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Thesis Abstract

Background

Dysfunction of AutonomidNervous System is a typical feature of chronic heart failure

and other cardiovascular disease and is associated with severity of the disease and
prognosis of cardiac patients. As a simple-mvasive technology, heart rate variability

analysis provides relde information on autonomic modulation of heart rate, and it has

been a valuable tool to understand psychopathological mechanisms. A small number of
studies focused on automatic discrimination between healthy subject and patients
suffering from congestivheart failure using dataining methods. However, to the best

of authoré knowledge no study investigated
Heart Rate Variability analysis and datténing. Moreover, autonomic nervous system
disturbance and cardiascular disorders including carotid sinus hypersensitivity, serious
arrhythmias, severe valvular heart disease, and coronary heart disease may be
underesti mated causes of falls. To best of
Heart Rate Variabily in fallers and notfallers among a geriatric population.

The aim of this thesis was to research and develop automatic methods based on
Autonomous Nervous System assessment for evaluation of risk in cardiac patients. Heart
Rate Variability analysis hdseen performed and several dataning methods have been
combined to achieve the following goals: automatic assessment of disease severity in
Congestive Heart Failurpatients; automatic identification of hypertensive patients at
higher risk of developingascular events, and automatic identification of hypertensive
patients with a history of falls.

Materials and methods

Heart Rate Variability analysis was performed accordiinthe international guidelines
recommendation and the most recent scientifide@wies, particularly for frequency
domain and notinear measures. Several features selection and machine learning
algorithms have been combined to achieve the goals. In particular, in any application,
methods which provide an intelligible output have badgopted and preferred in order to
extract relevant information. Finally, cregalidation methods have been adopted and
improved in order to provide a rigorous model selection and evaluation. When available,
public datasets are preferred. Otherwise, addaiasets have been developed and they
are planned to be publicly available so that other investigators could replicate the results.
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Results

Automatic assessment of disease severi§oingestive Heart Failureatients For the

first time, a completelyautomatic method, based on letegm Heart Rate Variability
measures, that is extracted from nominath2dlectrocardiographicecordings, was
proposed in order to automatically assess the severity of Congestive Heart Failure (mild
versus severe diseas#)has been developed by using public databases, freely available
from the physionet.org website. Since the dataset is unbalanced, an approach based on
feature selection and trdmased classifier was proposed and compared to standard
methods to handle ¢himbalance problem. The proposed methods outperformed the
standard methods selected as benchmark achieving a sensitivity ra8oaodnd a
specificity rate 064% in discriminating seveneersusmild patients.

Automatic identification of hypertensive jgeaits at high risk of vascular evenEor the

first time, a completely automatic system was proposed in order to identify hypertensive
patients at higher risk to develop vascular events (e.g. stroke, myocardial infarction,
syncope) in the 12 months follavg theelectrocardiographiecordings. It was based on
linear and nonlineaHeart Rate Variabilityanalysis of a Bninute ECG segment. A
rigorous validation method, based on a crossvalidation loop nested in aoubold
splitting, was proposed to compalee performance of several dataning algorithms,
based on different approaches. The algorithms were trained on a database dexkloped
hoc which isalready available ifPhysionet.orgwvebsite(PhysidNetWorks, i.e.area for
registered users) and gannal to be published in theublic ara of the website.The
proposed methods achieved a sensitivity rat€186 and a specificity rate @6% in
identifying high risk subjects among hypertensive patients and outperformed the
conventional echographic risk facs for vascular events.

Automatic identification of hypertensive patients with history of Fali the first time, it

was explored whether an automatic identification of fallers among hypertensive patients
based orHeart Rate Variabilityvas feasible. fie proposed method outperformed several
functional tests which were proposed in literature for faller identificaMworeover, it

does not require the use of other technologies as wearable accelerometers or pressure
matrices, which are not used in everydénical practices, not having direct benefits for
cardiovascular outpatients.

Discussions and conclusions

The results obtained in this thesis could have implications both in clinical practice and in
clinical research. The systematzeen designed andwdgoped in order tde clinically
feasible. In particularHeart Rate Variabilityanalysis and the automatic system for
identification of highrisk patients are integrated in a wiessed platform, developed in

the framework of the Smart Health and Artificiintelligence for Risk estimation
(SHARE) project. The platform, now integrated in an open and interoperable cloud
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computing platform forhealth andeGovernement (PRISMA), included a standalone
software (for Windows operative system) and an Android egpdin to acquire signals

from wearable devicesThis integration enable to test the clinical feasibility and uptake

of the developed tool in a prospective study in subjects aged 55 and over recruited by the
Center of Hypertension of the University Hogpinf Naples Federico Il. Moreover, since
5-minute ECG recording is inexpensive, easy to assess, andvasive, future research

will focus on the clinical applicability of the system as a screening tool irspeaialized
ambulatories (e.g. atGeneralR ct i t i oner s 6) , -riskipatentsdcebe t o
shortlisted for more complex (and costly) investigations. Improved identification of
individuals at risk for the development of vascular events may result in more targeted and
adequate preventio strategies.For example, adopting the model for vascular risk
assessment in a cohort of 1000 hypertensateents about200 high risk subjects should

be identified, and among them, 80 will develop a vascular event in the following 12
months. Since, aseported by theEuropean Guidelines on cardiovascular disease
prevention in clinical practicenost of cardiovascular events could be avoided by changes
in life styles and appropriate use of therapeutic treatments, it can be hypotized that the
adoption oftargeted strategies on the higbk subjects could halve the number of
vascular events.

The findings obtained by the dat@ining methods (which did not use any a priori
knowledge) reinforce the previous clinical observation that depressed HRV is a marker
of cardiovascular risk and, for the first time, showed that it could be also an interesting
parameter to be investigated in fall identification and prevention resdangarticular,

the proposed method does not require the use of other technologiesambleve
accelerometers or pressure matrices, which are not used in everyday clinical practices,
not having direct benefits for cardiovascular outpatients. For that reason, the method
proposed could be used widely in outpatient settings to identifyrigghpatients who

need further assessment and could benefit from fall prevention programs or fall detection
systems.

The main limitationof the achieved findings the relatively small sample size of the
datasets. This issue could dédressedn the next fiure by increasing the number of
enrolled subjects by Center of Hypertension of the University Hospital of Naples Federico
[I. This would make the present findings clinically more relevant. Moreover, the dataset
used in the fall identification issue wag specifically designed to study falls. Therefore,
important information, such as the exposure to other independent intrinsic risk factors for
falls could not be accessed or used to verify independently the results. Moreover, the fall
recordings were baseoih patient selfeports, which are considered not every time
reliable as some nemarmful falls can be forgotten and not reported. Therefore, the
number of falls could have been underestimated.
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Further developments of the current thesis could be thetiadopf new Heart Rate
Variability measures (e.g. point process tifreuency analysis), strong risk markers
extracted from ECG (e.g. Heart Rate Turbulence or T wave alterations), and other non
invasive measures obtained by wearable sensors (e.g acaigcaignals, breath rate).

Outline
The thesis is organized as follows:

1 in the chapter 1, the main topics which are addressed in the thesis, such as
AutonomousNervousSystem, Heart Rate Variability, cardiovascular diseases,
are briefly introduced;

1 theadopted databases are described in the Chapter 2;

1 the adopted methods, including features computation and selection, machine
learning algorithms, are reported in Chapter 3;

1 inthe Chapter 4, the main results are presented and discussed in relatioe with th
state of art;

1 the Chapter 5 provides the conclusions of the works.
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1 Introduction

1.1 Autonomic Nervous System

The Autonomic Nervous System (ANS) innervates primarily the smooth musculature of
all organs, the heart and the glands in order tdiate the neuronal regulation of the
internal milieu.(Janig, 1989)The functions of the ANS are to keep the internal milieu of
the body constant or adjustas required by changing circumstances (e.g. mechanical
work, stressful situation, food intake). The actions of ANS are in gemarahder direct
voluntary control. The ANS consists of two subdivisions: the sympathetic and the
parasympathetic nervous system.

The nerves of the sympathetic system originate from the intermediate zone of the thoracic
and lumbar spinal cord. The axoofsthese neurons are thin, but many are myelinated;
thar conduction velocities range from 1 to 20 m/s. They leave the spinal cord in the
ventral roots and the white racommunicantsandterminate in the paired paravertebral
ganglia or the unpairedaavertebralabdominalganglia. The paravertebral ganglia are
connected by nerve strands to form a chain on either side of the vertebral column. From
these sympathetic trunks, the thinner, unmyelinated postganglionic axons either pass in
the grey rami to the #ectors in the periphery of the body, or form special nerves that
supply organs in the head region or in the thorax, abdomen and pelvis.

The cell bodies of the preganglionic parasympathetic neurons are in the sacral cord and
the brainstem. All the axorare very long as compared with those of the sympathetic
preganglionic neurons. They form special nerves to the parasympathetic postganglionic
neurons, which are near or in the effector organs.

The efficacy of the heart as pump is controlled by sympatlaetit parasympathetic
nerves, whiclsuppliedthe heartThe parasympathetic nerves (the vagi) distributed
mainly to thesinoatrialandatrioventriculamodes, to desser extent to the muscle of the
two atria, and veryittle directly to the ventriculamuscle. The sympathetic nerves,
conversely, are distributed to all partstbé heart, with strongepresentation to the
ventricdar muscle as well as to all the other areas.

Stimulation of the parasympathetic nerves to the lvaardes the hormomecetylcholine

to bereleased at the vagal endings. This hormone hasajareffects on the heart. First,

it decreases the rapé rhythm of the sinus node, and second, it decrahsesxcitability

of the atrioventricular junctional fibers betweerthe atrial nusculature and the
atrioventricularnode, therebyslowing transmission of the cardiac impulse into the
ventriclesWeak to moderate vagal stimulation slows the oteeart pumping, often to
as little as one half normadnd strong stimulation of the vagan stop completelthe
rhythmical excitation by the sinus node or bladmpletely transmission of the cardiac
impulse fromthe atria into the ventricles through #iteioventriculamode. Ineither case,
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rhythmical excitatory signals are no longemsnitted into the ventricles. The ventricles
stopbeating for 5 to 20 seconds, but then some point iRtinkinje fibers, usually in the
ventricular septgbortion of theatrioventriculabundle, develops a rhythm of dgvn and
causes ventricular contramti at a rate of 15 to 40 beats per minute. This phenomenon is
calledventricular escape.

The acetylcholineeleased at the vagal nerve endings greatly increasgsermeability
of the fiber membranes to potassiions, which allows rapid leakage of patasn out
of the conductive fibers. This causes increased negaitigiye the fibers, an effect called
hyperpolarizationwhich makes this exa@ble tissue much less excitable.the sinus
node, the state of hyperpolarizatidne c r e as e s t h eanefpotentiat of theg 0 me mt
sinus nodal fibers ta level considerably more ndiye than usual, te65 to-75 millivolts
rather than the normal level &5 to-60 millivolts. Thereforethe initial rise of the sinus
nodal membrane potentiedused by inward siilum and calcium leakagequires much
longer toreach the threshold potentidr excitation. This greatly slows the rate of
rhythmicity of these nodal fibers. If the vagal stimulatiostr®ng enough, it is pobe

to stop entirely the rhythical selfexcitation of this noddn theatrioventriculamode, a
state of hyperpolarization causbg vagal stimulation makes it difficult for the small
atrial fibers enteringhte node to generate enough #ieity to excite the nodal fibers.
Therefore, the safetfactor for transmission of the cardiac impulse throutjie
transitional fibers into thatrio-ventricularnodal fibersdecreases. A modaie decrease
simply delays coduction of the impulse, but a large decrease blooksluction entirely

Sympathetic siulation causes essentially tlopposite effects on the heart to those
caused by vagastimulation, as followsFirst, it increases the rate sfnus nodal
discharge. Second, it increases the rate of conduction as well as the level of excitability
in all portions of the heart. Third, it increases greatlyftiree of contraction of all the
cardiac musculatureboth atrial and ventricularln short, sympathetic stimulation
increases th@verall activity of the heart. Maximal stimulatiaran almost triple
frequency of heartbeat and cartrease the strength of heart contraction as much as
twofold.

Stimulation of the sympathetic nerves releases the hormone norepinemtritiee
sympathetic nerve endings. The preamsechanism by which this hormone acts on
cardiac muscle fibers is somewhat unclear, but the belief is that it increases the
permeabity of the fiber merbrane to sodium and calcium ions. In the sinus nade,
increase of sodiumalcium permeability caus@smore positive resting potential andaals
causesncreased rate of ward drift of the diastolic mebrane potential toward the
threshold level for seléxcitation, thus accelerating selkcitation and,therefore,
increasing the heart rate.

In theatrioventriculamode and bundles, increassmtium-calcium permeability makes
it easier for thection potential to excite each succeeding portiagh@iconducting fiber

18



bundles, thereby decreasing tenduction time from the atria to the ventricl&te
increase in permeability to calcium ions iseatst partially responislie for the increase in
contradile strength of the cardiac muscle under the influeriGympathetic stimulation,
because calcium ions play powerful role in exciting the contractile processtiu#
myofibrils. (Guyton and Hall, 2006)

1.2 Heart Rate Variability

Heart Rate Variability (HRV) is the variation over time of the period betwconsecutive
heartbeats RR intervals) (Malik et al., 1996) and is usually extracted from
electrocardiographic signal recorded through a -ingasive technique. HRV is
commonlyused to assess the influence of the ANS on the (ialik et al., 1996)HRV

is usually extracted by electrocardiographic signals (ECG).

Many measures for assessing HRV have lstribed in literature, particularly with
reference to their discrimination ability between different pathophysiological clinical
conditions. In general, HRV measurement coulddistinguishedin: time-domain,
frequencydomain and nonlinear measures.

1.2.1 Time-domain HRV measures

A number of standard statistical tidemain HRV measures have been proposed in
literature:

1 the Standard Deviation of all NN intervaighich is the most simplest variable to
calculate, but it is dependent from tlemgth of recordirg periodMalik et al.,
1996)

1 the standard deviation of the average NN interval calculated over short periods,
usually 5 min, which is an estimate of the changes in heart rate dyges longer
than 5 mirfMalik et al., 1996)

1 the mean of the-fnin standard deviation of the NN interval calculated over 24 h,
which measures the variability due to cyclesrsgdrothan 5 mifMalik et al.,
1996)

7 the square root of the mean squared differences of successive NN i\kéalikls
et al., 1996)

1 the number of times in which the change in successive normal sinus (NN) intervals
exceeds 50 md&Ewing et al., 1984)

1 percentage of differences between adjacent NN intervals that are longer than 50
ms (pPNN50)Bigger et al., 1988)

1 the other measures of the pNNx familiyheve the threshold measure x is set to
value different from 50 m@Mlietus et al., 2002)
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Other timedomain measuresre based on geometric methods, which can follow one of
the following approaches:

1 a basic measurement of the geometric pattern (e.g. the widtle dfstnibution
histogram at the specified level) is converted into the measure of HRV;

1 the geometric pattern is interpolated by a mathematically defined shape (e.g.
approximation of the distribution histogram by a triangle, or approximation of the
differential histogram by an exponential curve) and then the parameters of this
mathematical shape are used,

1 the geometric shape is classified into several patiased categories which
represent different classes of HRV (e.g. elliptic, linear and trianguégoeshof
Lorenz plotsYMalik et al., 1996)

The most common geometric measures are the following ones:

1 the HRV triangular index, i.e. the integral of the density distribution (chetb
as the number of all NN intervals) divided by the maximum of the density
distribution of NN interval@Vialik et al., 1996)

1 the baseline width of the distribution measured advage of a triangle,
approximating the NN interval distribution (the minimum square difference is
used to find such a triangl@yalik et al., 1996)

1.2.2 Frequencydomain HRV measures

The frequencsdomain HRV measures rely on the estimation of power spectral density
(PSD). Several spectral methods have been applied for the PSD estimation and are usually
distinguished in nomparametric and parametrigvalik et al., 1996)The nonparametric
method are based in most of the cases on the Fast Fourier Transform FFT and their
advantages are: the simplicity of the algorithm employed and the high processing speed
but theysuffer from spectral leakage effects doevindowing. The spectral leakage leads

to masking ofveak sigml that are present in the data. The parametric methods (i.e. model
based)avoid the problem of leakage and provateoother spectral components @i

can be distinguished independently of preselected frequency bands, egappessing

of the spectrum with an automatic calculation of low and high frequency power
components and easy identification of the central frequency of each component, and an
accurate estimation of PSD even on a small number of samples on which the signal is
supposed to maintaistationarity. (Malik et al., 1996)The widely used parametric
methods is theAutoregressive (AR) modelln AR method, the estimation of AR
parametergan be done easily by solving linear equations. InmM@&hod, data can be
modeled as output of a causall,pole, discrete filter whose input is white ngiseharya

et al., 2006Formally, AR model is expressed by the following equation:
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®»Q ODEwQ ¢ 071Q

where a(n) is AR coefficient and w(k) is white noisaidfariance and N is the order of

the model. The parameteséthe model are the AR coefficient and the variaircd he

most relevant issue related to PSD estimation by AR model is the selection of the order
N. Different studies investigated this issue, particularly, by using the Akaike information
criteria, enabhg to conclude that the model order could be set tqBdardman et al.,
2002)

Three main spectral components are distinguished in a spectrum calculated frem short
term recordings (R 5 minues): very low frequency (VLF), low frequency (LF), and high
frequency (HF) componer{skselrod et al., 1981)Spectral analysis may also be used to
analyse the sequence in the entireh2geriod. The result then includes an ulowa
frequency component (ULF), in addition to VLF, LF and HF componéiaslik et al.,

1996)

Moreover, the use of techniques such as the FFT require an evenly sampled time series.
Since HRV is calculated from the variations in the RR interval series which are inherently
irregularly s@ced in time, in order to produce an evenly sampled time series priorto FFT
based spectral estimation, linear or cubic spline resampling is usually emfilageda

et al., 1998)Ectopic beats, arrhythmic events, missing data and noise effects may alter
the estimation of the PSD of HRV. Proper interpolation (or linear regression or similar
algorithms) on preceding/successheats on the HRV signals or on its autocorrelation
function may reduce this er(ddalik et al., 1996) A recent studClifford and
Tarassenko, 2005howed that Lomiscamble periogram, a more appropriate spectral
estimation technique for unevenly sampled time series that uses only the original
data(Lomb, 1976)provides a superior PSD estimate of RR series compared to FFT
techniqueswith reference to&opc beatremoval orreplacement

1.2.3 Nonlinear HRV measures

Recent developments in the theory of nonlinear dynamics have paved the way for
analysingsignals generateddm nonlinear living systenf&charya et al., 2006}t is now
generally recognized that these nonlinear techniques are able to describe the processes
generated by biological systems in a more effective way. Thé enagmon nonlinear
techniques applied to HRV analysis are: Poincaré (Blehnan et al., 200])
Approximate EntropfRichman and Moorman, 20Q0%ample Entrop§Richman and
Moorman, 200Q)Correlation DimensiofCarvajal et al., 2005)Detrended Fluctuation
AnalysigPeng eal., 1995a, Penzel et al., 2008hdRecurrence PldfTrulla et al., 1996,
Webber and Zbilut, 1994, Zbilut et al., 2002)
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1.2.3.1 Poincaré Plot

The Poincaré Plot, also known as return map, is a common graphicaergpt®n in
which each point is represented as a function of the previous one. In HRV analysis,
Poincaré Plots the scatterplot of the successRRversus previous one. A widely used
approach to analyse the Poincaré ploR&series consists in fittingn ellipse oriented
according to the linef-identity and computing the standard deviation of the points
perpendicular to and along the hLo&identity referred asSD1 and SD2
respectivelyBrennan et al., 2001)

It has been shown th&D: andSD» are related to linear measures of HB¥ennan et al.,

2001) Moreover, the twoPoincaré Plotmeasures are related to the autocovariance
function and,for that reason, these twiBoincaré Plotmeasures could not provide
independent nonlinear informam and in recent review on HRRajendra Acharya et al.,
2006) they are discussed in the standard time domain analysis instead of nonlinear
methods. Two kind of generalization of thHeoincaré Plotare proposed inhe
literaturgBrennan et al., 2001}jhe laggedPoincaré Ploand the higher ordd?oincaré

Plot

The laggedPoincaré Plots the plot ofRR\+m againstRR, wheremis chosen from 2 to
some small positive value (not higher thanS)y andSD», are @mputed similarly as lag
mset to 1 and are also related to the autocovariance funEtornhat reason, the set of
laggedPoincaré Plois a description of the autocovariance function.

Poincaré Ploof orderm is am-dimensional scatteplot of them-ples RR,, RRw+1, € ,
RRy+m). This plot resulted in-Bimensional projection into each of the coordinate planes
(RRy, RRy+1), (RR+1, RRu+2) , &R\, (RR+m). The first two projections are equivalent to
standardPoincaré Plgtthe last one is equivalent tdPaincaré Plowith lagm, and the
other projections are equivalentRoincaré Plotvith lag up tom. In other words, an order

m Poincaré Plots geometrically described by a setRafincaré Plotvith lag up tom+1.

GeometricallySDi measures the width ofélPoincaré cloud and, therefore, indicates the
level of shoriterm HRV, whileSD, measures the length of the cloud along the-difke
identity, reflecting the longerm HRV. Mathematicallythe findings by Brennan et al.
(Brennan et al., 200propo®d theinterpretatiorof SD1asa measure of shetérm (over
each beat) variabilityagnd ofSD2asa measure dhe difference between total variability
and shorterm variability. This could be explained by considering a time series which
shows variabily only over a single beat, such as a sequence alternating between two
value RR, RRi, RR, RRi, éRR, RRi). ThePoincaré Plotf this series shows a zero
length and zero value ddDp, which are coherent with the absence of ke
variability, whilethe SDy has a nofzero value, reflecting the shadrm variability of the
time series.
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Others techniques, such as central tendency mé¢bsatkova et al., 1995)density
based approa¢Gohen et al., 1996have been applied in order to extract independent
nonlinear information fronPoincaré Plgtbut they are not as widely used %31 and
SD2.

1.2.3.2 Approximate entropy

Approximate entropy AppEn) is widely used method to measure the plaxity of
signal(Pincus, 1991)It shows the probability that similar observation patterns do not
repeat. If a time series demonstsatomplex, irregular behaviour, than it will have a high
AppEn values. For instance, sinusoids give approximately zero valAgpin. AppEn
showed several advantages: it can be applied for both-tehortand longerm
recordings, it is scale invariantmodel independent, easy to use and it is able to
discriminate time series for which clear future recognition is diffiRajendra Acharya

et al., 2006, Chon et al., 200%or that reason, it has been applied iffecent fields,
particularly in cardiovascular signal analysis to assess the irregularity oRREhe
seriegRichman and Moorman, 2000)

The AppEn computation rely on the values of two parametersthe embedding
dimension, ana, the tolerance threshold, whigre required to be specified a priori.
Seveal clinical studie@incus, 1991, Niskanen et al., 2004, Ho et al., 188v¢ shown

that eitherm=1 or 2 andr between 0.1 and 0.2 times tB&NN are suitable to provide

valid value ofAppEn However, a recent sly(Chon et al., 200@9ecommended the use

of ther value (maxy which maximizes thAppEn(AppEmnay. This conclusion was derived

by the observation that thppEncomputed with value of within the recommended
range 0.1 0.2 providedmisleading results in simulated signals. RmpEn determines

the conditional probability of similarity between a chosen data segment of a given
duration and the next segment set of the same duration; the higher the probability the
smaller theAppEnvalue, reflecting less complexity. ApplyingppEnto the following

three time series with decreasing complexity: white noise, cross chirp, and sinusoidal
signals,AppEmmaxprovides higher values for white noise, then for cross chirp and lower
value for sinusimlal signals, according to their decreasing complexity. If other values of

r threshold are adopted, misleading results can arise, such as higher values for cross chirp
than for white noise. Moreover, a previous study on human HRV(@aistiglioni and

Di Rienzq 2008)showed that a selection 6f0.25 resulted in a 12% decreasé&\ppEn
values, whereas r=0.1 results in 9% increase as subjects changed their body position from
supine to upright. ThAppEmnaxdenotes the largest information difference between data
lengthm andm+1 for any givenr, reflecting the maximum complexity. However, the
choice of AppEmmaxis a computation burden and in order to avoid the computation of
AppEnfor each possible value to find the maximum value, nonlinear models were
proposedaind validated to estimatgaxvalue from variability of the signals. In particular,
form=2, Chon et a{Chon et al., 2009)roposedhn empiricaformula However, aecent

study by LiyLiu etal., 2011)ai med to verify whether Chonos
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for HRV by comparingAppEnin two groups: healthy subject and patients suffering from
cardiac diseasédppEnvalue were computed with three different value of the threshold

r =0.2* SDNN (AppEn.2);

r=r

r =ry.,(APPErthon).

Surprisingly, only AppErthen (N0t AppEmn.2 nor AppEnmnay) was statistically different

between the two groups. Another recent study analysed the threendiffgre of AppEn

in healthy subjects under stress compared to controlled resting cofidéidio et al.,

2011a) Also in this study AppEmax was not statistically different between the two

groups, while statistally significant differences were observedNopEn.2 e AppErthon

The findings of these studies could be expl
empirical formula, particularly, its relationship with the ratio between gkart and
long-termvariability. Further studieshouldfocus on development of methods which can

reduce the influence from the different threshold vatuasAppEncomputation.

1.2.3.3 Sample entropy

Sample Entropy SampEh is a relatively new feature introduced by Richman et
al.(Richman and Moorman, 200t measure the complexiand the regularity of clinical
time series. It is very similar #8ppEn with someimportant differences in its calculation
SampEnin theory, does not depend thre length othetime seriesbut it also relies on
the choice of the parametarsandr, such asAppEn However, the dependence on the
parameter is different: SampEndecreases monotonically whemncreases. With high
value ofN andr, SampErand AppEnprovide comparable resuliajendra Acharya et
al., 2006) for that reason, the applications of the two measures are very similar.

1.2.3.4 FractalDimension CorrelationDimension and Detrended Fluctuation Analysis
The term Afractal 06 was f(Mandetbrotdl®&)refererdy as a g
to an object satisfying two properties: sglhnilarity and fractionbdimensionality. The
former property means that an object is composed of subunits (arsllsuhits on
multiple levels) that statically resemble the structure of the whole object. The latter
property means that the object has a fractional dimensionx&omae, in bidimensional
curve, to verify selsimilarity, a subset of the object is rescaled to the same size of the
original object, using the same magnification factor for both its width and height, and its
statistical properties are compared with thokthe original object. Mathematically, this
property should hold on all scales, however, in the real world, there are necessarily lower
and upper bounds over which such saffilar behaviourapplies. Moreover, the strict
criterion requires that all thstatistical properties (including all higher moments) are
identical. Therefore, in practice, a weaker criterion is adopted by examining only the
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means and variances (first and second moments) of the distribution. The second criteria
distinguishes fractalbm Euclidean objects, which have integer dimension. For example,

a square satisfies sefmilarity as it can be divided into smaller subunits that resemble
the large square, but it is not a fractal since it has an integer (2) dimension -lik@actal
appearance was observed in several cardiovascular structures, such as the arterial and
venous tree and HiBurkinje network.

The concept of fractal has been extended to the analysis of time series. For instance, in
order to verify seksimilarity in time sems, a subset of the time series is selected and
rescaled, but with two different magnification factors (since the two axes have
independent physical units). Mathematically, a time series isiseaifar if

. .. 0
Wwo kww =
W

wherea is the selsimilarity parameter or scaling exponent and the opekatimdicate

that the statistical properties of both side of the equation are identical; however, as already
stated, in practice, only the first and second moment statistical properties are compared.
The scaling exponent could be estimated by Detrended Fluctuation Analysis,tkéhile

Hi guchi 6s coald Ppeoadoptedfom estimation of the fractal dimension
(FD)(Higuchi, 1988) The correlation dimensiofD is one of the most widely used
measures of the fractal dimension and has been adopted to measure the complexity for
the HRV time serig€arvajal et al., 2005)

Detrended Fluctuation Analysis is used to quantify the fractal scaling properties of short
RRtime series, by measuring the correlation within the s{§eaizel et al., 2003, Peng

et al.,, 1995a) It is a modified version of roeheansquare analysis of random
walkgHuikuri et al., 2000)and consists into: integration of the rgpeansquare

fluctuation, computation of detrended time series at observation window of different size

and plot against the imdows sizes on a lelpg scale and he scaling expone
computed the slope of the regressi-ike | i ne.
signal and Brownian noise (integral of Gaussian noise) are 0.5, 1 and 1.5,
respectivelyHuikuri et al., 2000, Ho et al., 19971h HRV analysis, other two additional

indexes are usually comput&thulz et al.,, 2010, Peng et al., 19956hortterm

fluctuations Alphay) andlong-term fluctuationsAlphap).

1.2.3.5 Recurrence Plot

Recurrence Plowas introduced by Eckmann et(Blckmann et al., 198§s a graphical

tool to discover hidden periodicities, difficult to be detected otherwise, and can be used
to reveal norstationarity in the time serie$he recurrence plot is array of dots in an

N x N square, where a dot is placedig) (vheneveRR is sufficiently close t&RR. The

plots will be symmetric along the diagonat j, because iRR is close toRR, thenRR

is close toRR. For normal cases, thRecurrence Pldhas diagonal line and less squares
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indicating more variation indicating high variation in the heart rate. Abnormalities like
ischemic/dilated cardiomyopathy cases, show more squares in the plot indicating the
inherent periodicity and the lower heart raégiation(Acharya et al., 2006)

1.3 Congestive Heart Failure

Congestive Heart Failure (CHF) is a pafhtoysiological condition due to an abnormal
cardiac function, which is responsible for the failure of the heapump blood as
required by the body. It is a common estdge of heart disease, greatly shortening
survival. CHF is associated with profound derangements of the ANS, which worsen
disease progressi@@ohn, 1990) Sympathetic tone is markedly increased while
parasympathetic modulation ofedwt rate is markedly decreagéldras, 1993)
Hemodynamic and metabolic abnormalities probably serve as the afferent stimulus for
this respase. This chronic activation iaccompanied by an attenuation of reflex
responsiveness to unloadingtbé central baroreceptors and mechanoreceptors. Loss of
the buffering capacity of these afferent receptors may contribute to the sustained
sympathetic stimulation. The reramgiotensin system is uncoupled from the sympathetic
nerves, probably because tlmtrarenal mechanisms subserving renin release are
preserved. Chronic activation of the sympathetic nerves may contribute to disturbed
hemodynamics as well as to letegym structural changes that may influence the natural
history of the diseas¢€Cohn, 1990)

CHF severity can be measured with the symptomatic classification scale of the New York
Heart Association (NYHA])Fleg et al., 2000)Classification via NYHAscale has been
proved to be a risk factor for mortalifRedfield et al., 1998, Gheorghiade et al., 2005)
NYHA functional classification identifies patients in one of four categories based on
physical symptomsral activity restriction:

1 Class Ii No symptoms with ordinary activity. No limitations on activity

1 Class Ili Slight to moderate symptoms with normal activity. Slight limitation of
activity.

1 Class llli Moderate symptoms with less than normal activityrivdd limitation
of activity.

1 Class IVi Inability to carry out any physical activity without discomfort.
Symptoms may occur at réSarels, 2004)

1.4 Hypertension and risk assessment

Hypertension is the most common cardiovascular disease. Hypertension is defined as
values higher than 140mmHg for systolic blood pressure and/or higher than 9thormHg

diastolic blood pressure. Limited comparable data are available on the prevalence of
hypertension and the temporal trends of blood pressure values in different European
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countrieg¢Pereira et al., 2009 Dverall, the prevalence of hypertension appears to be
around 3045% of the general population, with a steep increaseagdimng.

1.4.1 Cardiovascularisk estimation

Estimation of total cardiovascular risk is easy in particular subgroups of patients, such as
those with antecedents of established cardiovascular disease, diabetes, or with severely
elevated single risk factors. &l of these conditions, the total cardiovascular risk is high

or very high, calling for intensive cardiovascular fisklucing measures. However, a

large number of patients with hypertension do not belong to any of the above categories
and the identificaon of those at low, moderate, high or very high risk requires the use of
models to estimate total cardiovascular risk, so as to be able to adjust the therapeutic
approach accordingly.

Several risk estimation system have been deve(®yedala et al., 1994, D'Agostino et
al., 2008, Conroy et al., 2003, Woodward et al., 2007, HippiSkey et al., 2008,
Assmann et al., 2002, Ridker et al., 2008, Ridker et al., 280d)their values and
limitations have been reviewaecentlyCooney et al., 2009Most of the current risk
estimdion systems include theonventional risk factors: age, sex, smoking, blood
pressureand lipid levels. Recently, there has also been increagirgst in the inclusion
of family history ofchronic heart diseag®@/oodward et al., 2007, Hippisleyox et al.,
2008, Ridker et al., 2008, Ridker et al., 2Q®&0cial deprivation measur@&/oodward et
al., 2007, HippisleyCox et al., 2008) ethnicityHippisley-Cox et al., 2008) and
interaction variables that adjust for theus antihypertensivenedicationWoodward et
al., 2007, HippisleyCox et al., 2008, Wilson et al., 1998)

Most of the current risk estimation systems are basegr@portional hazards models,
such asCox (semipanaetric) or Weibull (parametric). The Cox method has the
advantage of not making any assumptions regarding the shape of the underlying survival,
in contrast to the Weibull method, which imposes a parametric function on the baseline
survival.One limitationof all risk estimation systems is that theessume constant effects

of the risk factors at differing agemnd levels of the other risk factor®ne system
(QRISK2)has attempted to overcome the problem of diffeafigcts of the risk factors

with increasng age by includingnteraction variables between age and several of the
otherrisk factorgHippisley-Cox et al., 2008) However, this method still assumes titet
interaction effect with age remains constant atagks. Certain combinations of risk
factors may act synergisticaltp increase risk in amanner that is more thadditive.

Some datanining methods, such aduster analysisneural networksand treebased
algorithm,attempt toaccount for thisThese methods are particularly usefuldelecting

the most appropriate variables when a largmlmer of potential predictors of risk are
available. Neurahetworks do not assume that risk factors function gsomstant and
continuous fashion and can account for complenlinear relationships and interactions
between riskactors. Cluster analysisdases on the identification gfoups of persons
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with similar risk factor characteristics whuave similar levels of risk. Treeased
algorithmsattempt to progressively split the population into smalldrgroups, through
sequential introduction of thesk factors, starting with the simplest. The advantage is
thatsome persons can be classified as high or low risk basgdrgriew risk factors,
reducing unnecessary laboratory testfog them. However, these methodstroduce
other problemsThe main prblem with all of these methodsnsodel shrinkagethat is,
their predictive ability declines sharpbynce the model is applied to an external dataset,
which limits their utility in clinical practice Moreover, here is difficulty inobtaining
large epidenological datasets with extensiveimbers of predictor variables available.
Additionally, thenecessity for measurement of multiple factors in clingrakttice adds

to complexity and is, therefore, likely to limglinical usage of these systems.

1.4.2 Fall risk

Falls represent one of the most common causes of irglaged morbidity and mortality

in later life. The consequences of falls range from psychological harm, through serious
physical injuries(Lord et al., 2006)and hospitalization, to deafRubenstein, 2006)

often causing a reduction of independence in the faller. Fallseamerall weHbeing,
mobility and quality of life, of individuals and famili¢katz and Shah, 2010yhe mean

and median costs of a fall is about 9,000 and 11,000(8inaxuse et al., 2012)

Over 400 risk factors for falls have been identified and classified as either extrinsic, such
as environment and circumstances, or intrinsic, which include deterioration of

neurological functioning and sensory and/or cardiovascular impairments. The

prioritization of those risk factors remains unclear and the sensitivity, specificity and

applicabilty of subjectspecific assessment of fall risk remains impre¢i¥ecchia et

al., 2011, Gates et al., 2008)

Only 31% of falls appear to be due to accidgirabensta, 2006) and also those
accidental falls may be due to complex and dynamic unrevealed interactions between
intrinsic and extrinsic risk facto(guidelines, 2013)According to Ruber{Rubenstein,

2006), 42% of falls are due to transient problems, including/lmeénce disorders or
weakness (17%), dizziness/vertigo (13%), drop attacks (9%), postural hypotension (3%).
For that reasonANS disturbance and cardiovasculdisorders including carotidrais
hypersensitivity, serious arrhythmiagvere valvular heart disease, and coronary heart
diseasanay be underestimated causes of (Hik et al., 2012)

Several teshave been developed for assessmapility, some of which have also been
suggested as predictor of f§ll'edemann et al., 2008)

7 Sitto-stand test: this test is used as a measure of lower limb st(&sytka and
McCarty, 1985) nd is included in fall risk assessment sqdlieetti, 1986, Berg
et al., 1992, Smith, 1994kror the sito-stand test with five repetitions (ST5,
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subjects weresked to rise from a standard height (43 cm) chair without armrests,
five times, as fast as possible with their arms folded. Subjects undertook the test
barefoot and performance was measured in seconds, as the time from the initial
seated position to thenfal seated position after completing five stands. The single
sit-to-stand task (time from sitting to standing) (SISwas also evaluated as it
hasbeen used in assessment sq@lesy et al., 1992, Judge et al., 69@s a
measure of functional mobility, balance and lower limb strength.

Pick-up-weight test: The ability to reach down and pick up an object from the
floor has been included in several mobility assessment &deg et al., 1992,
Reuben and Siu, 1990 bag containing a 5 kg weight with handles that extended
50 cm above the floor was placed on the floor in front of the subject. The subjects
were asked to pick up the bag and place it on a table using one Hgnd on
Performance was rated as either able or unable to complete the task.

Half-turn test: The ability to turn around in an efficient manner has been included
in assessments of mobility and balance in older péBetg et al., 1992,
Podsiadlo and Richardson, 1998ubjects were asked to take a few steps and
then turn around to face the opposite direction. The number of steps taken to
complete this 180° turn was counted.

Alternatestep test: The alternasgep test (&AT) is a modified version of the Berg
stootstepping tasiBerg et al., 1992)it involves weight shifting and provides a
measure of lateral stability. This test involved alternatively placing the entire left
and right feet (shoes removed) as fast as possibleastap that was 18 cm high

and 40 cm deep. The time taken to complete eight steps, alternating between the
left and right feet comprised the test measure.

Six-metrewalk: Slow gait speed is associated with an increased risk of falls
(Imms and Edholm, 1981, Bootsraan der Wiel et al., 2002nd is a measure
included in fall risk assessment scal@®odsiadlo and Richardson, 1991,
Piotrowski and Cole, 1994F5ubjects completl a sixmetrewalk test (SMWT)
measured in seconds along a corridor at their normal walking speeén A 2
approach and a further 2 m beyond the measured distance ensured that
walking speed was constant across the 6 m.

Stair ascent and descent: The iligbto negotiate stairs is a marker of functional
decline in older peopléGuralnik et al., 1994and many falls occur during this
taskFacts, 1996)The test stairs were indoors, had a handrail, were covered with
linoleum and well lit. The subjects started the staicent test at the bottom of
eight steps (15 cm high, 27.5 cm deep). Subjects coalthadandrail if preferred

and a walking aid if they normally used one. Timing commencethfistair
ascent test when tiseibject raised their foot off the ground to climb the first step
and stopped when both feet were placed on the eighth step (wdsch landing).

After a brief rest, the subject was asked to descend the stairs. Timing was started
when they raised their foot off the ground for the first step and stopped when they
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completed the last step. Time taken to complete the ascent and destsewate
recorded.

A recent studyTiedemann et al., 2008pmpared these functional tests and showed that,
when dichotorised, the AST washe best test for discriminating between the faller
groups.An AST cutoff point of 10 s was associated with a 130%reased risk, with
69% sensitivity and 56% specificity wittespect to identifying multiple fallers. At
identified cutoff points, the STS (12 s), the SMWT (6 s), the staiescentest (5 s) and

the stairascent test (5 s) could also significarghgdict subjects who suffered multiple
falls with sensitivitiesand specificities above 50%.
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2 Databases

In the current chaptethe characteristics of the ECG holter databases that have been used
for this thesis work are presented. Table 2.1 reported the summary properties of each
database that will be then detailed in the following sections.

Table2.1 Summary of the adopted database

Database Number of subjects Clinical Condition Availability
Congestive Heart Failure 29 (aged 34 to 79; www.physionet

CHF (PhysioBank:
Public data archives
www.physionet.org

CHF (PhysioBank:

RR Interval Database 8 male, 2 female)

BIDMC Congestive Heart 15 (aged 22 to 71;

Failure Database. 11 male, 4 female) Public data archives
ECG Holter database 139 (age: 72 + 7 years; Hypertension with or www.physmnet.orq
] (PhysidNetWorks,
for Vascular Eents 90 male,49 female) without vascular events .
for registered users)
ECG Holter database 168 (age: 72 + 8 years; Hypertension with or progettoshare.it
for Fall Risk 108male, 60 female) without history of fall (by request)

2.1 Congestive Heart FailureHolter databases

2.1.1 Background and rationale

For the investigation of ECG holter in CHF patients, two databases are freely available
from physionet.orgGoldberger et al., 2000)

1 Congestive Heart Failure RR Interval Database
1 BIDMC Congestive Heart Failure Database.

2.1.2 Population

The Congestive Heart Failure RR Interval Database provides the RRdime for 29
long-term ECG recordings of subjects aged®49, with CHF (NYHA classes |, Il, and
). Subjects included 8 men and 2 women; gender is not krfowthe remaining 21
subjects.The BIDMC Congestive Heart Failure Database includes-teng ECG
recordings from 15 subjects (11 men, aged 22 tomd 4avomen, aged 54 to 63) with
severe congestive heart failure (NYHA clas$)3

2.1.3 Protocol and measurement system

The original ECG recordings, even if are not available, of the Congestive Heart Failure
RR Interval Database were digitized at 128 samplesqmand, and the beat annotations
were obtained by automated analysis with manual review and correction. The database is
contributed by Rochelle Goldsmith, of Columiiteesbyterian Medical Center, New
York. The individual recordings of the BIDMC CongestiMeart Failure Database are

each about 20 hours in duration, and contain two ECG signals each sampled at 250
samples per second with-bi& resolution over a range of +10 millivolts. The original
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analog recordings were made at Boston's Beth Israel Ho¢pdal the Beth Israel
Deaconess Medical Center) using ambulatory ECG recorders with a typical recording
bandwidth of approximately 0.1 Hz to 40 Hz. The RR tseees were obtained using an
automated detector (without manual review and correction)

2.2 ECG Holter database for Vascular Events

2.2.1 Background and rationale

Previous studies showed that HRV could be an independent risk factor for vascular
events: Sajadieh et al. showed that subjects with familial predisposition to premature heart
attack and sudden deattave reduced HR{Bajadieh et al., 2003)Dekker et al.
concluded that low HRV is associated with increased risk of coronary heart disease and
death from several caus@3ekker et al., 2000Binici et al. demonstrated that depressed
nocturnal heart rate variability is a strong marker for tbgetbpment of stroke in
apparently healthy subje¢Binici et al., 2011) Since hypertenen is a risk factor for
vascularevenand t o the best of authorsé knowl edgqge
patients with a followup after the recording is freely availajpdedatabase of ECG holter
recorded in hypertensive patients were colle@ecocin order to investigatéuture
vascular events in a twelve month follay.

2.2.2 Population

The records have been collected among the hypertensive patients aged 55 or over,
followed up by the outpatient hypertensicentreof the University Hospital of Bples
Federico Il. The recordings have been performed betwiedanuary 2012 andO
November2012.

The following exclusion criteria have been adopted:

refusal of written informed consent;

severe ocular disease;

deafness in alone living subject;

chronicobstructive pulmonary disease, (pre)dementia, or other disease which may
reduce lifeexpectancy.

= 4 4 2

The dataset consgsbf 139 hypertensive patients (includidp female and @ male, age

72 + 7 years)Clinical and demographic features of the included subgeetseported in

Table 2.2.Among the study sample, in the-t#onth followup after recordings, 17
patients experienced a recorded event (11 myocardial infarctions, 3 strokes, 3 syncopal
events) and for that reason, were considered asrisigisubjects, Wwile the remaining

ones as lowisk subjects.
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Table2.2 Clinical and demographic feature of the subjects included in the ECG Holter database for Vascular Events

ID Sex Age Weight Height BSA' BMI? Smoker Fhyp Fstroké SP DPP  IMT? LVMi¢® EP Vascular event
1911 M 56 105 180 229 3241 yes no no 140 80 4 123 66 none
2012 M 72 83 169 197 29.06 no no no 130 75 n/a 121 69 none
2019 F 80 80 165 191 2938 no no no 177 75 25 164 56 none
2020 M 77 88 178 209 2777 no no no 140 85 2.7 115 67 none
2025 F 66 80 174 197 2642 no no no 110 65 15 98 66 none
2031 M 84 72 170 1.84 2491 no no no 120 70 2.6 147 51 none
2032 F 66 85 160 194 3320 no no no 150 65 16 178 53 none
2033 M 77 82 169 196 2871 no no yes 115 80 n/a 144 42 myocardial infarction
2035 M 77 80 162 190 3048 no yes yes 160 75 n/a 123 70 none
2037 F 69 90 154 196 3795 no yes no 110 65 15 124 64 none
2041 M 85 97 165 211 3563 no no no 135 75 3 159 50 none
2047 F 69 83 173 200 2773 no no no 146 80 1.9 86 68 none
2050 M 73 68 167 178 2438 no yes no 105 70 17 202 43 none
2055 M 65 72 167 1.83 2582 no no no 130 85 23 106 68 none
2057 F 66 72 176 188 2324 no yes no 130 85 2 117 66 none
2059 F 75 80 150 1.83 3556 no no no 170 80 n/a 154 71 myocardial infarction
2062 M 72 93 187 220 2659 no no no 120 80 14 126 65 none
2063 M 70 82 178 201 2588 no yes no 162 100 16 153 62 none
2065 F 69 81 170 196 2803 no yes yes 135 65 2.7 105 66 none

1 Body surface area
2 Body Mass index

3 Family history of hypertension

4 Family history of stroke

5 Systolic arterial pressure

6 Diastolic arterial pressure

7 Intima media thickne

SS

8 Left ventricular mass index

9 Ejection fraction
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ID Sex Age Weight Height BSA! BMI?2 Smoker Fhyp Fstroké SP  DP°  IMT’ LVMi® EP Vascular event
2066 M 74 74 165 184 2718 no no no 130 80 31 121 63 none
2068 M 67 72 171 185 24.62 yes yes no 120 85 n/a 144 61 none
2069 M 64 86 178 206 2714 no no no 115 75 2.2 111 61 none
2072 M 73 64 174 176 2114 yes no no 125 75 12 119 67 none
2073 M 73 60 167 167 2151 no no no 195 95 24 141 32 none
2076 M 68 62 165 169 2277 yes no no 143 62 3.7 168 33 none
2078 M 74 85 180 2.06 2623 yes yes no 150 75 17 140 67 none
2079 M 71 113 168 230 4004 no no no 150 85 26 156 67 none
2082 M 58 92 175 211 3004 yes yes no 135 70 16 98 69 none
2084 F 70 93 165 206 3416 no yes no 140 70 22 n/a n/a none
2087 F 71 74 172 188 2501 no yes no 160 75 23 126 65 none
2089 F 75 68 156 172 2794 yes no no 135 65 17 93 64 none
2092 F 73 98 170 215 3391 no yes no 155 78 29 129 65 none
2097 M 79 81 172 197 2738 yes no no 110 80 2.4 125 46 none
2100 F 64 83 155 189 3455 yes no no 200 80 33 156 62 none
2102 M 74 74 172 1.88 2501 no yes no 150 20 n/a n/a n/a none
2107 M 76 70 160 176 2734 no yes yes 145 75 3 146 60 none
2108 M 84 70 170 182 2422 yes no no 164 54 35 194 63 myocardial infarction
2114 F 72 55 160 156 2148 yes yes no 160 80 3 99 65 none
2115 M 75 75 172 189 2535 yes no no 122 74 33 121 68 none
2116 M 65 98 171 216 3351 no no no 130 80 17 125 54 nore
2117 M 69 65 175 178 2122 no yes no 140 80 2.3 113 38 none
2119 F 74 91 162 2.02 3467 no no no 140 80 23 101 72 stroke
2120 F 81 76 158 183 3044 no yes no 160 80 163 66 none
2121 M 81 93 170 210 3218 yes no no 170 75 159 62 myocardial infirction
2125 F 72 78 158 185 3124 no yes no 190 80 4.2 154 72 none
2134 F 86 78 160 186 3047 no yes no 145 55 22 122 59 none
2136 M 77 84 173 201 2807 no no yes 155 85 2 154 66 none
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ID Sex Age Weight Height BSA! BMI?2 Smoker Fhyp Fstroké SP  DP°  IMT’ LVMi® EP Vascular event

2139 M 64 75 165 185 2755 no no no 140 90 21 113 64 none

2140 M 70 91 187 217 2602 no no no 145 85 2.3 127 65 none

2142 M 71 80 160 189 3125 no no yes 165 80 33 152 53 none

2148 F 66 64 156 167 26.30 no no no 130 75 2 129 60 myocardial infarction
2150 M 59 68 164 176 25.28 yes no yes 100 60 14 98 69 nore

2152 F 82 64 156 167 26.30 no no no 110 70 16 159 65 none

2154 M 80 75 167 187 26.89 yes no no 105 65 2.3 117 52 none

2156 M 69 80 165 191 2938 yes no no 150 20 25 n/a n/a none

2159 M 75 68 169 179 2381 no yes no 160 90 2.7 107 70 none

2161 M 74 78 166 190 2831 no yes no 130 70 24 122 56 none

2167 M 77 80 169 194 2801 yes no no 170 70 3 128 62 none

2168 M 83 75 170 188 2595 no no no 145 70 33 129 58 none

2170 F 65 59 154 159 2488 no no no 145 65 18 n/a n/a none

2171 M 77 89 163 201 3350 no no no 125 80 1 118 69 none

2175 M 69 75 169 188 26.26 yes no no 150 86 22 n/a n/a none

2180 M 69 88 171 2.04 3009 no yes no 120 70 17 133 62 none

2184 F 68 55 165 159 20.20 no yes no 110 70 1.35 98 68 myocardial infarction
2185 M 81 72 171 185 2462 yes yes no 145 80 29 148 60 myocardial infarction
2186 F 65 67 159 1.72 2650 no yes no 135 75 3.6 116 73 none

2188 F 85 75 160 183 2930 no no no 130 80 35 131 36 none

2191 M 73 92 173 210 3074 no yes yes 155 85 3.6 139 52 none

2194 F 68 95 162 207 3620 no yes no 145 75 18 118 72 none

2202 M 63 72 168 183 2551 no yes yes 135 85 14 n/a n/a none

2210 F 80 58 153 157 2478 no no no nan nan n/a n/a n/a none

2213 M 65 82 175 200 26.78 no yes no 120 80 25 154 56 none

2215 m 92 62 165 169 2277 no no no 120 80 3 126 57 none

2218 F 77 64 160 1.69 25.00 no yes no 110 60 15 146 70 syncope

2219 F 75 72 162 180 2743 no no no 150 75 14 149 45 none
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ID Sex Age Weight Height BSA! BMI?2 Smoker Fhyp Fstroké SP  DP°  IMT’ LVMi® EP Vascular event
2220 M 73 87 178 207 2746 no yes no 175 65 18 233 53 none
2226 M 65 83 165 195 3049 yes no no 125 80 34 151 49 none
2227 M 65 70 163 178 26.35 yes yes no 150 80 n/a 108 72 none
2229 M 64 80 164 191 2974 no no no 170 95 2.2 175 42 none
2230 F 67 65 159 169 2571 yes no no 100 60 25 116 67 none
2231 F 69 80 159 1.88 3164 no no no 142 82 22 133 66 none
2244 M 86 73 168 185 2586 yes no no 125 60 26 146 57 none
2245 M 68 70 165 179 2571 no no no 120 70 21 119 72 none
2248 F 69 76 158 183 3044 no yes no 150 90 25 126 66 none
2249 F 66 89 167 203 3191 no no no 120 70 19 175 28 none
2250 M 66 100 170 217 3460 no no no 135 75 16 166 47 none
2251 M 84 83 181 204 2534 yes no no 140 75 2.6 140 68 none
2258 M 72 92 170 2.08 3183 no no no 115 65 3.2 143 32 none
2259 M 78 68 162 175 2591 no no no 130 70 2 131 67 none
2269 M 66 86 167 200 3084 yes yes no 140 60 2.8 142 62 none
2274 F 68 58 158 160 2323 yes yes no 130 70 21 120 53 none
2275 M 68 78 172 193 26.37 yes no no 135 85 16 127 52 none
2276 F 77 54 160 155 2109 no yes no 136 75 2 201 60 none
2278 M 77 87 170 2.03 3010 no yes yes 120 75 18 135 59 none
2282 F 65 60 150 158 2667 no no no 165 90 2 113 67 none
2284 M 79 70 170 182 2422 no no no 135 80 2.8 n/a n/a none
2285 F 69 60 167 167 2151 no yes no 110 80 16 90 68 none
2289 F 64 98 165 212 36.00 no no yes 175 80 19 130 62 myocardial infarction
2291 M 74 75 170 1.88 2595 yes no no 145 85 22 144 62 none
2293 M 81 68 166 177 2468 no no no 130 85 23 141 33 none
2294 M 67 61 165 167 2241 no no no 120 80 2.8 126 25 stroke
2295 M 64 88 173 206 2940 yes no yes 115 60 23 n/a n/a none
2296 M 74 83 170 198 2872 no no no 145 85 15 120 48 none
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ID Sex Age Weight Height BSA! BMI?2 Smoker Fhyp Fstroké SP  DP°  IMT’ LVMi® EP Vascular event
2298 F 66 64 160 169 2500 no no no 140 60 3 96 69 none
2299 F 78 50 165 151 1837 no no no 110 60 11 91 69 none
2304 F 84 75 160 183 2930 no yes yes 170 80 0.95 154 59 myocardial infarction
2306 M 66 86 165 199 3159 no no no 125 70 15 118 62 none
2307 F 65 50 156 147 2055 yes yes no 100 60 1 92 62 none
2309 M 74 79 172 194 26.70 no no no 100 60 n/a 113 64 none
2312 F 63 75 168 187 2657 no no no 120 80 11 99 72 none
2315 M 73 80 178 199 2525 no no no 135 80 24 103 67 none
2319 F 69 68 160 174 2656 no no no 120 70 32 105 64 none
2321 M 63 83 178 203 2620 yes yes no 140 80 15 161 43 none
2323 M 77 77 168 190 27.28 no no no 125 85 n/a n/a n/a none
2328 M 46 77 172 192 26.03 yes no no 145 75 33 108 68 none
2332 M 78 72 174 187 2378 no no no 155 75 2 127 66 none
2334 F 73 63 173 174 2105 no yes no 140 70 2 137 60 none
2337 M 65 84 168 198 29.76 yes yes no 150 90 2.8 167 38 none
2338 M 76 74 170 1.87 2561 no yes no 115 70 19 113 61 none
2339 M 76 85 172 202 2873 yes no no 120 70 3.8 184 33 syncope
2348 M 72 65 168 174 2303 yes yes no 135 70 25 118 62 stroke
2349 M 65 107 170 225 37.02 no no no 130 85 2 146 64 none
2350 F 81 94 162 206 3582 yes no no 130 80 32 102 63 none
2352 M 75 90 182 213 2717 no no no 150 80 n/a 111 66 none
2355 F 69 85 165 197 3122 no no no 120 66 18 109 62 none
2357 M 74 82 173 199 2740 no no no 145 80 24 104 65 none
2359 M 69 69 165 178 2534 yes no no 135 75 3 125 60 none
2370 F 64 63 162 168 2401 yes no no 135 80 n/a 75 76 none
2373 M 66 88 173 206 2940 no no no 135 80 13 132 55 myocardial infarction
2384 M 83 76 180 195 2346 no no no 110 70 3.3 161 a7 none
2387 M 68 84 180 205 2593 yes no no 155 85 2.6 121 33 none
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ID Sex Age Weight Height BSA! BMI?2 Smoker Fhyp Fstroké SP  DP°  IMT’ LVMi® EP Vascular event

2392 M 70 76 172 191 2569 no no no 120 80 31 140 54 none

2396 M 69 90 165 2.03 3306 no no no 150 90 4 124 61 none

2399 F 65 72 159 178 2848 no yes no 150 90 3 105 67 none

2403 F 78 55 157 155 2231 no yes no 170 60 23 136 64 syncope

2412 M 70 98 176 219 3164 no yes no 130 75 22 131 54 myocardial infarction
2413 M 78 74 170 1.87 2561 no no no 125 65 23 170 32 none

2417 M 65 93 175 213 3037 no no no 120 80 17 112 65 none

2425 M 67 67 170 1.78 2318 yes no no 120 80 n/a n/a n/a none
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2.2.3 Protocol and measurement system

The ECG Holter was performed after a anenth antihypertensive therapy weslit. On

2 consecutive days, patients underwent fw@4r ECG Holter recording. The recorders
were applied between 9 and 11 AM on a working day, and the patients were asked to
follow as closely as possible their usual daily activities during each monitoring session.
They were asked to stay in bed from 11 PM &\W. The patients were followed up for

12 months after the recordings in order to record major cardiovascular and
cerebrovascular events, i.e. fatal or fiatal acute coronary syndrome including
myocardial infarctions, syncopal events, coronary revaseateon, fatal or nosfatal

stroke and transient ischemic attack. All the events were adjudicated by the Committee
for Event Adjudication in the Hypertension Center. Adjudication was based on patient
history, contact with the reference general practiti@mel clinical records documenting

the occurrence of the event/arrhythrfilee Luca et al., 2005, 1zzo et al., 2018preover,

the patients were evaluated by a cardiac and carotid ultrasonography. Left ventricular
mass was determined by using the formula developed by DeyPetereux et al., 1986)

as recommend by American @ety of Echocardiography (AS&ang et al., 2005and
divided by the body surface area to calculate left ventricular mass index (LVM), g/m
B-mode ultrasonography of carotid arteries was performed in ordernipute the
maximum IMT (mm). Further details about the ECG recording, the cardioecographic and
carotid ultrasonographic procedures can be found in a previous(Meldio et al.,

2012) The current study was approved by the Ethics Cdteenof Federico Il University
Hospital Trust and the data were collected by the Department of Translational Medical
science of the University of Naples Federico Il in the framework of the Smart Health and
Artificial intelligence for Risk Estimation (SHAREproject.

2.3 ECG Holter database for Fall Risk

2.3.1 Background and rationale

ANS disturbance and cardiovascular disorders including carotid sinus hypersensitivity,
serious arrhythmias, severe valvular heart disease, and coronary heart disease may be
underestimai causes of fal($sik et al., 2012) To investigate the relationship between
abnormal HRV and farisk, a database of ECG holter recorded in hypertensive patients
with and without history of falls were collectad hoc

2.3.2 Population

The records have been collected among the hypertensive patients aged 55 or over,
followed up by the outpatient hypertéms centreof the University Hospital of Naples
Federico Il. The recordingsereperformed between January 2008 and December 2012.
Clinical and demographic features of the included subjects are repoiitali@?.3.
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Table2.3 Clinical and demographic feature of the subjects included in the ECG Holter databdisk fisk

ID Sex Age Weight Height BSAL0 BM| ! Smoker F hyp? F stroké® SP“4 DP® IMT® LVMil? EF® Fall
636 F 78 55 157 155 2231 no yes no 170 60 2.3 136 64 yes
782 M 76 70 160 176 27.34 no yes yes 145 75 3 146 60 no
868 M 64 75 165 1.85 2755 no no no 140 90 21 113 64 no
2387 M 69 86 178 2.06 27.14 no yes no 143 75 19 128 64 yes
2668 F 69 68 160 1.74 26.56 no no no 120 70 32 105 64 no
2763 M 69 88 171 2.04 30.09 no yes no 120 70 17 133 62 no
2841 F 77 84 165 1.96 30.85 no no no 170 85 24 120 68 yes
2984 M 64 80 177 1.98 2554 yes no no 110 60 3 121 57 yes
2991 F 73 63 173 174 21.05 no yes no 140 70 2 137 60 no
3340 M 65 107 170 2.25 37.02 no no no 130 85 2 146 64 no
3495 F 84 75 160 1.83 29.30 no yes yes 170 80 095 154 59 no
3534 M 77 84 173 201 28.07 no no yes 155 85 2 154 66 no
3662 F 71 70 168 181 24.80 no no no 130 70 133 66 yes
4609 M 77 89 163 2.01 33.50 no no no 125 80 118 69 no
4668 F 69 80 159 1.88 3164 no no no 142 82 2.2 133 66 no
5016 F 66 64 156 1.67 26.30 no no no 130 75 2 129 60 no
5222 M 65 100 173 219 3341 no yes no 180 100 1.3 188 55 yes
5400 M 73 80 178 1.99 2525 no no no 135 80 2.4 103 67 no
5431 F 84 48 160 1.46 18.75 no yes no 115 60 16 119 73 yes

10Body suface area
11 Body Mass index

12 Family history of hypertension

13 Family history of stroke

14 Systolic arterial pressure
15 Diastolic arterial pressure
16 Intima media thickness

17 Left ventricular mass index

18 Ejection fraction
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ID Sex Age Weight Height BSAL° BMI Smoker F hypt F strokd® SP“4 DP® IMT* LVMiY" EFS® Fall
5451 F 81 76 158 1.83 3044 no yes no 160 80 2 163 66 no
5940 M 64 82 173 1.99 27.40 yes yes no 135 80 2 93 67 yes
6106 M 73 92 173 2.10 3074 no yes yes 155 85 3.6 139 52 no
6215 M 75 84 170 1.99 29.07 no no no 140 85 2.2 172 44 yes
6666 M 77 87 170 2.03 30.10 no yes yes 120 75 18 135 59 no
7014 M 62 77 160 1.85 30.08 no no no 130 70 18 123 70 no
7605 F 86 78 160 1.86 3047 no yes no 145 55 22 122 59 no
7633 F 68 54 152 151 2337 no yes no 140 60 175 98 68 yes
7842 M 63 89 160 1.99 3477 no no no 125 75 3 127 68 yes
7938 F 69 90 154 1.96 37.95 no yes no 110 65 15 124 64 no
8500 F 63 75 168 1.87 2657 no no no 120 80 11 99 72 no
9205 M 65 72 167 1.83 25382 no no no 130 85 23 106 68 no
9278 F 64 98 165 212 36.00 no no yes 175 80 19 130 62 no
9516 M 84 70 170 1.82 24.22 yes no no 164 54 35 194 63 no
9629 M 85 70 170 1.82 24.22 no no no 147 65 18 129 65 yes
9683 M 59 71 178 1.87 2241 no yes no 150 90 14 144 71 yes
9740 F 69 83 173 2.00 27.73 no no no 146 80 19 86 68 no
10121 F 65 50 156 1.47 2055 yes yes no 100 60 1 92 62 no
10169 F 65 60 150 1.58 26.67 no no no 165 90 2 113 67 no
10346 M 81 64 163 1.70 24.09 no yes yes 147 67 265 123 67 yes

30061 M 71 80 160 1.89 3125 no no yes 165 80 33 152 53 no
30343 M 73 64 174 1.76 2114 yes no no 125 75 12 119 67 no
30415 M 74 82 173 1.99 2740 no no no 145 80 24 104 65 no
30472 F 80 80 165 191 29.38 no no no 177 75 25 164 56 no
30521 F 72 55 160 1.56 2148 yes yes no 160 80 3 99 65 no
30671 M 68 62 165 1.69 2277 yes no no 143 62 3.7 168 33 no
30795 F 82 64 156 1.67 26.30 no no no 110 70 1.6 159 65 no
30945 M 64 86 178 2.06 2714 no no no 115 75 22 111 61 no
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ID Sex Age Weight Height BSAL° BMI Smoker F hypt F strokd® SP“4 DP® IMT* LVMiY" EFS® Fall
31663 F 68 95 162 2.07 36.20 no yes no 145 75 18 118 72 no
31707 M 74 75 170 1.88 25.95 yes no no 145 85 2.2 144 62 no
31769 M 86 73 168 1.85 25.86 yes no no 125 60 2.6 146 57 no
31870 M 80 75 167 1.87 26.89 yes no no 105 65 2.3 117 52 no
32713 M 74 83 170 1.98 28.72 no no no 145 85 15 120 48 no
32750 F 75 68 156 172 2794 yes no no 135 65 17 93 64 no
32811 M 67 61 165 1.67 2241 no no no 120 80 2.8 126 25 no
32812 M 74 85 180 2.06 26.23 yes yes no 150 75 17 140 67 no
33804 M 66 86 165 1.99 3159 no no no 125 70 15 118 62 no
33862 M 83 76 180 1.95 2346 no no no 110 70 33 161 47 no
34275 M 74 74 165 1.84 27.18 no no no 130 80 31 121 63 no
34281 F 59 65 158 1.69 26.04 no no no 120 80 13 126 63 yes
34538 M 65 93 175 213 30.37 no no no 120 80 17 112 65 no
34647 M 91 85 172 2.02 2873 no no no 130 60 4.6 180 59 yes
35022 M 81 72 171 1.85 24.62 yes yes no 145 80 29 148 60 no
35063 F 66 72 176 1.88 2324 no yes no 130 85 2 117 66 no
35325 M 66 86 167 2.00 30.84 yes yes no 140 60 2.8 142 62 no
35693 M 70 98 176 219 3164 no yes no 130 75 2.2 131 54 no
35728 M 66 88 173 2.06 29.40 no no no 135 80 13 132 55 no
36052 M 65 98 171 2.16 3351 no no no 130 80 17 125 54 no
36570 M 74 92 182 2.16 2777 no no no 120 75 25 103 67 yes
36886 M 73 68 167 1.78 24.38 no yes no 105 70 17 202 43 no
36970 F 65 72 159 178 2848 no yes no 150 90 3 105 67 no
37293 M 78 68 162 175 2591 no no no 130 70 2 131 67 no
37314 M 69 65 175 1.78 2122 no yes no 140 80 23 113 38 no
37478 F 77 64 160 1.69 25.00 no yes no 110 60 15 146 70 no
37511 M 81 68 166 1.77 24.68 no no no 130 85 23 141 33 no
37591 F 80 58 153 157 24.78 n/a n/a n/a n/a nla n/a n/a n/a no
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ID Sex Age Weight Height BSAL° BMI Smoker F hypt F strokd® SP“4 DP® IMT* LVMiY" EFS® Fall
38177 M 70 91 187 217 26.02 no no no 145 85 2.3 127 65 no
38187 M 76 85 172 2.02 2873 yes no no 120 70 3.8 184 33 no
38668 M 70 76 172 191 25.69 no no no 120 80 31 140 54 no
38719 F 71 74 172 1.88 2501 no yes no 160 75 2.3 126 65 no
38821 F 66 80 174 197 26.42 no no no 110 65 15 98 66 no
39013 F 74 68 160 1.74 26.56 no yes no 160 65 4.6 115 70 yes
39205 M 57 125 175 247 40.82 no no no 116 70 12 146 61 yes
39666 M 64 112 181 237 34.19 no no no 145 80 19 114 63 yes
40079 M 73 87 178 2.07 2746 no yes no 175 65 18 233 53 no
40121 F 65 67 159 172 26.50 no yes no 135 75 3.6 116 73 no
40206 M 60 68 160 174 26.56 no no no 142 76 2.2 115 70 yes
40578 M 67 72 171 1.85 24.62 yes yes no 120 85 n/a 144 61 no
40972 M 68 87 170 2.03 30.10 no no no 155 80 16 136 64 yes
41335 F 72 78 158 1.85 3124 no yes no 190 80 4.2 154 72 no
41647 M 74 78 166 1.90 2831 no yes no 130 70 24 122 56 no
41739 M 72 65 168 1.74 23.03 yes yes no 135 70 25 118 62 no
42022 M 77 88 178 2.09 27.77 no no no 140 85 2.7 115 67 no
42120 M 71 113 168 2.30 40.04 no no no 150 85 2.6 156 67 no
42253 M 65 82 175 2.00 26.78 no yes no 120 80 25 154 56 no
42494 F 72 70 165 179 2571 no yes no 155 80 2.3 115 70 yes
42617 M 61 74 171 1.87 2531 no no no 130 80 1.25 139 61 yes
43054 M 59 90 178 211 2841 no no no 130 65 13 166 69 yes
43375 M 76 91 185 2.16 26.59 no no no 110 65 2.8 121 45 yes
43397 M 72 92 170 2.08 3183 no no no 115 65 32 143 32 no
43534 M 76 60 160 1.63 2344 no no no 170 80 3.6 139 63 yes
43582 M 81 93 170 2.10 3218 yes no no 170 75 5 159 62 no
43803 M 57 85 176 2.04 2744 no no no 170 110 15 174 64 yes
44058 F 64 83 155 1.89 34,55 yes no no 200 80 3.3 156 62 no
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ID Sex Age Weight Height BSAL° BMI Smoker F hypt F strokd® SP“4 DP® IMT* LVMiY" EFS® Fall
44089 F 67 65 159 1.69 2571 yes no no 100 60 25 116 67 no
44162 M 76 74 170 1.87 2561 no yes no 115 70 19 113 61 no
44310 M 59 68 164 1.76 2528 yes no yes 100 60 14 98 69 no
44349 F 74 91 162 2.02 34.67 no no no 140 80 23 101 72 no
44372 F 77 54 160 1.55 21.09 no yes no 136 75 2 201 60 no
44559 M 69 90 170 2.06 3114 no no no 130 75 n/a n/a n/a yes
44677 M 75 75 172 1.89 25.35 yes no no 122 74 3.3 121 68 no
44729 M 84 83 181 2.04 2534 yes no no 140 75 2.6 140 68 no
44775 F 66 85 160 1.94 3320 no no no 150 65 16 178 53 no
44987 M 58 72 170 1.84 2491 yes yes yes 150 75 38 142 56 yes
45047 M 77 77 168 1.90 27.28 no no no 125 85 n/a n/a n/a no
45065 M 79 81 172 1.97 27.38 yes no no 110 80 2.4 125 46 no
45300 F 78 50 165 151 18.37 no no no 110 60 11 91 69 no
45379 F 69 85 165 197 3122 no no no 120 66 18 109 62 no
45411 M 73 60 167 1.67 2151 no no no 195 95 2.4 141 32 no
45431 M 58 92 175 211 30.04 yes yes no 135 70 16 98 69 no
45540 F 92 80 163 1.90 3011 n/a n/a n/a 150 90 n/a n/a n/a yes
45780 M 68 70 165 1.79 2571 no no no 120 70 21 119 72 no
45786 F 71 65 160 1.70 2539 no no no 160 65 2.7 127 66 yes
45854 F 69 60 167 1.67 2151 no yes no 110 80 1.6 90 68 no
45979 F 69 81 170 1.96 28.03 no yes yes 135 65 2.7 105 66 no
46004 M 72 93 187 2.20 26.59 no no no 120 80 14 126 65 no
46063 F 81 65 165 1.73 2388 no no no 195 90 1.7 167 59 yes
46087 M 75 75 176 191 2421 yes no no 185 85 2.2 143 59 yes
46123 M 70 82 178 2.01 25.88 no yes no 162 100 16 153 62 no
46193 M 56 105 180 2.29 3241 yes no no 140 80 4 123 66 no
46198 M 84 72 170 1.84 2491 no no no 120 70 2.6 147 51 no
46354 F 68 55 165 1.59 20.20 no yes no 110 70 135 98 68 no
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ID Sex Age Weight Height BSAL° BMI Smoker F hypt F strokd® SP“4 DP® IMT* LVMiY" EFS® Fall
46480 F 76 70 160 176 27.34 no yes no 130 70 2.2 122 65 yes
46527 M 59 89 175 2.08 29.06 no no no 145 85 1.15 122 67 yes
46770 M 77 80 162 1.90 3048 no yes yes 160 75 n/a 123 70 no
46862 F 75 80 150 1.83 3556 no no no 170 80 n/a 154 71 no
46880 F 73 98 170 2.15 3391 no yes no 155 78 29 129 65 no
46971 M 74 74 172 1.88 2501 no yes no 150 90 n/a n/a n/a no
46978 F 70 93 165 2.06 34.16 no yes no 140 70 2.2 n/a n/a no
46989 M 75 68 169 1.79 2381 no yes no 160 90 2.7 107 70 no
47017 F 69 76 158 1.83 3044 no yes no 150 90 25 126 66 no
47019 M 69 75 169 1.88 26.26 yes no no 150 86 2.2 n/a n/a no
47086 M 65 70 163 1.78 26.35 yes yes no 150 80 n/a 108 72 no
47173 F 64 63 162 1.68 24.01 yes n/a n/a 135 80 n/a 75 76 no
47204 M 68 84 180 2.05 2593 yes no no 155 85 2.6 121 33 no
47296 M 65 84 168 1.98 29.76 yes yes no 150 90 2.8 167 38 no
47347 M 77 80 169 194 2801 yes no no 170 70 3 128 62 no
47356 F 65 59 154 1.59 24.88 no no no 145 65 18 n/a n/a no
47357 M 69 80 165 191 29.38 yes no no 150 90 25 n/a n/a no
47448 M 63 72 168 1.83 2551 no yes yes 135 85 14 n/a n/a no
47457 M 66 100 170 2.17 34.60 no no no 135 75 16 166 47 no
47476 M 65 83 165 1.95 3049 yes no no 125 80 34 151 49 no
47502 F 85 75 160 1.83 29.30 no no no 130 80 35 131 36 no
47879 M 74 79 172 194 26.70 n/a n/a n/a 100 60 n/a 113 64 no
47899 M 64 88 173 2.06 2940 yes no yes 115 60 23 n/a n/a no
47987 F 68 58 158 1.60 2323 yes yes no 130 70 21 120 53 no
48002 M 63 83 178 2.03 26.20 yes yes no 140 80 15 161 43 no
48006 M 68 78 172 1.93 26.37 yes no no 135 85 16 127 52 no
48040 M 79 70 170 1.82 2422 no no no 135 80 2.8 n/a n/a no
48128 F 66 64 160 1.69 25.00 no no no 140 60 3 96 69 no
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ID Sex Age Weight Height BSAL° BMI Smoker F hypt F strokd® SP“4 DP® IMT* LVMiY" EFS® Fall
48355 M 46 7 172 192 26.03 yes no no 145 75 3.3 108 68 no
48366 M 78 72 174 1.87 2378 no no no 155 75 2 127 66 no
48396 M 77 82 169 1.96 2871 no no yes 115 80 n/a 144 42 no
48410 F 81 94 162 2.06 3582 yes no no 130 80 32 102 63 no
48526 M 69 69 165 1.78 2534 yes no no 135 75 3 125 60 no
48576 M 69 90 165 2.03 3306 no no no 150 90 4 124 61 no
48681 M 67 67 170 178 2318 yes no no 120 80 n/a n/a n/a no
48710 M 78 74 170 1.87 2561 no no no 125 65 2.3 170 32 no
50965 M 75 90 182 213 2717 n/a n/a n/a 150 80 n/a 111 66 no
51402 M 72 83 169 1.97 29.06 n/a n/a n/a 130 75 n/a 121 69 no
100-1046 M 85 97 165 211 35.63 no no no 135 70 3 146 56 no
100-1046 M 85 97 165 211 3563 no no no 135 75 3 159 50 no
100-1070 F 75 72 162 1.80 2743 no no no 150 75 14 149 45 no
100-200 M 83 75 170 1.88 2595 no no no 145 70 33 129 58 no
100467 m 92 62 165 1.69 2277 no no no 120 80 3 126 57 no
100959 F 66 89 167 2.03 3191 no no no 120 70 19 175 28 no

10097 M 64 80 164 191 29.74 no no no 170 95 2.2 175 42 no
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The following exclusion criteria have been adopted:

refusal of written informed consent;

severe ocular disse;

deafness in alone living subject;

chronic obstructive pulmonary disease, (pre)dementia, or other disease which may
reduce life expectancy.

= =4 4 A

The dataset consists b88hypertensive patients (includitg female andLO8 male, age
72 +8 years). Among thetudy sample47 subjects experienced a fall during 3 months
within the registration

2.3.3 Protocol and measurement system

The ECG Holter was performed after a anenth antihypertensive therapy waslit. On

2 consecutive days, patients underwent d0@4r ECGHolter recording. The recorders

were applied between 9 and 11 AM on a working day, and the patients were asked to
follow as closely as possible their usual daily activities during each monitoring session.
They were asked to stay in bed from 11 PM to 7 Albreover, the patients were
evaluated by a cardiac and carotid ultrasonography, as described in section 2.2.3. The
study was approved by the Ethics Committee of Federico Il University Hospital Trust and
the data were collected by the Department of Tréosial Medical science of the
University of Naples Federico Il in the framework of the Smart Health and Atrtificial
intelligence for Risk Estimation (SHARE) project.

47



3 Data-mining

Data miningc an b e dthef anatygsdof (aften laiige) observationatalgets to

find unsuspected relationships and to summarize the data in novel ways that are both
understandable and useful to the data owniers an increasingly populdield including
statisticd, visualization, machine leaimy, and other data mani@mtion and knowledge
extraction techniques aimed gaining an insight into the relationships and patterns
hidden in the dat@ L a v r a | The pto@e8sdf)data mining includes the steps of data
processing, feature extraction, feature selection, development of an algorithm,
interpretation and evaluatiohe data mining techniques coub@ distinguished in
supervised(i.e. the algorithm infer a function from a labelled training data) and
unsupervised (i.e. no a priori information is required and the technique is used to fit
groups ofinstancesharacterized by homogeneous patterdAgjmally, data represented

in a table may beatlected from measurements or acquired from experts. Rows in the
table correspond to objects (training examples) to be analysed in terms of their properties
(attributes) and the class (concept) to which they belong. In a medical setting, a concept
of interest could be a set of patients with a certain disease or outcome. Supervised learning
assumes that training examples are classified whereas unsupervised learning concerns the
analysis of unclassified examples. Furthermore, the supervised learning tesharigue
usually distinguished in classification algorithms, which provide discrete output (e.g.
binary class, such as health or disease condition; multiclass label for disease severity),
and regression algorithms, which provide a continuous output (ergskiud developing

a disease condition)The current chapteprovides an overview ofhe datamining
techniques that were used in this thesis.

3.1 Data-processing and feature extraction

The RR timeseries in the selected databases were analysed in ordetrdaot ¢-iRV
measures, which were used as input of classification algorithms. The length of the
recordings was selected according to the aim:

1 nominal 24hours (standard length for lotgrm HRV analysigMalik et al.,
1996)for CHF severity assessment;

1 5 minutes (standard length for shtetm HRV analysigMalik et al., 1996)or
fast assessment of risk ofuddoping vascular events;

1 30 minutes (concurrent analysis of nominal-Hur recordings in noen
overlapping 30 minute segmen(Bjautala et al., 2010pr assessm# of fall risk.

All the extracted features are reportediable 3.1
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Table3.1 HRV measures computed in this thesis

Abbreviation Description CHF CVv Fall Ref.
AVNN Average of all the NN intervals Yes Yes  Yes (Malik et al., 1996)
SDNN Standard deviation of all NN intervals Yes Yes Yes (Malik et al., 1996)
SDANN Standard deviation of the averages of NN intervals in-aliffute segments Yes (Malik et al., 1996)
SDNN IDX Mean of the standard deviations of NN intervals in atifute segments Yes (Malik et al., 1996)
RMSSD square root of the mean of the sum of the squares of differences between adjacent NN i  Yes Yes Yes (Malik et al., 1996)
NN50 number of differences between adjacent RR intervals that are longer than 50 ms Yes Yes (Mietus et al., 2002)
pNN50 percentage of differences between adjacent NN intervals that are fbagé&0 ms Yes Yes Yes (Malik et al., 1996)
pNN10 percentage of differences between adjacent NN intervals that are longer than 10 m  Yes (Mietus et al., 2002)
HRVTIi HRYV triangular idex Yes  Yes (Malik et al., 1996)
TINN triangular interpolation of RR interval histogram Yes  Yes (Malik et al., 1996)
TOTPWR / TP Total spectral power up to 0.4 Hz Yes Yes Yes (Clifford and Tarassenko, 2005
ULF Spectral power between 0 and 0.003 Hz Yes (Clifford and Tarassenko, 2005
VLF Spectral power between 0.003 and 0.04 Hz Yes Yes Yes (Clifford and Tarassenko, 2005
LF Spectral power between 0.04 and 0.15 Hz Yes Yes Yes (Clifford and Tarassenko, 2005
HF Spectral power between 0.15 and 0.4 Hz Yes Yes Yes (Clifford and Tarassenko, 2005
LF/HF Ratio of low to high frequency power Yes Yes Yes (Clifford and Tarassenko, 2005
VLF% relative power in very low frequency band-(0.04 Hz) Yes Yes (Malik et al., 1996)
LF% relative power in low frequency band (0.08.15 Hz) Yes Yes (Malik et al., 1996)
HF% relative power in high frequency band (0.154 Hz) Yes Yes (Malik et al., 1996)
VLF peak peak frequency of VLF band Yes  Yes (Malik et al., 1996)
LFpeak peak frequency of LF band Yes  Yes (Malik et al., 1996)
HFpeak peak frequency of HF band Yes Yes (Malik et al., 1996)
HFnu power in high frequency band (0118.4 Hz), expressed in norfiEed unit Yes Yes (Malik et al., 1996)
LFnu power in low frequency band (0.04.15 Hz), expressed in normalized unit Yes  Yes (Malik et al., 1996)
SD1 shortterm variability in Poincaré Plot Yes Yes (Brennan et al., 2001)
SD, long-term variability in Poincaré Plot Yes Yes (Brennan et al., 2001)
AppEn Approximate Entropy Yes Yes (Pincus, 1991)
SampEn Sample Entropy Yes Yes (Richman and Moorman, 2000
CD Correlation dimension Yes Yes (Carvajal et al., 2005)
Alpha shortterm fluctuations in Detrended Fluctuation Analysis Yes Yes (Penzel et al., 2003)
Alpha long-term fluctuations in Btrended Fluctuation Analysis Yes Yes (Penzel et al., 2003)
DET determinism Yes Yes (Eckmann et al.1987)
REC recurrence rate Yes Yes (Eckmann et al., 1987)
Lmean mean length of lines in recurrence plot Yes Yes (Eckmann et al., 1987)
L max maximal length of lines in recurrence plot Yes Yes (Eckmann et al., 1987)
DIV Divergence Yes Yes (Eckmann et al., 1987)
ShanEn Shannon Entropy Yes Yes (Eckmann et al., 1987)
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In the currentsection,the computation details for each feature are briefly reported,
considering the following notation: RBenotes the vatuofj'th RRinterval and\ is the
total number of successive intervals.

3.1.1 Timedomain HRV measures

The mostsimple feature is the mean value of the RR intetwvaé-series, referred as
AVNN, and computed as in the following equation:

()6 o6 6 -B Y'Y,

The standard deviation of the RR intery@®NN is computed as follows:

(2)'YOO 5 —B Y'Y 80 0.

The root mean square of successive differences (RMSSD) is given by:

(3)YOYYO —B YY YY.

Another measure calculated from successive RR interval differencesN&l8wvhich
is the number of successive intervals differing more than 50 ms and the corresponding
relative amount pNN50:

@AnGtom —B 7YY YY uvmai

where «() is the heaviside step function (i.¢he discontinuous function whose value is
zero for negative argument and one for positive argument, formédy=0 if x<O0,

otherwiseJ(x) =1) and | | is the absolute value operator.

Similarly, thepNN10 is computed as follows:

GROpnT —B 7YY  YY pmi

Moreover, in longterm analysis (segments longer than 5 minutes), two other parameters
were computd: SDANN, i.e. the standard deviation of the averages of NN intervals in
all 5-minute segments; SDNN IDX, i.e. the mean of the standard deviations of NN
intervals in all Sminute segments.

In addition to the above statistical measures, there are sometgeameasures that are
calculated from the RR interval histogram. The HRV triangular index (HRVTI) is
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obtained as the integral of the histogram (i.e. total numbeRaiftervals) divided by the
height of the histogram which depends on the selected lithwin order to obtain
comparable results, a bin width of 1/128 seconds is recommended by International
GuidelinegMalik et al., 1996) Another geometric measure is tlM&NN which is the
baseline width of the RR histogram evaluated through triangular interpolation by least
square method@®lalik et al., 1996)

3.1.2 Frequencydomain HRV measures

The frequencsdoman HRV measures rely on the estimation of power spectral density
(PSD), which could be computed with several methods. In this thesis Welch periodogram,
AR method and Lomiscamble periodogram were adoptid the following reason:

T Wel chds p esrbeeo grayioualynaddptaed in the studies investigating
discrimination ability of frequenegomain HRV measures between healthy and
CHF patientfAsyali, 2003, Isler and Kuntalp, 2007, Melillo et al., 201 1dn)d,
for tha reasonjt is considered as benchmark method. Moreover, the choice of
parameters was performed according to these stédigali, 2003, Melillo et al.,
2011b) that is, the NN interval was first interpolated withubic spline
interpolation at 4 Hzthen, he interpolated series was divided into overlapping
segments of length 256 poinfwith a 50% overlapand each segment was
Hamming windowed.

1 AR model is the most widely used parametric method for HRV analysis,
particularly with order model set to (&charya et al., 2006)

1 Lomb-Scamble periodogrammas been shown to providesuperior PSD estimate
of RR series compared to FFT techniques, with reference to ectopy removal o
replacemen(Clifford and Tarassenko, 2009)his was due to the fact the Lomb
Scamble periodgram did not require an evenly sampled-daries and
consequently interpolation of the unevenly sampled RR tsedss nor the
replacement of missing beats.

The generalized frequency bands in case of gkamt HRV recordings are the very low
frequency (VLF, 60.04 Hz), low frequency (LF, 0.6a.15 Hz), and high frequency (HF,
0.150.4 Hz). The frequenegtomain measures extracted from the PSD estimate for each
frequency band include absolute and relative powers of VLF, LF, and HF bands, LF and
HF band powers in normalized units, the LF/HF power ratio, and peak frequencies for
each bandMalik et al., 1996)

3.1.3 Nonlinear HRV measures

3.1.3.1 Poincare Plot
The two parameters of the Poincaré F88% and SD; were computed according to the
following formulae proposed by Brennan et(&rennan et al., 2001)
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(6)"YO —

(7)'YO ¢YOU U -"YO'YO

whereSDSDis the standard deviation of the difference of RR interval time series.

3.1.3.2 Approximate Entropy
The AppEnwas computed according to takgorithmheredescribed.

A series of vectoof lengthm X1,X2,  &nm+1 is constructed from thRRintervals as
follows:

Xi,=[RR, RR:1 ¢ RR4].

The distanced[ X;, X, ] between vector; and X; is defined as the maximum absolute
differencebetween their respective scalar components. For each ¥ectire relative
number of vectorsX; for whichd[X;, X;] ¢ r,C"(r) is computed whereis referred as

a tolerance value (sdlee fdlowing equation).

CM(r)= numberof{d X;, X;] ¢ r}
(8) N- m+1

Then, the following indexF "(r) is computing by taking natural logarithm of each

C™(r) and averaging them over

N.- m+l

M 1 " "
F (r)—N_—rn+l ia:_llnCi (r)

©)
Finally, the approximate entropy is conted as:

o)  APEMMIN)=F"(n-F™()

Since several clinical studigdncus, 1991, Niskanen et al., 2004, Ho et al., 188av§
shown that eithem=1 or 2 andr between 0.1 and 0.2 times tB®NNare suitable to
provide valid value ofAppER in the current thesisp=1 andr=0.2 times th&sDNNwas

adopted.
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3.1.3.3 Sample Entropy

SampEntropgomputatioris very similar toAppEn with two important differences in its
calculation first, in the computation o€™(r) the comparison of the vect{(i) with
itself is included in the count faxppEn(selfmatch problem), while this comparison is
excluded folSampEnsecondly, the logarithm is applied instead of subtraction in the final
step. These changes aims to rembeebias iMppEN as the count of the satbmparison

in AppEnlower its value and the signals are interpreted as more regular than they are.

Formally, the three steps @ampEncomputation are described by the following
equations

_ numberof{d[X;, X;] ¢ r}

(11) c'(r)= N mel "y
M 1 Ny
12 F (r)—N_—m+1 ia:‘lln C"(r)
F"(r)

(13) SampE(m,r,N) =log

F m+1(r)

3.1.3.4 Correlation dimension

Also, theCD is computed similarly téA\ppEn The reconstruction of the attractor is the
first step, that is, a series of vector of lengtiX,X>,  &nm+1iS constructed from the
RRintervals as follows:

Xi,=[RR, RR:pé R-Bm1)

where U i s t hres theiembeddidgedimansionaTihe second step is the
estimation of Euclidean distances between each couple of vectors:

(14) d[xi,xj]=J§ (X, (K)- X, (K)?

k=1
Then, the idea is to construchuanction which estimates the probability that two arbitrary

points on the orbit are close thar5o, the correlation integral function is determined by
the following formula

(15) cm(r):m55_{"3(r- d[X,,X,])

where N, =N- t(m- 1) andJ is the Heawside function.

The correlation dimension is defined as the following limit value:
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logC™(r
CD(m) =Ilim lim g—()
(16) r- ON- o |Ogr

In practice, this limit value is approximated by the slope of the regression doigwe, (
logC™(r)).

The appropriate value of U could be chose

techniqué¢Fraser and Swinney, 1986, Fraser, 198@)ile the value ofm could be
estimated with the methods proposed ®rossberger and Procad¢iassberger and
Procaccia, 1983) i n HRV analysis the values of 1
m, respectivelyand for that reason they are adopted in the current thesis

3.1.3.5 Detrended fluctuation analysis
TheDFA consisted in the following steps:

1) The averageRR of theRRinterval series is calculated on all tNesamples. The

alternate component d®R interval series, which is defined &R minus its

average valueRR, is integrated:

y(k) =& (RR - RR, k=1....N
(17) = _

2) The integrated series is dividedamonoverlapping segments of equal length
A least square line is fitted within each segment, representing the local trends with
a broken line. This broken line is referredyaék) , wheren denotes the length of
each segment.

3) Theintegrated time series is detrended as folloyk) - vy, (k). The rootmean

square fluctuation of the detrended time series is computed according to the

following formula:

k=1

F(n) :Jﬁa (VK- ¥, (K))?
(18) |

4) The steps from 2 to 4 are repeatedritnrom 4 to 64.
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Representing the functioli(n) in a loglog diagram, two parameters are computed: short
term fluctuationsAlphay) as the slope of the regression line relatow F (n)) to log(n)

with n within 4-16; longterm fluctuations Alpha) as the slope of the regression line
relating log(F (n)) to log(n) with n within 16-64.

3.1.3.6 Recurrence Plot
TheRecurrence Plas designed according to the following steps.

As in CD computation, vector%i= (RR, RR + ¢..,RR+m-1)), withi=1,...,K, with K=[N-
(m1),Wheremi s the embedding di mension and U is

The Recurrence Plois a K-dimensional matrix of dots, where a dot is placed if the
Euclidean distance betwe&nandX; is lower tha a threshold value

Formally, the following steps are suggested for achievingréwirrence Plot
1) A K-dimensional square matri¥; is calculated computing the Euclidean
distances of each vect¥rfrom all the others.
2) A K-dimensional square matriM. is calculated as the matrix whose elements

M2(i,j) are defined as:

Y
(19) | ' 1(':]) r

TheRecurrence Plds the representation of the mathile in which a dot is associated to
one value, that is, an image in which black pixels correspond to oneshéadixels to
zeros.M1 is a symmetrical matrix as the distance betwéesndX; is equal to the one
betweenX; and Xi and consequentlyRecurrence Plois a symmetric image along the
diagonal.

According to findings by Niskander et al. and Dabire ¢Dabire et al., 1998, Niskanen
et al., 2004) the following values of the parameters should be chosen:

m=10t =1 r =-/m* SDRF.

In theRecurrence Plotines are defined as series of diagonally adjacent black pathts
no white space. The lengtlof a line is the number of points which the line consists of.

Moreover, some measures Becurrence Ploare widely computedrecurrence rate
(REC)defined in equatiof0; maximal length of lined{ay; mean length of ties (mean);
the determinismBET) defined in equatio2l; the Shannon EntropysHEr defined in
equation 2.
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15 X5 -
REC=—a a M, j)

(20) =1 j=1
I
al*N,
DET= % ——
a a M,(,j)
(21) == , With N = number of lines of length

Imax
ShEn= g n *Inn,

(22) 1=l , with nj = percentage ol over all he number of

lines.

3.1.4 Commentary otthe selected features

In this thesisthe conventional timelomain and frequency domain HRV measures have
been computed, since they are widely used in medical domain studies, and this enables
the comparisonwith the resuls of previous studieg¢Casolo et al., 1995, Panina et al.,
1996, Sajadieh et al., 2003, Dekker et al., 2000, Binici et al., 2011, Arbolishvili et al.,
2006) Moreover, the nonlinear parameters which have been showchange in
pathophysiologicalcardiac conditior{Acharya et al., 2004a, Acharya et al., 2004b,
Acharya et al., 2006, Chua et al., 200&ve been selected:

T

Poincaré Plot parameters varied in casprefnatureventricularcomplexesatrial
fibrillation, sick sinusrhythm andventricularfibrillation;

AppEn showed smaller values for cardiac abnormal cases, indicating smaller
variability in the beat to beat, but, fack sinusrhythm, it is higher compared to
normal subjects;

SampEn has been introduced in ortieremove the biaswhich exists in the
computation of AppE{Melillo et al., 2014)

CD has been shown to decrease for different cardiac condition;

DFA slopes are decreased in very highly varying signals fikemature
ventricularcomplexes, left bundle branch block, atrial fibrillation and veuntac
fibrillation;

RP plot showed, in normal cases, diagonal line and less squares indicating more
variation indicating high variation in the heart rate. Abnormalities complete

heart blockand ischemior dilated cardiomyopathy cases, show more segiar

the RP plot indicating inherent periodicity and lower heart rate variation.

3.2 Feature selection

In this thesis, several features (measures) were extracted from ECG signals. Since the
number of instances was relatively large compared to the numbeaitzde instance
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for the training, feature selection techniques can be used to find the relevant features and
discard the irrelevant or redundant ones in order to:

1 achieve a faster implementation of the algorithms (less time and memory are
required to bud a classifier if there are fewer features);

1 reduce or avoid the risk of ovéitting (models built on several features tend to be
specific to the training set and, for that reason, less generalizable);

1 improve the performances (irrelevant features cdelgrade the performance of
the algorithms);

1 improve the intelligibility of the classification models (it is easier to interpret the
relations among a reduced number of features);

1 avoid the secalled curse of dimensionality, i.e. when the number of dimaasio
of the problem increases, the amount of instances required for an effective output
(e.g. classification) grows exponentially.

Formally, the problem of feature selection is defined as follows: given adé&tattres,

select a subset of siza that leals to the smallest classification errdihe most

straightforward approach to the feature selection problem would require: examining all
possible subset of siza and selecting the subset with the smallest classification

error. However, the number of possible subsets grows combinatorially, making this
approach, which is referred as exhaustive search feature selection, impractsedifo
moderate values @ andd. Two other features selection techniques were adopted in this
thesis: a chsquared statisti¢kiu and Setiono, 19959nd a correlatiotrasedHall and

Smith, 1997)feature selection methods. The first method ranked the features by
computing the value of the cbhguared statistic of each feature with respecthto
classification problem. The second method scores the worth of subsets of features by
taking into account the usefulness of individual features for predicting the class along
with the level of intercorrelation among them with the belief that good reatubsets
include features highly correlated with the class, yet uncorrelated with each other.
Moreover, in some circumstances, the feature importance measures based on Random
Forests (RF) were compui@&iteiman, 2001)

3.3 Classification algorithms

3.3.1 Classification and Regression Tree

Classification and Regression Tre@ART), developed by Breiman et gBreiman,

1984) has been used in several applications of pattern recognition especially for medical
diagnosis(Esposito et al., 1997)The CART algorithm iteratively splits the data set,
according to a criterion that maximizes the separation of the data, producingiketree
decision structur¢Breiman, 1984)The CART algorithms consists of two stages: tree
growing and tree prunin@reiman, 1984)In the former stage the tree grows by selecting
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among all the possible splits, which gener

node is the one containing elements of only one class. The outcome of this step is further
referredto as the Largdree. Among different functions that have been proposed for the
measure bthe impurity of each nodgBreiman, 1984)we adopted the Gini index
criterion(Breiman, 1984)which for binary classification can be computed as follows:

- _. ang an g
Gini index(t) =1- ®-0 - @58

(23) ¢h+ ¢Nn-~

wheret is the considered nodieand] are the two class lalsen; andn; are the number of
subject present alh¢ node belonging to the cldassr j, respectively, and is the number
of subject present at the node.

In the latter stage, thearge Treeis pruned according to a minimal castmplexity
function, whid relies on the tree size and the misclassification error. The
misclassification error is estimated by the innefdl@-crossvalidation of the CART. The

data set is randomly divided into 10 subsets. One of the subsets is used as independent
testing datagevhile the other 9 subsets are used as training dataset. The tree growing and
pruning procedure is repeated 10 times, each time with one of the 10 different subsets
used as a testing set. The misclassification error is calculated as the percentage of
misdassified cases averaged over all the 10 subsets.

This procedure is repeated pruning the tree and for eactremithe cost complexity
function is computed as a linear combination of the number of nodes and of the cross
validated estimated of the miss$dfication error. The outcome of this stage is referred
further to as the Best Stliree which is the sultree achieving the lowest value of the
costcomplexity function. Further details about minimal eosmplexity pruning can be
found in Breimar(Breiman, 1984)

3.3.2C45

C4.5 is the landmark decision tree algorithm developed by Quinlafi@uialan, 1993)

The feature of each node is selected in order to divide input samples effectively and
information gain is used as a measure of effectiveness. After the induction of the decision
tree, a prunig method was applied to reduce the tree's size and complexity.

3.3.3 Random forest

RF is a stat®f-the-art classifier developed by Breim@mueiman, 2001)It is composed

of a number of decision trees tltdhioose their splitting attributes from a random subset

of k attributes at each internal node. The best split is taken among these randomly chosen
attributes and the trees are built without pruning, as opposed to C4.5. One of the most
relevant downsides afsing RF, particularly in medical domain datéing, is that its

model is not easily understandable as a single tree.
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3.3.4 Rotation forest

Rotation forest (RTF) is an ensemble method capable of both classification and
regression, depending on the base cles¢Kuncheva and Rodriguez, 200BYy default,

rotation forest uses C4.5 decision trees as the base classifiers, although it is capable of
using just about any classifier or combination of classifiers. The algorithm focuses on
presenting transformed datatte classifier by using a projection filter such as principal
component analysis (PCA), ng@arametric discriminant analysis, random projections,
and independent component analysis. The most successful projection filter is the PCA
filter (Kuncheva and Rodrigae 2007) The algorithm uses the boostrap method for
creating the training set for each base classifier. The feature set is randomly split into
subsets and principal component analysis is applied to each subset. All of the eigenvectors
are retained asié new features in order to preserve the variance in the data. The idea why
theseM data transformations are performed is to encourage simultaneously individual
accuracy and overall diversity of classifiers within the ensemble, as this is the most
importart precondition for a successful ensem{@eciman, 2001)

3.3.5 Naive Bayes classifier

Naive Bayes ClassifieNB) uses the naive Bayes formula to calculate the probability of
each class given the valudsall the attributes and assuming the conditional independence
of the attribute@lohn and Langley, 1995\ new instance is classified into the class with
maximum calculated probaliifi

3.3.6 AdaBoost

AdaBoost (M) is a metdearning algorithm which works by incrementally running
classifiers on samples of data instances and combining them into an aggregate
model(Freund and Schapire, 1996ach individual or weak classifier contributes to the
aggregate model in proportion to its accuracy. After each ineratlata instances are
reweighted based on incorrect aggregate classifications. This boosts the emphasis of
misclassified instances, refining the construction of weak classifiers in future iterations.
In the current study, C4.5 was adopted as weak dkxssifthe AB algorithm.

3.3.7 Support Vector Machine

Support Vector MachineSVYM) belong to a general field of kerAehsed machine
learning methods and are used to efficiently classify both linearly separable and linearly
inseparable dat@/apnik, 1998)When the data are not linearly separable, they could be
transforned to a higher dimensional space by using a transformation function, which is
the secalled kernel function.
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3.3.8 Multilayer perceptron

Multilayer perceptronNILP) is one of the most popular neural network models due to its
clear architecture and the simpliciof the algorithniBishop, 1995) It consists of a
network of nodes (processing elements) arranged in layers. The principle of the network
is that when data are presented atinpet layer, the network nodes perform calculations

in the successive layers until an output value is obtained at each of the output nodes. This
output signal should be able to indicate the appropriate class for the input data.

3.3.9 MultiBoost

MultiBoost (MB) is regarded as an extension to AdaBoost that combines the AB
algorithm with the wagging procedure, which is itself exitem®f the basic bagging
methodWebb, 2000) Instead ofK single classifiers used by the AB algorithm, MB
constructs a number of sWommittees consisting of a number of trees. Each sub
committee has its own specific iteratimnwhich it terminates. Subommittee is formed

by AB using wagging instead of bootstrap. Wagging works by setting random weights of
instances to thosdrawn from an approximation of the continuous Poisson distribution.
After the weights are assigned, the vector of weights is always standardized toNsum to
All instances in the training set are used to train the base classifier using the designated
weights. Using C4.5 as the base classifier for MB is straightforward, as C4.5 handles
weights associated to instances. Wagging is shown to be particularly successful in
reducing the variance error.

3.3.1(RUSBoost and PCA

RUSBoost (RB) is a hybrid approach recentlggmsed by Seiffert et alSeiffert et al.,
2010)to handle class imbalance. RB relies on the Random tBalapling technique

and AB as boosting algorithm. CART was adopted as weak learner. RUS is one of the
most common data sampling techniques, and simpipves examples from the majority

class at random until a desired class distribution is achieved. However, since HRV
features have been shown to be correlated, there is the risk that some of the computed
features might be redundant and could worsen thsifieasperformance by increasing

the running time and reducing its generalization ability. In order to find the optimal
feature space, we adopted the PCA mettiachcheva and Rodriguez, 200a)d we

tested the proposed classifier with different number of dgioas.

3.3.11Synthetic minority ovesampling technigueSMOTE

SMOTE is an ovesampling approach in which the minority class is esamnpled by
creating fisynt het i c 0-sanplagwih replceme@hdwiaet t h an
al., 2002) The rare class was oveampled by creating new synthetic rare classes

according to each rare class sample and its nasgggtbours
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3.4 Commentary onthe selected datamining methods

The data mining methodemployed in this thesis have been appf@dintelligent data
analysis inmedicine.In particular,machine learing algorithms are usually classified in
three group and at least one algorithm for each gnaspbeen selected:

1 Decision trees foinductive learning ofymbolic rules;
1 Bayesian classifier and SVM fetatisticalor patterarecognition methods;
1 MLP for artificial neural networkgroups.

Since n medicaldomainit is crucial that any computerised system is able to explain

justify its decisions methods which provided intelligible models are preferred. For
examples, decision tree classifitdten givean appropriate explanation: induced decision

trees are fairly easy to understanaisitions of attributes in the tree, especially the top
(mostinformativep nes, often directly cor r(elsapvornadl ,t o
1999)For that reason, in all the application described CART or C4.5, that are the most
used decision tree algorithm, were employed. However, even if these methods performed
an inner feature selection, they showed weak performance when the number of features
is higher than instances, the features are strongly correlated and the datdsdarsced,

such as the databases employed in the current study. To deal with these issues, the author
proposed novel strategies, based on a feature selection step and/or an oversampling
method. This enabled to obtain intelligible models with comparablempeahceof other
up-to-date classifiers (such as RF or MLP), which provide models difficult to interpret.

The main problem with allhe datamining methodis model shrinkag&ooney et al.,
2009) that is,their predictive ability declines sharpbnce the model is applied to an
external dataset, whiclmits their uility in clinical practice Validating a classifier
involves testing it on a set of subjects (the test set) that is indepefdeatraining set.
When the dataset is large, one can simply divide it into a traamdgest set (holdut
method). An effetive and statistically justified validation methtitht can be used with
smaller datasets ithe crossvalidation. The quality of the biomedical engineering
literature on these topics is extremely varigdhe low end of the quality scale, one can
find many papers that report no validatgiodies at all, but merely show that the classifier
works well on the training setyhich tells nothing about the predictive value of the
classifier when faced with neslatg many othempapendack sufficiently clear decription

of the validation methods &nable readers to judge the validity of the wbdster et al.,
2014)

The author of theresent thesis proposed and strongly recommend a methodology to
estimate the classification performancesgidasn a nest crosalidation approach. First

of all, the holdout approach should be adopted to split the dataset in a test set and a
training set. The training set should be used fockhssifiertraining, including the tuning

of algorithm parameter3he optimal parameter and feature should be chosen according
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to crossvalidated estimation of the classifier performances. Finally, in order to increase
the external validity of the develop model, data from multiple medical sites should be
preferred, andhis could be a further development of the clinical studies described in this
thesis.

3.5 Cloud-based architecture

In order to provide the advanced functionality of ECG processing and the classification
models, a welbasedarchitecturewas developed in the frawork of the in the
framework of the UH unded research project -liger®enar t
for Ri sk Est i maSHAREp@atfo(mSrmsAoRtE]rae recbrdieg deice
and a Cloud infrastructure acdnsists of several basic serviessshown irFigure3.1.
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Figure 3.1 The system architecture of the SHARE platform

In the architecture design, the following requirements were considered:

1 management of biomedicsilgnal and data acquired in a highly seamless manner;

9 setup a scalable framework to support the processing of multiple data streams for
concurrent application services.

i persistent storage and exchange of data, their automatic analysis and availability
evaywhere to enable further decision making.

It would provide a framework supporting data management, concurrent application
execution, and data analysis. For that reason, a Cloud environment providing storage and
Virtual Machine (VM}based approach for cqmtational processvas adoptedEach
component of the systewas briefly described in this section
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The BioharnessE (vers. 3 B H&-art c@nanerbigl r Tech
wearable multisensing device, which enables letegm recordings of severaldmedical

signals and data. The BH3 is worn in epidermal contact with an elasticated strap at the

chest (50 g, 50 mm width). The monitoring device (weight 35 g, 80x40x15mm) acts as a

data logger or transmitter, has a memory of up to 480 hours and bé&efydp to 24

hours. Particularly, it can record otemd ECG, breathing signal and respiration rate,

posture, temperature, accelerometer signals along the 3 orthogonal axesa®Btidsen

since it appeared a cheap and reliable device for health mogjtarseful both for
cardiovascular issue and faller detection and since the manufacturer provided SDK.

ShareAPP (referred as Share Cardio Health in Google Play) is an Android application,
which has been developad hocto provide a user interface for tpatients, who could
transmit the data acquired by BH3 in real time though a smartphone. The App was
designed in order to minimize the user interaction. Moreover, it enables the physician to
submit a daily questionnaire to the patients.

SharelLogs is aad hoc developed standalone application for Windows, which enables

the upload of all the acquired signals by BH3 on the SHARE platform. It has been
designed in order to follow the physicianod
physician upload all theata stored on the BH3. This avoid the risk of losing the data that

were not stored in redime (e.g., because the mobile device was offline or out of
Bluetooth coverage area or network problems).

The Web Interface consists of a Content Management Sy€l&48) to show all the
public information on the Project and a Restricted Area reserved to the system user, i.e.
physician, researchers, patients. The CMS relies on Wordpress while the Restricted Area
application was developed in ASP.NET (C#) by using &liSiudio 2013 and MySQL.

The Web Services represent the software interface to store the data, acquired by BH3 and
transmitted though the ad hoc applications. Moreover, they provided the most advanced
functionality of the system, i.e. remote processing @ua mining.

The platform enabled the remote processing of ECG for HRV analysis, computing the
feature described in the secti®rl. In particular, time frequency domain and nonlinear
HRV measures are computed and examateshown in

Figure3.2, Figure3.3, andFigure3.4. The ECG recording were anadyl concurrently in
segments of usapecified length. Finally, the SHARE platform provides atomatic
assessment of cardiovascular risk, relying on-datang approach applied to HRV
measures. In particular, nowtraebased model is integrated in the web platform and an
example of the results is shownRigure3.5.
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The most important advantages of the implemented system are the following:

1 itrelies on a commercial musensing wearable device feignal acquisition

1 the most advanced functionalities i.e. ECG precegs and automatic
classification, were provided by the centralized structure of the system, and the
users, i.e. physician, needs only to have a Web browser running in a personal
computer and a network connection to access these services

1 the technical prgrams can be updated and new tools can be easily added without
interfering with the medical user The addition or incorporation of a new
technique in the GUI can be a quite simple task: a button is added which acts as a
link to the function that runs und®ATLAB and performs the corresponding
processing. This fact makes the system into an open structure that can easily
incorporate new tools as soon as they are developed, and therefore have an
immediate presence in the support of clinical diagnosis

1 the poposed architecture overcome the system based on the discontinued
MATLAB WEB SERVER toolboXGarcia et al., 2002)which has been
discontinued by the manufactures;

1 most system proposed in previous studies focused on ECG storage and
processin(fortino et al., 2012, Hsieh and Hsu, 2012, Pandey et al., 20aR)
they did not provide any automatic classification based onrdating methods.

Moreover, the system appeared to be well accepted by almost all thetp&digih) with

a limited amount of data lost (<20%). Finally, the results of the clinical trials could
provide the scientific evidences needed for the CE marking of the system as a medical
device.
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4 Results and discussion

In this chapter the results of tdatamining methods applied to the database described
in chapter 2 are shown and discussed.

4.1 Automatic assessment of congestive heart failure severity

The classification models described in this section aimed to discriminate between severe
and mild CHF paénts. Thestandard timeand frequencylomainHRV measuresvere
extracted by 24h nominal ECG recordings from the Congestive Heart Failure RR Interval
Database and the BIDMC Congestive Heart Failure Database. The patients with NYHA
Class | and Il were lableld as mild CHF, those with NYHA Class IIl and IV as severe
CHF. CART algorithms with a feature selection algorithm (exhaustive search) was
adopted in order to handle a small and unbalanced dataset. The performance of the
proposed method was compared wather classifiers based on decision trees, i.e. C4.5
(Quinlan, 1996)and RF(Breiman, 2001)enhanced with SMOTE, a standard data level
based method to deal with imbalan@ee performance of the models are evaluated by
the most common measures for binaryassification estimated by 16fold-
crossvalidation

4.1.1 Results

The performance of the proposed method (i.e. CART with exhaustive search feature
selection approach) and benchmarks (i.e. C4.5 and RF, enhance with SMOTE) are
reported inTable4.1.

The proposed method achieved higher values of accuracy than the benchmarks. The
higher performances were obtained by two different combinations of features:
AT OT P WR, pNN1O, pNN5O, SDNN I DX0 and AULF,

Table4.1 Classification performance measurement of the selected classifier estimatefbly-dr@ssvalidation for
classification of severe versus mild CHF patients

Classifier Methodstohandle TP FN TN FP F1 ACC PRE SEN SPE
classimbalance # # # # % % % % %
CART Here proposed 28 2 7 4 90.3 854 875 93.3 63.6
RF SMOTE (k=5) 25 5 18 4 847 827 862 833 818
Cc4.5 SMOTE (k=5) 25 5 19 3 86.2 846 893 833 864
CART SMOTE (k=5) 22 8 17 5 772 750 815 733 773
RF None 26 4 4 7 825 732 788 867 364
Cc4.5 None 22 8 5 6 759 659 786 733 455
CART None 29 0 0 11 845 732 732 100.0 0.0

TP: the number of severe CHF patients correctly classified

TN: the number of mild CHF patients correctly classified

FP: the number of nd CHF patients incorrectly classified as severe CHF patients
FN: the number of severe CHF patients incorrectly classified as mild CHF patients
ACC: Accuracy PRE: PrecisionSEN: Sensitivity SPE: Specificity
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The selectedBest Suktrees are represented Figure4.1 andFigure4.2. Each terminal
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Figure 4.1 The final model tree for the classification of severe versus mild CHF patients based on the comifination
HRV features: TOTPWR, pNN50, pNN10, SDNN IDX

In the model shown ifigure4.1, the initial variable selected by CART (at node 1 split)

was TOTPWR. The subjects whose TOTPWR is lower than 11080.25vers all
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correctly classied as severe CHF patients. CART selected pNN50 for the second node
split. In this node split, the subjects whose pNN50 were lower than 1.22% were classified
as mild CHF patients. Otherwise, the following classification split was based on pNN10,
that is, ifit is lower than 36.093%, the subject was classified as severe CHF patient,

otherwise a final classification split is based on SDIBX with a threshold of 100.910
ms’.
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Figure 4.2 The final model tree (CAR for the classification of severe versus mild CHF patients based on the
combination of HRV features: ULF, TOTPWR, pNN50

69



In the model shown ifigure4.2, the initial variable selected by CART (at node 1 split)

was ULF. The suleicts whose ULF is higher than 21026.8% msre correctly classified

as mild CHF patients. CART selected TOTPWR for the second node split. In this node
split, t he TOTPWR weret lmver whhnold(80.265” were classified as
severe CHF patients. final classification split is based on pNN50, that is, if it is lower
than 1.22%, the subject was classified as a mild CHF patient, otherwise as a severe CHF
patient.

4.1.2 Discussion

The classifiers based on the combinations of standard-téong HRV measures

AT OT P WR, pNN1O, pNN5O, SDNN |1 DXo and AULF,
distinguishing severe from mild CHF patients with an accuracy rate of 85.4%, a
sensitivity rate of 93.3% and a specificity rate of 63.6%-f@@-crossvalidation

estimates). The existence tiese two best combinations can be explained by the high
correlation between HRV measuf@gger et al., 1992, Malik et al., 1996)

The selection of pNN210 in the best combination would confirm its discriminptiover
proved by MietugMietus et al., 2002)As concerns pNN50, Mietwet al.(Mietus et al.,
2002)showed that pNN50 failed to distinguish the LRPs and HRPs, while pNN50 is used
in the Best SubTrees (seeFigure 4.1 node 2 andrigure 4.2 node 4). This apparent
inconsistency may be explained by considering that pNN50 could have a discriminative
power only for the subgroups of patients which had high value of TOTPWR (TOTPWR
> 11080.25 Y, consistent with the absencestditically significant differences between

the two patient groups.

The sets of rules of both the models are clinically consistent, even if CART does not use
any medical priori knowledge. In fact, the main clinical result of this research is that
terminal rode classifying as severe CHF are on the left, therefore revealing lower values
of the splitting features for severe CHF patients (with the only exception of pNN50). This
is coherent with the results showed by CagGlasolo et al., 1995PaningPanina et al.,

1996) and Arbolishvili (Arbolishvili et al., 2006) It should be emphasized that the
findings of CasoldCasolo et al., 1995Panina(Panina et al., 199&nd Arbolishvili
(Arbolishvili et al., 2006)were obtained adopting different methods for power spectral
density estimation. Several methods were proposed in literature in order to estimate PSD
of RR intervals(Malik et al., 1996, Rajendra Acharya et al., 200rticularly, many

PSD estimators are based on the hypothesis that the signal under examination is uniformly
sampledLaguna et al., 1998)n contrast, the RR series is unevenly sampled and requires
resampling before PSD estimation. In this study, Lédshmble periodogrartLomb,
1976)was chosen as it estimates PSD of unevenly sampled signals without the requisite
of resampling and its estimation has been proven to be aururate than FFiased
method for RR datéClifford and Tarassenko, 2005)
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In relation to the methodology, the exhaustive research for feature selection improved the
classification performance compared to CART model obtained using all the features.
Moreover, as the study dataset is imbalanced, the performance of the proposed method
are compared with SMOTE and with other two widely used decision tree methods. The
proposed method achieved the highest performance in terms of accuracy rate and F1,
which is ae of the most suitable metrics for rare class problghsili et al., 2009)
Compared to a previous study, basedlmrtterm HRV measuredecchia et al., 2010)

the classifier proposed in the current studies aelgi@n higher accuracy and sensitivity
(85.4% vs 79.3%, 93.3% vs 82.4%, respectively), even if with a lower specificity (75.0%
vs 63.6%). This result leaded us to considertmmm HRV measures more effective for

the individuation of severe CHF patientsh shoHdterm ones.

As regards the other classifier proposed in literature for CHF assessmen{Gbiddet

al., 2012)compared different algorithms to automatically classify CHF patients in three
groups (mild, moderate and severe) and achieved an accuracy of 86% (independent set
estimate; sensitivity and sensibility are not reported) by using neurabme Guiqiu

(Guigiu et al., 2010proposed a classifier based on support vector machine, which
achieved an accuracy of 74% {fd)d-crossvalidation estimate) in disicninating
between mild CHF (NYHA 1) and moderate/severe CHF patients (NYHA Il and IIl). We
underline that the classifier proposed by Gui@uidi et al., 2012)was based on
anamnestic and instrumental data (not including HRV measures), and the one by Guiqiu
(Guiqgiu et al.,2010) was based on twelve parameters including LF/HF and other
parameters from clinical tests (blood test, echocardiography test, electrocardiography test,
chest radiography test, six minute walk distance test). For that reason some parameters
needed bythe automatic classifier proposed by Gui@iuidi et al., 2012pr Guiqui

(Guigiu et al., 2010¥hould be entered by physicians, while the adoption of only HRV
measures, as in the current study, enables a completely automatic assessment.

The current study had the followg limitations related to the employed holter databases:

a small and unbalanced dataset, the differences in the sampling frequency of ECG
recordings and the different extraction procedures of NN intervals (for instance, some
records were not manually rewed and incorrect RR detections due to artifact may
occur). The small sample size could result in biased sa#tated performance
estimates, even if appropriate strategies (feature selection and tree pruning) have been
adopted to avoid ovditting andto increase the generalization ability. As regards the
imbalanced dataset problem, a standard approach (oversampling) have been adopted as a
benchmark to compare the proposed method. As regards the sampling frequency of ECG,
it should be remembered thatife sampling frequency introduces an error in the RR
interval measurement, as previously shown by M@ferri et al., 1990) However, a
sampling rate of 128 Hz, which is the lowest sampling rate of the recsedsim this

paper, has been found to be accurate enough to locatepgeakR and hence compute

HRV (Malik et al., 1996)
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4.2 Automatic identification of hypertensive patients at high
risk of vascular events

The classification models described in this section aimed to identify hypertensive patients
at higher risk to develop vascular events in the 12 months following the ECG recordings.
Time-, frequencydomain and nonlinear HRV measuvesre extracted by-minute ECG
segment randomly chosen from 24h nominal holter recordings. The patients who
underwent a vascular event in the one year follprafter ECG recording were labelled

as highrisk, while the subject who were free of vasculargwvere labelled as lowisk.

Several classification algorithms, with two feature selection algorithms, were adopted. In
order to assess the generation ability of the motiesholdout approachvasadopted,

i.e. the whole dataset was split into two setis: training set (60% of instances) and test

set (the remaining 40% of instances). The training set was used for feature selection and
choice of the optimal parameters and SMOTE was adopted in order to handle a small and
unbalanced dataset. The choicalwd algorithm parameters and best subset of features
was based on the performances (i.e. accuracy, then sensitivity and finally specificity)
estimated by 1fold crossvalidation. The test set was adopted to evaluate the
performance of the developed cléisss (with the features and parameters chosen on
training set): ROC curves were constructed to compare the predictive value of each
method for predicting vascular events and accuracy, sensitivity, specificity were
computed according to standard formulae.

4.2.1 Results

The clinical characteristics of the study sample of patients were repoitadle®.2. No
statistical differenceswere detected between the two groups of patiemsthe
demographic and clinical features

Among the 3HRYV features, the cksquared statistics feature selection method identified
as relevant the following features (reported in descending order of ranking): CD, SampEn,
SDz, SDNN, LF, Lkeak HF, HRVTI, TP, Lks, while the correlatioibased algorithm
selecté the subset of the following features: HRVTI, LF, HFgd_EFpeax, SD», SampEn,

CD. Figure4.3 showed the importance of each feature as computed by the RF algorithm.
All the features identified by the feature selection method® wanked among the ten
most important features by RF, with the only exception of TP, which was ranke#.as 13

For each datanining method, the optimal combination of parameters and thesbleset

of input features wereelected by maximizing the accayaestimated by Zfold-
crossvalidation as shown ihable 4.3. AB classifiers were developed by varying the
number of iteration from 20 to 400 and C4.5 trees (both as single classifier and as base
classifier in AB) were developdaly varying confidence factor for pruning from 0.05 to

0.5, minimum number of instances per leaf from 5 to 20. MLP were trained by varying
the learning rate from 0.3 to 0.9, the momentum from 0.2 to 1 and the number of epoch
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form 100 to 2000. RF was constted using an ensemble of random trees from 20 to 400
with no depth limit and varying the number of randomly chosen features from log2(n)+1
to n, where n is the number of feature. As regards SVM, we used radial basis function
kernel, varying gamma from Qo 10.

Table4.2 Clinical and demographic features of the sulgestratified by cardiovascular risk

Clinical Features Low-risk subjects High-risk subjects p-value
Age (years) 71.4+7 74.1+6.5 0.136
Sex (Bmale) 41 (33.6%) 8 (47.1%) 0.277
Family history of hypertension 41 (33.6%) 7 (41.2%) 0.622
Family history of stroke 10 (8.2%) 3 (17.6%) 0.236
Smoking 35 (28.7%) 5 (29.4%) 0.983
Diabetes 18 (14.8%) 3 (17.6%) 0.834
Diastolic Blood Pressure (mmHg) 76.39.1 73.5+8.4 0.204
Systolic Blood Pressure (mmHg) 136.6%£19.5 141.7+£23.5 0.326
Total Cholesterol (mg/dl) 175.7+35.1 182.9142.7 0.460
Low Density Lipoprotein (mg/dl) 101£30.1 102+34.3 0.907
High Density Lipoprotein (mg/dl) 52.4£13.1 53.3£15.3 0.813
BodyMass Index (kg//) 27.61£3.9 27.9+4.9 0.793
Body Surface Area (f 1.9+0.2 1.9+0.2 0.442
Alpha-blockers 17 (13.9%) 3 (17.6%) 0.782
Betablockers 50 (41%) 6 (35.3%) 0.487
ACE inhibitor 37 (30.3%) 8 (47.1%) 0.247
Dihydropyridine 27 (22.1%) 7 (41.2%) 0.131
Intima Media Thickness (mm) 2.3+0.7 2.4+1.1 0.685
Left Ventricular Mass index (g/f 130.1+26.1 140.2+25.1 0.135
Ejection Fracion (%) 59.3+10.9 57.8£13 0.591

Data are expressed as mean and standard deviation for continuous variables (e.g. ageuem@iad percentag
of patients per each group for categorical variables (e.g. gender).

C4.5 and AB achieved the highest performances whthsquared feature selection
algorithm, while MLP and NB with theorrelationbased algorithm. SVM and RF
perfamed well with all the features (i.e. without any feature selection step).

The performance measurements estimated on the independent test set are reported in
Table4.4 for each classification algorithm based on HRV features Rheutperformed

the other datanining methods by achieving the best value of performance measures, i.e.,
an accuracy of 85.7%, a sensitivity of 71.4%, and a specificity of 87.8%. The prediction
based on the echographic parameters, i.e., IMT and LVMilteglsin a very low
sensitivity rate (<45%), as shownTiable4.4.
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Figure 4.3 Feature importance computed by using Random Forest algorithm.

Table4.3 Performance measurement {fdld-crossvalidation estimation) of the proposed algorithms based on HRV

features

Classifier Parameters F(f;telgi rs:gl;ectlon AUC ACC SEN SPE

AB NI: 220; CF 0.5; MI: 20 None (33) 94.5% 91.8% 93.2% 90.4%
AB NI: 20; CF: 0.3; MI: 10 CFS (8) 92.2% 85.6% 86.3% 84.9%
AB NI: 120; CF: 0.45; MI: 10} >FS(10) 94.7% 89.0% 90.4% 87.7%
C4.5 CF:. 0.3; MI: 5 None (33) 80.3% 76.7% 78.1% 75.3%
C4.5 CF:0.3; MI: 5 Correlation (8) 82.8% 80.8% 87.7% 74.0%
C4.5 CF:0.1; MI: 5 i >-FS (10) 83.0% 76.7% 76.7% 76.7%
MLP LR 0.3; M 0.6; NE 200 None (33) 86.7% 82.9% 80.8% 84.9%
MLP LR 0.6; M 0.4; NE 200 Correlation (8) 86.9% 78.1% 86.3% 69.9%
MLP LR 0.3; M 0.2; NE 1800 i >FS (10) 86.1% 78.8% 82.2% 75.3%
NF - None (33) 72.4% 65.8% 76.7% 54.8%
NF - Correlation (8) 80.1% 70.5% 78.1% 63.0%
NF - i >FS (10) 77.8% 71.9% 82.2% 61.6%
RF NT 300 NF 5 None (33) 94.5% 88.4% 91.8% 84.9%
RF NT 20 NF 5 Correlation (8) 92.3% 87.7% 90.4% 84.9%
RF NT 400 NF 4 i >FS (10) 93.2% 89.0% 93.2% 84.9%
SVM G: 14 None (33) 93.1% 89.0% 86.3% 91.8%
SVM G: 2.3 Correlation (8) 89.1% 81.5% 84.9% 78.1%
SVM G:1.6 i >FS (10) 89.2% 80.8% 86.3% 75.3%

CFS: correlatiorbased feature selection algorithm (a subset of 8 HRV features)

i >FS: chisquaredéature selection algorithm (a subset of 10 HRV features)

NI: number of iteration; ML: minimum number of instances per leaf; CF: confidence factor for pruning;
LR: learning rate; M: momentum; NE: number of epoch;

NT: number of trees; NF: number of randorohosen features; G: gamma;

AUC: area under the curve; Cl: confidence interval; ACC: accuracy; SEN: sensitivity; SPE: specificity;
In bold: the best performances of each classifier.

74



The ROC curves (estimated on the independent test set) for predictoujavas/ents

over twelve months with HRV or echographic parameters are compaFeguire 4.4.

The HR\W:based classifier showed higher AUC compared to echographic parameters.
Among clinical parameters, the higher AUC was achiewet\Mi, followed by IMT.

The other clinical available parameters (e.g. blood pressure, cholesterol) resulted in ROC
with AUC lower than 0.5, i.e., worst performance than random choice, and for that reason,
they are omitted. Among HRYased classifier, SVMachieved the highest AUC,
followed by RF.

Since AB achieved satisfactory performances, it was interesting to observe the rules
obtained from the decision tree with the highest weight, showigime4.5:

1 the subject was classitleas lowrisk if HRVTi>13.6;

1 a depression of HRVTi (<13.6) associated with a decreased SampEn (<0.997) or
decreased L# (<18.1%) leaded to highisk classification;

1 otherwise, the subject was classified based on LF and CD, in particular, reduced
CD (<3.43) although with LF > 0.011%sleaded to highisk classification,
otherwise, the subject was classified as-ttsk.

Comparison of ROC Curves

AB
— 4.5
MLP

NE
——RF

SVM
IMT MAX
— = Lmi |

| | | | | |
0.4 0.6 0.6 0.7 0.8 0.9 1
1 - Specificity

Figure4.4 Receiveroperator characteristic curves for predicting vascular events M¢théRed classifiers and
echographic parameters.
The HR\:based classifiers are able to predict vascular events with higher sensitivity and specificity rate than
echographic parameters. Sensitivity is determined from the proportion of patient develosnglanevent
identified as high risk; specificity is determined from the proportion of patient free of vascular events identified as
low risk. Solid lines represent classifier based on HRV features;dtadimes represent classifications based on
echograhic parameters.
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Table4.4 Performance measurements estimated on the test setaihioédstimation) of the best classifiers based on
HRYV features and of classification based on echographic parameters

;C):;?erw?l?e/r Area under the curve Accuracy (95% ClI) Sensitivity Specificity
AB 81.9% 83.9%(76.9 86.6) 71.4% 85.7%
C4.5 69.8% 75.0% (67.7 79.1) 57.1% 77.6%
MLP 64.7% 76.8% (69.5 80.6) 42.9% 81.6%
NF 74.9% 69.6% (62.4 74.4) 57.1% 71.4%
RF 88.8% 85.7%(78.71 88.1) 71.4% 87.8%
SVM 90.1% 83.9% (76.9 86.6) 71.4% 85.7%
LVMi 63.5% 69.5% (69.973.0) 41.2% 73.9%
IMT MAX 49.1% 61.9% (57.265.8) 40.0% 64.9%

Figure 4.5 Decision tree for predictionforascular events. The decision tree shows the set of rules adopted for
classify high and low risk subjects:

4.2.2 Discussions

HRYV features extracted from 5 minutes excerpts of 24 hours clinical ECG database of
hypertensive patients were used to develop a ctenpided predictive tool that
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