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Abstract 

Gut microbial acquisition during the early stage of life is an extremely important event since it 

affects the health status of the host. In this contest the healthy properties of the genus 

Bifidobacterium have a central function in newborns. 

The aim of this thesis was to explore the dynamics of the gut microbial colonization in newborns 

and to suggest possible strategies to maintain or restore a correct balance of gut bacterial 

population in infants. The first step of this work was to review the most recent studies on the use 

of probiotics and prebiotics in infants. Secondly, in order to prevent or treat intestinal disorders 

that may affect newborns, the capability of selected Bifidobacterium strains to reduce the amount 

of Enterobacteriaceae and against the infant pathogen Streptococcus agalactiae was evaluated in 

vitro. Furthermore, the ability of several commercial fibers to stimulate selectively the growth of 

bifidobacterial strains was checked. Finally, the gut microbial composition in the early stage of 

life in response to the intrapartum antibiotic prophylaxis (IAP) against group B Streptococcus 

was studied using q-PCR, DGGE and next generation sequencing.  

The results globally showed that Bifidobacterium breve B632 strain is the best candidate for the 

use in a synbiotic product coupled to a mixture of two selected prebiotic fibers 

(galactooligosaccharides and fructooligosaccharides) for gastrointestinal disorders in infants. 

Moreover, the early gut microbial composition was affected by IAP treatment with infants 

showing lower counts of Bifidobacterium spp. and Bacteroides spp. coupled to  a decrement of 

biodiversity of bacteria, compared to control infants. These studies have shown that IAP could 

affect the early intestinal balance in infants and they have paved the way to the definition of new 

strategies alternative to antibiotic treatment to control GBS infection in pregnant women. 
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Background 
 

1.           Early gut microbiota 

 

1.1         Acquisition and microbial composition  

The human gut microbiota consists of a complex population of microorganisms acquired during 

the early stages of life. As summarized by Claesson et al. (2011), microbial composition of the 

gut is subjected to major changes during three different time-points in the life of a human being:  

 

1) the neonatal period; after birth the bacterial colonization of the gastrointestinal tract 

(GIT) starts and it is influenced by different factors such as diet, mode of delivery, 

prematurity, etc;  

2) the weaning period; gradual introduction of solid foods, approximately at 4-6 months of 

life, and consequent exposition to complex nutrients which drive to an adult-like 

microbiota;  

3) the elderly period; it occurs at around sixty years and is characterized by physiological 

modifications of the gut and consequently profound changes in the microbiota 

composition.  

 

At the end of the second stage, when the mature microbiota is established, the large intestine is 

colonized by 300-500 bacterial species which reach the number of ~ 1012 – 1015 CFU/g of lumen 

content.  

Following birth the newborn’s gut encounters a large number of microorganisms (Hansen et al. 

2012), firstly from the uro-genital tract of the mother and secondly from the environment 

(Penders et al. 2006) even though the first microbial contamination has probably an intrauterine 

origin; different studies have already shown that amniotic fluid and meconium are not sterile 

(DiGiulio et al. 2008; Mshvildadze et al. 2010; Moles et al. 2013). At birth, the GIT of the 

newborns has a positive oxidation/reduction potential, consequently facultative anaerobes 

(Staphylococcus spp., Enterobacteriaceae and Streptococcus spp.) are the first microorganisms 

that colonize this environment (Songjinda et al. 2005). Following the first days of colonization, 

the development of the microbiota is influenced by a progressive oxygen consumption and the 

subsequent growth of strict anaerobes (Bifidobacterium spp., Bacteroides spp. and Clostridium 
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spp.) (Biasucci et al. 2010). The initial gut bacterial colonization is characterized by a low 

biodiversity and results unstable up to 2 years of age when it becomes similar to the adult one 

(Adlerberth and Wold 2009; O’Toole and Claesson 2010; Koenig et al. 2011). 

 

1.2         Factors affecting the microbial composition 

The acquisition of gut microbiota during the postnatal period is hardly connected to the 

development of the host’s immunity and generally to the host’s health. Mode of delivery, type of 

feeding, prematurity and antibiotic exposure are the main factors shaping early microbial 

composition of the gut.  

 

1.2.1         Mode of delivery 

The mode of delivery has been reported to have a great influence for the initial colonization of 

the GIT (Penders et al. 2006). In vaginally delivered infants the time of colonization and the 

microbial composition differ compared to those delivered by caesarian section (Biasucci et al. 

2010). After being vaginally born the infants inherit fecal and vaginal bacteria from the mother; 

the vertical transmission leads to an immediate colonization of lactobacilli (Dominguez-Bello et 

al. 2010). On the other hand, infants born by caesarian section are exposed to the bacteria 

belonging to the hospital environment; these infants are characterized by a reduction and delay 

of the colonization of bifidobacteria and Bacteroides spp. and meanwhile by an increase of 

potentially harmful bacteria such as Escherichia coli, Clostridium perfringens and Clostridium 

difficile (Penders et al. 2006; Biasucci et al.  2010). Furthermore, the microbial richness and 

biodiversity of infants born by caesarian section result significantly lower compared to the ones 

vaginally born (Azad et al. 2013). 

 

1.2.2         Type of feeding  

The heavy influence of breastfeeding on the gut microbiota colonization during the first month 

of life has been established (Allen and Hector 2005; Penders et al. 2006); the World Health 

Organization (WHO 2001) promotes exclusive breastfeeding at least up to 6 months and then, 

with the introduction of solid foods, it advises to continue breastfeeding for up to 2 years of life. 

Important differences have been noted between the intestinal colonization of breast-fed (BF) and 

formula-fed (FF) infants. The increased species richness and the unstable microbial colonization 

have been observed for FF infants compared to BF infants who have higher levels of  

Bifidobacterium and Lactobacillus (Fallani et al. 2011; Azad et al. 2013; Fan et al. 2013). In 
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addition, differently from BF, FF infants have much higher counts of Clostridium spp. and 

facultative anaerobic bacteria such as the E. coli (Penders et al. 2006; Bezirtzoglou and 

Stavropoulou 2011). The positive imprinting of BF in shaping the gut microbiota can be 

explained by analyzing the nutrition characteristics of the human milk. Oligosaccharides of 

human milk (HMOs), described in section 3.2.2, represent one of the most nutritional constituent 

of the milk and have an important prebiotic action towards the growth of specific bacterial 

species, such as Bifidobacterium (Coppa and Gabrielli, 2008; Bode 2009). In addition, human 

milk contains immune-modulator factors, such as Igs, and antimicrobial molecules, such as 

lysozyme and lactoferrin (Field 2005).  

It is well documented that human milk has a lower buffering capacity compared to formula milk. 

This difference, which leads to a reduction of pH in the colon, encourages the growth of acid 

tolerant species such as bifidobacteria and lactobacilli while results inhibitory to other bacteria 

(Tham et al. 2011). 

Moreover, the positive effect of BF is also due to the presence of bacteria in human milk, mainly 

lactic acid bacteria such as streptococci, lactobacilli, enterococci, as well as bifidobacteria 

(Kagnoff 2007; Arboleya et al. 2011; Jost et al. 2012).  

 

1.2.3         Prematurity and antibiotic exposure 

The gut microbiota composition of premature infants (born before 37 weeks of gestation) differs 

from that of full term infants.  Immaturity of the immune response, exposure to broad-spectrum 

antibiotics, delay in feeding, can influence the bacterial colonization in preterm infants (Mai et 

al. 2013).  As a result, up to the first three months of life, the gut microbiota has low diversity of 

taxa, reduced proportions of strict anaerobes and increased colonization by facultative anaerobic 

bacteria, such as enterobacteria and enterococci (Magne et al. 2008; Arboleya et al. 2012). In 

addition it has also been observed that the counts of Bifidobacterium are reduced and generally 

delayed during the first days of life (Fanaro et al. 2003; Westerbeek et al. 2006). Independent 

studies have suggested a connection between the altered microbial composition in preterm 

infants and the increased risk of systemic inflammatory response syndrome, sepsis and 

gastrointestinal disorders such as necrotizing enterocolitis (NEC) (Lin et al. 2008; Bolker et al. 

2009; Sherman 2010; Barrett et al. 2013). Usually a premature birth is associated with 

hospitalization and often requires the use of an antibiotic therapy. The impact of the antibiotic 

exposure on the intestinal microbiota leads to the reduction of the main anaerobic bacteria with, 

as a consequence, the overgrowth of enterococci and Enterobacteriaceae (Fouhy et al. 2012). 

Another important impact of antibiotic administration is on the growth of lactobacilli and 
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bifidobacteria resulting in decreased number and, in some cases, absence (Bennet et al. 2002; 

Mangin et al. 2010). 

 

1.3         Health-promoting functions of the gut microbiota 

The gut microbiota, defined as a microbial organ inside the human host, plays an important role 

in many aspects of human health and diseases (Guarner 2006).  

Even though some of the bacteria in the gut are pathogens or potential pathogens and can be a 

source of infection, the majority of bacteria are in a symbiotic relationship with the GIT exerting 

beneficial effects on the host (Hooper 2004). 

To better understand the anatomic characteristics and physiological functions that are associated 

with the the gut bacteria, studies on germ-free animal models have been carried out (Wostmann 

1996). Germ-free animals exhibit an underdeveloped immune system, indicating that gut bacteria 

influence the immune system’s development and balance compared with conventional animals 

(Strauch et al. 2005).  Studies also indicate that the microbiota has an important effect on the 

proper organ development (heart, lung, and liver), neural development and function, cardiac 

system, intestinal homeostasis (Guarner et al. 2006; Cryan and Dinan 2012). The main functions 

of the microbiota on the host can be referred to the metabolic, protective, trophic and immune 

stimulation functions which will be analyzed in this chapter. 

 

1.3.1        Metabolic function 

The metabolic functions of the intestinal bacteria consist in the fermentation of undigested fibers 

and oligosaccharides in the colon producing short chain fatty acids (SCFA), propionate and 

butyrate which can be absorbed by the intestinal epithelial cells (60–70 % of their energy 

requirements derives from bacterial fermentation products) (Montalto et al. 2009; Le Roy et al. 

2013).  

SCFAs influence the metabolism of the colon allowing the epithelial cells to salvage energy, 

moreover it has been observed that some SCFAs, such as acetic acid, can modulate cell turnover 

reducing the risk of development of inflammatory disease (Hooper 2004; Comalada et al. 2006). 

In addition the SCFAs enhance selectively the growth of certain bacteria, such as lactobacilli and 

bifidobacteria, which represent an important source of vitamins (including folates, biotin, 

vitamin K) and favour the absorption of ions (Ca, Mg, Fe) in the caecum (Camilo et al. 1996; 

Bäckhed et al. 2004; O’Hara and Shanahan 2006). 
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1.3.2        Protective function 

The intestinal mucosal surface forms a barrier between the lumen, which comes in direct contact 

with digested food and non-sterile internal environment, and the sterile body (Duerr and Hornef 

2012). Consequently the epithelium of the mucosal surface may be subjected to the microbial 

attack by microorganisms. In this contest, the gut microbiota is able to prevent invasion by 

enteric pathogens through different mechanisms including secretion of antimicrobial factors 

(such as bacteriocins), displacement, competition for nutrients and attachment to ecological sites 

and stimulation of the mucosal immune system of the host (Lievin 2000; Jankowska et al. 2008).  

 

1.3.3        Trophic and immune-stimulatory function  

Bacteria have a direct impact on the morphology of the gut, the enteric microbiota can control 

proliferation and differentiation of epithelial cells. Compared to germ-free mice, those colonized 

at birth have an increased cellular turnover in the intestinal crypts. In addition components of the 

microbiota modify the differentiation programs of intestinal epithelial lineages during 

morphogenesis (Hooper 2004). 

The enteric bacteria play an important role in the development of the gut associated lymphoid 

tissue (GALT) which constitutes a major part of the mucosal immune system (Hooper 2004; 

Mason et al. 2008). The GALT is organized in an inductive site of immune responses, 

comprehensive of lymphoid follicles (Peyer’s patches), and effector sites, constituted by the 

lamina propria and surface epithelium (Brandtzaeg and Pabst 2004). The follicle-associated 

epithelium contains M cells that gather small particles and transport them from the gut into the 

organized lymphoid tissue (Neutra et al. 2001).  

In germ-free mice, several studies have shown that the intestinal immune system is 

underdeveloped, showing hypoplastic Peyer’s patches, reduction of circulating CD4 or plasma 

cells (Hooper et al. 2012). The immune system is able to discriminate self and non-self or 

pathogenic and beneficial bacteria mainly thought the pattern recognition receptor systems 

(PRR), which belong to the family of Toll-like receptors (TLRs) (Vinderola et al. 2005). These 

receptors, which are expressed by macrophages, dendritic cells, endothelial and epithelial cells, 

recognize the PPR ligand, such as peptidoglican, lipopolisaccharides, lipoteichoic acids 

(Medzhitov 2001; Takeda and Akira 2005). It has been also demonstrated that some commensal 

bacteria, such as LAB and bifidobacteria, present the PPR ligand and are able to send immune 

signals to the intestinal cells to fight pathogens (Kelly et al. 2005).  

In response to bacterial infection, intestinal epithelial cells can release cytokines such as IL-6, 

IL-8, tumor necrosis factor alpha (TNF-α) and gamma interferon (INF-γ) (Perdigón et al. 2002; 

9



Tanoue et al. 2008). On the other hand, the infant's intestinal cells are immature, the secretion of 

cytokines, induced by pathogenic bacteria, may be over-expressed during the inflammatory 

response and thus lead to the development of gut-related pathologies, such as IBD and 

necrotizing enterocolitis (NEC ) (Edelson et al. 1999). In this context the interaction between 

some commensal strains and intestinal cells can down-regulate the spontaneous release of 

cytokines, such as TNF- playing an important role in the innate immune response induced by 

probiotics (Borruel 2002; Vinderola et al. 2005; Cencic and Langerholc 2010).  

Moreover, several studies have evidenced stimulatory effect of the microbiota towards the T-

cells with the secretion of non-inflammatory IgA (Cerutti and Rescigno 2008; Dogi et al. 2008). 
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2.           The genus Bifidobacterium   
 

2.1         Taxonomy and ecologic distribution  

Tiesser was the first to discover bifidobacteria, which were characterised by a Y-shaped 

morphology in infant feces. The first isolate was referred to as Bacillus bifidus communis 

(Tiesser 1899). For a long time, bifidobacteria were included in the Lactobacillus genus. Only in 

1974 they were officially classified in the genus Bifidobacterium in the Bergey's Manual of 

Determinative Bacteriology. 

  

 

 

The genus Bifidobacterium, according to Taxonomic Outline of the Prokaryotes, belongs to the 

phylum Actinobacteria, class Actinobacteria, order Bifidobacteriales, family Bifidobacteriaceae. 

Other genera belonging to this family are: Aeriscardovia, Falcivibrio, Gardnerella, 

Parascardovia and Scardovia (Biavati and Mattarelli 2012). 

Bifidobacteria have been mainly isolated from the intestine of human and other warm-blooded 

mammals even though a large number of species are usually detached in different ecological 

niches such as the human vagina and oral cavity, the animal and insect intestine, and sewage.  

At present, the genus Bifidobacterium includes 41 species which are grouped in the table 1 

according to the natural habitat.  

 

 
 
 
 
 
 
 

 

Domain: Bacteria 

Phylum: Actinobacteria 

Class: Actinobacteria 

Order: Bifidobacteriales 

Family: Bifidobacteriaceae 

Genus: Bifidobacterium 
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Table 1 Species of the genus Bifidobacterium and their ecological origins. 

Species Habitat* 

B. angulatum Human feces 

B. gallicum Human feces 

B. scardovii Human feces 

B. animalis  Animal feces 

B. adolescentis Intestine of adult 

B. catenulatum Intestine of adult and infant 

B. longum  Intestine of adult and infant 

B. bifidum Intestine of infant 

B. breve Intestine of infant 

B. pseudocatenulatum Intestine of infant 

B. callitrichos Feces of marmoset 

B. reuteri Feces of marmoset 

B. biavatii Feces of red-handed  tamarin 

B. saguini Feces of red-handed  tamarin 

B. stellenboschense Feces of red-handed  tamarin 

B. mongoliense Fermented milk 

B. crudilactis Raw milk 

B. boum Cattle rumen  

B. merycicum Bovine rumen 

B. ruminantium Bovine rumen 

B. saeculare Rabbit feces 

B. cuniculi Feces of rabbit 

B. magnum Feces of rabbit 

B. gallinarum Feces of chicken  

B. pullorum Feces of chicken 

B. psychraerophilum Swine feces 

B. choerinum Swine feces 

B. thermophilum Swine feces 

B. pseudolongum  Bovin rumen and swine feces 

B. thermacidophilum  Wastewater and feces of piglet 

B. minimum Sewage 

B. subtile Sewage 

B. actinocoloniiforme Intestine of bumblebees 

B. bohemicum Intestine of bumblebees 

B. bombi Intestine of bumblebees 

B. asteroids Hindgut of honeybee 

B. coryneforme Hindgut of honeybee 

B. indicum Hindgut of honeybee 

B. dentium Dental caries and intestine of infant 

B. inopinatum Dental caries 

B. tsurumiense Dental caries 
 *Habitat from which the species were originally isolated 
 

 

12



2.2         Bifidobacterial composition in the infant gut 

The first studies on the bifidobacterial composition in infants were performed through culture-

based and DNA–DNA hybridization techniques (Benno et al. 1984; Mitsuoka 1984; Biavati et al. 

1986). It was found that the total bifidobacterial count was higher in breastfed infants than in 

formula-fed ones. The most represented species in breast-fed and formula-fed infants were B. 

infantis (at present classified as B. longum subsp. infantis), B. breve, B. longum (at present 

classified as B. longum subsp. longum), and B. bifidum. B. pseudocatenulatum and B. 

catenulatum and B. dentium were also present although in a lower number not being the 

dominant species. 

In the last twenty years with the development of molecular techniques, the way of performing 

microbial ecology studies has completely revolutionized. 

In the study of Klaassens et al. (2009), quantitative PCR (qPCR) has basically confirmed what 

traditional plate counts had already stated, in addition B. adolescentis was found exclusively in 

formula-fed infants and B. animalis and B. dentium were not detectable in the samples 

irrespective to the feeding method.  

It is well known that high levels of the bifidobacteria in the early-intestinal microbiota are 

associated to an healthy-status of the infant (Hart et al. 2004). The microbiota of infants, being 

less stable compared to that of adults, shows usually a large variation in composition and relative 

abundance of the Bifidobacterium species (Penders et al. 2006; Claesson et al. 2011). Several 

studies reported an adult-like bifidobacteria composition in the formula-fed and allergic infants 

which resulted colonized by higher level of B. catenulatum and B. adolescentis (He 2001; 

Haarman and Knol 2005). 

According to a recent study based on 16S rRNA sequencing (Turroni et al. 2012a), the dominant 

bifidobacterial species detected in the fecal samples of healthy infants were B. longum and B. 

bifidum. B. breve, B. adolescentis and B. pseudocatenulatum were also present although in a 

lower proportion. Despite the fact that the literature shows highly variable results on the 

frequency and abundance of Bifidobacterium in the gut microbiota, it widely evidenced that the 

“bifidobacterial core” characterizing the infant’s gut consists of B. breve, B. longum subsp. 

infantis, B. longum subsp. longum and B. bifidum. In addition the species B. catenulatum, B. 

pseudocatenulatum, B. dentium and B. adolescentis can also be detected although their presence 

in closely linked to many factors affecting the early microbial composition (see section 1.2).  
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2.3         Physiologic and metabolic properties  

Bifidobacteria are Gram-positive, polymorphic branched rods (Y or V-shaped) that occur singly, 

in chains or in clumps, non-spore forming, non-motile, non-filamentous, catalase negative (with 

some exceptions). Bifidobacteria are anaerobic microorganisms. However, the sensitivity to 

oxygen is a species- and even strain-specific characteristic. Optimum temperature for growth is 

37–41°C, some changes occur depending upon the habitat of origin, i.e., the growth at 45°C 

seems to discriminate between animal and human strains, since most of the animal but not the 

human strains are able to grow at this temperature (Gavini et al. 1991; Dong et al. 2000). 

Bifidobacteria are acid tolerant but they are not acidophilic microorganisms; optimum pH for 

growth is between 6.5 and 7.0. 

Their genome guanine and cytosine (G+C) content of DNA is quite high (from 42 mol% to 62 

mol%), with differences among species (Biavati and Mattarelli 2012).   

Obtaining energy from the oxidation of reduced organic compounds, bifidobacteria are 

chemoorganotrophs with a saccharoclastic metabolism; they produce acid but not gas from a 

variety of carbohydrates. 

Bifidobacterium spp. produce lactic and acetic acid from glucose. The global equation is: 

 

2 glucose + 5 ADP + 5 Pi → 3 acetate + 2 lactate + 5 ATP 

 

The key enzyme of this metabolic pathway (fructose-6-phosphate shunt or bifidus shunt) is 

fructose-6-phosphate-phosphoketolase, which is considered a taxonomic character for the 

identification at the genus level (Biavati and Mattarelli 2012).  

To better understand the bifidobacteria adaptation to specific ecological niches, such as the 

human intestine, the complete genome of some strains has been sequenced. Based on such 

analyses, different species and more specifically different strains are able to express factors 

involved in carbohydrates metabolism, colonization and persistence within the gut environment. 

Bifidobacteria utilize complex carbohydrates obtained either from the diet or from the host that 

are normally undigested in the small intestine (Sánchez et al. 2013).  

About 6.5% of the bifidobacteria-conserved genome codes for proteins involved in carbohydrate 

metabolism, such as diverse glycosyl hydrolase (GH) enzymes and sugar transporters (Bottacini 

et al. 2010; González-Rodríguez et al. 2013).  
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It has been demonstrated that B. bifidum PRL2010, a strain isolated from infant stool, has several 

genes involved in nutrient-acquisition strategy that targets host-derived glycoproteins, such as 

those present in mucin (Turroni et al. 2010).  

Genome analyses of the strain B. longum NCC2705 showed an excessive number of genes, 

representing more than 8% of the whole genome. The total predicted proteins are associated with 

oligosaccharide transport and metabolism, human intestinal mucus metabolism and dietary 

nondigested carbohydrates breakdown (Schell et al. 2002; Falony et al. 2006; Ruiz et al. 2011).  

The infant gut inhabitant B. longum subsp. infantis is highly specialized in the use of the HMOs 

present in breast milk. The genome of the strain ATCC15697 contains a gene cluster that 

encodes GH and carbohydrate transporters that are necessary for importing and metabolizing 

these HMOs (Sela et al. 2008).  

The persistence of specific bifidobacteria in the gut is the result of a strong environmental 

pressure which has amplified the level and diversity of metabolic capabilities of these strains. 
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3.         Probiotics and Prebiotics 

 

3.1       Definition of probiotics  

The term probiotic (meaning “for life”) is currently used to name bacteria associated with 

beneficial effects for humans and animals. In 1998, Guarner and Schaafsma proposed a 

definition of probiotics which was adopted by the Food and Agriculture Organization of the 

United Nations and the WHO. Probiotic definition currently in use is: “live microorganisms that, 

when administered in adequate amounts, confer a beneficial effect on the hosts” (FAO/WHO 

2002).  

This definition has evolved much since the birth of the probiotic concept. Élie Metchnikoff, a 

Russian biologist, zoologist and protozoologist, was the first to introduce the concept of 

probiotic microorganisms.  In his book entitled “The Prolongation of Life”, published in 1908, 

Metchnikoff elucidated the health benefits of lactic acid bacteria (LAB) associated with 

fermented milk products. Metchnikoff suggested that the intake of LAB contained in fermented 

milk products, might result in a reduction of toxin-producing bacteria in the gut and that this 

could increase the longevity of the host. The term probiotic was probably coined for the first 

time in 1965 by Lilly and Stillwell, to define “substances secreted by one microorganism which 

stimulates the growth of another”, against the concept of antibiotic.  

The main probiotic microorganisms belong to the group of LAB including Lactobacillus and 

Bifidobacterium (Saulnier et al. 2009; Champagne et al. 2011). However, some no-lactic acid 

bacteria and yeast have probiotic properties such as Saccharomyces boulardii, Escherichia, and 

Bacillus (Holzapfel et al. 2001; Burgain et al. 2011). 

In order to develop a consensus opinion and better understand the use of the term “probiotic”, in 

2013 the International Scientific Association for Probiotics and Prebiotics (ISAPP) organized a 

scientific experts panel. Reviewing the definition of the term probiotic proposed by FAO/WHO 

in 2002, the panel found that this definition was essentially fine and relevant, however, it 

clarified the use of the term probiotic in foods and nutrients (Figure 1). In particular, the panel 

decided to keep live cultures, traditionally associated with fermented foods and for which there is 

no evidence of health benefits, outside the probiotic framework. Moreover, undefined fecal 

microbiota transplant were outside the probiotic definition as well. On the contrary, new 

commensal and consortia comprising defined strains from human samples, with supported 

evidence of safety and efficacy, are “probiotic”. 
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This Consensus Statement underlined also the necessity to improve the scientific communication 

to the public and health-care professionals on the benefits of probiotics (Hill et al. 2014). 

 

 

 

Figure 1 Overall framework for probiotic products (Hill et al. 2014). 

 

 

 

3.1.1       Selection criteria of novel probiotic strains  

During the past three decades probiotics have been progressing included in various types of food 

products and also in pharmaceutical preparations for human or animal use (Wallace 2009). 

However, in order to be tested it is necessary to establish rational criteria for the screening and 

selection of candidate microorganisms and also to evaluate specific characteristics of efficacy 

and safety.  

Significant progress in legislation evaluating to probiotics has been made in USA, Canada, and 

Europe (EFSA 2012; HC 2006; FAO/WHO 2002). In USA, safe microorganisms for human 

consumption must achieve the GRAS status (Generally Recognized As Safe) by the Food and 

Drug Administration (FDA). In Europe, the European Food Safety Authority (EFSA) has 

introduced the concept of Qualified Presumption of Safety (QPS) similar in purpose to the 

GRAS approach. 

Several criteria for novel probiotic selection must be taken into consideration (Lee et al. 2008): 
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1) Strain identification;  

2) Safety evaluation;  

3) Functional;  

4) Technology properties.  

 

Strain identification is an important requirement. It is well established that probiotic properties 

are strain-related and therefore cannot be extrapolated to other strains belonging to the same 

species (Soccol et al. 2010). Phenotypic tests represent a first approach to identify potential 

probiotic bacteria, however, molecular tools are foundamental to establish the strain identity and 

characteristics. 16S rRNA sequence-based methods and fingerprinting based-techniques could be 

used in combination. The identified strains, as requested in the European Union, must be 

deposited in internationally approved culture collections to verify their identity and original 

properties. 

In order to provide a standardized protocol to evaluate the security features, the FEEDAP Panel 

of EFSA updated peculiar criteria (EFSA, 2012). Antibiotic resistances and transferability of the 

related genes, in combination with the potential toxic effect of probiotics on the intestinal 

epithelial cells, are important factors which have to be assessed with respect to healthy claims 

relating to probiotics.  

Several in vivo and in vitro studies are used to asses these safety characteristics, however, it is 

important to consider that animal-based studies have major disadvantages. Animal 

experimentation has a long tradition for risk assessment for new drugs, however, it is difficult to 

find a suitable animal model to study probiotic strains (Sorokulova et al. 2008). In addition, 

animal studies do not agree with the bioethical spirit of reducing animal testing in the EU. On the 

other hand, intestinal cell models, such as human colon tumorigenic cell lines (Caco2, T84 and 

HT-29), represent an accurate and predictive system close to in vivo situation, having a great 

handling and usability (Cencic and Langerholc 2010).   

Among the criteria used to investigate the functional characteristics, adhesion and resistance to 

stressful GIT conditions are the requisite to allow the persistence and colonization of probiotic 

strains to the intestinal mucosa. As reported for studies on safety evaluation, cell lines are widely 

used also for the adhesion assessment (Lee et al. 2008).  

Probiotic strains should be able to tolerate stressful conditions of GIT, reaching the colon in a 

sufficient number to be able to exert beneficial effects (Guarner 2006; Rijkers et al. 2010). 

Screening of probiotic strains are carried out at different physiological pH and bile 

concentrations. However, to predict the survival through gastric transit in newborns and young 
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infants, it is important to consider that the gastric juice is close to neutrality with respect to 

adulthood (Bergman 2013). Considering the strong effect of gastric juice on probiotic strains, a 

strategy to improve survival of strains after oral intake upon gastric transit is to make these 

strains gastro-resistant through a coating material (Del Piano et al. 2011). When in duodenum the 

coating is disorganized, the survival to bile salts results essential for the generated free cells. Bile 

is a heterogeneous mixture of organic and inorganic compounds (bile salts, phospholipids, 

cholesterol, bilirubin and proteins) released by the liver into the duodenum during digestion, 

facilitating the emulsification and absorption of nutrients from the diet (Begley et al. 2005; Ruiz 

et al. 2013). A part of bile salts reaches the colon and influence the microbiota with a strong 

antimicrobial activity as well as DNA damage. 

In order to minimize the antimicrobial activity of bile salts, some bacteria have developed many 

defense strategies. Several in vitro studies have shown the ability of strains belonging to 

bifidobacteria to modulate the expression of membrane proteins, creating a protective layer in 

response to bile effects (Ruas-Madiedo et al. 2005). In addition, specific bile resistance 

mechanisms have been described in intestinal bacteria such as bile efflux and bile salt hydrolysis 

(Begley et al. 2006; Piddock 2006; Gueimonde et al. 2009). 

Even though bile tolerance is strain-specific,  the potentially probiotic strains could progressively 

adapt to the presence of bile salts through the over-expression of several genes involved in the 

bile tolerance (Burns et al. 2010; Ruiz et al. 2013). 

A beneficial effects to the host are observed when probiotics are consumed in adequate 

quantities (a minimum of 109 viable cells per day). Thus, the probiotic strains must have good 

technological properties, so that they can be grown on a large scale and have a longer shelf life 

(da Cruz et al. 2007; Ouwehand and Vesterlund 2003). In addition, when probiotics are used in 

food, such as fermented products, they have to withstand stresses such as variations in water 

activity, pH, oxygen content, and temperature and simultaneously should increase the taste 

(Forssten et al. 2011).  

 

3.1.2       Probiotic therapy for the treatment and prevention of paediatric diseases 

Manipulation of gut microbiota using probiotics in infants has been well documented in clinical 

trials and has shown promising results in the prevention and treatment of paediatric strictly gut 

dysfunctions such as, diarrhea, necrotizing enterocolitis (NEC) and infantile colics. 

 

Acute diarrhea represents a major problem in paediatrics, conventional treatment is based on oral 

rehydration solutions that replace fluids lost (Samadi 1998; Kolotzko and Osterrieder 2009). 
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However, the best-studied clinical research with the application of probiotic bacteria in children 

has been the treatment and prevention of this disease (Saavedra 2007). Infectious gastroenteritis 

is a serious cause of morbidity and, occasionally, mortality , especially in developing countries 

(Wiegering et al. 2011). Bacteria (i.e., Salmonella spp., Shigella spp., Campylobacter spp., 

Clostridium difficile, Klebsiella pneumoniae, Enterobacter cloacae, Escherichia coli), parasites 

(i.e., Cryptosporidium  spp.), virus (mainly rotavirus) and antibiotic treatments have been 

identified as trigger causes of diarrhea in infants and young children worldwide (Lowenthal et al. 

2006; Amisano et al. 2011). 

Oral administration of selected probiotics has shown positive effect in the prevention of diarrhea 

disease leading to a reduction in frequency of infections. Saavedra et al (1994), in a double-

blind, placebo-controlled trial, treated infants who were admitted to a chronic medical care 

hospital with standard infant formula or the same formula supplemented with a combination of 

Bifdobacterium bifidum and Streptococcus thermophilus. It was reported a statistically 

significant reduction of the incidence of acute diarrhoea in infants feeding with infant formula 

supplemented. Moreover, in two independent studies, it was found a lower risk of developing 

antibiotic-associated diarrhea in newborns treated with B. lactis associated to S. thermophilus 

(Corrêa et al. 2005) or with L. rhamnosus GG (Szajewska et al. 2006), compared to placebo 

treatment. 

Compared to bacterial infection, that due to rotavirus is more severe and often associated with a 

more complicated progression. Randomized controlled trials in children hospitalized for 

rotavirus diarrhea and administered with products containing multiple probiotic strains, have 

established the efficacy of the treatment to decrease the duration and severity of diarrhea and 

other clinical symptoms such as vomit and fever (Grandy et al. 2010; Vandenplas and De Hert 

2011).  

 

Some studies have also been performed to investigate  the potentiality of probiotic administration 

to prevent or treat the necrotizing enterocolitis (NEC). NEC is an inflammatory necrosis of the 

intestine and represents a major cause of morbidity in preterm infants (Hunter et al. 2008). It is 

characterized by necrosis and inflammation of intestine whose mucosal barrier results altered. 

Systemic shock and rapid death can occur in severe cases. Many risk factors are associated with 

NEC, such as prematurity and bacterial colonization (Claud 2001; Lee and Polin 2003). As it has 

been already reported in section 1.2, the gut of healthy newborns is colonized by various 

probiotic strains ascribed to the Bifidobacterium and Lactobacillus genera. On the contrary, in 

preterm newborns some pathogenic bacteria, such as enterobacteria and enterococci, 
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predominate the gut and can be associated with NEC (Mai et al. 2011). Actually, the clinical 

therapy for NEC is focused on the reduction of symptoms but there are not yet specific strategies 

of prevention and treatment for this pathology (Schnabl et al. 2008).  

Many reports suggested that enteral supplementation with a variety of probiotic organisms on 

preterm infants can reduce the NEC incidence and NEC-associated mortality (Lin et al. 2008; 

Caplan 2009). In 2010, an updated systematic review and meta-analysis on 11 randomized 

controlled trials, confirmed the benefits of probiotic supplements in reducing the incidence of 

NEC and the associated risk of death in preterm infants (Deshpande et al. 2010).  

In 2005, a clinical trial was conducted to evaluate the prophylactic effect on the development of 

NEC of a mixture of probiotic strains, B. longum subsp. infantis, B.bifidum and S. thermophiles, 

in infants weighing less to 1.5 Kg. The study found that probiotic supplementation reduced both 

the incidence and severity of NEC (Bin-Nun et al. 2005). Moreover, similar results were 

obtained in the study of Braga et al. (2011) who administered two probiotics strains, B. breve and 

L. casei, in low-birth-weight preterm infants. 

 

Infant colic is characterized by inconsolable crying, frequently accompanied by flushing of the 

face and meteorism (Cirgin Ellett 2003). Although is a common gastrointestinal dysfunction of 

infants, about 10-30% of infants are affected, infant colic pathogenesis is not well understood. 

However, an aberrant intestinal microbiota has been proposed as a major determinant for the 

pathogenesis. During the first months of life, the colicky infants have a lower level of 

bifidobacteria and lactobacilli and higher counts of Gram-negative bacteria (e.i., Escherichia, 

Klebsiella, Serratia, Vibrio, Yersinia, Pseudomonas and Enterobacter) compared to healthy 

infants (Savino et al. 2004; de Weerth et al. 2013). Among these pathogenic bacteria, some 

species are able to produce gas through acid fermentation and thus promote gassy colic (Savino 

et al. 2009).  

With respect to the application of probiotic to colic treatment, (Savino and Tarasco 2010), 

administering to breastfed colicky infants a strain of L. reuteri, demonstrated a positive 

modulation of the gut microbiota and a reduction of gas colic symptoms. In contrast to these 

findings, a recent clinical trial, investigating the same Lactobacillus strain which was tested 

previously by Savino et al (2010), did not find the same positive effects (Sung et al. 2014). 

Moreover, the application of bifidobacteria against infant colic symptoms is not reported in vivo 

and restricted only in a study, in vitro, showing a great inhibitory ability of selected strains, 

against the growth of some gas-forming coliforms (Aloisio et al. 2012). In this contest, additional 

clinical studies should allow to validate the efficacy of probiotic strains against colic. 
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To conclude, probiotics are increasingly being used for their health benefits, however, not all the 

probiotic strains drive a targeted therapeutic effect, thus, it is important to selection different 

strains which can have very specific properties. Therefore, clinical trial results from one 

probiotic strain in one population cannot be automatically generalized to other strains or to 

different populations. 

Moreover, the probiotic effects may depend from the health status of the host, dosage and 

duration of administration. Furthermore, several studies have showed the synergic outcome of 

probiotic mixtures consisting also of strains belonging to different genera and species. 

 

3.2          Definition of prebiotics  

Gibson and Roberfroid have introduced since 1995 the concept of prebiotic, which was defined 

as "specific food components not digested and not absorbed in the small intestine but fermented 

in the large intestine by microbiota”. This definition has been modified by (Saad et al. 2013) who 

presented the concept of prebiotic as non-digestible food ingredient that beneficially affects the 

host by selectively stimulating the growth and/or activity of one or a limited number of bacteria 

in the colon and thus improves host health. The prebiotics must withstand to mammalian 

hydrolytic enzymes and gastric acidity and reach the colon, where they are fermented by gut 

microbiota. The microbial fermentation brings to modulate the activity and stimulate the 

intestinal bacterial growth, in addition it should induce beneficial luminal/systemic effects within 

the host (Manning and Gibson 2004; Laparra and Sanz 2010; (Roberfroid et al. 2010). The main 

goal of prebiotics is the increase in number and activity of beneficial bacteria such as 

bifidobacteria and lactobacilli, and a consequent reduction of  putrefactive microorganisms or 

potentially pathogenic bacteria such as clostridia and enterobacteriaceae (Campbell et al. 1997; 

Rycroft et al. 2001; Saulnier et al. 2009).  

 

3.2.1       Chemical description and intestinal health benefits  

Most identified prebiotics, normally occurring in human and animal diet, are carbohydrates, and 

the most promising are non-digestible oligosaccharides (NDOs) with a low degree of 

polymerization (DP) (Yun 1996). They have been defined as consisting of 2 up to 30 

monosaccharide units whose anomeric C atom (C1 or C2) has a configuration that makes their 

glycosidic bounds non-digestible to the hydrolytic activity of the human digestive enzymes 

(Delattre and Vijayalakshmi 2009; Roberfroid and Slavin 2010).  
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DP and type of glycosidic bonds between the monosaccharide units, which are fructose, 

galactose, glucose and/or xylose are responsible for the specific metabolic use of NDOs by 

improving and modulating the growth of intestinal bacteria (Rycroft et al. 2001; Roberfroid 

2007).  

Many prebiotic fibers are obtained from raw vegetable materials, while others are produced by 

chemical or enzymatic processes (Delattre and Vijayalakshmi 2009). Among NDOs, the most 

important fibers are fructo-oligosaccharides (FOS, oligofructose, inulin), galacto-

oligosaccharides (GOS) or trans-galactooligosaccharides (TOS), lactulose, gluco-

oligosaccharides, glycol-oligosaccharides, lactitol, isomalto-oligosaccharides, malto-

oligosaccharides, xylo-oligosaccharides, stachyose, raffinose, and sucrose oligosaccharides 

(Patterson and Burkholder 2003). Additionally, several polysaccharides such as 

Arabinogalactans (AG) and partially hydrolysed guar gums (PHGG), have a great capability to 

stimulate positively the growth of colonic LAB and bifidobacteria.  

 

3.2.1.1      Fructo-oligosaccharides (FOS) and inulin  

FOS and inulin are chains of fructosyl units linked to a terminal α-D-glucose residue (GFn). The 

fructosyl units are linked by bonds β(1→2); the glucose is linked by bonds β(1→1). The only 

chemical difference between FOS and inulin is the different degree of polymerization (DP). 

Whereas the chain lengths of FOS range from 3 to 10 units, the inulin has a DP which can reach 

up to 60 units (Figure 2). 

 
Figure 2 General structure of FOS (n = 0 - 7) and inulin (n = 0 – 57). 
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The characteristic bond β(1→2) in the fructosyl units, prevents FOS and inulin from being 

digested with respect to common carbohydrate conferring a high nutritional value. 

FOS and inulin can be extracted from several vegetables such as, chicory, artichoke, onion, 

garlic and Jerusalem artichokes.  

Furthermore, FOS can be manufactured: i) by sucrose (GF), using the transfructosylation activity 

of the enzyme β-fructofuranosidase (or fructosyltransferase) which produces increasing length 

oligomers such as, 1-kestose (GF2), 1-nystose (GF3) and 1F-fructosylnystose (GF4); ii) by 

controlled enzymatic hydrolysis of the extracted polysaccharide inulin.  

Several studies, in vitro and in vivo, have widely established the prebiotic properties of FOS and 

inulin which to date are the most commercialized and used.  

Intake of FOS leads to an increase of the count of bifidobacteria, in vivo, and reduces that of 

Bacteroides spp. (Kolida et al. 2002). In addition, FOS and inulin have other beneficial effects in 

the host, such as modulation of mineral metabolism,  modulation of immune system and 

decrease of cholesterol levels. 

Studies in humans have shown the possible effect of these carbohydrates to enhance calcium 

absorption and bone mineral density (Macfarlane et al. 2006). The immune-modulation in the 

intestine has been also pointed out by several studies. After administration of inulin and FOS, 

various parameters of the immune system are altered, such as secretion of IL-10 and interferon 

(IFN)-γ by Peyer’s patch (Hosono et al. 2003), NK cell activity, lymphocyte proliferation, 

immunoregulation of intestinal IgA, a general development of GALT (Pierre et al. 1997). 

A series of animal studies demonstrate that inulin affect the metabolism of the lipids decreasing 

triglyceridaemia and cholesterolaemia. Studies on humans largely confirm the animal experiment 

results demonstrating mainly a reduction in triglyceridaemia and only a relatively slight decrease 

in cholesterolemia (Delzenne et al. 2011).  

 
3.2.1.2      Galacto-oligosaccharides (GOS) 

GOS are made from of 2 to 6 sugar oligosaccharides formed by transgalactosylase activity of β-

galactosidase on lactose (disaccharide composed of galactose and glucose bonded by a β -1,4-

bond); these are frequently referred to as transgalactosylated oligosaccharides (TOS). 

The enzyme β-galactosidase works by transferring galactose from lactose to water. Under 

condition of high lactose concentration, the enzyme uses lactose as an alternative acceptor to 

water resulting in the formation of galactooligosaccharides (Rastall et al. 2002). The lactose used 

as substrate for GOS production is usually purified from cow’s milk.  
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A major component of the GOS is 4'-galactosyl lactose (4'-GL) having a structure composed of 

lactose and galactose bonded through a β -1,4-bond. The general structure is: Gal β 1-4(Gal)n β 

1-4Glu (Figure 3). 

 

 
Figure 3 General structure of 4'-galactosyl lactose (n = 1 - 3) 

 
 

GOS resist to the hydrolysis of intestinal enzymes and thus they reach the colon undigested. 

Several studies in humans, both in adults and in infants, have shown the selective stimulation of 

GOS in the growth of the health-promoting bacteria such as bifidobacteria and lactobacilli. Ben 

et al. (2008) evaluated the effects of an infant formula enriched with GOS (0.24 g/100 mL) on 

the intestinal microbiota in 371 healthy and in term infants. After 3 month of GOS-formula 

feeding, Bifidobacterium spp. and Lactobacillus spp., acetic acid and stool frequency were 

significantly increased, on the contrary fecal pH was decreased compared to the infants feeding 

with the formula without GOS. Additionally, compared to human milk, the GOS-formula did not 

show differences, showing, thus, its effectiveness when used in infants. To date, fermented milk 

products containing probiotic bacteria with added GOS are commercially available in Japan and 

in Europe, thus, infant nutrition is a promising field of application of GOS. 

GOS have demonstrated positive effects on calcium absorption and have prevented bone loss in 

some animal research or in human studies (Chonan et al. 2001; Whisner et al. 2013). 

Relief of constipation and support to natural defences in human have also been pointed out 

(Rycroft 2002; Boehm 2008). 

 

3.2.1.3      Arabinogalactans (AG) and partially hydrolyzed guar gum (PHGG) 

The polysaccharides AG and PHGG belong to the hemicellulose fibers and have a low molecular 

weight and an irregular and branched structure. 

AGs are water-soluble polysaccharides found in plants, fungi and bacteria and the dietary intake 

of this compound comes from carrots, radishes, tomatoes, pears and wheat. AG, derived from the 

larch tree, is commercially available as fiber ingredient and it is considered as non-digestible 

n 
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soluble dietary fiber. Chemically, it is composed of the sugar galactose (-1-3 with branches -

1-6) and arabinose (-1-3). 

PHGG is a soluble fiber produced from the seed of guar bean that completely dissolves in water 

and is fermented in the colon liberating SCFAs. Chemically, guar gum (or galacto-mannan) is 

composed of galactose (-1-6) and mannose (-1-4). 

AG fibers possess interesting prebiotic properties, being fermented by gut microbiota and 

resulting in the production of short-chain fatty acids, primarily butyrate and propionate. 

Moreover, in subjects administered with AG a significant increase of Lactobacillus spp., 

compared to the control group and a well tolerability were observed (Robinson et al. 2001). 

The ability of AG to enhance immune system performance has been evidenced. Larch 

arabinogalactan obtained from Larix occidentalis enhanced NK cell cytotoxicity and phagocytic 

capacities of macrophages and lymphocytes (Hauer and Anderer 1993). 

PHGG supplementation in infants leads to decrease some functional bowel disorders, such as 

irritable bowel syndrome (IBS) and abdominal pain symptoms (Parisi et al. 2005; Romano et al. 

2013), in addition, have reported a rise in the proportions of bifidobacteria and lactobacilli after 

PHGG supplementation in human (Tuohy et al. 2007). 

 

3.2.2       Human milk oligosaccharides (HMO) 

The oligosaccharides of human milk (HMO), one of the major components of breast milk, are 

partially digested in the small intestine and therefore they reach the colon, where they exert a 

prebiotic effect. They are able to stimulate selectively the growth of bifidobacteria contributing 

to the formation of the characteristic composition of the intestinal microbiota in breast-fed 

infants (Coppa and Gabrielli 2008).  

During the first two weeks after delivery, the human’s milk has a content in oligosaccharides of 

about 20 g/L and when it becomes mature and reaches stability achieves a concentration ranging 

from 12 to 14 g/L, on the contrary, cow’s milk, which is commonly used in the preparation of 

infant milk formulas, has a low content of oligosaccharides, about 1 g/L (Coppa et al. 2006). 

HMOs are structurally very complex and have a huge diversity, almost  200  oligosaccharides  

have  been  identified,  of which  over  80  are  now  fully  characterized  from  the structural  

point  of  view  (Tao et al. 2011; Yang et al. 2011). HMOs are carbohydrates composed of 

glucose and galactose with added several units of N-acetyl-glucosamine further decorated by 

fucose. This structure of monosaccharides can bound to one or more molecules of sialic acid. 

The presence of acid sialic and fucose in terminal positions confers HMO as non-digestible 

oligosaccharides by digestive intestinal enzymes. This oligosaccharides, thus, reach the colon 
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intact where they are metabolized by the intestinal bacteria which possess proper enzymes 

(Marcobal et al. 2010).  

The bifidogenic effect of HMO is restricted to some strains which have preference  in  

oligosaccharide  consumption, among them B. infantis and B. bifidum possess specific enzymes, 

such as fucosidase and sialidase, to deconstruct the HMO polymer. Genomic analysis of these 

strains have shown the induction of specific gene clusters associate with HMG stimulation and 

consumption (Sela and Mills 2010; Turroni et al. 2012b). HMO have shown to modulate the 

intestinal immune cells by a direct stimulation of their sugar receptors (Eiwegger et al. 2010).  

In addition to HMO, human milk has a wide range of immune-modulatory factors including Igs, 

lysozyme, lactoferrin, cytokines and lymphocytes (Penttila 2010; Walker 2010). 

Moreover the prebiotic effect of human milk is also enhanced by components other than 

oligosaccharides, such as lactoferrin, nucleotides, lactose (Coppa and Gabrielli, 2008).  
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Objectives 
 

 
My Ph.D position was supported by the Emilia-Romagna Region within the program Global 

Grant Spinner 2013. The work described in this dissertation is part of a larger project entitled 

“Functional foods and nutraceuticals applied to human and animal health: probiotics, prebiotics 

and activation of phytochemicals". The goal of Global Grant Spinner 2013 is to support the 

qualification of human resources in the field of research and technological innovation and to 

create an inter-university networks of Ph.D projects. 

My activity has investigated the early colonization of the gut with a particular focus on 

bifidobacteria. Gut microbial acquisition during the early stage of life is an extremely important 

event. Since birth, the microbiota evolves into a complex ecosystem which will affect the health 

status of the host. In this context, the healthy properties of the genus Bifidobacterium have a 

central function in newborns. A preliminary work performed in our laboratory has led to the 

isolation and characterization of four Bifidobacterium strains (three B. breve and one B. longum) 

which are potential candidates to be used as probiotics in infants (Aloisio et al., 2012). My Ph.D 

research was a follow up of this work. 

The aim of the work proposed in this thesis was therefore to explore the dynamics of the gut 

microbial colonization in the early stage of life and to suggest possible strategies to maintain or 

restore a correct balance of gut bacterial population in infants. 

To date, the application of probiotics and prebiotics for the prevention or treatment of infant 

disease is an emerging area of the applied microbiology, furthermore, it has a growing interest 

for the food and pharmaceutical industry. The first step of this work was to review the latest 

advanced studies on the use of probiotics and prebiotics in infants; particular emphasis was given 

to bifidobacteria (Paper 1 and 2). 

Among the intestinal disorders that affects newborns, gas colics are quite diffused. Although the 

pathogenesis of this disease is not well understood, it has been evidenced, using both culture-

dependant and molecular investigations, higher counts of Gram-negative bacteria, in particular 

gas-producing coliforms, and less proportions of LAB and bifidobacteria in colicky infants 

compared to healthy infants. Paper 3 evaluated the capability of a Bifidobacterium breve strain, 

previously characterized (Aloisio et al., 2012), to reduce the amount of Enterobacteriaceae in 

fecal cultures derived from a colicky infant, using a continuous culture fermentation approach. 
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The stimulation of the growth of beneficial bacteria may be a suitable strategy to prevent some 

pediatric disease and consequently to maintain a correct bacterial balance. For this reason, in 

order to develop a synbiotic product for infants, the ability of ten commercial prebiotic fibers 

(two galactooligosaccharides, one fructooligosaccharide, four inulins, one glucooligosaccharide, 

one arabinogalactan and one partially hydrolysed guar gum) to stimulate selectively the growth 

of  four bifidobacteria strains (three B. breve and one B. longum) with respect to potentially 

harmful bacteria of the gut, was evaluated. In addition, the capacity of the four bifidobacteria 

strains, previously characterized (Aloisio et al., 2012) to survive in simulated gastro-intestinal 

conditions was evaluated in order to check the most suitable way of administration to infants 

(Paper 4).  

A large part of my Ph.D research activity has been dedicated to the understanding of how 

intrapartum antibiotic prophylaxis (IAP) can affect gut colonization in infants. Positive pregnant 

women to Group B Streptococcus (GBS), during delivery, can transmit this bacteria to 

newborns. The infection is one of the major causes of neonatal morbidity and mortality, 

therefore, in order to reduce its incidence, IAP with ampicillin is routinely carried out in GBS-

positive women. However, the impact of IAP on the early microbial colonization in infants has 

not been clarified yet. In order to evaluate the microbiota modulation in infants due to IAP 

treatment, several experimental approaches were applied, which include the counts of several 

microbial groups in infants using quantitative PCR, the analysis of bifidobacteria biodiversity 

with Denaturing Gradient Gel Electrophoresis and a next generation sequencing approach 

(Paper 5, 6 and 7). Additionally, the paper 5 investigated the antimicrobial activity of the same 

four Bifidobacterium spp. strains, previously considered in the paper 4, against four strains of 

Streptococcus agalactiae (isolated from vaginal swabs of GBS-positive women). The specific 

aim of this study was to evaluate, in GBS-positive women, alternative actions of prevention or 

treatment involving probiotic application. 
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Abstract: 

Research on probiotics and prebiotics for use in infants is very active and results on their 

efficacy to prevent and combat several diseases are at present available. Bifidobacteria and 

lactobacilli are considered beneficial bacteria for the gut, the former being the predominant 

group of healthy breast-fed newborns. One of the major area of probiotic research in children has 

been the treatment and prevention of diarrhea. Moreover, a large number of infant pathologies, 

both enteric (infantile colics, necrotizing enterocolitis, celiac disease) and not strictly enteric 

(allergies, obesity, neurologic disease) have revealed promising preventive and therapeutic 

effects of probiotics, although these applications need additional experimental evidences. Recent 

studies have shown that probiotic strain characteristics are crucial to reach a targeted therapeutic 

effect. One of the major aspect affecting the gut microbial composition of breast-fed neonates is 

the presence of oligosaccharides in breast milk. These molecules exert a prebiotic effect which is 

crucial for the development of a healthy gut microbiota. Research studies have been focused on 

the selection of fibers possessing a prebiotic role similar to human milk oligosaccharides. 

Galactooligosaccharides and fructoligosaccharides are abundantly used in infant formula, 

frequently as mixtures of the two molecules. Several studies have shown that the capability of 

stimulating beneficial bacteria and of shaping the gut microbiota is similar to that of breast milk. 

On the contrary, studies regarding the use of prebiotics in infants for the prevention of allergies 

showed contradictory results. Therefore, it is possible to conclude that children are a very 

important target, if not the main one, for probiotic and prebiotic administration and the European 

industry is aware of that. 
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26.1 Introduction 

Probiotics and prebiotics constitute a central growing market for the food/pharmaceutical 

industry and for the baby food industry as well. The industrial significance of these health 

promoting bacteria and molecules has driven a lot of research studies aimed at understanding 

their functionality and activity. The children associated market is of great relevance, because 

infants are very susceptible to diseases and non chemoterapeutic treatments are particularly 

looked forward for them.  

Probiotic and prebiotic research is moving forward on two fronts: basic science, i.e. laboratory 

studies planned to elucidate the mechanisms through which these supplements exert their 

activity, and clinical trials to evaluate the safety and efficacy of probiotics in various medical 

conditions. Many early clinical trials of probiotics/prebiotics had methodological limitations, and 

definitive clinical evidence to support using specific probiotic strains for specific health purposes 

is sometimes lacking. Nevertheless, there is preliminary evidence for several uses of probiotics 

and prebiotics, and more studies are under way. This chapter is focused on the use of probiotics 

and prebiotics in infants for the treatment of infant diseases and, in the case of prebiotics, will 

describe attempts aimed at making formula milks as close as possible to human milk to 

overcome limitations connected to the lack of feeding with maternal milk. The basis of 

probiotics/prebiotics use is that the health status of the gut in infants is extremely important for 

the well-being of the whole organism in the successive stages of life. The definition of an 

equilibrated gut microbiota composition in the early stages of life and, therefore, the 

understanding of how colonization occurs in newborns, are of crucial importance.  

 

26.2 Gut microbiota acquisition in infants 

Three different successive phases in the composition of the intestinal microbiota can be 

described almost in all individuals: i) the birth and the whole period of liquid diet; ii)the weaning 

time up to adulthood, when the introduction of a solid diet determines profound changes giving 

rise to a stable community; iii) the elderly period, when further strong changes in the microbiota 

occur deriving from both physiological modification of the gastrointestinal tract and an 

unbalanced diet (Claesson et al. 2011) Studies on gnotobiotic mice have illustrated the essential 

role of the gastrointestinal microbiota in normal gut development and it is argued that the 

microbial diversity of the human gut is the result of co-evolution between microbial communities 

and their hosts (Ley et al., 2006). It is well assessed that the intestinal microbiota of the newborn 

is a complex ecosystem composed of numerous genera, species and strains of bacteria, 

performing various unique activities affecting colonic and systemic physiology and that its 
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establishment begins soon after birth. Birth brings about an immediate end to the sterility of the 

fetus environment and, within a few hours, bacteria start to appear in the feces. The first 

microbial population the newborn comes into contact with are the maternal intestinal and vaginal 

microbiota; successively, the newborn is exposed to microbes from the environment. Still, the 

first microbial colonization of the infant gastrointestinal tract is a remarkable episode in the 

human lifecycle and it is well known that several factors, in addition to the maternal microbiota, 

influence the gut colonization by microorganisms, including the mode of delivery, the type of 

infant feeding, the perinatal newborn circumstances (hospitalization and chemotherapy 

treatments) (Biasucci et al., 2010; Di Gioia et al. 2014).  

The first bacteria healthy newborns come in contact with are facultative anaerobes 

(Staphylococcus spp., Enterobacteriaceae and Streptococcus spp.), because of the positive 

oxidation/reduction potential of the neonates’ intestine at birth. These bacteria consume oxygen 

paving the way to strict anaerobes such as members of the Bifidobacterium, Bacteroides and 

Clostridium genera (Biasucci et al., 2010). Epidemiologic studies performed in the last decade 

and focused on the determination of factors affecting gut composition (e.g. the KOALA study, 

Penders et al. 2006) have shown that that anaerobic colonization may be delayed in caesarean 

section delivered infants. Additionally, an increased incidence of Clostridium perfringens and 

Clostridium difficile in caesarean section newborns is reported in relation to the hospital 

environment. Another factor influencing composition of the intestinal microbiota in neonates is 

the type of feeding (Penders et al. 2006). In full term breastfed neonates Bacteroides spp. and 

bifidobacteria can appear 4 days after birth and after 1 week they their counts increase rapidly to 

constitute 80%-90% of the total bacteria, whereas the microbiota of formula-fed infants is more 

complex, with Bifidobacterium spp., enterobacteria and Streptococcus spp. in similar proportion. 

Another notable difference is that formula fed infants have much higher counts of Clostridium 

spp than breast fed infants (Penders et al., 2006). An important difference is the relative 

buffering capacity of the two feeds. Breast milk has poor buffering capacity, compared with 

formula milk, and this leads to market differences in the colon pH of breast and formula fed 

infants: 5.1 and 6.5, respectively. This low pH promotes the growth of  bifidobacteria and 

lattobacilli, but is inhibitory to many other bacteria (Tham et al., 2011). Moreover, human milk 

oligosaccharides, as described in section 24.6.1 of this chapter, are prebiotic agents that 

selectively encourage the growth of beneficial (probiotic) organisms (Coppa and Gabrielli, 

2008). Both adults and neonates are regularly exposed to microorganisms via the diet, but with 

different effects. The microorganisms entering newborns through breast milk are more likely to 

colonize than those entering healthy adults possessing a stable climax community. Information 
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about the isolation and identification of commensal or potential probiotics bacteria, including 

bifidobacteria, from milk of healthy women are not conclusive. Even though authors are aware 

that human milk is difficult to sample and microbial contamination can never be totally 

discarded, some studies have demonstrated the presence of live bifidobacteria in human milk 

(Martin et al., 2003, Solis et al., 2010).  

In contrast with full term neonates, little information concerning the composition of the 

microbiota in premature infants is available. The inter-individual variability in these subjects is 

very high and many parameters, such as antibiotic use and diet, may tend to increase study 

discrepancy. In particular, preterm newborns often need parental feeding, due to the immaturity 

of their intestine, and they often need respiratory support, they are vulnerable for infections and 

often require antibiotic treatment. One of the most significant differences between preterm and 

full term infants microbiota is the colonization of bifidobacteria that are not frequently identified 

in the first month of life of premature newborns (Westerbeek et al., 2006). This alteration has 

been linked to the increased risk of severe gastrointestinal disorders such as necrotizing 

enterocolitis which affects predominantly premature and low weight newborns (Lin et al., 2008). 

The gut microbiota of infants, due to change of diet, results more stable and homogenous after 

weaning and it gradually gets closer to the typical adult microbiota (Magne et al. 2006; Koenig et 

al. 2011). A large-scale longitudinal study on development and change in the composition of gut 

microbiota during the process of weaning was carried out by Fallani et al. (2011). Within this 

study faecal samples of 605 infants (from five European countries), approximately 4 and 6 weeks 

after the introduction of first solid foods, were collected in order to investigate the association 

with determining factors such as mode of delivery, previous feeding practices, age of weaning 

and the impact of possible antibiotic treatment. After 1 month of weaning, bifidobacteria and 

Bacteroides continue to represent the predominant groups. However, the number of detectable 

Bifidobacterium species decreased after weaning together with counts of C. perfringens and C. 

difficile, while other strictly anaerobic clostridia increased. 

 

26.3 Association between gut microbiota composition and health status 

Because of immature intestinal immune function, the newborn is susceptible to intestinal and 

systemic infections. An immature intestinal epithelial barrier may predispose infants and 

children to intestinal inflammatory diseases, such as infectious enteritis, inflammatory bowel 

disease, and necrotizing enterocolitis. Therefore the development of an healthy microbiota 

during the postnatal period is critical for the establishment of normal physiology of the intestinal 

tract. Moreover, a better understanding of the factors that regulate gut barrier maturation may 
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yield insight into strategies to prevent these intestinal diseases. The microbiota is in close contact 

with the intestinal mucosa and epithelial surface which is, after the respiratory area, the largest 

surface of the body, occupying approximately 250-400 m2 (Nataro 2005). Some anatomical and 

physiological aspects of the host organism are directly linked to the presence and activity of the 

resident microorganisms, such as formation of the intestinal walls, production of organic acids 

and vitamins, stimulation of immune system etc. The presence of abundant bifidobacteria and 

lactobacilli may provide some protection against incoming of enteric pathogens. The benefits 

exerted by the strains belonging to Bifidobacterium and Lactobacillus genera have been widely 

studied in the last ten years (Laux et al. 2005, Jankowska et al. 2008, Cencic and Langerholc 

2010, Montier et al. 2012). They are able to compete for nutrient with enteric pathogens, to 

strongly adhere to the intestinal mucosa and to stimulate the development of both humoral and 

cellular mucosal immune system. These and many other features make them excellent probiotics 

for pediatric use. 

 

26.4 Beneficial bacteria in the newborn gut 

 

26.4.1 Bifidobacteria  

The intestinal microbiota of breast-fed newborns is predominantly composed of bifidobacteria. 

This achievement was already reached in several studies performed in the eighties (Biavati et al. 

1984) with the use of traditional plate isolation technique. The most represented species in both 

breast-fed and formula-fed infants were found to be Bifidobacterium infantis (at present 

classified as B. longum subsp. infantis), Bifidobacterium breve, Bifidobacterium longum (at 

present classified as B. longum subsp. longum) and Bifidobacterium bifidum. Bifidobacterium 

pseudocatenulatum and Bifidobacterium catenulatum were also present although in a lower 

number in both type of newborns, whereas Bifidobacterium dentium was evidenced only in 

breast-fed neonates. In the last twenty years the development of molecular techniques has 

completely revolutionized the way of performing microbial ecology studies. Thermal gradient 

gel electrophoresis (TGGE) studies of genomic DNA amplified from infant feces collected 

during the breast feeding period confirmed that bifidobacteria were the predominant group, 

precisely B. infantis, B. longum and B. breve, whereas in the post-weaning period a decrease in 

the Bifidobacterium population was observed (Magne et al. 2006). Real time PCR analyses of 

targeted Bifidobacterium species indicated that the number of species in breast-fed newborn was 

initially higher. Bifidobacterium animalis and B. dentium were not detectable in samples 

irrespective of the type of feeding , whereas B. longum subsp. infantis, B. breve, B. bifidum and 
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B. longum subsp. longum were detected in all samples, B. longum subsp. infantis being the major 

species found. Bifidobacterium adolescentis, which is most commonly found in adults, was 

present only in formula-fed infants (Klaassens et al. 2009). Further insights in the infant gut 

microbiota were recently carried out using next generation sequencing targeted on two 

hypervariable regions of the 16S rRNA gene by Turroni et al. (2012). This study elucidated that 

the most abundant class in infant faecal samples was Bifidobacteriales, being present at 80.6%. 

The predominant bifidobacterial species detected were B. longum and B. bifidum at 56.2% and 

10.7%, respectively. Regarding the inter-individual variability in the infant gut microbiota, the 

statistical analyses performed revealed a large conservation of members of the Actinobacteria 

with a high proportion (ranging from 21.7% to 90.6%) belonging to the Bifidobacteriaceae 

family. In particular, the B. breve species was always detected with an average of 5.5% of total 

reads. In contrast, B. adolescentis was detected in a relatively high average percentage (3.4%), 

but it was only present in about 2% of the subjects. 

 

26.4.2 Lactobacilli  

Together with Bifidobacterium and Bacteroides, the Lactobacillus genus is one of the major 

component of the breast-fed newborn intestinal microbiota. However, the distribution of the 

different Lactobacillus species in infant has not been studied in details as in the case of 

bifidobacteria. Satokari et al. (2002) carried out the analysis of Lactobacillus diversity in breast-

fed and bottle-fed newborns using denaturing gradient gel electrophoresis (DGGE) approach. 

The analysis revealed that the predominant Lactobacillus population consisted of one or two 

dominant species and L. acidophilus resulted to be the most common species irrespective of the 

type of feeding. A further study has been focused on the distribution of Lactobacillus species in 

faeces of breast-fed newborns and newborns receiving standard formula milk or standard 

formula milk supplemented with galactooligosaccharides and fructooligosaccharides (Haarman 

and Knol, 2006) using real time PCR with primers and probe sets designed on the intergenic 

spacer of 16S-23S rRNA gene. This approach allowed to have a more detailed analysis of 

Lactobacillus species because sequences are less conserved than 16S rRNA gene sequence. The 

Lactobacillus species distribution in breast-fed was mainly composed of L. acidophilus, 

Lactobacillus casei and Lactobacillus paracasei. The same distribution was also found in 

newborns receiving prebiotic supplementation. On the other hand supplementation with standard 

formula resulted in a different Lactobacillus distribution with more Lactobacillus delbruekii and 

Lactobacillus reuteri and less L. paracasei and L. acidophilus. Lactobacillus fermentum, 

Lactobacillus plantarum, and Lactobacillus rhamnosus were also present at a very low 
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percentage at the beginning of the intervention period and these species seemed to disappear 

completely during the intervention in all feeding groups. Changes in the distribution of 

Lactobacillus species has been also demonstrated by Salminen et al. (2014). The authors carried 

out a double-blind , randomized prospective study of 21 to 30–day old healthy and vaginally 

born infants showing that L. paracasei and L. rhamnosus increased in newborn fed with formula 

milk supplemented with galactooligosaccharides. 

 

26.5 Probiotics and their pediatric use 

One of the primary areas of probiotic research in children has been the treatment and prevention 

of bacterial acute diarrhea and antibiotic associated diarrhea (Wiegering et al. 2011). Moreover, 

a large number of infant pathologies, both enteric and not strictly enteric, have revealed 

promising preventive and therapeutic effects of probiotics, although these applications need 

additional experimental evidence (Chen and Walker, 2011; Taibi and Comelli, 2014). Therefore, 

research is currently going on for the use of probiotics in necrotizing enterocolitis, infantile 

colics and celiac disease, as described below and briefly summarized in Table 1.  

 

Table 1 Overview of probiotics applications in the prevention and treatment of gastrointestinal diseases 

Pathology Probiotic microorganism Reported effect(s) References 

Acute diarrhea  Lactobacillus rhamnosus 
GG 

Reduced risk of diarrhea Szajewska et al. 2006 

    

 B. animalis subsp. lactis,  
L. acidophilus,  
L. rhamnosus strains 

Decreased duration of 
diarrhea 

Grandy et al. 2010 

    

 B. longum susp. infantis Increased inhibition of 
rotavirus virulence  
(in vitro study) 

Munoz et al. 2011 

    

    

 B. animalis subsp. lactis 
plus B.longum subsp. 
Infantis, Streptoccoccus 
thermophilus,Lactobacillus 
rhamnosus, Lactobacillus 
acidophilus strains 

Decreased duration of 
diarrhea 

Vandelplas and Hert 2011 

    

 L. reuteri DSM 17938 Reduced incidence of 
nosocomial diarrhea 

Wanke and Szajewska 
2012 

    

    

 B. breve DSMZ24706,  
B. breve DSMZ24707, 
B. breve DSMZ24708, 
B. longum DSMZ24709 

Increased inhibition of 
diarrhea pathogens  
(in vitro study) 

Aloisio et al. 2012 
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 B. longum subsp. infantis 
35624 

Reduced Salmonella spp. 
infection (in vitro study) 

Sydmonds  et al. 2012 

    

 L. ruminis SPM0211 Decreased duration of viral 
diarrhea 

Kang et al. 2013 

    

Infantile colics B. breve DSMZ24706,  
B. breve DSMZ24707, 
B. breve DSMZ24708, 
B. longum DSMZ24709 

Antimicrobial activity 
against gas forming 
coliforms (in vitro study); 
clinical trial is on going 

Aloisio et al. 2012 

    
 L. reuteri DSM 17938 Reduced gas colics 

symptoms 
Savino et al. 2010 

    
 L. reuteri DSM 17938 Reduced time of crying Szajewska et al. 2013 
    
 L. reuteri DSM 17938 No effect on treatment of 

infant colics 
Sung et al. 2014 
 

    
Necrotizing enterocolitis B.bifidum strain in Infloran 

product 
Reduced incidence of NEC 
and death  

 Lin et al. 2008 

    
 B.breve strain (Yakult 

preparation) 
Increased intestinal 
motility 

 Braga et al. 2011 

    
 L. reuteri strain Reduced frequency of 

sepsis 
Oncel et al.2013 

    
Celiac disease VLS#3 product  

(B.longum susp. longum,  
B. breve, B.longum subsp. 
infantis, S.  thermophilus, 
L. plantarum, L. casei 
L.acidophilus,  
L. delbrueckii) 

Decreased toxicity of 
gluten (murine model and 
human cell lines) 

De Angelis et al. 2006 
 

    
 VLS#3 product  

 
Decreased toxicity of 
gluten during food 
processing 

Kaur et al. 2002 

    
 B. animalis subsp lactis 

and L. lactis 
Reduced damage induced 
by gliadin (human cell 
lines) 

Linfors et al. 2008 

 

 

It is likely that, in the future, probiotics will become a consolidated therapy for these diseases. In 

addition, a number of pathologies, which are not strictly gut dysfunctions, have in recent years 

been correlated to alterations of the gut microbiota, such as allergy, obesity, neurological and 

psychiatric diseases (Table 2). 
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Table 2 Overview of potential probiotics applications in infant diseases not directly related to the 
gastrointestinal tract 
 

Pathology Probiotic microorganism Reported effect(s) References 
Allergies B. breve BB99, LGG, 

 L. rhamnosus LC705 
Reduced eczema caused by 
cow’s milk allegy 

Viljanen et al. 2005 

    
 B.longum BL999,  

L. rhamnosus LPR  
No effect on prevention of 
eczema 

Soh et al. 2009 

    
 B. breve BB99, LGG, 

 L. rhamnosus LC705 
Decreased incidence of 
IgE-associated allergy 

Kuitunen et al. 2009 

    
 L. johnsonii EM1 Reduced perennial 

perennial allergic rhinitis 
Lue at al.2012 

    
    
Obesity Bifidobacterium spp. 

strains 
Increased glucose-tolerance 
and decreased 
proinflammatory cytokines 
(murine model) 

Cani et al. 2007 

    
 VLS#3 product Increased hepatic natural 

killer T-cell (murine 
model) 

Ma et al. 2008 

    
 Bifidobacterium spp. 

strains 
Reduced serum and liver 
triglyceride (murine model) 

Yin et al. 2010 

    

 Mixture of three 
Bifidobacterium strains 

Reduced serum cholesterol 
level (murine model) 

An et al. 2011 

    

Neurology and psichiatry B. infantis 35624 Reduced hyperactivity 
(murine model) 

Sudo et al. 2004 

    
 B. infantis 35624 Increased level of plasma 

tryptophan (murine model) 
Desbonnet et al. 2008 

    
 L. helveticus R0052, 

B. longum R0175 
Reduced anxiety (murine 
model) 

Messaoudi et al. 2010 

    
 B. longum NCC3001 Decreased infection- 

induced behavioural 
changes (murine model) 

Bercik et al. 2011 

 

However, not all the probiotic strains drive a targeted therapeutic effect, thus, there is a need for 

rational selection of specific probiotic strains, matched for precise clinical indications. This 

implies that there is also a need to have a better insight in the effects that a specific probiotic 

strain can have in patient cohorts as well as in healthy populations. Furthermore, several studies 

demonstrated that the combination of more strains, also belonging to different genera (mainly 

Lactobacillus and Bifidobacterium), may exhibit a synergistic effect and research is therefore 

aimed at finding proper combinations. 
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26.5.1 Treatment and prevention of acute diarrhea and antibiotic-associated diarrhea  

Infectious gastroenteritis is one of the leading cause of morbidity especially in newborns and 

children under 5 years of age (Wiegering et al. 2011). Although gastroenteritis-associated 

mortality is rare in Western Europe, an increased incidence has been noticed in some national 

registers over recent years. The most common causes of infant gatroenteritis are viruses (e.g. 

rotavirus, adenovirus and norovirus) and bacteria (e.g. Salmonella spp., Shigella spp., 

Campylobacter spp., C. difficile, Klebsiella pneumoniae, Enterobacter cloacae, E. coli), but 

parasite infections are also diffused. The vast majority of the published trials show a statistically 

significant benefit and clinical benefit of a few, well-identified probiotic strains. The effect is 

strain-dependent and dose-dependent. Positive outcomes in the treatment and prevention of 

diarrhea with probiotics date back in the ‘90s and the most studied strain was L. rhamnosus GG 

(LGG). LGG was particularly effective in the preventive therapy of diarrhea, whereas seriously 

sick children received less benefits from the treatment (Arvola et al. 1999). 

The targeted effects of probiotics on viral diarrhea have been the subject of recent studies trying 

to elucidate the mechanisms of diarrhea symptoms relieve. In particular, in the study of Munoz et 

al. (2011) a B. longum susp. infantis strain, isolated from infant feces, was selected for the 

capability of inhibiting in vitro rotavirus replication and of protecting cells from virus infection. 

It was then tested in vivo on mice showing protection against rotavirus infection. A strong 

antiviral activity has been also obtained with Lactobacillus ruminis SPM0211 in vitro (Kang JY., 

et al 2013). Moreover, mixtures of probiotics showed good results in the reduction of duration 

and the severity of the acute rotavirus diarrhea. A multiple species product composed of a L. 

acidophilus, a L. rhamnosus and a B. longum strain, administered to infant aged 1-23 months, 

was able to reduce the duration of the disease (Grandy et al. 2010). Similar results have been 

obtained testing the efficacy of a synbiotic product named “Probiotical” containing 

Streptoccoccus thermophilus, L. rhamnosus, L. acidophilus, B. animalis subsp. lactis, B. infantis 

strains and fructooligosaccharides in children with acute diarrhea (Vandelplas and De Hert, 

2011). The primary end-points were duration of diarrhea and the number of children that had a 

normalized stool consistency. A further study was aimed at evaluating the efficacy of 

administering L. reuteri DSM 17938 for the prevention of nosocomial diarrhea. In hospitalized 

children, the administration of L. reuteri DSM 17938 compared with placebo treatment had no 

effect on the overall incidence of nosocomial diarrhea, mainly caused by rotavirus infection 

(Wanke and Szajewska, 2012). Therefore, the studies on viral associated diarrhea still lack 

conclusive remarks. 
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Some probiotic strains resulted also effective in reducing the risk of antibiotic-associated 

diarrhea in newborns and children. A clinical trial, performed with 766 infants, indicated that 

treatment with the probiotic strain Lactobacillus rhamnosus GG), compared to placebo, reduced 

the risk of diarrhea from 28.5% to 11.9% (Szajewska et al. 2006). A number of study focus on 

the administration of probiotic in the treatment of diarrhea caused by bacteria, mainly 

Clostridium spp.. Bifidobacterium strains, deriving from infant feces and mainly belonging to the 

B. breve species, were capable of contrasting the growth of pathogens causing infectious diarrhea 

of bacterial origins in infants, making them potential probiotic candidates for a formulation 

aimed at the prevention or the cure of bacterial diarrhea (Aloisio et al. 2012). Furthermore, a 

recent study demonstrated the efficacy of B. longum subsp. infantis 35624 of reducing the effect 

of villi-associated enzyme caused by Salmonella infection (Symonds et al. 2012). 

 

26.5.2 Treatment and prevention of necrotizing enterocolitis (NEC) 

NEC is the most common gastrointestinal emergency in the neonatal intensive care unit and a 

major cause of morbidity in preterm infants. It is characterized by a gastrointestinal dysfunction 

progressing to pneumatosis intestinalis, systemic shock, and rapid death in severe cases. The 

most common risk factors are considered to be prematurity, enteral feeding and the occurring of 

bacterial colonization, which often operate in synergy ( Claud and Walker, 2001). There is a 

strong evidence that the initial bacterial colonization after birth plays a pivotal role in the 

development of NEC. As already evidenced, preterm newborns show a different colonization 

with respect to full term newborns and more pathogenic microrganisms such as enterobacteria 

and enterococci remain predominant until the 20th day of life. For this reason it has been  

suggested that a major etiological factor for NEC is a different microbiota, particularly as NEC 

usually occur after 8-9 days postpartum when anaerobic bacteria start to colonize the gut (Mai et 

al. 2011). This study also pointed out that correction of the abnormal microbiota composition 

may be a strategy to prevent NEC. Several authors have reported systematic reviews of 

randomized and controlled trials of probiotic supplementation in preterm infants (Deshpande et 

al. 2007; Barclay et al. 2007; Stockman 2009; Deshpande et al. 2010), showing that probiotic 

supplementation was able to reduce the incidence of NEC in neonates. The action attributed to 

probiotics is species specific (Verdu 2009). Administration of B. bifidum, B. breve and B. 

animalis susp. lactis strains to preterm and low birth weight infants showed evident clinical 

benefits for the treatment of NEC (Lin et al. 2008; Khailova et al. 2009; Braga et al. 2011; 

Underwood et al. 2012). The mechanisms by which probiotics operate are: competition against 

the colonization of potential pathogenic microorganism, immunomodulation, nutritional 
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contribution and improved intestinal motility. Treatment with B. breve associated with L. casei 

in preterm infants underlined a positive correlation between improved intestinal motility and 

NEC (Braga et al. 2011). On the contrary, L. reuteri does not seem to affect the overall rates of 

NEC and/or death in preterm infants followed up in the neonatal intensive care unit, and 

significant reductions were observed in the frequency of proven sepsis, rates of feeding 

intolerance and duration of hospital stay (Oncel et al. 2013). Because of the complexity of the 

pathogenesis of NEC, the administration of different Bifidobacterium and Lactobacillus strains 

may benefit by different actions on the host and, therefore, multistrain probiotic preparations are 

likely more effective than single-strain ones (Deshpande et al. 2011). 

 

26.5.3 Prevention of infantile colics: are probiotics a feasible option? 

About 10-30% of infants are affected by infantile colics in the first months of life, . The 

manifestations of colics  are excessive, inconsolable crying, frequently accompanied by flushing 

of the face, meteorism, drawing-up of the legs and passing of gas. Microbiota of infants affected 

by colics was in fact found to be richer in gas forming coliforms with respect to non-colicky ones 

(Savino et al. 2009). Regarding possible therapies, the study of Savino et al. (2007) examined, 

for the first time, the modulation of intestinal microbiota of infants suffering from colics by 

administering a probiotic strain. A cohort of breastfed colicky infants was randomly assigned to 

treatment with a strain of Lactobacillus reuteri (ATCC 55730) and simethicone, an orally 

administered anti-foaming agent traditionally used to reduce discomfort or pain caused by 

excessive gas. This study evidenced that infants treated with L. reuteri had a significant 

reduction in crying compared to infants treated with simethicone. The positive effect of probiotic 

administration on the reduction of gas colic symptoms and on the modulation of intestinal 

microbiota was confirmed in a successive trial with the strain L. reuteri DSM 17938 (Savino et 

al. 2010). Moreover, the efficacy of the administration of the latter strain in reducing the daily 

average time of crying time was also confirmed by Szajewska et al. (2013). In addition, research 

is going on with the aim of obtaining new probiotic strains for possible use in colics treatment, 

such as other Lactobacillus strains (Savino et al. 2011) or Bifidobacterium strains. (Aloisio et al. 

2012). The efficacy of probiotic supplementation in the reduction of crying time and successful 

treatment of infantile colic was the object of a recent systematic review (Anabrees et al. 2013). 

The final conclusion was that, although L. reuteri may be effective as a treatment strategy for 

crying in exclusively breastfed infants with colic, the evidence supporting probiotic use for the 

treatment of infant colic or crying in formula-fed infants remains unresolved. Larger rigorously 

designed studies are necessary to draw more definitive conclusions. Recently, a large clinical 
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trial on the efficacy of L. reuteri DSM 17938 in reducing the symptoms of infant colics obtained 

different results from previous trials (Sung et al. 2014). L. reuteri DSM 17938 administration to 

both breast-fed and formula fed newborns did not reduce crying or fussing. The efficacy of DSM 

17938 and other probiotic strains should therefore be further explored. 

 

26.5.4 Celiac disease (CD): in vitro studies need to supported by clinical trials 

CD is a chronic inflammatory disorder of the small intestinal mucosa induced by the ingestion of 

wheat gluten, or other similar proteins found in barley and rye. The CD involves genetic and 

environmental factors in predisposed individuals (Green and Cellier 2007). CD is characterized 

by two types of immune response to gluten-derived peptides: an adaptive immune response Th1-

dependent, within the intestinal mucosa, and an innate immune response. Both responses lead to 

the release of proinflammatory cytokines like IFN-γ and IL-15 (Londei et al. 2005) and result in 

a consequent inflammation and intestinal tissue remodeling (Meresse et al. 2009). At present, the 

only effective treatment for the disease is a strict life-long gluten-free diet. 

Palma et al. (2012) evaluated the gut microbial colonization during the first 4 months of life in 

breast-fed and formula fed healthy full-term infants with a genetic CD risk. They demonstrated 

that the milk-feeding type and the HLA-DQ genes (the major genetic risk factor for CD) 

influence the gut bacterial colonization. In particular, the reduction of Bifidobacterium spp. such 

as B. longum was associated with an increased CD risk. Until now relatively few studies 

considered the efficacy of the administration of probiotic strains in children affected by celiac 

disease. De Angelis et al. (2006) showed the capacity of the probiotic preparation VLS#3, a 

mixture of lactic acid bacteria and bifidobacteria (VSL Pharmaceuticals, Gaithesburg, MD) of 

decreasing the toxicity of gluten during food processing. Furthermore VLS#3 has been shown to 

colonize the intestine and increase epithelial barrier function in the host (Kaur et al. 2002) and it 

has the potential of being used to modify and improve gliadin degradation in the gastrointestinal 

tract after ingestion. Moreover a recent study investigated the capability of probiotic bacteria (L. 

fermentum and B. lactis strains) of inhibiting toxic effects induced by gliadin directly on 

epithelial cells (Lindfors et al. 2008). B. lactis resulted to be more efficient than L. fermentum in 

small harmless peptide products. 

 Therefore, although several studies have addressed the ability of probiotic bacteria to detoxify 

gliadin after an extensive incubation period and their role in suppressing proinflammatory effects 

in vitro to our knowledge no studies have investigated whether different live probiotic bacteria 

can inhibit gliadin-induced toxic effects directly on in-vivo epithelial cells.  
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26.5.5 Prevention of allergies 

The incidence of allergic disorders such as atopic dermatitis, rhinitis and asthma has increased 

strikingly in developed countries. One of the most reliable hypotheses of this increase is a 

relative lack of microbial stimulation and a failure of immunoregulation due to low exposure of 

the infantile gut immune system to harmless microorganisms associated with the environment 

(Cabana et al. 2007). The manifestations of allergic disease are age dependent. Infants 

commonly present symptoms and signs of atopic eczema, gastrointestinal symptoms and 

recurrent wheezing. Asthma and rhinoconjunctivitis become prevalent in later childhood. 

Sensitization to food allergens usually occurs in the first two to three years of life, followed by 

indoor allergens (e.g. house dust mite and pets) and, subsequently, outdoor allergens (e.g. rye 

and timothy grass) (Halken 2004). Genetic susceptibility plays a large role in the development of 

food allergy, in fact the risk of development of allergy increases substantially with a positive 

family history of allergic diseases.The prevalence of allergic disease in childhood is 7% to 8% 

for food allergy, 15% to 20% for atopic eczema, and 31% to 34% for asthma or recurrent 

wheezing (Halken 2004). Food hypersensitivities affect approximately 6% of infants less than 

three years of age (Osterballe 2005). Although the exact etiology of allergic diseases remain 

ambiguous, epidemiological data have shown that atopic children show recurrent differences in 

the gut microbiota composition with respect to healthy children, with higher levels of clostridia 

and lower levels of bifidobacteria. In addition to lower number of bifidobacteria, infants 

suffering from atopic disease harbor a peculiar pattern of bifidobacteria comprising adult-like 

strains, such as B. adolescentis, as compared to healthy infants with a typical infant pattern 

(Ouwehand et al. 2001). Some other studies have also shown that early colonization with 

pathogenic bacteria is more likely to occur in children who go on to develop allergy; in contrast, 

lactobacilli and bifidobacteria are found more commonly in the composition of the gut 

microbiota of non-allergic children and this seems to correlate with protection against atopy 

(Kalliomaki et al. 2001; Ozdemir 2009). Therefore, the possibility of using probiotics to prevent 

the development of allergic disease  has a sound scientific background.  

A probiotic mixture, containing B. breve Bb99 strain, the LGG strain, L rhamnosus LC705 in 

addition to propionibacteria, was administered to mothers during the last month of pregnancy 

and their infants received it from birth until age 6 months. The treatment resulted in a decreased 

incidence of IgE-associated allergy, such as atopic diseases, in Cesarean-delivered children until 

the age of 5, with respect to the administration of a placebo (Kuitunen et al. 2009). The same 

probiotic mixture was also found to be effective in the treatment of eczema in infants with 

proven cow’s milk allergy (Viljanen et al. 2005). Conversely, commercially available cow's milk 
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formula supplemented with B. longum BL999 and L. rhamnosus LPR administered in the first 6 

months of life to Asian infants at risk of allergic disease showed no effect on prevention of 

eczema or allergen sensitization in the first year of life (Soh et al. 2009). The administration of L. 

johnsonii EM1 administered to 7-12 years old children was found to be more effective against 

allergic rhinitis  than antihistamine  treatment with levocetirizine (Lue et al., 2012). Other studies 

have been focused on the effects of probiotics in the treatment of food allergy, but conclusive 

effects have not been evidenced yet (Boyle and Tang 2006). Some preliminary positive results 

have been obtained with LGG supplementation, but no experimentation is available on 

bifidobacteria. 

 

26.5.6 Obesity: a correlation with abnormal gut microbiota 

Nowadays, obesity prevalence is increasing especially among children and adolescents and it can 

be considered a worldwide epidemic. Recently, obesity has been associated with structural 

alterations in the gut microbiota, suggesting potential causality between specific microbial taxa 

and this disorder. In particular, studies have focused not only on individual bacterial species but 

also on the whole microbial community (Tennyson and Friedman 2008). However, controversial 

data make it clear that the connection between the microbiota composition and excess weight is 

very complex. The explanations for the ability of the gut microorganisms to affect obesity 

development include an improvement of the energy harvest from the diet, influence on lipase 

activity, a decrease of lipopolysaccharide inflammation that is related to fat induced system and 

the control on endotoxemia and insulin resistance (Blaut and Bishoff 2010).   

Million et al. (2012) found that bifidobacteria could associated to the lean status, on the contrary 

Lactobacillus spp., Staphylococcus aureus and Escherichia coli have been associated to 

overweight  status. Members of the genus Bifidobacterium were shown to be higher in number in 

children who remained normal weight at 7 years old than in children developing overweight 

(Kalliomaki et al. 2008), allowing the authors to conclude that an aberrant compositional 

development of the gut microbiota precedes overweight and this may offer new possibilities for 

preventive and therapeutic applications of bifidobacteria in weight management. Furthermore, 

other studies reported a decrease of total bifidobacteria in feces of obese patients (Schwiertz at 

al. 2010; Collado et al. 2008). A recent study analyzed the fecal concentration of the main 

intestinal microbial groups in obese, overweight, lean and anorexic subjects. A positive 

correlation was found between certain Lactobacillus species, in particular L. reuteri, and obesity. 

On the contrary, B. animalis has been associated with a lower Body Mass Index (Million et al. 

2013). Several meta-analyses, in the past years, have shown that breastfeeding is associated with 
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a reduced likelihood of overweight or obesity in childhood and that the duration of breastfeeding 

is inversely associated with the risk of overweight (Owen et al. 2005; Harder et al. 2005). 

Several results mainly performed on murine models suggested that some strains of bifidobacteria 

and lactobacilli have effect on the obese status reducing serum total cholesterol, decreasing 

proinflammatory cytokines and increasing glucose tolerance (Cani et al. 2007, Ma et al. 2008, 

Yin et al.2010, An et al. 2011). However, the in vivo administration of probiotics in obese 

children or adults needs to be investigated. 

 

26.5.7 Treatment of neurological and psychiatric disease  

The gut and the brain are highly integrated and communicate in a bidirectional manner and this 

connection is usually called “the gut-brain axis” (Rhee et al. 2009). An example of this relation 

is that psychiatric disorders frequently coexist with common pathological gastrointestinal 

conditions, such as irritable bowel syndrome, which is quite diffused in adults. The 

gastrointestinal tract is a site of interaction between microorganisms, immune cells, and the 

neuronal network. In this respect, beneficial microbes such as lactobacilli and bifidobacteria 

seem to be particularly sensitive to signals from the central nervous system, taking into 

consideration that stressful conditions, including emotional stress, are very often accompanied by 

a decrease of these organisms in the gastrointestinal tract. Neurochemical molecules can affect 

the microbiota composition chancing the gut motility and increasing the acidity. Moreover, 

bacteria themselves can influence the endocrine system by the production of several biologically 

active peptides, nitric oxide, melatonin, gamma-aminobutiryc acid and serotonin (Collins and  

Bercik 2009). Pro-inflammatory cytokine such as IL4 and interferon γ are implicated in a range 

of psychiatric disorders including depression and studies in animals and humans have showns 

that manipulation of the gut microbial composition influences systemic cytokine levels (Cryan 

and O’Mahoni 2011). A decrease in the desirable gastrointestinal tract bacteria will lead to 

deterioration in gastrointestinal, neuroendocrine and immune relationships and, ultimately, 

disease. Therefore, studies focusing on the impact of enteric microbiota on the central nervous 

system are essential to the understanding of the influence of this system.  

A possible approach to study the microbiota-gut-brain axis is the use of germ-free mice. 

Researches performed with acute stressed germ free mice, showing hyperactivity of the body 

major stress response system (the hypothalamic-pituitary-adrenal axis), have evidenced that the 

stress response was normalized by administration of a B. infantis strain (Sudo et al. 2004).  

Bercik et al. (2011) showed that infection-induced behavioral changes in mice could be reversed 

by B. longum NCC3001 strain administration. B. infantis 35624 strain has been shown in 
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Sprague-Dawley rats to induce an increase of levels of plasma tryptophan, a precursor of 

serotonin which is a key neurotransmitter within the gut-brain axis possessing antidepressant 

properties (Desbonnet et al. 2008).  

The research in the neurology and psychiatry sector has scarcely reached the point of 

intervention studies targeted to humans and, in particular, to infants. However, probiotics may 

offer a potential therapeutic that could beneficially alter the gut-brain axis and modify aberrant 

behaviors in infant related to altered immune inflammatory outputs and  such as autism spectrum 

disorders. One of the few intervention studies performed has assessed the effect of a combination 

of Lactobacillus helveticus R0052 strain and B. longum R0175 strain on both human subjects 

and rats showing that these probiotics reduced anxiety in animals and had beneficial 

psychological effects with a decrease in serum cortisol in patients (Messaoudi et al. 2010).  

Moreover a study on human neonates showed that the pattern of electrical activity in the brain is 

less complex in neonates born by caesarian section than in age matched neonates born by vaginal 

delivery. These results raise the possibility that different colonization patterns influence early 

post natal brain development and also have longer term consequences (Kim et al. 2003). The aim 

for future research in this field is to definitely clarify the effects of the gut microbiota on several 

brain-related functions in order to identify the microbial species that are critical for the 

development of a healthy phenotype and those that may have negative impacts on behavior, 

mood and emotion in humans. This will pose the basis for targeted probiotic intervention trials. 

 

26.6 Prebiotics and their pediatric use 

Prebiotics are non-digestable food ingredients that beneficially affects the host by selectively 

stimulating the growth and/or activity of one or a limited number of bacterial species in the 

colon, that can improve the host health (Roberfroid 2007). They are low molecular weight 

carbohydrates, mainly oligosaccharides (i.e. composed of three to ten monomers linked 

together), mostly constituted of fructose, glucose or galactose. Prebiotics resist gastric acidity, 

are hardly hydrolyzed by human enzymes and are not absorbed in the upper gastro-intestinal 

tract. They reach the colon virtually intact and stimulate the colonic microbiota, resulting in 

growth and fermentation products influencing the host immunity, metabolism and mineral 

absorption (Roberfroid et al 2010).  The indigestibility of these molecules in the upper gastro-

intestinal tract has allowed their definition as Non Digestible Oligosaccharides (NDOs). It is 

therefore true that prebiotics allow specific changes both in the composition and/or activity of 

the intestinal microbiota, which results in nutritional benefits (Saulnier et al. 2009) and positive 

aspects to human health, as already evidenced in Chapter 21-23 of this book. Beneficial bacteria 
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play useful roles in aspects of nutrition and prevention of disease. The largest part of the species 

belongs to the genera Lactobacillus and Bifidobacterium. NDOs entering the colon are fermented 

selectively by members of these genera capable of producing glycolytic enzymes, so they are 

hydrolyzed into mono- or disaccharides which can be transported into the cell where they can be 

metabolized into short chain fatty acids (SCFAs). SCFAs and their metabolites are responsible 

for a large array of beneficial NDOs effects (Roberfroid et al 2010).  The ability to utilize a large 

variety of oligosaccharides by bifidobacteria makes them able to adapt and compete in an 

environment with changing nutritional conditions. For this reason bifidobacteria are considered 

one of the  most efficient groups at utilizing NDOs allowing them to proliferate with respect to 

other species when probiotics are consumed. The particularly important role that bifidobacteria 

exert in the infant gut makes the use of prebiotics very important in infant nutrition, in particular 

for those infants who are not fed by maternal milk. The main characteristics of the most common 

NDOs used in infants are presented in Table 3. 

 

Table 3. Properties of non-digestible oligosaccharides mainly used in infants (see following section for 

studies regarding their use). 

Name Structure Method of 

manufacture 

Polymerization 

Degree 

Galactoologosaccharides (Gal)n-Glu Synthesis from lactose 

by β-galactosisase 

2-8 

Fructooligosaccharides (Fru)n-Glu Synthesis from 

sucrose or hydrolysis 

of inulin  

2-10 

Polydextrose (Glu)n-Sor Synthesis from 

glucose 

10-12 

Lactulose Gal-Fru Isomerization of 

lactose. 

2 

Acidic oligosaccharides  Mixture of linear 

oligomers and small 

polymers of GalA 

with a 50% 

methylation degree 

Enzymatic digestion 

of food grade pectin  

 

n.a. 

Gal: galactose; Glu: glucose; Fru: fructose; Sor: sorbitol; GalA: galacturonic acid 
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26.6 .1 Prebiotic activity of human milk oligosaccharides 

The peculiar composition of the intestinal microbiota of breast-fed neonates previously outlined 

is in part due to the presence of complex molecules possessing prebiotic effects in human milk. 

The most abundant molecules with this role are oligosaccharides, referred to as human milk 

oligosaccharides (HMOs). HMOs are resistant to digestive processes and thereby reach the 

colon, where they can be digested by intestinal bacteria, suggesting they have a particular 

prebiotic role (Arslanoglu et al. 2007). Because of the intensive interaction between the intestinal 

microbiota and the epithelium as well as the intestinal immune cells, this prebiotic effect is 

crucial for the expansion and education of the immune system early in life (Schouten et al. 

2011). HMOs are synthesized in the mammary gland by the action of specific 

glycosyltransferases by the sequential addition of monosaccharide units to the lactose molecule. 

With few exceptions, all known HMOs have a lactose core and are elongated via linkage to one 

or more units of galactose and N-acetylglucosammine and can be decorated with several fucose 

and sialic acid residues. Because of the possibilities for different backbone length and decoration 

with different combinations of the basic building blocks, many HMO structures exist (Pfenninger 

et al. 2002). An example of HMO configuration is depicted in Figure 1.  

 

 

Figure 1 Possible chemical structure of human milk oligosaccharides. F represents fucose residues bound 
to lactose backbone. 
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Over the years the prebiotic effect of HMOs has been confirmed. In vitro fermentation studies 

clearly demonstrated that the bifidogenic effect of maternal milk is mainly due to the “non- 

protein fraction” and that HMOs have a pivotal role in stimulating the selective development of 

bifidobacteria (Ward et al. 2006).  In this study, it has been demonstrated that B. infantis is able 

to use complex carbohydrates such as HMOs as the sole source of carbon and energy.  

Recent studies focused on the molecular mechanisms underlying the role of human milk on the 

development of intestinal bifidobacterial community. The identification of genes expressed by B. 

breve strains, upon HMO stimulation, represented the preliminary insight to understand the 

molecular mechanisms governing the initial stages of bacterial colonization in newborns 

(Turroni et al. 2012). Human milk can also be the direct source of beneficial bacteria: some 

papers reported the isolation of bifidobacteria from human milk (Martin et al. 2003), although it 

is also possible that bifidobacteria are introduced into human milk through newborn-mother 

contacts. Another characteristic substance of human milk is lactoferrin, a glycoprotein member 

of the transferrin family. In human milk it is the most abundant protein, on the contrary it is 

present only in traces in cow’s milk. A small percentage of lactoferrin (about  6% to 10%) is 

estimated not to be digested by breast-fed infants, it could consequently reach the colon and play 

a role as a prebiotic. The availability of bovine lactoferrin has made it possible to add lactoferrin 

to infant formulas and to study the effect of feeding such formulas to infants.  Recent studies 

have been found that lactoferrin appears to exert a prebiotic effect but an addition of lactoferrin 

in formula has a little effect on the newborn fecal microbiota (Coppa et al. 2006). 

Other groups of substances studied for their possible prebiotic role are nucleotides. Human milk 

contains high concentrations of preformed nucleotides, whereas cow’s milk is usually devoid of 

such compounds. Some studies have also suggested a prebiotic role for lactose as it has been 

demonstrated that lactose reaching the colon stimulates the growth of bifidobacteria, although 

the amount of ingested lactose reaching a neonate’s colon is very low,(Szilagyi et al. 2002). Is it 

also true that a certain amount of lactose could remain after the fermentation by the intestinal 

microbiota and could be metabolized by bifidobacteria (Parche et al. 2006). In particular, studies 

have demonstrated that B. longum  exhibits a preferential metabolic pathway for the use of 

lactose. In addition, bifidobacteria possess several homologous genes encoding enzymes which 

are involved in the metabolism and transport of numerous sugars.  

 

26.6 .2 Formula milk enriched with prebiotics: are they comparable to human milk? 

Cow’s milk, which is commonly used in the preparation of infant milk formulas, and human 

milk have significant differences. HMOs are one of the most important components in human 

52



milk, in contrast, these oligosaccharides are present only in small amounts in cow’s milk. Within 

the complex mechanism that regulate the development of the intestinal microbiota, the ability to 

utilize complex carbohydrates is believed to exert an important influence on the development of 

specific bacteria strains over others; in the gastrointestinal tract of breast-fed neonates, the 

relationship between HMOs and the development of bifidobacteria represents a typical example 

of this situation. For this reason, prebiotic oligosaccharides, in particular galactooligosaccharides 

(GOS), are abundantly used in infant formula (Coppa et al. 2006; Boehm et al. 2007). The role of 

these molecules in newborns as an additive to cow milk started to the studied from the beginning 

of the XXI century and, since then, several achievements have been reached. They are described 

in details below and briefly summarized in Table 4. 

 

 

Table 4 Positive effects upon administration of formula milk enriched with prebiotics. 

Prebiotics added to 
formula milk 

Total prebiotic 
concentration  in the 
formula milk 

       Detected positive effects Reference 

scGOS/ lcFOS 9:1 0.4 % and 0.8 % 
(w/v) 

Increase in bifidobacteria and 
lactobacilli content 

Softer stools 

No side effects 

Moro et al. (2002) 

scGOS/ lcFOS, 9:1 0.8 % (w/v) Pathogen reduction in stools Boehm et al. (2004) 

scGOS /lcFOS, 9:1 0.6 % (w/v) Metabolic activity of the 
microbiota similar to that of 
breast-fed infants 

Increased saccharolytic activity 
in the colon with respect to 
proteolytic activity 

Bakker-Zierikzee et al. 
(2005) 

scGOS/lcFOS, 9:1 0.8 % (w/v) Fewer infectious episodes  

Fewer number of infections 
requiring antibiotics  

Reduced incidence of infections 

Arslanoglu et al. (2007) 

PDX /GOS, 1:1 0.4% (w/v) Consistency of stools similar to 
breast-fed infants 

Ziegler et al. (2007) 

PDX/GOS/LOS, 
0.50:0.33:0.17 

0.8 % (w/v) Consistency of stools similar to 
breast-fed infants 

Ziegler et al. (2007) 

PDX /GOS, 1:1 0.4% (w/v) Gut microbiota composition 
similar to breast-fed infants 

Salminen et al. (2014) 
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A preliminary study (Boehm et al. 2000) checked the prebiotic capacity of an oligosaccharide 

mixture consisting of a 9:1 mixture of short chain (sc)-GOS (derived from lactose) and long 

chain (lc)-fructooligosaccharide (FOS) (high-molecular-weight fraction of inulin extracted from 

chicory roots) on pre-term infants. The mixture was designed to mimic the molecular size 

distribution of HMO and was used at a concentration of 1 % (w/v), similar to the oligosaccharide 

content of human milk, to enrich the composition of a formula-milk. The result of this study 

showed that infants fed with this formula had a bifidobacteria content that was in the upper range 

of the values found in infants fed human milk. The same oligosaccharide-supplemented formula 

milk was assayed in healthy term infants, by using two different concentrations of 

oligosaccharides (0.4 % and 0.8%, w/v) (Moro et al. 2002). After 28-day feeding period, the 

number of Bifidobacteria was significantly increased in both groups receiving supplemented 

formulas with respect to the control group (fed with a formula milk not enriched with prebiotics) 

and the effect was dose dependent. The number of lactobacilli also increased significantly in 

both groups fed the supplemented formulas, but there was no dose dependent effect. 

Supplementation had a significant dose dependent influence on stool consistency, which was 

softer in prebiotic supplemented newborns, whereas it had no influence on the incidence of side 

effects (crying, regurgitation, vomiting) or growth. A successive study using the same enriched 

formula milk with FOS-GOS at 0.8 % (w/v) allowed to reach further achievements: not only was 

the number of beneficial bacteria increased, but also the number of potential pathogens was 

reduced in  supplemented milk fed newborns compared to the control group (Boehm et al. 2004).  

Moreover, the amount of bifidobacteria was similar to that typical of breast-fed infants. In vitro, 

the short-chain fatty acids produced by the FOS-GOS mixture were similar to those produced by 

the HMO fraction. In the clinical trials, the pattern of fecal short-chain fatty acids of infants fed 

the oligosaccharide mixture was similar to that of breast-fed infants but was significantly 

different from that of a group of infants fed with an unsupplemented formula. 

Bakker-Zierikzee et al. (2005) compared the effects of two infant formulas, one containing a 

mixture of GOS and FOS 9:1 (0.6% w/v) and the other containing the probiotic strain 

Bifidobacterium animalis Bb-12 (6.0 × 1010 CFU/l), on the composition and metabolic activity 

of the intestinal bacteria after 4 months of administration. The control group received a non-

supplemented standard formula and a group of breast-fed infants was also included as a 

reference group. Compared with the groups fed Bb-12 and standard formula, the GOS/FOS 

formula group showed higher faecal acetate ratio and lactate concentration, allowing to conclude 

that the metabolic activity of the microbiota in this group is similar to that of breast-fed infants. 

The differences in the short-chain fatty acids observed in the GOS/FOS group are consistent with 
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a shift from a more proteolytic/putrefactive to a more saccharolytic colon physiology, which can 

be considered a health benefit for the infant. Differences in bifidobacteria counts between the 

GOS/FOS, Bb-12 and the standard groups were not statistically significant.  

A mixture of short chain GOS and long chain FOS (scGOS/lcFOS, 0.8% w/v) has been shown to 

have prebiotic and immunomodulatory effects comparable HMO in healthy term infants  with a 

parental history of atopy (Arslanoglu et al. 2007). Although these oligosaccharides are not 

identical to HMO, studies in preterm and term infants have shown that a formula 

supplementation with this prebiotic scGOS/lcFOS mixture results in an intestinal microbiota 

similar to that found in breast-fed infants (Knol et al. 2005; Boehm et al. 2002). Infants 

supplemented with the scGOS/lcFOS formula milk had fewer infectious episodes, in particular 

respiratory infections, fewer number of infections requiring antibiotics, and a reduced incidence 

of infections during the first 6 month of life. 

Other studies explored the use of different prebiotic mixtures. Ziegler et al. (2007) studied  the 

effect of  different combinations of polydextrose (PDX), GOS, and lactulose (LOS), on the 

overall growth and tolerance in healthy term infants up to 120 days of age. Beside the control 

group fed with a standard formula, other two groups were fed with a control formula 

supplemented with 0.4% (w/v) of a prebiotic blend containing PDX and GOS, 1:1 and with a 

control formula supplemented with 0.8 % of a prebiotic blend containing PDX, GOS, and LOS, 

0.50:0.33:0.17. There were no statistically significant differences among the 3 formula groups 

for weight growth rate or length growth rate. The supplemented formula groups had looser 

stools,  more similar to those of breast-fed infants, than the control group. However, a slight 

increase in the eczema frequency was observed when newborns were fed with the prebiotic 

blend containing PDX and GOS. 

A double-blind, randomized, prospective study, healthy term infants vaginally born and 

exclusively formula-fed received a standard cow’s milk-based formula or the same formula 

added with PDX and GOS (1:1 ratio), 0.4 % (w/v). A reference breastfed group was included. 

The study allowed to conclude that modifying formula feeding by adding prebiotics may bring 

the gut microbiota closer to that of breast-fed infants (Salminen et al. 2014).  

 

26.6.3 Prebiotics in infants for prevention of allergy 

As already pointed out in section 5.4, food allergy and allergic disease represent a substantial 

health problem that is increasing in children. . Among other factors, an altered microbial 

exposure in the gastrointestinal tract may be partly responsible for the increase of allergic 

diseases in populations with a western lifestyle. The gastrointestinal microbiota modulates 
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mucosal physiology, barrier function and systemic immunologic and inflammatory responses. 

The efficiency of this gastrointestinal barrier is reduced in the newborn period and it can make 

newborns more susceptible to allergies. The composition of the intestinal microbiota is different 

in infants with atopic eczema, in particular a reduced bifidobacteria content has been shown in 

infants with eczema and atopic sensitization (Osborn and Sinn 2013). Moreover, such 

differences may precede the development of eczema. The recognition of the importance of 

intestinal biota has led to the development of strategies aimed at manipulating bacterial 

colonization in formula fed infants, including the use of prebiotics. 

Among the several studies present in the literature, Osborn and Sinn (2013) considered four of 

them as the most convincing  in the field of prebiotic use in infants to prevent allergies. The 

outcomes are briefly summarized in Table 5.  

 

 

Table 5 Detected effects on the risk of allergies upon administration of formula milk enriched 

with prebiotics.  
Target of the study Prebiotics used        Detected effects Reference 

Infants with high risk of 
eczema development 

GOS/ FOS 9:1 
(0.8 % w/v) 

Reduction in the incidence of 
dermatitis  

Moro et al. (2006) 

Infants with no specified 
risk of eczema 
development  

PDX /GOS, 1:1 
(0.4% w/v) 

Slight increase in the eczema 
frequency 

Ziegler et al. (2007) 

Infants with low atopy risk GOS/ FOS (9:1) 
plus acidic 
oligosaccharides 
(0.8 % w/v) 

Positive effect in the prevention of 
atopic dermatitis 

The preventive effect persisted beyond 
the first birthday  

A reduced incidence of respiratory 
allergy later in life.  

Gruber et al. (2010) 

Preterm infants Mixture of 
neutral and 
acidic 
oligosaccharides 

No reduction in the incidence of 
allergic diseases during the first year 
of life 

Westerbeek et al. 
(2010); Westerbeek 
et al. (2013) 

 

 

In the study of Moro et al. (2006) infants possessing an high risk of eczema development were 

fed with an hydrolysed whey protein formula supplemented with a mixture of FOS and GOS (0.8 

% w/v) versus the same formula with added maltodextrin at the same concentration. The 

incidence of development of the dermatitis was reduced in the GOS-FOS administered group and 

it was associated with a significantly higher number of bifidobacteria compared with controls; 

conversely, no significant difference in lactobacilli counts was detected. This study showed for 
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the first time a beneficial effect of prebiotics on the development of atopic dermatitis in a high 

risk population of infants. Although the mechanism of this effect was not fully elucidated, it 

appeared likely that oligosaccharides modulate postnatal immune development by altering bowel 

microbiota and had a potential role in primary allergy prevention during infancy. On the other 

hand, a different achievement was reported in the study of Ziegler et al. (2007), already 

described in the previous section. Although the authors reported a slight increase in the eczema 

frequency when newborns were fed with the prebiotic blend containing PDX and GOS, this 

study did not enroll infants with a high risk of development of eczema. Gruber et al. (2010) 

recruited infants with low atopy risk before the age of 8 weeks to receive a regular cow’s milk 

formula with added neutral GOS and FOS (9:1) and acidic oligosaccharides (OS) (total 0.8 %) 

versus a control group who received cow’s milk based formula without added oligosaccharides. 

The main outcome of this study was that formula supplementation with a specific mixture of 

oligosaccharides was effective as primary prevention of atopic dermatitis.  The authors 

speculated that the effect persisted beyond the first birthday and might even result in a reduced 

incidence of respiratory allergy later in life.  

Other studies were aimed at determining the effect of short-term enteral supplementation of 

neutral and acidic oligosaccharides during the neonatal period in preterm infants on the incidence 

of allergic and infectious diseases during the first year of life (Westerbeek et al. 2010 and 2013). 

A group of newborns received enteral neutral and acidic oligosaccharides supplementation or 

placebo (maltodextrin) between day 3 and 30 of life. It was concluded that short-term enteral 

supplementation of a prebiotic mixture of neutral and acidic oligosaccharides during the neonatal 

period in preterm infants did not decrease the incidence of allergic and infectious diseases during 

the first year of life. Moreover, enteral supplementation of the prebiotic mixture did not 

significantly reduce the risk of serious infectious morbidity in preterm infants, but there was a 

trend toward a lower incidence of serious infectious morbidity, especially for infections with 

endogenous bacteria (Westerbeek et al. 2010). This was ascribed to an increase of postnatal 

intestinal colonization (Westerbeek et al. 2013). 

 

26.7 Conclusion and future trends 

A critical examination of the results present in the literature allows to conclude that the research 

on probiotics and  prebiotics is currently very active and a lot of results on their efficacy are at 

present available. This hectic research activity has been stimulated by the evidence, acquired 

mainly in the last twenty years and supported by recent findings obtained via next generation 

molecular techniques, that the correlation between the microbiota composition and sickness 
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exists for several diseases both interesting the gut system and not strictly enteric. Research has 

also allowed to conclude that the efficacy of probiotics for the treatment and prevention of a 

target diseases is strain specific and that not only the capability of colonizing the gut is 

important, but also the production of anti-inflammatory molecules and the stimulation of the gut 

immune system and the systemic immune system. Gaining new experimental results is 

particularly important for the research field interesting children, because they represent an 

interesting target for industry and because non chemoterapic treatments are particularly looked 

forward for them.  

Extremely relevant are the results obtained to make bottle nutrition more similar to breast 

feeding with prebiotic supplementation. These studies are all in agreement in stating that 

prebiotic enriched formula makes the gut microbial composition of formula fed infants similar to 

that of breast-fed newborns. On the contrary, the research on the potentiality of prebiotics to 

stimulate the beneficial colonic microbiota in case of disease is still sparse and mainly focused 

on allergic diseases. It is foreseeable that the opportunity of using the prebiotic strategy to 

prevent and reduce the symptoms of diseases such as celiac disease, obesity and neurologic upset 

is explored in future research activities, also considering that no adverse effects have been 

associated with prebiotic administration in newborn and infants. 

Thererfore, children are a very important target, if not the main one, for probiotic and prebiotic 

administration and the European industry is aware of that.  

 

 

 

 

Bibliography 

 

Aloisio I, Santini C, Biavati B, Dinelli G, Cencič A, Chingwaru W, Mogna L, Di Gioia D (2012) 

Characterization of Bifidobacterium spp. strains for the treatment of enteric disorders in 

newborns. Appl Microbiol Biotechnol 96:1561-1576 

An HM, Park SY, Lee do K, Kim JR, Cha MK, Lee SW, Lim HT, Kim KJ, Ha NJ (2011) 

Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese 

rats. Lipids Health Dis 10:116 

Anabrees J, Indrio F, Paes B, Afaleh K (2013) Probiotics for infantiles colic: a systematic review 

BMC 13:186-195 

58



Arslanoglu S, Moro GE, Boehm G (2007) Early Supplementation of Prebiotic Oligosaccharides 

Protects Formula-Fed Infants against Infections during the First 6 Months of Life. J Nutr 

137:2420–2424 

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, 

Bruls T, Batto J-M, Bertalan M, Borruel N, Casellas F, et al., (2011) Enterotypes of the human 

gut microbiome. Nature 473:174–8 

Arvola T, Laiho K, Torkkeli S, Mykkanen H, Salminen S, Maunula L, Isolauri E (1999) 

Prophylactic Lactobacillus GGReduces Antibiotic-Associated Diarrhea in Children With 

Respiratory Infections: A Randomized Study. Pediatrics 104:e64 

Bakker-Zierikzee AM, Alles MS, Knol J, Kok FJ, Tolboom JJM, Bindels JG (2005) Effects of 

infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable 

Bifidobacterium animalis on the intestinal microflora during the first 4 months of life. Br J Nutr 

94:783–90 

Barclay AR, Stenson B, Simpson JH, Weaver LT, Wilson DC (2007) Probiotics for necrotizing 

enterocolitis: a systematic review. J Pediatr Gastroenterol Nutr 45:569-576 

Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X,  Deng Y, Blennerhassett 

P, Fahnestock M, Moine D, Berger B, et al., (2011) The anxiolytic effect of Bifidobacterium 

longum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterol 

Motil 23:1132-1139 

Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C (2010) Mode of delivery 

affects the bacterial community in the newborn gut. Early Hum Dev 86:13-15  

Biavati B, Castagnoli P, Crociani F, Trovatelli LD (1984) Species of the Bifidobacterium in the 

feces of infants. Microbiol 7:341-345  

Blaut M, Bischoff SC (2010) Probiotics and obesity. Ann Nutr Metab 57:20-23 

Boehm G, Lidestri M, Casetta P, Jelinek J, Negretti F, Stahl B, Marini A (2002) 

Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of 

faecal bifidobacteria in preterm infants. Arch Dis Child Fetal Neonatal Ed 86:F178–81 

Boehm G1, Jelinek J, Stahl B, van Laere K, Knol J, Fanaro S, Moro G, Vigi V (2004) Prebiotics 

in infant formulas. J Clin Gastroenterol38:76-79 

59



Boehm G, Stahl B, Jelinek J, Knol J, Miniello V, Moro GE (2007) Prebiotic carbohydrates in 

human milk and formulas. Acta Paediatr 94:18–21 

Boyle RJ, Tang ML (2006) The role of probiotics in the management of allergic diseases. Clin 

Exp Allergy 36:568-576 

Braga TD, da Silva GA, de Lira PI, de Carvalho Lima M (2011) Efficacy of Bifidobacterium 

breve and Lactobacillus casei oral supplementation on necrotizing enterocolitis in very-low-

birth-weight preterm infants: a double-blind, randomized, controlled trial. Am J Clin Nutr 93:81-

86 

Cabana MD, McKean M, Wong AR, Chao C, Caughey AB (2007) Examining the hygiene 

hypothesis: the trial of infant probiotic supplementation. Paediatr Perinat Epidemiol 21:23-28 

Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM 

(2007) Selective increases of bifidobacteria in gut microflora improves high-fat diet induced 

diabetes in mice through a mechanism associated with endotoxemia. Diabetolog 50:2374-2383 

Cencič A., Langerholc T. (2010) Functional cell models of the gut and their applications in food 

microbiology-a review. Int J Food Microbiol 141: 4-14. 

Chen C-C, Walker WA (2011) Clinical applications of probiotics in gastrointestinal disorders in 

children. 24: 153-160 

Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, 

Falush D, Dinan T, Fitzgerald G, Stanton C, et al., (2011) Composition, variability, and temporal 

stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108 Suppl :4586–

91 

Claud EC, Walker WA (2001) Hypothesis: inappropriate colonization of the premature intestine 

can cause neonatal necrotizing enterocolitis. FASEB J 15:1398-1403 

Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2008) Imbalances in faecal and 

duodenal Bifidobacterium species composition in active and non-active celiac disease. BMC 

Microbiol 8:232 

Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central 

nervous system in normal gastrointestinal function and disease. Gastroenterol 136:2003-2014 

60



Coppa G V, Zampini L, Galeazzi T, Gabrielli O (2006) Prebiotics in human milk: a review. Dig 

Liver Dis 38 Suppl 2:S291–294 

Coppa G, Gabrielli O (2008) Human milk oligosaccharides as prebiotics. In: Versalovic, J. and 

Wilson, M. (eds.) Therapeutic microbiology: probiotics and related strategies. American Society 

for Microbiology Press, Washington, pp 131-146 

Cryan JF, O'Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behavior. 

Neurogastr Motil 23:187-192 

De Angelis M, Rizzello CG, Fasano A Clemente MG, De Simone C, Silano M, De Vincenzi M, 

Losito I, Gobbetti M (2006) Vsl#3 probiotic preparation has the capacity to hydrolyze gliadin 

polypeptides responsible for Celiac Sprue. Biochim Biophys Acta 1762:80-93 

Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan T (2008) The probiotic Bifidobacterium 

infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr  Res 43:164-

174 

Deshpande G, Rao S, Patole S (2007) Probiotics for prevention of necrotizing enterocolitis in 

preterm neonates with very low birthweight: a systematic review of randomized controlled trials. 

Lancet 369:1614-1620 

Deshpande G, Rao S, Patole S, Bulsara M (2010) Updated meta-analysis of probiotics  for 

preventing necrotizing enterocolitis in preterm neonates. Pediatrics 125:921-930 

Deshpande GC, Rao SC, Keil AD, Patole SK (2011) Evidence-based guidelines for use of 

probiotics in preterm neonates. BMC Med 9:92 

Di Gioia D, Aloisio I, Mazzola G, Biavati B (2014) Bifidobacteria: their impact on gut 

microbiota composition and their applications as probiotics in infants. Appl Microbiol 

Biotechnol 98:563–577 

Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, Aguilera M, Khanna S, Gil A, 

Edwards CA, Doré J, INFABIO team (2010) Intestinal microbiota of 6-week-old infants across 

Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr 

Gastroenterol Nutr 51:77-84 

61



Grandy G, Medina M, Soria R, Terán CG, Araya M (2010) Probiotics in the treatment of acute 

rotavirus diarrhoea. A randomized, double-blind, controlled trial using two different probiotic 

preparations in Bolivian children. BMC Infect Dis 10:253 

Green PH, Cellier C (2007) Celiac disease. N Engl J Med 357:1731-1743 

Grüber C, van Stuijvenberg M, Mosca F, Moro G, Chirico G, Braegger CP, Riedler J, Boehm G, 

Wahn U (2010) Reduced occurrence of early atopic dermatitis because of immunoactive 

prebiotics among low-atopy-risk infants. J Allergy Clin Immunol 126:791–797 

Haarman M., Knol J. (2005) Quantitative real-time PCR assays to identify and quantify fecal 

Bifidobacterium species in infants receiving a prebiotic infant formula. Appl Environ Microbiol 

71: 2318-2324. 

Halken S. (2004) Prevention of allergic disease in childhood: clinical and epidemiological 

aspects of primary and secondary allergy prevention. Pediatr Allergy Immu 15 Suppl 16:4–5 

Harder T, Bergmann R, Kallischnigg G, Plagemann A (2005) Duration of breastfeeding and risk 

of overweight: a meta-analysis. Am J Epidemiol 162:397-403 

Jankowska A., Laubitz D., Antushevich H., Zabielski R., Grzesiuk E. (2008) Competition of 

Lactobacillus paracasei with Salmonella enterica for adhesion to Caco-2 cells. J Biomed 

Biotechnol 59:795-810. 

Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E (2001) Distinct patterns 

of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin 

Immunol 107:129-134. 

Kang C, Gayen S, Wang W, Severin R, Chen AS, Lim HA, Chia CSB, Schüller A, Doan DNP, 

Poulsen A, Hill J, Vasudevan SG, Keller TH (2013) Exploring the binding of peptidic West Nile 

virus NS2B-NS3 protease inhibitors by NMR. Antiviral Res 97:137-44 

Kaur IP, Chopra K, Saini A (2002) Probiotics: potential pharmaceutical applications. Eur J 

Pharm Sci 15:1-9 

Khailova L, Dvorak K, Arganbright KM, Halpern MD, Kinouchi T, Yajima M, Dvorak B (2009) 

Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. 

Am J Physiol Gastrointes Liver Physio 1297:940-949 

62



Kim HR, Jung YK, Kim SY, Ko KO, Lee YM, Kim JM (2003). Delivery modes and neonatal 

EEG: spatial pattern analysis. Early Hum De. 75: 35–53 

Klaassens ES, Boesten RJ, Haarman M, Knol J, Schuren FH, Vaughan EE, de Vos WM (2009) 

Mixed-species genomic microarray analysis of fecal samples reveals differential transcriptional 

responses of bifidobacteria in breast- and formula-fed infants. Appl Environ Microbiol 75:2668-

2676 

Knol J, Scholtens P, Kafka C, Steenbakkers J, Gro S, Helm K, Klarczyk M, Schöpfer H, Böckler 

H-M, Wells J (2005) Colon microflora in infants fed formula with galacto- and 

fructooligosaccharides: more like breast-fed infants. J Pediatr Gastroenterol Nutr 40:36–42 

Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE 

(2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl 

Acad Sci USA 108:4578-4585 

Kuitunen M, Kukkonen K, Juntunen-Backman K, Korpela R, Poussae T, Tuure T, Haahtela T, 

Savilahti E (2009) Probiotics prevent IgE-associated allergy until age 5 years in caesarean 

delivered children but not in the total cohort. J Allergy Clin Immunol 123:335-341 

Laux D., Cohen P., Coneay T.(2005) Role of the mucus layer in bacterial colonization of the 

intestine. In Nataro J., Cohen P., Mobley H. and Weiser J.Colonization of the mucosa surfaces. 

American Society for Microbiology Press, Washington, pp 199-212 

Ley R., Peterson D., Gordon J. (2006) Ecological and evolutionary forces shaping microbial 

diversity in the human intestine. Cell 124: 837-848 

Lin HC, Hsu CH, Chen HL, Chung MY, Hsu JF, Lien RI, Tsao LY, Chen CH, Su BH (2008) 

Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a 

multicenter, randomized, controlled trial. Pediatrics 122:693-700 

Lin HC, Hsu CH, Chen HL, Chung MY, Hsu JF, Lien RI, Tsao LY, Chen CH, Su BH (2008) 

Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a 

multicenter, randomized, controlled trial. Pediatr 122:693-700 

Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venäläinen J, Mäki M, Kaukinen K 

(2008) Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat 

gliadin in epithelial cell culture. Clin Exp Immunol 152:552-558 

63



Londei M, Ciacci C, Ricciardelli I, Vacca L, Quaratino S, Maiuri L (2005) Gliadin as a 

stimulator of innate responses in celiac disease. Mol Immunol 42:913-918 

Lue KH, Sun HL, Lu KH, Ku MS, Sheu JN, Chan (2012) Lactobacillus johnsonii EM1 to 

levocetirine for treatment of perennial allergic rhinitis in children aged 7-12 years. Int J Pedriatr 

Otorinolaryngol 76: 994-1001 

Ma X, Hua J, Li Z (2008) Probiotics improve high fat diet-induced hepatic steatosis and insulin 

resistance by increasing hepatic NKT cells. J Hepatol 49:821-830 

Magne F, Hachelaf  W, Suau A, Boudraa G, Mangin I, Touhami M, Bouziane-Nedjadi K, 

Pochart P (2006) A longitudinal study of infant faecal microbiota during weaning. FEMS 

Microbiol Ecol 58:563-571 

Magne F, Hachelaf  W, Suau A, Boudraa G, Mangin I, Touhami M, Bouziane-Nedjadi K, 

Pochart P (2006) A longitudinal study of infant faecal microbiota during weaning. FEMS 

Microbiol Ecol 58:563-571 

Mai V, Young CM, Ukhanova M, Wang X, Sun Y, Casella G, Theriaque D, Li N, Sharma R, 

Hudak M, Neu J (2011) Fecal microbiota in premature infants prior to necrotizing enterocolitis. 

PLoS One 6:e20647 

Martin R., Langa S., Reviriego C., Jimenez E., Marin M., Xaus J., Fernandez J., Rodriguez J., 

(2003) Human milk is a source of lactic acid bacteria for infant gut. J Pediatr 143:754-758. 

Meresse B, Ripoche J, Heyman M, Cerf-Bensussan N (2009) Celiac disease: from oral tolerance 

to intestinal inflammation, autoimmunity and lymphomagenesis. Mucosal Immunol 2:8-23 

Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejedi A, Bisson J, Roujeot C, PichelIn 

M, Cazaubiel M, Cazaubiel J (2010) Assessment of psychotropic-like properties of a probiotic 

formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and 

human subjects. Br J Nutr 26:1-9 

Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R, Vialettes B, Raoult D 

(2013) Correlation between body mass index and gut concentrations of Lactobacillus reuteri, 

Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes 1-7 

 

64



Million M, Maraninchi M, Henry F, Armougom F, Richet Carrieri H, Valero R, Raccah D, 

Viallettes B, Raoult D (2012) Obesity-associated gut microbiota is enriched in Lactobacillus 

reuteri and depleted in  Bifidobacterium animalis and Methanobrevibacter smithii  Int J Obes 

36:817-825 

Montier Y., Lorentz A., Krämer S., Sellge G., Schock M., Bauer M., Schuppan D. (2012) 

Central role of IL-6 and MMP-1 for cross talk between human intestinal mast cells and human 

intestinal fibroblasts. Immunobiology 217: 912-917 

Moro G, Minoli I, Mosca M, Fanaro S, Jelinek J, Stahl B, Boehm G (2002) Dosage-Related 

Bifidogenic Effects of Galacto- and Fructooligosaccharides in Formula-Fed Term Infants J 

Pediatr Gastroenterol Nutr 34: 291-295 

Moro G, Arslanoglu S, Stahl B, Jelinek J, Wahn U, Boehm G (2006) A mixture of prebiotic 

oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. 

Arch Dis Child 91:814–9 

Muñoz JA, Chenoll E, Casinos B, Bataller E, Ramón D, Genovés S, Montava R, Ribes JM, 

Buesa J, Fàbrega J, Rivero M (2011) Novel probiotic Bifidobacterium longum subsp. infantis 

CECT 7210 strain active against rotavirus infections. Appl Environ Microbiol 77:8775-8783 

Nataro J. (2005) Interactions of the commensal flora with the human gastrointestinal tract. In 

Nataro J., Cohen P., Mobley H. and Weiser J. Colonization of the mucosa surfaces. American 

Society for Microbiology Press, Washington, pp 179-186. 

Oncel MY, Sari FN, arayci S, Guzoglu N, Erdeve O, Uras N, Oguz SS, Dilmen U (2013) 

Lactobacillus reuteri for the prevention of necrotizing enterocolitis in very low birth weight 

infants: a randomized controlled trial. Arch Dis Child Fetal Neonatal doi:10.1136/archdischild-

2013-304745 

Osborn DA, Sinn JKH (2013) Prebiotics in infants for prevention of allergy. Cochrane database 

Syst Rev Issue 3. DOI: 10.1002/14651858.CD006474.pub3. 

Osterballe M, Hansen TK, Mortz CG, Høst A, Bindslev-Jensen C (2005) The prevalence of food 

hypersensitivity in an unselected population of children and adults. Pediatr Allergy Immunol 

16:567–73 

65



Ouwehand, A.C., Isolauri, E., He, F., Hashimoto, H., Benno, Y., Salminen, S (2001) Differences 

in Bifidobacterium flora composition in allergic and healthy infants. J Allergy Clin Immunol 

108:144-145 

Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG (2005) The effect of infant feeding 

on the risk of obesity across the life course: a quantitative review of published evidence. Pediatr 

115:1367-1377 

Özdemir Ö (2009) Gut flora development in infancy and its effect on immune system. Çocuk 

Enf Derg J Pediatr Inf 3:202-203 

Palma GD, Capilla A, Nova E, Castillejo G, Varea V, Pozo T, Garrote JA, Polanco I, López A, 

Ribes-Koninckx C, Marcos A, García-Novo MD, Calvo C, Ortigosa L, Peña-Quintana L, Palau 

F, Sanz Y (2012) Influence of milk-feeding type and genetic risk of developing coeliac disease 

on intestinal microbiota of infants: the PROFICEL study. PLoS One 7:e30791 

Parche S., Beleut M., Rezzonico E., Arigoni F., Titgemeyer F., Parche S., Beleut M. (2006) 

Lactose-over-Glucose Preference in Bifidobacterium longum NCC2705: glcP , Encoding a 

Glucose Transporter , Is Subject to Lactose Repression. J Bacteriol 188:1260-1265. 

Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, Adams H, van Ree 

R, Stobberingh EE (2006) Gut microbiota composition and development of atopic manifestations 

in infancy: the KOALA Birth Cohort Study. Gut 56:661-667 

Pfenninger A, Karas M, Finke B, Stahl B (2002) Structural analysis of underivatized neutral 

human milk oligosaccharides in the negative ion mode by nano-electrospray MS(n) (part 1: 

methodology). J Am Soc Mass Spectrom 13:1331–40 

Prescott SL, Smith P, Tang M, Palmer DJ, Sinn J, Huntley SJ, Cormack B, Heine RG, Gibson 

RA, Makrides M (2008) The importance of early complementary feeding in the development of 

oral tolerance: concerns and controversies. Pediatr Allergy Immunol 19:375–80 

Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-

enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6:306-314 

Roberfroid M (2007) Prebiotics: the concept revisited. J Nutr 137:830S–7S. 

 

66



Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl 

B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco M-J, Léotoing 

L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: 

metabolic and health benefits. Br J Nutr 104 Suppl :S1–63.  

Salminen S, Isolauri E, Endo A, Scalabrin D (2014) Early gut colonization with lactobacilli in 

vaginally born infants fed breast milk or infant formula (637.9). FASEB J 28:637-639 

Satokari R, Vaughan E, Favier F, Dore J, Edwards C, de Vos W (2002) Diversity of 

Bifidobacterium and Lactobacillus spp. in breast-fed and formula-fed infants as assessed by 16S 

rDNA sequence differences. Microb Ecol Health Dis 14:97–105 

Saulnier DMA, Spinler JK, Gibson GR, Versalovic J (2009) Mechanisms of probiosis and 

prebiosis: considerations for enhanced functional foods. Curr Opin Biotechnol 20:135-41 

Savino F, Cordisco L, Tarasco V, Calabrese R, Palumeri E, Matteuzzi D (2009) Molecular 

identification of coliform bacteria from colicky breastfed infants. Acta Paediatr 98:1582-1588 

Savino F, Cordisco L, Tarasco V, Locatelli E, Di Gioia D, Oggero R, Matteuzzi D (2011) 

Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from 

colicky infants. BMC microbial 11:157 

Savino F, Cordisco L, Tarasco V, Palumeri E, Calabrese R, Oggero R, Roos S, Matteuzzi D 

(2010) Lactobacillus reuteri DSM 17939 in infantile colic: a randomized, double-blind, placebo-

controlled trial. Pediatr 126:526-533 

Savino F, Pelle E, Palumeri E, Oggero R, Miniero R (2007) Lactobacillus reuteri (American 

Type Culture Collection Strain 55730) versus simethicone in the treatment of infantile colic: a 

prospective randomized study. Pediatr 119:124-130 

Schouten B, Van Esch BCAM, Kormelink TG, Moro GE, Arslanoglu S, Boehm G, Knippels 

LMJ, Redegeld FA, Willemsen LEM, Garssen J (2011) Non-digestible oligosaccharides reduce 

immunoglobulin free light-chain concentrations in infants at risk for allergy. Pediatr Allergy 

Immunol 22:537–42 

Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and 

SCFA in lean and overweight healthy subjects. Obesity 18:190-195 

67



Soh SE, Aw M, Gerez I, Chong YS, Rauff M, Ng YPM, Wong HB, Pai N, Lee BW, Shek LPC 

(2009) Probiotic supplementation in the first 6 months of life in at risk Asian infants – effects on 

eczema and atopic sensitization at the age of 1 year. Clin Exp Allergy 39:571-578 

Solís G, de Los Reyes-Gavilan CG, Fernández N, Margolles A, Gueimonde M (2010) 

Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-

milk and the infant gut. Anaerobe 16:307-310 

Stockman JA (2009) Newborn: probiotics for prevention of necrotising enterocolitis in preterm 

neonates with very low birthweight: a systematic review of randomised controlled trials. In: 

Deshpande G, Rao S, Patole S. (eds.) Yearbook of Pediatrics, Philadelphia, pp:441-443 

Sudo N, Chida Y, Aiba Y, Sonoda, J, Oyama, N, Yu X, Kubo C, Koga Y (2004) Postnatal 

microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response 

in mice. J Physiol 558:263-275 

Sung V, Heine R, Stock A, Barr R, Wake M (2014) Treating infant colic with the probiotic 

Lactobacillus reuteri: double blind placebo controlled randomized trial BMJ doi: 

10.1136/bmj.g2107 

Symonds EL, O'Mahony C, Lapthorne S, O'Mahony D, Sharry JM, O'Mahony L, Shanahan F 

(2012) Bifidobacterium infantis 35624 protects against salmonella-induced reductions in 

digestive enzyme activity in mice by attenuation of the host inflammatory response. Clin Transl 

Gastroenterol 3:e15  

Szajewska H, Gyczuk, Horvath A (2013) Lactobacillus reuteri DSM 17938 for the management 

of infantile colic in breastfed infant: a ramndomized, double-blind, placebo-controlled trial. J 

Pediatr 162:257-262 

Szajewska H, Ruszczyński M, Radzikowski A (2006) Probiotics in the prevention of antibiotic-

associated diarrhea in the children: a meta analysis of randomized controlled trials. J Pedriatr 

149:367-372 

Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco M-J, Léotoing L, 

Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: 

metabolic and health benefits. Br J Nutr 104 Suppl :S1–63. 

68



Szilagyi A. (2002) Review article: lactose--a potential prebiotic. Aliment Pharmacol Ther 16: 

1591-602 

Taibi A, Comelli EM (2014) Practical approaches to probiotics use. Appl Physiol Nutr Metab 

doi: 10.1139/apnm-2013-0490 

Tennyson CA, Friedman G (2008) Microecology, obesity, and probiotics. Curr Opin Endocrinol 

Diabetes Obes 15:422-427 

Tham CSC, Peh KK, Bhat R, Liong MT (2011) Probiotic properties of bifidobacteria and 

lactobacilli isolated from local dairy products. Ann Microbiol 62:1079-1087 

Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Kerr C, Hourihane J, 

Murray D, Fuligni F, Gueimonde M, Margolles A, De Bellis G, O'Toole PW, van Sinderen D, 

Marchesi JR, Ventura M (2012) Diversity of bifidobacteria within the infant gut microbiota. 

PLoS One 7:e36957 

Underwood MA, Kananurak A, Coursodon CF, Adkins-Reick CK, Chu H, Bennett SH, 

Wehkamp J, Castillo PA, Leonard BC, Tancredi DJ, Sherman MP, Dvorak B, Bevins CL (2012) 

Bifidobacterium bifidum in a rat model of necrotizing enterocolitis: antimicrobial peptide and 

protein responses. 71:546-551 

Vandenplas Y, De Hert SG (2011) Randomised clinical trial: the synbiotic food supplement 

Probiotical vs. placebo for acute gastroenteritis in children. Aliment Pharmacol Ther 34:862-867 

Verdu EF (2009) Probiotics effects on gastrointestinal function: beyond the gut? 

Neurogastroenterol Motil 21:477-480  

Viljanen M, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, 

Kuitunen M (2005) Probiotics in the treatment of atopic eczema/dermatitis syndrome in infants: 

a double-blind placebo-controlled trial. Allerg 60:494-500 

Wanke M and Szajewska MD (2012) Lack of an effect of lacrobacillus reuteri DSM 17938 in 

preventing nosocomial diarrhea in childfren: a randomized, double bind, placebo-controlled trial 

J Pediatr 161:40-43 

Ward R. E., Niñonuevo M., Mills, D.a, Lebrilla C.B., German J.B. (2006) In vitro fermentation 

of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl 

Environ Microbiol 72: 4497-4499 

69



Westerbeek E.M., van den Berg A., Lafeber H.N., Knol J., Fetter W.P.F., van Elburg R.M. 

(2006) The intestinal bacterial colonisation in preterm infants: a review of the literature. Clin 

Nutr 25: 361-368. 

Westerbeek EA, van den Berg JP, Lafeber HN, Fetter WP, Boehm G, Twisk JW, van Elburg RM 

(2010) Neutral and acidic oligosaccharides in preterm infants: a randomized, double-blind, 

placebo-controlled trial. Am J Clin Nutr 91:679–86 

Westerbeek EA, Slump RA, Lafeber HN, Knol J, Georgi G, Fetter WPF, van Elburg RM (2013) 

The effect of enteral supplementation of specific neutral and acidic oligosaccharides on the 

faecal microbiota and intestinal microenvironment in preterm infants. Eur J Clin Microbiol Infect 

Dis 32:269–76 

Wiegering V, Kaiser J, Tappe D, Weissbrich B, Morbach H, Girschick HJ (2011) Gastroenteritis 

in childhood: a retrospective study of 650 hospitalized pediatric patients. Int J Infect Dis 15:401-

407  

Yin YN, Yu QF, Fu N, Liu XW, Lu FG (2010) Effects of four Bifidobacteria on obesity in high-

fat diet induced rats. World J Gastroenterol 16:3394-3401 

Ziegler E, Vanderhoof JA, Petschow B, Mitmesser SH, Stolz SI, Harris CL, Berseth CL (2007) 

Term infants fed formula supplemented with selected blends of prebiotics grow normally and 

have soft stools similar to those reported for breast-fed infants. J Pediatr Gastroenterol Nutr 

44:359–64 

 

 

 

 

 

 

 

 

 

70



PAPER 2 
 
Bifidobacteria: their impact on gut microbiota composition and 

their applications as probiotics in infants 

Diana Di Gioia*, Irene Aloisio, Giuseppe Mazzola, Bruno Biavati (2014) 

 

Department of Agricultural Science, University of Bologna, viale Fanin 42, 40127 Bologna, Italy. 
 

* Corresponding Author 

 
  

 
 

“With kind permission of Springer Science+Business Media” 

 

This paper has been published in: 

Applied Microbiology and Biotechnology  

 

98(2):563–577. doi: 10.1007/s00253-013-5405-9 

 

 

 
 

 

 

 

 
 

 

71



MINI-REVIEW

Bifidobacteria: their impact on gut microbiota composition
and their applications as probiotics in infants

Diana Di Gioia & Irene Aloisio & Giuseppe Mazzola &

Bruno Biavati

Received: 30 August 2013 /Revised: 11 November 2013 /Accepted: 12 November 2013 /Published online: 28 November 2013
# Springer-Verlag Berlin Heidelberg 2013

Abstract This review is aimed at describing the most recent
advances in the gut microbiota composition of newborns and
infants with a particular emphasis on bifidobacteria. The new-
born gut microbiota is quite unstable, whereas after weaning,
it becomes more stable and gets closer to the typical adult
microbiota. The newborn and infant gut microbiota composi-
tion is impaired in several enteric and non-enteric pathologies.
The core of this review is the description of the most recent
documented applications of bifidobacteria to newborns and
infants for their prevention and treatment. Acute diarrhea is
the most studied disease for which bifidobacteria are applied
with great success, Bifidobacterium longum and
Bifidobacterium breve being the most applied species. More-
over, the most recent updates in the use of bifidobacteria for
the prevention and treatment of pathologies typical of new-
borns, such as necrotizing enterocolitis, colics, and strepto-
coccal infections, are presented. In addition, a number of not
strictly enteric pathologies have in recent years evidenced a
strict correlation with an aberrant gut microbiota in infants, in
particular showing a reduced level of bifidobacteria. These
diseases represent new potential opportunities for probiotic
applications. Among them, allergic diseases, celiac disease,
obesity, and neurologic diseases are described in this review.
The preliminary use of bifidobacteria in in vitro systems and
animal models is summarized as well as preliminary in vivo
studies. Only after validation of the results via human clinical
trials will the potentiality of bifidobacteria in the prevention
and cure of these pathologies be definitely assessed.

Keywords Bifidobacteria . Gut microbiota . Infants .

Newborns . Probiotics . Therapeutic microbiology

Introduction

The microbial composition of the gastrointestinal tract (GIT)
in humans changes during life. Three different phases can be
described almost in all individuals and they correspond re-
spectively to birth, when the microbiota starts to colonize the
sterile bowel, to the weaning period, when a different diet
determines profound changes giving rise to a stable commu-
nity that will be present up to the elderly period, when further
strong changes in the microbiota occur.

The intent of this review is to focus on the microbiota of
infants from birth to the weaning period with a particular
emphasis on bifidobacteria. The most recent documented
applications of bifidobacteria to newborns and infants for the
prevention and treatment of the most common enteric and
non-enteric pathologies are described. Moreover, possible
applications of these probiotic bacteria for the treatment of
diseases for which the probiotic approach appears promising
on the basis of recent in vitro studies are suggested. Therefore,
this paper represents a comprehensive review of the role of
indigenous and administered Bifidobacterium spp. in new-
borns and infants through the description of results collected
in the authors' laboratory and obtained by other distinguished
scientists. The application of probiotic bacteria such as
bifidobacteria for the prevention and therapy of diseases is
an emerging sector of applied microbiology which has been
referred to as “therapeutic microbiology.”

Microbiota composition in newborns and factors affecting
microbial colonization

The bowel of neonates resembles that of a germ-free animal.
Microbial colonization begins soon after birth and within a
few hours bacteria start to appear in the feces (Hansen et al.
2012). Initially, microorganisms are acquired by the contact
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with the mother; successively, the newborn is exposed to
microorganisms from the environment. Table 1 summarizes
the most important factors affecting microbial colonization in
the gut. The first bacteria encountered in the majority of
healthy infants are facultative anaerobes, because of the pos-
itive oxidation/reduction potential of the neonates' intestine at
birth. These bacteria remain predominant during the first few
days of life, among them, Staphylococcus spp., Enterobacte-
riaceae , and Streptococcus spp. are most commonly isolated
from newborn feces after birth. Facultative anaerobic bacteria
are followed by strict anaerobes such as members of the
Bifidobacterium , Bacteroides , and Clostridium genera.

The hospital environment is extremely important for intes-
tinal colonization of infants born by cesarean section. These
newborns do not come in contact with the maternal vaginal
and fecal microorganisms and may be separated from the
mother for a long period after birth (Biasucci et al. 2010).
Within the largest epidemiologic study performed on new-
borns and focused on the determination of factors affecting
gut composition (the KOALA study, Penders et al. 2006), it
has been demonstrated that anaerobic colonization, especially
by Bacteroides spp., is delayed in cesarean section newborns,
but Bifidobacterium spp. retrieval and Escherichia coli pres-
ence were similar in vaginally and cesarean section-delivered
infants. Additionally, an increased incidence of Clostridium
perfringens and Clostridium difficile in cesarean section new-
borns is reported in relation to the hospital environment.
Another important factor that can influence the composition
of the intestinal microbiota in neonates is the type of feeding
(Table 1) as revealed by the KOALA study. In full-term
breastfed neonates, Bacteroides spp. and bifidobacteria ap-
pear 4 days after birth, and after 1 week, they dominate the
fecal microbiota constituting 80–90 % of the total microbial
amount. In contrast, the fecal microbiota of formula-fed in-
fants is more complex, with Bifidobacterium spp.,
enterobacteria, and Streptococcus spp. in similar proportion.
Another notable difference is that formula-fed infants have
much higher counts of Clostridium spp. than breastfed in-
fants. An important difference is the relative buffering capac-
ity of the two feeds. Breast milk has a poor buffering capacity,
compared with formula milk, and this leads to marked

differences in the colon pH of breast and formula-fed in-
fants—5.1 and 6.5, respectively. The low pH promotes the
growth of bifidobacteria and lactobacilli, but is inhibitory to
many other bacteria (Tham et al. 2011). Moreover, a number
of peptides capable of stimulating the growth of several
bifidobacteria have recently been isolated from human milk.
In addition, human milk contains glycoproteins, glycolipids,
fucose, neuraminic acid, lactose, N-acetylglucosamine, and a
variety of oligosaccharides that are known to possess a
bifidogenic effect (Coppa and Gabrielli 2008).

Both neonates and adults are regularly exposed to micro-
organisms via the diet, but with different effects: microorgan-
isms entering newborns are more likely to colonize than those
entering healthy adults possessing a stable microbiota. Breast
milk is a potential source of microorganisms, although the
results available to date about the isolation and identification
of commensal or potential probiotic bacteria from milk of
healthy women are still inconclusive. Even though authors
are aware that human milk is difficult to sample and microbial
contamination can never be totally discarded, some studies
have demonstrated the presence of live bifidobacteria in hu-
man milk (Solís et al. 2010; Arboleya et al. 2011).

In contrast with full-term neonates, little information
concerning the composition of the microbiota in premature
infants is available because the interindividual variability is
higher than in full-term newborns and many parameters, such
as antibiotic treatments and diet, may tend to increase study
discrepancy. In particular, preterm infants often need parental
feeding and respiratory support, and they are vulnerable for
infections and often require antibiotic treatment. Moreover,
gastric pH of preterm infants is higher than that of term infants
probably due to more frequent feeding and it leads to a greater
risk of bacterial infections. The alteration in the composition
of the gut microbiota of preterm infants can be linked to the
increased risk, for this subjects, of severe gastrointestinal
disorders such as necrotizing enterocolitis (NEC) (Lin et al.
2008; Barrett et al. 2013).

Microbiota composition after weaning

The primary factor involved in the compositional shift in the
microbiota is the change of diet (Bäckhed et al. 2004; Koenig
et al. 2011). With the introduction of solid foods (weaning), at
about 6 months of life, the infants are exposed to more
complex carbohydrates and other nutrients with respect to
those present in human milk or infant formula, and these
new substrates drive to the development an adult-like micro-
biota. In this context, a high gene expression for more com-
plex carbohydrates degradation by representative microbial
groups is observed as well (Koenig et al. 2011).

A large-scale longitudinal study on development and
change in the composition of gut microbiota during the

Table 1 Principal factors influencing intestinal microbiota development
in newborns

Place and mode of delivery

Maternal microbiota of intestine, vagina, and epidermis

Type of infant feeding (breast milk vs. formula milk)

Antibiotic/antimycotic use in newborns

Gestational age at birth

Hospitalization after birth

Perinatal administration of probiotics

Intrapartum antibiotic prophylaxis?
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process of weaning was carried out by Fallani et al. (2011).
Within this study, fecal samples of 605 infants (from five
European countries), approximately 4 and 6 weeks after the
introduction of first solid foods, were collected in order to
investigate the association with determining factors such as
mode of delivery, previous feeding practices, age of weaning,
and the impact of possible antibiotic treatment. After 1 month
of weaning, bifidobacteria and Bacteroides continue to repre-
sent the predominant groups. However, the number of detect-
able Bifidobacterium species decreased after weaning togeth-
er with counts of C. perfringens and C. difficile , while other
strictly anaerobic clostridia increased. Furthermore, the same
authors also pointed out how, after 6 months of weaning, the
influence of feeding method and the mode of delivery
persisted. High counts of bifidobacteria are associated with
breastfeeding until and during weaning; in addition, the delay
and the consequent low anaerobic colonization, especially
by Bacteroides spp., in cesarean section newborns was still
present in this period (Fallani et al. 2010; Biasucci et al.
2010). On the contrary, it has been reported that the effect of
antibiotic treatment in infants or their mother on gut microbiota
composition disappeared after weaning started (Fallani et al.
2011). Fecal microbiota at weaning due to effects of the dietary
changes were analyzed using PCR-temporal temperature gra-
dient gel electrophoresis (TTGE) of DNA isolated from infants
feces. This technique evidenced a high interindividual variabil-
ity in the dominant microbiota, which slightly decreased after
cessation of breastfeeding and the introduction of solid foods.
In the TGGE profiles, the main identified bands present from
the breastfeeding period to the post-weaning time corresponded
to E. coli , Ruminoccocus spp., and bifidobacteria (Magne et al.
2006). Therefore, the gut microbiota of infants, due to change
of diet, becomes more stable and homogenous after weaning
and it gradually gets closer to the typical adult microbiota
(Magne et al. 2006; Koenig et al. 2011).

Bifidobacterial biodiversity in healthy newborns
and infants

Bifidobacteria were first characterized from infant feces by
Tissier at the very beginning of the twentieth century with the
isolation of a bacterium with a peculiar Y shape which was
named Bacillus bifidus . Only about 50 years later, with the
discovery of a peculiar metabolic pathway for hexose fermen-
tation in Y-shaped bacteria, the Bifidobacterium genus was
defined and separated from the Lactobacillus genus. Histori-
cal details of the Bifidobacterium genus are described in
Biavati et al. (2000).

The distribution of the Bifidobacterium species in the feces
of newborns was originally obtained with traditional plate
isolation technique. Biavati et al. (1984) studied the microbial
composition of breastfed and formula-fed newborns by

culture methods and DNA–DNA hybridization as identifica-
tion tool. It was found that the most represented species in
both groups of infants were Bifidobacterium infantis (at pres-
ent classified as B. longum subsp. infantis), Bifidobacterium
breve , Bifidobacterium longum (at present classified as B.
longum subsp. longum ), and Bifidobacterium bifidum.
Bifidobacterium pseudocatenulatum and Bifidobacterium
catenulatum were also present although in a lower number
in both type of samples, whereas Bifidobacterium dentium
was evidenced only in breastfed newborns.

A technical difficulty encountered in microbial ecology
studies performed before the advent of the molecular tech-
niques was that not all components of the GIT microbiota are
cultivable (Favier et al. 2002). In the last 20 years, analysis
methods based on the detection and sequencing of 16S rDNA
have been widely used in place of conventional culture
methods. PCR-denaturing gradient gel electrophoresis
(DGGE) with the use of universal bacterial primers was used
for monitoring bifidobacterial succession in the feces of a
breastfed and a mixed-fed newborn (an increased amount of
formula milk was added to the diet starting from 2 weeks)
(Favier et al. 2002). Both newborns showed an early coloni-
zation by bifidobacterial species, which were detected starting
from the third day of life. Among them, B. breve was the most
represented species. Differences in the bifidobacterial pattern
were appreciated when the newborn feeding started to change:
amplicons related to bifidobacteria were dominant in breastfed
babies during the first 6 months of life, whereas in the babies
who had a mixed feeding, these amplicons were less intense.
The introduction of solid food and the withdrawal of breast
milk resulted in major shifts in the bifidobacterial profiles.
TGGE studies of DNA amplified from infant feces collected
during the breastfeeding period and the successive weaning
period evidenced that bifidobacteria were the predominant
group, precisely B. infantis , B. longum , and B. breve , and that
in the post-weaning period, bifidobacteria bands tend to dimi-
nish of intensity indicating a decrease in the Bifidobacterium
population (Magne et al. 2006).

Important information on the temporal development of
bifidobacteria in newborns was obtained by Klaassens et al.
(2009) with a qPCR approach. Their analyses confirmed what
traditional plate counts had already stated, i.e., that total
bifidobacteria number was higher in breastfed newborns than
in formula-fed ones, but the number in formula-fed newborns
increased significantly over time, due to the intake of the
oligosaccharides present in the formula. qPCR analyses of
targeted Bifidobacterium species indicated that there were
few significant differences between the breastfed and
formula-fed newborns and that the number of these species
in breastfed newborn was initially higher. Bifidobacterium
animalis and B. dentium were not detectable in samples from
all infants, whereas B. longum subsp. infantis , B. breve , B.
bifidum , and B. longum subsp. longum were detected in all
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samples, with B. longum subsp. infantis being the major
species found. Bifidobacterium adolescentis , which is most
commonly found in adults, was present only in formula-fed
infants. The same authors also determined the bifidobacterial
transcriptome with a DNA microarray based on 6,000 clones
from a library derived from a mixture of six Bifidobacterium
species. The results evidenced a significant impact of the diet
(breast- and formula-feeding) on the transcriptional response
of bifidobacteria. The expression of the glycobiome, in par-
ticular the genes encoding for pullulanases, glucosidases, and
the glycogen phosporylase, indicates a higher potential for
carbohydrate metabolism in breastfed newborns than in
formula-fed ones (Klaassens et al. 2009).

In contrast to the abovementioned studies, some
metagenomic analyses revealed a low abundance of
bifidobacteria (Palmer et al. 2007; Koenig et al. 2011). Turroni
et al. (2012) delineated that the low counts obtained by these
investigations were most likely due to technical biases, in
particular related to DNA extraction protocols and/or the
PCR primers used. The same authors (Turroni et al. 2012) gave
further insight in the complexity and biodiversity of
bifidobacteria in healthy newborns by pyrosequencing of
PCR amplicons derived from two hypervariable regions of
the 16S rRNA gene. This study finally elucidated that the most
abundant class in infant fecal samples was Bifidobacteriales ,
being present at 80.6 %. The predominant bifidobacterial spe-
cies detected were B. longum and B. bifidum at 56.2 and
10.7 %, respectively. Regarding the interindividual variability
in the infant gut microbiota, the statistical analyses performed
revealed a large conservation ofmembers of theActinobacteria
with a high proportion (ranging from 21.7 to 90.6%) belonging
to the Bifidobacteriaceae family. In particular, the B. breve
species was always detected with an average of 5.5 % of total
reads. In contrast, B. adolescentis was detected in a relatively
high average percentage (3.4 %), but it was only present in
about 2% of the subjects. Notably, 3.7 % of the total number of
reads was assigned to uncultured bifidobacterial phylotypes
retrieved from human fecal samples and 0.23 % of
bifidobacterial sequences had not been identified previously.
This study also outlined the power that next generation se-
quencing technology might have in a clear definition of the
infant gut microbiota and in the understanding of the parame-
ters that influence colonization, development, and composition
of the microbiota from an early stage following birth, and to
define its beneficial activities into subsequent life stages.

Bifidobacterium spp. as probiotic strains in newborns
and infants

Bifidobacteria are widely used as probiotics for preventive and
therapeutic purposes in newborns and infants considering their
high abundance in the GIT tract, their capability of colonizing

the gut, and their long history of safe use (Sanders et al. 2010).
The concept of beneficial bacteria was originally proposed in
1906 by Tissier, who promoted the administration of what he
called Bacillus bifidus to infants with diarrhea, basing on the
concept that the beneficial bacteria will replace those respon-
sible for the intestinal disturbance (Kailasapathy 2008). A
large number of studies and application of Bifidobacterium
spp. to newborns and children are present in the literature, but
only in 2002 the Food and Drug Administration has given
to Bifidobacterium lactis the “generally regarded as safe
(GRAS)” status (Hammerman et al. 2006) and authorized its
use in formula milks. The positive effects on the administration
of B. lactis Bb12 on the reestablishment of a balanced com-
position of the gut microbiota were found on preterm, full-
term newborns, and toddlers (Mohan et al. 2006). Other
Bifidobacterium species have successively received theGRAS
status and have entered the list of strains possessing the quality
and presumption of safety (QPS) status by the European Food
Safety Authority. A comparison of the two safety assessment
systems is given in Wassenaar and Klein (2008). Among the
different species belonging to this genus, B. breve appears to
be one of the most used in infants. It has been assessed that the
very early administration (at the first days of life) of a B. breve
strain to low birth weight infants was useful in promoting the
colonization of the bifidobacteria and the formation of a nor-
mal intestinal microbiota (Li et al. 2004).

The administration of probiotics to newborns and infants is
described in this review, starting from the most common
application for the prevention and treatment of acute diarrhea
(Table 2) to most recent approaches. The description of these
innovative applications has been divided into two sections, the
first one focused on newborn pathologies (Table 3) (necrotiz-
ing enterocolitis, infantile colics, and group B streptococcal
neonatal infection) and the second one on infant diseases
(Table 4) (allergy, celiac disease, obesity, neurological and
psychiatric diseases). A number of these pathologies are not
strictly gut dysfunctions, but some of them have in recent
years been correlated to alterations of the gut microbiota, in
particular with a reduced level of bifidobacteria. These dis-
eases represent new potential opportunities for probiotic
application.

Bifidobacterium spp. strains for the treatment
and prevention of acute diarrhea in newborns and infants

One of the best-studied clinical outcomes with the use of
probiotic bacteria is acute diarrheal disease. Infectious gastro-
enteritis is one of the leading causes of morbidity especially in
newborns and children under 5 years of age (Wiegering et al.
2011). Although gastroenteritis-associated mortality is rare in
Western Europe, an increased incidence has been noted in
some national registers over recent years. The most common
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causes of infant gastroenteritis are viruses and bacteria, but
parasite infections are also diffused. Bacterial infections are
more evident in the early months of infancy, whereas from
6 months to 2 years of age, rotavirus is the most common
etiologic agent worldwide, followed by adenovirus and
norovirus (Wiegering et al. 2011). Bacterial and viral gastroen-
teritis present with different clinical features. Rotavirus infec-
tions are known to be more severe and more often associated
with a complicated course. In the last few decades, several
bacteria (e.g., Salmonella spp., Shigella spp. , Campylobacter
spp., C. difficile , Klebsiella pneumoniae , Enterobacter cloa-
cae , E. coli) and parasites (e.g., Cryptosporidium spp.) have
been identified as important causes of diarrhea in humans,
particularly in infants (Amisano et al. 2011). Diarrheagenic E.
coli represents one of the most bacterial causes of pediatric
diarrhea in developing countries. E. coli is usually found in the
commensal intestinal microbiota, but it can become a pathogen
through acquisition of genetic determinants, which may en-
hance adhesiveness and toxicity. C. difficile , K. pneumonia ,
and E. clocae are also commensals but they can cause second-
ary bacteremia in the relatively vulnerable intestinal wall of
young infants especially after mucosal damage due to rotavirus
infection (Lowenthal et al. 2006).

The effect of different probiotic species and strains on the
recovery from acute diarrhea is currently well accepted. The
majority of the studies have included various species of
bifidobacteria (Table 2) and lactobacilli, and, by far, the most
used have been B. animalis subsp. lactis , Lactobacillus
rhamnosus LGG, and Lactobacillus reuteri (Weizman et al.

2005; Indrio and Neu 2011). The largest number of trials
documents the therapeutic use of probiotics as supplements
early in the course of the disease, the most consistent effect
being a reduction in duration of illness. Using a different
approach, other authors have examined a preventive adminis-
tration of probiotics. These studies documented a reduction in
incidence or severity of acute diarrheal disease (Saavedra and
Tschernia 2002). Moreover, several probiotic strains resulted
effective in reducing the risk of antibiotic-associated diarrhea
in newborns and children. A clinical trial, performed with 766
infants, indicated that treatment with a probiotics strain
(LGG), compared with placebo, reduced the risk of diarrhea
from 28.5 to 11.9 % (Szajewska et al. 2006).

A recent study has been focused on the treatment of diar-
rhea caused by rotavirus using bifidobacteria (Muñoz et al.
2011). In particular, in this study a B. longum susp. infantis
strain, isolated from infant feces, was first selected for the
capability of inhibiting in vitro rotavirus replication and its
capability to protect cells from virus infection and then it was
tested for the in vivo treatment on a mouse model. The results
demonstrated the efficacy of this Bifidobacterium strain
against rotavirus infection. Clinical trials in children hospital-
ized for acute rotavirus diarrhea confirmed the efficacy of
Bifidobacterium strains belonging to the longum and
animalis species in combination with other probiotic strains
for the treatment of the disease.Mixtures of probiotics showed
good results in the reduction of duration and the severity of the
disease (Grandy et al. 2010; Vandenplas and DeHert 2011). In
addition, supplementation of bifidobacteria to hospitalized

Table 2 Overview of bifidobacteria applications as probiotics for the treatment of acute diarrhea

Pathology Probiotic microorganism Reported effect(s) References

Acute diarrhea B. animalis subsp. lactis BB-12 Increased immune mechanisms Weizman et al. (2005)

B. animalis subsp. lactis strain Decreased duration of diarrhea Grandy et al. (2010)

B. animalis subsp. lactis plus
B. longum subsp. infantis strains

Decreased duration of diarrhea Vandenplas and De Hert (2011)

B. breve DSM 24706, B. breve DSM 24707,
B. breve DSM 24708, B. longum subsp.
longum DSM 24709

Increased inhibition of diarrhea
pathogens (in vitro study)

Aloisio et al. (2012)

B. breve Yakult Decreased incidence of diarrhea Wada et al. (2010)

Table 3 Overview of current and potential applications of bifidobacteria in newborns

Pathology Probiotic microorganism Reported effect(s) References

Necrotizing enterocolitis (NEC) B. breve M16-V Reduced production of butyric acid Wang et al. (2007)

B. bifidum strain in Infloran product Reduced incidence of NEC and death Lin et al. (2008)

B. breve strain (Yakult preparation) Increased intestinal motility Braga et al. (2011)

Infantile colics B. breve DSMZ24706, B. breve
DSMZ24707, B. breve DSMZ24708,
B. longum DSMZ24709

Antimicrobial activity against gas-forming
coliforms (in vitro study); clinical trial is ongoing

Aloisio et al. (2012)

Group B streptococcal
neonatal infection

No studies available yet
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infants significantly prevented the incidence of diarrhea and
the onset of hospital acquired diseases. As an example, the
beneficial effect of B. breve strain Yakult has been evidenced
in immunocompromised pediatric patients on chemotherapy.
These young patients suffered from infectious complications;
following probiotic administration, the use of antibiotics to
cure infections was lower and the gut habitation of anaerobes
was enhanced (Wada et al. 2010). Several Bifidobacterium
strains, deriving from infant feces and mainly belonging to the
B. breve species, were capable of contrasting the growth of
pathogens causing infectious diarrhea of bacterial origins in
infants, making them potential probiotic candidates for a
formulation aimed at the prevention or the cure of bacterial
diarrhea (Aloisio et al. 2012). Furthermore, a recent study
demonstrated the efficacy of B. longum subsp. infantis
35624 of reducing the effect of villi-associated enzyme caused
by Salmonella infection. The mechanism of the strain could
be linked to the modulation of the immune response of the
host (Symonds et al. 2012).

Bifidobacterium spp. strains for the treatment
and prevention of pathologies in newborns

Necrotizing enterocolitis (NEC)

Despite advances in neonatal care, NEC still remains the
leading cause of morbidity and mortality in neonatal intensive

care units (Hunter et al. 2008). NEC has a multifactorial
etiology leading to inflammation and necrosis of the neonatal
intestine. Gastrointestinal dysfunction can progress to
pneumatosis intestinalis, systemic shock, and rapid death in
severe cases (Neu and Walker 2011). Several epidemiologic
studies have identified multiple factors that increase infant's
risk for the development of NEC, such as prematurity, enteral
feeding, bacterial colonization, or a synergy of these three
factors (Claud and Walker 2001). There is a strong evidence
that the initial bacterial colonization after birth plays a pivotal
role in the development of NEC. Colonization by commensal
bacteria is required for the normal development and matura-
tion of the newborn intestine. Preterm newborns, who are at
increased risk of developing NEC, show a different coloniza-
tion with respect to full-term newborns. In preterm neonates,
facultative anaerobes, such as enterobacteria and enterococci,
some of which are potentially pathogenic bacteria, remain
predominant until the 20th day of life. For this reason, it has
been suggested that a major etiological factor for NEC is the
abnormal microbiota, particularly as NEC usually occurs after
8–9 days postpartum when usually anaerobic bacteria are
colonizing the gut (Mai et al. 2011). It is also true that
premature newborns have an immature and inappropriate
intestinal epithelial immunologic response to luminal bacterial
stimuli (Claud and Walker 2001). Several studies have shown
that formula-fed infants have a higher incidence of NEC than
breastfed infants, and this is due to the fact that breast milk
contains passive immunity factors such as polymeric IgA and

Table 4 Overview of current and potential applications of bifidobacteria in infants

Pathology Probiotic microorganism Reported effect(s) References

Allergies B. animalis subsp. lactis BB-12 Decreased severity of atopic eczema Isolauri et al. (2000)

B. breve BB99 Reduced eczema caused by cow's milk allergy Viljanen et al. (2005)

B. longum BL999 No effect on prevention of eczema Soh et al. (2009)

B. breve BB99 Decreased incidence of IgE-associated allergy Kuitunen et al. (2009)

Celiac disease Bifidobacterium spp. strains Positive effects on inflammatory and allergic
bowel disease (human cell lines)

Young et al. (2004)

B. longum susp. longum, B. breve ,
B. longum subsp. infantis in
VLS#3 product

Decreased toxicity of gluten (murine model
and human cell lines)

De Angelis et al. (2006)

B. animalis subsp. lactis Reduced damage induced by gliadin (human cell lines) Lindfors et al. (2008)

Obesity B. longum strain Decreased serum total cholesterol (murine model) Xiao et al. (2003)

Bifidobacterium spp. strains Increased glucose tolerance and decreased
proinflammatory cytokines (murine model)

Cani et al. (2007)

B. longum susp. longum, B. breve ,
B. longum susp. infantis in
VLS#3 product

Increased hepatic natural killer T-cell (murine model) Ma et al. (2008)

Bifidobacterium spp. strains Reduced serum and liver triglyceride (murine model) Yin et al. (2010)

B. pseudocatenulatum SPM1204,
B. longum SPM1205,
B. longum SPM1207

Reduced serum cholesterol level (murine model) An et al. (2011)

Neurology and psychiatry B. infantis 35624 Increased level of plasma tryptophan (murine model) Desbonnet et al. (2008)

B. longum NCC3001 Decreased infection-induced behavioral changes
(murine model)

Bercik et al. (2011)
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has a bifidogenic effect that enhances intestinal maturation
and provides protection to the newborn (Sisk et al. 2007;
Sullivan et al. 2010).

Many studies have shown the efficacy of probiotics for
prevention and reduction of incidence of NEC although dif-
ferences were observed between the types of microorganisms,
the dosage, and the time of use. Bifidobacterium spp. are
widely used for this purpose (Table 3). Wang et al. (2007)
evidenced that the administration of a B. breve strain to low
birth weight infants reduced the production of butyric acid,
which may be helpful in protecting these infants from NEC.
Several authors have reported systematic reviews of random-
ized and controlled trials of probiotic supplementation in
preterm infants (Deshpande et al. 2007; Barclay et al. 2007;
Stockman 2009; Deshpande et al. 2010). The results of clin-
ical trials reported that the incidence of NEC was reduced in
neonates receiving probiotic supplementation compared with
control groups. The action attributed to probiotics is species
specific (Verdu 2009). Administration of B. bifidum , B. breve ,
and B. animalis susp. lactis strains in preterms and low birth
weight infants showed evident clinical benefits for the treat-
ment of NEC (Lin et al. 2008; Khailova et al. 2009; Braga
et al. 2011; Underwood et al. 2012). The principal effects that
can explain the efficacy of bifidobacteria are resistance to
colonization of potential pathogenic microorganism,
immunomodulation, nutritional contribution, and improved
intestinal motility. Treatment with B. breve associated with
L. casei in 231 preterm infants has underlined a positive
correlation between improved intestinal motility and NEC
(Braga et al. 2011). Khailova et al. (2009) and Underwood
et al. (2012) investigated the effect of a B. bifidum OLB6378
strain on a rat model and an intestinal epithelial cell line (IEC-
6). Administration of B. bifidum OLB6378 increased expres-
sion of some genes involved in mechanisms of protection
against mucosal infection such as antimicrobial peptides and
apoptosis regulation. Because of the complexity of the patho-
genesis of NEC, the administration of differentBifidobacterium
strains may benefit by different actions on the host, and there-
fore, multistrain probiotic preparations are likely more effective
than single-strain ones (Deshpande et al. 2011).

Infantile colics

A new aspect of the application of bifidobacteria and
probiotics in general is the treatment of gas colics in new-
borns. Infantile colics are a common condition in the first
months of life, and about 10–30 % of infants are affected by
this disorder. Infants affected by colics suffer from paroxysms
of excessive, inconsolable crying, frequently accompanied by
flushing of the face, meteorism, drawing-up of the legs, and
passing of gas. Although infantile colic is a common distur-
bance, the etiology remains obscure; however, evidences sug-
gest multiple independent causes.

An abnormal intestinal microbiota has been proposed to
affect gut function and gas production that lead to colicky
behavior. Gas-forming coliforms were in fact found to be
more abundant in colicky newborns with respect to
noncolicky ones (Savino et al. 2009). A comparison between
the microbiota of colicky and noncolicky newborns per-
formed using a phylogenetic microarray has pointed out the
presence of peculiar microbial signatures, in particular high
abundance of proteobacteria including gas-forming bacteria
and low abundance of Bacteroidetes and Firmicutes, in the
first week of life in neonates who develop colics. These
microbial signatures may be used for early diagnostics as well
as for developing specific therapies (de Weerth et al. 2013).

Regarding possible therapies, the study of Savino et al.
(2007) examined, for the first time, the modulation of intesti-
nal microbiota of colicky infants by administering a probiotic
strain. A cohort of 90 breastfed colicky infants was randomly
assigned to treatment with a strain of Lactobacillus reuteri
(ATCC 55730) and simethicone. This study evidenced that
infants treated with L. reuteri had a significant reduction in
crying compared to infants treated with simethicone. The
positive effect of probiotic administration on the reduction of
gas colic symptoms and on the modulation of intestinal mi-
crobiota was confirmed in a successive trial with the strain L.
reuteri DSM 17938 (Savino et al. 2010). These studies have
given a new input on the use of probiotics for the treatment of
colics and have stimulated the research of new probiotic
strains (Savino et al. 2011; Aloisio et al. 2012). Recently, a
selection of Bifidobacterium strains to be used on newborns
for the treatment of enteric disorders with a special attention
on colics was carried out (Aloisio et al. 2012). The strains
were selected for their capability of inhibiting the growth of
pathogens typical of the newborn GIT, including gas-forming
coliforms. Finally, the large array of aspects examined in this
study, including safety properties according to the EFSA
guidelines, has allowed the identification of three B. breve
strains and one B. longum subsp. longum strain as potential
probiotics for the treatment of infantile colics in newborn
(Table 3). A clinical trial aimed at the in vivo validation of
the effect against colics of some of the selected strains has just
started but results are not available yet (authors' personal
communication).

Group B streptococcal neonatal infection

Early-onset bacterial sepsis remains one of the major causes of
neonatal morbidity and mortality although the sepsis-
associated death rates have declined significantly in the last
decade (2001–2011) (Ferrieri and Wallen 2012). The reason
of the reduction of mortality is due to the introduction of an
intrapartum antibiotic prophylaxis, during labor and delivery,
in group B Streptococcus (GBS)-positive pregnant women
(Puopolo et al. 2005). The leading cause of onset infection of
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fetus and newborn is GBS. This gram-positive bacterium,
resides in the cervix, vagina, or rectum, can reach the amniotic
through intact or rupted membranes and lead to infection.
Identification of maternal colonization by GBS during preg-
nancy is very important for taking preventive measures, such
as antibiotic prophylaxis, against neonatal disease. GBS can
cause two types of infections in newborns, the early-onset and
late-onset infections. They are very different: in the first case,
it manifests with respiratory disturbance and apneic episodes,
while in the second case with fever and poor feeding.Whereas
the introduction of antibiotic maternal prophylaxis has signif-
icantly decreased the incidence of GBS for the early-onset
disease, there is no evidence that chemoprophylaxis prevents
late-onset disease. Moreover, there are only a few information
in the literature about the effect that the antibiotic treatment
may have on the early colonization of bacteria in the newborn
gut (Corvaglia et al. 2012), which is known to be highly
influenced by the microorganisms that are derived from the
mother (Table 1). The possibility of using probiotics as anti-
streptococcal agents in pregnant woman represents a possible
way of reducing GBS infections in newborns without any
alteration of the gut microbiota (Table 3). In our laboratory,
studies are currently been performed aimed at the evaluation
of the antimicrobial activity against Streptococcus agalactiae
of several Bifidobacterium strains which can have a positive
effect both on the mother and on the newborn (unpublished
results).

Bifidobacterium spp. strains for the treatment
and prevention of pathologies in infants

Allergies

Industrialized countries successfully controlled infectious
diseases during the second half of the last century, by
improving sanitation and using antibiotics and vaccines.
Therefore, the incidence of infectious disease deriving from
poor hygienic conditions is declining (EFSA 2013). At the
same time, the incidence of allergic disorders such as atopic
dermatitis, rhinitis, and asthma has increased strikingly in
developed countries. One of the most reliable hypotheses of
this increase is a relative lack of microbial stimulation and a
failure of immunoregulation due to low exposure of the
infantile gut immune system to harmless microorganisms
associated with the environment (Cabana et al. 2007). This
hypothesis is supported by the clear evidence that immuno-
regulation is faulty in individuals suffering from allergies
(Isolauri 2004). Furthermore, epidemiological data have
shown that atopic children have a different intestinal micro-
biota from that of healthy children, with higher levels of
clostridia and lower levels of bifidobacteria. In addition to
the lower number of bifidobacteria, infants suffering from

atopic disease harbor a peculiar pattern of bifidobacteria
comprising adult-like strains, such as B. adolescentis , as
compared to healthy infants with a typical infant pattern
(Ouwehand et al. 2001). Considering that the adult-like
microbiota resembles that of formula-fed infants, it has been
suggested that the bifidogenic factors present in breast milk
favor the development of infant-type microbiota which may
in turn protect from the development of atopic disease. The
Bifidobacterium species of allergic infants also have a re-
duced adhesion to human intestinal mucus, a phenomenon
which is likely to alter host–microbe interactions during the
first months of life (Ouwehand et al. 2001). In addition,
Bifidobacterium spp. from allergic infants induce less IL-
10 and more proinflammatory cytokine production than
those from non-allergic ones (Boyle and Tang 2006). Other
studies have also shown that early colonization with patho-
genic bacteria is more likely to occur in children who go on
to develop allergy; in contrast, lactobacilli and bifidobacteria
are found more commonly in the composition of the gut
microbiota of non-allergic children and this seems to corre-
late with protection against atopy (Kalliomaki et al. 2001;
Özdemir 2009).

Therefore, the possibility of using probiotics to prevent the
development of allergic disease is a feasible option: beyond
the probiotic approach is the evidence that the immuno-
physiological regulation in the gut depends on the establish-
ment of a healthy gut microbiota (Isolauri and Salminen
2008). Several studies suggest that certain probiotic strains
exhibit powerful anti-inflammatory capabilities. Specific
probiotics, most of them belonging to the Lactobacillus or
Bifidobacterium genera, aid in the regulation of the secretion
of inflammatory mediators and in the development of the
immune system during the critical period of life when these
functions are immature and the risk of allergic disease is
increased (Isolauri and Salminen 2008).

A number of studies regard bifidobacteria administration to
prevent allergic diseases (Table 4), although the majority of
works is focused on lactobacilli administration (Özdemir
2010). A probiotic mixture, containing B. breve Bb99 strain
in addition to lactobacilli and propionibacteria, was adminis-
tered to mothers during the last month of pregnancy and their
infants received it from birth until age 6months. The treatment
resulted in a decreased incidence of IgE-associated allergy,
such as atopic diseases, in cesarean-delivered children until
the age of 5, with respect to the administration of a placebo
(Kuitunen et al. 2009). The same probiotic mixture was also
found to be effective in the treatment of eczema in infants with
proven cow's milk allergy (Viljanen et al. 2005). The oral
therapy with the probiotic preparation VLS#3 (VSL Pharma-
ceuticals, Gaithesburg, MD), a mixture of lactic acid bacteria
and bifidobacteria, could reduce anaphylactic symptoms in a
murine model of allergic sensitization, although no clinical
trial has been performed on humans yet (Di Felice et al. 2008).
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Conversely, commercially available cow's milk formula sup-
plemented with B. longum BL999 and L. rhamnosus LPR
administered in the first 6 months of life to Asian infants at
risk of allergic disease showed no effect on prevention of
eczema or allergen sensitization in the first year of life (Soh
et al. 2009). The intake of B. longum BB536 administered for
13 weeks during the pollen season was found to relieve
allergic rhinitis symptoms in adults, but no studies are avail-
able on bifidobacteria administration to children (Xiao et al.
2006). The administration of B. lactis BB12 applied to a
neonatal murine model of asthma was found to suppress all
aspects of the asthmatic phenotype (Feleszko et al. 2007), but,
also in this case, a clinical trial on humans has not been
performed yet. However, in a different study, the same strain
added as a supplement to hydrolyzedwhey formula was found
to significantly reduce the severity of atopic eczema in infants
after a 2-month treatment (Isolauri et al. 2000).

Other studies have been focused on the effects of
probiotics in the treatment of food allergy, but conclusive
effects have not been evidenced yet (Boyle and Tang 2006).
Some preliminary positive results have been obtained with
LGG supplementation, but no experimentation is available
on bifidobacteria.

Celiac disease

Celiac disease (CD) is an autoimmune enteropathy of the
small intestinal mucosa induced by the ingestion of wheat
gluten, or other similar proteins found in barley and rye, in
genetically predisposed individuals (Green and Cellier 2007).
CD is characterized by two types of immune response to
gluten-derived peptides: an adaptive immune response Th1-
dependent, within the intestinal mucosa, and an innate im-
mune response. Both responses lead to the release of proin-
flammatory cytokines like IFN-γ and IL-15 (Londei et al.
2005) and result in a consequent inflammation and intestinal
tissue remodeling (Meresse et al. 2009).

CD is one of the most common chronic diseases in Europe
and USA with a prevalence of about 1–3 % (Mulder and
Bartelsman 2005). These percentages are comparable to the
prevalence found in a UK pediatric study (Bingley et al.
2004). CD can occur at any age with different clinical forms;
however, its classic form usually manifests in early childhood
(up to 24 months), after gluten introduction in the diet (Van
Heel and West 2006). The classic form of CD is characterized
by small bowel mucosal atrophy and malabsorption, and the
symptoms include abdominal distention, loss of weight, and
chronic diarrhea (Fasano and Catassi 2005). The etiology of
CD is complex and regards both genetic and environmental
factors (Akobeng et al. 2006; Dubois and Van Heel 2008). As
evidenced in several studies, the ingestion of gluten represents
a major environmental factor in CD development, but there
are also other important factors that play a role in disease risk,

such as the type of milk-feeding, the administration of antibi-
otic, and in particular, the gut microbial composition (Collado
et al. 2007). Dietary factors in early childhood play an impor-
tant role, especially because they influence gut bacterial col-
onization and its physiological development together with the
maturation of the immune system (Palma et al. 2012).
Breastfeeding may offer protection against the development
of CD (Ivarsson et al. 2002; Akobeng et al. 2006).

As already evidenced, breastfeeding plays an important
contribution in shaping the intestinal microbiota (Bezirtzoglou
et al. 2011). Several works have shown that the gut microbiota
is implicated in immunorelated disorders and that specific
probiotic strains, belonging to the genera Lactobacillus and
Bifidobacterium , are able to reduce inflammatory diseases such
as allergy and inflammatory bowel disease and normalize gut
mucosal dysfunction (Sartor 2004; Gueimonde et al. 2007).
Palma et al. (2012) have evaluated the gut microbial coloniza-
tion during the first 4 months of life in breastfed and formula-
fed healthy full-term infants with predisposing genes on CD
risk. The authors have demonstrated that the milk-feeding type
and the HLA-DQ genes (the major genetic risk factor for CD)
influence the gut bacterial colonization. In particular, high
levels of the B. fragilis group were always found in infants
with a genetic CD risk and simultaneously formula-fed but not
in those breastfed. In contrast, the reduction of Bifidobacterium
spp. and in particular B. longum counts was associated with an
increased CD risk. As reported above, breastfeeding is adept at
promoting the colonization of Bifidobacterium spp. and then at
reducing the microbial gap linked to the HLA-DQ genotype
(Palma et al. 2012).

A lower number of gut microbial species has been shown in
healthy children than in celiac children by DGGE analyses
(Sanz et al. 2007). Conversely, the diversity ofBifidobacterium
species was significantly higher in healthy children than in
celiacs. Other studies have been focused on the characterization
of the fecal microbiota composition of celiac children by fluo-
rescent in situ hybridization (FISH) and real-time PCR
(Collado et al. 2007, 2008). These studies underlined high
levels of Bacteroides spp., Clostridium spp., and sulfate-
reducing bacteria in celiac children and higher Bifidobacterium
levels in controls with respect to celiac children. According to
final evidences, the higher levels of B. longum are associated
with healthy children, and therefore, this species could exert a
protective effect in celiac early childhood (Collado et al. 2008).
Nadal et al. (2007) have also found high levels of gram-
negative bacteria belonging to the E. coli group and proinflam-
matory species belonging to the Bacteroides group in celiac
children with active disease.

The immunomodulatory properties of different Bifido-
bacterium species and strains have been reported (Young
et al. 2004); furthermore, it has been shown that the adminis-
tration of probiotics (e.g., bifidobacteria, Table 4) has positive
effects on inflammatory and allergic bowel diseases (Dotan
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and Rachmilewitz 2005). These results coupled to the micro-
biota analyses on children suffering from CD reported above
open the possibility of using certain Bifidobacterium strains as
adjuvant for therapeutic use for CD in children. De Angelis
et al. (2006) have shown the capacity of the already mentioned
probiotic preparation VLS#3 of decreasing the toxicity of
gluten during food processing (De Angelis et al. 2006). Fur-
thermore, VLS#3 has been shown to colonize the intestine and
increase epithelial barrier function in the host (Kaur et al.
2002), and therefore, the mentioned probiotics mixture has
the potential for being used to modify and improve gliadin
degradation in the gastrointestinal tract after ingestion. This
approach has been adopted by Lindfors et al. (2008) who
showed, in vitro, that live B. lactis is able to inhibit and at
least partially counter the damage induced by gliadin admin-
istration in intestinal epithelial cell lines (Caco-2 and T84).
However, in vivo studies on bifidobacteria administration in
celiac children are needed in order to better outline the benefits
of this microbial group as adjuvant in the CD therapy in
childhood.

Obesity

Obesity, a condition in which an abnormally large amount of
fat is stored in the adipose tissue, resulting in an increase in
body weight, is one of the major public health problems in
developed countries. Although it is accepted that obesity
results from disequilibrium between energy intake and expen-
diture, it is a complex disease and not completely understood
since it involves both genetic and environmental factors.
Some authors consider obesity as a transmissible disease
because maternal obesity predisposes children to adulthood
obesity (Lawlor et al. 2007). Nowadays, obesity prevalence is
increasing especially among children and adolescents and it
can be considered a worldwide epidemic. Recently, obesity
has been associated with a specific profile of the bacterial gut
microbiota; in particular, studies have focused not only on
individual bacterial species but on the contribution of the
whole microbial communities (Tennyson and Friedman
2008). However, controversial data make it clear that the
connection between the microbiota composition and excess
weight is very complex.

In recent experimental studies, significant associations
were found between obesity and the increase of some bacterial
groups such as Lactobacillus spp., Staphylococcus aureus ,
and E. coli . On the other hand, other microbial groups, such as
bifidobacteria, have been associated with lean status (Million
et al. 2012). Members of the genus Bifidobacterium were
shown to be higher in number in children who remained
normal weight at 7 years old than in children developing
overweight (Kalliomaki et al. 2008), allowing the authors to
conclude that an aberrant compositional development of the
gut microbiota precedes overweight and this may offer new

possibilities for preventive and therapeutic applications of
bifidobacteria in weight management. Furthermore, other
studies reported a decrease of total bifidobacteria in feces of
obese patients (Schwiertz et al. 2010; Collado et al. 2008). A
recent study analyzed the fecal concentration of principal
intestinal microbial groups in obese, overweight, lean, and
anorexic subjects. A positive correlation was found between
certain Lactobacillus species, in particular L. reuteri , and
obesity. On the contrary, B. animalis has been associated with
a lower body mass index (Million et al. 2013). Several meta-
analyses, in the past years, have shown that breastfeeding is
associated with a reduced likelihood of overweight or obesity
in childhood and that the duration of breastfeeding is inversely
associated with the risk of overweight (Owen et al. 2005;
Harder et al. 2005). Several results mainly performed on
animal models suggested that some strains of bifidobacteria
can have an action on lipid metabolism and may be potential
therapeutic candidates for management of obesity. An early
study (Xiao et al. 2003) showed that a strain of B. longum
exhibited a significant effect in lowering serum total choles-
terol (Table 4) both in rats and humans and that this effect was
greater when a mixture of Streptococcus thermophilus and
Lactobacillus delbrueckii subsp. bulgaricus was used. An-
other study evidenced that Bifidobacterium spp. are signifi-
cantly and positively correlated with improved glucose toler-
ance, glucose-induced insulin secretion, and decreased plasma
and adipose tissue proinflammatory cytokines in probiotic-
treated mice (Cani et al. 2007). Finally, VLS#3, a mixture of
bifidobacteria and lactobacilli already used to reduce symp-
toms of CD and of allergic disease, was found to improve diet-
induced obesity and its related hepatic steatosis and insulin
resistance by increasing hepatic natural killer T cells and
reducing inflammatory signaling in mice (Ma et al. 2008). A
supplement containing B. pseudocatenulatum SPM 1204, B.
longum SPM 1205, and B. longum SPM 1207, possessing
immune-modulatory properties and hypocholesteremia ef-
fects, was administered to high fat diet-induced obese rats
(An et al. 2011). The administration reduced body and fat
weights, fat serum levels, and harmful enzyme activities such
as β-glucuronidase and tryptophanase.

The explanations for the ability of the gut microorganisms
to affect obesity development include an improvement of the
energy harvest from the diet, influence on lipase activity, a
decrease of lipopolysaccharide (LPS) inflammation that is
related to fat-induced system, and the control on endotoxemia
and insulin resistance (Blaut and Bischoff 2010). Cani et al.
(2009) have obtained the capability ofBifidobacterium spp. to
improve the gut barrier and its correlation with the lower
plasma LPS level and inflammatory tone. The authors have
explained that the association of probiotics and prebiotic is
significantly correlated with a strong decrease in markers of
oxidative and inflammatory stress in liver tissue with final
beneficial consequences on associated metabolic disorders.
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Yin et al. (2010) have evaluated the response of glucose and
lipid metabolism to the administration of several Bifido-
bacterium strains. They found that the administration of
bifidobacteria were able to reduce serum and liver triglyceride
levels and decrease hepatic adiposity. The response was found
to be strain dependent. Therefore, the correlation between
decreased proportions of bifidobacteria and an increased risk
of symptoms of metabolic syndrome and overweight status
seems to be an achieved result. However, oral administration
of exogenous bifidobacteria against this pathologic status
needs to be further investigated.

Neurological and psychiatric diseases

The brain and the gut are in constant bidirectional communi-
cation through neural pathways and immune and endocrine
mechanisms. This is what has been defined as “the gut–brain
axis” (Rhee et al. 2009). The GIT is a point of interaction
between microorganisms, immune cells, and the neuronal
network. In this respect, beneficial microbes such as
lactobacilli and bifidobacteria seem to be particularly sensitive
to signals from the central nervous system, taking into con-
sideration that stressful conditions, including emotional stress,
are very often accompanied by a decrease of these organisms
in the GIT. These microbial alterations may be a result of
changes in gut motility, increased acidity, and/or direct effects
of neurochemicals. Not only microorganisms respond to the
neuroendocrine environment, but also bacteria themselves can
influence the endocrine system by the production of several
biologically active peptide, nitric oxide, melatonin, gamma-
aminobutyric acid, and serotonin (Collins and Bercik 2009).
Moreover, a link between the functionality of the immune
system and mood disorders has been established: properly
functioning adaptive immunity is important in the mainte-
nance of mental activity and in coping with conditions leading
to cognitive deficits (Forsythe et al. 2010).

The immunomodulatory action of probiotics through the
production of specific cytokines are well documented, and
given the potentially important role of cytokines in mood
disorders, probiotics are likely to influence brain functions
by their effects on the immune system (Cryan and O'Mahony
2011). A decrease in the desirable GIT bacteria will lead to
deterioration in gastrointestinal, neuroendocrine, and immune
relationships and, ultimately, disease. Therefore, studies fo-
cusing on the impact of enteric microbiota on the central
nervous system are essential to the understanding of the
influence of this system.

One approach that is being utilized to study the microbiota–
gut–brain axis is the use of germ-free mice, which offer the
possibility to study the impact of the complete absence of a
gastrointestinal microbiota on behavior. Researches performed
with acute stressed germ-free mice, showing hyperactivity of
the body major stress response system (the hypothalamic–

pituitary–adrenal axis), have evidenced that the stress response
was normalized by administration to mice of a B. infantis strain
(Sudo et al. 2004). Bercik et al. (2011) have shown that
infection-induced behavioral changes in mice could be re-
versed by B. longum NCC3001 strain administration. B.
infantis 35624 strain has been shown in Sprague–Dawley rats
to induce an increase of levels of plasma tryptophan, a precur-
sor of serotonin which is a key neurotransmitter within the gut–
brain axis possessing antidepressant properties (Desbonnet
et al. 2008) (Table 4). Since tryptophan concentrations in the
central nervous system are largely dependent on peripheral
availability and the enzymatic machinery responsible for the
production of serotonin is not saturated at normal tryptophan
concentrations (Ruddick et al. 2006), the implication is that the
microbiota might play some role in the regulation of the central
and as enteric nervous system serotonin synthesis. This effect is
potentially mediated by the influence of the microbiota on the
expression of indoleamine-2,3-dioxygenase, a key enzyme in
the physiologically dominant pathway of tryptophan degrada-
tion (Forsythe et al. 2010), but of course multiple mechanisms
are possible and indeed likely, considering the strain-specific
effects that have been observed in many probiotic studies to
date.

The research in the neurology and psychiatry sector has
scarcely reached the point of intervention studies targeted to
humans and, in particular, to infants. One of the few interven-
tion studies performed has assessed the effect of a combina-
tion of Lactobacillus helveticus R0052 strain and B. longum
R0175 strain on both human subjects and rats showing that
these probiotics reduced anxiety in animals and had beneficial
psychological effects with a decrease in serum cortisol in
patients (Messaoudi et al. 2010). The aim for future research
in this field is to definitely clarify the effects of the gut
microbiota on several brain-related functions in order to iden-
tify the microbial species that are critical for the development
of a healthy phenotype and those that may have negative
impacts on behavior, mood, and emotion in humans. This will
pose the basis for targeted probiotic intervention trials.

Future perspectives

This review has outlined that the composition of the gut
microbiota is strictly linked to a health status of the host. In
this respect, bifidobacteria play a pivotal role considering that
several pathologies, and not only enteric diseases, show a
reduced level of this microbial group and, in addition, a
reduced biodiversity of the species present. This is particularly
true for newborn and children, who possess an unstable gut
microbial composition which is more susceptible to variations
caused by external factors. Due to these considerations, the
use of bifidobacteria as probiotic for preventive or therapeutic
agents is an established fact for some enteric diseases such as
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acute diarrhea and NEC, but it can be feasible for several
diseases which are not apparently linked to the GIT microbi-
ota composition, such as obesity and neurologic diseases.
Unfortunately, most of the experimental evidences for these
diseases regard in vitro studies, cell line experiments and, in
some cases, animal experimental model researches. When
these preliminary results are consolidated, clinical interven-
tion trials using bifidobacteria strains possessing the GRAS
and the QPS status can be planned to achieve definitive results
on humans.

References

Akobeng AK, Ramanan AV, Buchan I, Heller RF (2006) Effect of breast
feeding on risk of coeliac disease: a systematic review and meta-
analysis of observational studies. Arch Dis Child 91:39–43

Aloisio I, Santini C, Biavati B, Dinelli G, Cencič A, Chingwaru W,
Mogna L, Di Gioia D (2012) Characterization of Bifidobacterium
spp. strains for the treatment of enteric disorders in newborns. Appl
Microbiol Biotechnol 96:1561–1576

AmisanoG, Fornasero S, Migliaretti G, Caramello S, Tarasco V, Savino F
(2011) Diarrheagenic Escherichia coli in acute gastroenteritis in
infants in North-West Italy. New Microbiol 34:45–51

An HM, Park SY, Lee do K, Kim JR, Cha MK, Lee SW, Lim HT, Kim
KJ, Ha NJ (2011) Antiobesity and lipid-lowering effects of
Bifidobacterium spp. in high fat diet-induced obese rats. Lipids
Health Dis 10:116

Arboleya S, Ruas-Madiedo P, Margolles A, Solís G, Salminen S, de Los
Reyes-Gavilán CG, Gueimonde M (2011) Characterization and
in vitro properties of potentially probiotic Bifidobacterium strains
isolated from breast-milk. Int J Food Microbiol 149:28–36

Bäckhed F, Ding H,Wang T, Hooper LV, KohGY, NagyA, Semenkovich
CF, Gordon JI (2004) The gut microbiota as an environmental factor
that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–
15723

Barclay AR, Stenson B, Simpson JH, Weaver LT, Wilson DC (2007)
Probiotics for necrotizing enterocolitis: a systematic review. J
Pediatr Gastroenterol Nutr 45:569–576

Barrett E, Guinane C, Ryan A, Dempsey E, Murphy B, O’Toole P,
Fizgerarld G, Cotter P, Ross P, Stanton C (2013) Microbiota diver-
sity and stability of the preterm neonatal ileum and colon of two
infants. MicrobiolOpen 2:215–225

Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y,
Blennerhassett P, Fahnestock M, Moine D, Berger B, Huizinga J,
Kunze W, Mclean P, Bergonzelli G, Collins S, Verdu E (2011) The
anxiolytic effect of Bifidobacterium longum NCC3001 involves
vagal pathways for gut–brain communication. Neurogastroenterol
Motil 23:1132–1139

Bezirtzoglou E, Tsiotsias A, Welling GW (2011) Microbiota profile in
feces of breast- and formula-fed newborns by using fluorescence in
situ hybridization (FISH). Anaerobe 17:478–482

Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C (2010)
Mode of delivery affects the bacterial community in the newborn
gut. Early Hum Dev 86:13–15

Biavati B, Castagnoli P, Crociani F, Trovatelli LD (1984) Species of the
Bifidobacterium in the feces of infants. Microbiologica 7:341–345

Biavati B, Vescovo M, Torriani S, Bottazzi V (2000) Bifidobacteria:
history, ecology, physiology and applications. Ann Microbiol 50:
117–131

Bingley PJ, Williams AJ, Norcross AJ, Unsworth DJ, Lock RJ, Ness
AR, Jones RW (2004) Undiagnosed coeliac disease at age
seven: population based prospective birth cohort study. BMJ
328:322–323

Blaut M, Bischoff SC (2010) Probiotics and obesity. Ann Nutr Metab 57:
20–23

Boyle RJ, Tang ML (2006) The role of probiotics in the management of
allergic diseases. Clin Exp Allergy 36:568–576

Braga TD, da Silva GA, de Lira PI, de Carvalho Lima M (2011) Efficacy
of Bifidobacterium breve and Lactobacillus casei oral supplemen-
tation on necrotizing enterocolitis in very-low-birth-weight preterm
infants: a double-blind, randomized, controlled trial. Am J Clin Nutr
93:81–86

Cabana MD, McKean M, Wong AR, Chao C, Caughey AB (2007)
Examining the hygiene hypothesis: the trial of infant probiotic
supplementation. Paediatr Perinat Epidemiol 21:23–28

Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM,
Gibson GR, Delzenne NM (2007) Selective increases of
bifidobacteria in gut microflora improves high-fat diet induced
diabetes in mice through a mechanism associated with endotoxemia.
Diabetologia 50:2374–2383

Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O,
Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG,
Delzenne NM (2009) Changes in gut microbiota control inflamma-
tion in obese mice through a mechanism involving GLP-2 driven
improvement of gut permeability. Gut 58:1091–1103

Claud EC, Walker WA (2001) Hypothesis: inappropriate colonization of
the premature intestine can cause neonatal necrotizing enterocolitis.
FASEB J 15:1398–1403

Collado MC, Calabuig M, Sanz Y (2007) Differences between the faecal
microbiota of coeliac children and healthy controls. Curr Issues
Intest Microbiol 8:9–14

Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y
(2008) Imbalances in faecal and duodenal Bifidobacterium spe-
cies composition in active and non-active celiac disease. BMC
Microbiol 8:232

Collins SM, Bercik P (2009) The relationship between intestinal micro-
biota and the central nervous system in normal gastrointestinal
function and disease. Gastroenterology 136:2003–2014

Coppa G, Gabrielli O (2008) Human milk oligosaccharides as pre-
biotics. In: Versalovic J, Wilson M (eds) Therapeutic microbio-
logy: probiotics and related strategies. American Society for
Microbiology Press, Washington, pp 131–146

Corvaglia L, Legnani E, Di Gioia D, Aloisio I, Martini S, Oss M, Biavati
B, Faldella G (2012) Effects of intrapartum antibiotic prophylaxis on
newborn microbiota. Arch Dis Child 97:A380. doi:10.1136/
archdischild-2012-302724.1334, Abstract at the 4th Congress of
the European Academy of Paediatric Societies (EAPS). Istanbul,
Turkey, 5–9 October 2012

Cryan JF, O'Mahony SM (2011) The microbiome–gut–brain axis: from
bowel to behavior. Neurogastroenterol Motil 23:187–192

De Angelis M, Rizzello CG, Fasano A, Clemente MG, De Simone C,
Silano M, De Vincenzi M, Losito I, Gobbetti M (2006) Vsl#3
probiotic preparation has the capacity to hydrolyze gliadin polypep-
tides responsible for Celiac Sprue. Biochim Biophys Acta 1762:80–
93

deWeerth C, Fuentes S, Puylaert P, deVosM (2013) Intestinal microbiota
of infants with colic: development and specific signatures. Pediatrics
131:e550–e558

Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan T (2008) The
probiotic Bifidobacterium infantis : an assessment of potential anti-
depressant properties in the rat. J Psychiatr Res 43:164–174

Deshpande G, Rao S, Patole S (2007) Probiotics for prevention of
necrotizing enterocolitis in preterm neonates with very low
birthweight: a systematic review of randomized controlled trials.
Lancet 369:1614–1620

574 Appl Microbiol Biotechnol (2014) 98:563–577

83



Deshpande G, Rao S, Patole S, Bulsara M (2010) Updated meta-analysis
of probiotics for preventing necrotizing enterocolitis in preterm
neonates. Pediatrics 125:921–930

Deshpande GC, Rao SC, Keil AD, Patole SK (2011) Evidence-based
guidelines for use of probiotics in preterm neonates. BMCMed 9:92

Di Felice G, Barletta B, Butteroni C, Corinti S, Tinghino R, Colombo P,
Boirivant M (2008) Use of probiotic bacteria for prevention and
therapy of allergic diseases: studies in mouse model of allergic
sensitization. J Clin Gastroenterol 42:130–132

Dotan I, Rachmilewitz D (2005) Probiotics in inflammatory bowel dis-
ease: possible mechanisms of action. Curr Opin Gastroenterol 21:
426–430

Dubois PC, van Heel DA (2008) Translational mini-review series on the
immunogenetics of gut disease: immunogenetics of coeliac disease.
Clin Exp Immunol 153:162–173

EFSA (2013) The European Union summary report on trends and sources
of zoonoses, zoonotic agents and food-borne outbreaks in 2011.
EFSA J 11:3129, 250 pp

Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, Aguilera M,
Khanna S, Gil A, Edwards CA, Doré J, INFABIO team (2010)
Intestinal microbiota of 6-week-old infants across Europe: geo-
graphic influence beyond delivery mode, breast-feeding, and anti-
biotics. J Pediatr Gastroenterol Nutr 51:77–84

Fallani M, Amarri S, Uusijarvi A, Adam R, Khanna S, Aguilera M, Gil A,
Vieites JM, Norin E, Young D, Scott JA, Doré J, Edwards CA,
INFABIO team (2011) Determinants of the human infant intestinal
microbiota after the introduction of first complementary foods in infant
samples from five European centres. Microbiology 157:1385–1392

Fasano A, Catassi C (2005) Coeliac disease in children. Best Pract Res
Clin Gastroenterol 19:467–478

Favier CF, Vaughan EE, De Vos WM, Akkermans AD (2002) Molecular
monitoring of succession of bacterial communities in human neo-
nates. Appl Environ Microbiol 68:219–226

FeleszkoW, Jaworska J, Rha RD, Steinhausen S, Avagyan A, Jandzus A,
Ahreus B, Gronenberg DA, Wahn V, Hamelmann E (2007)
Probiotic-induced suppression of allergic sensitization and airway
inflammation is associated with an increase of T regulatory-
dependent mechanisms in a murine model of asthma. Clin Exp
Allergy 37:498–505

Ferrieri P, Wallen L (2012) Neonatal bacterial sepsis. In: Gleason CA,
Devaskar SU (eds) Avery's disease of the newborn. Elsevier,
Amsterdam, pp 538–550

Forsythe P, Sudo N, Dinan T, Taylor V, Bienenstock J (2010) Mood and
gut feelings. Brain Behav Immun 24:9–16

Grandy G, Medina M, Soria R, Terán CG, Araya M (2010) Probiotics in
the treatment of acute rotavirus diarrhoea. A randomized, double-
blind, controlled trial using two different probiotic preparations in
Bolivian children. BMC Infect Dis 10:253

Green PH, Cellier C (2007) Celiac disease. N Engl JMed 357:1731–1743
Gueimonde M, Ouwehand A, Huhtinen H, Salminen E, Salminen S

(2007) Qualitative and quantitative analyses of the bifidobacterial
microbiota in the colonic mucosa of patients with colorectal cancer,
diverticulitis and inflammatory bowel disease. World J Gastroenterol
13:3985–3989

Hammerman C, Bin-Nun A, Kaplan M (2006) Safety of probiotics:
comparison of two popular strains. BMJ 333:1006–1008

Hansen CH, Nielsen DS, Kverka M, Zakostelska Z, Klimesova K,
Hudcovic T, Tlaskalova-Hogenova H, Hansen AK (2012) Patterns
of early gut colonization shape future immune responses of the host.
PLoS One 7:e34043

Harder T, Bergmann R, Kallischnigg G, Plagemann A (2005) Duration of
breastfeeding and risk of overweight: a meta-analysis. Am J
Epidemiol 162:397–403

Hunter CJ, Upperman JS, Ford HR, Camerini V (2008) Understanding
the susceptibility of the premature infant to necrotizing enterocolitis
(NEC). Pediatr Res 63:117–123

Indrio F, Neu J (2011) The intestinal microbiome of infants and the use of
probiotics. Curr Opin Pediatr 23:145–150

Isolauri E (2004) Dietary modification of atopic disease: use of probiotics
in the prevention ofatopic dermatitis. Curr Allergy Asthma Rep 4:
270–275

Isolauri E, Salminen S (2008) Probiotics: use in allergic disorders: a
Nutrition, Allergy, Mucosal Immunology, and Intestinal
Microbiota (NAMI) Research Group Report. J Clin Gastroenterol
42:S91–S96

Isolauri E, Arvola T, Sutas Y, Moilanen E, Salminen S (2000) Probiotics
in the management of atopic eczema. Clin Exp Allergy 30:1604–
1610

Ivarsson A, Hernell O, Stenlund H, Persson LA (2002) Breast-feeding
protects against celiac disease. Am J Clin Nutr 75:914–921

Kailasapathy (2008) Formulation, administration, and delivery of
probiotics. In: Versalovic J, Wilson M (eds) Therapeutic microbiol-
ogy: probiotics and related strategies. American Society for
Microbiology, Washington, pp 97–118

Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E
(2001) Distinct patterns of neonatal gut microflora in infants in
whom atopy was and was not developing. J Allergy Clin Immunol
107:129–134

Kalliomaki M, Collado MC, Salminen S, Isolauri E (2008) Early differ-
ences in fecal microbiota composition in children may predict
overweight. Am J Clin Nutr 87:534–538

Kaur IP, Chopra K, Saini A (2002) Probiotics: potential pharmaceutical
applications. Eur J Pharm Sci 15:1–9

Khailova L, Dvorak K, Arganbright KM, Halpern MD, Kinouchi T,
Yajima M, Dvorak B (2009) Bifidobacterium bifidum improves
intestinal integrity in a rat model of necrotizing enterocolitis. Am J
Physiol Gastrointes Liver Physio 1297:940–949

Klaassens ES, Boesten RJ, Haarman M, Knol J, Schuren FH, Vaughan
EE, de VosWM (2009)Mixed-species genomic microarray analysis
of fecal samples reveals differential transcriptional responses of
bifidobacteria in breast- and formula-fed infants. Appl Environ
Microbiol 75:2668–2676

Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R,
Angenent LT, Ley RE (2011) Succession of microbial consortia in
the developing infant gut microbiome. Proc Natl Acad Sci U S A
108:4578–4585

Kuitunen M, Kukkonen K, Juntunen-Backman K, Korpela R, Poussae
T, Tuure T, Haahtela T, Savilahti E (2009) Probiotics prevent
IgE-associated allergy until age 5 years in caesarean delivered
children but not in the total cohort. J Allergy Clin Immunol 123:
335–341

Lawlor DA, Smith GD, O'Callaghan M, Alati R, Mamun AA, Williams
GM, Najman JM (2007) Epidemiologic evidence for the fetal over-
nutrition hypothesis: findings from the Mater-University study of
pregnancy and its outcomes. Am J Epidemiol 165:418–424

Li Y, Shimizu T, Hosaka A, Kaneko N, Ohtsuka Y, Yamashiro Y (2004)
Effects of Bifidobacterium breve supplementation on intestinal flora
of low birth weight infants. Pediatr Int 46:509–515

Lin HC, Hsu CH, Chen HL, Chung MY, Hsu JF, Lien RI, Tsao LY, Chen
CH, Su BH (2008) Oral probiotics prevent necrotizing enterocolitis
in very low birth weight preterm infants: a multicenter, randomized,
controlled trial. Pediatrics 122:693–700

Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venäläinen J,
Mäki M, Kaukinen K (2008) Live probiotic Bifidobacterium lactis
bacteria inhibit the toxic effects induced by wheat gliadin in epithe-
lial cell culture. Clin Exp Immunol 152:552–558

LondeiM, Ciacci C, Ricciardelli I, Vacca L, Quaratino S,Maiuri L (2005)
Gliadin as a stimulator of innate responses in celiac disease. Mol
Immunol 42:913–918

Lowenthal A, Livni G, Amir J, Samra Z, Ashkenazi S (2006) Secondary
bacteremia after rotavirus gastroenteritis in infancy. Pediatrics 117:
224–226

Appl Microbiol Biotechnol (2014) 98:563–577 575

84



Ma X, Hua J, Li Z (2008) Probiotics improve high fat diet-induced
hepatic steatosis and insulin resistance by increasing hepatic NKT
cells. J Hepatol 49:821–830

Magne F, Hachelaf W, Suau A, Boudraa G, Mangin I, Touhami M,
Bouziane-Nedjadi K, Pochart P (2006) A longitudinal study of
infant faecal microbiota during weaning. FEMS Microbiol Ecol
58:563–571

Mai V, Young CM, UkhanovaM,Wang X, Sun Y, Casella G, Theriaque D,
Li N, Sharma R, Hudak M, Neu J (2011) Fecal microbiota in prema-
ture infants prior to necrotizing enterocolitis. PLoS One 6:e20647

Meresse B, Ripoche J, Heyman M, Cerf-Bensussan N (2009) Celiac
disease: from oral tolerance to intestinal inflammation, autoimmu-
nity and lymphomagenesis. Mucosal Immunol 2:8–23

MessaoudiM, Lalonde R, Violle N, Javelot H, Desor D, Nejedi A, Bisson
J, Roujeot C, PichelIn M, Cazaubiel M, Cazaubiel J (2010)
Assessment of psychotropic-like properties of a probiotic formula-
tion (Lactobacillus helveticus R0052 and Bifidobacterium longum
R0175) in rats and human subjects. Br J Nutr 26:1–9

Million M, Maraninchi M, Henry F, Armougom F, Richet Carrieri H,
Valero R, Raccah D, Viallettes B, Raoult D (2012) Obesity-
associated gut microbiota is enriched in Lactobacillus reuteri and
depleted in Bifidobacterium animalis and Methanobrevibacter
smithii . Int J Obes 36:817–825

Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R,
Vialettes B, Raoult D (2013) Correlation between body mass index
and gut concentrations of Lactobacillus reuteri , Bifidobacterium
animalis , Methanobrevibacter smithii and Escherichia coli . Int J
Obes 37(11):1460–1467

Mohan R, Koebnick C, Schildt J, Schmidt S, Mueller M, Possner M,
Radke M, Blaut M (2006) Effects of Bifidobacterium lactis Bb12
supplementation on intestinal microbiota of preterm infants: a
double-blind, placebo-controlled, randomized study. J Clin
Microbiol 44:4025–4031

Mulder CJ, Bartelsman JF (2005) Case-finding in coeliac disease should
be intensified. Best Pract Res Clin Gastroenterol 19:479–486

Muñoz JA, Chenoll E, Casinos B, Bataller E, Ramón D, Genovés S,
Montava R, Ribes JM, Buesa J, Fàbrega J, Rivero M (2011) Novel
probiotic Bifidobacterium longum subsp. infantis CECT 7210 strain
active against rotavirus infections. Appl Environ Microbiol 77:
8775–8783

Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2007)
Imbalance in the composition of the duodenal microbiota of children
with coeliac disease. J Med Microbiol 56:1669–1674

Neu J, Walker WA (2011) Necrotizing enterocolitis. N Engl J Med 364:
255–264

Ouwehand AC, Isolauri E, He F, Hashimoto H, Benno Y, Salminen S
(2001) Differences in Bifidobacterium flora composition in allergic
and healthy infants. J Allergy Clin Immunol 108:144–145

Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG (2005) The
effect of infant feeding on the risk of obesity across the life course: a
quantitative review of published evidence. Pediatrics 115:1367–
1377

Özdemir Ö (2009) Gut flora development in infancy and its effect on
immune system. Çocuk Enf Derg J Pediatr Inf 3:202–203

Özdemir Ö (2010) Variuos effects of different probiotic starins in allergic
disorders: an update from laboratory and clinical data. Clin Exp
Immunol 160:295–304

Palma GD, Capilla A, Nova E, Castillejo G, Varea V, Pozo T, Garrote JA,
Polanco I, López A, Ribes-Koninckx C, Marcos A, García-Novo
MD, Calvo C, Ortigosa L, Peña-Quintana L, Palau F, Sanz Y (2012)
Influence of milk-feeding type and genetic risk of developing coe-
liac disease on intestinal microbiota of infants: the PROFICEL
study. PLoS One 7:e30791

Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007)
Development of the human infant intestinal microbiota. PLoS Biol
5:e177

Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma
F, Adams H, van Ree R, Stobberingh EE (2006) Gut microbiota
composition and development of atopic manifestations in infancy:
the KOALA Birth Cohort Study. Gut 56:661–667

Puopolo KM, Madoff LC, Eichenwald EC (2005) Early-onset group B
streptococcal disease in the era of maternal screening. Pediatrics
115:1240–1246

Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical impli-
cations of the brain–gut–enteric microbiota axis. Nat Rev
Gastroenterol Hepatol 6:306–314

Ruddick J, Evans A, Nutt D, Lightman S, Rook G, Lowry C (2006)
Tryptophan metabolism in the central nervous system: medical
implications. Expert Rev Mol Med 8:1–27

Saavedra JM, Tschernia A (2002) Human studies with probiotics and
prebiotics: clinical implications. Br J Nutr 87:241–246

Sanders ME, Akkermans LM, Haller D, Hammerman C, Heimbach J,
Hörmannsperger G, Huys G, Levy DD, Lutgendorff F, Mack D,
Phothirath P, Solano-Aguilar G, Vaughan E (2010) Safety assess-
ment of probiotics for human use. Gut Microbes 1:164–185

Sanz Y, Sánchez E, Marzotto M, Calabuig M, Torriani S, Dellaglio F
(2007) Differences in faecal bacterial communities in coeliac
and healthy children as detected by PCR and denaturing gradi-
ent gel electrophoresis. FEMS Immunol Med Microbiol 51:562–
568

Sartor BR (2004) Therapeutic manipulation of the enteric microflora in
inflammatory bowel diseases: antibiotics, probiotics, and prebiotics.
Gastroenterology 126:1620–1633

Savino F, Pelle E, Palumeri E, Oggero R,Miniero R (2007) Lactobacillus
reuteri (American Type Culture Collection Strain 55730) versus
simethicone in the treatment of infantile colic: a prospective ran-
domized study. Pediatrics 119:124–130

Savino F, Cordisco L, Tarasco V, Calabrese R, Palumeri E, Matteuzzi D
(2009) Molecular identification of coliform bacteria from colicky
breastfed infants. Acta Paediatr 98:1582–1588

Savino F, Cordisco L, Tarasco V, Palumeri E, Calabrese R, Oggero R,
Roos S, Matteuzzi D (2010) Lactobacillus reuteri DSM 17939 in
infantile colic: a randomized, double-blind, placebo-controlled trial.
Pediatrics 126:526–533

Savino F, Cordisco L, Tarasco V, Locatelli E, Di Gioia D, Oggero R,
Matteuzzi D (2011) Antagonistic effect of Lactobacillus strains
against gas-producing coliforms isolated from colicky infants.
BMC Microbial 11:157

Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD
(2010) Microbiota and SCFA in lean and overweight healthy sub-
jects. Obesity 18:190–195

Sisk PM, Lovelady CA, Dillard RG, Gruber KJ, O'Shea TM (2007) Early
human milk feeding is associated with a lower risk of necrotizing
enterocolitis in very low birth weight infants. J Perinatol 27:428–
433

Soh SE, AwM, Gerez I, Chong YS, RauffM,NgYPM,WongHB, Pai N,
Lee BW, Shek LPC (2009) Probiotic supplementation in the first 6
months of life in at risk Asian infants—effects on eczema and atopic
sensitization at the age of 1 year. Clin Exp Allergy 39:571–578

Solís G, de Los Reyes-Gavilan CG, Fernández N, Margolles A,
GueimondeM (2010) Establishment and development of lactic acid
bacteria and bifidobacteria microbiota in breast-milk and the infant
gut. Anaerobe 16:307–310

Stockman JA (2009) Newborn: probiotics for prevention of necrotising
enterocolitis in preterm neonates with very low birthweight: a sys-
tematic review of randomised controlled trials. In: Deshpande G,
Rao S, Patole S (eds) Yearbook of pediatrics. Elsevier, Philadelphia,
pp 441–443

Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X, Kubo C, Koga Y
(2004) Postnatal microbial colonization programs the hypothalam-
ic–pituitary–adrenal system for stress response in mice. J Physiol
558:263–275

576 Appl Microbiol Biotechnol (2014) 98:563–577

85



Sullivan S, Schanler RJ, Kim JH, Patel AL, Trawöger R, Kiechl-
Kohlendorfer U, Chan GM, Blanco CL, Abrams S, Cotten CM,
Laroia N, Ehrenkranz RA, Dudell G, Cristofalo EA, Meier P, Lee
ML, Rechtman DJ, Lucas A (2010) An exclusively human milk-
based diet is associated with a lower rate of necrotizing enterocolitis
than a diet of human milk and bovine milk-based products. J Pediatr
156:562–567

Symonds EL, O'Mahony C, Lapthorne S, O'Mahony D, Sharry JM,
O'Mahony L, Shanahan F (2012) Bifidobacterium infantis 35624
protects against salmonella-induced reductions in digestive enzyme
activity in mice by attenuation of the host inflammatory response.
Clin Transl Gastroenterol 3:e15

Szajewska H, Ruszczyński M, Radzikowski A (2006) Probiotics in the
prevention of antibiotic-associated diarrhea in the children: a meta-
analysis of randomized controlled trials. J Pedriatr 149:367–372

Tennyson CA, Friedman G (2008)Microecology, obesity, and probiotics.
Curr Opin Endocrinol Diabetes Obes 15:422–427

Tham CSC, Peh KK, Bhat R, Liong MT (2011) Probiotic properties of
bifidobacteria and lactobacilli isolated from local dairy products.
Ann Microbiol 62:1079–1087

Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, ClaessonMJ, Kerr
C, Hourihane J, Murray D, Fuligni F, Gueimonde M, Margolles A,
De Bellis G, O'Toole PW, van Sinderen D, Marchesi JR, Ventura M
(2012) Diversity of bifidobacteria within the infant gut microbiota.
PLoS One 7:e36957

Underwood MA, Kananurak A, Coursodon CF, Adkins-Reick CK, Chu
H, Bennett SH, Wehkamp J, Castillo PA, Leonard BC, Tancredi DJ,
Sherman MP, Dvorak B, Bevins CL (2012) Bifidobacterium
bifidum in a rat model of necrotizing enterocolitis: antimicrobial
peptide and protein responses. 71:546–551

van Heel DA, West J (2006) Recent advances in coeliac disease. Gut 55:
1037–1046

Vandenplas Y, De Hert SG (2011) Randomised clinical trial: the synbiotic
food supplement probiotical vs. placebo for acute gastroenteritis in
children. Aliment Pharmacol Ther 34:862–867

Verdu EF (2009) Probiotics effects on gastrointestinal function: beyond
the gut? Neurogastroenterol Motil 21:477–480

Viljanen M, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R,
Poussa T, Tuure T, KuitunenM (2005) Probiotics in the treatment of
atopic eczema/dermatitis syndrome in infants: a double-blind
placebo-controlled trial. Allergy 60:494–500

Wada M, Nagata S, Saito M, Shimizu T, Yamashiro Y, Matsuki T,
Asahara T, Nomoto K (2010) Effects of the enteral administration
of Bifidobacterium breve on patients undergoing chemotherapy for
pediatric malignancies. Supp Care Cancer 18:751–759

Wang C, Shoji H, Sato H, Nagata S, Ohtsuka Y, Shimizu T, Yamashiro Y
(2007) Effects of oral administration of Bifidobacterium breve on
fecal lactic acid and short-chain fatty acids in low birth weight
infants. J Pediatr Gastroenterol Nutr 44:252–257

Wassenaar TM, Klein G (2008) Safety aspects and implications of
regulation of probiotic bacteria in food and food supplements. J
Food Protect 71:1734–1741

Weizman Z, Asli G, Alsheikh A (2005) Effect of a probiotic infant
formula on infections in child care centers: comparison of two
probiotic agents. Pediatrics 115:5–9

Wiegering V, Kaiser J, Tappe D,Weissbrich B, Morbach H, Girschick HJ
(2011) Gastroenteritis in childhood: a retrospective study of 650
hospitalized pediatric patients. Int J Infect Dis 15:401–407

Xiao JZ, Kondo S, Takahashi N, Miyaji K, Oshida K, Hiramatsu A,
Iwatsuki K, Kokubo S, Hosono A (2003) Effects of milk products
fermented by Bifidobacterium longum on blood lipids in rats and
healthy adult male volunteers. J Dairy Sci 86:2452–2461

Xiao JZ, Kondo S, Yanagisawa N, Takahashi N, Odamaki T, Iwabuchi N,
Miyaji K, Iwatsuki K, Togashi H, Enomoto K, Enomoto T (2006)
Probiotics in the treatment of Japanese cedar pollinosis: a double-
blind placebo-controlled trial. Clin Exp Allergy 36:1425–1435

Yin YN, Yu QF, Fu N, Liu XW, Lu FG (2010) Effects of four
Bifidobacteria on obesity in high-fat diet induced rats. World J
Gastroenterol 16:3394–3401

Young SL, SimonMA, BairdMA, Tannock GW, Bibiloni R, Spencely K,
Lane JM, Fitzharris P, Crane J, Town I, Addo-Yobo E, Murray CS,
Woodcock A (2004) Bifidobacterial species differentially affect
expression of cell surface markers and cytokines of dendritic cells
harvested from cord blood. Clin Diagn Lab Immunol 11:686–690

Appl Microbiol Biotechnol (2014) 98:563–577 577

86



PAPER 3 
 
The Probiotic Bifidobacterium breve B632 Inhibited the Growth of 

Enterobacteriaceae within Colicky Infant Microbiota Cultures 

Marta Simone1, Caterina Gozzoli1, Andrea Quartieri1, Giuseppe Mazzola2, Diana Di Gioia2, 

Alberto Amaretti1, Stefano Raimondi1, Maddalena Rossi1*
 (2014) 

 
1 Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Viale G. Campi 183, 41125 Modena, 

Italy 
2 Dipartimento di Scienze Agrarie, Università di Bologna, Viale Fanin  44,  40127 Bologna, Italy 

 

* Corresponding Author 

 
 
 
 

This paper has been published in: 

BioMed Research International  

 

2014:301053. doi: 10.1155/2014/301053 

 

 

 

 

 

 

 

 

 

 

 

 

 

87



Research Article
The Probiotic Bifidobacterium breve B632
Inhibited the Growth of Enterobacteriaceae within
Colicky Infant Microbiota Cultures

Marta Simone,1 Caterina Gozzoli,1 Andrea Quartieri,1 Giuseppe Mazzola,2 Diana Di Gioia,2

Alberto Amaretti,1 Stefano Raimondi,1 and Maddalena Rossi1
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Infant colic is a common gastrointestinal disorder of newborns, mostly related to imbalances in the composition of gut microbiota
and particularly to the presence of gas-producing coliforms and to lower levels of Bifidobacteria and Lactobacilli. Probiotics
could help to contain this disturbance, with formulations consisting of Lactobacillus strains being the most utilized. In this work,
the probiotic strain Bifidobacterium breve B632 that was specifically selected for its ability to inhibit gas-producing coliforms,
was challenged against the Enterobacteriaceae within continuous cultures of microbiota from a 2-month-old colicky infant. As
confirmed by RAPD-PCR fingerprinting, B. breve B632 persisted in probiotic-supplemented microbiota cultures, accounting for
the 64% of Bifidobacteria at the steady state. The probiotic succeeded in inhibiting coliforms, since FISH and qPCR revealed that
the amount of Enterobacteriaceae after 18 h of cultivation was 0.42 and 0.44 magnitude orders lower (𝑃 < 0.05) in probiotic-
supplemented microbiota cultures than in the control ones. These results support the possibility to move to another level of study,
that is, the administration of B. breve B632 to a cohort of colicky newborns, in order to observe the behavior of this strain in vivo
and to validate its effect in colic treatment.

1. Introduction

In the first hours of life, the germ-free gastrointestinal tract of
newborns is colonized by microorganisms deriving from the
mother and from the environment, with the establishment
of a microbial community that will evolve into one of the
most complex microbial ecosystems [1]. The maintenance of
a correct balance of gut bacterial population is extremely
important since microbiota performs a variety of activities
and functions that deeply influence the health status of the
host, such as the metabolism of nondigestible compounds
with supply of short chain fatty acids, vitamin biosynthesis,
the regulation of immune system, and the prevention of
pathogen colonization [2, 3].

Despite the fact that increasing information about micro-
biota composition in adults is arising from metagenomics
and other culture-independent approaches, the dynamics of

initial colonization and evolution of the bacterial community
during the first days of life are poorly understood so far [4]. In
newborns, microbiota composition is variable and unstable,
and the establishment of the intestinal microbiota is highly
dependent on many factors, such as the mode of birth, breast
or formula feeding, and antibiotic intake [5–7]. Furthermore,
factors affecting the tropism and host-microbe interactions,
such as intestinal pH, body temperature, bile acids, peristalsis,
mucosal immune response receptors, and internal synergy,
exert a pivoting role in shaping the composition of bacte-
rial population [8, 9]. Initially, culturing studies indicated
that the pioneer bacteria colonizing the digestive tract of
newborns are Enterobacteriaceae and Gram-positive cocci
(e.g., Streptococcus, Staphylococcus), which lower the redox
potential and generate an anoxic environment, favorable
for the establishment of strictly anaerobic bacteria, such
as Bacteroidetes, Bifidobacterium, and Clostridiales [8, 10].
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Bifidobacteria are generally reported to prevail in the gut
microbiota of naturally delivered breast-fed infants after a few
days, at the expenses of Enterobacteriaceae and facultative
aerobes [11]. However, culture independent investigations
have provided evidence that infant colonizationmay bemuch
more complex, since it may be primed by anaerobes as well
(e.g. Clostridiales) and Bifidobacteria may not be among the
first colonizers or may remain a numerical minority [12].

Infant colic is a common functional gastrointestinal dis-
order of newborns, characterized by long bouts of crying and
hard-to-relieve behavior [13]. Crying peaks range between
6 and 12 weeks of age and cause considerable concern
and distress to parents. The pathogenesis of infant colic is
not well understood, and several underlying causes have
been suggested [13]. Among them, the relationship between
colonic microbiota and this disorder is emerging as a major
determinant. Culturing studies revealed higher counts of
Gram-negative bacteria and a less numerous population
of Lactobacilli and Bifidobacteria in the feces of colicky
infants compared with healthy infants [14]. Molecular global
investigation of the microbiota composition through phy-
logenetic microarray analysis demonstrated that gut micro-
biota differentiate much more slowly in colicky infants than
in healthy ones and that colic correlated positively with
the presence of specific genera of Gammaproteobacteria
(such as Escherichia, Klebsiella, Serratia, Vibrio, Yersinia,
and Pseudomonas) and negatively with bacteria belonging
to the Bacteroidetes and Firmicutes [15, 16]. Consistently, it
is known that Enterobacteriaceae, such as bacteria belong-
ing to Escherichia and Klebsiella, produce gas from mixed
acid fermentation and proinflammatory lipopolysaccharides,
both these mechanisms being proposed to favor colic
[17, 18].

The microbiota of colicky infants also presents lower
amounts of Bifidobacteria and Lactobacilli, which are known
to be anti-inflammatory and to exert various healthy prop-
erties [19–21]. The intake of probiotic Lactobacilli during
the first months of life can contribute to containing colic
[22, 23]. On the contrary, in vivo studies utilizing probiotic
Bifidobacteria for the treatment of colic are lacking.The strain
Bifidobacterium breve B632 possesses antimicrobial activity
against gas-producing coliforms isolated from the stools of
infants suffering from colic [24].

In order to obtain preliminary results that could support
an in vivo trial, the present study challenged B. breve B632
against the Enterobacteriaceae within cultures of microbiota
from a 2-month-old colicky infant. A continuous culture
fermentation simulating the gutmicrobiota of a colicky infant
was performed to examine the time-course of E. coli and
Enterobacteriaceae populations.

2. Methods

2.1. Chemicals and Bacterial Strain. All the chemicals were
supplied by Sigma (Stenheim, Germany), unless otherwise
stated. Bifidobacterium breve B632 was obtained from BUS-
CoB strain collection (Scardovi Collection of Bifidobacteria,
Dept. of Agro-Environmental Science and Technology, Uni-
versity of Bologna, Italy). The strain was accepted for deposit

by DSMZ for patent purposes and named B. breve DSMZ
24706. It was cultured anaerobically at 37∘C in Lactobacilli
MRS broth (BD Difco, Sparks, USA) containing 0.5 g/L L-
cysteine hydrochloride (hereinafter called MRS).

2.2. Cultures of Gut Microbiota. The cultures of gut micro-
biota were performed in a microbiota medium MM [25],
where the carbon source was substituted with 6.0 g/L of
a mixture of galactooligosaccharides (GOS, Domo Vivinal,
Needseweg, The Netherlands) and fructooligosaccharides
(FOS, Beneo-Orafti P95, Oreye, Belgium). The mixture was
composed of 90% GOS and 10% FOS (w/w), in agree-
ment with the composition of prebiotic infant formula [26].
Oligosaccharideswere filter-sterilized (0.22𝜇m)and added to
the medium after autoclaving.

Fresh feces from a breast-fed colicky infant, born by
natural delivery and not treated with antibiotics or probi-
otics, were utilized to prepare the inoculum for single-stage
continuous cultures. Inoculum preparation was performed
in anaerobic cabinet under an 85% N

2
, 10% CO

2
, and 5%

H
2
atmosphere. Feces were diluted to the ratio of 1 : 10 (w/v)

in MM, supplemented with 10% glycerol (v/v), and stored at
−80∘C until use.

In control microbiota cultures (MC), 5mL of fecal sus-
pension was thawed at 37∘C and utilized to inoculate bench-
top bioreactors (Sixfors V3.01, Infors, Bottmingen, Swiss)
containing 250mL of MM. Fresh MMwas fed at the dilution
rate of 0.042 h−1, corresponding to one turnover per day.
Themedium was flushed with CO

2
to maintain anaerobiosis.

The culture was kept in anaerobiosis at 37∘C, under gentle
agitation. Automatic titration with 4M NaOH maintained
pH at 6.5.

In probiotic-supplemented microbiota cultures (PMC),
fecal cultures were supplemented with 5.0 E + 7 cfu/mL of
B. breve B632. Concentrated stock cultures of B. breve B632
were supplementedwith glycerol (10%, v/v), enumerated onto
MRS-agar plates, and stored at −80∘C until an appropriate
volume was thawed and used for bioreactor inoculation.

Samples from MC and PMC were periodically collected
to analyze fermentation products, to examine the microbiota
composition, and to enumerate and isolate bifidobacteria.

2.3. Fluorescent In Situ Hybridization (FISH). FISH enumer-
ation of total bacteria, bifidobacteria, and Enterobacteriaceae
was based on the procedure of Harmsen et al. [27], with slight
modifications. Culture samples were diluted to the ratio of
1 : 4 with 40 g/L paraformaldehyde and incubated overnight
at 4∘C. Fixed cells were washed with PBS at pH 7.4 and then
dehydrated with PBS-ethanol 1 : 1 solution for 1 h at 4∘C. The
probes Eub 338, Bif 164, and Enterobact D, were used for total
bacteria, bifidobacteria, and Enterobacteriaceae, respectively
[28]. To perform hybridization, 10 𝜇L of cell suspension, 1 𝜇L
of the specific FITC-labeled probe, and 100 𝜇L of hybridiza-
tion buffer (20mM TRIS-HCl, 0.9M NaCl, and 0.1% SDS)
were mixed and incubated for 16 h at the temperature specific
for each probe [28].

A proper amount of the cell suspension was diluted in
4mL of washing buffer (20mM TRIS-HCl, 0.9M NaCl) and

89



BioMed Research International 3

maintained at hybridization temperature for 10min before
being filtered onto 0.2𝜇m polycarbonate filters (Millipore,
Ettenleur, The Netherlands). Filters were mounted on micro-
scope slides with Vectashield (Vector Labs, Burlingame,
California). The slides were evaluated with a fluorescence
microscope (Eclipse 80i, Nikon Instruments) equipped with
mercury arc lamp, FITC specific filter, and digital camera.
Depending on the number of fluorescent cells, 30 to 100
microscopic fields were counted and averaged in each slide.
Each sample was enumerated in triplicate.

2.4. qPCR. Biomass samples from MC and PMC cultures
were collected by centrifugation, suspended in PBS (pH 7.8),
and extracted with QIAmp DNA Stool Mini Kit (Qiagen,
Hilden, Germany) to obtain bacterial gDNA. gDNA was
quantified with NanoPhotometer P-Class (Implen GmbH,
Munchen, Germany), diluted to 2.5 ng/𝜇L in TE buffer pH
8, and subjected to qPCR analysis with primers targeting
Enterobacteriaceae and Escherichia coli [29–31]. The set
of primers Eco-F (GTTAATACCTTTGCTCATTGA)/Eco-R
(ACCAGGGTATCAATCCTGTT) and Ent-F (ATGGCT-
GTCGTCAGCTCGT)/Ent-R (CCTACTTCTTTTGCAAC-
CCACTC) were used for Enterobacteriaceae and Escherichia
coli, respectively. The mixture contained 10 𝜇L of SsoFast
EvaGreen Supermix, 4 𝜇L of each 2𝜇M primer, and 2 𝜇L of
template. qPCR reaction was carried out with the CFX96
Real-Time System (Bio-Rad Laboratories, Redmond, WA,
USA), according to the following protocol: 98∘C for 2min;
45 cycles at 98∘C for 0.05min, 60∘C for 0.05min, and 95∘C
for 1min; 65∘C for 1min.

2.5. RAPD-PCR Tracing of Bifidobacterium breve B632. Fresh
culture samples were serially diluted in Wilkins-Chalgren
anaerobe broth (Oxoid) in the anaerobic cabinet and plated
on RB selective medium, in order to count and isolate
Bifidobacteria [32]. Genomic DNA was extracted from 200
colonies isolated from the PMC processes, using Instagene
matrix (Bio-Rad). RAPD-PCR was carried out in a 15 𝜇L
reaction mixture: 10X Dream Taq Buffer (including MgCl

2

2mM), 1.5 𝜇L; dNTPs mixture 0.10mM, 0,15 𝜇L; 2 𝜇M M13
primer (GAGGGTGGCGGTTCT), 3.75𝜇L; genomic DNA,
3 𝜇L; and PCR water 5.25 𝜇L. DNA amplification was per-
formed with the following protocol: 94∘C for 4min (1 cycle),
94∘C for 1min, 34∘C for 1min, 72∘C for 2min (45 cycles); 72∘C
for 7min (1 cycle). The PCR products were electrophoresed
in a 2% agarose gel (25 × 25 cm) for 4 h at a constant voltage
(160V) in TAE buffer (40mMTris-acetate, 1mM EDTA, and
pH 8.0). RAPD-PCR profiles were visualized under ultra-
violet light after staining with ethidium bromide, followed
by digital image capturing. The resulting fingerprints were
analyzed by the Gene Directory 2.0 (Syngene, UK) software
package. The similarity among digitalized profiles was calcu-
lated and a dendrogramwas derivedwith an unweighted pair-
group method using arithmetic means (UPGMA).

2.6. Analysis of Fermentation Products. The samples were
clarified through centrifugation (13,000×g, 5min, 4∘C) and
filtration (0.22𝜇mcellulose acetate filter) and stored at −20∘C

until analyzed. Fermentation products (formic, acetic, lactic,
propionic, butyric, and succinic acids and ethanol) were
analyzed using a HPLC device (Agilent technologies, Wald-
bronn, Germany) equipped with refractive index detector
and Aminex HPX-87 H ion exclusion column. Isocratic
elution was carried out with 0.005M H

2
SO
4
at 0.6mL/min

[33].

2.7. Statistical Analysis. All values are means of four sepa-
rate experiments. Comparisons were carried out according
to Student’s 𝑡-test. Differences were considered statistically
significant for 𝑃 < 0.05.

3. Results

3.1. Evolution of Fecal Microbial Groups and Fermenta-
tion Products. Single-stage continuous fermentation of the
colonic microbiota from a colicky newborn was carried out
for 24 h to study whether the addition of B. breve B632
could affect the growth of Enterobacteriaceae. Bifidobacteria,
Enterobacteriaceae, and total bacteria were enumerated in
MC and in PMC, the latter supplemented with 5.0 E +
07 cfu/mL of B. breve B632 (Figures 1(a) and 1(b)). After 18 h
of cultivation, FISH bacterial counts became steady in both
MC and PMC cultures. Eubacteria increased up to 9.0–9.4 E+
09 cfu/mL, without statistically significant difference between
PMCandMC (𝑃 > 0.05). At all the time points, bifidobacteria
were more abundant in PMC than in MC (𝑃 < 0.05). Ente-
robacteriaceae were negatively affected by the presence of B.
breve B632 and were always less numerous in PMC than in
MC (𝑃 < 0.05).

The evolution of Enterobacteriaceae and E. coli was
determined also with q-PCR during the whole process.
Enterobacteriaceae were significantly lower in PMC than in
MC (𝑃 < 0.05), consistently with FISH results. On the other
hand, statistically significant difference was not observed
in the levels of E. coli (𝑃 > 0.05), with the exception of
18 h, when E. coli was less numerous in MC than in PMC
(Figure 2).

The presence of B. breve B632 in PMC cultures was
traced using RAPD-PCR fingerprinting at all the time points.
Colonies were isolated using the Bifidobacterium selective
medium RB and those positive to Bifidobacterium-specific
PCRwere subjected to RAPD-PCR analysis. At the beginning
of the fermentation, B. breve B632 represented the 85% of
bifidobacterial isolates in PMC, then decreased to 73% after
6 h, and stabilized at 64% at the steady state (𝑛 = 4, SD
< 34%). The relative amount of B. breve B632 tended to
decrease, albeit differences at the diverse time points were
not statistically significant. Considering that at the steady
state Bifidobacteria accounted for approximately 38% of
total eubacteria according to FISH enumeration, B. breve
B632 can be estimated as approximately the 24% of total
bacterial population in PMC. In these samples, 2 biotypes
of Bifidobacteria represented the autochthonous component.
The same two biotypes were identified also at the inoculum
in MC cultures, together with two other minor ones, none
of them exhibiting a RAPD-PCR profile similar to that of B.
breve B632.
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Figure 1: Time-course of total bacteria, bifidobacteria, and Enterobacteriaceae in cultures of infant gut microbiota. Eubacteria (�),
Bifidobacterium (�), and Enterobacteriaceae (◼) were quantified by FISH in control cultures (MC, (a)) and in cultures supplemented with B.
breve B632 (PMC, (b)). Data are means ± SD, 𝑛 = 4.
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Figure 2: Time-course of E. coli and Enterobacteriaceae in cultures
of infant gutmicrobiota.E. coli (�) andEnterobacteriaceae (�) were
quantified by qPCR in control cultures (MC, dashed line) and in
cultures supplementedwithB. breveB632 (PMC, solid line).Data are
means ± SD, 𝑛 = 4. Stars indicate statistically significant difference
between MC and PMC cultures (𝑃 < 0.05).

Formate, acetate, lactate, propionate, butyrate, and
ethanol originated by microbiota metabolism during the
processes (Figures 3(a) and 3(b)). Like the bacterial counts,
the concentrations of microbial products became stationary
after approximately 18 h. Ethanol, formate, lactate, and
acetate were the first to increase at the beginning of the
fermentation. Propionate, 2,3-butanediol, and butyrate
accumulated later, while lactate decreased as the steady state
was approached.

During the growth phase, the major differences between
MC and PMC processes were acetate and ethanol, accumu-
lating at different levels during the first hours of the process:
after 12 h, in MC and PMC, ethanol was 1.6 and 0.8 g/L,
while acetate 0.8 and 2.4 g/L, respectively. At the steady state
(18 h), MC had higher levels of butyrate and ethanol than
PMC, while acetate and lactate were higher in PMC (𝑃 <
0.05). The other metabolites exhibited similar steady-state
concentrations in PMC and MC processes (𝑃 > 0.05).

4. Discussion

Literature reports the use of Lactobacillus spp. strains to
alleviate the symptoms of infant colic [22, 23]. On the other
hand, no information is available on this specific use of
bifidobacteria, although in vitro results showed that strains of
Bifidobacterium can exert antimicrobial activity against gas
forming coliforms [24]. Among a panel of Bifidobacterium
strains that were selected as potential candidates for pro-
biotic use against colic in infants, B. breve B632 appeared
particularly promising because of its strong antimicrobial
activity against coliforms, coupled to the lack of transmis-
sible antibiotic resistance traits and cytotoxicity for the gut
epithelium. Moreover, the strain is capable of adhering to
gut epithelium cell lines and could stimulate gut health
by increasing metabolic activity and immune response of
epithelial cells [24].

In the present work, the antagonistic effect of B. breve
B632 against coliforms was challenged within gut microbiota
cultures of a colicky newborn, simulating in vivo conditions,
in order to propose its use as anticolic probiotic. B. breve
B632 survived well within the fecal culture, exhibiting a high
viability during the process. At all the time points, Enterobac-
teriaceae were significantly less numerous in presence of the
probiotic. These results indicate that B. breve B632 exerted
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Figure 3: Time-course of fermentation products in cultures of infant gut microbiota. Ethanol (�), lactate (�), acetate (△), formate (󳵳),
propionate (◻), 2,3-butanediol (◼), and butyrate (22C4) were determined in control cultures (MC, (a)) and in cultures supplemented with B.
breve B632 (PMC, (b)). Data are means, 𝑛 = 4, and SD always < 0.25 g/L.

antimicrobial activity against coliforms in fecal cultures as
well, consistently with previous observation with spot agar
tests and cocultures [24].

Unlike Enterobacteriaceae, E. coli counts were not
affected by the presence of the probiotic. This observation
can be ascribed to the different specificity of the primer
sets utilized in qPCR quantification, since the primers for
Enterobacteriaceae recognize a broader spectrum of species
than the ones for E. coli (Table 1).

Based on the list of species that align with qPCR primers
and FISH probes, it is likely that Gammaproteobacteria other
thanE. coli are involved in infant colic. For example, the qPCR
primers for Enterobacteriaceae should recognize Yersinia,
whereas the FISH probe for Enterobacteriaceae is expected
to miss it.

Fecal samples have amicrobial composition that does not
exactly correspond to that of the colonic content, wheremajor
microbial-host interactions occur, and richness and diversity
seem underrepresented [34]. However, systems as the one
herein described are currently the best tools to investigate the
external factors that could influence the intestinal microbial
composition such as antibiotics or to test novel potential
probiotics, before carrying out expensive in vivo trials. The
data herein presented indicate that the potential probiotic
strainB. breveB632was able to survive in a complexmicrobial
environment and restrained Enterobacteriaceae population.

5. Conclusions

The present study demonstrated the ability of a properly
selected probiotic Bifidobacterium strain B. breve B632 to
inhibit the growth of Enterobacteriaceae in an in vitromodel
system simulating the intestinal microbiota of a 2-month-old
colicky infant.These results support the possibility tomove to
another level of study, that is, the administration of B. breve

Table 1: Genera of human intestinal bacteria potentially recognized
by FISH probes and qPCR primers, according to SILVA.

Probe or primer set Genus

Enterobact D

Citrobacter
Cronobacter
Edwardsiella
Enterobacter
Escherichia
Klebsiella
Kluyvera
Pantoea
Raoultella
Serratia
Shigella

Ent-F/Ent-R

Edwardsiella
Escherichia
Klebsiella
Pantoea
Proteus

Providencia
Pseudomonas

Shigella
Yersinia

Eco-F/Eco-R
Cronobacter
Escherichia
Shigella

B632 to a cohort of colicky newborns, in order to observe the
behavior of this strain in vivo and to validate its effect in colic
treatment.
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Abstract  

The capability of ten commercial fibers of selectively stimulating the growth of four 

Bifidobacterium strains were studied with the purpose of developing a synbiotic product for 

infants. Two galactooligosaccharides (GOS), one fructooligosaccharide (sc-FOS), four inulins 

with different polymerization degree (DP), a glucooligosaccharide, an arabinogalactan and a 

hydrolysed guar gum were used (10 g l-1). The prebiotic score was calculated comparing the 

capability of the fibers of stimulating the growth of bifidobacteria compared to potential infant 

pathogens. GOS, sc-FOS, low DP inulin (oligofructose) and the glucooligosaccharide could 

stimulate growth. However, the fibers showing the highest prebiotic score were oligofructose 

(Orafti®HIS), sc-FOS (Actilight®950P) and the GOS Vivinal®. Lyophilized bifidobacteria strain 

survival in simulated gastro-intestinal conditions was also assayed to define suitable ways of 

administration. Survival in gastric juice at pH 2.5 was poor, whereas it was higher at pH 4, a 

value closer to newborn pH. Microencapsulation in a lipid matrix ensured strain survival also at 

pH 2.5. Survival to 1 g l-1 bile salts was acceptable.  The results allowed to conclude that 

Bifidobacterium breve B632 strain, in a lyophilized or microencapsulated form, has the 

requisites for use in synbiotic products targeted to infants coupled to a mixture of GOS and FOS 

or oligofructose. 
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1. Introduction 

 

Probiotics and prebiotics constitute a central growing market for the food/pharmaceutical 

industry and this has driven a lot of research aimed at understanding their activity (Kumar et al., 

2014). The children associated market is of great relevance, because infants are very susceptible 

to diseases and non-chemotherapeutic treatments are particularly looked forward for this target 

group (Mugambi, Young, & Blaauw, 2014). Moreover, the baby food industry is particularly 

interested in probiotics and prebiotics with the aim of improving the quality of formula milks and 

post-weaning milks. The health status of the gut in infants is extremely important for the well-

being of the whole organism in the successive stages of life (Bischoff, 2011). The stimulation of 

beneficial bacteria by prebiotic fibers in the infant gut is essential because these microbes, 

mainly belonging to the Bifidobacterium and Lactobacillus genera, play useful roles in 

prevention of disease (Turroni et al., 2012; Di Gioia, Aloisio, Mazzola, & Biavati, 2014). In this 

context, the development of synbiotic formulas, i.e. mixtures of prebiotics and probiotics, in 

which the prebiotic compound sustain the growth of the probiotic microorganism(s) supplied or 

of other beneficial bacteria in the host (Slavin, 2013), has a central role in infant nutrition. On the 

contrary, the growth of potential pathogenic or harmful microbes should not be enhanced by the 

metabolization of the fiber (Huebner, Wehling, & Hutkins, 2007). A number of works have 

developed and used a quantitative measure of the prebiotic efficacy of selected fibers with the 

use of a score, referred to as prebiotic score (Huebner et al., 2007; Marotti et al., 2012), which 

compares the extent to which a fiber supports selective growth of beneficial bacteria with respect 

to growth on glucose (i.e. an easily metabolized substrate) and to the growth of potential 

pathogenic bacteria. Potential pathogens to be used in this evaluation have to be selected 

considering the target for the prebiotic fiber under study. 

The ability of bifidobacteria to utilize a large variety of oligosaccharides make them able to 

adapt and compete in an environment with changing nutritional conditions such as the infant gut. 

A recent work has allowed the identification of three Bifidobacterium breve and one 

Bifidobacterium longum subsp. longum strains as potential probiotic strains for the treatment of 

enteric disorders in newborns such as infantile colics or as preventive agents for infantile 

diarrhea of bacterial origin (Aloisio et al., 2012). These strains possess strong antimicrobial 

activity against coliforms and other pathogenic bacteria, do not possess transmissible antibiotic 

resistance traits and are not cytotoxic for the gut epithelium. In addition, the capability of one of 

these strains, namely B. breve B632, of reducing the amount of gas forming coliforms has also 
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been shown in an in vitro slurry model system simulating the intestinal microbiota of a 2-month-

old colicky infant (Simone, Gozzoli, & Quartieri, 2014).  

In this work, several commercial fibers, including fibers usually employed in the human diet but 

also less commonly used plant derived oligosaccharides, have been assayed for their capability 

of selectively stimulating the growth of the previously selected Bifidobacterium strains with the 

aim of developing a synbiotic product for infants. Moreover, the survival of the same strains in 

simulated gastro-intestinal conditions has been checked in order to define suitable ways of 

administering them to newborns and infants with the aim of planning a validation clinical trial. 

 

 

2. Materials and Methods 

 

2.1. Strains and culture conditions 

Four Bifidobacterium strains (B. breve B632, B2274, B7840 and B. longum B1975), selected in a 

previous work (Aloisio et al., 2012) as potential probiotics for the treatments of enteric disorders 

in newborns, were used. Bifidobacterium strains were grown on Tryptone, Phytone, Yeast 

extract (TPY) broth (tryptone, 10 g l-1, soy peptone, 5 g l-1, glucose, 10 g l-1, yeast extract, 2.5 g l-

1, K2HPO4, 1.5 g l-1, MgCl2.6H2O, 0.5 g l-1, Cystein-HCl, 0.5 g l-1, Tween 80, 0.5 g l-1, pH 6.5). 

The medium was modified to perform the growth experiment with potential prebiotic fibers. The 

modified medium (m-TPY) did not contain the carbon source (glucose), which was provided by 

the selected fiber, and had a halved amount of potential growth substrate, such as tryptone, 

peptone and yeast extract.  

Escherichia coli ATCC 25645, two gas-forming coliforms isolated from colicky infants feces, 

i.e. Klebsiella pneumoniae GC23a and Enterobacter cloacae GC6a (Savino et al., 2011), and 

Clostridium difficile M216, isolated from hospitalized patients (unpublished results), were used 

as potential pathogen strains. E. coli, K. pneumoniae and E. cloacae strains were grown on M9 

medium (Howard-Flanders & Theriot, 1966) with 10 g l-1 glucose, whereas Reinforced 

Clostridium Medium (RCM, Merck, Darmstadt, Germany) was used for C. difficile. Modified 

M9 medium (m-M9) for prebiotic activity tests did not contain glucose. The modified RCM 

broth (m-RCM) was prepared with half of the original concentration of peptone and yeast extract 

and no glucose. Inoculated cultures (20 ml l-1 inoculum) were incubated at 37° C for 24-48 h 

under anaerobic conditions, obtained using an anaerobic atmosphere generation system 

(Anaerocult® A, Merck).  
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2.2. Evaluation of the prebiotic activity of the fibers  

 

2.2.1 Commercial fibers used in the study 

Two galactooligosaccharides (GOS), one fructooligosaccharide (FOS), four inulins having a 

different degree of polymerization (DP), a glucooligosaccharide, an arabinogalactan and a 

partially hydrolysed guar gum were used. Available information on the fibers used, including 

composition and DP, the origin, the commercial name of fibers as well as the provider, are listed 

in Table 1. 

 

Table 1  Commercial fibers used to evaluate the prebiotic activity versus bifidobacteria  

Carbohydrate type Composition 
and degree of 

polymerization (DP) 
(where  available) 

Origin/method of 
manufacture 

Commercial 
name of the  

fiber* 

Provider 

Galactooligosaccharide GOS 59% 
Lactose 21% 
Glucose 19% 
Galactose 1% 

DP n.a. 

Synthesized from lactose Vivinal ®1 
 

Domo,  
Netherlands 

Galactooligosaccharide Composition: n.a. 
 

DP 3 to 6 

Synthesized from lactose CUP-Oligo®2 Azelis SpA, 
Milano, Italy 

Short chain-

Fructooligosaccharide 

Fructosyl nistose 11.3%, 
Nistose 42.5%, 

1-Kestose 43.1%, 
Sucrose 2.4 % 

DP 2 to 5 

Biosynthesis from beet 

sugars 

Actilight®950P3 
 

Beghin-Meiji, 
Francia 

High soluble inulin  

(oligofructose) 

Inulin 86% 
other sugars 14 % 

DP < 10 

Chicory Orafti®HSI4 Beneo-Orafti, 
Belgium 

1:1 blend of oligofructose and 
inulin 
 

oligofructose 92% 
other sugars 8 % 

 DP N/A 

Chicory Orafti® 
Synergy14 

Beneo-Orafti, 
Belgium 

Inulin inulin 100% 
DP > 23 

Chicory roots Orafti® 
RaftilineHP4  

Beneo-Orafti, 
Belgium 

Inulin DP 9 to 12 Chicory Frutafit®5 Sensus, 
Netherlands 

α-glucooligosaccharide DP>3 

(About 60% of the product has a 

DP≥ 5) 

 

Enzymatic synthesis from 
maltose using a glucosyl 

transferase from a of 
Leuconostoc mesenteroides 

strain6 

BioEcolians®6 
 

Solabia group, 
Pantin Cedex, 

France 

Arabinogalactan 
 

Mixture of arabinogalactans of 

molecular weights (MW) 

between 10000 and 100000; the 

100000 MW fraction constitutes 

about 2/3 of total weight 

Larix occidentalis  Arabinex®7 
 

Thorne research, 
Dover, USA 

Partially hydrolysed guar gum 
(PHGG) 

n.a. Enzymatic hydrolysis of guar 

gum 

Benefibra®8 Novartis Pharma 
Spa, Origgio  

(Va), Italy 

*More information about the products are available online at the following websites: 
1  www.vivinalgos.com  
2  www.kowa-europe.com/food/ 

3  www.beghin-meiji.com/actilight 

4  www.orafti.com 
5   www.sensus.us 
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6  www.solabia.fr/Solabia/SolabiaNutrition.nsf/ 
7  thorne.com/Products 
8  www.benefibra.it 
 
 
 

2.2.2 Prebiotic activity assays and prebiotic score 

Prebiotic activity of the assayed fibers was evaluated according to a modification of Marotti et 

al., (2012) by evaluating the capability of the fiber of stimulating bifidobacteria with respect to 

potentially pathogenic strains. Growth of bifidobacteria on the fibers was determined in m-TPY 

with 10 g l-1 of each fiber. As potential pathogenic strains, a 1:1:1 mixture of E. coli ATCC 

25645, K. pneumoniae GC23a and E. cloacae GC6a (referred to as enteric mixture) and a culture 

of C. difficile M216 were used. The enteric mixture was prepared by growing each strain 

separately on m-M9 with 10 g l-1 glucose and then mixing the cultures in a 1:1:1 ratio. The 

mixture was inoculated (20 ml l-1) in m-M9 with 10 g l-1 prebiotic fiber as the carbon source. A 

culture of C. difficile (A620 0.6) was prepared in m-RCM broth with 10 g l-1 glucose and 

inoculated (20 ml l-1) in m-RCM broth supplemented with 10 g l-1 prebiotic fiber. To quantify 

growth occurring from indigenous carbon sources present in the modified medium, strains were 

also grown on the modified media with no added carbon source. Positive growth control was 

prepared in the modified media with 10 g l-1 glucose. The prebiotic activity assay was performed 

in 96 well plates, which, once inoculated, were incubated at 37 °C under anaerobic conditions. 

The bacterial growth was determined by measuring A620 after 0, 6, 24, 30 and 48 hrs of 

incubation in a microwell plate reader (Multiskan, Thermo Electron, Oy, Vantaa, Finland). Each 

assay was replicated three times. The growth curves for Bifidobacterium strains, for the enteric 

mixture and for C. difficile grown in the presence of tested prebiotic fibers were generated by 

plotting the average A620 versus incubation time. The prebiotic score (PS) was calculated as 

follows (Marotti et al., 2012): 

PS = {(A620 of Bifidobacterium strain on the fiber at 24 h – A620 nm of Bifidobacterium strain on 

the fiber at 0 h) / A620 of Bifidobacterium strain on glucose at 24 h – A620 of Bifidobacterium 

strain on glucose at 0 h)} – {( A620 nm of enteric mixture or C. difficile strain on the fiber at 24 h 

– A620 of enteric mixture on the fiber at 0 h)/ (A620 of enteric mixture on glucose at 24 h – A620 of 

enteric mixture on glucose at 0 h)}. 

Factorial ANOVA was applied to analyze prebiotic scores using the Statistica Software (ver. 8.0, 

StatSoft, Tulsa, OK, USA). Values of P < 0.05 were considered to be significant. 
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2.3. Evaluation of strain survival under simulated intestinal conditions: 

Survival of Bifidobacterium strains was checked in human gastric juice, kindly provided in a 

lyophilized form by Probiotical SpA, Novara, Italy, and suspended in sterile water to obtain its 

original volume. Gastric juice was used at its pH (about 2.5) and at pH increased to 4 with NaOH 

0.1 mol l-1 to simulate the newborn gastric pH (Kageyama, 2002). Gastric juice was filter 

sterilized through a 0.2 µm cellulose acetate membrane (Millipore, Carrigtwohill, Ireland). In 

order to simulate duodenal conditions, 1 g l-1 porcine bile salts (Oxgal, Sigma-Aldrich) at pH 7 

were used. This solution was also filter-sterilized as already described. To perform the survival 

assays, 0.1 g of lyophilized Bifidobacterium strains (nominal concentration 109 CFU g-1) were 

suspended in 0.9 ml of gastric or bile juice solutions and vortexed for 20 s. All tests were 

conducted in sterile glass tubes. The cell suspension was incubated anaerobically at 37 °C. Cells 

suspended in PBS at pH 7.0 served as controls. Experiments were done in triplicate. Furthermore 

the survival to gastric juice at pH 2.5 of B. breve B632 strain in a microencapsulated form 

(provided by Probiotical S.p.A.) was assayed. Microencapsulation was performed in a vertical 

fluid bed drier Glatt GPCG2 LabSystem. A lyophilized culture of the strain was prepared with a 

concentration of 3.2×109 CFU g-1. 60 g of lyophilized culture were mixed with 90 g of 

polyglycerol esters of saturated fatty acids. The final concentration of the microencapsulated 

cells was 109 CFU g-1.  

Enumeration was performed after sampling 100 l immediately after mixing the free cells with 

gastric juice or bile solution (time 0) and at predetermined time intervals (30 and 60 min for 

simulated gastric conditions and 60 and 120 min for bile salts). The sampled amount was mixed 

with 900 l of PBS, serially diluted in PBS and plated on TPY agar. In the case of 

microencapsulated cells, an alkaline borate buffer (pH 8.4) was used to perform the initial 

dilution of the cells (1:10) in order to promote the dissolution of the coating material (Lian, 

Hsiao, & Chou, 2003). After 10 min incubation in the alkaline buffer, further serial dilutions 

were performed and plated. 

Mean values and the standard deviation were calculated from the data obtained from triplicate 

trials. Statistica Software was used for analysis of variance. A 95% confidence level was used for 

Duncan’s, one-way significance test.  
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3. Results  

 
3.1. Evaluation of the prebiotic activity of the fibers  

Growth tests were initially performed on two GOS (Vivinal® and CUP-Oligo®) and 1 sc-FOS 

(Actilight®950P), which are fibers commonly used in infant formulas (Fig. 1). Then, 4 fibers 

commercialized as inulins were assayed (Fig. 1): Orafti®HSI, which has a DP < 10 and can 

therefore be classified as an oligofructose, Orafti®Synergy1, i.e. 1:1 blend of oligofructose and 

inulin whose DP is not available, Frutafit®, i.e. a low molecular weight (MW) inulin, and 

Orafti®RaftilineHP, a high MW inulin (DP > 23). 

 

Figure 1: Growth curves of B632 (row 1), B1975 (row 2), B2274 (row 3), B7840 (row 4) using prebiotic 
fibers as sole carbon source: graphics a) = Vivinal® (◊), CUP-Oligo® (□), Actilight®950P (∆); graphics b) 
= Frutafit® (♦), Orafti®HIS (-), Orafti®Sinergy (▲),Orafti®Raftiline HP (○); graphics c) = BioEcolians® 
(●), Arabinex® (■),Benefibra® (-). Glucose (+) and a solution without fiber, no fiber (×), were used as 
positive and negative control, respectively. 
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These tests highlighted different growth performances of the four Bifidobacterium strains. 

Generally, the sc-FOS Actilight®950P, together with the GOS CUP-oligo® assayed, were the 

substrates which best supported the growth of all the four strains. The GOS Vivinal® also 

showed good growth performances. B. breve B632 could grow very well on the oligofructose 

Orafti®HSI, with an increase in A620 of 1.12 ± 0.03 after 48 hrs of incubation. Orafti®HSI also 

supported the growth of B. breve B2274 and B7840 (Fig. 1), although to a less extent, whereas 

growth on this substrate is low for B. longum B1975 strain. On the other hand, Orafti®Synergy1 

and Orafti®RaftilineHP sustained Bifidobacterium growth poorly, i.e. less than glucose. Similar 

results were obtained for Frutafit®, which could difficultly support growth of B632 and B1975 

strain, whereas growth was comparable to that on glucose for the other two strains. 

The third group of commercial fibers tested comprised polysaccharides traditionally not used in 

commercial products targeted to infants.  These fibers were an α-glucooligosaccharide obtained 

enzymatically from maltose (BioEcolians®), a mixture of high MW arabinogalactans 

(Arabinex®) and a mixture of polysaccharides obtained from enzymatic hydrolysis of guar gum 

(Benefibra®). The B. breve B632 strain could grow well on these 3 fibers, in particular 

BioEcolians® sustained growth similarly to the FOS and GOS previously assayed (Fig. 2). The 

α-glucooligosaccharide was easily metabolized by the other Bifidobacterium strains, which, on 

the contrary, showed a reduced growth on other substrates. 

The same fibers were tested as growth substrates on potential infant pathogens, i.e. a mixture of 

gas producing strains isolated from colicky infants (E. coli, K. pneumonia and E. cloacae in the 

ratio 1:1:1) and on  a strain of C. difficile. The coliform mixture could grow well on glucose, but 

several differences were observed  among the assayed oligosaccharides. CUP-oligo® stimulated 

the growth of the mixture, with an increase in A620 of 0.4 ± 0.04 at 48 h of incubation; Frutafit®, 

the α-glucooligosaccharide BioEcolians® and the partially hydrolyzed guar gum (Benefibra®) 

determined a growth increase of A620 of the enteric mixture of about 0.2, whereas, for all the 

other substrates, the increase of A620 was lower than 0.2 (data not shown). Growth curves were 

also obtained with C. difficile on the same polysaccharides. A significant increase of turbidity 

evaluated as A620 was observed after 48 h incubation with Benefibra®. Orafti®HSI, Frutafit®, 

BioEcolians® and Arabinex® showed a capability of sustaining C. difficile growth comparable to 

glucose (data not shown).  

The prebiotic score was calculated for the assayed fibers. Using the coliform mixture as 

reference strains and averaging the scores obtained for the 4 Bifidobacterium strains, the 

oligofructose Orafty®HSI , the FOS Actilight®950P and the GOS Vivinal® obtained the highest 

prebiotic score, with mean values of 1.52, 1.39 and 1.18, respectively (Fig. 2A). In addition, 

103



CUP-Oligo®, Orafti®Synergy, Orafti®Raftiline HP and BioEcolians® showed mean scores close 

to 1.00. Using C. difficile as reference strain, the highest prebiotic activity scores were obtained 

with Actilight®950P and Vivinal® (1.43 and 1.23 respectively) (Fig. 2B); on the contrary, 

Orafti®HSI showed a lower value (0.6) with respect to that obtained on the enteric mixtures. 

BioEcolians®, Frutafit® and Arabinex® showed negative values (-0.37, -0.55, -0.65, 

respectively), Benefibra® produced the lowest values (-1.67). 

 

 
Figure 2: Prebiotic activity scores calculated by using the average of prebiotic scores obtained from each 

different Bifidobacterium strain (B632, B1975, B2274, B7840) considering the enteric mixture (E. coli, 

K. pneumoniae, E. cloacae, 1:1:1), (panel a) and C. difficile, (panel b), as target. Values are mean of four 

different replications ± standard deviations. Mean with different letters are significantly different at 

P<0.05. 
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Fig. 3A shows the prebiotic activity scores calculated for each Bifidobacterium strain, using the 

enteric mixture as the reference. A specific interaction between each strain and prebiotic fiber 

was shown. In particular the highest prebiotic activity scores were obtained with 

Orafti®HSI*B632, Orafti®HSI*B2274, Orafti®HSI*B7840 and Actilight®950P*B7840. Fig. 3B 

shows the prebiotic activity scores calculated for each single Bifidobacterium strain, using C. 

difficile as the reference. A specific strain-fiber interaction was observed, although to a less 

extent with respect to the use of the enteric mixture as the reference.  

 

 
Figure 3: Prebiotic activity scores calculated for each Bifidobacterium strain (B632 = black    column; 

B1975 = white column, B2274 = gray column, B7840 = striped column) considering the enteric mixture, 

(panel a), or C. difficile, (panel b), as target. Values are mean of three different replications ± standard 

deviations. Mean with different letters are significantly different at P<0.05. 
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3.2. Evaluation of strain survival under simulated intestinal conditions 

Human gastric juices at pH 2.5 and 4 were used. A rapid decline in the cells counts was observed 

after 30 min at pH 2.5, corresponding to 4 Log reduction for B2274, 5 Log reduction for both 

B632 and B7840, and an almost complete reduction for B1975 (Table 2). No or negligible 

survival was detected after 60 min of incubation for all strains. When exposed to gastric juice at 

pH 4, the number of cells of B. breve B632 and B2274 did not decrease significantly after 30 

min of incubation. On the contrary a reduction of one Log and three Log with respect to the 

initial concentration was detected for B. breve B7840 and B. longum B1975, respectively (Table 

2). In addition, B. breve B632 exhibited an appreciable level of survival after 60 min of 

incubation. On the other hand, B. longum B1975 showed the worst survival, from 7.3 ± 0.03 Log 

CFU ml-1 to 4.0 ± 0.03 Log CFU ml-1 at the same incubation time. Resistance to low pH (gastric 

juice at pH 2.5) of microencapsulated B. breve B632 was also checked and compared to free 

cells. The survival of free and microencapsulated cells differed significantly: no death of the 

encapsulated cells at pH 2.5 was observed after 30 min exposure and less than 1.0 Log CFU ml-1 

reduction was present after 60 min of exposure (Table 2).  

As regards to the essay with bile salts, the reduction was statistically significant for all the 

strains,  although B. breve B632 and B7840 showed only a 1.5 reduction after 1 h of exposure. B. 

breve B2274 showed a number reduction of 2.00 Log CFU ml-1 after 60 min of exposure and its 

viability decreased further after 120 min. B. longum B1975 showed the lowest resistance after 60 

and 120 min of incubation (Table 2).  

 

 

Table 2. Effect of human gastric juice and bile salts on survival of Bifidobacterium spp. selected strains. 

Results are shown as mean and standard deviation of experiment done in triplicate. Different letters (a-c) 

in the same row showed significant different at P<0.05. Different letters (A,B) in the same column 

showed significant difference at P<0.05.  
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Discussion 

The development of synbiotic products targeted to infants is important for the prevention or 

therapy of both gastrointestinal disorders and pathologies apparently not linked to gut health, 

such as allergies. This work was aimed at the evaluation of the prebiotic activity of several 

commercially available polysaccharides, including fibers usually employed in the human diet, 

such as FOS, GOS and inulin, but also less commonly used plant derived polysaccharides such 

as α-glucooligosaccharides, partially hydrolyzed guar gum and arabinogalactans, for their use in 

synbiotic products targeted to children. Strains previously selected for their interesting properties 

for infant use (B. breve B632, B2274, B7840 and B. longum B1975) were employed. The option 

of using these strains in a lyophilized or microencapsulated form was also evaluated in this work. 

Several studies have reported that the supplementation of infant formula with specific 

oligosaccharides, in particular GOS, stimulates the growth of bifidobacteria in the intestine 

resembling the effect of breast-feeding (Saavedra, 2007; Günther Boehm & Moro, 2008; G. T. 

Macfarlane, Steed, & Macfarlane, 2008). The study here described highlighted different growth 

performances of the assayed Bifidobacterium strains, in agreement with early studies reporting 

that carbohydrate utilization pattern differs greatly among Bifidobacterium species and, within 

each species, among different strains (Crociani, Alessandrini, Mucci, & Biavati, 1994). As a 

general trend, GOS, sc-FOS and oligofructose could sustain well the growth of the assayed 

strains, whereas higher MW FOS (inulins) were difficultly metabolized and stimulated the 

growth of only a restricted number of strains, the major effects being exerted on B632 and 

B7840. This specificity is in accordance with the observation that only a few Bifidobacterium 

strains produce extracellular hydrolytic enzymes necessary for FOS fermentation (Perrin, 

Warchol, Grill, & Schneider, 2001; Sims, Ryan, & Kim, 2014) and with the bifidobacteria 

general preference for the utilization of short chain oligofructose rather than long chain 

fructooligosaccharides such as high DP inulin (Rossi et al., 2005; Stewart, Timm, & Slavin, 

2008). This explains why long chain polysaccharides such as Orafti®RaftilineHP (DP > 23) were 

difficultly fermented by the bifidobacteria tested in this work. However, a good prebiotic fiber 

should guarantee selective growth of beneficial bacteria in the colon, which means that it should 

not sustain growth of potentially harmful bacteria. In the case of newborns, gas producing 

coliforms are particularly detrimental because their carbohydrate fermentation can cause 

excessive intra-intestinal air production and pain in infants (Savino et al., 2011; Aloisio et al., 

2012). In addition, C. difficile is a potential pathogen involved in infectious diarrhea in infants 

(Oğuz, Uysal, Daşdemir, Oskovi, & Vidinlisan, 2001). Moreover, a healthy gut microbiota in 

newborns is considered to be formed by the highest numbers of bifidobacteria and lowest 
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numbers of C. difficile and E. coli (Penders et al., 2006). The fibers showing the average highest 

prebiotic score referring to both a mixture of coliform bacteria and a strain of C. difficile were 

Orafti®HSI, Actilight®950P and Vivinal®. Benefibra®, Arabinex®, and Frutafit® showed the 

lowest prebiotic index. Regarding the prebiotic*strain interaction, the highest prebiotic scores 

were obtained with Orafti®HSI*B632, Orafti®HSI*B2274, Orafti®HSI*B7840 and 

Actilight®950P*B7840 when the enteric mixture is considered and Orafti®HSI*B2274, 

Vivinal®*B632, Vivinal®*B1975, Vivinal®*B7840. Therefore, a good synbiotic product for 

newborn use may be composed of one Bifidobacterium strains or a combination of them coupled 

to a fructooligosaccharide with a DP lower than 10, like Orafti®HSI or Actilight®950P and a 

GOS such as Vivinal®. Other oligosaccharides, such as the α-glucooligosaccharide Bioecolians®, 

although capable of sustaining growth of bifidobacteria, should not be considered for this 

purpose because of their stimulating activity on potential pathogenic strains. Moreover this 

results suggest to assay in further in vivo studies a mixture of GOS and FOS taking advantage of 

their synergic effect, as suggested and reported by several authors (G Boehm et al., 2002; Moro 

et al., 2006). 

An essential feature for a probiotic strain is the ability to survive passage through the intestinal 

environment, reaching the colon in a lively state where it can multiply and exert beneficial 

effects (Guarner, 2006; Rijkers et al., 2010). The gastric juice is the strongest barrier for 

probiotics and, as suggested by Del Piano et al. (2011), the use of gastric juice in vitro is a 

reliable model to predict survival through gastric transit. The results obtained in this paper 

confirm that adult gastric pH is very hostile for bacterial survival. In newborns, following 

delivery, the gastric pH is close to neutrality (Bergman, 2013), it falls to 1.5-3 within a few hours 

but returns to neutrality in the following 24 hours (Morselli, Franco-Morselli, & Bossi, 1980; 

Bearer, 1995). pH subsequently declines very gradually, reaching adult values only after 2 years 

of age. Therefore, the resistance to gastric juice at pH 4, which is close to that of newborns and 

young infants (Kageyama, 2002), shown by some of the selected strains, such as B. breve B632 

or B2274, is a positive feature for Bifidobacterium administration in a lyophilized form in young 

children. An alternative, which is unavoidable if the probiotic is targeted to children older than 

1.5-2 years, is to administer strains coated in a gastro-resistant material which does not allow to 

have any losses upon gastric transit, as confirmed in our study. It is also significant to underline 

that microencapsulation of probiotic strains with a gastro-resistant coating should not only be 

regarded as a strategy to improve survival of strains after oral intake, but it is also a tool to 

improve shelf-life stability of the strains in different finished product matrices (Del Piano et al., 

2011). The coating is hydrolyzed when pH raises again in the duodenum and is therefore very 
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important that free cells are able to survive in the presence of bile salts. Bile salts are released 

into the duodenum during digestion to solubilise fats coming from the diet and possess strong 

antimicrobial activity since they are able to disorganize the structure of the cell membrane as 

well as trigger DNA damage (Ruiz, Margolles, & Sánchez, 2013). Differently from gastric pH 

adaptation, which is very often negligible, bifidobacteria possess a variety of strain-specific bile 

resistance mechanisms which are responsible for adaptation to bile salts. As also described for 

other strains in the literature (Maragkoudakis, Chingwaru, Gradisnik, Tsakalidou, & Cencic, 

2010; Santini et al., 2010; Ruiz et al., 2013), sensitivity to gastric pH or to bile salts is strain 

specific. Therefore, probiotic administration to newborns can be done using the strains in a 

lyophilized form, whereas, microencapsulation is necessary when gastric pH gets closer to that 

of adults. 

Based on results obtained in this study, and also taking into consideration what obtained in our 

previous work (Aloisio et al., 2012), it is possible to consider the strain B. breve B632, as 

lyophilized strain or in a microencapsulated form, as a candidate microorganism for use in a 

synbiotic product targeted to infants coupled to a mixture of GOS and FOS (Vivinal® and 

Actilight®950P) or short chain oligofructose.  
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Abstract Several factors are known to influence the early
colonization of the gut in newborns. Among them, the use of
antibiotics on themother during labor, referred to as intrapartum
antibiotic prophylaxis (IAP), has scarcely been investigated,
although this practice is routinely used in group B
Streptococcus (GBS)-positive women. This work is therefore
aimed at verifying whether IAP can influence the main micro-
bial groups of the newborn gut microbiota at an early stage of
microbial establishment. Fifty-two newborns were recruited: 26
born by mothers negative to GBS (control group) and 26 by
mothers positive to GBS and subjected to IAP with ampicillin
(IAP group). Selected microbial groups (Lactobacillus spp.,
Bidobacterium spp., Bacteroides fragilis, Clostridium difficile,
and Escherichia coli) were quantified with real-time PCR on
DNA extracted from newborn feces. Further analysis was
performed within the Bidobacterium genus by using DGGE
after amplification with genus-specific primers. Results obtain-
ed showed a significant decrease of the bifidobacteria counts
after antibiotic treatment of the mother. Bifidobacteria were
found to be affected by IAP not only quantitatively but also
qualitatively. In fact, IAP determined a decrement in the fre-
quency of Bidobacterium breve, Bidobacterium bifidum, and
Bidobacterium dentium with respect to the control group.
Moreover, this study has preliminarily evaluated that some
bifidobacterial strains, previously selected for use in infants,
have antibacterial properties against GBS and are therefore

potential candidates for being applied as probiotics for the
prevention of GBS infections.

Keywords Intrapartum antibiotic prophylaxis . Group B
Streptococcus .Bifidobacterium spp . Probiotics .

Antibacterial activity

Introduction

It has been known for decades that a large number of com-
mensal bacteria harbors in the gut, but only recent studies have
begun to reveal the extraordinary complexity of the human
microbiota (Cani and Delzenne 2011; Bäckhed et al. 2012;
Grice and Segre 2012; Schloissnig et al. 2013). Such a com-
plex microbial system is assembled soon after birth. The first
microbial population the newborn comes in contact with is the
maternal intestinal and vaginal microbiota; successively, the
newborn is exposed to microbes from the environment. The
first bacteria encountered in the majority of healthy infants are
facultative anaerobes, then, with the reduction of the redox
potential, strict anaerobes such as Bifidobacterium spp.,
Bacteroides spp., and Clostridium spp. become dominant
(Solís et al. 2010; Sharon et al. 2013). However, it is well
known that colonization in the early days after birth is influ-
enced by several factors which were examined extensively
within a large epidemiologic study (the KOALA study) car-
ried out involving more than 1,000 newborns (Penders et al.
2006). The most important factors are: the mode of delivery,
the maternal microbiota of intestine, vagina, and epidermis,
the type of infant feeding (breast vs formula feeding), the use
of antibiotics during the first few months of life, gestational
age at birth, and hospitalization after birth. The KOALA study
confirmed that exclusively breastfed vaginally born term
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infants have the most healthy gut microbiota, with the highest
numbers of bifidobacteria and lowest numbers of
Clostridium difficile and Escherichia coli. Conversely,
maternal lifestyle appears not to greatly influence gut
microbial composition (Penders et al. 2006). The estab-
lishment of a proper commensal microbiota in the gut is
crucial for the health of the newborn.

The primary cause of pathogen infection in vaginally de-
livered newborns is the maternal genital tract (Ferrieri and
Wallen 2012). Early onset bacterial sepsis remains one of the
major causes of neonatal morbidity and mortality (Ferrieri and
Wallen 2012). The leading cause of infection in newborns is
group B Streptococcus (GBS), mainly represented by Strep-
tococcus agalactiae strains. This gram-positive bacterium
resides in the cervix, vagina, or rectum and can reach the
amniotic fluid through intact or ruptured membranes and lead
to infection. It is estimated that about 10 % of pregnant
women are positive to GBS (Al-Taiar et al. 2011). Sepsis-
associated deaths have declined significantly in the last decade
(2001–2011) due to the introduction of an intrapartum antibi-
otic prophylaxis (IAP) in GBS-positive women during labor
(Puopolo et al. 2005; Ferrieri andWallen 2012). Penicillin and
ampicillin are used in IAP (Ferrieri and Wallen 2012). GBS is
the causative agent of both early onset and late onset infection;
in the first case, the infection manifests with respiratory dis-
turbance and apneic episodes, while in the second case, with
fever and poor feeding. As mentioned previously, there has
been a significant decrease in the incidence of GBS infection
to its current rate of approximately 0.32 per 1,000 live births
for early onset disease, whereas there is no evidence that
chemoprophylaxis prevents late onset disease. However, there
is scarce information in the literature on the effect that the
maternal antibiotic treatment may have on the early
colonization of bacteria in the newborn gut, which is
known to be highly influenced by the microorganisms
that derive from the mother. A recent study (Keski-
Nisula et al. 2013) has recorded a reduced vertical
transmission of lactic acid bacteria from IAP-treated
mothers to the neonates. However, analyses have been
made with the use of cotton swabs taken both from the
mother’s vaginal tract and from the neonate’s oral cavity
and not by checking directly the newborn’s feces.

Alternative therapies to the use of antibiotics for the pre-
vention and treatment of GBS have not been considered up to
now. Administration of probiotics during pregnancy has been
evaluated in connection with the maintenance of a stable
vaginal microbiota or with the reduction of eczema
(Wickens et al. 2008) and atopic dermatitis (Dotterud et al.
2010) in early infancy. However, to the best of our knowledge,
only one study has considered the antimicrobial property
against GBS of some Lactobacillus strains (Zárate and
Nader-Macias 2006) for their use as potential probiotics in
GBS-positive pregnant women.

This work is aimed at the evaluation of the influence that
maternal antibiotic profilaxis against GBS may have on the
main microbial groups present in the newborn gut microbiota.
Moreover, the antimicrobial activity of Bifidobacterium spp.
strains, previously selected as potential probiotic strains with
no harmful effects on newborns (Aloisio et al. 2012), against
GBS has been evaluated with the idea of using them as
probiotics in pregnant women to prevent infection of GBS.

Materials and methods

Study design and sample collections

The study was performed on 52 newborns enrolled by the
Neonatal Intensive Care Unit of the S. Orsola-Malpighi Hos-
pital of Bologna fromApril 2013 to December 2013 (Table 1).
Inclusion criteria were: born at term by vaginal delivery, birth
weight adequate for gestational age (2.5–4.0 kg), exclusively
breastfed (in order to reduce variability in the intestinal mi-
crobiota consequent to diet), not receiving perinatal antibiotic
treatment, and not receiving perinatal probiotic treatment.
Fecal samples were collected from recruited newborns at
6th–7th days after birth. Twenty-six infants were born by
mothers resulted negative to group B Streptococcus (GBS)
after vaginal swab (control group) and 26 infants by mothers
positive to GBS and treated with 2 g of ampicillin (Amplital®)
at least 4 h before delivery, followed eventually by 1 g every
4 h until delivery (IAP group). Administration was performed
in agreement with the international guidelines of the Center of
Disease Control and Prevention (Puopolo et al. 2005). In the
period in which the study has been performed, only
two mothers received a different antibiotic treatment
because of allergy to ampicillin. They have been ex-
cluded from the trial in order to reduce the variability
due to different types of antibiotics.

The study was approved by the local ethics committee
(Comitato Etico Indipendente dell’Azienda Ospedaliero-
Universitaria di Bologna, Policlinico S. Orsola-Malpighi,
document number 12/2013/U/Oss approved on March 12,
2013) before it started.

Fecal samples were collected during the medical examination
at 7 days after birth and they were immediately frozen at −80 °C,
in numbered screw-capped plastic containers, until they were
processed for DNA extraction. Researchers carrying out DNA
extraction andmicrobial analyseswere blind to the group identity
of infants (control group or IAP group).

DNA extraction from fecal sample

Two hundred milligrams of newborn feces (preserved
at −80 °C after collection) were used for the DNA extrac-
tion using the QIAamp DNA Stool Mini Kit (QIAGEN, West
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Sussex, UK) with a slight modification: an additional incubation
at 95 °C for 10 min of the stool sample with the lysis buffer was
added to the standard protocol to improve the bacterial cell
rupture. Extracted DNA was stored at −80 °C. The purity and
concentration of extracted DNAwere determined by measuring
the ratio of the absorbance at 260 and 280 nm (Infinite® 200
PRO NanoQuant, Tecan, Mannedorf, Switzerland).

Quantitative PCR

Quantification of selected microbial groups of the newborn
gut microbiota (Lactobacillus spp., Bidobacterium spp.,
Bacteroides fragilis group, C. difficile and E. coli) was carried
out with real-time PCR on DNA extracted from fecal samples.
The assays were performed with a 20-μl PCR amplification
mixture containing 10 μl of Fast SYBR® Green Master Mix
(Applied Biosystems), optimized concentrations of primers
(Tables 2 and 3), H2O molecular grade and 2-μl DNA extract-
ed from fecal samples at a concentration of 2.5 ng/μl for all the
assays except C. difficile quantification. For C. difficile quan-
tification, DNA extracted from fecal samples was not diluted
(15–25 ng/μl). The primer concentrations were optimized
through primer optimization matrices in a 48-well plate and
evaluating the best Ct/ΔRn ratio. The different primers were
also checked for their specificity using the database similarity
search program nucleotide–nucleotide BLAST (Altschul et al.
1990).Moreover, to determine the specificity of amplification,
analysis of product melting curve was performed after the last
cycle of each amplification. The data obtained from the am-
plification were then transformed to obtain the number of
bacterial cells per gram of feces, expressed as log colony
forming unit (CFU)/g, according to the ribosomal RNA
(rRNA) copy number available at the rRNA copy number
database (Klappenbach et al. 2001; Lee et al. 2009). Equations
and coefficients of determination for the different assays are
reported in Table 2.

Standard curves were constructed using 16S rRNA PCR
product of type strains of each target microorganism. PCR
products were purified with a commercial kit DNA purifica-
tion system (NucleoSpin® Extract II kit, MACHEREY-
NAGEL GmbH & Co. KG, Germany) and the concentration
measured at 260 nm. Serial dilutions were performed and 102,
103, 104, 105, 106, and 107 copies of the gene per reaction
were used for calibration.

Data of microbial counts were subjected to one-way anal-
ysis of variance (ANOVA) in order to evidence significant
differences between treated and control group of newborns.

Denaturing gradient gel electrophoresis analysis

Bifidobacterium genus-specific PCR primers targeted on the
16S rRNA gene were used in this study. They were Bif164-F
(GGGTGGTAATGCCGGATG) and Bif662-R (CCACCGTT
ACACCGGGAA). A 40-bp GC clamp (CGCCCGCCGCGC
GCGGCGGGCGGGGCGGGGGCACGGGGGG) has been
attached to the 5′ end of Bif662-R as described by Satokari
et al. (2001). These primers were provided from MWG Bio-
tech (Ebersberg, Germany). PCR reactions were basically
performed as described by Satokari et al. (2001), using the
HotStarTaq polymerase kit from QIAGEN. Each PCR mix-
ture (30 μl) contained 1×PCR buffer (QIAGEN), 3-mM
MgCl2, 0.2 mM of each dNTP, 0.2 mM of each primer,
1.25-U Taq polymerase, and 3 μl of appropriately diluted
template DNA (15 ng/μl). The PCR thermocycling program
was the following: initial denaturation at 95 °C for 5 min;
40 cycles of denaturation at 95 °C for 30 s, annealing at 56 °C
for 1 min, and extension at 72 °C for 40 s; and final extension
at 72 °C for 7 min. The reactions were subsequently cooled to
4 °C. PCR amplicons were estimated by analyzing 5-μl sam-
ples in a 1.3 % agarose gel (w/v) electrophoresis and staining
with ethidium bromide. PCR amplification products were
stored at −20 °C until denaturing gradient gel electrophoresis
(DGGE) analysis was carried out with a D-Code electropho-
resis system (Bio-Rad Labs, Hercules, CA). DGGE gels were
performed with 7 % (w/v) polyacrylamide (37.5:1 acrylamide-
bisacrylamide) in 1X Tris–acetate–EDTA (TAE) buffer ac-
cording to Muyzer and Smalla (1998). A denaturing gradient
of 50 to 55 % urea–formamide (100 % corresponding to 7-M
urea and 40 %v/v formamide) was applied for the separation
of the amplicons. Electrophoretic runs were at 150 V for
10 min and then at a constant voltage of 55 V and a temper-
ature of 60 °C for 16 h. DNA isolated from species most
commonly present in newborn fecal samples, i.e., the refer-
ence strains Bifidobacterium breve DSM 20213T,
Bifidobacterium bifidum DSM 20452T, Bifidobacterium
longum subsp. infantisDSM20088T, Bifidobacterium longum
subsp. longum DSM 20219T, and Bifidobacterium
pseudocatenulatum DSM 20438T and amplified in the same

Table 1 Sample origin and demographic characteristics

Sample Sampling age (days) Nutrition Delivery mode Gender Nationality

Female Male Italian Not Italian

Control group 7 Breast fed Vaginal 13 13 22 4

IAP group 7 Breast fed Vaginal 14 12 25 1
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way fecal DNAwas used to prepare a reference ladder. Gels
were stained with SYBR Safe (Life Technologies Italia, Mon-
za, Italy) for 20 min, rinsed with 1X TAE buffer and then
displayed under UV light. Digital capturing was performed by
using a Gel Doc™ XR apparatus (Bio-Rad). The most inter-
esting bands were cut with a sterile scalpel from the denatur-
ing gels, eluted in sterile water at 4 °C, re-amplified and re-
analyzed in DGGE. The eluted bands were then used as a
template to re-amplify the band fragments using the same
primers without the GC clamp. The PCR products were
purified from agarose gel using the NucleoSpin® Extract II
kit (MACHEREY-NAGELGmbH& Co. KG) and sequenced
(Eurofins MWG Operon, Ebersberg, Germany). Sequence
chromatograms were edited and analyzed using the software
programs Finch TV version 1.4.0 (Geospiza Inc., Seattle,WA,
USA) and obtained sequences were analyzed using the
BLAST program.

Experimental design and statistical analysis

All the tests performed with real-time PCR assays were per-
formed in triplicate and microbial counts obtained were sub-
jected to one-way analysis of variance (ANOVA) by using the
Statistica Software (ver. 7.1 StatSoft, Tulsa, Oklahoma, USA).
The ANOVA test was carried out in order to evidence signif-
icant differences between treated and control samples.

The correspondence analysis (CA) was applied to the fin-
gerprinting pattern obtained from PCR-DGGE analysis of
bifidobacterial population of newborn fecal samples. CA is a
statistical method for visualizing the association between
levels of a two-way contingency table (Benzecri 1992).
Banding profiles were scored as the presence/absence of dif-
ferent Bifidobacterium species in each investigated sample.
The contingency table was analyzed by CA module Statistica
Software (ver. 7.1, StatSoft, Tulsa, OK, USA). Plotting the

Table 2 Primer sequences and qPCR equations used in the different assays

Target microorganisms Primer sequences (5′–3′) Amplicon length (bp) References Equation R2

Escherichia coli

Eco-F GTTAATACCTTTGCTCATTGA 340 Malinen et al. 2003 Ct=−3.63x+38.50 0.998
Eco-R ACCAGGGTATCTAATCCTGTT

Clostridium difficile

Cdiff-F TTGAGCGATTTACTTCGGTAAAGA 114 Penders et al. 2006 Ct=−3.58x+39.61 0.998
Cdiff-R TGTACTGGCTCACCTTTGATATTCA

Bifidobacterium spp.

BiTOT-F TCGCGTCYGGTGTGAAAG 243 Rinttilä et al. 2004 Ct=−3.38x+41.06 0.995
BiTOT-R CCACATCCAGCRTCCAC

Lactobacillus spp.

Lac-F GCAGCAGTAGGGAATCTTCCA 349 Castillo et al. 20066 Ct=−3.84x+34.93 0.999
Lac-R GCATTYCACCGCTACACATG

Bacteroides fragilis group

Bfra-F CGGAGGATCCGAGCGTTA 92 Penders et al. 2006 Ct=−3.34x+40.48 0.989
Bfra-R CCGCAAACTTTCACAACTGACTTA

Table 3 qPCR cycles and primer concentrations using SybrGreen chemistry for the different assays

Taget bacteria Initial denaturation Denaturation Annealing temperature N cycles Fw (nM) Rev (nM)

E. coli

Eco-F/Eco-R 95 °C - 20 s 95 °C - 3 s 60 °C - 30 s 40 400 400

C. difficile

Cdiff-F/Cdiff-R 95 °C - 20 s 95 °C - 3 s 60 °C - 30 s 40 250 250

Bifidobacterium spp.

BifTOT-F/BifTOT-R 95 °C - 20 s 95 °C - 3 s 60 °C - 35 s 40 200 300

Lactobacillus spp.

Lac-F/Lac-R 95 °C - 20 s 95 °C - 3 s 63.5 °C - 30 s 40 200 200

B. fragilis group

Bfra-F/Bfra-R 95 °C - 20 s 95 °C - 3 s 60 °C - 30 s 40 300 300
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first two dimensions of the coordinates of cases (frequencies
of bifidobacterial species obtained by PCR-DGGE profiles)
and variables (newborn fecal samples belonging to two
groups: IAP and control group) gave a view of correspon-
dence among investigated newborns, Bifidobacterium spe-
cies, and IAP treatment. The first and second dimensions
explained 19.37 and 16.67 % of total variability, respectively.

Antimicrobial activity of Bifidobacterium spp. strains
against Streptococcus agalactiae using agar spot test

Four strains of Bifidobacterium, i.e., Bifidobacterium breve
B632 (DSM 24706 ), Bifidobacterium breve B2274 (DSM
24707), Bifidobacterium breve B7840 (DSM 24708), and
Bifidobacterium longum subsp. longum B1975 (DSM
24709), previously characterized in Aloisio et al. (2012), were
used to evaluate their potential antimicrobial activity against
S. agalactiae strains. Bifidobacterium strains were cultivated
in tryptone, peptone, and yeast (TPY) extract medium (Santini
et al. 2010) and incubated at 37 °C under anaerobic conditions
using an anaerobic atmosphere generation system (Anaerocult
A, Merck, Darmstadt, Germany). Four S. agalactiae strains
were used in this assay: S. agalactiae DSM 2134T and three
strains isolated from vaginal swabs of GBS-positive pregnant
women and kindly supplied by theMicrobiology unit of the S.
Orsola Malpighi Hospital of Bologna. Identification of the
isolated S. agalactiae strains was performed according to
Phillips et al. (1980).

The basic protocol of the spot agar test employing whole
cells has been described in Santini et al. (2010). Briefly, 10 μl
of each Bifidobacterium strain exponentially grown culture,
having an absorbance at 600 nm (A600) of approximately 0.8–
1, were spotted on TPYagar plates which were then incubated
in anaerobic conditions for 24 h at 37 °C. Plates were then
overlaid with 10 ml of brain heart infusion (BHI, Oxoid,
Basingstoke, UK) broth, added with 0.7 % agar, containing
500-μl of the S. agalactiae cell suspension (A600 of 0.1). After
drying, plates were incubated for 24 h in aerobic conditions
and the growth inhibition halos were evaluated and measured.
Five microliters of acetic acid (1 M) was used as a positive
control and sterile BHI broth was used as a negative control.
Each assay was performed in triplicate.

In addition to the spot agar text with live cells, inhibition
assays were performed using the cell culture supernatants,
both neutralized (i.e., brought to pH 7) and non-neutralized
(i.e., with no pH correction, pH in the range of 4.5–5.5).
Culture supernatants were prepared after centrifugation at
15,000×g for 20 min at 4 °C of bifidobacteria o.n. cultures
followed by filtration through a 0.22-μm pore size cellulose
acetate filter. The procedure described in Savino et al. (2011)
was used. Briefly, nutrient agar plates (1.5 % agar, Oxoid)
were prepared, cooled to about 40 °C and inoculated with
500 μl of S. agalactiae culture at the concentration of 107

CFU per milliliter. Fifty microliters of neutralized and non-
neutralized culture supernatant were used to imbibe sterile
paper blank disks (diameter 6 mm) which were placed
on the agar plates. After 48 h of incubation at 37 °C,
the inhibition zones were observed. The experiments
were made in triplicate.

Results

Quantification of selected microbial groups in newborn fecal
samples

DNA was extracted from fecal samples obtained from 52
newborns aged 6–7 days: 26 born from mothers treated
intrapartum with ampicillin and 26 controls. Quantification
of selected microbial groups of the newborn gut microbi-
ota (Lactobacillus spp., Bidobacterium spp., Bacteroides
fragilis group, C. difficile, and E. coli) was carried out with
real-time PCR. The average microbial counts obtained are
shown in Table 4.

All the microbial groups assayed were detected in all fecal
samples, although the average quantitative counts differed
greatly among eachmicrobial group. In the samples belonging
to the control group, E. coli, Bacteroides fragilis group, and
bifidobacteria were the most abundant (9.03, 8.53, and 7.29
log CFU/g, respectively), whereas the counts of lactobacilli
and C. difficile were much lower (6.73 and 3.70 log CFU/g,
respectively). A great variability of the microbial counts
among the different newborns was also observed:
bifidobacteria were the group with the largest range of counts
(the difference between the highest and the lowest counts was
6.83 log CFU/g). In the group whose mothers received IAP, a
signif icant average reduct ion of the number of
Bifidobacterium spp. (from an average of 7.29 to 5.85 log
CFU/g) was observed (Table 3). In addition, the difference
between the highest and the lowest counts obtained within the
newborns was reduced with respect to the control group (4.55
log CFU/g). A reduction of 1 log of the E. coli count was
found in the stools of newborns born from treated
women with respect to control samples, although these
data did not result significant probably because of the
wide variability within each group of samples. The
o the r microb ia l genera and spec ies ana lyzed
(Lactobacillus spp., C. difficile, and Bacteroides fragilis)
were not significantly affected by the maternal treatment
with ampicillin. Lactobacillus spp. and C. difficile
counts do not show great variability within and between
the two groups. Bacteroides fragilis group counts found
in the two groups showed a similar average value (8.52
log CFU/g and 9.16 log CFU/g) with a great variability
within each group.
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DGGE analysis with Bifidobacterium genus-specific primers

To better characterize the changes in the bifidobacterial pop-
ulation that were observed with real-time PCR, PCR-DGGE
analyses using genus-specific primers targeted to
bifidobacteria were carried out both on the IAP samples and
on the controls. Profiles analysis of all the samples showed a
lower level of diversity of IAP group samples with respect to
control group samples. Figure 1 shows an exemplificative
profile of six IAP and six control samples. The six profiles
corresponding to IAP group samples showed a reduced num-
ber of bands with respect to the profiles of control group
samples. Most of the bands could be identified by comparing
the migrant distances of their respective PCR amplicons with
those of reference strains used as markers (e.g., the highest
band in the profile could be ascribed to Bifidobacterium breve;
bands 4, 5, and 6 to Bifidobacterium bifidum, band 7 to

Bifidobacterium longum and band 14 to Bifidobacterium
pseudocatenulatum). Bifidobacterium longum subsp. infantis
DSM 20088T and Bifidobacterium longum subsp. longum
DSM 20219T could not be separated with the DGGE gradient
used. Identity was confirmed by cutting and sequencing of
some of the bands (Table 5). A number of bands were not
present in the mixture of type strains used and were identified
only by sequencing (e.g., Bifidobacterium dentium and
Bifidobacterium pseudolongum subsp. pseudolongum; the
latter is not present in the DGGE profile presented in Fig. 1).
In addition, some Bifidobacterium breve fragments of the fecal
samples migrated to a different position than those of the
culture collection strains (e.g., bands 9, 10, and 11), as already
evidenced for some Bifidobacterium species in the work of
Satokari et al. (2001) and were identified by sequencing.
Sequencing results and GenBank accession numbers are
shown in Table 5. Frequency values of the most abundant
Bifidobacterium species were calculated for all the 52 samples
(26 IAP groups and 26 control group samples) and shown in a
radar chart (Fig. 2). IAP determined a strong decrement in the
frequency of Bifidobacterium breve (50 % control group vs
25 % IAP group), Bifidobacterium bifidum (50 % control
group vs 25 % IAP group), and Bifidobacterium dentium
(38 % control group vs 13 % IAP group). On the other hand,
Bifidobacterium pseudocatenulatum (13 % control group vs
13 % IAP group), Bifidobacterium pseudolongum (56 % con-
trol group vs 50 % IAP group), and Bifidobacterium longum
(81 % control group vs 81 % IAP group) seemed to be less
influenced by the treatment.

Furthermore, a correspondence analysis (CA) was carried
out (Fig. 3). The CA and scatterplot projections of variables
(Bifidobacterium species frequencies) and cases (IAP group
and control group newborn samples) on the first two dimen-
sions evidenced one cluster formed by Bifidobacterium
pseudocatenulatum, Bifidobacterium pseudolongum, and
Bifidobacterium longum associated with IAP group samples.
On the opposite part of the first axis, there is a second main
cluster composed by Bifidobacterium breve, Bifidobacterium
bifidum, and Bifidobacterium dentium associated with the

Table 4 Mean counts of different microbial groups analyzed in newborn stool sample expressed as log (CFU/g of feces)

Target Log CFU/g of feces in the following microbial groups p value

Control group (n=26) IAP group (n=26)

Mean Range Mean Range

Bifidobacterium spp 7.29 4.12–10.95 5.85 3.24–7.79 0.001*

Lactobacillus spp 6.73 5.45–8.20 6.69 5.40–8.93 NS

E. coli 9.03 5.61–11.78 8.18 4.09–12.70 NS

C. difficile 3.70 2.85–5.46 3.89 3.12–4.80 NS

B. fragilis group 8.53 5.22–11.16 8.17 4.68–11.99 NS

NS not significant

Fig. 1 DGGE of PCR products of 12 newborn fecal samples after
amplification with Bifidobacterium genus-specific primers: IAP group
samples (lanes I to VI), control group samples (lanes VII to XII) and
mixed PCR products from pure culture (lanes M). lane M: B1 B. breve
DSM 20213T; B2 B. bifidum DSM 20452T; B3 B. longum subsp. infantis
DSM 20088T and B. longum subsp. longum DSM 20219T; B4 B.
pseudocatenulatum DSM 20438T. Numbers indicate bands that were
cut and sequenced
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control group samples. This further evaluation confirmed the
previous data assessments.

Antimicrobial activity against S. agalactiae strains

The antimicrobial activity with the spot agar test employing
whole cells was evaluated measuring the radius of the halo
that surrounds the Bifidobacterium spot. The results obtained
with the four Bifidobacterium strains (Bifidobacterium breve
B632, B2274, and B7840 and Bifidobacterium longum subsp.
longum B1975) evidenced a marked antimicrobial activity
against all four S. agalactiae strains. An example of the halos
obtained with the S. agalactiae-type strain is shown in Fig. 4.

The halo’s radius was similar for the three Bifidobacterium
breve st rains, being higher than 1 cm, whereas
Bifidobacterium longum subsp. longum B1975 strain showed
inhibition halo’s radius lower than 0.5 cm against all
S. agalactiae strains. Inhibition halos were also obtained by
using culture supernatants with the assay using imbibed paper
disks; halos had the same extent of those obtained with whole
cells (data not shown). On the contrary, with the use of
neutralized culture, supernatant halos were only obtained with
Bifidobacterium breve B632.

Discussion

Microbiological research abundantly focused on the gut mi-
crobiota in early infancy and on the independent effect of

Table 5 Best-mach identification phylotypes of excised DGGE bands amplified with primers targeted on Bifidobacterium 16S rDNA gene

Bands GenBank accession number Closest match (NCBI accession number) Percentage of identity (%)

1 KF990563 Bifidobacterium breve (NC020517.1) 100

2 KF990565 Bifidobacterium breve (NC020517.1) 100

3 KF990562 Bifidobacterium breve (NC020517.1) 100

4 KF990559 Bifidobacterium bifidum (NC017999.1) 99

5 KF990560 Bifidobacterium bifidum (NC017999.1) 99

6 KF990561 Bifidobacterium bifidum (NC017999.1) 99

7 KF990570 Bifidobacterium longum (NC0210008.1) 99

8 KF990571 Bifidobacterium longum (NC021008.1) 99

9 KF990564 Bifidobacterium breve (NC020517.1) 99

10 KF990566 Bifidobacterium breve (NC020517.1) 99

11 KF990567 Bifidobacterium breve (NC020517.1) 99

12 KF990568 Bifidobacterium dentium (NC013714.1) 99

13 KF990569 Bifidobacterium dentium (NC013714.1) 99

14 KF990572 Bifidobacterium pseudocatenulatum (NC037117.1) 99

Fig. 2 Radar chart displaying the frequencies values of each
Bifidobacterium species obtained by DGGE technique. The six axes
correspond to each single Bifidobacterium species frequency (% values),
the area surrounded by continuous line corresponds to the IAP group of
newborn and the area surrounded the dotted line indicates the control
group of newborn

Fig. 3 Biplot of the relation established between frequencies values of
the Bifidobacterium species (solid circles) after elaboration of the DGGE
band patterns and the two groups of newborns (IAP group and control
group, empty squares) obtained by correspondence analysis (CA)
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different factors in shaping microbial composition (Penders
et al. 2006; O’Sullivan et al. 2013). Conversely, the possible
effects on the newborn microbiota of IAP against GBS have
been scarcely investigated, although this practice is routinely
used in Europe and USA. This work is therefore aimed at
verifying whether IAP can have an influence on the main
microbial groups of the newborn gut microbiota at an early
stage. In addit ion, the antimicrobial act ivi ty of
Bifidobacterium spp. strains against GBS has been pre-
liminarily explored with the perspective of using them
as probiotics in pregnant women to reduce or prevent
GBS infection.

Real-time PCR was used for quantitative analyses of the
main microbial groups present in newborn fecal samples, as
already done in other studies focusing on factors affecting
neonate microbial composition (Palmer et al. 2007). The
results obtained confirmed the great variability in the new-
borns’ microbial composition (Palmer et al. 2007; Sanders
et al. 2010). Intra-group variation mainly regards the counts
of E. coli, Bacteroides fragilis group, and Bifidobacterium
spp. However, the main achievement of this work is the
significant reduction in the bifidobacteria counts following
IAP. It is known that oral use of beta-lactam antibiotics in
neonates in the first month of life results in decreased numbers
of bifidobacteria (Penders et al. 2006; Mangin et al. 2010).
This reduction is also present in neonates born by natural
delivery when ampicillin is administered intrapartum to the
mother. A previous work on the effect of IAP on lactic acid
bacteria reported a decreased transmission rates of these mi-
croorganisms to the neonates evaluated with the use of an oral
swab in the newborn (Keski-Nisula et al. 2013). The results
obtained within our work show that maternal IAP does

not influence the amount of lactic acid bacteria in the
neonate intestine.

Bifidobacteria were found to be affected by IAP not only
quantitatively but also qualitatively, as evidenced by PCR-
DGGE analyses. It is well known that bifidobacterial compo-
sition in infants is usually less stable compared to adults
(Satokari et al. 2002) and that several factors may influence
the species distribution and abundance (Penders et al. 2006;
Sanz et al. 2007; Fuligni et al. 2012; Di Gioia et al 2014). The
diversity of bifidobacteria population in 11 newborn fecal
samples has recently been investigated using pyrosequencing
(Turroni et al. 2012). According to these authors, the dominant
bifidobacterial species were Bifidobacterium longum follow-
ed by Bifidobacterium bifidum and Bifidobacterium breve.
Our results on the control group confirmed the prevalence of
these species, in addition to Bifidobacterium pseudolongum.
Conversely, IAP determined a strong decrement in the fre-
quency of Bifidobacterium breve, Bifidobacterium bifidum,
and B. dentium, therefore confirming the important effect that
IAP has on the early bifidobacterial colonization. This is
further evidenced by the results of the CA which showed
one cluster formed by Bifidobacterium pseudocatenulatum,
Bifidobacterium pseudolongum, and Bifidobacterium longum
associated with IAP group samples and another cluster
composed by Bifidobacterium breve, Bifidobacterium
bifidum, and Bifidobacterium dentium associated with
the control group.

Considering the high variability in antibiotic sensitivity
among bifidobacteria species and strains (D’Aimmo et al.
2007; Mättö et al. 2007; Ammor et al. 2008), it is extremely
difficult to find an antibiotic that can be active against GBS
without affecting bifidobacteria. Moreover, it is well known
that the large use of antibiotics can help the spreading of
antibiotic resistances among bacteria (Bush et al. 2011). An
increase in ampicillin-resistant E. coli strains was detected in
newborns following IAP with this antibiotic (Bizzarro et al.
2008). Therefore, alternatives to traditional chemotherapy are
looked for. Several works confirm the efficacy of probiotics
for the prevention and treatment of several pathologies includ-
ing vaginal infections (Chiang and Pan 2012; Amaretti et al.
2013), but only a few studies has been focused on
S. agalactiae infection in pregnant women (Zárate and
Nader-Macias 2006). In the present work, evidences are pre-
sented showing that some bifidobacterial strains, previously
selected for use in infants and therefore safe for the newborn
(Aloisio et al. 2012), posses in vitro antibacterial properties
against S. agalactiae strains. They have, therefore, the poten-
tial for being used as probiotics for the prevention of
S. agalactiae infections. Further studies are necessary to un-
derstand the mechanisms of the antibacterial activity of the
bifidobacteria strains against the urinary pathogen considered
in this work. This is particularly interesting for
Bifidobacterium breve B632 strain whose neutralized culture

Fig. 4 Spot agar test evidencing the antimicrobial activity of four
Bifidobacterium strains (B. breve B632, B. breve B2274, B. breve
B7840, and B. longum subsp. longum B1975 ) against S. agalactiae
DSM 2134T. Inhibition halos were obtained with spot agar test using
TYP agar plates
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supernatant shows antibacterial activity against S. agalactiae
(this work) and against other pathogenic strains (Aloisio et al.
2012). For this strain, the inhibitory activity may not only
result from the production of acidic metabolites, but also from
other proteinaceous-excreted metabolites, such as bacteriocin.

In conclusion, this study has shown for the first time that IAP
against GBS has a significant influence on the early
bifidobacterial pattern of newborns, both quantitatively and qual-
itatively. Further studies are necessary to evaluate the long-term
effects of IAP on the newborn gut microbiota. In addition, only a
complete analysis of the whole microbiota in newborns born by
IAP-treated mother via high-throughput sequencing will allow a
full understanding of the impact of the prophylaxis. Moreover,
this work has preliminary explored the possibility of using a non
chemotherapeutic approach for the prevention ofGBS infections,
i.e., the use of Bifidobacterium spp. strains which can also be
beneficial for the newborn.
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Abstract 

The effect of intrapartum antibiotic prophylaxis (IAP) for Group B Streptococcus (GBS) on 

bacterial colonization of the infant’s gut has not been investigated extensively. 

We aimed to evaluate the effect of IAP on gut microbiota in healthy term infants, also exploring 

the influence of type of feeding. 

Healthy term infants, whose mothers had been screened for GBS in late gestation, were divided 

into two groups: infants born to GBS-positive mothers who had received IAP vs. controls. 

Neonatal fecal samples were collected at 7 and 30 days of life; DNA was extracted and 

quantification of selected microbial groups (Lactobacillus spp., Bifidobacterium spp. and 

Bacteroides fragilis) was performed by real-time PCR.  

Bifidobacteria count was significantly lower in the IAP group at 7 days of life (independent-

samples Mann-Whitney U test; median [interquartile range] 6.01 Log CFU/g [5.51-6.98] vs. 

7.80[6.61-8.26]; p=0.000). No differences in Bifidobacteria count at 30 days or in Lactobacilli 

and Bacteroides fragilis counts at any time point were documented.  

Hierarchical regression analysis showed that, at 7 days of life, infants who had not received IAP 

and were exclusively HM-fed had higher counts of Bifidobacteria. Furthermore, regardless of 

IAP treatment, infants fed exclusive HM had higher Lactobacillus spp. counts both at 7 and 30 

days of life.  

IAP alters gut microflora by reducing the count of Bifidobacteria, which is further affected in 

infants receiving formula feeding. Whether these alterations could have long-term consequences 

on health and disease requires further investigation. 

 

 

 

 

 

 

 

 

 

 

Key words Microbiota; infant; intrapartum antibiotic prophylaxis, Group B Streptococcus; 

human milk. 
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Introduction 

The colonization of the gastrointestinal (GI) tract is thought to begin during the birth process, 

when the infant’s gut is exposed to maternal and environmental bacteria (Thompson-Chagoyán 

et al. 2007). However, recent studies performed in preterm foetuses and infants have shown that 

amniotic fluid and meconium are not sterile, thus suggesting an intrauterine origin of gut 

microbiota (DiGiulio et al. 2008; Mshvildadze et al. 2010). At birth, the neonatal GI tract is 

rapidly colonized by bacteria from the mother and the environment; the first colonizers are 

generally aerobes and facultative anaerobes (Jauréguy et al. 2004; Di Gioia et al. 2014), followed 

by strict anaerobes such as Bifidobacterium spp., Bacteroides spp., and Clostridium spp. (Aloisio 

et al. 2014). The composition of gut microbiota is influenced by several factors, including mode 

of delivery, gestational age (GA), maternal microbiota of the intestine, vagina and epidermis, 

hospitalization after birth, type of infant feeding and use of antibiotics and probiotics (Penders et 

al. 2006; Savino et al. 2011; Jost et al. 2012; Aloisio et al. 2014). Gut microbiota of term infants, 

born by vaginal delivery (VD) and exclusively breastfed, is considered to be ideally healthy, 

with its low count of C. difficile and E. coli and high number of beneficial bacteria such as 

Bifidobacteria and Lactobacilli 10.  

Group B Streptococcus (GBS), mainly represented by Streptococcus agalactiae strains, is one of 

the most important causes of infection and sepsis in the neonatal period. Infants born by VD may 

acquire GBS during the birth process from maternal vagina, cervix or rectum, where it resides in 

approximately 10-20% of pregnant women 11. The incidence of early-onset GBS sepsis declined 

significantly in the last decade, due to the introduction of GBS universal screening during late 

pregnancy 12 and consequent intrapartum antibiotic prophylaxis (IAP) in GBS-positive women 

13. 

Recent data suggest that the use of antibiotics in early life can impair the balance between health 

and disease later in life by altering commensal gut microbiota 14. The effect of IAP on bacterial 

colonization of the infant’s gut has not been investigated extensively 4,15. Studies performed up 

to now, mainly based on the use of culture-based techniques, which are known to have several 

limitations in particular in counting and isolation of anaerobic bacteria 16, showed that IAP does 

not increase the amount of antibiotic-resistant enterobacteria 4, but could reduce vertical 

transmission of lactic acid bacteria from IAP-treated mothers to the neonates 15. Both studies 

remarked the requirements of further investigations to clarify the effect of IAP on the newborn 

microbiota.  

In a preliminary study, we evaluated by means of molecular techniques the effect of IAP in a 

relatively small sample of exclusively breast-fed term infants born by VD, showing, at 7 days of 
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life, a significant decrease of the bifidobacteria counts in newborns born to IAP-treated mother. 

Moreover, IAP determined a decrement in the frequency of some bifidobacterial species with 

respect to newborns born to non-treated mothers 6.  

The aim of the present paper was thus to evaluate these differences in further details, expanding 

the initial number of subjects and following up infants until one month of age. The influence of 

type of feeding on microbiota composition was also explored. 

 

Materials and Methods 

The study was performed in the Nursery of S. Orsola-Malpighi Hospital in Bologna, Italy, and 

was approved by the Institutional Ethic Committee (study ID 12/2013/U/Oss). 

 

Patients 

Between October 2012 and June 2013, healthy term infants, born by VD, with birth weight 

adequate for GA (AGA), and whose mothers had been screened for GBS at 35-37 weeks 

gestation, were enrolled in the study. The exclusion of preterm or small/large for GA infants, 

infants born by caesarean section, and infants admitted to the Neonatal Intensive Care Unit was 

made in order to minimize potential confounding factors 17. 

Infants were excluded also in the following cases: 

 

 the mother had received any antibiotic other than IAP in the 4 weeks before delivery; 

 maternal IAP was performed for reasons other than GBS positivity (i.e. prolonged rupture of 

membranes in GBS-negative women); 

 maternal IAP was performed with antibiotics other than ampicillin, such as erythromycin; 

 the infant had major congenital malformations; 

 the infant developed signs of infection and/or received any antibiotic treatment after birth; 

 the infant had, or developed at birth, any serious clinical conditions that contraindicated the 

participation in the study. 

Infants were divided into two groups according to maternal GBS status and IAP: 

 IAP group: infants born to GBS-positive mothers who had received IAP. According to the 

Institutional treatment protocol for GBS prophylaxis (derived from CDC guidelines 12), iv 

ampicillin was given every 4 hours until delivery (first dose 2 g, following doses 1 g each).  

 Control group: infants born to GBS-negative mothers, who thus did not receive any 

antibiotic treatment before/at delivery. 

128



Written informed consent was obtained from each infant’s parent/legal guardian when the infant 

was about to be discharged from the nursery (48-72 hours of life). Patients’ characteristics, 

including GA, birth weight, gender, and Apgar score at 1’ and 5’ after birth, were summarized in 

a specific case report form. 

 

Faecal samples’ collection and analysis 

Follow-up visits were performed at 7 and 30 days of life. At each visit, information on infants’ 

weight gain, clinical conditions, and on-going treatments (i.e. use of prebiotics, probiotics, 

antibiotics) was collected. Furthermore, the characteristics of the infants’ feeding (exclusive 

breastfeeding, exclusive formula feeding or mixed feeding) were recorded. 

Fecal samples were collected at each follow-up visit. After collection, they were put into 

numbered screw-capped sterile plastic containers, which were immediately frozen at -80 °C, 

until they were processed for DNA extraction.  

Microbiological analyses were performed at the Laboratory of Microbiology, Department of 

Agricultural Sciences, University of Bologna, according to previously published methods 6. 

Investigators who performed the analyses were blind to group identity of the infants. 

Two hundred milligrams of faeces were used for DNA extraction using the QIAamp DNA Stool 

Mini Kit (QIAGEN, West Sussex, UK). Extracted DNA was stored at -80 °C. The purity and 

concentration of extracted DNA were determined by measuring the ratio of the absorbance at 

260 and 280 nm (Infinite® 200 PRO NanoQuant, Tecan, Mannedorf, Switzerland). 

Quantification of selected microbial groups (Bifidobacterium spp., Lactobacillus spp., and 

Bacteroides fragilis group) was carried out with real-time PCR. The assays were performed as 

previously described 6. Data obtained from amplification were transformed to obtain the number 

of bacterial cells per gram of faeces, expressed as Log colony forming unit (CFU)/g. 

 

Statistical analysis 

Data were analysed using IBM SPSS Statistic version 20.0.0 (IBM Corporation, IBM 

Corporation Armonk, New York, United States). 

Baseline characteristics in the IAP and control groups were compared using the independent-

samples Mann-Whitney U test for continuous variables and chi-square test for categorical 

variables. 

The influence of IAP on faecal bacterial count at 7 and 30 days of life was evaluated using the 

independent-samples Mann-Whitney U test.  
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Furthermore, multiple regression analysis was performed in order to estimate the effect of IAP 

on faecal bacterial count after controlling for type of infant feeding. Specifically, a hierarchical 

regression analysis was performed: IAP was entered first, followed by type of feeding. For the 

analysis, feeding type was coded as a binary categorical variable: exclusive breastfeeding vs. any 

formula feeding (this latter includes infants receiving exclusive formula or a variable proportion 

of breast milk and formula). A p value <0.05 was considered as statistically significant. 

 

Results 

Patients 

During the study period, 84 newborns were recruited (35 in the IAP and 49 in the control group). 

Neonatal characteristics did not differ between infants in the IAP and control groups (Table 1). 

 

Table 1. Baseline characteristics of the enrolled infants 

 
Values are expressed as median (interquartile range) were appropriate. 
IAP: intrapartum antibiotic prophylaxis. 

 
 

 
All the recruited infants were evaluated at 7 and 30 days after birth. The characteristics of the 

infants at the two follow-up visits are shown in Table 2. No difference between groups in terms 

of weight gain and rate of exclusive breastfeeding was documented. None of the infants was 

receiving, or had received since birth, any treatment with prebiotics, probiotics, and antibiotics. 
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Table 2. Characteristics of the enrolled infants evaluated at 7 and 30 days of life. 

 
Values are expressed as median (interquartile range), or number (percentage), as appropriate. 
IAP: intrapartum antibiotic prophylaxis. 

 

 

 

Influence of IAP on faecal bacterial counts 

The count of Bifidobacterium spp. was significantly lower in the IAP group than in the control 

group at 7 days of life (independent-samples Mann-Whitney U test; median [interquartile range] 

6.01 Log CFU/g [5.51-6.98] vs. 7.80[6.61-8.26], respectively; p=0.000), while no difference was 

documented at 30 days (8.41 [7.71 – 8.80] vs. 8.39 [7.96 - 8.86], respectively; p=0.842). No 

difference was documented between the two groups at any time point in the count of 

Lactobacillus spp. (5.56 [4.94 - 6.14] vs. 5.45 [4.81 - 6.14] at 7 days; p=0.518. 5.29 [4.68 - 6.01] 

vs. 5.25 [4.60 - 6.15] at 30 days; p=0.818) and Bacteroides fragilis group (7.71 [5.80 - 9.33] vs. 

7.75 [5.87 - 9.61] at 7 days; p=0.618. 7.36 [5.80 - 9.09] vs. 8.51 [5.86 - 9.37] at 30 days; 

p=0.479). 

Hierarchical multiple regression was performed for each bacterial group, both at day 7 and day 

30. The results of these analyses for Bifidobacterium spp. and Lactobacillus spp. are provided in 

Table 3. 
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Table 3. Results of hierarchical multiple regression analysis. 

Bifidobacterium spp. 

   B SE B β t P 

7 DOL Step 1 (constant) 7.593 .176  43.077 .000 

  IAPa -1.298 .273 -.465 -4.754 .000 

 Step 2 (constant) 7.926 .198  39.962 .000 

  IAPa -1.410 .262 -.505 -5.384 .000 

  Feedingb -.858 .274 -.294 -3.133 .002 

30 DOL Step 1 (constant) 8.294 .176  46.994 .000 

  IAPa -.245 .273 -.098 -.896 .373 

 Step 2 (constant) 8.363 .210  39.780 .000 

  IAPa -.251 .275 -.101 -.915 .363 

  Feedingb -.169 .277 -.067 -.610 .544 

Lactobacillus spp. 

   B SE B β t P 

7 DOL Step 1 (constant) 5.516 .146  37.704 .000 

  IAPa .113 .224 .056 .505 .615 

 Step 2 (constant) 5.729 .170  33.645 .000 

  IAPa .036 .221 .018 .161 .872 

  Feedingb -.527 .230 -.252 -2.290 .025 

30 DOL Step 1 (constant) 5.351 .169  31.741 .000 

  IAPa .020 .258 .008 .076 .940 

 Step 2 (constant) 5.672 .192  29.513 .000 

  IAPa -.021 .246 -.009 -.086 .932 

  Feedingb -.754 .248 -.324 -3.036 .003 

DOL: days of life; IAP: intrapartum antibiotic prophylaxis 
a IAP was coded as 0=no IAP, 1=IAP 
b Feeding was coded as 0=exclusively HM, 1=any formula feeding 

 

 

At 7 days of life, IAP and feeding type were significantly associated with Bifidobacterium spp. 

count, with higher counts in infants who had not received IAP and were exclusively HM-fed. 

IAP accounted for approximately 22% of the variance of the outcome (R2=.216 in step 1) and 

feeding type contributed for an additional 8% (R2=.301 in step 2). At 30 days of life, 

Bifidobacterium spp. count was unrelated to IAP or feeding type. 
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Hierarchical regression analysis confirmed that IAP was unrelated to Lactobacillus spp. counts 

either at 7 and 30 days of life. However, this analysis showed a significant effect of feeding type 

on Lactobacillus spp. counts: regardless of IAP treatment, infants fed exclusive HM had higher 

Lactobacillus spp. counts both at 7 and 30 days of life. Feeding type gave the main contribution 

to the variability of the outcome (approximately 6% at 7 days [R2=.003 in step 1 and R2=.065 in 

step 2] and 11% at 30 days [R2=.000 in step 1 and R2=.105 in step 2]). 

No significant influence of IAP or feeding type was documented for Bacteroides fragilis group, 

either at 7 or 30 days of life (data not shown). 

 

 

Discussion 

Three groups of bacteria were monitored in this work: members of the Bifidobacterium genus, 

which were shown to decrease at 7 days of life in infants born to mothers who received IAP with 

respect to those born to untreated mothers 6, members of the Lactobacillus genus, which showed 

a reduced vertical transmission from IAP treated mothers to newborns 15, and members of the B. 

fragilis group. This group comprises species like Bacteroides thetaiotaomicron and B. fragilis, 

which have recently been shown to be pioneer bacteria in the majority of neonates, particularly 

the breast-fed ones 7. The results of the present study show that prenatal antibiotic treatment in 

GBS-positive mothers has an early and transient influence on the infant’s gut microbiota: 

specifically, faecal count of Bifidobacteria is reduced by maternal IAP in the first week of life, 

as already shown in a preliminary study 6, but gets back to normal at one month of life. 

Furthermore, in infants born to GBS-positive mothers, an additional negative factor in terms of 

Bifidobacteria colonization is given by the use of formula feeding. The counts of Lactobacilli 

and Bacteroides fragilis group are not influenced by IAP: however, regardless IAP, exclusively 

HM-fed infants have a higher lactobacilli count both at 7 and 30 days of life.  

The introduction of universal screening for GBS and consequent IAP which followed the CDC 

updated guidelines 12 has dramatically reduced the incidence of early-onset GBS sepsis both in 

the US and in Europe, where most countries launched national guidelines for GBS prevention 11. 

Despite the clinical benefit of IAP, however, little is known on how it affects neonatal bacterial 

gut colonization and whether alterations of gut microbiota related to IAP could have short and 

long-term consequences in terms of health and disease. 

Previous studies on this topic have important limitations, such as the reduced number of samples 

considered, the non-standardization of potential confounding factors (such as mode of delivery, 

GA, and prolonged rupture of membranes) and the use of culture dependent techniques which 
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may have drawbacks when counting faecal bacteria, in particular anaerobic ones 16. Our study 

was therefore designed to overcome these problems: a highly-selected population of healthy, 

AGA, and term infants born by VD, was recruited and microbial populations were counted with 

the use of molecular techniques. To our knowledge, this is the first study investigating the effect 

of IAP on gut microbiota in the first month of life by means of molecular techniques. Only one 

previous study was focused specifically on IAP 4: twenty-five 3-days-old infants born to GBS-

positive mothers who had received iv IAP with amoxicillin were compared to 25 controls, 

matched for GA, mode of delivery, and type of feeding. No differences in the count of 

Bifidobacteria and Bacteroides were documented; however, faecal samples were analysed by 

culture-dependent methods and it was not possible to document any specific effect of feeding. In 

the study by Keski-Nisula 15, which investigated vertical transmission of Lactobacillus spp., IAP 

and longer rupture of membranes were associated with a lower transmission rate of Lactobacilli. 

However, the study was not comparable to ours, because a relatively unselected population of 

term infants was recruited and the Lactobacillus population was studied using a neonatal oral 

swab and analysed by culture-based methods. 

One further study 18 examined by means of molecular techniques the influence of prenatal and 

neonatal antibiotic treatments on infants’ gut microbiota over the first two months of life: 

similarly to the results of our study, colonization by Bifidobacteria was initially attenuated in 

infants exposed to prenatal or neonatal antibiotics and got back to normal at 2 months of life. 

However, the group receiving prenatal antibiotic treatment was formed of only three caesarean-

delivered subjects. Any alteration on the development of gut microbiota in early life is 

presumably associated with a divergent immunological starting point in the host, with potential 

implications for the development of disease later in life 14. Several events in early life can lead to 

a perturbation in the physiological development of a healthy microbiota. In the present study, 

type of feeding was found to have a great impact on gut colonization in the first days of life: 

exclusive HM feeding had a positive and persistent effect on the count of Lactobacilli, which 

was independent from antibiotic exposure; furthermore, the use of formula had a negative effect, 

which was additional to the effect of IAP, on the count of Bifidobacteria at 7 days of life. 

Although available data regarding differences in gut microbiota composition in breastfed and 

formula-fed infants are often contradictory 19, recent results obtained with culture-independent 

methods showed that infants fed HM have higher count of Bifidobacteria compared to formula-

fed infants 20, 21.  

HM is a complex biofluid which has both probiotic and prebiotic properties: it represents a 

unique source of bacteria, such as Lactobacilli, which are able to colonize the infant’s gut and to 
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promote health benefits for the host 22, and also contains specific oligosaccharides which exert a 

prebiotic effect on gut microbiota, stimulating beneficial microorganisms such as Bifidobacteria 

and Lactobacilli 23. The development of gut microbiota is driven by the so-called “pioneer 

bacteria”: in this perspective, alterations in the composition of gut microbiota in early life 

potentially have strong implications in terms of later health and disease. The results of our study 

show that IAP alters the infant’s microbiota by reducing the count of Bifidobacteria, and that this 

is further affected in infants receiving formula feeding. Whether these alterations could have 

long-term consequences on health and disease is unknown. However, the promotion of exclusive 

breastfeeding appears to be important for reducing the alterations in the count of Bifidobacteria 

induced by IAP, and also for promoting the infant’s colonisation with beneficial bacteria such as 

Lactobacilli. 

These findings also suggest that further studies should investigate the opportunity of giving a 

formulation containing potential probiotic bacteria such as Lactobacilli and Bifidobacteria in the 

first weeks of life to infants born to GBS-positive mothers and not receiving exclusive 

breastfeeding. 
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Abstract 

Introduction: The aim of this study was to use high-throughput pyrosequencing in combination 

with quantitative PCR (q-PCR) to thoroughly examine the effects of intrapartum antibiotic 

prophylaxis (IAP) against group B Streptococcus (GBS) on the infant gut microbiota.  

Materials and methods: Bacterial DNA was extracted from twenty-six infant’s feces at day 7 

and 30. Q-PCR of total bacteria, Lactobacillus spp., Bidobacterium spp. and Bacteroides fragilis 

group was performed as well as sequencing of the V3-V4 hypervariable region of the 16S rRNA 

gene. Infants were divided into 4 groups: Breast-fed (BF) born to GBS negative mothers (1) and 

to GBS positive, IAP treated mothers (2); infants fed with a mixture of breast milk and formula 

milk (mixed-fed, MF) born to GBS negative mothers (3) and GBS positive, IAP treated mothers 

(4).  

Results: Q-PCR revealed that Bifidobacterium spp. was significantly reduced in infants born to 

IAP treated mothers, both BF and MF, at day 7 of life, while other bacterial groups were 

unaffected. High-throughput sequencing showed a significant reduction of microbial richness 

and biodiversity at day 7 in the IAP treated groups (irrespective of feeding type), whereas 

differences were recovered at day 30. The proportions of Bifidobacteriaceae (P<0.001) and 

Enterobacteriaceae (P<0.044) were significantly lower and higher, respectively, in breast-fed 

IAP treated infants compared to control group at day 7.  

Conclusions: This study has definitively demonstrated the negative and short term consequence 

of IAP on newborn gut bacterial population, which are recovered after 1 month irrespective of 

the feeding type.  

 

 

 

 

 

 

 

 

Key Words: high-throughput pyrosequencing, q-PCR, Streptococcus, intrapartum antibiotic 

prophylaxis. 
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Introduction 

Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a gram-positive 

commensal bacterium which resides in the gastrointestinal and genitourinary tract of many of the 

population asymptomatically. However, in pregnant women, GBS can be vertically transmitted 

to the neonate where an estimated 1-2% develop early-onset GBS disease.1,2 In Europe, the 

prevalence of GBS colonisation among pregnant women varies between 6.5% and 36%, with one 

third of studies reporting rates of 20% or greater.3 GBS infections among infants have been 

implicated as a leading cause of respiratory disease, sepsis, meningitis and bacteraemia.4-6 Risk 

factors for neonatal infection include prematurity, prolonged rupture of membranes (> 18 hours) 

and an intrapartum temperature (> 38°C).7 

To minimize the risk of early-onset neonatal disease due to GBS, the Centres for Disease Control 

and Prevention (CDC) have recommended the practise of universal GBS screening of pregnant 

women at 35-37 weeks of gestation and intrapartum antibiotic prophylaxis (IAP) for women 

positive for GBS.8 The introduction of these guidelines has seen a reduction in the vertical 

transmission of GBS and consequently early-onset GBS disease, with a reduction in mortality 

from 50% to 4%. 9,10 

While the benefits of the use of IAP in the prevention of early-onset GBS transmission have 

been acknowledged,11,12 the impact of IAP use on the development of the infant gut microbiota 

has been scarcely studied. Infants firstly encounter maternal vaginal and faecal microbiota during 

birth and secondly acquire microorganisms from the external environment such as mammary 

gland, mouth and skin.13,14 Briefly, the first colonizing bacteria are facultative anaerobic bacteria, 

mainly staphylococci, streptococci, enteroccoci, and enterobacteria,15 after establishment of a 

reducing environment, anaerobic bacteria such as Bacteroides, Bifidobacterium and Clostridium 

spp. dominate. Biodiversity and microbial richness continue to increase until the conclusion of 

weaning when the microbiota becomes similar to that of the adult.16-19 During this short temporal 

window, a number of factors can perturb colonization; these include mode of delivery, neonatal 

intensive care environment, sanitary conditions, feeding choice, preterm vs. full term, maternal 

weight, diet and antibiotic use.20-24  

Studies on the possible effects of maternal IAP against GBS on the microbiota composition in 

infants have reported a reduced vertical transmission of lactic acid bacteria from IAP-treated 

mothers 25 and an early reduction in Bifidobacterium spp..26 However, the methodologies applied 

(plate counts, q-PCR on selected microbial groups and PCR-DGGE) did not allow an exhaustive 

analysis of the whole microbiota composition. Therefore, the aim of our study is to use high-
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throughput pyrosequencing (Illumina MiSeq System) in combination with q-PCR to thoroughly 

examine the impact of maternal IAP on the entire microbiota composition in the first month of 

life. In addition, the effect of feeding regime, i.e. exclusive breast-feeding versus mixed feeding 

was also investigated in these infants. 

 

Materials and Methods 

 

Study design and samples collection 

Ethical approval for the study design and protocol were received from the Comitato Etico 

Indipendente dell’Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi 

(document number 12/2013/U/Oss approved on March 12, 2013). 

Twenty six infants born at the Neonatal Intensive Care Unit of the S. Orsola-Malpighi Hospital 

of Bologna were recruited between April 2013 and December 2013. Informed written consent 

for participation in the study was obtained from all parents. Infants were born at term by vaginal 

delivery, and at birth weighed between 2.5 - 4.0 kg and did not receive any perinatal antibiotic or 

probiotic/prebiotic treatment. Each infant belonged to one of four groups, (Table 1). Briefly 

groups were comprised of: 1) BF-C: Breast-fed (BF) infants born to GBS negative mothers 

(control); 2) BF-IAP: BF infants born to GBS positive, IAP treated mothers; 3) MF-C: Mixed-

fed (MF) infants born to GBS negative mothers (control); 4) MF-IAP: infants born to GBS 

positive, IAP treated mothers. 

 

Table 1: Characteristics of infants in this study 

 
aBreast-fed = exclusive breast-feeding; Mixed-fed = combination of formula and breast 

milk with at  least 50% of formula feeding (it did not contain probiotics or prebiotics).  
bNO = control sample; YES = IAP treated.   

        *one sample not available at 7 days of life. 

1M= males; 2F= females.  # Vaginal delivery. 
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The GBS positive women were defined at the gestational age between 35 to 37 weeks when a 

vaginal and rectal swab was performed. Swabs were analysed through the strep B Carrot 

Broth™, a one-step method for cultivation and identification of haemolytic strains of Group B 

Streptococcus (Hardy Diagnostics, Santa Maria, CA). 

Women who tested positive for GBS were treated with 2g of ampicillin (Amplital®) at the 

beginning of labour followed by 1g every 4 hours until delivery.12 All IAP treated women 

considered in this study received a maximum of 4g of ampicillin. 

Infant faecal samples were collected at day 7 and day 30 of life and were immediately frozen at -

80 °C until analysis.  

 

DNA extraction from infant samples 

Total bacterial DNA was extracted from 200 mg of stool using the QIAamp DNA Stool Mini Kit 

(Qiagen, West Sussex, UK), according to the manufacturer’s instructions with a slight 

modification: an additional incubation at 95 °C for 10 min of the stool sample with lysis buffer 

to improve the efficiency of bacterial cell rupture of Gram-positive bacteria. Extracted DNA was 

stored at -80 °C. 

 

Quantitative PCR 

Absolute quantification of Lactobacillus spp., Bidobacterium spp., Bacteroides fragilis group 

and total bacterial numbers in infant fecal samples was determined by q-PCR. Standard curves 

were constructed using the PCR products of the 16S rRNA gene of Lactobacillus brevis DSM 

20054T, Bifidobacterium breve DSM 20213T, Bifidobacterium longum subsp. longum DSM 

20219T and Bacteroides fragilis DSM 2151T. The PCR products were purified with NucleoSpin 

Extract II (Macherey-Nagel GmbH & Co. KG, Düren, Germany) and then quantified 

spectrophotometrically (Infinite® 200 PRO NanoQuant, Tecan, Mannedorf, Switzerland). 

Standard curves for each microbial group were established using 102 to 106 copies 16S rRNA/µl. 

Details of primer sets utilised are shown in Table S1. 

 

 

 

 

 

 

 

143



Table S1: Sequences of the primers used and q-PCR equations 

 

 

Primers were synthesised by Eurofins (MWG, Ebersberg, Germany). Primer specificity was 

evaluated using the BLASTN algorithm 30 and specific amplification further confirmed 

experimentally by analysis of q-PCR melting curves. 

Each 20 μl PCR amplification reaction contained 10 μl of Fast SYBR® Green Master Mix 

(Applied Biosystems), optimized concentrations of primers (Table S2), PCR grade water and 2 

μl DNA (2.5 ng/μl). The reactions were performed in triplicate in a StepOne RealTime PCR 

System (Applied Biosystems, Foster City, CA) under the conditions given in Table S2. 

 

Table S2: q-PCR programs, number cycles and primer concentrations used for the different bacterial 

group 

 

 

The data obtained from the amplification were then divided by the average rRNA gene copy 

number for a particular genus or bacterial group and converted to obtain the number of bacteria 

expressed as Log CFU/g feces.31,32 The rRNA copy number used to obtain the number of total 

bacteria/g feces was 4.34 which is an average of the rRNA gene copy number of the most 

representative phylum present in the newborn gut (Actinobacteria, Bacteroides, Proteobacteria 

and Firmicutes). Coefficients of determination (R2) and the functions describing the relationship 

between Ct (threshold cycle) and x (log copy number) for the different assays are reported in 

Table S1. 
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Preparation of 16S V3 and V4 rRNA amplicons for Illumina MiSeq Pyrosequencing           

Extracted DNA (stored at -80 °C) was processed to amplify and sequence the V3-V4 

hypervariable region of the 16S rRNA gene.33 These amplicons, approximately 550 bp in length, 

were generated using the forward primer = 5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG - 3' and 

the reverse primer = 5’-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-

3'. Each 25 l PCR reaction contained 12.5 l of HiFi HotStart ReadyMix (KAPA Biosystems, 

Woburn, MA), 5 l of each primer (0.2 M) and microbial DNA (5 ng/l). The PCR was 

performed using the following program: lid heated at 110 °C, 95 °C for 3 min followed by 25 

cycles at 95 °C for 30 s , 55 °C for 30 s, 72 °C for 30 s and followed by a final elongation step at 

72 °C for 5 min. PCR products were purified using the Agentcourt AMPure Kit (Beckman 

Coulter Genomics, United Kingdom). 

Illumina sequencing adapters and dual-index barcodes were added to amplicons using the 

Nextera XT index kit (Illumina, San Diego, CA) according to manufacturer’s instructions. The 

following program was utilised for PCR amplification: 95 °C for 3 min followed by 8 cycles of 

95 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s and a final elongation at 72 °C for 5 min. 

Amplicons were cleaned using the AMPure purification system and then quantified using 

Qubit® 2.0 Fluorometer (Invitrogen, Life Technologies, CA, USA). The quantified libraries 

were normalised and pooled to 4 nM, then the library was denatured with NaOH and further 

diluted with hybridization buffer prior to loading on a 2 x 300 nucleotide paired-end sequencing 

run on Illumina MiSeq platform at the Teagasc Food Research Centre.  

 

Bioinformatic analysis 

Raw sequence reads were assembled in to 300bp paired-end  using FLASH.34 Reads were further 

processed using the Qiime suite of tools, version 1.8.0,35 including quality filtering based on a 

quality score of > 25 and removal of mismatched barcodes and sequences below length 

thresholds. Denoising, chimera detection, and operational taxonomic unit (OTU) grouping were 

performed using USEARCH v7.36 

Taxonomic ranks were assigned to each sequence by alignment of OTUs using PyNAST 35 to the 

SILVA SSURef database, release 111. Alpha and beta diversities were generated in Qiime and 

calculated based on weighted and unweighted Unifrac distance matrices. Principal coordinate 

analysis (PCoA) plots were visualised using EMPeror v0.9.3-dev.37 
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Statistical analysis  

MiniTab release 17 (MiniTab Ltd. Coventry, UK) was used to perform nonparametric statistical 

analysis. In order to examine significant differences between groups in the microbiota 

composition, (day 7 and day 30 of life, IAP treated and non-treated and breast-fed and mixed-fed 

infants), Mann-Whitney Test or Wilcoxon Signed Ranks Test were carried out respectively. 

Statistical significance of the microbial counts was defined as a P value of <0.05. 

Results 

Quantification of microbial groups in infant fecal samples via q-PCR 

Total bacteria, bifidobacteria, lactobacilli and B. fragilis group members were quantified from 

fecal samples of all infants at day 7 and day 30 of life. The results are an average of Log CFU/g 

of feces and are shown in Figure 1. 

 

 
Figure 1: q-PCR analysis of selected microbial groups (A=Total bacteria; B=Lactobacillus spp.; 

C=Bifidobacterium spp.; D=Bacteroides fragilis group) from 51 samples separated by IAP treatment 

(data for control groups are indicated with No and IAP groups with Yes), feeding method and days of 

sampling: breast-fed (BF) at 7 days of life, n=6 and n=7, white boxes; breast-fed (BF) at 30 days of life, 

n=7 and n=7, white boxes with vertical lines; mixed-fed (MF) at 7 days of life, n=6 and n=6, grey boxes; 

mixed-fed (MF) at 30 days of life, n=6 and n=6, white boxes with horizontal lines. Horizontal 

line=median; asterisk=significant difference at P<0.05.  
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Levels of total bacteria ranged between 9.38 to 9.83 Log CFU/g of feces across samples. No 

significant differences between infants were observed, regardless of IAP treatment or mode of 

feeding (Figure 1A). Levels of total lactobacilli did not change significantly in the IAP treated 

groups over time, irrespective of mode of feeding. By contrast, in the control infants, those in the 

MF-C group sampled at day 30 had significantly lower lactobacilli than the MF-IAP group at 

day 30 (P<0.013), MF-C group at day 7 (P<0.036) and BF-C group at day 30 (P<0.002) (Figure 

1B). Regarding Bifidobacterium spp., levels were observed to be significantly lower in infants 

belonging to IAP treated groups at day 7, both breast-fed (P<0.005) and mixed-fed (P<0.03) 

(Figure 1C), than in infants belonging to the control group. At 30 days of life, the difference in 

bifidobacterial counts between IAP treated groups and the respective controls was no longer 

significantly different. Irrespective of the feeding method (BF or MF), a significant increase was 

observed between the two sampling times in the IAP treated groups (P<0,035 and P<0,036, 

respectively). Furthermore, a significant increase of the Bifidobacterium spp. counts was 

observed in the MF-C group between the two sampling times (P<0.028) (Figure 1C). 

Total B. fragilis levels were not significantly different between the BF-IAP and the BF-C groups, 

however at day 7 members of the B. fragilis group were detected in significantly lower levels in 

the MF-IAP infants than those in MF-C group (P<0.045) (Figure 1D).  

 

 

Illumina MiSeq pyrosequencing of 16S rRNA amplicons from the fecal samples of IAP 

treated and control infants.  

The V3-V4 region of bacterial 16S rRNA was amplified and sequenced on the MiSeq (Illumina) 

platform using DNA extracted from the infant fecal samples. A total of 9,731,890 quality-filtered 

sequences were obtained from these samples with an average of 200,000 reads per sample. 

Diversity, richness, coverage and evenness estimations were calculated for all data sets (Figure 

2). Statistical analysis using Mann-Whitney Test indicated that at day 7, the Shannon index and 

Simpson’s index (P<0.024 and P<0.014, respectively; data not shown) were significantly lower 

in the IAP treated compared to the control infants (irrespective of feeding regime), no differences 

were reported at day 30. In particular, in breast-fed infants at day 7, statistically significant 

decreases in both diversity (Shannon) and richness (Simpson) indices (P<0.007 and P<0.0154, 

respectively) were observed in the IAP group compared with control infants (Figure 2).  
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Figure 2: Richness and diversity indices relative to the different groups of infants separated by IAP 

treatment (data for control groups are indicated with No and IAP groups with Yes), feeding method and 

days of sampling: breast-fed (BF) at 7 days of life, n=6 and n=7, white boxes; breast-fed (BF) at 30 days 

of life, n=7 and n=7, white boxes with vertical lines; mixed-fed (MF) at 7 days of life, n=6 and n=6, grey 

boxes; mixed-fed (MF) at 30 days of life, n=6 and n=6, white boxes whit horizontal lines. Horizontal 

line=median;  asterisk=outlier; filled square=significant difference at P<0.05. A) = Shannon index; B) = 

Simpson index; C) = operational taxonomic units (OTUs); D) = Chao1. 

 

 

 

 

Composition of the gut microbiota over time (from 7 to 30 days of life). 

Relative abundances of the dominant bacterial phyla, families and genera at day 7 and day 30 are 

shown in Table 2. 
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Table 2: Relative abundance of the most representative phyla, families and genera in faecal samples at 7 

days and after 30 days of life. 

 

 

Additionally, aggregate taxonomical data at the phylum, family and genus level for each of the 

examined groups are shown in Figure 3, 4, 5.  
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Figure 3: Aggregate taxonomical composition at phylum level in fecal samples from 25 newborns at 7 
days of life: BF-C (panel a), MF-C (panel c); BF-IAP (panel e); MF-IAP (panel g) and from 26 newborns 
at 30 days of life: BF-C (panel b), MF-C (panel d); BF-IAP (panel f); MF-IAP (panel h).  
 

 

 
Figure 4: Aggregate taxonomical composition at family level in fecal samples from 25 newborns at 7 
days of life: BF-C (panel a), MF-C (panel c); BF-IAP (panel e); MF-IAP (panel g) and from 26 newborns 
at 30 days of life: BF-C (panel b), MF-C (panel d); BF-IAP (panel f); MF-IAP (panel h). 
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Figure 5: Aggregate taxonomical composition at genus level in fecal samples from 25 newborns at 7 
days of life: BF-C (panel a), MF-C (panel c); BF-IAP (panel e); MF-IAP (panel g) and from 26 newborns 
at 30 days of life: BF-C (panel b), MF-C (panel d); BF-IAP (panel f); MF-IAP (panel h). 

 

Taxonomy-based analysis showed that at the phylum level, more than 96% of the reads in all 

samples, both at day 7 and day 30, could be ascribed to four bacterial phyla, Actinobacteria, 

Bacteroidetes, Firmicutes and Proteobacteria whose relative abundances varied widely from 

infant to infant (Table 2). 

Only slight differences in the abundance of the phyla were found at day 7 and 30 indicating a 

relative stability over time. However, Firmicutes, Proteobacteria and Verrucomicrobia were 

more abundant at day 7 than at day 30, whereas Bacteroidetes and Actinobacteria were more 

represented after 30 days of life (Table 2).  

Phylum Firmicutes included a number of families (Streptococcaceae, Veillonellaceae, 

Clostridiaceae, Staphylococcaceae and Lactobacillaceae). Among them, Streptococcaceae and 

Veillonellaceae were dominant at day 7 (15.7%) and day 30 (21.3%) (Table 2). 

Within the Bacteroidetes, the families belonging to Bacteroidaceae and Porphyromonadaceae 

were represented, whereas Proteobacteria and Actinobacteria included only one family, 

Enterobacteriaceae and Bifidobacteriaceae, respectively (Table 2). 

Notably, the phylum Verrucomicrobia was found only in one sample (MF-C) at day 7 (53.4%) 

and day 30 (48.0%) (Table 2). Bifidobacterium appeared to be more sensitive to antibiotic 

treatment than any other genus with a negligible relative abundance at day 7 and a strong growth 

151



at day 30 (Figure 5 e,g,f,h). More specifically, taxonomy-based analysis on BF-IAP newborns 

showed a significantly higher abundance of the phylum Actinobacteria (Figure 3 e,f), of the 

family Bifidobacteriaceae (P<0.025) (Figure 4 e,f) and of the genus Bifidobacterium (P<0.025) 

at day 30 when compared to day 7 (Figure S1-A).  

In the MF-IAP treated infants, there was a statistically significant higher proportion of reads 

corresponding to Bifidobacterium at day 30 (P<0.013) (Figure S1-B) and a trend towards 

significance for increased Lachnospiraceae (Firmicutes) (P<0.059) (Figure 4 g,h). Additionally, 

there was a significant decrease in Staphylococcus at day 30 in MF infants (P<0.042) (Figure S1-

C). In the control infants, there was no significant difference in taxonomy between BF and MF 

over time. 

 

 
Figure S1: Significant difference in relative abundance of selected genera between IAP groups 
(A=Bifidobacterium in BF newborns; B=Bifidobacterium in MF newborns; C=Staphylococcus in MF 
newborns) at 7 days (white boxes) compared with 30 days (gray boxes). Horizontal line=median; 
circle=outlier; asterisk=significant difference at P<0.05. 
 

Composition of the gut microbiota according to the type of treatment (IAP vs. Control). 

At the phylum level, BF-IAP infants at day 7 showed significantly lower abundances of 

Actinobacteria (P<0.001), and a trend towards significance for higher abundances of 

Proteobacteria (P<0.062) compared to BF-C infants (Figure 3 a,e). Significant differences were 

observed between IAP and control infants at the family level: in BF-C infants at day 7 a 

statistically higher level of Bifidobacteriaceae (P<0.001) and lower level of Enterobacteriaceae 

(P<0.044) compared with BF-IAP was observed (Figure 4 a,e). Additionally, at day 30 there was 

a significant higher level of Veillonellaceae in BF-C infants compared with the BF-IAP group 

(P<0.035) (Figure 4 b,f). 

Referring to the genus level, the gut microbiota of BF-C newborns at 7 days was dominated by 

genera belonging to the Bacteroidaceae, Enterobacteriaceae and Bifidobacteriaceae families 

(Figure 5 a), which accounted for approximately half of all genera detected at day 7 (Table 2). At 

day 7, the relative abundance of Bifidobacterium was significantly higher in BF-C than in BF-

IAP infants (P<0.001) (Figure S2), in contrast, Bacteroides and Escherichia levels were similar 
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between C and IAP groups with a trend toward a significant increase in Bacteroides proportions 

and decrease in Escherichia in control group (P<0.078 and P<0.062, respectively) (Figure 5 a,e). 

When the relative abundance between IAP and C was examined in the MF infants, no significant 

differences were observed, both at day 7 and 30, although the family Coriobacteriaceae tended 

to be over represented in control infants compared with the IAP treated infants at day 7 

(P<0.059) (Figure 4 c,g,d,h). 

 

 
Figure S2: Significant difference in relative abundance of the genus Bifidobacterium in BF newborns at 7 
days of life. Control, (white boxes), IAP newborns (gray boxes). Horizontal line=median; circle=outlier; 
asterisk=significant difference at P<0.05. 

 

Composition of the gut microbiota by mode of feeding (BF vs. MF). 

At day 7, when comparing feeding regime, no significant differences in microbial composition 

were detected both in IAP treated and control groups. A trend towards significance in an increase 

in Clostridiaceae and Staphylococcus in BF-C infants compared with MF-C (P<0.059) was 

observed (Figure 4 a,c and 5 a,c). 

At day 30, BF-C had a significantly higher levels of Firmicutes (P<0.001), which accounted for 

51.9% of all bacteria present, when compared with the MF infants (Figure 3 b,d). At the family 

level, a significantly higher number of Lachnospiraceae (P<0.042) was observed in MF-IAP 

compared with BF-IAP infants (Figure 4 h,f). Finally at genus level, in comparison with MF-IAP 

infants, BF-IAP had higher levels of Escherichia (P<0.040) (Figure S3). 

 
Figure S3: Significant difference in relative abundance of the genus Escherichia in IAP newborns at 30 
days of life. BF (white boxes), MF newborns (gray boxes). Horizontal line=median; asterisk=significant 
difference at P<0.05. 
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Beta diversity 

Principal coordinate analysis (PCoA) using unweighted Unifrac distances were utilised to 

examine the association of samples between different 

treatment (IAP treated Vs. control) and feeding type (BF Vs. MF) (Figure S4). No clustering was 

evident within the three groups of samples compared but separation between samples at day 7 

and at day 30 (BF-C samples) (Fi

at day 7) (Figure S4-2A) was observed.

 

Figure S4:  Principal coordinates analysis (PCoA) of unweighted UniFrac distances of 16S rRNA 
genes on the scatterplot of the first three principal axes. 
 

(1)-PCoA in order to compare the time effect (7 days 
Samples distribution in BF-C newborns. 
newborns. (2)-PCoA in order to compare the treatment impact (IAP 
days. (B) -Samples distribution in BF newborns at 30 days. 
Samples distribution in MF newborns at 30 days. 
distribution in IAP newborns at 7 days. 
newborns at 7 days. (D) -Samples distribution in C newborns at 30 days.

 

 

 

 

Principal coordinate analysis (PCoA) using unweighted Unifrac distances were utilised to 

examine the association of samples between different groups overtime (day 7 Vs. day 30), 

treatment (IAP treated Vs. control) and feeding type (BF Vs. MF) (Figure S4). No clustering was 

evident within the three groups of samples compared but separation between samples at day 7 

C samples) (Figure S4-1B) and between control and IAP treated samples (BF 

2A) was observed. 

Principal coordinates analysis (PCoA) of unweighted UniFrac distances of 16S rRNA 
on the scatterplot of the first three principal axes. Each point represents an individual subject.

PCoA in order to compare the time effect (7 days Vs. 30 days). (A) -Samples distribution in BF
C newborns. (C) -Samples distribution in MF-IAP newborns. (D) -Sa

PCoA in order to compare the treatment impact (IAP Vs. C). (A) -Samples distribution in BF newborns at 7 
Samples distribution in BF newborns at 30 days. (C) -Samples distribution in MF newborns at 7 days 

Samples distribution in MF newborns at 30 days. (3)-PCoA in order to compare the feeding effect (BF 
distribution in IAP newborns at 7 days. (B) -Samples distribution in IAP newborns at 30 days. (C)

Samples distribution in C newborns at 30 days. 

Principal coordinate analysis (PCoA) using unweighted Unifrac distances were utilised to 

groups overtime (day 7 Vs. day 30), 

treatment (IAP treated Vs. control) and feeding type (BF Vs. MF) (Figure S4). No clustering was 

evident within the three groups of samples compared but separation between samples at day 7 

1B) and between control and IAP treated samples (BF 

 
Principal coordinates analysis (PCoA) of unweighted UniFrac distances of 16S rRNA 

represents an individual subject. 

Samples distribution in BF-IAP newborns. (B) -
Samples distribution in MF-C 

Samples distribution in BF newborns at 7 
Samples distribution in MF newborns at 7 days of life. (D) -

PCoA in order to compare the feeding effect (BF Vs. MF). (A) -Samples 
(C) - Samples distribution in C 
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Discussions  

 

A large number of papers and reviews have explored the complexity of microbial acquisition in 

the newborn gut during the first 48 months of life, as well as the factors which can affect gut 

microbial colonization such as mode of delivery, feeding type and antibiotic exposure.17,23,38-40 

Administration of antimicrobial agents, therapeutically or as prophylaxis to pregnant women, 

such as IAP to counteract early-onset GBS disease in infants causes alterations of maternal 

microbial population of vagina and intestinal tract.41,42 Although the strong imprinting of the 

maternal microbiota on the early infant microbial population has been demonstrated,9,16-18 only a 

few studies have focused on the effect of IAP in infants. A recent study26 has shown that IAP 

treatment for GBS has a significant influence on the early bifidobacterial patterns, both 

qualitatively and quantitatively. However, a complete analysis of the effects of IAP on the 

overall bacterial population is lacking as well as information on the long term effects of IAP.  

In the current study, next generation sequencing has been used for the first time to investigate the 

potential modulation of the newborn gut microbiota due to IAP. q-PCR was also used to achieve 

absolute quantification of targeted microbial genera. The study enrolled healthy infants, born at 

term, vaginally delivered, not treated with perinatal antibiotic and probiotics/prebiotics, breast-

fed and mixed-fed infant, whose fecal material was sampled at day 7 and day 30 of life.  

As already shown in other sequencing based infant studies, high variability in the inter-

individual composition of gut microbiota has been observed in the present work.43,44 Total 

bacterial counts were stable in all newborns throughout the trial period without significant 

difference between groups under investigation, in agreement with Hopkins et al.45 who 

investigated the effect of different feeding types on the gut microbiota composition. Moreover, 

this study confirms an early reduction (at day 7 of life) of Bifidobacterium spp. counts in 

newborns whose mothers received IAP with respect to infants of control groups.26 This 

difference is lower at 30 days, as shown both by q-PCR and sequencing analyses. In addition, 

high-throughput sequencing revealed an early reduction of microbial biodiversity in IAP infants, 

which was restored after one month. The dominant microbiota in the newborns studies was 

defined mainly by Firmicutes, Proteobacteria and Bacteroidetes, whose relative reads, on 

average, accounted for approximately 30% each. On the other hand, Actinobacteria were less 

represented with percentage values up to 10%. As already discussed in earlier studies,45,46 this 

work confirmed using sequencing analyses, that the Bacteroides genus is highly represented in 

the newborn gut microbiota. Moreover, other dominant anaerobic genera of the early microbiota 

were Bifidobacterium, Parabacteroides, Clostridium and Lactobacillus. Sequencing results also 
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showed that the relative percentage of Lactobacillus was very low and significant differences 

were not detected between IAP and control groups. By contrast, real time results showed lower 

Lactobacillus counts in MF-C group with respect to MF-IAP at day 30. This observation does 

not have a specific explanation and should be confirmed by other studies.  

The microbiota of the IAP newborns in the first week, compared with controls, was dominated 

by members of the Enterobacteriaceae family, which comprises potentially pathogenic strains. 

These observations are consistent with data obtained by Edwards et al.47 who found that IAP 

selected ampicillin-resistant enterobacteria in the genital tract of the mother and, consequently, 

could increase the level of potential infectious bacteria in infants. In addition, Tanaka et al. 48 

investigated the influence of antibiotic exposure during the postnatal period on the newborn gut 

microbiota development and found an inverse relation between the growth of 

Enterobacteriaceae and bifidobacteria.   

In the present study we have considered the modulating effect of feeding type and its relation 

with IAP on gut colonization in infants. Numerous studies have demonstrated increased growth 

of beneficial bacteria belonging to the Bifidobacterium and Lactobacillus genera in the gut 

microbiota of breast-fed infants, whereas other authors have not found significant differences 

with regard to the type of feeding.17,44,49-51 Sequencing results obtained in this work showed that 

feeding type did not influence the gut microbial colonization at 7 days, whereas several 

differences were observed after one month. The relative abundance of Lactobacillus did not 

change with the different feeding type, even though it was found that breast feeding had a 

significant positive impact on the levels of Firmicutes. No significant differences were also 

found in the Actinobacteria phylum, including the Bifidobacterium genus. Additionally, we 

found a greater effect of IAP in BF with respect to MF newborns. During the postnatal period, 

vertical bacterial transmission through breast milk has been reported in previous studies;52,53 

accordingly, it is possible to speculate a reduction of beneficial strains present in breast milk and, 

consequently, a reduced bacterial transmission from the mother to newborn.  

In this study a DNA sequencing approach has been used for the first time to characterize the 

entire gut microbial population in newborns after intrapartum antibiotic treatment. The results, in 

combination with those acquired through q-PCR, confirmed and enriched those obtained in 

previous studies. The data indicate a reduction in biodiversity and richness in IAP groups 

compared with controls, definitively demonstrating the negative and short term consequence of 

IAP in early gut bacterial population, the impact being higher for breast fed newborns. The 

bacteria most affected by antibiotic treatment belonged to the Bifidobacterium genus followed 

by, to Bacteroides. Most of the differences were equalized at 30 days, when the gut colonization 
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reaches a higher stability. These results open the perspective of investigating the IAP impact on 

vertical bacterial transmission, mother to newborn, during delivery. The analyses of microbiota 

from vagina, breast milk and gut of pregnant women and gut microbiota of matched newborns 

could allow to assess the impact of IAP at different levels and to provide new insights in order to 

limit the negative effect of IAP as well as to define new strategies to control GBS infection in 

pregnant women. 
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General discussion and conclusions 
 

 

The work reported in this thesis was aimed to study factors affecting the gut microbial 

colonization in the early stage of life and to suggest possible strategies to maintain or restore a 

correct microbial gut balance in infants. In order to explain and understand the role of the genus 

Bifidobacterium within the gut microbiota and its relationship towards the health host’s status, 

this study encloses different closely-related works.  

The first goal of this Ph.D thesis was to review the current literature regarding to the probiotics 

and prebiotics application in infants with a particular attention to bifidobacteria. Currently, the 

research on this topic is particularly active. It underlines the efficacy of some probiotic strains 

for the treatment of targeted diseases and stresses that newborns and children possessing an 

unstable gut microbial composition are more susceptible to variations caused by external factors. 

In this respect, bifidobacteria play a pivotal role and their use in pediatrics as preventive or 

therapeutic agents is an established fact, both for enteric diseases and diseases which are not 

apparently linked to the gastro-intestinal tract. Moreover, several papers agree to enrich the 

formula milk with prebiotics to make the gut microbial composition of formula fed infants more 

similar to that of breast-fed newborns. These up to date on probiotics and prebiotics application 

led to the preparation of a book’s chapter and a review, respectively: 

1) “Infant development, currently the main applications of probiotics and prebiotics?”    

Mazzola G et al., (2015) within the book “Probiotics and Prebiotics: Current Research 

and Future Trends” 

 
2) “Bifidobacteria: their impact on gut microbiota composition and their applications as 

probiotics in infants” Di Gioia D et al., (2014), Applied Microbiology and Biotechnology 

The second intent of this thesis was to evaluate the potential applications in infants of selected 

bifidobacteria also in combination with prebiotic fibers. Within this aim, the antimicrobial 

activity of previously selected Bifidobacterium strains from infant feces (Aloisio et al., 2012) 

against potentially pathogenic bacteria of infants was assessed. For this purpose continuous 

culture fermentation simulating the gut microbiota of a 2-month-old colicky infant were 

performed and challenged with the strain B. breve B632 (previously selected in the study of 

Aloisio et al., 2012). To examine the time-course of E. coli, Enterobacteriaceae and 

Bifidobacterium spp. populations, fluorescent in situ hybridization (FISH) and quantitative PCR 

163



(q-PCR) were performed, while the random amplification of polymorphic DNA  (RAPD-PCR) 

was applied to trace the strain of B. breve B632 inoculated in the fecal cultures. 

In addition, commercial fibers were screened for their selective stimulation towards 

bifidobacteria strains. Last but not least, resistance of selected strains to simulated gastro-

intestinal conditions was evaluated. The results have globally shown that the strain B. breve 

B632, as lyophilized strain or in a microencapsulated form, is a suitable candidate, compared to 

the other bifidobacteria strains assayed, for the use as probiotic in infants. Additionally, the 

selection of commercial fibers allowed the identification of two oligosaccharides, a 

fructooligosaccharide with a DP lower than 10 (Orafti®HSI) and a galactooligosaccharide 

(Vivinal®) which were able to stimulate selectively the growth of the B. breve B632. The same 

strain of B. breve was able to survive in a complex microbial environment when it was 

inoculated within gut microbiota cultures of a colicky newborn, simulating in vivo conditions, as 

well as to exert antimicrobial activity against Enterobacteriaceae. 

Thanks to the present study, which complements already published results (Aloisio et al., 2012), 

the B. breve B632 strain is one of the component of a probiotic formulation targeted to newborns 

for the prevention/treatment of colics. The next goal is the formulation of a synbiotic product for 

the re-establishment of the correct microbial balance in newborns after disbiosis. 

This work led to the preparation of two papers: 

3) “The Probiotic Bifidobacterium breve B632 Inhibited the Growth of Enterobacteriaceae 

within Colicky Infant Microbiota Cultures” Simone M et al., (2014), BioMed Research 

International 

 
4) “Development of a synbiotic product for newborns and infants” Giuseppe M et al., 

(2015), under submission 

 

Several factors (e.g., feeding type, use of antibiotics during early stages of life, gestational age at 

birth, hospitalization after birth, mode of delivery) in early life can lead to a perturbation in the 

development of the gut microbiota. The impact of intrapartum antibiotic prophylaxis (IAP), 

against group B Streptococcus (GBS), on the newborn gut colonization has been studied for the 

first time in this work.  

Healthy, born at term, vaginally delivered, not treated with perinatal antibiotic and 

probiotics/prebiotics infants were enrolled. The microbial composition was assessed using a 
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combination of culture independent techniques which included q-PCR, denaturing gradient gel 

electrophoresis (DGGE) and the high-throughput pyrosequencing of 16S rRNA.   

 

In the first study 52 fecal DNA from infants, exclusively breast-fed, at 7 days of life were 

analyzed. The evaluation by q-PCR of the main microbial groups in infant fecal samples, 

Lactobacillus spp., Bidobacterium spp., Bacteroides fragilis group, C. difficile and E. coli, 

showed a significant reduction of the bifidobacteria counts following IAP. DGGE approach, 

targeted to evaluate the biodiversity within the bifidobacteria population, showed that IAP 

determined a strong decrement in the frequency of some Bifidobacterium species such as B. 

breve, B. bifidum and B. dentium. Additionally, this work showed that selected bifidobacteria 

strains (see papers 3 and 4) exerted, in vitro, an antimicrobial activity towards S. agalactiae 

strains isolated from positive-GBS women. These results provided preliminary evidences on the 

possibility of using a non-chemotherapeutic approach for the prevention of GBS infections, i.e., 

the administration of selected bifidobacteria in the positive pregnant women to GBS.  

This work led to the preparation of one paper: 

5) “Influence of intrapartum antibiotic prophylaxis against group B Streptococcus on the 

early newborn gut composition and evaluation of the anti-Streptococcus activity of 

Bifidobacterium strains” Aloisio I et al., (2014), Applied Microbiology and 

Biotechnology 

 

The second part of this study was aimed to shed light on the short term effects of IAP and also to 

its effect at one month of life. Additionally, two types of feeding were examined. 

A total of 84 subjects were enrolled and followed up over one month of life and clustered into 

two groups according to the feeding type: exclusively human breast-fed or formula-fed. Selected 

microbial groups, Lactobacillus spp., Bifidobacterium spp. and Bacteroides fragilis were 

monitored via q-PCR from DNA extracted from fecal samples. As already shown in the previous 

study the fecal counts of Bifidobacteria were reduced by maternal IAP in the first week of life 

but they get back to normal after one month of life. Thus, the first achievement of this study was 

that IAP in GBS-positive mothers had an early and transient influence on the infant’s gut 

microbiota by reducing the count of Bifidobacteria which was recovered after one month. 

Furthermore, the use of formula milk represented an additional negative factor in terms of 

bifidobacteria colonization. The other microbial groups examined did not show any significant 

variations both at 7 days and at 30 days of life. 
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This work led to the preparation of one paper: 

6) “Influence of intrapartum antibiotic prophylaxis for Group B Streptococcus and type of 

feeding on gut microbiota during the first month of life” Corvaglia L et al., (2015), under 

submission 

 

While the absolute quantification of selected bacterial groups is important, the groups examined 

represent only a small proportion of the overall intestinal microbiota. Moreover, a complete 

analysis of the effects of IAP on the overall gut bacterial population in infants was lacking.  

In this study a DNA high-throughput pyrosequencing approach (Illumina MiSeq System), in 

combination with the q-PCR analysis, was used for the first time to enrich and better understand 

the IAP impact at 7 days and at 30 days of life. Moreover, a comparison of the gut composition 

between breast-fed and mixed-fed infants (breast-fed plus at least 50% of formula milk), was also 

performed at the same sampling times. 

Sequencing results (performed at the Food Biosciences Department, Teagasc Food Research 

Centre, Fermoy, Co. Cork, IE) indicated a reduction in biodiversity and richness observed in IAP 

group and definitively demonstrated the negative and short term consequence of IAP on early 

gut bacterial population. The bacteria which resulted more affected by antibiotic treatment 

belonged to the Bifidobacterium genus and, secondly, to the Bacteroides one. The microbiota of 

the IAP newborns in the first week, compared to not-IAP controls, was dominated by members 

of the Enterobacteriaceae family, which comprise potentially pathogenic strains. Additionally 

the feeding type did not influence the gut microbial colonization at 7 days, whereas several 

differences were observed at one month. In particular, at this time point, the breast-fed control 

infants had a significantly higher levels of Firmicutes (P<0.001), and the breast-fed IAP treated 

infants had higher levels of Escherichia (P<0.040) compared to the mixed-fed infants. The 

relative abundance of Lactobacillus did not change with the different feeding types, even though 

it was found that breast feeding had a significantly positive impact on levels of Firmicutes. 

Furthermore, this work reported a greater effect of IAP in breast-fed infants compared to infants 

feeding with a mixture of breast and formula milk which can be explained by a possible 

reduction of beneficial bacteria present in breast milk and consequently a reduced bacterial 

transmission from the mother to newborn. 
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This work led to the preparation of one paper: 

7) “High-throughput sequencing and q-PCR approach to study early gut microbiota 

perturbations following intrapartum antibiotic prophylaxis to prevent group B 

streptococcal disease” Mazzola G et al., (2015), under submission 

 

Therefore, the main achievements reached in this dissertation are that the strain B. breve B632, 

as lyophilized strain or in a microencapsulated form, is a possible candidate to offset the 

problems which gas-producing coliforms or streptococcal infections cause to the infant’s gut 

microbiota. In order to strengthen the probiotic effect and to stimulate selectively the growth of 

the strain B632, it has been hypothesized its use in a synbiotic product coupled to a mixture of 

selected prebiotic fibers, a galactooligosaccharide and a fructooligosaccharide. A clinical studies 

on newborns to which a probiotic preparation containing this strain has been administered is at 

present on-going to check the efficacy of Bifidobacterium spp. administration on the prevention 

of colics in infants.  

The investigation of the early gut microbial composition has allowed to expand scientific 

knowledge about the factors that contribute to the development of the gut microbiota in 

newborns. These studies have shown that IAP could affect the early intestinal balance in infants 

and they have paved the way to the definition of new strategies alternative to antibiotic 

treatment to control GBS infection in pregnant women. 
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