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Abstract

Detection, localization and tracking of non-collaborative objects moving in-
side an area is of great interest to many surveillance applications. An ultra-
wideband (UWB) multistatic radar is considered as a good infrastructure
for such anti-intruder systems, due to the high range resolution provided by
the UWB impulse-radio and the spatial diversity achieved with a multistatic
configuration.

Detection of targets, which are typically human beings, is a challenging
task due to reflections from unwanted objects in the area, shadowing, antenna
cross-talks, low transmit power, and the blind zones arised from intrinsic
peculiarities of UWB multistatic radars.

Hence, we propose more effective detection, localization, as well as clutter
removal techniques for these systems. However, the majority of the thesis
effort is devoted to the tracking phase, which is an essential part for improving
the localization accuracy, predicting the target position and filling out the
missed detections.

Since UWB radars are not linear Gaussian systems, the widely used track-
ing filters, such as the Kalman filter, are not expected to provide a satisfac-
tory performance. Thus, we propose the Bayesian filter as an appropriate
candidate for UWB radars. In particular, we develop tracking algorithms
based on particle filtering, which is the most common approximation of
Bayesian filtering, for both single and multiple target scenarios. Also, we
propose some effective detection and tracking algorithms based on image
processing tools.

We evaluate the performance of our proposed approaches by numerical
simulations. Moreover, we provide experimental results by channel measure-
ments for tracking a person walking in an indoor area, with the presence of a
significant clutter. We discuss the existing practical issues and address them
by proposing more robust algorithms.
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Chapter 1

Introduction

Precise localization and tracking of moving targets inside an area is of great
interest for several surveillance applications. Localization is usually intended
as the capability to locate friendly collaborative objects. This is sometimes
referred to as active localization, because the object to be localized collab-
orates to its localization process [8]. However, an increasing attention is
recently being devoted to the capability of detecting and tracking unfriendly
non-cooperative objects within a given area. This is referred to as passive
localization and is typical of radar systems [9, 10]. In order to improve the
localization performance of the system, tracking is an essential component
to achieve high-level system reliability.

Unlike a monostatic radar, which uses the same antenna for both the
transmitted and received signal, a multistatic radar uses at least three non
co-located antennas for transmitting and receiving [11]. The major advan-
tages of a multistatic radar over a conventional monostatic one include a
wider area coverage and a higher amount of information available due to
spatial diversity. Moreover, receivers in a multistatic radar system are not
required to transmit any signal, which enables development of low power and
low cost equipments. A multistatic radar is sometimes called a radar sen-
sor network. When multiple antennas are used in each node, the resulting
sensor network is also called multiple-input/multiple-output (MIMO) radar
[12]. These features lead to improved performance and foster new applica-
tions such as anti-intruder surveillance, ambient monitoring in safety and
healthcare applications or location-aware commercial services.

A promising wireless technique for such multistatic radar applications is
the ultra-wideband (UWB) technology. By definition, a UWB radar has a
large fractional bandwidth, whereas a narrowband radar has a very small
fractional bandwidth. We will focus on impulse radio-UWB (IR-UWB)
radars which are characterized by transmission of short duration pulses of

1



the order of a few nanoseconds [13, 14]. IR-UWB offers an extraordinary res-
olution and localization precision. Additional advantages include low power
consumption, high spatial resolution (typically a few centimeters) even in in-
door environments with dense multipath, high security and low probability
to be intercepted, co-existence with a large number of devices operating in
small areas, and robustness to narrowband jamming [15, 16]. These features
make IR-UWB radars suitable for various recent applications such as ground
penetration [17], human being detection [18, 19], and biomedical applications
[20].

The above features and the fact that IR-UWB devices are usually light-
weight, cost-effective, and characterized by low-power emissions, make UWB
an ideal candidate for short-range radar applications [10, 15]. The radar
sensor networks addressed in this thesis are UWB multistatic radar systems
aimed at detecting and tracking non-cooperative targets (e.g., human sub-
jects) moving inside a surveillance area.

Passive localization through multistatic UWB radars is the subject of
several works such as [21, 22, 23, 24, 25, 26] a few of which, however, focus
on tracking aspects. However, a few of them focus on tracking aspects. In
UWB systems, the measurement equation is non-linear and also the measure-
ment noise cannot be assumed as Gaussian. Therefore, the commonly used
tracking filters based on linearity and Gaussianity assumptions, such as the
Kalman filter, are not expected to exhibit a satisfactory performance, even if
they may still represent a valuable choice due to their low complexities [27].

1.1 Thesis Outline

Chapter 2 explains IR-UWB technology. It describes the multistatic radar
system setup used during this thesis for anti-intruder applications. The de-
tection problem associated with blind zones, i.e., regions inside which the
target cannot be detected by at least one of the receivers, is also presented.

Chapter 3 introduces Bayesian filtering as a good candidate for UWB
radar systems. Such filtering techniques are not based on any linearity and
Gaussianity assumption for the measurement equation and noise. The grid-
based Bayesian approach and particle filtering are then explained as the two
common implementation techniques for Bayesian filters.

In Chapter 4, the particle filtering is employed for UWBmultistatic radars
composed of one transmitter and multiple receivers. The corresponding par-
ticle weights are derived analytically for that particular system, based on
observations from all receivers.

The conventional particle filtering may lead to track divergence due to
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intrinsic peculiarities of UWB multistatic radars. Mainly, these divergences
are caused by blind zones. To cope with this problem, a low-complexity
modified particle filter is proposed which improves the target velocity esti-
mation. The performance of the proposed approach is evaluated numerically
accounting for the spatial configuration of the receivers, propagation effects,
the presence of residual clutter, power constraints imposed on UWB trans-
mitted signals, and noise. We show that the proposed algorithm provides a
high estimation accuracy compared to the Kalman filter, even at low signal-
to-noise ratios, in the presence of either static or dynamic clutter. Moreover,
it can track complicated manoeuvering target trajectories. We remark that
the proposed algorithm based on particle filtering can be implemented for
real-time tracking.

In Chapter 5, the proposed particle filtering is compared numerically with
the grid-based Bayesian approach in terms of both tracking performance and
algorithm complexity. We show by numerical results that the grid-based
tracking method outperforms the particle filtering, especially in proximity
of blind zones, at the cost of a much higher computational complexity and
memory requirements.

Chapter 6 focuses on detection and localization steps which have to be
performed before tracking in multiple target scenarios. A constant false alarm
rate (CFAR) detection approach based on median filtering is proposed which
allows us to reduce the CFAR threshold to a very low value and hence to
heavily reduce the number of missed detections. A pixel-based localization
technique using CFAR detector is then proposed and compared with the
conventional direct method of localization (trilateration). The performance
of all the above techniques is evaluated numerically in a multiple target
scenario.

The particle filtering algorithm proposed in Chapter 4 is suitable for track-
ing a single target. Chapter 7 extends this algorithm to the case of multiple
targets. A closed-form equation for estimating the channel attenuations in
UWB multistatic radars with one transmitter and several receivers is de-
rived by means of the maximum-likelihood approach. The estimated channel
gains are then used to calculate the particle weights. The performance of
the proposed approach is compared to the Kalman filter through numerical
simulations.

Chapter 8 employs the Hough transform to detect and track the target at
the same time. Also, it tracks all of the targets simultaneously in a multiple
target scenario. We propose two different approaches based on the Hough
transform.

In one approach, the Hough transform finds the time of arrival (TOA)
curves of the targets. In the other approach, the Hough transform extracts
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the trajectory of the targets. In both techniques, a straight-line constant-
velocity model was adopted for the target movement, representing the human
walk.

Moreover, a new empty-room clutter removal technique is proposed in
this chapter to combat the shadowing effect, particularly severe in indoor
scenarios. We show that the proposed approach can considerably reduce the
number of false alarms.

We evaluate the performance of all the proposed techniques by experi-
mental results provided by channel measurements which were carried out in
an indoor environment with significant clutter.

Chapter 9 concludes the algorithms presented during this thesis and pro-
vides directions for future works.
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Chapter 2

Impulse-Radio UWB
Multistatic Radar

A promising technology for anti-intruder radar sensor networks is ultra-
wideband (UWB), where signals are characterised by a large fractional band-
width. We will focus on the impulse radio-UWB (IR-UWB) which is based
on transmitting ultra short (in the order of nanosecond) pulses, properly
shaped to work in the selected frequency band [28, 29]. In this way, it is
possible to avoid the use of a carrier signal, thus lowering the complexity of
the radio transceiver.

The other possible way for implementing UWB communication is the
multi-carrier or multi-band UWB (MB-UWB) [30]. The MB-UWB uses
orthogonal frequency division multiplexing (OFDM) techniques to transmit
the information on each of the sub-bands. The OFDM has several good
properties, including high spectral efficiency, robustness to RF and multi-
path interferences. However, up and down conversions are required, making
the system very sensitive to frequency, clock, and phase inaccuracy. More-
over, nonlinear amplification may jeopardize OFDM orthogonality. For these
reasons, MB-UWB is less appealing for low-power and low cost applications.

Carrierless transmission in IR-UWB has the benefit of requiring fewer
RF components than carrier-based techniques, permitting the realization of
simple and inexpensive architectures. For instance, there is no need for mix-
ers and local oscillators to convert the carrier frequency to another required
frequency. Consequently, there is no need for a carrier recovery stage at
the receiver. This simplicity makes a low-cost implementation of IR-UWB
transceivers possible.

Thanks to the ultra-short duration pulses, IR-UWB is very robust against
multipath, as more multipath components (clutter) can be resolved at the
receiver. Therefore, sub-centimeter ranging is (theoretically) possible with
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IR-UWB. Moreover, eavesdropping the IR-UWB signal is a very hard task
[16].

All the above features and the fact that IR-UWB devices are light-weight,
cost-effective, and characterized by low-power emissions, make IR-UWB suit-
able for various recent short-range radar applications such as ground pene-
tration [17], human being detection [18, 19], and biomedical applications
[20].

In this chapter, we introduce the IR-UWB technology used in a mul-
tistatic radar system, aimed at detecting and tracking of non-cooperative
targets (e.g., human subjects) moving inside a surveillance area. Section 2.1,
explains the UWB multistatic radar system setup used during this thesis
for anti-intruder applications. Section 2.2 discusses the detection problems
intrinsically associated with such a system configuration. Conclusions are
provided in Section 2.3.

2.1 The UWB Multistatic Radar Setup

We consider a UWB multistatic radar system composed of one transmitter
(TX) and NR receivers (RX). In order to provide a full area coverage, the
transmitter and multiple receivers may, for example, be deployed on the
perimeter of the area as depicted in Fig. 2.1. A central node collects the
received signals from all of the receivers and performs the required data
processing.

We consider an IR-UWB radar which transmits continuously a sequence
of UWB pulses at time intervals TIP (around tens of nanoseconds). The
received signals are observed and processed in time intervals of duration
Tscan (a fraction of a second), called scan time or frame time (TF ). If a
number of Ns pulses are emitted by the transmitter during each scan time,
then Tscan = NsTIP . The only process which is needed to be done on the
corresponding Ns received signals in each scan time to form the observation
signal, is averaging them along TIP . This increases the signal-to-noise ratio
(SNR) by the processing gain Ns. The system timings are designed in such
a way that the channel response to a single pulse, when a moving target is
present, does not change appreciably during a scan time so that averaging is
feasible.

The transmitted pulse at time t is assumed to be the first derivative
Gaussian monocycle

p(t) = A t exp

{
− t2

2τp2

}
(2.1)

with duration parameter τp. The pulse is modulated with a sinusoidal carrier.
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Figure 2.1: Pictorial representation of the UWB multistatic radar system
considered in this thesis.

The modulation for the first derivative order is required to remain in FCC
regulations [31]. Although in this thesis, we have chosen the first derivative
order as an example, higher derivative orders may also be considered without
any modulation. The main concept of the proposed tracking algorithms in
the next chapters doesn’t depend on the UWB pulse shape used.

Fig. 2.2 shows an example of the first derivative Gaussian monocycle with
τp = 0.3ns , modulated with a carrier frequency of 4.5GHz, in both time and
frequency domains. The FCC mask is also shown in the figure. In this
example, TIP = 24ns and the amplitude of the pulse was set to fulfill the
FCC mask.

If a target is present inside the area, the received signal at each receiver
corresponding to a UWB transmitted pulse consists of the direct path pulse
followed by pulse replicas due to both the clutter and the target, and the
noise.

2.2 The Blind Zone Problem

One of the problems in UWB multistatic radar systems are blind zones for
each pair of TX and RX antennas. Blind zones are regions inside which
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the difference between the delays corresponding to target-reflected path and
direct path is lower than system time resolution. When the target is close
to a line-of-sight (LOS), connecting the TX and any of the RX antennas,
it may fall inside the corresponding blind zone, in which case it can not be
detected by that RX antenna [10]. Blind zones are consequence of two main
concurrent phenomena. Firstly, this problem always arises in presence of a
non-ideal synchronization. In the considered system, in fact, synchronization
is the first task to be performed, based on TOA estimation of the direct-
path pulse. This operation is essential both to align the Ns pulse responses
belonging to the same frame in order to achieve a process gain and to align
successive frames to perform clutter removal. Synchronization based on TOA
estimation is never ideal, thus leading to an imperfect frame alignment. A
residue of direct-path pulse is then always present in real systems after clutter
removal processing. The problem is that the direct path is usually much
stronger than the target echo and the other clutter components, due to the
fact that it does not experience reflections. Hence, the direct path residue
after clutter removal typically masks the echo of a moving target that is close
to the direct TX-RX path.

Another issue concurring to the blind zone effect, even in presence of a
perfect TOA estimation, is related to sampling resolution which maps the
target position onto quantized ellipses inside the area. For example, de-
note the propagation delay times corresponding to target and direct path by
τtarget = (lr+lt)/c and τLOS = l/c, respectively, where lr and lt are the target-
RX and TX-target distances and l is the TX-RX distance. Moreover, denote
by Ts the sampling period of the received signal, and by k1 and k0 the integers
dτtarget/Tse and dτLOS/Tse, respectively. For c(k0 − 1)Ts < lr + lt ≤ ck0Ts

we have k1 = k0 and the target position is assumed on the direct TX-RX
path, leading to a mismatch between the actual and the estimated value of
lr + lt. This position estimation error caused by finite sampling, which is
present whatever the target position, is prominent in the proximity of the
direct TX-RX path. Fig. 2.3 depicts quantized ellipses for each pair of TX
and RX antennas that correspond to the points such that d lr+lt

cTs
e = k, where

k ∈ {k0, k0 +1, . . . , k0 +15} from the inner ellipse toward the outer one. For
each TX–RX pair, all the points within the most inner ellipse are mapped
onto the direct TX–RX path.

2.3 Conclusion

In this chapter, we introduced the IR-UWB technology as an appropriate
choice for short-range radar applications, mainly due to its super resolution
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Figure 2.3: Example of quantized ellipses in case of three receivers.

in range and low-cost implementation. We presented a multistatic radar
system configuration using IR-UWB, aimed at detecting and tracking of non-
collaborating targets moving inside a surveillance area. We also discussed the
detection problems caused by blind zones which are inherently associated
with such systems.
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Chapter 3

Bayesian Filtering

Estimating the state of a dynamic system that evolves with time based on
a set of noisy measurements is the problem of many applications. In radar
tracking problems, the system state is usually the mobility characteristics of
the target. For example, the system state can be a vector consisting of the
target position, velocity and acceleration.

In order to solve this estimation problem, we need two models. One model
is required to define how the system state is changing over time. This is
called the system or dynamic model. Another model should describe how the
measurements are related to the system state. This is called themeasurement
or observation model. In this thesis, we consider discrete-time models. When
these models are known in a probabilistic form, the Bayesian filter is the
optimal solution to the estimation problem.

The Bayesian filter recursively predicts the probability density function
(p.d.f.) of the system state based on the system model, and corrects the
predicted p.d.f. based on the current observation. This filtering technique
can be applied to a general non linear system with embedded non Gaussian
noises. However, the integrals over probability density functions involved in
the Bayesian filtering may not be generally solved in close forms. Therefore,
usually some integration approximations are made which result in particular
types of Bayesian filtering. Among these implementation techniques, we fo-
cus on the grid-based method and particle filters which are the most common
solutions to non linear tracking problems.

Section 3.1 introduces the general Bayesian filter. Section 3.2 describes
the well known Kalman filter as a simplified form of the Bayesian filter,
when the system and measurement models are linear and the noises are
additive Gaussian. Section 3.3 and Section 3.4 explain the grid-based method
and particle filters as the two popular solutions to non linear systems with
embedded non Gaussian noises. Conclusions are provided in Section 3.5.
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3.1 General Bayesian Filter

A non-linear stochastic system can be defined by the dynamic model (also
called system model):

xk = fk(xk−1,vk−1) (3.1)

and the measurement (observation) model:

zk = hk(xk,nk) (3.2)

where xk is the state vector at time index k, zk is the observation vector,
and vk−1 and nk are independent, identically distributed (i.i.d.) dynamic
(process) and measurement noise vectors, respectively. The deterministic
functions fk and hk (possibly non-linear) relate the previous state xk−1 to the
current state xk and the current state xk to the observation zk, respectively.

In the Bayesian filtering, the problem is to estimate the current state xk

based on the set of all available observations z1:k , {z1, z2, ..., zk}. In other
words, it is required to calculate the posterior density p(xk|z1:k). This can
be done recursively in two steps of prediction and correction (update).

The prediction step calculates the prior density p(xk|z1:k−1) using:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3.3)

where the dynamic model defined in (3.1) specifies the predictive transition
density p(xk|xk−1) assuming a Markov process of order one.

In the correction step, the current observation zk is used to correct the
prior density (3.3) to obtain the required posterior density:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3.4)

where the likelihood function p(zk|xk) is specified by the measurement model
defined in (3.2) and p(zk|z1:k−1) is a normalizing constant which can be cal-
culated by:

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk (3.5)

The two recursive equations (3.3) and (3.4) are the basis of Bayesian filtering.
In general, the integrals in these equations can not be evaluated in closed
forms. Therefore, some numerical approximations are required for solving
the integrals.

Fig. 3.1 shows various implementation techniques of Bayesian filtering
based on the simplifying assumptions and numerical approximations in solv-
ing the above equations. When the dynamic and measurement equations are

12



General 
Bayesian filter

Grid-based 
filter

Linear equations Non linear equations

Additive 
Gaussian noises

Particle filterKalman filter Gauss-Hermite 
Kalman filter

Unscented 
Kalman filter

Monte Carlo 
Kalman filter

Additive 
Gaussian noises

Embedded 
non Gaussian noises

Figure 3.1: Various implementation of Bayesian filtering.

linear and their corresponding noises are additive and Gaussian, the Bayesian
filter is actually converted to the well known Kalman filter. When the mea-
surement and observation noises are additive and Gaussian, but the equations
are not necessarily linear, the Bayesian filter can still be approximated with
a Kalman filter. According to the type of numerical approximation used
in this technique, the Bayesian filter results in the so called Gauss-Hermite
Kalman filter (GHKF), Unscented Kalman filter (UKF) and Monte Carlo
Kalman filter (MCKF).

In the general case, when the equations are non linear and the noises are
non additive and/or non Gaussian, the grid-based method and particle filters
are the most common implementation of Bayesian filtering.

3.2 Kalman Filter

When the dynamic equation fk is a linear function of xk−1 and vk−1, and
the measurement equation hk is a linear function of xk and nk, and their
corresponding noises vk−1 and nk are additive Gaussian with known mean
and variance, then the Bayesian filter is actually simplified to the Kalman
filter. With these assumptions, (3.1) and (3.2) can be written as:

xk = Fkxk−1 + vk−1 (3.6)

zk = Hkxk + nk (3.7)

13



where Fk and Hk are known matrices which define the linear functions.
If we assume that Gaussian noises vk−1 and nk are statistically indepen-
dent with zero mean and covariance matrices Qk−1 and Rk, i.e., vk−1 ∼
N (vk−1;0,Qk−1) and nk ∼ N (nk;0,Rk), respectively, then the prediction
and correction steps in the general Bayesian filter are converted to the fol-
lowing recursive equations:

p(xk−1|z1:k−1) = N (xk−1; x̂k−1|k−1,Pk−1|k−1) (3.8)

p(xk|z1:k−1) = N (xk; x̂k|k−1,Pk|k−1) (3.9)

p(xk|z1:k) = N (xk; x̂k|k,Pk|k) (3.10)

where

x̂k|k−1 = Fkx̂k−1|k−1 (3.11)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk−1 (3.12)

ỹk = zk −Hkx̂k|k−1 (3.13)

Sk = HkPk|k−1H
T
k +Rk (3.14)

Kk = Pk|k−1H
T
kS

−1
k (3.15)

x̂k|k = x̂k|k−1 +Kkỹk (3.16)

Pk|k = Pk|k−1 −KkHkPk|k−1 (3.17)

In the above equations, ỹk is the innovation term with the covariance Sk, and
Kk is the Kalman gain. The Kalman filter is indeed the optimal solution for
tracking problems in linear Gaussian environments.

3.3 Grid-based Filter

If we approximate the continuous state space xk with a discrete state space
consisting of Np pixels x1

k, · · · ,x
Np

k , and we denote the center of i’th pixel
xi
k with x̄i

k, and the conditional probability Pr(xk−1 = xi
k−1|z1:k−1) with

wi
k−1|k−1, then the prediction and correction steps in the Bayesian filtering

can be approximated as:

p(xk−1|z1:k−1) ≈
Np∑
i=1

wi
k−1|k−1δ(xk−1 − xi

k−1) (3.18)

p(xk|z1:k−1) ≈
Np∑
i=1

wi
k|k−1δ(xk − xi

k) (3.19)

p(xk|z1:k) ≈
Np∑
i=1

wi
k|kδ(xk − xi

k) (3.20)
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where

wi
k|k−1 ≈

Np∑
j=1

wj
k−1|k−1p(x̄

i
k|x̄

j
k−1) (3.21)

wi
k|k ≈

wi
k|k−1p(zk|x̄i

k)∑Np

j=1w
j
k|k−1p(zk|x̄

j
k)

(3.22)

However, in order to have a good a performance, the number of pixels should
be sufficiently large which leads to high computational complexity and mem-
ory requirements. Also, higher dimensionality of the state space increases
the computational cost dramatically. Moreover, since the partitioning of the
state space is fix and predefined, we can not change it dynamically to have
higher resolutions in the regions with more probability of target presence.

3.4 Particle Filter

3.4.1 Sequential Importance Sampling Particle Filter

In particle filtering techniques, the posterior density is approximated using a
set of random samples (particles) with associated weights. With larger num-
ber of samples, this representation becomes more accurate and the particle
filter approaches the general Bayesian filter.

If we denote the Np particles by x1
k, · · · ,x

Np

k and their corresponding

weights by w1
k, · · · , w

Np

k , then the posterior density p(xk|z1:k) can be approx-
imated as:

p(xk|z1:k) ≈
Np∑
i=1

wi
kδ(xk − xi

k) (3.23)

Usually, the posterior density p(xk|z1:k) can not be represented by any ana-
lytical p.d.f. and therefore, it is difficult to draw samples from. On the other
hand, assume that q(xk|z1:k) is another density which can be expressed an-
alytically. This density from which the samples can be easily taken is called
the Importance Density. Then, the weights in (3.23) are defined as:

wi
k ∝

p(xi
k|z1:k)

q(xi
k|z1:k)

(3.24)

After some calculations the weights can be updated recursively by:

wi
k ∝ wi

k−1

p(zk|xi
k)p(x

i
k|xi

k−1)

q(xi
k|xi

k−1, zk)
(3.25)
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The above equation is used to define a type of particle filtering called sequential
importance sampling (SIS) particle filter. The steps are described by Algo-
rithm 1.

Algorithm 1 SIS Particle Filter
1: for i = 1 → Np do
2: Draw particle xi

k from q(xk|xi
k−1, zk)

3: Update the particle weight by wi
k ∝ wi

k−1

p(zk|xi
k)p(x

i
k|x

i
k−1)

q(xi
k|x

i
k−1,zk)

4: end for

One of the problems associated with the SIS particle filter is that after
some iterations, most of the particle weights tend to zero so that after a
while, only one particle leads the algorithm. Therefore, most portion of
the algorithm computational cost corresponds to the particles which have
negligible contribution to the approximation of the posterior density. This
phenomenon is called the degeneracy problem.

The degeneracy phenomenon is inevitable in the SIS particle filter because
the variance of the particle weights increases by time. In order to measure
the severity of this problem, the effective sample size Neff has been defined
as:

N̂eff =
Np

1 + V ar(w∗i
k )

(3.26)

where w∗i
k = p(xi

k|z1:k)/q(xi
k|xi

k−1, zk). It can be observed from 3.26 that
smaller Neff implies more severity of the degeneracy problem. In practice,
an estimate of Neff which can be more easily calculated is used instead, as:

N̂eff =
1∑Np

i=1(w̃
i
k)

2
(3.27)

where w̃i
k = wi

k/
∑Np

i=1w
i
k is the normalized weight. In order to address

the degeneracy problem, one may think of using a large number of particles.
However, this is usually impractical. The most common solution is to perform
an additional step called resampling in the particle filter algorithm.

3.4.2 Sequential Importance Sampling Particle Filter
with Resampling

The resampling process replaces small weight particles with high weight,
without changing the number of particles. For this purpose, we first construct
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the cumulative distribution function (CDF) of the particles as:

F (xi
k) = Pr(xk ≤ xi

k|z1:k)

=

∫ xi
k

−∞
p(xk|z1:k)dxk

≈
∫ xi

k

−∞

Np∑
j=1

wj
kδ(xk − xj

k)dxk

=
i∑

j=1

wj
k

(3.28)

Next, we take Np samples from a uniform distribution from 0 to 1, i.e.,
ui ∼ U [0, 1], i = 1, · · · , Np. Now, imagine the CDF function F in (3.28) to
be a mapping from particle indexes i = 1, · · · , Np to their corresponding CDF
values. Therefore, for each ui as a CDF value, we can find the nearest parti-
cle index i∗ from F−1(ui). We then replace the old particle xi

k with the new
particle xi∗

k . In this way, low probability particles are replaced by higher prob-
ability particles. Since the ui values have been taken from a uniform distribu-
tion, all new particles have equal probabilities. Therefore, after resampling,
the particle weights should be all replaced by wi

k = 1/Np, i = 1, · · · , Np.
Using above resampling technique in the SIS particle filter, whenever a

degeneracy problem is observed, i.e., when N̂eff is smaller than some thresh-
old NT , results in Algorithm 2.

Algorithm 2 SIS Particle Filter with Resampling
1: for i = 1 → Np do
2: Draw particle xi

k from q(xk|xi
k−1, zk)

3: Update the particle weight by wi
k = wi

k−1

p(zk|xi
k)p(x

i
k|x

i
k−1)

q(xi
k|x

i
k−1,zk)

4: end for
5: for i = 1 → Np do

6: Normalize the weight by w̃i
k = wi

k/
∑Np

j=1w
j
k

7: end for
8: Calculate the effective sample size by N̂eff = 1∑Np

i=1(w̃
i
k)

2

9: if N̂eff < NT then
10: Do resampling
11: end if

However, the resampling process may cause another problem called sam-
ple impoverishment. This problem arises from the fact that particles with
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high weights are often selected repeatedly which results in a less diversity in
the new set of particles.

3.4.3 Sampling Importance Resampling Particle Filter

The sampling importance resampling (SIR) particle filter is the most com-
monly used type of particle filtering due to its algorithm simplicity. Making
two assumptions converts the SIS particle filter with resampling into the SIR
particle filter. First, the predictive transition density p(xk|xi

k−1) is chosen
as the importance density q(xk|xi

k−1, zk). Second, the resampling process is
performed at every iteration, without evaluating the amount of degeneracy
by N̂eff .

For the first assumption, we need to be able to take samples from p(xk|xi
k−1).

Suppose that we can generate samples from the process noise vk−1 denoted by
vi
k−1. Then, from (3.1), we can consider the particles as xi

k = fk(x
i
k−1,v

i
k−1)).

By this choice of importance density and resampling at every iteration,
the particle weights can be simply calculated by:

wi
k ∝ p(zk|xi

k) (3.29)

The SIR particle filter is described by Algorithm 3. Although the SIR
particle filter has the advantage of a simple importance density choice and
a simple weight update equation, it may provide a low performance. The
reason is that the samples are taken from an importance density which is
not relied on the observation zk. Moreover, resampling at every time index
results in a very low diversity among particles. Nonetheless, the SIR particle
filter is still prevalent in non linear tracking problems.

Algorithm 3 SIR Particle Filter
1: for i = 1 → Np do
2: Draw particle xi

k from p(xk|xi
k−1)

3: Calculate the particle weight by wi
k = p(zk|xi

k)
4: end for
5: for i = 1 → Np do

6: Normalize the weight by w̃i
k = wi

k/
∑Np

j=1w
j
k

7: end for
8: Do resampling
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3.5 Conclusion

In this chapter, we introduced the Bayesian filter as an optimal solution
to the tracking problem of general non linear systems with embedded non
Gaussian noises. We reviewed that for linear Gaussian systems, the general
Bayesian filter simplifies to the well known Kalman filer. However, in the non
linear non Gaussian systems, the integrals involved in the Bayesian filtering
can not be solved without some numerical approximations. We focused on
the grid-based method and particle filters as the two common approximation
of Bayesian filters.

In the next few chapters, we particularly focus on the SIR particle filter
for target tracking in UWB multistatic radars. We first derive the particle
weights for single target tracking in such systems. Then, we extend the
results to a multiple target case. We also compare the particle filter using
the derived weights with the grid-based method.
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Chapter 4

Single Target Tracking with
Particle Filter for UWB
Multistatic Radars

Passive localization, which deals with positioning of non-collaborating tar-
gets, using multistatic UWB radars is the subject of several works such as
[21, 22, 23, 24, 25, 26]. However, only a few of them focus on tracking aspects
in this context. For multistatic UWB radars, the measurement equation is no
longer linear and also the measurement noise cannot be assumed as additive
Gaussian, when estimating the target position. Therefore, the commonly
used tracking filters based on linearity and Gaussianity assumptions, such
as the Kalman filter, are not expected to exhibit a satisfactory performance,
although they may still represent a valuable choice due to their low complex-
ities [27].

Good candidates for UWB-based radar systems are non-linear Bayesian
filtering algorithms such as particle filters [32, 33]. It is claimed in [34] that,
while such Bayesian nonlinear filters constitute an optimal solution, their
implementation is problematic due to their high computational complexity.
A new tracking algorithm based on a threshold filter is then proposed. A
related tracking approach was proposed in [35]. In [36], both Kalman and
Bayesian filtering have been considered, in the framework of a pixel-based ap-
proach. Although exhibiting a good performance, this pixel-based approach
has also some drawbacks. Firstly, it limits the position accuracy to the pixel
size. Secondly, it entails high computational complexity and memory re-
quirements. The complexity grows dramatically with the number of state
dimensions, size of the area and number of targets. In [37], an algorithm
based on particle filtering for UWB ranging and tracking is proposed. It
demonstrates the advantages of particle filtering compared to conventional
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tracking methods. However, this algorithm is tailored for bistatic radars and
small distance ranging.

In this chapter, a multistatic UWB radar based on one transmitter and
multiple receivers, as described in Chapter 2 is considered, employing particle
filtering for target tracking. We assume a continuous state space, focusing
only on particles wherein the target is more likely to be present. At each
scan time, the particles are predicted according to a dynamic model and then
evaluated by assigning a weight to each of them based on the observations.
The final estimated position is obtained as the weighted sum of all particles.
In the process, we derive an expression for weights calculation based on
observations from all receivers.

The conventional particle filtering may lead to track divergence due to
intrinsic peculiarities of UWB multistatic radars. Mainly, these divergences
are caused by blind zones, i.e., regions inside which the target cannot be
detected by at least one of the receivers (detailed in Section 2.2). The blind
zone problem also affects Kalman filtering, that may even lose the track if
the target remains hidden long enough [38]. Around the blind zones where
the observations are not reliable for a considerable number of scan times,
any strong clutter residue, a target manoeuver or an extremely low signal-
to-noise ratio can corrupt the velocity estimation and cause a divergence.
The tracking is also prone to be diverged in far areas from the transmitter
and the receiver antenna, because UWB signals are highly attenuated by
distance.

To cope with the blind zone problem, we propose a low-complexity mod-
ified particle filter, to improve the velocity estimation. In particular, we
calculate the average velocity over a sliding window. Within each window,
we assign a weight to each estimated velocity according to its difference from
the average velocity calculated in the previous scan time. The higher the dif-
ference, the lower its contribution to the mean. We also propose to increase
the process noise standard deviation proportionally to this error to cover any
potential manoeuver. We show by numerical simulation that the proposed
algorithm provides high estimation accuracy even at low signal-to-noise ra-
tios in the presence of either static or dynamic clutter. Moreover, it can
track complicated manoeuvering target trajectories. A further advantage of
our algorithm is that the tracking filter does not require the measured target
positions as input. The detection and localization steps at every scan time
can be skipped for a single target tracking except for the first and second
scan times to initialize the track. As mentioned before, while particle filter-
ing has been accepted as the most suitable tracking filter in UWB radars
which are characterized by non-linearity and non-Gaussianity, its usage has
been avoided because of the illusion that its computational complexity is too
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high. In fact, particle filters are algorithmically able to be implemented real-
time [32]. Finally, we remark that the proposed algorithm based on particle
filtering can be implemented for real-time tracking.

The chapter is organized as follows. In Section 4.1, equations for particle
weights are derived. A tracking algorithm based on particle filtering with
the derived weights is explained in Section 4.2. In Section 4.3, a modified
tracking algorithm is presented to solve divergence problems caused by blind
zones. In Section 4.4, numerical results are illustrated and the performance
of our proposed particle algorithms is compared to that of Kalman filtering
in various scenarios. Conclusions are provided in Section 4.5.

4.1 Particle Weight Derivation

We start by considering a single pair of transmit and receive antennas. Let us
assume that rj(t) is the received signal at the j’th receiver, obtained by aver-
aging the Ns received waveforms corresponding to the Ns pulses transmitted
within a frame. In particle filtering the particles are taken on the target state
space [32]. We assume that the presence of target has already been detected
by the system. To simplify the derivation of particle weights we consider that
the received pulse from direct path and the clutter are removed completely.1

Therefore, the received waveform is2

rj(t) = ajp(t− τj) + nj(t). (4.1)

In the above equation, p(t) is the UWB reference pulse,3 τj is the delay of
the pulse scattered by the target and nj(t) is the additive white Gaussian
noise. Note that channel gain aj is a real positive or negative value and we
assume it to be constant over one frame.4

After sampling the received signal, we denote the vector of N samples for

each frame corresponding to the j’th receiver by rj =
[
rj1 · · · r

j
N

]T
, where:

rji = ajpi−kj + nj
i , i = 1, . . . , N (4.2)

1Nevertheless, the numerical results presented in Section 4.4 will account for non-ideal
clutter removal to assess the performance of the proposed algorithm in a realistic setup.

2Since we consider UWB signals, equivalent baseband notation is not adopted and all
signals are real.

3It is the transmitted pulse, but it may also include antenna and channel propagation
distortions.

4The radar cross section of the target depends highly on its orientation and charac-
teristics and also the frequency [39],[40]. However, considering complicated models makes
mathematical derivations more complicated and introduces additional computational com-
plexity.
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with kj = [τj/Ts], where [·] stands for rounding toward the closest integer
and Ts is the sampling period.

In Bayesian tracking, we need to know the likelihood p(r|x) for the re-
ceived vector r and each of the particles from state space x. The state space
x, as we define precisely later for each of our particle algorithms, may include
target position components with or without target velocity components. If
the target state space x is known, it means that we know the corresponding
delay τj of the target echo. According to (4.2), pi−kj , i = 1, . . . , N , is known
and we can estimate the amplitude aj by means of some estimation approach.
For now, assume that we already have the estimation âj for aj. From (4.2)
it can be seen that each rji is a Gaussian distributed random variable with
mean equal to âjpi−kj and variance equal to the received noise variance σ2,

that is, rji ∼ N (âjpi−kj , σ
2), i = 1, . . . , N . Given the statistical independence

of noise samples we have:

p(rj|x) ∝ exp

{
−
∑N

i=1(r
j
i − âjpi−kj)

2

2σ2

}
. (4.3)

Note that in the above equation, kj is a function of x. This dependency is
not explicitly shown for the sake of simplicity.

In this work, we adopt the maximum likelihood (ML) approach for esti-
mating the echo amplitude, i.e., we determine the aj which maximizes the
likelihood function p(rj|x, aj). After simple calculations, it turns out that
the ML estimation for aj is

âML
j =

∑N
i=1 r

j
i pi−kj∑N

i=1 p
2
i−kj

. (4.4)

By replacing (4.4) in (4.3) we have:

p(rj|x) ∝ exp

{(∑N
i=1 r

j
i pi−kj

)2
2σ2

∑N
i=1 p

2
i−kj

}
. (4.5)

We can see in the above equation that
∑N

i=1 r
j
i pi−kj is equal to kj’th sample

of the vector obtained by cross-correlating the received vector rj with the

reference pulse vector p =
[
p1 · · · pN

]T
. Let us denote this cross-correlated

received vector by zj =
[
zj1 · · · z

j
N

]T
. Moreover, the expression

∑N
i=1 p

2
i−kj

in
the above equation is in fact the energy of the reference pulse vector p, that
we denote by Ep. We obtain

p(rj|x) ∝ exp

{
(zjkj)

2

2σ2Ep

}
. (4.6)

23



We now generalize the likelihood p(r|x) to the multistatic case with a single
TX and NR RX antennas. Since the received vectors r1, r2, ..., rNR are
statistically independent, we have

p(r|x) , p(r1, r2, · · · , rNR |x) =
NR∏
j=1

p(rj|x)

∝
NR∏
j=1

exp

{
(zjkj)

2

2σ2Ep

}
= exp

{∑NR

j=1(z
j
kj
)2

2σ2Ep

}
.

(4.7)

The likelihood p(r|x) is used to calculate the particle weights during target
tracking. In this work, we consider SIR particle filtering [32] in which resam-
pling is done at each scan time. Therefore, the weight of particle i at the
n’th scan is only proportional to the likelihood p(r|xi

n) and not dependent
on its previous weight, where xi

n denotes the state of the i’th particle at the
n’th scan.

4.2 Tracking Algorithm

The flowchart of the proposed tracking algorithm is illustrated in Fig. 4.1.
At every scan time (frame time), a central node collects the received vectors
from all of the RX nodes and performs the tracking according to the following
algorithm.

Assume that we have Np particles. As shown in the figure, initial parti-
cles are taken from a normal distribution with mean equal to the estimated
initial state x̂0 and covariance matrix equal to the process noise covariance
matrix Q (defined later), that is xi

0 ∼ N (x̂0,Q). Then in the time update
step, particles are predicted according to the dynamic model assumed for
the target. In this work, we assume a straight-line constant-velocity motion
model for the target according to:

xn = Φxn−1 + νn−1 (4.8)

where xn is the target state at the n’th scan time. We assume that the state
is a 4× 1 vector containing the position and velocity components in x and y

directions, i.e., xn =
[
x vx y vy

]T
. In the above equation, Φ is the state

transition matrix related to the scan time duration (frame duration) TF by:

Φ =


1 TF 0 0
0 1 0 0
0 0 1 TF

0 0 0 1

. (4.9)
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Figure 4.1: Flowchart of the proposed tracking algorithm with particle fil-
tering.

Furthermore, νn is the process noise taken from a normal distribution with
zero mean and covariance matrix Q equal to

Q = σ2
a
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(4.10)

where σ2
a is the target acceleration noise variance [41].

Next, we need to calculate the likelihood function p(rn|xi
n) for each par-

ticle i. For this purpose, we first calculate the delay of target echo τ ij,n with
respect to each receive antenna j. This can be obtained by the sum of the
particle distances from the transmitter and the j’th receiver, dij,n, divided by

the speed of light c. Indicating with (xTX , yTX) and (xj
RX , y

j
RX) the coordi-

nates of the TX and j’th RX antenna, respectively, and with a(i) the i’th
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element of a generic vector a, we have:

τ ij,n = dij,n/c

=
(√

(xi
n(1)− xTX)2 + (xi

n(3)− yTX)2

+

√
(xi

n(1)− xj
RX)

2 + (xi
n(3)− yjRX)

2
)
/c.

(4.11)

Then according to this delay which is equivalent to the ki
j,n’th sample,

we compute the exponential function for the likelihood using (4.7). Next in
weight update step, we normalize this likelihood over all particles and assign
it to wi

n as the weight of particle i. In order to avoid degeneracy problem of
particle filters, systematic resampling is done at each scan time that replaces
low probability particles with high probability particles, keeping the number
of particles constant [32]. After the resampling step, all new particles will
have the same weights equal to 1/Np. Then, we calculate the estimated state
x̂n by the weighted sum of all particles. Finally, the outputs are saved in a
track file and the algorithm steps are repeated for the next scan of data.

4.3 Modified Tracking Algorithm

The previous tracking algorithm is a conventional SIR particle filtering in
which the weights are derived for UWB multistatic radar applications. Al-
though this approach is algorithmically straightforward, it suffers from the
problem of instability. The tracking process may diverge due to strongly
corrupted observations that persist for a period of time. This situation is
particularly critical for UWB multistatic radar applications in which we have
blind zones corresponding to each pair of TX and RX antennas.

It is well-known that particle filtering is powerful in blind zones due to the
nonlinearity in state estimation. However, if we let particle filter estimate the
velocity by extending the state space dimension and using the same weights
for both position and velocity particles, consecutive deteriorations in velocity
estimation cause moving the particles rapidly away from the true position
and may lead to losing the track. Therefore, around the blind zones where
the observations are poor for a considerable number of scan times, any strong
clutter residue, a target manoeuver or an extremely low signal-to-noise ratio
can corrupt the velocity estimation and cause a divergence. The tracking may
also diverge in distant areas from the TX antenna, because UWB signals are
highly attenuated by distance. Although this divergence occurs rarely and
most of the time the algorithm performs well, it is important to fix the issue
and make the algorithm more stable.
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In our modified algorithm, we use particle filtering in a more controllable
manner for estimating the velocity. As the dynamic model, we assume that
the target average velocity is constant during a sliding window over time.
Within each window, we give a weight to each estimated velocity according
to its difference from the average velocity calculated in the previous scan time.
The higher is the difference, the lower will be its contribution in calculating
the mean. At the same time, we increase the process noise standard deviation
proportional to this error to cover any potential manoeuver.

When the target is moving on a straight line and suddenly we observe that
it deviates from its straight trajectory, there are two possibilities: either the
target is still going on the straight line and we have corrupted observations
or the observations are correct and the target has a manoeuver. In order to
cover both possibilities, we assume the first hypothesis, that is the target is
still going on straight line and we have a wrong observation. So, we allow that
estimation less affects the average velocity. On the other hand, we increase
the process noise standard deviation to avoid losing the track if the second
hypothesis was true and the target had a manoeuver. Later, in Section 4.4,
we show that even without increasing the process noise standard deviation
according to errors, the algorithm is able to track extremely complicated
trajectories. However, we consider it as a part of our algorithm to add more
robustness and flexibility. In fact, our modified algorithm uses a particle filter
for estimating the velocity in which the particles are the estimated velocities
within the window.

We assume the following dynamic model for the target:

xn = xn−1 + ∆̄n−1 + νn−1. (4.12)

Here the state space is a 2×1 vector containing only the position components

in x and y directions, that is, xn =
[
x y

]T
. In the above equation, ∆̄n is

a vector containing the mean of the movements for scan time n calculated
independently for x and y directions, νn is the process noise vector wherein
each component is taken from a normal distribution with zero mean and
standard deviation equal to the corresponding element of the vector σn.
Again note that in this chapter, we denote the i’th element of a generic
vector a by a(i).

At each scan time, after estimating the position, we calculate the esti-
mated movement as

∆̂n = x̂n − x̂n−1. (4.13)

If we denote the window size (as number of scan times) by ω, then the
mean of the movements ∆̄n defined by the expectation of ∆n = xn − xn−1
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conditioned on the previous movement means in the current window,

∆̄n , E{∆n|∆̄n−1, ∆̄n−2, · · · , ∆̄n−ω} , (4.14)

can be calculated similar to estimated state in a particle filter with ω particles
equal to ∆̂n, ∆̂n−1, ..., ∆̂n−ω+1 and the observations ∆̄n−1, ∆̄n−2, ..., ∆̄n−ω.
If we denote the weight of the particles by ∆wn, ∆wn−1, ..., ∆wn−ω+1, the
resulting equation will be:

∆̄n(j) ≈
n∑

m=n−ω+1

∆wm(j)∆̂m(j), j = 1, 2 (4.15)

where

∆wn ∝ exp

{
− ∆e2n(j)

2σ2
n−1(j)

}
, j = 1, 2. (4.16)

Here, ∆en is the error vector defined as ∆en , ∆̂n − ∆̄n−1.
Now, we add more robustness to our algorithm for tracking high ma-

noeuvering targets. For this purpose, assume that the target is moving on
a straight line, then we observe that it deviates at scan time n. Therefore,
according to (4.16) the estimated movement at scan time n will have a low
weight in calculation of ∆̄n. Hence, ∆̄n is approximately equal to ∆̄n−1.
However, if the observed deviation at scan time n is caused by a target
manoeuver, then the target movement at the next scan time will be approx-
imately equal to its newly adopted movement ∆̂n. Therefore, we have to
increase the process noise standard deviation vector by ∆̂n − ∆̄n−1 = ∆en
to avoid losing the track at scan time n + 1. In practice, an increment by a
fraction of the error is sufficient according to manoeuvrability of the target.
Let’s denote this coefficient by α. So, the process noise standard deviation
vector at scan time n is calculated by:

σn = min
{
σmax, σp + α|∆en|

}
(4.17)

where σp is the process noise standard deviation in each dimension for a
non-manoeuvering target and σmax is the maximum allowable process noise
standard deviation in each direction to avoid that σn increases too much by
large errors.

The flowchart of the modified algorithm is depicted in Fig. 4.2. Pseudo-
code descriptions for Initialize and Calculate Movement Mean and Process
Noise Standard Deviation blocks are given by Algorithms 4 and 5, respectvely.
The blocks that are not described are the same as Fig. 4.1. For initializa-
tion, we assume that target positions at the first and second scan times are
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Figure 4.2: Flowchart of the modified tracking algorithm.

known by detection. Since we consider the initial particles as samples from
a Gaussian distribution around the target position in the second scan time,
having errors in detection can not affect the performance too much.

Since in the modified algorithm we have removed the velocities from the
state space, the algorithm complexity reduces much more than what it is
added by simple required calculations for the movement means.

Algorithm 4 Initialize

1: ∆̂1 = x̂1 − x̂0

2: ∆̄1 = ∆̂1

3: ∆e1 =

[
0
0

]
4: ∆w1 =

[
1
1

]
5: σ1 =

[
σp

σp

]
6: xi

1 ∼
[
N (x̂1(1), σ

2
p)

N (x̂1(2), σ
2
p)

]
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Algorithm 5 Calculate Movement Mean and Process Noise Standard Devi-
ation

1: ∆̂n = x̂n − x̂n−1

2: ∆en = ∆̂n − ∆̄n−1

3: ∆w̃n =

exp
{
− ∆e2n(1)

2σ2
n−1(1)

}
exp

{
− ∆e2n(2)

2σ2
n−1(2)

}


4: if n < ω then
5: for m = 1 → n do

6: ∆wm =

[
∆w̃m(1)/

∑n
ḿ=1∆w̃ḿ(1)

∆w̃m(2)/
∑n

ḿ=1∆w̃ḿ(2)

]
7: end for

8: ∆̄n =

[∑n
m=1∆wm(1)∆̂m(1)∑n
m=1∆wm(2)∆̂m(2)

]
9: else
10: for m = n− ω + 1 → n do

11: ∆wm =

[
∆w̃m(1)/

∑n
ḿ=n−ω+1∆w̃ḿ(1)

∆w̃m(2)/
∑n

ḿ=n−ω+1∆w̃ḿ(2)

]
12: end for

13: ∆̄n =

[∑n
m=n−ω+1∆wm(1)∆̂m(1)∑n
m=n−ω+1∆wm(2)∆̂m(2)

]
14: end if
15: σn = min

{
σmax, σp + α|∆en|

}
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4.4 Simulation Results

A square surveillance area of 100× 100 meters is watched by a UWB radar
sensor network composed of one transmitter and three receivers. Each TX
and RX antenna is located at the middle of a square side. The origin of our
assumed coordinate system is the lower left corner of the square. Therefore,
the TX node is located at position (0, 50), while the other 3 RX nodes are at
positions (50, 0), (100, 50), and (50, 100), respectively. Later, we will consider
an example with more RX antennas.

The TX node emits Gaussian monocycles with duration parameter 1.4 ns
and whose power spectral density is assumed to exceed the federal commu-
nications commission (FCC) mask by 10 dB. The number of pulses in each
frame is Ns = 134000 and the frame duration is TF = 68.3ms, resulting in
a pulse interval TIP = 510 ns. The sampling frequency is 1.5GHz. For each
RX node, the receiver noise figure and the antenna temperature are F = 6dB
and Ta = 290K, respectively. These settings result in a transmitted signal
power of −32.5 dBW and a received noise power −86.2 dBW.

We consider a number of 100 pointwise objects to be present in the surveil-
lance area as clutters. The clutters are distributed uniformly over the whole
area. First, we consider static clutters with the same radar-cross-sections
as that of the target. Later, we will consider moving clutters with differ-
ent radar-cross-sections, drawn according to a Chi-squared distribution with
two degrees of freedom (Swerling type I). Each RX node is assumed to imple-
ment a frame-to-frame clutter removal technique based on an infinite impulse
response (IIR) filter. In particular, we have considered a high-pass first-order
filter with transfer function H(z) = (1−z−1)/(1−0.9z−1) (hence with a pole
equal to 0.9) which operates at a sampling frequency 1/TF = 14.6Hz.

A single target with a radar-cross-section of 1m2 is assumed to be present
inside the area. The target is moving on a straight line starting from the
origin of our coordinate system and with a constant velocity of 10 km/h,
representing the speed of a human being walking quickly. Later, we will
consider a more complicated trajectory.

At each RX antenna, the received signal is constructed as the superposi-
tion of the direct path, clutter echoes, and ground reflection in addition to
the target echo and the noise. The echo amplitudes have been simulated ac-
cording to

√
GtGrλ2

0/((4π)
2l2) for the LOS path and

√
GtGrλ2

0σo/((4π)3l2r l
2
t )

for any object including the target [10], where Gt and Gr are the TX and
RX antenna gains, respectively, which are both equal to 0 dB for our om-
nidirectional antennas and λ0 is the wave length which has been calculated
based on the center frequency 4.5GHz. Moreover, l is the TX–RX distance,
while lt and lr are the distances of the object from TX and from that RX,
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respectively. Finally, σo is the radar-cross-section of the object.
In our numerical results, the system performance is measured in terms

of both the cumulative distribution function (CDF) and root mean square
(RMS) errors over 50 simulation runs, each with different noise and clutter
realizations. For generating the RMS plot, we average the vector of estima-
tion errors at all scan times over all simulation runs. For the CDF plot, we
concatenate the estimation error vectors of all simulation runs and then we
calculate the CDF for the resulting vector. Moreover, an example of a single
simulation run showing the true and estimated target trajectories, antenna
and clutter positions inside the area is shown for each scenario.

For each scenario, we evaluate the performance of the particle algorithms
described in Fig. 4.1 and Fig. 4.2. The performance of conventional Kalman
filtering is shown for comparison. Tracking by Kalman filter requires the
measured target positions as inputs. We have adopted the pixel-based ap-
proach used in [36] to estimate these values. For all tracking techniques, the
corresponding parameters have been set to the values maximizing the per-
formance. For the first particle algorithm σa has been set to 8m/s2. For the
modified particle algorithm we have set the window size to 20. Also, α has
been set to zero for all scenarios to show that even without increasing the
process noise standard deviation according to errors, the algorithm performs
well with both linear and complicated trajectories. Thus, the process noise
standard deviation is always equal to σp in both x and y directions; we have
chosen σp in a range between 0.04m to 0.3m based on the scenario. Note that
in our simulations, we have considered a constant velocity (in amplitude) for
the target over the whole trajectory. The role of α is more important for
higher manoeuvers, for example when the target not only changes its di-
rection but also introduces an acceleration. We have not considered such a
scenario because of our particular surveillance application.

Since the complexity of particle filtering increases with the number of
particles, this value should be selected carefully. In Fig. 4.3, we have eval-
uated the effect of the number of particles on the tracking performance of
both particle algorithms in terms of CDF error. The assumed trajectory is
a straight line with slope 50◦. We can see from the figure that above a cer-
tain number of particles, the system accuracy improves very slowly. Thus,
we set the number of particles equal to 200 for all our simulations, reaching
a satisfying tradeoff between estimation accuracy and complexity. Further-
more, we can see that decreasing the number of particles has a lower impact
on the performance of the modified particle algorithm compared to the first
algorithm. In general, this would allow to use an even smaller number of par-
ticles, significantly reducing the computational complexity. However, we set
this number to be 200 for both particle algorithms for comparison purposes.
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To evaluate the algorithms behavior over the area, we have simulated a
straight line target trajectory with slope 50◦, passing through different blind
zones. Fig. 4.4 shows the corresponding results. In the subfigures repre-
senting the surveillance area, the triangle indicate the TX and the three RX
antennas are represented by squares. The gray ellipses represent the blind
zones. The small circles over the area represent the static clutters and the
three large circles in the middle of three LOS lines show the ground reflec-
tion points. It can be seen from the figures that the system performance
improves considerably when using particle filtering compared to Kalman fil-
tering, particularly around the blind zones. As we can see from the figures,
in these scenarios the performance of the modified particle algorithm slightly
improves compared to the first particle algorithm.

One of the advantages of particle filtering is in tracking targets with highly
nonlinear trajectories. In Fig. 4.5 we have considered the case of a complex
target trajectory. The target is moving on the curve with constant velocity
10 km/h. In this trajectory, we have included various shapes such as wave-
like curves, circle-like curves, small and sharp closed curves, straight lines,
as well as sudden direction changes with various angles between 0◦ and 180◦

(in which the target suddenly reverses its direction). It can be seen from the
figure that the modified particle algorithm can track all maneuvers with high
precision while Kalman filtering exhibits large estimation errors. Although
the first particle algorithm can track the curve with a good precision for most
of the simulation runs (in this regard the example reported in Fig. 4.5(a) is
meaningful), there are a few realizations for which the tracking diverges. This
behavior can be seen from the algorithm CDF error plot.

So far, the simulation results were for scenarios with static clutters having
the same radar-cross-section as the target. Next, we consider dynamic clut-
ters. Clutters are assumed to move with random velocities whose amplitudes
and phases are drawn from uniform distributions over the ranges [0, 1 km/h]
and [0, 2π], respectively. The radar-cross-section of the clutters are drawn
from a Chi-squared distribution with two degrees of freedom (Swerling type
I) at the beginning of a simulation and kept constant during that simulation.
The echoes due to slowly moving clutters (low frequency components) are
attenuated according to the filter frequency response. In contrast, the echo
from the target, which is moving with a higher velocity, remains almost unaf-
fected. Fig. 4.6 shows the corresponding plots. In this figure, the size of the
circles is proportional to the clutter radar-cross-sections. The slow random
movements of the clutters have also been represented in the figure through
small clouds over the area. We note that Kalman filtering frequently fails,
while the first particle algorithm performs well most of the times. However,
as it can be seen from its corresponding CDF error plot, in a few simulations
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the algorithm diverges, mainly around the blind zones due to strong clutter
residues. Note that for all algorithms we have used a simple IIR filter as the
clutter removal technique.

A more complex processing can further reduce the amount of clutter
residues and hence the number of divergences. In the modified particle al-
gorithm, for dynamic clutters we have considered a directional process noise
standard deviation in the direction of the estimated movement mean accord-
ing to

σn = σp

[ |∆̄n(1)|√
∆̄2

n(1) + ∆̄2
n(2)

,
|∆̄n(2)|√

∆̄2
n(1) + ∆̄2

n(2)

]T
. (4.18)

This approach reduces the amount of clutter residues affecting the perfor-
mance compared to the case in which the process noise standard deviation is
equal to σp in both x and y directions. With this replacement, the modified
particle algorithm always performs well in the moving clutters even with a
simple IIR filtering as the clutter removal technique.

Increasing the number of RX antennas provides more observations. Hence,
it can help improve the tracking performance specially around the blind
zones. To see that, we have considered six RX antennas located at positions
(33, 0), (66, 0), (100, 33), (100, 66), (33, 100) and (66, 100), respectively. The
assumed target trajectory is similar to the one in Fig. 4.5 and the clutters
are static. The time settings have been changed slightly to TIP = 575 ns
and TF = 77ms to include all possible echoes within a pulse interval. This
scenario has been shown in Fig. 4.7. As we can see, the performance of both
particle algorithms improves greatly with the number of receivers so that no
divergence occurs even for the first particle algorithm.

In all of the above scenarios, it is assumed that the transmitted power
spectral density exceeds the FCC mask by 10 dB. In order to see the algo-
rithms behavior in low signal-to-noise ratios, we have also considered a lower
transmitted power spectral density fitting the FCC mask, that is, a transmit-
ted signal power of −42.5 dBW, the received noise power being unchanged.
Fig. 4.8 shows the results with static clutters. We see that Kalman filter-
ing always fails while both particle filters still perform well. The modified
particle algorithm slightly outperforms the first particle algorithm for this
scenario.

As it can be seen from the simulation results, the modified algorithm not
only avoids track divergence in all scenarios, but also improves the estima-
tion precision compared to the first particle algorithm. Another advantage of
the modified particle algorithm is its high flexibility. Knowing some charac-
teristics of the target can help improve the tracking performance even more
by changing the parameter settings. For example, increasing the window
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size improves the tracking performance for linear trajectories while decreas-
ing it improves the manoeuvering ones. Similarly, increasing α improves the
tracking performance for manoeuvering trajectories while decreasing it im-
prove the linear ones. All above advantages are achieved while the algorithm
complexity is reduced significantly.

As a final observation, we have measured the average simulation elapsed
time for each data scan while the program was running on an Intel Core
i5 CPU at 2.53GHz with 4GB RAM. For the first particle algorithm the
result has been measured to be about 55ms while for the modified particle
algorithm it has been about 45ms. Both amounts are less than the considered
scan time duration (frame duration) which has been set to 68.3ms. Thus,
the real-time implementation feasibility is guaranteed.

4.5 Conclusion

In this chapter, we proposed a tracking algorithm based on particle filter-
ing for UWB multistatic radars. The particle weights were derived for one
transmitter and multiple receivers, assuming a single target scenario. Then,
a modified version of the algorithm was presented to solve some tracking
problems, mainly caused by blind zones.

We illustrated by numerical results that the proposed algorithm can pro-
vide a high estimation accuracy, even at low signal-to-noise ratios, in the
presence of either static or dynamic clutter. Moreover, the proposed algo-
rithm is able to track even complicated manoeuvring target trajectories. The
calculated computational time showed that the real-time implementation of
the proposed tracking algorithm is feasible.

35



0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

position error [m]

C
D

F
 e

rr
o

r

 

 

30

50

100

200

500

(a)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

position error [m]

C
D

F
 e

rr
o

r

 

 

30

50

100

200

500

(b)

Figure 4.3: The effect of number of particles on the tracking performance
for static clutter and a straight line trajectory. (a): Particle algorithm. (b):
Modified particle algorithm.
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Figure 4.4: Performance comparison of the particle algorithms vs. Kalman
filter for static clutter and a straight line trajectory. (a): An example of
surveillance area for particle algorithm. (b): An example of surveillance area
for modified particle algorithm. (c): An example of surveillance area for
Kalman filter. (d): CDF error plots. (e): RMS error plots.
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Figure 4.5: Performance comparison of the particle algorithms vs. Kalman
filter for a static clutter and a maneuvering target. (a): An example of
surveillance area for particle algorithm. (b): An example of surveillance area
for modified particle algorithm. (c): An example of surveillance area for
Kalman filter. (d): CDF error plots.
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Figure 4.6: Performance comparison of the particle algorithms vs. Kalman
filter for dynamic clutter and a straight line trajectory. (a): An example
of surveillance area for particle algorithm. (b): An example of surveillance
area for modified particle algorithm. (c): An example of surveillance area
for Kalman filter. (d): CDF error plots.
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Figure 4.7: Performance comparison of the particle algorithms for static
clutter and a complicated trajectory with 6 RX antennas. (a): An example
of surveillance area for particle algorithm. (b): An example of surveillance
area for modified particle algorithm. (c): CDF error plots. (d): RMS error
plots.
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Figure 4.8: Performance comparison of the particle algorithms vs. Kalman
filter for static clutter and a straight line trajectory with the power spectral
density fitting the FCC mask. (a): An example of surveillance area for
particle algorithm. (b): An example of surveillance area for modified particle
algorithm. (c): An example of surveillance area for Kalman filter. (d): CDF
error plots. (e): RMS error plots.
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Chapter 5

Single Target Tracking with
Grid-Based Filter for UWB
Multistatic Radars

A good candidate for UWB-based radar systems is the non-linear Bayesian
filtering [42]. There are many types of filters that fall in the category of
general Bayesian filtering. However, the most widely used ones are the grid-
based approach [42] and particle filtering [32].

In this chapter, we compare particle filtering with the grid-based Bayesian
approach through numerical results and we show how consideration of only
a subset of space in particle filtering and, on the other hand, discretization
of the space in the grid-based Bayesian approach can affect the tracking
performance [42]. Finally, we compare both approaches in terms of algorithm
complexity.

The chapter is organized as follows. A grid-based Bayesian approach for
a UWB multistatic radar system is explained in Section 5.1. In Section 5.2,
numerical results are illustrated and the performance of the two tracking
algorithms is compared for a manoeuvering target trajectory. Concluding
remarks are provided in Section 5.3.

5.1 Grid-based Bayesian Tracking

Following the approach originally described in [36, 42], in this section we
propose a grid-based Bayesian technique suitable for target tracking in UWB
multistatic radars. In this approach, the surveillance area is divided into pix-
els. For each TX-RX pair, each pixel is associated with a specific time delay
of the target-scattered pulse with respect to the direct path pulse, assuming
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a target is present in that pixel. Therefore, after detecting the target within
the surveillance area, estimating its position becomes a decision problem,
in which we have to identify the point of the grid that, most probably, is
occupied by the target.

In grid-based Bayesian tracking, we assume the dynamic model{
Xn = Xn−1 +Vn−1TF +AnT

2
F/2

Vn = Vn−1 +AnTF

(5.1)

where Xn and Vn represent the random target position and velocity vectors
at the n’th scan time, respectively, and An is a random acceleration vector,
having i.i.d. Gaussian components with zero mean and variance σ2

A/2 per
dimension.

According to estimation theory, the optimum decision rule, in the sense of
maximizing the probability of correctly locating the target at the n’th scan
time, estimates the position of the target as the value x̂n maximizing the
a-posteriori metric

x̂n = arg max
xn∈X

p(xn|r1:n) = arg max
xn∈X

ln p(xn|r1:n), (5.2)

where X is a predefined set of grid points and r1:n = [r1 . . . rn]. Equivalently,
we can maximize the normalized version of the a-posteriori metric

Λn(xn) = ln
p(xn|r1:n)p(r1:n)

p(r1:n|H0)
, (5.3)

where p(r1:n|H0) is the p.d.f. of the observables when there is no target in
the area (H0). Based on the statistical model assumed for the observations,
by successively applying the Bayes’ rule, we obtain

Λn(xn) = ln
p(rn|xn)

p(rn|H0)
+ ln

p(xn|r1:n−1)p(r1:n−1)

p(r1:n−1|H0)

= ΛL(xn) + ΛA
n (xn), (5.4)

where the log-likelihood ratio ΛL(xn) and the logarithm of the normalized
a-priori probability ΛA

n (xn) have been evidenced.1

For the likelihood term, since the waveforms at the receivers are condi-
tionally independent, we can write

ΛL(xn) =

NR∑
j=1

ln
p(rjn|xn)

p(rjn|H0)
=

NR∑
j=1

ΛL
j (xn). (5.5)

1We notice that the term ΛL(·) does not depend on index n, as we have assumed
likelihood functions invariant with time.
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This approach allows to separate the computation of ΛL(xn) in two steps. In
the first step, each RX node calculates the partial metric ΛL

j (xn), while, in
the second step, these terms are properly combined at the fusion center to
obtain the soft area image constituting the input for the decision process or
the tracking filter. In the next subsection, the metric to be used in (5.5) is
briefly discussed. In Section 5.1.2 a tracking technique used to calculate the
a-priori term ΛA

n (xn) based on Bayesian filtering is described.

5.1.1 Likelihood Ratio Metric

We consider a simple model where the target-scattered pulse, after the filter-
ing stages, is equal to a local template at the receivers, with an unpredictable
sign2 and with different amplitudes at different RX nodes. In fact, for a given
target position, the echoes received by the NR RX nodes experience different
path lengths, and therefore are characterized by a different energy. Consider
now a generic pixel. Under the hypothesis that there is no target in the
whole area (H0) the RX node receives only the thermal noise, while under
the hypothesis “target present in x” it receives both the scattered pulse (that
is assumed to be an attenuated and delayed version of the reference pulse
with an unpredictable sign) and thermal noise.

Thus, with reference to a generic pixel, the signal received by the jth RX
node can be written as ri,j = ni,j under H0 and as ri,j = ±Ajpi−τj + ni,j

if the target is present in the pixel, for i ∈ {1, . . . , N}. Here, we have
indicated with ni,j the noise samples, with pi the reference pulse samples,
with Aj = Aj(xn) > 0 the amplitude of the scattered pulse received by the
jth RX node, and with τj = τj(xn) the delay, in samples, associated with the
pixel in position xn (related to its distance from the TX and the jth RX).

According to [36], assuming no information on the sign of the echo pulse
is available, it is possible to express the log-likelihood map as:

NR∑
j=1

ΛL
j (xn) =

NR∑
j=1

ln cosh

(
Aj

σ2

N∑
i=1

rijpi−τj

)
− Ep

2σ2

NR∑
j=1

A2
j (5.6)

where σ2 is the variance of the thermal noise terms ni,j and Ep =
∑

i p
2
i .

As it can be noted from (5.6), the internal sums represent correlation
terms which can be computed separately by each RX node, while their non-
linear combination is performed at the central node (see Fig. 2.1). Each
correlation term concurring to form the decision metric is weighted on the
amplitude of the corresponding scattered pulse received under the hypothesis

2Note that a sign change may be due, for example, to the target scattering.
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of target present in the pixel. If reliable estimates of the amplitude of the
target-scattered pulse are not available at the RX node, a sub-optimum test
can be used, assuming Aj = A for all j ∈ {1, . . . , NR}.

5.1.2 Bayesian tracking

The soft image of the area given by the values ΛL(xn) is used as input
by the tracking filter that processes it to provide Λn(xn) in (5.3). To this
purpose, the a-priori term ΛA

n (xn) in (5.4) is calculated iteratively, based on
the previous values Λn−1(xn−1). In fact, we have

p(xn|r1:n−1)p(r1:n−1)

p(r1:n−1|H0)

=
∑

xn−1∈X

∑
vn−1∈V

p(xn,xn−1,vn−1|r1:n−1)p(r1:n−1)

p(r1:n−1|H0)

=
∑

xn−1∈X

∑
vn−1∈V

p(xn|xn−1,vn−1)p(vn−1|xn−1, r1:n−1)

× p(xn−1|r1:n−1)p(r1:n−1)

p(r1:n−1|H0)︸ ︷︷ ︸
=exp(Λn−1(xn−1))

(5.7)

where V is a finite set of predefined velocities and, based on (5.1), we have
exploited the fact that Xn is conditionally independent of R1:n−1, namely
p(xn|xn−1,vn−1, r1:n−1) = p(xn|xn−1,vn−1). The distribution p(xn|xn−1,vn−1)
is jointly Gaussian, with mean xn−1+vn−1 ·TF and variance σ2

A ·T 4
F/8 (on each

component). Thus, we note from (5.7) that ΛA
n (xn) can be directly calculated

if we are able to estimate the conditional distribution p(vn−1|xn−1, r1:n−1). In
this work, also the a-posteriori distribution of the velocity vector is evaluated
only in correspondence of the points of a predefined “grid” V and its values
are estimated through Bayesian filtering.

In order to reduce the complexity of our estimation technique, we make
the further assumption that the random variables Xn and Vn are condition-
ally indipendent, i.e.,

p(vn,xn|r1:n) = p(xn|r1:n)p(vn|r1:n). (5.8)

Under this hypothesis, the a-posteriori p.d.f. of the target velocity to be used
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in (5.7) can be calculated iteratively, as

p(vn|xn, r1:n) = p(vn|r1:n)
(a)
=

1

p(rn|r1:n−1)

∑
xn−1∈X

∑
vn−1∈V

p(rn|vn,vn−1,xn−1)

× p(xn−1|r1:n−1)p(vn|vn−1)p(vn−1|r1:n−1)

(b)
= K

∑
xn−1∈X

∑
vn−1∈V

p(rn|vn,vn−1,xn−1)

× eΛn−1(xn−1)p(vn|vn−1)p(vn−1|r1:n−1) (5.9)

where: in equality (a) we have exploited the fact that p(rn|vn,vn−1,xn−1, r1:n−1) =
p(rn|vn,vn−1,xn−1) due to the statistical independence of the observations,
p(xn−1|vn,vn−1, r1:n−1) = p(xn−1|r1:n−1) due to the assumption (5.8) and,
finally, p(vn|vn−1, r1:n−1) = p(vn|vn−1); while in equality (b) we have intro-
duced the multiplicative factor K = p(r1:n−1|H0)/p(r1:n) and evidenced the
term Λn−1(xn−1), which was computed in the previous scan time. In par-
ticular, the distribution p(vn|vn−1) is jointly Gaussian, with mean vn−1 and
variance σ2

AT
2
F/2 for each statistically independent component. Moreover,

we have

p(rn|vn,vn−1,xn−1) = p(rn|H0)e
ΛL

(
xn−1+

TF
2

(vn+vn−1)
)
.

As a final remark, we notice that the constant factor K in (5.9) may be
neglected as it does not influence the maximization of Λn(xn) for the target
position estimation.

5.2 Simulation Results

A square surveillance area of 100× 100 meters is watched by a UWB multi-
static radar composed of one transmitter and three receivers. Each TX and
RX antenna is located at the middle of a square side (see Fig. 2.1). The
origin of our assumed coordinate system is the lower left corner of the square.
Therefore, the TX node is located at position (0, 50), while the other 3 RX
nodes are at positions (50, 0), (100, 50) and (50, 100), respectively.

The TX node emits Gaussian monocycles with duration parameter 1.4 ns
and whose power spectral density is assumed to exceed the FCC mask by
10 dB.3 The number of pulses in each frame is Ns = 134000, the frame

3This exceeding has been chosen in order to cover the large area assumed. The possibil-
ity to exceed the FCC mask even by 20 dB is under consideration in the EU for emergency
applications.
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duration is TF = 68.3ms, and the sampling frequency is 1.5GHz. For each
RX node, the receiver noise figure and the antenna temperature are F = 6dB
and Ta = 290K, respectively.

We consider a number of 100 pointwise objects, representing the clutter,
to be uniformly distributed over the whole surveillance area. We consider
static clutters with the same radar-cross-section as that of the target, set
to 1m2. Each RX node is assumed to implement a frame-to-frame clutter
removal technique based on first order IIR filter with one pole equal to 0.9.

A single target is assumed to be present inside the area. The target is
moving on a curve with a velocity changing from 5 km/h to 20 km/h in the
amplitude. The changes are in such a manner that the velocity in x direction
remains constant in the amplitude and the velocity in y direction changes
according to the adopted trajectory. The scenario and the trajectory are
shown in Fig. 5.1.

At each RX antenna, the received vector is constructed as the superpo-
sition of the direct path, clutter echoes, and ground reflection in addition to
the target echo and the received noise.

Unlike the grid-based Bayesian approach, in particle filtering we do not
verify the whole area for the presence of target. The subspace considered
for verification is selected only based on the assumed dynamic model for the
target motion. In order to see how our assumed dynamic model for particle
algorithm performs for a non matching true trajectory, we have considered
such a complicated scenario.

We have used the the particle algorithm described in Section 4.3. For this
algorithm, we have set the window size set to 20 and the number of particles
to 200. In Chapter 4, we have evaluated the effect of the number of particles
on the tracking performance of particle filtering and we have discussed how
these values provide a satisfying tradeoff between estimation accuracy and
complexity. For the grid-based Bayesian approach, the area is divided into
20cm × 20cm square pixels.

In Fig. 5.1(a) and (b), an example of a single simulation run showing the
true and estimated target trajectories, antenna and clutter positions inside
the area are shown. In the same figure, the performance of particle filter
tracking and grid-based Bayesian tracking are compared in terms of both
CDF and RMS error over 10 simulation runs, each with different noise and
clutter realizations.

From Fig. 5.1(c) we can see that, as expected, Bayesian tracking out-
performs particle filtering, except at the beginning of the tracking process.
The reason of this behaviour is that for initializing the particle algorithm,
the target positions at the first and second scan are assumed to be perfectly
known while the Bayesian approach makes this assumption only for the first
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scan time. This means that with the particle solution we assumed a perfect
knowledge of both the initial target position and velocity, while in the grid-
based Bayesian approach only the initial position is given and the velocity is
only estimated.

Anyway, discretizing the area affects the optimality of the Bayesian ap-
proach. In fact, in Fig. 5.1(d) the effect of discretization results in a less
smoothed RMS error curve of grid-based Bayesian tracking with respect to
particle filter tracking. This is because in the grid-based Bayesian approach,
the position accuracy is limited to the pixel size. Such behavior is confirmed
by Fig. 5.1(c) where the CDF of position error for the particle filter tracking
is lower than that of the Bayesian tracking for small position errors.

Another important observation is that particle filtering performs better
than Bayesian approach for parts of the trajectory that better match the
assumed dynamic model. For instance, in the final part of the trajectory
the target moves on a straight line with constant velocity which perfectly
matches the dynamic model. In this part, the RMS error is lower compared to
Bayesian approach. However, the particle algorithm has a worse performance
around blind zones where the observations are corrupted for a considerable
number of scan times. This leads to prediction of particles in wrong positions
and hence introduces errors as can be seen in Fig. 5.1(d) in the scan interval
400−550. On the contrary, the grid-based Bayesian approach has full control
over the area and therefore can provide performance robust to blind zones.

As a final remark, we compared the complexity of the two approaches
based on the average simulation time for each scan while the program was
running on an Intel Core i5 CPU at 2.53GHz with 4GB RAM. For particle
filter tracking the time required to perform the task in each scan is about
45ms, while for grid-based Bayesian approach it is 34 s.

5.3 Conclusion

In this chapter, we introduced a grid-based Bayesian filter for tracking in
UWB multistatic radars. We then compared the performance of this ap-
proach with the particle filering described in Section 4.3 by simulations in a
realistic setting including noise, clutter and signal attenuation.

The numerical results showed that the grid-based tracking method out-
performs the particle filtering, especially in proximity of blind zones, at the
cost of a much higher computational complexity and memory requirements.
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(a) An example of surveillance area for
particle algorithm.
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grid-based Bayesian approach.
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(c) CDF error plots for particle and grid-
based Bayesian algorithms.
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Figure 5.1: Performance comparison of the particle algorithm vs. the grid-
based Bayesian approach.
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Chapter 6

Detection and Localization
Techniques for UWB
Multistatic Radars

In the last years, passive localization through multistatic UWB radars has
been the subject of several works such as [22, 24, 25, 26] and [43]. In most
of the works such as [10], [44] and [45], detection and localization are done
using constant false alarm rate (CFAR) thresholding and direct method (also
called tri-lateration), respectively. The target time of arrival (TOA) is esti-
mated first by CFAR detector at each receiver and then the target location
is calculated by finding the intersection of three ellipses corresponding to the
target TOAs with respect to three receivers. In [36], a pixel-based detec-
tion and localization technique is proposed in which the whole surveillance
area is divided into pixels and a soft metric related to the correlation of the
received signal and the reference pulse is calculated for each pixel at every
receiver. Then, a fusion node combines the soft images provided by all re-
ceivers. The pixel with the maximum combined metric determines the target
location. This approach suffers from high complexity in calculating the soft
metrics for every pixel. Moreover, in this work just a single target scenario
is addressed.

In this chapter, we propose a pixel-based localization technique using the
CFAR detector for multiple target cases. In this approach, the surveillance
area is divided into pixels in a similar manner as in [36]. However, instead of
calculating a soft metric for each pixel, the energy of the received sample at
each receiver corresponding to that pixel is calculated and then the CFAR
thresholding is performed. The final estimated position will be the pixel for
which most of the receivers have experienced a threshold exceeding.

We compare our proposed pixel-based localization approach with the con-
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ventional direct method of localization using the CFAR detector. Then, we
propose to add a simple processing after the CFAR detector and before either
of these localization approaches. This processing, which is based on a sim-
plified median filtering done on the previous and current samples around the
sample under verification, allows us to reduce the CFAR threshold to a very
low value and hence to heavily reduce the number of missed detections. The
performances of all above techniques are evaluated numerically in the case
of multiple targets accounting for the spatial configuration of the receivers,
propagation effects, presence of residual clutter, and noise.

This chapter is organized as follows. Section 6.1 explains the conventional
detection and localization techniques. In Section 6.2, our proposed CFAR de-
tection and pixel-based localization techniques are described. In Section 6.3,
the performances of all techniques are compared numerically. Concluding
remarks are provided in Section 6.4.

6.1 Traditional Detection and Localization Tech-

niques

The aim of the detection stage is to decide if any target is present in the
observed area, based on the received radar signals and to estimate the target
TOAs at each receiver. Then, at the localization stage, the potential target
positions are measured using estimated TOAs. Localization outputs are then
passed to the data association step which is responsible for associating the
measured positions to the target tracks.

6.1.1 CA-CFAR Detector

For the purpose of target detection by UWB radars, CFAR detectors have
been widely used because of the robustness of this method demonstrated in
experimental results (see, e.g., [46]). Besides conventional schemes, a number
of modifications of the CFAR detector have been proposed, depending on
the background noise and clutter models. Out of them, cell averaging CFAR
(CA-CFAR) remains the simplest and most common version [47].

Let us assume that rk,n is the n’th sample of the received signal at one of
theNR receivers, obtained by averaging theNs received signals corresponding
to the Ns pulses transmitted within k’th frame. Therefore, for each frame
time (scan time) k, we have a vector of N samples at any receiver which is
passed to the CFAR detector.

Fig. 6.1 shows the processing done in the CA-CFAR detector for every
sample rk,n at either of the UWB radar receivers. In CA-CFAR detector,
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Figure 6.1: CA-CFAR detector.

the threshold level is calculated by estimating the level of the noise floor
around the sample under test (rk,n). This can be found by taking a block
of Nref samples around rk,n and calculating the average noise power level
of these reference samples. To avoid corrupting this estimate with power
from the sample under test itself, Ng samples immediately adjacent to rk,n
are normally ignored and referred to as guard samples. In our case, we
have assumed a guard band equal to the transmitted pulse width. A target
is declared to be present in the rk,n, if its instantaneous power is greater
than the calculated local average power level which can be interpreted as
a threshold. So, the output of the detector, bk,n, is set to 1 if threshold is
exceeded, otherwise it is set to 0. The threshold can be increased by a scale
factor α depending on the scenario.

This thresholding often generates more than one TOA for each target
because of the UWB pulse width.1 In this work, close TOAs are grouped
together in clusters. Then, the middle time in each cluster is considered as
the detected TOA.

1Received pulse width can vary because of pulse distortions introduced by the channel
and clutter removal filter.
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6.1.2 Direct Method of Localization

Direct method of localization, also called tri-lateration, is the most conven-
tional approach for measuring target positions in UWB radar sensor net-
works based on the estimated TOAs [48]. Assume that the transmitter and
the j’th receiver are located at (xt, yt) and (xj, yj), respectively. The TOA
of the target at receiver j has been estimated before by the detector as τj.
The following equation holds assuming no detection errors:

τj =
1

c

(√
(x− xt)2 + (y − yt)2 +

√
(x− xj)2 + (y − yj)2

)
(6.1)

where c is the velocity of the electromagnetic wave propagation and (x, y)
are the unknown coordinates of the target. For each triplet of receivers out
of the NR receivers, a system of three simultaneous equations in the form
(6.1) is solved by least-squares calculation.

After doing direct calculation for all possible triplets of receivers and
considering all possible combinations of TOAs detected by the selected re-
ceivers, we have a number of target locations (true or false) measured by each
receiver combination. If a preset number of receiver combinations have gen-
erated solutions sufficiently close to each other, then those close solutions are
kept, while the others are discarded. In this way, the number of false targets
are considerably reduced. The final measured location will be obtained by
average of all these close solutions over corresponding receiver combinations.

6.2 Proposed Detection and Localization Tech-

niques

6.2.1 Proposed CA-CFAR Detector with Median Fil-
tering

Reducing the threshold in CFAR detectors reduces the number of missed
detections but on the other hand, it increases the false alarms. Our proposed
CFAR detector makes it possible to set a very low threshold which highly
reduces the number of missed detections, but still provides reasonable false
alarm rate.

Obviously when setting a very low threshold, CFAR detector generates
an intolerable number of false alarms. In the binary image showing the
propagation time versus scan time constructed for each receiver, the false
alarms appear as salt and pepper noises, a typical situation in which median
filters turn out to be useful. In conventional median filtering employed in

53



image processing, each pixel of the image is replaced by the median value
in the 3 × 3 neighborhood pixels around [49]. Since in radar processing we
have no knowledge of the upcoming pixels, they are not considered in our
median filter in order to allow real-time processing.2 That is, for the pixel
bk,n (the binary output of CFAR detector in Fig. 6.1), corresponding to scan
time k and propagation time n, only the 3× 2 neighborhood pixels bk−1,n−1,
bk−1,n, bk−1,n+1, bk,n−1, bk,n, bk,n+1 are considered for median filtering. These
neighborhood pixels are shown in Fig. 6.2. If the majority of these pixels
are equal to 1, then the pixel bk,n is set to 1, otherwise it is set to 0, that is:

bk,n =

{
1 if

∑k
i=k−1

∑n+1
j=n−1 bi,j > Tmed

0 otherwise.
(6.2)

where Tmed is a threshold chosen according to system parameters such as
UWB transmitted pulse width and target minimum velocity. Note that the
threshold Tmed = 3 in (6.2) provides acceptable performance for our UWB
radar settings in Section 6.3.

This simple image processing allows to considerably reduce the CFAR
threshold without being worried about the false alarms. Fig. 6.3 shows an
example of the binary image constructed by CFAR detector output before
and after the median filtering stage at one of the receivers as obtained in the
simulation scenario described in Section 6.3. We can see how setting a low
CFAR threshold generates very large number of false alarms and how the
median filtering is able to remove them. Note that because the transmitted
pulse in IR-UWB radars occupies more than one pixel, median filter is not
able to remove the target echoes, but only the false alarms.

6.2.2 Proposed Pixel-based Localization Technique

In the proposed pixel-based localization technique, the whole surveillance
area is divided into pixels.3 After performing CA-CFAR detection for every
sample at each receiver j, the TX-pixel-RX time delay, τj, for a given pixel
is calculated using (6.1), in which (x, y) is replaced by the coordinates of
that pixel. The corresponding sample in the received signal will be the [(τj −
τLOS)/Ts]’th sample, where τLOS is the LOS time delay, Ts is the sampling
time and [.] stands for nearest integer. Then, the output of CFAR detector
is seen at this sample to verify if a threshold exceeding has happened.

2However, buffering and making delayed decision can be also used for better robustness.
3Note that the definition of pixel here is different from that of used in Section 6.2.1 for

image processing.
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Figure 6.2: Neighborhood pixels for median filtering.

After doing the above processing for all pixels in the area, the final es-
timated positions will be the pixels for which most of the receivers have
experienced CFAR threshold exceeding.

The output at this step will be usually more than one estimated location
for each target. Clustering is required to assign close points to each other.
In this work, we cluster all points in groups of points based on their relative
distances. That is, a point falls into a cluster if its distance from the mean of
the points currently assigned to that cluster is lower than a predefined value.
The average positions of each cluster are considered as the final estimated
locations.

6.3 Simulation Results

In our numerical simulations, we consider a square surveillance area of 100×
100 meters is watched by a UWB radar sensor network composed of one
transmitter and six receivers located on the square sides. The origin of our
assumed coordinate system is the lower left corner of the square. There-
fore, the TX node is located at position (0, 50), while the other 6 RX nodes
are at positions (33, 0), (66, 0), (100, 33), (100, 66), (33, 100) and (66, 100),
respectively.

The TX node emits first derivative Gaussian monocycles with duration
parameter 1.4ns and whose power spectral density is assumed to exceed the
FCC mask by 10 dB.4 The center frequency is 4.5GHz and the transmitted

4This exceeding has been chosen to cover the large area assumed. The possibility to
exceed the FCC mask even by 20 dB is under consideration in the EU for emergency
applications.
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signal bandwidth (at −10dB w.r.t. the maximum) is 500MHz. The number
of pulses in each frame is Ns = 114000 and the frame duration is TF =
68.4ms. The sampling frequency is set to 1.5GHz. For each RX node, the
receiver noise figure and the antenna temperature are set to F = 6dB and
Ta = 290K, respectively. These settings result in a transmitted signal power
of −32.5 dBW and a received noise power −86.2 dBW.

We consider a number of 100 pointwise objects to be present in the surveil-
lance area as clutters. The clutters are distributed uniformly over the whole
surveillance area. We consider static clutters with 1m2 radar-cross-sections,
the same as the target. Each RX node implements a frame-to-frame clutter
removal technique based on a first-order high-pass IIR filter with one pole
equal to 0.9 operating at a sampling frequency 1/TF = 14.6Hz.

Three targets are assumed to be present inside the area. Each target
is moving on a straight line trajectory with a constant velocity of 10km/h,
representing the speed of a human being walking quickly. Note that since
detection and localization are performed scan by scan, independently, more
complicated trajectories do not affect the performance.

At each RX antenna, the received signal is constructed as the superpo-
sition of the direct path, clutter echoes, and ground reflection in addition
to the target echo and the noise. The channel gains have been simulated
according to

√
GtGrλ2

0/((4π)
2l2) for the LOS and

√
GtGrλ2

0σo/((4π)3l2r l
2
t )

for any object including the target [10], where Gt and Gr are the TX and
RX antenna gains, respectively, which are both equal to 0 dB for our omni-
directional antennas and λ0 is the wave length. Moreover, l is the TX–RX
distance, while lt and lr are the distances of the object from TX and from
that RX, respectively. Finally, σo is the radar-cross-section of the object.

This scenario is shown in Fig. 6.4. The triangle represents the trans-
mitter and the squares are RX antenna positions. The gray ellipses are the
blind zones corresponding to each pair of TX-RX antennas. The assumed
trajectory of the three targets are shown in the figure for a duration of 600
scan times. Their starting positions are shown with circles.

In the CA-CFAR detector, Ng = 20 guard samples (equal to the trans-
mitted pulse width) and Nref = 50 reference samples are considered. The
clustering distance is defined as 3m.

Fig. 6.5 plots missed detection probability versus false alarm probability
for proposed approaches compared to the conventional techniques. The axes
are both in logarithmic scale. The plots have been developed by changing
the value of CFAR detector scale factor α.

In order to calculate these probabilities, we consider a circular gate of
radius 5m around the target true position and we assign the nearest esti-
mated point to the target, if it falls in the gate. False alarms are defined
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as all the remaining non assigned estimated points. A target is missed if no
estimated point can be assigned to it. Then, the missed detection probability
is calculated as the ratio of the number of missed targets to the total number
of targets averaged over all scan times and all simulation runs with a given
CFAR threshold, whereas the false alarm probability is defined as the aver-
age of the number of false alarms over all scan times and all simulation runs
with that CFAR threshold. A total number of 50 simulation runs, each with
a different noise and clutter realization has been considered for generating
the plots.

The comparison shows that the pixel-based localization outperforms con-
ventional direct method of localization in a general view. The performance of
both localization techniques improves when employing median filter in CFAR
detector. This improvement is more evident for direct localization compared
to the pixel-based one. Altogether, the combination of pixel-based localiza-
tion with median filter seems to provide the best tradeoff for false alarm
probabilities higher than 10−1, whereas for lower values direct localization
with median filter is the preferable. Note that the performances shown in
Fig. 6.5 (as well as in the subsequent Fig. 6.6) are obtained without applying
any tracking algorithm as the focus of this work is on detection. It has been
observed that, if target tracking is employed, the performances in Fig. 6.5
and Fig. 6.6 improve substantially, as expected, the relative performance
between different schemes behaving in a similar way.

Fig. 6.6 shows the CDF localization error plots for all the above ap-
proaches. The CFAR detector scale factor for each technique has been chosen
so that the best tradeoff between the missed detection probability and false
alarm probability is achieved. Since the typical ranges of these probabilities
are values lower than 10−1 (the grey region in Fig. 6.5 ), the best tradeoff
is achieved almost at the points specified with bigger markers in Fig. 6.5.
These points correspond to the CFAR detector scale factor, α equal to 10.6
for direct localization, 6.3 for pixel-based localization, 3 for direct localization
with median filter and 3.5 for pixel-based localization with median filter. To
generate each CDF error curve, we concatenate the estimation error vectors
of all three targets over all simulation runs and then we calculate the CDF
for the resulting vector.

Again, it can be seen from Fig. 6.6 that the pixel-based localization
outperforms conventional direct method of localization. The localization
error of both techniques improves by employing median filterig. In particular,
the pixel-based localization with median filter seems to provide the lowest
positioning error among all.

According to the above results, the proposed pixel-based localization tech-
nique with median filter can be quite appropriate for surveillance applications
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of UWB multistatic radars in which the blind zones can hide the target for
a period of time long enough to lose the track.

6.4 Conclusion

In this chapter, we proposed a new CFAR detector based on a simplified
median filter and a pixel-based localization technique for UWB multistatic
radars. The performance of the proposed approaches was evaluated numer-
ically for multiple targets, accounting for the spatial configuration of the
receivers, propagation effects, the presence of residual clutter, and noise.

The numerical results showed that the proposed pixel-based localization
technique combined with median filtering provides a low positioning error
and a good tradeoff between false alarms and missed detections. Thus, it
can be a good choice for surveillance applications of UWB multistatic radars
with the blind zone problem.
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Figure 6.3: Binary image constructed by CFAR detector output.
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Chapter 7

Multiple Target Tracking with
Particle Filter for UWB
Multistatic Radars

In Chapter 4, we proposed an algorithm based on particle filtering for track-
ing a single target in a UWB multistatic radar. In Chapter 5, we compared
this particle filtering algorithm with the grid-based Bayesian approach. We
showed that the real-time implementation of particle filtering is feasible in
this context.

In this chapter, the particle algorithm in Chapter 4 is extended to the
challenging problem of multiple target tracking in UWB multistatic radars
with one transmitter and several receivers. Analytical discussions are first
provided for calculating particle weights based on observations from all of
the receivers. Then, these particle weights are used for estimating target
positions by the weighted sum of all particles. In a multiple target scenario,
clutter removal, detection, localization and data association have to be per-
formed before the tracking part by particle filtering. The clutter removal
step removes the contribution of unwanted objects to the received signals.
The detection step decides if any target is present in the area and estimates
the target TOAs. The localization step generates the position measurements
based on the estimated target TOAs. The data association step verifies these
position measurements for track assignment, initiation, confirmation or dele-
tion.

This chapter is organized as follows. In Section 7.1, particle weights are
derived considering a multiple target case. The tracking system structure
is described in Section 7.2. In Section 7.3, numerical results are illustrated
and the performance of the proposed particle filtering algorithm is compared
with the Kalman filter for a multiple target scenario. Concluding remarks
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are provided in Section 7.4.

7.1 Particle Weights Derivation

We start by considering a single pair of TX-RX antennas. Let us assume
that rj(t) is the received signal at the j’th receiver, obtained by averaging
the Ns received waveforms corresponding to the Ns pulses transmitted within
a frame [10]. After sampling the received signal, we denote the vector of L
samples for each frame corresponding to j’th receiver by rj = [rj1 · · · r

j
L]

T .
Assume that we have M targets, each with a state space xm = [xm ym]

T ,
m = 1, . . . ,M consisting of position components in x and y directions. We
extend this state space vector to a matrix containing all of the targets as:

X = [x1 · · · xM ] =

[
x1 · · · xM

y1 · · · yM

]
(7.1)

Assume that the channel delays and amplitudes corresponding to the targets
are kj

1, . . . , k
j
M and aj1, . . . , a

j
M , respectively. Note that channel gains are real

positive or negative values and we assume them to be constant over one
frame.

To simplify the derivation of particle weights we assume that the re-
ceived pulse from direct path and the clutters have been removed completely.1

Therefore:

rjl = aj1pl−kj1
+ · · ·+ ajMpl−kjM

+ nj
l , l = 1, . . . , L (7.2)

In the above equation, pl is the l’th sample of the UWB reference pulse,2 kj
m

is the sample delay of the pulse scattered by the m’th target and nj
l is the

l’th sample of the received additive white Gaussian noise.3

If we define the vector of channel amplitudes and target echo pulses as:

aj = [aj1 · · · ajM ]T (7.3)

pj
l = [pl−kj1

· · · pl−kjM
]T , l = 1, . . . , L (7.4)

Then (7.2) can be simply written as:

rjl = pj
l

T
aj + nj

l , l = 1, . . . , L (7.5)

1Anyway, numerical results account for non-ideal clutter removal to assess the perfor-
mance of the proposed algorithm in a realistic setup.

2It is the transmitted pulse, but it can also include antenna and channel propagation
distortions.

3Since we consider UWB signals, equivalent baseband notation is not adopted and all
signals are real.
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In particle filtering, the particles are taken on the target state space X [32].
Since we want to derive the weight of each particle, the channel delay cor-
responding to a given particle is known by the particle distances from TX
and RXs. For now, assume that we have already estimated the channel gain

vector aj. Therefore, pj
l

T
aj is known for a given particle. From (7.5) it can

be seen that each rjl is a Gaussian distributed random variable with mean

equal to pj
l

T
aj and variance equal to the received noise variance σ2, that is,

rjl ∼ N (pj
l

T
aj, σ2), l = 1, . . . , L. Given the statistical independence of noise

samples we have:

p(rj|X) ∝ exp

{
−
∑L

l=1(r
j
l − pj

l

T
aj)2

2σ2

}
. (7.6)

Note that in the above equation, pj
l is a function of X. This dependency is

not explicitly shown for the sake of simplicity.
In this work, we adopt the maximum likelihood (ML) approach for esti-

mating the channel amplitudes, i.e. we determine the aj which maximizes
the likelihood function p(rj|X,aj). After some computations, it turns out
that the ML estimation for aj should satisfy the following equation:

Pjaj =
L∑
l=1

rjlp
j
l (7.7)

where, the matrix Pj is defined by the cross correlation of target echo pulses
as:

Pj =
L∑
l=1

pj
lp

j
l

T
=


∑L

l=1 p
2
l−kj1

· · ·
∑L

l=1 pl−kjM
pl−kj1

...
. . .

...∑L
l=1 pl−kj1

pl−kjM
· · ·

∑L
l=1 p

2
l−kjM

 (7.8)

It can be seen that Pj is a square symmetric matrix. Using this property
and having (7.7), (7.6) simplifies to:

p(rj|X) ∝ exp

{
1

2σ2
(aj)TPjaj

}
. (7.9)

The set of linear equations in (7.7) yields a unique solution for aj, if Pj is an
invertible matrix. However, this may not be the case. For instance, consider
a situation where for a given frame time, all of the targets lie on the ellipses
corresponding to equal TOAs. Therefore, all of the target echo delays will
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be the same, resulting in equal rows of the matrix Pj. So, Pj will not be a
full rank matrix for that case and hence it is not invertible.

For a general Pj with rank r, we use QR factorization approach to find
a possible solution for (7.7) that better fits our UWB multistatic radar con-
figuration.

7.1.1 QR Factorization for Estimating Channel Am-
plitudes

We start with the full QR factorization of Pj with column permutations:

PjE = QR (7.10)

where, E is an M × M permutation matrix and Q and R are M × M
orthogonal and upper triangular matrices, respectively which can be written
as:

Q =
[
Q1 Q2

]
(7.11)

Q =

[
R1 R2

0(M−r)×r 0(M−r)×(M−r)

]
(7.12)

Here, the submatrices Q1 and Q2 have M × r and M × (M − r) dimensions,
respectively. Also, R1 is an r × r upper triangular with nonzero elements
along its main diagonal, and R2 has r × (M − r) dimension. The zero
submatrices in the bottom row of R have M − r rows.

Let’s define the M × 1 vector z as:

z = ETaj = [z1 z2]
T (7.13)

where z1 and z2 are r×1 and (M−r)×1 vectors respectively. IfQT
2 (
∑L

l=1 r
j
lp

j
l ) 6=

0, there is no solution for (7.7). Now let’s assume that we do haveQT
2 (
∑L

l=1 r
j
lp

j
l ) =

0. Then (7.7) reduces to:

R1z1 +R2z2 = QT
1 (

L∑
l=1

rjlp
j
l ) (7.14)

which is a set of r linear equations with M unknown variables. So, we have
M − r excessive variables. The common and easiest way to solve such set of
equations is to set all excessive variables to zero and find the others. This
is done by setting z2 = 0. However, this solution is not appropriate for our
application, because it means that we are removing the contribution of some
of the targets by setting their echo amplitudes to zero.
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A possible solution that seems to be more appropriate for our case is
obtained by setting all the M − r excessive variables equal to each other
and solve all variables from the set of equations so that their variances is
minimum. This means that all target echo amplitudes are fairly solved.
After doing the required computations, the following solution is achieved:

z = v − cov(v, s)

var(s)
s (7.15)

where the two M × 1 vectors v and s are defined as:

v =
[
R−1

1 QT
1 (
∑L

l=1 r
j
lp

j
l ) 0(M−r)×1

]T
(7.16)

s =
[
R−1

1 R21(M−r)×1 −1(M−r)×1

]T
(7.17)

Here, 0 and 1 are (M − r)× 1 vectors of all zero and all one elements, re-
spectively. Also, cov stands for covariance between the two vectors and var
denotes the vector variance.

Finally, the ML estimation of target echo amplitudes aj can be find by:

aj = Ez (7.18)

Note that (7.15) is valid only if var(s) 6= 0. For the particular case of
var(s) = 0 we proceed by usual approach of setting z2 = 0 to find a possible
solution of (7.7). So, in this case we obtain z = v instead of (7.15).

By replacing the solved aj in (7.9), the likelihood function is derived for
a single pair of TX-RX antennas. For the general case of multistatic radar
with a single TX and NR RX antennas, the following expression is achieved
by statistically independence of the received vectors:

p(r|X) = p(r1, r2, · · · , rNR |X) =

NR∏
j=1

p(rj|X)

∝ exp

{
1

2σ2

∑NR

j=1(a
j)TPjaj

}
.

(7.19)

In this work, we consider the SIR type of particle filtering [32] in which
resampling is done at each scan time (frame time). Therefore, the weight of
particle i at scan time n is only proportional to the likelihood p(r|Xi

n) and
not dependent on its previous weight.
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7.2 Tracking System Structure

After clutter removal, there are a few processes that should be done in the
central node before performing particle filtering for multiple target tracking.
Fig. 7.1 shows the overall view of the system functions at each scan time.

The aim of the detection stage is to decide if any target is present in
the area based on the received signals. It processes the received signals and
estimates target TOAs for each receiver. The localization step then uses
the estimated TOAs to generate position measurements called observations.
The outputs are then passed to the data association step which associates
the observations to the corresponding tracks. It is responsible for initiating
tracks, forming potential tracks, confirming tracks and deleting them.

The detection and localization techniques adopted in this work are the
CA-CFAR detector with median filtering and direct method of localization
described in Section 6.2.1 and Section 6.1.2, respectively. In Chapter 6, we
showed that this combination provides the best tradeoff between the prob-
ability of false alarms and missed detections for the false alarm probability
range of interest.

Since the focus of this work is on the tracking phase, we have adopted
the simple and most commonly used data association logic in [50] to avoid
further algorithm complexity. In this technique, all of the potential tracks
are constructed at each scan time and under certain conditions are converted
into confirmed tracks. A potential track is a sequence of observations over
time that are likely to be a track, whereas a confirmed track is certainly a
track.

An observation is assigned to a (potential or confirmed) track, if it falls
inside a gate around the previous observation assigned to that track. The
radius of the gate is defined according to the target maximum velocity. If a
potential track reaches a certain number of assignments, it is then converted
to a confirmed track. If a (potential or confirmed) track is not assigned any
observation (it is missed) for a certain number of times, it is deleted.

Considering the above logic, three cases may happen with respect to an
observation. If an observation falls into the gate of only one track, it is then
assigned to that track. If an observation falls into the gate of more that one
track, it is assigned to the nearest one. If an observation does not fall inside
the gate of any track, then it will start a new track.

On the other side, three cases may happen with respect to each track. If a
single observation falls into the track gate, then that observation is assigned
to the track. If more than one observation falls into the track gate, then the
nearest observation is assigned to the track. If no observation falls inside the
track gate, then the track is considered as a missed track.
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At each scan time, the confirmed tracks are passed to the particle filtering
which smooths out the target state estimations.

7.2.1 Particle Filtering

Particle filtering is only performed for the confirmed tracks. It predicts the
next state of the targets and then it corrects its prediction according to the
observations.

Since the particles are taken on the state space X in (7.1) which jointly
contains all target states, the optimum way for constructing the particles is
by considering all possible combination of particles from individual tracks.
Obviously, this approach results in a very time consuming tracking algorithm
in which the number of particles increases exponentially with the number of
targets.

In this work, we consider a suboptimal approach in which the tracking
complexity increases only linearly with the number of targets. For this pur-
pose, particle filtering is done separately for each confirmed track. When
considering a confirmed track, all the other (non missed) confirmed track
states are fixed to their assigned observation.

Using the same particle filtering algorithm as in Section 4.3, the flowchart
in Fig. 7.2 is achieved for confirmed track m at scan time n. We consider Np

particles for confirmed track m. The state of its i’th particle at scan time n
is denoted by xi

m,n.

The initial particles for track m are taken from a normal distribution
around its assigned observation. Next in the time update step, particles are
predicted according to the dynamic model assumed for the target motion.
As the target dynamic model we assume that the target average velocity is
constant during a sliding window over time. Within each window, we give a
weight to each estimated velocity according to its difference from the average
velocity calculated in the previous scan time. The higher is the difference,
the lower will be its contribution in calculating the mean (See Section 4.3).

In order to avoid tracking divergence due to any large detection error,
every time a particle is predicted too far from the track assigned observation,
it is reset to a sample from a Gaussian distribution around that observation.

Next, in order to calculate the likelihood, we have to construct the state
matrix Xi

m,n for each particle i of track m. This matrix is formed by fixing all
the other (non missed) confirmed track states to their assigned observation.
For example, if there are Mc non missed confirmed tracks other than track
m, with their assigned observations as xo

1,n, . . . ,x
o
Mc,n

, then the state matrix
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Figure 7.1: Conceptual system scheme.
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for particle i of track m is formed by:

Xi
m,n = [xo

1,n · · · xo
Mc,n xi

m,n] (7.20)

Now, the sample delays corresponding to each state element xo
1,n, . . . ,x

o
Mc,n

,xi
m,n

of Xi
m,n with respect to receiver j can be easily calculated by sum of the state

distances from the transmitter and the receiver j, divided by the speed of
light. Then, the matrix Pj can be constructed from (7.8) and amplitude vec-
tor aj is estimated by QR factorization described in Section 7.1.1. Finally,
the likelihood p(r|Xi

m,n) is obtained by (7.19) for particle i of track m.
Next in weight update step, we normalize this likelihood over all particles

of trackm to get the particle weights. In order to avoid degeneracy problem of
particle filters, systematic resampling is done at each scan time that replaces
low probability particles with high probability particles, keeping the number
of particles constant [32]. After the resampling step, all new particles will
have the same weights equal to 1/Np.

Then, the estimated state of track m is calculated by weighted sum of
all particles. Using the estimated states of track m during a sliding window
over time, we calculate the movement mean as in Section 4.3. Finally, the
outputs are saved in a track file and the algorithm steps are repeated for the
another confirmed track at scan time n.

7.3 Simulation Results

A square surveillance area of 100× 100 meters is watched by a UWB radar
sensor network composed of one transmitter and six receivers located on
the square sides. The origin of our assumed coordinate system is the lower
left corner of the square. Therefore, the TX node is located at position
(0, 50), while the other 6 RX nodes are at positions (33, 0), (66, 0), (100, 33),
(100, 66), (33, 100) and (66, 100), respectively.

The TX node emits first derivative Gaussian monocycles with duration
parameter 1.4ns and whose power spectral density is assumed to exceed the
FCC mask by 10 dB. 4 The number of pulses in each frame is Ns = 114000
and the frame duration is TF = 68.4ms. The sampling frequency is set
to 1.5GHz. For each RX node, the receiver noise figure and the antenna
temperature are set to F = 6dB and Ta = 290K, respectively. These settings
result in a transmitted signal power of −32.5 dBW and a received noise power
−86.2 dBW.

4This exceeding has been chosen to cover the large area assumed. The possibility to
exceed the FCC mask even by 20 dB is under consideration in the EU for emergency
applications.
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Figure 7.2: Flowchart of the particle algorithm.

We consider a number of 100 pointwise objects to be present in the surveil-
lance area as clutters. The clutters are distributed uniformly over the whole
surveillance area. We consider static clutters with 1m2 radar-cross-sections,
the same as the target. Each RX node implements a frame-to-frame clutter
removal technique based on a first-order high-pass IIR filter with one pole
equal to 0.9 and a delay of 100 scan times operating at a sampling frequency
1/TF = 14.6Hz.

At each RX antenna, the received signal is constructed as the superpo-
sition of the direct path, clutter echoes, and ground reflection in addition
to the target echo and the noise. The channel gains have been simulated
according to

√
GtGrλ2

0/((4π)
2l2) for the LOS and

√
GtGrλ2

0σo/((4π)3l2r l
2
t )

for any object including the target [10], where Gt and Gr are the TX and
RX antenna gains, respectively, which are both equal to 0 dB for our om-
nidirectional antennas and λ0 is the wave length which has been calculated
based on the center frequency 4.5GHz. Moreover, l is the TX–RX distance,
while lt and lr are the distances of the object from TX and from that RX,
respectively. Finally, σo is the radar-cross-section of the object.

In the numerical results, the tracking performance is measured in terms
of the number of confirmed tracks, RMS and CDF errors over 20 simula-
tion runs, each with a different noise and clutter realization. The number
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of confirmed tracks at each scan time is averaged over all simulation runs.
For generating the RMS error plot of each target, we average the vector of
estimation errors of that target at all scan times over all simulation runs. For
the CDF error plot, we concatenate the estimation error vectors of all tar-
gets over all simulation runs and then we calculate the CDF for the resulting
vector. For each scenario, the performance of well known Kalman filter is
also shown for comparison.

For all parts of the tracking system, the corresponding parameters have
been set to the values maximizing the performance. In the detection, a
guard band equal to 20 samples (the reference pulse width) is chosen for
CFAR thresholding. The average noise power is calculated for a number of 50
samples after each guard band. The threshold is constructed by multiplying
the calculated noise power with a constant. This constant has been set to
11 for the first scan time and then reduced to a very low value of 3 for all
other times. The square of the sample under verification is then compared
with the resulting threshold.

In data association, if a track is missed for 10 times, then it is deleted. A
potential track is confirmed, when it is assigned at least 3 consecutive non
missed observations.

For particle filtering, we have set the number of particles to 200 for each
confirmed track. In Chapter 4, it has been shown that this number reaches
the best tradeoff between the estimation accuracy and complexity. The size
of the sliding window for calculating the movement means has been set to 20
scan times and the process noise standard deviation has been chosen to be
0.1m for both x and y directions. For Kalman filter, the acceleration noise
and measurement noise standard deviations have been set to 1.6m/s2 and
3m, respectively.

Fig. 7.3 shows the tracking performance of filtering techniques for two tar-
gets moving on straight line trajectories with a constant velocity of 10km/h.
The assumed target trajectories are shown in the first subfigure for a dura-
tion of 600 scan times. Their starting positions are shown with circles. In
this subfigure, the triangle represents the transmitter and the squares are
RX antenna positions. The gray ellipses are the blind zones corresponding
to each pair of TX-RX antennas.

In the CDF and RMS error plots, the observation (measurement) errors
corresponding to the target assigned track are also shown in the plots to
see how much the tracking filter can improve the measurement accuracy. It
can be seen that the measurement error plots for particle and Kalman filters
almost coincide. This coincidence also happens for the plots corresponding
to the number of confirmed tracks. Since these outputs are generated be-
fore the tracking filter is performed, this fact insures that the scenarios for
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both particle and Kalman filters have been the same on the average over all
simulation runs.

It can be seen from the results that Kalman filter generates estimation
errors even larger than measurement errors, while particle filtering improves
the precision for most of the time. For higher measurement errors, the per-
formance of particle filtering comes close to that of the measurements. This
is because when forming the particle state matrix for a track according to
(7.20), all the other track states are fixed to their assigned observations.
Therefore, when these observations differ too much from the true target po-
sitions due to large detection errors (which are caused either by interference
of target echo pulses or blind zones), the particle state matrix is not formed
correctly and hence the performance of particle filtering deteriorates.

Fig. 7.4 adds another target to the scenario shown in Fig. 7.3. By in-
creasing the number of targets, the number of times that target echo pulses
interfere each other increases, which results in larger detection errors. There-
fore, particle filtering can less improve the measurement accuracy compared
to the two targets case. However, it is evident from CDF error plots that par-
ticle filter still outperforms the measurements for most of the time, whereas
Kalman filter is always worse.

In Fig. 7.5 manoeuvering trajectories are assumed for the targets instead
of straight lines. In the trajectories, we have tried to include various shapes
such as wave-like curves, circle-like movements, as well as sudden direction
changes. The two targets are moving on the curves with a constant velocity
of 10km/h. It can be seen from the figure that the particle filter can track all
maneuvers with high precision while Kalman filter generates larger estimation
errors.

7.4 Conclusion

In this chapter, the particle algorithm in Chapter 4 was extended to the
case of multiple target tracking in UWB multistatic radars. The particle
weights were derived analytically assuming one transmitter and multiple re-
ceivers. We illustrated through numerical results that the proposed particle
filtering algorithm outperforms the Kalman filter in multiple target scenarios
accounting for the spatial configuration of the receivers, propagation effects,
the presence of residual clutter and noise.
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Figure 7.3: Performance comparison of particle filter and Kalman filter for
two targets moving on straight lines. (a): The assumed target trajectories.
(b): Number of confirmed tracks vs. time. (c): RMS error plots for the
target with initial position (0, 0). (d): RMS error plots for the target with
initial position (0, 100). (e): CDF error plots for all targets.
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Figure 7.4: Performance comparison of particle filter and Kalman filter for
three targets moving on straight lines. (a): The assumed target trajectories.
(b): Number of confirmed tracks vs. time. (c): RMS error plots for the target
with initial position (0, 0). (d): RMS error plots for the target with initial
position (0, 100). (e): RMS error plots for the target with initial position
(80, 0). (f): CDF error plots for all targets.
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Figure 7.5: Performance comparison of particle filter and Kalman filter for
two targets with manoeuvering trajectories. (a): The assumed target trajec-
tories. (b): Number of confirmed tracks vs. time. (c): RMS error plots for
the target with initial position (10, 20). (d): RMS error plots for the target
with initial position (22, 41). (e): CDF error plots for all targets.

77



Chapter 8

Multiple Target Detection and
Tracking with the Hough
Transform for UWB
Multistatic Radars

The Hough transform is a feature detection method originally developed for
the detection of straight lines in an image corrupted by noise [51]. However,
in principle, other arbitrary curves can be detected as well.

In the radar literature, the Hough transform was firstly introduced for tar-
get detection improvement and simultaneous track acquisition in [52, 53, 54].
The technique combines range data from previous search scans into a two-
dimensional data map which can be considered as an image. Targets appear
as curves or features in this data space. Then, the Hough transform is used to
extract the target tracks from the data. This new method has the advantage
of not discarding data from past scans which still may contain target returns
even if no detection was declared (as opposed to most traditional radar pro-
cessing in which previous data is discarded). More recent researches on the
Hough transform for radar applications can be found in [55, 56, 57].

The Hough transform has many other advantages. It can be used to detect
any desirable predefined curve [58]. Hence, more a priori information about
the target movement can be introduced in processing. The Hough transform
is able to perform target detection, data association, track initiation and
track maintenance at the same time. Moreover, it can simultaneously detect
multiple curves, which is suitable for multiple target tracking [59]. The main
limitations are related to the computational complexity and memory require-
ments when the dimension of the data space or the parameter space is large.
Also, the performance can be greatly deteriorated if the target movement is
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not in accordance with the assumed mobility model.
Although the literature on the Hough transform in radar applications is

quite extensive, there are only a few works studying the Hough transform
in UWB radars. In [60], a vehicle detection scheme is suggested using the
Hough transform where some moving vehicles are discriminated from signif-
icant clutter by using linear trajectory detection in the Hough space. The
same technique is proposed in [61] for pedestrians and two-wheelers. In [62],
an approach for noncoherent integration of pulses based on the Hough trans-
form is proposed for UWB radar. All the above works do not consider a
multi static radar, and are based on the Hough transform for straight-line
detection.

Up to our best knowledge, no work has been done yet on the usage of the
Hough transform in UWB multistatic radars, particularly human tracking in
indoor surveillance applications.

In this chapter, we propose two approaches which use the Hough trans-
form for tracking humans walking inside the surveillance area. In one ap-
proach, the Hough transform is employed to find the time of arrival (TOA)
curves of the targets in the scan vs. propagation time image, for IR-UWB
multistatic radars. In order to define the target TOA curve, a straight-line
constant-velocity mobility model is assumed for the target, which is typi-
cally a human walking inside the surveillance area. We show that the Hough
space is a four-dimensional space, and we discuss the feasibility of our pro-
posed algorithm implementation in terms of computational complexity and
data storage requirements.

In the other approach, first the pixel-based localization technique, de-
scribed in Section 6.2.2, is employed to find the potential target positions in
the area. Then, two 2D Hough transforms are applied sequentially for x and
y directions to find the target trajectory.

We experimentally evaluate the performance of the proposed approaches
for monitoring a small indoor area. Here, due to the presence of furniture,
walls and other objects, a dense clutter is observed. One of the most common
clutter removal techniques is the empty-room method (background subtrac-
tion) [10, 63]. However, in indoor environments, the target presence may
shadow other objects in the area, affecting their reflected signals. Eventu-
ally, this shadowing effect may result in a large number of false alarms after
background subtraction. We therefore propose a new empty-room clutter
removal technique based on dissimilarities between the received signals with
and without the target instead of simply subtracting them. We show that
the proposed approach can considerably reduce the number of false alarms.

This chapter is organized as follows. Our channel measurement setup
is given in Section 8.1. In Section 8.2, a new clutter removal technique is
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proposed. Section 8.3 briefly introduces the concept of the Hough trans-
form. Section 8.4 explains our proposed TOA association technique using
the Hough transform. In Section 8.5, the proposed technique is evaluated by
experimental measurements. Section 8.6 presents another approach which
extracts the target trajectory by performing two 2D Hough transforms. In
Section 8.7, this approach is evaluated with experimental measurements.
Concluding remarks are provided in Section 8.8.

8.1 Channel Measurement Setup

The measurements were done in a seminar room with the dimensions of
3.52m×5.5m×3m (width/length/height) at IHE. During the measurements,
all the furniture and equipment were present, producing significant indoor
clutter. Fig. 8.1 shows our measurement scenario. A single TX antenna and
three RX antennas were placed in the perimeter of the area, composing a
multistatic radar system. In Fig. 8.1(a), the triangle represents the TX an-
tenna and the squares are RX antenna positions. All antennas were directive
Vivaldi antennas.

A person, 1.65m tall, was walking within the room taking the blue tra-
jectory shown in Fig. 8.1(a) with the initial position depicted by a circle. We
used the Agilent E5071C ENA network analyzer with a noise figure of 38dB
to measure the channel between the TX antenna and every RX antenna at 14
positions in the person trajectory which have been marked with the crosses
in Fig. 8.1(a). We were able to measure only a single channel at a time with
our network analyzer. Therefore, we measured the three channels one after
the other for each person position.

The S21 parameter was measured in the frequency range of 3GHz to 6GHz,
with a number of 600 points, an IF bandwidth of 100Hz and an averaging
number of 16. A power of +5dBm was delivered to the transmit antenna.

8.2 Proposed Empty-Room Clutter Removal

Technique

Target detection in environments with dense scatterers is a challenging task
due to the undesired background clutter caused by antenna cross-talk, reflec-
tion from the walls and other unwanted objects.

One of the most common approaches to remove the clutter from the re-
ceived signal is the empty-room (also called background subtraction) method
[10, 63]. The empty-room technique subtracts the time-invariant background
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of the static scenario in the absence of the target from any received signal
composed of both the target and clutters. Unfortunately, this approach is
very sensitive to environment changes and the background is in reality a
time-variant signal. Moreover, the target presence does not appear only at
its corresponding TOA in the received signal as a single point, but rather it
may affect many points of the received signal due to the shadowing effect.
Therefore, simply subtracting the received signals with and without the tar-
get (even if enough number of averaging has been taken) may yield too many
false alarms. Thus, clutter reduction is still a challenging task for such dense
clutter environments.

According to the experiments, the shadowing effect appears mostly as
an attenuation or amplification in the received signal, and the general shape
of the received signals with and without the target seems to remain almost
unchanged for all TOAs except that of the target. Therefore, in the proposed
empty-room clutter removal technique, we look for dissimilarities between the
received signals with and without the target instead of simply subtracting
them.

To describe this idea mathematically, we assume a sliding window over
the propagation time. For each propagation time n, assume that xn =
(xn−L+1, . . . , xn)

T is the received vector within this sliding window without
the target, and yn = (yn−L+1, . . . , yn)

T is the one with the target. Now, we
assume that inside the sliding window, there is a shadowing gain an, common
to all samples within this window, so that anxn should be removed. The size
of the sliding window, L, can be optimized experimentally. Then, instead
of simply looking at the energy of the difference vector yn − xn, as in the
conventional empty-room, we look at the least square error

Sn = min
a

‖yn − axn‖2 = ‖yn − ânxn‖2 (8.1)

where the estimated shadowing coefficient ân is given by

ân =
〈xn,yn〉
‖xn‖2

=

∑L
i=1 xn−L+iyn−L+i∑L

i=1 x
2
n−L+i

(8.2)

where ‖xn‖ denotes the norm of xn and 〈xn,yn〉 represents the inner product
of xn and yn. By replacing (8.2) into (8.1), we have

Sn = ‖yn‖2 −
(〈xn,yn〉)2

‖xn‖2

=
L∑
i=1

y2n−L+i −
(
∑L

i=1 xn−L+iyn−L+i)
2∑L

i=1 x
2
n−L+i

.

(8.3)
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Therefore, at each propagation time n, we calculate the metric defined in
(8.3). A thresholding is then applied on this metric to get the potential
target TOAs.

To appreciate the effectiveness of the proposed technique, we compare it
with the conventional empty-room method on experimental measurements.
In particular, Fig. 8.2(a) shows an example of the channel impulse response
obtained by means of a network analyzer for one of the RX antennas with
the target at a certain position. The corresponding channel impulse response
without the target (empty-room) is also plotted. The green circle represents
the theoretically expected target TOA (assuming a pointwise target). The
first peak corresponds to the LOS echo which is much bigger than that of the
target. It can be observed that detection of the target echo which is hidden
by heavy clutter is a challenging task. The two signals do not differ only in
the expected target TOA (green point), but also in many other parts due to
the shadowing effect. However, it can be seen that around the green point,
the two signal shapes seem to change, whereas in the other parts, the general
shape is almost preserved. Fig. 8.2(b) shows the simple subtraction of the
two signals, which is what is actually done in the conventional empty-room
approach. Fig. 8.2(c) plots the metric in (8.3) for the proposed empty-room
approach based on dissimilarities between the two signals. We can see that
the conventional empty-room technique may generate many false peaks which
results in a large number of false alarms after energy thresholding, whereas
the proposed approach can greatly reduce the number of false peaks.

8.3 The Hough Transform

The Hough transform is a feature detection technique which can be used to
find a desired shape in an image [58]. It requires that the desired curve is
specified in some parametric form. The classical Hough transform is most
commonly used for detection of straight lines in an image corrupted by noise.
We explain the concepts of the Hough transform by the example of detecting
straight lines.

Every arbitrary straight line in the (x, y) space can be represented by two
parameters ρ (the length of its perpendicular from the origin to the line) and
θ (angle of its perpendicular to the origin) as (see Fig. 8.3(a))

ρ = x cos θ + y sin θ . (8.4)

From (8.4) it can be seen that each point in the data space (x, y) is trans-
formed to a sinusoidal curve in the parameter space (ρ, θ). Points lying on
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the same line are mapped onto curves that have a common point of inter-
section. Therefore, lines in the (x, y) space can be detected by finding the
intersection points in the (ρ, θ) space. This concept of the Hough transform
is shown in Fig. 8.3.

The Hough transform can be generalized to find any desired curve that
can be expressed parametrically. For a practical implementation, both the
data space and the parametric space are discretized into pixels. The basic
steps are therefore as follows:

1. The desired curve is expressed in a parametric form.

2. The data space is converted to the parameter space using the defined
Hough transform.

3. Each pixel in the parameter space is assigned a count value equal to
the number of points in the data space that are mapped to it.

4. The pixel whose corresponding count value exceeds a predefined thresh-
old determines the desired curve parameters.

5. The inverse Hough transform is applied to find the desired curve in the
data space.

It should be noted that high dimensionality of either the data space or
the parameter space results in more computational time and larger memory
requirements so that the implementation may become impractical.

8.4 Proposed TOA Association with the Hough

Transform

In the proposed approach, the Hough transform is used to find the corre-
sponding TOA curve of the targets in the measured radar image. In order
to construct this image, binary data after energy thresholding is collected
over a time history (sliding window). The resulting binary image shows the
propagation time τ versus scan number k = 1, . . . , Nw, where Nw is the total
number of scans in the sliding window.

In order to characterize the target TOA curve, a straight-line constant-
velocity mobility model is assumed for the target. This seems the closest
model that represents a human walk in anti-intruder applications. In fact,
the human walk can be well approximated with this model over a window of
at least a fraction of a second. In indoor applications, wherein the human
walking speed is slow, the model applies to a window of several seconds.
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We parametrize the target TOA curve with four parameters: velocity
amplitude (V ), velocity angle (α), and initial position (x0, y0) at the begin-
ning of the sliding window. It is known that the Hough transform algorithm
complexity increases dramatically with the number of parameters. Hence,
one may concern about the computational complexity and memory require-
ments. It should be noted that the human walking velocity range is very
limited in indoor environments. Therefore, the range of the parameter V to
be discretized is also small. Another point is that the UWB coverage area
is inherently small (less than 100m × 100m), as compared to conventional
radars that deal with areas of many square kilometers. The surveillance
area is even smaller in indoor applications. So, we are not dealing with large
ranges for the parameters x0 and y0 as well. Moreover, coarser discretizations
can be used in tradeoff with resolution requirements.

Therefore, the data space is a 2D-space of propagation time τ and scan
number k, whereas the parameter space is a 4D-space of (V, α, x0, y0). As-
suming a pointwise target at height z, the two spaces are related by

x = x0 + (k − 1)TscanV cosα

y = y0 + (k − 1)TscanV sinα

d1 =
√
(x− xt)2 + (y − yt)2 + (z − zt)2

d2 =
√
(x− xr)2 + (y − yr)2 + (z − zr)2

τ = (d1 + d2)/c

(8.5)

where Tscan is the scan time, (xt, yt, zt) and (xr, yr, zr) are the transmitter and
receiver coordinates respectively, and c is the speed of light. The flowchart of
the algorithm based on the Hough transform is described in Fig. 8.4. First,
energy thresholding is performed on the received data and the binary image
is constructed as the input for the Hough transform. The parameter space
is then discretized.

For each point in the data space, the whole pixels in the parameter space
are verified to see if the Hough transform defined in (8.5) is satisfied by that
point in the data space and the pixel under test in the parameter space.
If so, a count number corresponding to that pixel in the parameter space
is increased by one. After completing this step for all points in the data
space, a threshold is applied on the count numbers (in single target scenarios
this thresholding can be simply replaced by using the maximum) and the
parameters of the most probable TOA curves are obtained.

For each curve, the whole points in the data space are verified to see if
the Hough transform defined in (8.5) is satisfied by that curve parameters
and the point under test in the data space. If so, that point in the data space
is assigned to the curve (this is actually the inverse Hough transform).
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The next steps are some additional processing that are required to reduce
the number of output curves. For example, equal curves, (i.e. having the
same points assigned in the data space) should merge together, or if one
curve includes all points of another curve, then the shorter curve should be
discarded.

Next, the TOA of each remaining curve is calculated for all scan numbers
in the sliding window, using (8.5) and the curve parameters. Finally, the
curves with close TOAs are assigned together in clusters and replaced by one
curve with TOAs averaged over the cluster.

The proposed Hough transform is able to perform TOA detection (distin-
guish target TOAs from false alarms), data association (associate correspond-
ing observations over scan time) and tracking (smoothing TOA estimation,
predicting target TOA and filling out the missed detections) at the same
time. It can also be used in multiple target scenarios to estimate the number
of targets, initiate and maintain the tracks simultaneously. All the above
advantages are due to the Hough transform which uses memory from past
data for a more robust decision.

8.5 Experimental Results on the Proposed

Hough Transform TOAAssociation Tech-

nique

In order to validate the proposed approach, we used the experimental channel
measurements described in Section 8.1. More precisely, we convolved the
transmitted signal with the measured channel impulse responses, to get the
IR-UWB radar received signals.

As the transmitted pulse, we have chosen the first derivative Gaussian
monocycle, modulated with a carrier frequency of 4.5GHz. The modulation
for this type of pulse is required to respect the FCC regulations [31].1 The
pulse duration parameter τp was chosen to be 0.3ns which achieves a good
range resolution for our scenario with a sampling frequency of 20GHz. The
amplitude of the pulse was set to fulfill the FCC mask. Fig. 8.5 shows such
a designed pulse in both time and frequency domains. It can be seen that
the pulse spectral density doesn’t exceed FCC regulations.

Considering our antenna configuration and the room size, the maximum

1We have chosen this derivative order to match our network analyzer measurable fre-
quency range. Higher orders, such as 5’th derivative Gaussian monocycle may also be
considered without modulation, but with a much higher bandwidth. The main concept of
the proposed algorithm doesn’t depend on the UWB pulse shape used.
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possible target echo delay is 35ns. Therefore, the pulse interval TIP was cho-
sen to be 24ns which corresponds to the propagation time difference between
the LOS and the worst case target echo.

Fig. 8.6 shows the binary image after energy thresholding constructed
from the propagation time vs. scan number (person position number in our
case, see Fig. 8.1(a)) for the first RX antenna, as an example, in the UWB
multistatic radar system. The figure compares the images using both the
conventional and proposed empty-room techniques. In the proposed empty-
room approach, the size of the sliding window, L, has been chosen as 15.
The threshold has been set to 0.16 of the maximum cluttered removed sig-
nal energy for the conventional empty-room approach, and to 0.4 of the
maximum metric for the proposed empty-room technique. These threshold
values have been chosen experimentally to achieve the best tradeoff between
the missed detections and false alarms for both methods. The figure shows
the theoretically expected target TOA curve as well. It can be seen that
the proposed approach decreases considerably the number of false alarms.
These binary images form the data space for our proposed Hough transform
TOA association algorithm. Since the Hough transform algorithm complex-
ity increases dramatically with the number of points in the data space, the
proposed empty-room approach greatly reduces the required computational
time.

Fig. 8.7(a-c) show the results of applying the proposed Hough transform
TOA association algorithm, described in Section 8.4, on the radar binary
images using the proposed empty-room clutter removal technique. The hu-
man average height, z, has been set to 1.5m in (8.5). Considering the typical
human walking speed of 0.6m/s in indoor environments, the time interval
between two position measurements will be 0.5s. We discretized the param-
eter space as 0.4m/s to 1.5m/s with steps of 0.1m/s for V , 0 to 360 degree
with steps of 0.5 degree for α, 0 to 3.52m (maximum width of the room) with
steps of 0.1m for x0, and 0 to 5.5m (maximum length of the room) with steps
of 0.1m for y0. Please note that for larger surveillance areas, we can further
reduce the range of parameter values x0 and y0 by limiting them around the
previously estimated target position.

After estimating the target TOA curves by the proposed Hough transform
approach, the direct localization (trilateration) [48] was used to localize the
target. Fig. 8.7(d) shows the estimated target positions.

We observe that the target TOA points can be well discriminated from
false alarms and associated over scan time, forming the depicted target TOA
curves. These TOA curves were estimated with a good accuracy, even though
the target was missed at some points. For example, at the fourth point of the
trajectory (see Fig. 8.1(a)), the target lies in the blind zone corresponding to
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the third RX antenna, which results in a miss detection for this scan number
in Fig. 8.7(c). However, the estimated target TOA curve corresponding to
this antenna is able fill out this miss detection.

It should be noted that the true target TOA curves in these figures have
been calculated theoretically assuming a pointwise target at the human aver-
age height of 1.5m. However, in UWB radars, the range resolution is smaller
than human dimensions which results in different scattering centers on the
target. Therefore, what the figures show as the true target TOAs are only
rough approximations of these values.

The proposed Hough transform TOA association algorithm was using a
number of 12 × 721 × 36 × 56 pixels for the parameter space (V, α, x0, y0).
This equals a memory requirement of 17.5MB for saving the one-byte count
values.

It should be noted that considering the constant-velocity assumption does
not necessarily mean that the target must strictly follow this mobility model
for the Hough transform algorithm to work properly. In fact, since the UWB
transmitted pulse width occupies more than one sample in the received sig-
nals, the potential target TOAs after energy thresholding do not appear as
a single pixel in the binary images for each scan number. This can also be
observed in the previously shown figures, wherein the potential target TOAs
for each scan number appear as a short line instead of a single point. This
allows more flexibility in the target real movement with respect to the as-
sumed model. Moreover, what we measured as the target TOAs are actually
different from the real ones due to the limited accuracy of range estimates in
indoor areas. Nonetheless, the Hough transform was still able to extract the
target TOA curves with a non perfectly matching mobility model.

Using finer discretizations would result in more accurate TOA estima-
tions at the cost of computational complexity and memory requirements.
Using more RX antennas can also help improve the positioning accuracy due
to spatial diversity, since when the target is in the blind zone for one RX
antenna, other antennas may be employed for localization. Increasing the
antenna beamwidth can also help reduce the number of missed detections by
providing a better area coverage.

8.6 Target Trajectory Extraction Using the

Hough Transform

In this section, another approach is presented to extract the target trajectory
using the Hough transform. In order to employ the Hough transform to find
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the trajectory of the target moving within the surveillance area, the data
space should be considered as a 3D space (x, y, t), where x and y are the
Cartesian coordinates of the area and t represents the scan times over a time
history (sliding window).

Again, we model the target trajectory as straight-line in both (x, t) and
(y, t) spaces. However, extracting straight-lines in a 3D data space with the
Hough transform requires a 5D parameter space [55]. The implementation of
such a large dimensional space is almost impractical due to the high compu-
tational time and data storage requirements. To solve this problem, instead
of doing one Hough transform for the 3D data space (x, y, t), we perform two
sequential Hough transforms for the two 2D data space (x, t) and (y, t) in a
similar manner as in [55].

To generate the data space as the input for the Hough transform, we
first remove the static clutter at each receiver by the proposed technique ex-
plained in Section 8.2. Next, an energy thresholding is applied on the clutter
removed signals. Then, we perform the pixel-based localization technique in
Section 6.2.2 to construct the potential target positions in the area.

The output of the pixel-based localization technique is collected over a
history of scan times which is actually a sliding window. These points in the
(x, y, t) data space provide the input for the Hough transform described in
Algorithm 6.

In this algorithm, the (x, y, t) data space is projected to the (x, t) plane,
and a 2D Hough transform is performed to extract the (x, t) lines. For each
detected line, the related y coordinates are used to construct the (y, t) data
space. Then, another 2D Hough transform is performed onto this space to
extract the (y, t) lines. Since for each target trajectory line in the (x, t) space,
there should be a related line in the (y, t) plane, the final target trajectory
line in the (x, y, t) data space is made by combining the results of the two
performed Hough transforms. The algorithm contains some additional pro-
cessing that reduces the number of output lines by removing less probable
ones.

8.7 Experimental Results on the Hough Trans-

form Algorithm for Trajectory Extraction

To implement the algorithm described in Section 8.6, we considered the pixel
size in the pixel-based localization technique as 15cm for both x and y di-
rections. In order to calculate a given pixel propagation time, we assumed
a pointwise target at the human average height of 1.5m at that pixel. For
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Algorithm 6 The Hough Transform to Extract the Target Trajectory
1: Perform the Hough transform on the points in the (x, t) data space.

• Merge equal detected (x, t) lines and if one line includes the whole points
of another line, discard the shorter line.

• Discard lines with large gaps in either of x or t dimensions.

2: For each surviving (x, t) line, perform the Hough transform on their corre-
sponding points in the (y, t) data space.

• Merge equal detected (y, t) lines and if one line includes the whole points
of another line, discard the shorter line.

• Discard lines with large gaps in either of y or t dimensions.

3: Form (x, y, t) lines from the surviving (y, t) lines and their (x, t) parent lines.

• Merge equal detected (x, y, t) lines and if one line includes the whole
points of another line, discard the shorter line.

• If two lines have more than a certain number of common points, discard
the shorter line.

4: For each surviving (x, y, t) line, calculate its smoothed x and y positions at all
scan times in the sliding window, using (8.4) (for the (x, t) and (y, t) plane,
respectively ) and the line parameters.

• discard (x, y, t) lines if any of their x and y positions exceeds the surveil-
lance area.

• discard lines if their corresponding velocity is not acceptable as the hu-
man walking speed in indoor applications.

• Assign lines with close x and y positions together in clusters and replace
each cluster by one line with positions averaged over the cluster.
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each of the Hough transforms, we discretized the parameter θ into 256 values
from 0 to π. Also, we quantized the calculated range for the parameter ρ
into 50 values.

Fig. 8.8(a) shows the output of the Hough transform described in Algo-
rithm 6 before Step 2. In our case the scan number is actually the person
position number. Performing the Hough transform in the (x, t) space results
in the detection of 4 lines. Applying the Hough transform on the (y, t) space
corresponding to each detected (x, t) line generates a total of 11 lines before
Step 3 of Algorithm 6, as depicted in Fig. 8.8(b). However, the combination
of both Hough transform outputs leads to a single detected line in the (x, y, t)
space at the end of the algorithm, which is shown in Fig. 8.8(c).

8.8 Conclusion

In this chapter, the Hough transform was employed in two different ap-
proaches for tracking humans walking inside the surveillance area. In one
approach, the Hough transform finds the TOA curves of the targets in the
scan vs. propagation time image. In order to parametrize the target TOA
curve, a straight-line constant-velocity model was adopted for the target
movement, providing a reasonable computational complexity and data stor-
age requirement.

In the other approach, the Hough transform finds the target trajectory in
the (x, t) and (y, t) images provided by the pixel-based localization technique.
Then, the results are combined to find the target trajectory in the (x, y, t)
space.

By collecting data over time, the Hough transform is able to perform
target detection, data association and tracking, all at the same time. An-
other advantage is simultaneous estimation of the number of targets, track
initiation and maintenance in multiple target scenarios.

In order to combat shadowing effects, particularly severe in indoor envi-
ronments, a new empty-room clutter removal technique was proposed based
on dissimilarities between the received signals with and without the target.
We showed that the proposed approach can considerably reduce the number
of false alarms compared to the conventional empty-room technique.

To evaluate the performance of all the above approaches, we provided
experimental results by channel measurements in a 3.5m× 5.5m× 3m room,
with the presence of significant clutter.

It should be noted that our measurements were carried out for a certain
posture of the person, whereas the person may take various postures and
orientations during the walk. Therefore, in order to design and implement
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the system, proper statistical studies are required on the human radar-cross-
section for multistatic UWB radars.
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Figure 8.6: The radar image at the first RX antenna after energy threshold-
ing.
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Figure 8.7: The proposed Hough transform TOA association technique.
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Chapter 9

Conclusions and Future Works

In this thesis, we introduced a UWB multistatic radar as a good infrastruc-
ture for an anti-intruder system, due to a high resolution in range offered
by the UWB impulse-radio and a high area coverage and spatial diversity
provided by the multistatic configuration. Moreover, IR-UWB devices are
usually light-weight and cost-effective and their low transmit power makes
them appropriate for short-range monitoring applications. Chapter 2 de-
scribed such a UWB multistatic radar system for surveillance applications.

We focused on the detection, localization and tracking of non-collaborative
targets, typically human beings, moving inside a surveillance area for UWB
multistatic radars. In order to improve the localization accuracy and achieve
a higher level of system reliability, tracking is an essential part. However,
there are a few researches in the literature studying the suitable tracking
techniques in this context.

Since UWB radars can not be considered as linear Gaussian systems,
the commonly used tracking filters, such as the Kalman filter, which were
developed based on linearity and Gaussianity assumptions, are not expected
to provide a good performance. In Chapter 3, we introduced the Bayesian
filter as an appropriate choice for UWB radars. In the category of Bayesian
filtering, we particularly focused on the grid-based method and particle filters
as the two common implementations.

In Chapter 4, we proposed a particle filtering algorithm for tracking a
single target in UWB multistatic radars composed of one transmitter and
several receivers. The algorithm was developed in a way to overcome the de-
tection problem in such systems, mainly caused by blind zones. We showed
through numerical results that the proposed algorithm achieves a high esti-
mation accuracy, even at low signal-to-noise ratios, in the presence of either
static or dynamic clutter, and it works well for complicated target trajec-
tories. We also showed that the real-time implementation of the proposed
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tracking algorithm is feasible.
In Chapter 5, we compared our proposed particle filtering algorithm with

the grid-based Bayesian filter for a single target scenario in terms of both the
performance and computational complexity. The numerical results showed
that the grid-based tracking method outperforms the particle filtering, espe-
cially around the blind zones, at the cost of a higher computational complex-
ity and memory requirements.

Chapter 6 presented the CFAR detector and direct method of localization
as the most common detection and localization techniques used in UWB
multistatic radars. Then, we proposed a new CFAR detector based on a
median filter and a pixel-based localization technique. The numerical results
showed that the combination of these techniques achieves a low positioning
error and a good tradeoff between false alarms and missed detections. Thus,
it can be a good choice for UWB multistatic radar systems with the poor
detection around the blind zones.

Chapter 7 extended the particle filtering algorithm proposed in Chapter 4
to the tracking problem of multiple targets. For this challenging problem, the
whole tracking system components, namely the clutter removal, detection,
localization, data association and tracking were implemented by numerical
simulations.

Chapter 8 presented the experimental results provided by channel mea-
surements in a multistatic antenna configuration. The measurements were
carried out for tracking a person walking in an indoor area, with the presence
of a dense clutter. We proposed a new empty-room clutter removal technique
to cope with the shadowing effect in indoor environments. We showed that
the proposed approach can greatly reduce the number of false alarms com-
pared to the conventional empty-room technique. We also proposed a simul-
taneous detection, data association and tracking technique using the Hough
transform on the data collected over time. In a multiple target scenario, the
proposed approach is able to estimate the number of targets, perform the
track initiation and maintenance, all at the same time.

9.1 Future Works

Although the most focus of this thesis was on the tracking phase in UWB
multistatic radars, according to our observations based on experimental mea-
surements, the major problem in such systems is actually the detection part.
The poor detection problem is mainly caused by clutters which may hide the
target echo by having higher radar-cross-sections, shadowing effects which
are particularly severe in indoor environments, blind zones which are intrin-
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sically associated with the multistatic configuration, direct path residue after
clutter removal which may be much higher than the target echo, low transmit
power which is restricted by FCC regulations, and the antenna beamwidth
which may not fully cover the area.

Therefore, developing more effective clutter removal and detection tech-
niques is still crucial for such systems to make the proposed tracking algo-
rithms in this thesis more efficient.

Evaluating other multiple target tracking algorithms such as the proba-
bility hypothesis density (PHD) filter for UWB multistatic radars and com-
paring them with the proposed approaches in this thesis can be a useful
direction of research.

The experimental results presented in the last chapter were provided by
channel measurements using a network analyzer. Performing experimental
measurements with a real IR-UWB radar system is essential for a more re-
alistic study.

Furthermore, in order to design and implement the system, proper sta-
tistical studies are required on the bistatic human radar-cross-section, as the
person may take various postures and orientations during the walk.

Studying the optimization techniques of the antenna configuration can
also be helpful to better cope with the blind zone problem in a UWB multi-
static radar system.
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