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1.1.1 HISTORICAL PERSPECTIVE ON HERPESVIRUSES 

Herpes simplex virus is one of the most fascinating biological organism known to man and in 

the 25-plus centuries that have passed since investigations into HSV first began, the focus of 

inquiry has undergone drastic changes. 

Hippocrates coined the phrase “herpes” to describe lesions that appear to creep or crawl along 

the skin, but such lesions could be attributed to other kind of infection. 

Celsus was the first to describe an actual herpetic lesion, in fact he noted that they were round 

initially but then diffused like a serpent to form a belt. Then Herodotus found an association 

between cutaneous eruption and fever and his descriptions were elaborated on by Galen, who 

recognized that HSV recurrences developed at the same anatomical site. 

During the centuries, the terminology and meaning used by early investigators continued to 

change. 

In the late 19th and early 20th Centuries, transmission of infectious agents to human volunteers 

was in vogue and in the 1930s Andrews and Carmichael made the observation that recurrent 

infections occurred only in adults who carried neutralizing antibodies. 

In the following years two important articles were published: Doerr stated that HSV 

infections in man resulted from the endogenous production of a virus-like agent by the cell, 

under the influence of certain stimuli, and were not caused by exogenous infection. Secondly, 

Burnet and Williams stated that HSV infection, once contracted, seem to persist for life. 

The next step was the discovery of aetiological agents with the application of tissues culture 

and, consequently, new classification criteria were introduced. 

For mucocutaneous and visceral HSV infections, the real therapeutic advance has been the 

discovery of acyclovir by the pioneering work of Gertrude Elion. 

 
FIG 1: Acyclovir [1] 
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The golden age of HSV research was in the 1960s and 1970s with the discovery of the 

structure of the herpesvirus particle, the size and complexity of its DNA and the large number 

of its proteins thanks to new technologies.  

In the past 20 years the approach to the study of Herpesviruses changed:  there is a growing 

awareness that they have the potential to be used as an instrument against specific deseases 

[1]. 

 

 

1.1.2 TAXONOMY OF HERPESVIRIDAE 

Identification of the new and apparently related virus led to a scientific desire for 

classification, but the criteria applied were necessary confined to what is technically possible, 

and thus taxonomy has an important historical component. 

However, herpesvirus taxonomy has been addressed since 1971 by the International 

Committee on Taxonomy of Viruses: first formal names were given to viruses, secondly 

viruses were divided into subfamilies on the basis of biological criteria, then they are divided 

into genera on the basis of molecular data. In the latest report of ICTV Herpesviridae Group, 

the family Herpesviridae consists of three subfamilies: Alphaherpesvirinae (Simplexvirus, 

Varicellovirus, Mardivirus and Iltovirus genera), Betaherpesvirinae (Cytomegalovirus, 

Muromegalovirus and Roseolovirus genera) and Gammaherpesvirinae (Lymphocrytovirus 

and Rhadinovirus genera). 

Nine herpesvirus have been isolated from humans: herpes simplex virus 1 (HSV-1), herpes 

simplex virus 2 (HSV-2), human cytomegalogirus (HCMV), varicella-zoster virus (VSV), 

Epsein-Barr virus (EBV), human herpesvirus 6A and 6B (HHV-6A, HHV-6B) human 

herpesvirus 7 (HHV-7) and human herpesvirus 8 (HHV-8). 

HSV-1, HSV-2 and VZV are members of alphaherpesvirinae. They share variable host range, 

short reproductive cycle, rapid spread in tissue culture, efficient destruction of infected cells, 

and the ability to establish latent infections in sensory ganglia. 

Human members of betaherpesvirinae are HCMV, HHV-6 AND HHV-7. They are 

characterized by a limited host range, long reproductive cycle, and slow infection progression 

in tissue culture. Cells that are infected often become enlarged (cytomegalia) and the viruses 

can maintain latency in secretory glands, lynphoreticular cells kidneys and other tissues. 

The members of gammaherpesvirinae show a very narrow host range, they are usually 

specific for T or B cells and establish a latent infection in lymphoid tissues. Members of this 

subfamily are EBV and HHV-8. 
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Herpes simplex viruses were the first of the human herpesviruses to be discovered and they 

are intensively investigated because their biological properties and their ability to cause a 

variety of infection, to remain latent in their host for life and to be reactivated at or near the 

site of initial infection [2]. 

 

 
 
TAB 1: Herpesvirus taxonomy by International Committee on Taxonomy of viruses. 
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1.1.3 CLINICAL SIGNIFICANCE OF HSV 

HSV-1 and HSV-2 infections occur worldwide, have no seasonal variation and naturally only 

infect human beings: HSV must contact mucosal surfaces or abraded skin to initiate infection 

and then is transported by retrograde flow along axons that connect the point of entry into the 

body to the nuclei of sensory neurons. Viral multiplication occurs in a small number of 

sensory neurons; the viral genome then remains in a latent state for the life of the host. Many 

events cause viral reactivation, such as physical or emotional stress, fever, ultraviolet light, or 

tissue damage. 

HSV-1 is normally associated with orofacial infections and encephalitis: recurrent orolabial 

lesions are preceded by other symptoms and it may cause fever, sore throat, vescicular or 

ulcerative lesions. 

HSV-2 usually causes genital infections and can be sexually transmitted, transmitted from 

infected mother to neonates and during pregnancy. Its most severe clinical symptoms are 

encountered with primary infection, characterized by the appearance of macules and papules 

followed by vesicles, pustules, and ulcers. 

HSV can infect also eye and cause herpetic keratocojunctivitis which most often involve only 

a single eye. Repeated attacks can last for weeks or months and progressive disease can result 

in vision loss. 

Immunocompromised patients, especially organtransplant recipients, are at risk of severe 

HSV infection. These patients can develop progressive disease involving respiratory tract, 

oesophagus, or gastrointestinal tract. 

Other consequences of HSV infection are encephalitis, meningitis, myelitis, radiculitis and 

respiratory diseases [3].  
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1.2.1 ARCHITECTURE OF HERPESVIRION 

Virions of herpes virus can vary in size from 120 nm to 300 nm and consist of multiple 

stratified structures: an electron-dense core, an icosahedral capsid around the core, an 

amorphous tegument around the capsid and an outer envelope containing glycoprotein spikes. 

The core contains viral DNA with a toroidal structure that appears to be suspended by 

proteinaceous spindle to the capsid. 

The capsid is approximately 125 nm in diameter and is composed of 162 capsomers that can 

be pentons or hexons, consisting of 5 or 6 copies of the major capsid protein. 

The proteinaceous layer that surrounds the capsid is the tegument. It appears fibrous and can 

be distributed asymmetrically, in fact its thickness can vary depending on the location of the 

virion particle within the infected cell. 

The envelope, the outer covering, has a typical trilaminar structure. It appears to be made up 

of altered cellular membranes and contains viral glycoproteins that are responsible for viral 

attachment and entry to host cells [4]. 

 
FIG 2: Schematic representation of HSV-1 virion structure. 
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1.2.2 VIRUS REPLICATION CYCLE 

The main steps of herpesvirus infection are: attachment to cell surface, entry into the cell, 

replication and transcription of the viral genome, control of cell gene expression, egress and 

estabilishment of latency. I will describe in details attachment, entry and viral glycoprotein 

required for these steps in next paragraphs (1.2.7, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5) because they 

are pertinent to the background of this thesis. 

 
1.2.3  ORGANIZATION, TRANSCRIPTION AND REPLICATION OF VIRAL GENOME  

Herpesvirus genomes consist of linear, double-stranded DNA molecules that range in size 

from about 125 to 240 Kbp and in nucleotide composition from 32 to 75% G+C, depending 

on the virus species. Genomes are not simple length of unique DNA but contain direct or 

inverted repeats. The HSV-1 genome is 152 Kbp in length with a base composition of 68 % 

GC and encodes for 90 transcription units, and for 84 different gene products (fig. 3). 

 

 
 

FIG 3: Functional organization of the HSV-1 genome. From inside out, circles are: 1. Maps units and kilobase 

pairs. 2. Sequence arrangement of HSV genome. 3. The transcriptional map of the HSV-1 genome; arrows 

indicate the direction of transcription. The designation between the second and the third ring identifies known 

functions encoded by the open reading frames. The designation outside the third ring identifies the number and 

the kinetic class (α, β or γ) to which the corresponding open reading frame belogs. 
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It could be divided into six important regions: 

1- a-sequences are the end of the linear molecules and are important in both circularization of 

viral DNA, and in packaging the DNA in the virion. 

2- RL is the 9000bp long repeat which encodes both an important immediate early regulatory 

protein (α0) and the promoter of the most of the gene for the latency associated transcript 

(LAT). 

3- UL is the 108000 bp long unique sequence which encodes at least 60 distinct proteins. It 

contains genes for DNA replication enzymes and the capsid proteins, as well as many other 

proteins. 

4- RS are the 6600 bp short repeat which encode the very important an immediate early 

protein. This is a very powerful transcriptional activator. It acts along with α0 and α27 (in the 

UL) to stimulate the infected cell for all viral gene expression that leads to viral DNA 

replication. 

5- The origins of replication. The oriL is in the middle of the UL region. The oriS is in RS and 

thus is present in two copies. 

6- US is the 13000 bp short unique region which encodes 14 ORFs, a number of which are 

glycoproteins important in viral host range and response to host defence. 

By the inversion of UL and US, four different isomers are originated: P (prototype), IL 

(inversion if L component), IS (inversion of S component) or ISL (inversion of both two) (fig. 

4). These isomers are present in equimolar amount in virus stocks. 

 

 

 
FIG 4: (A) Schematic representation of  the sequence arrangement of the HSV genome. Thin line represents the 

unique sequences UL and US, while boxes represent the inverted repeats (n and m represent a variable number of 

additional sequences). (B) Hind III restriction endonuclease map of HSV-1 (F) strain and representation of the 

fourth different isomers of viral DNA generating from inversion of the unique sequences relative to each other. 
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The majority of HSV genes are not spliced, so each viral gene encodes for a single protein, 

with few exceptions. Many mRNAs initiate in the middle of an expressed ORF and encode 

only the C-terminal part of the protein. Some ORFs are antisense to other ORFs (γ34.5 and 

ORF P, UL27.5 and UL27). 

Gene products frequently have more than one function, not necessarily related one to the 

other. 

Few transcripts do not appear to encode for expressed ORFs and their function in productive 

infection is not known; an example is the latency-associated transcripts (LATs) which are 

expressed in latent infection. 

The HSV genome is transported to the nucleus of infected cells in a capsid-tegument complex 

which uses the cell’s microtubule network. After being deposited into the nucleus of the 

infected cell, HSV-1 viral genome localizes to nuclear ND10 structures where the 

transcription of viral genes takes place. The host RNA polymerase II is responsible for the 

transcription of all viral genes during infection. 

The genes of HSV-1 are divided into three classes: immediate early genes (α genes), early 

genes (β genes) and late genes (γ genes) (fig. 5). 

HSV encodes a function responsible for transactivation of α genes immediately after 

infection, and this was termed α gene transactivating factor (α-TIF). At 2 to 4 h post infection 

α genes are expressed at peak levels. There are six viral α genes: ICP0, ICP4, ICP22, ICP27, 

ICP47, and Us1.5. Five of the six α genes stimulate viral β genes expression. 

The  β genes, which are produced at peak levels between 4 and 8 h post infection, product 

proteins involved in viral DNA replication (i.e. the single strand DNA binding protein ICP8) 

nucleotide metabolism (i.e. the large subunit of ribonucleotide reductase ICP6) and stimulate 

 γ gene transcription. The β genes can be divided into two general groups:  β1 genes, which 

are expressed shortly after the synthesis of α proteins; and β2 genes, which are expressed with 

more of delay after α genes expression. 

 γ gene products, which are produced at peak levels only after viral DNA replication, include 

structural proteins of mature virions and tegument components required to prepare newly 

infected cells for an efficient infection. The γ genes have been subdivided into two groups 

based on timing expression and their dependence on viral DNA replication: γ1 genes, which 

are expressed relatively early in infection and γ2 genes, which do not accumulate in 

appreciable amounts until after DNA replication and are not expressed in the presence of 

inhibitors of viral DNA synthesis [5] 
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FIG 5: Schematic representation of the regulation of HSV gene expression. Grey arrows: events that turn gene 

expression “on”; black arrows: events that turn gene expression off. (1) α gene expression is stimulated by αTIF, 

a γ protein packaged in the virion. (2) α protein turn off transcription of α gene. (3) α proteins stimulate 

transcription of β gene. (4) α and β proteins transactivate γ genes. (5) Late infection, γ proteins turn off α and β 

gene expression.  

 

 

 The basic model for the replication of HSV DNA proceeds as follows. First parental viral 

DNA is circularized upon entering the nucleus of infected cell. After α and β gene expression, 

UL9 binds to specific elements in either oriL or oriS and begins to unwind the viral DNA. 

UL9 then recruits the ssDNA binding protein ICP8 to unwound portion of viral DNA. At this 

point, UL9 and ICP8 recruit the remaining five proteins to replication forks. The helicase-

primase and viral DNA polymerase complexes assemble at each replication fork and initiate 

theta form replication. Through an unknown mechanism, replication switches from theta form 

to the rolling circle form for replication and UL9 is not required. The rolling circle replication 

forms long head-tail concatamers of viral DNA, which become cleaved into individual units 

during packaging of viral DNA into capsid (fig. 6)[6].  
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FIG 6: The steps of viral DNA replication in which many proteins take part: DNA polymerase (UL30), DNA 

binding proteins (UL42 and UL29 or ICP8), ORI binding protein (UL9), and the helicase/primase complex (UL5, 

8 and 52). 
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1.2.4 ASSEMBLY AND EGRESS 

After DNA replication has started, the γ genes are transcribed, including those encoding HSV-

1 capsid protein, then mature capsid is able to proceed along the viral egress pathway. It 

acquires a primary envelope by budding through the inner nuclear membrane into the 

perinuclear space. [7]. Two pathways of virus exit are proposed:  

-the single envelopment model: virions leave the perinuclear space by becoming encased in 

vesicles-vacuoles formed by the outer nuclear membrane (fig. 7) [8] 

- the de-envelopment-re-envelopment pathway: the envelope of virus present in the 

perinuclear space fuses with the outer nuclear membrane (de-envelopment), thus releasing the 

nucleocapsid into the cytoplasm. The de-envelopment nucleocapsids acquire a tegument in 

the cytoplasm and undergo a secondary envelopment (re-envelopment) by nucleocapsid 

budding into a trans-Golgi compartment, or trans-Golgi network, or into an endosomal 

compartment (fig. 7) [9,10]. 
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FIG 7: Schematic drawing showing the two alternative pathways of alphaherpesvirus egress from infected cells. 

The single envelopment pathway is despicted to the left, and the double envelopment, or de-envelopment-re-

envelopment is despicted to the right of the illustration.  
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1.2.5 LATENCY 

HSV-1 has developed a particularly successful form of accommodation with the host. After 

the initial infection in epithelial cells, the virus enters neuronal cell axons and migrates to the 

ganglia where it estabilishes a latent infection. (fig .8) 

 

 

 
FIG 8: HSV establishment of latency. In productive infection, HSV enters at mucosal surfaces, replicates in 

epithelial cells at the site of entry and spreads through the tissue. Virus enters nerve endings of sensory neurons 

and is transported to neuron cell body in the ganglion where virus can either replicate productively or establish a 

latent infection: viral DNA circularizes into neuronal cell nucleus and latency-associated transcripts are 

expressed (LATs genes). Upon a variety of stimuli, the virus reactivates: viral DNA replicates, viral proteins are 

made, capsids are assembled and transported in anterograde direction to mucosal surfaces where virions are 

released and cause recurrent lesions. 

 

Latency is characterized by lack of expression of all of the viral gene products that are 

required for productive, lytic infection. Instead, the virus resides in a quiescent state, 

producing only a family of latency-associated transcripts (LATs) that are retained in the 

nucleus and not polyadenylated. The LAT gene is located within the inverted repeat sequence 

that brackets the unique long segment, therefore, there are two copies of LAT gene in each 

HSV-1 genome. This gene encodes an 8.5 Kb transcript that is present at low abundance 

(minor LAT). Splicing of this trancript produces a series of highly stable introns (major 

LATs) that accumulate at high levels within the nuclei of lantently infected neurons. [41] 
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No protein product has been attributed to the LAT gene and the machanism by which LAT 

protects cells from apoptosis is not yet perfectly known. 

Recently, it has been shown [59] that a microRNA (miRNA) encoded by the HSV-1 LAT 

gene confers resistence to apoptosis. In fact Gupta et al. [59] proved that miR-LAT exerts its 

anti-apoptotic effect by downregulation of  trasforming growth factor (TGF)-β1 and SMAD3 

expression, both of which are functionally linked in the TGF-β pathway. 

This suggests that the miRNA encoded by the HSV-1 LAT gene regulates the inactivation of 

apoptosis in infected cells by modulation of TGF-β signalling and thus contributes to the 

persistence of HSV in a latent form in sensory neurons. 

Periodically, HSV reactivates and causes episodes of lytic infection. The molecular basis of 

reactivation is not completely understood. External or endogenous stimuli, such as UV-light, 

stress and fever, have been known for dacades to induce HSV reactivation. 
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1.2.6 ALTERATION IN INFECTED CELL 

HSV infection dramatically modifies the infected cell: the nucleolus becomes enlarged, 

disaggregates or fragments, host cromosomes become marginated, the nucleus becomes 

distorted and multilobed. There are also changes in intracellular membranes, fragmentation of 

Golgi vesicles, insertion of viral protein into cellular membranes, rearrangement of 

microtubular network and the formation of intranuclear inclusion bodies, globular nuclear 

structures where viral DNA replication proteins accumulate. 

Furthermore, there is evidence that HSV uses multivesicular bodies (MVBs) as platforms for 

its envelopment/egress, thus cellular distribution and components of these structures change 

during HSV infection: it has been proved that modified MVBs membranes constitute a 

platform for HSV cytoplasmic envelopment, and that MVBs components are recruited to the 

site(s) of envelopment [61]. In uninfected cells, in fact, MVBs are dispersed throughout the 

cytoplasm, by contrast, in infected cells 1 (12 h and 24 h post infection) they are concentrated 

in a perinuclear region, and appear to be overall increased, possibly reflecting an augmentation 

of the compartment itself. These morphological changes are consistent with an involvement of 

the MVBs pathway in HSV replication [61]. 

Host macromolecular metabolism is altered in infected cells in at least four different ways: 

mRNA present in infected cells at the time of infection is degradated, host cell transcription 

appears to be turned off, cellular proteins are selectively degraded or stabilized and cellular 

proteins are redirected to perform novel tasks [4]. 

Moreover, HSV encodes other functions that block host defense against infection: inhibition of 

apoptosis, inhibition of MHC class I peptide presentation on infected cells and blocking 

maturation of , and antigen presentation by dentritic cells [41]. 
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1.2.7 VIRUS ATTACHMENT AND ENTRY 

Enveloped viruses enter cells by fusion with plasma or endocytic membranes: fusion at the 

plasma membrane is known to occur in Vero cells in a pH indipendent fashion [12]. In most 

cell types virion entry is by endocytosis, but this is also variable: in some cells fusion with 

endosomal membrane requires a low pH environment in other cases it does not require acid 

pH. 

The entry process consists of three basic steps: recognition of cellular receptors by a viral 

glycoprotein, triggering of fusion and fusion execution. [13] These steps are carried out by 

virion glycoproteins, in concert with their cognate receptors, as only proteins have sufficient 

complexity and information content to organize and regulate membranes. 

HSV, the paradigm of herpesviruses with respect to virus entry into the cell, encodes 11-12 

glycoproteins and a number of additional membrane proteins.  

The current model of HSV entry envisions that, first, the virus attaches to cell membranes by 

interaction of gC and possibly gB to glycosaminoglycans (GAGs) that decorate heparan 

sulphate (HS) [14] Although binding lacks specificity and is not absolutely required, likely 

creates multiple points of adhesion, is reversible, and the detached virus maintains its 

infectivity, indicating that fusion has yet to take place. 

This step is followed by gD binding to one of three alternative entry receptors; nectin 1, 

herpes virus entry mediator (HVEM, also named HveA for herpes simplex mediator A) and 

specific o-sulphates (3O-S) moieties in HS. The different use of these receptors is important, 

and may help to account foe entry of HSV into such wide range of different cell types. 

After binding of gD to a HSV-1 virus entry receptor, the last step in virus entry is fusion of 

virion envelope with the plasma membrana of target cell. gB, gH, gL  appear to be the 

executors of fusion and constitute the conserved fusion machinery across the herpesvirus 

family. Critical properties of gH and gB have been elucidated recently, and provide an 

intriguing scenario. On one hand, molecular and biochemical analysis of gH highlighted 

properties of class 1 fusion proteins, but its structure has not been solved. On the other hand, 

the crystal structure of gB has yet solved, it exhibits a remarkable similarity to that of vesicula 

stomatitis G protein, and to viral fusion glycoprotein in general. [15]. How the two 

glycoproteins cooperate to execute fusion, and why two, and not one fusion executors are 

required in herpesvirus family is unclear. It is worthwhile to note that entry by fusion at 

plasma membrane, and entry by fusion in endocytic vesicle required all four glycoproteins 

(gD, gB, gH and gL). [16,17]. These requirements rule out the possibility that gB serves as 
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fusion executor in one cell compartment, and gH-gL serves as fusion executor in another cell 

compartment. 

 

 

 
FIG 9: Attachment and entry of herpes simplex virus into cells. The first step is virion attachment to 

glycosaminoglycans of cell surface (heparin sulphate). The second step involves the interaction of glycoprotein 

D to one of the number receptors. This, with the participation of the other glycoprotein gB and gH/gL, leads to 

fusion of the viral envelope with the plasma membrane or endocytic compartments (in HeLa and CHO cells), 

followed by uncoating of virions, transport of capsid to the nuclear pores and release of viral DNA into nucleous. 

 

 

 

 

 

 

 

 

 

 21



Chapter I: introduction 
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1.3.1 GLYCOPROTEIN C 

Glycoprotein C is the major actor during attachment and is a non essential glycoprotein 

encoded by the UL44 gene (1536 bp). 

gC contains a 25 aa signal sequence at the N-terminus, a long 453 aa extracellular domain, a 

23 aa transmembrane anchoring domain, and a short 10 aa C-terminal cytoplasmatic tail 

(Homa et al 1986). Its ectodomain structure is provided in part by cysteines, and harbors two 

physically separate antigenic regions, antigenic I and II, which map at the C- and N-termini of 

the molecule respectively. It is a mucin-type glycoprotein because of its high content in N-

linked and O-linked oligosaccharides [18].  

gC can mediate the initial binding of HSV-1 to cell surface GAG, Heparan sulphate (HS). The 

heparan sulphate binding site of gC has been localized to the N-terminal 120 aa. [19]. The 

main function of gC binding to GAG seems to be concentration of the virus on cell surface, 

enabling the more stable interaction of gD with an entry receptor. 

Another function of gC is its ability to inactivate complement to facilitate immune evasion of 

HSV-1, in fact it is able to bind C3b [20]. 
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1.3.2 GLYCOPROTEIN D 

HSV-1 glycoprotein D is a type I membrane glycoprotein consisting of 369 aa, after cleavage 

of the signal sequence (25 aa), with an N-terminal ectodomain of 316 aa and three N-linked 

oligosaccharide attachment sites. 

The protein has six cysteines that form three disulfide bonds (Cys66-Cys189, Cys106-

Cys202, Cys118-Cys127). 

The most N-terminal portion of  the glycoprotein is unstructured in gD alone and forms an 

harpin in the HVEM-bound gD. It packs against the core of the molecule, to which it is 

connected through a short flexible proline rich region, spanning aa 45-54. The core consists of 

two prominent structures, an Immunoglobulin Variable (IgV)  folded region (residues 56-

184), and a 17 long helix (a-helix3) that ends at aa 240 and packs between the IgV and the 

most N-terminal portion. 

Downstream of a-helix3 is a long flexible proline rich region, spanning aa 244-312. The C-

terminus of gD ectodomain, past residue 260, does not participate in direct interaction with 

receptors, but biochemical and structural studies concordantly indicate that prominent 

properties of the ectodomain C-terminal region in the unliganded gD are the ability to be 

displaced from its binding site when gD interacts with HVEM and possibly with nectin1.  

Moreover the C-terminal membrane region (aa 250/260-310) carries a domain required for the 

triggering of fusion, named the pro-fusion domain (PFD) [21].  

The mutagenesis of gD at the C-terminus has shown that residue 294 (Trp294) is the 

necessary anchor in bringing the C-terminus in close proximity to the N-terminus, hence 

interfering with receptor binding. 

Altogether, it has been proposed that gD exhibits conformational flexibility and the C-

terminal region may be in an equilibrium between a transiently bound and a partially 

displaced state, that would permit the binding of the receptor. Receptor binding may well 

change this equilibrium and stabilize or induce the opened gD conformation. 

At the structural level, much more is known of the interaction of gD with HVEM than with 

nectin1 and it has been shown that a number of mutations that hamper the interaction with 

HVEM also hamper the interaction with 3-O-S HS, suggesting that the binding surfaces for 

the two receptors overlap, at least in part. In contrast, the binding surfaces to HVEM and 

nectin1 do not exhibit significant overlap. Thus, deletion of the first 32 aa of gD and a number 

of mutations (aa 25, aa 27…) abrogate the interaction with HVEM, but not with nectin1, 

indicating that the binding sites of the two receptors on gD are partially non overlapping and 

independent one of the other, and that the primary interface with nectin1 is downstream of 
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residue 32. Critical aa residues for nectin1 binding include V34, Y38 and the cluster D215, 

R222, F223, all of which occupy a same surface of the molecule. The surface appears to be 

partially occluded by the N-terminal hairpin, in the HVEM bound gD. The gD surfaces 

binding to HVEM and nectin1 can not be ascribed to physically separated segment; 

cumulatively they map to aa 1-250/260. 
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and HVEM is green). [22] 
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1.3.3 HSV-1 RECEPTORS 

n D to an entry receptor sets in motion an irreversible chain of 

IG 11: The three classes of cell surface receptors for HSV entry are: the tumour necrosis factor (TNF) receptor 

Binding of HSV glycoprotei

events leading to the fusion of the virion envelope with the plasma membrane of the target 

cell. The three natural gD receptors belong to structurally unrelated molecular families 

(fig.11). 

 

 

 

 

 

 
F

family consisting of HVEM, the immunoglobulin superfamily consisting of the nectins, the 3-O-sulfated heparin 

sulphate. Only viral attachment can occur in the absence of HSV entry receptor. 
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HVEM 

erpes Virus Entry Mediator A (HveA) was first identified as a HSV receptor and 

 second group of TNF receptors, in fact it lacks a death domain and 

 be expressed mainly in cell of the immune system, and in a number of 

ite on HVEM involves CRD1 and CRD2, with the majority of contact lying 

 

IG 12: Diagram of HVEM: the HVEM aminoacid comprising each of the four cysteine-rich domain (CRD) are 

HVEM/H

was classified as a novel member of the TNFR family based on structural motifs. This family 

includes signal transduction molecules involved in regulation of cell proliferation, 

differentiation and apoptotic death. Structurally their ectodomain is composed of four typical 

cystein-rich domains. 

HVEM belongs to the

instead its cytoplasmatic tail interacts with several members of the TRAF family, leading to 

the activation of target like NF-kB, Jun N-terminal Kinase, and AP-1, and the consequent 

induction of T cell activation, proliferation, cytokine release, and expression of cell surface 

activation markers. 

HVEM was found to

non-hematopoietic tissues and organs. Expression was not observed in brain or skeletal 

muscle. [23,24]. 

The gD contact s

in CRD1. Residues 35-37 form the intermolecular antiparallel β-sheet [25]. 
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labelled. The position of N-glycosilation sites (lollipops) and the transmembrane regions (TM) are indicated.  
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NECTINS 

 another family of HSV entry receptors, belong to immunoglobulin superfamily 

in 

diated signalling activity leads to activation of a variety of extracellular and 

ally with gD [27]. The interaction requires the first 250 residues of gD 

 Mediator C) and Nectin1β (Herpesvirus Immunoglobulin-like 

e 

or B, HveB and nectin2δ) mediate the entry 

Nectins are

and include several isoforms present in both human and nonhuman cells. Nectins form homo 

cis-dimers on the plasma membranes and trans-dimers with nectins present on adjacent cell. 

Their main attribute is the formation, together with cadherins, of the adherens junction of 

epithelial cells, and in cooperation or not with cadherins the organization of claudin-based 

tight junctions. They are involved in the formation of synapses in neurons and the 

organization of heterotypic junctions between Sertoli cells and spermatids in the testis [26]. 

Most nectins carry a C-terminal conserved motif that binds afadin; this domain is absent 

nectin1b. 

Nectin-me

intracellular molecules, such as scatter factor/hepatocyte growth factor, Ras, Cdc42 and Rac 

small G proteins [26]. 

Nectin1 interacts physic

and the V domain of nectin1. 

Nectin1α (Herpes Virus Entry

receptor, (HIgR) are two mRNA spicing variants containing the same ectodomain. They are 

expressed on epithelial, fibroblastic, neural and hematopoietic cells, in kerationocyte, and in 

human tissues that are target of HSV infection including skin, brain, and spinal ganglia [28]. 

Nectin1γ is a natural soluble form which has a narrow distribution in human tissues. It has th

capacity to bind to virions and block infectivity.  

Nectin2 (nectin2α or Herpes Virus Entry Mediat

of HSV-2, PrV and certain viable mutants of HSV-1 but not wild type HSV-1 [29]. 
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MODIFIED HEPARAN SULFATE 

y D-glucosaminyl 3-O- sulfotransferase creates 3-O-

5 

pe II glycoprotein, designed B5 was identified by its ability to render otherwise resistant 

Modification of heparan sulphate b

sulfated Heparan Sulfate (3-OS HS), generating a gD binding site that allows heparan 

sulphate proteoglycans to function as entry receptor for HSV-1. 3-O-sulfated Heparan 

Sulfates are broadly distributed on human cells and tissues and mediate HSV-1 but not HSV-2 

entry [30]. 

 

 

 

 

 

B

A ty

cells more susceptible to HSV entry [31]. The same cells were rescued by HVEM, and it was 

thus proposed that B5 serves as HSV receptor. However, the ability to bind virions or a 

specific glycoprotein was not documented. As of now, it remains to be determined whether 

B5 exhibits properties of a HSV receptor. 
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1.

Th

3.4 GLYCOPROTEIN B 

codes the 904 aa glycoprotein B (gB), which is a type I virion 

eric spike, each of the three promoters appear to be composed of five distinct 

 
FIG 13: (A ntative neutralizing 

Abs. The epitopes of SS10 and SS67 (amino acids 640 to 670) include β−strands 33 to 35 from domain IV 

e HSV-1 UL27 gene en

glycoprotein, high conserved across all subfamilies of herpesvirus: its crystal structure, a 

trimer with a coiled coil core, resemble closely that of vescicular stomatis virus G protein [32, 

33]. 

gB is a trim

domains (named I-V), displaing multiple contact sites (fig. 13). Domain I, the “base”, is a 

continous chain with a fold typical of pleckstrin homology domains. Domain II, the “middle”, 

is made of two discontinuous segments, forming a structure reminiscent of a plekstrin 

homology superfold. Domain III, the “core”, comprises three discontinuous segments: its 

prominent feature is a 44-residue α-helix that forms the central coiled coil with its trimeric 

counterpart. Domain IV, the “crow”, adopts a novel structure, and is fully exposed on top of 

trimeric spike. Domain V, “the arm”, is a long extension spanning the full length of the 

promoter [32]. 

A B 

) Ribbon diagram of a gB protomer showing in color the epitopes of represe

M

(orange) and β-strand 36 from domain III (yellow). The H1838 (blue) and H1781 (magenta) epitopes (residues 

391 to 410 and residues 454 to 473, respectively) are linear stretches within domain II. Part of the H1781 epitope 

is not visible since it is located in a disordered portion of gB (residues 459 to 473). The C226 epitope includes 

Asp419 located in α-helix B (green) also of domain II. The conformational epitope for SS55 includes 
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unidentified amino acids within domain I (cyan). Finally, the epitope of MAb SS106 (amino acids 697 to 725) is 

located at the C terminus of domain V (red). Disulfide bonds are shown in ball-and-stick representation. (B) 

Ribbon diagram of a gB trimer. Color code is as in panel A. 

 

Beyond its role in the attachment, where it interacts with GAGs that decorate heparan 

lphate (HS) using a polylysine motif between aa 68 and 76, gB plays two opposite roles in 

logous to the fusion loops of VSV G protein. The results of a stucture-based 

 

 

 

su

fusion, its ectodomain participates in fusion execution, and its cytoplasmatic tail exerts anti-

fusion activity.  

In a recent study [60], it has been identified two loops in gB, aa 173 to 179 and 258 to 265, 

structurally homo

mutagenesis show that three of the five tested residues, W174, Y179, A261, are essential for 

gB’s function in cell-cell fusion. So they proposed that gB has internal fusion loops, 

functionally homologous to those of VSV G class II fusion proteins, that are an important 

functional domain and possibly interact with the target cellular membrane. 
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1.3.5 GLYCOPROTEINS H AND L 

he 2517 bp UL22 gene encodes the 838 aa glycoprotein H (gH), a type I membrane 

nal peptide, a long 785 aa ectodomain, a single 21 aa 

x able to penetrate the membrane of target cell; it may be located either at 

 residues 443-471 and 556-585, have been identified as heptad repeats (HR-

core to form a coiled coil. A double amino acid substitution which abrogated the 

C synthetic 

T

glycoprotein containing an 18 aa sig

transmembrane hydrophobic domain close to the C-terminus, and a 14 aa C-terminal 

cytoplasmatic tail. 

In its organization gH resembles viral fusion glycoproteins: in general, the fusion peptide is a 

hydrophobic α-heli

the N-terminus or in a fusion loop contained in the ectodomain, depending on whether the 

fusion glycoprotein undergoes a maturational cleavage, or not. The fusion glycoprotein form a 

bridge between the virion envelope and the cell membrane, an event that initiates pore 

formation and fusion of the viral and cellular membranes. The ectodomain of gH contains a 

possible α-helix at residues 377-397 (α-H1) with the characteristic of an internal fusion 

peptide.  The partial or entire removal of the α-helix, or mutagenesis of critical residues 

abrogate HSV infectivity and cell fusion activity. Its replacement with well characterized 

fusion peptide from human immunodeficiency virus (HIV) gp42 or from vescicula stomatitis 

virus (VSV) glycoprotein (G), but not with their antisense sequences, rescued the infectivity 

and the fusion activity of the deleted form of gH [34]. gH has an other α-helix at residues  

513-531 (α-H2). 

Recently in our laboratory two regions downstream of the predicted fusion peptide α-H1, 

localized between

N and HR-C): they could potentially interact and adopt a coiled coil conformation. The 

formation of coiled coil bundles is a key conformational change in the transition of a fusion 

glycoprotein from the fusion-inactive to the fusion-active state, and contributes to bring the 

viral and the cellular membranes in close juxtaposition, so to initiate the fusion pore 

formation.  

The N-terminal heptad repeat was particurly interesting (HR-N), as it exhibited a high 

probability s

predicted capacity to form the coiled coil also abrogated infectivity and cell-cell fusion 

activity, indicating that the predicted coiled coil motif is critical in HSV gH [35].  

Concerning the ability of HR-N and HR-C peptides to interact with each other, three lines of 

evidence support this conclusion. First, a complex between HR-N and HR-

peptides was revealed in nondenaturing PAGE. Second, the mixture of HR-N and HR-C 

peptides exhibited an α-helical content higher than that of the two single peptides. Third, a 

mixture of HR-N and HR-C mimetic peptides reversed the inhibition of infection exerted by 
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the single peptides. These results clearly show that HR-N and HR-C peptides interact with 

each other. Interestingly, complex formation is an intrinsic property of the HR-N and HR-C 

peptides, independent of the presence of adjacent gH sequences and of the additional viral 

glycoproteins required for fusion [56]. 

In addiction, synthetic peptides mimicking α-H1 and α-H2 interact with nude lipid vesicles in 

the absence of adjacent gH sequences and in the absence of membrane proteins in the 

wever, 

f fusion peptides. Collectively, the results reported 

 processing and gH trafficking to viral envelope. 

e protein and its 

vesicles. They induce fusion of the lipid vesicles, and, more importantly, increase virus 

infection and cell-cell fusion. Taken together, these effects suggest that the interaction of α-

H1 and α-H2 with the lipids possibly leads to lipid destabilization in the membranes and thus 

increases fusion and virus entry. The lipid destabilization may be critical for inducing the 

curvature of the membrane at the site of fusion and/or for decreasing the energy barrier. 

Interaction of gH with lipids may be critical also in guiding the glycoprotein refolding. 

The synthetic peptides mimicking α-H1 and α-H2 differ from peptides mimicking HR-C. All 

induce fusion of the lipid vesicles, denoting a certain ability to interact with lipids. Ho

the first two enhance infection and fusion, whereas the latter inhibits these activities. It is well 

known that HR-C mimetic peptides block virus infection by forming a complex with the HR-

N located in the glycoprotein and thus hinder the glycoprotein refolding. Therefore, the 

different behavior of the two groups of mimetic peptides reflects the different molecules they 

target: i.e., the membrane lipids in the case of α-H1 and α-H2 mimetic peptides and gH itself 

in the case of the HR-C mimetic peptide. 

 α-H2 and α-H1 differ in a number of important properties that reinforce the view that α-H1, 

but not α-H2, exhibits properties typical o

here and elsewhere highlight gH as a structurally complex glycoprotein. It carries sequences 

able to interact with lipids, namely α-H1, with properties of a candidate fusion peptide, in 

addition to α-H2 and the pretransmembrane sequence with a tendency to partition at the 

membrane interface. It also carries two functional HRs. These elements are typical of class I 

fusion glycoproteins [54]. 

 Of note, gH’s function is dependent on forming an heterodimer complex with gL, which acts 

as gH chaperone for proper

The 675 bp UL1 gene encode the 224 aa glycoprotein L (gL) which contains a 25 aa signal 

peptide but not a transmembrane domain. It is not an integral membran

presence in the virion envelope is ensured by complex formation with gH. In absence of gH, 

gL is secreted from cells [36]: the first 323 aa of gH and the first 161 aa of gL can form a 

stable secreted hetero-oligomer. The exact role of gL in fusion remains to be elucidated: HSV 
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virions lacking gL also lack gH, and although they bind to cell surface, they do not penetrate 

cellular membranes [37, 38]. 
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Chapter I: introduction 
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1.4.1 ONCOLYTIC HSV 

s HSV-1 an attractive vector for cancer gene therapy: its ability to 

r 

ins residual replication, and toxicity in normal 

A number of features make

infect a wide range of host cells, to trasduce nondividing as well as dividing cells and express 

transgene products with excellent efficiency. Moreover, as much as 30 Kbp of its genome can 

be deleted and replaced by transgenes in replication defectives HSV-1 mutants, allowing for 

simultaneous delivery of multiple transgenes and use of heterologous promoters. Furthermore, 

HSV-1 genome does not integrate into the cellular genome, eliminating the concern of 

insertional mutagenesis; lastly, recombinant HSV-1 can be readily constructed, and purified. 

There are two types of HSV-1 vectors, both have been used in clinical studies for cance

treatment: Replication defective vector, in which transgene expression cassettes are inserted in 

a viral genome with one or a few essential viral gene deleted. This viral gene therapy (fig. 

14B) utilizes the virus as a means for bringing the gene of interest into the tumour cells where 

it is transcribed and translated into proteins. These proteins directly or indirectly interfere with 

tumour cell replication and survival. The second types of vectors are Conditionally replicating 

vectors, in which deletion of some nonessential viral genes results in a virus that prefentially 

infects, replicates in and lyses tumour cells. This oncolytic viral therapy (fig. 14A) is based on 

many strategies which could be grouped into three general approaches. The first approach is 

to delete gene functions that are critical for efficient viral replication in normal cells but are 

dispensable in tumour cells. Because HSV-1 
carrying deletion of a single gene often reta

cells, additional deletions or alterations have to be made to further increase the safety profile 

of the vectors as well as to decrease the likelihood of reversion to wild type.  The second 

approach is to limit the expression of a critical viral gene to tumour tissues through the use of 

tumour and /or tissue-specific promoters. The last approach is to alter viral tropism through 

modification of surface proteins (vector re-targeting) [41]. 
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FIG 14: The two predominant therapeutic approaches to the treatment of malignant glioma: oncolytic viral 

ecause infection and lysis of 100% of tumour cells is hard to achieve in vivo using oncolytic 

y 

plored primarily for diseases of central and 

therapy (A) and viral gene therapy (B).  

 

B

viruses alone, they are often “armed” with genes that can augment their cytolytic capacities. 

However, combination of oncolytic HSV strains with chemotherapy or radiotherapy generall

displays enhancement in antitumour activity [41]. For example there were preclinical data 

which demonstrate  that a single fraction of radiation, when administred approximately 24 h 

after G207 (a double HSV-1 mutant which produce antiglioma effects in multiple preclinical 

models (tab. 2), increases the replication and spread of viral infection within brain tumour as 

well as many other neoplasm [57]. 

 Use of HSV as an oncolytic virus has been ex

peripheral nervous system, due to its ability to both infect a variety of neurons and persist in 

latent state. Moreover the unequivocal lack of therapeutic success and associated grim 

prognosis has encouraged exploration of a variety of novel molecular therapies for the 

treatment of brain tumours, like malignant glioma.  Genetically engineered HSVs studied for 

glioma therapy have included mutations in one or more of the viral genes thymidine kinase, 

DNA polymerase, uracil DNA glycosilase, ribonucleotide reductase, and γ134.5. These 

mutations all act to decrease the toxicity of HSV infection on the normal central nervous 

system. They are all enzymes necessary for successful nucleotide synthesis and replication. 

As a rule, non dividing cells, such as the postmitotic neurons of the adult CNS, do not support 
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the replication of viruses containing these mutations. Replicating cells, however, can supply 

cellular homologues to this enzyme in trans and allow viral replication to take place. Thus, 

these viruses can replicate only in dividing tumour cells [42]. 

To increase the antiglioma effects of genetically engineered HSV, a foreign gene (e.g. 

enetically engineered oncolytic HSV-1 was originally developed for 

c HSV, NV1020 (tab. 2) has been studied in patients with colorectal 

monstrated 

 necessary, in fact efficient 

cytochine or interleukin genes) can be engineered into HSV in order to enhance the killing of 

the tumour cells. [43]. 

While the concept of g

the treatment of malignant glioma and other CNS tumours, it was soon explored in preclinical 

models of other difficult to treat tumour, that developed outside the CNS, including 

neurofibrosarcomas, melanoma, and non-small cell lung carcinoma, as well as cancer of the 

breast, liver, pancreas, ovary, head and neck, prostate. For example, to explore the possible 

use of HSV in the treatment of metastatic melanoma, five patients with stage 4 melanoma 

underwent inoculation of HSV1716 (tab. 2) into subcutaneous melanoma nodules. Flattering 

of injected nodules was seen in patient receving a single injection, while tumour necrosis was 

seen in patient receiving multiple injections; no necrosis was seen in control nodules treated 

with saline. [57] 

Another oncolyti

metastases to the liver and a phase I/II trial is under way which, aimed at examining safety 

and tolerability of NV1020, as well as possible synergies with chemotherapy. [57] 

 Although extensive studies using HSV-1 vectors for cancer treatment have de

remarkable safety and encouraging antitumour efficacy data, there are also several limitations. 

For example, multigene deleted HSV-1 vectors are in general more difficult to produce and 

less stable in aqueous solution or in lyophilized form than wild type virus. Another problem is 

caused by the induction of antiviral or antitransgene product immune response which may 

reduce the effectiveness of HSV-1-derived vectors, especially when multiple injections of the 

vectors are necessary. Moreover, the impact of pre-existing immunity on HSV-1 cancer 

therapy still needs to be carefully evaluated by further studies. 

Extensive studies on the safety of HSV-1 vector are also

replication of HSV-1 in a wide spectrum of human cells raises the possibility of serious 

damage to untargeted normal tissues. Another significant risk lies with the possibility of 

recombination: homologous recombination occurs when a replication defective or 

conditionally replicating HSV-1 vector infects a cell which already harbours a wild type latent 

virus. Homologous recombination between the incoming vector and the resident wild type 

 38



virus might occur and could result in the generation of a fully virulent virus that carries e 

biological active gene. 

HSV-gene therapy heralds a new era of HSV biology and the conversion of hazardous foe 

into a user-friendly surgical tool. 

 

 

 

VIRUS Tumour-selective 

virus-derivative 

Engineered mutation(s) 

to target tumours 

Clinical trials Tumour 

target 

Herpes 

simplex 

virus-1 

G207 1.Deletion of both γ134.5 

copies. 

2.LaZ insertion in UL39 

(ICP6 inactivation 

Phase I, IB 

completed 

Phase I XRT trial 

approved 

Glioma 

 HSV1716 1.Deletion of both g134.5 

copies. 

3 Phase I studies, 

pilot completed 

Glioma, 

melanoma 

 NV1020 1.Deletion, 15kbp region 

(UL56 gene to internal 

ILR) 

2.Insertion of HSV-2gG, 

gD, gI, partial gE 

3.Insertion of HSV-1 tk 

under alpha-4 

4.700 kbp deletion of 

UL23-UL24 

PhaseI completed 

PhaseI/II 

underway 

Colorectal 

metastases 

 

 

TAB 2: HSV for oncolytic viral treatment of tumours. 
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1.4.2 RE-TARGETING OF HSV-1 

One way to use genetically engineered HSV-1 as oncolytic agents to treat malignant glioma is 

to modify the surface of the virus particles so as to target the virus to specific receptor present 

solely or predominantly on the surface of the tumour cell.  

G. Zhou et al [52] engineered a recombinant HSV-1 (R5111) re-targeted to IL13Rα2 receptor 

present in malignant glioma cells. Unlike the more prevalent IL13αR1 receptor, IL13Rα2 

receptor has a shorter cytoplasmic domain, it is monomeric, does not interact with IL-4, of 

which IL-13 is a close relative, and in nature it is present in high grade malignant gliomas or 

astrocytomas but also in human testes. First of all they mutagenize gB and gC to preclude 

their interaction with heparan sulfate and then they inserted IL-13 into gD at amino acid 24 to 

distrupt the binding site of HVEM. So they reported that IL-13 gD chimeric virus can use 

IL13Rα2  for entry into cells carrying only that receptor and its entry does not depend on 

endocytosis as its primary mechanism of entry into cells. Moreover, before using this 

recombinant virus in cancer therapy, the ability of gD to interact with nectin has been ablated 

without affecting the fusogenic and antiapoptotic function of gD with the mutation V34S. 

Furthermore this retargeted HSV could be used for both oncolytic activity and visualization of 

tumour cells. 

The same group [53] targeted HSV-1 to malignant glioma cells by inserting into gD, between 

amino acid 24 and 25, an uPA peptide of 135 residues for the human uPAR reported to be 

highly expressed in malignant gliomas. uPAR is a 335 residue protein attached to cell surface 

via a glycosylphosphatidylinositol anchor. It lacks transmembrane and cytosolic domains. 

uPAR binds and localizes the urokinase plasmilogen activation (uPA) at the cell surface. 

Increased uPA activity has been reported in malignant astrocytomas in vitro and in malignant 

brain tumour in vivo. In malignant brain tumours uPA activity was correlated with poor 

prognosis. Increased cell surface UPA activity facilitates cellular movement via extracellular 

matrix (ECM) degradation, which is necessary for tumour cell invasion, chemotaxis, and 

cellular adhesion. 

In a next work [55], in order to enhance the yield of a virus designed to target uPAR, they 

obtained an infectious virus with two frameshifts, one after codon 60 and the second after 

codon 201 of gD. The frameshifts replaced codons 61–201 with a sequence that contained 

four stop codons. The salient feature of the recombinant virus that emerged from these studies 

is that gD consisting of polypeptide A containing the N-terminal domain of uPA fused to 

residues 33–60 of gD and polypeptide B containing the C-terminal domain of gD was 

infectious. Attempts to construct recombinant viruses in which the A polypeptides consisted 
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solely of gD residues 1–60 or of the 132 residues encoding IL-13 fused to gD residues 33–60 

yielded viruses that were not infectious. The significance of these findings stems from three 

conclusions: 

(i) Residues 61–218, which cincide almost entirely with the Ig-like core of gD (located 

between residues 56 and 184) do not execute a function required for HSV-1 entry into cells, 

but they appear to serve as linkers between the N-terminal domain and the C-terminal 

profusion domains of gD.  

 (ii) The fundamental difference between the constructs that yielded an infectious virus and 

those that failed is that polypeptide A consisting of uPA33–60 interacted with the C-terminal 

domain of gD, whereas those containing gD1–60 or IL-13– gD33–60 did not. Although it may be 

tempting to suggest that the N-terminal domain of uPA conferred a conformation to gD33–60 

that enabled it to interact with the C-terminal domain of gD, the evidence supports the 

conclusion that uPA itself can interact with gD219–314. The results support the conclusion that 

physical interaction of the domain capable of binding a cell surface receptor with the C-

terminal domain of gD may lead to successful virus entry into cells, whereas lack of physical 

interaction results in failure.  

(iii) It is unlikely that each of the three ligands (HVEM, uPA, and IL-13) selected by chance 

alters the conformation of the remaining portions of gD in an identical manner to enable virus 

entry.  

 The fact that the uPA ligand might be replaced by any of a number of alternative ligands in 

trans, provided that they can associate with the profusogenic domain to extend the host range 

of recombinant viruses in useful ways. 
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1.4.3 HER2 RECEPTOR 

The human epidermal growth factor receptor 2 (HER2 also known as erbB2 or neu) encodes a 

185 KDa transmembrane tyrosine kinase growth factor receptor with extensive homology to 

other members of epidermal growth factor receptor family (EGFR or HER). All members of 

EGFR family (EGFR/erbB1/HER1, erbB2/HER2, erbB3/HER3 and erbB4/HER4) have a 

cytoplasmatic tyrosine-kinase domain, a single membrane spanning region and an 

extracellular ligand binding region, which consists of four domains: domains I and III are 

important in peptide binding, domain II contains dimerization arm involved in receptor-

receptor interaction; in the inactive state the domain II dimerization interface is blocked by 

intramolecular interactions between domain II and IV. The structure of HER2’s extracellular 

region is radically different from the others. HER2 has a fixed conformation that resembles 

the ligand activated state: the domain II-IV interaction is absent and the dimerization loop in 

domain II is exposed. This structure is consistent with the data that indicate that HER2 is the 

preferred partner for the other activated HERs, as it is permanently poises for interaction with 

another ligand bound receptor. Furthermore, this structure explains why no soluble EGFR-

related ligand has been found. It predicts that HER2 possesses a unique subdomain I-III 

interaction that makes ligand binding impossible because the site is buried and not accessible 

for interaction. 

FIG 15: HER receptor ectodomain structure. 

The extracellular region of each HER receptor consists 

of four domains (I-IV). Domain I and III are involved in 

neuregulin (NRG) binding and following this, the 

dimerization arm in domain II is exposed and promotes 

receptor-receptor interaction. HER2 has a fixed 

conformation that resembles the ligand activated state of 

the other HER receptors [44]. 
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Homo- or etero-dimerization results in receptor activation through many intracellular 

signalling pathways and, despite extensive overlap in molecules that are recruited to the 

different active receptors, different HERs prefentially modulate certain signalling pathways, 

owing to the ability of individual HERs to bind specific effector proteins. This process of 

signal transduction culminates in the nucleus, where gene control and protein transcription are 

modified, producing effects on key cellular regulatory processes, such as differentiation, 

adhesion, growth, migration and apoptosis. 

 

 

 

 

 

 

 

FIG 16: The HER signalling network. [45] 
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The HER receptors are expressed in various tissues of epithelial, mesenchymal and neuronal 

origin and under normal physiological conditions, their activation is controlled by the spatial 

and temporal expression of their ligands. 

The most widely studied and the best understood HER receptors are EGFR and HER2. Both 

display abnormal or enhanced expression in many types of cancer, suggesting their 

involvement in tumourigenesis. 

In human, HER2 expression is barely detectable in a variety of epithelial cells; by contrast, 

the HER2 protein is overexpressed (as much as 100-fold) in approximately 30% of human 

carcinomas, especially in breast and ovarian tumours, as a consequence of gene amplification 

and/or transcriptional alterations. In mammary tumours, HER2 expression correlates with 

particular invasiveness, metastatic ability, overall aggressiveness of the tumour, and a poor 

prognosis. 

Because of these properties, HER2 is a target for therapy. Therefore, a range of therapeutic 

approaches has evolved: inhibition of receptor activity by the humanized anti-HER2 antibody 

called Herceptin or Trastuzumab. They applied in conjunction with standard chemotherapy, 

has led to an increase in the response rate time to disease progression, and overall survival of 

patients with HER2-positive metastatic breast cancer. Despite these proven benefits, however, 

treatment with herceptin fails to eradicate the tumour or its metastases, and a more effective 

treatment is needed. 

Another strategy is based on interfering with receptor expression by gene therapy: the 

adenovirus type 5 E1A gene known to downregulate HER2 expression can inhibit human 

ovarian and breast cancer cells in vitro and suppress the production of HER2 protein in mice 

bearing human tumour xenografts, greatly improving survival. Studies using this approach are 

continuing [45]. 

In the past few years, a new strategy has been developed: the generation of viruses retargeted 

to the HER2 receptor. In one instance, retroviral vector particles derived from spleen necrosis 

virus were pseudotyped with the antigen binding site of antibody to HER2 [46]. 

The second instance concerns a vesicular stomatitis virus recombinant exhibiting a Sindbis 

virus glycoprotein modified with the scFv to HER2 [47].  
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The objectives of my thesis were twofold. They were described 
separately in chapter II and chapter III, respectively. 
 

Chapter II: ENGINEERING 
OF RECOMBINANT HSV-1 
RETARGETED TO HER2 
RECEPTOR 
 
 
 
 

2.1 Objective I 
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2.1 OBJECTIVE I  

One objective was to genetically engineer an oncolytic HSV-1 capable of infecting cells 

through the human epidermal growth factor receptor 2 (HER2), which, as described above, is 

overexpressed in human breast and ovarian cancer. Because HER2 has no specific natural 

ligand, in order to generate a recombinant HSV specifically redirected to HER2, we 

engineered into gD a single chain antibody (scFv) derived from monoclonal antibody (MAb) 

4D5 against HER2.  

Furthermore, we had to be secure that this recombinant virus could not infect through its 

natural receptors (HVEM and Nectin1): the HVEM binding site has been abrogated by the 

insertion of the scFv into gD at amino acid 24 as already seen in the virus R5111 

engineerizated by G. Zhou [52]. The nectin1 binding site was modified either through 

mutations or deletions in gD as I will describe into the next sections. 

 

 

 

 
FIG 17: This figure describes the aim of work: the construction of a recombinant virus that infects and causes 

death of tumour cells overexpressing HER2 and is not able to infect via HSV-1 natural receptors, HVEM and 

nectin1. 
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Chapter II: ENGINEERING 
OF RECOMBINANT HSV-1 
RETARGETED TO HER2 
RECEPTOR 
 
 
 
 
 

 
2.2 Materials 
 and Methods 
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2.2.1 CELLS AND VIRUSES 

Rabbit skin (RS), Vero green monkey kidney cells (obtained from John McLaren and 

American Type Culture Collection, respectively) and African green monkey kidney 

fibroblast-like cell line (COS) were maintained in Dulbecco’s modified Eagle medium 

supplemented with 5% newborn calf serum (NCS).  

Cells were grown in Dulbecco’s modified Eagle medium supplemented with 5% Fetal Bovin 

Serum (FBS), except when is otherwise specified.   

RGDP6 or R6 cell line, a derivative of rabbit skin, expresses glycoprotein D under the control 

of HSV late promoter γUL26.5. 

J cell line is a derivative of BHK-tk- cells (Baby Hamster Kidney) that lacks gD recetors. 

J-HVEM, J-hNectin1 and J-mNectin1 are derivatives of J cells that express HVEM, human 

Nectin1 and mouse Nectin1 respectively. 

The receptor negative Chinese hamster ovary (CHO) cells were cultured in F-12 nutrient 

mixture medium supplemented with 5% fetal calf serum. 

Human cell lines utilized for infection assays are: 

293T: a highly transfectable derivative of human epithelial cell line 293. 

SKOV-3: a derivative of ovarian adenocarcinoma maintained in RPM plus glutaMAXTM 

medium (Gibco) 

MCF7: a derivative of adenocarcinoma of mammary gland. 

RH4: a derivative of alveolar rabdosarcoma 

I143tk-: fibroblast 

Hep-2: epithelial cell line 

Mouse cell lines utilized for infection assays are:  

NIH/3T3:fibroblasts 

TT12E2: fibroblasts expressing murin HER2  

L-mouse: fibroblasts 

Wild type HSV-1(F) and HSV-1(KOS)tk12, which express β-galattosidase from an insert in 

the viral thymidine kinase gene were grown in rabbit skin or baby hamster kidney BHK cells 

and routinely titrated by plaque assay in Vero cells 

The gD- virus HSV-1(KOS)tk12/FRT-GFP, carrying green fluorescence protein (GFP) cDNA 

in place of gD gene, was grown in R6 cells, the complementing rabbit skin cell line 

expressing inducible gD, described above. 
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2.2.2 CONSTRUCTION OF J-HER2 AND CHO-HER2 CELL LINES 

J and CHO cells were tranfected with the pcDNA-HER2 plasmid, selected with neomycin 

G418 at a concentration of 400 to 800 µg/ml for 5 days. Individual clones were obtained by 

limiting dilution and were checked for HER2 expression by indirect immunofluorescence 

(IFA). 

 

2.2.3 ANTIBODIES 

MAb9G6 (Santa Cruz) is a monoclonal antibody directed to the ectodomain of HER2.  

4D5 (Santa Cruz) is monoclonal antibody directed to HER2. 

Herceptin (Genetech) is the humanized monoclonal antibody derived from 4D5. 

MAbH170 is a monoclonal antibody directed to N-terminus of gD (Goodwin Institute, 

Plantation, FL); Although in some recombinants this region was deleted, we were able to use 

MabH170 because the epitope was present into the linker between the heavy and light chains 

of scHER2. HD1 and MAb30 are monoclonal antibodies directed to conformational epitopes 

of gD (Goodwin Institute, Plantation, FL).  

H1380.1 is a monoclonal antibody directed to gD (Goodwin Institute, Plantation, FL) 

BD80 is directed to a membrane proximal domain of gD   

H1380.1 and BD80 are antibodies type specific for HSV-1, while H170 is a type common 

antibody because it recognizes gD of HSV-1 and HSV-2. 

Anti-mouse IgG-FITC (fluorescin-isothiocyanate) conjugated antibodies were from Jackson 

Immunoresearch. 

Peroxidase-conjugated anti mouse IgG horseradish peroxidase linked whole antibody (from 

sheep) were from GE Healthcare 

 

2.2.4 INDIRECT IMMUNOFLUORESCENCE 

J-HER2 and CHO-HER2 were grown on glass coverslips for 24 h and then fixed with 

paraformaldehyde for 10 min  at room temperature and incubated for 1 h with MAb 9G6, 

diluted 1:50 in 20% new born calf serum in phosphate-buffered saline (PBS), and for 45 

minutes with fluorescein isothiocyanate (FITC)-conjugated anti mouse IgG (Jacksonm 

Immunoresearch). 

Moreover all the gD constructs were sequenced for accuracy and checked for expression of 

chimeric gD by indirect immunofluorescence: BHK and RS cells transfected with plasmid 

carrying gD under the control of the immediate-early CMV promoter were fixed with -20°C 

cold methanol for 10 min at 30 h after transfection, and reacted with monoclonal antibodies to 
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gD: MAbs H170 and HD1 or MAb30. Furthermore, cells transfected with plasmids carrying 

gD under the control of the natural promoter were superinfected with HSV-2(G) (3 PFU/cell) 

6 h after transfection in order to induce gD gene expression, fixed with -20°C cold methanol 

for 10 min at 16 h after infection, and reacted with the type 1-specific MAb30 and H1380.1, 

diluted 1:400, 1:300 respectively. In all cases, primary antibodies to gD were followed by 

FITC-conjugated anti-mouse IgG (Jackson Immunoresearch). 

 

 

2.2.5 PLASMIDS AND CONSTRUCTS 

For all gD constructs, the starting plasmid was pEA99, which contains the wt gD coding 

sequence in pcDNA3.1(-) (Invitrogen).  

To allow cloning of the scHER2 sequence between aa 24 and 25 of gD, two unique EcoRI 

and BamHI restriction sites were inserted at nucleotides 137 to 142 and nucleotides 162 to 

167 of the gD coding sequence by site-directed mutagenesis with primer 

gD_21EcoRI_30BamHI (GCT TTC GCG GCA AAG GAA TTC CGG TCC TGG ACC AGC 

TGA CGG ATC CTC CGG GGG TCC). The EcoRI site insertion introduces the two D21G 

and L22I substitutions in mature gD. The BamHI site insertion is silent.  

pS2019a served as a template to PCR amplify the sequence for scHER2 (previously derived 

from MAb 4D5). Briefly, scHER2 was amplified with primers scFv_EcoRI_f (GCA AAG 

GAA TTC CGG TCT CCG ATA TCC AGA TGA CCC AGT CCC CG) and scFv_BamHI_r 

(CGG AGG ATC CGT CAG CTG GTC CAG GGA GAC GGT GAC TAG TGT TCC TTG 

ACC); similarly, scHER2L (where scHER2 is followed by a 9-residue serine-glycine linker) 

was amplified with primers scFv_EcoRI_f (GCA AAG GAA TTC CGG TCT CCG ATA 

TCC AGA TGA CCC AGT CCC CG) and scFv_SGlink_BamHI_r (CGG AGG ATC CGT 

CAG CTG GTC CAG ACC GGA ACC AGA GCC ACC GCC ACT CGA GG).  

For the construction of both gD+scHER2 and gD+scHER2linker, the primer sequences for gD 

amplification, included the sequences encoding aa 21 to 24 and aa 25 to 30 of mature gD, 

such that in the final constructs gD lacked no amino acid residue and only contained the insert 

at aa residue 24.  

For the generation of recombinant viruses by homologous recombination, gD+scHER2 and 

gD+scHER2linker chimeras were subcloned into recombination plasmids named pLM11 and 

pLM11L, which contained about 500 bp of the natural upstream and downstream gD-

flanking sequences. Moreover the gD+scHER2 and gD+scHER2linker chimeras were 
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subcloned into vectors for constitutive expression under the control of the immediate-early 

cytomegalovirus (CMV) promoter, generating plasmids pLM10 and pLM10L, respectively.  

Primers used to screen by PCR recombinant viruses derived from plasmid pLM11 and 

pLM11L are: gD_96_f (GCG GCA AAT ATG CCT TGG CGG ATG CC) and gD_200_r 

(GGG GCT GGA ACG GGT CCG GTA GGC CCG), flanking the site of scHER2 insertion 

in gD, and primers scFv_EcoRI_f and scFv_BamHI_r or scFv_SGlink_BamHI_r, also used to 

amplify scHER2. 

When we decided to use BAC Mutagenesis-Procedure to engineer new recombinant viruses, 

we used a BAC previously built in our laboratory which derived from pYbac102 [65] and 

between UL3 and UL4 pBeloBAC11 sequences were inserted. In this BAC, named 

“pYEbac102gD-flipped”,gD sequence was deleted. 

First of all we constructed two shuttle vectors, one containing LacZ gene and one containing 

EGFP (enhanced green fluorescent protein) gene downstream the HSV α-27 promoter. The 

α27-EGFP cassette or the α27- LacZ cassette was inserted between two 700 bp sequences 

PCR amplified from the plasmid  pBeloBac11, designated as pBeloBac11-up (primers 

Sal_pBelo_1209_f: TTG CCA GTC GAC ATT CCG GAT GAG CAT TCA TCA GGC GGG 

CA and pBelo_1897_Xho_r: GCA AAA ACT CGA GTG TAG ACT TCC GTT GAA CTG 

ATG GAC) and pBeloBac11-down (primers Mun_pBelo_1898_f: GGA AGT CAA TTG 

GAA GGT TTT TGC GCT GGA TGT GGC TGC CC and pBelo_2586_Eco_r: CAC ACT 

GAA TTC GCA ATT TGT CAC AAC ACC TTC TCT AGA AC). In the resulting 

constructs, designated the α27-EGFP cassette or the α27-LacZ cassette resulted inserted 

between nt 1897 and 1898 (original coordinates) of pBeloBac11. The cassettes plus the 

pBeloBac11 flanking sequences were subcloned in the shuttle vector pST76KSR [85] to 

generate pSBG and pSBZ containing α27-EGFP and α27LacZ respectively, and to proceed 

with BAC mutagenesis: Bacs obtained (gD-BZ and gD-BG) were used as recipient for the 

generation of recombinant Bac containing engineered gD. 

 

In pS31 shuttle vector, gD-scHER2L was inserted between aa 24 an 25 of gD which contains 

mutation V34S: first of all we introduced the mutation into gD sequence of pLM11L using 

primer gD34S_StuI (TCC TCC GGG GAG CCG GCG CGT GTA CCA CAT CCA GGC 

AGG CCT ACC GG) and we obtain pLM31L. Then we transferred recombinant gD mutated 

at aa 34 into shuttle plasmid pST76KSR to obtain pS31 for homologous recombination in 

E.coli containing Bac gD-BZ. 
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In pS39 shuttle vector, gD-scHER2L was inserted between aa 24 an 25 of gD which contains 

mutation V34S, D215G, R22N and F223I: first of all we introduced mutations into gD 

sequence of pLM31L and obtain pLM39L. To this end we used the following primers: 

gD_rev_215G-222N-223I_PvuI  (GGT TCT CGG GGA TGA TGT TGG GCA GCA TCC 

CGA  TCG AGC CCA CCG TCA CCC CCT) and gD _215G-222N-223I_PvuI (AGG GGG 

TGA CGG TGG GCT CGA TCG  GGA TGC TGC CCA ACA TCA TCC CCG AGA ACC). 

Then recombinant gD with mutations was subcloned to shuttle plasmid pST76KSR to obtain 

pS39 for homologous recombination in E.coli containing Bac gD-BG. 

 

 

In the pS113 shuttle vector, scHER2 was inserted between aa 6 and 38 of gD. Mutagenesis 

and cloning was performed on pLM5, a plasmid containing gD ORF cloned in pcDNA3.1(-), 

flanked by two 500-bp upstream and downstream genomic flanking sequences. Firstly we 

introduce EcoRI and BamHI restriction sites at the nucleotide 832 and 923 of gD respectively 

using the following couples of primers: gD_6/8_EcoRI_f (CAA ATA TGC CTT GGC GGA 

GAA TTC TCT CAA GAT GGC CG) and gD_6/8_EcoRI_r (CGG CCA TCT TGA GAG 

AAT TCT CCG CCA AGG CAT ATT TG) and gD_37/38_BamHI_f (CGG GGG TCC GGC 

GCG GAT CCC ACA TCC AGG  CGG G) and gD_37/38_BamHI_r (CCC GCC TGG ATG 

TGG GAT CCG CGC CGG  ACC CCC G). The restrictions sites EcoRI and BamHI are 

placed at 6/8 and 37/38 aa respectively and their insertions caused the following substitutions: 

D6E, A7N, R37G and Y38S. Then the scHER2 was amplified from pS2019a [86] with 

primers scFv_EcoRI_f (GCA AAG GAA TTC CGA TAT CCA GAT GAC CCA GTC CCC 

G) and scFv_SGlink_BamHI_r (CGG AGG ATC CAC CGG AAC CAG AGC CAC CGC 

CAC TCG AGG) and inserted into EcoRI BamHI digested plasmid. Finally the cassette 

containing the engineered gD∆6-38+scHER2 plus gD genomic upstream and downstream 

flanking sequences was subcloned to pST76KSR shuttle vector to obtain pS113 for 

homologous recombination in E.coli containing BacgD-BG. 

 

In the pS249 shuttle vector, gD is engineered with scHER2 flanked by serine-glycine linkers 

(upstream 8 aa: HSSGGGSG; downstream 12 aa: SSGGGSGSGGSG) in place of gD aa 

residues 61 to 218. Mutagenesis and cloning was performed on pLM5, as for pS113. First, 

two NdeI sites were inserted at the coding sequence for aa residues 61-62 and 218-219 of 

mature gD with mutagenic primers  gD_61/62_NdeI_f (ACG GTT TAC TAC GCC CAT 

ATG GAG CGC GCC TGC C) and gD_218/219_NdeI_f (GAC GGT GGA CAG CAT CCA 
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TAT GCT GCC CCG CTT C). Next, a 9 aa serine-glycine linker was inserted by annealing 

and ligating into the NdeI site the two phosphorylated oligos P-SG9Bam7/Nde_f (TAG TAG 

TGG CGG TGG CTC TGG ATC CGG) and P-SG9Bam7/Nde_r (TAC CGG ATC CAG 

AGC CAC CGC CAC TAC), containing a silent BamHI site. The scHER2 was amplified 

from pS2019a [86] with primers scFv_Bam_f (GGC TTA TGG ATC CGA TAT CCA GAT 

GAC CCA GTC CCC) and scFv_SG_x37_BamH_r (CGG AGG ATC CAC CGG AAC CAG 

AGC CAC CGC CAC TCG AGG) and inserted into the BamHI site of the serine-glycine 

linker. Finally the cassette containing the engineered gD∆61-218+scHER2 plus gD genomic 

upstream and downstream flanking sequences was subcloned to pST76KSR shuttle vector to 

obtain pS249 for homologous recombination in E.coli containing BacgD-BG. 

 

2.2.6 GENERATION OF RECOMBINANT VIRUSES. 

We used two different methods to generate recombinant viruses: homologous recombination 

in mammalian cells and homologous recombination in bacterial cells with the aid of BAC-

HSV system. 

1. Recombination in mammalian cells: BHK cells were transfected by means of Fugene 

6 (Roche, Milan, Italy) with pLM11 or pLM11L and were superinfected 6 h later with 

the gD_ virus HSV-1(KOS)tk12/FRT GFP at 3 PFU/cell. At 24 h after infection, the 

cell lysate was plated in RS cells. Plaques were harvested and screened by PCR. The 

recombinant viruses R-LM11 and R-LM11L are derived from pLM11 and pLM11L, 

respectively. 

R-LM5, a recombinant carrying wt gD in a EGFP reporter-carrying HSV-BAC, was 

generated by homologous recombination. RS cells were cotransfected with purified DNA 

of BAC gD–BG.53 and pLM5, a plasmid carrying the coding sequences for wt gD flanked 

by 500 bp of genomic upstream and downstream flanking sequences. R-LM13 was 

generated in similar fashion, using plasmid pLM13, carrying gD and scHER2 and a 9 aa 

serine-glycine linker between aa 24 and 25 of mature gD.  

 

2. Recombination in bacterial cells (BAC Mutagenesis-Procedure or two-step 

replacement in E.coli DH10B) was performed essentilly as described with slight 

modifications [87,88,89]. Briefly, electrocompetent DH10B E.coli harbouring the 

HSV-BAC were electroporated with the shuttle vector in 0.2 cm electroporation 

cuvettes (Bio-Rad) at 200 Ω, 25 µF, 2.5 kV, plated on LB agar containing 25 µg/ml 

kanamycin (the shuttle vector's marker) and 20 µg/ml chloramphenicol (the BAC's 
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marker), and incubated at 30°C o/n to allow the expression of RecA from the shuttle 

vector. The clones were re-plated onto LB+kanamycin+chloramphenicol at 43 °C to 

allow the identification of those harbouring the cointegrates (visible as large colonies, 

as compared to the temperature sensitive small colony phenotype determined by non-

integrated shuttle vectors). Subsequently, the cointegrates were allowed to resolve by 

plating the clones onto LB+ chloramphenicol at 30°C, and clones containing the 

resolved HSV-BAC were selected on LB+chloramphenicol plates supplemented with 

10% sucrose. Finally, the clones were checked for loss of kanamycin resistance, and 

for the presence of the desired insert by colony PCR. 

Recombination between the HSV-BAC 102gD–flip and the shuttle vectors pSBZ or 

pSBG generated the gD–BZ and gD-BG recombinants respectively, which contains the 

α27promoter-LacZ cassette or α27promoter-EGFP cassette inserted into the BAC sequences. 

The viruses were reconstituted by transfection in R6 gD- complementing cells [90].  

The gD-BZ BAC and gD–BG BAC were used as recipients for the generation of recombinants 

containing engineered gD: recombination between gD-BZ BAC and pS31 generated BAC 

LM31, instead BAC LM39, BAC LM113 and BAC LM249 were generated by recombination 

between gD-BG BAC and pS39, pS113 and pS249 respectively. The recombinant genomes 

were checked by PCR and sequencing, and the viruses R-LM31, R-LM39, R-LM113 and R-

LM249 were reconstituted by transfection into R6 cells, followed by one passage into BHK 

cells, and amplified in HER2 expressing cells. 
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FIG 18: Schematic representation of the steps of BAC Mutagenesis-Procedure in E.coli DH10B described in this paragraph. 

 

The choice of  R6 was based on the fact that this cell line is permessive, expresses gD 

ectopically and enables virus lacking gD to replicate and spread. So transfected recombinant 

HSV-BACs could produce virions carrying wild type gD in their envelope and recombinant 

gD sequence in their genome. After a variable numbers of passages in this cell line, BHK 

cells were infected, in order to generate a totally (not only genotipically, but also 

fenotipically) recombinant virus stock ready for the following passages in cell line expressing 

HER2 as the sole receptor. The passage in BHK is necessary to eliminate wild type protein 

present in the envelope of recombinant virus. In fact, recombinant viruses loose wild type gD 

following BHK entry and the progeny produced in this cell line is genotipically and 

fenotipically recombinant. 
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2.2.7 WESTERN BLOTTING 

We determined the relative electrophoretic mobility of chimeric gD and WT gD: the cells 

infected with WT or mutant viruses were lysed directly in SS (solubilizing solution) 

containing SDS and β-mercaptoethanol and boiled for 3 minutes. The proteins were separated 

by denaturing polyacrylamide electrophoresis (PAGE) and transferred onto Hybond-ECL 

nitrocellulose-membrane (Amersham Biosciences). The membranes were blocked with 5% 

non-fat dry milk in PBS for 30 minutes at 37°C, washed and reacted with MAbH170 or 

MAbBD80, followed by peroxidase-conjugated anti mouse IgG horseradish peroxidase linked 

whole antibody (from sheep) (GE Healthcare) and enhanced chemioluminescence 

(ECL;Western blotting detection reagents; GE Healthcare). 

  

 

2.2.8 CELL-CELL FUSION ASSAY 

The cell-cell fusion assay was performed as follows: effector COS cells were seeded in 24-

well dishes (5 · 105 cells/well) and transfected with plasmid pCAGT7pol, plasmids encoding 

gB, gH, and gL, and either wt gD (pEA99) or one of the gD-scHER2 chimeras (pLM10 and 

pLM10L). Target cells, namely, J-HVEM, J-Nectin1, or J-HER2 cells, seeded in T25 flasks, 

were transfected with the pEMCVLuc reporter construct. At 24 h after transfection, the target 

cells were seeded in a 1:1 ratio with COS effector cells, and cells were lysed after 24 h of 

cocultivation. The extent of fusion was measured by means of the luciferase assay system by 

Promega (Florence, Italy) in a TD20/20 luminometer (Turner Designs). All samples were run 

in triplicate. 

 

 

2.2.9 PLATING EFFICIENCY 

J, J-nectin1, J-HVEM, J-HER2, CHO, CHO-nectin1, CHOHER2, and Vero cells were 

infected with serial dilutions of R-LM11, R-LM11L, or HSV-1(KOS)tk12. At 24 or 48 h after 

infection, cells were fixed with 0,2% glutaraldehyde and 0,2% formaldehyde in PBS and 

plaques were visualized by in situ X-Gal (5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside) staining The samples were run in triplicate. 
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2.2.10 VIRUS REPLICATION ASSAYS 

J, J-nectin1, J-HVEM, and J-HER2 cells grown in 12-well plates were infected with R-LM11, 

R-LM11L, or HSV-1(KOS)tk12 at 10 PFU/cell for 90 min at 37°C. Extracellular virus was 

inactivated by means of an acid wash (40 mM citric acid, 10 mM KCl, 135 mM NaCl [pH 3]) 

[58]. Replicate cultures were frozen at 3, 24, or 48 h after infection, and the viral progeny 

(intracellular plus extracellular) was titrated on Vero cells. 

 

2.2.11 INHIBITION OF VIRUS INFECTION 

To measure the effects of anti-HER2 antibodies on infection with the R-LM11 and R-LM11L 

recombinant viruses, cells grown in 96-well plates were preincubated with increasing 

concentrations of purified IgGs of MAb 4D5 or 9G6 (Santa Cruz Biotechnology), directed to 

HER2 conformational epitopes, or herceptin, or of irrelevant mouse IgGs, or of R1.302 

directed to nectin1 in 30 µl for 1 h at 37°C. The recombinant viruses were added in 3µl and 

allowed to absorb to cells for 90 min at 37°C. To measure the effect of a recombinant soluble 

form of HER2, aliquots of R-LM11 or R-LM11L were mixed with increasing concentrations 

of a HER2-Fc chimera (ErbB2/Fc; R&D Systems) and CTLA4-Fc as a negative control for 1 

h at 37°C and were allowed to absorb to J-HER2 and CHO-HER2 cells for 90 min at 37°C. In 

both types of experiments, the viral inoculum was removed at the end of the absorption 

interval, and the cells were rinsed twice, overlaid with medium containing the same 

concentration of IgGs or proteins as was present during virus absorption, and incubated for 16 

h at 37°C. Expression of β-galactosidase was a direct measure of the extent of virus infection. 

The optical density was read in a Bio-Rad enzyme-linked immunosorbent assay (ELISA) 

reader. For each antibody or protein concentration, triplicate samples were run. A value of 

100% represents data obtained with infected cells not exposed to antibodies or to a 

recombinant receptor. 

To determine which receptor, HER2 or nectin1, mediated infection of R-LM39, R-LM113 or 

R-LM249, SKOV3 cells grown in 96-well plates were incubated for 2 h on ice with 

increasing concentrations of purified antibodies (R1.302 to nectin1, Herceptin to HER2, 

mouse immunoglobulins, or a mixture of R1.302 and Herceptin) diluted in DMEM without 

serum, and then with the viral inoculum at the multiplicity of infection of 2 pfu/cell (as titered 

in SKOV3 cells) for further 90 min on ice. Following virus adsorption, the non-attached virus 

was removed and cells were washed twice with ice cold RPMI+Glutamax supplemented with 

2.5% FBS. Cells were overlaid  with the same concentration of antibodies or IgGs, rapidly 

shifetd at 37°C and incubated for 16 h. Infection was quantified as EGFP fluorescence 
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intensity by means of a Victor plate reader (Perkin Elmer). Alternatively, digital pictures were 

taken and infection quantified as described above.  A 100% value represents data obtained 

with cells infected with virus, without antibody treatment. 

 

 

2.2.12 INFECTION ASSAY 

A number of cell lines grown in 96-well plates were infected with R-LM39, R-LM113 or R-

LM249 stocks grown in cell line expressing HER2 as the sole receptor (J-HER2 or SKOV3). 

Infection was monitored as EGFP expression 24 or 48 h later. Digital pictures were taken with 

a Kodak camera connected to a Zeiss Axioplan fluorescence microscope, and EGFP 

expression was quantified with Photoshop Histogram tool. 
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Chapter II: ENGINEERING 
OF RECOMBINANT HSV-1 
RETARGETED TO HER2 
RECEPTOR 
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2.3.1 GENETIC ENGINEERING OF HSV RECOMBINANT WHOSE gD CARRIES A scFv 

TO HER2 INSERTED BETWEEN RESIDUES 24 AND 25: R-LM11 AND R-LM11L 

The overall objective was to insert a ligand to HER2 in gD. Because HER2 has no known 

natural ligand, the selected ligand was a scFv derived from MAb 4D5 [75], herein designated 

scHER2. scHER2 was inserted at aa 24, a site previously reported to tolerate the IL-13 and 

uPA insertions. The site of insertion is very close to the binding site for HVEM receptor, 

which was mapped to a continuous region that includes residues 27 to 29 [25,67]. The 

experimental design consisted first in the insertion of two restriction sites, EcoRI and BamHI, 

at aa residues 21 and 30 of mature gD, respectively, and subsequently in the insertion of a 

fragment encoding scHER2. Downstream of it, one construct contained a 9-aa serine-glycine 

flexible linker and another construct contained no linker (Fig.19). In the final constructs, 

named gD-scHER2 and gD-scHER2L, scHER2 was inserted between gD aa residues 24 and 

25, and gD lacked no amino acid residue but carried two substitutions, D21G and L22I, as a 

consequence of the EcoRI restriction site insertion. gD-scHER2 and gD-scHER2L were 

cloned into pcDNA3.1 under the control of the CMV promoter for constitutive expression. 

The expression and proper folding of the chimeric forms of gD in transfected BHK or RS 

cells were essentially similar to those of wt gD, as detected by IFA (data not shown). Of note, 

the two substitutions introduced with the EcoRI restriction site did not alter the expression of 

gD or its ability to bind receptors and mediate cell-cell fusion. 
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FIG 19: Schematic representation of the gD gene carrying the sequence encoding scHER2. The cDNA encoding 

scHER2 was inserted into the gD gene, previously modified to carry EcoRI and BamHI restriction sites. The 

insert was flanked by sequences encoding 4 and 6 aa residues at the 5’ and 3’ ends, respectively, to restore the 

complete gD sequence. pLM10L and pLM11L carried a 9-aa Ser-Gly linker (L) downstream of the insert. In 

pLM10 and pLM10L, the chimeric gD gene was cloned into pcDNA3.1 for constitutive expression. pLM11 and 

pLM11L carry the chimeric gD gene bracketed by upstream and downstream gD sequences and were employed 

to generate recombinant (Recombin.) viruses. Numbers indicate the length in amino acid residues of each 

fragment. The insertion of the EcoRI site in gD caused the D21G and L22I substitutions in mature gD. VH and 

VL, heavy- and light-chain variable domains of the anti-HER2 antibody 4D5. sp, signal peptide. Bars are drawn 

to scale. 

 

 

2.3.2 CONSTRUCTION OF CELL LINES STABLY EXPRESSING HER2 

In order to construct cell lines expressing HER2 in the absence of any other HSV-1 entry 

receptors, an expression plasmid encoding HER2 was transfected into HSV-resistant J or 

CHO cells. Both cell lines lack the receptors necessary for entry of HSV. The transfected cells 

were cloned by limiting dilution, and individual clones were scored for HER2 surface 

expression by IFA on nonpermeabilized cells. Figure 20 shows the cell surface localization of 

the receptor in overexpressing stable clonal cell lines J-HER2 (fig. 20A) or CHO-HER2 (fig. 

20B). 

 

BA  

 

 

 

 

 

 

 

 

 

 
FIG 20: Expression of HER2 in the stable cell lines J-HER2 (A) and CHO-HER2 (B). Cells were fixed with 

paraformaldehyde and reacted with MAb 9G6 to HER2 ectodomain, followed by FITC-conjugated secondary 

antibody. Fluorescence localized at the plasma membrane. 

  
 61



2.3.3 CHIMERIC gD-scHER2 OF R-LMM11 AND R-LM11L MEDIATES CELL-CELL 

FUSION THROUGH THE HER2 RECEPTOR 

As a first assay to check whether the chimeric forms of gD-scHER2 were able to interact with 

the HER2 receptor and thus trigger fusion, we performed a cell-cell fusion assay. In this 

assay, the effector COS cells, cotransfected with plasmids encoding wt or chimeric gD under 

the control of the CMV promoter, plus gB, gH, gL, and a T7 polymerase (pCAGT7pol), fuse 

with receptor-positive target cells transfected with a T7 promoter-driven luciferase reporter 

gene. The luciferase activity is a direct measure of the fusion capacity of the transfected cells. 

J-HER2 cells were used as target cells, and J-nectin1 and J-HVEM cells were used as positive 

controls. The results in fig. 21 show that gD-scHER2 and gD-scHER2L mediated fusion with 

J-HER2 cells to an extent comparable to, or slightly higher than, that exhibited by wt gD with 

J-HVEM cells, providing a first line of evidence that the insertion of scHER2 resulted in a 

functional gD exhibiting redirected tropism. The chimeric forms of gD mediated fusion with 

J-nectin1 cells to an extent indistinguishable from that of wt gD, providing evidence that the 

scHER2 insertion did not affect the binding to nectin1 or the pro-fusion activity of gD. By 

contrast, fusion with J-HVEM cells was almost abolished. Of note, the fusion activity of wt 

gD-expressing cells with J-HVEM cells was much lower than that withJ-nectin1 cells. 

1

10

100

1000

J-
ne

ct
in1

J-
HVE

M

J-
HER

2

L.
R.

U
.
(L

O
G 

SC
A
LE

)

BHL

BHL + wt-gD

BHL + gD-scHER2

BHL + gD-scHER2L

1

10

100

1000

J-
ne

ct
in1

J-
HVE

M

J-
HER

2

L.
R.

U
.
(L

O
G 

SC
A
LE

)

BHL

BHL + wt-gD

BHL + gD-scHER2

BHL + gD-scHER2L

FIG 21: Cell-cell fusion mediated by chimeric scHER2-gD. The effector COS cells, cotransfected with plasmids 

encoding gB, gH, gL (BHL), and pCAGT7pol plus chimeric or wt gD, were cocultivated with J-nectin1, J-

HVEM or J-HER2 terget cells transfected with pEMCVLuc. Luciferase activity was expressed as relative light 

units (RLU) on log scale. Each experiment was performed at least three times, and samples were run in 

triplicate; mean values are shown. Vertical bars, standard deviation. 
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2.3.4 CONSTRUCTION OF HSV RECOMBINANTS CARRYING gD-scHER2: R-LM11 

AND R-LM11L 

We next generated recombinant viruses carrying gD-scHER2 or gD-scHER2L by homologous 

recombination between the gD deletion virus HSV-1(KOS)tk12/FRT-GFP [76] and the 

recombination plasmids containing gD-scHER2 and gD-scHER2L, designated pLM11 and 

pLM11L. To aid recombination, the plasmids carried the chimeric gD genes bracketed by the 

upstream and downstream sequences that flank the gD coding sequence. The recipient virus 

encodes the lacZ gene  under the control of the α4 promoter in place of the thymidine kinase 

gene, and therefore, the recombinants can be traced and quantified as β-galactosidase activity. 

The recombinants, named R-LM11 and R-LM11L, were verified genotypically and for 

production and properties of the chimeric gD. First, the scHER2 sequences were amplified 

with primers annealing to the gD sequences flanking the insertion (fig. 22A) or with primers 

specific for the scHER2 insert (f ig. 22B). In either case, the amplimers exhibited the expected 

size.  
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FIG 22: Amplification of the sequences encoding scHER2 from lysates of R-LM11 and R-LM11L-infected cells.  

(A) PCR was performed with primers annealing to the gD sequences that flank the site for scHER2 insertion. The 

presence of the insert causes an increase in the size of the amplification product from 100 bp (non 

recombinant plaques (lanes a, c, d, f, g, and h) to 850 bp (lanes b and e). Lane I, HSV-1(F), used as a control. 

MW, 1kp DNA ladder. 

(B) PCR was performed with primers annealing to the scHER2 insert. Lanes a to c, PCR with primers used for 

cloning the scHER2 insert. Lanes d to f, PCR with the same forward primer as in lane a to c and a reverse 

primer annealing to ser-gly linker, thus amplifying R-LM11L rather then R-LM11. The amplification 

products from the recombinant exhibit the expected length (about 750 bp). HSV-1(F) was used as negative 

control and did not give rise to any amplification product (lane c and f) 
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Second, lysates of cells infected with the recombinants were analysed by sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. As shown in 

figure 23, gD from R-LM11 and R-LM11L exhibited a decrease in electrophoretic mobility 

and an apparent Mr consistent with the insertion. Both wt gD and the slower-migrating bands 

from the recombinants reacted in Western blots with MAb H170 against gD. 

 

IG 23: Electrophoretic mobility of chimeric scHER2-gD. Lysates of cells infected with R-LM11, R-LM11L, 

ext, we analysed the reactivity of the chimeric gD-scHER2 to antibodies directed to 

that reactivity to MAb H170, which recognizes aa 1 to 23, was 

 
F

HSV-1(F) were subjectd to SDS-PAGE, transferred to nitrocellulose membranes, and visualized by western 

blotting with MAb H170 against gD, followed by peroxidase-conjugated anti-mouse IgG and ECL. In 

recombinant the presence of scHER2 results in a slower-migrating band (black arrowhead) than that with wtgD 

(white arrowhead). Numbers to the left  represent migration position of molecular mass markers (in  kilodaltons). 

 

 

N

conformation-dependent epitopes by cell ELISA. Cells infected with R-LM11, or with HSV-

1(KOS)tk12 as a control, were reacted with MAbs HD1 and DL11, two potent neutralizing 

antibodies that react with a region involved in virus entry, and with MAb AP7, which reacts to 

a discontinuous epitope localized in part at the N terminus and in part at the C terminus 

(residues 290 to 300) [72,74]. 

The results in figure 24 show 

not modified in chimeric gD relative to wt gD, as expected. Reactivity to the neutralizing 

MAbs was somewhat decreased but still present, in accordance with the ability of the virus to 

carry out infection. The reactivity of the chimeric gD-scHER2 to MAb AP7 was lost. The 

results indicate that (i) critical epitopes for infection are maintained and (ii) in the receptor-

unbound gD-scHER2, the ectodomain N and C termini do not interact with each other 

anymore. Of note, the insertion did not confer instability on the viruses; the recombinants were 

passaged for several months, and their properties were stable. 
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IG 24: Reactivities of wt gD and the gD-HER2 chimera to a panel of monoclonal antibodies, measured by cell 

iven that the Mr of gD was almost doubled by the insertion, we also asked whether 

e 25 show that amounts of gD were very similar in RLM11 and wt virions. 

G 25: Quantification of gD and gB present in virions. Virions were pelleted from the extracellular medium of 

respectively. Arrowhead indicate migration position. 

E

F

ELISA. Vero cells were infected with the indicated viruses. At 16 h after infection, they were reacted with the 

indicated antibodies, followed by a peroxidase-conjugated anti-mouse antibody and o-phenylenediamine. Binding 

of antibodies was quantified as peroxidase units (P.U.), and expressed as a percentage relative to the cells 

infected with parental HSV-1 (KOS)tk12 virus. Each assay was performed in quadruplicate. 

 

G

recombinant virions were able to incorporate gD in amounts similar to those present in wt 

virions. Extracellular virions were pelleted and analyzed for the content of gD and for that of 

gB as a reference. 

The results in figur
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FI

infected Vero cells after growth for 24 h. Equal amounts of virions, measured as PFU, were loaded for SDS-

PAGE separation. Amounts of gB and gD were detected by Western blotting with MAbs H1817 and H170, 
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2.3.5 R-LM11 AND R-LM11L INFECT CELLS THAT EXPRESS HER2 AS THE SOLE 

RECEPTOR. 

Replicate cultures of J, J-nectin1, J-HER2, J-HVEM, CHO, CHO-nectin1, CHO-HER2, or 

CHO-HVEM cells were exposed to R-LM11 and R-LM11L viruses, or to the parental virus 

IG 26: The recombinant viruses R-LM11 and R-LM11L infect cells via the HER2 receptor. Micrographs show 

 J-nectin1, J-HER2, J-HVEM, CHO-nectin1, CHO-HER2, and CHO-HVEM cells exposed to the recombinant 

iruses R.LM11 and R-LM11L or to the parental virus HSV-1(KOS)tk12 at 10 pfu/cell. Infection was monitored 

HSV1(KOS)tk12 as a control. After 24 h, infection was detected as β-galactosidase activity. 

Figure 26 shows that R-LM11 and R-LM11L, but not the parental HSV-1(KOS)tk12, were 

able to infect J-HER2 and CHO-HER2 cells (fig. 26 g, h, i, s, t, and u). The recombinants 

were still able to infect J-nectin1 and CHO-nectin1 cells (fig. 26 d, e, p, and q) but lost the 

ability to infect J-HVEM and CHO-HVEM cells (fig. 26 j, k, v, and w). 

 

 

 
F

J,

v

as β-galactosidase activity by X-Gal staining 16 h following infection. 
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2.3.6 R-LM11 AND R-LM11L GROW AND SPREAD IN CELLS EXPRESSING HER2 AS 

E SOLE RECEPTOR 

cells were harvested and progeny viruses 

 
FIG 27: tures of J (A), J-HER2 (B), J-HVEM (C), or J-

nectin1 V-1(KOS)tk12 at 10 pfu/cell. Progeni virus was 

arvested at 3, 24 and 48 h after infection and titred on Vero cells. 

TH

Replicate cultures of J-HER2, J-nectin1, J-HVEM, and J cells were exposed to R-LM11 and 

R-LM11L (10 PFU/cell). After 24 and 48 h, the 

titrated on Vero cells. The results in figure 27A to D show that R-LM11 and R-LM11L grew 

in J-HER2 cells. The titer was about 20-fold lower than that in J-nectin1 cells. Both 

recombinants were unable to grow in J-HVEM cells, suggesting that the HVEM binding site 

on gD was altered by the insertion of scHER2. As expected, the parental HSV-1(KOS)tk12 

did not replicate in J-HER2 cells. 
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In the next series of experiments, R-LM11 and R-LM11L were assayed for the ability to 

pread from cell to cell in J-HER2 and CHO-HER2 cells, and in J-nectin1 and CHO-nectin1 

nd HSV-1(KOS)tk12 in the 

d plaque were visualized by X-

Gal or Giemsa staining. 

 

Plating efficiency of recombinant viruses 

s

cells as controls (fig. 28). The plaques formed by the recombinants in J-HER2 cells were 

fewer in number (700-fold and 250-fold reductions) than those in J-nectin1 cells. The 

reduction observed in plaque numbers in CHO-HER2 versus CHO-nectin1 cells was only 10-

fold. HSV-1(KOS)tk12 did not form plaques in J-HER2 and CHO-HER2 cells. The ratio 

between the number of plaques in Vero  cells and that in J-nectin1 cells, or between that in 

Vero cells and that in CHO-nectin1 cells, was practically the same for the two recombinants 

and the wt virus. The recombinants did not form plaques in J-HVEM cells, in agreement with 

the lack of growth observed in figure 28.  
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FIG 28: Plating efficiency of R-LM11 and R-LM11L. R-LM11, R-LM11L a

indicated cell lines. Infected monolayers were fixed 24 or 48 h after infection, an
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As a measure of the abilities of R-LM11 and R-LM11L recombinants to spread from cell to 

cell, we also determined their plaque sizes. As shown in figure 29, the plaque sizes of wt 

viruses and R-LM11L did not differ significantly from each other, whereas the plaque size of 

R-LM11 was 50% reduced.  

 

sed as pixel. For each virus, the area of at least 20 plaques were measured. 

istogram represent averages; errors bars, standard deviation. 

 

Cumulatively, these results provide evidence for the following conclusions. 

1. R-LM11 and R-LM11L have acquired the ability to grow and spread in J-HER2 and CHO-

HER2 cells, although at reduced efficiency relative to that in J-nectin1 and CHO-nectin1 

cells. The reduction is more evident for the R-LM11 virus, which lacks a linker between 

scHER2 and gD, at least as far as cell-to-cell spread is concerned. This indicates that the 

recombinants exhibited a modified tropism and were effectively redirected to the HER2 

receptor. 

2. The recombinants maintained the ability to infect through nectin1 but not through HVEM. 
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FIG 29: Plaques formed as shown in fig  were photographed, and the plaque areas were measured by means of 

the histogram program and expres

H
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2.3.7 ENTRY OF R-LM11 AND R-LM11L INTO J-HER2 OR CHO-HER2 CELLS IS 

EPENDENT ON HER2 

o provide evidence that entry of R-LM11 and R-LM11L recombinants into JHER2 or CHO-

 

ain IV and is the MAb from which the scFv was derived. MAb 9G6 is addressed to an 

A4-Fc, did not. 

HER (A) J-HER2 cells were preincubated with the indicated 

conce  4D5, o

for 1 h at 37°C. Virus was added to the antibody-containing m

37°C. Infection was monitored 16 h later as β-galactosidas

preincubated with the indicated concentrations of purified

37°C and allowed to absorb to CHO-HER2 cells for 90 mi

galactosidase activity. Each point represents the averag

.3.7 ENTRY OF R-LM11 AND R-LM11L INTO J-HER2 OR CHO-HER2 CELLS IS 

EPENDENT ON HER2 

o provide evidence that entry of R-LM11 and R-LM11L recombinants into JHER2 or CHO-
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for 1 h at 37°C. Virus was added to the antibody-containing medium and allowed to infect the cells for 90 min at 

37°C. Infection was monitored 16 h later as β-galactosidase activity. (B)Replicate aliquots of R-LM11L were 

preincubated with the indicated concentrations of purified soluble recombinant HER2-Fc or CTLA4-Fc for 1 h at 

37°C and allowed to absorb to CHO-HER2 cells for 90 min at 37°C. Infection was quantified 16 h later as β-

galactosidase activity. Each point represents the average of triplicate assays. The standard error ranged from 0,6 
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FIG 30 : Infection of R-LM11 and R-LM11L recombinants in HER2-expressing cells is blocked by antibodies to 
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to 1,9% of means values. One hundred percent indicates the optical density measured in untreated, virus-infected 

ltures. 

t mutation we introduced into recombinant gD of R-LM11L genome to try to destroy 

ectin1 binding site was V34S, a mutation reported to abrogate the capacity of R5141 and 

 of IL-13 

residue 33 of gD, to use nectin1 as receptor. [64]. Recombinant was generated 

e 

 (BAC) inserted between UL3 and UL4 

YeBac102gD- flipped). We introduced the LacZ reporter gene into BAC sequence between 

would have been possible to remove LacZ and BAC sequence using Cre 

 
FIG 31: The recombinant R-LM31 was able to infect J-nectin1 cells too. Micrographs show J, J-HER2 and J-

nectin1 cells exposed to the recombinant virus R-LM31 at 10 pfu/cell. Infection was monitored as β-

galactosidase activity by X-Gal staining 16h following infection. 

cu

 

2.3.8 DETARGETING FROM NATURAL RECEPTORS BY MEANS OF POINT 

MUTATIONS 

The objective of the following experiments was to mutagenize gD in order to ablate the virus 

ability to infect through nectin1 (detargeting). This was done by insertion of a single (V34S) 

or multiple (V34S-D215G-R222N-F223I) mutations. 

 

V34S  MUTATION 
The firs

n

R5321, herpes simplex visuses retargeted to cells expressing IL13Rα2 by means

ligand fused to 

by the “BAC Mutagenesis-Procedure”.  

First, we engineered a HSV-1gD-LacZ virus: the starting construct was a HSV-1 genom

deleted in gD with the bacterial artificial chromosome

(p

two LoxP sites, so it 

recombinase and to obtain a recombinant virus different from wild type HSV-1 only for the 

introduced mutations. 

The virus, named R-LM31, was still able to infect J-HER2 cells, thanks to scHER2, as 

expected. However, it retained also the ability to infect cells via nectin1 (fig 31). 

 

 

J-Nectin1J-HER2J J-Nectin1J-HER2J
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V34S-D215G-R222N-F223I MUTATIONS 
It was reported that am

nectin1 bind ilitated gD 

ability to use nectin1 asured in 

complement

By BAC Mutagenes R-LM39, 

carrying  

and 25 and

ene to monitor virus growth and infectivity in live cultures and not in fixed-stained cultures. 

 addition, EGFP gene is smaller than LacZ gene (EGFP sequence is 700bp long, while LacZ 

binant gD was amplified by PCR 

 

 

ino acids 215-222-223 of gD are located in a region involved in 

ing. Thus Manoj et al [62] showed that mutations of these residues deb

 for infection. In that study, infection was only me

ed viruses; recombinant viruses were not generated.  

is-Procedure, we engineered a recombinant virus, named 

 V34S-D215G-R222N-F223I mutations, scHER2 sequence inserted between aa 24

 EGFP as reporter gene.  In this recombinant LacZ gene was repleaced with EGFP 

g

In

sequence is 3300bp long), so viruses with EGFP gene are genotipically more stable than those 

carrying LacZ gene.  

First, we verified that gD sequence was as expected: recom

and sequenced. Then we tested the ability of recombinant virus to infect cells of different 

types and origin: the results (Fig. 32) show a complete detargeting in mouse cells, only a 

partial detargeting in rodent cells (hamster and rabbit), and lack of detargeting for primate 

cells (human and monkey). 

 

 

 

 

VH223
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222

scHER2

VH223

VL34

215
222

scHER2 A

 72



 

 

 

 
FIG  32 (A) Hypotetical model of chimeric gD structure obtained by combining the 3D structure of scHER2 and 

D: scHER2 is green and bubbles indicate mutated residues. 

. 

 

ence of HER2 receptor  the recombinant could use nectin1. Viceverse, in the absence of 

ectin1, it can use HER2.  

–
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(B) Micrographs show the indicated cell lines exposed to R-LM39 and visualized with fluorescence microscope

Infection was monitored at 72 h post infection. 

 

 

 

 

Next, we performed a neutralizzation assay in SKOV3 cells, which express both HER2 and

human nectin1. The results (Fig. 33) show that infection was not blocked by MAb to HER2 

(herceptin) or to nectin1 (R1.302) used separately, but only by the mixture of the two 

antibodies. The results indicate that R-LM39 entry is mediated by nectin1 and HER2; thus, in 

abs

n
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FIG 33:Infection of R-LM39 in SKOV3 cells is blocked only by a mixture of antibodies to HER2 (Hercepti

and to nectin1 (R1.302), but is not blocked by each antibody used separately. 

SKOV3 cells grown in 96-well plates were incubated for 2 h on ice with increasing concentrations of purifi

antibodies (R1.302 to nectin1, Herceptin to HER2, mouse immunoglobulins, or a mixture of R1.302 a

Herceptin) and then with the viral inoculum at the multiplicity of infection of 2 pfu/cell for further 90 min on

Following virus adsorption, the non-attached virus was removed and cells were overlaid  with the sam

concentration of antibodies or IgGs, rapidly shifted to 37°C and incubated for 16 h. Infection was quantifie

EGFP fluorescence intensity by means of a Victor plate reader (Perkin Elmer). Each point represents the aver

of assays. 
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2.3.9 DETARGETING FROM NATURAL RECEPTORS BY DELETION OF N-

RMINUS OR Ig DOMAIN OF gD 

e results of the preceding paragraph show that a complete detargeting from nectin1 cannot 

 achieved by single or multiple mutations. Here, in order to abrogate virus ablility to use 

tural receptors, we undertook a novel strategy, based on deletion of gD portions. Two 

ruses were generated, named R-LM113 and R-LM249 respectively.  

e rationale for the design of R-LM113 was to insert the scHER2 in a different gD position 

lative to that of R-LM39. The novel position was chosen to mask the nectin1 binding site, as 

llows. By means of gD 3D structure observation, we decided to remove a large portion at 

e N-terminus of gD (from aa 6 to aa 38), insert scHER2 sequence plus 9-aa serine-glycine 

-11L-31 and 39 scHER2 was between aa 24 and 25). 

with a little linker 

ure obtained by 

combining the 3D structure of scHER2 and gD: scHER2 is green, gD is yellow and the bobbles represent aa 34-

215-222-223. 

TE

Th

be

na

vi

Th

re

fo

th

flexible linker at position 39. The scHER2 insertion was in a different position respect to 

previous recombinant gDs (in R-LM11

The linear map of R-LM113 gD and its predicted structure are shown in figure 34. The virus 

was generated as described in Materials and Methods. To verify the presence of scHER2, the 

recombinant gD was amplified by colony PCR and sequenced, before virus reconstitution 

steps.  

scHER2
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B

FIG 34: (A) Schematic representation of gD gene carrying the sequence encoding scHER2 

Ser-Gly inserted between aa 5 and 39 of gD (B) Hypotetical model of chimeric gD struct
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The rationale for the design of R-LM249 stems from the finding of Zhou and Roizman [55], 

who reported on a HSV-1 recombinant (R5322) whose gD was spit into two distinct peptides: 

polypeptide A containing the gD signal peptide fused to N-terminal domain (155 residues) of 

urokinase plasmilogen activator (uPA) linked to residues 33-60 of gD, with mutation V34S, 

and polypeptide B containing the C-terminal domain of gD (residues 219-369). By 

immunoprecipitation assay they showed that the two peptides interact through the kringle 

domain (residues 50-132) of the N-terminal domain of uPA. Although R5322 virus was 

infectious and produced vital progeny, it retained the ability to use its natural receptors. 

Nonetheless, the results clearly indicate that residues 61-218 of gD do not execute a function 

required for HSV-1 entry into cells. It is interest to note that residues 61-218 coincide almost 

entirely with Ig core of gD located between residues 56-184. Based on these finding, we 

replaced the Ig-folded core of gD with scHER2: scHER2 sequence was flanked by a short 

Ser-Gly linker (8 aa) at the N-terminus and a longer Ser-Gly linker (16 aa) at the C-terminus, 

gD had no mutations at N-terminus sequence and had only about 40 aa (from 219 to 260) 

before the profusion domain. 

We next asked whether the recombinant virus  

- was infectious and capable to produce vital progeny  

- was able to infect HER2 expressing cells 

ptors, HVEM and nectin1. 

 

- was detargeted from HSV-1 natural rece
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FIG 35: (A) Schematic representation of gD gene carrying the sequence encoding scHER2 flanked by  two Ser-

Gly linker in place of gD residues from aa 60 to aa 219. 

(B) Hypotetical model of chimeric gD structure obtained by combining the 3D structure of scHER2 and gD: 

scHER2 is green, 

 

R-LM113 and R-LM249 were generated by “BAC Mutagenesis-Procedure”. Prior to 

transfection of recombinant Bacs into mammalial cells the sequences of  recombinant gDs 

were determined following colony PCR amplification.  

For virus reconstitution recombinant Bacs were transfected into R6 cells that express 

glycoprotein D under the control of HSV late promoter γUL26.5.  

The viruses obtained in R6 cells were fenotypically wild type; genotypically they carried 

recombinant gDs. After several passages in R6 cells, the viruses were passaged in BHK cells 

and subsequentes in J-HER2 or SKOV3. The viruses grown in cells expressing HER2 were 

employed for subsequent studies. The results of figure 36 show the ability of R-LM113 and 

R-LM249 to infect a variety of cells. Cumulatively, R-LM113 and R-LM249 infected only 

cells expressing HER2 and lost the ability to infect via nectin1. 
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Infection of R-LM113 and R-LM249 at 24 h
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FIG 36: R-LM113 and R-LM249 infection assay of  the indicated cell lines. Quantification of infection was 

made with photos made 24 h post infection analized by Photoshop (Adobe).  

 

To confirm that entry of R-LM113 and R-LM249 recombinants into SKOV3 cells was 

mediated only by HER2, and not by nectin1, we measured whether infection was inhibited by 

MAbs to HER2 (herceptin) or by MAb to nectin1 (R1.302). The results in figure 37 clearly 

show that both R-LM113 and R-LM249 infection was blocked by MAb to HER2 or by a 

mixture of herceptin and MAb to nectin1, but  not by R1.302 alone.  

Hence, R-LM113 and R-LM249 entry was not via nectin1, in agreement with the lack of 

infection of cells expressing only nectin1, like JhNec1 and JmNec1. 
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FIG 37: Infection of R-LM113 and R-LM249 in SKOV3 cells is blocked by antibodies to HER2 (Herceptin) and 

by a mix of Herceptin and antibody to nectin1 (R1.302), but is not blocked by R1.302. 

SKOV3 cells grown in 96-well plates were incubated for 2 h on ice with increasing concentrations of purified 

antibodies (R1.302 to nectin1, Herceptin to HER2, mouse immunoglobulins, or a mixture of R1.302 and 

Herceptin) and then with the viral inoculum at the multiplicity of infection of 2 pfu/cell for further 90 min on ice. 

Following virus adsorption, the non-attached virus was removed and cells were overlaid  with the same 

concentration of antibodies or IgGs, rapidly shifetd at 37°C and incubated for 16 h. Infection was quantified as 

EGFP fluorescence intensity by means of a Victor plate reader (Perkin Elmer). Each point represents the average 

of assays. 

 

 

We further checked the electroforetic mobility of chimeric gDs: lysates of SKOV3 cells 

infected with recombinants were analyzed by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and western blotting. As control we used lysates of SKOV3 

infected by R-LM5, which had gD wild type and EGFP as reporter gene, and by R-LM13, 

which had gD plus scHER2 between aa 24 and 25 and EGFP as reporter gene. As shown in 

figure 38, all recombinant gDs had the expected molecular weigh.  
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FIG 38: Electroforetic mobility of chimeric gDs visualized by western blotting with MAb  BD80 (A) and H170 

(B). Lysates from SKOV3 infected by R-LM5 (lane 1), by R-LM13 (lane 2), by R-LM39 (lane 4), by R-LM113 

(lane 5), by R-LM249 (lane 7). Lanes 3 and 6 are empty. Numbers to the left and to the right represent migration 

position of molecular mass markers (in kilodaltons) 

 

In summary, these results provide evidence that both gD sequences, aa 6-38 and aa 61-218: 

95
72

 55

A B 
95
72
55

- could be removed and gD retains its functionality, and recombinant viruses are 

detergeted from HSV-1 natural receptors, HVEM and nectin1 

- could be replaced by an heterologous ligand, like scHER2. 
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Chapter II: ENGINEERING 
OF RECOMBINANT HSV-1 
RETARGETED TO HER2 
RECEPTOR 
 
 
 
 
 
 
 

2.4 Discussion 
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2.4.1 DISCUSSION 

We report on the construction and properties of the following HSV recombinants: R-LM11, 

R-LM11L, R-LM31, R-LM39, R-LM113, R-LM249 carrying the insertion of a scFv to HER2 

and mutations or deletions of gD sequences to modify virus tropism. The aim of the work was 

the engineering of a HSV-1 retargeted to tumour cells overexpressing HER2 receptor and de-

targeted to normal cells expressing HSV-1 natural receptors (HVEM and Nectin1). The key 

finding is that all these viruses were able to infect cells that express HER2 as the sole receptor 

(J-HER2), but not in the parental receptor-negative J cells and therefore were redirected to 

HER2 receptor.  

First of all we engineered two recombinant viruses, R-LM11 and R-LM11L, in which 

scHER2 was inserted between aa 24 and 25 of gD and that differed only for a Gly-Ser linker 

present in R-LM11L downstream of scFv sequence. We demonstrated that these viruses 

entered into J-HER2 cells using HER2, were able to form plaques in J-HER2 or CHO-HER2 

cells, although at an efficiency several hundredfold lower than that in J-nectin1 or CHO-

nectin1 cells, and that their replication in J-HER2 cells was 20-fold lower than that in J-

nectin1 cells. 

As for the detargeting from natural receptors is conceive, the scHER2 insertion in gD between 

aa 24 and 25 abolished the ability of HSV to enter cells via the HVEM receptor. The result 

was somehow unexpected, given that the IL-13 insertion in the same position in gD failed to 

disrupt the HVEM binding site [66]. In either case, the site of insertion is adjacent to the 

binding site for HVEM receptor, which was mapped to a continuous region (1-32) that 

includes the interacting residues 27 to 29 [25,67]. A major difference between the current and 

previous results was the size of the insert, which was 247 or 256 aa in our constructs and 134 

aa in the IL-13–gD chimera. We speculate that the larger size of the scHER2 insert may 

hinder the flexibility of the gD N terminus such that it prevents the formation of the N-

terminal hairpin and therefore the HVEM binding site. By contrast, the scHER2 insertion did 

not modify the capacity of the recombinants to enter cells via the nectin1 receptor. The 

nectin1 binding site on gD is not fully characterized yet. A number of substitutions or 

insertions, at residues 34, 38, 126, 151, 187, 215, 222, 223, 243, 246, etc. [68,62,63], were 

reported to affect entry through nectin1, as measured by an infectivity complementation 

assay. However, recombinant viruses specifically defective in entry through nectin1 and still 

capable of pro-fusion activity remained to be constructed.  

Knocking down the recombinant virus ability to infect through nectin1 was our next goal in 

order to obtain a fully retargeted oncolytic virus with a high safety profile. 
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To this end, we introduced point mutations at residues reported in the literature as involved in 

nectin1 binding. The first was V34S mutation into gD of R-LM11L, as this mutation 

abrogated the capacity of R5141, a recombinant HSV-1 with IL-13 ligand fused to residue 33 

of gD to use nectin1 as receptor [64]. However, our recombinant virus designated R-LM31 

mantained the ability to infect J-nectin1 cells. We tried to improve the virus by adding to this 

mutation other point mutations in a different portion of gD and generated R-LM39 

recombinant carrying V34S, D215G, R222N and F223I mutations. Moreover R-LM39 had 

EGFP gene as reporter to monitor cell infection in vivo instead of LacZ gene. For the 

construction of R-LM31, R-LM39 and the following two recombinat viruses we used the 

BAC Mutagenesis-Procedure (described in paragraph 2.2.5). 

R-LM39 resulted completely detargeted to mouse nectin1, only partially detargeted to rodent 

nectin1, but it was still able to use primate nectin1. In fact, entry in SKOV3 cells expressing 

both nectin1 and HER2 could be inhibited only by the exposure of cells to antibodies to both 

receptors simultaneously. 

By an alternative strategy, involving deletions and substitutions of portions of gD, we 

obtained two viruses completely detargeted to human nectin1: the first virus (R-LM113) is a 

recombinant HSV-1 in which scHER2 was inserted in place of gD sequence from aa 6 to aa 

38. We decided to remove this gD portion on the basis of gD 3D structure. The rationale was 

that we would remove residues involved in HVEM binding and hinder residues involved in 

nectin1 binding (215-222-223). 

Results confirmed these predictions and R-LM113 resulted retargeted to HER2 and detargeted 

from both HVEM and nectin1. 

R-LM249 was designed following the observation by Zhou and Roizman that the Ig-fold of 

gD can be deleted, provided that the N- and C-ter portions interact via a heterologous kringle 

domain. In R-LM249 scHER2 is inserted in place of Ig-like domain of gD. R-LM249 and R-

LM113 were able to infect through HER2 as the sole receptor and did not retain the ability to 

enter via nectin1 and HVEM: in fact, neutralization assays showed that MAb to HER2 was 

sufficient to block R-LM113 and R-LM249 infection of SKOV3 cells. 

The first remarkable aspect of our results is that gD can tolerate an insert almost as big as gD 

itself, its Mr can be doubled and its Ig-like domain can be removed without loss of key 

functions (e.g. profusion activity). In particular, in view of the current model of gD action 

[69,21,22], results presented here and elsewhere imply that the ability of gD to modify its 

conformation and trigger fusion takes place independently of whether gD binds to its natural 

receptors or to foreign receptors for which it carries a ligand. 
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In the past few years, several efforts to construct viruses retargeted to a number of different 

cellular receptors have been described. To our knowledge, only two reports illustrated the 

generation of viruses retargeted to the HER2 receptor. 

In one instance, retroviral vector particles derived from spleen necrosis virus were 

pseudotyped with the antigen binding site of an antibody to HER2 [70]. Compared to the 

pseudotyped retrovirus, our recombinant viruses are genetically engineered to express the 

chimeric gD, and therefore any progeny virus at any replication cycle will carry the retargeted 

envelope. This ensures that the redirected tropism and, consequently, the possible oncolytic 

activity are maintained for as many viral replication cycles as needed. The second instance 

concerns a vesicular stomatitis virus recombinant exhibiting a Sindbis virus glycoprotein 

modified with the scFv to HER2 [47] Compared to small RNA viruses, such as vesicular 

stomatitis viruses, oncolytic viruses based on HSV have the advantage of a large genome 

capacity and genetic stability and therefore provide the possibility to deliver to the tumour 

cells additional heterologous therapeutic or immunomodulatory gene products (e.g., IL-12 or 

granulocyte-macrophage colonystimulating factor) [42,71].  

A remarkable result we achieved is the loss of virus ability to use its natural receptors, human 

and murine, thus the R-LM113 and R-LM249 recombinants are ready to be assayed in animal 

models of mammary and ovary tumours, like transgenic mice expressing human HER2 

receptor or mammary tumour xenographted nude mice. 

This work provides proof of principle that retargeting HSV tropism by fusion of a scFv to gD 

is feasible, that the insertion can be performed in different positions of gD, and that it is 

possible to remove and substitute a big portion of gD mantaining its funtionality. In recent 

years, a high number of single-chain antibodies have been generated, some of which have 

entered clinical practice. Our finding and the availability of a large number of scFvs greatly 

increases the collection of potential receptors to which HSV can be redirected. It has been 

proposed that HSV recombinants that target specific surface markers can be used to visualize 

the distribution of tumour cells and their metastases in tissues by at least two methods [52]. 

The first involves the viral thymidine kinase-dependent incorporation of a radioactive 

precursor. A more attractive approach is to fuse a nonessential tegument protein present in 

high numbers per virion to GFP or similar molecules capable of being visualized in vivo. The 

studies presented in this report make the specific targeting of HSV for both oncolytic activity 

and visualization of tumour cells possible for a large variety of cell surface molecules to 

which antibodies and scFvs are available. 
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3.1 OBJECTIVE II 

The second project of my thesis centered on production and purification of a recombinant 

truncated form of the heterodimer gHgL, named gHt5E1-strepgLV5His. To this end, we cloned a 

stable insect cell line expressing a soluble form of gH in complex with gL, under the control 

of a metalloprotein inducible promoter and we purified the heterodimer using affinity 

chromatography.  

Next, we asked whether gHt5E1-strepgLV5His exhibits some functional activities: it was capable 

to bind cell surface. 
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3.2.1 CELLS 

The S2 cell line was derived from a primary culture of late stage (20-24 h old) Drosophila 

melanogaster embryos. Many characteristics of S2 cell line suggest that it is derived from a 

macrophage-like lineage. S2 cells grow at 28°C or room temperature without CO2 as a loose, 

semi-adherent monolayer in tissue culture flasks and in suspension in spinners flasks using 

“The Stovall Low Profile Roller”. (Invitrogen, Drosophila expression system). The complete 

medium for S2 cells is Schneider’s Drosophila Medium containing 5-10% heat-inactivated 

fetal bovine serum. S2 cells have to be passed always in new flasks when the culture density 

reaches 6 to 20 . 106 viable cells/ml and they have to be seeded not below a density of 5 . 105 

cells/ml. 

HeLa is an epithelial cell line derived from cervix adenocarcinoma. 

SK-N-SH is a human neuroblastoma cell line. 

293T, J, CHOK1, Fcl13 (J-nectin1), RS, COS, I143, Hep-2 have been described previously 

(par.2.2.1). 

 

3.2.2 PLASMIDS AND CONSTRUCTS 

S2 cell were co-transfected with truncated form of gH and full length gL, cloned into 

pMT/BiP/V5-His (invitrogen) (fig. 39) and pCoBlast plasmid (invitrogen), which carries 

blasticidin resistence gene, as selective marker. 

 

 
FIG 39: Schematic map of insect expression plasmid pMT/Bip/V5-His (invitrogen) (A) and insect selection 

plasmid pCoBlast (invitrogen) (B). 

 

 

B A 
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To enable gH detection we inserted a heterologous epitope recognized by MAb 5E1 (5E1 

epitope), preceded by the consensus for factor Xa protease. Downstream of these sequences, 

we inserted the ONE-STrEP-tag sequence for purification of recombinant gHgL (herein 

named gHt5E1-strep gLV5His) by chromatography to STrEP-tactin resin (IBA). 

The linear map of gHt5E1-strep is shown in figure 40. 

 40: Linear map of recombinant gH 

o generate gHt5E1-strep protein, the appropriate gH sequences (corresponding to aa 21-793 

 TGG GGC GGC CGC CAC GAC TGG ACT GAG C containing the 

quentially the aa consensus for factor Xa 

   
FIG

 

T

without signal sequence) were cloned in the pMT/BiP/V5His vector (invitrogen), under the 

drosophila metallothionein promoter and drosophila BiP secretion signal. The gHt5E1-strep 

construct was generated by PCR amplification of the gH sequence from viral DNA with the 

following primers: 

gH NotI_forw: GCG

restriction site NotI and gH XhoI_rev: CCG TCA TTC ATT TGC TAG CCC TCG AGC 

ACG CAG CCC containing the restriction site XhoI. The amplimer was digested with NotI 

and XhoI and cloned in pMT/BiP/V5His vector. 

In a second step, the epitope that encodes se

protease-epitope recognized by MAb5E1 and epitope-ONE STrEP tag, was generated with the 

following primers: 

 ONE-STREPNheI_forw (containing the restriction site NheI for cloning into gH and the 

silent site Sal I for screening):    

Factor Xa
clevage site 

Ile-glu-gly-arg

Linker Ser-Gly

gly-gly-gly-gly-ser-gly-gly-gly-ser-gly-gly-gly-ser

5E1 epitope

Ser-arg-progly-ser-thr-thr-pro-ser-gly-asn-
ser-ala-aer-tyr-gly-asn-asn-thr

Linker

Ser-ala

Strep-tag

Trp-ser-his-pro-gln-phe-glu-lys

Strep-tag

Trp-ser-his-pro-gln-phe-glu-lys

ONE-STrEP-tag

gH21 793

Factor Xa
clevage site 

Ile-glu-gly-arg

Linker Ser-Gly

gly-gly-gly-gly-ser-gly-gly-gly-ser-gly-gly-gly-ser

5E1 epitope

Ser-arg-progly-ser-thr-thr-pro-ser-gly-asn-
ser-ala-aer-tyr-gly-asn-asn-thr

Linker

Ser-ala

Strep-tag

Trp-ser-his-pro-gln-phe-glu-lys

Strep-tag

Trp-ser-his-pro-gln-phe-glu-lys

ONE-STrEP-tag

gH21 793
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GCC GCG CTA GCC ATC GAA GGG CGA AGT CGA CCA GGA AGC ACT ACA CCC 

TCT GGG AAC TCT GCA AGG TAT GGG AAT AAC ACA AGC GCT TGG AGC CAC 

CCG CAG TTC G  

ONE-STREPXhoI_rev (containing the restriction site XhoI for cloning into gH) GCC GGC 

TCG AGT CAT TTT TCG AAC TGC GGG TGG CTC CAC GAT CCA CCT CCC GAT 

CCA CCT CCG GAA CCT CCA CCT TTC TCG AAC TGC GGG TGG CTC CAA GC. 

The amplimer was digested with NheI and XhoI and cloned in pMT/BiP/V5-His containing 

gH. 

The gL-expressing construct (gLV5His) was derived by cloning the appropriate sequence (aa 

20- 224 without signal sequence), amplified from HSV-1 DNA by PCR by means of the 

primers gL EcoRI_forw: GTG TGT GAA TTC GGG CTT GCC TTC AAC CG containing the 

restriction site EcoRI and gL NotI_rev: CGG CGC CTC TTG CGG CCG CCT CGA CGG 

AAA CCC G containing the restriction site NotI which causes gL stop codon mutation 

(introduction of phe) to allow V5-His expression downstream of gL protein. The amplimer 

was digested with EcoRI and NotI and cloned in  pMT/BiP/V5His vector. The constructs 

were sequenced for accurancy. 

 

3.2.3 ANTIBODIES 

Antibodies to gH we used are: MAb52S (1:200), which recognizes a gL-indipendent 

discontinuous epitope with critical residues at position 536-537, MAb53S (1:400), which 

recognizes a discontinuous epitope and strickly requires gL for reactivity, and MAb5E1 

(1:1000 in IFA and 1:5000 in western blotting) which recognizes the epitope 5E1 cloned 

downstream of gH sequence. 

Antibodies to gL we used are: MAbL4 (1:400), which recognizes residues 168-178 [84], 

MAb antiV5 (invitrogen) (1:400 in IFA and 1:5000 in western blottig) which recognizes the 

epitope present at the C-terminus of gL. 

Anti-mouse IgG-FITC (fluorescin-isothiocyanate) and anti-mouse IgG-TRITC conjugated 

antibodies were from Jackson Immunoresearch. 

Peroxidase-conjugated anti mouse IgG horseradish peroxidase linked whole antibody (from 

sheep) was from GE Healthcare. 

 

3.2.4 SELECTION OF A STABLE CELL LINE 

S2 cells were tranfected, using 150µl of Arrest-in transfection agent (invitrogen) with the 

following plasmids: 13 µg of gHt5E1-strep, 6 µg of gLV5His and 1 µg of pCoBlast; five days 
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after transfection S2 were selected with blasticidin (invitrogen) at a concentration of 5 to 50 

µg/ml. Selected cell line was checked for gH-gL expression after induction  by western 

blotting. 

 

3.2.5 INDUCTION OF gHt5E1-strepgLV5His EXPRESSION 

To induce expression of gHt5E1-strepgLV5His, we seeded S2 gHt5E1-strepgLV5His cells at a 

density of 1x107 cells/ml and added copper sulphate (CuSO4) to the serum-free medium at the 

final concentration of 500µM. Cells were harvested 7-10 days after induction; the presence of 

gHt5E1-strepgLV5His in the cell supernatant was assayed by western blotting and dot blotting, 

after removing cells by centrifugation at 1000xg for 10 min. 

 

3.2.6 WESTERN BLOTTING 

To test the production of gHt5E1-strepgLV5His we determined its electrophoretic mobility: the 

supernatant was boiled in SS (solubilizing solution) containing SDS and β-mercaptoethanol 

and boiled for 3 minutes. The proteins were separated by denaturing polyacrylamide 

electrophoresis (PAGE) and transferred onto Hybond-ECL nitrocellulose-membrane 

(Amersham Biosciences). The membranes were blocked with 5% non-fat dry milk in PBS for 

30 minutes at 37°C, washed and reacted with MAb5E1 and with MAbantiV5, followed by 

peroxidase-conjugated anti mouse IgG horseradish peroxidase linked whole antibody (from 

sheep) (GE Healthcare) and enhanced chemioluminescence (ECL;Western blotting detection 

reagents; GE Healthcare). 

 

3.2.7 DOT BLOTTING 

To determine the amount of gHt5E1-strepgLV5His produced or purified and to determine the 

reactivity to antibodies that recognize conformation-dependent epitopes, we performed dot 

blotting assay using Bio-Dot Microfiltration Apparatus (BIO-RAD): we spotted on a nitro 

cellulose membrane (Hybond-C Extra Amersham Biosciences) decreasing amounts of 

samples. The membranes  were blocked with 5% non-fat dry milk in PBS for 30 minutes at 

37°C, washed and reacted with MAb53S (1 h at 37°C), followed by peroxidase-conjugated 

anti mouse IgG horseradish peroxidase linked whole antibody (from sheep) (GE Healthcare) 

and enhanced chemioluminescence (ECL;Western blotting detection reagents; GE 

Healthcare). 
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3.2.8 AFFINITY CHROMATOGRAFY 

For gHt5E1-strepgLV5His complex purification we used ONE-STrEP-tag system (IBA 

BioTAGnology): we eluted by means of  desthiobiotin, which allows regeneration of the 

resin.  The principle of this system is illustrated in figure 41 and the protocol is detailed in 

paragraph 3.3.3. 

 

 

 
FIG 41: gHt5E1-strep in complex with gLV5His binds Strep-Tactin thanks to the One-STrEP-tag epitope at its C-

term. After washing contaminants present in the medium with washing buffer, gHt5E1-strepgLV5His complex was 

eluted with elution buffer containing desthiobiotin. Desthiobiotin competes with One STrEP-tag for strep-tactin 

binding  (from IBA). 

 

3.2.9 CELL BINDING ASSAY 

The different cell lines described in paragraph 3.2.1 were grown on glass coverslips for 16 h, 

then they were fixed with ice cold methanol at -20°C for 10 min or with paraformaldeyde at 

room temperature (RT) for 10 min, permalized with 0,1% Triton X-100 in PBS for 10 min 

when indicated. Cells were incubated for 1 h at 37°C with 1% BSA in PBS, followed by 

1 µM purified gHt5E1-strepgLV5His for 1 h at RT. or with negative control (data not shown). 

Binding of gHt5E1-strepgLV5His was deteched by indirect immnofluorescence, as described in 

paragraph 2.2.4. 

 

DesthiobiotinDesthiobiotin
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3.3.1 GENETIC ENGINEERING OF  A SOLUBLE FORM OF gHt5E1-strepgLV5His FOR 

THE INDUCIBLE EXPRESSION IN INSECT CELLS 

To generate an insect cell line expressing gHt5E1-strep gLV5His, two plasmids were engineered, 

encoding gH and gL respectively. 

The first plasmid (gHt5E1-strep) contained gH (aa 21-793), cloned between the pMT/BiP/V5 His 

promoter and the C-terminal epitope “ONE-STrEP”, essential for the subsequent purification 

step. The experimental design consisted in insertion of soluble gH sequence into the multiple 

cloning site of the expression plasmid, then, insertion of “multiple epitope” sequence 

downstream of protein sequence. As described in paragraph 3.2.2, this  multiple epitope 

contains Factor Xa cleavage site to remove all the epitopes, if necessary, 5E1 epitope to detect 

gH in western blotting and indirect immunofluorescence, and ONE-STrEP-tag for purification 

step.  

 

 

 
FIG 42: Schematic representation of the construct for gH expression in S2 cells: soluble gH (aa 21-793) and the 

multiple epitope (Xa cleavage site-5E1-ONE-STrEP-tag) were cloned into the multiple cloning site under the 

control of metalloprotein promoter (PMT). 

 

 

 

NotI NheI XhoI

Soluble gH Multiple 
epitope

NotI NheI XhoI

Soluble gH Multiple 
epitope
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The second plasmid contains gL sequence  downstream of the pMT/BiP/V5 His promoter. 

Thus, gL contains the V5 epitope at its C-terminus, whose sequence was present in the 

plasmid. 

 

IG 43: Schematic representation of the construct for gL expression in S2 cells. gL was cloned into the multiple 

 

 

 

F

cloning site under the control of the metallo protein promoter (PMT) 

 

 

 
 
 
 
 
 
 

EcoRI NotI

gL

EcoRI NotI

gL
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3.3.2 CONSTRUCTION OF S2 INSECT CELL LINE EXPRESSING gHt5E1-strepgLV5His  

2 insect cell line expressing gHt5E1-strepgLV5His, the two expression

id 

ted w

pernatant 

ined the tim

cells were 

 blotting 

ith MAbs 5E1 and V5, respectively. Arrowheads indicate migration position.  

t5E1-strepgLV5His was also detected by indirect immunofluorescence (data not shown) with 

2 t5E1-

gLV5His

 

In order to construct the S  

plasmids described in paragraph 3.3.1, gHt5E1-strep and gL-V5His and one selection plasm

(pCoBlast) were co-transfected in S2 cells by means of arrest-in transfection agent 

(invitrogen). The transfected cells were selec ith 50 µg/ml blasticidin. 

As first assay to check whether this S2 cell line, named S2 gHt5E1-strep, was able to produce 

gHt5E1-strepgLV5His, we induced the expression with cupper sulphate ions and the su

was assayed for gHt5E1-strepgLV5His presence by western blotting (fig. 44). We also 

determ e of highest expression. 

 

10 days after inductionduction

MAb5E1

MAbV5

7 days after in

gH 96KDa

gL 25KDa

10 days after inductionduction

MAb5E1

MAbV5

7 days after in

gH 96KDa

gL 25KDa

10 days after inductionduction

MAb5E1

MAbV5

7 days after in

gH 96KDa

gL 25KDa

 
FIG 44: Analysis of supernatant of S2 gHt5E1-strep cells: seven and ten days after induction 40 µl of 

spinned and the supernatant was tested. Amount of gHt5E1-strep and gLV5His was detected by western

w

 

  

As shown in figure 44, gHt5E1-strepgLV5His did not appear degradated and migrated at 

sitions. expected po

gH

antibodies MAb 53S and MAb 52S directed to gH discontinuous epitopes. 

These results indicate that S  insect cells are the proper instrument to produce gH

strep , and that the secreted protein adopts a correct conformation. 
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3.3.3 PURIFICATION OF gHt5E1-strepgLV5His BY MEANS OF ONE-STrEP-TAG 

CHROMATOGRAPHY 

gHt5E1-strepgLV5His was purified by means of STrEP Tactin resin. The S2 gHt5E1-strep cells at a 
. 107 cells/ml were induced with 500µM CuSO4, according to Invitrogen protocol. 

dium 

ated 10 times with Centricon Plus-70 (amicon-Millipore). The 

ltred 

en washed with washing buffer (100mM Tris /HCl, 150mM NaCl, 1mM 

ns were collected. 

is shown in figure 45: gHt5E1-strepgLV5His was present in eluted 

(lane 3), wash 2 (lane 4) and eluted fraction from I to VI (from lane 5 to 10) were subjected to SDS-PA

transferred to nitrocellulose membranes, and visualized by western blotting with MAb 5E1 against the epi

1 cloned at the C-term of gHt5E1-strep, and with Mab-V5 against the epitope V5 cloned at the C-term of 

LV5His, followed by peroxidase-conjugated anti-mouse IgG and ECL.  Lane 1 contains gB-5E1 that is the 

 

density of 1 

Ten days after induction, the me was collected, filtred with a 50mm Filter Unit 

(Nalgene), and concentr

concentrated medium containing gHt5E1-strepgLV5His was centrifuged and fi again and 

brough to pH 8.5.  

Moreover to avoid that the biotin contained into the medium could interfere with the binding 

of gHt5E1-strep to the resin, we added avidin. gHt5E1-strepgLV5His was absorbed to STrEP Tactin 

resin over night at 4°C . 

The column was th

EDTA pH8) and eluted with elution buffer (IBA: 100mm Tris /HCl, 150mM NaCl, 1mM 

EDTA, 2mM desthiobiotin pH8). 0,5 ml fractio

The result of purification 

fractions 2-3-4 and 5 (lanes 6-9).    

 

 

 

gH

gL

1          2           3          4          5                   6           7          8         9          10 

 
 

FIG 45: Electrophoretic mobility of gHt5E1-strepgLV5His. Medium containing gHgL (lane 2), unbound fraction 

GE, 

tope 

5E

g

positive control for reactivity of MAb 5E1. 
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We next analyzed the extent of purification and the yield of purified protein by silver-staining 

coloration. The results in figure 46 show that only the two bands of gH and gL were present. 

 silver staining. 

The eluted gHt5E1-strep mix of  E2+E3+E4+E5. 

First lane cont

 

 

e determined the concentration of purified gHt5E1-strepgLV5His by dot blotting, comparing it 

ry [11].  

 

 

FIG 4

mem

depe

(lane 

ntrated 10X mix of  E2

 

 

 

  
 
FIG 46: The indicated fractions were subjectd to SDS-PAGE and then developed by

gLV5His contains the indicated volumn of the concentrated 10X 

ains Molecular mass marker. 

W

to a known amount of gHgL (fig. 47) and by protein determination according to Low

 

7: DOT-BLOTTING

brane (Hybond-C Extra

ndent epitope of gH. S

2), medium containing

conce

70 ng

1:
2

s
 D

ilu
tio

n

70 ng

1:
2

s
 D

ilu
tio

n

96Kda                     8µl         3µl           1µl 

E EE E

 

g UMg UM1 2 3 4 5 6
re spotted to a nitrocellulose 

Ab 53S against a conformational 

edium without gHt5E1-strepgLV5His 

tion (lane 4), wash 2 fraction (lane 5), 

+E3+E4+E5. 

: Decreasing amounts of gHt5E1-strepgLV5His we

 Amersham Biosciences) and  visualized with M

amples are: known amount of gHgL (lane 1), m

 gHt5E1-strepgLV5His (lane 3), unbound franc

Wg

100 µl

1.5 µl

Wg

100 µl

1.5 µl
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The table 3 summarizes all the purification experiments performed the amount of medium 

 

have 

d. 

n, we developed a protocol for production and purification of gHt5E1-strepgLV5His.  

 
 
 

produced, and the yield of purified gHt5E1-strepgLV5His achieved 

 

 

 

 

 

 

 

 

 

 
TAB 3: The table summarizes all the purification experiments we have done and the yield of production we 

obtaine

 

In conclusio

 
 
 
 
 
 
 
 
 

EXP. yield
1^ 300 ml 40 ug

medium protein
0.133 ug/ml

2^ 800 ml 150 ug 0.187 ug/ml
3^ 500 ml 290 ug 0.58 ug/ml
4^ 2200 ml 400 ug 0.181 ug/ml
5^ 800 ml 125 ug 0.156 ug/ml
6^ 2400 ml 300 ug 0.125 ug/ml
7^ 1000 ml 1200 ug 1.2 ug/ml

purificated starting 
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3.3.4 BINDING OF gHt5E1-strepgLV5His TO CELLS  

It was of interest to determine whether gHt5E1-strepgLV5His heterodimer purified above

exhibited some biological properties. The dot blot assay, shown above, and indirec

immunofluorescence assays (data not shown) proved that gHt5E1-strep was able to interact with

conformation-dependent monoclonal antibody, like MAb53S. Here, we asked whether the

complex is able to bind cells, in particular cell surface. 

ding to permeabilized cells. Thus, fixed 

ebilized with Triton 0,1% and reacted with MAb L4 to gL, followed by FITC or TRITC-conjugated 

condary antibody. Both in A and in B fluorescence localized in part at the plasma membrane, and in part at the 

toplasm. 

 

t 

 

 

In preliminary experiments, we analysed complex bin

and permeabilized cell lines of different types were incubated with gHt5E1-strepgLV5His. The 

results (fig.48) show the binding of gHt5E1-strepgLV5His occurred to all the cell type tested. 

 

 

 
 

FIG 48: Binding of purified gHt5E1-strepgLV5His on the indicated cell lines. (A) Cells were fixed with methanol 

incubated for 1h at room temperature with 1 µM gHt5E1-strepgLV5His and reacted with MAb 5E1 to gHt5E1-strep 

5E1 epitope, followed by FITC-conjugated secondary antibody. (B) Cells were fixed with paraformaldehyde, 

perm

se

cy

 

 

 

 

293T BHK COSCHOpcF18CHOK1RS Fcl13

HeLa Hep2 I-143 J

293T BHK CHOK1 COS Fcl13

A

B

HeLa Hep2 I-143 J

293T BHK CHOK1 COS Fcl13

A

B

SK-N-SH

293T BHK COSCHOpcF18CHOK1RS Fcl13

HeLa Hep2 I-143 J

293T BHK CHOK1 COS Fcl13

A

B

HeLa Hep2 I-143 J

293T BHK CHOK1 COS Fcl13

A

B

SK-N-SH
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Furthermore binding to non permeabilized cells indicated that gHt5E1-strepgLV5His adopts a 

correct conformation and is capable of binding to cell surface (fig. 49). 

 

 

I-143                293T HeLa                Hep-2- SK-N-SHI-143                293T HeLa                Hep-2- SK-N-SH

 

 
 
 
 
 

FIG 49: Binding of gHt5E1-strepgLV5His purified at the plasma membrane of indicated cell lines. Cells were fixed 

with paraformaldehyde, incubated for 1 h at room temperature with 1 µM gHt5E1-strepgLV5His and reacted with 

MAb L4 to gL, followed by FITC or TRITC-conjugated secondary antibody. Fluorescence localized at the 

plasma membrane. 
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3.4.1 DISCUSSION 

In the past there have been numerous attempts to produce and purify a soluble 

combinant form of gHgL from HSV, as well as from other herpesviruses, in a number of 

boratories, including our own. While other major HSV glycoproteins have been produced, 

urified and their structure solved, the production and purification of gHgL has been a 

emanding task. Our laboratory has been committed to this project for years, with no success.   

The trials that were not successful included production of gHtgL in baculovirus, 

 by affinity chromatography to a number of monoclonal antibodies to 

gH, 52

edium, containing 1 x 1010 

cells/lt  over the 7-10 days of induction. We 

have adapt c ayers. 

  The ma

to (i) study bio in HSV entry; (ii) determine the 

crystal stru r  France). 

gical 

e cell surface, implying 

n in 

 a potential 

grin b

ce. Integrins are indicated as 

amily 

 mem

ogniti

re

la

p

d

purification of gHtgL

S and 53S, or to the heterologous epitopes,  5E1 and His.  

The successful approach described here couples  

• the production in a permanent insect cell line,  

• the avoidance of constitutive expression, and the choice of inducible 

expression through a melloprotein promoter,  

• the purification by means of the One-STrEP-tag system by IBA. 

The yield of produced gHt5E1-strepgLV5His is in the range of about 1mg/lt of medium, e.i. 

relatively low. Our largest scale of production was 1-2 lt of m

. Production needs to be systematically monitored

ed ells to grow in suspension, rather than as monol

in aim of the work was to obtain a biologically functional form of gH, in order 

logical properties of gH, in particular its role 

ctu e (to be done in collaboration with Dr. Felix rey, institute Pasteur,

  With respect to biolo function we provide here two lines of evidence: 

• gHt5E1-strepgLV5His is capable of reacting to antibodies that recognize conformation 

dependent epitopes and that neutralize virion infectivity.  

• gHt5E1-strepgLV5His is capable of binding a variety cells at th

that cell surface bears a component able to interact with gHt5E1-strepgLV5His. Indeed, 

the availability of soluble gHt5E1-strepgLV5His makes it feasible to identify more 

clearly whether  gHgL has a cellular partner, and what is the role of this interactio

the process of virus entry. Based on the fact that gH sequence presentes

inte inding motif Arg-Gly-Asp (RGD), future experiments will address the issue 

whether integrins are involved in gH binding to cell surfa

a f of structurally, immunochemically and functionally related cell-surface 

heterodimeric receptors characterized by the ability of each bers to recognize 

multiple ligands with various rec on sequences. [84] 

 103



 Parry e

Glu (R

seems t

demons

virus en

mediate

[76]. If ossible that to destroy this 

t al [73] have shown that mutated gH, in which RGD sequence was become Arg-Gly-

GE), was no more able to bind CHO cells expressing αVβ3. Moreover, integrin αVβ3 

o have an importantant role in HHV-8 and HCMV infection. Galdiero et al [80] have 

tarted that a HSV-1 with gH-RGD mutated in gH-RGE is not inhibited with respect to 

try. These results do not rule the possibility that, as for HCMV also for HSV-1, αVβ3-

d infection depends on a ligand motif different from the typical tripeptide RGD motif 

 gH cellular partner was integrin indeed, it could be p

binding it is necessary to mutagenize other sequence of gH... 

 No doubt, the availability of biologically active purified gHt5E1-strepgLV5His, in 

sufficient quantities, will speed up the efforts to solve its crystal structure. 
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