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1. INTRODUCTION 
 

1.1 THE HERPESVIRIDAE’S FAMILY TAXONOMY 

 
Herpesviruses are large DNA-containing enveloped viruses widely distributed in 

nature. Based on biological properties and sequence data, the family 

Herpesviridae is divided into three subfamilies Alpha-, Beta-, and 

Gammaherpesvirinae [1,2,3,4].  

Alphaherpesvirinae (containing Simplexviridae, Varicelloviridae, Mardiviridae 

and Iltoviridae genera) were classified by a variable host range, short 

reproductive cycle, rapid spread in tissue colture and ability to establish latent 

infections primarily in sensory ganglia. The known human pathogens of this 

subfamily are: herpes simplex virus 1 and 2 (HSV-1, HSV-2) and varicella 

zoster virus (VZV). 

Betaherpesvirinae (containing Cytomegaloviridae, Muromegaloviridae and 

Roseoloviridae) were characterized by a limited host range, long reproductive 

cycle and slow infection progression in tissue culture. Cells that are infected 

often become enlarged (cytomegalia) and the virus can maintain latency in 

secretory glands, lymphoreticular cells, kidneys and other tissues. The human 

herpesviruses members of this subfamily are: human cytomegalovirus (HCMV 

or HHV-5), human herpesviruses 6A,  6B and 7 (HHV-6A, HHV-6B, HHV-7). 

Gammaherpesvirinae is divided into two genera: Lymphocryptoviridae which 

includes human Epstein-Barr virus (EBV or HHV4) and Rhadinoviridae which 

includes human Kaposi’s sarcoma-associated herpesvirus (KSHV or HHV8). 

They were classified by a very limited host range, actually they are usually 

specific for T and B cells and establish a latent infection in lymphoid tissues. 

All members of the Herpesviridae family share the same virion structure, 

genomic arrangement and biological properties. 
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1.2 HERPES SIMPLEX VIRUS (HSV-1) 

  

1.2.1 Epidemiology and Pathogenesis  

Herpes simplex virus type 1 infects 60%-80% of people throughout the world. 

Initial HSV infection usually happens in childhood and is often asymptomatic 

[5]. Virus transmission occurs between an infected human to a susceptible one, 

by close contact. The oropharyngeal mucosa is the most common location of 

primary infection,  but incident episodes of genital infection by HSV-1 seems to 

be increased [6,7]. Generally HSV infections are confined to skin and mucosa 

but could be severe in immunocompromised host. HSV-1 causes oral, labial and 

occasionally facial lesions, it may cause keratitis if infects the eye mucosa and is 

the most common cause of sporadic encephalitis in adults Fig. 1.2. A [5].  

 

 
Fig. 1.2.A Sites of HSV infection and disease [5]. 
 
During primary infection, HSV-1 replicates at the site of entry then infects nerve 

endings and translocates by retrograde transport to the nuclei of sensory ganglia 

[8] Fig 1.2.B. In the majority of the infected neurons, the viral genome remains 

for the entire life of the host in an episomal state. In some individuals, the virus 

reactivates and is moved by anterograde transport to a site at or near the portal 

of entry. Recurrences are spontaneous, but there is an association with physical 

or emotional stress, fever, exposure to ultraviolet light, tissue demage and 

immune suppression  

• Primary genital herpes 
(HSV-2 or HSV-1) 

•Recurrent herpes 

• Primary HSV-1 
oropharyngeal herpes 
• Recurrent labialis 

Neonatal herpes 

• Mucocutaneous disease  
(immunocompromised 
host) 

• Encephalitis 
• Keratitis 
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Fig. 1.2.B (a) Primary infection. (b) Recurrent infection. [8] 

 

1.2.2 Structure 

Herpesvirus particles consist of four morphologically distinct structures: an 

electron-dense toroidal core, a highly ordered  icosahedral-shape capsid, an 

amorphous tegument and an outer envelope containing glycoprotein spikes [9] 

(Fig. 1.2.C). 

The core contains a copy of linear double-stranded DNA closely packed into 

multiple shells [10].  

The capsid, about 125-130 nm in diameter, is an icosahedron with 150 

hexameric and 12 pentameric capsomers, which are connected in groups of three 

by the triplexes (asymmetric structures). The hexons consist of six molecules of  

the major capsid protein (MCP or VP5, UL19 gene product) together with six 

molecules of the smallest capsid protein (SCP or VP26, UL35 gene product). 

Eleven pentons consist of five MCP molecules and the other one is compound 

by twelve molecules of the portal protein (PORT, UL6 gene product). The 

triplex consist of  two copies of the triplex dimer protein (TRI2 or VP23, UL18 

gene product) and one copy of the triplex monomer protein (TRI1 or VP19C 

UL38 gene product) [11]. 

The tegument is a proteinaceus layer which contains more than 20 virus-

encoded proteins important in various aspects of the virus life cycle [12] . 
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Fig. 1 2.C. Herpes virus structure. On the left image of HSV obtained at electron microscopy. 
On the right, Herpesvirus capsid at 8 Å resolution [11] surrounded by representation of HSV layers. One of 
triangular faces is denoted by black triangle. 
 
The most notable proteins include the α-trans-inducing factor (α-TIF or VP16) 

which induces the transcription of viral immediate-early genes and the virion 

host shut-off protein (vsh) that degrades most of the host mRNAs during the 

initial stage of infection. 

The HSV envelope contains at least eleven glycoproteins (gB, gC, gD, gE, gG, 

gH, gI, gJ, gK, gL and gM). Additional membrane proteins not detected in 

virion envelope are UL20, UL34, UL45 and possibly US9. At the ultrastructural 

level, HSV glycoproteins form long thin spikes, each made of a single species. 

The envelope contains 600-750 glycoprotein spikes that vary in length and in the 

angle at which they emerge from membrane. The distribution suggests 

functional clustering [13]. 

 

1.2.3 HSV-1 genome, organization, replication and transcription 

The HSV-1 genome is approximately of 150 kbp with a G+C content of 68%. 

The genome consists of two unique sequences, designated as L (long) and S 

(short), bracketed by inverted repeats of different lenghts named ab and b’a’ for 

the L component and a’c’ and ca for the S one. 

The genome can be represented as follows: 

   aLanb-UL-b’a’mc’-US-caS

where the a sequence can be variable. 
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By the inversion of one or both unique sequences four different isomers are 

originated, these isomers may be purified in equimolar amount from infected 

cells [14].  

The HSV-1 genome encodes for about 90 transcriptional units, and for 84 

different gene products [12]. The majority of HSV genes encode for a single 

protein. Many mRNAs initiate in the middle of an expressed ORF and encode 

only the C-terminal part of the protein. Few transcripts do not appear to encode 

expressed ORFs and their function in productive infection is not known e.i. the 

latency-associated transcripts (LATs) which are expressed in latent infection 

[14]. 

The genes of HSV-1 are divided into three classes, according to their kinetic 

expression after virus entry: α, or immediate early genes, that map near the 

termini of the L and S components, with the exception of α0 and α4 that map in 

the inverted repeats sequences; β, or early genes, and γ, or late genes, 

disseminated long the L and S sequences. 

Viral DNA is replicated by the rolling-circle mechanism in the nucleus of the 

host cell forming concatameric molecules which become cleaved into individual 

units during their packaging into capsids. At least three virus-encoded gene 

products are required for viral DNA synthesis: the viral DNA polymerase, the 

single-stranded DNA-binding protein (ICP8), and the origin-binding protein 

UL9. The origins of DNA synthesis oriS and oriL, made of palindromic 

structures, carry a binding site for UL9. UL9 has an ATP-binding and DNA 

helicase motifs, essential for viral replication. The binding of UL9 induces a 

bend in the DNA so it forms a single-stranded stem loop structure, and thus 

ICP8 is recruited. The remaining viral DNA replication proteins, as viral DNA 

polymerase, are recruited to the replication fork and the viral DNA synthesis 

initiates. 

Viral DNA is transcribed by host RNA polymerase II and gene expression is 

tightly regulated in a cascade fashion (Fig. 1.2.D).  
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Fig. 1.2.D Schematic representation of HSV cell 
cycle and regulation of HSV gene expression. Open 
arrows: events that turn gene expression “on”; filled 
arrows: events that turn gene expression “off”. (1) α
gene expression is stimulated by αTIF, a γ protein 
packaged in the virion. (2) α protein turn off 
transcription of α genes. (3) α proteins stimulate 
transcription of β genes. (4) α and β proteins 
transactivate γ genes. (5) Late in infection, γ proteins 
turn off α and β gene expression. 
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Sequence analysis of the LAT domain showed the presence of at least 16 ORFs, 

two of which, ORF O and ORF P, play some roles. Thus ORF O and ORF P 

gene products are expressed from a single mRNA, such that they share the same 

amino-terminal sequence and then diverge. Protein encoded by ORF O binds 

ICP4 and prevents the transcription of HSV DNA. ORF P protein product co-

localizes with spliceosomes and reduces the accumulation of ICP0. 

 

  
 
Fig 1.2.E HSV establishment of latency. In productive infection, HSV enters at mucosal surfaces, replicates in 
epithelial cells at the site of entry and spreads through the tissue. Virus enters nerve endings of sensory neurons 
and is transported to neuron cell body in the ganglion where virus can either replicate productively or establish a 
latent infection: viral DNA 
 
 

1.3 VIRUS MEMBRANE FUSION 

 

Enveloped viruses like HSV enter cell via fusion of their membrane with a host 

cell membrane. Virus membrane fusion can occur either at the plasma 

membrane or at an intracellular location following internalization of virus by 

receptor-mediated endocytosis. Membrane fusion is energetically unfavorable 

and does not spontaneusly occur. According to the stalk hypothesis, fusion of 

two lipid bilayers in an aqueous enviroment requires that they come into close 

contact. This process involves local membrane bending creating a first site of 

contact. Two forces dominate, a repulsive hydration force arising from water 

tightly bound to the lipid headgroups, and an attractive hydrophobic force 

between the hydrocarbon interiors of the membrane. Dehydration of the initial 
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contact site induces monolayer rupture that allows mixing of lipids from the two 

outer leaflets, resulting in a hemifusion stalk in which the aqueous inner 

contents remain distinct. In a next step the radial expansion of the stalk leads to 

either direct fusion pore opening or to the formation of another intermediate, the 

hemifusion diaphragm, a local bilayer resulting from the contact between the 

two internal leaflets of the fusing membranes. The break of the hemifusion 

diaphragm also result in pore formation. Finally, pore enlargement, leads to 

complete fusion (Fig. 1.3.A),[15]. In virus entry the energy necessary for 

membrane deformation and bending is provided by glycoproteins called fusion 

proteins. Upon appropriate triggering, the fusion protein interacts with the target 

membrane through a hydrophobic fusion peptide and undergoes a 

conformational change that drives the membrane fusion reaction. There are a 

variety of fusion triggers, including various combinations of receptor binding, 

receptor/coreceptor binding and exposure to the midly acidic pH within the 

endocytic pathway. 

Three different classes of viral fusion proteins have been identified based on 

their important structural features. 

 

Fig. 1.3.A Fusion-through-hemifusion. The proximal and distal 
leaflets of the membrane at the top are labeled with purple and 
blue. In the initial prefusion state (1), membranes are separated 
by an approximately 10 nm gap determined by the size of the 
membranedocking proteins. (2) Proteins bring membrane 
bilayers into close contact. For simplicity, the proteins are not 
shown at the periphery of the contact zone. (3) The proximal 
leaflets merge into a fusion stalk, which allows lipid mixing 
between these leaflets, provided that the lipid flow is not 
hindered by proteins surrounding the fusion site. (4) The stalk 
expands into a hemifusion diaphragm that either breaks to form a 
fusion pore allowing lipid and content mixing (5) or dissociates, 
yielding separated membranes and interrupting fusion at the stage 
detectable as complete or partial lipid mixing between the 
proximal membrane leaflets (6). 

 
 

1.3.1 Class I fusion proteins 

The haemagglutinin protein from influenza virus has provided the model for 

class I fusion machines, because the atomic structure of three different forms of 
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this protein have been determined. The class I model, in its essential features, 

applies to proteins of many unrelated virus families as the HIV gp120, the F 

proteins from paramyxoviruses, the retroviral SU/TM proteins and the Ebola 

virus Gp2 protein. 

These proteins are homotrimers that project vertically from the virus membrane 

and contain mostly α-helical structures. They form trimers both before and after 

the fusion reaction. Type I fusion proteins are frequently synthetized as a single-

chain precursor which undergoes cleavage by host proteases. The cleavage 

generates an N-terminal globular protein and a metastable C-terminal protein. 

The novel N-terminus contains a hydrophobic sequence (15-30 amino acids), 

known as “fusion peptide”. Downstream of it, it’s possible to recognise at least 

two HR (heptad repeat) regions: one adjacent to the fusion peptide called HR-N 

and one close to the original trasmembrane domain, called HR-C. After binding 

to a receptor or exposure to the low pH, the protein forms an extended 

conformation, in wich HR-N form a trimeric coiled coil, and the fusion peptides 

insert into the target membrane.Then HR-C fold over the hydrophobic grooves 

of HR-N trimer in anti parallel direction, thus forming a trimer of hairpins 

containing a central α-helical coiled-coil structure. In this new conformation the 

fusion peptide and the original transmembrane domain are juxtaposed. As a 

consequence, the viral envelope and the target membrane are close (Fig. 1.3.B). 

The transition from the metastable conformation to the final stable conformation 

provides the energy necessary for the fusion process, but for many proteins 

seems that the energy released by the refolding of one trimer is not sufficient. 

Some observations suggest that the density of influenza virus hemagglutinin is 

important for fusion and a decrease arrests fusion at hemifusion stage. In 

contrast to HA, data on HIV-1 env suggest that a single env trimer is sufficient 

for fusion. On the other hand cellular receptor density, as well as env density, 

affect the kinetics of HIV-1 env mediated fusion [16]. 
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Cell membrane 

 

Viral envelope 

Fig. 1.3.B (from [17]). Proposed mechanism for membrane fusion by class I fusion proteins. a) The metastable 
conformation of a trimeric generalized fusion protein,with helical domain A in orange, helical domain B in pink, 
and the transmembrane domain in purple. b) After binding to a receptor on the cellular membrane, or on 
exposure to the low pH found in intracellular compartments, the protein forms an extended conformation and the 
hydrophobic fusion peptide (red) inserts into the target membrane. c) Several trimers are thought to be involved. 
d) Protein refolding begins. The free energy thereby released causes the membranes to bend towards each other. 
e) Formation of a restricted hemifusion stalk allows the lipids in the outer leaflets of the membranes to mix. f) 
Protein refolding completes, forming the final, most stable form of the fusion protein,with the fusion peptide and 
TM domain anti-parallel to each other but in the same membrane. 
 

1.3.2 Class II fusion protein 

Representative members of class II fusion protein are the E proteins of the 

flavivirus tick-borne encephalitis virus (TBE) and dengue virus (DV) and the E1 

protein of the alphavirus Semliki Forest virus (SFV) [17-18]. 

The type II fusion proteins form heterodimers  with a regulatory membrane 

protein maturated by the cellular furin enzyme; in flavivirus, the maturation of 

the regulatory protein leads the heterodimers to reorganize in homodimers. For 

both alphaviruses and flaviviruses, furin processing of the companion protein is 

an important regulatory step without which the virus has decreased infectivity. 

The dimer of class II fusion proteins do not form spikes but are parallel to the 

viral membrane. These proteins are elongated finger like molecules with three 

globular domains composed almost entirely of β-sheets; they are not 

proteolytically activated. They carry an internal fusion peptide in a loop between 

two-β-strands. Low pH dissociates the dimers and exposes the fusion loop, than 

the proteins reorient vertically, insert into the target membrane and trimerize. 

Structural predictions suggest that the fusion loop insert only peripherally into 

the bilayer, projecting their aromatic side chains into the aliphatic region of the 
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outer leaflet of the target membrane. After the trimerization a further 

rearrangement bring the original transmembrane domain juxtaposed to the 

fusion peptide thanks to a flexible region, adjacent to the trasmembrane domain 

called stem region. The type II fusion proteins are not predicted to form a coiled 

coil, their post-fusion state is characterized by trimers of hairpins composed of 

beta structures (Fig. 1.3.C).   

 

  
 
Fig. 1.3.C (from [17]) Proposed mechanism for fusion by class II proteins, a) The dimeric E protein binds to a 
cellular receptor (grey) and the virus is internalized to endosomes. Membrane fusion,which will release the virus 
into the body of the cell, takes place within endosomes. Domain I is in red, domain II in yellow, and domain III 
in light and dark blue (the lighter blue shows a predicted but unsolved structure). b) The acidic pH inside 
endosomes causes domain II to swing upward, permitting E monomers to rearrange laterally. c) The fusion loop 
(red dot) inserts into the outer leaflet of the host-cell membrane, enabling trimer formation. d) The formation of 
trimer contacts extends from the top to the bottom of the molecule. Domain III shifts and rotates to create 
contacts, bending the membrane. e) The formation of further contacts leads to unrestricted hemifusion. f) The 
final most stable form of the protein. 
 

1.3.3 Class III fusion protein 

The distinct structural features of vescicular stomatitis virus (VSV) glycoprotein 

(G) from class I and II have resulted in the creation of a third class of fusion 

protein, class III. In this class are also enclosed proteins of other Rhabdoviridae 

and gB of HSV. The VSV G protein oligomerizes into a homotrimer during the 

transport to the cell surface and is not subject to proteolytic priming for fusion 

activation. G forms spikes that protrude from the viral surface, it is responsible 

for viral attachment to specific receptors and for membrane fusion after 

endocytosis of the virion. Unlike  the other two type of fusion protein G have 

not an irreversibile metastable pre-fusion state. The VSV G conformational 
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change induced by its exposure to low pH in endosomes is reversible. G can 

adopt at least three conformational states: the native pre-fusion state detected at 

the viral surface above pH 7 (Fig 1.3.D); the activated hydrofobic state, which 

interacts with the membrane as a first step of the fusion process; finally the 

fusion–inactive post-fusion conformation that is antigenically distinct from the 

other two. The post-fusion conformation displays the classic hairpin 

conformation of other viral fusogenic proteins, that is an elongated structure 

with the fusion domain and the TM domain at the same end of the molecule. As 

in class I fusion proteins, the post-fusion trimer displays a six-helix bundle with 

the fusion domains at the N terminus of the central helices and the TM domains 

at the C-terminus of the antiparallel outer helices. However, each fusion domain 

exposes two fusion loops located at the tip of an elongated β-sheet revealing a 

striking convergence with class II fusion proteins [19-20]. It isn’t clear how 

VSV G catalyzes the fusion process, it has been proposed that a concerted 

cooperative change of a large number of glycoproteins, perhaps organized in a 

hexagonal lattice, is used to overcome the high energetic barrier encountered 

during fusion. 

 

 

 

 

 

 

 
 
Fig. 1.3.D a) View of the G protomers structures in pre- and postfusion conformations, colored by domain. b) 
View of corresponding G trimers. C) Domain architecture of VSV G plotted on a linear diagram with domain 
boundaries numbered. [20] 

a) b)

c)

a) b)

c)

a) b)

c)

 

1.4 HSV ENTRY INTO HOST CELLS 

The current model of HSV-1 entry consists of  three stages: the first step 

involves virus attachment to the cell surface, the second step involves the 
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interaction of glycoprotein D (gD) with an entry receptor, and the third step 

involves fusion of the viral envelope with the host membrane followed by 

releasing of the capsid-tegument complex into the cytoplasm of the infected cell, 

or involves endocitosys followed by fusion with endosomal membrane. The site 

of entry is cell type dependent, but in both cases the fusion is driven by four 

essential glycoprotein gD, gB, gH and gL. 

 

1.4.1 The attachment 

The attachment of the virus to cell membranes is mediate by gC (non essential 

glycoprotein encoded by UL44 gene), and possibly gB, which interact with 

glycosaminoglycans (GAGs) [21]. The attachment is reversible, ensures that 

virions are tethered and concentrated on the cell surface but even if enhances 

infectivity by approximately 10 fold, is not strictly required. 

Some reports have suggested that three different pathways are implicated in 

HSV-1 entry into different cell types: via direct fusion with the plasma 

membrane, via fusion within an acidic or a neutral endosome [22-24]. 

Furthermore in each pathways are required gD, gB, gH, gL and a gD receptor.  

 

1.4.2 Receptors 

gD interacts with three alternative entry receptors, nectin1, HVEM (herpesvirus 

entry mediator, also named HveA for herpesvirus entry mediator A) and specific 

O-sulphated (3-O-S) moieties on HS generated by the enzymatic activity of 

certain D-glucosaminyl O-sulfotransferases on HS [25-30]. 

The three receptors belong to structurally unrelated molecular families [30-32]. 

HVEM belongs to the tumor necrosis factor receptor (TNFR); it seemed to be 

restricted to T-lymphocytes in human tissues, but  its distribution may be wider, 

at least as judged from cultured cells. The interaction with gD involves two of 

the four typical cysteine-rich domains (CRD) of TNFRs.  Like other TNFRs, 

HVEM has in the cytoplasmic tail a death domains or TRAF (TNFR-associated 
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factor) interacting motifs with which may trigger intracellular transduction 

pathways.  

Nectin1 belongs to a family of intercellular adhesion molecules, whose 

ectodomain is made of three immunoglobulin (Ig)-structured domains. Nectins 

mediate cell adhesion by forming cis-homodimers (e.g. nectin1-nectin1) on the 

cell surface, and trans-dimers with other nectins located on adjacent cells. 

Trans-dimers are formed between nectins of the same molecular species, but 

also between nectins belonging to different species (e.g. nectin1 to nectin3), in 

highly specific associations.  Nectin1 is broadly expressed in human tissues, 

including tissues and organs targeted by HSV, like CNS, ganglia and muco-

epithelia [33-37] and is expressed in virtually all human cell lines [31-32]. 

3-O-sulfated Hepara Sulfate derived from heparan sulfate proteoglycans 

modified by the enzymatic activity of certain D-glucosaminyl O-

sulfotransferases which are present in a number of human cells, including 

neuronal and endothelial cells, and corneal fibroblasts. There is limited 

information regarding the interaction of HSV with 3-O-S HS. 

It is unclear why HSV interacts with multiple alternative receptors. The gD 

affinity to nectin1 and HVEM is of the same order of magnitude (10-6 M); hence, 

affinity is not a basis for preferential usage [38]. Because clinical isolates use 

both nectin1 and HVEM, it appears that this property favours successful 

infection and spread in the human host [39].  

A type 2 glycoprotein, designated B5, was identified by its ability to render 

otherwise resistant porcine cells more susceptible to HSV entry [40]. The same 

cells were rescued by HVEM, and it was thus proposed that B5 serves as HSV 

receptor. However, the ability of B5 to bind virions, or, even more so, a specific 

glycoprotein was not documented.  

Recent data suggest, that also gB may interact with an own receptor on the cell 

surface. Thus a soluble truncated form of  gB is able to bind in a saturable manner 

to the surface of different cell types, including cells deficient in heparan sulfate 

proteoglycan or even after heparin treatment to remove gB bound to HS.  Besides 
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the soluble gB inhibits HSV-1 entry into HS deficient cells in a dose-dependent 

manner. The nature and the role in the entry of HSV-1, of this receptor is still 

unknown [41]. A molecule that associate with gB and seems to serve as co-

receptor in HSV-1 entry may be PILR (paired immunoglobulin-like type 2 

receptor) [42]. 

1.4.3 HSV fusogenic glycoprotein 

1.4.3.1 gD 

HSV-1 glycoprotein D is a type I membrane glycoprotein of 369 aa, after signal 

sequence cleavage, with a single transmembrane segment located between aa 

317 and 339 (fig. 1.4.A) and three glycosylation sites. 

The crystal structure of a soluble form of gD (up to aa residue 259) alone or in 

complex with the ectodomain of HVEM was solved [43]. 

gD’s ectodomain structurally consists of three regions: the central core consist in 

a V-like domain of the immunoglobulin fold (residues 56-184) and a 17 aa long 

helix; the N-terminus (residues 1-37), that is unstructured in the crystal of gD 

alone, but forms a hairpin (bending at residue 21) in the crystal of the complex 

with HEVM; the C-terminus folds back towards the N-terminus [44].  

The contacts of gD for HVEM have been localized within the N-terminal hairpin 

[43; 45], 

The nectin1-binding site remains poorly defined, determined by means of 

insertion-deletion or substitution mutants appears to be more widespread than 

that of HVEM, it seems to be formed by several discontinuos sequences [46-47]. 

Deletion of the first 32 aa of gD abrogate the interaction with HVEM but not 

with nectin1. Critical aa residues for nectin1 binding include V34, Y38 and the 

cluster D215, R222, F223, all of which occupy a same surface of the molecule 

[48-50]. 

Functionally, the endodomain of gD is dispensable: a soluble form of gD, 

deprived of the TM and C-tail regions, is sufficient to complement the 

infectivity of a noninfectious gDnull virus and gD is functional even when 

anchored to the virion envelope through a GPI anchor [51-52]. Hence, the 
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activity of gD reside completely in the ectodomain which may be divided into 

two functional domains, a N-terminal domain  with receptor binding activity that 

takes up the first 250-260 residues and a C-terminal domain with the pro-fusion 

domain (PFD), which lies in 250-310 residues [53]. It is not clear the activity of 

PFD domain but its replacement by heterologous sequences and some 

aminoacids substitutions  impair infection and cell-cell fusion, without affecting 

gD binding property. 

a) 

N- -C 

  

c)b) 

 
Fig. 1.4.A gD Structure a) Domain architetcture of gD b) Ribbon diagram of gD derived from crystal data. c) 
Ribbon diagram of gD HVEM-bound derived from crystal data. 
 

An interesting feature of PFD is its high content of prolines which exibhit 

defined spacings. Substitution of some prolines reduced HSV infectivity 

indicating that they represent  necessary residues. The frequent presence of 

proline rich regions in cassettes that function in protein-protein interaction, 

suggests that the PFD may interact with target proteins. 

Whereas soluble gD is able to mediate the entry of a gDnull virus, the 

interaction with its receptor is not used to anchor the virion to the cell surface 

but probably to trigger conformational changes in gD which lead to the envelope 
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fusion. Structural studies and before biochemical studies done with GST pull 

down experiments had shown that gD may adopt almost two different 

conformations: closed and opened [44 and 54]. In the closed conformation, 

present when gD is not ligated to a receptor, the C-terminal portion of the 

ectodomain folds back on itself and wraps the N-terminal region; in the opened 

conformation,  the binding with a receptor displaced the C-terminus. It is not 

clear how and if  this change from closed to opened conformation triggers fusion 

and if the free terminus of opened gD may act binding other proteins. 

The Ig-like domain in the ectodomain of gD seems to play the role of connecting 

the N-terminal receptor-binding region to the C-terminal region carrying the 

PFD but does not appear to encode executable functions required for viral entry 

into cells at least when the HVEM and nectin1 binding sites are substituted by 

uPA (urokinase plasminogen activator) as noticed in an isolated obtained 

modifying an HSV retargeted to uPA [55]. This isolate had  gD split into two 

polypeptides (A and B), as a consequence of frame shifts and stop codon 

insertions. Polypeptide A was made of uPA fused to gD33-60. Polypeptide B 

started at methionine 219, and thus was gD219-369; it included the α-helix3 plus 

the downstream proline-rich flexible region. It was demonstrated that the uPA 

moiety of polypeptide A could mediate physical interaction with polypeptide B. 

Attempts to generate a split gD in which the polypeptide A lacked the uPA 

moiety and instead consisted entirely of gD sequences (gD1-60) did not yield any 

virus. Possibly the polypeptides A and B are unable to interact one with the 

other in the absence of uPA.  

 

1.4.3.2 gH.gL 

Glycoprotein H,  a 110 kDa glycoprotein encoded by UL22, is essential for 

virion infectivity [56] Neutralizing antibodies to gH block virus entry but permit 

attachment, indicating a role of the protein in a post-attachment step [57]. 

Bioinformatic predictions of structural motifs show that gH ectodomain carries 

elements typical of class I fusion glycoproteins, in particular a highly 
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hydrophobic α-helix (named α-H1) which has features of an internal fusion 

peptide and  two heptad repeats (HR-1 and HR-2) that could interact and adopt a 

coiled-coil conformation, in addition to a less hydrophobic region (named α-

helix2), and a membrane-to-interface hydrophobic sequence [58-61].α-Helix1 

can be functionally exchanged with heterologous fusion peptides (e.g. from HIV 

gp41 and VSV-G), and interacts with lipids of natural and artificial membranes 

[58, 61-62]. Furthermore a mimetic peptide may adopt an α-helical 

conformation. The predicted α-helix is positionally conserved in all examined 

gH orthologs from human and animal herpesviruses, suggesting that it may 

constitute a critical element in the conserved mechanism of herpesvirus fusion.  

Heptad repeats are predicted in all gH orthologs and occupy a canonical position 

typical of class I fusion glycoproteins. A mimetic peptide to heptad repeat-1 can 

adopt an α-helical conformation, and forms a stable complex with the heptad 

repeat-2 mimetic peptide. Peptides mimicking HR-1 or HR-2 block infection 

[59, 60 and 62]. 

The ectodomain of HSV-1 gH also carries a RGD motif (residues 176, 177, and 

178) that is used by  several viruses to attach to integrin molecules and mediate 

the entry into the cells. gH binds integrins [63] but mutation of the RGD to RGE 

seemed not alter the HSV ability to bind and penetrate cells in vitro [64]. 

gH’s function depend on forming a heterodimer complex with gL, whic acts as a 

gH chaperon for its proper processing and trafficking to the viral envelope. The 

non covalent interactions occur between the first 323 amino acids of gH and the 

first 161 amino acids of gL. gL is a soluble glycoprotein of 224 amino acids 

encoded by UL1 gene. It  is unclear that it only enables gH to adopt a correct 

conformation, or plays own specific roles in HSV entry and fusion.  

 

1.4.3.3 gB 

gB encoded by HSV-1 UL27 gene is highly conserved among the Herpesviridae 

family. It is a homotrimeric, 904-aminoacid  type I glycoprotein composed of a 

696-aa ectodomain that is N-glycosilated at multiple sites [65-68, 5], a 69-aa 
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transmembrane domain, and 109-aa carboxy-terminal domain [69-70]. The 

transmembrane domain was proposed to have three segments corresponding to 

residues 727-746, 752-772 and 775-795 which can traverse the membrane three 

times. The third segment was suggested to be the membrane anchoring domain, 

while the first and the second may be peripherally associated with the membrane 

[71]. The cytoplasmatic tail of gB is the longest among HSV-1 glycoprotein and 

has a negative control on fusion. In fact the gB endodomain carries at least two 

functional endocytosis motifs, one di-leucine based (LL871) and one thyrosine 

based (YTQV889-892) [72-74]. They traffic gB from the plasma membrane to 

small endocytic vacuoles which after coalesce, subtracting the amount of gB 

exposed on the plasma membrane and decreasing the ability of the cells to fuse 

with adjacent ones [73, 75]. Besides gB C-tail is the site of syn mutations (syn 

3). Cell infected with syn mutants form syncytia differently from cell infected 

with wild type virus. Syn mutations are thought to affect genes which negatively 

regulate fusion but the mechanism is unknown [76]. 

On the other hand, gB still exerts a positive role in fusion, may be through the 

ectodomain. The requirement of gB in HSV fusion is inferred by numerous lines 

of evidence: HSV-1 mutants lacking gB are not able to enter the cells due to a 

post-attachment defect; gB is necessary in in the cell-cell fusion assay; 

neutralizing antibodies map on gB; mutants temperature-sensitive with affected 

rate entry reside in the gB ectodomain [69-70, 76-84]. The crystal structure of 

part of the ectodomain (from D103 to A730) was recently solved, showing a 

homotrimeric spike made up of five distinct domains in each protomer [84]. 

There isn’t an unique trimerization domain but several contacts between 

protomers, throughout the molecule, contribute to trimer stability. The ten 

cysteines per subunit form only intramolecular bonds. The rod-shaped trimer 

organised around a coiled-coil central core resembles closely to that of VSV G 

in its post-fusion conformation [19]. Domains I and II, the ‘base’ and the 

‘middle’, (similar to domains IV and III of G), adopt a fold similar to pleckstrin 

homology (PH) domains. PH domains are found in cytosolic proteins involved 
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in intracellular signaling, where they mediate both protein-protein and protein-

lipid interactions [85]. gB domain I is structurally homologous to the domain IV 

of VSV G containing two fusion loops at the tip of an elongated four-strand β-

sheet. In gB the two loops lie, the first,  at residues 173 to 179 and the second at 

residues 258-265. Three residue of these loops, W174, Y179 and A261, are 

essential for gB’s function in cell-cell fusion [86].  

  

  
 
Fig. 1.4.C (A) Domain architecture of gB; (B) Ribbon diagram of a single gB protomer; (C) gB trimer; (D) 
Accessible surface area representation of gB trimer [84]. 
 
Domain III (VSV G domain II) is composed by the long α-helix that forms the 

coiled-coil core followed by a short helix and a small β sheet. Domain IV 

(corresponding to domain I of  VSV G), the "crown", doesn’t show homology 

with structures previously described; it is fully exposed on top of the trimeric 

spike. Domain V, the "arm", is a long extension that spans the full length of the 

protomer and makes contact to other two protomers.  

Antibodies with neutralizing activity bind to different regions on the gB surface 

and are against both continuos and discontinuos epitope. Recently functional 

regions (FR) based on neutralizing Mabs had been reclassified holding in 

consideration the solved structure into: FR1  is composed of residues of domain 

I and the C-terminus of domain V; FR2 comprises three overlapping epitopes 
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within domain II; FR3 includes amino acids located between domain III and 

domain IV and FR4 that lie at a unresolved region (Fig 1.4.B) [87]. 

Glycoprotein B together with glycoproteins H and L form the core fusion 

machinery conserved throughout the herpesvirus family. In Varicella-Zoster 

virus (VZV), cytomegalovirus (CMV) and human herpesvirus 8 (HHV-8) the 

action of gB or the gH/gL complex alone could result in fusion, although at a 

very lower level than when all 3 glycoproteins are present [88-90]. 

 

 

 

 

 

 

 
 
 
 
 
 
Fig. 1.4.B Location of the epitopes of neutralizing MAbs and of FRs on the surface of the crystal structure of gB. 
On the left ribbon diagram of a gB trimer showing in color the epitopes of representative neutralizing MAbs. On 
the right accessible surface area representation of the gB trimer. FR1 to FR3 are indicated with circles. Since 
FR4 is present in an unresolved region of gB, it is symbolically represented with a question mark [87]. 
 

 

HSV-1 gB exhibits 86% identity with HSV-2 gB while shares the 27 % identity 

and 46 % similarity at the protein sequence level with HHV8 gB. 

In the experimental work of this thesis amino acid sequences from HHV8 were 

used so gB HHV8 is dealt with details. 

 

1.4.3.3a gB of human herpes virus 8 

Human herpes virus 8 (HHV8) or Kaposi’s sarcoma associated virus (KSHV) is 

a gammaherpesvirus etiologically linked to the pathogenesis of Kaposi’s 

sarcoma, peripheral effusion lymphoma, and multicentric Castelman’s disease. 

These pathologies occur more frequently in people with severe 
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immunodeficiency. KSHV has been detected in B cells, endothelial cells, 

monocytes and epithelial cells in vivo. In vitro HHV8 can infect a variety of 

human cell types and several animal cells but infection usually evolves as a 

latent infection making difficult to study the virus. Very little is known about the 

entry of HHV8. It has been shown that HHV8 enters in human foreskin 

fibroblast cells (HFF) through clathrin-mediated endocytosis [91] and that 

HHV8 gB, gH and gL (homologues of HSV-1 gB, gH and gL) could mediated 

the fusion of CHO cells with embryonic kidney cells and B lymphocytes [90]. 

HHV8 is able to bind to heparan sulfate, thus infectivity is reduced by enzymatic 

removal of cell heparan sulfate, virus binding is blocked or displaced by soluble 

heparin and binding is drastically reduced on CHO cells that are deficient in HS 

[92]. Probably like HSV-1, the attachment allowes to concentrate the virus on 

the cell surface and is followed by the binding to one or more cell receptor 

molecules. Several lines of evidence indicate that attachment is mediated by two 

glycoproteins gpK8.1A and HHV8 gB. HHV8 gB is a type I membrane 

glycoprotein 845 amino acids in lenght, with a cleavable signal sequence of 23 

residues, a predicted transmembrane domain between residues 710-729 and 13 

putative N-glycosylation sites. There is a potential proteolytic cleavage site 

(RKRR/S) at amino acid position 440-441, and cleavage at this site would result 

in two proteins with predicted masses of about 48 and 45 kDa [93, 94]. The 

cellular distribution and processing of gB depend on the cell type in which the 

protein is expressed; it is not cleaved when expressed transiently in CHO and 

COS-1 cells while in BCBL-1 cells is synthesized as a 112 kDa precursor 

protein, undergoes cleavage and processing, and the envelope-associated form 

consist of 75 and 59 kDa polypeptides that form disulfide-linked heterodimers 

and multimers [92, 94]. 

HHV8 gB may also bind cell integrins thanks to an integrin-binding RGD motif 

that lies near the signal sequence. Soluble gB induces the integrin-mediated 

activation of FAK (focal adhesion kinase) [95]. KSHV infectivity but not 



 

 24

binding of fibroblast and endothelial cells is neutralized by RGD peptides and 

by antibodies to α3 and β1 integrins. 

A recent study showed that KHSV utilizes the dendritic cell-specific ICAM-3 

grabbing nonintegrin (DC-SIGN; CD209) as a receptor for infection of myeloid 

DCs and macrophages [96]. It is a type II C-type lectin that is expressed on 

myeloid DCs, IL-4-treated monocyte-derived DCs, macrophages and IL-13-

activated monocyte-derived macrophages. DC-SIGN and other C-type lectins act 

as pathogen recognition receptors that alert macrophages and DCs to take up and 

process pathogens for Ag presentation to T cells. Certain viruses, parasites, 

yeast, and bacteria can subvert this immune function by using DC-SIGN as a 

receptor.  

Another receptor used by KSHV is the 12-transmembrane transporter protein 

xCT for entry into adherent cell  but doesn’t seem involved in infection of B 

cells which are important target for KSHV infection [97]. 

 
1.5 HSV EGRESS 
 
The assembly of herpesviruses begins in the nucleus of an infected cell, where 

newly synthetized genomes are packaged into preformed capsids. In a second 

time nucleocapsids contact the inner nuclear membrane and bud into the 

perinuclear space. In this process HSV UL31 and UL34 proteins interact with 

the nuclear envelope and recruit cellular protein kinase that partially dissolve the 

nuclear lamina providing the sites for envelopment. The subsequent steps of 

egress have been extensively debated. An earlier model, reffered as the single 

envelopment model, suggested that perinuclear enveloped virions are 

transported to the cell surface via the secretory pathway and the envelope 

glycoproteins are processed in situ [98]. In this pathway the virion manteins the 

tegument acquired in the nucleus as well as the envelope acquired at the inner 

nuclear membrane. More recently it was proposed that capsids pass across the 

nuclear envelope through enlarged nuclear pores into the cytoplasm and undergo 

their first envelopment at TGN [99]. Critics raised against this models are that it 
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is based solely on electron microscopic observations and that other groups have 

not seen dilated pores at the late stages of infection or the exit of capsids through 

nuclear pores. However the current widely accepted model, supported by 

biochemical and morphologic evidence, is the de-envelopment re-envelopment 

egress. In this model virions fuse their primary envelope with the outer nuclear 

membrane such that unveloped nucleocapsids are released into the cytoplasm 

where capsid-proximal tegument proteins assemble at the capsid. After that they 

acquire other tegument proteins and a second envelope with mature 

glycoproteins by budding into the trans-Golgi network (TGN) or into a 

endosomal compartement [100] (Fig 1.5.A). It isn’t clear how the de-enveloped 

nucleocapsid can travel through the cytoplasm to TGN. An other question is 

why it was found that perinuclear virions carry immature oligosaccharides, 

intracytoplasmatic virions carry both intermediate and mature type of 

oligosaccharide and extracellular virions carry only mature oligosaccharides if 

the secondary envelope is taken at TGN. If the secondary envelopment occour at 

the cis- or medial-Golgi is difficult to understand how the virions travel from 

these to farther compartments of the exocytic pathway to obtain their final 

envelope. 

It is also unclear how primary envelope fuses with the outer nuclear membrane. 

HSV mutants lacking any one of the four glycoprotein essential for entry, are 

not substantially compromised in virus egress yet cannot enter cells. Otherwise 

recently an HSV mutant lacking both gB and gH was shown to accumulate as 

enveloped virions in the perinuclear space and in the nucleoplasm. While viruses 

lacking just one of the two proteins do not exhibit substantial defects in nuclear 

egress suggesting that they are required also for fusion at the outer nuclear 

membrane and act in a redundant manner [101].  

Other viral proteins, notably gK and UL20, seem to be involved in subsequent 

steps after primary envelopment, thus in their absence virus particles accumulate 

in the perinuclear space or cytoplasm. These proteins, however, appear to inhibit 

fusion performed by the quartet [73]. 



 

 26

 

 
Fig. 1.5A Alternative pathways of HSV egress from infected cells. The single envelopment pathways is 
depicted to the left, and the double envelopment to the right. Perinuclear virions and nuclear membranes are 
decorated with glycoproteins of different color than virions at level of the Golgi apparatus and TGN, as well as 
extracellular virions, to emphasize that the oligosaccharide moieties of the viral glycoproteins are of the 
immature type in early exocytic compartment, but are of the mature type in the late exocytic compartments and 
in extracellular virions. The drawingconsiders also the possibility that nucleocapsids exit the nucleoplasm 
through modified nuclear pores, without transiting across the perinuclear lumen. 
 

In the final envelopment seems to have a role the glycoproteins gE, gI and gD. 

In PrV the simultaneous deletion of gE-gI and gM drastically inhibits plaques 

formation and replication and induces intracytoplasmatic aggregation of capsids 

surrounded by tegument proteins. In HSV similar defects are obtained with 

deletions of gD and gE or gD, gE and gI. It was proposed that gD and the gE-gI 

act in a redundant fashion [102]. Also several viral tegument proteins are 

thought to play critical roles in cytoplasmic envelopment. These include 

homologues of the HSV-1 UL11 and UL36 genes [103-106] the 

alphaherpesvirus UL48 and UL51 genes [107-110] and the CMV UL32 gene 

[111]. It has to be explored the requirement of cellular proteins, recently it has 

been shown that HSV-1 cytoplasmatic envelopment requires functional Vps4 

that is a cellular enzyme essential for multivescicular endosome (MVE) 

biogenesis [112]. Otherwise whichever egress model is correct, the identity of 

the membranes that serve as platforms for secondary envelopement is still 

unclear as well as if the enveloped virus reach the extracellular space directly by 

budding across the plasma membrane or by budding into the lumen of cellular 
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organelles, with luminal virions released into the extracellular enviroment via an 

exocytic mechanism or both. Many enveloped virus i.e. HIV seems to use for 

this process the cellular MVE budding machinery. 

 

1.6 INTRACELLULAR TRAFFICKING AND THE 

MULTIVESCICULAR BODIES LATE ENDOSOME 

 

In eukariotic cells cell, surface lipids, proteins, ligands and other solutes can be 

internalized by endocytosis and undergo opposite fates, some being routed 

towards lysosomes for degradation and others being retrieved for reutilization. 

In the sorting of endocytosed molecules a key role is held by multivescicular 

bodies [reviewed in 113-116]. 

The multivescicular body (MVB) was described by electron microscopists as an 

organelle that consist of a limitating membrane enclosing many (sometimes 

several hundred) internal vescicles of 40-90 nm. Later was shown that it 

represent an intermediates of the endocytic pathway and sometimes on refers to 

it as multivescicular endosome MVE. MVBs are formed by invagination and 

budding of vescicles from the limiting membrane of sorting (early) endosomes 

into the lumen of the compartment. During this process, proteins destined for 

degradation are sorted into the forming intralumenal vescicles (ILVs). Mature 

MVBs fuse with the lysosomes and deliver the ILVs to the lysosomial lumen 

where the vescicles and cargo are degradated. Transmembrane proteins may also 

are retained on the limiting membrane of MVBs and are either recycled to the 

trans-Golgi network and plasma membrane or are delivered to the limiting 

membrane of lysosomes. MVBs not only contain molecules endocytosed but 

also receive biosynthetic cargo from TGN including precursor of lysosomial 

enzymes. In specialised cell types, MVEs serves as intermediates in the 

formation of secretory lysosomes that fusing with the plasma membrane 

released the intraluminal vescicles (Fig. 1.6.A) [114]. 
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Fig. 1.6A Formation and functions of MVEs. Multivesicular endosomes are formed after invagination of the 
limiting membrane of the sorting endosome. They can serve different functions in different cell types, such as 
being precursors for (a) lytic granules in T lymphocytes, (b) MHC class II compartments and exosomes in 
antigen-presenting cells, (c) melanosomes in melanocytes, and (d) late MVEs/lysosomes in most nucleated cells. 
Both endocytic and biosynthetic proteins are sorted in and out of MVEs, indicated by arrows. Clathrin-coated 
buds are found at the plasma membrane, the TGN and on tubular regions of the sorting endosome, whereas flat 
clathrin coats are found on early endosomal compartments. Clathrin is indicated in red. 
 

1.6.1 The role of ubiquitination in sorting 

Ubiquitination causes sorting toward lysosomes from a number of 

compartments, including the Golgi (where ubiquitin serves as a signal to divert 

proteins to endosomes), the cell surface (where promotes internalization), and 

the MBV (where mediates incorporation into ILVs). The transfer of ubiquitin 

(Ub) to substrate proteins involves the sequential action of three classes of 

enzymes: an activating enzyme E1, a conjungation enzyme E2, and a ligase E3 

[117]. Ub is typically attached to lysine side chains of substrate proteins and 

forms an isopeptide bond, but can also be covalently linked to other Ub moieties 

on target proteins to form polyubiquitin chains. E3 can interact directly with its 

substrate or uses other adaptor proteins to target its substrates. The majority of 

Ub is removed from proteins, by Ub-specific proteases or deubiquitinating 

enzymes (DUbs), just prior to the delivery of cargo into ILVs. Although certain 

Ub-dependent functions involve the formation of long polyubiquitin chains, 

MVB targeting does not; the fusion of a single Ub is sufficient to direct ILV 

targeting, and there are few long polyubiquitin chains on MVB cargo proteins 

[118-119]. Generally polyubiquitinated proteins are targeted to proteasomes but 
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polyUb might also function as an MVB targeting signal i.e. the yeast Gap1 

becomes polyubiquitinated in the TGN and this signal its entry into MVBs 

[120]. Besides some proteins like yeast Sna3 or mammalian LRP don’t require 

ubiquitination for sorting into ILVs [121-122]. Ub is recognized by an 

expanding group of endosomal proteins, which may act as Ub-sorting receptor 

responsible for binding and directing cargo. 

 

1.6.2 MVBs biogenesis 

The formation of lumenal membranes so the MVBs biogenesis depends on the 

function of a group of at least 18 conserved proteins originally described in 

yeast as class E Vps (Vacuolar Protein Sorting) proteins [115]. Loss of class E 

protein function rapidly leads to the accumulation of endosomal cargo in a 

anormally enlarged, higly tubulated endosome membrane compartment that fails 

to mature normally into MVBs, called the ‘class E compartment’. For each 

known component of the yeast MBV sorting machinery, one or more 

mammalian homologues have been identified suggesting a higher complexity 

(Tab.1.6.A). Furthermore in mammalian cells the depletion of individual E Vps 

proteins causes varying phenotypes probably because they have more 

intermolecular connections than in yeast and that may compensate for the loss of 

a single component. The majority of the class E Vps proteins are constituents of 

three separate heteromeric protein complexes called ESCRT-I, ESCRT-II and 

ESCRT-III (Endosomal Sorting Complex Required for Transport). These 

protein complexes are transiently recruited from the cytoplasm to the endosomal 

membrane where they function sequentially in the sorting of transmembrane 

proteins into the MVB pathway and in the formation of MVB vesicles. 

Initially, the ESCRT-I protein complex, recruited from the cytoplasm by Vps27, 

binds to ubiquitinated endosomal cargo and in some way activates ESCRT-II. 

ESCRT-II in turn initiates the oligomerization of at least four small coiled-coil 

proteins (Vps2, Vps24, Vps20, Sfn7), resulting in the formation of a large 

endosome-associated structure, like a lattice, the ESCRT-III complex. ESCRT-
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III concentrates the MVB cargo and recruits additional factors such as Bro1 and 

Vps4. 

 

Yeast gene     Mammalian gene      Motifs                 Binds to            Modification     Complex    

Vps23/Stp22 TSG101 UEV, Coiled-coil Ubiquitin Ubiquitinated  
Vps28 VPS28    ESCRT-I 
Vps37 VPS37A-D Coiled-coil    
Vps22 EAP30 Coiled-coil    
Vps25 EAP25    ESCRT-II 
Vps36 EAP45 NZF Ubiquitin   
Vps2/Did4 CHMP2A, B Coiled-coil    
Vps20 CHMP6 Coiled-coil  Myristoylated ESCRT-III 
Vps24 CHMP3 Coiled-coil    
Sfn7/Vps32 CHMP4A-C Coiled-coil    
Vps27 HRS UIM, FYVE,VHS Ubiquitin, PI3P Ubiquitinated Vps27/HRS 
Hse1 STAM1, 2 UIM, VHS, SH3 Ubiquitin Ubiquitinated  
Vps4 VPS4A, B AAA, Coiled-coil   Vps4 
Bro1/Vps31 A1P1/ALIX Coiled-coil LBPA  not known 
Vps60/Mos10 CHMP5 Coiled-coil   not known 
Fti1/Did2 CHMP1A, B Coiled-coil   not known 
Vta1 SBP1    not known 
Tab. 1.6.A. Class E Vps proteins (modified from ref. 115) 

 

Bro1 recruits the deubiquitinating enzyme Doa4, which removes the ubiquitin 

tag from the cargo protein prior to sorting into the MVB vesicles. In mammalian 

cells, the homologues of the yeast Bro1, called AIP1 (ALG2-interacting protein 

1) or Alix (ALG2-interacting protein X), appears to serve as a bridge between 

ESCRT-I and ESCRT-III complexes and also to regulate the interaction of ILVs 

with the limiting membrane of lysobisphosphatidic acid (LBPA)-containing 

endosomal membranes. 

Vps4 is a multimeric AAAtypeATPase, that after protein sorting has been 

completed, binds to ESCRT-III and disassembles the complex in an ATP-

dependent manner. The dissociation of the ESCRT machinery is a prerequisite 

for vesicle formation. 

The ubiquitination seems to have not only a function in sorting of cargo but also 

in MVB formation. The impairing of ubiquitin binding of the yeast ESCRT-II 

subunit Vps36 and of the yeast ESCRT-I subunit Vps23 affects MVBs 

formation. One possible explanation is that the interaction of ESCRTs 
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complexes with ubiquitinated cargo notonly serves to sort cargo but also has a 

regulatory function 

in activating downstream events, such as the formation of ESCRT-III. Another 

possibility is that ESCRTs complexes, might interact not only with ubiquitinated 

cargo but also with ubiquitinated proteins of the MVB sorting machinery itself, 

promoting the formation of a functional sorting complex. However, a study on 

TSG101 (mammalian Vps23 homologue) has shown that its ubiquitination 

results in decreased MVB sorting and in its solubilization from the endosomal 

membrane, suggesting that in case of ESCRT-I at least, ubiquitination plays a 

negative regulatory role. Also Vps27 (mammalian HRS), that recruits ESCRT-I 

from the cytoplasm to endosome, has a Ub binding activity, but in this case 

mutations only affect sorting of ubiquitinated cargo but not the formation of 

MVBs. 

The formation of MVB vesicles is unique in that it is directed toward the lumen 

of the compartment, rather than the cytosol. It is not easy to imagine how the 

ESCRT proteins could be directly involved in the invagination of the endosomal 

membrane 

without getting trapped in the lumen of the forming vesicle and which role have 

lipids in this process. Differential lipid sorting render ILVs susceptible to 

degradation and the limiting membrane resistant to hydrolase, but the lipid 

composition and localized lipid remodeling  may also control the organization of 

the protein sorting machinery and perhaps the budding. Consistent with this, 

phosphatidylinositol 3-phosphate (PI3P) recruits Hrs to endosome, antibodies 

against lyso-bisphosphatidic acid (LBPA) inhibit MVBs formation and 

sphingomyelin and cholesterol are candidates for mediating protein sorting to 

MVBs. 

 

1.6.3 Viruses and MVBs 

The production of various enveloped RNA viruses such as HIV depends on 

some of the same protein machinery that controls MVB formation (Fig.1.6.B). 
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Topologically, the budding of viruses out of the cytosol (either from tha cell 

surface or from endosome) is similar to the budding of endosomes from the 

limiting membrane to form ILVs.  

Gag, the major structural protein of retroviruses, can assemble and bud from 

cells in the absence of any other viral factor [123]. Mutational analyses of Gag 

have defined short sequences motifs required for efficient particle release termed 

late or L domains to reflect their function late in the virus budding process [124-

125].  

Three classes of motifs have been defined in viral L domains: P(T/S)AP, PPXY 

(where X usually is a proline), and YP(X)nL. Late domain have been identified 

in retroviruses, rhabdoviruses, filoviruses, arenaviruses and probably also in 

ortho- and paramyxoviruses. It’s now clear that different L domains bind 

different cellular factors and in particular proteins of the MVBs biogenesis 

machinery. PTAP late domains function by recruiting TSG101, YP(X)nL 

domain seems to facilitate virus budding by binding AIP1/Alix, PPXY  motifs 

interact with proteins containing WW domains (two Trp separated by about 40 

amino acids) like Nedd4 family of ubiquitin E3 ligases.  Mutations in TSG101 

and AIP1 affect the release of retroviruses which have PTAP and YP(X)nL late 

domains.  

Mutants on VPS4A and B proteins are also potent inhibitors of retrovirus 

budding and block the release of retroviruses that leave the cell via all three 

known late domains, suggesting that retroviruses all enter the MVB pathway 

upstream VPS4, regardless of which class E proteins they bind. 

Ubiquitin transfer also plays importants roles in the budding of virus that utilize 

P(S/T)AP and PPXY late domains. Mutations in Ub can inhibit the release and it 

is known that several retrovirus incorporate high level of Ub into their particles. 

Gag proteins are monoubiquitinated at multiple sites and the levels of 

ubiquitination are altered by the presences or not of L domains. Althought 

ubiquitin transfer is clearly important for retrovirus release, it has not been 

established that Gag proteins are the functional targets for ubiquitination, indeed 
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it has been reported that amino acid substitutions which prevent Gag from being 

ubiquitinated do not impair virus budding [126]. 

 

  
 
 
Fig. 1.6.B (from ref. 125) Model for retrovirus release. On the left, schematic representation of endocytosis 
and MVB sorting of an activated growth factor receptor. An Hrscontaining complex (dark purple) recognizes 
and sequesters ubiquitylated cargo (Ub, light purple) at clathrin-rich regions of the early endosomal membrane. 
Hrs recruits ESCRT-I (I, red) through a direct interaction with Tsg101. ESCRT-I in turn recruits additional 
components of the MVB pathway, i.e., ESCRT-II (II, green) and ESCRT-III (III, blue), to assemble into a 
functional sorting complex. AIP1/Alix (brown) is recruited to the assembled complex and in mammaliancells 
bridges ESCRT-I and -III. The AAA ATPase Vps4 (red) is critical for disassembly of the complex following 
inward budding of vesicles into the endosomal lumen. On the right is depicted the hijacking of MVB sorting 
machinery for virus release. HIV-1 Gag is believed to mimic Hrs in triggering membrane recruitment of ESCRT-
I. Virus particles are shown to assemble and bud at the plasma or to be released (e.g., from macrophages) 
through the exosome pathway following assembly in the MVB. 
 

The MVB machinery is not only hijacked by viruses to egress from cell, but 

some viruses like VSV use it to entry. VSV envelope fuse with the membrane of 

ILVs leading the release of the nucleocapsid into the lumen of these vescicles to 

be safely transported across the cytoplasm then back-fusion events allow its 

final release with a mechanism that require LBPA and AIP1 [127]. 

Several lines of evidence indicate that MVB biogenesis machinery has a role in 

HSV envelopment.Vps24 and Vps4 are critical for efficient HSV-1 

assembly/release, very likely for HSV envelopment [112 and 128]. The MVB 

compartment was morphologically altered in HSV-infected cells, and appeared 

to be enlarged compared to that of uninfected cells. gB accumulates at MVB 
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membranes and its intracellular trafficking requires a correct MVB biogenesis 

process. gB is ubiquitinated in infected cells and in its ubiquitination seems to be 

involved in part K63, a residue implicated in endocytosis and not in proteasome-

dependent degradation [128]. A gB mutant lacking the 37 most C-terminal 

amino acids of the cytoplasmic tail (gB∆867) and impaired in its ability to 

accumulate at cytoplasmic vesicles [73], is significantly less ubiquitinated than 

the wt protein [128]. Virions carrying in their envelope gB∆867 are impaired most 

likely in cytoplasmic envelopments and egress [128]. The site of gB 

accumulation as well as its ubiquitination makes it likely that the membranes of 

the MVBs serve as platforms for HSV envelopment, at least in some cells. 

Alternatively, the site of envelopment may be membranes other than those of the 

MVBs, to which components involved in MVB biogenesis are recruited through 

the intervention of gB and possibly additional viral proteins; candidates are the 

tegument proteins, predicted to contain L-domain motifs [112 and 128]. 
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2. OBJECTIVES AND EXPERIMENTAL DESIGN 
 
 
2.1 DETECTION OF HSV-1 GLYCOPROTEINS INTERACTIONS 
 

The entry of herpes simplex virus (HSV) into cells takes place in 3 steps. In the 

first, two viral glycoproteins, gC and gB bind to heparan sulphate proteoglycans. 

In the second step, another glycoprotein, gD, interacts with at least one of three 

alternative receptors: nectin 1, herpesvirus entry mediator (HVEM) or modified 

heparan sulfate. In the third step, gH, gL and gB execute the fusion of viral 

envelope with the cell membranes, either plasma or endosomal.  

A key question in HSV entry/fusion centres on how gD signals the encounter 

with one of its receptor to the others virion glycoproteins required to execute 

fusion. 

The gD ectodomain is organized in two distinct regions, a N-terminus (aa 1-260) 

carrying the receptor binding sites, and the C-terminus (aa 260-310) carrying the 

profusion domain required to trigger fusion but not for receptor binding. In the 

unliganded state, the virion gD adopts a conformation in which the flexible C-

terminus of the ectodomain folds back, wraps the N-terminus and masks 

receptor-binding sites. At receptor binding, the C-terminus is displaced leading 

gD to adopt an open conformation. This conformational change and/or the 

exposed residues trigger the fusion process in some ways [129]. Our working 

model envisions that, after receptor binding, gD forms complexes with 

downstream glycoproteins, or a subset of them. 

The fusion between cells induced by co-expression of the all four fusogenic 

glycoproteins might be an useful surrogate of viral envelope-cell membrane 

fusion. 

A method that allows to detect protein interactions in living cells is the 

bimolecular complementation assay. This method is based on observation that 

many reporter proteins, including green fluorescent protein (GFP), β-Lactamase, 

dihydrofolate reductase, firefly and Renilla lucferase, can be divided into 
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fragments that neither of them retains significant activity by themselves but can 

refold in a functional complex when they are brought into sufficient closeness. 

Therefore is possible restores and detects the fluorescence emission of a split 

GFP protein if its two halves are fused to two proteins that are destined to 

interact each other and only when they do it [130] . The objective of this study 

was to investigate, in intact cells, the interactions that occur among the quartet 

of membrane glycoproteins required for HSV entry into the cells 

To this aim: 

- we searched evidence that the bimolecular complementation assay was 

suitable to the detection of membrane-bound protein interactions fusing 

two fragments of the enhanced green fluorescence protein EGFP to two 

known interacting partners, gD and its receptor nectin 1. 

- We fused the N- and the C- portions of EGFP to the endodomains of HSV 

glycoproteins to investigate their supposed interactions. 

 

 
2.2 CHARACTRIZATION OF MUTANTS IN THE gD PRO-FUSION 
DOMAIN 
 

The molecular events that follow receptor recognition by gD and precede the 

execution of fusion, referred to as triggering of fusion, are poorly understood. 

The gD ectodomain seems to encode two functions: the receptor binding and a 

signaling activity of receptor binding to downstream glycoproteins. The second 

activity may be carried by the region from aminoacid 260 to 310, which is 

required for viral infectivity and fusion but not for receptor binding. This region 

was called pro-fusion domain (PFD). The pro-fusion domain has an high content 

of prolines which exhibit somewhat regular spacings, feature often present in 

protein-protein interacting domains. 

The substitution of some prolines reduced HSV-1 infectivity in a 

complementation assay, indicating that prolines represent critical residues. 
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The objective of this study was to define the regions/sequences involved in the 

pro-fusion activity of gD more accuratly. 

To this aim: 

- we mapped subregions of the pro-fusion domain testing the activity of 

mutants in which half domain was substituited by sequences from CD8; 

- we mutated proline-glutamic acid doublets in the N-terminal portion of 

PFD to investigate their activity. 

 
2.3 CONSTRUCTION OF gB CHIMERAS TO IDENTIFY FUNCTIONAL 
DOMAINS. 
 

To enter the cell HSV-1 requires the quartet made of glycoproteins D, B, H and 

L. The roles of each component of the quartet are poorly understood. Available 

evidence indicates that, in the receptor-bound conformation, gD recruits, or 

activates the fusion executors gB and or gH/gL heterodimer. Of the three 

executors, gH appears to contain elements associated with fusion proteins, e.i. a 

hydrophobic α-helix that exhibits the properties typical of a fusion peptide and 

two heptad repeats, capable to form coiled coils and to interact with each other. 

On the other hand gB has features typical of viral fusion protein as showed from 

the crystal structure recently solved. gB structure is similar to that of the 

postfusion form of vescicular stomatitis virus (VSV) glycoprotein G, the sole 

responsible for VSV entry. Thus, comparison between G and gB domains does 

not explain how gB functions in concert with the other three glycoproteins of the 

HSV-1 fusion machinery. Furthermore VSV-G needs low pH for its trigger, 

while gB is required for fusion even when HSV-1 enters into cell in a pH 

independent way. 

The current model of HSV entry envisions that the four glicoproteins interact 

with each other before or during fusion, the details of the interactions are not 

understood. The ectodomain of gB is known to be involved in entry. 

Temperature sensitive virus and a mutation that alters the rate of entry map to 
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gB ectodomain. Furthermore, gB ectodomain harbors the epitopes of several 

neutralizing antibodies.  

gB has homologs in all herpesviridae family and in particular the position of ten 

cysteines in the ectodomain is highly conserved. In the past linker-insertion 

mutagenesis has been applied to gB to identify functional domains; however 

insertions exerted a detrimental effect on its folding [77, 83]. It is likely that 

point mutations would be less disruptive to protein structure, but the size of gB 

makes it impratictical to identify functional domains by this approach. When 

this work started the crystal structure was not solved and the only information 

available was that the conservation of the cysteines position was critical. 

 

The objective of this study was to define the sequences involved in the fusion 

activity of gB and, in particular, the domains involved in the interaction with 

gD, gH and gL. 

To this aim: 

- we inserted the 5E1 epitope in the poly-lysine region of gB; we truncated 

the c-ter tail that carries the endocytoses motifs to enable cellular 

accumulation of the protein. 

- we inserted restriction sites adjacent to two consecutive cysteines of gB to 

substitute, the sequences embedded, with homologous sequences derived 

from the HHV8-gB. 

- we tested the chimeras obtained for their activity in cell-cell fusion assay, 

in the complementation of a gB -/+ virus and in a pull-down assay from 

gH or gD fuse to the Strep-Tactin affinity tag. 

 

 

 

 

 

 



 

 40

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MATERIALS AND 
METHODS 

  
 
 
 
 
 

 



 

 41

3. MATERIALS AND METHODS 
 

3.1 CELLS AND VIRUSES  
 

Baby hamster kidney (BHK) cells, 293T and COS cells were grown in 

Dulbecco’s modified Eagle medium (DMEM) supplemented with 5% fetal 

bovine serum (FBS). The receptor-negative J, J-nectin 1, and J-HVEM cells 

were described in refs. 33 and 53.  

HSV-1(F) is described in ref. [131]. In gD-minus F-gDβ virus, the gD gene was 

replaced with Lac-Z gene [132]. The virus was grown in R6 cells to obtain (gD-/+ 

stock). R6 cells express HSV-1 gD under control of UL26.5 promoter [11]. 

∆gB-K∆T mutant was grown and titrated in gB-expressing D6 cells to produce 

complemented gB–/+ stock. 

 

3.2 PLASMID CONSTRUCTION 
 

3.2.1. Generation of plasmids for spilt-EGFP complementation assay 

The mammalian expression plasmids for gH in the MTS vector, and gD and 

nectin1 in pcDNA3.1 [33 and 47] were site-directed mutagenized 0 to 10 aa 

upstream of the stop codon, in order to generate restriction sites for the 

insertion of N or C amplimers. The sites were SphI for gH and BglII for gD or 

nectin1. Where necessary, the BglII site of pcDNA3.1 was preliminarily 

eliminated by digestion, filling in by T4-DNA polymerase and religation. N 

and C sequences were PCR amplified from pCMS-EGFP (Clontech) with the 

primer pairs (or variations thereof) 5'CCCAGATCTCCATGGTGAGCAAGGGCG 

AGGAGCTGT plus 5'GGGAAGCTTCTACTTGTCGGCCATGATATAGACGTTG or 

5'CCCGCTAGCTCAGAAGAACGGCATCAAGGTGAACT plus 5'GGGAGATCTTAC 

TTGTACAGCTCGTCCATG CCGAGA, respectively. 

N amplimer was ligated with BglII-HindIII-digested gD plasmid or SphI-

BglII-digested gH plasmid, generating gDN
 and gHN. The C-EGFP amplimer 
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was ligated with digested nectin1 (BglII-XhoI) and gH (SphI-BglII) plasmids, 

generating NectC
 and gHC. The gC gene sequence was PCR amplified from 

DNA of HSV type 1 (F) with primers 5'AGATCTAGGCCTATGGCCCCGGGGC 

GGGTGGGCCTTGCCGTGGTCCTGTGGAGCCTG and 5'GAAGATGCGGCCGCTTA 

GCTAGCCGCCGATGACGCTGCCGCGACTGTGATGTGCG. The StuI-NheI-

digested gC amplimer and the NheI-BglII-digested C amplimer were ligated 

with StuI-BglII-digested MTS vector. The gB-encoding plasmid in pcDNA3.1 

was deleted of the endodomain sequences that carry endocytosis motifs, from 

aa 867 to the stop codon (gB 867), in order to maximize gB expression [73]. 

The gBC chimera was generated by mixing gB 867 and C amplimers, 

generated with primer pairs 5'GGCTGGATCCTCCCCGTAGTCCCGCCATGC3’  

plus 5’CCTTGATGCCGTTCTTCTGAGATCTCTTCTTCTTGGCCTTGTGTTC3’ and  

5'GAACACAAGGCCAAGAAGAAGAGATCTCAGAAGAACGGCATCAAGG plus 

5'GGGAAGCTTTTACTTGTACAGCTCGTCCATGCCGAGA3’, followed by 

ligation with BamHI-HindIII-digested pcDNA3.1. 

 

3.2.2 Generation of plasmids used to define functional subdomains in gD-

PFD 

First, we derived gD-PFD/2; the gD1-260CD8 construct was amplified up to 

amino acid 285 with primers 5′-CCCTCTAGACTCGAGCGTTCCGGTATGGGGG-

3′ and 5′-CAAGTTTGGTGGGATTTGCGGCGCCACCTGCGACGCGATGGTGGGCG 

CCGGTGT-3′. Amplimer 2, derived by amplification of the gD gene with 

primers      5′-CTCTTGGAGGACCCCGTGGGGACGCCCCTGTCCCTGCGCCCAGA 

GGCG-3′ and 5′-GCGGTTTAAACTGAATTCTCTAGTAAAACAGGGG-3′, 

contained the gD amino acid 285-stop codon. Each amplimer contained 

overlapping sequences (contained in the primers) with the other amplimer. 

The amplimers were mixed and further amplified with the external primers. 

The product was cloned into pcDNA3.1(-) at the XhoI and EcoRI sites. To 

generate gD∆PFD and gD-PFD/1, we inserted an Asp718 site at amino acid 310 

of gD1-260CD8. Digestion with Asp718 and EcoRI removed the 
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transmembrane (TM) and cytoplasmic tail (C-tail) of CD8, which were 

replaced with the TM and C-tail gD sequences, and amplified with primers   

5′-CATCCCCCGGGTACCCCGAACAACATGG-3′ and 5′-GCGGTTTAAACTGAAT 

TCTCTAGTAAAACAGGGG-3′, thus generating gD∆PFD. To generate gD-PFD/1, 

the latter construct was PCR-amplified from amino acid 285 to the stop codon 

with primers 5′-GGTCTCTTTTGTCTCGAGCGTTCCGGTATGGGGG-3′ and         

5′-CGCCTCTGGGCGCAGGGACAGGGGCGTCCCCACGGGGTCCTCCAAGAG-3′. 

A second amplification product, containing gD amino acids 1-285 plus the 

natural gD signal sequence (amino acids -25 to -1), was derived with primers 
5′-CTCTTGGAGGACCCCGTGGGGACGCCCCTGTCCCTGCGCCCAGAGGCG-3′ 

and 5′-GCGGTTTAAACTGAATTCTCTAGTAAAACAGGGG-3′. The two 

amplimers contained overlapping sequences and were mixed and amplified 

with external primers. The final product was cloned in pcDNA3.1(-) at the 

XhoI and EcoRI sites.  

gD mutants E259A-P261L (1), PE266-267LA (2), PE270-271LA (3), and 

PED273-274-275LAA (4) were obtained by site-directed mutagenesis of wt-

gD-encoding plasmid described in ref. 33. Mutagenesis was performed with 

the following primers: (1) 5′-GCTGCCCCCGGAGCTCTCCGCGACCCTCAACG 

CCACGCAG; (2) 5′-CCCAACGCCACGCAGCTAGCACTCGCCCCGGAAGC;       

(3) 5′-GCAGCCAGAACTCGCGCTAGCAGCCCCCGAGGATTC; and (4)  5′-CTC 

GCCCCGG AAGCGCTAGCGGCTTCGGCCC TCTTGGAG. 

 

3.2.3 Generation of plasmids encoding gB chimeras 

a) gB5E1N

To generate gB5E1N, two restriction sites, BamHI and EcoRI, were inserted 

at residues 68 and 77, respectively, by site-directed mutagenesis of 

plasmid for gB in pcDNA3.1. Mutagenesis was performed with the 

following primers: BamHI, 5’CCAACGGGGGACACGGATCCGAAGAAGAA 

CAAA; EcoRI, 5’GAACAAAAAACCGAATTCCCCACCGCCGCCGCGCCC. An 

amplimer of 5E1 epitope [133] was generated by extension of two 

synthetic partially overlapping oligonucleotides: 5’CTATTCGGAT 
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CCGAGTCGACCAGGAAGCACTACACCCTCTGGGAACTCTGCAAGATATGGG 

plus AGTAATGAATTCGGAGTTATACTTCTAGGTGTGTTATTCCCATATCTT 

GCAGAGTTCCCAG. The amplimer was cleaved with BamHI and EcoRI, 

and ligated in predigested gB. 

b) gB5E1N∆867 

To remove the endocytosis motifs located in the cytoplasmic tail, 

downstream of aa 867 of gB, a stop codon was inserted at the 

corresponding aa of gB5E1 by site-directed mutagenesis performed with 

primer described in ref. 73. The resulting construct was named gB5E1N∆867. 

c) gBC3C4 

XbaI and HpaI restriction sites were inserted at aa 217 and aa 270 (we 

always refer to amino acid position in wt-gB) respectively, by site-directed 

mutagenesis of gB5E1N∆867 with the following primers: 5’GTACGTGCGCAA 

CAATCTAGAGACCACCGCGTT and 5’ GTACGGGACGACGGTTAACTGCATC 

GTCG. Both mutations were silent. The restriction sites inserted were 

adjacent to the third and the fourth cysteines of gB ectodomain after 

cleavage of the signal sequence thus the construct obtained was named 

gBC3C4. This kind of nomenclature was used for all mutants. 

d) gBC1C3C4 

A HindIII restriction site was inserted by site-directed mutagenesis in 

gBC3C4 generating the substitution N112S. The primer used was the 

following: 5’GAACACCGATGCAAGCTTTTACGTGTGCCC. The construct 

was named C1C3C4.  

e) gBC6 

To generate gBC6, a XhoI site was introduced by site-directed 

mutagenesis in gB5E1N∆867 by means of the oligonucleotide 5’ CCTGGGGGA 

CTGCCTCGAGAAGGACGCCCGCGA.  The mutagenesis inserted the 

following substitutions: I412L and G413E. 

f) gBC5VC6 
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A XbaI restriction site was inserted by site-directed mutagenesis in gBC6 

with primer 5’GCCCGTCGGTCTGCTCTAGAACCAAGTGGCAGG generating 

the substitution T365S and M366R. 

g) gBC5MC6 

To generate gBC5MC6, an Asp718 restriction site was introduced by site-

directed mutagenesis in gBC6 with primer 5’ TCATGGTGCAGAGGTAC 

CGGCGCTTTGGCAC. The mutagenesis inserted the following substitutions: 

P361R, S362Y and V363L. 

h) gBC6C7 

To generate gBC6C7 an EcorV restriction site was inserted in gBC6. The 

site-directed mutagenesis was performed with primer 5’ CGCGTGG 

TGCGATATCCAGAATCACGAGCTG and introduced the substitutions 

E530D and L531I. 

i) gBC4C5 

Asp718 and HpaI restriction sites were inserted at aa 362 and aa 270 

respectively, by site-directed mutagenesis of gB5E1N∆867 with primers 

previously described in c) and g). 

 j) gB13H8 

To generate gB13H8, the sequence encoding amino acid residues 65 to 167 

of HHV8-gB was PCR amplified from plasmid pAB38 that carries HHV8-

gB in pcDNA3.1(-)Myc/HisA vector (gift of F. Neipel), with primers  

5’TTTTAAAGCTTCAGAGTGTGTAGTGC and 5’AGTAAATGTGTTTTCTAG 

ACCGTTG.  

The amplified fragment was digested with HindIII and XbaI and cloned 

into gBC1C3C4 digested with the same endonucleases. 

k) gB34H8 

To generate gB34H8, the sequence encoding amino acids 169 to 221 of 

HHV8-gB was PCR amplified from plasmid pAB38 with the primer pairs 

5’CAACGGTCTAGAAAACACATTTACTGAC plus 5’AACGGTGGTCCTAACTC 
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TGTATATGCC that was phosphorylated at its 3’ end. The amplimer was 

digested with XhoI and cloned into gBC3C4 digested with XhoI and HpaI. 

l) gB45H8 

To generate gB45H8, the sequence encoding amino acids 223 to 311 of 

HHV8-gB was PCR amplified from plasmid pAB38 with primers 5’ CCG 

TTAACTGCGAGATAGTCGACATGAT and 5’ CACAGGTACCTGGTCTTGC 

TCTCGGA. The amplified fragment was digested with HpaI and Asp718 

and ligated in HpaI/Asp718-predigested gBC4C5.  

m) gB56H8 

The construction of gB56H8 followed essentially the same strategy. The 

sequence encoding amino acid residues 316 to 361 of HHV8-gB was PCR 

amplified from plasmid pAB38 with primers 5’ GACCAGGTACC 

TGTGTCCGCTAGCACTGTGG and 5’CCGACTCGAGACAAGAGTACGTGT 

CGGTAAA. The amplimer was digested with Asp718 and XhoI and cloned 

into gBC5MC6 digested with the same endonucleases. 

n) gB67H8 

To generate gB67H8, the sequence encoding amino acids 365 to 485 of 

HHV8-gB was PCR amplified from plasmid pAB38 with primers 5’ 

CTCTTGTCTCGAGTCGGATATCAACAC and 5’ GTCCCTGACCTGAGGCCTA 

CACCAT. The amplimer was digested with XhoI and StuI and ligated in 

gBC6C7 peviously digested with XhoI and EcorV. 

 

3.2.4 Generation of plasmids useful for pull down experiments 

To generate gHStrep an amplimer that carried the sequence encoding the V5-

epitope, the One-STrEPTM tag (trademark of IBA GmbH) and the factor Xa 

Protease recognition site, was generated by extension of two synthetic 

partially overlapping oligonucleotides: 5’ GGAGACGCATGCTAATCGAAG 

GGCGAGGTAAGCCTATCCCTAACCCTCTCCTAGGCCTCGATTCTACGAGCGCTT

GGAGC-3’ and  5’GGTAGTAGATCTCATTTTTCGAACTGCGGGTGGCTCCACGA 

TCCACCTCCCGATCCACCTCCGGAACCTCCACCTTTCTC-3’. The fragment was 

digested with SphI and BglII and cloned into plasmid gH5E1 predigested with 
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the same endonucleases. gH5E1 plasmid (gift of Gianni T.) encodes HSV-gH 

with a 5E1-epitope inserted in frame at residue 837. The amplimer inserted 

replaced 5E1-epitope.  

5E1-epitope was displaced from gH5E1 also by V5 epitope to generate gHV5. 

An amplimer encoding the epitope V5 and the His-Tag was obtained by 

extension of the partially overlapping oligonucleotides: 
5’GGAGACGCATGCTAGGATCCGGTAAGCCTATCCCTAACCCTCTCCTCGGTCT

CGATTCTACGC and 5’TTAGCGAGATCTCAATGGTGATGATGGTGATGATGA 

ACGGTACGCGTAGAATCGAGACCGAGGAGA. The fragment was digested with 

SphI and BglII and cloned into predigested gH5E1. The construct obtained was 

named gHV5. 

To construct gDStrep , an amplimer that carried the sequence encoding One-

STrEP TagTM was generated by extension of the partially overlapping primers 
5’GGAAGATCTCTGGCTGGAGCCACCCGCAGTTCGAGAAAGGTGGAGGTTCCG

GATCGGGAGGTGGATCG and 5’CCCAAGCTTCCCGGATCCTCATTTTTCGAAC 

TGCGGGTGGCTCCACGATCCACCTCCCGATCCGGAACCT. The amplimer was 

digested with BglII and HindIII and ligated in BglII/HindIII-digested gDN 

(see chapter 3.2.1). 

 

3.3 OTHER PLASMIDS   
 

pEA99 carries the gD gene cloned in pcDNA 3.1(-) [134].   

The gB, gH, and gL genes were cloned in pMTS-1, a vector derived from 

pAcSG2 (Pharmingen) by the insertion of CMV IE promoter [11 and 47]. 

gLV5 encodes for gL with V5 epitope fused at C-terminus. gB in pcDNA3.1 

contained a StuI/BglII fragment subcloned from gB in pMTS-1. EGFR2∆ 

(named Erb-2) carries the extracellular domain and transmembrane sequences 

of rat HER-2/neu and is deleted of the tyrosine kinase domain [135]. Plasmid 

pCAGT7 containing the T7 RNA polymerase gene under control of the CAG 

promoter, and the pT7EMCLuc plasmid expressing the firefly luciferase 

under the T7 promoter were decribed in ref. [79 and 136]. pCF18 carries 
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nectin1β cDNA, cloned into BstXI and NotI of pcDNA3.1(+) [33]. pBEC10 

encoding HVEM was described in ref. 25. pcDNA3.1(-)Myc-His/Lac vector 

(Invitrogen, Milan, Italy), encodes βgalactosidase.  

 
 
3.4 ANTIBODIES 
 

Monoclonal antibody (MAb) H170 is directed to the N-terminal of gD 

(Goodwin Institute, Plantation, FL and ref. 137). Polyclonal antibody (PAb) R8 

is directed to gD [138]. MAb H1817 is directed to the first 20 residues of gB 

ectodomain, the latter at the N-terminus (Goodwin Institute, Plantation, FL and 

ref. 139). MAb 53S recognizes a discontinuous epitope of gH and strictly 

requires gL for reactivity [137].  

MAb R1.302 is directed to hNectin-1 (gift of M. Lopez) [140]. H633 to gC was 

from Goodwin Institute (Plantation, FL). Anti-V5 antibody was from Invitrogen 

(Milan, Italy) and was used to recognize gHV5 and gLV5. Monoclonal antibody 

5E1 is an HHV-7-specific MAb directed to pp85(U14) herein used to recognize 

gB5E1N and other gB-mutants in which the specific epitope was inserted. 

Anti-rabbit or anti-mouse IgG-FITC (fluorescin-isothiocyanate) or -TRITC 

(tetra-methyl-rhodamine isothiocyanate) conjugated antibodies were from 

Jackson Immunoresearch. Coupled to peroxidase anti-mouse and anti rabbit 

secondary antibodies were from Sigma-Aldrich or GE Healthcare. 

 

 
3.5 INDIRECT IMMUNOFLUORESCENCE (IFA)  
 

COS cells were grown on glass coverslips and transfected with the indicated 

plasmids by means of Polyfect (Qiagen), according to manufacturers 

instructions. 293T cells were transfected by means of Arrest-in 

(OpenBiosystem, Celbio, Milan, Italy). After 24 h the cells were fixed with 

either 4% paraformaldehyde in PBS for 10 min at room temperature followed, 

when requested,  by permeabilization with 0.1%Triton X-100  in phosphate-
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buffer saline (PBS), or fixed with -20°C-cold methanol. Samples were incubated 

for 1h with the following monoclonal antibodies (MAbs): MAb H170 (1:400) to 

gD; MAb 53S (1:200) to gH; MAb R1.302 to nectin-1 (1:100); MAb H1817 

(1:400) to gB. Alterwards, the appropriate anti-mouse or anti-rabbit IgG-FICT 

(fluorescein-isothiocyanate) conjugated antibody (1:1000) (Jackson 

Immunoresearch) was added and incubate for 45 minutes. Samples were 

observed with a Zeiss microscope, and micrographs were taken with a Kodak 

DC290 digital camera.  

 

3.6 SPLIT EGFP COMPLEMENTATION ASSAY 
 

COS or 293T cells were grown on glass coverslips and transfected with the 

indicated combination of plasmids gDN, NectC, gHC, gHN, gBC, and gCC by 

means of Arrest-in (OpenBiosystem, Celbio, Milan, Italy). At 24-48 h post 

transfection cells were mounted without fixation with Fluoromount and 

observed with Leica TCS-SL confocal microscope, set at 100% excitation at 

488 nm and emission between 490-540 nm. Images were collected with a 

63X1.62 Leica oil immersion objective. Confocal slices were 1.7 to 2.3 µm 

thick. For each experimental series images were collected on the same day, 

under the same settings, applying 1,024- by 1,024-pixel resolution and an 8-

bit intensity scale. Specifically, the first sample to be analyzed was the 

negative one, containing gCc; for subsequent observations of the samples 

belonging to the same series, the settings were then kept unmodified. 

 

3.7 CELISA (cell enzyme linked immunosorbent assay) 
 

CELISA was performed as described [141]. Briefly, subconfluent cultures of 

COS cells in 48-well plates were transfected with plasmids encoding wt-gD 

or gD mutants (125, 250, or 375 ng per well), or with 125 ng of plasmids 

encoding  wt-gB or gB mutants. The Erb-2 plasmid DNA was used to make 

the amounts of DNA equal. After 24 h cells expressing gD were reacted with 
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MAb H170, HVEMt, or nectin 1-Fc and cells expressing gB were reacted 

with MAb H1817 .  Subsequently, cells were fixed with 4% formaldehyde in 

PBS, followed by anti-mouse peroxidase, anti-His6-peroxidase, or anti-human 

peroxidase and o-phenylenediamine substrate. The optical density (OD) was 

read at 490 nm.  

 

 

3.8  CELL-CELL FUSION ASSAY 
 
 β-galactosidase-based cell–cell fusion assay 

Subconfluent cultures of BHK cells, grown on glass coverslips in 24 well plates, 

were transfected by means of Fugene (Roche Applied Science, Milan, Italy) 

with DNA mixtures that contained the expression plasmids for gD, gH, gL, gB, 

plus pcDNA 3.1(-) Myc-His/Lac vector (Invitrogen, Italy), for constitutive 

expression of ß-Galactosidase (80 ng of each plasmid). When necessary the wt-

gB was replaced with gB mutants or Erb-2. After incubation at 37° for 48 h, 

cells were fixed with 0.2% glutaraldehyde and 0.2% paraformaldehyde in PBS. 

Syncytia were detected by light microscopy observation of ß-Gal expressing 

cells after staining with 5-bromo-4chloro-3-indolyl-ß-galactopyranoside (X-Gal) 

with a Axioplan Zeiss microscope equipped with a Kodak DC120 digital 

camera.  

 Luciferase-based cell-cell fusion assay 

The luciferase-based cell-cell fusion assay was performed as detailed [141] 

using the Luciferase Assay System from Promega. Effector COS cells were 

transfected with 80 ng of plasmids for gH, gL, gB, plus 80 or 240 ng of plasmid 

for  chimeric or WT-gD or Erb-2 and 107 ng of pCAGT7. Target cells [COS, J-

nectin 1, and J-HVEM were transfected with pT7EMCLuc. The extent of fusion 

was express as luciferase units (L.U.) reading the sample in a luminometer TD-

20/20 (Turner designs version 2.5) at 560 nm. The negative control lacked gD 

and its value was the subctracted background. The total amount of transfected 
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plasmid DNA was made equal by addition Erb-2 plasmid DNA. All samples 

were run three times and in triplicates. 

 

3.9 INFECTIVITY COMPLEMENTATION ASSAY 
 

Cells in T25 flasks were transfected by means of Polyfect (Qiagen) with the 

indicated plasmids.  The total amount of plasmid DNA transfected per flask was 

made equal by addition Erb-2 plasmid DNA.  Four h later cells were infected 

with with gD-/+ FgDβ (3 PFU/cell). Unpenetrated virions were inactivated by 

washing two times with PBS, followed by a 1 min rinse with 40 mM sodium 

citrate, 10mM KCl, 135 mM NaCl, pH 3. The monolayers were then rinsed 

twice with PBS and overlaid with medium containing 1% FBS and frozen 24 h 

after transfection. Progeny virus was titrated in gD-expressing cells (R6) or was 

quantified as β-galactosidase activity in BHK, J-nec1, or J-HVEM cells by 

staining with o-nitrophenyl-β-D-galactopyranoside (ONPG) and reading the 

optical density (OD) at 405 nm or by light microscopy observation of β-gal-

expressing cells after staining with X-gal. 

Infectivity complementation assay of gB-/+ K∆T virus followed esentially the 

same protocol but progeny virus was titrated in gB-expressing cells (D6) 

 

3.10 STREP-TAG PULL DOWN EXPERIMENTS AND WESTERN BLOT 

ANALYSIS 

293T cells (∼2,8 x 106 cells/T25 flask) were transfected by means Arrest-in 

(OpenBiosystem, Celbio, Milan, Italy) with plasmids encoding gHV5, gLV5, 

gB5E1ND867, gD (1,5 µg each, all together or combination of them) and HVEM (3 

µg) or when necessary gB5E1ND867 was replaced with HSV-HHV8 gB chimeras, 

wt-gD with gDSTREP or gHV5 with gHSTREP. 24 h after transfection cells were 

solubilized in EA1+ (250 mM NaCl, 50 mM hydroxyethylpiperazine-

ethanesulfonic acid and 0,1% Nonidet P40, pH 8)  added with Nα-p-Tosyl-L-

lysine chloromethyl ketone hydrochloride (TLCK) and N-p-Tosyl-L-
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phenylalanine chloromethyl ketone (TPCK) (final concentration 0,3 mM each). 

Cell lysates were centrifuged at 14000 rpm for 1h. The supernatants were 

incubated with Protein A-Sepharose resin (Sigma Aldrich, Milan, Italy) for 1 h 

at 4 °C. After incubation the beads were recovered by centrifugation and then 

the complexes were harvested by incubation with the Strep-Tactin Sepharose 

(IBA GmbH, Gottingen, Germany) 1 h at 4 °C with gentle mixing. Strep-Tactin 

is  an engineered streptavidin [142]. The beads were washed five times with 

Buffer W (100 mM Tris-Cl pH 8.0, 150 mM NaCl and 1 mM EDTA) and then 

the absorbed proteins were eluted by the addition of SS (solubilizing solution) 

containing SDS and β-mercaptoethanol. The proteins were separated by 

denaturing polyacrylamide gel electrophoresis (PAGE) and transferred to 

Hybond ECL nitrocellulose membrane (Amersham Biosciences, Milan, Italy). 

The membranes were blocked 1 h at RT with ECL Advance Blocking Agent 

(GE Healthcare, Milan, Italy) incubated overnight with the appropriate antybody 

and then with anti-mouse or anti-rabbit peroxidase-conjugated antibody 

(1:80000) (GE Healthcare, Milan, Italy). The blot was developed by ECL 

Advanced Western Blotting Detection Kit (GE Healthcare, Milan, Italy), 

according to manufacturer’s instructions. 

 

3.11 BIOINFORMATIC ANALYSIS 
 

The sequences of HVS-HHV8 chimeras were submitted to SWISS-MODEL 

server (http://swissmodel.expasy.org//SWISS-MODEL.htm). SWISS-MODEL 

provides a fully automated comparative protein modelling service. To build the 

homology model, SWISS-MODEL identified a structural template, aligned the 

target sequence and the template structure, generated the model and minimized 

the energy of the model. For each steps SWISS-MODEL used specialized 

software and protein databases. SWISS-MODEL also provided a model quality 

evaluation [143].  
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depicted as geometrical drawings (yellow and blue). In d) is represented the EGFP recostitution after proteins 
interactions (modified from ref.146). 

4. RESULTS, DISCUSSION AND 
CONCLUSIONS 

 
 
 
4.1 DEVELOPMENT OF A SPLIT EGFP 
COMPLEMENTATION ASSAY TO DETECT INTERACTION 
BETWEEN gD, gB, gH.gL 
 

4.1.1 RESULTS 

4.1.1.1 gD-Nectin1 complex detection.  

To investigate HSV glycoproteins interaction we used the split enhanced green 

fluorescent protein (EGFP) complementation assay. EGFP is a humanized red-

shifted variant of wilde type GFP from Aquorea victoria, incorporating mutation 

for optimal expression in mammalian cells and brighter fluorescence. EGFP is 

composed of 11 strands of β sheet that form an anti-parallel barrel with short α 

helices forming lids in each end. The fluorescent-active center of EGFP is 

located inside the barrel. In the complementation assay (CA), EGFP is split into 

two fragments  that, if brought to an 8- to 10-Å proximity of ach other, refold 

together and emit fluorescence [144 and 145] Fig. 4.1.1 

 

 
 
Fig. 4.1.1 Schematic of EGFP dissection. In a) a schematic of the secondary structure topology of EGFP is 
shown and the site of dissection is indicate. In b)c) and d) the interaction partners fused to EGFP fragments are 

a

b

d) 

c)
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Inasmuch EGFP-CA has been applied mainly to analysis of soluble mammalian 

or bacterial proteins [144], we first validated its application to membrane proteins 

- in particular to HSV glycoproteins - by analysis of gD and its nectin1 receptor. 

We fused the N- and C- fragments of EGFP (EGFP N-term corresponds to aa 1-

157 and C-term corresponds to aa 158-239) to the endodomains of gD and 

nectin1 respectively, the constructs were named gDN and NectC. Fig. 4.1.2 C and 

M, documents complex formation between gDN and NectC as fluorescence 

emission from EGFP-CA in transfected 293T and COS cells, and the specificity 

controls. Cells were observed 36 h after Arrest-in-mediated transfection. Results 

with the two cell lines were essentially similar, although the level of expression 

and number of fluorescent cells was higher in 293T cells. In agreement with 

previous reports, the overall fluorescence emitted by complementation of split 

EFGP fragments was lower than that from the unsplit protein [144]. The 

specificity controls that validated the assay were as follows. First, neither gDN  

nor NectC emitted fluorescence when transfected singly (Fig. 4.1.2 A, B, K, L), 

or in combination with the wt alleles of nectin1 or gD (not shown), ruling out 

autofluorescence. Second, fluorescence was reconstituted only when the EGFP 

chimeric proteins were in a specific complex, and not simply present in the same 

subcellular compartment. For this control, we selected gC, which is involved in 

virus attachment but not virus entry and is present in the same subcellular 

compartments as gD. Coexpression of gDN and gCC  resulted in no significant 

fluorescence (Fig. 4.1.2 D and N), ruling out the possibility that proteins that 

exhibit no specific interaction, but that are abundantly present in the same 

cellular compartment, give rise to EGFP complementation. We took advantage 

of the lack of EGFP complementation by gCC-containing samples and, in all 

experiments, used the gCC-containing sample to adjust the confocal microscope 

settings. The settings were then kept constant throughout the observation period 

of a same series of samples. Third, we ascertained by immunofluorescence assay 

(IFA) that all proteins were expressed, even those expressed singly (gDN, NectC) 
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(Fig. 4.1.2 E, F, O, and P) or in the gDN-gCC combination that did not yield 

EGFP fluorescence (Fig. 4.1.2 I, J, S, and T).  

  
 
FIG. 4.1.2 EGFP CA (A to D and K to N,) and IFA (E to J, and O to T). EGFP CA between gDN and NectC and 
lack of complementation between gDN and gCC. COS or 239T cells were transfected with the indicated plasmids, 
gDN (A, E, K, and O), NectC (B, F, L, and P), gDN_NectC (C, G, H, M, Q, and R), and gDN_gCC (D, I, J, N, S, 
and T). IFA: Green, gD; red, NecC or gCC. Antibodies used were R8 to gD, R1.302 to nectin1 and H633 to gC. 
 
 
Importantly, the EGFP-glycoprotein chimeras were not hampered in plasma 

membrane localization (Fig. 4.1.2). We conclude that EGFP-CA fulfills the 

criteria for detection of specific interactions between membrane-bound proteins, 

particularly HSV gD and its receptor.  

 

4.1.1.2 Complexes between HSV glycoproteins. 

The second series of experiments was performed with 293T and COS cells 

tranfected with three membrane proteins in combinations that included: 

gDN+gBC, gDN+gB∆867, gDN+gHC+wtgL, gDN+wtgH+wtgL, and gDN+gCC. We 

used a form of gB deleted for endocytosis motifs, to maximize its espression and 

localization in exocytic and plasma membranes [73]. Transfection mixtures were 

made equal in DNA amounts (900 ng/well, 300 ng/plasmid) by addition of 
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plasmid encoding epidermal growth factor receptor 1 deleted in signalling 

sequences [135]. This control ensured that exocytic membranes were loaded 

with comparable amounts of proteins. In both cell types observed 36 h after 

transfection, the gDN+gHC+wtgL combination resulted in a readily detectable 

fluorescence (Fig. 4.1.3 B and E). The gDN+gBC combination gave rise to a 

somewhat weaker fluorescence (Fig. 4.1.3 A and  D) that nonetheless was much 

higher than the background fluorescence emitted by the gDN+gCC combination 

(Fig. 4.1.3 C and F). Even though the subcellular localization cannot be clearly 

defined, EGFP appeared to localize to a perinuclear position, consistent with a 

Golgi compartment localization, to a cytoplasmic reticular compartment, 

consistent with endoplasmic reticulum, and to nuclear membranes. By IFA, all 

proteins resulted to be expressed, even those that did not yield EGFP 

fluorescence (not shown). We infer that gD can recruit gH to a complex. gD can 

also recruit gB to a complex. The gD-gH combination results in a stronger EGFP 

fluorescence than the gD-gB combination, possibly reflecting a stronger 

interaction, a more stable or longer half-life complex, a higher number of 

complexes at steady state, or peculiar behaviors of the fusion proteins. 

Cells transfected with the quartet of gD, gB, gH, and gL form syncytia [79]. A 

series of experiments was designed to verify whether the glycoprotein-EGFP 

chimeras were still functional in cell-cell fusion, and whether complexes were 

detectable under conditions that lead to cell-cell fusion. 293T or COS cells were 

cotransfected with combinations of five plasmids (1.25 µg/well, 250 ng/plasmid) 

encoding gD, gB 867, gH, gL, and gC or their EGFP chimeras. The transfected 

combinations included gDN+gBC+wtgH+wtgL+wtgC, gDN+gHC+wtgL+gB

867+wtgC, and gDN+gB 867+wtgH+wtgL+gCC. Cells were observed 24 h (293T) 

or 40 h (COS) after transfection. The results in Fig. 4.1.3 G to L show that 

syncytia were formed for any combination, indicating that the EGPF-

glycoprotein chimeras were not hampered in fusion activity. The strongest 

fluorescence was observed with the combination that included gDN+gHC (panels 

H and K).  
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FIG. 4.1.3. EGFP CA between HSV glycoproteins. COS or 239T cells were transfected with the indicated 
plasmids, gDN + gBC (A, D, G, and J), gDN + gHC (B, E, H, and K), gDN + gCC (C, F, I, and L), gHN + gBC (M 
and O), and gHN + gBC + gD (N and P). Cells transfected with three glycoproteins (gps) received, in addition, 
plasmids encoding wtgL or epidermal growth factor receptor, as appropriate. Cells transfected with five 
glycoproteins received gD, gB∆867, gH, gL, and gC as the wild type or EGFP chimeras, as indicated. 
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A somewhat weaker fluorescence was observed with the combination that 

included gDN+gBC (panels G and J), particularly in COS cells. No fluorescence 

above background level was observed with the combinations that included 

gDN+gCC (panels I and L).  

The stronger fluorescence in panels B relative to H and in panels E relative to K 

reflects (i) higher amounts of transfected DNA for each plasmid, (ii) a longer 

time interval after transfection (panels B versus H), (iii) the lack of dilution of 

complemented EGFP molecules consequent to fusion of transfected fluorescent 

cells with adjacent untransfected nonfluorescent cells, or (iv) possibly a longer 

half-life of the complexes when cell-cell fusion does not ensue. 

We next tested whether gH and gB interact with each other and whether the 

interaction was dependent on the presence of gD. Cells were transfected with 

gHN+wtgL+gBC in the absence or presence of wtgD. Interaction between gHN-

gBC (Fig. 4.1.3 M and O) of gD. 

 

4.1.2 CONCLUSIONS 

We validated the adaptation of the EGFP-CA to membrane proteins by first 

applying it to the gD-nectin1 interaction. The fluorescence emitted from the 

gDN-NectC combination was readily detectable, whereas that from the gDN-gCC 

combination was detected at only background levels, testifying to the assay 

specificity. For every series of observations, the gCC-containing sample was 

therefore used to adjust the confocal microscope settings. Samples exhibiting 

readily detectable fluorescence under these conditions were considered positive. 

We detected a complex made of gD and gH, in agreement with 

coimmunoprecipitation data [40]. The complex formed even in the absence of 

gB. In addition, we detected a complex made of gD and gB that formed even in 

the absence of gH·gL. We further documented the interaction between gH and 

gB; its gD dependence suggests that the interaction is triggered by gD. A notable 

property of the EGFP-CA as applied here was that complex formation between 

HSV glycoproteins was detected in intact cells, i.e., in the intracellular 
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compartment and microenvironment and under the very conditions in which the 

interactions do occur. Importantly, the EGFP chimeric glycoproteins were not 

hampered in cell-cell fusion activity. Hence, the detected interactions were a 

faithful mirror of the interactions that take place under conditions that lead to 

cell-cell fusion. Inasmuch as EGFP reconstitution from split portions is an 

irreversible reaction, the assay does not allow us to infer whether the complexes 

between the HSV glycoproteins were stable or transient.  

Cumulatively, the current assay provides in situ evidence for the following.  

(i)  gD recruits gH·gL and gB to complexes.  

(ii)  gH and gB can be recruited to gD independently of one another. Thus, 

gD carries binding sites for both gH·gL and gB. The independent 

recruitment of these glycoproteins to gD is consistent with and 

substantiated by the observation that, at the outer nuclear membrane, 

virions deleted for gB but carrying gD+gH, or deleted for gH but 

carrying gD+gB are capable of fusion [101].  

(iii)  Once gH·gL and gB are recruited to gD, they possibly interact with each 

other. (iv) gH·gL and gB are not necessarily recruited in a sequential 

order or one to the other. Current data support a model of HSV entry-

fusion whereby gH and gB exert their activity through complex 

formation with gD, or following activation mediated by complex 

formation with gD.  

 

4.2 ROLE OF gD PRO-FUSION DOMAIN IN THE 

RECRUITMENT\ACTIVATION OF gB AND gH.gL 
 

4.2.1 RESULTS 

4.2.1.1 Functional Subdomains in gD-PFD.  

To identify functional subdomains of PFD, we generated two gD chimeric 

proteins that carried, downstream of residue 259, either PFD/1 (amino acids 260-
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285) or PFD/2 (amino acids 285-310) (Fig. 4.2.1). In the constructs, gD-PFD/1 

and gD-PFD/2, the TM and C-tail regions were from gD, and the gD missing 

sequences were replaced by the corresponding sequence of CD8. A chimera in 

which the entire PFD was replaced by the corresponding sequences of CD8 

(gD∆PFD) differed from gD(1-260)CD8 [53] in that the TM and C-tail regions were 

from gD but not from CD8. The chimeric forms of gD, cloned in pcDNA3.1(-), 

were analyzed for their ability to reach the plasma membrane, and in three 

functional assays, i.e., the binding to soluble forms of HVEM (HVEMt) and 

nectin 1 (nectin 1-Fc) [33 and 38], the cell-cell fusion, and the infectivity 

complementation. All chimeric gDs reached the plasma membrane as measured 

by CELISA (Fig. 4.2.2) and by immunofluorescence of paraformaldehyde-fixed 

cells (data not shown). In the case of gD-PFD/2, 3-fold higher amounts of 

plasmid (3×) were transfected to achieve a WT level of plasma membrane 

expression; gD-PFD/2 was transfected at 3× higher concentrations relative to 

WT-gD in all subsequent experiments, except when otherwise stated. The binding 

to HVEMt and nectin 1-Fc, measured by CELISA, showed an extent of binding 

similar to that of WT-gD (Fig. 4.2.3). 

For the cell-cell fusion assay, baby hamster kidney cells were cotransfected with 

the gD-PFD chimera or WT-gD plus gB, gH, gL, and β-galactosidase plasmids 

[73, 79] and were stained with 5-bromo-4-chloro-3-indolyl β-galactopyranoside 

(data not shown). For the luciferase-based cell-cell fusion assay [141], each 

chimeric gD or WT-gD was cotransfected with gB, gH, gL, and the T7 

polymerase in COS cells. The target COS, J-nectin 1, or J-HVEM cells were 

transfected with a T7-promoter-driven luciferase gene; COS cells were 

transfected at either 1× or 3× the amounts of plasmids (Fig. 4.2.4A). The two 

assays concordantly showed that gD-PFD/1 was partially active in the fusion 

assay; the activity increased when the plasmid amounts were increased 3×. By 

contrast, gD-PFD/2 was inactive at either concentration. gD∆PFD was inactive at 

either concentration, in accordance with the analogous gD(1-260)CD8 [53]. The 

results suggest a certain degree of differentiation in fusion activity between the 
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two PFD subdomains, and only subdomain 1 was in part sufficient for this 

function, in agreement with ref. 149. 

Next, we determined whether the same chimeric forms of gD were capable of 

complementing infectivity. Each chimera, or WT-gD, was transfected into COS 

cells, and 4 h later, the cells were infected with the gD-deletion virus FgDβ [131]. 

When the virus is grown in noncomplementing cells, noninfectious gD-/- progeny 

are produced. When the virus is grown in cells expressing gD, gD complements 

the virus (gD-/+ stock) and confers infectivity. If gD is partially defective, the 

complemented virions exhibit a reduced infectivity. As shown in Fig. 4.2.4B, gD-

PFD/1 was partially active in the infectivity complementation, consistent with the 

partial cell-fusion activity. The complementation activity did not change whether 

the gD-PFD/1-encoding plasmid was transfected at 1× or 3× amounts (data not 

shown). Surprisingly, gD-PFD/2, which exhibited no cell-fusion activity, partially 

complemented infectivity. Similar results were obtained irrespective of the cell 

line and of the receptor expressed in the cells where the complemented virions 

were titrated. The results indicate that PFD cannot be narrowed down, because 

subdomain 1 (amino acids 260-285) exhibits partial cell fusion and infectivity 

activities. The subdomain 2 (amino acids 286-310) is not sufficient for cell fusion 

but is sufficient for partial complementation of infectivity, in agreement with the 

finding that Pro residues 288, 291, 292, and 305 were critical residues for 

infectivity [53]. The discrepancy between the results of the cell-cell fusion and 

infectivity complementation assays indicates that the two assays mirror each other 

but are not necessarily identical. 
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Fig. 4.2.1 Schematic diagram of gD constructs. At the top, linear map of WT-gD, with N terminus (amino acids 
1–260) carrying receptor-binding sites (orange) and C terminus (amino acids 260–310) carrying the PFD 
(yellow), the transmembrane (TM) (black), and the C-tail (green) regions. The black bold line in the chimeras 
represent the region of gD replaced by sequence derived from CD8. 
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Fig. 4.2.2 Cell surface expression of gD chimeric proteins quantified by CELISA. 
COS cells, in 48 wells, were transfected with plasmids encoding wt or chimeric forms of gD at the indicated 
amounts, corresponding to 1x, 2x, or 3x the regular amount. Cells were fixed with 4% paraformaldehyde at 24 h 
after transfection and were reacted with mAb H170, anti-mouse IgG peroxidase, and o-phenylenediamine. 
Results are expressed as peroxidase units (P.U.). Vertical bars denote SD. Columns represent the average of 
triplicates. Three independent experiments were run. 
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Fig. 4.2.3 Binding of COS cells expressing the chimeric or WT-gD to HVEMt and nectin 
1-Fc. Details were as in Fig. 4.2.2, except that cells were reacted with the soluble receptors, anti-His6-peroxidase 
or anti-human peroxidase, to detect HVEMt and nectin1-Fc, respectively, and o-phenylenediamine.  
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Fig. 4.2.4 Cell– cell fusion and infectivity complementation of chimeric gD proteins. a) Luciferase-based 
cell–cell fusion assay. Effector COS cells, in 24 well-plate, were transfected with 80 ng/well of plasmids 
encoding gH, gL, gB, 107 ng/well of plasmid encoding T7 polymerase and  80 or 240 ng of plasmids encoding 
chimeric or wt-gD, corresponding to 1X and 3X regular amounts. Target cells [COS, J-nectin 1 (J-Nec1), and J-
HVEM] were transfected with T7-luciferase-expressing plasmid. The negative control lacked gD (data not 
shown). The luciferase activity was expressed as luciferase units (L.U.). b) Infectivity complementation. COS 
cells were transfected with chimeric or wt-gD and infected 4 h later with a gD stock of FgDβ (3 PFU/cell). 
Progeny virus was titrated at 24 h in gD-expressing cells (R6) or was quantified as β−galactosidase in BHK, J-
nec1, or J-HVEM cells.  
 
 

 

 

 



 

 65

.2.1.2 Effects of Pro and Glu Substitutions in Subdomain 1.  

sidues, most of 

rolines present in PFD sequence are highlighted red, other residues mutated are highlighted blue. The amino 

4

The PFD sequence (Fig. 4.2.5) reveals a high content of Pro re

which are adjacent to Glu residues in PFD/1. Some prolines in PFD/2 (amino 

acids 288, 291, 292, and 305) are critical for infectivity [53]. Here, the prolines of 

PFD/1 were replaced by leucines and the glutamic acids by alanine residues (both 

are nonconservative substitutions). The mutants 1-4 carried the following 

substitutions, E259A-P261L, PE266-267LA, PE270-271LA, and PED273-274-

275LAA, respectively. Their cell-surface expression, as determinated by 

CELISA, showed no major defect (Fig. 4.2.6A). In the infectivity 

complementation, none of the mutants exhibited a significant defect (Fig. 4.2.6B). 

The cell-cell fusion activity of mutant 1 was increased by 20 %, whereas that of 

mutants 2-4 was reduced by 20-25% (Fig. 4.2.6C). Thus, the Pro and Glu residues 

do not represent critical residues in PFD/1. 

 

 

 
 
Fig. 4.2.5 a) Schematic diagram of gD. b) The pro-fusion domain (PFD) sequence is shown on the top. All 
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Fig.4.1.2B a) Cell surface expression of gD mutants quantified by CELISA. COS cells, were transfected with 
125 ng of plasmids encoding wt or mutagenized forms of gD. Cells were fixed with 4% paraformaldehyde at 24 
h after transfection and were reacted with mAb H170, anti-mouse IgG peroxidase, and o-phenylenediamine. 
Results are expressed as peroxidase units (P.U.) b) Infectivity complementation. COS cells were transfected 
with mutagenized or wt-gD and infected 4 h later with a gD stock of FgDβ (3 PFU/cell). Progeny virus was 
titrated at 24 h in gD-expressing cells (R6). c) Luciferase-based cell–cell fusion assay. Effector COS cells, seed 
in 24 well-plate, were transfected with 80 ng /well of plasmids encoding gH, gL, gB, and wt or mutagenized gD, 
plus  107 ng/well of plasmid encoding T7 polymerase. Target COS cells were transfected with T7-luciferase 
expressing plasmid. The negative control lacked gD (data not shown). The luciferase activity was expressed as 
luciferase units (L.U.).  
 

 

4.2.2 CONCLUSIONS 

PFD of HSV-1 gD is made of subdomains 1 and 2, comprising residues 260-285 

and 285-310, respectively. Each subdomain partially contributed to virus entry, 

whereas only the subdomain 1 exhibited cell-cell fusion activity. The latter 

finding is in agreement with the report of Zago et al. [147]. Mutational analysis of 

Pro and Glu, the most characteristic sequence pattern of subdomain 1, did not 

highlight any critical role of these amino acids in the infectivity complementation 

and resulted in a modest reduction in the cell-cell fusion assay. The lack of 

phenotype of these mutants is in agreement with the observation that serial 5-aa 

deletions in this region failed to identify a specific sequence requirement [147]. 

The properties of the PFD/1 subdomain contrast with those of PFD/2, which 

carries some Pro that is critical for infectivity [53]. Their mutagenesis did not 
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alter PFD-binding to gD N terminus, implying a role at subsequent steps, likely in 

the triggering of fusion. 

 

 
4.3 INTERACTION OF gB MUTANTS WITH gD AND gH, 
DETECTED BY MEANS OF PULL DOWN EXPERIMENTS 
 

4.3.1 RESULTS 

4.3.1.1 Generation of gB backbones.   

Insertion of 5E1 epitope and deletion of part of the C-tail encoding 

endocytosis motifs. 

To enable gB detection, we inserted an heterologous epitope, named 5E1 

epitope, recognized by a specific MAb [133]. The epitope was inserted between 

aa 68 to 77, a poly-lysine domain known to be deletable. The resulting construct 

was gB5E1N (Fig.4.3.1). The details of the constructions are given in M&M. 

Essentially, two restriction sites, BamHI and EcoRI, were inserted at residues 68 

and 77, respectively, by site-directed mutagenesis. An amplimer was generated 

by extension of two synthetic partially overlapping oligonucleotides, cleaved 

with BamHI and EcoRI, and ligated in predigested gB.  

Avitavile et al showed that removal of part of the cytoplasmic tail of gB 

encoding the endocytosis motifs results in a form of gB that exhibits a cell 

surface expression and, consequently, increased cell-cell fusion activity [73]. 

Here, removal of the endocytosis motifs located in the cytoplasmic tail, 

downstream of aa 867, was performed by insertion of a stop codon at aa 867 by 

site directed mutagenesis. The resulting construct was named gB5E1N∆867. Fig. 

4.3.2 and 4.3.3 show that, as expected, gB5E1N∆867 exhibited a higher cell surface 

expression and fusion activity than wt-gB and gB5E1N. 
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Fig 4.3.1 Schematic representation of HSV-1 gB. The top drawing depicts the domain architecture observed in 
the crystal structure of wt gB [84] and the locations of highly conserved cysteines. The bottom two lines show 
the modifications introduced to construct gB5E1N and gB5E1N∆867. 
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Fig.4.3.2 On the left cell surface expression quantified by CELISA. COS cells seeded in 48 well-plate were 
transfected with 125 ng per well of the plasmids encoding wt gB or gB5E1N or gB5E1ND867. 24 hours later 
cells were reacted with mAb H1817 and then  fixed with 4% formaldehyde in PBS, followed by incubation with 
anti-mouse peroxidase and o-phenylenediamine. Background value was subtracted. Results are expressed as 
peroxidase units (P.U.). On the right cell surface and intracellular localization of mutant gB proteins by 
immunofluorescence. COS cells were transfected with plasmids encoding gB5E1N and gB5E1N∆867. At 24 h after 
transfection cells were fixed with 4 % paraformaldehyde or methanol and stained with Mab 5E1 followed by an 
anti-mouse IgG-FITC conjungate. 
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g.4.3.3 Digital micrographs of BHK cells forming syncytia after cotransfection with plasmids encoding HSV-

nsertion of restrictions sites adjacent to cysteines.  

nce, carries 10 cysteines, 

cent to C1, 

 

 
 

No gB wt-gB gB5E1N gB5E1N∆867No gB wt-gB gB5E1N gB5E1N∆867

Fi
fusogenic glycoproteins. Cells were transfected with 80 ng of plasmids encoding wt-gH, wt-gL, wt-gD, β 
galactosidase plus wt gB or gB5E1N or gB5E1N∆867. The negative control lacked gB. 48 h after transfection cells 
were fixed with 0.2% glutaraldehyde and 0.2% paraformaldehyde in PBS and then stained with 5-bromo-4-
chloro-3-indolyl-galactopyranoside (X-Gal).  
 

 

I

gB ectodomain, after cleavage of the signal seque

herein named C1, C2, etc. The spacing between gB cysteines is one of the most 

conserved pattern across the Herpesviridae family. To generate mutants by 

homologous replacement of HSV gB sequences with HHV-8 gB sequences, we 

inserted restriction sites adjacent to cysteines. Each construct was mutated in 

two or three consecutive cysteines, as follows. C1-C3-C4, C3-C4, C4-C5, C5-

C6, C6-C7, herein named gBC1C3C4, gBC3C4, gBC4C5, gBC5C6, gBC6C7.   

The mutations adjacent to C3 and C4 were silent. The mutations adja

C5, C6, C7 introduced the substitutions listed in table 4.3.1. With respect to the 

C5C6 mutants, two versions were generated, named gBC5VC6 and gBC5MC6, 

respectively. They substitutions they carry are listed in Table 4.3.1. The mutants 

gBC1C3C4, gBC3C4, gBC4C5, gBC5C6, gBC6C7 were characterized with respect to their 

ability to be expressed at the cell surface and to be mediate cell-cell fusion. The 

results are summarized in Table 4.3.1 and shown in Fig. 4.3.4 and 4.3.5. Briefly, 

none of the mutants was hampered in cell surface expression. Except gBC5VC6, 

none of the mutants was hampered in cell-cell fusion assay (Fig. 4.3.5).  
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Name  

ct 

Restriction sites Amino acid Cell surface Cell-cell 
of the 
constru

inserted substitution expression fusion 

gBC1C3C4 HindIII, XbaI, HpaI N112S + + 
gBC3C4 XbaI, HpaI Silent Mutations + + 

gBC4C5 HpaI, Asp718 
P361R, S362Y, 
V363L + + 

gBC5VC6 XbaI, XhoI 
366R, + - T365S, M

I412L, G413E 

gBC5MC6 HpaI, Asp718 
 

413E + + P361R, S362Y,
V363L, I412L, G

gBC6C7 XhoI, EcoRV + + I412L, G413E, 
E530D, L531I 

 

ab. 4.3.1 List of the constructs in wich restriction sites were inserted adjacent to cysteines in the ectodomain of T
HSV-1 gB. The name of the constructs refer to the number of the cysteine in mature gB, e.i. in gBC4C5 were 
added two restriction sites, one near the fourth cysteine and one near the fifth one. Cell surface expression was 
detected by immuno-fluorescence of COS cells transfected with the constructs (see fig.4.3.4). Cell-cell fusion 
assay was performed co-transfecting BHK cells with expression plasmids encoding wt-gD, wt-gH, wt-gL, plus 
listed mutated gB and pcDNA 3.1Myc-His/Lac vector (Invitrogen) for constitutive expression of β-Gal (see fig. 
4.3.5). 
 
 
 
 
 
 

 
Fig. 4.3.4. Cell surface localization of gB mutants. COS cells were grown on glass coverslips and transfected 

gB5E1N∆867 gBC1C3C4 gBC3C4 gBC4C5

gBC5VC6 gBC5MC6 gBC6C7

gB5E1N∆867 gBC1C3C4 gBC3C4 gBC4C5

gBC5VC6 gBC5MC6 gBC6C7

with plamids encoding gB5E1N∆867 or the other mutants. At 24 h after transfection the cells were fixed with 
paraformaldehyde 4% in PBS. Fixed cells were incubated for 1 h at room temperature with anti-5E1 MAb 
(1:5000), followed by anti-mouse fluorescein-conjugated immunoglobulin G (Jackson Laboratory). 
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gDHL gDHL+gB5E1N∆867 gDHL+gBC1C3C4 gDHL+gBC3C4

gDHL+gBC4C5 gDHL+gBC5VC6gDHL+gBC5MC6 gDHL+gBC6C7

gDHL gDHL+gB5E1N∆867 gDHL+gBC1C3C4 gDHL+gBC3C4

gDHL+gBC4C5 gDHL+gBC5VC6gDHL+gBC5MC6 gDHL+gBC6C7

 
Fig. 4.3.5 Cell-cell fusion assay. BHK cells were cotransfected with plasmids encoding wt-gD, wt-gH, wt-gL, 
β-galactosidase and gB5E1∆867 or one of the other gB mutants. The negative control lacked gB, the Erb2 plasmid 
was used to make the amounts of DNA equal. 48 h after transfection the cells were fixed with 0.2% 
glutaraldehyde and 0.2% paraformaldehyde in PBS. Syncytia were detected by light microscopy observation of 
ß-Gal expressing cells after staining with 5-bromo-4chloro-3-indolyl-ß-galactopyranoside (X-Gal). Digital 
micrograph were taken with Kodak DC120 digital camera. 
 

4.3.1.2 Generation of gB mutants by homologous replacement of HSV gB 

portions with the corresponding portions from HHV-8 gB (HSV-HHV8 gB 

chimeras).   

The strategy adopted here to generate gB mutants expected to maintain a proper 

conformation was to substitute the sequence bracketed by two (or three) 

consecutive cysteines, with the homologous sequences from HHV-8 gB (see 

alignment in Fig.4.3.6). Indeed, preliminary modelling studies, performed using 

the SWISSMODEL server (http://swissmodel.expasy.org//SWISS-

MODEL.htm) indicated that the homologous replacement mutants generated 

below can be modelled on HSV gB structure with high confidence score.  

The homologous replacement mutants were named according to the cysteines 

that bracketed the substituted region, followed by H8, which stands  for HHV8. 

To exemplify, in the mutant named gB13H8, the C1-C3-bracketed region was 

replaced with the corresponding HHV-8 C1-C3-bracketed region (see Fig 4.3.7).  

Briefly, the mutants were generated as exemplified here for gB13H8. First HSV 

gB was cleaved with the HindIII and XbaI restriction endonucleases for which 

the sites were inserted, adjacent to C1 and C3. An amplimer was generated on 
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MTK EVDEMLRSEYGG SDA N YPLSRV GK A
TA LAL TFPRSIQTTHED ANE P VAN-FT TS T

HHV-8 gB template. The primers carried the HindIII and XbaI restriction sites 

useful for insertion. The digested amplimer was ligated to HindIII-XbaI 

predigested gB. All mutants were sequenced for accuracy. 

 

 
Fig.4.3.6. Amino acid sequences of HSV-1 and HHV8 gBs were aligned. The residues of the two ecodomains 
are in bold letters. Identical residues are red except for cysteines that are all green. Homologous residues are 
blue. The squares indicate the positions of the inserted restriction sites thus in some cases the amino acids 
mutated. 
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Fig. 4.3.7 a) Schematic representation of HHV8 gB. b) Schematic representation of gB5E1N∆867 and HSV-HHV8 
chimeras. Crystal domains are depiticted in the same way used by authors of the HSV-gB solved structure [84], 
for detail see the legend at the bottom. In HSV-HHV8 chimeras are indicated the residues from HHV8 gB in 
blue and the position of the insertion in HSV-gB in black. The residue positions are ever referred to that of wt-
gB and not gB5E1∆867. 
 

4.3.1.3 Characterization of HSV-HHV8 gB chimeras.   

The HSV-HHV8 gB chimeras generated above were characterized with respect 

to  

(i) cellular localization, as detected by IFA 

(ii) Cell-cell fusion  

(iii) Infectivity complementation 

(iv) Complex formation with gD and gH, detected by pull-down experiments. 

(i) For all mutants, the chimeric gB failed to localize at the cell surface. In 

permeabilized cells, the distribution appeared to be reticular, typical of 

endoplasmic reticulum ( Fig 4.3.8) 
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(ii) All mutants failed to induce cell-cell fusion when cotransfected with gD, 

gH, gL, a results consistent with the lack of cell surface expression (Fig 

4.3.9). 

(iii) All mutants failed to mediate virus infection, as measured in a virus 

infectivity complementation assay (results not shown).  

(iv) As illustrated above, the model of HSV entry into the cell that is being 

probed in our laboratory envisions that gD forms complexes with gB and 

gH.gL. here we tested the ability of HSV-HHV-8 gB chimeras to form 

complexes with gD and/or with gH.gL. Rather than studying complex 

formation by co-immunoprecipitation studies, here we developed a pull-

down approach, as follows. The One-strep-tag sequence (IBA) was 

engineered at the C terminus of gD (gDstrep) or of gH (gHstrep). 293 

cells were transfected with gDstrep, one of the gB chimera, gH.gL. 

Alternatively cells were transfected with gD, one of gB chimera, 

gHstrep, gL. Replicate cultures were transfected with mixtures of three 

glycoproteins, rather than of four glycoprotein, in order to highlight the 

ability of the glycoporteins to give rise to interaction, even in the absence 

of some partners. Twenty four h after transfection, cells were lysed with 

detergent containing buffer (EA1+), centrifuged. The supernant was 

cleared through a ProteinA-sepharose resin, and absorbed to strep-Tactin 

resin. The absorbed proteins were eluted with SDS-containg sample 

buffer and separated by SDS-PAGE. The proteins were identified by 

western blotting. In this assay, if gDsrep (or gHstrep) forms complexes 

with the other glycoproteins, the complexes are retained by the resin, and 

subsequently, visualized by WB. Examples of the results obtained are 

shown in Fig. 4.3.9 and 4.3.10. The results worth of note were as 

follows, (a) all gB chimeras were capable to form a complex with gD, 

both in the absence and in the presence of gH. (b) some of the gB 

chimeras were capable to form a complex with gH. The exceptions were 

gB34H8 and gB45H8. This result identified the HSV gB region 
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bracketed by C3-C5 as putative region of interaction between gB and 

gH. 

gB13H8 gB34H8

gB45H8 gB56H8 gB67H8

gB5E1N∆867 gB13H8 gB34H8

gB45H8 gB56H8 gB67H8

gB5E1N∆867

 
Fig.4.3.8 Cellular localization of HSV-HHV8 chimeras. Cells were  transfected with plasmids encoding 
gB5E1N∆867 or HSV1-HHV8 gB chimeras. 24 h after transfection cells were fixed in paraformaldehyde or 
methanol and stained with MAb 5E1 followed by anti-mouse-FITC conjugate. HSV1-HHV8 gB chimeras were 
not detectable in not permeabilized cells (not shown). All micrographs show permeabilized cells. 

 

gDHL+gB5E1N∆867 gDHL+gB13H8 gDHL+gB34H8

gDHL+gB45H8 gDHL+gB56H8 gDHL+gB67H8

gDHL+gB5E1N∆867 gDHL+gB13H8 gDHL+gB34H8

gDHL+gB45H8 gDHL+gB56H8 gDHL+gB67H8
 

Fig.4.3.9 Digital micrographs of BHK cells submitted to cell-cell fusion assay. BHK cells were transfected with 
80 ng of plasmids encoding wt gH, gL, gD, β galactosidase plus gB5E1N∆867 or HSV1-HHV8 gB chimeras. 48 h 
after transfection cells were fixed with 0.2% glutaraldehyde and 0.2% paraformaldehyde in PBS then stained 
with 5-bromo-4-chloro-3-indolyl-galactopyranoside (X-Gal). 
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Fig.4.3.9  293T cells were cotransfected with plasmids that express wt-gD or gDSTREP, HVEM, gB5E1ND867 or 
HSV-HHV8 gB chimeras, and (only in a)) gHV5 and gLV5. After 24 h the cells were lysed. Expressed proteins 
present into lysates were  analysed by Western blotting (right panel, ‘Lyates’). Lysates were centrifuged and the 
supernatants were incubated prior with ProteinA-Sepharose and then with Strep-Tactin Resin. The proteins 
bound to the beads were analysed by Western blotting (left panel, ‘pull down’). To detect gD was used MAb 
H170, to detect gB5E1ND867 or gB chimeras MAb H1817 and to detect gHV5 and gLV5 anti-V5 antibody 
(Invitrogen). The negative control was the pull down in the absence of proteins with a Strep-tag (first lane). All 
HSV-HHV8 gB chimeras were recruited by gDSTREP. both in the presence (a)) and in the absence (b))of gH.gL.  
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Fig.4.3.9  293T cells were cotransfected with plasmids that express gHSTREP or gHV5, gLV5, gB5E1N∆867 or HSV-
HHV8 gB chimeras, and (only in a)) wt-gD and HVEM. After 24 h the cells were lysed. Expressed proteins 
present into lysates were  analysed by Western blotting (right panel, ‘Lyates’). Lysates were centrifuged and the 
supernatants were incubated prior with ProteinA-Sepharose and then with Strep-Tactin Resin. The proteins 
bound to the beads were analysed by Western blotting (left panel, ‘pull down’). To detect gD was used MAb 
H170, to detect gB5E1N∆867 or gB chimeras MAb H1817 and to detect gHV5 and gLV5 anti-V5 antibody 
(Invitrogen). The negative control was the pull down in the absence of proteins with a Strep-tag (first lane). The 
chimeras named gB34H8 and gB45H8 were recruited by gHSTREP. at a lower amount than other chimeras or 
gB5E1N∆867 both in the presence (a)) and in the absence (b))of gD and HVEM.  
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4.3.2 CONCLUSIONS 

In the past, there have been numerous efforts from a number of laboratory to 

identify functional regions in gB. The efforts included random linker insertion 

throughout the gB ectodomain, or site directed mutagenis of predicted helical 

regions. The vast majority of the studies were carried out prior to resolution of 

the crystal structure. All these studies were marred by the afct that it was not 

known whether the mutants maintained the structure of the wt allele. The 

strategy adopted here to obviate these problem was (i)conservation of conserved 

cysteines; (ii) homologous substitutions of HSV gB portions with allelic gB 

regions from HHV-8. Despite this conservative strategy, the mutants failed to be 

transpoerted to the plasma membrane, and were retained in ER. This property 

suggests problems in proper folding. Lack of transport to the cell surface has 

made it impossible to characterize the mutants with respect to their fusion ability 

in the cell-cell fusion assay.  

A most novel property of gB investigated here has been the ability of gb to form 

complexes with the ther glycoproteins required for HSV entry into the cells, 

namely gD and gH.gL. The conservative strategy applied here has indeed lead to 

the identification of a gB region most likely involved in the interaction with 

gH.gL, or critical to complex formation. The region is the segment bracketed by 

C3-C5. Inspection of gB crystal structure shows that the C3-C5 segment is part 

odf domain I, the domain that carries the candidate fusion loop of gB. Such 

candidate fusion loop appears to be critical for gB interaction with cell 

membranes.  Much of the uncertainties in interpreting these data stems from the 

fact that the soved gB structure very likely represents the post-fusion structure.  

For the ebst known viral fusion glycoproteins, it is known that the higly 

hydrophobic fusion peptide is masked when the glycoprotein adopts a prefusion 

conformation, and is expsed when the glycoprotein adopts a post-fusion 

conformation. This leads us to speculate that the possible interaction between gB 

fusion loop and gH may exert the effect of masking the fusion loop, when gB 

adopts the prefusion conformation.  
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