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DOWN SYNDROME 

Down Syndrome (DS) was first described by Edouard Onesimus Seguin (1812–1880), 

pioneer in France and in the United States of methods and systems for educating “those with 

mental retardation” (Neri and Opitz 2009). In 1866 John Langdon Down gave a new 

description of DS in his paper “Observations on an Ethnic Classification of Idiots”. Down 

tried to classify patients with mental retardation on the basis of ethnic characteristics, 

recognizing four categories: the „„Ethiopian variety‟‟, the “Malay variety”, the „„American 

continent variety‟‟ and the “Mongolian variety” today known as Down Syndrome (Down 

1995).  

Today we know that DS is the most common genetic autosomal disorder compatible with 

survival in humans (Biselli et al. 2010), affecting about 1/700 -800 newborns (Contestabile, 

Benfenati, and Gasparini 2010). DS is also the most common genetic cause of mental 

retardation (Biselli et al. 2010) and of intellectual disability in humans (Contestabile, 

Benfenati, and Gasparini 2010). 

DS is a chromosomal disorder (Pueschel 1990; Roizen and Patterson 2003) that results from 

total or partial (region q22.1-22.3) trisomy of the chromosome 21 (HSA21) as demonstrated 

by Lejeune et al. in 1959 (Roat et al. 2008; Letourneau et al. 2014; Dekker, De Deyn, and 

Rots 2014). In particular DS phenotype can be associated to three types of chromosomal 

abnormalities: free trisomy 21, translocation or mosaicism (Newberger 2000). In over 95% 

of cases DS is a whole-chromosome trisomy due to meiotic non-disjunction of the 

chromosome 21 (Antonarakis et al. 2004; Lubec and Engidawork 2002). Many studies show 

that maternal age has a very strong effect on the incidence of trisomy 21. In about 86% of 

cases the nondisjunction event that leads to the trisomy occurs in the mother, with the 

maternal error being predominantly (75% of cases) in meiosis I. On the contrary paternal 

age has no effect on the incidence of trisomy 21. No environmental factors have been found 

to correlate with the occurrence of nondisjunction. (Valle 2006; Rachidi and Lopes 2008). 

In a minor fraction of cases (3-4%), DS arises from partial aneuploidy due to Robertsonian 

unbalanced chromosome translocation involving generally chromosomes 14 and 21 (Hook, 

Cross, and Schreinemachers 1983; Korenberg et al. 1994; Lyle et al. 2009; Biselli et al. 

2010). In this kind of translocation the long arm of HSA21 is merged with another 

acrocentric chromosome in one of parents‟ cariotype. A subject with this kind of 
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translocation has a normal phenotype but has an high risk to produce gametes with a 

supernumerary chromosome 21. The risk of this type of Down Syndrome is not related to 

the mother's age (Cummings 2010). Finally in 1% of the cases DS can be caused by 

mosaicism, characterized by some cells containing 46 chromosomes and others with 47 

chromosomes (Biselli et al. 2010). 

Although clinical phenotype of each DS person is complex and variable in trait number and 

intensity (Rachidi and Lopes 2007), the main features of the disease are short stature, 

abnormalities in the morphology of neck and head (short neck, flattened nose, protruding 

tongue, almond shape to the eyes caused by an epicanthic fold of the eyelid), hyperlaxity of 

ligaments, frequent congenital heart disease, hearing defects, hypotonia, high risk of 

leukaemia, mental retardation at various degrees, endocrine disorders, early onset of 

Alzheimer disease, and immune disorders (Scriver 2001). Two exceptions to phenotype 

variability are the existence of mental retardation and neonatal hypotonia in close to 100% 

of individuals with DS (Korenberg et al. 1994). Anyway mental retardation remains the 

most invalidating aspect and the invariable hallmark disorder of DS with an hard impact on 

public health (Rachidi and Lopes 2007). 
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DOWN SYNDROME AND ACCELERATED AGING 

In 1933 the mean age of death of DS children  was 9 years (Earl 1934). Since then survival 

rates have risen drastically, but age-specific mortality rates are still increased in people with 

DS compared with typically developing population or people with other forms of 

intellectual disability (Bittles et al. 2002). Premature accelerated aging and the consequent 

development of age associated diseases like Alzheimer Disease (AD) seem to be the cause 

of higher mortality late in life of DS subjects (Zigman et al. 2007; Schupf and Sergievsky 

2002). In DS we can observe signs of early aging in various body systems like 

integumentary, endocrine, sensory musculoskeletal, immunological and neurological 

systems (Zigman 2013), even if accelerated aging has been confirmed in some but not all 

body system of people with DS. 

In the last decades life expectancy of DS subjects has considerably changed, increasing 

from 12 years in 1949 to nearly 60 years today (Penrose 1949; Bittles and Glasson 2004) 

and scientific community believes that it will increase in the future (Glasson et al. 2002). 

This means an increase in life expectancy of DS, which in Italy is estimated to be about 

49,000 persons (Ghezzo et al. 2014). 

This enhance in life expectancy is due to an improved access to medical treatment for those 

with learning disability, and a shift in public attitude during the past 20 to 30 years that has 

resulted in better care within the community (Arosio, Abbate and Zanetti 2004). 

Despite the increase in life expectancy, DS subjects continue to show age-related diseases, 

especially regarding the immune and cognitive systems. In fact DS ranks among human 

“segmental progeroid syndrome” characterized by an acceleration of the biological aging 

process, affecting particularly some organ and tissue, such as immune system and brain.  

Concerning immune system, subjects with DS are characterized by alterations of innate and 

adaptive immunity including modifications of B and T lymphocyte subsets and natural killer 

cells, defective phagocytosis and chemotaxis of polymorphonuclear leukocyte (Ugazio et al. 

1990; Franceschi et al. 1990; Barrena et al. 1993; Cuadrado and Barrena 1996; Cossarizza et 

al. 1991; Franceschi et al. 1991). The precocious aging affecting the immune system of DS 

subjects is confirmed by the marked thymic involution and the rapid reduction of thymic 

output of virgin T cells, as a consequence of an increase in the levels of homeostatic 

cytokines, probably as a compensatory mechanisms (Nasi et al. 2006). Such features 
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determine an increased susceptibility to bacterial and infections, autoimmune phenomena 

such acquired hypothyroidism, celiac disease and diabetes mellitus (Kusters et al. 2009) and 

a 50-70 fold higher incidence of childhood leukaemia (Hasle, Clemmensen, and Mikkelsen 

2000; Zipursky 2003). Leukemia and infections like pneumonia are still major causes of 

morbidity and mortality in DS subjects despite advances in treatment (Kusters et al., 2009). 

Since 1970 it has been hypothesized that Down Syndrome was associated with immune 

system‟s abnormalities due to the presence of an increased frequency of infections, 

autoimmune diseases and haematological malignancies (Burgio et al., 1975, 1978; Kusters 

et al., 2009; Levin et al., 1979; Oster, Mikkelsen and Nielsen, 1975). Between late 1980 and 

early 1990 (Kusters et al., 2009) several hypothesis have been formulated regarding DS as a 

form of abnormal precocious aging (Cossarizza et al. 1990; Cuadrado and Barrena 1996), 

observing differences between immune system of DS and non DS individuals. Recently on 

the basis of current (de Hingh et al. 2005) and past studies (Cossarizza et al., 1990; Lockitch 

et al., 1987; Ugazio et al., 1990), some authors (Kusters et al., 2009) suggest that immune 

system of DS subjects is intrinsically deficient from the very beginning . They argue that, in 

addition to thymus and T cells abnormalities, DS B-lymphocytes are also intrinsically 

different (Kusters et al., 2009). A profound B limphocytopenia in DS individuals has been 

observed, with absence of the normal enormous expansion in the first year of life (de Hingh 

et al. 2005) and a significant decrease of B lymphocyte (CD19+)
 
 is now reported also in DS 

fetuses (Zizka et al. 2006). 

Regarding central nervous system, individuals with DS are more prone to age-related 

cognitive decline and are at high risk for developing dementia, which most commonly 

replicates features of Alzheimer‟s disease (AD). In fact, a presenile dementia syndrome that 

is clinically, neuropathologically (cholinergic, noradrenergic and serotonergic reduction), 

and histopathologically (senile plaques and neurofibrillary tangles) similar to Alzheimer's 

disease occurs in almost all DS subjects over the age of 40 years (Visser et al. 1997; Capone 

2001; Head et al. 2001; Krasuski et al. 2002; Zana, Janka, and Kálmán 2007). In 1987 the 

gene for the Amyloid beta (Aβ) precursor that encodes for Aβ peptide was localized to the 

proximal part of the long arm of chromosome 21 (Robakis et al. 1987), in the obligate 

region of HSA21, that was supposed to be trisomic for the full expression of DS phenotype 

(Korenberg et al. 1990). The triplication of the APP gene that maps on chromosome 21 is 
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related to the deposition of Aβ in the brain across lifespan in DS subjects, promoting the 

development of AD in adults with DS (Zigman 2013). 

Despite neuropathological characteristics of AD appear in adults DS over 35 to 40 years 

(Wisniewski, Wisniewski, and Wen 1985), there are some inter-individual differences 

between DS subjects, because some DS persons develop signs and symptoms of AD after 

40 years, while other individuals reach 70 years without AD. This differences could be due 

to age, genetics, sex, estrogen, and presence of Metabolic Syndrome (Zigman 2013). In case 

of genetics, for example, numerous studies showed a significantly greater risk and an earlier 

age of AD onset in people with one or two ε4 alleles of APOE gene than in typically 

developing adults (Corder et al. 1993; Mayeux et al. 1993; Isbir et al. 2001b; Isbir et al. 

2001a) and DS adults without any ε4 allele (Schupf et al. 1996; Prasher et al. 1997; Deb et 

al. 2000). On the contrary the presence of ε2 allele has been associated with a decreased risk 

of AD (Royston et al. 1994; Lai et al. 1999; Rubinsztein et al. 1999) and an increase in 

longevity (Royston et al. 1996; Frisoni et al. 2001). In cases of age and estrogen levels, 

increasing age and reductions in estrogen levels with menopause are linked to a greater risk 

for AD in DS (Bush and Beail 2004; Pike et al. 2009; Li et al. 2006), while results on the 

role of sex are ambiguous (Schupf et al. 1998; Lai et al. 1999). Peripheral hyperinsulinemia 

typical of Metabolic Syndrome (prevalence rate in DS of 14,6%) may inhibit brain insulin 

production causing an impaired Aβ clearance and high risk of AD (Zigman 2013; 

Braunschweig et al. 2004). 

The combination of a pre-existing learning disability with superimposed age-related 

cognitive decline and dementia is difficult to treat, and is an expensive management 

problem. Many important medical, genetic and behavioral progresses have been made in 

understanding the phenotype associated with DS and also instrument to classify, diagnose 

AD in adults DS and to monitor long term function has been developed. Now it is also 

known that AD is not a certainty for this population, as originally thought (Zigman 2013). 

Despite all the progress that has been made over the years, it is hoped that in the future it 

will be fulfilled other advances such as prenatal treatments that may decrease the cognitive, 

health and functional limitations common to people with DS (Zigman 2013) 

Human aging is a multi-factorial trait resulting from a combination of environmental, 
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genetic, epigenetic and stochastic factors, each contributing to a complex and heterogeneous 

overall phenotype. The aging process acts at several levels of complexity and with different 

dynamism, from molecule to cell, from organ to system, and finally to organism. As a 

consequence of these different aging rates, the aged body can be considered as an “aging 

mosaic” (Figure 1) composed by cells, tissues and organs showing varied levels of 

senescence (Cevenini et al. 2010; Cevenini et al. 2008). This is true not only for 

physiological aging occurring in “healthy” population, but also for age-related pathologies, 

including those described in persons affected by DS. Given its characteristics of accelerated 

aging, DS has been widely used as a model to study the biological basis of the aged 

phenotype (Biagi et al. 2010; Franceschi et al. 1991; Franceschi et al. 1992; Franceschi et al. 

1995). 
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Figure 1. Schematic representation of the aging mosaic. Each organ of our body (indicated by a different 

color) is differently affected by aging process, whose degree and diffusion is indicated in the figure by the 

number and distribution of the black dots. This kind of mosaic depends on an interaction between several 

factors, environmental, stochastic and genetic-epigenetic variables, which differs in different organs but also 

in every tissue and cell type composing the organ (indicated as a pieces of the puzzle) (adapted from 

Cevenini et al., 2008). 
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PATHOGENETIC BASIS OF DOWN SYNDROME 

Up to now two hypothesis exist to explain how DS can be led by triplication of HSA21 

(Contestabile, Benfenati, and Gasparini 2010). 

The “Reductionist” view (Epstein 1990), also known as the “Gene dosage effect” 

hypothesis, claims that individual phenotypic anomalies or features can often be assigned or 

mapped to specific regions of the genome, and conversely, phenotype can be a direct result 

of the cumulative effect of the individual genes imbalance located on the triplicated 

chromosome or chromosome region (Pritchard and Kola 1999). 

The “Organicistic” view (Opitz and Gilbert-Barness 1990) or “Amplified developmental 

instability” hypothesis (Pritchard and Kola 1999) largely based on Waddington‟s views 

asserts that the phenotype of an aneuploid organism is due to general genomic imbalance, 

more than to the addition of the effects of individual genes (Neri and Opitz 2009). 

It is widely assumed that the DS complex phenotype results from the dosage imbalance of 

the genes located on HSA21. Recent findings about the structure of the human HSA21 

suggest that various genetic mechanisms may contribute to the phenotype of DS and its 

variability. Studies on the expression of mRNA in cells and tissues with trisomy 21 have 

shown that, while some genes on HSA21 are overexpressed, other subsets of genes on other 

chromosomes show an altered expression. This could be due to a variety of mechanisms 

including the activity of transcription factors encoded on HSA21 or elsewhere in the 

genome that are affected by the aneuploidy, as well the alteration of microRNA, RNA 

editing, histone modifications and DNA methylation machineries (Rozovski et al. 2007; 

Prandini et al. 2007; Li et al. 2006; Mao et al. 2005; Giannone et al. 2004; Patterson 2007).  
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EPIGENETICS 

The term 'epigenetics' literally means 'outside conventional genetics' and it is now used „to 

describe the study of stable alterations in gene expression potential that arise during 

development and cell proliferation‟ (Jaenisch and Bird 2003). In mammals epigenetic 

mechanisms involve postsynthetic modifications of either proteins that are intimately 

associate with DNA or of DNA itself: histone modifications like acetylation, ubiquitination, 

methylation, sumoylation and phosphorylation and DNA methylation respectively (Jaenisch 

and Bird 2003). Also miRNA have an important role in epigenetic modifications, as they are 

able to bind target mRNA, determining their degradation, and to promote chromatin 

modifications (Figure 2). 

 

Figure 2. Epigenetic modifications (adapted from Stazi, Nisticò, and Serino, 2012) 

In detail histone modifications and DNA methylation are involved in control of gene 

expression, X chromosome inactivation and genetic imprinting (Heijmans et al., 2007), but 

they also protect our body from viral genomes that would use the host cells for their own 

ends (Jaenisch and Bird 2003). Although epigenetic modifications occur during 

development and differentiation, and can be transmitted across cell divisions (Heijmans et 
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al. 2007), they can also be altered during human lifespan due to the influence of the 

environmental and stochastic factors, altering gene expression and determining significant 

phenotypic consequences (Jones and Baylin 2002). 

HISTONE MODIFICATIONS 

The epigenetic modifications that have a greater effect on the chromatin structure are 

histone modifications (Figure 3). Chromatin is composed by a single molecule of DNA 

associated with a group of histonic proteins. Five histone types (H2A, H2B, H3, H4 and H1) 

interact with DNA to form spherical particles called nucleosomes. As mentioned before, the 

histone modifications consist of additions or subtractions of acetyl (COCH3), methyl 

(CH3), phosphate (PO4) groups and so on to the amino-terminal histone‟s tails protruding 

from the nucleosome and this kind of changes are mediated by numerous and specific 

enzymes such as for example histone acetyltransferase (Hat), histone deacetylase (Hdac), 

histone methyltransferase (Hmt). While histone acetylation and methylation reduce histone's 

affinity for DNA, leading to an open and functionally active chromatin conformation 

(euchromatin), on the contrary histone deacetylation and demethylation condense chromatin 

(heterochromatin) bringing it to a condition of transcriptional inactivity (Stazi, Nisticò, and 

Serino 2012). These changes in chromatin structure facilitate gene transcription, its 

inhibition or other important mechanisms. 

 

Figure 3. Histone modifications (Portela and Esteller 2010) 
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DNA METHYLATION 

Beside histone modifications, also DNA methylation is an epigenetic mechanism that plays 

an important role in regulating gene expression and nuclear architecture (Jaenisch and Bird 

2003; Talens et al. 2012). 

More in details, in mammals DNA methylation targets are cytosine residues located in 

dinucleotide CpG sites (Bird 2002; Fazzari and Greally 2004). Methyl groups are typically 

attached at the 5-carbon position of cytosine in dinucleotide CpG and protrude from the 

cytosine nucleotide into the major groove of the DNA (Thompson, Fazzari, and Greally 

2010a). The addiction of a Methyl group has two main effects: it prevents the binding of 

transcription factors that normally bind DNA and it recruits methyl-binding proteins, which 

in turn have an important role in gene silencing and chromatin compaction as reported in 

Figure 4 (Beck, Olek, and Walter 1999; Zweiger and Scott 1997). However the situation is 

not so well defined and the effects of DNA methylation may be different depending on the 

context: while methylation in proximity of a gene promoter cause gene silencing, the gene 

body methylation might stimulate transcription elongation; methylation in repeated regions 

such as centromeres is important for chromosomal stability and also have a role in genome 

stability by suppressing the expression of transposable elements (Jones 2012; Moarefi and 

Chédin 2011). 

It is known that some methyl-binding proteins may even interact with multiple adjacent 

methylated cytosines (Filion et al. 2006) and these methylation-sensitive DNA bound 

factors may recruit additional complexes (e.g. histone deacetylases) that also have an 

important role in modulation of chromatin state and transcriptional activity (Jones et al. 

1998). 

In mammals DNA methylation is established during early development, when a general 

demethylation event is followed by genome wide de novo methylation (Jaenisch and Bird 

2003). The enzyme‟s family that catalyzes the transfer of a methyl group from S-adenosyl 

methionine to DNA includes five members in mammals, indicated as Dnmts (DNA methyl 

transferase): Dnmt1, Dnmt2, Dnmt3a, Dnmt3b (Figure 5) and Dnmt3l. Only Dnmt1, 

Dnmt3a and Dnmt3b possess methyltransferase activity (Portela and Esteller 2010). 
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Figure 4. Heterochromatin configuration. The figure shows a transcriptionally silent DNA. In fact CpG 

sites are methylated and are bound by methyl-cytosine-binding proteins (MBPs), which are present in 

complexes that include histone deacetylases (HDACs). The histones are tightly compacted to nucleosome, 

because of their acetylation that together with the histone 'mark' of a methylated Lys9 residue on the tail of 

histone 3 (H3) makes chromatin transcriptionally inactive. H3 Lys9 methylation is maintained by a histone 

methyltransferase (HMT) that is recruited by the binding of the chromodomain protein HP1 (HP1) to the 

methylated H3 Lys9. Transcription activator complexes, composed by a transcription factor (TF), a co-

activator protein (CA) and a protein with acetyltransferase (HAT) activity cannot access the area. On the 

contrary DNA methyltransferases (DNMTs) is able to reach DNA (adapted from Jones and Baylin 2002). 

Cytosine methylation occurs symmetrically on both strand of DNA and it is maintained 

after DNA synthesis by the activity of the enzyme DNA methyltransferase 1, the 

maintenance, that promotes symmetric methylation of DNA, coping from the methylated to 

the unmethylated strand (Hermann, Goyal, and Jeltsch 2004). 

The class of DNA methyltransferases that is responsible for de novo methylation includes 

Dnmt3a and Dnmt3b which are both strongly expressed in undifferentiated pluripotent 

embryonic stem cells and are downregulated upon cell differentiation (Okano, Xie, and Li 

1998; Okano et al. 1999). Additionally, Dnmt3a is able to interact with its regulatory 

binding partner DNMT3L (Suetake et al. 2004), a DNA methyltransferase-like protein that 
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plays a central role in the establishment of maternal genomic imprinting but does not have 

catalytic activity on its own (Hata et al. 2002; Nimura et al. 2006). Dnmt3l binds 

unmethylated histone tails and activates de novo DNA methyltransferase activity in a 

tetrameric complex with Dnmt3a (Jia et al. 2007). Interestingly, the DNMT3A gene encodes 

two active isoforms with different tissue expression and subcellular localization patterns: 

Dnmt3a is associated with heterochromatin and Dnmt3a2 is concentrated on euchromatin 

(Chen et al. 2002). 

Finally, regarding the Dnmt2, it contains all the catalytic signature motifs of conventional 

Dnmts, but it seems not to show any DNA methyltransferasic activity. However, it is 

reported that Dnmt2 methylates tRNA.
Asp

 (Goll et al. 2006). 

 

Figure 5. DNA methylation (adapted from Portela & Esteller, 2010) 
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CpG Islands 

In normal conditions, around 80-90% of CpG sites within the human genome are 

methylated. Many CpG methylated are found in repeated sequences, most of which are 

derived from transposable elements (transposons). Methylation silences these sequences, 

preventing amplification events and new insertions in the genome. In some cases (1-2%) 

CpG dinucleotides tend to cluster in regions called CpG islands (Portela and Esteller 2010). 

CpG islands were identified almost 20 years ago as a result of whole-genome molecular 

studies, initially on the bases of the strikingly discordant patterns of digestion of genomic 

DNA by isoschizomeric restriction enzymes that differ for their sensitivity to cytosine 

methylation (Singer, Roberts-Ems, and Riggs 1979). Subsequently empirical genomic 

criteria were established (Gardiner-Garden and Frommer 1987) based on few sequence 

descriptors, a small number of HTF (HpaII Tiny Fragments) sequences and the 1985 

GeneBank database, resulting in criteria that are still in use today (Fazzari and Greally 

2004). CpG islands are defined as those regions that contain more of 200 nucleotides with a 

C+G content of at least 50% and an observed (within a given sequence) to expected (within 

the genome) CpG dinucleotides ratio of 0.60 or greater (Fazzari and Greally 2004). 

Mammalian genomes contain CpG islands that can vary in size between 300 and 3000bp 

(Alvarado et al. 2014). In humans and mice, approximately 60% of all promoters colocalize 

with CpG islands, and they are usually unmethylated in normal cells, although 6% of them 

could become methylated in a tissue-specific manner during early development or in 

differentiated tissues (Straussman et al. 2009). 

Hypermethylation of promoter regions of crucial genes (such as tumor suppressor, DNA 

repair and cell cycle control genes) can repress relevant gene expression and downregulate 

biological functions and it is associated with an increased risk of cancer. It is still an open 

question how CpG islands remain unmethylated in a globally methylated genome (Jaenisch 

and Bird 2003). 

DNA methylation in CpG islands can cause gene silencing by several mechanisms. It can 

recruit methyl CpG binding domain (Mbd) proteins which in turn attract histone modifying 

and chromatin remodelling complexes to methylated sites (Esteller 2007; Lopez-Serra and 

Esteller 2008). DNA methylation can also directly inhibit gene expression and transcription 

by precluding the recruitment of DNA binding proteins from their target sites (Kuroda et al. 
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2009). On another hand unmethylated CpG islands generate a chromatin structure favorable 

for gene expression by recruiting CXXC finger protein 1 (Cfp1), which associates with 

histone methyltransferase Setd1, creating domains rich in the histone methylation mark 

H3K4 trimethylation (H3K4me3) (Thomson et al. 2010b). 

DNA Methylation Patterns 

It is known that DNA methylation does not occur exclusively at CpG islands but also in 

regions of lower CpG density that are situated in close proximity (~2 kb) of CpG islands, 

recently called CpG island shores (Irizarry et al. 2009). CpG island shelves are instead the 2 

kb regions upstream and downstream of CpG island shores (Bibikova et al. 2011). Also 

methylation of CpG island shores is closely associated with transcriptional inactivation 

(Figure 6) and it has been demonstrated that most of the tissue specific DNA methylation 

seems to occur at the level of CpG island shores: for example 70% of the differentially 

methylated regions in reprogramming is associated with CpG island shores (Doi et al. 2009; 

Ji et al. 2010). 

In some cases DNA methylation that occurs in gene bodies is coupled with transcriptional 

activation. (Figure 6). We can easily find gene body methylation in ubiquitously expressed 

genes and it is positively correlated with gene expression (Hellman and Chess 2007). 

 

Figure 6. DNA methylation patterns. The normal scenario is represented in the left column while the 

alterations of this pattern are shown on the right for (A) CpG islands at promoters of genes; (B) CpG Island 

shores, (C) Gene body (adapted from Portela & Esteller, 2010). 
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METHYLATION ANALYSIS OF DOWN SYNDROME SUBJECTS 

As mentioned before DNA methylation is an epigenetic mechanism that can be involved in 

altered gene expression of DS subjects. 

Recently the epigenetic characteristics of Down Syndrome has been studied independently 

by four research groups who have described the DNA methylation patterns of different 

tissues at the genome wide level. 

Two studies used the Illumina Infinium HumanMethylation27 BeadChip (Infinium 27k) to 

analyze the DNA methylation of persons with DS. In the first one the Illumina Infinium 

HumanMethylation 27k Bead Chip (Infinium 27k) microarray was used to investigate 

DNA-methylation levels of 27,578 CpG loci from chorionic villi and amniotic cell samples. 

Significantly different methylation levels between karyotypically normal samples and DS 

samples were observed (Eckmann-Scholz et al., 2009). The second study is a case/control 

study that, using the Infinium 27k microarray, analysed methylation levels in total 

peripheral blood leukocytes (PBL) of adults with and without DS, identifying a small group 

of genes, distributed across various chromosomes and not over-represented on chromosome 

21, with consistently altered methylation (Kerkel et al. 2010). More recently, DNA 

methylation of DS placenta samples was analyzed by reduced representation bisulfite while 

DNA methylation of DS buccal epithelium samples was assessed by Illumina Infinium 

HumanMethylation450 BeadChip (Infinium 450k) (Jin et al. 2013; Jones et al. 2013). Both 

studies were concordant in showing marked DNA methylation alterations in DS cells and 

this kind of alterations were spread across the entire genome and were not enriched in 

HSA21. 
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Here we used a family-model of Down Syndrome (Figure 7) to better characterize DNA 

methylation of DS whole blood samples using the Infinium 450k and the EpiTYPER assay. 

Our model was composed by 87 subjects, in particular 29 persons with DS (DSP), their 

mothers (DSM) and their unaffected siblings (DSS). 

In this way we obtained a trio-model that is important for two reasons: it allows us to 

control epigenetic changes, since genetics and environment are widely shared among 

members of the same family, and allows us to do a check in pairs between individuals who 

differ in disease, age, or the combination of the two. 

 

Figure 7. Family model of Down Syndrome. 

More specifically we posed three questions:  

1. Does an epigenetic signature of Down Syndrome exist? 

2. Does this signature reflect a phenomenon of accelerated aging? 

3. Is there a functional correlation of this signature? 

 



 

 



 

 

 

 

 

 

 

 

Materials and Methods 

 

 

 

 



 

 



Materials and Methods 

 31 

SAMPLES 

DSP, DSS and DSM were enrolled from 2008 in Emilia Romagna region (Bologna and 

Ferrara provinces), Italy, with the help of non-profit associations CEPS, OPIMM and 

ANFFAS. Participation to the study was totally on a voluntary basis, with no reward for the 

participants or their families. In particular a total of 29 DSP (12-43 years, 18 males, 11 

females), 29 DSS (9-52 years, 7 males, 22 females) and 29 DSM (42-83 years) took part to 

the study (Table 1). Exclusion criteria were the following: acute illness, hepatic, renal or 

cardiac insufficiency, assumption of antioxidant or nutraceutical substances (vitamins, 

lipoic acid, acetylcysteine, omega 3 and 6 fatty acids, probiotics) within the last two months 

as detailed in the study by Ghezzo and co-workers (Ghezzo et al. 2014). 

The study protocol was approved by the local Ethical Committee of the Sant‟Orsola 

Hospital (University of Bologna) and an informed consent was obtained from relatives of 

DSP and from adult DSP. 

 

SUBJECTS MALE FEMALE 

AGE 

(years) 

DSP 29 18 11 12-43 

DSS 29 7 22 9-52 

DSM 29 - 29 42-83 

TOTAL 87 25 62 

 
Table 1. Samples characteristics. 

To confirm DNA methylation level of differentially methylated regions (DMRs) identified 

by genome-wide analysis we enriched the initial cohort of samples by recruiting other 49 

persons affected by Down Syndrome and 33 age- and sex- matched unrelated controls. 

DMRs that showed striking correlation values between methylation levels and age of the 

subject in DSS compared to DSM, were replicated in a larger sex-balanced cohort (Time 

Serie). The analyzed samples included whole blood DNA from 494 individuals (245 men 

and 249 women) ranging from 9 to 99 years, plus 7 cord-blood DNA samples (3 males and 

4 females). 
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DNA METHYLATION ANALYSIS 

We studied DNA methylation using two different technologies: Infinium Methylation Assay 

and Sequenom MassARRAY. Both methods have in common 2 sample preparation steps: 

genomic DNA extraction and bisulfite treatment of DNA. 

DNA extraction 

Genomic DNA was extracted from whole peripheral blood using the QIAamp 96 DNA 

Blood Kit (QIAGEN, Hilden, Germany). This kit processes up to 200 µl of whole blood 

with a typical yield of 6 µg per 200 µl healthy whole blood (elution volume of 50–200 µl). 

The principle on which DNA extraction is based is the binding of DNA to the QIAamp 

silica-gel membrane, while contaminants pass through. The protocol consists of several 

steps (Figure 8): 

 Sample lysis with K Protease and a specific buffer (AL), with 

incubation at 70 ° C and subsequent addition of ethanol. 

 DNA binding to columns. 

 Removal of PCR inhibitors, such as divalent cations and proteins, 

by two wash steps (buffer AW1 and AW2). 

 Elution of pure nucleic acid in either water or a buffer (AE) 

provided with the kit. 

 

 

 

 

 

 

 

 

Figure 8. Extraction 

steps with QIAamp 96 

Blood Kit. 
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DNA Quantification 

Quantification was performed using the Quant-iT™ PicoGreen® dsDNA Assay Kit, an ultra 

sensitive fluorescent nucleic acid stain for quantitating double-stranded DNA (dsDNA) in 

solution. 

This kind of assay uses an advanced fluorophore, Picogreen, that becomes fluorescent upon 

binding to double strand DNA; the fluorescence intensity of the resulting complex depends 

directly on the amount of the target molecule in the sample. The quantification was 

performed with a robotic liquid handling system, Hamilton MLStar (Figure 9) that allows 

simple quantitation of hundreds of samples, using a 96- or 384-well format. 

 

Figure 9. Hamilton ML Star. 

Bisulfite treatment of DNA 

For Infinium HumanMethylation450 BeadChip, sodium bisulfite conversion of 500 ng of 

DNA was performed using the EZ DNA Methylation-Gold Kit (Zymo Research 

Corporation, Orange, CA) according to manufacturer‟s instructions. For Sequenom 

EpiTYPER assay, 1000 ng of DNA were bisulfite converted using the EZ-96 DNA 

Methylation Kit (Zymo Research Corporation, Orange, CA) with the following 

modifications respect to manufacture‟s protocol: bisulfite conversion was performed with 

thermal conditions that repeatedly varied between 55°C for 15 min and 95°C for 30s for 21 

cycles; after desulphonation and cleaning steps, bisulfite-treated DNA was eluted in 100 l 

of water. Both kits are based on a three step reaction process between cytosine and sodium 

bisulfite, resulting in unmethylated cytosine being converted into uracil. 

In this way, after amplification, changes in the DNA sequence, dependent on the state of 

methylation of the individual cytosines, are produced (Figure 10). These variations from C 

to T correspond to variations in G/A in the complementary strand. 
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Figure 10. (A) C/U conversion by bisulfite treatment; (B) DNA sequencing results after bisulfite 

treatment. DNA with methylated CmpG (at nucleotide position #5) was processed using the EZ DNA 

Methylation-Gold™ Kit. The recovered DNA was amplified by PCR and then sequenced directly. The 

methylated cytosine at position #5 remained intact while the unmethylated cytosines (i.e., positions #7, 9, 11, 

14 and 15) were completely converted into uracil following bisulfite treatment and detected as thymine 

following PCR. 

 

GENOME-WIDE DNA METHYLATION ANALYSIS 

Genome-wide DNA methylation of 29 families composed by a DSP, a DSM and a DSS was 

conducted using the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA) 

following manufacturer‟s instructions, in collaboration with the Research and Biomedical 

Technologies Laboratory of Cusano Milanino (CRBT, Italy). 

Infinium Human Methylation450 BeadChip 

Infinium Methylation Assay allows to interrogate >485,000 methylation sites per sample at 

single-nucleotide resolution. The design of the array was developed under the guidance of a 

consortium of methylation experts. The 99% of RefSeq genes are covered, including those 

in regions of low CpG density and at risk for being missed by commonly used capture 

methods. Importantly, coverage was targeted across gene regions including promoter 

region, 5'UTR, first exon, gene body, and 3'UTR (Figure 11). 

http://products.illumina.com/technology/beadarray-technology/infinium-methylation-assay.html
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Figure 11. Coverage of HumanMaethylation450BeadChip throughout gene regions. The 

HumanMethylation450 BeadChip offers broad coverage across gene regions, as well as CpG islands/CPG 

island regions, shelves, and shores for the most comprehensive view of methylation state. 

96% of islands were covered overall, with multiple sites within islands, as well as regions 

flanking islands, defined shores (2000 bp on the two sides of CpG islands) and shelves 

(2000 bp adjacent to each shore). Beyond genes and CpG islands regions, multiple 

additional content categories requested by methylation experts were also included: CpG 

sites outside of CpG islands, non-CpG methylated sites identified in human stem cells, 

differentially methylated sites identified in tumors versus normal tissues, FANTOM 4 

promoters, DNase hypersensitive sites, miRNA promoter regions. 
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Infinium Methylation assay protocol 

After bisulfite conversion using the EZ DNA Methylation-Gold Kit, each sample is 

processed as follows: 

 Whole genome amplification (WGA) that uniformly increases the amount of the 

DNA sample by several thousands fold, without introducing large amounts of 

amplification bias. 

 Enzymatic fragmentation of amplified product by a controlled enzymatic process, 

using end-point fragmentation to avoid overfragmenting the sample. 

 Isopropanol precipitation of the fragmented DNA and collection by centrifugation at 

4°C. 

 Resuspension of precipitated DNA in hybridization buffer. 

 Application of bisulfite converted DNA-samples to the BeadChip (a single BeadChip 

accommodates 12 samples with 485577 measurements per sample). 

 Hybridization of the samples onto the BeadChip and incubation in the Illumina 

Hybridization Oven overnight. During this step the amplified and fragmented DNA 

samples anneal to locus specific 50mers (covalently linked to one of over 500,000 

bead types). In the Infinium I chemistry two bead types target each CpG locus: one 

bead type corresponds to methylated (C), another bead type to unmethylated (T) state 

of the CpG site. In Infinium II chemistry one bead type targets each CpG locus 

(Figure 12). 

 Wash away of unhybridized and non-specifically hybridized DNA and chip 

preparation for staining and extension.  

 Chip extension and staining in capillary flow-through chambers. Single base 

extension of the oligos on the BeadChip, using the captured DNA as a template, 

incorporates detectable labels on the BeadChip and allows to determine the 

methylation level of the query CpG sites. 

 Array scansion by HiScan (Illumina), using a laser to excite the fluorophore of the 

single-base extension product on the beads. The scanner records high-resolution 

images of the light emitted from the fluorophores. 
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Figure 12. Infinium I and Infinium II assays. (A) Infinium I assay design employs two bead types per 

CpG locus, one each for the methylated and unmethylated states. (B) The infinium II design uses one bead 

type, with the methylated state determined at the single base extension step after hybridization. 

Data Analysis 

Methylation values from Infiunium450k array were expressed in term of β-values, that is the 

ratio of the methylated probe intensity and the overall intensity (sum of methylated and 

unmethylated probe intensities). Beta-value for an i
th 

interrogated CpG site is defined as: 

 

where yi,methy and yi,unmethy are the intensities measured by the i
th

 methylated and 

unmethylated probes, respectively (P. Du et al. 2010). Illumina suggests adding a constant 

offset α (by default, α=100) to the denominator to regularize Beta-value, when both 
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intensities of methylated and unmethylated probe are low. During analysis all negative 

values will be reset to 0, to avoid negative values after background adjustment. 

The Beta-value can therefore assume a continuous value between 0 and 1 (or between 0 and 

100% methylation): a value of zero indicates that all copies of the CpG site in the sample 

are completely unmethylated and a value of one indicates that every copy of the site is 

methylated (P. Du et al. 2010) 

In this study GenomeStudio software (Illumina) was used to perform background 

subtraction, while IMA R package (Wang et al. 2012) was used to pre-process the -values. 

All the samples were retained, as none had more than 75% of the probes with a detection p-

value greater than 1e
-05

. 425 probes had a detection p-value greater than 0.05 in more than 

75% samples and were removed, together with the probes containing missing values 

(23437) and those localized on sexual chromosomes. Based on these quality checks, 450981 

out of 485577 CpG  

Statistical analysis of Infinium 450k data 

Infinium 450k was analysed using a recently developed statistical pipeline that privileges, 

when possible, a multivariate analysis on groups of adjacent CpG probes (Bacalini et al., 

2015b). Indeed, when changes in DNA methylation involve a group of adjacent CpG sites 

the probability that they affect chromatin structure is higher compared to alterations that 

involve only one CpG site in a CpG-rich context (Beyan et al. 2012; Wessely and Emes 

2012). Therefore, to identify DMRs that could have a relevant role in DSP phenotype, we 

implemented an original pipeline for the analysis of Infinium 450k data, which considers the 

concomitant variation of a group of adjacent CpG probes (region-centric approach), rather 

than the methylation level of a single CpG probe. 

We grouped the CpG probes in clusters, defined “blocks of probes” (BOPs), taking into 

consideration not only their contiguity in DNA sequence, but also their genomic 

localization, which represents a critical aspect for data interpretation (Price et al. 2013). 

Using Illumina probe annotation, we divided the probes in four classes (Figure 13 A): i) 

Class A: probes in CpG islands and CpG islands-surrounding sequences (shores and 

shelves) that map in genic regions (228,255 probes out of 448,628); ii) Class B: probes in 

CpG islands and CpG islands-surrounding regions (shores and shelves) which do not map in 
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genic regions (56,935 probes out of 448,628); iii) Class C: probes in genic regions which 

are not CpG rich (109,147 probes out of 448,628); iv) Class D: probes in non-genic regions 

which are not CpG rich (54,291 probes out of 448,628). 

We evaluated the density of the probes in each class and we noted that only in Class A and 

Class B, that are the classes including CpG-rich regions, there were clusters in which 

multiple probes were in a range of 500-1000 bp (the range in which a co-regulation in 

methylation patterns was described (Li et al. 2010). Based on these analysis, we decided to 

group in BOPs only the probes belonging to Class A and Class B (Figure 13 B). In 

particular we defined as BOPs the groups of CpG probes localized in the same island, in the 

same shore or in the same shelf (73318 BOPs for Class A; 32013 BOPs for Class B). A 

region-centric statistical approach was used to compare Class A and Class B BOPs between 

DSP and DSS. On the contrary, for Class C and Class D probes a single-probe analysis was 

used. 

 

 

Figure 13. A region-centric approach to identify Down syndrome associated DMRs. In (A) are reported 

the 448,628 probes included in the Illumina HumanMethylation450 BeadChip that were divided in 4 classes 

on the basis of their genomic localization. (B) Graphic representation of probes grouped in BOPs. We 

grouped probes mapping in the island and in the surrounding regions of the same CpG island in 5 functional 

units: probes in the N-Shelf of the island, probes in the N-Shore of the island, probes in the island, probes in 

the S-Shore of the island, probes in the S-Shelf of the island. We grouped probes mapping in gene bodies on 

the basis of the gene in which they were located (adapted from Bacalini et al., 2015b). 
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We compared BOPs methylation values for Class A and Class B between DSP and DSS 

using the MANOVA function from the R package car. MANOVA test was applied on 

sliding windows of 3 consecutive CpGs within the same BOP (Figure 14), Among all p-

values calculated for the different sliding windows, we choose the lowest for each BOP. In 

this way we identified the group of 3 CpGs most significantly differentially methylated 

between DSP and DSS within each BOP. All BOPs containing only 1 or 2 CpG probes were 

excluded from multivariate analysis. These CpG probes were compared between DSP and 

in DSS using the ANOVA function from the R package car, together with probes belonging 

to Class C and Class D. 

 

 

Figure 14. MANOVA Analysis. Graphical representation of the sliding window MANOVA used to 

normalize for BOPs lengths (adapted from Bacalini et al., 2015b). 

A correction for sex, batch and cell counts (see the next paragraph) was performed both for 

MANOVA and ANOVA analyses. We also applied a Benjamini-Hochberg False Discovery 

Rate correction using the function mt.rawp2adjp from the R package multtest, to correct for 

multiple testing. 

Using the list of 4648 class A BOPs differentially methylated between DSP and DSS we 

performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene 
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ontology (GO) analyses. To conduct GO annotation of selected DMRs we used gene 

ontology enrichment analysis and visualization tool http://cbl-gorilla.cs.technion.ac.il/ 

(Eden et al. 2009), while to perform the significance analysis of KEGG pathways we used 

two tailed Fisher‟s exact test for each pathway (Francesconi et al. 2008). 

Cells count inference from DNA methylation data 

We used a recently developed algorithm (Houseman et al. 2012) to infer blood cell counts 

starting from DNA methylation. 

This method starts from cell-specific DNA methylation signatures of purified leukocyte 

samples (validation dataset) and selects n CpG sites with the highest informativeness, with 

respect to blood cell types, using this information to predict leukocytes distribution in the 

target dataset. We used two validation datasets that are present in public databases. The first 

one (GEO Accession number GSE39981) reports DNA methylation profiles results of 46 

samples (6 CD19+ B cells samples, 8 granulocytes samples, 5 CD14+ monocytes samples, 

11 CD56+ NK cells samples, 8 CD3+CD4+T cells samples, 2 CD3+CD8+ T cells samples, 

1 CD3+CD56+ NK sample and 5 CD3+ T cells samples) analyzed by the Infinium 27k. The 

second dataset (GEO Accession number GSE35069) includes data from the Infinium 450k 

from six healthy males on seven sorted cell populations (CD4+ T cells, CD8+ T cells, 

CD56+ NK cells, CD19+ B cells, CD14+ monocytes, neutrophils, and eosinophils). 

We compared the predicted leukocytes distributions with flow cytometry results available 

for DSP, by testing the performance of both validation sets. We decided to use GSE39981 

as validation dataset, because it was more effective in predicting specific cell types even if 

both datasets were successful in predicting experimentally measured cell counts. In fact 

GSE35069 was less effective in predicting specific cell types such as CD56+ NK cells but 

also in providing a major number of different sets of informative CpG sites: 100, 300, 500, 

1000, 2000 CpG sites from the GSE39981 dataset; 100, 300, 500, 1000, 5000, 10000 and 

20000 CpG sites from the GSE35069 dataset. By using GSE39981 as validation dataset we 

estimated the distribution of CD19+ B cells, CD3+CD4+ T cells, CD3+CD8+ T cells, 

granulocytes, CD14+ monocytes and CD56+ NK cells using the 500 most informative CpG 

sites, 453 of which were included in the Infinium 450k. Projections of cell type‟s 

distributions for DSP, DSS and DSM are reported in Figure 20 of Result section. 
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LOCUS-SPECIFIC DNA METHYLATION ANALYSIS 

EpiTYPER assay  

Locus-Specific DNA methylation analysis was performed using the EpiTYPER assay 

(Sequenom, San Diego, CA) following manufacturer‟s instructions. 

EpiTYPER is a tool for the quantitative analysis of DNA methylation, implemented on the 

Sequenom MassARRAY platform.  

The Sequenom MassARRAY system is a scalable platform that allows to analyse up to 384 

samples for each working session. It is composed by three elements: MassARRAY Liquid 

Handler, MassARRAY Nanodispenser and MassARRAY Compact Analyzer. MassARRAY 

Liquid Handler is a 96 channels pipetting robot employed to optimize pipetting during 

preparation steps of 384 plate and together to minimize risks of contamination. 

MassARRAY Nanodispenser is an instrument that performs rapid transfer of 384 samples 

onto SpectroChip arrays. Finally MassARRAY Compact Analyzer is an automated bench 

top MALDI-TOF mass spectrometer which can analyze two Spectro CHIP® arrays per run 

(2x384 samples). The mass spectrometry analysis is conducted by Matrix-Assisted Laser 

Desorption/Ionization Time-of-Flight (MALDI-TOF MS) technology. 

This technique involves the use of an analyzer TOF (Time Of Flight) and a source of 

MALDI (Matrix Assisted Laser Desorption Ionization) and provides accurate information 

on the structure and molecular weight of biomolecules such as peptides, proteins, 

oligonucleotides. The method MALDI-TOF-MS involves the use of a laser for desorption 

and ionization of analytes previously fixed to a solid matrix on a metallic target. This 

produces ions of the analytes in the gas phase, which are then accelerated by an electric field 

before entering the TOF analyzer. With this acceleration each ion will have a kinetic energy 

proportional to its charge, but independent of its mass. The ions then enter the TOF analyzer 

in which it is measured the time that each particle take to reach the detector placed at a 

known distance. Since the speed of the ions depends on the mass/charge ratio (the heavier 

particles travel at low speeds), the ions reach the detector at different times according to 

their mass.  

Bisulfite treatment of DNA gives rise to G/A variations that result in a mass difference of 16 

Da per CpG site, easily detected by the MassARRAY® system. 
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EpiTYPER assay protocol 

The EpiTYPER protocol includes several steps (Figure 15): 

 Design of PCR primers that target the region of interest; the length of the amplicon is 

usually in the 200-600 bp range, as bisulfite treatment leads to genomic DNA 

fragmentation. The bisulfite specific primers do not include CpG sites and therefore 

bind to both methylated and non methylated template. We designed bisulfite primers 

using the EpiDesigner software (Figure 16), specifically optimized for the 

EpiTYPER assay. 

 Amplification of 10 ng DNA in 5µl total volume, using a 384-microtiter format: 

during this step a T7-promoter tag, which is necessary for the next step of in vitro 

transcription, is introduced. 

 Dephosphorylation of unincorporated dNTPs and primers, by adding 2μl of Shrimp 

Alkaline Phosphatase (SAP) enzyme to each 5 μl PCR reaction. 

 In Vitro Transcription and RNase A Cleavage, adding 5µl of transcription/RNase A 

cocktail to 2µl of PCR/SAP samples. 

 Sample conditioning, using 20µl of ddH2O and 6µl of Clean Resin for each sample, 

with the aim to eliminate salts of sodium and potassium that with their mass may 

affect the analysis. 

 Sample transfer of little samples volumes (20-25nl) from 384 PCR plate to a 384-

element SpectroCHIP® bioarray. 

 Sample analysis. During this step spectra from the two cleavage reactions are 

acquired using the MassARRAY® system. 
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Figure 25. Overview of EpiTYPER process. 

 

Figure 16. Epidesigner, a tool for designing quantitative DNA methylation experiments for Sequenom's 

EpiTYPER technology. 
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The EpiTYPER Analysis software was used to analyze results. MALDI-TOF MS analyzes 

the cleavage products, and a distinct signal pair pattern results from the methylated and non-

methylated DNA template (Figure 17). 

EpiTYPER generates quantitative results for each cleavage product analyzed. Each cleavage 

product encloses either one CpG site or an aggregate of multiple CpG sites. An analyzed 

unit containing one or multiple CpG sites is called a “CpG unit”. 

The obtained data were displayed using the software "Analyzer" (Figure 18), from the 

package EpiTYPER (Sequenom). This program allows comparing spectra, nucleotide 

sequences and data methylation in amplicon analysis. 

The following genomic regions were analysed by EpiTYPER: 

RUNX1 CpG island (chr21:36,258,992-36,259,453); 

KDM2B N-Shore (chr12:121,973,796-121,974,353); 

NCAM1 N-Shore (chr11:112,834,144-112,834,547); 

the promoter of ribosomal gene Ribo; 

5‟sequence of 18S regions; 

5‟sequence of 28S regions; 

ELOVL2 CpG island (chr6:11,044,680-11,045,053); 

FHL2 CpG island (chr2:106,015,678-106,016,008); 

PENK CpG island (chr8:57,360,525-57,360,938). 

The primers corresponding sequences are: 

RUNX1 Forward: aggaagagagGGTAGGAGTTGTTTGTAGGGTTTTAAT 

RUNX1 Reverse: cagtaatacgactcactatagggagaaggctCCCACATCCCAAACTAAAAAAA 

KDM2B Forward: aggaagagagGGGATTTTGATTATTTTATTGTTAGTTT 

KDM2B Reverse: cagtaatacgactcactatagggagaaggctAAAACCCCTCCCTACCACTTAC 

NCAM1 Forward: aggaagagagGGGAGGGTATTTTGGTAGGTATATTT 

NCAM1 Reverse:cagtaatacgactcactatagggagaaggctAAAATTCCTAAACCTACAACTTCCAC 

Ribo Forward: aggaagagagGTGTGTTTTGGGGTTGATTAGAG 

Ribo Reverse: cagtaatacgactcactatagggagaaggctAAAACCCAACCTCTCCAAC 

18S Forward: aggaagagagGTTTGTTGTTTTTTTTGGATGTGG 

18S Reverse: cagtaatacgactcactatagggagaaggctCCTTACCTACCTAATTAATCCTACCAA 
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28S Forward: aggaagagagGGTATTTAGTTTTAGATGGAGTTTATTATT 

28S Reverse: cagtaatacgactcactatagggagaaggctAAAAAAAACTAACCAAAATTCCC 

ELOVL2 Forward: aggaagagagGTAAATTTGTAGGAATAGAGTTATTTTTTT 

ELOVL2 Reverse cagtaatacgactcactatagggagaaggctCCCCTCTCCCACAAAAACC 

FHL2 Forward: aggaagagagTTTTTTATGGTTATTTGTGGTGTTT 

FHL2 Reverse: cagtaatacgactcactatagggagaaggctCCCTTTATTTACCAAAACTCCTTTC 

PENK forward: aggaagagagAGGGGTTTTATGATGAAAAGAATTT 

PENK Reverse: cagtaatacgactcactatagggagaaggctAAAAAAATCCCAAAAATTTCCAAAC 

 

 

Figure 17. Results from a mixture experiment are shown above. It is an example illustration taken from a 

“zoomed in” view of a spectrum generated in EpiTYPER. In (A) it is reported an example of mass signal 

pairs for single CpG unit showing methylation ratios. (B) Representation of a graph of relative methylation 

levels derived from the same mixture experiment. 
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Figure 18. Software "Analyzer" from the package EpiTYPER (Sequenom). (A) This panel provides 

graphical representations of the CpG sites within the selected amplicon. Each is color-coded to the degree of 

methylation shown in the methylation tab panel (B) to provide a quick, reliable comparison between samples 

and CpG sites. 

For each gene, CpG sites with missing values in more than the 20% of the samples were 

removed, as well as samples with missing values in more than the 20% of CpG sites. We 

used an R package to test if bisulpite conversion reaction run to completion (Thompson et 

al. 2009). For all samples analysed bisulphite conversion was from 98.9% to 100%. 

Methylation data obtained by EpiTYPER assay were statistically analyzed using R software. 
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EXPRESSION ANALYSIS 

Expression analysis were conducted using Real Time PCR in 4 DSP and 4 healthy sex- and 

age- matched controls, in collaboration with Prof. Lorenzo Montanaro (DIMES, University 

of Bologna). 

RNA Extraction 

RNA was extracted from peripheral blood using RiboPure™ RNA Purification Blood Kit 

(AMBION) following manufacturer's specifications. This kit allows the isolation of high-

quality RNA directly from whole blood or from blood samples stored at -20°C in 

RNAlater® Solution.  

The RiboPure-BloodKit RNA isolation procedure consists of two parts: 

 Cell lysis in a guanidinium-based solution and initial purification of the RNA by 

phenol/chloroform extraction. 

 Final RNA purification by solid-phase extraction on a glass fiber filter. 

The amount of blood used was between 300 μl and 500 μl. 

RNA Quantification 

RNA quantification was performed using the Thermo Scientific NanoDrop™ 1000 

Spectrophotometer, an instrument able to measure 1μl DNA or RNA samples with high 

accuracy and reproducibility. 

For each sample was carried out in a double quantification. 

Real Time PCR 

Total RNA was reverse transcribed using the High-Capacity cDNA Archive Kit (Applied 

Biosystems). Real-time PCR analysis was done in a Gene Amp 7000 Sequence Detection 

System (Applied Biosystems). For each sample, three replicates were analyzed. 

Briefly semi-quantitative Taqman approach (taqMan Universal PCR master mix, Applied 

Biosystems) was employed to evaluate the expression of KDM2B and beta-glucoronidase 

(GUSB) as endogenous control. The expression of 45S pre-RNA was evaluated by Sybr 

Green (Power SYBR green PCR master mix, Applied Biosystems). 
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Each sample was exposed to the following cycling conditions: 

 Denaturation step at 95°C for 10 min. 

 40 cycles of denaturation at 95°C for 15 s. 

 Annealing and extension at 60°C for 1 min (1,5 min for 45S). 

To inspect the specificity of Syber green PCR reactions we analyzed their melting curves 

carried out as follows: 60°C for 10s, with an increase of 0.5°C per cycle for 80 cycles. 

Threshold cycles (Ct) in each triplicate were averaged and fold differences were calculated 

by the DDCt method as follow: N target =2 − (ΔCt sample − ΔCt calibrator), where ΔCt 

values of the sample and calibrator were determined by subtracting the Ct value of the 

endogenous control gene from the Ct value of each target gene (Penzo et al. 2014; 

Montanaro et al. 2010; Dussault and Pouliot 2006) 
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DNA METHYLATION PROFILE OF PERSONS WITH DOWN SYNDROME 

We used the Infinium 450k assay to investigate the DNA methylation profile of 87 whole 

blood samples from 29 families composed by a person with Down Syndrome (DSP), one 

healthy sib (DSS) and the mother (DSM). 

All samples were analyzed on the BeadChip with a positive outcome. In particular each 

BeadChip carries internal quality controls that are able to evaluate bisulfite conversion 

efficiency. In our analysis, the efficiency has resulted higher than 99% for all samples 

analyzed, confirming the reliability of the method and the success of the preliminary steps 

(DNA extraction and bisulfite conversion). 

After quality check we excluded chromosome X and Y data and we recovered 450.981 from 

485.577 loci for subsequent analysis. 

GLOBAL OVERVIEW OF THE DNA METHYLATION 

We first compared the beta-values distributions of each chromosome between DSP, DSS 

and DSM to obtain a global overview of the DNA methylation patterns of DS. Significant 

differences were found between DSP and their relatives for many chromosomes, 

particularly in HSA21 (Figure 19) where DSP showed a decrease in the density of highly 

methylated loci with a concomitant enrichment in loci with methylation levels between 0.5 

and 0.8. 

Cells count interference from DNA methylation data 

DNA methylation is tissue and cell specific, so difference in lymphocyte subpopulations 

could bias the discovery of differentially methylated regions (DMRs) when comparing 

whole blood DNA methylation from DSP against healthy subjects. In fact age-dependent 

defects in the innate and in the adaptive immune system of DSP, consisting in altered 

prevalence of the different lymphocyte subpopulations, are reported in many studies 

(Kusters et al. 2009). During statistical analysis we made a correction for lymphocyte 

subpopulations with the aim to identify intrinsic DNA methylation defects in DSP white 

blood cells. (WBC) Considering that we had cell type counts only for DS subjects, we 

overcome this lack of information using a recently developed algorithm able to infer blood 

cell counts starting from DNA methylation data (Houseman et al. 2012). Details of the cell 
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count estimation procedure are reported in Materials and Methods section. Our experimental 

data on DSP and the characteristic alterations in specific leukocytes populations are 

faithfully reproduced by the inferred cell counts (Figure 20). In detail , DSP showed a 

significant decrease in the number of CD19+ B cells (p-value <0.001) and CD3+CD4+ T 

cells (p-value <0.001) while they showed a significant increase in the number of 

CD3+CD8+ T cells (p-value <0.001). This situation leads to altered 

CD3+CD4+/CD3+CD8+ ratio, as previously reported (Cossarizza et al. 1990; Cossarizza et 

al. 1991). Taking this into account, we used inferred WBC counts as covariates in 

downstream analyses. 

 

Figure 19. Comparison of DNA methylation distributions in DSP, DSS and DSM. (A) The table shows 

results of Kolmogorov-Smirnov test made by comparing, for each chromosome, the methylation 

distributions between DSP, DSS and DSM. The reported p-values are Bonferroni corrected. In (B) are 

reported probability density distributions of methylation values in HSA22 (8179 CpG probes) and in HSA21 

(4055 CpG probes) (adapted from Bacalini et al,. 2015a). 
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Figure 20. Estimation of cell counts. Distributions of estimated cell counts for DSP, DSS and DSM 

(adapted from Bacalini et al., 2015a). 
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IDENTIFICATION OF REGIONS DIFFERENTIALLY METHYLATED BETWEEN 

DSP AND DSS 

As explained in the materials and method section, we used the analysis pipeline described 

by Bacalini et al. to identify DMRs between DSP and DSS subjects (Bacalini et al., 2015b). 

Briefly using Illumina probes annotation, we first divided our probes included in the array 

in four classes: i) Class A, including probes in CpG islands and CpG islands-surrounding 

sequences (shores and shelves) that map in genic regions; ii) Class B, including probes in 

CpG islands and CpG islands-surrounding regions (shores and shelves) which do not map in 

genic regions; iii) Class C, including probes in genic regions which are not CpG rich; iv) 

Class D, including probes in non-genic regions which are not CpG rich. 

Then we grouped Class A and Class B CpG probes in clusters that we called “block of 

probes”(BOPs), containing the probes localized in the same island, in the same shore or in 

the same shelf. BOPs within Class A and Class B containing at least 3 CpG probes were 

compared between DSP and DSS using a multivariate statistical analysis (MANOVA) on 

sliding windows of 3 adjacent CpG probes. This multivariate approach is advantageous as it 

allows to identify general changes in the methylation status of the genomic region under 

consideration. 

The remaining probes within Class A and Class B and the probes belonging to Class C and 

Class D were analysed using an univariate analysis (ANOVA). Sex, batch and cell types 

distribution were included as covariates. 

In class A 4648 BOPs resulted able to discriminate DSP from DSS (q-value< 0.05; Figure 

21 A and B). DSM methylation patterns were similar to those of DSS, confirming that the 

identified BOPs are characteristic of DSP and that these BOPs signatures distinguish the 

samples for the presence/absence of disease. 
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Figure 21. Down Syndrome associated DMRs. (A) The MDS plot reports a two-dimensional 
representation of the epigenetic distances between test samples, calculated using the methylation values of 

4648 BOP selected as differentially methylated between DSP and DSS. (B) In the graph the percentage of 

identified DMRs is indicated for each of the four probes classes. Comparing DSP to DSS DMRs, they are 

distinguished between hypermethylated and hypomethylated.(C) Chromosomal enrichment of the identified 

DMRs. The Odds Ratio resulting from Fisher‟s exact test is reported for each chromosome and significant 

enrichments are indicates with asterisks (adapted from Bacalini et al., 2015a). 

Observing Figure 22 we can note that the use of cell counts markedly reduced the number of 

identified DMRs. 

 
Figure 22 Effect of adjustment for estimated cell counts. The CpG probe most significantly differentially 

methylated between DSP and DSS was selected for each BOP. The volcano plot reports the –log10 (q‐value) 

of each BOP against the methylation difference between DSP and DSS for the selected CpG probe, without 

(A) or with (B) correction for cell counts, in addition to correction for sex and batch effects. The green lines 

represent q-value=0.05 (adapted from Bacalini et al., 2015a). 

Of the 6650 BOPs in Class B, 889 resulted differentially methylated between DSP and DSS 

(q-value < 0.05; Figure 21 B)  
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Comparing methylation values of Class C and Class D probes between DSP and DSS by 

ANOVA, 6051 CpG probes out of 109617 probes mapping in Class C and 3426 out of 

54697 of probes mapping in Class D were differentially methylated between DSP and DSS 

(q-value < 0.05;Figure 21 B). 

Since most of the Infinium 27k probes are also in the Infinium 450k array we considered the 

study of Kerkel and co-workers, that analyzed DNA methylation profiles in peripheral 

blood lymphocytes (PBL) from 29 DS adults and 20 age-matched controls using the 

Infinium 27k. They reported a list of differentially methylated genes distributed across 

various autosomes, with no specific enrichment for chromosome 21. We verified if the 

DMRs identified in Kerkel‟s study were confirmed in our cohort of samples. Kerkel et al. 

selected 7 probes as DMRs (cg07991621, cg08822227, cg09554443, cg05590257, 

cg14972143, cg00983520, cg21053323) that resulted differentially methylated also in our 

study (Figure 23), apart from cg05590257 that did not reach statistical significance, but this 

and the surrounding CpG probes showed a trend for differential methylation. 

Looking at the distribution of Class A DMR across the chromosomes, we observed a 

significant overrepresentation of DMRs on chromosomes 21,17, 6 and 15, while we found a 

significant underrepresentation on chromosome 5 (Fisher‟s exact test, p-value < 0.05; 

Figure 21 C). We observed that DMRs spread on the entire length chromosome 17, while 

they were clustered in the HLA locus as regards the chromosome 6. Considering the fact 

that this locus is highly polymorphic, we wondered whether the differences in DNA 

methylation, observed between DSP and DSS could be due to the presence of SNPs in the 

probes of the array. To answer this question we clustered the samples on the basis of their 

methylation values in the selected HLA loci. We expected that members of the same family 

showed the same genetic/epigenetic variations and thus were clustered together (Figure 24). 

On the contrary, DSP tended to cluster together, suggesting us that the methylation profile 

of DSP in HLA loci was different from their relatives, independently from the genetic 

background. 
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Figure 23. Confirmation of previous studies. (A) Here are indicated the DNA methylation levels of the 

CpG probes resulted differentially methylated in persons affected by DS compared to healthy controls in T-

cells and PBL in Kerkel‟s study. DNA methylation values in whole blood for the same CpG probes 

measured in our study are also reported. (B) Graphical representation of the whole blood DNA methylation 

profile of the BOPs containing the CpG probes reported in (A). The corresponding BOP of the probe 

cg09554443 is not reported because it maps to a not-CpG rich region in the CD247 gene (adapted from 

Bacalini et al., 2015a).
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Figure 24. Hierarchical clustering of DSP, DSS and DSM for significative BOPs mapping in HLA loci. 

We selected the CpG probes differentially methylated between DSP and DSS for the 21 BOPs mapping in 

HLA loci.(ANOVA, q value <0.05; 46 CpG probes). In the heatmap are reported DNA methylation values 

for the selected CpG probes in rows (samples in columns and color-coded). Dendrograms depict hierarchical 

clustering of probes and samples (adapted from Bacalini et al., 2015a). 
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Concerning chromosome 21 we observed 

DMRs enrichments also for CpG probes in 

Class C, but not for those in Class B and Class 

D (Figure 25).  

We observed that almost all the other 

chromosomes contained genomic regions 

altered in terms of DNA methylation pattern, 

although HSA21 was the most affected by the 

aneuploidy. The result that we found can be 

compared with those obtained with the 27k 

array, apart from those related to chromosome 

21. In fact Kerkel did not observe an 

enrichment on HSA21, probably because of the 

lower density of probes, especially in small 

chromosomes with low numbers of genes. 

Figure 25. Chromosomal enrichment of DMRs in 

Class B (A), Class C (B) and Class D (C) probes. For 

each chromosome, the odds ratio resulting from 

Fisher‟s exact test is reported. Significant enrichments 

are indicated with asterisks (adapted from Bacalini et 

al., 2015a). 
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PATHWAY AND GENE ONTHOLOGY ANALYSIS 

Using the list of the 4648 Class A BOPs differentially methylated between DSP and DSS, 

we performed Gene Onthology (GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway analysis (Table 2). GO analysis showed various enriched GO terms. In 

particular the selected DMRs mapped principally in genes involved in the morphogenesis of 

anatomical structures and developmental processes. 

KEGG pathways, that reached statistical significance after FDR correction, were involved 

in ribosome, immune functions and type I diabetes. 

Table 2. KEGG pathways and GO analysis 4648 BOPS resulted differentially methylated between 

DSP and DSS. The table reports the significantly enriched KEGG pathways and gene ontologies, resulted 

from the analysis with Fisher‟s exact test and Gorilla platform (as just reported in Materials and Methods 

section) (adapted from Bacalini et al., 2015a). 
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IDENTIFICATION OF AN EPIGENETIC SIGNATURE OF DOWN SYNDROME 

From the list of 4648 Class A BOPs resulted altered in DSP we defined an epigenetic 

signature of Down Syndrome by selecting a short list of DMRs whose DNA methylation 

status was remarkably different compared to healthy sibs. To this purpose as previously 

suggested by Du et al. (P. Du et al. 2010) we considered only BOPs containing at least 2 

adjacent CpG sites for which DNA methylation difference between DSP and DSS was 

higher than 0.15. The BOPs that met these stringent criteria were found to be 68. DNA 

methylation profile of some of these BOPs are reported in Figure 26 A. In addiction Figure 

26 B reports the results of the hierarchical clustering analysis that we performed using these 

loci. We found that the different methylation status of these 68 loci clearly separated DSP 

subjects from their relatives, while it did not distinguish DSS from DSM. We found a 

percentage of hypermethylated probes of 73% in DSP compared to DSS.  

We took advantage of our family based model to understand if the epigenetic signature of 

DSP, that we obtained with our selection of CpG probes, was independent from genetic or 

environmental factors. In Figure 26 C it is graphically represented the difference in 

methylation values of the 68 BOPs (in row) between each DSP and his healthy sib. This 

hierarchical clustering does not clearly distinguish one family from another, suggesting that 

the epigenetic signature is not influenced by genetic and environmental factors, but only by 

the presence/absence of disease. 

We performed a meticulous screening of the 68 differentially methylated loci included in 

the epigenetic signature to group them according to their principal main function, because 

they were in a too small number to perform ontology enrichment analysis. They were 

divided according to four main tasks: 1) hematopoiesis (RUNX1, DLL1, EBF4 and 

PRMD16); 2) morphogenesis and development (HOXA2, HOXA4, HOXA5, HOXA6, HHIP, 

NCAM1); 3) neuronal development (NAV1, EBF4, PRDM8, NCAM1, GABBR1); 4) 

regulation of chromatin structure (PRMD8, KDM2B, TET1). 
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Figure 26. (A) DNA methylation profile of 6 of the 68 BOPs included in the epigenetic signature of Down 

Syndrome. (B) Heatmap reporting DNA methylation values for the 68 BOP included in the epigenetic 

signature of DSP. (C) Heatmap that reports differences in DNA methylation between each DSP and his/her 

DSS for the 68 BOPs included in the epigenetic signature. The methylation values of the most significant 

CpG probe within each BOP was considered both in (B) and in (C) (adapted from Bacalini et al., 2015a). 
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EPIGENETIC SIGNATURE OF DOWN SYNDROME: LOCUS SPECIFIC 

ANALYSIS 

To confirm data obtained with Illumina assay we analyzed 3 DMRs included in the 

epigenetic signature: RUNX1 island, KDM2B N Shore and NCAM1 N Shore. This kind of 

analyses was conducted using an alternative method, the Sequenom‟s EpiTYPER assay. 

The analysis was performed on an enriched cohort of samples. In particular we tested the 29 

DSP and DSS subjects of our family based model and in addition other 49 persons affected 

by Down Syndrome and 33 age- and sex- matched unrelated controls. 

EpiTYPER analysis confirmed that CpG sites included in 450 BeadChip were differentially 

methylated between DSP and controls and showed that differences in DNA methylation 

extended also to the adjacent CpG sites (Table 3). 

All the CpG sites within RUNX1 and KDM2B amplicons were significantly 

hypermethylated in DSP respect to controls, while only 7/11 of the CpG tested in NCAM1 

island were significantly different between DSP and controls (Figure 27 A, B and C; 

Student‟s t-test).  

Afterward we calculated correlation matrices of these 3 DMRs in DSP and controls to 

evaluate the reciprocal trend of CpG methylation in the examined amplicons. A high degree 

of correlation between the CpG may suggest the existence of mechanisms of co-regulation 

of their methylation status (Wessely and Emes 2012). The correlation is indicated by a 

continuous value between -1 (maximum inverse correlation) to +1 (maximum direct 

correlation). In Figure 28 the graphs representing these correlation matrices are reported. 

CpG correlation blocks included almost all the CpG probes in RUNX1, whereas in KDM2B 

and NCAM1 it is possible to observe the presence of smaller correlation blocks which 

involves only few CpGs, but which did not show significant differences between DSP and 

healthy controls. This difference is probably due to the nature of the amplicon examined, as 

the RUNX1 amplified region is located within a CpG island, while both for KDM2B and 

NCAM1 the N-shores adjacent to the island were considered. These data suggest that 

methylation control in CpG island is greater than in shores. 
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Table 3. P-values relative to the differences in the indicated KDM2B, RUNX1 and NCAM1 CpG sites 

between persons affected by DS and healthy controls. 

KDM2B 

CpG sites 

P value  RUNX1 

CpG sites 

P value  NCAM1 

CpG sites 

P value 

CpG_1 1,74·10
-19 

 
 CpG_1 8,49·10

-40 

 
 CpG_1.2.3.4 0,50 

CpG_2.3.4 6,37·10
-23 

 
 CpG_3 4,51·10

-37 

 
 CpG_14 0,49 

CpG_5 5,06·10
-14 

 
 CpG_5.6 7,89·10

-34 

 
 CpG_17 0,23 

CpG_6 3,82·10
-16 

 
 CpG_7.8 6,09·10

-38 

 
 CpG_18 0,18 

CpG_7 9,65·10
-21 

 
 CpG_9.10 1,59·10

-35 

 
 CpG_26 2,10·10

-10 

 

CpG_8.9 1,05·10
-18 

 
 CpG_20.21 4,16·10

-38 

 
 CpG_27.28 1,84·10

-4 

 

CpG_10.11 4,52·10
-19 

 
 CpG_22 1,38·10

-22 

 
 CpG_29 1,55·10

-5 

 

CpG_12 4,26·10
-22 

 
 CpG_23 1,21·10

-31 

 
 CpG_30 1,56·10

-8 

 

CpG_14 1,05·10
-8 

 
 CpG_24.25 1,78·10

-30 

 
 CpG_31.32 3,02·10

-38 

 

CpG_15 3,82·10
-16 

 
 CpG_26 6,89·10

-36 

 
 CpG_33 3,02·10

-38 

 

CpG_22 0,002 

 
 CpG_30 8,37·10

-39 

 
 CpG_34 3,69·10

-35 

 

CpG_23.24 9,24·10
-10 

 
 CpG_31 1,47·10

-36 

 
   

CpG_25 4,39·10
-7 

 
 CpG_32 1,19·10

-37 

 
   

CpG_26 2,28·10
-6 

 
 CpG_34.35 3,13·10

-35 

 
   

CpG_27 1,58·10
-7 

 
 CpG_36 1,19·10

-34 

 
   

   CpG_37.38 3,29·10
-26 

 
   

   CpG_39 1,69·10
-36 

 
   

   CpG_40.41.42 1,55·10
-37 

 
   

   CpG_43 3,97·10
-38 

   

   CpG_44.45 8,23·10
-35 
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Figure 27. Validation of DSP DMRs by Sequenom EpiTYPER. DNA methylation values of KDM2B N-

Shore (A), RUNX1 Island (B) and NCAM1 N-Shore (C) measured in a cohort of 78 DSP and 62 age- and 

sex-marched healthy controls (adapted from Bacalini et al., 2015a). 
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Figure 28. Correlation matrices between CpG units within each CpG island/island Shore of KDM2B (A) 

RUNX1 (B) and NCAM1 (C) in DSP and controls. 

It is also possible to observe that KDM2B correlation level is lower in DSP compared to 

controls. Accordingly, the characteristic of many diseases is the loss of CpG correlation that 

reflects a defect in the control of methylation levels. 
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METHYLATION OF RIBOSOMAL GENES 

The EpiTYPER assay was used also for the quantitative analysis of DNA methylation of 3 

regions belonging to the sequence of the ribosomal gene (rDNA), which is completely 

excluded from the Infinium 450k design: the gene‟s promoter (Ribo) and the regions at 5‟ of 

18S and 28S subunits (Figure 29). These analyses were conducted on the enriched cohort of 

samples. 

 

Figure 29. rDNA locus and target regions selected for DNA methylation analysis (adapted from Bacalini et 

al. 2014). 

Referring to Ribo and 18S amplicons it has been necessary to conduct a preliminary analysis 

before comparing their methylation level between the two groups of interest (DSP and 

controls). Indeed while all samples of RUNX1, NCAM1, KDM2B and 28S amplicons were 

analyzed in the same EpiTYPER experiment (same experimental batch), for technical 

reasons Ribo and 18S amplicons were analyzed in two different experimental sessions, 

respectively comprising 68 samples (34 DSP and 34 controls) and 72 samples (44 DSP and 

28 controls). The average methylation values of CpG sites in DSP and controls in the two 

experimental batches are shown in Figures 30 and 31. 
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In these graphs methylation values of some CpG sites appear to be different in the two 

batches. By performing a Student's t test it has been possible to confirm that the observed 

variations are significant for the following CpG sites: 

• CpG 15:16 and CpG 26 for the amplicon Ribo; 

• CpG 2, CpG 9:10, CpG 17:18, CpG 28:29 and CpG 35 for the amplicon 18S. 

This kind of difference takes the name of "batch effect" and it is due to a technical artifact 

due to differences (not always identifiable and/or controllable) between the two 

experimental sessions. Therefore batch effect is not linked to biological differences between 

samples analyzed in the two sessions, that were equally balanced for the number of DSP and 

controls. As the batch could be a confounding factor, when comparing the DNA 

methylation values between DSP and controls it was included as a covariate with age in the 

ANOVA analysis. 

Table 4 and Figure 32 show that a subset of CpG sites resulted differentially methylated 

between DSP and controls. In detail we observed significant differences in methylation 

values in 3/8 CpG of Ribo promoter, 3/13 CpG in 18S amplicon and 6/10 CpG in 28S 

amplicon, with an hypermethylation in DSP compared to controls. 

We calculated correlation matrices also for these 3 DMRs of ribosomal genes in DSP and 

controls (Figure 33). Considering the spatial proximity of the three amplicons we reported 

in the same matrix all the correlation levels of Ribo, 18S and 28S sequences. This analysis 

showed that CpGs of the three amplicons studied are highly correlated both in DSP and in 

controls, suggesting that the disease does not affect the ability to control the methylation 

status of this region.  

.
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Figure 30. Average of methylation values and relative standard deviations in DSP in the first and second 

batch. 

 

Figure 31. Average of methylation values and relative standard deviations in controls in the first and second 

batch.
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Tabel 4. P-values of Ribo, 18S and 28S sequences CpG sites. 

Ribo 

promoter 

CpG sites 

P value  18S 

CpG sites 

 

P value  28S 

CpG sites 

P value 

CpG_5 0,012 

 
 CpG_1 0,126 

 
 CpG_1 0,008 

 

CpG_15.16 0,178 

 
 CpG_2 0,141 

 
 CpG_2 0,136 

 

CpG_17.18 0,135 

 
 CpG_4 0,048 

 
 CpG_3 0,068 

 

CpG_19.20 0,099 

 
 CpG_5 0,140 

 
 CpG_10 0,011 

 

CpG_21 0,286 

 
 CpG_9.10 0,735 

 
 CpG_11 0,003 

 

CpG_22.23 0,135 

 
 CpG_11.12.13 0,021 

 
 CpG_12.13 0,053 

 

CpG_24.25 0,014 

 
 CpG_14.15.16 0,014 

 
 CpG_15.16.17 0,023 

 

CpG_26 0,013 

 
 CpG_17.18 0,178 

 
 CpG_18.19 0,014 

 

   CpG_20 0,283 

 
 CpG_20 0,136 

 

   CpG_28.29 0,793 

 
 CpG_29.30 0,032 

 

   CpG_30.31.32 0,126 

 
   

   CpG_35 0,154 

 
   

   CpG_36.37.38 0,126 
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Figure 32. Validation of Down Syndrome DMRs by Sequenom EpiTYPER. DNA methylation values of 

Ribo (A), 18S sequence (B) and 28S sequence (C) measured in a cohort of 78 DSP and 62 age- and sex-

matched healthy controls.
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Figure 33. Correlation matrices between CpG units within the sequences Ribo, 18S and 28S. 
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EXPRESSION ANALYSIS 

On the basis of methylation data, we wondered if DSP hypermethylation of KDM2B N 

Shore and of some CpGs in ribosomal genes could lead to changes in gene expression of 

KDM2B gene and of rRNA 45S. To this aim we conducted a gene expression analysis using 

Real Time PCR technique. We compared 4 DS samples with age- and sex- balanced 4 

controls. Results reported in Figure 34 A and B indicate that the DSP hypermethylation 

state previously described does not cause alterations in gene expression both for KDM2B 

gene and ribosomal genes. 

 

Figure 34. Gene expression levels of KDM2B gene (A) and 45S-rRNA (B) in controls and DSP.
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ANALYSIS OF AGE-DEPENDENT EPIGENETIC CHANGES IN DSP 

As Down Syndrome is usually considered a segmental progeroid syndrome, we investigated 

how DSP behave for loci whose methylation status is known to be associated with aging. 

Recently, Hannum and colleagues used the Infinium 450k to analyse whole blood DNA 

methylation in 656 individuals from 19 to 101 years and identified an age-associated 

epigenetic signature including 71 CpG sites (Hannum et al. 2013). Figure 35 A reports the 

principal component analysis calculated using the methylation values of the 71 CpG probes 

in the 29 DSP, 29 DSS and 29 DSM included in our cohort. As shown in Figure 35 B, the 

first principal component (PC1) accounted for around 94% of the variability in the data, 

while an additional 4% of variability was explained when also the second principal 

component (PC2) was taken into account. As the methylation status of the 71 CpG probes is 

age-dependent, we plotted both PC1 and PC2 against the age of the subjects (Figure 35 C 

and 35 D respectively). PC1 almost perfectly correlated with DSS and DSM age (= 0.95, 

p-value < 0.001) and with DSP age (= 0.95). DSP showed a pattern comparable to that of 

age-matched siblings (= 0.95, p-value < 0.001), indicating that the DNA methylation 

changes in blood cells that occur with aging are not overall replicated in Down Syndrome. 

Also PC2 correlated with age, both in DSP (= 0.43, p-value=0.02) and in DSS and DSM 

(= 0.65, p-value < 0.001). In this case however DSP had PC2 values similar to their 

mothers, indicating that a minor portion of the variability in DSP methylation patterns could 

be explained in terms of accelerated aging. 
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Figure 35. Age-dependent epigenetic changes in DSP. (A) The plot reports the results of principal 

components analysis calculated using the methylation values of 71 age-dependent CpG probes (Hannum et 

al. 2013) in our cohort. The first and the second principal components are reported on x and y axes 

respectively. (B) The scree plot reports the fraction of total variance in the data (DNA methylation values of 

the 71 age-dependent CpGs in 29 DSP, 29 DSS and 29 DSM) as explained by each principal components. 

(C) The first principal component and (D) the second principal component are plotted against the age of 

DSP, DSS and DSM subjects. 
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IDENTIFICATION OF DMRs BETWEEN DSS AND DSM 

Finally, we compared Class A BOPs between DSS and DSM subjects, using sex and cell 

counts as covariates. We found 4459 BOPs significantly different between DSS and their 

mothers. Figure 36 shows the MDS calculated on the BOPs that reached statistical 

significance from this comparison. 

  

Figure 36. MDS calculated on the BOPs of Class A resulted significantly different between DSS and DSM. 

Since both brothers and mothers samples are distributed along the first component of the 

MDS, we correlated the values of the first component of the MDS (MDS1) with the age of 

the subjects (Figure 37). The MDS1 correlated very well with the age of DSS and DSM 

(Pearson correlation coefficient=0.68, p-value=2.8*10-9). Both Figure 36 and Figure 37 

evidence that some DSP have a MDS1 comparable with elder subjects, in according to the 

results described above. 
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Figure 37. Correlation between MDS-1 of Figure 36 and age. 

Among the loci which resulted differentially methylated between DSS and DSM we 

selected 3 genes in which a bubble of differential methylation was evident: ELOVL2 

(cg16867657, cg21572722, cg24724428), FHL2 (cg06639320, cg22454769, cg24079702) 

and PENK (cg16419235, cg16219603, cg12877723). All the differentially methylated CpG 

dinucleotides were located in a CpG island. The three regions resulted hypermethylated in 

DSM respect to the DSS, while they did not display sex or family-associated differences in 

methylation levels. 

We replicated these results in a larger sex-balanced cohort. Specifically, we analyzed whole 

blood DNA samples from 494 individuals (245 males and 249 females) aged between 9 and 

99 years and 7 DNA samples extracted from cord blood (3 males and 4 females). We 

divided samples in 5 age classes, whose mean methylation values for each CpG unit are 
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reported in Figure 38 A. We then calculated Spearman‟s correlation between age and 

methylation level for each CpG unit. The highest values of correlation obtained were 0.92 

(CpG_11.12.13.14), 0.80 (CpG_9.10 and CpG_19.20) and 0.63 (CpG_23.24) for ELOVL2, 

FHL2 and PENK respectively (Figure 38 B). 

In all the cases, the age-correlated sites tended to be hypermethylated with aging (Figure 39 

A; for FHL2 only the CpG_9.10 is shown). ELOVL2 displayed the widest variation in 

methylation values, which ranged from 7% to 91% during aging. For FHL2, the methylation 

range was between 12% and 53%, while for PENK was compressed between 1% and 27% 

(Figure 39 A). In each gene, we identified a small subset of CpG units adjacent to the best 

age-correlated site, which displayed high correlation coefficients with age and whose 

methylation values were closely correlated with each other (Figure 39 B). 

Among the 3 genes, PENK showed the lowest level of correlation with age and very small 

variations in methylation values. These variations are difficult to be assessed quantitatively 

by the EpiTYPER assay, which can detect at most a difference of 5% in methylation levels 

(Coolen et al. 2007), thus the evaluation of the correlation with age could be affected by 

experimental limits. FHL2 and, to a major extent, ELOVL2 displayed striking correlations 

and more consistent variations in DNA methylation with aging. In particular, ELOVL2 CpG 

spans from 0% methylation in cord blood to almost 100% methylation in the oldest old, 

displaying an on-off switch mode between the two extreme regions of lifespan. 
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Figure 38. Replication study in Time serie cohort. (A) Mean methylation values ± standard deviation in 5 

age classes are reported for each CpG unit. (B) Spearman‟s correlation coefficients for each CpG unit. 

Highly correlated regions are marked in gray (adapted from Garagnani et al., 2012). 

 

Figure 39. Replication study in Time Serie cohort. (A) Methylation values of the CpG unit that better 

correlates with age in each gene. (B) Correlation between CpG units within each CpG island. The most 

correlated CpG units are highlighted in yellow (adapted from Garagnani et al., 2012). 
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In this study we investigated the epigenetic status of persons affected by Down Syndrome 

(DSP). In particular we studied DNA methylation of whole blood samples from DSP, in 

comparison with their mothers (DSM) and their unaffected sibs (DSS). In this way we 

obtained a family-based model that is able to minimize confounding genetics and 

environmental factors. 

Region centric approach in methylation analysis 

To identify specific genomic regions whose methylation is altered in DS, we used an 

approach that simultaneously considers the methylation values of a group of adjacent CpG 

probes, comparing them between DSP and DSS (region-centric analysis). As previously 

reported (Wessely and Emes 2012), this approach can have several advantages respect to 

single-probe analysis. First of all, it better resembles the biological basis of the process, 

considering that the phenotype is more likely to be affected by changes in a group of 

adjacent CpG sites, whose methylation status tends to be correlated, than by alterations of 

single CpG sites. Furthermore this region centric approach tends to provide less spurious 

results, due for example to the presence of SNPs in the probes included in the array 

(Wessely and Emes 2012). 

Epigenetic Signature of Down Syndrome 

In our analysis DS subjects showed a profound rearrangement of genome wide DNA 

methylation patterns.  

Region-centric and site-specific analyses identified a large number of DMRs mapping in all 

the chromosomes, and Fisher‟s exact test showed enrichment in HSA21 for the DMRs 

belonging to Class A and Class C probes. Importantly, similar results were achieved when 

we considered the overall distributions of DNA methylation values, which resulted 

significantly different between DSP and healthy subjects for most of the chromosomes, but 

particularly marked for HSA21. 

It is, however, difficult to say for certain if only the extra copy of chromosome 21 is 

aberrantly methylated or if the modifications of DNA methylation are due to all three copies 

of HSA21, because the Infinium 450 k provides an estimate of the mean methylation status 
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of DNA hybridized to the array. This point could be study in deep by analyzing allele-

specific DNA methylation. 

In our analysis the majority of DMRs previously identified in PBL from DS subjects 

(Kerkel et al. 2010) was confirmed, but the DMRs enrichment that we found in HSA21 was 

not observed in the three previous studies on the methylation patterns of individuals with 

DS. These differences may be due to different experimental procedures, analytical 

protocols, analyzed tissues and/or age classes of the samples. 

Our data show a general hypermethylation of DMRs in DS, in agreement, even if less 

pronounced, with those reported in the Jin et al. study in placental tissue (Jin et al. 2013). In 

this study in fact it was observed a global DNA hypermethylation in DS placental tissue. 

Considering the type of tissue under investigation they proposed that these 

hypermethylation events may occur early during development, as a consequence of 

downregulation of Tet enzymes and/or of Rest transcription factor which have an important 

role in DNA demethylation and histone deacetylation/demethylation respectively (Jin et al. 

2013). In our study we found REST N-shore slight hypermetilated in DSP, which may be 

correlated with the REST mRNA downregulation in DS suggested by Jin and co-workers. 

On the contrary, it is counterintuitive the observation that TET1 S-shore was 

hypomethylated in blood from DSP compared to healthy controls. It would be interesting to 

experimentally verify if the methylation status of this region could affect the expression of 

the enzyme and in which direction. 

The gene ontology analysis that we performed on the identified DMRs supports the 

perspective of DS as a developmental disease (Briggs et al. 2013), since they are involved in 

morphogenetic and developmental processes. Many differentially methylated genes in our 

study are involved in the development of the nervous and the immune system. These 

observations suggest a link between intrinsic defects that occur in the early stages of 

development (Kusters et al. 2009; Chou et al. 2012; Kusters, Verstegen, and de Vries 2011) 

and the phenotype of DS, such as premature aging of specific tissues. 

Also KEGG analysis provided interesting inputs regarding the molecular basis of DS 

phenotype. For example PI3K-Akt-mTOR signalling pathway, that regulates fundamental 

cellular functions and has an important role in aging (Blagosklonny 2009; Blagosklonny 
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2010), is deregulated in DS in a early step of development (Iyer et al. 2014; Perluigi et al. 

2014; Troca-Marín, Alves-Sampaio, and Montesinos 2011). The alteration in methylation 

that we found in genes involved in this signalling pathway can contribute to DS phenotype, 

including premature aging. 

Starting from the analysis on Class A DMRs, we defined a Down Syndrome epigenetic 

signature in whole blood. We selected a short list of DMRs that showed methylation 

differences greater than 0.15 between the two experimental groups and that can be 

functionally linked to the various phenotypic aspects of the disease. 

The signature includes genes involved in hematopoietic process like RUNX1 and EBF4. 

RUNX1 gene is located on chromosomal 21 and encodes for a transcription factor that has 

important functions in hematopoietic development, hematopoietic stem cell homeostasis and 

various blood malignancies like myeloid leukemia (Lam and Zhang 2012; Nižetić and Groet 

2012), whose frequency is high among DS persons (Fonatsch 2010). In this regard RUNX1 

is also known as “acute myeloid leukemia 1” because its sequence was discovered from a 

patient with acute myeloid leukemia (Miyoshi et al. 1991; Lam and Zhang 2012). Also 

EBF4 gene encodes for a transcriptional factor that could be responsible for hematological 

defects of subjects with DS. In fact EBF4 product belongs to a family of transcriptional 

factor implicated in B-cell maturation (Wang, Betz, and Reed 2002). Many studies have 

identified in DS subjects a significant decrease of B lymphocyte absolute number and 

percentage (Cossarizza et al. 1990; Cossarizza et al. 1991; de Hingh et al. 2005). 

In our epigenetic signature we found also genes involved in morphogenesis and 

development processes. In vertebrate‟s embryos the activation of HOXA cluster plays an 

important role in dynamic chromatin modifications suggesting that progressive epigenetic 

modifications could regulate gene activation and embryonic cell fate (Soshnikova and 

Duboule 2009).  

The other category of genes that we found hypermethylated in DSP, regards genes 

implicated in neural development like NCAM1 (also belonging to the previous category), 

which is located on chromosome 11 and encodes a cell adhesion protein that is a member of 

the immunoglobulin superfamily. In particular the encoded protein is involved in cell-to-cell 

interactions as well as cell-matrix interactions during development and differentiation, and 
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has an important role in development of the nervous system, retinal histogenesis and nerve-

muscle interaction. Differences in cell surface distribution of these molecules and extent of 

glycosilation of NCAM1 have been suggested as possible mechanisms that regulate cell 

adhesiveness (Reyes, Small, and Akeson 1991). It has been also demonstrated that in DS 

children the combined expression of NCAM1 and RUNX1 during stress haematopoiesis 

might be one of the principal causes of overt leukemia (Langebrake et al. 2006). 

It is interesting to note that some genes described as DMRs between DSP and DSS have an 

important role in the development of tissues other than blood, first of all the central nervous 

system (CNS). Despite DNA methylation profile is highly tissue specific, the differences in 

DNA methylation observed in whole blood of DSP could be an index of epigenetic defects 

in other tissues such as the CNS that may contribute to the pathogenesis of DS. 

Finally, in our short list are also included genes involved in the regulation of chromatin 

(Long, Blackledge, and Klose 2013), such as KDM2B and TET1. In particular KDM2B 

maps on chromosome 12 and its transcript is an histone lysine demethylase involved in the 

regulation of chromatin structure. 

In mouse embryonic stem cells it has been demonstrated that Kdm2b recruits a protein 

complex known as polycomb repressive complex 1 (Prc1) to CpG islands of early lineage-

specific genes (He et al. 2013; Wu, Johansen, and Helin 2013). In addition, the JmjC 

domain of the protein is required for the demethylation activity of the fourth trimethylated 

lysine on histone H3, while the zinc finger domain CXXC recognizes and binds to specific 

regions rich in CpG unmethylated. Human KDM2B also encodes for a nucleolar protein that 

represses the transcription of ribosomal RNA genes, binding the transcribed region of 

ribosomal DNA (Frescas et al. 2007). 

Is important to note that the selected DNA methylation changes were common to all the 

analysed DS subjects, independently from their genetic and environmental background, and 

they were reproducible in an independent cohort. 

Ribosomal genes methylation and gene expression 

Our data show a DNA hypermethylation of KDM2B N-Shore in DSP. As Kdm2b activity 

contributes to repress rDNA expression, the epigenetic silencing of KDM2B expression 

could account for the increase in ribosomal gene activity previously observed in 
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lymphocytes from DS (Demirtas 2009; Demirtas et al. 2001). Starting from this interesting 

observation we decided to investigate the methylation status and the expression of the 

rDNA sequence in DSP, which is not included in the Infinium 450k design. 

Most eukaryotic organisms present multiple copies of rRNA coding genes that are found as 

repeated clusters, usually arranged heat to tail (Reeder 1984). Human diploid cells contain 

approximately 400 copies of these genes, localized in the fibrillar centres and the dense 

fibrillar component of the nucleolus. In physiological conditions, about half of these copies 

are inactivated by epigenetic mechanisms (Bacalini et al. 2014) including the methylation of 

the promoter. In situ hybridization experiments revealed that the repeated units of rDNA, 

defined as organization of nucleolar regions (NOR), are localized on the short arms of the 

five acrocentric human chromosomes (13, 14, 15, 21 and 22) (Henderson, Warburton, and 

Atwood 1972). Each unit (~43 kb) includes the 47S rRNA encoding sequence, which is ~30 

kb long, and a non-transcribed intergenic spacer of about ~430 kb. The ~50 bp region 

upstream of the initiation site (+1) is the core promoter and it is necessary and sufficient for 

initiation of basal transcription in most species. RNA pol I transcribes each rRNA copy in a 

primary immature transcript (rRNA 45S) of 14 kb and it is separated from others repeated 

units by a long intragenic space (IGS). The entire promoter is localized in the IGS between 

the transcribed units. Within each transcription unit there are two regions coding for the 

subunit 18S and 28S rRNA and a smaller region coding for the subunits 5.8S. The 

sequences for the 18S, 5.8S and for the 28S are separated by internal spacer regions. After 

transcription the 45S rRNA precursor is processed in the 3 separated ribosomal RNA: 18S 

rRNA, 5.8S rRNA and 28S rRNA.  

Literature shows that levels of Argilophilic Nucleolus Organizer Regions (AgNORs) are 

greater in lymphocytes and buccal cells of DS babies/infants (Yilmaz and Demirtas 2008; 

Imamoglu et al. 2005), an increase that is far higher than the expected value due to the extra 

rRNA genes on the extra-chromosome 21. This means a higher ribosomal expression during 

the early phase of cell development. On the other hand, the age-associated reduction of 

ribosome biogenesis seems to be more pronounced in cells of DS patients (Borsatto and 

Smith 1996). Another study shows that in vivo and in vitro examinations total RNA (80% 

rRNA) content in young DS patients‟ peripheral blood mononuclear cells (PBMC) is higher 
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than controls but it also demonstrated how it decreases with age and finally becomes lower 

as controls (Hamurcu, Demirtas, and Kumandas 2006). 

Based on these considerations, we analysed 3 target regions localized at the promoter of the 

rDNA (Ribo) and at the 5‟ sequences of 18S and 28S regions in our cohort of DSP and 

healthy controls. As higher rRNA expression was described in DSP, at least in younger 

subjects, we expected a hypomethylation of rDNA. On the contrary, we found a partial DS 

hypermethylation in these regions. Although the modification in rDNA methylation was not 

in the expected direction, it is in any case interesting that DS is associated to an alteration in 

the epigenetic control of this locus. One intriguing possibility is that rDNA 

hypermethylation may be a “defense response” against rRNA hyperexpression that occurs 

in DS during development and the first years of life. Unfortunately, our DSP cohort includes 

only few young DSP, so it is difficult to unravel the methylation status of rDNA when 

rRNA is overexpressed. Importantly, a similar behaviour has been described in cancer 

(Bacalini et al. 2014), where rDNA hypermethylation was observed in several tumors 

compared to healthy tissues, despite the increase in ribosome biogenesis which characterizes 

cancer. Further analyses are needed to investigate this complex scenario. Moreover at 

present it is not possible to know if this alteration is due to the rDNA cluster on 

chromosome 21 or if a general rearrangement of methylation of several rDNA loci occurs. 

Considering our methylation results we wondered whether hypermethylation of KDM2B N-

shore and of some CpG within ribosomal genes in DSP could be associated to changes in 

KDM2B gene expression and of the 45S rRNA. To answer this question, we conducted an 

expression analysis by Real Time PCR, comparing 4 SD subjects with 4 sex- and age- 

matched controls. No expression differences for KDM2B and ribosomal genes were 

observed. Further studies should better investigate the relationship between KDM2B and 

rDNA methylation and expression, as well as the relationship between KDM2B and rDNA 

expression in the context of DS. 

Epigenetic Signature of DSP and accelerated aging 

Down Syndrome is traditionally classified as a progeroid disease (Martin 1982; Patterson 

and Cabelof 2012), as affected subjects exhibit precocious appearance of age-associated 

biomarkers like DNA damage accumulation and chromosomal instability (Jovanovic, 
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Clements, and MacLeod 1998; Nakamura and Tanaka 1998; Odetti et al. 1998; Praticò et al. 

2000). However, accelerated aging in DS is segmental, as it involves some, but not all, 

organs and tissues, in particular the CNS (Lott and Head 2005; Teipel and Hampel 2006) 

and the immune system (Cuadrado and Barrena 1996; Cossarizza et al. 1990). To explore 

this topic, we took advantage of the increasing amount of data on the DNA methylation 

changes that occur during aging in blood cells (Garagnani et al. 2012; Gentilini et al. 2012; 

Hannum et al. 2013; Heyn et al. 2012; Rodríguez-Rodero et al. 2010). We selected a small 

fraction of genes whose methylation levels were age-dependent and verified if their 

methylation in blood from DSP was more similar to healthy subjects of the same age (DSS) 

or to healthy older subjects (DSM). The methylation of age-associated genes was 

substantially comparable between DSP and DSS, and DSP were more similar to DSM only 

for a minor fraction of the variability in their methylation patterns.  

Collectively, our results suggest that from an epigenetic point of view Down Syndrome is 

not characterized by the early appearance of markers of physiological aging, but rather by 

intrinsic defects that are established early during development (Chou et al. 2012; Kusters, 

Verstegen, and de Vries 2011; Kusters et al. 2009) and lead to the precocious impairment in 

the function of specific tissues. 

Epigenetic markers of age 

We also identified regions differentially methylated between DSS and DSM, identifying 3 

regions, the CpG islands of ELOVL2, FHL2 and PENK genes, whose methylation status 

increased with aging (Garagnani et al. 2012). We confirmed this observation by Sequenom 

MassARRAY in a larger sex-balanced cohort of individuals aged between 0 and 99 years. 

In particular ELOVL2 displayed the most consistent variations in DNA methylation with 

aging, spanning from 0% of methylation in cord blood to almost 100% methylation in the 

oldest old and displaying therefore an on-off switch mode between the two extreme of 

lifespan. ELOVL2 is mainly expressed in the liver while its expression level in human blood 

cells is still unknown. This gene encodes for a fatty acid elongase that catalyzes the 

synthesis of polyunsaturated very long chain fatty acid (C20 and C24) as ω3 and ω6 

polyunsaturated fatty acids (PUFA). PUFA play a wide range of functions, including 

regulation of membrane fluidity and function and immune response, where 3 and 6 
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PUFA have respectively anti- and pro-inflammatory roles. It is widely accepted that a 

correct 3/6 ratio in adult diet positively influences cardiovascular and neurological 

health. However, it has also been demonstrated that human have a very limited capacity to 

synthesize long-chain PUFA and that healthy development of infants requires preformed-3 

intake from milk (Plourde and Cunnane 2007). Genetic variants in ELOVL2 genes have 

been associated with serum metabolic profile of human individuals (Illig et al. 2010) and to 

plasma levels of 3 PUFA (Lemaitre et al. 2011).We cannot say for certain if age-related 

hypermethylation of ELOVL2 CpG island in blood cells could have functional consequences 

on PUFA metabolism, because the expression and the role of ELOVL2 in human blood cells 

have not been specifically addressed. Moreover we cannot exclude that observed variations 

in methylation levels of ELOVL2 are caused by alterations in the number of specific 

subpopulations of blood cells. Considering that PUFAs are involved in crucial biological 

functions like energy production, modulation of inflammation, and maintenance of cell 

membrane integrity, ELOVL2 methylation could play a role in the aging process through the 

regulation of different biological pathways (Garagnani et al. 2012). 

While PENK showed the lowest level of methylation variation and correlation with age, for 

FHL2 we can advance considerations similar to ELOVL2. FHL2 encodes for a 

transcriptional cofactor that acts as scaffolding protein in different signalling pathways and 

that can also localize in cytoplasm, where it regulates cytoskeletal dynamics (Canault et al. 

2006). It is involved in cell cycle regulation, differentiation and apoptosis, assembly of 

extracellular matrix, bone formation, and wound healing (Friedrich et al. 2014). Generally it 

is more expressed in heart and muscle, while a low expression is detected in blood cells like 

that we analyzed. FHL2 can act as both activator and repressor in developmental processes, 

including osteoblast (Du et al. 2012) and cardiovascular (Chu and Chen 2011) 

differentiation, and over- and down-regulation of its expression are observed in different 

types of tumors (Kleiber, Strebhardt, and Martin 2007). 
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In the last decades two main theories on the molecular pathogenesis of Down Syndrome 

have been formulated. While the “Reductionist” view (Epstein 1990) also known as “Gene 

dosage effect” hypothesis, states that the cause of the disease is the presence of a limited 

number of dosage sensitive genes localized in a critical region (DSCR) of chromosome 21, 

the “Organicistic” view (Opitz and Gilbert-Barness 1990) or “Amplified developmental 

instability” hypothesis (Pritchard and Kola 1999) argues that the pathogenesis of Down 

Syndrome is strictly linked to the development process and suggests that the presence of a 

trisomic chromosome profoundly alters the genetic homeostasis, leading to a developmental 

instability. 

Current research tends to favour a synthesis of the two theories, sustaining that “a triplicated 

gene, the solitary effect of which is inconspicuous, could contribute to a trisomic phenotype 

in combination with other genes, based on the specificity of effects and interactions of these 

genes” (Olson et al. 2004).  

Our results support this new vision. Analysing the epigenome of persons affected by Down 

Syndrome we found differentially methylation regions that, although enriched on 

chromosome 21, interested most of the chromosomes. Importantly, several of these DMRs 

were functionally correlated with developmental defects characteristic of the disease. 

As for the aim of the study, initially we posed three question. 

Does an epigenetic signature of Down Syndrome exist? 

We identified an epigenetic signature of Down Syndrome. In particular, we selected a short 

list of 68 genomic that were remarkably different in persons affected by Down Syndrome 

compared to healthy controls. 

Does this signature reflect a phenomenon of accelerated aging? 

This epigenetic signature reflects, at least in part, a phenomenon of accelerated aging. Our 

analysis suggests that, from an epigenetic point of view, Down Syndrome is characterized 

by low but significant early appearance of markers of physiological aging. However, we 

believe that the precocious functional aging of specific tissues characteristic of the disease is 

mostly driven by intrinsic defects that are established early during development. 
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Is there a functional correlate of this signature? 

Further studies should better characterize the functional consequences of altered DNA 

methylation in Down Syndrome. In this thesis we attempted to explore this issue by 

analysing gene expression of KDM2B gene and of rRNA 45S, but we were not able to find 

significant alterations. However, it should considered that our analyses were performed on a 

very limited cohort, and that other studies suggest that alterations in ribosomal activity are 

evident mostly in DSP younger than 20 years. Moreover, it would be interesting to study 

ribosomal biogenesis using other sensitive and repeatable techniques such as AgNORs 

staining (Demirtas 2009; Yilmaz and Demirtas 2008). 

Finally, it is worth to note that among the genes present on HSA21 there is DNMT3L which 

encodes for a protein without enzymatic activity, but that helps DNMT3a and DNMT3b in 

de novo methylation of DNA (Gowher et al. 2005). Alteration of DNMT3L 

expression/function due to trisomy could thus affect the establishment of patterns of DNA 

methylation during development. 
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