5.1 we report the RMS of the absolute trajectory error (ATE)
obtained with our approach and the state-of-the-art method RGB-D
SLAM [30] on four sequences from the RGB-D benchmark dataset. For
a fair comparison, here we compare the accuracy of our desktop imple-
mentation when using different visual feature descriptors, namely SIFT
(SD SIFT) [57], 64-element SURF (SD SURF64) and 128-element SURF
(SD SURF128) [7], while for RGB-D SLAM we have considered the
original results reported in [29] (RGB-D SLAM) and the improved ver-
sion [30] (RGB-D SLAM w/ EMM), which makes use of an Envi-
ronment Measurement Model to verify camera pose estimates. Both
“RGB-D SLAM” and “RGB-D SLAM w/ EMM” deploy SIFT fea-
tures computed on GPU [103], though, we achieve comparable or bet-
ter results with all three variants of SlamDunk. Also, while RGB-D

2.5. EXPERIMENTAL RESULTS 33

Table 2.5.2: SlamDunk (desktop): additional results. RMS and median
value of absolute trajectory error (meters) on four sequences from the
RGB-D benchmark dataset [89] using a Asus Xtion PRO Live camera.

Sequence
SD

SIFT
SD

SURF64
SD

SURF128

fr3/long office household
RMS 0.023 0.026 0.027

median 0.021 0.024 0.022

fr3/structure texture near
RMS 0.012 0.015 0.016

median 0.007 0.011 0.012

fr3/structure texture far
RMS 0.024 0.024 0.025

median 0.022 0.019 0.015

fr3/teddy
RMS 0.069 0.095 0.089

median 0.033 0.056 0.067

AVERAGE
RMS 0.032 0.040 0.039

median 0.021 0.028 0.029

Figure 2.5.1: SlamDunk (desktop): robot navigation through an apart-
ment.

34 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

Figure 2.5.2: SlamDunk (desktop): detailed reconstruction of a room.

SLAM runs at a frame rate between 6 and 15, SD SURF64 constantly
reach 35/40 FPS, SD SURF128 20/25 FPS (with a maximum of 30
FPS) and SD SIFT 6/8 FPS. Indeed, as already mentioned, RGB-D
SLAM achieves real-time operations only when using ORB features
[73], which entail less accuracy, though. As for the rest of the Slam-
Dunk’s pipeline, on average, feature matching and RANSAC-based pose
estimation takes about 2ms, the update of the Feature Pool, which scales
with the number of keyframes within the active window, requires 4.8/14.6ms,
while the local optimization step ranges from 3.6 and 37.3ms. However,
the optimization is run only upon keyframe spawning, so the impact on
the overall performance may vary and it is usually limited. Tab. 2.5.2
reports additional results for the desktop implementation of SlamDunk,
showing both the RMS and the median value of the ATE. Indeed, a high
RMS error could be related to few large estimation errors, while the
median reflects the average accuracy. The SD SIFT variant consistently
achieve better results, though the frame rate does not allow for real-time
operations. Therefore, SURF features can be considered a good trade-
off between speed and reconstruction quality. Finally, Fig. 2.0.1, 2.5.1
and 2.5.2 show the effectiveness of our proposal in a various settings,
including object reconstruction, indoor mapping and robot navigation.

2.5. EXPERIMENTAL RESULTS 35

Table 2.5.3: SlamDunk (Android): RMS of absolute trajectory error
(meter) for selected sequences from the RGB-D benchmark dataset
[89].

Sequence
SD

ORB-ORB
SD

ORB-BRISK
SD

USURF-BRISK

fr1/floor 0.058 0.055 0.051

fr1/desk 0.049 0.052 0.042

fr1/room 0.270 0.278 0.140
fr3/structure texture

near
0.092 0.047 0.025

fr3/structure texture
far

0.052 0.045 0.028

fr3/no structure
texture near with loop

0.046 0.057 0.030

fr3/no structure
texture far

0.178 0.139 0.083

fr3/long office
household

0.058 0.063 0.041

AVERAGE 0.100 0.092 0.055

Recordings are available on our website1 showing the chair in Fig. 2.0.1
and the room in Fig. 2.5.2. Also, we demonstrate recovery after occlu-
sion in a live reconstruction video. Indeed, as long as the incoming
frame does not exit the current active window, SlamDunk is able to
track the camera. These sequences have been recorded by freely mov-
ing an Asus Xtion PRO Live camera and processed by the SD SURF128
version of our algorithm.

As for our Android implementation, Tab. 2.5.3 reports the RMS of the
ATE on eight sequences from the RGB-D benchmark dataset [89]. We
have compared the three different combination of keypoint detector and
feature descriptor discussed in Sec. 2.4: ORB as detector and descrip-

1

http://vision.deis.unibo.it/research/104-nfioraio-thesis

http://vision.deis.unibo.it/research/104-nfioraio-thesis

36 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

tor [73] (SD ORB-ORB), ORB as detector and BRISK as descriptor
[52] (SD ORB-BRISK) and Upright-SURF [7] as detector and BRISK
as descriptor. Clearly, the latter variant gives the best reconstruction
accuracy, mainly due to the higher repeatability of the detected key-
points. Interestingly, it also represents a good choice for its timing
performance. Indeed, it requires, on average, 84ms for keypoint de-
tection and description, whereas SD ORB-ORB takes 100ms and SD
ORB-BRISK only 35ms, though it leads to much less accurate recon-
structions. As for typical execution time of the other modules of the
SlamDunk system, feature matching and RANSAC-based pose estima-
tion require 1/10ms, the update of the Feature Pool takes 20/40ms and
a local optimization could require a minimum of 20ms up to seconds
of processing time. Indeed, including all the feature matches as cost
terms in the least-squares problem could seriously slow down the per-
formance. Accordingly, we are currently investigating on alternative
simplifications of the problem, e.g. by marginalization of the matches
to pose-pose constraints. Also, including inertial data measurements,
available on any mobile device, into the camera pose estimation step is
another interesting research direction we are going to pursue.

Beside quantitative analyses, the accuracy can be visually inspected in
Fig. 2.5.3, where we show the result obtained on the fr1/floor sequence
from the RGB-D benchmark dataset [89] as well as the online recon-
struction of a kitchen acquired by an Asus Xtion PRO Live camera con-
nected to the tablet. The recording of the live reconstruction of the
latter is provided on our website2 together with the live reconstruction
of a room.

Recently, we have replaced the external Asus camera with a more com-
pact Structure sensor [68] attached to the device (see Fig. 2.5.4). Depth
images are paired with color frames acquired from the on-board RGB

2

http://vision.deis.unibo.it/research/104-nfioraio-thesis

http://vision.deis.unibo.it/research/104-nfioraio-thesis

2.5. EXPERIMENTAL RESULTS 37

(a) Reconstruction from the sequence fr1/floor of the RGB-D benchmark dataset [89].

(b) Online reconstruction of a kitchen on the tablet connected to an Asus Xtion PRO
Live camera.

Figure 2.5.3: SlamDunk (Android): additional qualitative results.

38 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

Figure 2.5.4: A Structure depth sensor [68] has been attached to the
tablet body and calibrated with the integrated RGB camera.

Figure 2.5.5: Preliminary results on a tablet device obtained combining
a Structure sensor [68] with the on-board RGB camera.

2.5. EXPERIMENTAL RESULTS 39

camera, so that the SlamDunk algorithm can be run on a tablet with
greater immersive user experience. Preliminary results using this set-
ting are shown in Fig. 2.5.5. In the future, we plan to leverage on avail-
able inertial sensors, e.g. the gyroscope and the accelerometer, to further
exploit the capability of a tablet device.

An important feature for any application developed for a mobile plat-
form is its memory footprint, being the total amount of available mem-
ory usually very small compared to a desktop application. As for the
SlamDunk framework, we will consider both the size required by the
core algorithm and the visualization module. The map is represented as
a collection of keyframes, each composed of a list of feature descrip-
tors, whose length depends on the extraction method used, which are
localized in camera space by 3 floating-point values. Also, we attach
an integer index for fast retrieving of the parent frame during the fea-
ture matching step. Therefore, considering ORB and BRISK feature
descriptors, which comprises, respectively, 32 and 64 byte element, the
memory occupancy for 100 keyframes, each composed of an average
number of 500 features, is

MORB = (32B+3 ·4B+4B) ·100 ·500

= 2400000B≈ 2.3MB, (2.5.1)

MBRISK = (64B+3 ·4B+4B) ·100 ·500

= 4000000B≈ 3.8MB. (2.5.2)

Then, each keyframe has a corresponding node in the pose graph storing
the estimated pose as a quaternion and a translation vector in double
precision. Also, each node is uniquely identified by an integer index,
leading to a memory occupancy for 100 keyframes of

Mposes = (7 ·8B+4B) ·100 = 6000B≈ 6KB. (2.5.3)

The local optimization problem maps each feature match to a cost term
which stores the associated 3D points and the confidence weight in

40 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

double precision (cfr. Eq. (2.3.6) and (2.3.7)). Considering again 100
keyframes with 200 unique valid matches each, we get

Mcost terms = (2 ·3 ·8B+8B) ·200 ·100

= 1120000B≈ 1.1MB. (2.5.4)

The Android implementation of SlamDunk solves the least-squares prob-
lem in Eq. (2.3.8) using the same graph optimizer of the desktop ver-
sion, i.e. G2O [49], which exploits the inherent sparsity of the problem
by allocating space for vector b and matrix H in Eq. (2.3.14) only for
non-zero blocks. Being the unknowns ∆Ti vectors in R6, G2O requires,
for each keyframe, a 6×6 double precision block in H and a 6×1 dou-
ble precision segment in b and, for each pair of matching keyframes,
another 6× 6 double precision block in H. Hence, if each keyframe
is uniquely connected, on average, to 10 other keyframes, the memory
occupancy is

Msolver = (36 ·8B · (1+10)+6 ·8B+6 ·8B) ·100

= 326400B≈ 319KB, (2.5.5)

where we have also considered the 6 double precision values of every
∆Ti vector. Finally, the memory footprint of the core algorithm can be
estimated, for ORB and BRISK features, as

MSDORB ≈ 2.3MB+6KB+1.1MB+319KB≈ 3.7MB, (2.5.6)

MSDBRISK ≈ 3.8MB+6KB+1.1MB+319KB≈ 5.2MB. (2.5.7)

As for the visualization module, for each keyframe we save the 4×
4 matrix in Eq. (2.4.3) and a list of 3D points as four floating point
values as in Eq. (2.4.1). Though we may further reduce the required
memory size by reducing the transformation matrix to only 3 rows and
the point vectors to 3 elements, we prefer to aligned memory address to
best exploit the graphics pipeline. Also, every point is paired with an

2.5. EXPERIMENTAL RESULTS 41

RGB color, again expressed as a 4 byte vector for alignment purposes,
leading to a total occupied memory of

Mvisualization = (640 ·480 · (4 ·4B+4B)+16 ·4B) ·100

= 614406400B≈ 585.9MB, (2.5.8)

where we have considered 100 keyframes at VGA resolution. Though
very high, this value can be extremely reduced by simply subsampling
the source depth images, since the visualization is used only as feedback
for the user and does not affect the core algorithm. Indeed, a sampling
factor of two yields almost a 75% memory gain, that is M′visualization ≈
146.5MB, giving a total memory footprint of

MSDTOTALORB =MSDORB +M′visualization ≈ 150.2MB, (2.5.9)

MSDTOTALBRISK =MSDBRISK +M′visualization ≈ 151.7MB. (2.5.10)

Clearly, the required space is dominated by the visualization block,
thus vouching the low impact of the core algorithm on the available
resources.

42 CHAPTER 2. RGB-D SLAM FOR MOBILE DEVICES

Chapter 3

Large Scale Surface
Reconstruction

In the previous chapter we have shown a RGB-D SLAM system, Slam-
Dunk, which has been successfully implemented on a mobile platform.
Purposely, SlamDunk has been designed for low memory consumption
and low computational effort. Thereby, additional features which may
have enhanced the user experience, e.g. realtime surface reconstruction,
are not supported by the system. On the other hand, over the past
few years desktop machines have witnessed considerable technologi-
cal advances, so that today high-end processors coupled with GP-GPU
hardware accelerators allow for addressing such challenges. Recently,
KinectFusion and similar approaches [64, 38, 13, 72, 15, 66, 100] have
shown impressive results in the field of real-time camera localization
and surface reconstruction, even in complete dark environments. Key
to these results is the use of a dense representation of the scene, i.e. the
TSDF volume (see Sec. 3.2), that is a model built incrementally by fus-
ing noisy depth measurements gathered from a freely moving Kinect-
like camera sensor. This model implicitly encodes surfaces as zero-level
sets of a distance function, so that a mesh can be extracted, e.g., by ray
casting or through the marching cubes algorithm [55].

43

44 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

However, most of the proposed approaches do not address the prob-
lem of error accumulation on the estimated camera path along large
exploratory sequences. Indeed, though the camera tracking algorithm
usually produces low-drift poses, small misalignments may show up
as gross errors when closing a loop. To address these issues, Whelan
et al. [101] extract and optimize a triangle mesh from the TSDF vol-
ume, while Zhou et al. [106, 107] process the data in multiple passes.
However, we observe that the former approach implies loss of dense
information in favor of a non-rigid mesh model, possibly leading to in-
consistencies when coming back to an already mapped area, while the
latter cannot run in real-time nor online and, moreover, it always re-
quires all the input data. Also, both need RGB data and explicit loop
closure, so that these methods cannot address challenging scenarios in
low-textured environments and low-light conditions or even complete
darkness, e.g. when playing AR games. In this chapter we will describe
a different approach, outperforming existing solutions, which possesses
all the features listed below:

• real-time camera tracking coupled with online model correction;

• no need to store any input data;

• no need of color data, i.e. only the depth image is used;

• no explicit loop closure detection;

• full global surface alignment, rather than non-rigid optimization
of a subsampled mesh [101], taking minutes, instead of hours
[106, 107], of processing.

We leverage the KinectFusion camera tracking system by subdividing
the full map in smaller TSDF subvolume entities (see Sec. 3.3). Ev-
ery subvolume is a low-drift local representation, while error accumu-
lation can still be noted when considering the whole path, as shown in
Fig. 3.0.1a. However, refining subvolumes’ poses through global align-
ment leads to a consistent reconstruction, as in Fig. 3.0.1b. This pose

45

(a) (b) (c)

Figure 3.0.1: After a complete loop, drift errors may generate a discrep-
ancy (a). Purposely, we consider smaller low-drift subvolumes (F1-F7)
and refine their poses (b). However, beside inter-volume alignment, in-
tra-volume surface deformation is still there and might be corrected by
non-rigid pose estimation (c).

optimization exploits the dense TSDF data and can be performed on-
line, rather than upon detection of a loop closure. Still, artifacts and
deformations may be present in the final result, mainly due to unfil-
tered sensor noise. Non-rigid surface alignment might help to address
such issues, as shown in Fig. 3.0.1c, though increasing the number of
unknowns to estimate. Conversely, we propose to blend together the
subvolumes according to their estimated 6-DOF poses (see Sec. 3.3.3).
Indeed, this approach provides appealing results with less effort.

In the next section we are going to review the most important contribu-
tions so far to the problem stated. Then, the KinectFusion system is de-
scribed in Sec. 3.2, being our reference algorithm for low-drift camera
tracking. Surface reconstruction by subvolume modeling is presented
in Sec. 3.3, while Sec. 3.4 reports experimental findings. This work has
been carried out during an internship at Microsoft Research Cambridge
(UK) and it has been recently accepted at the 2015 international confer-
ence on Computer Vision and Pattern Recognition (CVPR) [112].

46 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

3.1 Surface Reconstruction And Submapping

In the past few years, the availability of cheap RGB-D sensors captur-
ing frames at 30Hz, such as the Microsoft Kinect and the Asus Xtion
PRO Live, has fostered the development of novel solutions to the SLAM
problem. Beside sparse tracking approaches [35, 30], Newcombe et

al. [64] introduces KinectFusion, a dense camera tracking technique
capable of high quality real-time surface reconstruction by means of a
truncated signed distance function (TSDF) representation of the scene.
Soon, the ICP-based [8, 16] frame alignment was improved by Kubacki
et al. [48] and Bylow et al. [13] by directly using that distance function
as the cost to be minimized, outperforming the original KinectFusion
proposal. Still, these contributions did not address the main limitation
of the system, that is the inability of mapping outside a predefined vol-
ume, usually as large as a small room.

To overcome this issue, two different approaches have been investi-
gated. First, Roth and Vona [72] and Whelan et al. [102] proposed
to simply move the original volume according to camera movements.
While [102] allows only translations of the volume to optimize TSDF
data shifting, [72] places the volume always in front of the estimated
camera position and implements a more complex interpolated sampling
to support any kind of possible volume pose. Also, [102] extracts a
point cloud from the voxel slices exiting the volume and triangulates
such points, thus obtaining a reconstruction of the whole scene, though
losing dense TSDF data as the volume moves. A different approach,
then, exploits the sparsity of the TSDF volume, i.e. the number of valid
voxels being usually small, to compress the data and extend the volume
to large environments. To this end, Zeng et al. [104] have used oc-
tree spatial indexing, Chen et al. [15] a more adaptive multi-resolution
scheme, while, recently, Niessner et al. [66] has leveraged hashing tech-
niques. Also, to allow for reconstruction of even larger scenes, they all
apply volume shifting, but, unlike [102], exiting voxels are streamed to
the host memory, so that, when visiting known environments, voxels are

3.1. SURFACE RECONSTRUCTION AND SUBMAPPING 47

moved back on the GPU memory, thus simulating an unbounded TSDF
volume.

Though all these approaches extend KinectFusion mapping capability,
none is able to reduce the drift error accumulated over long trajecto-
ries. Indeed, if a TSDF volume is built while tracking, changing of
camera poses after trajectory optimization would require to fuse again
from scratch all the frames. Therefore other full-fledged SLAM sys-
tems either adopt a different model of the environment [42, 74] or per-
form camera trajectory optimization using different tracking and map-
ping methods [86, 85] which, unlike ours, usually need RGB data, de-
ploying depth image fusion as just a final surface reconstruction step.
Both Keller et al. [42] and Ruhnke et al. [74] propose a surfel-based
representation [70] to jointly optimize camera poses and surface points
for either real-time camera tracking [42] or trajectory refinement [74].
However, [42] does not counteract sensor drift, while [74] adjusts a
given estimated trajectory by applying Generalized-ICP [78] to surfel
models. Conversely, in this chapter we will present a real-time camera
tracking algorithm decoupled from a global model refinement method
which directly exploits TSDF measurement to compute dense surface
correspondences, instead of the classical “normal-shooting” [74, 16].

Whelan et al. [101], suggest to use the volume for low-drift tracking
only and they cast a global optimization over the extracted mesh. How-
ever, the optimization is triggered only when a loop closure is found
by matching visual feature [32], thus requiring RGB data and forcing
the user to induce such event. Moreover, they deploy non-rigid pose
estimation over a deformation graph connected to a pose graph. Points
on the mesh are then moved according to the estimated deformation.
Instead, we do not change local appearance, rather we aim at finding
the best position for each low-drift dense TSDF subvolume. Though
the idea of splitting a global map into submap has been deeply studied
[41, 10, 58], to the best of our knowledge this is the first work dealing
directly with TSDF subvolumes.

48 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

Recently, Zhou et al. [106, 107] have shown impressive results outper-
forming any KinectFusion-based approach, achieving low-drift recon-
struction on large scenes. In their first work [106] subgraphs are created
around point of interest in the scene and the error is spread over such
nodes. Then, this intuition is further expanded in [107] by considering
general trajectory fragments, similar to our subvolumes, optimized in a
non-rigid fashion. However, this method requires multiple passes over
the data and hours of processing, so it cannot support online correction.
Moreover, they initially estimate camera path by running the RGB-D
SLAM algorithm [30], which leverages RGB data for camera tracking
and loop closing. Therefore, [106, 107] cannot be run in untextured and
low-light or dark settings.

Our approach extends the KinectFusion system and addresses all the
highlighted issues. In the next section we will describe the tracking
approach, which has been adapted from [13], while in Sec. 3.3 we will
introduce our main contribution.

3.2 Depth Map Fusion

Recalling Sec. 2.3, we will assume to receive, at each time stamp i, a
depth image Di from a Kinect-like camera sensor. The internal parame-
ters are known and we will refer to Eq. (2.3.1) and (2.3.2) when needed.
Then, we aim at reconstructing the sensed surface while localizing the
position of the camera with respect to the current model of the scene. If
we are able to get a good estimate of the camera pose for each incom-
ing frame, such model can be incrementally built by sequential fusion
of the depth images into a Signed Distance Function (SDF). Following
Curless and Levoy [20], we define a SDF as a function

ψ : R3 −→ R2

u 7−→ (F (u) ,W (u)) (3.2.1)

3.2. DEPTH MAP FUSION 49

which assigns to each point u in the 3D space its distance from the near-
est surface F (u) and a confidence value W (u). Also, such distance is
signed, so that the surface can be extracted as the zero-level set of the
SDF, e.g. through the Marching Cubes algorithm [55]. A key property
of this representation is that a discretized version of such function can
be built incrementally by independent update of each voxel every time
new depth measurements become available. Following Newcombe et

al. [64], let Di be a depth image to be integrated and Ti the correspond-
ing camera pose. First, we project each voxel u ∈ R3 onto the image
plane and retrieve the new surface measurement

d = Di
(⌊

π2
(
Kπ3

(
T−1

i [u]
))⌋)

, (3.2.2)

where [·] : R3 → R4 is the homogeneous operator, πi : Ri+1 → Ri is
its inverse function, i.e. π2 (x,y,z) := (x/z, y/z) and π3 (x,y,z,w) := (x/w,

y/w, z/w), and b·c : R2→ Z2 is the integer truncation. In the following,
to improve readability, we will generally omit both the homogeneous
operator and its inverse. Then, the estimated distance value is computed
by the depth difference

FDi (u) = ζ
(
T−1

i u
)
−d, (3.2.3)

where ζ extracts the third coordinate, and the SDF is updated as

F (u) :=
F (u)W (u)+FDi (u)WDi (u)

W (u)+WDi (u)
, (3.2.4)

W (u) :=W (u)+WDi (u) . (3.2.5)

Though the weight WDi (u) can be related to sensor noise [20] or per-
formance considerations [13], in practice a constant value is usually
enough for camera tracking and surface reconstruction [13]. Moreover,
to prevent a strong prior on early frames and allow a certain degree of
robustness in dynamic scenes, the weight is truncated to some value. As
for the distance value, Curless and Levoy [20] noted that surfaces sensed

50 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

on different sides of an object could interfere one to another, ruining
the 3D model. Accordingly, they suggest to reduce to zero the weights
WDi (u) when FDi (u)> µ and truncate the signed distance FDi (u) to−µ

before the surface, thus getting a Truncated Signed Distance Function
(TSDF). In the following, we will refer to the value 2µ as the trunca-

tion band and to the voxels within it as surface or non-truncated voxels.
In principle, µ should reflect sensor uncertainty and be, e.g., inversely
proportional to the measured depth. However, due to the limited range
of a Kinect-like depth camera, usually ~0.5/4m, we can safely set µ

to a constant value, which also enables compact representations of the
TSDF values. Indeed, if the truncation band is fixed, the distance func-
tion F can be scaled to the range [−1,1] and stored in 16-bit fixed point
notation. Considering other 16 bits for the weight value, a single voxel
requires only 32 bits of memory, leading to 512MB for a typical volume
of 5123 voxels.

The updating step in Eq. (3.2.4) and (3.2.5) allows for fast parallel com-
putation on a modern GPU [64]. Moreover, surface ray casting can be
easily carried out by marching along the ray from the image plane un-
til the detection of the zero level set. Such synthetic depth image is
a surface prediction which is used in KinectFusion [64] for dense ICP
alignment [8, 16] of each new depth image. Though the pose is itera-
tively refined by means of a multi-scale approach, ICP is known to be
prone to local minima of the cost function, thus harming camera track-
ing in complex environments. Besides alternative techniques based on
photometric error [84, 43, 98], which require a color image to be avail-
able, so that they do not suit low-light mapping scenarios, Bylow et

al. [13] have proposed to minimize a cost function directly built onto
the TSDF volume. More precisely, for each valid measurement Di (u,v)

they consider the corresponding 3D point p, as defined in Eq. (2.3.1),
and note that, given the true camera pose T′i and a noise-free acquisi-
tion, the distance value F (T′ip) should be equal to zero. Assuming i.i.d.
Gaussian noise on depth measurements, such transformation is found

3.2. DEPTH MAP FUSION 51

by minimization of the following cost function:

E (Ti) = ∑
j

∥∥F
(
Tip j

)∥∥2
, (3.2.6)

where j runs over the whole depth image Di. As already discussed (see
Sec. 2.3.3), Ti ∈ SE3 and, therefore, a minimal representation should
be used to correctly handle the six degrees of freedom of the trans-
formation. Accordingly, they rewrite Eq. (3.2.6) using the Lie algebra
representation ξ ∈ se3 ⊆ R6 as

E (ξi) = ∑
j

∥∥F
(
exp(ξi)p j

)∥∥2
= ∑

j

∥∥Fj (ξi)
∥∥2

, (3.2.7)

where Fj (ξi) = F
(
exp(ξi)p j

)
and exp : se3→ SE3 is the exponential

mapping from the Lie algebra to the Special Euclidean Group of 4×4
matrices. Then, each cost term is linearized around an initial guess ξ̂i,
e.g. log Ti−1, with log : SE3→ se3, by its first order Taylor expansion

E (ξi)'∑
j

∥∥∥Fj

(
ξ̂i

)
+∇Fj

(
ξ̂i

)(
ξi− ξ̂i

)∥∥∥2

= ∑
j

Fj

(
ξ̂i

)2
+2Fj

(
ξ̂i

)
∇Fj

(
ξ̂i

)(
ξi− ξ̂i

)
+
(

ξi− ξ̂i

)>
∇Fj

(
ξ̂i

)>
∇Fj

(
ξ̂i

)(
ξi− ξ̂i

)
(3.2.8)

and the solution is found by setting the derivative w.r.t. ∆ξi
M
=
(

ξi− ξ̂i

)
to zero, i.e.

∑
j

Fj

(
ξ̂i

)
∇Fj

(
ξ̂i

)>
+∇Fj

(
ξ̂i

)>
∇Fj

(
ξ̂i

)
∆ξi = 0. (3.2.9)

Deploying a classic parallel prefix-scan reduction on GPU they compute

b = ∑
j

Fj

(
ξ̂i

)
∇Fj

(
ξ̂i

)>
∈ R6, (3.2.10)

52 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

H = ∑
j

∇Fj

(
ξ̂i

)>
∇Fj

(
ξ̂i

)
∈ R6×6 (3.2.11)

and, combining these with Eq. (3.2.9), solve, on host side, the problem

H∆ξi =−b. (3.2.12)

Given the incremental solution ∆ξ ?
i , a new linearization point is found

as ξ ?
i = ξ̂i +∆ξ ?

i and the procedure iterated until convergence. This
tracking approach, which does not need any synthetic surface predic-
tion, has proved to be fast and reliable, outperforming the original Kinect-
Fusion proposal on a publicly available benchmark dataset [13].

3.3 Subvolume Reconstruction

The KinectFusion approach [64, 13] allows a highly detailed recon-
struction of small workspaces. As we have seen in the previous sections,
moving volume [72, 102] as well as data compression [104, 15, 66]
techniques have been used for large scale mapping, with impressive re-
sults. However, the drift error inevitably corrupts the result, especially
if the camera path involves one or more complex loops. To highlight
such limitations, hereinafter we will refer to a reference moving vol-
ume algorithm exhibiting the following features:

• camera tracking deploys the method introduced by Bylow et al. [13]
see Sec. 3.2;

• the active volume is only translated [102]
indeed, rotating the active volume [72] would force a time con-
suming resampling of the function;

• such translation occurs at multiples of the voxel size

this way, a rolling buffer technique [102] can be deployed to pro-
cess only a small subset of voxels upon volume shifting;

3.3. SUBVOLUME RECONSTRUCTION 53

• voxels exiting the active volume are copied into a larger volume

on host memory [15, 66]
so, we do not extract a mesh as in [102];

• voxels entering the active volume are queried from the host vol-

ume and copied back to the GPU memory [15, 66]
this way, we generate an unbounded TSDF volume.

Two interesting failure cases of the reference moving volume algorithm
are shown in Fig. 3.3.1. Upon loop closure, measurements integrated
at the beginning of the sequence enter the active volume, though, they
are misaligned w.r.t. the last pose estimates, so that camera tracking is
performed against a corrupted model. This usually leads to a complete
failure when the surface in the active volume falls before the previous
one, i.e. within empty space, as in the top image of Fig. 3.3.1; otherwise,
empty space is integrated with older non-truncated voxels, gradually
deleting the previous surface, but leaving unpleasant inconsistencies, as
in the bottom image of Fig. 3.3.1. Despite the catastrophic accumula-
tion of error over long routes, we can still find locally the distinctive
low-drift reconstruction of KinectFusion. Indeed, had we not copied
voxels from host to active volume, the tracking task might have turned
out successful, though leaving open the problem of global surface align-
ment upon voxel exiting the active volume.

In this chapter we will address large scale reconstruction within the
KinectFusion framework by combining low-drift local modeling with
global surface alignment. In Sec. 3.3.1 we will describe our robust cam-
era tracking approach, which localizes the camera within a reliable local
model of the scene, then in Sec. 3.3.2 we will show how a global model
is kept updated by online registration of subvolumes, i.e. low-drift seg-
ments of the environment. Finally, being our final model a collection
of subvolumes, in Sec. 3.3.3 we will investigate on retrieval of the final
surface by blending together such subvolumes.

54 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

Figure 3.3.1: Copyroom (top) and Stonewall (bottom) sequences from
[106]: the reference moving volume KinectFusion approach is hindered
by the accumulated drift, leading to complete failures (top) or inconsis-
tent reconstructions (bottom).

3.3. SUBVOLUME RECONSTRUCTION 55

INPUT
DEPTH MAP

KinectFusion
Camera Tracking

Depth Map
Integration

Volume
Shift?

Shift
Volume Data

Depth Map
Erosion

,Ti i

FIFO Queue
Active Volume

Y

N

D()

Figure 3.3.2: Wrokflow of the proposed system for low-drift camera
tracking and surface reconstruction.

3.3.1 Low-drift Local Modeling

Following the general intuition, we define a large active volume on GPU
main memory, e.g. ~5/6m each side, and initially place the camera at
its center. Then, when needed, we shift this volume by multiples of the
voxel size to keep the camera within the central region of the cube. In
this way, we can safely fix volume position when the camera rotates.
However, common approaches stream data from GPU to host mem-
ory upon volume shifting, thus hindering the localization and mapping
tasks, which finally leads to the issues previously discussed. Instead, in
our system voxels exiting the active volume are purposely lost and no
TSDF data is copied back from host to GPU memory. Indeed, we ex-
ploit the low-drift property of KinectFusion on short distances by build-
ing the active volume using only the last K depth frames, e.g. K = 50.
We argue that such local reconstruction helps camera pose estimation
by including only consistent data and, therefore, we expect to obtain
a camera path exhibiting no failures and, locally, lower drifting errors.
Clearly, this approach does not solve for global misalignment nor ad-
dresses overall surface registration. We will discuss these issues in
Sec. 3.3.3.

Fig. 3.3.2 sketches the pipeline of our system. Depth images are aligned

56 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

to the current active volume according to [13] (see Sec. 3.2) and inte-
grated by applying Eq. (3.2.4) and (3.2.5) to each voxel. Estimated cam-
era translation from volume’s center is compared to a threshold and, if
larger, the volume is shifted. As already described, voxels which exit the
volume as a consequence of the shifting procedure are simply discarded.
To keep into the active volume the model created from the integration
of the last K frames only, instead of building from scratch at every time
stamp, we introduce the erosion process after every successful integra-
tion, by which the integration of the (i−K)th frame is reverted. This
can be achieved by applying again the standard integration algorithm,
but replacing Eq. (3.2.4) and (3.2.5) with, respectively,

F (u) :=
F (u)W (u)−FDi−K (u)WDi−K (u)

W (u)−WDi−K (u)
, (3.3.1)

W (u) :=W (u)−WDi−K (u) . (3.3.2)

The erosion process forces to store previous depth images together with
their estimated camera pose into a FIFO queue of K elements. Frames
and poses are pushed into the queue when they are fused into the active
volume and retrieved after K time instants for erosion. As the erosion
process operates independently at each voxel, it exhibits the same con-
stant complexity of depth integration. Therefore, the proposed approach
is still constant time and allows for real-time camera tracking.

3.3.2 Online Subvolume Registration

The erosion process described in the previous section enables real-time
high-quality camera tracking. To deal with overall camera path align-
ment, classical approaches [47, 87, 30] rely on keyframe optimization,
thus loosing the low-noise dense TSDF model. More recently, non-
rigid mesh optimization [101] has been deployed, though this approach
requires explicit loop closure detection based on feature descriptors ex-
tracted from RGB images. Conversely, we leverage on low-drift local

3.3. SUBVOLUME RECONSTRUCTION 57

reconstructions to actively reduce drift and achieve global surface align-
ment. Interestingly, a similar intuition can be found in the work of Zhou
et al. [107], where small subsets of depth frames are fused together in
fragments, which are subsequently aligned together. However, unlike
[107], our method creates subvolumes, i.e. fragments, in constant time
alongside with camera tracking and optimizes their poses online, so that
the overall reconstruction error is small even in absence of an explicit
loop closure event.

As explained in Sec. 3.3.1, depth images are pushed into a FIFO queue
and extracted after K time instants for erosion. Initially, being the queue
empty, frames are fused, but no erosion takes place. Once the queue is
filled, we copy the whole active volume onto the host memory and tag
the data as our first subvolume. Then, the erosion process starts and the
first fused TSDF measurements are gradually removed from the vol-
ume. After K frames, the active volume no longer includes information
from the first set of data, which shapes the first subvolume, and a new
subvolume is spawned by copying the current active volume onto the
host memory. Afterwards, we continue creating subvolumes every K

integrations and erosions, thus mapping the environment as a collec-
tion of low-drift TSDF subvolumes. Fig. 3.3.3 shows an example of the
surfaces extracted from typical subvolumes.

Though expensive, we notice that a full copy of the active volume in-
volves only a single reading operation per voxel, so it is, in principle,
a real-time procedure. However, current hardware constraints on GPU
side as well as limited data bandwidth between host and device memory
require a smart implementation to reduce the actual time needed. Pur-
posely, we exploit the sparsity of the TSDF by considering, in parallel,
blocks of 163 voxels:

• blocks composed exclusively by voxels having zero weight are
discarded;

• blocks consisting of truncated distance values only are marked as

58 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

(a) Subvolume #0. (b) Subvolume #5. (c) Subvolume #10.

(d) Subvolume #20. (e) Subvolume #40. (f) Subvolume #45.

(g) Final reconstruction after global surface alignment.

Figure 3.3.3: Subvolumes are low-drift TSDF volumes built from K
frames (here, K = 50). (a)-(f) show surfaces extracted as zero-level set
from subvolumes, (g) shows the final reconstruction of the Stonewall
sequence introduced in [106].

3.3. SUBVOLUME RECONSTRUCTION 59

empty and just the maximum weight is saved;

• blocks including at least one surface voxel are fully copied.

Block data are streamed in an unstructured arrangement for higher effi-
ciency. Then, on host side, they are gathered in a multi-resolution index
by creating a new level of bricks, each comprising 43 blocks. Again,
bricks formed by empty blocks only are folded and only the maximum
weight is retained. In this way, we reduce the total memory footprint
and enable the accumulation of a large number of subvolumes.

Every time a new subvolume is spawned, a pose V, i.e. the current po-
sition of the active volume, is attached to the TSDF data ψ = (F,W)

and global surface alignment is performed to reduce the overall drift by
refinement of the subvolumes’ poses. Though this is an online process,
the complexity of the optimization routine increases with the number of
subvolumes, so it cannot operate in real-time. Nevertheless, the camera
tracking module does not need to wait for refined poses, and thus it can
keep running in a separate thread while pushing new subvolumes into
a shared buffer. The optimization aims at estimating a rigid-body pose
for each subvolume by constraining points sampled on the zero-level
set. To this aim, we developed an iterative algorithm inspired by the
popular point-to-plane ICP method [16].

Given a subvolume ψ j =
(
Fj,Wj

)
with pose V j, we extract a set of

points S j =
{

p j
i

}
at the zero-level set of the distance function Fj and

compute the respective normals as the normalized gradient at p j
i , i.e. n j

i =

∇̂Fj

(
p j

i

)
M
=

∇Fj

(
p j

i

)
∥∥∥∇Fj

(
p j

i

)∥∥∥ . Also, we find the minimum bounding box B j

aligned with ψ j’s reference frame. We note that, being the TSDF data
fixed throughout the optimization, these requirements can be satisfied
once for all upon subvolume creation. Then, for each subvolume ψ j, we
compare its bounding box B j with all other bounding boxes to retrieve
a candidate set C j =

{
h
∣∣B j∩Bh 6=∅

}
of overlapped subvolumes. To

constrain each point p j
i to these surfaces, we traverse the candidate set

60 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

Fa

Fb
Figure 3.3.4: From each point pb

i (black diamonds) sampled on the zero-
level set of Fb (dashed yellow line) we move according to the distance
function Fa and its gradient ∇̂Fa (blue-white-red color gradient) to find
a match (black circles).

and, for each h ∈C j, we define a corresponding point as

qh j
i = V−1

h V jp
j
i −Fh

(
V−1

h V jp
j
i

)
∇̂Fh

(
V−1

h V jp
j
i

)
, (3.3.3)

where Fh

(
V−1

h V jp
j
i

)
and ∇̂Fh

(
V−1

h V jp
j
i

)
are estimated by trilinear

interpolation. If Fh or its gradient are not defined at V−1
h V jp

j
i , the match

is ignored. This method, illustrated in Fig. 3.3.4 by a graphical example,
shares similar intuitions with the work of Kubacki et al. [48]. However,
unlike [48], we aim here at surface reconstruction rather than camera
tracking.

For each valid match so established, we build a cost term resembling
the point-to-plane ICP error function [16], which computes the distance
between one point and the tangent plane to the surface at the other point.
To this end, the vector difference is projected along the direction of the
normal, i.e.

eh j
i =

(
p j

i −V−1
j Vhqh j

i

)
·n j

i , (3.3.4)

3.3. SUBVOLUME RECONSTRUCTION 61

where we have preferred n j
i to ∇̂Fh

(
qh j

i

)
, the reason being twofold.

On one hand, n j
i can be computed once upon subvolume creation, while

∇̂Fh

(
qh j

i

)
usually changes after every successful minimization, i.e. when

Eq. (3.3.3) evaluates differently. On the other hand, we do not have any
clue about the shape of Fh around qh j

i , hence the gradient may be unde-
fined. Given the set of cost terms, defined as in Eq. (3.3.4), we estimate
the poses for a number v of subvolumes by solving the following non-
linear least squares problem:

argmin
{V0,...,Vv−1}

v−1

∑
j=0

∑
i∈I j

∑
h∈C j

eh j
i

= argmin
{V0,...,Vv−1}

v−1

∑
j=0

∑
i∈I j

∑
h∈C j

γhi j

(
p j

i −V−1
j Vhqh j

i

)
·n j

i , (3.3.5)

where I j =
{

i
∣∣∣p j

i ∈ S j

}
and

γhi j =

1 if Fh and ∇̂Fh are defined at V−1
h V jp

j
i

0 ow
. (3.3.6)

We solve Eq. (3.3.5) using a Levenberg-Marquardt methods [53, 59]
through the Ceres solver [2] (see Sec. 2.3.3 for further details).

In rare circumstances, the value γhi j in Eq. (3.3.5) could be 0 for most
or, possibly, all h ∈C j and i ∈ I j, i.e. that particular subvolume ψ j has
few or no connections with the rest of the map, leading to poor pose
estimation or an underconstrained problem. In such cases, we reinforce
the solution given by the camera tracker through the introduction of
pose-pose constraints linking ψ j to the previous subvolume, if any, and
the following subvolume, if any. Let Z j−1, j be a 4×4 matrix mapping
points from the ψ j reference frame to the ψ j−1 reference frame accord-
ing to the tracker estimate. Then, the derived pose-pose error function
is given by

e j−1, j = Φ j−1, j log
(

Z j−1, jV−1
j V j−1

)
, (3.3.7)

62 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

FgF0

F1

F2

F3

F
4

F
5 F6

F7

F8F9

F10

F11
Fg

F0

F1

F2
F3

F4

F5

F6

F
7

F8

F9F10

F11

Figure 3.3.5: Building a single global volume ψg by subvolume averag-
ing forces to traverse the whole collection even for zero-weight voxels.
Therefore, computation time is strongly affected by relative positions of
subvolumes, so that evaluation of the global volume shown on the left
is faster than the one on right including the same subvolumes with the
same extent but different poses.

where log : SE3→ se3 and Φ j−1, j is a 6×6 stiffness matrix, empirically
set to the identity in our experiments.

Once a solution is found for Eq. (3.3.5) by iterative minimization, the
candidate set C j is rebuilt for each subvolume and correspondences are
updated, leading to a new optimization problem. The whole process is
iterated until convergence. Finally, to remove gauge freedom and ensure
consistencies between the final estimated poses and the tracker’s refer-
ence frame, the last subvolume’s pose is always kept fixed in Eq. (3.3.5).
Accordingly, the next spawned subvolume will be placed beside the pre-
vious one with consistent relative alignment.

3.3.3 Surface Reconstruction By Subvolume Blending

In the previous sections we have described our approach for low-drift
camera tracking and global surface alignment. However, as already dis-
cussed, noisy depth measurements generate surface deformations which
appear as unpleasant artifacts when the zero-level set is extracted from
the subvolumes. This is especially enhanced within overlapped regions,

3.3. SUBVOLUME RECONSTRUCTION 63

Figure 3.3.6: Stonewall sequence from [106]: Optimized subvolumes
still exhibit surface deformations (left), while our blending approach
(right) overcomes these issues.

64 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

i.e. where fewer frames have been fused, so that noise filtering is lim-
ited. To overcome these issues, a non-rigid pose estimation could be
deployed in Eq. (3.3.5), though increasing the complexity of the prob-
lem. An alternative approach, however, would be the fusion of all the
subvolumes into a global volume ψg. Indeed, as shown below, this is
equivalent to the integration of the whole depth frame sequence accord-
ing to the refined subvolumes’ poses. Recalling Eq. (3.2.4) and (3.2.5),
we define ψg (u) for each valid u ∈ R3 as follows

Fg (u) :=

∑ j Fj(V−1

j u)W j(V−1
j u)

∑ j W j(V−1
j u)

if ∑ j Wj

(
V−1

j u
)
> 0

0 ow
, (3.3.8)

Wg (u) := ∑
j

Wj

(
V−1

j u
)
, (3.3.9)

where Fj and Wj returns a trilinearly interpolated value. Such global
volume should extend over all the subvolumes and every voxel is com-
puted by traversing the whole collection. Indeed, even invalid regions
are detected either because ∑ j Wj

(
V−1

j u
)
= 0 in Eq. (3.3.8) and (3.3.9)

or the voxel is outside all subvolumes’ bounding boxes. In both cases,
the presence of a high number of zero-weight voxels and poor over-
lapping can hinder performances. As shown in Fig. 3.3.5 this issue is
strongly affected by the estimated poses. In order to make the required
time more predictable and, in general, to reduce the computational ef-
fort, we instead address the final surface reconstruction by blending

each subvolume together its neighbors. Given a subvolume ψ j with
overlapping subvolumes’ indexes C j, we assign to each voxel u inside
ψ j the values

Fj (u) :=
Fj (u)Wj (u)+∑h∈C j Fh

(
V−1

h V ju
)

Wh
(
V−1

h V ju
)

Wj (u)+∑h∈C j Wh
(
V−1

h V ju
) , (3.3.10)

Wj (u) :=Wj (u)+ ∑
h∈C j

Wh
(
V−1

h V ju
)
. (3.3.11)

3.4. RESULTS 65

Unlike the estimation of a single global volume, now we can skip the
computation if ψ (u) has zero weight or a truncated distance value, i.e. it
represents empty space. Though the same TSDF value may be esti-
mated in different subvolumes at overlapping regions, in practice we
have found that this approach is roughly five to ten times faster than
global volume resampling. A qualitative comparison between the sur-
faces before and after blending is shown in Fig. 3.3.6.

3.4 Results

In the previous sections we have described our large scale surface recon-
struction method based on subvolume optimization. We already showed
in Fig. 3.3.3 the benefit of the erosion process for creating low-drift
subvolumes covering a relatively large area. We wish to highlight here
how our online surface alignment drastically reduces the drift error over
large trajectories. Fig. 3.4.1, 3.4.2 and 3.4.3 compare the incremental
solution provided by our method to the simple accumulation of sub-
volumes yielded by the camera tracker from, respectively, top and left
viewpoints. Purposely, we rendered the scenes with a strong directional
light source to enhance surface deformations and small inconsistencies,
so that the superior mapping accuracy of our approach it is evident after
a complete loop as well as after a small number of subvolumes.

As for evaluating the whole SLAM system, we ran several qualitative
experiments on four sequences from the dataset introduced in [106],
namely stonewall, copyroom, lounge and burghers, and three sequences
acquired using our own Asus Xtion depth camera: dark room, bookshop

1, bookshop 2. Our subvolume-based approach has been compared to
the reference moving volume algorithm described in Sec. 3.3 and to the
results provided by Zhou and Koltun[106]. Although Zhou et al. [107]
is a more recent work following [106], we note that [107] performs
non-rigid surface deformation over a control lattice, while in this work
we estimate only 6-DOF poses and address mesh artifacts through the

66 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

(a) After 5 subvolumes.

(b) After 20 subvolumes.

(c) After 36 subvolumes.

(d) After 55 subvolumes.

Figure 3.4.1: Stonewall sequence from [106], top view: online opti-
mization of subvolumes’ poses counteracts drift error. Left: without
optimization. Right: with optimization. No volume blending applied.

3.4. RESULTS 67

(a) After 5 subvolumes.

(b) After 20 subvolumes.

Figure 3.4.2: Stonewall sequence from [106], left-most column: online
optimization of subvolumes’ poses counteracts drift error. Left: without
optimization. Right: with optimization. No volume blending applied.

68 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

(a) After 36 subvolumes.

(b) After 55 subvolumes.

Figure 3.4.3: Continued from Fig. 3.4.2

3.4. RESULTS 69

Table 3.4.1: Number of frames and subvolumes spawned by our ap-
proach for the dataset used in our experiments.

Sequence Number of frames Number of subvolumes
stonewall 2700 55
copyroom 5490 110

lounge 3000 61
burghers 11230 225

dark room 4841 97
bookshop 1 5000 101
bookshop 2 5700 115

final volume fusion, as in [106]. Number of frames as well as spawn
subvolumes for each sequence are reported in Tab. 3.4.1.

In Fig. 3.4.4 – 3.4.12 we compare the final reconstructions obtained
through the reference moving volume method, our approach and Zhou
and Koltun [106]. We used a TSDF volume on the GPU main memory
with 5123 voxels and a resolution of 0.96 cm/voxel for moving volume
and ours as well, while we have inferred a resolution of about 0.6 cm/voxel

from the meshes provided by the authors in [106]. Overall, the moving
volume method gives the worst performance, while we usually get sim-
ilar or better results than [106] with much less computational effort. In
the stonewall sequence (Fig. 3.4.4, 3.4.5, 3.4.6) we have already pointed
out the inconsistencies produced by the moving volume method, while
[106] correctly aligns the surfaces. However, high frequency noise ap-
pears at loop closure (see Fig. 3.4.6) and even on the right-most column
in Fig. 3.4.4, far from the ends of the loop. Conversely, our recon-
struction smoothly removes artifacts. As for the copyroom sequence
(Fig. 3.4.7, 3.4.8, 3.4.9), [106] is able to capture fine details, such as the
cables on the copying machine in Fig. 3.4.8, but it fails at the opposite
corner (Fig. 3.4.9). Although the lounge sequence (Fig. 3.4.10) is less
challenging, the moving volume approach still returns an incomplete
reconstruction, while [106] introduces hollows and rugged surfaces on

70 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

(a) Moving volume approach.

(b) Our approach.

(c) Zhou and Koltun[106].

Figure 3.4.4: Final reconstruction of the stonewall sequence from [106],
front view.

3.4. RESULTS 71

(a) Moving volume approach.

(b) Our approach.

(c) Zhou and Koltun[106].

Figure 3.4.5: Final reconstruction of the stonewall sequence from [106],
top view.

72 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

(a) Moving volume approach.

(b) Our approach.

(c) Zhou and Koltun[106].

Figure 3.4.6: Final reconstruction of the stonewall sequence from [106],
top view.

3.4. RESULTS 73

(a) Moving volume approach.

(b) Our approach.

(c) Zhou and Koltun[106].

Figure 3.4.7: Final reconstruction of the copyroom sequence from
[106], top view.

74 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

(a) Moving volume approach.

(b) Our approach.

(c) Zhou and Koltun[106].

Figure 3.4.8: Final reconstruction of the copyroom sequence from
[106], detail of the copying machine.

3.4. RESULTS 75

(a) Moving volume approach.

(b) Our approach.

(c) Zhou and Koltun[106].

Figure 3.4.9: Final reconstruction of the copyroom sequence from
[106], detail of the corner.

76 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

(a) Moving volume approach.

(b) Our approach.

(c) Zhou and Koltun[106].

Figure 3.4.10: Final reconstruction of the lounge sequence from [106].

3.4. RESULTS 77

(a) Moving volume approach.

(b) Our approach.

(c) Zhou and Koltun[106].

Figure 3.4.11: Final reconstruction of the burghers sequence from
[106], front view.

78 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

(a) Moving volume approach.

(b) Our approach.

(c) Zhou and Koltun[106].

Figure 3.4.12: Final reconstruction of the burghers sequence from
[106], rear view.

3.4. RESULTS 79

Table 3.4.2: Timing performance of our approach.

Sequence
Subvolume Optimization

Volume Blending
Min Max Average

Stonewall 0.154s 30.136s 5.388s 3min 3s
Copyroom 0.085s 35.297s 11.238s 10min 30s

Lounge 0.084s 15.149s 5.830s 4min 3s
Burghers 0.047s 5min 4s 1min 30s 22min 27s

Dark room 0.064s 45.882s 12.416s 7min 17s

Table 3.4.3: Timing performance of [106]: POI is the detection of
points of interest, Reg. is the two-pass registration, Opt. is the global
registration, Final Fusion is the final model reconstruction by integra-
tion of all the depth frames. Note that dark room cannot be processed
due to the lack of RGB data.

Sequence
Pose Optimization

Final Fusion
POI Reg. Opt. Total

Stonewall 1min 17min 1h 54min 2h 12min 21min
Copyroom 1min 14min 52min 1h 7min 47min

Lounge 1min 12min 16min 29min 40min
Burghers 5min 40min 10min 55min 2h 1min

Dark room — — — — —

the wall. Instead, on the burghers sequence (Fig. 3.4.11, 3.4.12) [106]
gives the best reconstruction result by enhancing details on faces and
bodies, which are filtered out by our larger voxels. Again, the moving
volume method fails due to fusion of drifted apart depth images.

Additional results provided by our approach are shown in Fig. 3.4.13
and 3.4.14, the former showing two large explorations, the latter a re-
construction in complete darkness. Indeed, nowadays full-fledged RGB-
D SLAM systems [106, 107, 100, 30, 87] mandate color data to adjust
camera path and globally align surfaces, while ours seamlessly reduces
drift error using only depth measurements and TSDF subvolumes.

Finally, we have investigated on the timing performance of our opti-

80 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

Figure 3.4.13: Final reconstruction of the bookshop 1 (top) and book-
shop 2 (bottom) sequences.

3.4. RESULTS 81

Figure 3.4.14: Final reconstruction of the dark room sequence. Due
to the lack of RGB-D data, existing RGB-D SLAM system, including
[106, 107, 30], would have failed.

82 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

Figure 3.4.15: Number of iterations (top) and time (bottom) spent by
subvolume optimization in stonewall (blue squares), copyroom (red tri-
angles) and bookshop 1 (yellow circles) sequences for increasing num-
ber of subvolumes.

3.4. RESULTS 83

mization and volume blending steps. Fig. 3.4.15 shows the number of
iterations and the time spent after every new subvolume spawning in
3 different typical scenarios: the camera moving around a large object
(stonewall), a loop in a medium-size room (copyroom), an exploratory
sequence (bookshop 1). Since we actively reduce drifting, the subvol-
umes are usually placed near the global optimum, so that the number of
iterations is usually low. Conversely, the time required by the subvol-
ume optimization increases somehow linearly with the number of sub-
volumes, due to the presence of unknowns and constraints in the min-
imization problem. Nevertheless, as reported in Tab. 3.4.2, the subvol-
ume optimization step usually requires much less than a minute, while
[106] may need hours of processing (see Tab. 3.4.3). Also, Tab. 3.4.2
and 3.4.3 show how our proposed volume blending runs from 4 to 7
times faster than the standard depth fusion algorithm deployed by [106].

84 CHAPTER 3. LARGE SCALE SURFACE RECONSTRUCTION

Chapter 4

Semantic Bundle Adjustment

In the previous chapters we have described two different approaches for
solving the RGB-D SLAM problem on mobile platforms (see Chap. 2)
and on powerful high-end desktop machines as well (see Chap. 3).
Though they both address the drift error by leveraging pose graph op-
timization, no information beyond geometric modeling is inferred from
the scene and introduced into the problem statement, such as, e.g., the
kind of objects present in the scene as well as their configuration.

Indeed, recognizing object instances and repeated structures across mul-
tiple frames may introduce useful constraints into the pose graph, while
a, possibly partial, reconstruction of the environment might help the ob-
ject detection task. This intuition is illustrated in Fig. 4.0.1, where a car
is seen by a moving camera. The top image represents a typical pose
graph, where unknown camera poses T0, T1 and T2 are linked by means
of cost terms, e.g. pose-pose error functions such as Eq. (3.3.7), that
ignore any semantic information. However, a set of calibrated views
might help identifying object instances by matching features from dif-
ferent viewpoints to a learned model, as depicted in the middle image
in Fig. 4.0.1 where we repeatedly collect cues from different frames to
infer the presence of the car. On one hand, we can estimate the pose of
the detected object by, e.g., minimizing the distance between matching
feature points. On the other hand, we may constrain the camera path

85

86 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

T0

T1

T2

T0

T1

T2

T0

T1

T2

T3

Figure 4.0.1: Classical approaches to the SLAM problem constrain
camera poses without any assumption about the semantic of the scene
under exploration (top). Using calibrated views may improve object
feature matching across multiple frames (middle), which provides ad-
ditional information that we exploit by jointly estimating camera and
object poses (bottom).

87

Validate
Hypotheses
for Model 1

Detected?

Match Models

Semantic Optimization

Y

Validate
Hypotheses
for Model 2

Detected?

Validate
Hypotheses
for Model N

Detected?

Y Y

Camera
Frame

SLAM Engine

Figure 4.0.2: A schematic view of our joint detection, tracking and map-
ping approach.

to be consistent with those matches by refining estimated sensor poses
accordingly. Hence, our proposal is to introduce the feature matches
into the SLAM problem and jointly optimize camera and object poses
(bottom image in Fig. 4.0.1).

The work-flow of our framework is depicted in Fig. 4.0.2. Visual fea-
tures are extracted from camera frames and matched to a model database.
As we will see, our system can work with both 2D [57, 7, 73] and 3D
features [39, 93, 94] and any visual sensing system, such as monocular
cameras, stereo rigs or RGB-D sensors. Then, new cues are separately
validated for each matched objects by checking for consistencies with
the current reconstruction. Previous matches contribute too and a care-
ful cleaning procedure is deployed to remove unreliable connections.
When enough hypotheses have been gathered, the object is detected and
added to the SLAM problem as a 6-DOF unknown pose. Finally, accu-
rate object localization and consistent camera path refinement is carried
out by a global semantic optimization.

The chapter is organized as follows. The next section briefly discusses

88 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

similar work and state-of-art approaches for joint object detection and
SLAM. Then, in Sec. 4.2 we will describe our approach [110] and, in
Sec. 4.3, a possible integration with the KinectFusion framework [109].
Results are reported in Sec. 4.4.

4.1 Scene Understanding And Mapping

Integrating SLAM and object detection to achieve semantic reconstruc-
tion has been investigated in many different scenarios. However, most
works do not jointly solve for the two facets of the problem, but rather
improve only one of the two tasks. Thus, while we enforce consistency
across multiple views, [28, 36, 54] perform single-view object detec-
tion. Moreover, [28] is more concerned with room-level description
and does not accurately localize objects. Conversely, Meger et al. [60]
identify objects within a map built with FastSLAM [62], but the two
processes are separated. Cornelis et al. [19] first introduce the notion
of cognitive loop indicating the tight relationship between mapping and
object detection. However, they restrict to the specific case of urban
environment reconstruction by means of Structure-from-Motion (SfM)
[34] and the detection is limited to cars and pedestrians. Also, strong
assumptions are made, e.g. by constraining cars onto the known ground
surface, and, more importantly, unlike our approach, detected objects
are not used to improve reconstruction results.

A step in the direction of a synergistic integration is made by the work of
Castle et al. [14] where a monocular camera is tracked by an Extended
Kalman Filter (EKF) [23], while SIFT features [57] are extracted from
acquired images to detect planar objects. Then, matched points are in-
serted into the SLAM map by augmenting the EKF state. Civera et

al. [17] extend this approach to non-planar objects, though the detec-
tion pipeline still deploys single-view feature matching and, therefore,
is not fully integrated into the SLAM framework.

4.2. JOINT DETECTION, TRACKING AND MAPPING 89

Bao et al. [6, 5, 4] introduced the Semantic Structure-from-Motion par-
adigm to address joint object recognition and camera pose estimation.
However, it differs from our work in several aspects. First, they deal
with the complete image sequence at once, rather than incremental re-
construction, so that all data are always available, while we tackle the
problem of adjusting a previous solution as soon as new information ar-
rives. Also, they cast hypotheses by means of an independent detection
algorithm, while we work with raw feature matching measurements and
develop an integrated pipeline to establish upon object presence. Fi-
nally, we aim at estimating full 6-DOF pose for each object instance,
rather than category level recognition and image plane localization.

Incremental adjustment and full 3D localization is performed, instead,
by Salas-Moreno et al. [76] in their SLAM++ framework. They adopted
the object detection approach proposed by Drost et al. [25] and, once an
object has been found, check for consistency with the current frame only
by ICP alignment between the learned model and the acquired depth
map. Conversely, we will show how to exploit the SLAM graph for
object detection purpose. Also, though they jointly optimize camera and
object poses as we do, they link graph vertexes by means of pose-pose
error constraints, while we never marginalize feature matches, thereby
casting a novel semantic bundle adjustment problem.

4.2 Joint Detection, Tracking And Mapping

In this section we will describe a unified approach for object detection
and mapping. Throughout the section we will make use of the notation
introduced in Sec. 2.3 and we will generally refer to an unspecified input
camera frame, comprising, e.g., one color image and, possibly, a depth
or disparity map. Indeed, our method applies to both monocular camera
settings and 3D sensors. Also, our mathematical framework does not
force to adopt any particular SLAM engine, so we will simply assume
to have frame-to-frame constraints available, e.g. feature matches such

90 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

as in Eq. (2.3.7). We will denote with Ti the unknown 6-DOF pose
of the ith camera frame and with Po the unknown 3D transformation
which maps the oth object model into the scene reference frame. The
model database is built as a collection of features extracted either from
full 3D reconstructions or sets of calibrated images. In the former rep-
resentation, 3D keypoint detectors, e.g. [105], and feature descriptors,
e.g. [39, 93, 94], are extracted, while, in the latter, equivalent 2D al-
gorithms [57, 71, 7, 73] are deployed. Then, descriptors are indexed,
e.g. using a single KD-Tree structure as described in Sec. 2.3.2, and
keypoints are saved, either as points on the full 3D model or pixel loca-
tions on an image of the calibrated set. This way, given a match between
a camera frame and an object point feature, we are able to constrain the
corresponding camera and object poses by minimizing either the 3D
point distance or the reprojection error in the image plane. In the next
sections we will show how this intuition leads to robust object detection
and semantic optimization.

4.2.1 The Validation Graph

Fig. 4.2.1 visualizes a toy example for the 2D and 3D case. While
the SLAM engine tracks points across the three frames (red lines), fea-
ture descriptors extracted from camera images are matched to the model
database. At this stage, high recall is preferable, since we will filter out
outliers afterward. As shown in Fig. 4.0.2, matches are grouped by ob-
ject instances and each set is separately validated for consistency with
the current reconstruction of the environment. Purposely, a validation

graph is deployed including both last and all previous feature matches.
As for the 2D embodiment, we introduce a new 6-DOF unknown for
the object pose and a 3D landmark location for each 2D object feature.
In Fig. 4.2.1a, P0 is the object pose and xi j

0 is the 3D location of the
jth feature on the ith view of object #0, while Tk is the kth camera pose
and p j

k is its jth feature point (for simplicity, we have used the same j

value for corresponding features). Therefore, considering the landmark

4.2. JOINT DETECTION, TRACKING AND MAPPING 91

T0 T1 T2

p1
a p2

a

p1
b p2

b

P0

x0
v0a

x0
v1b

v0 v1

Γ0
v0

q0
v0a

q0
v1b

Γ0
v1

(a)

T0 T1 T2

p1
a p2

a

p1
b p2

b

P0

q0
a

q0
b

(b)

Figure 4.2.1: A toy example illustrating the validation graph for 2D (a)
and 3D (b) SLAM problems. See Sec. 4.2 for details.

92 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

xv1b
0 in Fig. 4.2.1a, the associated cost would be (green dashed lines in

Fig. 4.2.1a):

∥∥∥qv1b
0 −Γ

v1
0 P−1

0 xv1b
0

∥∥∥2
+ sb

1

∥∥∥pb
1−KT−1

1 xv1b
0

∥∥∥2

+ sb
2

∥∥∥pb
2−KT−1

2 xv1b
0

∥∥∥2
, (4.2.1)

where qv1b
0 is the bth 2D feature point on view v1 of object 0 matching

pb
1 and pb

2 with probability sb
1 and sb

2 respectively, Γ
v1
0 projects 3D points

in object #0’s reference frame onto view v1’s image plane (magenta ar-
rows in Fig. 4.2.1a), K is the camera projection matrix (see Eq. (2.3.2)).
Homogeneous operators and their inverses have been omitted for bet-
ter readability. Conversely, when 3D measurements are associated to
each feature point, no landmark is needed and point-point constraints
can be used (green dashed lines in Fig. 4.2.1b, cfr. Eq. (2.3.7)). Also,
different frames matching the same object features can be further con-
strained considering induced virtual matches (dashed magenta lines in
Fig. 4.2.1b). These stem from the intuition that if we know that “feature

j matches feature i” (mi j) with probability si j and “feature k matches

feature i” (mik) with probability sik, then we wish to know the probabil-
ity of the event “feature k matches feature j” (m jk). Accordingly, if mi j

and mik are independent and

Pr
(
m jk
∣∣mi j,mik

)
=

1 if mi j = TRUE∧mik = TRUE

0 otherwise
, (4.2.2)

then Pr
(
m jk
)
= si jsik. Therefore, considering the 3D feature point qa

0 in
Fig. 4.2.1b, the associated cost would be:

sa
1
∥∥pa

1−T−1
1 P0qa

0
∥∥2

+ sa
2
∥∥pa

2−T−1
2 P0qa

0
∥∥2

+ sa
1sa

2
∥∥pa

2−T−1
2 T1pa

1
∥∥2

. (4.2.3)

4.2. JOINT DETECTION, TRACKING AND MAPPING 93

Finally, we add to the validation graph any relevant frame-to-frame con-
straints from the SLAM engine and the first frame matching the object
is linked to the previous one for increased robustness.

4.2.2 Object Detection

The validation graph is updated and the associated cost function opti-
mized every time new feature matches are found. The minimization
follows the Levenberg-Marquardt [53, 59, 56] method (see Sec. 2.3.3)
provided by the G2O library [49]. Then, we compare the result with
the last global weighted mean residual ρ̄ (see Sec. 4.2.3) to decide upon
reliability of every single match. More precisely, we go through all the
semantic cost terms related to visual features from the last camera frame
and compare their final error with ρ̄ . For the 2D case, we consider all
the frame-to-landmark edges and remove the term from the validation
graph if ∥∥∥pa

i −KT−1
i xvua

j

∥∥∥2
≥ αρ̄, (4.2.4)

where α ∈ R3 is a given parameter. This operation may leave a land-
mark attached only to its object pose. In that case we completely remove
the landmark unknown from the problem. Similarly, in the 3D formula-
tion we take into account all the frame-to-object edges and remove the
cost term if ∥∥pa

i −T−1
i P jqa

j
∥∥2 ≥ αρ̄. (4.2.5)

The inferred virtual edges are then removed if one of the two related
matches is deleted.

This first cleaning procedure, driven by the expected SLAM reconstruc-
tion error, is applied to the cost term from the last object matching stage.
If the remaining edges are below a threshold, such as, e.g., 3, we treat
them as noise and ignore the result. Otherwise, the validation graph is
optimized again to refine the estimates and a new cleaning process is
performed on the whole edge set. Then, we count the number of se-

94 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

mantic edges Es and decide upon object detection by comparing Es to
two given thresholds ε f , εt with ε f < εt :

Es < ε f the detection is not confirmed; the validation graph is de-
stroyed and the object is removed from the SLAM problem,
if present (see Sec. 4.2.3);

ε f ≤ Es < εt the result is unclear; we save the validation graph waiting
for more cues, but the object is removed from the SLAM
problem, if present (see Sec. 4.2.3);

Es ≥ εt the object has been detected; the whole validation graph is
included into the SLAM problem (see Sec. 4.2.3).

Since the previous cleaning procedures leave only those edges that turn
out consistent with the current reconstruction, the two threshold ε f and
εt are not critical and we set them to, respectively, 3 and 10 in our ex-
periments. Indeed, higher values for εt could hinder the detection of
objects in very cluttered scenes, while the difference ∆ε = εt− ε f is re-
lated to the robustness of the detection pipeline: the larger ∆ε is, the
more feature matches, possibly from many different point of views, are
needed to validate a detection, thus reducing the propagation of false
positives to the SLAM graph (see Sec. 4.2.3). Finally, we note how our
two-step cleaning process is able to seamlessly recognize and delete
false matches introduced by previous frames as soon as correct infor-
mation are fed to the pipeline. We will show an interesting example of
this behavior in Sec. 4.4.

4.2.3 Semantic Optimization

In the previous section we have described the object detection algo-
rithm, which is separately deployed for every possible instance. To this
end, we have introduced a validation graph which comprises the sub-
set of the whole SLAM graph linked to the object vertex through the

4.2. JOINT DETECTION, TRACKING AND MAPPING 95

matched visual features. In order to correctly inject into the whole map
the information about detected objects, we perform a global semantic
optimization including all the validation graphs of such objects and all
the constraints from the SLAM engine. Accordingly, we achieve joint
estimation of camera and object poses.

Once the error has been spread across the graph, we compute the global
weighted mean residual as

ρ̄ =
∑i wi ‖ei‖2

∑i wi
, (4.2.6)

where wi weights the confidence of the constraint ei, e.g. the match re-
liability sb

1 and sb
2 in Eq. (4.2.1) or the weight wi in Eq. (2.3.6). This

value can be interpreted as the expected reconstruction error and, there-
fore, is our reference for validating a possible insertion of an object in
the map. Indeed, under a probabilistic interpretation, the SLAM prob-
lem in Eq. (2.3.8) can be written as a Maximum-A-Posteriori (MAP)
estimation assuming a Gaussian measurement model:

Y = argmax
Y

P(Y |Z) = argmax
Y

∏
i

P(Yi |Zi)

= argmax
Y

∏
i

exp−
1
2 wi‖ei‖2

, (4.2.7)

where Y is the set of unknowns, i.e. poses and, possibly, landmarks,
while Z is the set of measurements, e.g. feature matches. It is easy to
see that Eq. (2.3.8) is derived from Eq. (4.2.7) by extracting the nega-
tive logarithm, which is a monotonic function, and converting to a min-
imization problem. Also, by means of Eq. (2.3.8) we can interpret the
validation graph as the estimation of the most probable configuration
assuming a correct detection of the object. This way, we compare dif-
ferent possible solutions without explicitly running an expensive and
costly full multi-modal estimation as proposed by Bao et al. [6].

96 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

4.3 Semantic KinectFusion

In the previous section we have presented our semantic bundle adjust-
ment framework [110] for joint detection, tracking and mapping. The
approach can be easily integrated into many existing SLAM system,
therefore we purposely assumed only to work with general frame-to-
frame constraints. On one hand, using a naïve SLAM engine we can
better highlights the improvements yielded by our enhanced semantic
optimization, as we will show in Sec. 4.4. On the other hand, however,
we are also interested at the mutual benefit achievable by combining the
integrated object detection pipeline with state-of-art SLAM algorithms.
Accordingly, in this section we will investigate how to extend the pop-
ular KinectFusion system [64, 38] so as to support our SLAM-driven
object detection method, thus paving the way towards a possible future
semantic KinectFusion framework [109].

We already described the KinectFusion camera tracking algorithm in
Sec. 3.2. However, this method is conceived for surface reconstruction
and has no notion of pose graph nor frame-to-frame matches as required
by semantic bundle adjustment. Conversely, other approaches, such as
SlamDunk (see Chap. 2), suggest a straightforward extension by look-
ing for objects in keyframe images, whose poses are estimated within
a pose graph representation. Unfortunately, KinectFusion-based works
[72, 104, 15, 66, 100] address different issues, e.g. data compression or
unbounded reconstruction, so that we cannot simply push semantic op-
timization on top. The large scale approach presented in Chap. 3 might
be a more favorable environment, where, e.g., 3D features could be ex-
tracted from subvolumes’ meshes and matched to the object database,
while subvolume and object poses are jointly estimated in a unified se-
mantic graph. Nevertheless, here we prefer to pursue a different strategy
which tries to introduce keyframe-based optimization into a KinectFu-
sion system. In this way, we are able to seamlessly add the semantic
framework and, also, to investigate a different approach to large scale
surface reconstruction.

4.3. SEMANTIC KINECTFUSION 97

Tracking

Merging

New KF?
N Y

Validate
Hypotheses
for Model 1

Detected?

Match Models

Keyframe Matching
and Semantic Optimization

TSDF Reconstruction

Y

Validate
Hypotheses
for Model 2

Detected?

Validate
Hypotheses
for Model N

Detected?

Y Y

Camera
Frame

Figure 4.3.1: The generic “SLAM Engine” and “Semantic Optimiza-
tion” blocks in Fig. 4.0.2 have been adapted so as to integrate the
KinectFusion camera tracking system.

In Fig. 4.3.1 we have expanded the flowchart in Fig. 4.0.2 to our se-
mantic KinectFusion pipeline. The “SLAM Engine” block has been
replaced by a KinectFusion camera tracker (see Sec. 3.2) with a new
check for keyframe detection after the fusion of each new depth im-
age. Then, visual features are extracted and matched from RGB-D
keyframes following the algorithm described in Sec. 4.2 and a semantic
optimization is run over the pose graph. Finally, the TSDF volume is
shifted and reconstructed from the optimized keyframes.

Keyframes are selected by spatial sampling of the camera path, that is
a frame is saved as keyframe when the overlap with the current map is
below a threshold. To this end, we extended TSDF voxel data with a
list of keyframe indexes. When a keyframe is merged, all the modified
voxels within the truncation band, i.e. the surface voxels (see Sec. 3.2),
add its index to the list, so that we will be able to know which subset
of the map can actually see that point. On the other hand, a surface
voxel with an empty index list is definitely outside the area mapped by
the keyframe set. Therefore, when the TSDF volume is built from the

98 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

T0

T1

T2

Figure 4.3.2: Our proposed matching strategy exploits information
stored into the TSDF volume to find possible matches. In this exam-
ple, we move from T0 camera frame to T1 and T2, then we perform a
local search on the image plane for the best corresponding point.

keyframe map, we also save the total number of surface voxels vmap.
Then, upon depth image fusion, we count the number of such surface
voxels having an empty keyframe index list vout . When the ratio vout/vmap

rises above a threshold, the area outside the current map is large enough
to justify the creation of a new keyframe.

Every time a new keyframe is spawn, we carry out a semantic optimiza-
tion. As in SlamDunk (see Chap. 2), we apply the locality principle
and, beside the last detected keyframe, we consider only the keyframes
whose indexes have been written in the TSDF volume. We go through
all the depth images and build a set of correspondences by means of the
TSDF itself. As sketched in Fig. 4.3.2, for each valid depth measure-
ments we search for matches as follows:

1. the pixel is reprojected according to Eq. (2.3.1) and transformed
by the current camera pose;

2. the TSDF volume is queried at that point and the keyframe list
retrieved;

4.3. SEMANTIC KINECTFUSION 99

Figure 4.3.3: After a successful optimization, the TSDF volume has to
be reconstructed from keyframes’ depth maps. However, the loss of
data, i.e. all the frames which are not keyframes, generates holes and
noise in the distance function. Left: a surface, extracted as the zero-
level set, before keyframe optimization. Right: the same surface after
the reconstruction from keyframes only.

3. for each keyframe in the list, the voxel is projected onto the cor-
responding image plane by applying Eq. (3.2.2);

4. the nearest 3D point is found within a squared window.

Also, to increase robustness, we require normal coherence for each
matching pair, i.e. the angle between the two normals must be less than
a threshold. From this set of 3D correspondences we define a cost func-
tion as the sum of Euclidean distances (cfr. Eq. (2.3.6) and (2.3.7)) and
add all the detected objects with their feature matches (see Sec. 4.2).

The results of the semantic optimization, carried out by the G2O library
[49], is a new pose estimate for every objects and keyframes included in
the problem. Therefore, the TSDF volume will no longer represent the

100 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

actual scene and must be rebuilt from scratch by fusion of the nearest
keyframes. On one hand, by centering the volume on the last keyframe
pose we implicitly allow for unbounded reconstruction and naturally
follow camera movements. On the other hand, since we can only merge
keyframes, in practice too few data are fused and the distance function
appears noisy and incomplete. Typical defects caused by this issue are
shown in Fig. 4.3.3. A flawed surface reconstructed from a small set of
measurements, besides being less graphically appealing, may also harm
camera tracking due to its holes and roughness. Therefore, in the future
it will be worth considering how to employ subvolumes, introduced in
Sec. 3.3, instead of a keyframe set of raw depth images.

4.4 Results

To validate the semantic SLAM framework, we carefully devised a set
of experiments deploying semantic bundle adjustment in its 3D embod-
iment. First, we chose full 3D reconstructions of seven objects from our
lab, with the meshes shown in Fig. 4.4.1, and we extracted 3D features
by detecting keypoints at three different scales with Intrinsic Shape Sig-
nature [105] and describing their neighborhood with Spin Images [39].
We created a separate index at each scale including the descriptors ex-
tracted from all the seven models at that scale. Then, in the following
experiments we match to these three data structures the Spin Image fea-
tures extracted described at the same scales from the meshes associated
with incoming depth frames. For each Spin Image descriptor we re-
trieve both the nearest match and the next-closest one belonging to a
different object model, so that we accept the correspondence only if the
ratio between the two distances is below some threshold. Also, this ra-
tio can be used to weight the cost terms in Eq. (4.2.3). Nonetheless,
this matching strategy returns a very large number of outliers, so a fil-
tering step is required before entering our validation pipeline. There-
fore, we deploy a RANSAC-based outlier rejection scheme similar to

4.4. RESULTS 101

(a) Doll. Size: 18×39×15cm. (b) Duck. Size: 20×28×58cm.

(c) Frog. Size: 34×32×33cm.

(d) Mario. Size: 19×32×22cm. (e) Rabbit. Size: 20×33×20cm.

(f) Squirrel. Size: 15×17×20cm. (g) Tortoise. Size: 20×14×20cm.

Figure 4.4.1: The full 3D meshes of the seven objects used throughout
our experiments.

102 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

(a) (b)

Figure 4.4.2: We performed ICP-like refinement on the fr1/floor se-
quence of the RGB-D benchmark dataset [89] to improve ground truth
poses. (a) Left: original frames. Right: optimized poses. Compare the
right wall. (b) Top: original frames. Bottom: optimized poses. Com-
pare the floor and the blue robot.

Alg. 2.1 using a threshold τ = 0.05m, which is roughly 20 times the
mesh resolution. Setting such high threshold still leaves incorrect cor-
respondences, but our validation step is then able to cope with them.

To quantitatively evaluate our framework we purposely created two se-
quences with ground truth information on both the camera path and
the 6-DOF object poses. We sampled RGB-D frames at 2Hz from the
fr1/floor sequence of the RGB-D benchmark dataset [89] and performed
ICP-like [31] refinement to improve ground truth accuracy. Indeed, the
camera path provided with the RGB-D benchmark dataset, though esti-
mated through a motion capture system, does not always provide accu-
rate frame alignment, as clearly shown in Fig. 4.4.2. Then, we placed
in the 3D scene objects from our model database and generated the 4-

objects and 7-objects sequences by raycasting, respectively, 4 and 7 ob-
jects on the sampled frames.

As for the SLAM engine, in these two experiments we deployed a 2D
feature-based camera tracking algorithm inspired by existing SLAM
frameworks [35, 30]. SIFT features [57] are extracted from the cur-

4.4. RESULTS 103

Figure 4.4.3: Final semantic reconstruction for the 4-objects sequence.
Bounding boxes aligned according to estimated poses are shown around
detected objects.

rent RGB frame and matched to the previous one, then reprojected into
the 3D space by means of the associated depth measurements and, as
usual, filtered through a RANSAC-based procedure (cfr. Alg. 2.1). Al-
though the adopted SLAM engine is quite basic, by including semantic
constraints we can achieve global alignment and object localization, as
shown in Fig. 4.4.3 for the 4-objects sequence.

Since loop closure events are not handled, the adopted basic SLAM
engine inevitably accumulates error, eventually leading to a poor re-
construction (see top image in Fig. 4.4.4). Conversely, our semantic
approach adds links between distant images and may implicitly close
loops through object instances (see bottom image in Fig. 4.4.4). This
behavior can be qualitatively appreciated also in Fig. 4.4.5, where we
compare the plain SLAM approach to our semantic bundle adjustment
framework on a real sequence acquired in our lab by a Kinect sensor.
Moreover, since the global semantic optimization includes all camera
poses, the whole path estimation improves and the drift error shrinks, as
vouched by Fig. 4.4.6 and 4.4.7.

In Sec. 4.2.2 we have described our object detection pipeline and we
have shown how matching hypotheses are constantly refined as soon as
new cues are found. This behavior is illustrated in Tab. 4.4.1, where

104 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

Figure 4.4.4: Detecting the same object instance in multiple views helps
counteract the drift error, especially at loop closures. Top: a detail from
the 7-objects sequence reconstructed by the basic SLAM engine with-
out deployment of semantic information about the objects. Bottom:
the same sequence reconstructed by our semantic bundle adjustment
approach. Bounding boxes aligned according to estimated poses are
shown around detected objects.

4.4. RESULTS 105

(a)

(b)

(c)

(d)

Figure 4.4.5: We performed a complete loop with a Kinect camera cap-
turing the object Doll at the beginning and at the end of the sequence.
While a basic SLAM engine, (a) and (c), accumulates drift, our seman-
tic approach, (b) and (d), implicitly closes the loop by detecting the ob-
ject. In this experiment we have deployed the Color-SHOT descriptor
[94] rather than Spin Images so to rely on more distinctive features.

106 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

Figure 4.4.6: 4-objects sequence: (top) rotation error, in degrees, and
(bottom) translation error, in meters, for every frame and detected ob-
jects. Blue triangles: plain SLAM. Red squares: semantic bundle ad-
justment. The numbers denote the frame indexes while the letters the
four objects (cfr. Fig. 4.4.1).

4.4. RESULTS 107

Figure 4.4.7: 7-objects sequence: (top) rotation error, in degrees, and
(bottom) translation error, in meters, for every frame and detected ob-
jects. Blue triangles: plain SLAM. Red squares: semantic bundle ad-
justment. The numbers denote the frame indexes while the letters the
seven objects (cfr. Fig. 4.4.1).

108 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

Table 4.4.1: An excerpt of the validation graph for object Frog in the 7-
objects sequence. We report the number of frame-to-object constraints
attached to the specified camera poses at the end of the validation phase
for the features extracted from the frame in first column. Also, matches
before the first cleaning procedure are shown in brackets. The pose
estimation error for object Frog in the global SLAM graph is reported
in the last column.

Frame T16 T34 T35 T36 T37 T38 T39

Pose Error
(rot. and
transl.)

#16
3

(11)
— — — — — — —

#34 3
31

(38)
— — — — —

114.6◦

1.053m

#35 3 31
55

(55)
— — — —

88.5◦

1.190m

#36 3 31 55
122
(122)

— — —
86.3◦

1.237m

#37 3 31 55 122
127
(127)

— —
86.8◦

1.273m

#38 0 31 55 122 127
123
(123)

—
0◦

0.180m

#39 0 31 55 122 127 123
0

(47)
0◦

0.200m

Frame #16 Frame #36

Frame #37 Frame #38

4.4. RESULTS 109

we report the number of frame-to-object edges in the validation graph
of the object Frog for some camera frames of the 7-objects sequence.
In this case, 11 matches to the model are found in frame 16, although
Frog is not present, and only 8 are cleaned during the validation phase.
When in frame 34 the object appears, many more feature correspon-
dences are found, but the pose estimate is harmed by the previous 3
outliers. However, after a few frames the validation pipeline is able to
detect and remove those false matches and correctly localize the object.

Finally, in Fig. 4.4.8 we demonstrate object-aware augmented reality
with occlusion handling. Indeed, SLAM techniques typically lack se-
mantic information and allow only for augmenting the whole scene
[45, 64], while our framework peculiarly detects and updates object
poses as the camera moves and, therefore, even when the object is oc-
cluded, context specific data can be effectively rendered. Also, this
sequence as well as the loop shown in Fig. 4.4.5 demonstrate the ef-
fective recognition of a real object, while the quantitative experiments
above suffer from the simulated insertion of the object models, which
may bias the results.

The final reconstructions for the 4-objects as well as the 7-objects se-
quences can be visually inspected by watching the video provided on
our website1. The recording includes also the qualitative sequence ac-
quired in our lab and the object-aware AR demonstration.

In Sec. 4.3 we have discussed how to extend KinectFusion to support
our semantic bundle adjustment framework. We now compare this new
SLAM system to SlamDunk and RGB-D SLAM [29, 30] (see Chap. 2).
Purposely, we considered the 4-objects sequence at full frame rate and,
also, we augmented two more sequences from the RGB-D benchmark
dataset [89] with objects Mario and Doll: fr1/360 and fr1/desk. Then,
we apply again the 3D embodiment of our framework by extracting

1

http://vision.deis.unibo.it/research/104-nfioraio-thesis

http://vision.deis.unibo.it/research/104-nfioraio-thesis

110 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

Figure 4.4.8: Estimating object poses in the 3D environment allows
for object-aware augmentation. In this example a red umbrella is ren-
dered, with occlusion handling, near the Doll, even when the object is
not visible. Top: 3D reconstruction. Bottom: two augmented frames.
In this experiment we have deployed the Color-SHOT descriptor [94]
for matching object feature.

4.4. RESULTS 111

Figure 4.4.9: Results on augmented sequences from the RGB-D bench-
mark dataset [89] for our semantic extension to KinectFusion. Left:
fr1/360. Middle: fr1/desk. Right: fr1/floor.

112 CHAPTER 4. SEMANTIC BUNDLE ADJUSTMENT

Table 4.4.2: We have compared our extension to KinectFusion, with
(Semantic Ext KF) and without (Ext KF) semantic information, to
SlamDunk and RGB-D SLAM. Each row reports RMS of absolute
trajectory error (meters) on a sequence from the RGB-D benchmark
dataset [89]. Note: fr1/floor is the 4-objects sequence.

Sequence Ext KF
Semantic
Ext KF

SD
SURF128

RGB-D
SLAM

RGB-D
SLAM

w/ EMM

fr1/360 0.091 0.073 0.084 0.103 <0.07
fr1/desk 0.047 0.048 0.025 0.049 0.026

fr1/floor 0.062 0.059 0.042 0.055 <0.05

AVERAGE 0.067 0.060 0.050 0.069

SIFT3D keypoints [57, 75] and Color-SHOT features [94]. Snapshot
from the reconstruction are shown in Fig. 4.4.9, while Tab. 4.4.2 quan-
titatively compares the different methods. Clearly, simply extending
KinectFusion with keyframe optimization (Ext KF) does not outper-
form existing solutions, but it usually achieves similar results. Indeed,
as already discussed in Sec. 4.3, building a TSDF volume from a lim-
ited set of depth maps harms camera tracking (cfr. Fig. 4.3.3). However,
introducing joint object detection and localization improves the final re-
construction, while estimating a 6-DOF pose for each detected object.

Chapter 5

Conclusion

In this thesis we have addressed the large scale mapping problem and
the semantic understanding of the environment under exploration. Var-
ious techniques have been described and compared to state-of-art ap-
proaches. Following the general trend towards the use of 3D measure-
ments from RGB-D data, in Chap. 2 we developed a novel SLAM sys-
tem, SlamDunk, which combines standard 2D feature matching with
multi-view camera tracking by reprojecting keypoints from the image
plane into the 3D space. We devised a scalable framework based on lo-
cal keyframe optimization and implicit loop closing, avoiding global
alignment for efficiency reasons. Nevertheless, SlamDunk performs
well w.r.t. the state-of-the-art on publicly available benchmark datasets.
We have shown how this SLAM system can be effectively implemented
on a mobile device and how to cope with the limited resources available
on such architectures. We carried out performance analysis in terms
of computational time and descriptiveness of several keypoint detector
and feature extractor pairs, in order to find the best trade-off between
speed and accuracy. Experimental results show that the system is ca-
pable of running at interactive frame rate with no significant loss in the
overall reconstruction quality. Though tests have been performed by
plugging an external Asus Xtion PRO Live sensor to a tablet device, we
are currently working on the integration of a Structure depth camera to

113

114 CHAPTER 5. CONCLUSION

enhance user experience. Then, the next step may concern the fusion of
measurements coming from on-board sensors, such as, e.g., the gyro-
scope and the accelerometer. We expect to improve the robustness and
accuracy of the system, especially on low-textured areas of the environ-
ment, where our camera tracking approach is likely to fail. Finally, we
wish to reduce the time required by the local optimization step, e.g. by
marginalizing point-point constraints to pose-pose cost terms.

In Chap. 3 we have moved to a different architecture to address high-
quality surface reconstruction at large scale using depth images only.
We have described a camera tracking method based on KinectFusion
which erodes old frames from the TSDF volume after every successful
depth map integration, so as to maintain a low-drift model for tracking
and avoid integration of misaligned TSDF data. Also, the erosion pro-
cess has a complexity equal to the integration algorithm, so that the sys-
tem can still operate in real-time, and, moreover, is key for extracting
low-drift subvolumes from the scene under exploration. Then, global
consistency is ensured by a novel online subvolume optimization, which
directly exploits TSDF measurements, while a final blending step effi-
ciently merges together aligned data. We have shown outstanding re-
sults in diverse settings, outperforming existing approaches, which ei-
ther fail, require additional measurements, e.g. RGB images, cannot
work incrementally and online or need much more time to complete.
In the future, we are going to work on several aspects to further im-
prove the framework. First, the number of frames fused in the active
volume is currently fixed, while it could be possibly related to camera
movements instead. Indeed, this number is also the same for the sub-
volumes, while it could be worth investigating how to decouple these
two tasks and, possibly, sharing frames between subvolumes, since cur-
rently every subvolume is built by merging a different subset of camera
frames. Then, the optimization step, though operating online, has a
complexity which increases with the number of subvolumes, because a
global alignment is performed every time a new subvolume is spawned.

115

However, valuable alternatives may be adopted from the submapping
and relative bundle adjustment literature, so as to leverage on local op-
timization problems. Finally, the proposed volume blending algorithm
has been devised as a final offline post-processing step, though we could
imagine to create a feedback loop by injecting reliable blended TSDF
measurements back into the active volume for further reducing drift er-
ror in camera motion estimation.

Semantic understanding has been addressed in Chap. 4 as an object in-
stance detection task fully integrated into the SLAM pipeline. Unlike
previous approaches, we have exploited the incremental reconstruction
to validate hypotheses about object presence and we have devised a
novel Semantic Bundle Adjustment framework to jointly estimate both
camera and object 6-DOF poses. Such general formulation has been
implemented in a 3D scenario by deploying RGB-D data and promis-
ing results have been shown on benchmark sequences. Moreover, we
developed a Semantic KinectFusion system which extends the original
KinectFusion proposal by introducing keyframe spawning and object
detection. However, we have shown that a TSDF volume built from
only a subset of frames, i.e. the keyframes, presents holes and noise
which, in turn, hinder camera tracking. Applying instead the subvolume
principle could be a valuable alternative to overcome such issue. As for
object detection, we wish to pursue several directions. First, features
could be extracted directly from the TSDF volume, being a low-noise
model of the scene and, therefore, usually holding more reliable data
fused from different point of views than a single RGB-D frame. Then,
we aim at supporting the detection of multiple instances of the same
object by, e.g., replacing RANSAC with a Hough-based outlier rejec-
tion and pose estimation step. Finally, we wish to extend the current
framework to deal also with category-level recognition.

116 CHAPTER 5. CONCLUSION

Bibliography

[1] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon,
Brian Curless, Steven M. Seitz, and Richard Szeliski. Building
rome in a day. Communications of the ACM, 54(10):105–112,
October 2011.

[2] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. http:
//ceres-solver.org.

[3] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting
of two 3-d point sets. Pattern Analysis and Machine Intelligence

(PAMI), IEEE Trans. on, 9(5):698–700, September 1987.

[4] Sid Yingze Bao, Mohit Bagra, Yu-Wei Chao, and Silvio
Savarese. Semantic structure from motion with points, re-
gions, and objects. In Computer Vision and Pattern Recognition

(CVPR), IEEE Int’l Conf. on, Providence (RI), USA, June 2012.

[5] Sid Yingze Bao, Mohit Bagra, and Silvio Savarese. Semantic
structure from motion with object and point interactions. In Chal-

lenges and Opportunities in Robot Perception, IEEE workshop

at the International Conference on Computer Vision (ICCV),
Barcelona, Spain, November 2011.

[6] Sid Yingze Bao and Silvio Savarese. Semantic structure from
motion. In Computer Vision and Pattern Recognition (CVPR),

IEEE Int’l Conf. on, Colorado Springs (CO), USA, June 2011.

117

http://ceres-solver.org
http://ceres-solver.org

118 BIBLIOGRAPHY

[7] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool.
Speeded-up robust features (SURF). Computer Vision and Image

Understanding, 110(3):346 – 359, September, 10 2008.

[8] P. J. Besl and H. D. McKay. A method for registration of 3-d
shapes. Pattern Analysis and Machine Intelligence (PAMI), IEEE

Trans. on, 14(2):239–256, 1992.

[9] S. Betge-Brezetz, P. Hebert, R. Chatila, and M. Devy. Uncer-
tain map making in natural environments. In International Con-

ference on Robotics and Automation (ICRA), volume 2, pages
1048–1053, April 1996.

[10] J.-L. Blanco, J. Gonzalez-Jimenez, and J.-A. Fernandez-
Madrigal. Sparser relative bundle adjustment (srba): Constant-
time maintenance and local optimization of arbitrarily large
maps. In International Conference on Robotics and Automation

(ICRA), pages 70–77, May 2013.

[11] Dorit Borrmann, Jan Elseberg, Kai Lingemann, Andreas
NÃŒchter, and Joachim Hertzberg. Globally consistent 3d map-
ping with scan matching. Journal of Robotics and Autonomous

Systems, 56:130–142, February 2008.

[12] Rodney A. Brooks. Symbolic error analysis and robot planning.
International Journal of Robotics Research, 1(4):29–68, 1982.

[13] E Bylow, Jurgen Sturm, Christian Kerl, Fredrik Kahl, and Daniel
Cremers. Real-time camera tracking and 3d reconstruction us-
ing signed distance functions. In Robotics: Science and Systems

(RSS), Berlin, Germany, June 2013.

[14] R. O. Castle, G. Klein, and D. W. Murray. Combining monoslam
with object recognition for scene augmentation using a wearable
camera. Journal of Image and Vision Computing, 28(11):1548–
1556, 2010.

BIBLIOGRAPHY 119

[15] Jiawen Chen, Dennis Bautembach, and Shahram Izadi. Scalable
real-time volumetric surface reconstruction. ACM Transaction

on Graphics (TOG), 32(4), July 2013.

[16] Yang Chen and Gerard Medioni. Object modelling by registra-
tion of multiple range images. Journal of Image and Vision Com-

puting, 10:145–155, April 1992.

[17] Javier Civera, Dorian Gálvez-López, Luis Riazuelo, Juan D.
Tardós, and J. M. M. Montiel. Towards semantic SLAM using
a monocular camera. In Intelligent Robots and Systems (IROS),

IEEE/RSJ Int’l Conf. on, pages 1277–1284, San Francisco (CA),
USA, September 2011.

[18] Javier Civera, Oscar G. Grasa, Andrew J. Davison, and J. M. M.
Montiel. 1-point ransac for extended kalman filtering: Appli-
cation to real-time structure from motion and visual odometry.
Journal of Field Robotics, 27(5):609–631, September 2010.

[19] N. Cornelis, B. Leibe, K. Cornelis, and L. Van Gool. 3d urban
scene modeling integrating recognition and reconstruction. Inter-

national Journal of Computer Vision (IJCV), 78(2-3):121–141,
July 2008.

[20] Brian Curless and Marc Levoy. A volumetric method for building
complex models from range images. In SIGGRAPH Int’l Conf.,
New Orleans (LA), USA, 1996.

[21] A. J. Davison. Mobile Robot Navigation Using Active Vision.
PhD thesis, Oxford, UK, 1998.

[22] Andrew Davison, I. D. Reid, N. D. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. Pattern Analysis

and Machine Intelligence (PAMI), IEEE Trans. on, 29(6):1052–
1067, June 2007.

120 BIBLIOGRAPHY

[23] Andrew J. Davison. Real-time simultaneous localisation and
mapping with a single camera. In IEEE International Confer-

ence on Computer Vision (ICCV), page 1403, Washington (DC),
USA, 2003.

[24] F. Dellaert and M. Kaess. Square Root SAM: Simultaneous lo-
calization and mapping via square root information smoothing.
International Journal of Robotics Research, 25(12):1181–1204,
December 2006.

[25] B. Drost, Markus Ulrich, N. Navab, and S. Ilic. Model glob-
ally, match locally: Efficient and robust 3d object recognition.
In Computer Vision and Pattern Recognition (CVPR), IEEE Int’l

Conf. on, pages 998–1005, June 2010.

[26] I. Dryanovski, R.G. Valenti, and Jizhong Xiao. Fast visual odom-
etry and mapping from rgb-d data. In International Conference

on Robotics and Automation (ICRA), pages 2305–2310, May
2013.

[27] E. Eade and T. Drummond. Monocular SLAM as a graph of coa-
lesced observations. In IEEE International Conference on Com-

puter Vision (ICCV), pages 1–8, Rio de Janeiro, Brasil, October
2007.

[28] S. Ekvall, P. Jensfelt, and D. Kragic. Integrating active mobile
robot object recognition and slam in natural environments. In
Intelligent Robots and Systems (IROS), IEEE/RSJ Int’l Conf. on,
Beijing, China, October 2006.

[29] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and
W. Burgard. An evaluation of the RGB-D SLAM system. In
International Conference on Robotics and Automation (ICRA),
St. Paul (MA), USA, May 2012.

BIBLIOGRAPHY 121

[30] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard.
3d mapping with an RGB-D camera. IEEE Transactions on

Robotics (T-RO), 30(1):177–187, 2013.

[31] Nicola Fioraio and Kurt Konolige. Realtime visual and point
cloud SLAM. In RGB-D: Advanced Reasoning with Depth Cam-

eras, workshop at Robotics: Science and System (RSS), Los An-
geles (CA), USA, June 27 2011.

[32] D. Galvez-Lopez and J.D. Tardos. Real-time loop detection with
bags of binary words. In Intelligent Robots and Systems (IROS),

IEEE/RSJ Int’l Conf. on, pages 51–58, September 2011.

[33] Google Inc. Project Tango. https://www.google.com/

atap/projecttango/, 2014.

[34] R. I. Hartley and A. Zisserman. Multiple View Geometry in Com-

puter Vision. Cambridge University Press, second edition, 2004.

[35] P. Henry, Michael Krainin, E. Herbst, X. Ren, and Dieter Fox.
RGB-D mapping: Using kinect-style depth cameras for dense
3d modeling of indoor environments. International Journal of

Robotics Research, 31(5):647–663, February 2012.

[36] Derek Hoiem, Alexei A. Efros, and Martial Hebert. Putting ob-
jects in perspective. International Journal of Computer Vision

(IJCV), 80(1):3–15, October 2008.

[37] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stach-
niss, and Wolfram Burgard. OctoMap: An efficient probabilistic
3D mapping framework based on octrees. Autonomous Robots,
2013. Software available at http://octomap.github.
com.

[38] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux,
Richard Newcombe, Pushmeet Kohli, Jamie Shotton, Steve

https://www.google.com/atap/projecttango/
https://www.google.com/atap/projecttango/
http://octomap.github.com
http://octomap.github.com

122 BIBLIOGRAPHY

Hodges, Dustin Freeman, Andrew Davison, and Andrew Fitzgib-
bon. KinectFusion: Real-time 3d reconstruction and interaction
using a moving depth camera. In ACM Symposium on User In-

terface Software and Technology, Santa Barbara (CA), USA, Oc-
tober 2011.

[39] A. Johnson and M. Hebert. Using spin images for efficient object
recognition in cluttered 3D scenes. Pattern Analysis and Machine

Intelligence (PAMI), IEEE Trans. on, 21(5):433–449, 1999.

[40] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental
smoothing and mapping. IEEE Transactions on Robotics (T-RO),
24(6):1365–1378, December 2008.

[41] Gerald Schweighofer Katrin Pirker, Matthias Rüther and Horst
Bischof. Gpslam: Marrying sparse geometric and dense prob-
abilistic visual mapping. In British Machine Vision Conference

(BMVC), pages 115.1–115.12, Dundee, UK, September 2011.

[42] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and
A. Kolb. Real-time 3d reconstruction in dynamic scenes using
point-based fusion. In 3D Vision (3DV), Int’l Conf. on, pages
1–8, June 2013.

[43] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estimation
for rgb-d cameras. In International Conference on Robotics and

Automation (ICRA), Karlsruhe, Germany, May 2013.

[44] Christian Kerl, Jurgen Sturm, and Daniel Cremers. Dense visual
SLAM for RGB-D cameras. In Intelligent Robots and Systems

(IROS), IEEE/RSJ Int’l Conf. on, Tokyo, Japan, November 2013.

[45] G. Klein and D. Murray. Parallel tracking and mapping for small
ar workspaces. In International Symposium on Mixed and Aug-

mented Reality (ISMAR), pages 225–234, Nara, Japan, Novem-
ber 2007.

BIBLIOGRAPHY 123

[46] Georg Klein and David Murray. Parallel tracking and mapping
on a camera phone. In International Symposium on Mixed and

Augmented Reality (ISMAR), pages 83–86, Orlando (FL), USA,
October 2009.

[47] Kurt Konolige and Motilal Agrawal. FrameSLAM: From bundle
adjustment to real-time visual mapping. IEEE Transactions on

Robotics (T-RO), 24(5):1066–1077, October 2008.

[48] Daniel B. Kubacki, Huy Q. Bui, S. Derin Babacan, and Minh N.
Do. Registration and integration of multiple depth images us-
ing signed distance function. SPIE, Computational Imaging,
8296:22, February, 9 2012.

[49] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Bur-
gard. g2o: A general framework for graph optimization. In
International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 2011.

[50] Wonwoo Lee, Kiyoung Kim, and Woontack Woo. Mobile phone-
based 3D modeling framework for instant interaction. In Com-

puter Vision Workshops at the IEEE International Conference on

Computer Vision (ICCV), Kyoto, Japan, September 2009.

[51] J.J. Leonard and H.F. Durrant-Whyte. Simultaneous map build-
ing and localization for an autonomous mobile robot. In Intelli-

gence for Mechanical Systems, workshop at the IEEE/RSJ Int’l

Conf. on Intelligent Robots and Systems (IROS), volume 3, pages
1442–1447, November 1991.

[52] S. Leutenegger, M. Chli, and R.Y. Siegwart. BRISK: Binary ro-
bust invariant scalable keypoints. In IEEE International Confer-

ence on Computer Vision (ICCV), November, 6 2011.

[53] Kenneth Levenberg. A method for the solution of certain non-
linear problems in least squares. Quarterly Journal of Applied

Mathematics, II(2):164–168, 1944.

124 BIBLIOGRAPHY

[54] Li-Jia Li, Richard Socher, and Li Fei-Fei. Towards total scene
understanding: Classification, annotation and segmentation in an
automatic framework. In Computer Vision and Pattern Recogni-

tion (CVPR), IEEE Int’l Conf. on, Miami (FL), USA, June 2009.

[55] W.E. Lorensen and H.E. Cline. Marching cubes: A high res-
olution 3d surface construction algorithm. In SIGGRAPH Int’l

Conf., volume 21, pages 163–170, July 1987.

[56] Manolis I. A. Lourakis and Antonis A. Argyros. Sba: a software
package for generic sparse bundle adjustment. ACM Transac-

tions on Mathematical Software, 36(1):1–30, 2009.

[57] David G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision (IJCV),
60(2):91–119, January, 5 2004.

[58] R. Maier, J. Sturm, and D. Cremers. Submap-based bundle
adjustment for 3d reconstruction from rgb-d data. In German

Conference on Pattern Recognition (GCPR), Münster, Germany,
September 2014.

[59] Donald W. Marquardt. An algorithm for least-squares estimation
of nonlinear parameters. SIAM Journal on Applied Mathematics,
11(2):431–441, 1963.

[60] David Meger, Per-Erik Forssén, Kevin Lai, Scott Helmer, San-
cho McCann, Tristram Southey, Matthew Baumann, James J. Lit-
tle, and David G. Lowe. Curious george: An attentive semantic
robot. Journal of Robotics and Autonomous Systems, 56(6):503–
511, June 2008.

[61] M. Montemerlo and S. Thrun. Large-scale robotic 3-d mapping
of urban structures. In International Symposium on Experimental

Robotics (ISER), Singapore, June 2004.

BIBLIOGRAPHY 125

[62] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben
Wegbreit. FastSLAM: A factored solution to the simultaneous lo-
calization and mapping problem. In National Conference on Ar-

tificial Intelligence, pages 593–598, Edmonton, Alberta, Canada,
2002.

[63] R.A. Newcombe and A.J. Davison. Live dense reconstruction
with a single moving camera. In Computer Vision and Pat-

tern Recognition (CVPR), IEEE Int’l Conf. on, pages 1498–1505,
June 2010.

[64] Richard Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew Davison, Pushmeet Kohli,
Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon. Kinect-
Fusion: Real-time dense surface mapping and tracking. In Inter-

national Symposium on Mixed and Augmented Reality (ISMAR),
pages 127–136, Basel, CH, October 2011.

[65] Richard Newcombe, Steven Lovegrove, and Andrew Davison.
DTAM: Dense tracking and mapping in real-time. In IEEE Inter-

national Conference on Computer Vision (ICCV), pages 2320–
2327, 2011.

[66] Matthias Niessner, Michael Zollhofer, Shahram Izadi, and Marc
Stamminger. Real-time 3d reconstruction at scale using voxel
hashing. ACM Transaction on Graphics (TOG), 32(6), Novem-
ber 2013.

[67] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In
Computer Vision and Pattern Recognition (CVPR), IEEE Int’l

Conf. on, volume 1, pages 652–659, June 2004.

[68] Occipital Inc. The Structure sensor. http://structure.

io/, 2014.

[69] Qi Pan, Clemens Arth, Edward Rosten, Gerhard Reitmayr, and
Tom Drummond. Rapid scene reconstruction on mobile phones

http://structure.io/
http://structure.io/

126 BIBLIOGRAPHY

from panoramic images. In International Symposium on Mixed

and Augmented Reality (ISMAR), Basel, CH, October 2011.

[70] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and
Markus Gross. Surfels: Surface elements as rendering primi-
tives. In Computer Graphics and Interactive Techniques, SIG-
GRAPH, pages 335–342, New York (NY), USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[71] Edward Rosten and Tom Drummond. Fusing points and lines for
high performance tracking. In IEEE International Conference on

Computer Vision (ICCV), volume 2, pages 1508–1511, October
2005.

[72] Henry Roth and Marsette Vona. Moving volume KinectFusion.
In British Machine Vision Conference (BMVC), Guildford, UK,
September 2012.

[73] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An
efficient alternative to sift or surf. In IEEE International Confer-

ence on Computer Vision (ICCV), pages 2564–2571, November
2011.

[74] M. Ruhnke, R. Kümmerle, G. Grisetti, and W. Burgard. Highly
accurate 3d surface models by sparse surface adjustment. In In-

ternational Conference on Robotics and Automation (ICRA), St.
Paul (MN), USA, May 2012.

[75] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point cloud
library (PCL). In International Conference on Robotics and Au-

tomation (ICRA), Shanghai, China, May 9-13 2011.

[76] Renato F. Salas-Moreno, Richard A. Newcombe, Hauke Strasdat,
Paul H. J. Kelly, and Andrew J. Davison. Slam++: Simultane-
ous localisation and mapping at the level of objects. In Com-

puter Vision and Pattern Recognition (CVPR), IEEE Int’l Conf.

on, Portland (OR), USA, June 23-28 2013.

BIBLIOGRAPHY 127

[77] S.A. Scherer and A. Zell. Efficient onbard rgbd-slam for au-
tonomous mavs. In Intelligent Robots and Systems (IROS),

IEEE/RSJ Int’l Conf. on, pages 1062–1068, November 2013.

[78] A. Segal, D. Haehnel, and S. Thrun. Generalized-icp. In
Robotics: Science and Systems (RSS), Seattle (WA), USA, June
2009.

[79] M. Segal and K Akeley. The opengl graphics system: A spec-
ification. http://www.opengl.org/documentation/

specs/version2.0/glspec20.pdf, October, 22 2004.

[80] Gabe Sibley, Larry Matthies, and Gaurav Sukhatme. A slid-
ing window filter for incremental slam. In Danica Kragic and
Ville Kyrki, editors, Unifying Perspectives in Computational and

Robot Vision, volume 8 of Lecture Notes in Electrical Engineer-

ing, pages 103–112. Springer US, 2008.

[81] Gabe Sibley, Christopher Mei, Ian Reid, and Paul Newman.
Adaptive relative bundle adjustment. In Robotics: Science and

Systems (RSS), Seattle (WA), USA, June 2009.

[82] R. Smith, M. Self, and P. Cheeseman. Autonomous robot ve-
hicles. chapter Estimating Uncertain Spatial Relationships in
Robotics, pages 167–193. Springer-Verlag New York, Inc., New
York, NY, USA, 1990.

[83] Randall Smith, Matthew Self, and Peter Cheeseman. A stochas-
tic map for uncertain spatial relationships. In International Sym-

posium on Robotics Research, pages 467–474, Cambridge, MA,
USA, 1988. MIT Press.

[84] F. Steinbruecker, J. Sturm, and D. Cremers. Real-time vi-
sual odometry from dense rgb-d images. In Live Dense Re-

construction with Moving Cameras, IEEE workshop at Interna-

tional Conference on Computer Vision (ICCV), Barcelona, Spain,
November 2011.

http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf

128 BIBLIOGRAPHY

[85] F. Steinbruecker, J. Sturm, and D. Cremers. Volumetric 3d map-
ping in real-time on a cpu. In International Conference on

Robotics and Automation (ICRA), Hongkong, China, May 2014.

[86] Frank Steinbruecker, Christian Kerl, Jurgen Sturm, and Daniel
Cremers. Large-scale multi-resolution surface reconstruction
from RGB-D sequences. In IEEE International Conference on

Computer Vision (ICCV), Sydney, Australia, December 2013.

[87] Hauke Strasdat, Andrew J. Davison, J.M.M. Montiel, and Kurt
Konolige. Double window optimisation for constant time visual
SLAM. In IEEE International Conference on Computer Vision

(ICCV), pages 2352–2359, Los Alamitos (CA) USA, November
2011.

[88] Hauke Strasdat, J. M. M. Montiel, and Andrew J. Davison. Visual
slam: Why filter? Image and Vision Computing, 30(2):65–77,
February 2012.

[89] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers.
A benchmark for the evaluation of RGB-D SLAM systems. In
Intelligent Robots and Systems (IROS), IEEE/RSJ Int’l Conf. on,
Vilamoura (Algarve), Portugal, October 2012.

[90] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, and
M. Pollefeys. Live metric 3D reconstruction on mobile phones.
In IEEE International Conference on Computer Vision (ICCV),
Sydney, Australia, December, 13 2013.

[91] Russell Highsmith Taylor. The Synthesis of Manipulator Control

Programs from Task-level Specifications. PhD thesis, Stanford,
CA, USA, 1976.

[92] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and
H. Durrant-Whyte. Simultaneous localization and mapping with
sparse extended information filters. International Journal of

Robotics Research, 23(7-8):693–716, August 2004.

BIBLIOGRAPHY 129

[93] F. Tombari, S. Salti, and L. Di Stefano. Unique signatures of his-
tograms for local surface description. In IEEE European Confer-

ence on Computer Vision (ECCV), Heraklion, Greece, Septem-
ber, 5-11 2010.

[94] Federico Tombari, Samuele Salti, and Luigi Di Stefano. A com-
bined texture-shape descriptor for enhanced 3D feature match-
ing. In IEEE International Conference on Image Processing

(ICIP), pages 809–812, Brussels, Belgium, September 2011.

[95] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and An-
drew W. Fitzgibbon. Bundle adjustment – a modern synthesis.
1883:298–372, 2000.

[96] Kartik Venkataraman, Dan Lelescu, Jacques Duparré, Andrew
McMahon, Gabriel Molina, Priyam Chatterjee, Robert Mullis,
and Shree Nayar. Picam: An ultra-thin high performance mono-
lithic camera array. ACM Transaction on Graphics (TOG), 32(6),
November 2013.

[97] A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof.
Dense reconstruction on-the-fly. In Computer Vision and Pat-

tern Recognition (CVPR), IEEE Int’l Conf. on, pages 1450–1457,
June 2012.

[98] T. Whelan, H. Johannsson, M. Kaess, J.J. Leonard, and J. Mc-
Donald. Robust real-time visual odometry for dense RGB-D
mapping. In International Conference on Robotics and Automa-

tion (ICRA), pages 5724–5731, May 2013.

[99] T. Whelan, M. Kaess, R. Finman, M.F. Fallon, H. Johannsson,
J.J. Leonard, and J. McDonald. 3D mapping, localisation and ob-
ject retrieval using low cost robotic platforms: A robotic search
engine for the real-world. In RGB-D: Advanced Reasoning with

Depth Cameras, workshop at Robotics: Science and System

(RSS), Berkeley (CA), USA, July 2014.

130 BIBLIOGRAPHY

[100] T. Whelan, M. Kaess, H. Johannsson, M.F. Fallon, J.J. Leonard,
and J.B. McDonald. Real-time large scale dense RGB-D SLAM
with volumetric fusion. International Journal of Robotics Re-

search, 2014.

[101] T. Whelan, M. Kaess, J.J. Leonard, and J.B McDonald.
Deformation-based loop closure for large scale dense RGB-D
SLAM. In Intelligent Robots and Systems (IROS), IEEE/RSJ Int’l

Conf. on, Tokyo, Japan, November 2013.

[102] Thomas Whelan, John Mcdonald, Michael Kaess, Maurice Fal-
lon, Hordur Johannsson, and John Leonard. Kintinuous: Spa-
tially extended KinectFusion. In RGB-D: Advanced Reasoning

with Depth Cameras, workshop at Robotics: Science and System

(RSS), Sydney, Australia, July 2012.

[103] Changchang Wu. SiftGPU: A GPU implementation of scale
invariant feature transform (SIFT). http://cs.unc.edu/

~ccwu/siftgpu, 2007.

[104] Ming Zeng, Fukai Zhao, Jiaxiang Zheng, and Xinguo Liu. A
memory-efficient kinectfusion using octree. In Computational

Visual Media (CVM), Int’l Conf. on, pages 234–241, Beijing,
China, November 2012.

[105] Yu Zhong. Intrinsic shape signatures: A shape descriptor for 3d
object recognition. In Computer Vision Workshops at the IEEE

International Conference on Computer Vision (ICCV), pages
689–696, Kyoto, Japan, October 2009.

[106] Qian-Yi Zhou and Vladlen Koltun. Dense scene reconstruction
with points of interest. ACM Transaction on Graphics (TOG),
32(4), July 2013.

[107] Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. Elastic frag-
ments for dense scene reconstruction. In IEEE International

http://cs.unc.edu/~ccwu/siftgpu
http://cs.unc.edu/~ccwu/siftgpu

BIBLIOGRAPHY 131

Conference on Computer Vision (ICCV), pages 473–480, Sydney
(NSW), Australia, December, 1-8 2013.

132 BIBLIOGRAPHY

Author’s Publications During
The PhD Course

[108] Nicholas Brunetto, Nicola Fioraio, and Luigi Di Stefano. Inter-
active RGB-D SLAM on mobile devices. In Intelligent Mobile

and Egocentric Vision, IEEE workshop at Asian Conference on

Computer Vision (ACCV), Singapore, November 2 2014.

[109] Nicola Fioraio, Gregorio Cerri, and Luigi Di Stefano. Towards
semantic KinectFusion. In International Conference on Image

Analysis and Processing (ICIAP), Naples, Italy, September 9-13
2013.

[110] Nicola Fioraio and Luigi Di Stefano. Joint detection, tracking
and mapping by semantic bundle adjustment. In Computer Vision

and Pattern Recognition (CVPR), IEEE Int’l Conf. on, Portland
(OR), USA, 2013.

[111] Nicola Fioraio and Luigi Di Stefano. SlamDunk: Affordable
real-time RGB-D SLAM. In Consumer Depth Cameras For

Computer Vision, IEEE workshop at European Conference on

Computer Vision (ECCV), Zurich, Switzerland, September 6
2014.

[112] Nicola Fioraio, Jonathan Taylor, Andrew Fitzgibbon, Luigi
Di Stefano, and Shahram Izadi. Large-scale and drift-free sur-
face reconstruction using online subvolume registration. In Com-

133

134 BIBLIOGRAPHY

puter Vision and Pattern Recognition (CVPR), IEEE Int’l Conf.

on, Boston (MA), USA, 2015.

[113] Samuele Salti, Alioscia Petrelli, Federico Tombari, Nicola Fio-
raio, and Luigi Di Stefano. A traffic sign detection pipeline
based on interest regions extraction. In International Joint Con-

ference on Neural Networks (IJCNN), Dallas (TX), USA, August
4-9 2013.

[114] Samuele Salti, Alioscia Petrelli, Federico Tombari, Nicola Fio-
raio, and Luigi Di Stefano. Traffic sign detection via interest
region extraction. Pattern Recognition, June 9 2014.

[115] Federico Tombari, Nicola Fioraio, Tommaso Cavallari, Samuele
Salti, Alioscia Petrelli, and Luigi Di Stefano. Automatic detec-
tion of pole-like structures in 3d urban environments. In In-

telligent Robots and Systems (IROS), IEEE/RSJ Int’l Conf. on,
Chicago (IL), USA, September 14-18 2014.

	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Camera Tracking And Mapping

	RGB-D SLAM For Mobile Devices
	Real-time RGB-D SLAM
	Mobile RGB-D SLAM
	The SlamDunk Algorithm
	Local Mapping
	Camera Tracking
	Local Optimization
	Loop Closures

	SlamDunk For Mobile Devices
	Experimental Results

	Large Scale Surface Reconstruction
	Surface Reconstruction And Submapping
	Depth Map Fusion
	Subvolume Reconstruction
	Low-drift Local Modeling
	Online Subvolume Registration
	Surface Reconstruction By Subvolume Blending

	Results

	Semantic Bundle Adjustment
	Scene Understanding And Mapping
	Joint Detection, Tracking And Mapping
	The Validation Graph
	Object Detection
	Semantic Optimization

	Semantic KinectFusion
	Results

	Conclusion
	Bibliography
	Author's Publications During The PhD Course

