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ABSTRACT 

 

Transcription is controlled by promoter-selective transcriptional factors (TFs), which bind to 

cis-regulatory enhancers elements, termed hormone response elements (HREs), in a 

specific subset of genes. Regulation by these factors involves either the recruitment of 

coactivators or corepressors and direct interaction with the basal transcriptional machinery 

(1). Hormone-activated nuclear receptors (NRs) are well characterized transcriptional 

factors (2) that bind to the promoters of their target genes and recruit primary and 

secondary coactivator proteins which possess many enzymatic activities required for gene 

expression (1,3,4).  

In the present study, using single-cell high-resolution fluorescent microscopy and high 

throughput microscopy (HTM) coupled to computational imaging analysis, we investigated 

transcriptional regulation controlled by the estrogen receptor alpha (ER ), in terms of large 

scale chromatin remodeling and interaction with the associated coactivator SRC-3 (Steroid 

Receptor Coactivator-3), a member of p160 family (28) primary coactivators. ER  is a 

steroid-dependent transcriptional factor (16) that belongs to the NRs superfamily (2,3) and, 

in response to the hormone 17-ß estradiol (E2), regulates transcription of distinct target 

genes involved in development, puberty, and homeostasis (8,16). ER  spends most of its 

lifetime in the nucleus and undergoes a rapid (within minutes) intranuclear redistribution 

following the addition of either agonist or antagonist (17,18,19). 

We designed a HeLa cell line (PRL-HeLa), engineered with a chromosome-integrated 

reporter gene array (PRL-array) containing multicopy hormone response-binding elements 

for ER  that are derived from the physiological enhancer/promoter region of the prolactin 

gene. Following GFP-ER transfection of PRL-HeLa cells, we were able to observe in situ 

ligand dependent (i) recruitment to the array of the receptor and associated coregulators, 

(ii) chromatin remodeling, and (iii) direct transcriptional readout of the reporter gene. 

Addition of E2 causes a visible opening (decondensation) of the PRL-array, colocalization 

of RNA Polymerase II, and transcriptional readout of the reporter gene, detected by mRNA 

FISH. On the contrary, when cells were treated with an ER  antagonist (Tamoxifen or ICI), 
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a dramatic condensation of the PRL-array was observed, displacement of RNA 

Polymerase II, and complete decreasing in the transcriptional FISH signal.  

All p160 family coactivators (28) colocalize with ER  at the PRL-array. Steroid Receptor 

Coactivator-3 (SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family member and a 

known oncogenic protein (4,34). SRC-3 is regulated by a variety of posttranslational 

modifications, including methylation, phosphorylation, acetylation, ubiquitination and 

sumoylation (4,35). These events have been shown to be important for its interaction with 

other coactivator proteins and NRs and for its oncogenic potential (37,39). A number of 

extracellular signaling molecules, like steroid hormones, growth factors and cytokines, 

induce SRC-3 phosphorylation (40). These actions are mediated by a wide range of 

kinases, including extracellular-regulated kinase 1 and 2 (ERK1-2), c-Jun N-terminal 

kinase, p38 MAPK, and I B kinases (IKKs) (41,42,43). Here, we report SRC-3 to be a 

nucleocytoplasmic shuttling protein, whose cellular localization is regulated by 

phosphorylation and interaction with ER . Using a combination of high throughput and 

fluorescence microscopy, we show that both chemical inhibition (with U0126) and siRNA 

downregulation of the MAP/ERK1/2 kinase (MEK1/2) pathway induce a cytoplasmic shift in 

SRC-3 localization, whereas stimulation by EGF signaling enhances its nuclear 

localization by inducing phosphorylation at T24, S857, and S860, known partecipants in the 

regulation of SRC-3 activity (39). Accordingly, the cytoplasmic localization of a non-

phosphorylatable SRC-3 mutant further supports these results. In the presence of ER , 

U0126 also dramatically reduces: hormone-dependent colocalization of ER  and SRC-3 in 

the nucleus; formation of ER-SRC-3 coimmunoprecipitation complex in cell lysates; 

localization of SRC-3 at the ER-targeted prolactin promoter array (PRL-array) and 

transcriptional activity. Finally, we show that SRC-3 can also function as a cotransporter, 

facilitating the nuclear-cytoplasmic shuttling of estrogen receptor.  

While a wealth of studies have revealed the molecular functions of NRs and coregulators, 

there is a paucity of data on how these functions are spatiotemporally organized in the 

cellular context. Technically and conceptually, our findings have a new impact upon 

evaluating gene transcriptional control and mechanisms of action of gene regulators.   
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Key words: 

Transcriptional Coregulators; p160 Family Coactivators; SRC-3/AIB1; Estrogen Receptor Alpha; 

Nuclear Receptors; Chromatin Remodeling; Gene Transcription; High Throughput Microscopy; 

Human Cancer. 

 

Mostly used Abbreviation: 

AIB1 = Amplified in Breast Cancer 1; CBP = CREB (cyclic AMP response element binding protein) 

binding protein; ER = Estrogen Receptor; EGF = Epidermal Growth Factor; GFP = Green 

Fluorescent Protein; GTF = General Transcriptional Factor; HER2 = Human Epidermal Growth 

Factor Receptor 2; HRE = Hormone Response Element ; HTM = High Throughput Microscopy;  

NR = Nuclear Receptor; PTM = Posttranscriptional Modification; SRC = Steroid Receptor 

Coactivator; SD = Standard Deviation; SE = Standard Error; TF = Transcriptional Factor. 
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INTRODUCTION 

 

 

PART 1:  

Nuclear Receptors and Transcriptional Control of Gene 

Expression 

 

 

Nuclear receptors (NRs) comprise a variety of ligand-regulated transcriptions factors and 

play a central role in the body’s ability to transduce the endocrine hormones signaling. 

Gene-specific NR-mediated transcriotion results from the ability of NRs to recognize 

specific sequences within the promoter/enhancer region of their target genes. The 

complex relationship of NRs with the RNA Polymerase II holoenzyme and the chromatin 

environment surrounding the gene is fundamental for the specificity of gene expression. 

Coregulators (coactivators or corepressors) are the nub of this critical aspect of 

transcriptional control. 

 

Contents: 

• Nuclear Receptor Superfamily         

• Coactivators of Nuclear Receptors        

• Corepressors of Nuclear Receptors        

• Chromatin Dynamics and Gene Transcriptional Activation 

• General Transcription Factors  
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Nuclear Receptor Superfamily 

 

The mammalian nuclear receptors (NRs) are a family of approximately 50 members of 

transcriptional activator proteins (2). NRs regulate specific gene expression in response to 

the binding with small lipophilic molecules including steroid hormones, thyroid hormone, 

retinoic acid, vitamin D, fatty acids and eicosanoids. Genes regulated by NRs are involved 

in a broad variety of cellular processes (3,34) like metabolism, development, reproduction, 

growth and differentiation. Their primary function is to mediate transcriptional response in 

target cells to hormones and a variety of other metabolic ligands. 

 

 

 

 

 

 

 

 

Figure 1. Canonical representation of functional domains of nuclear hormone receptors. Nuclear 

receptors share a modular structure constituted of a non-conserved amino-terminal domain that contains the 

transcriptional activation function 1 (AF-1), a conserved DNA-binding domain (DBD), a hinge region, and a 

carboxyl-terminal ligand-binding domain (LBD) that contains the transcriptional activation function 2 (AF-2). 

Nuclear localization sequences (NLS) and dimerization domains are also shown. 

 

Three-dimensional structure analysis of different NRs reveals a common basic structure 

(9,16) (Fig.1), presenting three main functional domains: an high conserved DNA binding 

domain (DBD) that recognize a specific enhancer element called hormone response 

element (HRE); a carboxyl terminal ligand-binding domain (LBD), which binds the specific 

hormone, inducing the active conformation of the receptor; a less well defined amino 

terminal domain that is not conserved. The DNA binding domain (3,11) contains two zinc-
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finger modules (10) coordinated with four conserved cysteine residues: a DNA recognition 

-helix extends between the two zinc-fingers, making specific contacts in the major 

groove, while a second -helix is required for the overall folding of the domain (Fig.2.A). 

This structural motif is a distinctive feature of all NRs. The LBD domain (12) usually 

consists of 12 -helices folding with a conserved hydrophobic cavity in which the ligand is 

buried. Helix 12 extends away from the LBD core in the absence of ligand and undergoes 

a consistent repositioning in response to the hormone binding, sealing the entry site of the 

binding cavity and creating a hydrophobic surface that is recognized by primary co-

activators (Fig.2.B). In addition to providing a binding pocket for the ligand, the LBD 

domain contains recognition sites for the interaction with chaperones (13) and possesses a 

dimerization function (14) (independent on the interaction with DNA) and a ligand-

dependent transcriptional activation function (15), termed activation function AF-2. The 

DBD domain contains a second dimerization region that is dependent on DNA binding 

(21), with the role of stabilizing the receptor-DNA complex. The amino terminal domain is 

the most divergent with respect to length and amino acid sequence and little is known 

about its function. Some NRs, like steroid receptors, have a long N-terminus that retains a 

second trans-activation domain (22,23), called AF-1 (Fig.1). Through the activation 

domains the hormone-bound NR recruits coactivators to the target gene promoter.  
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Figure 2. 3D molecular structure of DNA-binding and ligand-binding domain of NRs. (A) Conserved 

structure of the DNA-binding domain (DBD) of nuclear receptors, showing a dimer complexed to DNA. The 

recognition -helix 1 (H1) fits into the major groove, while helix 2 (H2) is important to hold the overall 

structure and the zinc-conjugated dimerization complex. Zinc atoms are shown as balls while DNA is 

represented as a ball-and-stick diagram. (B) Conserved structure of the ligand-binding domain (LBD) of 

nuclear receptors. The crystal structure of estrogen receptor alpha LBD complexed with estradiol is depicted. 

Helix 12 contains the AF-2 transactivation function and folds over the ligand-binding pocket. 

 

Member of the NRs family are classified both physiogenetically and by differences in their 

mechanism of action (2). NRs have a DNA-binding domain (DBD) that recognizes the 

specific enhancer element in at least three differing modes: according to this DNA-

specificity, NRs are classified in three classes. Class I of NRs consists of steroid hormones 

receptors (SRs), like receptors for glucocorticoids (GR), progesterone (PR), androgen 

(AR), mineralocorticoids (MR) and estrogen (ER): they recognize a consensus sequence 

of 6 nucleotides arranged as an inverted repeat (24) and dimerize only after the binding to 

DNA, while in the absence of hormone SRs associate with a chaperone complex that help 

to keep the receptor in a folded state off of DNA until activated by the hormone (13,14). 
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Class II and class III of NRs (nonsteroid receptors) do not seam to form a stable 

association with chaperones and bind to DNA constitutively: activation occurs 

subsequently to DNA binding. Class II consists of vitamin D receptor (VDR), thyroid 

hormone receptor (TR), retinoic acid receptor (RAR), peroxisome proliferator activated 

receptor (PPAR) and bind to DNA generally as heterodimers with another element of the 

NR family, retinoid X receptor (RXR). Although RXR can function as a transcription factor 

itself in response to the binding to its ligand, 9-cis-retinoic acid, its main role is to act as a 

heterodimer partner (21) required for class II of NRs to bind with high affinity to the specific 

HRE. The class II RXR-heterodimer receptors recognize a hexanucleotide HRE arranged 

as direct repeat: variable nucleotide spacing in the half-site of the direct repeat provides 

the specificity of binding. Class III is the third and largest class of NRs and comprises 

orphan nuclear receptors (26), for which physiological ligand remain to be identify. Orphan 

receptors are capable of binding to DNA either as homodimers or as heterodimers with 

RXR (21). They can also stably bind to extend half-site of consensus sequence thanks to 

the presence of a so-called Grip Box in the C-terminal prolonged region of the DBD (27). 

The Grip Box forms a loop structure capable to lie in the minor groove of DNA, 

immediately after the 5' of the consensus hexanucleotide, providing a protein-DNA 

interaction in addiction to the core DBD recognition helix that lays in the major groove. 

Class I receptors, in the absence of ligand, are sequestered by heat shock proteins and, in 

this state, are not thought to influence the rate of transcription at target genes. Conversely, 

class II receptors are able to bind DNA in the absence of ligand and often may exert a 

repressive effect upon the activation of their promoters, a phenomenon referred to as 

silencing (3).  

Concerning to the actual model of mechanism of action in gene expression (1), DNA-

bound NRs enable the recruitment of several different complexes of proteins (4,6), 

including either coactivators, which mediate transcriptional potential of activated NRs, or 

corepressors, which transduce the nonactivating function of NRs and trigger transcriptional 

repression. Accordingly, there is a combinatorial NR-mediated control of gene transcription 

(Fig.3): initial binding of activating ligand results in dissociation of corepressors from DNA-
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bound NRs and recruitment of primary and secondary coactivator proteins (8) which locally 

remodel nucleosomal structure (5) and promote a readily accessible chromatin context for 

the assembly of preinitiation complex, resulting in the activation of RNA polymerase II and 

the basal transcriptional machinery (9), and initiation of transcription.  

 

 

Combinatorial NR-mediated control of gene transcription 

(Legend in the next page) 
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Figure 3. Combinatorial NR-mediated control of gene transcription. Representative model of gene 

transcription activation and assembling of transcriptional complex to the promoter. According to this model, 

coactivators and corepressors compete for the interaction with transcriptional factors. Chromatin is normally 

condensed and unexpressed. Following the specific cellular signal, transcriptional corepressors are 

displaced while transcriptional coactivators and activators are combinatorially recruited to the promoter. 

Binding of SRCs and CBP results in local acetyltransferase activity and chromatin opening. Recruitment of 

SWI/SNF remodeling complex causes the modification of the overall nucleosomal structure. TRAP/DRIP 

directly contacts components of the basal transcription machinery to effect transcriptional initiation. Us a 

result, the promoter region becomes accessible to the transcriptional machine and mRNA is transcribed from 

the initiation site. Local coactivator recruitment may vary: a promoter in a readily accessible chromatin 

context may not require significant chromatin remodeling or histone acetyltransferase activity for assembling 

of a preinitiation complex. 

 

 

The p160 family members are primary coactivators (28) that directly bind to activated NRs 

and recruit secondary coactivators with local acetyl-transferase activity (CBP/p300) or 

methyl-transferase activity (CARM1). The SWI/SNF coactivator complex and other similar 

complexes have an ATP-dependent nucleosome remodeling activity, which contributes to 

a significant overall alteration of the chromatin structure. The TRAP/DRIP complex directly 

interacts with RNA polymerase II and apparently participates in the recruitment and 

activation of the polymerase. Transcription activation arises from a complex relationship 

between NRs, tens of distinct coregulators and the genes (Fig.3). Most importantly, 

coregulators are versatile factors that influence not only transcriptional initiation but also 

elongation, splicing, and translation. Additionally, they can also regulate a variety of 

biological processes outside of the nucleus, acting as propagators of post-translational 

modifications. This important concept underlines the sophisticated and dynamic epigenetic 

control that has been developed in the mammalian phenotype. 
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Coactivators of Nuclear Receptors 

 

The NRs coactivators, as well as NRs corepressors, belong to that group of proteins 

termed coregulators (7). We conventionally define coactivators as molecules that interact 

with NRs and enhance their transactivation. Analogously, corepressors are molecules that 

lower the transcription rate at NRs target genes. Most coregulators are, by definition, rate 

limiting for nuclear receptors activation or repression, but do not significantly alter basal 

transcription.  

It is now over a decade since the first NRs coactivator, SRC-1 was cloned and discovered 

(29,30) to be a new type of transcriptional factor that do not bind to DNA, but directly or 

indirectly bind to NRs, mediating their transcriptional activity. Initially, we believed that 

coactivators were simply adaptor proteins that stabilized the general transcription 

machinery at the TATA box. Over the past decade, we realized that they perform virtually 

all of the reactions needed for controlling the enhancer-dependent gene expression (35) 

and coordinate many aspects of hormone-receptor physiology (31,34), including the 

concepts of tissue specificity, hormone kinetics (32), integration of membrane and nuclear 

signaling (39), nuclear coordination of mitochondria (34), even mRNA translation (45) and 

cell motility processes (44). In fact, different coregulators appear to coordinately control 

many diverse DNA-binding transcriptional factors in order to implement major physiological 

processes within the cell such as inflammation (42,43), fat and carbohydrate metabolism 

(46), and cell growth (34,35). 

Unlike general transcriptional factors (GTFs), coactivators interact directly or in close 

association with the enhancer DNA-binding transcriptional factors and are not constitutive 

of the RNA polymerase II holocomplex. Coactivator recruitment is usually, but not always, 

ligand dependent. Coactivators can be subdivided into two groups: primary coactivators 

and secondary coactivators, which actually could be referred to as co-coactivators (161). 

Co-coactivators are constituents of multisubunit coactivator complexes, which contribute to 

the enhancement of NR-mediated transcription but do not directly contact NRs, like 

primary coactivators (162). Coactivators always function in multiprotein complexes: they 
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are recruited to the target gene following NRs binding to the promoter and accomplish 

many enzymatic activities (28), like modification of chromatin structure (acetylation, 

methylation, phosphorylation), required for initiation of transcription, elongation of RNA 

chain, RNA splicing and finally termination of transcription. Even closely related 

coactivators (i.e. SRC-1 and SRC-3) have specific and different gene regulatory functions, 

associated with the control of metabolism, reproduction, cardiovascular system, neurology 

and they have great importance in many diseases, including cancer. In addiction, these 

factors may function as molecular gates to enable integration of diverse signal 

transduction pathways at NRs-regulated promoters. Over 270 coregulators have been 

identified till now and almost 160 of them are associated with some pathological state. The 

most frequent of the pathologies are a variety of cancers in which coregulators have been 

shown to serve as either oncogenes or tumor suppressors, depending upon signaling and 

cell context. 

 

Corepressors of Nuclear Receptors 

 

Originally corepressors were predicted to exist based upon the ability of the unliganded 

thyroid hormone receptor to function as a transcriptional repressor (164). Transcriptional 

repression (47) might in some way reflect transcriptional activation (48), representing its 

negative counterpart. In fact, an increasing number of studies have been providing new 

insights into how transcriptional corepressors, in addition to blocking activators entrance to 

the promoter site, may basically assemble repression complexes that include chromatin 

modification factors. Accordingly, NR corepressors (4), like NCoR or SMRT (49), are 

recruited by NRs either in the absence of ligand (50) or following the binding of NR to the 

antagonist (such as Tamoxifen). Normally, corepressors are supposed to repress gene 

expression primarily through their interaction with unliganded NR (163). Interaction with NR 

is mediated through amphipathic helical peptides, called CoRNR boxes (51), which are 

actually similar to the previously characterized NR-coactivator box. As a result, 

transcriptional corepressors are not only structurally similar but also functionally 
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comparable to coactivators. Histone deacetylation, for example, antagonizes coactivator 

acetyltransferase activity, although corepressors, lacking intrinsic deacetylase domains, 

require recruited factors such as Sin3 and histone deacetylases (HDACs) (52,53). Similarly 

to coactivators, corepressors are also targeted by posttranslational modifications. For 

example, intracellular localization of coregulators SMRT and NCoR is controlled by 

phosphorylation (169,170). Phosphorylation of SMRT results in its redistribution to the 

cytoplasm, neutralizing it corepressing function. Also, as observed in neural stem cells, 

NCoR is exported to the cytoplasm when phosphorylated by the Akt kinase, affecting the 

ability to differentiate into astrocytes (171). NCoR is subjected to SUMOylation too, which 

enhances its corepressing function (172).  

NCoR (nuclear receptor corepressor), also know as RIP-3, is probably the most well 

established corepressor (50). It is a 270-KD protein that specifically binds unliganded TR  

and RAR , while only partial interaction has been observed with RXR, ER, or GR (175). 

Mutational analysis of the TR LBD has identified a domain, termed the NCoR box, which is 

indispensable for the interaction of TR with NCoR (50). To substantiate the function of 

NCoR as a mediator of ligand-independent repression, fusion of NCoR to the Gal4-DBD 

effects potent repression at the reporter promoter bearing Gal4-DBD-binding sites (50). 

Moreover, deletion mutants have identified two receptor-interacting domains (RIDs) in the 

C-terminal portion of NCoR (175). 

SMRT (silencing mediator for retinoic and thyroid hormone receptor) is the other important 

well-known corepressor of NRs. It was isolated on the basis of its interaction with RAR, 

RXR, and TR (176). Two C-terminal RID domains are present in the sequence of SMRT 

and are capable of differentially interact with individual receptors: for example, RAR  binds 

RID-1 exclusively, whereas TR binds both domains with equal affinity (177). 

NCoR and SMRT are structurally similar (50, 178) but also differ functionally in several 

respects. For example, the functional diversity among RAR isoforms has been ascribed to 

the differential interaction with SMRT or NCoR: whereas RAR  and RAR  interact with 

both corepressors, RAR  exhibits no affinity for either SMRT or NCoR (177). These 

corepressors differ most notably, however, in the mediation of transcriptional repression by 
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certain orphan receptors. Orphan receptor DAX-1, which interacts with NCoR (179), does 

not interact with SMRT. Similarly, RevErb exclusively recruits NCoR to the DNA, but not 

SMRT to effect transcriptional repression (180). 

TRUP (thyroid receptor-uncoupled protein) is another transcriptional repressor, which 

attenuates hormone-dependent transactivation by TR and RAR, but has no effects on ER 

and RXR transactivation (181).  

Notably, steroid hormone receptors, like ER, PR or GR, have little DNA-binding activity in 

the absence of hormone; indeed, steroid receptors are sequestered in the cytoplasm by 

ternary interactions with hsp90 and hsp70 (3). Anyway, a number of studies have since 

demonstrated the interaction of nuclear receptor corepressors with antagonist-bound 

steroid receptors. SMRT has been shown to interact with ER in the presence of tamoxifen 

(182). NCoR is also likewise able to interact with antagonist-bound PR-LBD and 

overexpression of NCoR and SMRT markedly suppress the partial agonist activity of 

RU486 bound to PR (183). 

 

Chromatin Dynamics and Gene Transcriptional Activation 

 

Activation of gene transcription definitely occurs as a result of combinatorial control of 

gene expression accomplished by NR-mediated recruitment of functionally distinct 

coregulator complexes: multiple coactivators contribute in a complementary way to 

transcriptional activation. Hence, it has become clear that transcriptional coregulators act 

as master directors of chromatin remodeling and nucleosomal organization, 

communicating with each other and with the transcriptional apparatus through a 

complicate network of post-translational modifications. The entire process of NR-induced 

coactivators recruitment, assembly of transcription machinery, and initiation of transcription 

is dynamic and may happen in a cyclic fashion. For example, the ER  transcription 

complex appears to repeatedly cycle on and off of the target promoters in the presence of 

estrogen (85). The cycling is probably regulated by phosphorylation of the C-terminal 

region of RNA-Polymerase II, exchange of coactivators (especially CBP and p300), and 
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covalent modifications, phosphorylation and acetylation, of coregulators (especially SRCs) 

(78,86,87). Specifically, post-translational modification of coregulators has been emerging 

as an elegant mechanism for controlling tissue- and promoter-specificity of gene 

expression.  Among several identified coregulators, p160 family members and the histone 

acetyltransferase CBP appear to be particularly prone to modifications by kinase-mediated 

signaling pathways (78). Kinase-mediated signaling may also communicate directly with 

NRs: AF-1 domain phosphorylation might serve to further consolidate ligand-dependent 

NR-SRC interaction or to recruit SRCs to the promoter in absence of ligand (Fig.3).  

Currently, two secondary coactivators have been shown to be part of the p160 primary 

coactivator complex and collaborate with p160 coactivators to mediate transcriptional 

activation: the histone acetyltransferase CBP (or the related protein p300), and the histone 

methyltransferase CARM1. Accumulating data support a sequential mechanism for p160 

function: CBP/p300, CARM1, pCAF, PRMT1, and other specific secondary components 

are recruited to the promoter following the direct interaction with ligand-bound NRs and 

specifically acetylate and methylate histones around the promoter region. In fact, 

posttranscriptional modifications of histones represent the major target for coregulator-

mediate signaling and the final conduit to the regulation of gene expression (168). In the 

eukaryotic chromosome the histone represents the basic protein unit of the nucleosome, 

which constitutes the regularly repeating structure in which DNA is organized. The 

nucleosome core particle comprises a histone octamer, made up of two copies each of 

histones H2A, H2B, H3, and H4, around which is wrapped 1.7 turns of left-handed DNA 

superhelix (184). Much importantly, the net effect of this rearrangement is to create a 

thermodynamic barrier against the access of transcriptional factors to the DNA. 

Specifically, the amino-terminal tails of histones play an essential role in making 

internucleosomal contacts (185) and, for that reason, represent the major target of histone-

modifying enzymes, such as acetylases and deacetylases, which ultimately regulate the 

access of transcriptional factors to the cognate DNA elements. Increased histone tails 

acetylation correlates with gene activation, whereas hypoacetylation or deacetylation has 

been associated with repression (187). The major effect of hyperacetylation of amino-
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terminal histone tails, especially at selective lysine residues, is to reduce the positive 

charge and hence uncouple their interaction with negatively charged DNA, and thereby 

creating an environment more accessible to TFs (188). Specifically, p300 and CBP can 

acetylate all four core-histone types and, whereas CBP exhibits no substrate specificity, 

p300 HAT activity is directed primarily towards histone H3 (189,190). The intrinsic HAT 

activity of pCAF (p300/CBP associated factor) primarily targets histones H3 and H4 (191). 

pCAF interacts in vitro with p300/CBP (191), SRC-1 (120), SRC-3 (57), and nuclear 

receptors (192,193), interactions that serve to stabilize the functional complex of receptor 

ate the promoter. Additionally, HAT activity is also conserved in members of p160 family, 

including SRC-1 (120) and SRC-3 (57), although no such activity has been identified in 

SRC-2. However, SRCs HAT activity is only marginal and does not seams to be crucial for 

the modification of nucleosomal structure. Instead SRCs function in this context is to 

recruit at the promoter diverse combination of stronger HAT activities possessed by 

secondary coactivators. 

As previously mentioned (Fig.3), a multistep model has been envisaged for transcriptional 

activation by nuclear receptors, in which binding of receptor to the enhancer region directs 

modification of the local chromatin structure into a transcriptionally permissive state, 

followed by recruitment of GTFs (see later) to for the preinitiation complex at the promoter. 

Basically the entire process id orchestrated by coactivators, which are thought to be 

fundamental for recruiting chromatin-modifying enzymes, acetylases and ATPases 

complexes. In fact, following the initial assembly of primary coactivators to the promoter, 

the SWI/SNF chromatin-remodeling complex is recruited through direct interaction with 

CBP/p300 and the CBP/p300-acetylated histone tails stabilizes the recruitment. The 

SWI/SNF complex possesses ATPase activity, causing active disruption of the chromatin 

state, in an ATP-dependent manner, and hence resulting in stable changes of DNA 

topology (81,82). The TRAP complex is in turn recruited to the chromatin through 

interactions with SRC/CBP/p300 preformed complex. The TRAP complex directly 

communicates with the basal transcriptional machinery loading initiation of transcriptional 

activation (83,84).  
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Broadly speaking, histone deacetylation represents a state of gene repression. The 

cloning of mammalian homologues of yeast deacetylases proteins (194,195,196), finally 

established a functional link between histone deacetylation and transcriptional regulation. 

Mammalian HDAC-1 (194), HDAC-2 (195), and Sin3 (196) proteins have been well 

documented to be involved in repression of transcription by nuclear receptors (197). 

Association between Sin3 and HDAC-1 and HDAC-2 has also been demonstrated in vivo 

(198). In addition, biochemical evidences suggest that Sin3 and HDACs exist in a stable 

preformed complex in mammalian cells (199,200). Moreover, anti-NCoR antibodies have 

been shown to specifically coimmunoprecipitate with histone deacetylases (53,201,54).  

Collectively, these data support the idea that nucleosomal condensation through 

recruitment of corepressors and associated histone deacetylases is the mechanism by 

which unliganded NRs inhibit the assembly of the preinitiation complex, maintaining a 

transcriptionally inactive steady state. Ligand binding is thought to induce release of 

corepressors enable the receptor to recruit PCAF, p300/CBP, and SRCs to effect histone 

acetylation and promote the transcriptionally permissive environment at the promoter. 

 

General Transcription Factors 

 

Nuclear receptors regulate transcription through enhancer and promoter elements that 

may be located thousands or hundreds of base pairs from the transcription initiation site, at 

which transcription is mediated by RNA polymerase II  (Pol II) and its several associated 

genera transcriptional factors (GTFs), which are constituents of the so-called Pol II 

holoenzyme. The initial step in mRNA transcription is the binding of TFIID to the promoter, 

at short distance from the transcriptional start site. TFIID functions as a multiprotein 

complex composed of TATA-binding protein (TBP) and the highly conserved TBP-

associated factors (TAFs). Human TFIID complex has been shown to be composed of a 

core group of subunits, containing hTAFII250, hTAFII135, hTAFII30, hTAFII20, and 

hTAF18 (202,203). Following TFIID binding, TFIIB, another important TF is recruited to the 

TBP-DNA complex. TFIIB possesses affinity for single-stranded DNA and places in 
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proximity to TATA box in response to a critical change in DNA topology induced by TBP 

(204). Binding of TFIIB is necessary for recruitment of TFII- , which is followed by RNA 

polymerase II entrance (205). TBP and TAFIIs interact functionally with specific nuclear 

receptors. Several interactions between TBP and NRs have been reported. Protein-protein 

interaction assay, such as yeast two-hybrid system and in vitro binding assay with 

recombinant proteins, have detected an association between TBP and AF-2 domain of 

RXR (205) and AF-1 and AF-2 domains of ER (207). A similar association has been found 

for PR with TFIID (208). Moreover, interactions of NRs with other general transcription 

factors have been described: between TFIIF and AR (209), TFIIH and RAR (210), and 

between TFIIB with VDR (211) and other nuclear receptors (212). Interaction of general 

transcriptional factors and nuclear receptors may be influential in modulating a DNA-bound 

ternary complex between receptor, TFIIs, and TBP-TAFs, contributing to the assembly of 

final transcriptional complexes at NRs target promoters. Consistent with the designation 

that TFs recruitment is a rate-limiting step, direct contacts between NRs and RNA 

Polymerase II-associated TFs may represent the endpoint of a stepwise aggregation of 

hundreds of factors. Essentially, it is by influencing the rate of assembly of such factors 

that nuclear receptors, in association with their coregulators, achieve activation of 

hormone-regulated genes. 
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PART 2:  

Structure and Function of SRC Coactivators 

 

 

The steroid receptor coactivator (SRC) gene family (also called p160 family) consists of 

three homologous members (SRC -1, -2, and -3), which acts as generic primary 

transcriptional coactivators for NRs and also other type of transcription factors. The major 

role of these coactivators is to specifically interact with hormone-activated NR, enanching 

their transcriptional activity and promoting the recruitment of chromatin modification 

enzymes to the promoter region. The molecular structure, as well as the fine spatio-

temporal regulation, has been revealed to be essential for molecular mechanism of action 

and functional specificity of SRC family members. Most of the information concerning the 

biological function of p160 coactivators derives from the characterization of animal models, 

which revealed their fundamental role in development, organ maturation, endocrine 

regulation, and NR function. Accordingly, their disregulation and overexpression is critical 

for the progression of many type of cancer. 

 

Contents: 

• The p160 Primary Coactivators Family 

• Structural and Functional Domains of SRC Family Proteins 

• Role of SRC Proteins in Chromatin Remodeling and Transcriptional Activation 

• Biological Function and Characterization of SRC Family Members 
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  SRC-2 (TIF-2/GRIP-1/NCoA-2) 

  SRC-3 (NCoA3/pCIP/AIB1/ACTR/RAC-3/TRAM-1) 
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The p160 Primary Coactivators Family 

 

According to the assumption that gene activation arises from a coactivators-driven signal 

transduction system, in which each component need to possess specific domains for 

interacting with upstream and downstream components, primary coactivators serve as the 

earliest and major nexus between DNA-bound transcriptional factors and cellular signaling 

pathways. These coactivators interact with ligand-bound nuclear receptors (1,5) recruiting 

histone acetyltransferases (HATs) and methyltransferases (DMTs) to specific enhancer 

regions (47), which facilitates chromatin remodeling and consequently assembly of general 

transcription factors.  

The p160 steroid receptor coactivator (SRC) gene family was firstly identified in the 90's 

(29,30) and consists of three homologous members (28), which act as primary coactivators 

for NRs and certain other transcription factors. SRC-1 (full length SRC-1 or steroid 

receptor coactivator-1) was cloned through its ability to interact with the ligand bound PR, 

ER, or TR (29,30); SRC-2 (glucocorticoid receptor-interacting protein 1, transcriptional 

intermediary factor-2, or steroid receptor coactivator-2) was identified through its 

interactions with ligand binding domains of GR and ER (54,55); SRC-3 (p300/CBP -

interacting protein, receptor-associated coactivator 3, acetyl transferase ACTR, amplified 

in breast cancer 1, thyroid hormone receptor activator molecule-1, or steroid receptor 

coactivator-3) was initially identified in an amplified chromosomal region of a human breast 

cancer cell line and subsequently characterized as a nuclear receptor coactivator 

homologous to SRC-1 and SRC-2 (56,57,58,59). All three members of the SRC family are 

able to interact with many NRs in a ligand-dependent manner and significantly enhance 

NR-activated gene transcriptional. In addition to NRs, SRC family members, when 

experimentally expressed in cultured cells, also interact and coactivate certain other 

transcription factors such as AP-1 (60), serum response factor (61), nuclear factor-kB (NF-

kB) (62), and interferon-  and cAMP regulatory element-binding protein (CREB) (63). 

Therefore, each member of SRC family seem to serve as a general coactivator for multiple 

NRs, providing an explanation for the functional redundancy of SRC members observed in 
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vivo. 

The amino acid sequences and biological functions of all known SRC-related proteins are 

evolutionarily conserved among different species. Avian SRC-1 is 75% identical to 

mammalian SRC-1 protein. Except human and rodent, SRC-2 was also identified in 

zebrafish (zTIF2) and frog (64). SRC-3-related proteins where also identified in fruit fly and 

frog: in Drosophila a coactivator for ectysone receptor, called Taiman, was identified by a 

genetic approach and found sharing 48% of sequence identity with the N-terminal helix-

loop-helix domain of human SRC-3 (65); the Xenopus SRC-3 (xSRC-3) is 72% identical to 

mammalian SRC-3 (66) and was demonstrated that it can coactivate mammalian NRs 

such as retinoid X receptor, RAR, and TR. 

 

 

Structural and Functional Domains of SRC Family Proteins 

 

Human and rodent SRC proteins are about 160kDa and they are encoded from genes with 

an overall sequence similarity of 50-55% and sequence identity of 43-48% between the 

three members (Fig.4). Their most conserved N-terminal bHLH/PAS domain 

(bHLH/Per/Ah receptor nuclear translocator (ARNT)/Sim domain) was originally 

discovered in Drosophila, where it is involved in DNA binding and heterodimerization 

between other proteins containing this kind of motif (67). In human, it has been shown that 

this domain is important for interaction of SRC-2 with myogenic factors (68). The central 

region of SRC family members is relatively conserved and contains three LXXLL (L, 

leucine; X, any amino acid) motifs that are responsible for the interaction with ligand-bound 

NRs (L1-L3 in Fig.4) (57,63,69,70). The LXXLL motif forms an amphipathic -helix that 

binds a hydrophobic cleft present in the ligand-binding domain of NRs and accessible only 

after binding ligands (3,8,71). Single mutation of any one of these three LXXLL motifs does 

not completely abolish the interaction with NRs, suggesting the idea that they collaborate 

for the high-affinity binding of SRCs to NRs (72). In the carboxyl-terminal region are 

present two transactivation domains (AD1 and AD2), defined by the two-hybrid system 
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HLH/PAS 
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AD1                      AD2 

AD1         HAT     AD2 

assay, which cooperatively enhance the activation function domains of NRs (55,73). The 

AD1 region is responsible for interaction with general transcription coregulators, CBP and 

p300, but does not interact with NRs (Fig.4). Interestingly, AD1 also contains three LXXLL-

like motifs (L4-L6 in Fig.4) and mutations of one or more of these three motifs impair the 

interaction of SRCs with CBP and p300, indicating that the major role of AD1 is to recruit 

acetyltransferases for chromatin remodeling (fig.4) (9,70,74). The second transactivation 

domain, AD2, is responsible for interaction with histone methyltransferases, coactivator-

associated arginine methyltransferase 1 and PRMT1 (75,76), recruitment of which is also a 

critical event for NR-directed local chromatin remodeling and assembly of the 

transcriptional machinery around the promoter region. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Structural and functional domains of SRC family members and sequence homology. The 

similarity and identity of amino acid sequences for full-length human SRC proteins are indicated above the 

bars. The letters within the bars indicate structural domains, and the lines under the bars indicate domains 

that interact with different factors. bHLH/PAS: helix loop helix Per/ARNT/Sim homologous domain; S/T: 

serine/threonine-rich regions; LXXLL: typical LXXLL -helix motif; HAT: histone acetyltransferase domains 

identified in SRC-1 and SRC-3. AD1 and AD2: transcriptional activation domains 1 and 2. 
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Role of SRC Proteins in Chromatin Remodeling and Transcriptional 

Activation 

 

The C-terminal domains of SRC-1 and SRC-3 contain histone acetyltransferase (HAT) 

activities, raising the possibility that SRC coactivators may play a direct role in chromatin 

remodeling during the process of NR directed initiation of transcription (57,77). However, 

the SRC HAT activity is much weaker than those in CBP, p300, and p/CAF and 

inactivation of the HAT activity in SRC-1 by site-directed mutagenesis does not 

significantly affect its coactivating function in an in vitro transcriptional assay (77). In fact, 

the intrinsic HAT activity of SRCs is not essential for initiation of transcription. Instead, 

SRCs may play a major role in assembling general transcription factors through direct and 

indirect recruitment of other coactivators (Fig.3), which results in acetylation and 

methylation of specific histones (79,80) and initiation of transcription. First, ligand binding-

triggered interaction between SRCs and NRs results in the recruitment of secondary 

coactivators, such as CBP/p300 (78). Second, the SWI/SNF chromatin-remodeling 

complex is specifically recruited through the histone CBP/p300-acetylated regions and 

causes resistant remodeling of DNA topology (81,82). Third, the TRAP complex is recruited 

through the preformed SRC/CBP/p300 complex and more directly communicates with the 

transcriptional apparatus (83,84). Fourth, initiation of transcription, not only depends on 

progressively direct interaction of functional complexes, but is also regulated via the 

intercommunication between all these members, accomplished by many different 

secondary modifications (85,86). Importantly, coregulators always work as multiprotein 

complexes. For instance, the SRC family coactivators exist in a steady-state complexes 

consisting of six to ten stably associated components, which anyway are not static but 

rather are subjected to dynamic rearrangement related to specific post-translational 

modifications. Phosphorylation (87), acetylation (86), methylation (165,166), and 

ubiquitination (167) of coregulator complex members by their associated co-coregulators 

such as p300/CBP, CARM1, and the Fbw7  (part of SCF E3 ligase) can define the affinity 

of SRCs for NRs or other members of the coregulator complex. As an important 
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consequence of their existence as multiprotein complexes, coregulators are able to 

transmit signals from the environment by supplying a variety of enzymatic activities at the 

promoter of the genes. 

 

 

Biological Function and Characterization of SRC Family Members 

 

Our knowledge of SRC family members is based in part on expression patterns of mRNA 

and proteins and more specifically on phenotype of mouse models. Discussing each SRC 

member, both these aspects will be taken into account. 

 

SRC-1 (NCoA-1) 

The SRC-1 gene is located in chromosome 2 (p23) in humans and chromosome 12 (A2-3) 

in mice (88,89). SRC-1 was identified by yeast two-hybrid screen of a human B-lymphocyte 

cDNA library with bait encoding the PR LBD. SRC-1 gene is widely expressed in many 

tissues and cell types (90). During mouse embryonic development, SRC-1 is highly 

expressed starting from day 8.5 and it is important for a correct formation of different tissue 

(91,92). In adult mice, SRC-1 remains highly expressed in certain brain regions including 

olfactory bulb, hippocampus, piriform cortex, amygdala, hypothalamus, cerebellum and 

brainstem (92). Despite these tissue specific patterns in neuronal cells, no known human 

disease has been specifically linked to genetic defects of SRC-1 gene at this time. 

However, genetic models provided important clues for partial resistance to steroid 

hormones due to loss of SRC-1 function. For example, the estrogen-induced growth and 

estrogen- and progesterone- dependent uterine decidual response were decreased in 

ovariectomixed female SRC-1 -/- mice. Mammary gland ductal side branching and alveolar 

formation were reduced in ovariectomized female SRC-1 -/- mice treated with estrogen 

and progesterone. A similar partial response was observed from testosterone-1-stimulated 

prostate growth in castrated males SRC-1 mice (93). These observations in part indicate 

that SRC-1 serves as one of the in vivo coactivators to mediate transcriptional activity of 
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steroid receptors. SRC-1 possesses a broad range of interaction with nuclear receptors, 

including ER, PR, GR, TR, RXR (213), HNF-4 (214), and PPAR-  (215). In addiction to 

nuclear receptors, SRC-1 modestly coactivates other transcription factors, including AP-1 

(216), serum response factor (217), and NF- B (218). 

SRC-1 plays an important role in brain development (94). At birth, the gonads of male rats 

produce testosterone that is converted into dihydrotestosterone and estradiol in the brain. 

The dihydrotestosterone activates AR and results in behavioral masculinization.  Estradiol 

activates ER and results in development of the sexually dimorphic nucleus (SDN) and 

behavioral defeminization in male rats. Interestingly, down-regulation of SRC-1 by infusion 

of antisense oligodeoxynucleotides (ODNs) into the neonatal stage significantly reduces 

the SDN volume, blocking behavioral defeminization. In contrast, SRC-1 down-regulation 

does not affect the masculinization on male sexual behavior, suggesting that SRC-1 plays 

an important role in ER-mediated SDN development and defeminization but not in AR-

mediated masculinization. 

In addition, SRC-1 is expressed at higher levels than other SRCs in the cerebella PC (95), 

and mice lacking SRC-1 exhibit a delay in PC development. The adult SRC-1 knockout 

mice also exhibit moderate motor learning dysfunction. Since TR and retinoid-related 

orphan nuclear receptor play important role in PC development, SRC-1 might be required 

for normal function of these nuclear receptors in PC development. 

Intriguingly, multiple observations have suggested that the usage of SRC-1 by different TR 

isoforms is tissue specific. First, SRC-1 is important for both TR - and TR -mediated body 

growth since both TR /SRC-1 and TR /SRC-1 double-knockout mice exhibit more severe 

growth retardation than either TR  or TR  single-knockout mice. Second, SRC-1 partially 

mediates the TH effects on heart rates by TR  and TR . Third, hypersensitivity to TH seen 

in TR  null mice, as demonstrated by overexpression of a TH regulated gene, 5’ 

deoiodinase, in the liver, is abolished in SRC-1-/- mice, suggesting that the hypersensitivity 

in TR  null mice is due to TR  function enhanced by SRC-1 (96). Fourth, SRC-1 is 

required for normal down-regulation of TSH by both TR  and TR  in the pituitary. In the 

absence of TR , SRC-1 expression is elevated in the pituitary, suggesting that the excess 
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amount of SRC-1 in TR  null mice may superactivate TR  and cause TH hypersensitivity 

for downregulation of TSH (97). 

The role of SRC-1 in peroxisomal proliferator-activated receptor-  (PPAR ) function also 

exhibit certain levels of tissue specificity, which is probably due to relative amount PPAR  

and SRC family members. In liver SRC-1 seems to be not required for expression of 

PPAR -regulated genes. In contrast, in the brown fat, activation of PPAR  triggers the 

recruitment of coactivator complex containing PGC-1, SRC-1 and CBP/p300. Inactivation 

of SRC-1 impairs the thermogenic activity of PGC-1 in the brown fat, decreases the energy 

expenditure, and results in obesity following a high-fat diet (98). 

 

SRC-2 (TIF-2/GRIP-1/NCoA-2) 

The SRC-2 gene is located in chromosome 8 (q21 in humans and chromosome 1 (A3-5) in 

mice (99).  SRC-2 mRNA and protein have been detected in many tissues, including 

placenta, testis, brain, heart, liver, pancreas, and uterus.  SRC-2 protein is undetected in 

hepatocytes, thyroid gland, and striated muscle by immunohistochemistry. These studies 

indicate hat SRC-2 is widely expressed in many organs and its expression amount varies 

between cell types and organs. SRC-2 associates in a ligand-dependent manner in vitro 

with several receptor LBDs (55) and, in vivo, with RAR , ER, and PR in the presence of 

hormone (54,55,219). 

Similar to SRC-1 -/- mice, SRC-2 -/- mice exhibit nearly normal somatic growth. However, 

the fertility is significantly reduced in both male and female SRC-2 null mice. Male 

hypofertility appears to be of Sertoli cell origin since SRC-2 is specifically expressed in this 

cell type in the testis and the absence of SRC-2 results in lipid accumulation and germ 

cells apoptosis. In agreement with the role of SRC-2 in mouse, some men with 

oligospermic infertility possess an AR mutation from methionine to valine that disrupts the 

interaction between AR and SRC-2 (100). The hypofertility of female SRC-2 mutant mice is 

due to a placental hypoplasia caused by the absence of SRC-2 in decidual stromal cells. 

These findings indicate that SRC-2 plays a critical role in reproductive behavior and 

functions. 
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Recent studies have shown that SRC-2 plays an important role also in lipid metabolism 

and energy balance (98). In the white adipose tissue (WAT), SRC-2 serves as a 

coactivator for PPAR . In SRC-2 -/- mice, WAT expresses high levels of leptin and lower 

levels of genes responsible for antilipolysis and fatty acid uptake and trapping, such as the 

perilipins, fatty acid binding protein P2, lipoprotein lipase, and PPAR , causing higher 

levels of lipolysis and a lower potential for fatty acid storage. In the brown adipose tissue 

(BAT), SRC-1 is a better coactivator than SRC-2 in the stabilization of PPAR  and PGC-1. 

The absence of SRC-2 in BAT facilitates the formation PPAR /PGC-1/SRC-1 complex for 

PPAR -dependent transactivation. Thus, BAT lacking SRC-2 expresses higher levels of 

uncoupling protein 1, PGC-1, and acetyl coenzyme A oxidase, causing higher energy 

expenditure due to enhanced fatty acid oxidation and uncoupling of respiration. As a 

result, SRC-2 null mice exhibit higher body temperature under cold conditions, less fat 

accumulation, lower levels of fasting glycemia and triglyceride, and higher insulin 

sensitivity. Collectively, these mice are better able to protect themselves against obesity 

induced by high-fat diet or hyperphagia. Interestingly, a high-fat diet induces SRC-2 

expression in both WAT and BAT, which may reflect part of the molecular mechanism for 

the enhancement of fat accumulation (98).  

SRC-2 is also expressed in proliferating myoblasts and postmitotic differentiated myotubes 

and potentiates skeletal muscle differentiation by acting as a critical coactivator for MEF-2 

(68). However, no defect in skeletal muscle development was observed in SRC-2 deficient 

mice, suggesting that other SRCs may compensate for the loss of SRC-2 function in 

skeletal muscle development in vivo. 

 

SRC-3 (NCoA3/pCIP/AIB1/ACTR/RAC-3/TRAM-1) 

The SRC-3 gene is located in chromosome 20 (q12) in humans and chromosome 2 (H2-4) 

in mice (56,89). Similar to the other members of the family, experiments based on Northern 

blot analysis reveal that SRC-3 mRNA is also widely expressed. More notably, a knock-in 

mouse model harboring a -galactosidase reporter downstream of the endogenous SRC-3 

promoter reveled that the mouse SRC-3 gene is mainly expressed in mammary gland 
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epithelial cells, oocytes, vaginal epithelial layer (34), indicating that, although widely 

expressed, SRC-3 is selectively higher in some specific cell types. 

SRC-3 -/- mice display growth retardation and reduced adult body size (101) with 

decreased white adipose tissue mass (46). Although the reproductive function of male 

SRC-3 -/- mice is only slightly reduced, the development and function of the female 

reproductive system is abnormal (34). First, estrogen levels are significantly lower in 

female SRC-3 -/-, which in turn causes a delay in pubertal development and mammary 

gland growth. Second, mammary development in response to combined stimulation of 

estrogen and progesterone is decreased in SRC-3 -/- female mice. Third, the ovulation 

capacity, after fertilization when mating with fertile males, is also substantially reduced, 

probably as a consequence of the poor follicular development due to the estrogen 

inefficiency or, partially, because of the absence of SRC-3 in the oocytes. Collectively, 

these results indicate that the major physiological functions of SRC-3 are distinct from 

those of SRC-1 and SRC-2. 

Another aspect is that SRC-3 is coexpressed with ER  and ER  also in the endothelial 

cells and vascular smooth muscle cells and may facilitate the estrogen-mediated 

vasoprotective effects, through inhibition of neointimal formation after vessel injury (102). 

For example, the neointimal growth in ovariectomized wild-type mice is almost completely 

inhibited by estrogen treatment, but only partially inhibited in ovariectomized SRC-3 -/- 

mice due to an insufficient suppression of vascular cell proliferation by estrogen (102).  

Recently, SRC-3 was found to be associated with the I B kinase (103). The I B kinase can 

phosphorylate SRC-3 and promote nuclear localization of SRC-3. In addition, SRC-3 is 

able to promote NF- B-mediated gene expression while the expression of known NF- B 

target genes is reduced in SRC-3 -/- mice (103). These observations support a former 

discovery that SRC-3 is a NF- B coactivator too (104), suggesting that SRC-3 can play an 

important role in inflammatory and immune response as well as cell survival mediated by 

NF- B. 

 

 



 - 34 - 

Functional Specificity of SRC Family Members 

The SRC family is defined by an overall sequence similarity of 40% between the three 

members, reflecting their functional correlation (Fig.4). The most extending sequence 

conservation is in the N-terminal region, in which the bHLH/PAS domain is located. 

Importantly, the homology in this region for the SRC members is unique among PAS-

containing proteins (110), identifying the SRC proteins as a distinct family of PAS factors. 

The bHLH-PAS domain serves as a protein-protein interaction surface (118) other than 

assist in the DNA-binding. Accordingly, like other PAS proteins, evidence suggests that 

SRC members are capable of forming heteromultimeric and homomultimeric complexes in 

vivo (220). Anyway, while the considerable sequence similarity between SRC family 

members indicates some functional redundancy, there is nevertheless sufficient sequence 

divergence to indicate also autonomy of function. Moreover, the putative use of alternative 

splicing junctions in the C-terminus give rise to more considerable sequence complexity. 

For example, SRC-1 and SRC-2 are distinguished by a 65-aminoacids deletion in SRC-2 

with respect to SRC-1 (Fig.4). 

Protein-protein interaction assays and in vitro or ex vivo experiments have made it clear 

that SRC family members may possess many common features, but also important 

functional and tissue specificity. On one hand, the viable and fertile phenotype of knockout 

mice lacking functional SRC-1, SRC-2, or SRC-3 further support the notion that SRC 

family members may be able to partially compensate each other’s function in vivo (34,93), 

probably due to the similar structure of functional domains as well as their partially 

overexpression patters in certain tissues. Additionally, it could be equally possible that 

some biological functions are dependent on the total amount of SRC family members. 

However, several studies have demonstrated the existence of a precise specificity 

between NRs, in terms of select distinct downstream coactivators and, therefore, selective 

activation of target genes for different NRs may depend on differential recruitment of 

specific SRCs. For example, microinjection of expression plasmids for SRC-1 or SRC-2, 

but not SRC-3, was shown to rescue RAR-dependent transcription in SRC-1-

immunodepleated cells, suggesting that SRC-3 cannot compensate for the function of 
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SRC-1 and SRC-2 in these assays (63). More interestingly, a recent study demonstrated 

that PR interacts preferentially with SRC-1 in breast cancer cells, which recruits CBP and 

enhances acetylation of histone H4. In contrast, GR interacts preferentially with SRC-2, 

which recruits p/CAF and results in histone H3 acetylation. This study suggests that 

selective recruitment of SRCs by different NRs may determine the specificity of coactivator 

complexes that in turns reflects the specificity of transcriptional signals (79). In addiction, 

variable tissue-specific expression patterns of SRC family members may be also 

responsible for their functional specificity. For example, SRC-3 has been found to be 

specifically overexpressed in primary breast tumors (56) against the relatively low 

expression of SRC-1 and SRC-2. Although members of SRC family are widely expressed, 

their expression levels are often tissues and cell type related. The differences in temporal 

and spatial expression of SRCs may explain, at least in part, the discrepancy between in 

vitro experiments where all SRCs enhance most NR-dependent transcription and in vivo 

experiments, where SRC-1, SRC-2 and SRC-3 knockout mice exhibit differing 

phenotypes.  
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PART 3:  

SRC-3 Steroid Receptors Coactivator: Structure and Function 

 

 

Steroid receptor coactivator-3 (SRC-3/pCIP/AIB1/ACTR/RAC3/TRAM-1) is a member of 

the p160 family. SRC-3 is importantly required for normal animal growth and development 

of sexual characters and it is often overexpressed or amplified in many type of cancers, 

especially human breast cancer. Specifically, SRC-3 is required for the complete 

functionality of ER. Therefore, it is likely that SRC-3 also plays an important role in 

estrogen-stimulated proliferation and hormone-related tumorigenesis. Nevertheless, it has 

been shown that SRC-3 can also modulate divers hormone-independent pathways. 

Phosphorylation, along with other posttranscriptional modifications, plays a pivotal role in 

regulating SRC-3 cellular functions and allows SRC-3 to act as an important integrator of 

many signaling pathway. For this reason, SRC-3 exemplifies the paradigm of the 

mammalian transcriptional program complexity. 
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Physiological and Cellular Functions of SRC-3 

 

Previous studies indicate that SRC-3 is required for normal animal growth and is often 

amplified or overexpressed in many cancers, including breast cancer (56,105), prostate 

cancer (106,107), ovarian cancer (101), endometrial carcinoma (108), and gastric cancer 

(109). SRC-3 was firstly localized in a frequently amplified chromosomal region, 20q12 (56) 

and named Amplified in Breast cancer 1 (AIB1) but is also known as NCoA3, pCIP (63), 

RAC-3 (110), ACTR (57), and TRAM-1 (58). Overexpression of SRC-3 is demonstrated to 

promote initiation and progression of cancer by affecting many important signaling 

pathways; anyway, the mechanism of SRC-3-mediated growth regulation remains still 

unclear. However, many evidences revealed that SRC-3 possesses different physiological 

roles in respect to the other two members of p160 family. SRC-1 knockout mice exhibit a 

partial resistance to steroid hormones and a reduction in growth of steroid target organs in 

response to hormonal treatment (93). Elimination of SRC-2 revealed that it plays a critical 

role in mouse reproductive function (100). Unlike SRC-1 and SRC-2, SRC-3-null mice are 

small in size and show delayed puberty, reduced female reproductive function, and 

reduced mammary gland development (101,103).  

SRC-3 acts as a promiscuous coactivator in enhancing transcriptional activity of a great 

number of different NRs (63) in response to hormonal activation, regulating genes 

specifically involved in cellular proliferation and differentiation. SRC-3 interacts not only 

with estrogen receptor (8,40), progesterone receptor (111), and thyroid hormone receptor 

(112), but also with other transcriptional factors, like NF- B (104), the signal transducer 

STAT (113) and the transcriptional activator E2F1 (114). Thus, it is conceivable that SRC-3 

activity and regulation may influence a variety of cellular process, affecting the expression 

levels of many genes. Moreover, as described later, regulation of SRC-3 by 

phosphorylation has been revealed to be a sophisticated mechanism for specifically 

communicating external signals to the nucleus and represents a novel function for 

transcriptional regulators that is not directly restricted to the DNA level. 
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Role of SRC-3 in Mice Normal Growth and Sexual Functions 

In mouse, SRC-3 is tissue-specifically expressed and distributed mainly in the oocytes, 

mammary glands, hippocampus, olfactory bulb, smooth muscle, hepatocytes, and vaginal 

epithelium (34). SRC-3-knockout mice exhibit a pleiotropic phenotype showing dwarfism, 

delayed puberty, reduced female reproductive function, and blunted mammary gland 

development. This phenotype could be explained by the fact that SRC-3 plays a role in 

both growth regulatory pathways and the production of estrogen, as proved by hormonal 

analysis. Moreover, these distinct pathologies observed in SRC-3-null mice, but not 

knockout mice for SRC-1 or SRC-2, suggest that the physiological role in development of 

SRC-3 is distinct from that of the other members of SRC family. Additionally, when 

compared with SRC-1, obvious differences in expression patters exist between the two 

genes (34). For example, in neocortex, SRC-1 is highly expressed, whereas SRC-3 is 

lowly expressed; in cardiac muscle, SRC-1 is highly expressed but SRC-3 is undetectable. 

These differential expression patterns reflect the distinct phenotypes observed in mice 

where the two genes have been individually knocked out.  

Disruption of SRC-3 in mice basically results in alteration of the regulatory pathway for 

growth hormone (GH) function and reduced production of estrogen (E2). Knockout mice 

for SRC-3 also possess deficiency in IGF-1 production, although the mechanism that leads 

to this decreasing is unclear. These low levels of IGF-1 and GH most likely cause the 

observed growth retardation in SRC-3 -/- mice, resulting in dwarfism (34). In contrast, the 

low levels of systemic E2 are responsible for the pubertal delay in female SRC-3 -/- mice 

(34), because the timing for vaginal opening appears identical in both wild type and 

knockout mice after treating animals with E2. The mechanism by which SRC-3 absence 

causes estrogen deficiency may depend on a retardation of hormonal production in the 

ovary, where the majority of estrogen is synthesized. More specifically, the granulose cells 

in the ovary may have a reduced sensitivity to the follicle-stimulating hormone (FSH), due 

to a secondary effect of SRC-3, maybe through an unknown interaction between the 

granulsa and the oocytes, where SRC-3 is highly expressed. Consistent with the delayed 

puberty and the E2 insufficiency, reproductive function in SRC-3 -/- female mice is also 



 - 39 - 

affected (34), in terms of ovulatory capacity and length of estrous cycle, as a direct 

consequence of the depletion of SRC-3 in the oocytes, where it is normally highly 

expressed. Moreover, SRC-3 is also highly expressed in the epithelial cells of mammary 

gland ducts and it may play an important role in mammary gland development (34). 

Indeed, mammary gland ductal growth is strongly reduced in SRC-3 -/- mice, also if the 

low level of E2 seems to be the major factor in growth retardation of mammary gland in 

null mice, because estrogen therapy successfully rescues the growth deficiency. On the 

other hand, mammary gland alveolar development in SRC-3 null mice is dramatically 

decreased also in response to E2 treatment. 

 

Role of SRC-3 in Vasoprotective Effect of Estrogen 

Vasoprotective effects of estrogen are well recognized and attributed to both systemic 

effects, such as decreasing in total serum cholesterol and lipoproteins, and direct effects 

on cardiovascular system, mediated by ER-  and ER-  (115). SRC-3 is expressed in 

vascular smooth muscle cells (VSMCs) and is required for the estrogen-dependent 

vasoprotective effect mediated by ERs (116) through the inhibition of neointima formation. 

Experiments in SRC-3 null mice show that the neointima formation is significantly higher in 

knockout female than in wild type female mice (117) following vessel injury. This difference 

diminishes after ovariectomy, suggesting that the difference in neointimal growth between 

wild type and knockout mice is dependent on ovarian hormones. Neointimal growth in 

ovariectomized wild type mice is almost completely inhibited following estrogen treatment 

but only partially in ovariectomized SRC-3 null mice (117), suggesting that loss of SRC-3 

function decreases the estrogen-dependent inhibition of neointima formation. Therefore, 

SRC-3 may facilitate vasoprotection by ER after vascular trauma, and, since that a 

reduction of ER levels is observed human coronary diseases, loss of ER coactivator 

function may also result in increased susceptibility to cardiac diseases. 
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Molecular Structure of SRC-3 

 

The SRC-3 gene encodes a 160-KDa protein that is 40% sequence similar to the other 

SRC family coactivators. Furthermore, SRC family members possess similar functional 

domains (Fig.4). The N-terminal basic helix-loop-helix-Per/ARNT/Sim (bHLH-PAS) domain 

is the most conserved region (60% identity among the three SRCs) (56). The bHLH-PAS 

domain serves as a protein-protein interaction surface for various bHLH-PAS-containing 

factors (118) other than assist in the DNA-binding. It is also possible that this region can 

participate in intramolecular and intermolecular interactions to regulate the transcriptional 

activity (44). The conserved central region contains multiple LXXLL motifs (where L is 

leucine and X is any amino acid) that interact with a hydrophobic cleft in the nuclear 

receptors LBD, which is formed as a result of ligand-induced conformational change 

(71,119). In the C-terminus are located two transcriptional activation domains (AD1 and 

AD2) and constitute the receptor interaction domain of SRCs. The AD1 contains multiple 

LXXLL motifs that are responsible for the interaction with histone acetyltransferase (HAT) 

CBP and p300. Although SRC-3, like SRC-1, C-terminal domains possess HAT activity, it 

is weaker than that of CBP, p300 and p/CAF (120). AD2 can interact with protein arginine 

methyltransferases (PRMT), such as CARM1 and PRMT1 (75,121). Based on this 

molecular structure, it seems clear that SRCs serve as adaptor protein to recruit additional 

coactivators and basal transcription machinery to the promoter, which is critical for 

promoting local chromatin remodeling and NR-directed transcriptional activation. 

 

 

Molecular Mechanism of Action of SRC-3 

 

Hormone-dependent Signal Transduction 

According to the fact that SRC-3 is a member of the steroid receptors coactivator family, it 

is actually necessary for the complete functioning of ER (122,123). Therefore, it is likely that 

SRC-3 also plays an important role in estrogen-stimulated proliferation and hormone-
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related tumorigenesis. In fact, estrogen-signaling modulation is closely related to 

transcriptional expression of genes involved in the generation of breast, ovarian and 

prostate cancer. In line with this notion, suppression of SRC-3 leads to reduction of the 

recruitment of ER and polymerase II to the target promoters. Moreover, it seems that 

inhibition of SRC-3 protein expression has a more determinant effect on lowering ER-

dependent transcription than does the inhibition of other p160 protein SRC-1 (124), 

underling the fact that SRC-3 may function as a specific coactivator for ER activity. Cyclin 

D1, which is frequently overexpressed in tumors, is an ER  target gene, and its 

expression is enhanced by SRC-3-driven functional interaction of ER and cyclin D1 

promoter (125). The spicing variant SRC-3- 3 can increase the estrogen-dependent 

induction of neoplasia in a variety of tissues and contributing to development of hormone 

resistant breast cancers (126). All these findings suggest that SRC-3 is required for the 

complete functionality of steroid hormone receptors, especially for ER. Overexpression 

and/or amplification of SRC-3 are likely to facilitate transformation induced by ER 

signaling. 

 

Hormone-independent Signal Transduction Pathway 

SRC-3-driven transformation has also been detected in tumors that are not targeted by 

steroid hormones, such as gastric cancer and HCC (109,127,128). Overexpression of SRC-

3 also exists in ER- and PR-negative breast cancer (129). This clinical evidence supports 

the hypothesis that SRC-3 can enhance also hormone-independent proliferation during 

tumorigenesis. Actually, extensive investigations reveal that SRC-3 can interact with a 

broad spectrum of transcriptional factors in addition to steroid receptors (60,113,114,130), 

indicating that different signal pathways, other than hormone signaling, can be affected by 

SRC-3 overexpression or deregulation (Fig.6). As we will present later, in the results 

section, phosphorylation of SRC-3 has been showing to be an important step for 

promoting its nuclear translocation and activating the transcriptional coativating function. 

SRC-3 can be phosphorylated in specific target residues upon interaction with steroid 

hormones (39,150). However, SRC-3 is predominantly phosphorylated in a steroid-
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independent manner by many signal receptors in response to a variety of growth factors 

stimulation, integrating different signaling pathways. 

E2F1 signal pathway. E2F1 transcriptional factor has been shown to regulate cell cycle 

progression by modulating the expression of proteins required for the G1/S transition and 

DNA synthesis. In the G0 and early G1 phases, RB binds to E2F1 suppressing its 

transcriptional activity. Phosphorylation of RB by CDK results in the release and activation 

of E2F1 (131). After heterodimerization with its binding partner DP-1 or DP-2, E2F1 

promotes the transcription of target genes, including cyclin A, cyclin E, Cdk2, cdc25A, and 

E2F1 itself. E2F4, another E2F family member, appears to operate as a repressor by 

recruiting RB to E2F-regulated promoters and consequently it is required for cell cycle exit 

and differentiation (132). Recently, SRC-3 has been found to directly interact with E2F1, 

but not with E2F4 (114). Consequently, overexpression of SRC-3 may enhance the 

transcription of E2F1 target genes promoting cell proliferation in a hormone-independent 

mechanism. 

Insulin-like growth factor-1/AKT pathway. Insulin-like growth factor-1 (IGF-1) has 

diverse roles in cell processes, promoting growth, proliferation, cell survival, and migration 

(133). The binding of IGF-1 to its cognate receptor, IGF1R, triggers phosphorylation of the 

receptor and activation of phosphatidylinositol 3-kinase (PI3K), which is followed by 

activation of AKT. Both in vitro and in vivo data reveal that SRC-3 expression level is 

closely associated with the IGF-1 expression level (34,101,134). Moreover, IGF1R 

expression level is reduced in SRC-3 knockdown mice breast cancer cells and is highly 

phosphorylated in tumors derived from MMTV-SRC-3 transgenic mice (134,135). 

Consistently, the activity of AKT is increased in the MMTV-SRC-3 mouse model (134) and 

as a result, downstream pathway of AKT are affected, mostly at phosphorylation level. In 

the MMTV-SRC-3 transgenic mice model, GSK-3 , the substrate of ATK, is strongly 

phosphorylated at Ser 9, resulting in reduced -catenin phosphorylation level and 

translocation of -catenin into the nucleus, leading to activation of target genes, such as 

cyclin D1 (134).  

NF- B signal pathway. Rel/Nuclear factor- B (NF- B) is a dimeric transcriptional factor 
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that plays important role in growth control, differentiation, and apoptosis (136). The inactive 

form of NF- B is localized in the cytoplasm and consists of 3 subunits: the DNA-binding 

p50 and p65 subunits, and an inhibitory subunit, called I B, which is bound to p65. Once 

I B is released upon phosphorylation by I B kinase (IKK), NF- B will translocate into the 

nucleus and bind to target genes (136). Aberrant NF- B activation is implicated in inducing 

cancer of the breast, prostate gastrointestinal tract, liver, pancreas and skin. SRC-3 can 

interact and coactivate p65/NF- B (104). Recently SRC-3, but not SRC-1, has been 

reported to associate with IKK, suggesting the essential role of SRC-3 in the NF- B 

pathway (103). In response to tumor necrosis factor (TNF)- , SRC-3 is phosphorylated by 

IKK and complexes with NF- B, translocating from cytosol to nucleus. As a result, some 

NF- B target genes are activated, such as interleukin (IL)-6, which acts as an important 

autocrine cytokine for tumor progression and metastasis (137), especially prostate cancer 

(138). Introduction of wild type SRC-3 in SRC-3 null MEF cells can restore IL-6 induction 

by TNF- , but not SRC-3 phosphorylation mutants (39), indicating that phosphorylated 

SRC-3 is tightly linked to NF- B transcriptional activity. 

C/EBP  signal pathway.  There are two C/EBP  isoforms: liver-enriched activating 

protein (LAP) and liver-enriched inhibitory protein (LIP). It is thought that LIP functions as a 

dominant negative. In the mammary gland, increased expression of LIP is associated with 

rapid mammary epithelial cell proliferation during pregnancy (139). In CMV-SRC-3- 3 

transgenic mice, there is a reduced LAP/LIP ration, due to the induction of LIP expression 

level (135), which in turns can trigger hyperplasia in ER-independent manner. However, so 

far little is known about how overexpression of SRC-3 can directly induce LIP expression 

and whether SRC-3 can bind to C/EBP  promoter. 

HER2/neu/MAPK signaling pathway. Although deregulated SRC-3 does not affect 

MAPK pathway activity (122), it serves as a conduit from MAPK signaling to ER (fig.8. 

MAPKs regulate SRC-3 activity by phosphorylation and enhance ER transcriptional activity 

by increasing the recruitment of p300 and associated HATs to the promoters (40). In 

breast cancer patients, HER2 and SRC-3 expression levels are closely associated with 

development of tamoxifen resistance, suggesting a crosstalk between SRC-3 and HER2 
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(140).  

As described above, SRC-3 is a well-established oncogene. First of all, use of MMTV-

SRC-3 is sufficient to initiate tumorigenesis. Furthermore, SRC-3 overexpression is 

detected in a variety of cancer and affect many signaling pathway other that NRs, such as 

HER2/MAPK, IGF/AKT, NF- B, which are frequently deregulated in many cancers. 

Reduction of SRC-3 in cancer cells by RNAi knockdown can markedly reduce tumor 

formation in nude mice (107) and deficiency of SRC-3 in mouse model can suppress 

tumorigenesis, when challenged with carcinogens (122). However, it is still to be clarified 

how SRC-3 activities are modulated during carcinogenesis. It has been suggested that 

phosphorylation of SRC-3 is strongly associated with SRC-3 oncogenic potential. Recently 

SRC-3 was also found to physically interact with ER81, a PEA3 family member, and drive 

MMP-1 expression, which might be involved in metastasis (141). Thus, it is not unlikely that 

SRC-3 interacts with other transcriptional factors or even other proteins unrelated to the 

transcriptional complex.  
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Figure 6. The broad range of SRC-3 interactants. SRC-3 interacts with multiple signaling pathways other 

than with steroids receptors (SRs). Tyrosine kinase receptors, like HER-2, phosphorylate SRC-3 through the 

MAPKs, whereas IKK complex can directly phosphorylate SRC-3. Phosphorylation acts as an activation 

switch for SRC-3 functional activity into the nucleus, where it can bind a broad range of nuclear receptors 

and transcriptional factors (TFs), depending on the cellular context. Some TFs have been characterized ad 

direct binding partners of SRC-3 for activating target genes (solid arrows). Some other proteins are not 

known as direct or indirect targets of SRC-3 (dashed arrows), including LIP (C/EBPb isoform) and several 

components of IGF-1/AKT pathway. 
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Selective Phosphorylation of SRC-3  

 

The fact that SRC-3, in addiction to nuclear receptor, can coactivate a number of other 

distinct transcriptional factors, such as NF- B, E2F, C/EBP, AP-1, STAT, p53 

(60,113,114,130,140,142), suggests that it is involved a much broader role in cellular 

functions and diverse physiological processes. It is now evident that many phosphorylation 

pathways, including MAPKs, IKK and HER2/neu (41,103,140), specifically influence SRC-3 

activity, but it is still unclear how different signaling pathways can exert different 

physiological functions. Consequently, it could be postulated that distinct cellular signals 

may differentially phosphorylate SRC-3 at distinct amino acids, preferentially directing its 

activity to different pathways. Recently, six phosphorylation sites have been characterized 

(39), which are specifically targeted by different kinases and all important for the optimal 

interaction of SRC-3 with transcriptional activators and other coactivators, as shown by 

mutational substitution of phosphoamino acids with non-phosphorytable alanine. Using 

siRNA, p38 has been identified as a kinase that phosphorylates S505, S543, S860, and 

S867 whereas IKK phosphorylates S857 in living cells (39). Interestingly, different 

combinations of phosphorylation in these sites are required for different physiological 

function of SRC-3, which could be not redundant with those of SRC-1 and SRC-2. In fact, 

amino acid sequence alignment reveled that not all of these six sites are conserved 

between the three p160 members: only phosphoamino acids T24, S505, and S543 are 

conserved in SRC-1 and only S505 and S543 are conserved in SRC-2. The remaining 

three amino acids, S857, S860, and S867, are unique for SRC-3 (39). In this regard, not all 

SRC-3 phosphorylation sites are equally required for maximal activity of SRC-3 in different 

signaling pathways. While phosphorylation at all six sites is important for interaction with 

ER and AR, it is not induced by TNF- , which induces phosphorylation of all but the S860 

site. Consequently, mutation to alanine at any of these sites impairs the ability of SRC-3 to 

coactivate E2-induced ER, while mutation at all six sites but S860 affects TNF- -

dependent interaction with NF- B. Likewise, alanine-mutation of T24, S543, S857, and 

S867, but not S505 and S860 sites, negatively influences expression of IL-6 gene. 
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According to all these findings, it appears that SRC-3 phosphorylation is extremely 

important for achieving its complete function as a coactivator and probably specific 

phospho-conformations of SRC-3 differentially interacts with transcriptional activators, 

which in turn selectively regulate different target gene promoters. Concerning to this 

hypothesis, it seems also that SRC-3 possesses the capacity to act as a downstream 

effector for a wide variety of cellular signaling, functioning as a common phosphorylation 

target for different stimuli and integrating multiple signals to gene expression and growth 

responses. 

 

Extranuclear Phosphorylation of SRC-3 

As mentioned earlier, different stimuli induce distinct patterns of SRC-3 phosphorylation, 

and mutations at different phospho-sites have different downstream effects. How E2 

induces phosphorylation of SRC-3 is poorly understand. E2 can induce cellular response 

through direct interaction with ER, but it can also induce a rapid and transient activation of 

various kinase cascades independently to prior gene transcription (143). Usually, this 

“nongenomic” action of E2 is mediated by the interaction with the cytoplasmic-localized ER 

(144), as shown for the activation of Src/ERK pathway through the interaction with MNAR 

(modulator of non-genomic activity of ER). Alternatively, in an ER-independent way, E2 

has been shown to activate MAPK pathway through the membrane-bound G protein-

coupled receptor (145). It is well established that ER shuttles between nucleus and 

cytoplasm, although it is mainly detected into the nucleus (146,147). In the absence of 

ligand, 5-10% of GFP-ER is localized in the cytoplasm (146,148), whereas E2 increases 

ER nuclear localization. It also has been shown that E2 induces a translocation of SRC-3 

from cytoplasm to the nucleus (101,103,149). E2-induced phosphorylation of SRC-3 

requires a direct interaction between SRC-3 and ER that occurs in the cytoplasm and it 

does not require DNA binding and nuclear localization as classically believed for the 

interaction of coactivators with transcriptional factors (150). Both the AF-1 and AF-2 

domains of ER seem to be necessary for maximal E2-induced phosphorylation of SRC-3 

and a direct interaction between ER-LBD domain and the coactivator is required. The 
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inability of 4-hydroxil tamoxifen (4HT) to induce SRC-3 phosphorylation further supports 

this point. However, the mechanism by which kinases are recruited to ER-SRC-3 complex 

is not clear. It is possible that E2-bound ER can first recruit kinases via its AF-1 and AF-2 

domains, allowing subsequent phosphorylation of SRC-3, or, vice versa, SRC-3 or either 

ER recruit kinases to the ER-SRC-3 preexisting complex. Anyway, phosphorylation of the 

major phosphorylation sites of ER is not a prerequisite for SRC-3 phosphorylation (150). 

The important idea provided by these findings is that E2 can induce assembling of an 

extranuclear SRC-3-ER complex prior to promoter binding. This complex could serve as 

convergence point for cross-talking cell signaling pathways and ER transcriptional activity 

resulting in a much fine-tuning activity of transcriptional coactivators. 

 

 

SRC-3 Cellular Degradation 

 

Recently, it has been revealed that SRC-3 degradation is regulated by REG -directed 

proteasome 20S activity, in an ATP- and ubiquitin-independent manner (151). Usually, 

destruction of intact cellular proteins is largely orchestrated by ATP-dependent 

ubiquitination and subsequent degradation by 26S proteasome. The REG-20S 

proteasome only degrades short peptides. Li and coworkers (151) provided evidences that 

the REG -20S complex can selectively target an entire protein for destruction, in this case 

SRC-3. REG  interacts directly with SRC-3 and its overexpression accelerates the 

turnover of SRC-3, whereas REG  silencing through small interfering RNAs (siRNAs) 

results in accumulation of SRC-3. The most striking feature in Li’s study is the biochemical 

evidence for the unconventional degradation of SRC-3 by REG -20S proteasome, which 

was thought only to degrade small peptides (152). SRC-3 was degrades in a cell-free 

proteasome proteolysis assay, in the presence of the 20S proteasome and heptameric 

REG , without exogenous ATP and ubiquitin pathway components. On the other hand, the 

REG /  complex did not promote the degradation of SRC-3. Moreover, SRC-1 is 

incapable to bind REG  and to be degraded by REG . Ultimately, given to the fact that 
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ATP and chaperons were absent in the cell-free proteolytic assay, the hypothesis is that 

internal unstructured sequences of SRC-3 may serve as endoproteolytic sites for the entry 

into the REG -20S complex. These internal SRC-3 sequences are predicted to be 

disordered with long loops and polyglutamine loops. Additionally, the N-terminal 38 

residues and the C-terminal147 residues are also unfolded. It is thinkable that these 

disordered sequences may serve as cleavage sites for the 20S proteasome, given the 

ATP-independent nature of SRC-3 degradation. However, it is currently unclear if the 20S 

proteasome possesses any substrate specificity in vivo and it is known that SRC-3 can be 

also ubiquitinated and degraded by the 26S proteasome (153). Therefore, it is possible that 

SRC-3 stability is regulated by interplay of ubiquitin-dependent and -independent 

pathways, which could provide a much precise mechanism for controlling SRC-3 

abundance. These observations give rise to the proposal that REG  is required for a fine 

tumor-suppressive mechanism for restricting the uncontrolled accumulation of SRC-3, 

given to the fact that SRC-3 is a broad-range protein involved in many aspects of cell 

proliferation and survival, probably more that the other p160 members. 

 

 

SRC-3 in Oncogenesis 

 

SRC-3 gene is localized on a frequently amplified region, 20q12, and it is often found in 

many cancers, including breast, gastric, prostate, endometrial, and esophageal carcinoma. 

Consequently, many evidences indicate SRC-3 as an important oncogene and directly 

implicated as a causal factor in the genesis of human cancer. Accordingly, aberrant 

expression of SRC-3 has been associated with hormone-sensitive and -insensitive 

cancers.  

 

Clinical Studies 

In breast cancer biopsies, SRC-3 has been shown being amplified or overexpressed in 

5%-10% and 30%-60% of cases, respectively (56,154). In tamoxifen-treated patients, SRC-
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3 overexpression is associated with high levels of HER-2, tamoxifen resistance, and low 

survival expectative, underlining the important cross talk between SRC-3, HER-2 and ER 

(140,155). In prostate cancer, study of the expression of SRC-3 revealed that the 

expression level of SRC-3 correlate directly with tumor grade and stage of disease (106). 

Moreover, it was reported that the splicing variant SRC-3- 3, encoding a 130 kDa protein 

that lacks the N-Terminal HLH and a portion of the PAS domain, possesses a strong 

steroid receptor coactivator activity in vitro, even when present at low level, if compared 

with the full-length SRC-3 (126). This splicing variant of SRC-3 has been shown to be 

highly expressed in breast cancer biopsies (156). Additionally, a recent study has revealed 

that in breast cancer SRC-3 overexpression correlates with the absence of ER and PR 

(129), suggesting that SRC-3 may also act via other transcriptional factors that ER or PR 

during tumorigenesis. Consistent with this finding, SRC-3 is also found to be involved in 

many types of non-steroids-related tumors, such as pancreatic cancer, gastric cancer, 

colorectal carcinoma and hepatocellular carcinoma (109,127,128,157,158). SRC-3 is 

associated with cancer progression, metastatic potential, and tumor reassurance.  

 

Transgenic Mouse Models 

The most helpful model for SRC-3 studying in mice was the transgenically overexpressed 

SRC-3 gene under the control of mouse mammary tumor virus (MMTV) LTR (134). The 

overexpression of MMTV-SRC-3 was specifically associated with extremely high tumor 

incidence in aging animals, with an average latency of 16 months. High tumor incidence 

was found in mammary glands, pituitary, uterus and lung, consistently with the high 

ectopic expression of SRC-3 in these organs (134). Moreover, most of the mammary 

tumors were invasive and several adenocarcinomas were metastatic.  

A second very powerful transgenic model for investigating SRC-3 function in cancer was 

the cytomegalovirus (CMV) promotering SRC-3- 3 (135). Mammary cell proliferation and 

ductal ectasia were found in CMV-SRC-3- 3 mice, and other phenotypes similar to those 

founded in MMTV-SRC-3 mice. 

Expectantly, as mentioned above, knockout mouse model for SRC-3 show reduction in 



 - 51 - 

mammary gland alveolar development during pregnancy, and resistance to growth 

hormones and estrogens (34,101). In addiction, SRC-3 deficiency significantly suppresses 

the incidence of MMTV-H-Ras induced mammary ductal hyperplasia, tumorigenesis and 

metastasis to the lung (159). Most of the SRC-3 +/+ and SRC-3 +/- H-Ras overexpressing 

mice develop many mammary neoplasia lesions by the age of 17 weeks and fifty percent 

of theme present breast tumors by the age of 30-40 weeks. All these mice develop 

palpable breast tumors by the age of 70 weeks. In comparison, 50% of SRC-3 -/- mice still 

have normal mammary gland morphology by the age of 80 weeks. Moreover, depletion of 

SRC-3 also significantly reduces the mammary tumorigenesis induced by chemical 

carcinogens (160). Parallel to defects in sexual organs, SRC-3 knockout mice display also 

metabolic defects, with reduction in adipose tissue deposition and growth retardation. In 

fact, SRC-3 exerts an important role in lipid metabolism by enhancing transcription of 

PPAR 2, essential for progression of adipocyte differentiation (46). 

 

 

Biological Function of SRC-3 in vivo: Concluding Remarks. The 

Exemplification of Transcriptional Program Complexity 

 

Similar to SRC-1 and SRC-2, in vitro and ex vivo experiments have clearly demonstrated 

that SRC-3 is a transcriptional coactivator for nuclear receptors and other transcription 

factors. SRC-3 functions by recruiting at the promoter both HATs (CBP, p300, pCAF) and 

histone methyltransferases (CARM1 and PRMT1), which are necessary for chromatin 

remodeling and gene transcriptional initiation. Firstly, SRC-3 has been shown to regulate 

somatic growth through affecting IGF-1 expression. Second, SRC-3 participates in the 

regulation of puberty, vasoprotection, and female reproductive functions, coactivating 

steroids receptors. Third, SRC-3 plays a role in regulation of ovulation too, through still 

undefined mechanism. Fourth, SRC-3 is involved in the regulation of glucose and lipid 

metabolism. Finally, SRC-3 has a general coativating function in hormonal regulation of 

cell proliferation and its altered expression and activity are strongly related to 



 - 52 - 

tumorigenesis. However, SRC-3 has recently been found to regulate cellular processes 

other than transcription, functioning at the translational level of cytokine mRNAs and 

repressing their translation (173). All the functional roles that SRC-3 exerts in vivo are 

summarized in Fig.7. The most important question that still needs to be addressed 

concerns the in vivo relationship between the three p160-members and other classes of 

coactivators. It is now well accepted that coactivators always exert their function as 

multiprotein complexes. This concept underlines the complexity necessary to 

accommodate a broad range of developmental, physiological, and environmental 

programs. The equilibrium existing between the many different states of transcriptional 

control is fundamentally regulated at the level of coregulators and especially through 

posttranscriptional modifications of coregulators. SRC-3 serves as a good example to 

demonstrate how posttranscriptional modifications contribute to the biological complexity, 

signal integration, and the propagation of biological programs. SRC-3 in fact exists in a 

complex that includes kinases, ubiquitin ligases, ATPases, methyltransferases, acetylases. 

Initially, SRC-3 is likely to be SUMOylated (at aa 723 and 786) (167) and 

hypophosphorylated at serine/threonine residues (39), existing as an inactive protein in its 

basal state.  After phosphorylation at serine 505 and 509, especially through a GSK3-

dependent manner, SRC-3 becomes monoubiquitinated at residues 723 and 786 (167), 

becoming able to function as a transcriptional coactivator. The ubiquitination sites are 

progressively polyubiquitinated during subsequent rounds of transcription, ultimately 

leading to SRC-3 degradation through the 26S proteasome. Independent on this, other 

phosphorylation sites are targeted by other kinases, including p38, IKK, and MAPKs, and 

are necessary for SRC-3 to form divergent multiprotein complexes and coactivate its full 

range of transcription factors (39). Additionally, methylation and acetylation of SRC-3 

(165,166), along with proteasome-mediated degradation, leads to the coregulator complex 

disassembly and, beside phosphorylation, contribute to the coregulator dynamics.  
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Figure 7. Biological effects of SRC-3 in vivo. Transgenic mouse models and cultured cell experiment have 

revealed that SRC-3 plays important and wide roles in different cellular processes, regulating as many 

functions as somatic growth, puberty, vasoprotection, mammary gland development, and metabolism. SRC-3 

exerts its effect by interacting with transcriptional factors at the gene promoter level or interplaying with 

cytoplasmic signaling pathways. 
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PART 4:  

TRANSCRIPTION BY ESTROGEN RECEPTOR AND 

MECHANISM OF ESTROGEN ACTION 

 

 

Estrogen receptor (ER) primarily acts as a nuclear transcription factor upon binding with 

the specific ligand 17-  estradiol (E2). However, emerging data have identified a separate 

pool of estrogen receptors in the plasma membrane compartment, where it (as well as 

other steroid hormone receptors) is thought to trigger rapid and non-genomic signaling 

from various kinase pathways. Moreover, there is increasing evidence that cell-signaling 

pathway and the phosphorylation status of transcription factors and associated 

coregulators determines the overall response to the hormone. ER is synthesized in many 

cell types as two forms, ER   and ER , which are products of separate genes. The two 

receptors do not completely overlap in the various tissues and recent evidence indicates 

that there are specific actions of E2 that can be attributed to one receptor but not to the 

other.  

 

Contents: 

• Signaling by Estrogen and Non-genomic Action of ER 

• Mechanism of Action of ER in the Nucleus 

• Modulation of ER function by Phosphorylation 

• Tissue Distribution and Physiological Role of ER  and ER   
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Signaling by Estrogen and Non-genomic Action of ER 

 

Estrogens are a group of steroid compounds, named for their importance in woman 

estrous cycle, and function primarily as a female sex hormone, but they are also 

expressed in males, where regulate certain functions of the reproductive system and 

maturation of sperm. The principal estrogen hormone is 17-  estradiol, which is also 

converted into estrone and estriol that anyway are much weaker agonist of ER (221) and 

hence are thought to be inactive or suggested to possess some tissue specificity (222). 

Like other steroid hormones, E2 readily diffuse across the cell membrane and inside the 

cell specifically interact with its cognate receptor, ER. Primarily, ligand binding to ER in the 

nucleus leads to conformational changes that regulate the ability of the receptor to 

recognize the specific DNA binding sequences (hormone response elements) and interact 

with related coactivators, promoting transcription (the so called genomic action) of target 

genes involved in cell proliferation, differentiation and homeostasis. However, although the 

majority of ER is localized and activated in the nucleus, there is clear evidence that a small 

fraction of the receptor is localized at the cell membrane, either in the presence or 

absence of E2 (223,224,225,226,227), where it would mediate rapid response to the 

estrogen through the activation of different signaling pathways (the so called non-genomic 

action), occurring in a cell-type specific manner and including activation of MAPKs 

(230,302,303,304,305,306,307,308) and phosphatidylinositol 3-kinase (PI3K)/Akt pathway 

(309,310,311,312,313), induction of ion channel fluxes (229,314,315), G-protein-coupled 

receptor-mediated second messenger generation (cAMP and calcium) 

(316,317,318,319,320,321,322,323), as well as stimulation of growth factor receptors 

(324,325). The most accepted view is that these receptors are membrane associated by 

anchoring with scaffold proteins. Candidate interaction proteins are caveolin-1/-2 and the 

caveolin-binding protein streatin, a calmodulin-binding member. Caveolae are specialized 

regions of the plasma membrane that assemble and organize signaling protein complexes 

(228). Overexpression of caveolin-1 in MCF-7 cells, as well as overexpression of striatin, 

has been shown to increase the E2-dependent ER  localization to the plasma membrane 
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(229,326). Striatin has also been reported to serve as a scaffold for the formation of an 

ER -G i complex (326). Other candidate molecules involved in formation of these 

signaling complexes include heat shock protein 90 (Hsp90), matrix metalloproteinases 

(MMPs), G-proteins (G i), modulator of non-genomic action of ER (MNAR), c-Src, and 

Shc. The Src-homology and collagen homology adaptor (Shc) binds to docking sites of 

many growth factor receptors and directly associates with ER through an interaction 

between its SH2 domain and the N-terminal part of ER (230). ER , Shc and insulin-like 

growth factor (IGF-IR) have been shown to interact on the cell membrane in MCF7 cells 

and treatment with siRNA for Shc, or IGF-IR, attenuate the E2-induced ER  translocation 

to cell membrane and E2 stimulation of MAPKs (231). MNAR (327) acts as a scaffold 

protein and is anchored to c-Src via its SH3 domain interaction with a PXXP motif on 

MNAR. This complex is further stabilized by binding of c-Src’s SH2 domain to a 

phosphorylated tyrosine of ER  and binding of ER  to a LXXL motif present in MNAR. 

Consequently, activation of c-Src kinase activity leads to downstream signaling by Ras 

and Raf to MAPKs (328). In addition to scaffold proteins, ER lipid modifications are also 

involved in ER membrane targeting. Specifically, cysteine 447 appears to be a critical 

palmitoylation site (232,233). 

Rapid response mediated by estrogen is specific for different tissues. Within the 

cardiovascular system, rapid signaling pathway initiated by ER has been well defined. In 

fact, estrogen is able to exert rapid modulation of the vascular endothelium via the 

enhanced production of nitric oxide (NO), a vasoprotective molecule that promotes 

vasodilatation, inhibition of platelet aggregation, leukocyte adhesion, and smooth muscle 

cell proliferation, protecting the arteries against injury (48). ER uses scaffold molecules 

and localization to caveolae (329,330), as described above, to induce activation of eNOS 

via PI3K/Akt pathway (309,310). In MCF-7 breast cancer cells, E2-deperndent activation of 

ERK via ER  association with Shc, c-Src, and Ras, results in cell cycle progression 

(230,302). Estrogen can also induce stimulation of IGF-IR by interaction with ER in breast 

cancer cells and consequent signaling through PI3K/Akt pathway, resulting in enhanced 

cell proliferation (331,332,333). G protein-coupled receptor (GPR30), an orphan receptor, 
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can also bind to ER in breast cancer cells and induce activation of PI3K in a way 

dependent to EGF-R (324,325). In neuronal cells, E2, through membrane-associate ER 

action, rapidly triggers ERK-1/-2 activation (334), leading to the expression of cFos gene 

(335), and genes with neuroprotective effects like neurotensin. Acting through MAPK 

pathway, ER can also confer protection against -amyloid peptide (309). In pituitary, 

through calcium flux ER induces a rapid depolarization at the plasma membrane, which 

promote release of prolactin (336,337). In osteocytes, E2-triggered signaling confers 

protection against bone loss, inducing antiapoptotic mechanisms by activation of 

Src/Shc/ERK pathway (303,304). ER  may also interact with PKC to affect osteoblast 

differentiation (338).  

Although ERs at the plasma membrane and in the nucleus appear to act by very different 

mechanisms, their cell biological roles may overlap and be complementary. In fact, kinase 

signaling can rapidly activate transcription by NRs and play an important role in 

posttranslational modification of both NRs and associated cofactors. ER  is 

phosphorylated in multiple serine and threonine sites (see later) by MAPKs, resulting in 

increased receptor stability and transcriptional activity (247). Members of p160 family are 

also specific targets of MAPKs. More importantly, by affecting many different intracellular 

pathways, in addition to its classical transcriptional activity, ER can mediate the extremely 

broad spectrum of its physiological function in different cell types. 

 

 

Mechanism of Action of ER in the Nucleus  

 

Primarily, estrogen receptor is a nuclear transcription factor (genomic action) and, like 

other steroid hormone receptors, is activated upon direct binding with specific ligand and 

also modulated by posttranslational modification including phosphorylation. In the absence 

of hormone, a fraction of ER monomers is transiently sequestered in the cytoplasm 

associated with heat shock protein (3,13). Following binding to the hormone, the receptor 

dimerizes and translocate to the nucleus, where is able to bind sequence-specific hormone 
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response elements (HRE). Typically, hormone binding and localization to the specific DNA 

sequence is accompanied by increasing in receptor phosphorylation (see ahead) and 

receptor recruits coactivator complexes and activates transcription of specific target genes 

by DNA Pol II.   

Ex vivo expression of wild type and mutated mammalian ER (234) allowed functional 

analysis of ER structure and characterization of distinct functional domains 

(16,186,235,236,237). Similar to other NRs, the N-terminal region (A/B domain) of ER 

contains a constitutively active transactivation function (AF-1 region) (23,74). The most 

conserved region is the DNA binding domain (DBS, C domain) (11), which contains the P-

box, a short motif responsible for DNA-binding specificity to a sequence typically 

containing a palindromic hexanucleotide 5’-AGGTCA-3’, and is involved in ER dimerization 

(15,24). The less conserved D domain behaves as a flexible hinge region and contains the 

nuclear localization sequence (NLS), which extends into the C domain. Ligand-binding 

domain (12) (LBD, E domain) is the largest and possesses the conserved secondary 

structure of a three-layered 12-helices sandwich, typical of all NRs (186), in which is 

embedded the ligand-binding cavity. Helix 12 (H12) is the most important, orientating 

differentially in the presence or the absence of ligand (238). Following the binding of 

agonist, H12 adopts a position in which a conserved glutamate in the AF-2 and a 

conserved lysine in helix 3 grip the ends of the helical motifs that contain the LXXLL 

consensus sequence present in most coregulators (239). The leucine residues of the 

LXXLL helix pack into a specific hydrophobic pocket formed upon H12 reorientation, 

stabilizing the interaction with the receptor (186,240,241). Similar to coregulators, 

corepressors that include NCoR (50) and SMRT (176) interact with unliganded ER through 

an elongated helix of sequence LXXI/HIXXXI/L, called CoRNR-box (51,242,243), which in 

the absence of agonist occupies the same hydrophobic pocket contacted by LXXLL motif, 

because it can displace the H12. On the contrary, this extended helix of NCoR and SMRT 

is too long to accommodate in the hydrophobic pocket when H12 assumes the activated 

configuration in response to agonist binding. Thus, agonist binding reduces the affinity of 

ER, and NR in general, for the CoRNR-box of corepressors and increase the affinity for 
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the LXXLL motif of coregulators. The E domain is responsible of also other functions, 

possessing a dimerization interface, a second NLS, and a second transactivation function 

(AF-2) (22). The very C-terminal part of ER contains the F domain, which exerts a complex 

mudulatory function (244,245).  

ER can associate with distinct subsets of cofactors (178,339). The majority of these 

cofactors bind to the LBD and so far only very few coactivators are likely to function in ER-

specific manner, considering that the various NRs appears to utilize similar cofactors (340). 

With regard to ER, it has been found that, in the case of SRC-1 and -2, the NR-box 2 has 

the highest affinity for agonist-bound ER , while in SRC-3 the NR-box 1 serves as the 

primary docking site (341). Additionally, acetylation of lysine residues adjacent to NR-box 1 

in SRC-3 abolishes the interaction with AF-2 domain of ER  and may represent one 

important mechanism for attenuation and feedback regulation in ER-regulated gene 

expression (87). The interaction of coregulators with ER can be controlled at several 

levels. In the case of SRC-3, six phosphorylation sites are required for coactivation of ER 

(39) and different combination of phosphorylated residues modulate its interaction with co-

coactivators partners (e.g. CBP and p-300), allowing specific regulation of endogenous 

genes by ER. On the other side, conventional corepressors, like NCoR and SMRT, can 

associate to antagonist-bound ER (342)and it has been proposed that they can play a role 

in regulating ER activity in tumors treated with antiestrogens (182). There is evidence that 

histone deacetylase activity required by corepressors complexes like NCoR/SIN3/HDAC2 

is required for the transcriptional repression of tamoxifen-bound ER (49,182,343). However, 

direct binding of antagonist-bound ER to corepressors has not been demonstrated yet, 

indirect recruiting mechanisms are also possible and it also possible that ER antagonists, 

via realignment of H12 (344), may expose yet unidentified corepressor binding epitopes. 

Importantly, a putative ER-specific corepressor has been identified by two-hybrid screen 

(342), which is called REA (repressor of estrogen receptor activity) and competes with 

SRC-1 coativating activity. 

The traditional model for transcriptional activation of specific genes by E2-activated ER, 

envisage the direct binding of the receptor to the EREs. Today we know that ER can also 
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modulate gene expression without this direct binding to DNA, but rather via the 

participation in the formation of preinitiation complexes by other transcriptional factors. The 

most characterizes example is the physical interaction of ER, after hormone binding, with 

AP1 complex and stimulation of transcription through Jun/Fos transcription factors (246). 

Another example of indirect action on DNA is the interaction between ER and NF B 

complex, which prevents expression of interleukin-6 promoter (345). Additionally, 

unliganded-ER can interact with Sp1 transcription factor, enhancing its affinity for DNA and 

promoting transcription of retinoic acid receptor (RAR-1) gene (346,347). 

Result from these studies suggest that in the nucleus ER can mediate signaling from 

different pathways by a complex crosstalk between EREs-dependent or independent 

genomic action, and interacts with a repertoire of coregulators and other associated 

proteins, which in turn determine the expression level and the specificity of regulated 

genes.  

 

 

Modulation of ER Function by Phosphorylation 

 

Basically, steroid hormone receptors are hormone-activated transcriptional factors whose 

activities are also modulated by posttranscriptional modifications, including 

phosphorylation (247). In some cases, enhanced cell signaling is also sufficient to cause 

activation of receptors in culture medium depleted of steroids (248). All of the steroid 

receptors contain multiple phosphorylation sites. Normally, the receptors are partially 

phosphorylated in the absence of hormone and are more highly phosphorylaed after 

hormone treatment. Some of the sites exhibit enhanced phosphorylation in response to 

hormone, while other sites are phosphorylated exclusively in presence of hormone. Most 

of the sites are serines or threonins located in the N-terminal part of the receptor, although 

there is also a conserved region of Ser-Pro or Thr-Pro in the hinge region of the receptor. 

In addition to Ser/Thr sites, there is a limited evidence to support tyrosine phosphorylation 

too. In ER , phosphorylation of Tyr537 has been described (249,250). Some of the 
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phosphorylation sites of steroid receptors are also conserved across species. In the case 

of ER , eight phosphorylation sites (Ser 104, 106, 118, 167, 236, and 30, Thr 311 and Tyr 

537) have specifically identified (250). Specific phosphorylation of these residues 

contribute to a variety of ER functions including receptor stability, nuclear localization, 

transcriptional activity, interaction with coregulators, splicing, and, in some cases, 

phosphorylation may determine whether a subsequent posttranslational modification will 

occur.  

Most of the information has been obtained using transfected receptors but nevertheless it 

has clearly been showed that the actions of some kinases are receptor-specific and may 

also be cell-type specific and it is likely that many of the responses may be target gene-

specifically. Estrogen receptor activity can be generally modulated by cyclin-dependent 

kinases (251), like Cdk2, which enhances the activity of various steroid receptors. On the 

other hand, p38 MAPK enhances specifically ER  activity by phosphorylation of Thr311, 

increasing also its nuclear localization on endometrial cells (252). Phosphorylation of 

Ser104, Ser106, Ser118 appears to be particularly important for functional association with 

coregulators (253,254). Ser118 is also implied in interaction with splicing factors (255). Ser167 

phosphorylation plays a role in optimal DNA binding in vitro and binding to endogenous 

promoter in vivo (254,264,257). This serine is target of casein kinase II (258), Rsk (259) as 

well as Akt (257). Ser305 phosphorylation increases transcriptional activity and has been 

implied in preventing acetylation of Lys303 (260). Interestingly, Lys303 is often mutated in 

breast cancer to Arg, and this mutation increases sensitivity to estrogen (261). 

In addition, there are multiple pathways for hormone-independent estrogen receptor 

activation. One of the best characterized is the EGF (epidermal growth factor)-dependent 

activation of ER  in HeLa cells in the absence of hormone, by specific phosphorylation of 

Ser118 and Ser 167 (262,263), typically resulting in the activation of MAPKs (259,264). 

Phosphorylation in the amino terminus of ER  by p42/p44 MAPK also induces ligand-

independent activation through enhancing the association with SRC-1 (265). Oppositely, 

Ser236 phosphorylation of ER  by PKA has been implied in inhibition of hormone-

independent dimerization and DNA binding, but this inhibition is overcome by the addition 
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of estradiol (266). However, signaling pathways that induce hormone-independent action 

also potentiate the corresponding hormone-dependent activity. 

Phosphatases also play a role in regulating activity of ER. It has been shown that 

overexpression of protein phosphatase 5 (PP5) reduces Ser118 phosphorylation and 

transcriptional activation of ER , while reducing expression of PP5 enhances 

transcriptional activity (267). 

In addition to directly modifying the receptor, there is increasing evidence that ER 

functions are regulated by changes in the phosphorylation state of associated 

coregulators. For example, the p160 coactivators are extensively phosphorylated by 

different kinases in multiple signaling pathways. Phosphorylation of SRC-1 is important for 

the interaction with receptors (268). Phosphorylation of SRC-2 by p42/p44 MAPK may 

potentiate the activation of receptors (269,270). SRC-3 is highly phosphorylated and plays 

a broader role in modulating the activity of many transcription factors. Steroid receptors 

require specific phosphorylation of SRC-3 sites to achieve complete potentiation of 

transcriptional activity (39,43). ER  itself can also induce phosphorylation of SRC-3 in the 

presence of estradiol (271). Phosphorylation of corepressors also influences their ability to 

repress transcription. Phosphorlation of SMRT, by MEKK1, causes nuclear export, 

relieving repression (170). MEKK1 also provoke dissociation of NCoR from androgen and 

estrogen receptor, enhancing transcriptional activity (272).  

The simplest mechanism for influence phosphorylatyon of component of steroid receptor 

pathway is the direct interaction between kinases or phosphatases and receptor or 

coagulators. In some cases, anyway, these modifying enzymes are brought to the target 

by proteins that interact with the receptor. For example, I K associates with SRC-3, which 

is also a substrate for phosphorylation, is important for the hormone-dependent 

phosphorylation of Ser118 in ER  (43,273). In the case of GR, Hsp90 is a mediator for P5 

phopshatase interation with the receptor (274). 

Cell signaling pathways that regulate phopshprylation of steroid receptors and their 

ceregulators are critical in determining the activity of the receptor under different 

physiological condition. All these data also point to the fact that posttranslational 
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modifications are as fundamental as hormonal induction for the optimal activity of steroid 

receptors and much importantly they regulate the specificity of target-gene transcription.  

 

 

Tissue Distribution and Physiological Role of ER  and ER   

 

Jensen and Jacobsen were the first to describe that the biological effects of estrogen are 

mediated by receptor proteins (276). The cloning of ER  was reported in 1986 (276,277), 

but in 1995 a second ER isoform, named ER , was cloned from a rat prostate cDNA 

library (278), revealing new significance of ER function, especially with respect to our 

understanding of estrogen action in male. Both the isoforms are widely expressed in the 

organism often at significantly different levels, accomplishing also non-overlapping role.   

Estrogen exposure is fundamental for the correct development of mice urogenital tract, 

and lack of E2 action results in structural and functional alteration of male reproductive 

system (348,349,350,351). In these organs, ER  is the highest expressed isoform in several 

species (352,353,354,355). In the testis, both ER  and ER  are expressed, but differently 

localized (356,357,358). E2 appears to play a crucial role for normal epididymal and 

testicular function, where the hormone is synthesized by aromatase (350). ER  is highly 

expressed also in the inner epithelial cell layer of rat urethra (279,280). In the prostate, ER  

is the predominant ER, as revealed by immunohistochemistry, while ER  has been 

detected only in the stromal compartment (280,281). Estrogen has been clearly linked with 

prostate pathologies, synergizing with androgen. In fact, animal experiments show that E2 

plays a role in prostatic neoplasia, benign prostatic hyperplasia and prostate cancer 

(359,360,361), but the specific role is still unknown. However, knockout mice have revealed 

that the absence of ER leads to structural and functional alteration in the prostate (301).  

The importance of E2 for the development of female breast tissue is well documented. The 

female mammary gland undergoes a surge of cell divisions during puberty, and throughout 

the adult like there is cyclical proliferation and involution during estrous cycle. Women 

aromatase deficient patients, unable to convert testosterone to estrogen, show no breast 
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development at the onset of puberty (282,283,284). ER  knockout female mice have lost 

the capacity to develop mammary gland tissue (301,362). E2 is as well fundamentally 

linked to the induction and progression of mammary carcinoma. More than 70% of primary 

breast cancer in women are ER  positive and show estrogen-dependent growth (285). The 

possible role of ER , which is also expressed in mammary gland, in normal breast tissue 

development or breast cancer development is however as yet unknown (286). 

Estrogen and androgen play important role also in bone metabolism and homeostasis. 

During adolescence, they are involved in modeling of bone. In the adult, E2 is also 

involved in remodeling of bone and, particularly, it is crucial for post-menopausal women to 

protect from bone loss and development of osteoporosis (363,364,365). In osteoblast, E2 

stimulates synthesis and secretion of IGF and inhibits that of cytokines, IL-1 and IL-6, 

which are involved in resorption (366,367). E2 also stimulates synthesis and secretion of 

osteoprotegrin, a protein with a critical role in inhibition of the function of osteoclasts 

(368,369). Suppression of osteoclastic bone resorption and stimulation of osteoblastic bone 

formation form the basis of the bone-preserving effect of E2. Loss of ER  in mice is 

associated with decreased longitudinal and radial limb growth in both sexes (370,371). 

In the cardiovascular system, both ER isoforms are expressed in endothelial cells 

(287,288), smooth muscle cells (289,290), and myocardial cells (279,280). The risk of 

women development of cardiovascular diseases increases dramatically after menopause, 

suspected to be a consequence of the cessation of estrogen production by ovaries (116). 

E2 exerts both nongenomic effects on vasodilatation, by acting on ion channels function 

(292) and nitric oxide synthesis (293,294), and long-term effects, by modulation of 

prostaglandin synthase, nitric oxide synthase, and endothelin gene expression 

(295,296,297). 

Estrogen is reported to influence a variety of function also in the central nervous system 

(298). Expression of ER  and ER  differs in some areas but in others is overlapping 

(299,300). ER  is more expressed in the hypothalamus. Estrogen, through the 

hypothalamus-pituitary axis, regulates the expression and secretion of hormones such as 

luteinizing hormone, follicle stimulating hormone, growth hormone, and prolactin, from the 
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anterior pituitary gland (301).  

Evidences accumulated suggest that ER  and ER  regulate, at least in part, separate and 

distinct gene networks, particularly regarding tissue and cell specific effects of estrogen. 

Varying ratio between the two isoforms may be fundamental for obtaining the final 

hormone effect. 
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RESULTS 

 

 

CHAPTER 1:  

High Resolution Quantitative HTM Analysis of ER  

Transcriptional Activity and Chromatin Remodeling 

 

 

ER  is a representative member of nuclear receptor transcription factors. Approximately 

70% of breast cancer patients are positive for elevated ER  expression at diagnosis. 

Several anti-estrogen have been developed and used in anti-cancer therapy and include 

4-hydroxitamoxifen (4HT) and ICI 182,780 (ICI). These molecules act as transcriptional 

antagonist by promoting the repressed state of promoter-localized ER, which, in turns, 

generates a transcriptionally prohibitive environment and chromatin condensation. 

Differently, binding of agonist to ER increases the recruitment of multiple coactivators and 

chromatin remodeling proteins, leading to chromatin decondensation. 

In this study, we have developed a model system (PRL-HeLa cell line) that is valuable to 

High throughput microscopy (HTM) analysis of chromatin remodeling and ER  functional 

response to ligand. 

 

Contents: 

• Introduction to High Throughput Microscopy (HTM) 

• HTM Analysis of Protein Expression Level in EGFP-ER -transfected Cell Population 

• Engineered PRL-HeLa Cell Line for Studying Ligand-dependent Chromatin Remodeling by ER  

• Quantitative Determination of PRL-array Size via HTM 
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Introduction to High Throughput Microscopy (HTM) 

 

Traditional biochemical and reporter assay approaches are representative of an averaged 

evaluation of cellular responses. Recent microscopic single-cell analyses in some cases 

provide markedly different results relative to classical approaches, due to the fact that 

individual cells could exhibit quiet varied responses. High throughput microscopy 

combines automated image acquisition to qualitative analysis at the individual cell level. 

HTM couples rapid acquisition of multiple cell pictures by a robotic fluorescence-

microscope (IC100, Beckman Coulter) to computational-imaging analysis software 

(Cytoshop, Beckman Coulter), under similar acquisition parameters (i.e. type of optics, 

number of fluorescent channels, exposure time, and number of optical fields) (see 

reference 372). Then, cells are easily identified basing on their DAPI staining (Fig.8). In 

this way, HTM allows quantitative study of variation in plenty of qualitative cellular features. 

HTM-coupled computational-imaging analyzer includes hundreds of cell morphological 

detection/measurement algorithms, which primarily allows to filter (or gate) the initial 

imaged cell population to obtain a more homogenous subpopulation of cell pictures, then 

susceptible for analysis. Specialized algorithms are supplied to measure specific 

phenomena, including protein subcellular localization. Finally, data are exported as excel 

files. These algorithms have already been applied for successfully quantify the cytoplasmic 

to nuclear translocation of NF B-p65 subunit (375). Here, we have adopted HTM as an 

analytical instrument to study ER -regulated transcriptional activation in transfected-cell 

system. Ahead, in PART-2 section, HTM will be greatly applied for measuring subcellular 

localization of SRC-3 upon phosphorylation and interaction with ER .   
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HTM Analysis of Protein Expression Level in EGFP-ER -transfected 

Cell Population 

 

In this paragraph, we will introduce the basic tools needed for HTM analysis system, in 

terms of images acquisition, data extraction, filtering, and data analysis of a population of 

HeLa cells exogenously expressing EGFP-ER  (Fig.8-10). We will describe how to use 

HTM to properly select cells for analysis based on cell viable morphology and expression 

of exogenous EGFP-ER . 

Cells are imaged by the IC100 microscope using the 40X/0.90 resolution objective, which 

gives a good balance between field size and resolution, using an exposure time of 

approximately 0.10 ms for DAPI and 500 ms for GFP fluorescence. Afterwards, acquired 

pictures are transferred to the imaging-analysis software Cytoshop for computational 

imaging analysis, which requires application of appropriate algorithms throughout three 

sequential steps.  

Step 1. Initially, cells are identified and extracted by generating a nuclear mask around the 

DAPI-stained nucleus, through a predefined radius range and an optimized image filter, 

which is used to create marked object-background contrast, followed by automatic 

“thresholding”. In this way, effects due to background fluorescence are subtracted and the 

mean image intensity is corrected. The corresponding cell channel mask or extraction 

correlation radius, which is used for the approximate identification of cytoplasm, is 

calculated and defined as an intersection between the “thresholded” channel, the Voroni 

tessellation polygon, and the nuclear mask (Fig.8). The resulting total cell population is 

biologically heterogeneous, containing apoptotic or dividing cells, and clusters of cells, 

which are not defined as a single cell. This total cell population contains also cells with 

high level of expression of GFP-ER . Morphologically regular cells and properly 

expressing GFP-ER  will be filtered and selected in step 2 and 3, respectively. 

Step 2. Threshold filters standard to Cytoshop software are used for removing aberrant 

cell types and properly select cells for analysis, based on viable morphology (Fig.9). Three 

filters are simultaneously applied to the total imaged cell population: 1) “DNA Content 
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Outliner”, which removes apoptotic and mitotic cells based on DAPI intensity; 2) “DNA 

Cluster”, which removes cell clusters that could not be resolved as individual cells; 3) The 

“Keep Cells Acquired with Two Channels” filter is combined with the two previous 

morphological filters, which are derived for the first fluorescent channel (DAPI) and applied 

to the second channel (i.e. GFP), in order to produce a more homogenous cell sub-

population differentially expressing GFP-ER . 

Step 3. Finally, the morphological-selected cell sub-population is filtered for proper levels 

of expression (near endogenous) of GFP-ER , by examination of the mean intensity value 

of cellular fluorescence (Fig.10). Cells that don’t express green fluorescence at all 

(presumed to be non-transfected with GFP-ER ) are removed as well. On account of the 

fact that HeLa cells do not endogenously express ER gene, the lower and upper values of 

expression levels in GFP-ER  cells are arbitrarily set within a range of cellular 

fluorescence intensity comparable to presumed endogenous expression. As a result, GFP-

ER  over-expression artifacts are automatically eliminated and a final population gallery of 

selected cells is obtained. It is anyway important to note that the expression range values 

are not absolute, but differs between experiments, due to biological and optical variability. 

Moreover, note also that from the original total population of  6000 identified and 

morphologically filtered cells, only  300 are ultimately selected for possessing the 

adequate level of GFP-ER expression. 

 

 

 

 

 

 

 

 

 

 



 - 71 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Step 1: HTM images acquisition, cell identification and extraction. (A) The two fluorescence 

channels, DAPI and GFP-488nm, are imaged in a single plane, using a 40X/0.90 NA objective. More than 

one hundred pictures are acquired per coverslip and transferred to the Cytoshop imaging software for data 

analysis. (B) An automatic threshold algorithm subtracts background fluorescence, allowing image intensity 

correction. Contrast measurements identify DAPI-stained nuclei (nuclear mask) and the Voroni tessellation 

polygons define cell boundaries, required for delineating the approximate cytoplasm by the extraction 

correlation radius.  
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Figure 9. Step 2: Morphological Filtering of Total imaged Cell Population. After cell identification and 

extraction, the original cell population, containing apoptotic or mitotic cells, unresolved nuclei clusters, is 

filtered to obtain a morphological selected sub-population of viable interphase cells. “DNA Content” algorithm 

is applied to identify the apoptotic and mitotic cells. “DNA Cluster” algorithm is applied to identify the cluster 

of non-resolved nuclei. The “Keep Cells With Two Channels” filter is then combined with the two previous 

filters and applied to the total population of GFP-ER -expressing cells, to generate a morphologically 

homogenous population of interphase cells in the GFP channel. Cell presenting over-expression of GFP-

ER  will be then eliminated (step 3). Representative galleries of aberrant and selected cells for the DAPI 

channel, and the corresponding cells for GFP channel, are depicted. 
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Fluorescence Range of Properly Expressing GFP-ER  Cells  
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Figure 10. Step 3: Selecting Cell Properly Expressing GFP-ER . HeLa cells transiently transfected with 

GFP-ER  are examined for expression levels. Channel 0 (DAPI) and channel 1 (GFP) are imaged in the 

same plane and morphologically filtered as in Figure 9. (A) Two galleries featuring low and high expressing 

cells are depicted. A histogram is presented that demonstrate the broad range of GFP-ER  fluorescence 

expressions with a maximum intensity of  1.8x10
6
. The range of fluorescence intensity for properly 

expressing GFP-ER  cells is conventionally identified between  180000 and  600000. Cells with lower or 

higher values are automatically discarded. Note that the vast majority of cells are not transfected or don’t 

express detectable level of GFP fluorescence intensity. (B) A GFP-ER  expression final histogram after 

morphological and expression filtering and a representative image gallery of selected HeLa cells transiently 

expressing GFP-ER  are presented. Note the absence of lower/higher expressing cells. 
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Engineered PRL-HeLa Cell Line for Studying Ligand-dependent 

Chromatin Remodeling by ER  

 

We developed a HeLa cell line (PRL-HeLa) specifically engineered for the study of ER  

transcriptional function (20). PRL-HeLa cells contain multiple and stable genomic 

integrations of a replicated prolactin (PRL) enhancer-promoter (Fig.11 A). The multiple 

integrations (PRL array) are spatially confined and are visualized by the accumulation of 

GFP-tagged ER  and fluorescently immunolabeled coregulators or RNA Polymerase II. 

The enhancer-promoter within the PRL-array contains repetitions (52X) of Pit-1/ERE 

binding site for ER , following the physiological PRL distal enhancer (-1807 to -1498), and 

the proximal promoter, fused to a reporter gene, which enables to assay ER -dependent 

mRNA expression through RNA fluorescence in situ hybridization (FISH) detection.  

Different cellular clones were developed and characterized for responsiveness to ligand 

treatment and binding of ER and coregulators. Sequential cloning steps generated by 

recombination events 2X, 4X, 8X, 13X, 26X, and 52X Pit-1/ERE repeated sequences  (20). 

Finally two different clones have been selected for containing stably integrated the 52X 

PRL-array into the genome: in clone referred as 23, the construct is integrated into two 

distinct chromosomes, and visualized as two separate spots when GFP-ER  targeted; 

clone 19 presents a single chromosome-integration (Fig.11 B). Concerning to both clone 

23 and clone 19, quantitative Southern blotting indicated that approximately 150-300 total 

copies of 52X PRL-array are integrated in the cell. 

PRL-HeLa cells were transiently transfected with GFP-ER , resulting in localization of 

GFP-ER  on the 52X PRL-array. Addition of ER  agonist (17-  estradiol, E2) for 30 

minutes causes a visible opening (decondensation) of the PRL-array relative to no ligand 

treated cells. Cells were then fixed and immunoassayed for endogenous SRC-1, -2, -3 

recruitment to the PRL-enhancer/promoter and co-localization with GFP-ER . All of the 

three coactivators tested occupy the GFP-ER-targeted array (Fig.12). Treatment with E2 

leads also to co-localization of RNA Polymerase II to the PRL-array (Fig.13), and to 

transcriptional readout of the reporter gene, with an increased FISH signal of about 2 fold 



 - 75 - 

over the level of vehicle (ethanol) treated cells and about 8 fold over the basal level of non-

transfected cells (Fig.14). On the contrary, treatment for 30 minutes with the ER  

antagonist 4HT or ICI induces a marked lowering in size (condensation) and displacement 

of p160 coregulators and RNA Polymerase II from the GFP-ER  targeted PRL-array 

(Fig.12 and Fig.13). As expected, condensed PRL-array has a FISH signal reduction of 

more than 10 fold relative to the vehicle and about 25 times lower relative to E2 stimulation 

(Fig.14). Importantly, PRL-HeLa cells that are not transfected with GFP-ER  also present 

a basal level of PRL-array chromatin decondensation and RNA Polymerase II localization 

(about 12% of the total cell population), which corresponds to a minor FISH signal (Fig.12 

and Fig.14). Additionally, PRL-HeLa cells transfected with GFP-ER  but vehicle treated 

also present a subpopulation (about 15%) of cells with a detectable GFP-ER  

transcriptional activity to the PRL-array (Fig.12 and Fig.14), which is assumed as the 

ligand-independent ability of ER to bind specific responsive elements and partially activate 

transcription.  

It follows that array size in this cell line expressing ER  is an indicator of receptor 

transcriptional functionality in response to ligand treatment. Much importantly, these data 

indicate that chromatin decondensation and transcriptional activation are direct reflections 

of ER  dependent coregulators recruitment to the PRL-array. For this reason, PRL-HeLa 

cell system allows the ability to measure the multiple aspect of ER  transcriptional activity 

by HTM, as it is shown in the next paragraphs, which is not possible in conventional cell 

lines. 
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Figure 11. 52X Prolactin integrated enhancer-promoter in PRL-HeLa cells. PRL-HeLa engineered cell 

line contains a chromosomally integrated prolactin (PRL) enhancer-promoter array (PRL-array) that 

regulates the expression of a reporter gene. (A) Schematic representation of PRL-array. Multicopy repetition 

(52X PRL enhancer) of Pit-1/ERE binding site (1D-PRL1-PRL5) follows the physiological PRL distal 

enhancer (-1807 to -1498) and the proximal promoter, which is fused to the reporter gene. (B) Transfection 

of PRL-HeLa cells with GFP-ER  results in the localization of GFP-ER  on the integrated prolactin 

promoter (yellow arrows). Treatment with E2 leads to a visible opening of the GFP-ER -targeted array, 

while antagonist 4HT causes a drastic condensation. Both clone 23 and clone 19 are shown. 

52X PRL enhancer 

A. 

    Reporter gene 

PRL 1 - 5 = ERE 
1 - 4 D = Pit-1 

 

PRL Distal Enhancer  Proximal Promoter 

-1807 -1498 -66  +1 

 1D PRL1 PRL1 PRL2 PRL3 PRL5 PRL4 PRL2  4D  3D  2D  1D   TATA 

52X PRL-HeLa Clone 23 52X PRL-HeLa Clone 19 

+ E2 

B. 

52X PRL-HeLa Clone 23 52X PRL-HeLa Clone 19 

+ 4HT 



 - 77 - 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Localization of p160 family members on the 52X PRL-array. After 48 hours in hormone free 

media, Clone 23 PRL-HeLa cell line was transiently transfected with pEGFP-ER  expression vector and 

then treated with agonist (E2), antagonist (4HT or ICI), or vehicle, as indicated. Cells were then fixed and 

processed for immunostaining with antibodies specific for endogenous SRC-1, -2, or  -3. Decondensed array 

are seen in vehicle and E2-treated cell, although E2 treatment results in a major decondensation. On the 

contrary, exposure to the antagonist leads to a visible condensation. All of the three p160-coactivators co-

localize with GFP-ER  to the open PRL-array in presence of E2 but not to the condensed array. The DAPI 

channel is shown as merged with the GFP and the red channel. ICI-treated cells (not shown) display similar 

array condensation and coregulator displacement like 4HT-treated cells 
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Figure 13. Localization of RNA Polymerase II on the 52X PRL-array. After 48 hours in hormone free 

media, Clone 23 PRL-HeLa cell line was transiently transfected with pEGFP-ER  expression vector and 

then treated with agonist (E2), antagonist (4HT or ICI), or vehicle, as indicated. Cells were then fixed and 

processed for immunostaining with antibodies specific for the endogenous RNA Polymerase II. Clearly 

decondensed and Polymerase-targeted array appears following E2 exposure in GFP-ER  transfected cells. 

Nevertheless, a small subpopulation of cells showing slight decondensation of the array is also present in 

vehicle-treated cells, while the vast majority of cells present cytoplasmic diffusion of ER . Also, constitutive 

chromatin decondensation of the array is revealed in non-transfected cells by Polymerase localization. On 

the contrary, exposure to the antagonist leads to a visible condensation and Polymerase displacement. 

Percentages of subpopulations are indicated. The DAPI channel is shown as merged with the GFP and the 

red channel. 
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Figure 14. Analysis of the transcriptional response of the 52X PRL-array. After 48 hours in hormone 

free media, Clone 23 PRL-HeLa cell line was transiently transfected with pEGFP-ER  expression vector and 

then treated with agonist (E2), antagonist (4HT or ICI), or vehicle, as indicated. Cells were then fixed and 

processed for FISH and imaged as described in Methods.  Fluorescence is shown in green and mRNA FISH 

signal is shown in red. The merge includes DAPI-staining in blue. Intensity of FISH signals at the PRL-array 

was quantified by the freeware-imaging program GimpShop (see Material and Methods) and graphed. The 

treatments are also indicated below the graphs. While there is a constitutive FISH signal in non-transfected 

cells, it increases significantly in cells with arrays targeted by GFP-ER  (p<0.01) and treated with E2. A 

small, but significant FISH signal is detectable also in vehicle-treated cells (p<0.05). Conversely, there is a 

significant decrease in FISH signal at the array in cells treated with antagonist (p<0.001). 
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Quantitative Determination of PRL-array Size via HTM 

 

In our early experiments, we show that PRL-array shape and size may vary considerably 

and correlate with agonist or antagonist exposure of PRL-HeLa cells transiently expressing 

GFP-ER . In this section, we will illustrate how high throughput microcopy can be a useful 

tool for quantifying the transcriptional response of 52X PRL-array to ER  ligands at the 

single cell level.  

Transiently GFP-ER -transfected PRL-HeLa cells were treated for 30 minutes with 

vehicle, 10nM of E2, or 10nM of antagonist (4HT or ICI), fixed and immunolabeled for anti-

RNA Pol II, DAPI stained, and imaged on IC100 using the high numerical aperture 40X, 

0.9 NA, objective. The secondary antibody is conjugated to Alexa 647 (Molecular Probes), 

which gives a signal in the far-red wavelength. Cells were imaged for DAPI, red 

immunofluorescence, and GFP fluorescence. Exposure time was approximately 0.1 ms for 

DAPI, 500 ms for immunolabeled RNA Polymerase II, and 2 seconds for GFP-ER . 

Pictures from the total cell population, for the three different channels, were collected and 

analyzed with Cytoshop software, as described in previous sections and in Methods. 

Channel 0 (DAPI) was used to find the focus on nuclei; channel 1 visualizes GFP-

ER  transfected cells and identified the PRL array; channel 2 for RNA Pol II. To maximize 

the number of PRL-array imaged in focus, the Z-plane section for GFP-ER  was offset 1 

μm from the DAPI focal plane. Up to 100 fields per coverslip were imaged to obtain an 

unfiltered total cell population of at least 5000 cells. An aggregate algorithm was 

automatically applied to identify the GFP-ER  array (aggregate), before morphological 

filtering. The aggregate identification parameters are 350 (maxim area in pixel), 30 (object 

scale), 5 (minimum peak height). These parameters were determined to be optimal for 

identifying arrays in cells treated with either agonist (large array) or antagonist (small 

array) and for excluding non-array identified aggregates. Thereafter, mitotic and apoptotic 

cells, nuclei clusters, out of focus, and over-expressing transfected cells were removed 

from the images collection, using classical morphological and expression filters, and 

resulted in a gallery of selected cells (Fig.15 A). An additional filter (Number of Aggregates 
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Identified per Cell <3) was then applied to the morphology/expression-selected 

subpopulation, in order to include only cells with maximum of two aggregate per cell. 

Finally, a homogenous cell population was generated and visually and manually inspected 

for colocalization between GFP-ER -targeted array and RNA Polymerase II 

immunostaining. Cellular parameters, like PRL-array size, were automatically measured at 

single cell level (for each ligand treatment) and directly exported as an excel data file. 

HTM analysis shows a drastic difference in the PRL-array size, depending on the 

exposure to specific ER  ligands (agonist or antagonist), which we would call ER -

dependent chromatin remodeling. These results indicate a basal array size (vehicle 

control) in pixels of 78.8 ± 4.2 (Fig.15 B). Treatment with E2 causes a spatial expansion of 

the array (131.9 ± 4.5). Treatment with antagonist 4HT or ICI causes array contraction 

(42.7 ± 3.0 and 45.3 ± 2.6 respectively). Array size for each treatment is significantly 

different than vehicle control (p<0.01).  

In conclusion, we could assume that PRL-array size is a reliable indicator of ER  ligand-

dependent regulation of transcription, as shown in figure 14. Here, PRL-HeLa cell line and 

HTM has successfully demonstrated the capability to quantitatively measure the variation 

of the array size upon ligand treatment. In the next chapter, we will show HTM as a 

convenient tool for demonstrating distinct aspect of ER   transcriptional function in 

relationship with the coregulator SRC-3. 
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Figure 15. HTM analysis of PRL-array size. PRL-HeLa cells (Clone 23) were transiently transfected with 

GFP-ER , fixed and DAPI/RNA Pol II stained upon treatment with ligands. Raw pictures from the total cell 

population were collected and analyzed with Cytoshop software. (A) A representative field of E2 treated cell 

images is presented. An aggregate algorithm was used to identify, mask (red) and quantify the PRL-array. 

Out of focus, over-expressed and irregular-shaped transfected cells (gray circles) are removed from the 

images collection, as previously shown in figures 8-10, resulting in a gallery of selected cells (yellow circles). 

An additional filter (Number of Aggregates Identified per Cell <3) was applied in order to remove cells with 

non-array aggregates identified by the aggregate algorithm. The selected cell population contains exclusively 

in-focus and correctly identified arrays. (B) From this gallery, cellular parameters, like PRL-array size were 

measured and automatically exported as an excel file.  Size values obtained are graphed and presented as 

mean array area in pixels (n cells > 100 for each treatment). Error bars represent SE (**, P<0.01). 
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CHAPTER 2:  

Regulation of SRC-3 Cellular Localization and Dynamics by 

Phosphorylation and ER  Interaction 

 

SRC-3 belongs, together with SRC-1 and SRC-2, to p160/SRC (steroid receptor 

coactivators) family of general transcription coactivators of nuclear receptors (NRs). SRC-

3 is strongly suggested to play an oncogenic role in cancer: it is amplified in 10 % of 

human breast cancer and in the majority of tumors. SRCs are essentially localized in the 

nucleus. However, weak, but significant, expression is also observed in the cytoplasm. 

Here, with an extensive use of cellular microscopy, including quantitative high throughput 

microscopy (HTM), we will demonstrate that SRC-3 is in fact a primarily nuclear protein 

and that a fraction of the cellular pool shuttles between nucleus and cytoplasm. Moreover, 

phosphorylation state and interaction with ER  regulate the compartmental dynamics of 

SRC-3. We also demonstrate that inhibition of SRC-3 phosphorylation results in reduced 

ER -dependent transcription in PRL-HeLa cell line and intranuclear ER -SRC-3 complex 

formation. Finally, we suggest that the nuclear-cytoplasmic shuttling of SRC-3 may be 

important for facilitating nuclear translocation of estrogen receptor. 

 

Contents:  

• SRC-3 Is Primarily a Nuclear Protein 

• Quantification of SRC-3 Cellular Localization Using High-resolution HTM 

• SRC-3 Localization Is Regulated by Phosphorylation 

• EGF Induces Phosphorylation of SRC-3 and Promotes SRC-3 Nuclear Localization 

• Phosphorylation of SRC-3 Regulates Interaction and Colocalization with ER  

• SRC-3 Phosphorylation Is Required for Promoter interaction with ER  and Transcriptional Readout 

at the PRL-array  

• SRC-3 Shuttles Between Nucleus and Cytoplasm Affecting Estrogen Receptor Translocation into the 

Nucleus 
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SRC-3 Is Primarily a Nuclear Protein 

 

To examine the subcellular distribution of endogenous SRC-3, we used HeLa cells 

immunolabeled with a monoclonal anti-SRC-3 antibody (Fig.16A). The vast majority of cell 

revealed an intense nuclear signal, although in a few cells (>8%) weak cytoplasmic 

staining was also observed.  

We repeated the experiment using HeLa cells transiently transfected with GFP-SRC-3, 

confirming that SRC-3 is localized primarily in the nucleus (Fig.16B). However, in this case 

it was noted that numerous cellular globules (or speckles) accumulate in cells expressing 

high levels of GFP-SRC-3, probably due to non-physiological polymerization of the 

transfected protein when present at much higher-than-endogenous levels, as reported 

previously for several GFP-overexpression-based cytological studies (374,375). To avoid 

any possible alteration in our quantitative analyses (see later), we excluded all cells having 

more than three times the level of endogenous SRC-3 expression by HTM-automated 

filtering (as described in ref. 372). 

Additionally, to eliminate concerns associated with the exogenous transfection of GFP-

fused protein, we also generated a HeLa cell line stably expressing HA-SRC-3 under the 

control the tetracycline (Tet) promoter, which is reversibly turned on and off in the 

presence or absence of the antibiotic tetracycline, or its derivative doxycycline (DOX). HA-

SRC-3 expression was repressed in the presence of 200 ng/ml DOX in hormone-free 

medium. To express HA-SRC-3, cells were grown in DOX-free medium for 48 hours. 

Immunolabeling with anti-HA antibody confirmed that SRC-3 is localized in the nucleus 

(Fig.16C). 

Taken together, these results show a clear prominent nuclear localization of endogenous 

SRC-3 and transiently transfected SRC-3, when this is expressed at approximately 

physiological levels and without accumulation of cellular speckles.  
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Figure 16. SRC-3 is a predominantly nuclear protein. (A) HeLa cells immunolabeled for endogenous 

SRC-3. (B) Transient expression of GFP-SRC-3 in HeLa cells. (C) HeLa cells stably expressing HA-SRC-3 

under the control of Tet promoter. The expression of HA-SRC-3 is repressed in the presence of doxycycline 

(+DOX) and activated when cells grow in DOX-free medium (-DOX). HA-SRC-3 is expressed in the nucleus 

as shown by immunodetection using anti-HA antibody. DAPI staining delineates the nuclei. Deconvolution 

microscopy was performed either with 63X or 20X objective (see methods). 

 

 

Quantification of SRC-3 Cellular Localization Using High-resolution HTM 

 

To quantitatively characterize SRC-3 localization, accurate imaging analysis was 

performed by HTM. HeLa cells were immunolabeled for endogenous SRC-3, fixed and 

DAPI stained. The secondary antibody was conjugated to Alexa 647. Afterwards, cells 

were imaged for DAPI and red immunofluorescence by IC100 microscope, using the 

40X/0.90 resolution objective, and computationally analyzed by Cytoshop. As previously 

described in chapter 1, morphological filters were applied to generate a final gallery of 

selected cells. Examination of the mean nuclear fluorescence of endogenous SRC-3 

indicates a broad range of expression (Fig.17). 
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Figure 17. Analysis of endogenous SRC-3 nuclear localization by HTM. The expression level of 

endogenous SRC-3 in HeLa cells is examined by immunofluorescence and HTM. Two channels are imaged 

in a single plane, channel 0 (DAPI) and channel 1 (SRC-3), and the resulting cell population is 

morphologically filtered as in figures 8-10. A histogram is presented that demonstrates the broad range of 

SRC-3 nuclear immunofluorescence. A selected gallery containing cells with correct expression levels is 

shown. Two galleries featuring high and low expressing cells are also depicted. 
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In a second pivotal experiment, we examined the mean nuclear fluorescence of transiently 

expressed GFP-SRC-3 in HeLa cells. The pEGFP-SRC-3 transfected cells were imaged 

for DAPI, red immunolabeling for endogenous SRC-3, and GFP for exogenously 

expressed SRC-3, maintaining the same exposure time. Only cells expressing near-

endogenous levels of coactivator were selected for analyses (as previously described in 

figure 10, concerning with GFP-ER  transient transfection), after morphological filtering. 

Notably, overexpression of GFP-SRC-3 causes the formation of non-physiological 

speckles. We excluded all cells in our analyses having more than 3 times the level of the 

average SRC-3 endogenous fluorescence. All cells included in the range of nuclear 

fluorescence corresponding to endogenous level of SRC-3 expression, selected through 

HTM filtering, do not exhibit speckles formation (see ref.6). 

We used HTM analysis to show that both endogenous SRC-3 and transiently expressed 

GFP-SRC-3 are predominantly localized in the nucleus. The quantitative FLIN value, 

defined as “Fractional Localized Intensity In the Nucleus”, is an accurate HTM parameter 

that measures the ratio between nuclear and total fluorescence of SRC-3 in the cell. This 

measurement is independent of cell-to-cell variations in signal intensities and it’s defined 

as a percentage value from 0% (absence of nuclear fluorescence) to 100% (absence of 

fluorescence in the cytoplasm, which indicates that the protein is completely nuclear 

localized) (Fig.18A).  

Measurements of thousands of cells expressing endogenous SRC-3 gave an average 

FLIN value of 96% ± 0.08, thus indicating that in an average cell, 96% of SRC-3 

fluorescence is nuclear (Fig.18B). Importantly, when gated for a near-endogenous 

expression level in HeLa cells, exogenous GFP-SRC-3 also showed high FLIN values, 

similar to those of the endogenous protein (Average FLIN = 95% ± 0.11, Fig.18B). 

These results quantitatively confirm that SRC-3 in almost completely localized in the 

nucleus. Nevertheless, a small amount of protein is also detected in the cytoplasm (on 

average, about the 4% of total cellular amount). Moreover, they indicate that GFP-SRC-3 

may be used as a reliable representation of endogenous SRC-3 function, when expressed 

at near-physiological levels in HeLa cells. 
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Figure 18. Automated quantification of SRC-3 subcellular localization using HTM. (A) Schematic 

depiction of FLIN value determination by HTM, defined as the ratio between nuclear and total fluorescence 

of a specific protein. Filters standard to Cytoshop were used to gate and extract the imaged cell population; 

nucleus and cytoplasm are identified. The degree of nuclear localization is represented by the fraction of 

total fluorescence measured in the nucleus. (B) HeLa cells were grown for 48 hours in hormone-free 

medium. Shown are filled-area graphs of the Fractional Localized Intensity In the Nucleus (FLIN) obtained for 

the cell population imaged. FLIN values were measured for endogenous SRC-3 (panel 1) and transiently 

expressed GFP-SRC-3 (panel 1). The numbers of cells analyzed and the FLIN averages are indicated. 

(Inset) Representative cell galleries which belong to the extracted cell subpopulation are shown as example. 
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SRC-3 Localization Is Regulated by Phosphorylation  

 

To analyze the upstream effectors that may regulate the subcellular localization of SRC-3, 

we studied the impact of the phosphorylation status of SRC-3 at the cellular level. Previous 

studies have shown that the phosphorylation of SRC-3 is important for its coactivation 

function and that this phosphorylation can be mediated by ERK1/2 (p44/p42) in vitro 

(39,40). Thus, we treated HeLa cells with the MEK inhibitor U0126, which is a 

noncompetitive inhibitor of MEK-dependent ERK phosphorylation (376). At the same time, 

treatment by cycloheximide prevented new protein synthesis and SRC-3 distribution was 

analyzed by immunolabeling. HTM was use to quantify the redistribution of the coactivator 

in response to U0126 through determination of the FLIN value. Exposure to U0126 

resulted in a partial redistribution of SRC-3 to the cytoplasm (FLIN value of  0.87), while 

in the same experiment, FLIN value for SRC-1 did not significantly change (FLIN value of 

 0.98), meaning that the effect of the inhibitor is specific to SRC-3 (Fig.19). 

 

 

 

 

 

 

 

 

 

 

Figure 19. Inhibition of SRC-3 phosphorylation impedes its nuclear localization. HeLa cells were 

cultured 48 hours in hormone-free medium and then incubated for 4 hours with MEK kinase inhibitor U0126 

(45μM) or vehicle, as a control, both in the presence of cycloheximide (50μg/ml). HTM quantification of 

nuclear localization of endogenous either SRC-3 or SRC-1 is reported as histograms, showing the average 

FLIN values collected for each treatment. Error bars represent SD (**, P<0.01). 
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To confirm that the effect of U0126 on SRC-3 localization was due to the inactivation of 

ERK1/2, we used RNAi to knock down the expression of ERK1/2 in HeLa cells (Fig.20A). 

The reduction of both ERK1 (p44) and ERK2 (p42) together resulted in a significant shift of 

SRC-3 to the cytoplasm, corresponding to a FLIN value of  0.78 (Fig.20B), without 

affecting the expression level of SRC-3 (Fig.20A). Also in this case, the effect on SRC-3 

relocation was specific since the subcellular distribution of the other p160 coactivator, 

SRC-1, was not changed upon the same RNAi treatment  (FLIN of  0.98) (Fig.20B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Knock down of both ERK1 and ERK2 induces cytoplasm relocation of SRC-3. (A) HeLa 

cells were transfected with siRNA for ERK1, ERK2, both together (ERK1+2), or a control siRNA. 72 hours 

after transfection, reduction of protein levels for both kinases was demonstrated by immunoblotting with anti-

ERK1/2 antibodies. Tubulin levels were determined as a loading control. (B) Coverslips corresponding to 

siRNA control and siRNA ERK1+2 were immunolabeled for anti-SRC-3 or anti-SRC-1 and then scanned with 

HTM. Corresponding FLIN value were determined and reported a fill-area histograms, demonstrating that 

RNAi of ERK1 and 2 result in a much decreased nuclear localization of endogenous SRC-3, compared to 

control RNAi or to the same treatment for endogenous SRC-1. Representative cell galleries are also shown. 
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Finally, to further investigate the phosphorylation-dependent localization of SRC-3, we 

used a GFP-tagged SRC-3 mutant in which six previously identified phosphorylation sites 

(T24, S505, S543, S857, S860, S867) were replaced by alanines (GFP-SRC-3 A1-6) (39,151). This 

mutant is partially and visibly localized in the cytoplasm (Fig.21A). Likewise, wild-type 

GFP-SRC-3 shows similar cytoplasmic localization following treatment with U0126. 

Cycloheximide was added to the medium at the same time as the inhibitor, in order to 

prevent synthesis of new coactivator, demonstrating the partial accumulation of SRC-3 

within the cytoplasm. HTM analysis was performed and indicated that the average FLIN 

value for GFP-SRC-3 A1-6 was  0.82, compared to the value of  0.98 obtained for the 

wild-type GFP-SRC-3 (Fig.21B), corresponding to a average redistribution of ~15% of the 

GFP-SRC-3 A1-6 pool from the nucleus to the cytoplasm. When cells were treated with 

U0126, wild-type GFP-SRC-3 also presented a similar relocation in the cytoplasm (FLIN 

value of  0.83). In addition, the FLIN value was compared to that obtained in the case of 

wild-type GFP-SRC-1 upon treatment with U0126, showing that cellular localization of 

GFP-SRC-1 is not affected (FLIN value of  0.98) by the MEK-inhibitor (Fig.21B), whereas 

the effect is specific to SRC-3. 

Both the U0126 and RNAi studies clearly suggest a role for ERK1/2-directed 

phosphorylation in regulating the residency of SRC-3 in the nucleus. Moreover, the non-

phosphorylatable GFP-SRC-3 mutant is more localized in the cytoplasm, compared to the 

wild type. Together, these data suggest not only that phosphorylation regulates SRC-3 

localization but also that the main phosphorylation sites involved are situated within these 

six mutated sites, previously identified. 
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Figure 21. The non-phosphorylatable SRC-3 mutant display altered subcellular localization. (A) HeLa 

cells were transiently transfected with wild type GFP-SRC-3 or GFP-SRC-3 A1-6 mutant and pictures were 

taken with deconvolution microscope using a 63X objective lens. DAPI staining delineates the nucleus. GFP-

SRC-3 A1-6 shows slight but significant cytoplasmic localization in most of the cells observed. Similarly, 

GFP-SRC-3 was partially shifted to the cytoplasm in the presence of the kinase inhibitor U0126. Bar, 5 μm. 

(B) HeLa cells transiently expressing GFP-SRC-3 (wild type), GFP-SRC-3 A1-6, or GFP-SRC-1, were 

cultured 48 hours in hormone-free medium and then incubated for 4 hours with U0126 (45μM) or vehicle, 

both in the presence of cycloheximide (50μg/ml). HTM quantification of FLIN is reported as histograms. Error 

bars represent SD (**, P<0.01). 
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EGF Induces Phosphorylation of SRC-3 and Promotes SRC-3 Nuclear 

Localization 

 

To further investigate how nuclear localization of SRC-3 is regulated by phosphorylation, 

we took advantage of the fact that the epidermal growth factor receptor (EGFR) is an 

essential link in the receptor-mediated ERK1/2 activation pathway (39,377). Indeed, if our 

previous conclusion is correct, EGF treatment should induce an enhancement in SRC-3 

nuclear localization. To test our hypothesis, we used HMT analysis of HeLa cells 

transfected with GFP-SRC-3, GFP-SRC-3 A1-6, or GFP-SRC-1. Compared to control 

experiments, where cells were exposed to vehicle only, the addition of EGF (100 ng/ml) for 

1.5 hours stimulated a significant increase of GFP-SRC-3 accumulation within the nucleus, 

corresponding to an increase of the measured average nuclear intensity from 116383 to 

188613 (indicating an increase of about 38%) (Fig.22).  Conversely, pretreatment of cells 

with U0126 (for 1 hour) prior to EGF abrogated the nuclear accumulation of GFP-SRC-3. 

Differently, treatment with EGF alone or preincubation with U0126 had no significant 

effects on GFP-SRC-3 A1-6 or GFP-SRC-1 localization (Fig.22). 

Note that the increased observed in nuclear fluorescence after EGF treatment is, at least 

in part, due to an increase in the average FLIN value, referred to translocation of SRC-3 

from cytoplasm to nucleus. Indeed, although already high in untreated cells (  0.95), the 

SRC-3 FLIN value further increased to  0.97 after EGF treatment (data not shown). 

However, we believe that a part of the increased nuclear intensity is also due to the 

nuclear accumulation of a diffuse pool of SRC-3 in the cytoplasm, which is not detectable 

with the FLIN algorithm, whereas increase in the average nuclear intensity is easier 

measurable. 
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Figure 22. High-resolution HTM quantification of SRC-3 nuclear localization upon EGF treatment. 

HeLa cells were transfected with GFP-SRC-3, GFP-SRC-3 A1-6, or GFP-SRC-1 and treated for 1.5 hours 

with vehicle, EGF (100 ng/ml) or U0126 (45 μg/ml for 1 hour) + EGF (100 ng/ml for 1.5 hours). Cells were 

fixed, DAPI stained and analyzes by HTM. The histograms show the nuclear fluorescence intensity values. 

Error bars represent SD (**, P<0.01). 

 

These results indicate the hypothesis that EGF-induced phosphorylation of SRC-3 leads to 

an increased residency time of SRC-3 in the nuclear compartment. To definitively 

demonstrate the link between EGF-induced nuclear localization of SRC-3, we investigated 

the effect of EGF on SRC-3 phosphorylation using site-specific antibodies in HEK293 cells 

transfected with Flag-tagged SRC-3. The phosphorylation of SRC-3 at threonine 24, and 

at serines 857 and 860, was enhanced in the presence of EGF (Fig.23A). However, 

pretreatment with U0126 reduced the EGF-dependent phosphorylation of serine 857 and 

serine 860 (Fig.23B), but not of threonine 24, suggesting that these two serine sites are 

major targets of EGF-induced phosphorylation through ERK1 and ERK2. Interestingly, 

when these two sites were in combination, but not independently, mutate to alanine in a 

GFP-tagged SRC-3 (GFP-SRC-3 A4-5), the coactivator partially localized in the cytoplasm 

(FLIN value of  0.87) (Fig.24). This result indicates the importance of serines 857 and 

860 in regulating nuclear localization of SRC-3 only when simultaneously phosphorylated, 

while individual phosphorylation is not sufficient to induce nuclear retaining of SRC-3.  
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Figure 23. EGF induces phosphorylation of SRC-3 at specific sites. (A) HEK293 cells grown in phenol 

red-free DMEM (supplemented with 5% charcoal-dextran stripped FBS) were cotransfected with an 

expression plasmid for wild-type Flag-SRC-3. After transfection, cells were grown in medium containing 0.5% 

FBS for 36 hours and stimulated with EGF (100 ng/ml) for 1 hour before harvest. Flag-SRC-3 was 

immunoprecipitated by anti-Flag antibodies and separated on an 8% SDS-PAGE gel. Immunoblotting was 

performed using the indicated phosphorylation state-specific antibodies. Anti-Flag antibody was used as 

control for protein loading (total F-SRC-3). Arrows indicate phosphorylation status at threonine 24, and 

serines 857 and 860. (B) Cells were treated as described above, except for the right lane, where the cells 

were preincubated with U126 (45 μg/ml for 1hour). Immunoblotting was performed using the indicated 

phosphorylation site-specific antibodies, demonstrating that U126 causes a specific reduction of the EGF-

induced phosphorylation at serine 857 and serine 860 sites, but not at threonine 24. The hypothesis is also 

schematically depicted. 
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Figure 24. HTM analysis of cellular localization of GFP-SRC-3 A4-5 double mutant. HeLa cells were 

transiently transfected with GFP-SRC-3 (wild type), GFP-SRC-3 single mutant for each phosphorylation site 

(T
24

, S
505

, S
543

, S
857

, S
860

, S
867

), or GFP-SRC-3 A4-5 (double mutation in S
857

 and S
860

). Cells were then 

cultured 48 hours in hormone-free medium, with any treatment, and HTM quantification of FLIN was 

performed and here reported as histograms. Error bars represent SD (**, P<0.01). Representative cells 

galleries are also reported for evidencing the partial cytoplasmic localization of GFP-SRC-3 A4-5 with 

respect to the wild type GFP-SRC-3. 
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Phosphorylation of SRC-3 Regulates Interaction and Colocalization with 

ER  

 

To determine the role of SRC-3 phosphorylation in the context of ER interactions at the 

single cell level, we next examined the effect of U0126 inhibition in cells co-expressing 

ER  and SRC-3. HeLa cells were cotransfected with GFP-SRC-3 and HcRed-ER  and 

incubated with 10 nM E2 for 2 hours with or without a 1-hour pre-incubation with U0126. A 

Z-series of focal planes were digitally imaged and deconvolved with the DeltaVision 

constrained iterative algorithm to generate high-resolution images. 

In E2-treated cells, we observed co-reorganization of GFP-SRC-3 and HcRed-ER  into a 

hyper-speckled colocalization pattern (Fig.25A). Strikingly, when the cells were pre-treated 

with U0126, nuclear GFP-SRC-3 and HcRed-ER  showed much less colocalization, 

suggesting that in the presence of ER , U0126 does not alter SRC-3 nuclear detainment 

in general, but it may specifically inhibit the colocalization with nuclear partners.   

To accurately quantify this phenomenon, we used HTM and measured the variance of the 

fluorescent signal in the nucleus (NVAR) of GFP-SRC-3 and HcRed-ER  upon hormone 

or inhibitor treatment. The NVAR value is another HTM algorithm that specifically detects 

the Nuclear Variation of speckled pattern, measuring the statistical variation in pixel 

brightness of channels of interest (GFP and HcRed in this case) in the nucleus. Hence, 

NVAR values are directly linked to the presence or absence of nuclear hyper-speckling. 

We observed that, in the absence of hormone, the average NVAR value of both proteins 

was very low (0.24 and 0.14 for GFP-SRC-3 and HcRed-ER , respectively, Fig.25B). On 

the contrary, in presence of estradiol, the average fluorescence variation of both GFP-

SRC-3 and HcRed-ER  increased to 0.9 and 0.13, which correspond to an increase of 

about four and nine times, respectively. However, when cells were pretreated with U0126, 

this increase was abolished. We also found that E2 was not able to induce the co-

reorganization of the GFP-SRC-3 A1-6 mutant and HcRed-ER  into a hyper-speckled 

pattern (Fig.26A). Accordingly, the corresponding NVAR values were no significantly 

modified (Fig.26B). 
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Figure 25. SRC-3 phosphorylation by ERK1/2 is necessary for colocalization with ER . HeLa cells 

expressing GFP-SRC-3 and HcRed-ER  were incubated in hormone-free medium for 48 hours. Cells were 

then treated for 2 hours with vehicle or 10nM E2. Where indicated (U0126/E2) cells were pre-treated for 1 

hour with U0126 (45 μM) and then treated with E2 for 2 hours. The inset shows a magnification of the 

selected subnuclear region (white square). Note that addition of E2 resulted in a redistribution of both 

proteins into the same foci only in the absence of U0126. (B) Automated quantification of the variation in the 

subnuclear pattern of SRC-3 and ER. HeLa cells transiently expressing GFP-SRC-3 and HcRed-ER  were 

treated as described in (A) and analyzed by HTM with the 63X high-resolution objective (>100 cells). The 

histograms show the subnuclear variation measurement (NVAR X 10
-2

), which is the statistical variation in 

pixel brightness for each channel (GFP-SRC-3 and HcRed-ER ) in the nuclear compartment. Note that the 

increase in NVAR for both SRC-3 and ER in the presence of hormone is inhibited by pretreatment with 

U0126. Error bars represent SD (**, P<0.01). 
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Figure 26. SRC-3 A1-6 phosphorylation mutant is unable to colocalize with ER . (A) HeLa cells 

expressing GFP-SRC-3 A1-6  and HcRed-ER  were treated and analyzed as described above in figure 26A. 

(B) Automated HTM quantification of the variation in the subnuclear pattern (NVAR) of GFP-SRC-3 A1-6  and 

HcRed-ER  was performed as described above in figure 26B. In this case there are no significant 

divergence between the different treatments. Error bars represent SD. 
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The E2-induced phosphorylation of ER  by ERK1/2 at serine 118 is still controversial 

(42,378,379). However, to test whether the inhibitor effect of U0126 on SRC-3 and ER  

colocalization is due to a decrease in ERK1/2 phosphorylation of SRC-3 alone not 

involving ER phosphorylation, we abrogated the direct regulation of ER by ERK1/2 

phosphorylation through the use of the S118A mutation (235). The result shows that in the 

presence of E2, the GFP-ER  118A can still colocalize with SRC-3 (Fig.27A) at a level 

comparable to that of wild type ER, quantified through HTM calculation of NVAR value 

(Fig.27B). This data indicate that the phosphorylation of ER  at serine 118 by ERK1/2 is 

not a prerequisite for promoting ER /SRC-3 colocalization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Inhibition of ER  by ERK1/2 doesn’t prevent colocalization with SRC-3. (A) HeLa cells 

expressing Flag-SRC-3 (in red) and GFP-E R118A (in green) were treated and analyzed as described 

above in figure 26A, except that after fixation and immunodetection of SRC-3 by anti-Flag antibody. (B) 

Automated HTM quantification of the variation in the subnuclear pattern (NVAR) of Flag-SRC-3 and GFP-

ER 118A was performed as described above in figure 26B. Error bars represent SD (**, P<0.01). 
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Since the NVAR values are directly linked to the presence of subnuclear hyperspeckles, 

these results in part demonstrate that the ERK1/2 phosphorylation of SRC-3 is necessary 

for both its intranuclear organization and concomitant interaction with ER. To confirm the 

interaction between SRC-3 and ER , hormone induction was carried out in MCF-7 cells, 

which express both endogenous SRC-3 and endogenous ER . Following 

immunoprecipitation with an anti-ER  antibody, the co-precipitated SRC-3 was detected 

by Western blotting with anti-SRC-3 antibody. As expected, in the absence of hormone 

wild-type SRC-3 interacted minimally with ER , and this interaction was greatly enhanced 

by E2 (Fig.28). However, when the cells were pre-incubated with the U0126 inhibitor, a 

marked reduction in the interaction between ER  and coactivator was observed (Fig.28). 

This reduction was not due to a decreased protein expression since the total amount of 

SRC-3 was constant.  

Taken together, these results indicate that the lower levels of transcriptional activation 

previously observed for the SRC-3 phospho-mutant (39) are due, at least in part, to a 

reduced interaction between the SRC-3 mutant and ER . Finally, this result shows that 

phosphorylation events are important for regulating the interaction between ER  and SRC-

3 in the cell. 

 

 

 

 

 

 

 

Figure 28. SRC-3 and ER  physically interact in MCF-7 cells. MCF-7 cells were incubated for three days 

in 5% stripped-dialyzed serum. E2 (10nM) and U0126 (45μM) were added for 1 hour (indicated by a + ). 

Preincubation with U0126 was of 2 hours (lane 4). Coimmunoprecipitation assay was performed using anti-

ER  antibody (top), and coprecipitated SRC-3 was detected by Western blotting using anti-SRC-3 antibody 

(middle). Note that the E2-induced ER/SRC-3 interaction is reduced in the presence of U0126. 
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SRC-3 Phosphorylation Is Required for Promoter Interaction with ER  and 

Transcriptional Readout at the PRL-array  

 

The results described above indicate that a considerable fraction of the nuclear pools of 

SRC-3 and ER  can interact in an ERK1/2 phosphorylation-dependent manner. However, 

those studies do not allow us to discriminate the minute fraction (e.g., a small percent of 

the total nuclear volume) involved in transcriptional activation of genes from the whole pool 

of nuclear SRC-3 and ER . Moreover, phosphorylation events might be important for 

increasing the rate of interaction of both proteins in the bulk nucleus, but it is not 

necessarily certain that this post-translational modification is also imperative for the co-

recruitment of both NR and coactivator to a promoter during gene activation. To answer 

this question, we next visually evaluated the amount of receptor and coactivator involved 

in transcriptional activation using the PRL-HeLa cell line, previously described in chapter 1. 

This cell line (Clone 19) (see chapter 1 and Material and Methods) carries the 

chromosomally integrated ER -regulated reporter gene array (PRL-array), which allows us 

to visualize the recruitment of ER , SRC-3, or SRC-1, and RNA Polymerase II, and 

accordingly, the transcriptional readout of mRNA FISH signal upon transcription activation. 

When cells were treated with E2, the PRL-array became visible within a few minutes, as 

revealed by GFP-ER  and endogenous SRC-3 and SRC-1 colocalization (see Fig.12). 

This accumulation was also accompanied by a clear recruitment of RNA Polymerase II 

(see Fig.13) and mRNA transcription from the reporter gene (FISH signal > 10 fold over 

control) (see Fig.14). However, when cells were pretreated with U0126 for 1 hour, 

whereas ER  still accumulated at the PRL-array, SRC-3 recruitment decreased (Fig.29A) 

and a marked reduction of the colocalization pattern with ER  was detected, using the 

Pearson’s colocalization coefficient (Rr) (see Material and Methods) (Fig.29B). 

Interestingly, the PRL-array remained decondensed, indicating that in this system, 

although interaction between SRC-3 and ER  was abolished in the presence of U0126, 

ER  was still able to recruit other coregulators involved in chromatin remodeling, such as 

SRC-1 (Fig.29A and Fig.29B). 



 - 103 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Recruitment of endogenous SRC-3 at the PRL-enhancer/promoter is abrogated by U0126. 

(A) The PRL-HeLa cells (Clone 19) were transiently transfected with GFP-ER  and treated with E2 (10nM) 

or vehicle, fixed and immunolabeled for endogenous SRC-3 or SRC-1. Where indicated, cells were 

pretreated with U0126 (45μM) and then further incubated with E2 (U0126/E2). A Z-series of focal planes was 

digitally imaged and deconvolved with the DeltaVision algorithm. Circles indicate the accumulation of ER or 

SRC-3/SRC-1 at the PRL-array. Note that, in contrast to SRC-1, the ligand-dependent recruitment of SRC-3 

is inhibited by the presence of U0126. Bar, 2.5 μm. (B) Quantification of the colocalization pattern between 

endogenous SRC-3 (or SRC-1) and GFP-ER  at the PRL-array using the Pearson's colocalization 

parameter (Rr) (see Material and Methods). Error bars represent SD (**, P<0.01). The inset box shows 

example of areas of PRL-array that are selected for calculation and the corresponding Rr value. 
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To further confirm the importance of phosphorylation for SRC-3 recruitment at the 

promoter, GFP-SRC-3 wild type was compared with its mutant GFP-SRC-3 A1-6. Both the 

constructs were cotransfected with HcRed-ER  in PRL-HeLa cells clone 19. Cells were 

then incubated for 30 minutes with E2 or vehicle.  

As expected, the results show that GFP-SRC-3 was successfully corecruited at the PRL-

array with HcRed-ER  (Fig.30A) in the 97.8% of the cell population expressing both the 

ER and SRC-3 constructs (Fig.30B).  In contrast, when GFP-SRC-3 A1-6 was coexpressed 

with HcRed-ER , we saw a marked reduction of cells with HcRed-ER  and GFP-SRC-3 

A1-6 colocalizing at the PRL-array, upon E2 treatment (37.7% of the cell population) 

(Fig.30A and Fig.30B). Interestingly, we also found that transcriptional activation at the 

PRL-array was markedly reduced in cells coexpressing HcRed-ER  and GFP-SRC-3 A1-6, 

compared to that of cells transfected with GFP-SRC-3, as reflected by the mRNA 

fluorescent in situ hybridization signal observed at the array (Fig.30A). In fact, a decrease 

of about two fold in FISH intensity was quantified in cells with arrays targeted by GFP-

SRC-3 A1-6 and treated with E2 (Fig.30C). Moreover, HTM automated quantification of 

PRL-array size revealed a corresponding reduction of the average measured area of GFP-

SRC-3 A1-6 -targeted array (119.9 ± 7.8 pixels), compared to that of GFP-SRC-3 -targeted 

array (69.1 ± 11.8 pixels) (Fig.31), revealing a lowered ability of chromatin remodeling by 

activated ER as a result of impaired SRC-3 phosphorylation.  

Taken together, these results could reflect the consequence that recruitment of other 

coactivators (e.g. CBP) (39) is affected by defects in SRC-3 localization at the PRL-

promoter. Also, these results clearly underscore the importance of SRC-3 phosphorylation 

as a condition for an optimal localization at the promoter and are consistent with previous 

observation showing that phosphorylation sites governed by the MAPK pathway are 

required for the coactivation of ER (39). 
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Figure 30. SRC-3 phosphorylation is essential for recruitment at the PRL-promoter and coactivation 

of ER-dependent transcription activation. (A) PRL-HeLa cells (Clone 19) transiently coexpressing HcRed-

ER and GFP-SRC-3 or GFP-SRC-3 A1-6 were treated with E2 (10nM) or vehicle, and then fixed and DAPI 

stained. A Z-series of focal planes was digitally imaged and deconvolved with the DeltaVision constrained 

algorithm. Arrows indicate the accumulation of ER or SRC-3 at the PRL-array and the FISH signal. Note that 

in contrast to GFP-SRC-3 (wt), the non-phosphorylatable mutant GFP-SRC-3 A1-6 is not completely 

corecruited with ER. Bar, 5 μm. (B) Histogram represents the proportion of the cotransfected cell population 

that has visible accumulation of both HcRed-ER and GFP-SRC-3 (or GFP-SRC-3 A1-6) at the PRL-array in 

response to E2 stimulation (cells counted > 100). (C) FISH signal of the PRL-array was quantified by the 

freely available GimpShop software (see Material and Methods). Histogram represents the FISH intensity 

calculated for the cell population depicted in (A), following E2 stimulation and presenting a visible array. Error 

bars represent SD (**, P<0.01). 
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Figure 31. HTM quantification of PRL-array size upon GFP-SRC-3-targeting. PRL-HeLa cell population 

described in figure 30 was also scanned by HTM and the PRL-array size was determined by Cytoshop 

algorithms (as previously described in Chapter 1 and in Material and Methods). Size values, obtained for 

PRL-HeLa cells expressing either GFP-SRC-3 (wt) or GFP-SRC-3 A1-6 together with HcRed-ER, in the 

presence of E2, are graphed and show the mean array area in pixels (n cells > 50). Error bars represent SE 

(**, P<0.01). Representative cell galleries are also shown for comparison. PRL-array is identified through the 

localization of GFP-SRC-3 or GFP-SRC-3 A1-6, and masked in red. Note the visible reduction in the PRL-

array area when the GFP-SRC-3 A1-6 mutant targets the array.  
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SRC-3 Shuttles Between Nucleus and Cytoplasm Affecting Estrogen 

Receptor Translocation into the Nucleus 

 

The ability of coactivators to regulate gene expression is not only dependent upon their 

dynamics within the nucleus, but also upon their general cellular compartmentalization. 

This important concept points to the supposition that coactivators can move between 

different compartments to gain access to transcriptional sites, interacting with 

transcriptional factors, and deeply impacts the understanding of coactivators mechanism 

of action. 

In order to first determine whether a fraction of SRC-3 shuttles between nucleus and 

cytoplasm, we used an indirect approach by incubating cells with a specific inhibitor of 

nuclear export, leptomycin B (380), and then analyzing the effect of the drug on nuclear 

compartmentalization of SRC-3. For these experiments we used T47D cells, which 

express endogenous SRC-3, showing a slightly lower FLIN value (87%) (Fig.32 left panel) 

than HeLa cells (see Fig.18B). We exploited this difference and used HTM to assess the 

response to inhibition of nuclear export. When T47D cells were cultured in hormone-free 

medium for 48 hours and then incubated with leptomycin B for 4 hours, FLIN levels 

increased to 97% (Fig.32 right panel), suggesting that the small pool of cytoplasmic SRC-

3 is in part the result of active nuclear export. 

This observation suggests the idea that, if SRC-3 is able to shuttle from the nucleus to 

cytoplasm, a dynamic situation could exist during which the coactivator transiently 

interacts with cytoplasmic proteins. If this hypothesis is true, and the interaction between 

SRC-3 and its cytoplasmic partner is strong enough, then SRC-3 may be able to return to 

the nucleus with its associated protein.  To verify this hypothesis, an GFP-ER  mutant, 

referred as ER( NLS) and lacking amino acids 250 to 303 (151), which encompasses the 

ER nuclear localization signal (NLS), was used in cotransfection assay with Flag-SRC-3. 

Once transfected with SRC-3, ER( NLS) appeared to be cytoplasmic in the absence of 

hormone E2 (Fig.33A), with a calculated average FLIN value of about 0.46 (Fig.33B). 

However, upon administration of E2, the receptor was shifted in the nucleus (FLIN value of 



 - 108 - 

 0.95) (Fig.33A and Fig.33B). Therefore, in the presence of E2, ER( NLS) may be 

transported in the nucleus by a “piggyback” mechanism involving the cytoplasmic fraction 

SRC-3. Consequently, a Flag-SRC-3 mutant, referred as SRC-3( NES), that lacks amino 

acid 1031 to 1130, encompassing the nuclear exporting sequence (NES), failed to carry 

ER (NLS) in the nucleus also in the presence of E2 (FLIN value of  0.58) (Fig.33A and 

Fig.33B).  

Taken together, these results indicate that SRC-3 location reflects a dynamic state in 

which the coactivator continuously crosses the nuclear membrane, interacts with 

cytoplasmic estrogen receptors, and potentially helps them to shuttle into the nucleus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. SRC-3 shuttles from nucleus to cytoplasm. T47D cells were cultured for 48 hours in hormone-

free medium and the incubated with leptomycin B (40nM) or vehicle for 4 hours. Cell were fixed, 

immunolabeled for endogenous SRC-3, and then analyzed by HTM. FLIN values were quantified and the 

corresponding fill-area graphs are plotted. The average FLIN values are also indicated in addition to the 

number of cells analyzed. Note the shift of the graph in the presence of leptomycin B, which is indicative of 

an increased nuclear localization of SRC-3.  
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Figure 33. Hormone-dependent interaction between SRC-3 and ER( NLS) results in the 

cotransportation of coactivator/receptor into the nucleus. (A) GFP-ER( NLS) mutant was cotransfected 

with empty Flag-vector, Flag-SRC-3 wild type, or the Flag-SRC-3( NES) mutant.  48 hours after transfection, 

cells were incubated with E2 (10nM), or vehicle, for 8 hours in presence of cycloheximide (50μg/ml). Then 

cells were fixed, and immunolabeled with anti-Flag antibodies. A Z-series of focal planes was digitally 

imaged and deconvolved with the DeltaVision algorithm. DAPI staining delineates the nuclei. Note that E2-

induced the shift of ER( NLS) in the nucleus do not occurs when coexpressed with SRC-3( NES). (B) 

Automated quantification of ER( NLS) subcellular localization using high resolution HTM. The histograms 

show the average FLIN values obtained for ER( NLS) (n cells > 100). Error bars represent SE (**, P<0.01). 
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DISCUSSION 
 
 

CHAPTER 1:  

HTM Analysis of ER  Transcriptional Activity and Chromatin 

Remodeling 

 

We have described the use of a chromosome-integrated reporter gene array (PRL-array) 

in HeLa cells (PRL-HeLa). These genomic integrations derive from the enhancer-promoter 

region of the prolactin gene and contain multicopy hormone response-binding elements for 

the estrogen receptor alpha (ER ). PRL-array can be visualized by the accumulation of 

GFP-tagged ER  and colocalization of fluorescently immunolabeled p160 family 

coregulators, and RNA Polymerase II. This colocalization appears typically ligand-

dependent. 

In our experiments, we investigated chromatin remodeling at the PRL-array and the 

transcriptional activation of the reporter gene in response to treatments of PRL-HeLa cells 

with agonist or antagonist or ER . We were able to observe remarkable differences is the 

array size (closing and opening), when it was targeted by GFP-ER ER , and we interpret 

these changes as a reflection of alteration in the large-scale chromatin state (chromatin 

remodeling). The chromatin remodeling that we observed at the PRL-array, in response to 

agonist (E2) treatment, correlates well with colocalization of coactivators and RNA 

Polymerase II, and with the transcriptional readout of the reporter gene, detected by 

mRNA FISH. The rapid loss of these factors from the array in response to antagonists 

(4HT or ICI) is consistent with striking reduction in the array size and undetectable levels 

of FISH signal. It follows that PRL-array size is an indicator of ER transcriptional activity in 

response to ligand. Moreover, we demonstrated PRL-array to be a physiologically relevant 

construct for visualizing gene transcription, chromatin remodeling, DNA targeting, and 

coregulator recruitment. For these reasons, we think that PRL-HeLa cell line described 

here would be an extremely useful model system for the single-cell analysis of multiple 

events associated with transcriptional activation, or repression, directed by the estrogen 
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receptor and associated coregulators.  

Importantly, we also detailed the realization of high throughput microscopy (HTM) as a 

valid method to quantify ER functionality at the PRL-array. HTM combines automated 

image acquisition of thousands of cells to computational high-resolution analysis of diverse 

cellular parameters, achieved through specialized algorithms constrained to the software. 

Cells are identified basing on DAPI staining and examined for morphology, protein 

expression and localization. 

In this study, HTM has been successfully demonstrated to be an extremely useful 

implement to quantitatively measure the variation of the PRL-array size upon ligand 

treatment. Moreover, HTM allows the simultaneous study of numerous aspects of 

transcriptional regulation, including protein subcellular localization, nuclear translocation, 

and proteins colocalization.  

 

 

CHAPTER 2:  

Regulation of SRC-3 Cellular Localization and Dynamics by 

Phosphorylation and ER  Interaction 

 

During last decade, an extensive amount of work has been directed toward the 

understanding of how posttranscriptional modification (PTM) of coregulators could 

influence expression of genes. In fact, PTM represents the major conduit for coregulator-

mediated regulation of transcription, through the ability to guide a variety of transcriptional 

factors with which the coregulator interacts, because the role of coregulators is to 

assemble the multiple complexes of the transcriptional apparatus. The important idea is 

that DNA, chromatin proteins, transcriptional factors, coregulators, RNA holoenzyme, and 

signaling enzymes all communicate with each other through the reversible network of 

epigenetic modifications. In this way, coregulators can be “differentially coded” by PTMs 

and, acting both as targets and as propagators of PTMs, allow the extremely broad degree 

of combinatorial control of gene transcription existing. Biological decision can be 
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implemented in very fine proportion due to the great combinatorial possibilities inherent in 

the “PTM coregulator code”. 

It is estimated that about 25,000 human genes exist, differential splicing of which yields 

more than 125,000 different coding transcripts and potential proteins. When we consider 

that about 300 coregulators exist, and we suppose that, in any single coregulator, 

approximately eight PTMs of six different chemical types can occur, and we also consider 

that at least six different coregulators are contained within one transcriptional complex, 

then the potential combinations of combinatorial control employed could be terrifically high. 

In addition, an important concept, that is increasingly emerging, is that coregulators also 

control a variety of biological processes outside the nucleus. This underlines the 

extraordinary complexity of physiological, developmental, and evolutional program of 

mammalian phenotype.  

According to laws of chemical equilibrium, coregulator control of transcriptional is dictated 

by molecular interaction and specific affinity with functional partners, as well as by the local 

concentration of these two interactants in the cell. SRC-3 provides a good example of how 

PTM of a coregulator contributes to the biological complexity, by signal integration and 

propagation of transcriptional program (6). SRC-3 specific phosphorylation at multiple 

residues by diverse kinases ultimately results in the recruitment of coactivator-associated 

proteins, including CBP, p300, CARM1, which leads to the selective engagement of 

distinct transcriptional factors, such as nuclear receptors, NF- B, STAT, or E2F1. 

In our study, we have shown that SRC-3 is capable of trafficking from the nucleus to the 

cytoplasm at a steady state and without any stimuli, and that this property confers SRC-3 

the capability to interact with cytoplasmic partners (i.e. cytoplasmic pool of ER ). 

Phosphorylation plays a role in the cellular location and functionality of SRC-3. Indeed, we 

found that EGF modulates the SRC-3 “phosphocode” at specific threonine/serine residues 

and consequently enhances its nuclear localization and interaction with nuclear receptors 

(i.e. ER ). Finally, we have established that SRC-3 phosphorylation is not only important 

for colocalization with ER in the nucleus, but also for functional ER/SRC-3 complex 

formation and transcriptional activation of a model promoter (PRL-array).  
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SRC-3 phosphorylation can be integrated in a comprehensive cellular network (Fig.34) 

where it coordinates coactivation function of ER, influencing functional localization of the 

receptor, and promoter occupancy. 

 

SRC-3 subcellular localization.  

Making extensive use of high-resolution microscopy and HTM, we established that SRC-3 

is primarily a nuclear protein. Only a small amount of protein was detected in the 

cytoplasm (on average, about the 4% of total cellular pool), which is in fact in accordance 

with the presence of a nuclear localization signal (150,381). Our findings are also 

consistent with various immunohistochemical observations (64,155,382) and with the its 

well established role as coactivator of NRs (111).  

However, using a biochemical approach, other groups reported SRC-3 to be mainly 

localized in the cytoplasm (43,150). We could explained this discrepancy as a result of 

condition-dependent SRC-3 extractability, by the observation that >50% of nuclear 

proteins are lost from the nucleus within 10 min of cell disruption (383), a phenomenon that 

has also been observed for some steroid receptors (384,385). Nevertheless, some reports 

indicate the presence of SRC-3 in the cytoplasm directly in tissue sections (150,155,160). 

To reconcile these observations, we should consider several issues. First, SRC-3 can 

shuttle between the nucleus and the cytoplasm over the course of an hour. Furthermore, 

Kuang and colleagues (160) examined the subcellular localizations of SRC-3 in the 

mammary gland and suggested that cellular concentrations and the subcellular localization 

of the coactivator in this organ are both developmental-dependent and malignant state 

specific. In line with these findings, using breast epithelium of transgenic mouse model, 

Avivar et al. have shown that SRC-3 is cytoplasmic in non proliferative cells whereas 

nuclear in dividing cells (386). In addition, by comparing the expression of SRC-3 in normal 

and malignant breast tissue, List and colleagues found that there is an increased nuclear 

retention, with concomitant decrease of cytoplasmic SRC-3, as normal epithelium 

progresses to a more tumorigenic phenotype (155). 

The differential localization of SRC-3 is of interest, since changes in subcellular 
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compartmentalization have also been described for other transcription or replication 

factors relevant to breast cancer, such as BRCA1 and p53 (387,388). SRC-3 contains both 

a NLS and a NES (150,381), and developmental or oncogenic functions of SRC-3 might be 

activated or repressed by cellular events favoring one of these two types of signal 

pathways: nuclear import or nuclear export. Our results, showing the effect of a MEK1/2 

inhibitor (U0126) on SRC-3 subcellular localization, strongly suggests that activation of 

cytoplasmic kinases such as ERK1/2, perhaps through membrane-initiated pathways, 

could be a key to modulating the cellular location of SRC-3 and its function in the nucleus 

of normal versus malignant cells. 

 

Physiological relevance of SRC-3 nuclear-cytoplasmic shuttling.  

The nucleocytoplasmic shuttling properties of proteins have been ascribed to many 

nuclear receptors (389,390). These proteins have almost exclusively nuclear functions and, 

therefore, it has been difficult to explain the physiological relevance of the phenomenon.  

In contrast, our observations about SRC-3 subcellular localization appear to be critical for 

a better understanding of the biological function of this transcriptional coactivator.  

An increasing number of observations reveal that SRC-3/AIB1 has a role in extranuclear 

events or is modified in the cytoplasmic compartments (39,43,392). For example, in a 

recent study, SRC-3 has been shown to play an unexpected role in repression of mRNA 

cytokine production at the translational level (174). This translational repression is 

dependent on the cytoplasmic association of SRC-3 with known translational repressors 

TIA-1 (T cell intracellular antigen 1) and TIA-1-related protein. It has also been shown that 

SRC-3 is involved in ovary cell migration and promotes metastasis in breast tumor cells, 

perhaps by assisting proper localization of FAK (focal adhesion kinase) to cellular 

extensions and membrane protrusions (392). These observations may imply that, at some 

point, a fraction of the coactivator has to be cytoplasmic to achieve these functions. 

Furthermore, nucleocytoplasmic shuttling properties may also provide a nexus for 

crosstalk between SRC-3 and cytoplasmic kinase pathways. Indeed, Wu et al. and Wang 

et al. have independently shown that SRC-3 interacts with three members of the I B 



 - 116 - 

kinase complex (IKK) (39,393). Two of these kinases (IKK  and NEMO) have been to 

shown be exclusively localized in the cytoplasm (394,395), implying that a fraction of the 

coactivator is necessarily cytoplasmic.  

Finally, nucleocytoplasmic shuttling capabilities of SRC-3 might also serve as a regulatory 

process for the cell to modulate SRC-3 transcriptional function. For example, SRC-3 may 

be associated with different proteins at the steady-state level depending on its localization. 

Consequently, this phenomenon might lead to a compartment-specific activity of the 

coactivator as it has been reported that SRC-3 HAT activity was very robust when nuclear, 

but is dramatically decreased when it is cytoplasmic (141). 

Our observations suggest that SRC-3 has a nuclear coactivation role as a main function, 

but may also have biological function in the cytoplasm. Concerning to this hypothesis, 

SRC-3 nuclear function can be regulated by membrane-initiated pathways and 

posttranslational modification occurring in the cytoplasm (e.g. phosphorylation). In the 

same way, SRC-3 cytoplasmic function can be regulated by posttranslational modification 

and/or interaction with specifically cytoplasmic localized protein (e.g. cytoplasmic ERs). 

We observed that the small pool of cytoplasmic SRC-3 is in part the result of active 

nuclear export, whereas phosphorylation increases its nuclear retention. Consequently, we 

suggest a dynamic state in which the coactivator continuously crosses the nuclear 

membrane, interacts with cytoplasmic localized ER , and eventually, if the interaction 

between SRC-3 and its cytoplasmic partner is strong enough, SRC-3 may be able to 

return to the nucleus with its associated protein. 

 

Cellular compartmentalization of SRC-3 is regulated by phosphorylation through the 

ERK1/2 signaling pathway. 

Previous studies have shown that the phosphorylation of SRC-3 is important for its 

coactivation function and that this phosphorylation can be mediated by ERK1/2 (p44/p42) 

in vitro (39,40). We demonstrated that ERK1/2 kinases regulate the cellular localization of 

SRC-3 at several levels: nuclear retention, subnuclear speckling and promoter occupancy. 

Consistent with these findings, we found that a SRC-3 mutant, with alanine substitutions at 
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six previously identified phosphorylation site (T24, S505, S543, S857, S860, S867), showed a 

greatly enhanced tendency to localize in cytoplasm. Our data suggest not only that 

phosphorylation regulates SRC-3 localization but also that the main phosphorylation sites 

involved are situated within these six mutated sites. 

ERK1/2 are the terminal effectors of the classical mitogen activated protein kinase (MAPK) 

cascade, which consists of signal transduction from the MAPKKKs (A-, B-, and C-Raf) to 

MAPKKs (MEK1/2), and finally to the MAPKs (ERK1/2). ERK1 and ERK2 have 83% of 

amino acid identity and are variably expressed in all tissues (reviewed in ref. 396).  They 

are strongly activated by growth factors, like EGF (397). Indeed, in our studies, we shown 

that the EGF-stimulated phosphorylation of SRC-3, at threonine 24, serine 857 and serine 

860, increased its nuclear localization. Interestingly, threonine 24 is located within the NLS 

of SRC-3 (residues 16 to 38) (381)and is also conserved in the NLS of SRC-1, which also 

can shuttle between the nucleus and cytoplasm (398). Accordingly, through the use of 

MEK specific inhibitor U0126, which is a noncompetitive inhibitor of MEK-dependent ERK 

phosphorylation (376), we identified serine 857 and serine 860 as potentially distinct 

targets of ERK1/2. HTM was use to quantify the redistribution of the coactivator in 

response to U0126 through determination of the FLIN value. Exposure to U0126 resulted 

in a partial redistribution of SRC-3 to the cytoplasm (FLIN value of  0.87), while in the 

same experiment, FLIN value for SRC-1 did not significantly change (FLIN value of  

0.98), meaning that the effect of the inhibitor is specific to SRC-3. Interestingly, when 

serine 857 and serine 860 were in combination, but not independently, mutate to alanine in 

a GFP-tagged SRC-3, the coactivator partially localized in the cytoplasm (FLIN value of  

0.87). Finally, we confirmed the specificity of ERK1/2 pathway to induce nuclear 

localization of SRC-3 (but not SRC-1) using ERKs-directed RNAi and quantifying the 

cellular distribution of SRC-3 through HTM analysis. 

We cannot exclude the possibility that other kinases may also be involved in SRC-3 
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subcellular localization. The inhibitory effect of U0126 starts to be observed at a low 

concentration (~15 μM); higher concentrations (100 μM) increase cytoplasmic localization 

of SRC-3, but other kinases could be inhibited at this level of inhibitor (376,399), further 

reducing SRC-3 phosphorylation. However, we shown that the specific inhibition of 

ERK1/2 by RNAi visibly increased the cytoplasmic localization of SRC-3.  

Importantly, U0126 leads also to a marked reduction in the colocalization complexes 

between ER  and SRC-3 under E2 stimulation, measured at the level of nuclear speckles 

formation. The same result is obtained when the SRC-3 non-phosphorylatable is used. As 

expected, coimmunoprecipitation assay confirmed that the two proteins could physically 

interact. These data suggest a role for phosphorylation in nuclear organization of SRC-3 

and transient interaction with hormone-bound NR.  

Finally, to complete our understanding of the phosphorylation state of SRC-3 in terms of 

functional complexes with NR, we used a transcriptional model (PRL-array), based on the 

prolactin promoter/enhancer region, to visualize and quantify the transcriptional activation 

based upon ER  stimulation. In this way, we demonstrated that phosphorylation is a key 

post-translational event, not only for regulating interactions between SRC-3 and other 

coactivators, nuclear targeting, and subnuclear colocalization with ER, but also for stabilize 

the interaction with ER at the promoter level.  

These findings offer new information for the understanding of SRC-3 function in the 

cellular context. At one level, the distinct spatiotemporal phosphorylation of SRC-3 causes 

its nuclear localization, shifting the equilibrium of molecular probabilistic interactions 

towards transiently stable, and functional, complexes formation at the promoter level. 

Alternatively, dephosphorylation of SRC-3 leads to the dissociation of functional 

complexes and the return of coactivator and receptor to the cellular pool (Fig.34).  
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ERK signaling pathway and SRC-3 links to cancer. 

It is interesting to consider our observations in the light of compelling evidence implicating 

SRC-3 as a causal factor in the genesis of human cancers. The role of SRC-3 

phosphorylation in oncogenic stimulation was established by Wu et al. (39), who studied 

the oncogenic potential of SRC-3 and found that wild-type SRC-3 collaborated with Ras to 

transform SRC-3 /  MEFs, whereas non-phosphorylatable SRC-3 mutants caused only 

minimal transformation. Thus, it is plausible that, in normal tissues, a basal constant 

stimulation of SRC-3 leads to a neoplastic phenotype as a consequence of disregulation at 

any one of the multiple regulatory steps involved in its cellular compartmentalization or 

interaction with NRs. For example, both normal mammary development and breast cancer 

growth are under the influence of ER, which regulates cell proliferation (400). In addition to 

estrogens, many growth factors, like EGF, may also play an important role in regulating the 

growth of breast cancer cells by autocrine, paracrine, or endocrine mechanisms (401,402). 

As breast cancer cells have membrane receptors for the several growth factors they 

secrete, it has been proposed these growth factors activate the ERK signaling pathway 

(403). ERK1/2 activation, in turn, may induce SRC-3 phosphorylation, its retention in the 

nucleus and stimulation of ER activity (40,391). Interestingly, a clinical study of breast 

cancer patients showed that SRC-3 and HER2/neu (EGF receptor family member) 

expression levels are closely associated with worse prognosis, suggesting that a critical 

link between HER2/neu and SRC-3 might exist in breast cancer (141).  Our current study 

further supports this notion by suggesting that constitutively active HER2 signaling (and 

hence ERK1/2 activation) would result in the increased phosphorylation of SRC-3 and its 

consequent prolonged nuclear residing time and longer coactivation of partner NRs. 
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Figure 34. Phosphorylation regulates the equilibrium of SRC-3 subcellular location and functionality. 

The majority of SRC-3 is resident in the nucleus, but both cytoplasmic and nuclear pool are dynamic and in a 

finely regulated equilibrium. SRC-3 possesses an NLS and an NES that guide its nuclear import and export, 

respectively. External stimuli activate the cytoplasmic ERK1/2 signaling pathway, which in turn enhances 

SRC-3 phosphorylation and results in an increased nuclear localization. In the nucleus, phosphorylated 

SRC-3 has high-affinity interaction with ER , and other coregulators (e.g. CBP, p300, CARM1). These 

interactions lead to the formation of transiently associated protein complexes, which are generally not 

associated with transcription sites. When functionally bound to target DNA, ER  can specifically interacts 

with phosphorylated SRC-3, and recruits other member of the chromatin remodeling machinery to initiate 

transcriptional activation. Phosphorylation drives these equilibria and increases the probability of forming 

functional complexes. In the context of SRC-3 life cycle phosphorylation is critical for nuclear interaction and 

ER -regulated gene expression. Moreover, the minor pool of cellular SRC-3 that shuttle from the nucleus to 

the cytoplasm, beside other functions, can eventually operate as cotransporter to the nucleus for the 

cytoplasmic localized ER .  
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MATERIAL AND METHODS 
 
 
 
Plasmid 
 
The expression plasmid pCMV-Flag-SRC-3 was generated as described previously 

(39,271). pCMV-Flag-SRC3( NES) code for a mutant lacking 1031 to 1130 and was 

generated by PCR. The expression plasmids for GFP-SRC-3, and HA-SRC-3 were 

generated by inserting SRC-3 fragment from pCMV-Flag-SRC-3 (43) into pEGFP-C3 and 

pTRE2hyg2-HA vectors, respectively (CLONTECH Laboratories, Inc).  The 6 constructs 

GFP-SRC-3(A1) to (A6) (Individual alanine mutation of the 6 identified SRC-3 

Phosphorylation Sites (39), as well as the GFP-SRC3(A1-6) construct (expression plasmid 

in which all six identified phosphorylation sites have been mutated to alanine (271), and the 

were generated by subcloning SRC-3(A4-5) fragment from pCMV-Flag-SRC3(A1-6) into 

pEGFP-C3. The expression plasmids GFP-ER and GFP-SRC-1 were made as described 

previously (17). GFP-ER( NLS) have been already described (271). GFP-ER-S118A was 

generated by inserting ER(S118A) fragment from pCMV5-ER(S118A) (404) into pEGFP-

C3. 

 

Hormone and Inhibitors 

In all experiments, estradiol (E2) was added to a final concentration of 10-8 M. Stock 

solutions of U0126 MEK kinase inhibitor (Promega) were made in DMSO (10mM), stored 

at -20ºC, and used within 7 days. Where indicated, transfected cells were first pre-treated 

with 45 μM U0126 for 1-3 hours and then throughout the duration of the experiment. EGF 

(Invitrogen) was dissolved in ethanol and used at 100 ng/ml. Leptomycin B (Sigma) was 

used at 40 nM, a concentration efficient to inhibit nuclear export of a NES-containing 

protein (405). 
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Cell Cultures 

Grow cells in the appropriate growth media and serum (usually 5% fetal bovine serum) to 

90-95% confluency. Refresh the growth media one day prior to sub-culturing the cells onto 

cover slips or well plates following standard trypsin digestion protocols. For NR 

experiments, the sub-cultured cells are grown in media that contains stripped and dialyzed  

serum that lacks hormones that can obfuscate results. The appropriate seeding density is  

dependent on many factors and must be empirically determined for each experiment. The 

cells are grown for 24-48 hours on the cover glass until ligand treatment or transfection of 

expression vectors. For routine culture, cells were maintained in complete Dulbecco's 

modified Eagle's medium (DMEM) containing 5% fetal bovine serum (FBS). For 

transfection experiment, cells were plated one day before in DMEM medium w/o red 

phenol (Invitrogen) containing 5% dextran charcoal-stripped-dialyzed (FBS). 

 

Generation of Stable Cell Lines 

HeLa tet-off cell line expressing HA-SRC-3 were generated by transfecting a Hela tet-off 

cell line (CLONTECH Laboratories, Inc) with the expression vector pTRE2hyg2-HA-SRC-

3. Stable transformants were selected in Hygromycin (200 μg/ml) and Neomycin (100 

μg/ml) and resistant clones were screened for expression of SRC-3 by Western Blotting.  

The Production of the PRL array-HeLa cell line was performed as described for a similar 

cell line (20). Briefly, to establish a stable line bearing a chromosomally integrated array of 

p52X-PRL-DS-Red2-SKL plasmid, HeLa cells were plated in a 100 mm dish to a density of 

~60% confluency in OptiMEM medium supplemented with 4% FBS. The cells were co-

transfected with p52X-PRL-DS-Red2-SKL and pTK-Hygro (Clontech) at a 100:1 ratio, 

using a three-fold excess (by volume) of Fugene6 (Roche) reagent to DNA. After ~18 
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hours incubation with the DNA-lipid mixture, the cells were rinsed, detached, and split into 

ten 100-mm dishes. From this point, the cells were selected in OptiMEM supplemented 

with 4% FBS plus 400 μg/ml hygromycin. Approximately 100 colonies were picked and 

expanded directly into 24-well dishes, and then into a 35-mm dish containing a 12-mm 

diameter coverslip. To assess integration of p52X-PRL-dsRED2-SKL, coverslips were 

transiently co-transfected with GFP-ER and GFP-Pit-1 (both were tagged with GFP to 

maximize the fluorescent signal) and examined microscopically. A substantial percentage 

of dsRED2-SKL-positive cells with low diffuse levels of GFP signal in the nucleus had a 

single (sometimes two) bright intranuclear focus of fluorescence. These data suggested 

ER and/or Pit-1 interactions with an integrated 52XPRL array (presumably multicopy), and 

provided encouragement for the next step designed to separate cells based on reporter 

expression. To this end, we expanded several heterogeneous colonies of 52X-PRL HeLa 

cells. The clone [HeLa/52X-DM66-Red2-PTS #19] shown in this study was one of them 

and was named “PRL-HeLa clone 19”. Note that, in contrast to the previously desdcribed 

[HeLa/52X-DM66-Red2-PTS #23], the clone 19 used in this study was purified from a 

second generation clonal cell line and showed much less basal activation in absence of 

hormone. 

 

Immunoprecipitation and Western Blotting Analysis 

MCF-7 or HEK293 cells were lysed in lysis buffer (20 mM Tris-HCl [pH 8.0], 125 mM NaCl, 

0.5% NP-40, 2 mM EDTA, 0.2 mM NaF, 0.2 mM Na3VO4, protease inhibitor cocktail) for 

15 min and the debris was cleared by centrifugation at 13,400 x g for 15 min at 4°C. 

Lysates were incubated overnight (4°C) with the indicated antibodies [anti-ER clone 60C 

(Upstate Biotechnology), or anti-Flag M2 (Sigma)]. The antibody was allowed to bind to 

protein A/G beads (Santa Cruz Biotechnologies) for 30 min and then washed extensively 

with lysis buffer. For Western blot analysis, the samples were resolved by SDS PAGE and 
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transferred to nitrocellulose membranes (Bio-Rad). The indicated antibodies were diluted 

in TBST buffer (5% non-fat dry milk, 50 mM Tris-HCl, 150 mM NaCl [pH 7.5], 0.1% Tween 

20) and added to the membranes for 1 hour at room temperature (RT) or overnight at 4°C 

followed by incubation with the appropriate horseradish peroxidase-conjugated secondary 

antibodies for 30 minutes at RT (Sigma). All proteins were detected with ECL Plus 

Detection Reagents (Amersham) and visualized by chemiluminescence. 

 

DNA Transfection 

Perform transfections by standard calcium phosphate precipitation protocols or by 

commercially available lipid based transfection reagents following the manufacturer’s 

protocol. If cells are not to be transfected then perform the ligand treatments and proceed 

to the fixation and immunolabeling protocol. Remove the media containing the transfection  

reagent and expression vector and replace with media containing the appropriate ligand 

and control treatments.  In our experience, empirically evaluating a variety of transfection 

reagents and protocols is required for optimal results, which can be significantly cell line 

specific.  

 

RNA-mediated interference 

MAPK1 (p42/ERK2)and MAPK3 (p44/ERK1) siRNAs were purchased from from the 

Validated Stealth RNAi Collection (Invitrogen). Cells were seeded in free-hormone media 1 

day before transfection at 60% confluence in a 6 well-plate format (for Western Blot) 

containing glass coverslips (for HTM analysis). One hundred pmol of RNAi per well were 

transfected with Lipofectamine 2000 (Invitrogen) following the manufacturer's instruction. 

Seventy-two hours after transfection, coverslips were removed from the wells and proceed 

for immunochemistry, while remaining cells were collected in lysis buffer for Western Blot 

analysis. 
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Immunocytochemistry 

Cells were grown on acid-etched and poly-D-lysine-coated glass coverslips (12 mm 

diameter). After the specified treatment, cells were removed from the incubator and 

immediately rinsed in ice-cold PBS, then fixed with a solution of 4% formaldehyde in PEM 

buffer (0.1 M PIPES, 2 mM EGTA, 3 mM MgCl2) and permeabilized in 0.5% Triton X-100 

(in PEM, 30 min), then washed and quenched in sodium borohydride (0.5 mg/ml, 10 min in 

PEM). The cells were then washed and incubated for 1 hour (RT) in 5% non-fat dry milk in 

TBST (0.1M Tris-HCl, pH 7.4, 0.15 M NaCl, 0.1% v/v Tween-20) before incubation 

overnight with primary antibody (at 4˚C) and subsequently with fluorophores conjugated to 

appropriate secondary antibodies (goat anti-mouse Alexa 555, Molecular Probes). The 

primary antibodies used were: anti-HA (Clone 3F10) (200 ng/ml), anti-RC-1 (1 μg/ml), and 

anti-AIB1/SRC-3 (0.5 μg/ml) obtained from Roche Molecular Biochemicals, Upstate 

Biotechnology and BD Biosciences, respectively. After first and secondary antibody 

labeling, cells were post-fixed and quenched (as above), counter-stained with DAPI (0.5 

mg/ml, ~1min), rinsed quickly in water, and then mounted on slides (ProLong Gold, 

Molecular Probes). 

  

High Throughput Microscopy (HTM) 

Cells were imaged using the Cell Lab IC 100 Image Cytometer from Beckman Coulter, Inc 

with a Nikon 40X Plan S fluor 0.90 NA objective except for the experiment described in 

Figure 25,2 6, and 37, where a Nikon 63X Plan Apo 1.20 NA objective was used. Three 

channels were imaged: channel (DAPI) was used to find the focus and nuclei; channel 1, 

for imaging GFP-SRC-3, GFP-SRC-3(A1-6), GFP-SRC-3(A4-5), GFP-ER and GFP-

ERS118A,  channel 2 for imaging endogenous SRC-3, SRC-1, or HcRed-ER. A Correlated 
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Channel Segmentation Algorithm was used to identify and quantify the localization and 

level of fluorescence of SRC-3/ER in the nucleus and the cytoplasm. After image 

acquisition and application of the Correlated Channel Segmentation algorithm, the total 

cell populations for each treatment were progressively filtered (gated) using the following 

criteria: non-transfected cells, nuclei clusters, mitotic cells, and apoptotic cells were filtered 

out from the total cell population using an intersection of DNA content gate, DNA clusters 

gate, and “keep 2 channels” gate. Filtration of low level expression of GFP-SRC-3 gates 

was generated as described in reference and applied to produce the final cell population to 

be analyzed. The images and masks were visually inspected for accuracy. 

 

Fluorescence Deconvolution Microscopy and Quantitative Colocalization 

Deconvolution microscopy was performed with a Zeiss AxioVert S100 TV microscope and 

a DeltaVison Restoration Microscopy System (Applied Precision, Inc.). Cells were imaged 

using either the 63X lens (both 1.40 NA). A Z-series of focal planes were digitally imaged 

and deconvolved with the DeltaVision constrained iterative algorithm to generate high-

resolution images.  

Quantitative colocalization analysis (figure 29) were done with the Colocalizer Pro 

Software, using the Pearson's correlation coefficient (Rr). The estimation of Rr is one of 

the standard techniques applied for matching one image to another in order to describe 

the degree of overlap between the two patterns. The Rr coefficient accounts only for the 

similarity of shapes between the two images, and does not depend upon image pixel 

intensity values. Briefly, 10 images in each condition were acquired and analyzed by 

deconvolution microscopy. The Rr coefficient was calculated for each array transgene in 

each image and the average calculated values for each condition were ploted on the 

histogram. 
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Fluorescent In Situ Hybridization (FISH) 

The methods used here, including procedures for non-isotopic probe preparation and 

fluorescent in situ hybridization, have been already published in numerous publication. 

Briefly, coverslips with adherent cells were rinsed twice in PBS, dipped in cytoskeleton 

(CSK) buffer (100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 10 mM PIPES, pH 6.8) (406) 

extracted on ice for 5 minutes in CSK buffer containing 0.5% Triton X-100 and 2 mM 

vanadyl-ribonucleoside complex (VRC; Gibco-BRL), rinsed in CSK/VRC, fixed in 4% 

paraformaldehyde/PBS for 10 minutes, rinsed again in PBS and stored in 0.4% 

paraformaldehyde at 4˚C until use. Hybridization to RNA was carried out at 37˚C in 

standard buffers containing 5 g/ml probe and 50% formamide overnight. After incubation, 

samples were rinsed in a series of SSC buffers, detected for biotin using streptavidin, 

Alexa Fluor 594 conjugate (Molecular Probes, Eugene, OR) and rinsed in a series of PBS 

washes. Intensity of FISH signal at the PRL-promoter by the use of the free available 

software GimpShop.  
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