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Abstract 
 

Group B Streptococcus or GBS (also referred as Streptococcus agalactiae) is a 

Gram-positive human pathogen representing one of the most common causes of 

life-threatening bacterial infections such as sepsis and meningitis in neonates and 

infants. Covalently polymerized pilus-like structures have been discovered in 

GBS as important virulence factors as well as vaccine candidates. Pili are protein 

polymers that form long and thin filamentous structures protruding from bacterial 

cells, mediating adhesion and colonization to host cells and other activities 

involved in the virulence of the bacterium. Gram-positive bacteria, including GBS, 

build pili on their cell surface via a class C sortase-catalyzed transpeptidation 

mechanism from pilin protein substrates that are the backbone protein (BP) 

forming the pilus shaft and two ancillary proteins (APs). Also the cell-wall 

anchoring of the pilus polymers made of covalently linked pilin subunits is 

mediated by a sortase enzyme. GBS expresses three structurally distinct pilus 

types (type 1, 2a and 2b). Although the mechanisms of assembly and cell wall 

anchoring of GBS types 1 and 2a pili have been investigated, those of pilus 2b are 

not understood until now. Pilus 2b is frequently found in ST-17 strains that are 

mostly associated with meningitis and high mortality rate especially in infants. 

In this work the assembly mechanism of GBS pilus type 2b has been elucidated 

by dissecting through genetic, biochemical and structural studies the role of the 

two pilus-associated sortases. The most significant findings show that pilus 2b 

assembly (in terms of pilin subunits polymerization and cell-wall anchoring of the 

pilus polymers) appears “non-canonical”, differing significantly from the current 

model of pilus assembly in Gram-positive pathogens. Only one pilus-related 

sortase (SrtC1-2b) is involved in pilin polymerization, while the second sortase 

(SrtC2-2b) does not act as a pilin polymerase, but it is involved in cell-wall pilus 

anchoring by using the minor ancillary subunit as anchor protein. Our findings 

provide new insights into pili biogenesis in Gram-positive bacteria. Moreover, the 

role of this pilus type during  host infection has been investigated. By using a 

mouse model of meningitis we demonstrated that type 2b pilus contributes to 

pathogenesis of meningitis in vivo.  
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Chapter 1. Introduction 

1.1 Streptococcus agalactiae (Group B Streptococcus, GBS) 

 

Group B Streptococcus or GBS (also referred to as Streptococcus agalactiae) is 

an encapsulated Gram-positive bacteria. It generally grows in pairs or in long 

chains of spherical bacteria, less than 2 m in size (Fig. 1A). It displays beta-

hemolysis when cultured on blood agar plates and produces zones of hemolysis 

that are only slightly larger than the colonies themselves (Fig. 1B) (1). GBS 

strains are classified into ten serotypes according to immunogenic characteristics 

of the capsule polysaccharides that surround its surface (Ia, Ib, II, III, IV, V, VI, 

VII, VIII and IX) (2). Approximately, 10% of serotypes are non-typeable (3). 

 

Figure 1. Streptococcus agalactiae. (A) Scanning Electron Microscopy (SEM) of 
Streptococcus agalactiae. (B) Colonies of Streptococcus agalactiae on a blood agar plate. 
Note the zone of clear haemolysis. 

 

 Consistent with other streptococcal species, Streptococcus agalactiae is present 

on the mucosal surfaces of animals and humans (4). In fact, GBS can usually 

colonize asymptomatically as a normal commensal the intestinal and 

genitourinary tract but also the pharyngeal mucosa of human healthy adults (5,6) 

and 20–40% of healthy women carry GBS (5,7,8). GBS can also cause serious 

bacterial infections in newborns and young infants leading to pneumonia, sepsis 
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and meningitis. To cause meningitis GBS has to interact and penetrate the blood-

brain barrier (BBB) to gain access to the central nervous system (CNS). The BBB 

is mainly composed by a monolayer of specialized human brain microvascular 

endothelial cells (hBMEC), and it separates the brain from the circulating blood, 

thus regulating the flow of nutrients and also preventing circulating bacteria to 

permeate it (9,10). GBS has many surface virulence factors important for host 

infection and among them, pili have been recently implicated in mediating 

attachment to many different human epithelial cells (11), and among them also to 

brain microvascular endothelial cells (12). 

GBS is not only one of the most common causes of life-threatening bacterial 

infections in neonates, but can cause severe infections in elderly and immune-

compromised patients (13,14). Moreover Streptococcus agalactiae is also 

associated to a number of postpartum sequelae, such as urinary tract infections, 

amnionitis and endometritis (15). 

 

 

Figure 2. GBS cause serious bacterial infections in newborns and young infants. 
GBS commensal colonization of the rectovaginal tract of 10-30% of healthy women can 
be the cause of the 50-70% of children that will become colonized after delivery. The 
infection incidence is 1 out of 1200 live births per year. 

 

GBS disease in newborns has been divided in early-onset disease (EOD) and late-

onset disease (LOD) depending on the infants’ age and disease manifestation. 

Early-onset disease manifests in the first week of life and the neonate is usually 

infected by exposure to GBS during birth. The transmission from mothers to 

newborns usually occurs when the neonate aspirates contaminated amniotic and 

vaginal fluids before or during delivery (16). Early-onset disease can progress as 
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pneumonia and the bacteria can spread into the bloodstream resulting in septi-

caemia, meningitis and osteomyelitis (17-19).  

Infants who present late-onset disease do not show signs of infection in the first 6 

days of life. LOD (7–90 days) is less frequent than EOD and the mortality rate is 

lower but morbidity is high, as around 50% of neonates that survive to GBS 

infection suffer complications, including mental retardation, hearing loss and 

speech and language delay (15,18,20).  

Vaccination represents the most attractive strategy for GBS disease prevention. 

Effective vaccines would stimulate the production of functionally active 

antibodies that could cross the placenta and provide protection against neonatal 

GBS infection. During the last years, polysaccharide-based vaccines against GBS 

have been extensively studied, but also several promising protein antigens have 

been identified leading to the potential development of universal protein-based 

vaccines (21-24).  

 
 

1.1.1 The hypervirulent clone ST-17 
 

Population genetics methods have been applied to GBS strains to investigate 

genotypes associated with disease, assess genetic variation within genotypes, and 

examine the role of recombination in the generation of new genotypes. Several 

methods have identified specific GBS genotypes to be associated with neonatal 

disease. Multilocus sequence typing (MLST), which uncovers sequence variation 

among conserved housekeeping genes, has classified GBS strains into numerous 

clones, or sequence types (STs) (25). In this system, fragments (459 to 519 bp) of 

seven housekeeping genes are amplified by PCR for each strain and sequenced. 

The combination of alleles at the seven loci provided an allelic profile or sequence 

type (ST) for each strain. The majority of analyzed isolates causing neonatal 

diseases belongs to the ST-17 clone and is serotype III. This ST appeared to be 

associated with the late-onset disease (LOD) and meningitis in infants after the 

first week of life (26,27) (25). So the ST-17 serotype III strains were defined 

“highly virulent” clones since they were strongly associated with neonatal 

invasive infections (28) as reported from studies performed in Canada (29), in 
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Israel (30), Sweden (31), the United Kingdom (32), Portugal (33), France (34) and 

the United States (35). 

By following phylogenetic analyses STs were grouped together into clusters or 

clonal complexes (CCs) and seven clusters have been identified to include the 

majority of the circulating clinically relevant GBS strains (30,36). The distribution 

of CCs has been shown to vary in colonizing and invasive strains (30,32,35,36). 

Different genomic studies showed that the ST-17 hypervirulent clone is a 

homogeneous group of strains that displays a conserved combination of 

secreted/surface proteins, including the pilus type 2b (37). 

 

1.1.2 Identification of novel genomic islands coding for pilus-like structures in 

Streptococcus agalactiae  

 

In the last decade, the exponential growth of genome sequence information has 

led to the identification in several Gram-positive organisms, including GBS, of 

covalently polymerized pilus-like structures that were remained largely unknown 

until then. Pili are protein polymers that form long and thin filamentous structures 

extending out from the bacterial cells, mediating adhesion and colonization to host 

cells, biofilm formation or other activities involved in the virulence/pathogenesis 

of the bacterium (38,39). Moreover, pili contribute to BBB penetration and 

meningitis development (40). It has been reported that these surface structures are 

involved in GBS adhesion and invasion of the host. Specifically, pili mediate the 

initial bacterial attachment to the host, binding to extracellular matrix (ECM) 

components and thus facilitating the bacterial uptake by host cells (41,42).  

Additionally, a recent study provided evidence for an active role of S. agalactiae 

pilus proteins in the paracellular translocation through the epithelial barrier, 

during host colonization (43). Gram-positive pili could be considered important 

virulence factors for several diseases (44), in particular infections of the urinary, 

genital and gastrointestinal tracts and particularly in GBS they have been 

identified as promising vaccine candidates (23,24,45).  

In 2005, characterization studies of protective antigens by a multiple genome 

approach aiming at the development of an effective vaccine against GBS 
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infections, revealed for the first time in a streptococcal species the existence of 

high-molecular-weight (HMW) polymers, visible by electron microscopy as pilus-

like structures extending out from the bacterial surface (6;11;12).  

Subsequently, comparative analysis of the eight published genome sequences 

have permitted the discovery in GBS of three genomic pilus islands (PIs), named 

PI-1, PI-2a and PI-2b (13). The overall organization of the three islands is similar 

to pilus gene clusters identified in other Gram-positive bacteria (9;14) (Fig. 3). 

Each of the GBS PIs encodes three structural pilus components, corresponding to 

the major pilus subunit (known as the backbone protein, BP) forming the pilus 

shaft and the two ancillary proteins (named ancillary protein 1, AP1 and ancillary 

protein 2, AP2). These structural subunits harbour a (L/I)PXTG sorting motif  that 

is typical of cell wall-anchored proteins. In addition, the pilus clusters contain at 

least two genes coding for pilus-associated class C sortase enzymes (SrtC1 and 

SrtC2) catalyzing pilus protein polymerization (11;13).  

PI-1 consists of an approximately 16 kbp-long DNA region flanked by 11 bp of 

direct repeats, and it has been found in ≈ 70% of the GBS strains that have been 

analyzed (24,46). In addition to the pilus genes, the genomic island contains a 

gene that encodes an AraC-type transcriptional regulator (Fig. 3A). 

PI-2a and PI-2b represent two variants of Pilus Island 2 since they are 

alternatively present in the same genomic locus and define an approximately 11 

kb region flanked by identical conserved genes. In addition to the genes coding 

for the three pilus structural subunits and two sortases, upstream of the ap1 gene, 

the PI-2a region contains a gene coding for a rogB type transcriptional regulator 

(15). PI-2b lacks the transcriptional regulator but contains a gene that encodes for 

a protein similar to the LepA-type signal peptidase of Gram-negative bacteria (Fig. 

3B). 

The three pilus islands in GBS are similar in organization but poorly conserved 

among different isolates. Extensive genome analysis of pili distribution and 

conservation in large collection of GBS clinical isolates showed that all strains 

analyzed carried at least one of the islands, and 94% of these isolates expressed 

pili on their surface (24). In particular PI-1 is never found alone, but always in 

combination with one of the two variants of PI-2 (47).  

Interestingly, a correlation was observed between the presence of a particular 
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combination of PIs and the capsule (CPS) type. All serotype III isolates (the most 

epidemiologically relevant serotype) carried a combination of two pilus islands: 

30% of the strains contained PI-1 and PI-2a, while 70% carried PI-1 and PI-2b. 

Moreover, the highly virulent sequence type 17 (ST-17) seemed to be strongly 

associated with PI-1 plus PI-2b pattern (37(48,49)) suggesting the importance of 

this pilus type in bacterial virulence. 

 

 

 

 

Figure 3. Schematic representation of GBS pilus-island regions. A) pilus island 1; B) 
pilus island 2. Genes coding for LPXTG-containing proteins are represented with orange 
arrows, whereas transcriptional regulators are in green and conserved flanking genes are 
in grey. At least two sortases are present in each PI (black arrows), while a signal 
peptidase is present in PI-2b (yellow arrow). For PI-1 and PI-2a, gene numbers are 
relative to the database annotation for strain 2603 V/R, while for PI-2b, gene numbers are 
relative to COH1 strain. DR: direct repeat (50). 
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1.2 Structure and assembly of Gram-positive pili 

 

The best-known and characterized pili are those of Gram-negative bacteria: the 

Type I and Type P pili of Escherichia coli, and the Type IV pili of Neisseria 

species (51), which form rod-like bundles of non-covalently assembled subunits. 

In contrast, the pili on Gram-positive bacteria are basically different. They are 

long (2–5 µm) but extremely thin (about 3 nm), assembled by enzymes called 

sortases, and they are exceptional examples of covalent polymers (Fig. 4).  

 

 

Figure 4. Different examples of pilus-like structures in Gram-negative and Gram-
positive bacteria. Electron micrographs of fimbriae in Gram-negative organisms : E. coli 
(A) and Salmonella enterica (B). Electron microscopy of two different types of pili in 
Gram-positive bacteria: fibrils in Streptococcus salivarius (C) and pili in Streptococcus 
agalactiae (D) stained by immunogold labeling (52).  

 

Despite many years of studies on Gram-positive bacteria, their pili remained 

largely ignored until very recently (53). The identification and the characterization 

of pilus structures in different Gram-positive microorganisms in a very short time 

(from 2005 to date) represent an example of the amazing impact of genomics in 

accelerating the discovery of previously unknown functions. (53). Pili can be 

visualized on the bacterial surface by negative staining, or, more specifically, by 

immunogold electron microscopy (IEM), which can reveal the localization of a 
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protein within the pilus structure using pilin specific antisera (Fig. 5B-D-F). 

Gram-positive pili are composed of multiple copies of a single pilin called 

backbone protein (BP), and of other two additional proteins associated with the 

shaft (called major and minor ancillary proteins).  

However, the expression of pilus structures can be generally detected by 

immunoblot assays using total cell proteins separated by SDS-PAGE and probed 

with antisera anti pilin subunit. A protein that is part of a pilus will appear as a 

high molecular weight (HMW) ladder (Fig. 5A-C-E).  

The backbone protein has been demonstrated to be very important for pilus 

polymerization and function. Indeed it has been reported that no pilus structures 

can be detected on the bacterial cell surface if the BP gene is deleted, suggesting 

the backbone protein is required for incorporating other two ancillary proteins into 

the pilus structure (50). In fact antisera specific for the backbone protein stain the 

whole length of the pilus structure (52), while, antisera specific for ancillary 

protein 1 (AP1) detect this pilin subunit at the pilus tip and along the pilus shaft 

(50). The minor ancillary pilus component, AP2, is thought to be the terminal 

pilus subunit, located at the pilus base (54) (55). Ancillary proteins (APs) are not 

required for backbone protein polymerization but might function as adhesins or in 

anchoring to the cell wall (55). 
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Figure 5. GBS PI-1, 2a and 2b pili. (A) Immunoblots of total protein extracts from GBS 
JM9130013 strain probed with antisera specific for PI-1 proteins GBS80 (α-80), GBS104 
(α-104) and GBS52 (α-52). (B) Immunogold labeling and transmission electron 
microscopy of GBS80 in strain JM9130013, showing long pilus-like structures.(C) 
Immunoblots of total protein extracts from GBS 515 strain probed with antisera specific 
for PI-2a proteins GBS59 (α-59), GBS67 (α-67) and GBS150 (α-150). Asterisks (*) 
indicate the monomeric form of GBS59, GBS67 and GBS150. (D) Immunogold electron 
microscopy of 515 strain incubated with sera raised against GBS59 protein and labeled 
with secondary antibodies conjugated with 10nm gold particles. (E) Immunoblots of total 
protein extracts from GBS JM9130013 strain probed with antisera specific for PI-2b 
proteins SAN1518 (α-1518), SAN1519 (α-1519) and SAN1516 (α-1516). (F) 
Immunogold electron microscopy of JM9130013 wt strain incubated with sera raised 
against GBS1518  protein and labeled with secondary antibodies conjugated with 10nm 
gold particles (50). 



18 
 

The three pilus proteins together with genes coding for sortases, that are required 

for pilus assembly, are encoded in a small gene cluster within pathogenicity 

islands which are known as Pilus Islands (PIs). The genes are transcribed in the 

same direction, indicating that they are part of an operon. The three pilus 

components are characterized by the presence of an N-terminal signal peptide 

together with a C-terminal cell-wall sorting signal (CWSS) that is found in many 

surface proteins and is required for the attachment to the peptidoglycan of the cell 

wall. The CWSS comprises the amino acid sequence “LPXTG” (where X denotes 

any amino acid) or a variation of this motif followed by a hydrophobic 

membrane-spanning domain and a positively charged tail.  

This motif is targeted by sortase enzymes, which are membrane-bound 

transpeptidases catalysing the covalent linkage of LPXTG motif proteins. During 

pilus formation, specific pilus-related sortases catalyse the covalent attachment of 

the pilin subunits to each other or to the peptidoglycan cell wall (52).  

The first insights into the assembly mechanism of Gram-positive pili were 

provided by a study performed on Corynebacterium diphteriae (50, 60). 

Initially, the three pilus components containing an LPXTG motif are secreted in a 

Sec-dependent way (52). Each component remains anchored to the cell membrane, 

owing to the presence of the C-terminal hydrophobic transmembrane domain. 

The second step involves a sortase-dependent reaction in which the membrane-

anchored proteins are cleaved at the LPXTG motif, between the threonine (T) and 

glycine (G) residue. This reaction leads to the formation of acyl-enzyme 

intermediates in which a covalent thioester bond is formed between the thiol 

group of the cysteine residue located in the catalytic pocket of the sortase and the 

carboxyl group of the threonine residue in the LPXTG motif of the pilin protein 

(52). Because sortases are membrane-associated enzymes, the acyl-enzyme 

derivatives that are formed are retained on the external side of the membrane (Fig. 

6). 

The following steps of the assembly process involve the oligomerization of the 

pilus protein subunits and the anchoring of the oligomerized structure to the cell 

wall. 

These steps require the nucleophilic attack of the thioester bond in the acyl-

enzyme intermediate. During pilus polymerization the nucleophile is provided by 
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the ε-amino group of a specific lysine (K) residue within the “pilin motif”, 

WXXXVXVYPKN (where X denotes any amino acid), which has been found in 

most of the pilin subunits that have been characterized (55).  

The nucleophilic attack results in cleavage of the thioester bond and concomitant 

formation of an amide bond between the carbonyl-group carbon of the threonine 

residue of the pilin subunit (present in the catalytic pocket of the sortase) and the 

lysine side-chain (ε-amino group) of the pilin motif of the neighboring pilin 

subunit. This leads to the formation of a membrane-associated covalently linked 

dimer with a pilin motif that can interact with other sortase- associated pilin 

subunits, forming an elongated pilus fiber.  

According to this model, pilus growth occurs by subunit addition at the base of 

the pilus (Fig. 6), and the length of the pilus depends on the relative abundance of 

the pilus subunits that are coupled to the membrane-associated sortases (52). 

Finally, the association of the membrane-proximal pilus subunit with the cell wall 

occurs when the thioester bond between the subunit and the sortase is subject to 

nucleophilic attack by the amino group in the cross-bridge of the peptidoglycan 

precursor lipid II (56), and this leads to the formation of an amide bond between 

the basal subunit and the bacterial cell wall.  

In conclusion, pilus assembly in Gram-positive bacteria seems to occur by a 

universal mechanism of ordered cross-linking of precursor proteins, whose 

multiple conserved features are recognized by designated sortase enzymes (55,57).  

Also GBS pili are covalently linked structures that follow this biphasic assembly 

mechanism (58). SortaseC-polymerized backbone protein (BP) units constitute the 

pilus scaffold and ancillary proteins 1 and 2 are located respectively at the tip and 

the base of the pilus. Polymerized pili are anchored to the cell wall by the 

housekeeping sortase A (SrtA) and protrude from the bacterial cell surface. No 

detectable role in pilus polymerization for the housekeeping SrtA was found in 

GBS (50,59). 
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Figure 6. General model for pilus assembly in Gram-positive bacteria (52). (A) In the 
first step, proteins that contain the amino-acid motif LPXTG are targeted to the cell 
membrane by Sec-dependent secretion (not shown). This is followed by a sortase-
mediated reaction (indicated by the arrows) in which the LPXTG motif is cleaved 
between the threonine (T) and glycine (G) residues. (B) The reaction leads to the 
formation of an acyl-enzyme intermediate in which a covalent thioester bond is formed 
between the thiol group of a cysteine residue in the sortase and the carboxyl group of the 
pilin threonine residue. (C) Oligomerization occurs after the nucleophilic attack provided 
by the e-amino group of the lysine residue in the pilin motif on the cysteine residue of the 
sortase. (D)The thioester bond between the pilin subunit and the sortase is targeted by the 
amino group of the pentapeptide of lipid II, the precursor of peptidoglycan. (E) This leads 
to the formation of an elongated pilus covalently linked to the cell wall peptidoglycan. 
NAG, N-acetyl glucosamine; NAM, N-acetyl muramic acid (52). 
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1.3 Sequence and structure of pilin subunits 

 

The current model proposed for pilus assembly in Gram-positive bacteria as 

already described above, is based on a transpeptidation mechanism of pilins (58). 

Sortases recognize specific sequence elements and/or residues in the pilin subunit 

that are essential for pilus assembly, and well conserved among pilin-subunits in 

different bacteria. Briefly, these main motives include: 

 

 the pilin motif (consensus WxxxVxVYPK), wherein the lysine residue (K) 

participates in sortase-catalysed amide bond formation by reaction with 

the C terminus of the next subunit molecule during polymerization; 

 a cell wall sorting signal (CWSS) containing the sortase recognition site 

LPxTG motif, typical of cell wall-anchored proteins; 

 the E-box motif (consensus YxLxETxAPxGY), important for the proper 

folding of pilin proteins and subsequently necessary for pilus 

polymerization (60-62). Moreover, several X-ray crystal structures of 

backbone pilins have shown that a specific E-box residue is involved in 

the formation of intramolecular isopeptide bonds and that these linkages 

confer higher stability to the monomeric subunit (63-65). 

 

Despite low sequence similarities, pilin subunits of Gram-positive bacteria show 

very similar tridimensional structure comprising immunoglobulin G (IgG)-like 

domains of shared evolutionary origin. These domains are all stabilized by 

intramolecular isopeptide bonds commonly formed by Lys-Asn residues (although 

Lys-Asp bonds also exist) located in a largely hydrophobic pocket comprising 

several aromatic residues, including a bond-catalyzing aspartyl or glutamyl 

residue.  

Intriguingly, in the backbone protein of GBS pilus 2a (BP-2a) and in other major 

pilins this glutamate is the same conserved residue present in the E-box motif 

(50,62).  
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Figure 7. Comparisons of BP-2b with other pilus backbone proteins. A) The structure 
of BP-2b is depicted with light blue and orange cartoons for domains D2 and D3. B) BP-
2b (blue cartoon) is shown overlaid onto: the pilus backbone protein RrgB (pdb 2x9x, red 
cartoon, left), the major pilin protein GBS80 (GBS-PI-1) (pdb 3pf2, green cartoon, 
middle), and on the major pilin protein BP-2a (pdb 2xtl, pink cartoon, right). C) Primary 
sequence alignment of BPs of the three PI in GBS. 
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In recent years, the X-ray crystal structures of several Gram-positive pilin proteins 

from Corynnebacteium diphtheriae (66,67), Actinomyces species (68,69), 

Streptococcus pyogenes (65), Streptococcus pneumoniae (70-74), Streptococcus 

agalactiae (45,75-77) and Bacillus cereus (78) have been described.  

Also BP-2b X-ray structure was solved encompassing domains D2 and D3 (Fig. 

7A). Both domains revealed an IgG-like fold organization, typical of the pilin 

subunits, and the presence of internal isopeptide bonds in each domain. 

Nevertheless, except for the typical C-terminal cell wall sorting signal BP-2b does 

not contain the canonical conserved primary sequence motives described for pilus 

polymerization in Gram-positive bacteria, suggesting a different mechanism of 

assembly of this pilus type. BP-2b indeed does not harbor a canonical E-box 

domain neither a conserved pilin motif (Fig. 7C). 

 

1.4 Sortase enzymes in Gram-positive bacteria 

 

Sortases are a family of membrane-associated enzymes, known especially to 

catalyze the covalent anchoring of surface proteins to the cell wall envelope in 

Gram-positive bacteria (79,80). These enzymes are cysteine transpeptidases, 

which recognize a conserved carboxylic CWSS followed by a hydrophobic stretch 

of amino acids and a short positively charged tail (57,80,81).  

Sortases are positioned at the cytoplasmic membrane via a membrane anchor 

located either at the N- or C-terminus, contain the active site, LxTC motif (80), of 

which cysteine is essential for the sortase activity (82) and recognize their 

substrate proteins via a common C-terminal pentapeptide sequence, which acts as 

a cell wall sorting signal. So far, more than 700 putative sortase substrates 

encoded by more than 50 different prokaryotic genomes have been identified (83). 

Although they are not essential for bacterial viability when cells are grown in rich 

media, sortases can be important virulence factors as they display surface proteins 

that mediate bacterial adhesion to host tissues, host cell entry, evasion and 

suppression of the immune response and acquisition of essential nutrients.  

Multiple sortases are often found in the same genome in different bacterial species 

and can be grouped into six classes based on their primary sequences, membrane 

topology, genomic localization, and specificity for amino acid sequence motifs 
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(84,85). These six families include class A to F enzymes (Fig. 8) (84) (11). 

Experimental and bioinformatics analyses indicate that members of each group 

recognize distinct CWSSs in which the LPXTG sequence is diverse (hereafter 

called sorting signal motifs).  

 

 

 

 Figure 8. Phylogenic tree showing the relationships among the six classes of sortases 
from Gram-positive bacteria. A multiple sequence alignment based on pairwise 
constraints of a selected set of 73 sortase proteins was generated using the program 
COBALT and a phylogenetic tree constructed using the neighbour joining method (86). 
The analysed sortases can be partitioned into six distinct subfamilies based on their 
primary sequences. It should be noted that the class D and E enzymes described here are 
collectively referred to as a class D enzymes by Bierne and colleagues (85). Class D and 
E enzymes have also previously been referred to as subfamily-4 and -5 enzymes (84). The 
bacterial species associated with the enzyme classes A–F are listed and schematic 
representations of the main biological function of their corresponding sortase substrates 
are illustrated (79). 

 

Class A enzymes appear to perform a housekeeping role in the cell as members of 

this group are able to anchor a great number of functionally different proteins to 

the cell wall. The sorting reaction catalyzed by the sortase A protein from 

Staphylococcus aureus (SrtA) is the best understood and begins when a full-

length precursor protein containing an amino terminal leader peptide is exported 

from the cytoplasm through the secretory pathway. The C-terminal CWSS is then 

processed by SrtA. The C-terminal charged tail presumably retards export, 
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positioning the protein for processing by the extracellular membrane associated 

SrtA enzyme. Then a highly conserved active site cysteine residue in SrtA 

nucleophilically attacks the backbone carbonyl carbon of the threonine residue in 

the LPXTG motif, breaking the threonine and glycine peptide bond and creating a 

sortase-protein complex in which the components are linked via a thioacyl bond. 

The protein is then relocated by SrtA to the cell wall precursor lipid II, when the 

amino group in this molecule nucleophilically attacks the thioacyl linkage to 

create an isopeptide linked protein-lipid II product. Transglycosylation and 

transpeptidation reactions synthesize the cell wall and then incorporate this 

product into the peptidoglycan, where it is covalently linked to the cross-bridge 

peptide. Other sortases catalyse a similar transpeptidation reaction, but join 

remarkably different LPXTG motifs and amino groups.  

Most surface proteins attached by class A enzymes contain a canonical LPXTG 

motif within their CWSS and have diverse functions that can promote bacterial 

adhesion, nutrient acquisition, host cell invasion, and immune evasion.  

Class A enzymes have attracted significant interest as potential drug targets 

because a number of clinically important pathogens use these sortases to display 

virulence factors and they are attenuated in their virulence if their srtA gene is 

eliminated (S. aureus, L. monocytogenes, Streptococcus pyogenes and 

Streptococcus pneumoniae among others) (87) (88). 

Class B enzymes can have distinct functions. Some members of this group attach 

haem-receptors to the peptidoglycan, while others assemble pili especially during 

iron starvation conditions.  

Class C enzymes are broadly distributed in Gram-positive bacteria and function as 

pilin polymerases that construct pili.  

Class D enzymes predominate in Bacilli and in Bacillus anthracis; this type of 

enzyme anchors proteins to the cell wall that facilitate sporulation.  

Actinobacteria contain class E and F enzymes whose functions are largely 

unknown. In Corynebacterium diphtheriae a class E enzyme appears to perform a 

housekeeping function similar to class A enzymes (55), while class F enzymes 

have yet to be studied.  

Sortases are also present in a few Gram-negative and archaebacterial species, but 

the functions of these enzymes are still unknown (84,89,90). 
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1.4.1 Class C sortases  
 

The class C sortases, also called pilus-specific sortases, represent the biggest and 

most heterogeneous group of enzymes and are encoded by genes clustered 

together with the genes coding for the pilus structural subunits in genomic islands 

inserted in specific loci of the genome. The overall organization of these pilus 

islands is similar among Gram-positive bacteria.  

In GBS, sequence comparison by multiple alignment and phylogenetic analysis 

allowed the identification of 3 major clusters, corresponding to class C sortases of 

PI-1, PI-2a, and PI-2b, with amino acid identities ranging from 15 to 60% (Fig. 9).  

 

 
Figure 9. Class C sortases in PIs of GBS. (A) Schematic representation of GBS PIs. (B) 
Phylogenetic tree inferred from the alignment by the neighbor-joining distance-based 
method of C sortases from the available genomes of GBS. Single sortases are indicated 
by TIGR annotation. The 3 major clusters, highlighted in the boxes, include C sortases of 
each PI (91). 
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Although the assembly mechanism and cell wall anchoring of GBS type 1 and 2a 

pili have been investigated, those of pilus type 2b are not understood. In GBS 

pilus 1 and 2a two class C sortases (SrtC1 and SrtC2) are involved in the pilin 

proteins polymerization and the assembly mechanism occurs following the 

classical biphasic model (56).  

Genetic studies showed that (50) SrtC1 and SrtC2 from pilus 1 and 2a can both 

efficiently polymerize the backbone proteins and were found to be specific in 

terms of ancillary proteins incorporation (50). The cell wall anchoring of pilus 

type 2a is mediated by the housekeeping SrtA through the use of the minor 

ancillary pilin as anchor protein as clearly demonstrated both by genetic (59) and 

biochemical studies (92).   

The available crystal structures of class A and C sortases from different Gram-

positive pathogens revealed similar overall folding. They share a common 

catalytic domain, based on a β-barrel core and a highly conserved catalytic triad 

made of histidine, cysteine, and arginine residues (91,93-98). Recently, a wide 

characterization of pilus-associated sortases from Streptococcus pneumoniae pilus 

1 (SrtC-1, SrtC-2, and SrtC-3) was performed, and the X-ray structures of all 3 

SrtC enzymes have been solved (94) (99). Also in this case the overall fold of the 

three enzymes is very similar to other known sortases, with a β-barrel core 

composed of eight anti-parallel β-strands linked by multiple helices. The 

conserved catalytic triad within the substrate binding region is encapsulated by the 

so-called lid that is an N-terminal flexible loop, which maintains the active site in 

a closed and inactive conformation in the absence of substrate. This loop anchors 

the active site through multiple interactions with the key catalytic residues (93,94).  

While the catalytic triad of Cys, His, and Arg side chains within the active site 

cleft is absolutely conserved among different classes of sortases (100) (101), 

including SrtA from Staphylococcus aureus, the region corresponding to the lid is 

found only in pilus-related C sortases of Gram-positive bacteria  (93) (102). 

The crystal structures of several other pilin-related class C sortases, including 

AcSrtC-1 from Actinomyces oris (97), SrtC1 from S. suis (98) and GBS 

(91,96,103), have been reported. These structures all reveal a core 8-stranded β-

barrel, with the catalytic triad (His, Cys, Arg) situated in the active site at the end 

of a groove along one side of the β-barrel. S. suis SrtC1 structure was determined 
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with the active-site in the ‘open’ conformation, while the other structures showed 

the active site occluded by the lid.  

The lid in SrtC1 from GBS PI-2a (SrtC1-2a) and Actinomyces oris SrtC2 has been 

demonstrated to be dispensable for sortase activity in vivo (91,104) suggesting a 

regulatory role for the enzyme activity.  

 

1.4.2 Structural and functional characterization of sortases C of GBS PI-1 and 2a 
 

The crystal structures of GBS C sortase from PI-2a (SrtC1-2a) and PI-1 (SrtC1-1 

and SrtC2-1) have been determined (Fig.10 and 11).  

The ectodomain of sortase SrtC1 of PI-2a was crystallized and the structure was 

solved by molecular replacement (91). 

The overall fold of SrtC1-2a is highly similar to the structure of previously 

studied pilus-associated sortases. A β-barrel made of 9 antiparallel β-strands 

forms the core of the enzyme; a so-called roof made of 3 α-helices is positioned 

above the β-barrel and a loop (known as the “mobile lid”) covers the active site 

(Fig. 10A), placed on one inner side of the β-barrel core and made of the catalytic 

triad His157-Cys219-Arg228. The lid of SrtC1-2a harbors 3 residues, Asp84, 

Pro85, and Tyr86, which make interactions with residues of the active site and 

surroundings. The aromatic benzene ring of Tyr86 is close enough to the catalytic 

Cys219 side chain to make an aromatic-sulfur interaction (91). As shown 

previously, this sulfur-aromatic interaction is conserved in other sortases 

suggesting a general mechanism of anchoring the lid within the active site (105) 

(Fig. 10B). This sulfur-aromatic interaction has been hypothesized to strengthen 

the anchoring of the lid within the active site (94). This network of interactions 

between catalytic residues and those located on the lid (Asp84 and Try86) is 

postulated to regulate the movement of the lid and therefore the access of LPXTG 

substrates to the active site (91,99). 

Through site-directed mutagenesis and in vivo complementation studies, it has 

been demonstrated that each residue in the conserved catalytic triad of SrtC1-2a 

(Fig. 10) is essential for pilus polymerization; these data confirm the relationship 

between GBS C sortases and other members of sortase family.  
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Figure 10. Overall folding of SrtC1-PI-2a and active site organization. A) Overall 
folding and B factors of SrtC1-PI-2a. SrtC1-PI-2a is represented as a cartoon, colored 
according to B-factor distribution, from low (blue) to high (red). Residues forming 
the mobile lid and the active site are shown as balls and sticks and are labeled. N and 
C termini are labeled. Carbon, oxygen, an nitrogen atoms are depicted in yellow, red, 
and blue, respectively. Position of residues 92–93 of the mobile lid, missing from the 
model because of poor electron density, is indicated by black dashes. Red arrows 
indicate the gap in the C-terminal region, fragment of residues 240–249. B) Active 
site of SrtC1-PI-2a. Residues forming the mobile lid (Asp84, Tyr86) and the active 
site (His157, Cys219, Arg228) are shown as balls and sticks, with carbon, oxygen, 
and nitrogen atoms in yellow, red, and blue, respectively. Conserved surrounding and 
interacting residues (Thr155, Ala156, Asn225) are shown as balls and sticks, with 
carbon, oxygen, and nitrogen atoms in green, red, and blue, respectively. Conserved 
hydrophobic residues are shown as magenta sticks and labeled in magenta. Distances 
between atoms are labeled and shown as red dashes. Water molecules are shown as 
red spheres. Background cartoon representation of SrtC1-PI-2a is colored according 
to B factors as in panel A (91). 

 

 

Structural and biochemical data indicated that the lid maintains the enzyme in an 

inactive and closed conformation and that, for the enzyme activation, the lid needs 

to move. Accordingly, the deletion of the lid region does not abrogate pilus 

protein polymerization because its role is not catalytic; rather, it is a catalytic 

cleft-blocking loop, and only its movement can activate the enzyme in vivo (91). 

Based on these analyses, the SrtC enzymes can be considered as having two 

functional domains: one involved in enzyme regulation and probably specificity; 

and an enzymatic region, the β-barrel core that contains the catalytic triad (95). 

Moreover, the predicted C- and N-terminal TM domains of GBS SrtC1-2a are 
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absolutely required for sortase biological function (91). The importance of TM 

domains for the enzyme activity has been recently reported by  Ton-That and co-

workers (106) who showed that the predicted C-terminal TM domain of pilus-

associated sortase SrtA is essential for efficient pilus polymerization in C. 

diphtheriae.  

Open main questions are to understand how this movement can be regulated by 

the interaction with the pilus proteins and to identify which are the residues 

involved in stabilizing the active open lid conformation of the enzyme.  

.  

 

 

Figure 11. Overall fold of GBS PI-1 SrtC1 and SrtC2 and active site organization. 
(A) Overall fold of SrtC2 and SrtC1. Residues linking the mobile lid to the second helix 
and to the first beta-strand are missing in the final structures because of poor electron 
density, and are shown here as dashed lines. (B) Active sites of SrtC2 and SrtC1. 
Residues forming the mobile lid (Asp84-Phe86 in SrtC2 and Asp90-Tyr92 in SrtC1) and 
the active site (H156, C218, R227 in SrtC2 and H163, C225, R234 in SrtC1) are shown 
as sticks where sulfur, oxygen, and nitrogen atoms, are depicted as yellow, red, and blue, 
respectively. Water molecules are shown as red spheres. (C) The DPX motif is proximal 
to the catalytic triad of SrtC2, which is surrounded by conserved hydrophobic residues 
shown as sticks, where carbon, oxygen, and nitrogen atoms, are depicted as salmon, red, 
and blue, respectively (95).  
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The crystal structures of GBS PI-1 SrtC2 and SrtC1 were also determined (Fig.11). 

In both structures, the catalytic residues are not accessible to pilin substrates, 

suggesting that the enzymes cannot bind substrates in this conformation.  

Also, these sortase C enzymes contain an additional N-terminal extension of 

approximately 50 residues, composed of one or two α-helices and a lid that blocks 

the access of substrates to the active site, further supporting the already proposed 

regulatory role played by the lid in restricting the access of the pilin substrates to 

the catalytic cleft (91,93,94). 

Both class A and class C sortases cleave LPXTG-like motifs, but only sortase C 

can polymerize the pilus proteins to form high molecular weight structures.  

In vitro and in vivo complementation studies revealed that both GBS PI-1 sortases 

C cleaved all the LPXTG-like peptides tested and exhibited a functional 

promiscuity for pilin subunit incorporation into pili, although each enzyme 

predominantly incorporates into pili one of the two ancillary subunits.  

Multiple sequence alignment of all GBS sortase C enzymes and structural 

homology modeling, showed that, in contrast with the highly similar SrtC 

enzymes of PI-1 and PI-2a, the pilus-associated sortases of PI-2b are shorter. 

In addition, even if the catalytic triad is conserved, SrtC1 from pilus 2b does not 

contain the conserved motif DPY(F/W) in the lid, and SrtC2 completely lacks this 

region and the C-terminal TM domain.  

PI-2b in GBS has a similar genetic organization to group A Streptococcus (GAS) 

FCT-3 pilus, and like GAS, it contains the LepA gene required in GAS for pilus 

polymerization (107).  
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1.5 Aim of the thesis 

 

Assembly and anchoring mechanisms of Gram-positive bacteria pili, including 

GBS pilus 1 and 2a types have already been characterized.  

In these assembly mechanisms pilin subunits are covalently linked by a 

transpeptidation mechanism by class C sortases and subsequently polymerized pili 

are anchored to the cell wall peptidoglycan by the housekeeping sortase A through 

the minor ancillary protein. The resulting protruding pili are then involved in the 

interaction with the host, mediating the bacterial initial attachment. 

The aim of this thesis work is to investigate the mechanism of GBS pilus 2b 

biogenesis unknown until now and also to elucidate its role during host interaction. 

By using a multidisciplinary approach including structural, biochemical and 

genetic studies, such as site-directed mutagenesis and complementation of KO 

GBS strains lacking the genes for each sortase (SrtC1 and SrtC2) we unraveled 

the specific role of the two sortases and identified the key residues/motifs 

essential for pilus assembly and sortases activity. 

We also elucidated pilus 2b importance during host interaction using both in vitro 

cell models and in vivo mouse meningitis model. 
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Chapter 2. Results 
 
2.1 Pilus 2b assembly  
 
2.1.1 PI-2b backbone protein characterization  
 

The backbone protein of GBS Pilus Island 2b (BP-2b) is 502 residues long and 

carries a C-terminal cell wall sorting signal (CWSS) with the typical sortase 

recognition site LPSTGG. The protein shows low sequence identity ranging from 

12 to 16% with other known backbone pilin subunits from either GBS or other 

Gram-Positive bacteria.   

To confirm the essential role of this protein during pilus 2b assembly we 

generated a mutant strain lacking the gene for the pilus 2b backbone protein 

(ΔBP-2b).  The presence of covalently-linked pili on the GBS surface was 

detected by SDS-PAGE immunoblot analysis of cell-wall preparations through 

the identification of a ladder of high-molecular-weight (HMW) bands. Western 

blotting analysis, performed with total protein prepared from the KO ΔBP-2b 

strain confirmed the key role of BP-2b in pilus 2b assembly, since the typical 

HMW laddering could not be observed as in the wild type strain. 

Complementation of ΔBP-2b with a plasmid expressing the wild type gene 

(pAM_BP-2b) restored the pili expression. 

To identify the specific residues and motives required for pilus 2b protein 

polymerization we used site-directed mutagenesis and complementation studies in 

GBS KO strains. To confirm the key role of the sortase-recognition LPSTGG 

motif of the BP-2b protein in pilus assembly, this region was entirely deleted in 

the complementation plasmid pAM_BP-2b by site-directed mutagenesis. The new 

plasmid pAM-BP-2bΔLPSTG expressing the C-terminally truncated backbone 

subunit was used to complement the GBS mutant strain (ΔBP-2b). Western 

blotting analysis, performed with total protein extracts from the complemented 

strain (ΔBP-2b/pAM_BPΔLPXTG) and probed with a BP-2b specific antiserum, 

confirmed the expression of the protein only in the monomeric form, 

demonstrating that its polymerization into HMW structures was completely 

abolished (Fig. 12).   
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The BP-2b primary sequence does not contain a “canonical” pilin motif, and four 

different lysine residues were identified in the N-terminal domain as putative pilin 

motif candidates involved in mediating the cross-linking between two monomeric 

subunits. To assess the role of each residue in pilus polymerization, each lysine 

was replaced individually by an alanine. By site-directed mutagenesis we 

generated four new complementation plasmids (pAM_BP-2bK77A, pAM_BP-

2bK82A, pAM_BP-2bK118A, pAM_BP-2bK175A) and used them to transform the KO-

strain ΔBP-2b. The complemented strains expressing mutated forms of BP-2b 

were analyzed for their ability to assemble HMW structures by immunoblotting 

analysis. We observed that the mutation of lysine 77, 82 and 118 into alanine did 

not affect pilus protein polymerization, while mutation of lysine 175 (K175A) led 

to the abrogation of pilus polymerization (Fig. 12).  

In the BP-2b sequence, a canonical “LXET” E-box motif could not be identified; 

however, BP-2b crystal structure (155) showed that Glu423 (which is part of the 

motif LVEK) is favourably positioned towards the isopeptide bond between 

Lys358 and Asn462, suggesting a possible role as for other E-box motives. To 

functionally characterize the role of this residue in pilus 2b polymerization, we 

constructed the plasmid pAM_BP-2bE423A to complement the KO ΔBP-2b. The 

expression of the backbone protein carrying the mutation E423A in the 

complemented strain abolished protein polymerization (Fig. 12), demonstrating 

the key role of residue E423 in pilus 2b assembly, although present in a non-

canonical E-box motif.  
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Figure 12. Lys 175, Glu 423 and the sorting motif LPSTG are involved in BP-2b 
polymerization in GBS. Immunoblot analysis of total protein extracts from GBS mutant 
strain lacking the pilus 2b backbone protein gene (ΔBP-2b) complemented with plasmids 
expressing the wild-type BP-2b protein (WT) or BP-2b mutants carrying a deletion of the 
C-terminal sorting signal (BP-2bΔLPXTG),  alanine substitutions of the putative pilin motif 
lysine (BP-2bK175A, BP-2bK118A, BP-2bK82A ,BP-2bK77A) or of the E-box E423 residue (BP-
2bE423A). Nitrocellulose membrane was probed with a mouse antiserum raised against the 
recombinant BP-2b protein (α-BP–2b). 
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2.1.2 Class C sortases in GBS Pilus Island 2b 
 

The genomic locus corresponding to GBS Pilus Island 2b (PI-2b) presents an 

overall organization similar to the other known pilus islands, carrying three genes 

coding for the structural subunits and two genes (srtC1 and srtC2) expressing for 

class C sortase enzymes (Fig. 13).  

 

 

 

Figure 13. Schematic representation of GBS pilus island 2b. The genomic island is 
composed of three structural proteins that are the backbone protein (BP) that constitutes 
the scaffold of pilus structure, and ancillary proteins 1 and 2 located at the tip and the 
base respectively. These genes coding for structural subunits are represented by red 
arrows. In the genomic island are also present two genes coding for two class C sortases 
(in green) and also a signal peptidase Lep gene (yellow arrow), that is not present in the 
other GBS PIs. 
 
 

As previously reported (91), by multiple sequence alignment with other class C 

sortases performed using ClustalW, SrtC1 and SrtC2 of PI-2b revealed a very low 

percentage of amino acid identity (Fig. 14). 

SrtC1-2b and SrtC2-2b proteins consist of 291 and 199 residues, respectively. 

Prediction of transmembrane (TM) helices using their primary sequences revealed 

that SrtC1 carries two TM regions at the N-terminal (residues 7-29) and at the C-

terminal (region 246-268), while the SrtC2 protein lack the predicted C-terminal 

trans-membrane (TM) helix, showing only a N-terminal TM (residues 4-27). 
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Figure 14. PI-2b Sortases C do not contain the canonical lid motif. Sequence 
alignment of all GBS class C sortases. Sequences corresponding to the lid region of 
sortases are highlighted in a blue box with a green star. Red stars are indicating the 
catalytic triad residues. PI-2b SrtC2 is also lacking the C-terminal transmembrane domain.  
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2.1.3 Generation of GBS mutant strains lacking sortase genes 
 

To functionally characterize the role of the two sortases C in pilus 2b assembly, 

we generated two knock-out (KO) mutant strains (ΔsrtC1 and ΔsrtC2) carrying 

in-frame deletions for each sortase gene using Splicing by Overlap Extension 

(SOE) PCR in a GBS strain (ABC020017623) containing only the genomic pilus 

island 2b (Suppl. Table 1). Sequence analysis of PI-2b in this strain confirmed 100% 

gene conservation with respect to the entire locus sequences of GBS strain COH1 

whose complete genome is available in the public databases. 

ΔsrtC1 KO strain resulted in the srtC1 gene deletion of the region corresponding 

to amino acid residues 11 to 259, while ΔsrtC2 mutant resulted in the deletion of 

SrtC2 amino acid residues 14 to 190. Confirmation of these in-frame deletions 

were obtained by sequence analysis.  

 

 

 

2.1.4 SrtC1 is the only pilus 2b-associated sortase involved in pilin subunit 

polymerization 

 

To assess the role of each sortase in pilus protein polymerization, total proteins 

were extracted from each mutant strain and analyzed by immunoblot analysis with 

antisera specific for each structural subunit (the backbone and the ancillary 

subunits). As expected, total proteins from the wild type strain revealed the 

canonical HMW laddering indicative of pilus-like structures, while unexpectedly, 

only the deletion of sortase C1 affected pilin proteins polymerization, completely 

abrogating it, whereas ΔsrtC2 KO strain was able to express and assemble HMW 

pilus-like structures, as well as the wild type strain (Fig. 15A-B-C).  

 

 

 

 

 

 



39 
 

 

 

 
Figure 15. Only SrtC1-2 is essential to polymerize the pilin proteins into high 
molecular weight (HMW) structures. Immunoblotting analysis of total protein extracts 
from ABC020017623 wt and mutant strains lacking srtC1-2b and srtC2-2b genes 
(ΔSrtC1 and ΔSrtC2) or mutants complemented by plasmids expressing SrtC1-2b or 
SrtC2-2b (ΔsrtC1+pAM_srtC1 and ΔsrtC2+pAM_srtC2). Nitrocellulose membranes 
were probed with antisera raised against the backbone protein of pilus 2b (α-BP-2b), the 
major ancillary AP1 protein (α-AP1–2b) and the minor ancillary AP2 protein (α-AP2–2b). 
The equal amount loaded in each well was verified by probing the same gel with a control 
antiserum that recognizes the constitutive protein PcsB of 47 kDa (in the lower panels 
indicated by a black arrow).  

 

Interestingly, the deletion of srtC2 gene did not cause any effect on the backbone 

protein polymerization (Fig. 15A) and on the incorporation of the major ancillary 

protein (AP1) into pili (Fig. 15B), while the incorporation into pili of the minor 

ancillary protein (AP2) resulted significantly reduced (almost totally abrogated) 

(Fig. 15C). Complementation of the srtC1 gene restored proteins polymerization 

to levels comparable to those of the wild type strain (Fig. 15A-B-C) as well as the 

complementation of the srtC2 gene into the ΔsrtC2 mutant restored the AP2 

incorporation into the pili as well as the wild type strain (Fig. 15C). These data 

clearly indicate that only the sortase C1 is involved in pilus 2b formation, while 

the sortase C2 appears to be dispensable for the backbone protein polymerization 

and it could play a role in the AP2 incorporation into pili. 
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2.1.5 The lack of SrtC2 induces release of polymerized pili in the culture 

supernatant 

 

Since it is known that the minor ancillary subunit is involved in the cell-wall 

anchoring of other pili, including GBS pilus type 2a (59,92), we hypotized that 

sortase C2, not affecting the process of pilus protein polymerization, could be 

involved in pilus anchoring to the cell-wall through the use of the AP2 protein. To 

investigate this hypothesis, we analyzed the presence of pili released into the 

culture supernatant of the mutant strains deleted of srtC2 and ap2 genes. Thus, we 

also generated the knock-out (KO) mutant strain (Δap2) carrying in-frame 

deletion for ap2 gene (Suppl. Table 1). Thus, both mutants were cultured in 

chemically defined medium so that levels of pilus found in the extracellular and 

cell-associated fractions could be directly compared.  

Total proteins from the cell-wall and supernatant fractions were extracted and 

equal amounts were analyzed by immunoblot with an antiserum specific for the 

backbone protein. As shown in figure 16, in the wild type strain almost all the 

polymerized pili were detectable only in the cell-associated fraction. Whereas no 

pilus proteins were detected in the extracellular fraction of the wild-type strain, by 

contrast, significant amounts of pili were released in the culture supernatants of 

srtC2 and ap2 mutant strains, which revealed a highly comparable phenotype 

(Fig. 16). Protein profiles comparable to those of the wild type were restored upon 

complementation of srtC2 and ap2 mutants with vectors expressing the 

corresponding wild type genes (Fig. 16). These data indicate, therefore, that in the 

absence of SrtC2 or AP2 protein, polymerized pili structures were produced at 

levels comparable to those of the wild type strain, but then they were lost from the 

bacterial cell surface and released into the culture supernatant, suggesting that 

SrtC2 could be involved in pilus anchoring process by using the minor ancillary 

protein 2 (AP2) as anchor protein. 
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Figure 16. Pili are mostly released in the culture media of the mutant strains ΔsrtC2 
and Δap2. Proteins were collected from RPM1 culture supernatants (right panel) or 
extracted from cell pellets (left panel) of GBS wild-type strain (WT), or mutant strains 
deleted of srtC1, srtC2 or ap2 genes (ΔsrtC1, ΔsrtC2 and Δap2, respectively) and mutant 
strains complemented with the plasmids expressing  SrtC1, SrtC2 or AP2-2b proteins 
(ΔsrtC1+pAM_srtC1, ΔsrtC2+pAM_srtC2 and Δap2+pAM_ap2, respectively). Protein 
fractions were analyzed by immunoblot stained with antibody specific for the backbone 
protein BP-2b (α-BP-2b, in the upper panels), and as a quantitative control of equal 
amount of proteins loaded in each well with the serum against the constitutive protein 
PcsB (in the lower panels). 
 
 

 
2.1.6 Biochemical characterization of SrtC2-2b  
 

To further investigate the role and the specificity of sortase C2 in pilus 2b 

assembly we performed a biochemical characterization of the enzyme. We first 

cloned and expressed in E. coli the catalytic domain of SrtC2 enzyme (residues 

32-199) as an N-terminal His-tagged recombinant protein lacking the N-terminal 

hydrophobic region and the leader sequence. The soluble protein (rSrtC2) was 

then purified by immobilized metal affinity chromatography (IMAC) followed by 

size-exclusion chromatography (SEC). The purified enzyme (SrtC232–199) 

showed >90% purity by SDS-PAGE. Gel filtration revealed that in the analyzed 

peak the protein was mono-disperse with an apparent molecular weight (MW) of 



42 
 

25 kDa, consistent with the theoretical MW of 23.9 kDa of the monomeric protein 

(Fig. 17).  

 

 
Figure 17. SrtC2 purification. Recombinant SrtC2 was cloned expressed and purified. 
SDS-PAGE of the purified enzyme after last purification step by size-exclusion 
chromatography (SEC).  The corresponding SEC graph is also reported, where the blue 
peak corresponds to the purified protein fraction. 
 
 

2.1.7 Recombinant SrtC2 specifically recognizes and cleaves the sorting motif of 

the AP2-2b protein  

 

As a precondition to evaluate the enzymatic activity of the produced sortase, we 

verified the folding of the enzyme by Nuclear Magnetic Resonance (NMR) 

spectroscopy using a purified 15N-labeled recombinant SrtC2. The 1H-15N-HSQC 

NMR spectrum provides amino acid-specific information, showing signals from 

all HN groups of the protein, including backbone amide groups as well as a 

number of side chains. Therefore, it is a valuable tool to evaluate protein folding, 

as the secondary and tertiary structures determine unique chemical environments 

of amide groups, which are reflected by significant signal dispersion in both the 

nitrogen and proton dimensions. An unfolded protein displays poor signal 

dispersion because all amide atoms are in similar chemical environments (for 

example exposed to the solvent). The 1H-15N-HSQC spectrum of SrtC2-2b 
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showed a significant dispersion of peaks in both the proton and nitrogen 

frequency dimensions  (spanning ~ 5 ppm and ~ 30 ppm respectively) indicating 

that the enzyme was correctly folded (Fig. 18).  

  

 
 
 
Figure 18. Recombinant SrtC2 is correctly folded. Recombinant SrtC2 was cloned 
expressed and purified, and the correct folding was checked by NMR to verify the correct 
folding of the protein. NMR spectroscopy of the purified recombinant 15N-labelled-
SrtC2-2b. The 1H-15N-HSQC spectrum of the protein was recorded in 50 mM phosphate 
buffer, pH 6.5 and acquired at 25°C. The signals of the residues are consistent with a 

folded protein. 
 

To evaluate its in vitro enzymatic activity we performed a Fluorescence 

Resonance Energy Transfer (FRET) based assay using synthetic fluorogenic 

peptides mimicking the LPXTG-like sorting motives of pilin proteins. FRET 

analysis is a commonly used method to follow cleavage reaction of specific 

substrates by specific enzymes, such as sortases. When the peptide is cleaved by 

the sortase, the EDANS fluorophore group is separated from the DABCYL 

quencher group, resulting in an enhanced fluorescence signal. We first tested 

synthetic peptides carrying the LPXTG-like motifs of the three pilus 2b structural 

proteins (Table 3). The LPSTGG-motif of the backbone protein (BP-2b) overlaps 

with the motif of the major ancillary protein (AP1-2b), and differs from the 

sorting signal LPFTGQ of the minor ancillary protein (AP2-2b). A significant 

increase of the fluorescence signal (normalized against the fluorescence values of 

the peptide alone) was observed only when the rSrtC2 sortase was incubated with 

the AP2-2b peptide, indicating that this enzyme specifically recognizes and 
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cleaves only this peptide (Fig. 19A). By contrast, rSrtC2 was not able to cleave 

neither the BP-2b/AP1-2b peptide nor the peptide containing the LPKTGM motif 

of the AP2 protein of pilus 2a (AP2-2a) used as control (Fig. 19A). We have 

chosen this peptide as control since we had previously demonstrated that it is the 

substrate target of the GBS housekeeping sortase A (SrtA), which is responsible 

of the cell-wall anchoring of pilus 2a through the AP2-2a subunit that is at the 

base of the pilus and acts as the pilus anchor protein (92). To confirm the cleavage 

specificity of rSrtC2 vs the AP2-2b peptide, we verified if the AP2-2b peptide was 

also recognized and cleaved by the housekeeping SrtA. Thus, we expressed in, 

and purified from E. coli the SrtA, as an N-terminal His-tagged recombinant 

protein, and performed an in vitro FRET assay by incubating 5µM of rSrtA with 

64 µM of the fluorescent AP2-2b peptide or the AP2-2a peptide used as positive 

control (92). We observed that the rSrtA enzyme cleaved specifically only the 

AP2-2a peptide as expected, but was not able to cleave the AP2-2b motif, 

confirmed that the AP2 protein of pilus 2b was the specific substrate of SrtC2 (Fig. 

19B). 

 

 

 
Figure 19. SrtC2 specifically cleaves AP2-2b fluorescent peptide. In vitro enzymatic 
activity assessed by FRET analysis of the recombinant wild-type SrtC2 (A) or SrtA (B) 
proteins using fluorogenic peptides (64 μM) carrying the LPxTG-like motif of the minor 
ancillary protein 2 from pilus 2b (AP2-2b), of minor ancillary protein 2 from pilus 2a 
(AP2-2a) and the sorting motif of pilus 2b backbone protein overlapping with that of the 
major ancillary (AP1/BP-2b). Progress curves of the cleavage reactions of the fluorescent 
peptides catalyzed by recombinant SrtC2 wild-type (SrtC2WT) or SrtA wild-type (SrtAWT) 
show that SrtC2 is specific only for AP2-2b  that instead can not be cleaved by 
housekeeping SrtA. Each assay was done in triplicate and the graphs report the mean 
values. 
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To further confirm these data we performed an in vitro cleavage assay by 

incubating the rSrtC2 or rSrtA enzyme with a recombinant C-terminal His-tagged 

protein (rAP2-2b) produced in E. coli. 50µM of rSrtC2 or rSrtA was incubated at 

37°C over-night with 25µM of rAP2-2b. Reaction mixtures were then purified by 

IMAC and the fractions were analyzed by Western Blot using a mouse antiserum 

α-AP2-2b. The IMAC purification allowed eluting only His-tagged proteins or 

peptides and releasing in the flow through fraction any protein/peptide lacking the 

His-tag. Accordingly, if the C-terminal His-tagged AP2-2b protein is not cleaved 

by a sortase at its C-terminal sorting signal, AP2-2b will be collected only in the 

elute fraction. By contrast, the cleavage of its sorting signal will be proved by the 

presence of the cleaved AP2-2b protein in the flow through fraction. Antibodies 

specific for the AP2-2b protein revealed a band at a lower MW than the size of the 

full length AP2-2b in the flow through fraction only when the rAP2-2b protein 

was incubated with rSrtC2 (Fig. 20), meaning that the protein was cleaved only by 

SrtC2 with the consequent loss of the His-tagged sorting signal. Accordingly, the 

protein eluted completely full-length when incubated with the rSrtA (Fig. 20). 

 

 

Figure 20. AP2-2b is cleaved only by SrtC2 and not by SrtA. In vitro cleavage assay 
of the recombinant C-terminal His-tagged AP2-2b protein incubated either with the 
recombinant SrtC2 or SrtA. Cleavage reactions were then purified by IMAC and the 
single fractions were analyzed by Western blot using a mouse serum anti AP2-2b.  

 

These data, taken together with the above described experiments strongly suggest 

that pilus 2b is anchored to the cell wall through the minor ancillary protein AP2, 
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which is the specific target of the pilus-associated SrtC2. Moreover, FRET 

experiments confirmed genetic data indicating that SrtC2 is not involved in 

backbone protein polymerization, since it is not able to cleave its sorting motif. 

 

2.1.8 C115 and C192 are not essential for the SrtC2 activity in vivo  
 

Sequence analysis of SrtC2-2b by multiple alignment with other GBS sortase 

reveals the presence of two more cysteines (C115 and C192) in addition to the 

conserved canonical triad represented by H117, C180 and R187 (Fig. 14). 

Moreover, also SrtC2-2b (as SrtC1-2b) does not contain the canonical DPY\W\F 

lid motif. To investigate the possible involvement of those cysteines in the 

catalytic activity of SrtC2-2b, we generated complementation vectors expressing 

three mutated forms of SrtC2 (SrtC2C115A, SrtC2C180A and SrtC2C192A). Each 

cysteine residue was individually replaced by an alanine into the complementation 

vector pAM_SrtC2 by the PIPE method and site-directed mutagenesis using 

synthetic oligonucleotide primers. The new vectors carrying the specific 

mutations were then used in restoring the activity of the enzyme by transforming 

the KO mutant strain srtC2. After complementation, the effect of each mutation 

was analyzed by Western blot analysis, checking the release of polymerized pilus 

structures in the culture media supernatants from complemented strains. As 

expected, no high-molecular-weight polymerized pilus structures were found in 

the media supernatants of the complemented strains with the gene expressing the 

wild type (SrtC2wt) and the mutated enzymes (SrtC2C115A and SrtC2C192A), 

meaning that these sortase forms restored pilus 2b anchoring to the cell wall 

(Figure 21). By contrast, by complementing the KO SrtC2 strain with the 

plasmid expressing the sortase carrying the C180A substitution released 

polymerized pili could still be detected in the culture medium, confirming that 

Cys180 is the catalytic residue essential for sortase C2 activity (Figure 21). 
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Figure 21. Cysteine 180 is responsible for catalytic activity of SrtC2-2b. Western Blot 
analysis of total proteins collected from culture media supernatants of GBS wild type 

strain (WT), GBS knock out strain deleted of srtC2 gene (srtC2) and srtC2 strain 
complemented with the plasmids pAM_SrtC2WT (ΔsrtC2+srtC2wt), pAM_SrtC2C115A 
(ΔsrtC2+srtC2C115A), pAM_SrtC2C180A (ΔsrtC2+srtC2C180A), pAM_SrtC2C192A 
(ΔsrtC2+srtC2C192A), expressing SrtC2 cysteine mutant enzymes. Nitrocellulose 
membrane was probed with a mouse antiserum raised against the backbone protein (α-
BP-2b). The equal quantity loaded in each well was verified by immunoblotting the same 
gel with a control antiserum specific for the constitutive PcsB protein of 47 kDa (in the 
lower panel). 

 

2.1.9 C115, C180 and C192 are not essential for the SrtC2 structural stability 
 
Antibodies specific for SrtC1 or SrtC2 enzymes revealed that all the 

complemented strains expressed similar levels of the different forms of sortases, 

indicating that none of the introduced mutations had seriously affected the 

expression or the stability of the proteins (data not shown).  



48 
 

Moreover, to verify whether the Cys115 and Cys192 residues affected the general 

fold of SrtC2-2b, the mutant enzymes rSrtC2C115A, and rSrtC2C192A were produced 

as recombinant 15N-labeled proteins and analyzed by NMR spectroscopy.  

The analysis of the HSQC spectra of the SrtC2 mutants showed that the signal 

dispersion is comparable to the WT meaning that each single mutation did not 

alter the overall structure of the proteins. Moreover, the spectra of the WT and of 

the mutants are highly superimposable with only few peaks showing chemical 

shift changes. Since peak position is very sensitive to chemical environment, this 

scenario is compatible with local modifications introduced around the mutation 

sites. Overall, it can be concluded that the mutated residues did not affect 

structural stability of the SrtC2 enzyme, as the native fold was preserved (Figure 

22A).  

 

2.1.10 Disulfide bonds formation between catalytic C180 and C192 suppress 

SrtC2 activity in vitro  

 

To better investigate the contribution of the cysteines in SrtC2-2b activity the in 

vitro enzymatic activity of the SrtC2 mutants (rSrtC2C115A, rSrtC2C180A and 

rSrtC2C192A) compared with the rSrtC2wt was assessed by FRET assay and the 

presence of free thiols assessed by AMS assay 

Recombinant sortases were generated by site-specific mutagenesis using as 

template the previously generated pET vector carrying the wild type SrtC2 gene. 

Thus, the mutated SrtC2 were produced in E. coli as His-tagged recombinant 

proteins. The proteins were incubated at a concentration of 25 µM each with 

different concentrations of the fluorescent AP2-2b peptide and their activity was 

tested. In agreement with the above described data, the activity of SrtC2C180A 

enzyme was completely abolished, further confirming the catalytic role of this 

residue. Interestingly, the mutant SrtC2C192A showed an enhanced cleavage 

activity compared with the wild type enzyme, whereas the mutant SrtC2C115A 

revealed a highly reduced activity (Figure 22B).  
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Figure 22. SrtC2 mutants characterization. SrtC2 differs from the other class C 
sortases because it has three cysteines needed for its activity and regulation. Recombinant 
SrtC2 with cysteines mutated one at the time, were cloned expressed and purified, and 
their correct folding was analyzed by NMR. A) Superimposition of NMR 1H-15N HSQC 
spectra of SrtC2 wild-type and its mutants. Cyan, SrtC2 wild-type; red, SrtC2C115A or 
SrtC2C192A. All samples are in 50 mM phosphate buffer, pH 6.5. B) FRET assay with 
rSrtC2 and its cysteine mutants at a concentration of 5 μM with 128 μM of the fluorescent 
peptide with the AP2-2b LPXTG motif.  The assay was performed at 37°C in 50 mM 
Tris-HCl (pH 8), 300 mM NaCl, 1 mM DTT and was performed at least in triplicate. The 
graph shows that SrtC2C192A mutant is more active than the wild type sortase. Mutation of 
the catalyitic cysteine completely abrogates SrtC2 activity as expected, but also mutation 
of cysteine 115 leads to a decrease of fluorescence measured. 

 

Interestingly, with the only exception of the C180 mutant, the activity of the other 

three samples correlated with the fluorescence values in the AMS assay (Fig.23). 

AMS specifically binds to free thiols and the sample fluorescence measured after 

the excess of AMS is removed is directly proportional to the number of free 

cysteines (108). In fact, the SrtC2C192A mutant that showed maximum cleavage 

activity revealed also the higher AMS fluorescence. In fact, the rSrtC2C192A that 

was characterized by maximum activity revealed also the higher AMS 

fluorescence. Pre-treatment of this protein with DTT did not modify the 
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fluorescence value, meaning that the number of its free cysteines does not change 

in the reduced form; the catalytic Cys180 remains free and thus active. On the 

contrary, the SrtC2C115A mutant characterized by low FRET activity showed in 

absence of DTT a low AMS fluorescence that increased when the sample was pre-

treated with DTT. This observation indicates that the poor (almost no) enzymatic 

activity in vitro of SrtC2C115A is due to a disulfide bond formation between 

Cys192 and the catalytic Cys180, which thus results locked in its activity. As 

SrtC2wt showed an intermediate enzymatic activity and intermediate AMS 

fluorescence value, likely a balance between Cys192-Cys180 and Cys192-Cys115 

disulfide bonds could exist. AMS results suggest that in SrtC2wt the Cys192 could 

be engaged in a disulfide bond with either Cys115 or Cys180, since both the 

mutants SrtC2C115A and SrtC2C180A after incubation with AMS resulted in the same 

fluorescence values. On the contrary, Cys115 and Cys180 are not able to directly 

interact to each other in a disulfide bond, and indeed the mutant SrtC2C192A seems 

to contain free cysteines in all tested conditions (Fig. 23). 

 

 

Figure 23. SrtC2 free cysteines quantification by AMS assay. 25 μM recombinant 
SrtC2 wt or cysteine mutated in both reduced and oxidized forms were incubated at 37°C 
for 30’ with 250 μM AMS and SDS 1%. AMS binds to free cysteine thiols and the 
measurement of its fluorescence allow free cysteines quantification. SrtC2C192A is the only 

protein where the number of free cysteines does not change if reduced or not, meaning 
that the other two cysteines never interact between them, but only with cysteine 192 
alternatively. 
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2.1.11 Overall folding of SrtC1-2b  
 

To further elucidate the different roles of SrtC1-2b and SrtC2-2b in pilus 2b 

biogenesis we performed X-ray crystallography structural studies and solved the 

crystal structure of the sortase C1 (SrtC1-2b).  

The ectodomains of SrtC1-2b and SrtC2-2b enzymes were produced in E. coli as 

soluble recombinant proteins containing via a TEV-cleavable N-terminal 6-His-

tag and purified using standard chromatographic techniques as described in the 

Materials and Methods chapter and used in crystallization trials.  

While all attempts to obtain crystals of SrtC2-2b enzyme failed, the crystal 

structure of SrtC1-2b was solved at 1.95 Å by molecular replacement in molrep 

(109), starting with a template made of coordinates of GBS SrtC1-1 (PDB ID 

4g1j) (51.9% sequence identity) (Table 4, Fig. 24).  

 

 

 

Figure 24. SrtC1-2b crystal structure. SrtC1-2b is depicted as cartoon colored 
according to B-factor distribution, using a gradient from blue (22 Å2) to red (120 Å2). 
Residues forming the catalytic triad and the Trp residue of the lid (W78) are shown with 
sticks and labelled. 
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Like for other sortase family members, the overall fold of SrtC1-2b exhibits a core 

made of a β-barrel compact structure with 10 β-sheets, surrounded by an α helical 

roof composed of 4 consecutive helices (Fig. 24). The first N-term helix (residues 

39-51) runs parallel to the wall of the β-barrel core, whereas the second (residues 

53-69), the third (residues 70-75) and the fourth helices (residues 81-90) run 

almost perpendicular to the first helix and flat on the top of the β-barrel (roof). 

The loop connecting helices 3 and 4 and carrying residues 76-80 corresponds to 

the “lid” region and includes a tryptophan residue (W78). The catalytic triad is 

made of the residues His149, Cys211, and Arg220 that belong to three different 

strands of the lower part of the β-barrel (Fig. 24). 

To confirm the catalytic role of C211 in SrtC1 activity, this cysteine was replaced 

by site-directed mutagenesis with an alanine into the complementation plasmid 

pAM_srtC1. The generated new plasmid (pAM_srtC1C211A) was used to transform 

the mutant strain srtC1. Western Blot analysis performed with total protein 

extracts from the complemented strain (srtC1+pAM_srtC1C211A) and probed 

with an anti-backbone protein serum (α-BP-2b) showed that the polymerization of 

the major subunit of pilus 2b was completely abolished confirming the catalytic 

function of C211 (Fig. 25). 
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Figure 25. Cysteine 211 is responsible for catalytic activity of SrtC1-2b. Immunoblot 
of total protein extracts from GBS wild-type (WT), mutant strain lacking the sortase C1 
gene (ΔsrtC1) and ΔsrtC1 mutant strain complemented with the plasmid pAM_SrtC1WT 
(ΔsrtC1+srtC1wt) and the plasmid pAM_SrtC1C211A (ΔsrtC1+srtC1C211A) expressing the 
SrtC1 enzyme carrying the substitution of the cysteine 211 with an alanine. The equal 
quantity loaded in each well was verified by immunoblotting the same gel with a control 
antiserum that recognizes the protein PcsB of 47 kDa (in the lower panel). 

 

 

2.1.12 Structural comparisons of SrtC1-2b with other sortases 
 

A search of the Protein Data Bank (PDB) using the program DALI (110) revealed 

high structural similarities (Z-scores > 2) with more than 100 non-unique sortase 

family proteins. Among these, the highest Z-scores (>13) and lowest rmsd values 

unique entries (corresponding to class C or A sortases) were selected and analyzed 

by structural superposition onto the coordinates of SrtC1-2b (Suppl. Table 5). 

This analysis confirmed a highly conserved overall fold, but revealed how the lid 
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of SrtC1-2b assumes an apparent novel conformation. While for most structurally 

similar entries the lid is either not visible (likely because flexible and thus 

disordered), or closed to make interactions with the catalytic triad residues, in 

SrtC1-2b this assumes an “open” position. Although DALI also detected as highly 

similar two structures with an open lid conformation (PDB ID 3re9, which is the 

crystal structure of sortase C1 from S. suis, and PDB ID 3tb7 for GBS SrtC1-1 

(type I), with Z-scores of 23.6 and 22.5, respectively), both these structures have a 

lid made of a long helix that does not superpose well with the lid of SrtC1-2b. 

Coordinates of SrtC1 from S. pneumoniae (PDB 2w1j),  the only sortase structure 

with electron density for the whole N-terminal region, and of GBS SrtC1-1 (PDB 

4g1j) were used for further manual structural alignments and analyses.  These 

revealed a β-barrel core structurally well conserved and a perfect superimposition 

of the catalytic triad residues, with rmsd values of 1.6 Å and 1.5 Å, for 2w1j and 

4g1j, respectively (Fig. 26A-B). The N-terminal α helical portion, extending from 

S74 to D87, including the lid loop, revealed a significant difference. The putative 

regulatory lid tryptophan residue W78 in SrtC1-2b structure, which corresponds 

to residues W60 and Y92 in 2w1j and 4g1j, respectively (Fig. 26A-B) is displaced 

almost 15 Å away from the catalytic triad in the substrate binding active site. A 

multiple sequence alignment of SrtC1-2b and the other crystallized pilus-related 

sortases showed that only SrtC1-2b does not contain the canonical DPY\W\F lid 

motif, but just a tryptophan (W78) (Fig. 27).  

To gain a better understanding of the open lid conformation of SrtC1-2b, we 

superimposed it onto the coordinates of the “open-form” structure of S. suis 

sortase C1 (PDB id 3re9). An overall good structural agreement was obtained 

(with rmsd value of 2Å), except for the lid region, where significant differences 

could be observed (Fig. 26C). While in S. suis SrtC1 the lid is made of 28 residues 

(N79-E107) that mainly form an α-helix, the lid of SrtC1-2b is made of a total of 

14 residues (M76-Q90) and includes a loop (residues 76-80) and an α-helix (α4, 

residues 81-90). An angle of  ~70º was measured between the helical lid of S. suis 

SrtC1 and α4 of SrtC1-2b (Fig 26C), resulting in the regulatory lid Y87 residue of 

SrtC1_suis positioned farther away from the catalytic triad, as well as from W78 

of SrtC1-2b (Fig. 26C). This suggests that S. suis SrtC1 has an even more open 
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conformation than SrtC1-2b, thus supporting the notion of high flexibility of the 

lid (99). 

 

 

 
Figure 26. Open and closed lid of Sortase C structures. The structure of SrtC1-2b is 
depicted as dark gray cartoon in all panels, and the lid region colored in blue. 
Superposition of SrtC1-2b onto the structures of (A) SrtC1 of S. pneumoniae (PDB 2w1j, 
light gray cartoon), (B) GBS SrtC1-1 from pilus type 1 (PDB 4g1j, light yellow cartoon). 
(C) Zoom into the region of the catalytic triad and of the lid, showing with green sticks 
residues of SrtC1-1, with red sticks those of S.pneumoniae SrtC1. and with gray sticks 
those belonging to SrtC1-2b. The distance between Cα atoms of the aromatic lid residue 
is also shown, to highlight the displacement of the lid in SrtC1-2b. (D) Superposition of 
SrtC1-2b onto the SrtC1 from S. suis (PDB 3er9, orange cartoon). The lid regions of 2w1j, 
4g1j, and 3er9 are colored in red, green, and magenta. Superimposed residues of the 
catalytic triads of all structures, as well as aromatic residues of the lids, are shown with 
sticks and colored accordingly to the structure or region to which they belong. 
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Figure 27. Multiple sequence alignment of the pilus-forming sortases deposited in 
the protein data bank (PDB). Structure-based sequence alignment by using ESPript of 
GBS SrtC1-2b (PDB 4D7W), GBS pilus 1 SrtC1-1 (PDB 4G1J) and Srt2-2b-1 (PDB 
4G1H), GBS pilus 2a SrtC1-2a (PDB 3O0P), S. pneumoniae sortase C1 (PDB 2W1J), 
sortase C2 (PDB 3G69), and sortase C3 (PDB 2W1K), S. suis SrtC1 (PDB 3RE9) and A. 
oris SrtC1 (PDB 2XWG). Identical residues are shown with a red background, whereas 
similar residues are shown in red and highlighted with blue boxes. Residues located 
within the active site cleft (His, Cys and Arg) are conserved among all sortases and are 
highlighted with blue stars, whereas the lid residues DPF\Y\W are highlighted with a red 
box. 
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2.2 Pilus 2b functional characterization 

 

2.2.1 The expressions of different pilus types in the same GBS strain are 

independent 

 

To study the function of different pilus types in GBS pathogenesis  we used two 

mutant strains previously generated in COH1 strain, a well-known serotype III-

ST-17 isolate, which expresses pilus 1 and pilus 2b (50). Each mutant strain 

carried an in-frame deletion of the gene coding for the backbone protein (BP) of 

pilus 1 (BP-1) or of pilus 2b (BP-2b), respectively. Total proteins were 

extracted from each mutant strain and analyzed by immunoblot analysis using 

sera anti BP-1 or 2b. Total proteins from the wild type strain revealed the typical 

HMW laddering indicative of pilus-like structures, whereas this laddering was not 

present in the two deletion mutant strains, suggesting that protein polymerization 

was completely abrogated. Complementation of BP genes restored protein 

polymerization to levels comparable to those of the wild type strain (50), 

confirming that the presence of the backbone proteins is fundamental for pili 

polymerization.  

 

 

 
Figure 28. Schematic representation of COH PI-1 and PI-2b.  COH1 strain has two 
different pilus genomic islands. PI-1 and PI-2b and they both encode for the three 
structural pilins and for two class C sortases. In this study two different mutant strains 
were used, each deleted of a different BP protein. 

 

To analyze if the deletion of a BP in one genomic pilus island (PI) could influence 

the expression of the other one, a FACS analysis on whole bacteria was performed 

using monoclonal antibodies anti BP-1 and BP-2b. Antibodies raised against the 

BP-2a of pilus 2a and anti-polysaccharide type-III were used as negative and 

positive control, respectively. As shown in figure 29, backbone protein 

expressions from different pilus islands are independent, meaning that the 

mutation of one pilus island does not affect the protein expression of the other 
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pilus island. These results confirm that these mutants as appropriate tools for our 

analysis. 

 

 

 

Figure 29. Different backbone protein expressions are independent. FACS analysis 
on COH1 wt and BP deletion mutant strains. Antibodies against BP1 and 2b were used to 
check the single deletion of each BP in the two mutant strains generated. It was used also 
to check if this single deletion could affect the expression of the other backbone protein. 
An antibody anti-serotype III was used as positive control and one against BP2a as 
negative control. As reported in the graph the deletion of one backbone protein do not 
influence the expression of the other one.  

 

2.2.2 Pilus 2b is the one involved in COH1 adherence to host cells 
 

The analysis of pili function upon host-cell interaction started with in vitro cell-

based assays. Different cell lines were used, including human brain microvascular 

endothelial cells (hBMEC), vaginal epithelial cells (VK2/E6E7) and lung 

epithelial cells (A549). All the cell lines were incubated with bacteria at an MOI 

of 1 and all assays were done in triplicate. As shown in figure 30A, only when 

type 2b pilus is deleted, COH1 is significantly less adherent and therefore less 

invasive in hBMEC cells. The complemented strain expressing BP-2b restored 



59 
 

normal levels of adherence and invasion comparable to those of the wild type. The 

deletion of type 1 pilus did not result in any significant difference in terms of 

adherence and invasion from the wild type strain. 

 

Figure 30. Pilus 2b backbone protein deletion affects GBS interaction with the host. 
COH1 wt and BP mutant and complemented strains were tested in adherence and 
invasion assays with human brain microvascular endothelial cells (hBMEC), vaginal 
epithelial (VK2/E6E7) and lung epithelial (A549) cells. A) Only the deletion of BP-2b 
causes a significant decrease in both adherence and invasion to hBMEC while instead the 
deletion of BP-1 do not. Same results can be observed after GBS incubation with lung 
epithelial cells (18B). C) When GBS is incubated with vaginal epithelial cells both 
mutants result in a decrease in terms of adherence, but also in this case the deletion of 
BP-2b results in a dramatically decrease in adherence. All the complemented strains 
restored the wt phenotype. 
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Same results were obtained for lung epithelial cells (Fig. 30B). Cell adherence 

assay was done also with vaginal epithelial cells, and similar results were obtained 

but in this case also the ΔBP-1 mutant caused decreased adherence to the cells.  

This suggests that this pilus type could be normally involved in more specific 

interaction with this kind of cells (Fig. 30C). 

To further investigate how pili affect the adherence to host cells, we tested GBS 

binding abilities to Extracellular Matrix (ECM) components by using ECM 

proteins coated plates. As reported in figure 31, both mutants caused significant 

binding decreases to collagen, fibrinogen and laminin and fibronectin, which 

suggested that pili may contribute to GBS attachment to host cells through ECM 

binding.  Especially the ΔBP-2b mutant resulted in a decreased binding ability to 

ECM components.   

 

 

 

 

Figure 31. Pilus 2b is important for fibronectin binding. Wild-type GBS strain and 
ΔBP mutant strains were incubated with ECM components for and adherence assay.  All 
the mutant strains tested gave significant differences in comparison to the wild-type. In 
particular BP-2b looks to be important for the binding to fibronectin. In fact when pilus 
2b BP is deleted, GBS adherence significantly decrease; when instead is the only one 
present because BP-1 is deleted, GBS binding to fibronectin increase in a significant way. 
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2.2.3 Pilus 2b contributes to pathogenesis of meningitis in vivo 
 

We have shown that type 2b pilus in in vitro assays resulted in a decreased 

adherence and invasion to all the cell lines tested and ECM components. To test if 

these findings could be confirmed also in vivo, we decided to examine different 

pili contribution to the pathogenesis of GBS CNS (central nervous system) infec-

tion in vivo.  

Since ECM components and fibronectin have been demonstrated to be on brain 

endothelium (42) we thought that this binding could be an initial step for BBB 

penetration and meningitis development. We employed our mouse model of GBS 

hematogenous meningitis, as described previously (40,42,111,112). Ten mice per 

group (8-week, CD-1 male) were intravenously injected with either WT GBS or 

one of the two ΔBP mutants at a concentration of 1.5x108 CFU. They were 

monitored for survival every three hours and they were sacrificed after 48 hours. 

After collecting and homogenizing brain and lungs in PBS, tissues were serial 

diluted and plated on THA plates. Also blood was collected, diluted and plated. 

Bacterial loads found in different tissues in wt- and ΔBP-1-injected groups were 

similar, while instead there was a significant decrease in bacterial load in both the 

tissues and blood of mice infected with BP-PI-2b mutant (Fig. 32A). These 

findings demonstrated the important role of type 2b pilus in in vivo infection since 

its deletion affected GBS ability to survive and infect host tissues. 

In order to better clarify different pili contribution to BBB penetration, an in vitro 

blood survival assay was performed. In this way we could understand if the 

differences of bacterial load found in blood and tissues of infected mice were due 

to different strains growth defects.  

Fresh mice blood was collected and heparinized and it was then incubated at 37°C 

for 7 hours with bacteria at an MOI of 0.1. For each strain, three tubes were used 

for every time point collected. 

Samples were then serial diluted in PBS and plated on THA every 30 min, and 

plates were then incubated over-night at 37°C. Mutant strains exhibited equivalent 

growth kinetics to the WT parent strain in murine whole blood ex vivo, thus 
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suggesting that the three strains tested did not have growth defects in blood (Fig. 

32B).  

Taken together these findings indicate that in COH1 strain type 2b pilus is the one 

mostly involved in host infection in in vivo model, confirming the in vitro results 

previously obtained. 

 

 

 

Figure 32. Pilus 2b contributes also to meningitis development in vivo. A) Mice were 
infected i.v. with COH1 wt or with one of the two mutant strains, each one deleted of a 
different BP.  After 2 days mice were sacrificed and blood, brains and lungs were 
collected, homogenized and plated to quantify the bacterial load. As reported, the mutant 
strain deleted of BP-1 did not show any difference from the wild type strain in any of the 
tissues analyzed, while instead the deletion pf BP-2b lead to a significant decrease in the 
bacterial load in all the samples analyzed. B) This difference is not due to ΔBP-2b growth 
defects, since after in vitro blood survival assay, no significant differences among the 
tested strains could be observed. 
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2.2.4 Both pili are important for in vivo vaginal colonization 
 

Our in vitro data indicates that both pilus types alter vaginal epithelial interactions 

(Fig. 30). To confirm these results in vivo, we used a mouse model of GBS 

vaginal colonization already described (113). In rodents, normal flora load and 

novel bacterial colonization ability appear to peak at estrus (114-116). We found 

this to be true in our model of GBS colonization (113). Consequently, we treated 

8-week old CD1 mice with 17β-estradiol one day prior to bacterial inoculation. 

We inserted ~1×107 cfu GBS into the vagina, and on successive days, the vaginal 

lumen was swabbed and recovered bacteria quantified on agar plates to determine 

changes in bacterial load over time. The ΔBP-2b mutant exhibited decreased 

persistence in the vaginal tract by day 6 post-inoculation when compared to WT 

or ΔBP-1 mutant strains, but not in a significant way (Fig. 33). Moreover, at day 

10 we could not observe any difference between all the strains tested, suggesting 

that both the pilus types are important for vaginal colonization. 

 

 
 

Figure 33. Both pilus types contribute to in vivo vaginal colonization. Mice were 
injected in the vaginal lumen with COH1 wt or with one of the two mutant strains, each 
one deleted of a different BP and swabbed everyday. After 10 days we could not detect 
any significant difference, even if a trend could be observed. 
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Chapter 3. Discussion 
 

In Group B Streptococcus (GBS), a major cause of sepsis and meningitis in 

infants, pili have been associated to virulence and pathogenesis of the bacterium 

and discovered as highly immunogenic vaccine candidates (24,45,52). Pili are 

high-molecular-weight (HMW) polymers, visible by electron microscopy as long 

filamentous structures extending out from the bacterial surface. In GBS three 

structurally distinct pilus types have been identified and they are PI-1, PI-2a and 

PI-2b. These pili are heterotrimeric structures, constituted by a major pilus subunit, 

the backbone protein forming the pilus shaft, and two ancillary proteins (APs). 

These pilins are encoded by a pilus genomic island (PI) that includes also two 

class C sortases and a transcriptional regulator.  

Sortase enzymes have a critical role in Gram-positive bacteria pathogenesis due to 

their function to covalently link to the bacterial cell-wall surface proteins or pilus 

polymers. Because of the importance of their substrates for a successful bacterial 

infection, sortases represent an attractive antivirulence/therapeutic target.  

In this work we explored the sortase-mediated mechanism of pilus type 2b 

biogenesis in Group B Streptococcus, showing that it differs significantly from the 

current model of pilus assembly in Gram-positive pathogens.  

Pilus-associated sortases, classified also as class C sortases (SrtC), are a family of 

membrane-associated cysteine transpeptidases, broadly distributed in Gram-

positive bacteria that function as pilin polymerases that construct multi-subunit 

pili on the cell surface to promote bacterial adhesion (58,79). Unlike the 

constitutively expressed sortase A (SrtA), which normally anchors most surface 

LPXTG-containing proteins to the cell wall (117), SrtC enzymes are predicted to 

target a much smaller set of substrates. Their genes are present in several copies in 

a genome and differently from srtA gene, which is present in a monocistronic 

operon, occur typically in operons located in pathogenicity islands that also 

encode their substrates. The main novelty of this work is that the assembly 

mechanism that we propose for GBS pilus type 2b appears non-canonical. The 

genomic pilus 2b island (PI-2b) codes for two sortases (SrtC1 and SrtC2) in 

addition to three structural subunits. We show that only SrtC1-2b is involved in 
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pilus protein polymerization, while SrtC2-2b does not act as a pilin polymerase, 

but it is involved in pilus anchoring process by recognizing the minor pilin 

subunit. This subunit (AP2-2b) is not conversely recognized by the housekeeping 

SrtA as happens for the pilus assembly in the majority of Gram-positive bacteria. 

By contrast, the classical model deriving from studies of the archetype SpaA-type 

pili in Corynebacterium diphtheriae (55) outlines two basic steps of pilin proteins 

polymerization catalyzed by a class C-sortase followed by the cell wall anchoring 

step of the resulting polymer by the housekeeping SrtA (56). Previous data 

indicated that also the other two pilus types of GBS (pilus 1 and 2a) follow this 

“canonical” assembly model and that both  two sortases C (SrtC1 and SrtC2) 

coded by the genomic pilus islands 1 and 2a (PI-1 and PI-2a) can efficiently 

polymerize the backbone proteins in vivo,  showing a certain level of redundancy. 

Their substrate specificity appeared to be related to their ability to predominantly 

incorporate into pili one of the two ancillary subunits, with significantly reduced 

ability to incorporate the other one (50). Accordingly, genetic and biochemical 

studies showed that the cell-wall anchoring of polymerized pili is completed by 

the housekeeping SrtA (59,92). Therefore, although the three GBS pili appear 

structurally highly similar as well as the overall gene organization of the genomic 

pilus islands, the only pilus type 2b follows a unique assembly mechanism. In C. 

diphtheriae, which produces three distinct pilus structures, SpaA-, SpaD- and 

SpaH-type pili, it has been demonstrated that the cell-wall attachment of Spa-type 

pili is mediated by the housekeeping sortase (named SrtF). Nevertheless, when the 

constitutive SrtF is absent, a class C sortase that is “normally” responsible for 

pilin polymerization, can be activated to catalyze the polymerized pili anchoring 

step, although less efficiently than SrtF (118). Not relatively to pili assembly, 

other studies reported that under specific environmental conditions class B or C 

sortases are activated for targeting proteins to the cell wall (80); for example, in 

sporulating Bacillus anthracis under iron starvation conditions a sortase B enzyme 

is activated for the cell-wall anchoring of a heme-binding protein involved in 

uptake of iron; or a sortase C enzyme can anchor a surface polypeptidide to the 

bacterial cell wall envelope for the formation of infectious spores (117,119,120). 

Similar evidences have been reported in Streptococcus pyogenes, where a class C 

sortase (SrtC2) is in competition with SrtA for protein cell wall anchoring (119). 
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However, the data reported so far on sortases action mechanism, sometimes 

apparently controversial and discrepant highlighted  the universality of the 

transpeptidation mechanism of all sortase members belonging to different families 

and their redundancy and promiscuity in substrate recognition. 

 

To better explore the different role of SrtC1 and SrtC2 in GBS pilus 2b assembly 

we conducted additional analysis by comparing these sortases with other 

characterized pilus-related sortases in Gram-positive species both at the sequence 

and structural level. Compared with GBS pilus 1 and pilus 2a sortases, pilus 2b 

sortases revealed a very low percentage of amino acid identity, forming a cluster 

far away from the others (91). However, at sequence level the most significant 

peculiarity of both SrtC1-2b and SrtC2-2b is the lack of the conserved DPY\W\F 

residues in the N-terminal regulatory lid motif. Moreover, in SrtC2-2b the N-

terminal region is significantly shorter compared to the other, and more, this 

enzyme lacks also the predicted C-terminal transmembrane helix, that is known to 

be required for an efficient protein polymerization in pilus 2a formation (91). 

These observations led us to speculate different mechanisms of activation and 

regulation of these enzymes.  

 

Currently, the presence of an N-terminal lid loop has been considered a 

characteristic feature of all pilus-specific sortases. Interestingly, except for SrtC1 

from S. pneumoniae the poor electron density for most of the main and side chains 

of residues located within the lid (with the exception of the DPY\W\F residues) in 

the majority of SrtC structures indicated a high flexibility of this loop This 

flexibility has been correlated with an important role of the lid in enzyme 

activation, specifically in the regulation of substrate accessibility to the active site 

(91,93-96). Recent data on GBS pilus 2a sortase C1 strongly supported the 

hypothesis that SrtC are auto-inhibited by the presence of the lid and that their 

catalytic activity can be induced through a displacement of this loop from the 

enzyme active site probably as a result of the interaction with the substrate 

proteins and/or other unknown factors (121). It has been recently showed that an 

efficient polymerization of the backbone protein of pilus 2a can be achieved in 

vitro by using a recombinant mutant SrtC enzyme carrying a single residue 
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mutation in the lid region, whereas the wild type enzyme was totally inactive. 

This data suggested that a single residue in the lid can regulate the sortase 

catalytic activity through its interaction with the catalytic cysteine the in the active 

site. The absence of this lid residue might break this interaction, making the active 

site available for substrate binding. Additional analysis revealed that the lid 

confers thermodynamic and proteolytic stability to the sortase enzymes (121). 

SrtC1-2b has a tryptophan residue (W78) that could act as the putative regulatory 

residue by interacting with the catalytic cysteine in the enzyme active site. 

Interestingly, all the residues from S74 to D87 of the lid region in the N-terminal 

α helical roof surrounding the conserved β-barrel core could be included in SrtC1-

2b structure, whereas other structures showed gaps. This might indicate that the 

conformation of SrtC1-2b N-terminal region is more stable. Moreover, this region 

is structurally different in terms of position relative to the β-barrel core; the lid 

loop is displaced from the active site and does not cover the substrate binding 

groove, thus resulting is in a wide-open state, suggesting a possible different 

mechanism for the substrate to gain access to the catalytic core. Except for the lid 

region, the overall fold of SrtC1-2b resembles the previously reported sortase C 

structures, particularly in the β-barrel core region, where the catalytic triad 

perfectly and spatially is overlapping among structures. However, since SrtC1-2b 

structure is in an open conformation, the role of the hypothetical lid residue W78 

in enzyme regulation cannot be confirmed. Interestingly, superimposition of 

SrtC1-2b structure onto the “open-form” structure of sortase C1  from S. suis (98), 

indicated that S. suis SrtC1 is in an even more open conformation than SrtC1-2b. 

Hence, we could speculate that the lid region is capable of exploring wide 

conformational space, going from all the way up (S. suis SrtC1-like conformation) 

to a closed state (S. pneumoniae SrtC1-like or GBS SrtC1-1-like conformation) 

passing through an ”open-intermediate” form as observed in SrtC2-2b 

conformation.  

Another aspect on the sortase activity regulation in vivo takes into account the 

involvement of chaperone-like proteins in pilus assembly. An example is provided 

in pilus polymerization in S. pyogenes, where genetic evidences have 

demonstrated that the sortase  is not sufficient alone to polymerize the backbone 

protein Spy0128, being the signal peptidase-like protein SipA, coded by the same 
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genomic pilus operon, also required for polymers formation (122). Interestingly, 

the crystal structure of Spy0129 revealed that it belongs to class B sortases, with a 

conserved β-barrel core, but lacking of the canonical lid motif as well as of the C-

terminal transmembrane anchor, which is also considered a SrtC typical element. 

The flexibility of the β6/β7 loop is supposed to play a significant role in binding 

the sortase recognition motif of the substrate protein and conformational 

movements in this loop might correlate with the positions and orientations of the 

catalytic Cys and His residues, and be important for enzyme function (123). The 

need of a peptidase-like protein as chaperone for pilus assembly in vivo may be 

common to other pilus systems in the regulation of sortase activity. Interestingly, 

other pilus gene clusters contain genes encoding peptidase-like proteins, i.e. in 

Actinomyces naeslundii (124), in S. pneumoniae (125) and in S. suis (126) as well 

as the genomic pilus island 2b contains a gene coding for a LepA-type signal 

peptidase. Further efforts will be necessary to understand the role of this protein in 

pilus 2b assembly. 

An alternative mechanism could instead regulate the enzymatic activity of SrtC2-

2b. As S. pyogenes Spy0129, SrtC2-2b does not contain a canonical lid region and 

the C-terminal TM, but it carries two additional cysteine residues that we 

speculated could be involved in the regulation of the enzymatic activity by 

disulfide bonds formation. FRET and AMS assays performed with cysteine single 

mutants of the recombinant SrtC2-2b protein suggested that disulfide bonds 

between the catalytic C180 and C115 could suppress the SrtC2 activity in vitro. 

Given that class C sortases are involved in a highly regulated process, we 

supposed that SrtC2-2b activation could be controlled by a redox regulation 

mechanism involving its three cysteines. We could speculate a model where C192 

act as a sortase regulator, since it could be involved alternatively in disulfide 

bonds both with C180 and with C115. Although this hypothesis fits also with the 

SrtC2 structure model obtained by homology modeling, it remains to be further 

confirmed by additional structural studies. 

 

In conclusion, sortase enzymes have a critical role in Gram-positive bacteria due 

to their function to covalently link to the cell-wall surface proteins or pilus 



69 
 

polymers,  associated to virulence and pathogenesis of the bacterium (52). 

Importantly, in GBS pilin structural components have been discovered as highly 

immunogenic vaccine candidates and all epidemiologically relevant clinical 

isolates express at least one pilus type (24,45,52,127). Therefore, because of the 

importance of their substrates for a successful bacterial infection, sortases could 

represent an attractive antivirulence/therapeutic target. Thus, fully understanding 

the molecular basis of the mechanism of pilus biogenesis at the membrane 

environment during the establishment and persistence of infections by Gram-

positive microorganisms, trying to solve open issues, for example why some pili 

are associated with multiple sortases and what determines sortase substrate 

specificity remains of great scientific interest.  

Pilus type 2b remained uncharacterized so far, although it has been associated to a 

hypervirulent clone (ST17-serotype III) responsible of the majority of neonatal 

invasive diseases (24) (28,34,48,49,128).  

The host-pathogen interaction upon GBS infection and invasion of BBB is still 

incompletely understood. Previous studies have identified several GBS virulence 

factors contributing to GBS adherence to and invasion of host cells, including pili, 

Fibronectin binding protein SfbA, Serine rich repeat protein Srr, lipoteichoic acid-

anchoring protein IagA, HvgA and the alpha C protein (APC) 

(40,42,111,112,129-132). But their role at molecular level needs to be further 

determined.   

The importance of pili for GBS virulence has already been demonstrated by 

several studies both in vitro and in vivo, where their subunits have been shown to 

be important for the initial bacterial attachment to the host cell promoting an 

efficient colonization (11,12,40,133-136).  In particular pili are important for 

bacterial invasion that can lead to invasive diseases and then they play also a role 

in promoting resistance to phagocytic clearance (135,137). GBS in fact can cause 

meningitis crossing the BBB after adhesion and invasion of brain endothelium 

(42).  

It has been demonstrated that the three different pilin subunits constituting GBS 

pili have different roles in bacterial infection.  
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The major pilin subunit, the backbone protein, has been shown to contribute to 

invasion by promoting resistance to phagocyte killing, thus increasing GBS 

bloodstream survival (135,137). 

The tip ancillary protein (AP1) on the other hand has been demonstrated to be 

involved in adhesion to human pulmonary epithelial cells (11,134,138) or to 

human brain endothelial cells (40,75,137). In particular AP1 binds to collagen 

which promotes GBS interaction with the host thus activating the immune system 

and promoting bacterial entry into the CNS (40). However, the majority of these 

studies have been carried out on pilus types 1 or 2a. 

In this study, we investigated the function of both type 1 and type 2b pilus using 

COH1 as background, a strain belonging to the serotype III-ST 17 lineage.  COH1 

expresses both pilus 1 and 2b and deleting individually BPs, we obtained two 

different strains expressing just one pilus. (62). In this way these knockout 

mutants represented a perfect tool to analyze the role of each pilus in host 

adherence and invasion. 

Previous studies have shown that the capacity of a COH1 BP-1 mutant strain, 

not expressing pilus 1 on its surface, to adhere to epithelial cells was not affected. 

The COH1 AP1-1 mutant strain lacking the gene coding for the AP1 protein 

instead bound significantly less to epithelial cells compared to the wild type, 

suggesting that in pilus type 1 the ancillary protein AP1 seems to have a role for 

pili adhesion to host cells. Type 2b pilus subunits role in adherence were never  

investigated in a ST-17 background (139). 

 

Our findings demonstrate that the BP-2b mutant resulted in a dramatic decrease 

in adherence and invasion to different cell lines, whereas the BP1 mutant strain 

did not show any significant difference in adherence and invasion compared with 

the wild-type strain in hBMEC and lung epithelial cells. Accordingly with our 

results, it was previously reported that the BP-1 mutant  did not impair GBS 

adherence not only to lung epithelial cells, but also to intestinal cell line (Caco2) 

and human cervical epithelial cells (ME180) (139).  

However, BP-1 mutant strain does show significant differences in adherence to 

vaginal epithelial cells compared with the wild-type strain, suggesting that pilus 

proteins function may depend on specific characteristics of host cells (42) since 
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these results were also confirmed by the in vivo vaginal colonization model. 

Indeed it has been reported that the acidic pH of the vaginal tract enhances type 1 

pilus expression [51]. 

Another study instead showed that a BP-1 mutant did not appear to contribute 

significantly to vaginal epithelial cell adherence (140), however, this analysis was 

not performed on a COH1 background, suggesting that results could be influenced 

also by the tested GBS strain. 

In previous studies the BP-2b mutant strain resulted in a decreased adherence 

and invasion to A549, ME-180, C2Bbe1 colonic, and HeLa cervical epithelial 

cells (135,136), in agreement to our evidences. 

Our data also show that both type 1 and type 2b pilus are involved in ECM 

components binding suggesting that pili promote GBS attachment to host cells 

through binding to ECM components. Indeed it has been previously reported that 

PI-AP1 interacts with fibronectin and fibrinogen (75), but also with collagen,  

which engages integrins and the integrin-signaling machinery that contributes to 

the pathogenesis of meningitis in vivo (141). 

Since ECM components and fibronectin have been demonstrated to be on brain 

endothelium (42) we investigated if this binding could be an initial step for BBB 

penetration and meningitis development. 

From our in vivo studies we observed that type 2b pilus contributes to GBS 

virulence and BBB penetration in vivo. In the mouse meningitis model, bacterial 

counts in blood and tissues from mice injected with BP-2b mutant were 

significantly lower in comparison with those from mice injected with the wild-

type or BP-1 mutant. Of note, ex vivo blood survival did not show difference 

among GBS wild-type strain and the two mutant strains indicating the reduced 

virulence from BP-2b mutant is not due to growth defect.  

In summary our data highlight importance of type 2b pilus in GBS attachment and 

invasion of host cell and its contribution to GBS virulence in vivo, suggesting that 

this pilus type so far poorly characterized, should be further investigated. 
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Chapter 4. Experimental procedures 

 

4.1 Bioinformatics 

 

The complete genome sequences of Streptococcus agalactiae strain COH1 are 

available in NCBI GenBank under the Accession Number HG939456.1. The 

primary sequences of SrtC1 protein (accession number CDN66744) and SrtC2 

protein (accession number CDN66742) were used in TMHMM Server 

(http://www.cbs.dtu.dk/services/TMHMM/) to predict transmembrane helices and 

membrane topology of protein sequences. Multiple sequence alignments were 

performed using ClustalW and alignment analyses were done with ESPript 

(http://espript.ibcp.fr/ESPript/ESPript/) (142). 

 

4.2 Bacterial strains, media, and growth conditions 

 

Group B Streptococcus strains (Suppl. Table 1) were grown in Todd Hewitt Broth 

(THB) or trypticase soy agar (TSA) plates or chemically defined RPMI-1640 

medium (Sigma-Aldrich) at 37°C in 5% CO2. Escherichia coli cells were grown 

aerobically at 37°C in Luria-Bertani medium. When required, antibiotics were 

added to the medium at the following concentrations: erythromycin, 1 µg/ml (S. 

agalactiae) or 100 µg/ml (E. coli); chloramphenicol, 10 µg/ml (S. agalactiae) or 

20 µg/ml (E. coli), ampicillin 100 µg/ml (E. coli). 

 

4.3 DNA manipulation  

 

Genomic DNA was isolated from GBS strains by a standard protocol for Gram-

Positive bacteria, by mutanolysin-treatment of bacterial cells using a GeneElute 

Bacterial Genomic DNA kit (Sigma-Aldrich) according to the manufacturer’s 

instructions. Plasmids (Suppl. Table 1) were purified from E. coli cells using a HP 

Plasmid Miniprep Kit (Omega Bio-Tek, VWR). DNA restriction and modification 

enzymes were used under the conditions specified by the manufacturer (NEB, 
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Ipswich, MA). Oligonucleotides used in this study were synthesized in-house or 

by Sigma-Aldrich. PCR experiments were performed using Kapa HiFi DNA 

polymerase (KapaBiosystems) and PCR products were purified using the Wizard 

SV Gel/PCR Clean-Up System (Promega).  

 

4.4 Construction of in-frame deletion mutant strains, complementation vectors 

and site-specific mutagenesis 

 

In-frame deletion mutant strains, listed in Suppl. Table 1, were generated in GBS 

strain ABC020017623 carrying only pilus island 2b, using Splicing by Overlap 

Extension (SOE) PCR as described previously (50,143). For each mutant strain 

generated, two PCR products comprising the flanking sequences of the target gene 

and a 30 bp overlapping region, were ligated via the overlap sequence and cloned 

into the temperature-sensitive allelic exchange vector pJRS233 (gift of June Scott, 

Emory University, Atlanta, GA), generating pJRS233-derived plasmids carrying 

overlapping flanking sequences of each target gene to knock out. Transformation 

and allelic exchange were then performed as described previously (144) and 

confirmation of the predicted insertions was obtained by PCR amplification and 

sequencing.  

Complementation vectors (Suppl. Table 1) were generated into the E. coli-

streptococcal shuttle vector pAM401/gbs80P_T, previously described (50,145) 

containing the promoter and terminator regions of the gbs80 gene (TIGR 

annotation SAG_0645). For the generation of vectors pAM_srtC1, pAM_srtC2 

and pAM_AP2-2b, DNA fragments corresponding to srtC1, srtC2 and ap2 genes 

were PCR amplified from GBS strain ABC020017623 genomic DNA and the 

products were cloned into the shuttle vector pAM401/gbs80P_T. 

For the generation of the complementation vector pAM_BP-2b, a DNA fragment 

corresponding to BP-2b gene (locus tag SAK_1440) was PCR amplified from 

GBS A909 genome, and the product was cloned into the same shuttle vector.  

Site-directed mutagenesis was performed by the polymerase incomplete primer 

extension (PIPE) method (146), using the complementation vectors pAM_SrtC1, 

pAM_SrtC2 and pAM_BP-2b as templates for the introduction of specific 
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mutations. The method was improved using Kapa HiFi polymerase and digesting 

DNA template with DpnI enzyme to optimize the protocol for large plasmids. 

Mutations were confirmed by DNA sequencing. All complementation vectors 

expressing mutated forms of sortases were electroporated into the corresponding 

knock-out (KO) strains. Complementation was confirmed by checking protein 

expression by Western blot analysis.  

 

4.5 Antibodies 

 

Antisera specific for the pilus 2b subunits, backbone protein (BP-2b), major and 

minor ancillary proteins (AP1-2b and AP2-2b) and sortases C were produced by 

immunizing CD1 mice with the purified recombinant proteins as previously 

reported (24,50). Animal treatments were performed in compliance with current 

Italian legislation on the care and use of animals in experimentation (Legislative 

Decree 116/92) and with the Novartis Animal Welfare Policy and Standards. 

Protocols were approved by the Italian Ministry of Health (authorization 21/2009-

B) and by the local Novartis Animal Ethical Committee (authorization AEC 

200825).  

Mouse monoclonal antibodies (mAbs) anti BP-1, anti BP-2a, anti BP-2b and anti 

polysaccharide III (PS-III) were generated by Areta International (Varese, Italy) 

using standard protocols. Briefly, B-cell hybridoma clones were isolated from 

spleen cells of immunized CD1 mice with the purified recombinant proteins (BP-

1, BP-2a and BP-2b) and the purified tetanus toxoid (TT)-conjugated serotype III 

polysaccharide. Hybridoma clones were screened by enzyme-linked 

immunosorbent assay (ELISA). Positive clones were then tested for binding to the 

surface of GBS by flow cytometry. The selected mAbs were finally purified by 

protein G affinity chromatography. and the MAbs were purified by protein G 

affinity chromatography. 
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4.6 GBS proteins extraction and immunoblot analysis 

 

For the preparation of total soluble proteins GBS mid-exponential-phase cells, 

grown in THB or RPMI, were harvested by centrifugation, washed in phosphate-

buffered saline (PBS) and re-suspended in 50mM Tris-HCl (pH 6.8), containing 

mutanolysin (Sigma-Aldrich, St. Louis, MO, USA) and complete protease 

inhibitors (Roche, Basel, Switzerland). Cell suspensions were incubated at 37°C 

for 2 hours. After 3 cycles of freeze and thaw, total soluble proteins were 

separated from insoluble materials by centrifugation at 15000 g at 4°C for 10 min. 

The pellet corresponding to the membrane-enriched fraction was solubilized in 2% 

SDS buffer and used for assessing sortase expression. To visualize proteins 

released during bacterial growth, supernatants from cultures in RPMI medium 

were harvested by centrifugation at 4,000 g for 20 min, filtered with a 0,22 µm 

syringe filter and 10-fold concentrated. Protein concentration was measured using 

BCA protein assay (Pierce; Thermo Scientific, Rockford, IL, USA). 

Equal amounts of bacterial proteins from each strain were separated by sodium 

dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and transferred 

to nitrocellulose membranes using iBlot transfer (Dry blot system, 

Lifetechnologies). Membranes were probed with mouse antisera directed against 

structural pilus proteins or against sortase C enzymes (1:1000 dilution), followed 

by a rabbit anti-mouse horseradish peroxidase-conjugated secondary antibody 

(Dako, Glostrup, Denmark). Bands were then visualized using an Opti-4CN 

substrate kit (Bio-Rad) or SuperSignal West Pico chemiluminescent substrate 

(Pierce; Thermo Scientific, Rockford, IL, USA). 

 

4.7 Cloning, expression, and purification of recombinant proteins 

 

PCR fragments encoding SrtC138-245 (locus tag GBSCOH1_1278) and SrtC232-199 

(locus tag GBSCOH1_1276) domains were amplified by PCR from genomic 

DNA extracted from the COH1 GBS strain and cloned into pET15-TEV vector 

(modified in house from Novagen to adapt to PIPE cloning) using the polymerase 

incomplete primer extension (PIPE) method (146) to produce N-terminal HIS-
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tagged (TEV cleavable) proteins. The SrtC2C115A, SrtC2C180A, and SrtC2C192A  

mutants were generated by PIPE site-directed mutagenesis using as template the 

HIS-tagged SrtC232-199  wild type plasmid. The recombinant SrtA was produced as 

previously reported (92) and AP2-2b (locus tag GBSCOH1_1277) was cloned in 

pET21b(+) vector to produce a C-terminal HIS-tagged protein following the same 

strategy reported for AP2-2a (92). 

Protein expression was performed in Escherichia coli Rosetta2(DE3) cells 

(Novagen) using the EnPresso Tablet Cultivation Set (BioSilta) supplemented 

with 100 μg/mL ampicillin. Bacteria were first grown at 30°C, 160rpmfor 12 

hours and afterwards target protein production was induced by the addition of 

1mM IPTG at 25°C, 160rpm for 24 hours. Cells were harvested by centrifugation 

(4000 rpm, 30 min, 4°C), and then cell lysis were performed using Cell Lytic 

Express (Sigma Aldrich). Protein purification was performed by a first 

immobilized metal affinity chromatography (IMAC) step followed by a second 

IMAC step after TEV cleavage to remove the N-terminal 6XHis-tag. 

 For the purification of SrtC1WT and SrtC2WT used for crystallization trials the last  

IMAC purification step was followed by size-exclusion chromatography (SEC) 

using HiLoad 26/60 Superdex 200 (GE Healthcare; Life Sciences, Piscataway, NJ, 

USA) equilibrated in 25 mM HEPES,75 mM NaCl pH7 at a flow rate of 2 ml/min. 

The fractions containing the pure protein, which showed a single band by SDS-

PAGE, were quantified with the bicinchoninic acid (BCA) assay (Pierce; Thermo 

Scientific, Rockford, IL, USA). 

For NMR experiments cells were grown in M9 minimal medium containing 1 g/l 

of (15NH4)2SO4 for the expression of 15N labeled samples, at 37°C until OD600 ~ 

0.8 and then induced with 1 mM isopropyl-β-d-thiogalactoside for 16 h at 25°C. 

The soluble proteins were extracted using CelLytic B (Sigma-Aldrich) and DNase 

and then  purified by a FF-Crude His-Trap HP nickel chelating column 

(Amersham Biosciences, Piscataway, NJ, USA). The recombinant SrtC2 mutants 

were eluted with 300 mM imidazole, and the buffer was exchanged with TEV 

cleavage buffer (50 mM Tris-HCl, pH 8; 1 mM DTT, and 0.5 mM EDTA) using a 

PD-10 desalting coloumn  (GE healthcare). HIS-tag was cleaved by incubation 

with AcTEV protease (12h at RT) and then removed by a subtractive IMAC 
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purification step. The proteins were then concentrated by ultrafiltration to 20 

mg/ml, and the buffer was exchanged using a PD-10 desalting column 

(Amersham Biosciences) equilibrated with 50mM NaH2PO4 pH 6.5. 

 

4.8 Crystallization, data collection and structure determination 

 

Crystallization experiments were performed by the sitting-drop method, mixing 

0.2 µL of protein at 30 mg/ml and 0.1 µL of reservoir solutions in 96-well low-

profile crystallization plates and using a Crystal Gryphon robot (Art Robbins 

Instruments). Crystals of SrtC1-2b were obtained in condition H2 of the Hampton 

Research PEG/ION screen, containing 0.05M tri-Sodium Citrate (pH 2.3), 16% 

PEG3,350, 0.05M Bis-Tris propane (pH 9.7). Before data collection, crystals of 

SrtC1-2b were first soaked in 10% ethylene glycol as cryoprotectant, and then 

cooled to 100 K in liquid nitrogen.  

Diffraction data were measured at 100K on beamline ID29 of the European 

Synchrotron Radiation Facility (ESRF) in Grenoble, and processed with XDS 

(147) and the CCP4 suite of programs (148). The structure of SrtC1-2b was 

solved by molecular replacement in molrep (149), using coordinates of the sortase 

C1 of the pilus island 1 of GBS (pdb ID 4g1j) as input template model. Structure 

refinement and rebuilding were performed by Phenix (150), and Coot (151), with 

final model Rwork and Rfree statistics of 18.0 and 22.3 %, respectively. The final 

refined coordinates of SrtC1 includes residues 39-232, and were deposited in the 

PDB with accession code 4d7w. Data collection and refinement statistics are 

summarized in Table 4. 

 

4.9 Nuclear magnetic resonance (NMR) spectroscopy 

 
15N labeled recombinant protein sample were buffer exchanged using a PD-10 

desalting column (Amersham Biosciences, Arlington Heights, IL, USA), 

equilibrated with 50 mM phosphate buffer (pH 6.5), and finally concentrated by 

ultrafiltration to 0.3 mM.  
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Next, 1H-15N heteronuclear single-quantum coherence (HSQC) spectra were 

recorded at 25°C on a Bruker Avance III spectrometer (Bruker, Karlsruhe, 

Germany) operating at 600.13 MHz proton Larmor frequency, equipped with a 

cryogenic probe. A standard 1H-15N HSQC pulse sequence was used, with pulsed 

field gradients for suppression of the solvent signal and cancellation of artifacts. 

Next, 2048 (1H) × 256 (15N) complex data points were acquired with spectral 

windows of 8196.935 Hz (1H) ×2432.718 Hz (15N), 8 transients, and 1.2-s 

relaxation delay. Proton T2 measurements were performed with the 1D oneone 

echo sequence (152) using variable delays of 0.2 and 5.2 ms and evaluating the 

corresponding signal intensities [T2 =2 × (5.2 - 0.2)/ln (I0.2/I5.2)]. Processing of all 

the spectra was performed with Topspin2.1 (Bruker, Karlsruhe, Germany). 

 

4.10 Fluorescence resonance energy transfer (FRET) assay 

 

The Fluorescence resonance energy transfer (FRET) assay was used to monitor 

the in vitro activity of the recombinant sortase enzymes by using fluorescently 

self-quenched peptides, tagged with EDANS as fluorophore and DABCYL as 

quencher, containing the LPXTG-like motif of pilin subunits (Table 3). The 

synthetic fluorogenic peptides were purchased from Thermo Scientific 

Biopolymers (Waltham, MA, USA) and were dissolved in 50% DMSO. 

The activity test was performed in 300 mM NaCl, 50 mM Tris-HCl (pH 8), 5 or 

25 µM sortase enzymes, and 64 or 128 µM fluorogenic peptide. Reaction was 

started by the addition of enzyme and was monitored by measuring the increase in 

fluorescence every 20 min (λex=336 nm, λem=490 nm) at 37°C using an 

InfiniteM200 spectrophotometer microplate reader (Tecan, Mannedorf, 

Switzerland). Measurements of fluorogenic peptides incubated at the same 

conditions, but without sortases were used as blank. 

 

4.11 In vitro cleavage assay 

 

The in vitro cleavage assay was performed by mixing 50 µM of the recombinant 

SrtC2WT or SrtAWT with 25 µM of the recombinant His-tagged AP2-2b protein. 
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The volume of reaction was 1 ml in buffer containing 50 mM Tris-HCl, 300 mM 

NaCl, and 1 mM DTT (pH 8). DTT was added just to prevent the formation of 

potential disulfide bridges leading to aspecific SrtC2 dimerization during the 

incubation time. As control each protein was incubated alone at the same 

conditions. 

The incubation was performed at 37°C, and the reaction samples were purified by 

IMAC and eluted with 300 mM imidazole. The concentration of the purified 

fractions was then measured with BCA assay and then equal amount of each 

sample was analyzed by Western blot analysis using sera anti-AP2-2b. 

 

4.12 Free-cysteines quantification 

 

Estimation of free thiols was performed by AMS (4-acetamido-4_-

maleimidylstilbene-2,2_disulfonic Acid) to study if the  cysteines oxidation state 

is or not involved in disulphide bonds formation. AMS has high water solubility 

and readily is conjugated to free thiols (108). 

Recombinant SrtC2 wt and SrtC2C115A, SrtC2C180A, and SrtC2C192A  mutants were 

purified by two steps of IMAC and TEV cleavage. All the protein samples were 

quantified through BCA assay and checked by SDS_PAGE. Half of the samples 

(reduced form) were incubated with 5 mM DTT for 15’ at 37°C,   buffer was then 

exchanged through PD-10 to remove the DTT. The other half of the samples (non-

reduced form) was directly incubated incubated with AMS without any DTT 

treatment.  

Samples of 1 ml of the reaction mixture in 50 mM Tris-HCl, 300 mM NaCl buffer 

(pH 8) containing 25 μM protein, 250 μM AMS, and 1% SDS were incubated for 

30 min at 37°C to complete the reaction. The excess of AMS was removed by 

dialysis.  

AMS shows a typical UV absorption at ≈328 nm and emission maximum at 408 

nm. Fluorescence measurements (λ excitation=322 nm; λ emission=406 nm) were 

performed to detect the AMS bounded to the free thiols present in each protein 

samples at the moment of the AMS addiction to evaluate the difference in the 

number of free thiols between reduced and native forms of the wild type and 
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cysteine-mutated sortases. The same buffer only with AMS and without sortase 

was used as blank. 

 

4.13 Flow cytometry 

 

GBS was grown in THB and stopped at OD 0.5 and after a wash with PBS, 

harvested bacterial cells were resuspended in PBS containing 0.1% (wt/vol) 

paraformaldehyde. Cell suspensions were incubated at 37°C for 1 h. Fixed cells 

were then washed in PBS/1% BSA and incubated at RT for 20 min in newborn 

calf serum (Sigma, St. Louis, MO). Bacteria were then incubated for 30 min at RT 

with primary antibodies diluted 1:200 in dilution buffer (PBS, 0.1% [wt/vol] 

bovine serum albumin, 20% [vol/vol] newborn calf serum). Monoclonal 

antibodies used were anti BP-1, anti BP-2a, anti BP-2b and anti polysaccharide III 

(PS-III).  Cells were washed in PBS–0.1% (wt/vol) bovine serum albumin and 

incubated for a further 30 min with R-phycoerythrin-conjugated F(ab)2 goat anti-

mouse immunoglobulin G (1:100 dilution) (Jackson ImmunoResearch 

Laboratories, West Grove, PA) diluted 1:100 in PBS containing 0.1% BSA. Cells 

were washed again, resuspended in PBS, and analyzed with a BD FACS Calibur 

(BD Bioscience) by acquiring 15,000 events. FlowJo software (v.8.6, Tree Star, 

Ashland, OR) was used.  

 

4.14 Cell lines 

 

GBS infection assays were performed in both endothelial and epithelial cell lines. 

Immortalized human brain microvascular endothelial cell line (hBMEC) was 

kindly provided by professor Kwang Sik Kim at Johns Hopkins University and 

cells were cultured in RPMI1640 containing 10% FBS, 10% Nu-serum and 1% 

nonessential amino acids.  Immortalized human vaginal (VK2/E6E7) epithelial 

cell line was obtained from the American Type Culture Collection (ATCC CRL-

2616) and was cultured in keratinocyte serum-free medium (KSFM) (Invitrogen) 

containing 0.1 ng.ml_1 human recombinant epidermal growth factor (EGF), 0.05 

mg.ml_1 bovine pituitary extract, and 0.4 nM calcium chloride . Human A549 
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lung carcinoma cell line was obtained from the American Type Culture Collection 

(ATCC CCL-185) and was cultured in RPMI1640 Human A549 lung carcinoma 

cell line was containing 10% FBS, and 1% nonessential amino acids. All cells 

lines were maintained at 37°C with 5% CO2. 

 

4.15 Adherence and invasion assays 

 

For the infection assays  mid-log grown bacteria were added to confluent cell 

monolayers at a multiplicity of infection (MOI) of 1. Total cell-associated GBS 

bacteria were recovered after an incubation of 30 minutes, while intracellular GBS 

were recovered after 2-h infection and 2-h incubation with 100 μg of gentamicin 

(Sigma) and 5μg of penicillin (Sigma) to kill all extracellular bacteria.  After 

washing, monolayers were trypsinized with 0.1 ml of 0.25% trypsin-EDTA 

solution and lysed with addition of 0.4 ml of 0.025% Triton X-100 by vigorous 

pipetting and the number of invasive bacteria was quantified by serial dilution 

plating on THA. Parallel invasion experiments were performed in hBMEC, 

vaginal epithelial cells and A549 lung epithelial cells. Bacterial adherence (total 

cell-associated) and invasion was calculated as (recovered CFU/initial inoculum 

CFU) x100%.  

All cellular adherence and invasion assays were performed in triplicate and 

repeated at least three times. 

 

4.16 Binding of GBS to ECM components 

 

96 well plates were coated with human fibronectin (Sigma), rat tail collagen type I 

(Sigma), human fibrinogen (Acris Antibodies) and laminin from human placenta 

(Sigma) respectively at a concentration of 5μg.ml-1. The assay was performed as 

described previously (42). Briefly ~1×105 CFU of GBS were added into each well 

and incubate for 30 min at 37°C. The wells were then washed with PBS to remove 

unbound bacteria, and adherent bacteria were treated with 50 μL 0.25% trypsin-

EDTA solution for 10 min at 37°C to release the attached bacteria. Bacteria were 

quantified by plating serial dilutions onto THB agar. The percentage of GBS 
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binding to ECM components was calculated as (recovered CFU/initial inoculum) 

×100%. 

 

4.17 Mouse model of meningitis 

 

Animal experiments were approved by the committee on the use and care of 

animals at San Diego State University (SDSU) protocol APF 13-07-011D and 

performed using accepted veterinary standards. We utilized a mouse model of 

hematogenous GBS meningitis that has already been used in Kelly Doran’s lab at 

SDSU (42). Briefly, 8-week-old male CD-1 mice (Charles River Laboratories, 

Wilmington, MA, USA) were injected via tail vein (i.v.) with 1.5×108 CFU of 

GBS. At the experimental endpoint (day 2 p.i.) blood, brain and lungs were 

collected upon euthanasia. Tissues were homogenized and homogenates as well as 

blood were plated on THB agar for enumeration of bacterial CFU.  

 

4.18 Bacteria blood survival assay 

 

4×103 CFU of mid log phase GBS were added into 0.2 ml of heparinized mice 

fresh blood and incubated at 37°C with rotation. The number of viable bacteria in 

the mixture was determined by plating serial dilutions on THA every 30 min up to 

7 hr. Each GBS strain was run in triplicate for each time point. 

 

4.19 In vivo mouse model of vaginal colonization 

 
Female CD1 mice, 8 weeks of age were used for colonization assays (10 mice per 

group) as described previously (113). They were injected intraperitoneally (i.p.) 

with 0.5mg β-estradiol valerate in 100uL of sesame oil (Sigma) to synchronize 

estrus and optimize bacterial colonization 24h prior to GBS inoculation.Mice 

were inoculated with a total ~1x107 CFU of GBS in 10μL of PBS in the vaginal 

vault.WT and the two BP mutant strains were used. In the following days the 

bacterial load was determined by swabbing the vaginal lumen with ultrafine 

calcium alginate-tipped swabs and serial dilution plating of swab samples on 
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CHROMagarStrepBagar (DRGInternational Inc.). These plates allow to identify 

GBS and native Enterococcus strains by the presence of pink- and blue-pigmented 

colonies, respectively.  

 

4.20 Statistical analysis 

 

The significance of differences in bacterial counts between mice groups or in 

hBMEC adherence and invasion was determined using one-way ANOVA. P < 

0.05 was considered to be significant. 

GraphPad Prism (GraphPad Software, San Diego, CA, USA) was used for all the 

analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



84 
 

Supplementary tables 
 

Table 1. Bacterial strains and plasmids used in this study 

Strain or plasmid Relevant characteristic(s) 
Source or 
reference 

Strains   

    E. coli   

        Rosetta F– ompT hsdSB(rB– mB–) gal dcm pRARE2 (CamR) Novagen 

        DH5α F- φ80lacZ∆M15 ∆(lacZYA-argF) U169 recA1 endA1 hsdR17 (rk-, 
mk+) phoA supE44 λ- thi-1 gyrA96 relA1  

Invitrogen 

        Mach1™-T1R F- φ80(lacZ)∆M15 ∆lacX74 hsdR(rK-mK+) ∆recA1398 endA1 tonA Invitrogen 

   

    S. agalactiae   

ABC020017623  Wild type (24) 

ABC020017623∆BP GBS knockout (KO) deleted of  pilus 2b backbone protein gene (153) 

ABC020017623∆BP + BPwt ∆BP complemented with pAM401_BPWT This study 

ABC020017623∆BP + BPΔLPXTG ∆BP complemented with pAM401_BPΔLPXTG This study 

ABC020017623∆BP + BPE423A ∆BP complemented with pAM401_BPE423A This study 

ABC020017623∆BP + BPK77A ∆BP complemented with pAM401_BPK77A This study 

ABC020017623∆BP + BPK82A ∆BP complemented with pAM401_BPK82A This study 

ABC020017623∆BP + BPK118A ∆BP complemented with pAM401_BPK118A This study 

ABC020017623∆BP + BPK175A ∆BP complemented with pAM401_BPK175A This study 

ABC020017623∆SrtC1 GBS knockout (KO) deleted of  pilus 2b sortase C1 gene This study 

ABC020017623∆SrtC1 + SrtC1wt ∆SrtC1 complemented with pAM401_SrtC1WT This study 

ABC020017623∆SrtC1 + 
SrtC1C188A 

∆SrtC1 complemented with pAM401_SrtC1C188A This study 

ABC020017623∆SrtC2 GBS knockout (KO) deleted of  pilus 2b sortase C2 gene This study 

ABC020017623∆SrtC2 + SrtC2wt ∆SrtC2 complemented with pAM401_SrtC2WT This study 

ABC020017623∆SrtC2 + 
SrtC2C115A 

∆SrtC2 complemented with pAM401_SrtC1C115A This study 
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ABC020017623∆SrtC2 + 
SrtC2C180A 

∆SrtC2 complemented with pAM401-SrtC1C180A This study 

ABC020017623∆SrtC2 + 
SrtC2C192A 

∆SrtC2 complemented with pAM401-SrtC1C192A This study 

ABC020017623∆AP2 ∆AP2 Unpublished 
data 

ABC020017623∆AP2 + AP2 ∆AP2 complemented with pAM401-AP2 This study 

COH1 Wild type (50) 

COH1∆BP-1 GBS knockout (KO) deleted of  pilus 1 backbone protein gene (50) 

COH1∆BP-1 + BP-1 ∆BP-1 complemented with pAM401-BP-1 (50) 

COH1∆BP-2b GBS knockout (KO) deleted of  pilus 2b backbone protein gene Unpublished 
data 

COH1∆BP-2b + BP-2b ∆BP-2b complemented with pAM401-BP-2b This study 

Plasmids   

     pJRS233 6.0 kb; ColE1 ori; temperature-sensitive E. coli-streptococcal shuttle 
vector 

(154) 

     pJRS233_∆SrtC1 pJRS233-derived containing overlapping flanking sequences of 
SrtC1 gene 

This study 

     pJRS233_∆SrtC2 pJRS233-derived containing overlapping flanking sequences of 
SrtC2 gene 

This study 

     pAM401/gbs80P+T 11.5 kb; Cmr; ColE1 ori; E. Coli-streptococcal shuttle vector 
pAM401 containing promoter of gbs80 

(50) 

. .  pAM401_SrtC1WT pAM401/gbs80P+T-derived containing entire SrtC1WT coding 
sequence 

This study 

. .  pAM401_SrtCC188A pAM401/gbs80P+T-derived containing entire SrtC1C188A coding 
sequence 

This study 

..   pAM401_SrtC2WT pAM401/gbs80P+T-derived containing entire SrtC2WT coding 
sequence 

This study 

     pAM401_SrtC2C115A pAM401/gbs80P+T-derived containing entire SrtC2C115A coding 
sequence 

This study 

 ..  pAM401_SrtC2C180A pAM401/gbs80P+T-derived containing entire SrtC2C180A coding 
sequence 

This study 

 ..  pAM401_SrtC2C192A pAM401/gbs80P+T-derived containing entire SrtC2C192A coding 
sequence 

This study 

..   pAM401_AP2 pAM401/gbs80P+T-derived containing entire AP2 coding sequence This study 
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     pAM401_BP-2b pAM401/gbs80P+T-derived containing entire BP-2b coding 
sequence 

This study 

pAM401_BP-2bΔLPXTG pAM401/gbs80P+T-derived containing BP-2bΔLPXTG coding sequence This study 

pAM401_BP-2bE423A pAM401/gbs80P+T-derived containing entire BP-2bE423A coding 
sequence 

This study 

pAM401_BP-2bK77A pAM401/gbs80P+T-derived containing entire BP-2bK77A coding 
sequence 

This study 

pAM401_BP-2bK82A pAM401/gbs80P+T-derived containing entire BP-2bK82A coding 
sequence 

This study 

pAM401_BP-2bK118A pAM401/gbs80P+T-derived containing entire BP-2bK118A coding 
sequence 

This study 

pAM401_BP-2bK175A pAM401/gbs80P+T-derived containing entire BP-2bK175A coding 
sequence 

This study 

     pET15-TEV 5708bp; Bacterial expression vector with T7 promoter and N-
terminal TEV-cleavable 6xHis- tag; ampicillin resistance in bacteria; 
restriction enzyme cloning 

Novagen 

     pET15-TEV-Srtc232-199 pET15TEV-derived containing  SrtC232-199 coding sequence This study 

     pET15-TEV-Srtc2C115A pET15TEV-derived containing SrtC2C115A coding sequence This study 

     pET15-TEV-Srtc2C180A pET15TEV-derived containing SrtC2C180A coding sequence This study 

     pET15-TEV-Srtc2C192A pET15TEV-derived containing SrtC2C192A coding sequence This study 

     pET15-TEV-Srtc138-245 pET15TEV-derived containing SrtC1 coding sequence lacking of the 
N- and C-term transmembrane regions 

This study 
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Table 2. Primers used in this study 

	 Sequence 	

petTEVfor  TAACGCGACTTAATTCTAGCATAACCCCTTGGGGCCT
CAAACGG 

Sequencing after cloning in 
pet15 vector 

petTEVrev GCCCTGGAAGTACAGGTTTTCGTGATGATGATGATGA
TGGCTGCTGCCCATGGTATATC 

Sequencing after cloning in 
pet15 vector 

seqpetrev  GATATCCGGATATAGTTCCTC Sequencing after cloning in 
pet15 vector 

npet  CGCGAAATTAATACGACTCAC Sequencing after cloning in 
pet15 vector 

MSrtC2C11
5F 

GTGATTGCGGCGCATAATTTTCCTTATCATTTTGAT Site-directed mutagenesis 
for C115A in SrtC2 

MSrtC2C11
5R 

ATGCGCCGCAATCACCATGTTATTAGTTAAATAAGA Site-directed mutagenesis 
for C115A in SrtC2 

MSrtC2C18
0F 

TTTACTGCGACAAAGGCAGGAGTAGCTAGAGTATTA Site-directed mutagenesis 
for C180A in SrtC2 

MSrtC2C18
0R 

CTTTGTCGCAGTAAACAAGCTTAAGTCCCAATCATT Site-directed mutagenesis 
for C180A in SrtC2 

MSrtC2C19
2F 

GTGCGCGCGCAATTAATTGATGTTAAAAATTAA Site-directed mutagenesis 
for C192A in SrtC2 

MSrtC2C19
2R 

TAATTGCGCGCGCACTAATACTCTAGCTACTCCTGC Site-directed mutagenesis 
for C192A in SrtC2 

MSrtC1C18
8F 

GTGACGGCGACACCATATGGCGTTAATACCCATCGG Site-directed mutagenesis 
for C188A in SrtC1 

MSrtC1C18
8R 

TGGTGTCGCCGTCACCAAAGTTTGGTAGTCTTTACC Site-directed mutagenesis 
for C188A in SrtC1 

SeqSrtC2F ACAAGGTATTATGGTTCTTAT Sequencing of SrtC2 

SeqAP2F ACAAAAGCTGTTCATAAAACT Sequencing of AP2 

SeqSrtC1F TTAAAAGTTGGAGACCACTGG Sequencing of SrtC1 

PSrtC2R AATTAAGTCGCGTTAATTTTTAACATCAATTAATTG Cloning of SrtC2 in 
pet15tev 

PSrtC1F CTGTACTTCCAGGGCGCTTATCCTTCACTTGCTAAT Cloning of SrtC1 in 
pet15tev 

PSrtC1R22 AATTAAGTCGCGTTACTCTATTTGTATTGCCTCTGC Cloning of SrtC2 in 
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2   pet15tev 

SanSrtC1R
EV 

CTCTCTCTGAGATCTTTATAAATCATTGTTCTCTTCC
TTTCT 

Cloning of SrtC1 in PAM 

P5pjrsF GCTATGACCATGATTACGCCAAGC Sequencing of insertion in 
Pjrs 

P6pjrsR GCTTAAATCGGGCCATTTTGCG Sequencing of insertion in 
Pjrs 

P1FSrtC1  CGCGGATCCATGCCATCTGCTTCTGTAGTTGATTTGA
AC 

SrtC1 Ko construction 

P2R SrtC1 ATCGCTCGAGATTGGTGAAATGAATTC SrtC1 Ko construction 

P3F SrtC1 TCACCAATCTCGAGCGATAACGTAAGAAAATTTTAAA
ACAAGCA 

SrtC1 Ko construction 

SrtC1R4sa
l 

CCGGTCGACTTAAGTTCGGAATATCCAGAGTTCCCAA
G 

SrtC1 Ko construction 

P7seq 
SrtC1F  

ATGCCATCTGCTTCTGTAGTTGATTTGAAC  SrtC1 Ko construction 

P8seq 
SrtC1R  

TTTAAAACAAATATAGCACCTTGTAATGAA SrtC1 Ko construction 

P9seq 
SrtC1F  

GAATGCTACGGGTCAATTTCTAAACTTTAA SrtC1 Ko construction 

P10seq 
SrtC1R  

TAAATGTTGTCTTATTTTTTTCATATATTT SrtC1 Ko construction 

P11seq 
SrtC1F  

GTATCCATTTTGCTTGTCACTATAATTGCA SrtC1 Ko construction 

P12seq 
SrtC1R  

AAAGCCTTGAAGAGGGTAAACCTCTATGTC SrtC1 Ko construction 

P13seq 
SrtC1F  

TTTCTGATTTGGATAAGTTAAAAGTTGGAG SrtC1 Ko construction 

P14seq 
SrtC1R  

TACTTAGACTAAATAATAAGAGAAGAGTTA SrtC1 Ko construction 

P15seq 
SrtC1F  

CTCAACTTGTGTCTGCTGATACCAATGATC SrtC1 Ko construction 

P16seq 
SrtC1R  

AGGGCTCATTTTCTCAAATGCTGTAATATC SrtC1 Ko construction 

P17seq 
SrtC1F 

TTAAATGCTAAACCTAAAAAAGAAGAGACA SrtC1 Ko construction 
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P18seq 
SrtC1R  

TTAAGTTCGGAATATCCAGAGTTCCCAAGT SrtC1 Ko construction 

P19ext 
SrtC1F  

ATCATGGTACAGAAAAAGTGTATCAATATG SrtC1 Ko construction 

P20ext 
SrtC1R  

ACAGTTGTTCAAAACTATAATTAGCAGCTA SrtC1 Ko construction 

P1F SrtC2  CGCGGATCCATATGGCGTTAATACCCATCGGTTACTA
GT 

SrtC2 Ko construction 

P2R SrtC2 TAGATTCCAGAACTTACCAGAATAATTCCG SrtC2 Ko construction 

P3F SrtC2  AGGAGTAGCTAGAGTATTCGGAATTATTCTGGTAAGT
TCTGGAA 

SrtC2 Ko construction 

P4R SrtC2  CCGCTCGAGTCAAATGCGATTACAGTGTCGGGCCAAT
AT 

SrtC2 Ko construction 

P5seq 
SrtC2F   

ATATGGCGTTAATACCCATCGGTTACTAGT SrtC2 Ko construction 

P6seq 
SrtC2R   

TATAGTAATAGAACCCGTTTTCATCTGATC SrtC2 Ko construction 

P7seq 
SrtC2F   

AGGTATTGGAATAAAAGACGATGATCTAAC SrtC2 Ko construction 

P8seq 
SrtC2R   

TAATCACGTCTTCTTCTCCATTTTAAAGCT SrtC2 Ko construction 

P9seq 
SrtC2F   

GAAGATATTCAGCAAATTTTTTAGCTATAC SrtC2 Ko construction 

P10seq 
SrtC2R   

TCTATTACTGATTTTGTAGTGATAGATTTG SrtC2 Ko construction 

P11seq 
SrtC2F   

GAAATTATTGAACCAACAGCGATTGAAAAA SrtC2 Ko construction 

P12seq 
SrtC2R   

CATTTTACGTGTATTTGTCATAAAAAAATT SrtC2 Ko construction 

P13seq 
SrtC2F   

GTGACAATCGCCATTCTTTCTGCCTTATCT SrtC2 Ko construction 

P14seq 
SrtC2R   

TTTATATCTTTCTAATATTGGCAAACAAGCCA SrtC2 Ko construction 

P15ext 
SrtC2F  

ATTGTTAAAGGTAAAGACTACCAAACTTTG SrtC2 Ko construction 

P16ext 
SrtC2R  

TAGAAAGATTTGGCAACTGTCCTCTAACAC SrtC2 Ko construction 
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SrtC1 Not 
for 

CACCTGTCATGCGGCCGCATTTTAGTAATAGGAGCAG
GTA 

Cloning of SrtC1 into Pam 

SrtC1 
BglII-rev  

CTCTCTCTGAGATCTTTATAAATCATTGTTCTCTTCC
TTTCT 

Cloning of SrtC1 into Pam 

SrtC2 Not 
for 

CACCTGTCATGCGGCCGCTAATTATGTCAGGACTTC Cloning of SrtC2 into Pam 

SrtC2 Bgl 
rev 

CACCTGTCATAGATCTTTAATTTTTAACATCAATTAA Cloning of SrtC2 into Pam 

AP2 Not 
for 

CACCTGTCATGCGGCCGCAGCAATGAGAAAGGAAGAG
AACAA 

Cloning of AP2 into Pam 

AP2 Bgl 
rev 

CACCTGTCATAGATCTCTAATCACGTCTTCTTCTCCA
T 

Cloning of AP2 into Pam 

pAM-F CGTGACATGACTGAAATAGGTAGTTGAG Sequencing after cloning 
into pam vector 

pAM-R CATCGCCATCTTCAGTTGATTTTAATTGG Sequencing after 
cloning into pam 
vector 

AP2 Not 
for 

CACCTGTCATGCGGCCGCAGCAATGAGAAA
GGAAGAGAACAA 

Cloning of AP2 into 
Pam 

AP2 Bgl 
rev 

CACCTGTCATAGATCTCTAATCACGTCTTC
TTCTCCAT 

Cloning of AP2 into 
Pam 

BP-2b Not 
for 

CACCTGTCATGCGGCCGCGCTTTAGCTCTA
CCATCAGGA 

Cloning of BP-2b 
into Pam 

BP-2b Bgl 
rev 

CACCTGTCATAGATCTTTAAGAACGTAAAC
GACGACGA 

Cloning of BP-2b 
into Pam 

M-BP-
LPXTG-F 

AACAAAGGTACTGAGGGTATTGGTACAACA
ATTTTC 

Site-directed 
mutagenesis for 
LPXTG in BP-2b 

M-BP-
LPXTG-R 

CTCAGTACCTTTGTTATTTTCAACAGTTGG Site-directed 
mutagenesis for 
LPXTG in BP-2b 

M-BP-
E423-F 

GTAGTTGCGGCGAACGCGGGGTCTTA
TGAAGTAACT 

Site-directed 
mutagenesis for 
E423A in BP-2b 

M-BP-
E423-F 

AGACCCCGCGTTCGCCGCAACTACAG
AAGCAGATGG 

Site-directed 
mutagenesis for 
E423A in BP-2b 

M-BP-K77- CAAGGTGCGGAAGCTGAGTATAAAGC Site-directed 
mutagenesis for K77A 
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Table 3. Peptides used in this study 

 
PEPTIDE   SEQUENCE 

BP-2b = AP1-2b Dabsyl-KGTELPSTGGIGT-Edans 

AP2-2b Dabsyl-QTKGKLPFTGQV-Edans 

AP2-2a Dabsyl-SFLPKTGM-Edans 

AP2-1 Dabsyl-RGGLIPKTGEQQ-Edans 

	
 

 

F TTCAACTGAT in BP-2b 

M-BP-K77-
R 

AGCTTCCGCACCTTGAGGAATTAAATAAGAAG
CTCC  

Site-directed 
mutagenesis for K77A 
in BP-2b 

M-BP-K82-
F 

GAGTATGCGGCTTCAACTGATTTTAAT
TCTCTTTTT  

Site-directed 
mutagenesis for K82A 
in BP-2b 

M-BP-K82-
R 

TGAAGCCGCATACTCAGCTTCTTTACC
TTGAGGAAT 

Site-directed 
mutagenesis for K82A 
in BP-2b 

M-BP-
K118-F 

TGGGCTGCGTCTATATCAGCTAATAC
TACACCAGTT 

Site-directed 
mutagenesis for 
K118A in BP-2b 

M-BP-
K118-R 

TATAGACGCAGCCCATGTCGCAATCT
CATTTGCTGA 

Site-directed 
mutagenesis for 
K118A in BP-2b 

M-BP-
K175-F 

CATGAAGCGAATACTGATGCGACATG
GGGAGATGGT 

Site-directed 
mutagenesis for 
K175A in BP-2b 

M-BP-
K175-R 

AGTATTCGCTTCATGAATAGTAGCAT
TTGGAGTTAC 

Site-directed 
mutagenesis for 
K175A in BP-2b 
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Table 4.  Data collection and refinement statistics 

 
  SrtC1‐2b 

Wavelength 1.072 

Resolution range 45.92  - 1.95 (2.02  - 1.95) 

Space group P 21 21 2 

Unit cell 37.56 124.76 45.92 90 90 90 

Total reflections 56716 (5190) 

Unique reflections 16211 (1538) 

Multiplicity 3.5 (3.4) 

Completeness (%) 0.99 (0.96) 

Mean I/sigma(I) 15.73 (1.59) 

Wilson B-factor 34.81 

R-merge 0.04989 (0.6619) 

R-meas 0.0588 (0.7852) 

CC1/2 0.999 (0.695) 

CC* 1 (0.906) 

Reflections used in refinement 16202 (1534) 

Reflections used for R-free 811 (77) 

R-work1 0.1809 (0.2825) 

R-free2 0.2230 (0.3374) 

CC(work) 0.966 (0.836) 

CC(free) 0.973 (0.614) 

Number of non-hydrogen atoms 1645 

  macromolecules 1551 

  ligands 4 

Protein residues 193 

RMS(bonds) 0.008 
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RMS(angles) 1.03 

Ramachandran favored (%) 97 

Ramachandran allowed (%) 3.1 

Ramachandran outliers (%) 0 

Rotamer outliers (%) 0.57 

Clashscore 3.54 

Average B-factor 44.04 

  macromolecules 44.08 

  ligands 41.29 

  solvent 43.47 

Number of TLS groups 9 

 

Statistics for the highest-resolution shell are shown in parentheses. 

1 Rwork = Σ||F(obs)|- |F(calc)||/Σ|F(obs)| 

2 Rfree = as for Rwork, but calculated for 5.0% of the total reflections that were chosen at 
random and omitted from refinement. 
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Table 5.  Multiple structural alignment of SrtC1-2b (pdb 4d7w) with other known 

sortase structures using the DALI server  

 

 

Hits are ranked by Z-Score with best hits at the top of the table.  
PDB: Protein Data Bank  
rmsd: root-mean-square deviation of Cα atoms of superimposed proteins in Angstroms  
length alignment: number of structurally equivalent positions  
number of residues: number of structurally equivalent aligned residues  
sequence identity (%): percentage of amino acid identity in aligned positions  
 
 
Table References  
 
1. Neiers, F., et al., Two crystal structures of pneumococcal pilus sortase C 
provide novel insights into catalysis and substrate specificity. J Mol Biol, 2009. 
393(3): p. 704-16.  
2. Cozzi, R., et al., Structural basis for group B streptococcus pilus 1 sortases C 
regulation and specificity. PLoS One, 2012. 7(11): p. e49048. 
3. Manzano, C., et al., Sortase-mediated pilus fiber biogenesis in Streptococcus 
pneumoniae. Structure, 2008. 16(12): p. 1838-48.  
4. Persson, K., Structure of the sortase AcSrtC-1 from Actinomyces oris. Acta 
Crystallogr D Biol Crystallogr, 2011. 67(Pt 3): p. 212-7.  
5. Cozzi, R., et al., Structure analysis and site-directed mutagenesis of defined key 
residues and motives for pilus-related sortase C1 in group B Streptococcus. Faseb 
j, 2011. 25(6): p. 1874-86.  
6. Cozzi, R., et al., Structural basis for group B streptococcus pilus 1 sortases C 
regulation and specificity. PLoS One, 2012. 7(11): p. e49048.  
7. Lu, G., et al., A novel "open-form" structure of sortaseC from Streptococcus 
suis. Proteins, 2011. 79(9): p. 2764-9.  
8. Khare, B., et al., The crystal structure analysis of group B Streptococcus sortase 
C1: a model for the "lid" movement upon substrate binding. J Mol Biol, 2011. 
414(4): p. 563-77.  



95 
 

9. Manzano, C., et al., Sortase-mediated pilus fiber biogenesis in Streptococcus 
pneumoniae. Structure, 2008. 16(12): p. 1838-48.  
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