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ABSTRACT 

Derivation of stem cell lines from domesticated animals has been of great interest as it 

benefits translational medicine, clinical applications to improve human and animal health 

and biotechnology. The main types of stem cells studied are Embryonic Stem Cells (ESCs), 

induced Pluripotent Stem Cells (iPSCs) and Mesenchymal Stem/Stromal Cells (MSCs). 

This thesis had two main aims: 

(I) The isolation of bovine MSCs from amniotic fluid (AF) at different trimesters of 

pregnancy and their characterization to study pluripotency markers expression. Stemness 

markers were studied also in MSCs isolated from equine AF, Wharton’s jelly (WJ) and 

umbilical cord blood (UCB) as continuation of the characterization of these cells previously 

performed by our research group; 

(II) The establishment and characterization of iPSCs lines in two attractive large animal 

models for biomedical and biotechnology research such as the bovine and the swine, and 

the differentiation into the myogenic lineage of porcine iPSCs.  

It was observed that foetal tissues in domestic animals such as the bovine and the horse 

represent a source of MSCs able to differentiate into the mesodermal lineage but they do 

not proliferate indefinitely and they lack the expression of many pluripotency markers, 

making them an interesting source of cells for regenerative medicine, but not the best 

candidate to elucidate pluripotency networks. The protocol used to induce pluripotency in 

bovine fibroblasts did not work, as well as the chemical induction of pluripotency in 

porcine fibroblasts, while the reprogramming protocol used for porcine iPSCs was 

successful and the line generated was amenable to being differentiated into the myogenic 

lineage, demonstrating that they could be addressed into a desired lineage by genetic 

modification and appropriated culture conditions. Only a few cell types have been 
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differentiated from domestic animal iPSCs to date, so the development of a reliable 

directed-differentiation protocol represents a very important result.  

 

Keywords: Mesenchymal Stem Cells; Induced Pluripotent Stem Cells; Mesodermal 

Differentiation; Cattle; Pig; Horse 



CHAPTER 1 

Introduction 

 

 13 

CHAPTER 1: INTRODUCTION  

 

1.1 Stem cells in veterinary medicine 

Stem cells are a special kind of cells that have a unique ability to self-renew and give rise to 

specialized cell types. Stem cells are uncommitted until they receive signals to develop into 

specialized cells that make up tissues and organs of the body. 

Stem cells are mostly classified in terms of how committed they are to become any 

particular type of cells. According to this feature, stem cells could be classified into four 

main groups (Malgieri et al. 2011) (Fig. 1.1): 

- Totitpotent stem cells: These cells could potentially give rise to any cell of the body. 

- Pluripotent stem cells: A single pluripotent stem cell has the ability to give rise to types 

of cells that develop from the three germ layers (mesoderm, endoderm and ectoderm) 

from which all the cells of the body arise. 

- Multipotent stem cells: These are cells isolated from adult tissues and have the same 

basic features of stem cells but are essentially committed to produce specific cell types, so 

their differentiation ability is limited. 

- Adult stem cells: These are multipotent cells present in the adult body that have the 

function to replace cells that have died or lost function.  
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Fig. 1.1: Types of stem cells (modified from http://cnx.org/contents/966c32cc-3d6f-4f4e-af4f-

ea0c975e825c@4/Cellular_Differentiation) 

 

In veterinary medicine, as for human, the attention has been focused on three main types of 

stem cells: Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and induced 

Pluripotent Stem Cells (iPSCs). Each cell type has its strengths and weaknesses and they 

show different potency degrees (Fig. 1.2). 
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Fig. 1.2: Hierarchy of potency of stem cell development (from Sugawara et al. 2012) 

 

1.1.1 Embryonic Stem Cells (ESCs) 

ESCs are pluripotent cells derived from the inner cell mass (ICM) of blastocyst-stage 

embryos. These cells can form all the structures in the adult body and belong to the 

pluripotent stem cells class. Because of these features, ESCs have drawn the attention as 

model to study the mechanism underlying pluripotency to better understand biochemical 

pathways that drive differentiation and senescence, and in consequence the comprehension 

of developmental biology. More recently, ESCs have been sub-categorized into “true” 

ESCs, that show naïve pluripotency and are able to contribute to chimeric offspring, and 

Epiblast Stem Cells (EpiSCs), that are further advanced on the path of differentiation and 

that are named as primed pluripotent (Ernst et al. 2015). While ESCs are isolated form 

ICM, EpiSCs derived form post-implantation stage embryos (Koh and Piedrahita 2014). 

Focusing on domestic animals, although the field has progressed over the last 30 years, 

there are still not bona fide ESCs from any domesticated species that can be considered 

practical for the generation of transgenic animals (Koh and Piedrahita 2014). Despite two 
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decades of efforts, establishment of pluripotent ESCs from ungulates such as cattle and pig 

has remained an elusive goal, with true ESCs only successfully isolated from rodents and 

primates (Telugu et al. 2010). Moreover, the generation of ESCs requires the destruction of 

an embryo making the use of ESCs for stem cell research ethically controversial, and these 

issues restrict the development of ESCs for cell therapy (Jung et al. 2014). All these aspect 

taken together made the scientific community to focus their attention more on other stem 

cells sources, like mesenchymal stem cells (MSCs) and, since 2006 when they have been 

discovered, induced pluripotent stem cells (iPSCs). 

 

1.1.2 Mesenchymal Stem/Stromal Cells (MSCs) 

Mesenchymal stem/stromal cells (MSCs) are multipotent progenitor cells that were 

originally identified in the bone marrow stroma (Friedenstein et al. 1987). These cells were 

first described as an adherent fibroblast-like subset of the bone-marrow (BM) 

microenvironment called the “marrow stromal cells” and they have been later identified in 

other anatomical locations, although their physiological roles remain unclear. Their 

accessibility from several sources makes them a promising tool for cell therapies and 

among these alternative sources an important role is played by adipose tissue (AT). AT-

derived MSCs have a higher proliferation potential compared to BM-MSCs and AT is 

accessible in higher amounts. Anyway, for both MSCs sources, an invasive procedure is 

required and there is a large variability in the cell yield related to the donor. For these 

reasons, researchers drew later their attention toward alternative sources, such as foetal 

adnexa and fluids like umbilical cord blood (UCB) and matrix (Wharton’s jelly, WJ), 

amniotic fluid (AF) and amniotic membrane (AM), because of their many advantages: they 

represent discarded material with noninvasive harvesting for the patient, they are easy to 
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obtain and they are free from ethical considerations (Iacono et al. 2015). Furthermore, cells 

derived from foetal adnexa and fluids are known to preserve some of the characteristics of 

the primitive embryonic layers from which they originate and many research groups found 

these cells to express pluripotent markers, such as the pluripotency key factor OCT4 

(octamer-binding transcription factor 4, protein involved in ESCs self-renewal). About 

MSCs isolated form foetal adnexa in domestic animals, their unequivocal 

immunophenotyping is hampered by the lack of a single specific marker and conflicting 

data are reported regarding the expression of embryonic markers (De Schauwer et al. 

2011), and their collocation into the hierarchy of pluripotency is controversial (Fig. 1.3). 

This discrepancy is likely due to the absence of a well-defined culture protocol and the 

limited availability of monoclonal species-specific antibodies (Iacono et al. 2015).  

 

Fig. 1.3: Stemness marker expression in MSCs form foetal adnexa is debated so their collocation into the 

hierarchy of pluripotency is not clear (from Pappa and Anagnou 2009) 

 

In this thesis, MSCs will be named stem or stromal referring to the same type of cells. 

Stromal is referred to their first source of isolation, stem is referred to their potential, even 

if debated, pluripotency. 

In 2006 the Interational Society for Cellular Therapy (ISCT) defined a specific set of 

criteria for human MSCs: 
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(I) Adherence to plastic; 

(II) Expression of CD73, CD90 and CD105 surface antigens and lack of the expression of 

CD45, CD34, CD14 or CD11b, CD79a or CD19 and HLA class II; 

(III) Multipotent differentiation potential in vitro towards osteogenic, chondrogenic and 

adipogenic lineages (Dominici et al. 2006). 

Despite these criteria, considering that the surface antigens listed are not specific only for 

MSCs, until now there is not a clear panel of univocal markers to define these cells.  

An important feature of MSCs is that they have been considered safe as they do not show 

tumor formation after transplantation (Bauer et al. 2008) and systemic administrations of 

allogeneic MSCs do not cause any adverse effects, because they possess a privileged 

immunogenic status related to the low expression or even absent levels of MHC I and MHC 

II (Hu et al. 2013). 

 

1.1.3 Induced Pluripotent Stem Cells (iPSCs) 

It is less than 10 years since Takahashi and Yamanaka (2006) reported the derivation of 

murine iPSCs by reprogramming mouse fibroblasts into pluripotent stem cells, findings that 

led Professor Yamanaka to win the Nobel Prize in 2012. Induction of pluripotency was 

achieved through the expression of a combination of four transcription factor (OCT4, 

SOX2, KLF4 and c-MYC - OSKM) delivered to the cells by retroviral transduction (Fig. 

1.4).  
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Fig. 1.4: Induced Pluripotent Stem Cells (iPSCs) technology is represented by the reprogramming of 

differentiated somatic cells through a combinations of factors delivered by a viral vector. When 

reprogrammed, iPSCs are able to proliferate indefinitely or differentiate into cells belonging to all the three 

germ layers if cultured in proper conditions (taken from http://galleryhip.com/induced-pluripotent-stem-

cells.html). 

 

Induced pluripotent stem cells possess a similar degree of potency compared to ESCs and 

the ability to differentiate into all cell types of body tissues. In fact, iPSCs and ESCs 

showed many genetic and functional similarities such as patterns of gene expression, cell 

division rate, the ability to form embryoid bodies, (EBs, multicellular structures 

reminescent of embryonic development), teratomas (tumors composed of the endodermal, 

ectodermal and mesodermal layers observed during embryonic development), and chimeras 

(Heffernan et al. 2009). The field is developing with a tremendous speed and, to date, 

iPSCs have successfully been established from several species. Initially, iPSCs were 

reported from humans (Aasen et al. 2008; Nakagawa et al. 2008), non-human primates (Liu 

et al. 2008), mice (Gonzalez et al. 2009; Hamilton et al. 2009), and rats (Liao et al. 2009). 
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The production of iPSCs was then extended to large-animal species such as pig, cow, 

sheep, goat and horse. Generation of iPSCs from large-domestic animals is reported in 

Table 1.1. There are technical and safety concerns associated with the production of iPSCs 

that currently preclude their use for clinical applications. For example, the yield using 

standard procedures is very low, around 0.2% of the induced cells (Liao et al. 2008). In 

addition, there is a risk of tumor formation after transplantation and some of the 

transcription factors used to generate iPSCs are oncogenic. On the other side, iPSCs, as 

well as ESCs, provide great potential as cell sources for gene editing to generate genetically 

modified animals, and also in the field of regenerative medicine. The resulting iPSCs did 

not have identical phenotypes in terms of surface markers, even if derived in the same 

species, and this is surely due to the variables in reprogramming, sources of cell induced 

and culture conditions (Table 1.1), since optimal protocols for iPSCs have not been clearly 

defined (Okada et al. 2010). 

Progress in generation of iPSCs lines has been rapid and the technology has been modified 

in a variety of ways to make it potentially more efficient through the use of different gene 

combinations and potentially safer for future transplant studies by altering the delivery of 

the reprogramming factors to the cells (Telugu et al. 2010). Factor-based reprogramming 

techniques are marked with drawbacks such as slow reprogramming efficiencies, time-

consuming protocols, incomplete reprogramming of somatic cells into iPSCs and the 

potential of spontaneous oncogenesis. Moreover, the continued expression of pluripotent 

genes may limit the differentiation potential of iPSCs (Telugu et al. 2010). In order to make 

iPSCs, these inserted transgenes will have to be either deleted or effectively silenced after 

the cells have been reprogrammed. These aspects have fueled studies exploring new 

strategies of reprogramming like the use of non-integrating vectors, transposones or 
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recombinant protein. 

In 2013, among promising ways to avoid the viral-transduction arose the use of chemical 

compounds that can replace exogenous reprogramming factors (Ma et al. 2013). Chemical 

compounds are advantageous because they are readily accessible to the cells, they are cost-

effective and they can be easily manipulated. Some studies have shown that mouse or 

human somatic cells can be reprogrammed by OCT4 and chemical compounds (reviewed 

by Masuda et al. 2013) and later it was demonstrated how murine cells could be 

reprogrammed with chemicals only (chemically induced pluripotent stem cells, CiPSCs; 

Hou et al. 2013). Although this transgenes-free approach has no risk of insertional 

mutagenesis, it is important to know whether chemical cocktails induce genetic instability 

during reprogramming process that compromise genetic integrity of resultant CiPSCs. 

Furthermore, in vitro differentiation capacity still needs to be evaluated. The human field, 

as well as for domestic animals, lags far behind in this regard but the optimization of a 

transgene-free induction protocol is for sure the new challenge in this field. 
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Table 1.1: iPSCs generated from large-domestic animals (modified from Koh and Piedrahita 2014) 

Species Cell sources Feeder layer Media supplement Reprogramming Reference 

 

P
ig

 

Foetal fibroblasts MEFs bFGF Lentivirus 

(human OSKM) 

 

(Ezashi et al. 2009) 

Embryonic fibroblasts (D37) MEFs bFGF or mLIF Retrovirus 
(human/mouse OSKM) 

 

(Esteban et al. 2009) 

Primary ear fibroblasts; primary 

bone marrow (10 weeks) 

MEFs Need continuous Dox Dox-inducible lentivirus 

(human OSKM) 

 

(Wu et al. 2009) 

MSCs Matrigel - Lentivirus 

(human OSKMLN) 

 

(West et al. 2010) 

Embryonic fibroblasts (D26-30) MEFs bFGF Pantropic retrovirus 

(OSKM) 

 

(Rua et al. 2011) 

 

Embryonic fibroblasts MEFs bFGF/LIF, PD0325901, 

CHIR99021, VPA 

 

Episomal plasmid 

(human OSKMLN) 

(Telugu et al. 2011) 

Ear fibroblasts (6 months) MEFs/gelatine bFGF, LIF Retrovirus 

(mouse OSKM) 

 

(Montserrat et al. 2011) 

Ear fibroblasts (6 months) MEFs/gelatine bFGF, LIF Retrovirus 

(mouse SKM) 

 

(Montserrat et al. 2012) 

Fetal fibroblasts MEFs mLIF, N2B27, 

PD0325901, CHIR, 

PD173074, need 

continuous Dox 

 

Dox-inducible lentivirus 

(human OSKM) 

 

(Rodriguez et al. 2012) 

Fetal fibroblasts MEFs bFGF Dox-inducible lentivirus 

(human OSKMN) 

 

(Hall et al. 2012) 

Embryonic fibroblasts Collagen I pLIF, forskolin Retrovirus 

(human OSKM) 

 

(Fujishiro et al. 2013) 

Embryonic fibroblasts MEFs bFGF, hSCF Transfection 

(mouse OSKM) 

(Park et al. 2013) 
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C
o

w
 

Fetal fibroblasts MEFs bFGF Retrovirus 
(bovine OSKM; bovine 

OSKMLN; human 

OSKM) 

 

(Han et al. 2011) 

Skin fibroblasts MEFs Bovine FGF, hLIF Retrovirus 

(human OSKMN) 

 

(Sumer et al. 2011) 

Fetal fibroblasts MEFs hLIF, PD0325901, 

CHIR99021 

Episomal virus-free 

poly-promoter vector 

(bovine OSKM) 

 

(Huang et al. 2011) 

Skin fibroblasts 

(2.5 – 4 months) 

MEFs LIF, bFGF Lentivirus 

(human O and bovine 

SKM) 

 

(Cao et al. 2012) 

 

S
h

ee
p

 

Primary ear fibroblasts MEFs Need continuous Dox Lentivirus 

(human OSKMLN + 

SV40 large T and TERT 

 

(Bao et al. 2011) 

Fetal fibroblasts MEFs hFGF2, need continuous 

Dox 

Lentivirus 

(mouse OSKM) 

 

(Li et al. 2011) 

Embryonic fibroblasts MEFs bFGF Retrovirus 

(mouse OSKM) 

(Sartori et al. 2012) 

     

 

G
o
a
t 

Embryonic fibroblasts MEFs N2, B27, ascorbic acid, 

PD99023, CHIR99021, 
LIF, bFGF 

 

Lentivirus 

(human OSKM) 

(Chu et al. 2014) 

Ear fibroblasts MEFs Need continuous Dox Lentivirus 

(OSKMLN + SV40 large 

T and TERT)) 

 

(Ren et al. 2011) 

 

H
o

rs
e 

Fetal fibroblasts MEFs LIF, bFGF, CHIR99021, 
PD0325901, A83-01, 

Thiazovivin, SB431542 

(only from day 8) 

PB transposon (OSKM) (Nagy et al. 2011) 
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1.2. Aim of the thesis 

 

This thesis had two main goals: 

 

(I) The isolation of bovine MSCs from amniotic fluid at different trimesters of pregnancy 

and their characterization, in order to study a model for human medicine, since bovine 

pregnancy has the same lenght, and also to study pluripotency marker expression of these 

cells. Stemness markers were later studied also in MSCs isolated from equine amniotic 

fluid, Wharton’s jelly and umbilical cord blood as continuation of the characterization of 

these cells previously performed in our laboratory (Iacono et al. 2012a); 

 
(II) The assessment of iPSCs lines in two attractive large animal models for biomedical and 

biotechnology research such as the bovine and the swine, and the differentiation into the 

musculo-skeletal lineage of porcine iPSCs. The study of differentiation into the myogenic 

lineage in the swine is important both for its similarity in size and physiology to humans, 

and for agricultural purposes like the increase of the muscle mass of the pig itself. 
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CHAPTER 2 

Isolation, differentiation and characterization of mesenchymal stem cells isolated 

from bovine amniotic fluid at different gestational age 

 

2.1 Introduction 

The amniotic fluid (AF) represents a protective liquid layer that surrounds the foetus during 

its development. It gives mechanical support and nutrients for foetal growth. It is mainly 

composed by water and the production of AF is determined by excretion of foetal urine and 

oral, nasal, tracheal and pulmonary fluids, so AF overall composition changes with 

gestational ages (Underwood et al. 2005). Most importantly, it was discovered that AF 

contains a heterogeneous mixture of stem cell populations (AFSCs) deriving from both the 

foetus and the surrounding amniotic membrane. In the veterinary field, as in the human, AF 

contains a heterogeneous population of cells: cuboidal epitheloid (E-cells), round (R-cells) 

and spindle-shaped fibroblastic (F-cells) cells. E-cells probably derive from foetal skin and 

urine and they are lost during the first passages of culture; R-cells are supposed to originate 

from foetal membranes and trophoblasts; F-cells are generated from mesenchymal tissues 

and are supposed to be the MSC population of the AF (Klemmt et al. 2011). Some research 

groups found both populations persisting through passages, while Roubelakis and co-

workers (Roubelakis et al. 2011) reported the prevalence of round-shaped (RS) population 

over the spindle-shaped (SS). In veterinary medicine the predominant AFSCs population 

found in different species is represented by SS cells. AFMSCs generally express MSC 

markers and they are also known to express mesodermal markers like Vimentin and -

Smooth Muscle Actin (SMA) (Kaviani et al. 2001, Sartore et al. 2005). It is also 
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important to underline that human AF-MSCs have not shown tumorigenicity and they 

showed immunomodulatory properties (Yi and Song 2012), making them good candidate 

for potential therapeutic use as well as their migration potential and the expression of 

adhesion molecules in common with leukocytes like CD44, CD24, CD29 and CD18 (Burk 

et al. 2013; Kavanagh et al. 2014). The bovine is an important agricultural species with 

significant commercial value and it is also an attractive large animal model for biomedical 

and biotechnology research. Bovine pregnancy lasts about 280 days, like the human one, so 

the cow represents a good model to understand differences in cells composition among 

trimesters. The development of large animal experimental models, including cattle, may 

open alternative strategies for investigating MSCs physiology and potential application for 

human and veterinary regenerative medicine. For this reason, it could be interesting to 

identify a cell population from bovine amniotic fluid that would display a high proliferative 

ability and a longer lifespan than a normal differentiated cell line in order to allow gene 

targeting experiments and a successful use for somatic cell nuclear transfer. So the aim of 

this study was to investigate and characterize bovine AFSCs (bAFSCs) populations by 

analysing phenotype, gene expression profile, growth curves and differentiation potential 

and evaluating the AF cells yield in different gestational periods. 

 

2.2 Materials and Methods 

2.2.1 Samples harvesting and cell isolation 

All chemical were obtained from Sigma-Aldrich and plastic dishes and tubes from Sarstedt 

Inc., unless otherwise indicated. 
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Bovine amniotic fluid samples were harvested at the slaughterhouse from pregnant uteri of 

39 Holstein cows at different gestational ages. Bovine pregnancy was divided into 3 

trimesters, as done in humans (Ashwood et al. 2006), and gestational periods were 

estimated by measuring crown-rump length of the foetuses (Fig 2.1).  

 

Fig. 2.1: Gestational periods were estimated using this graph (Noden and De Lahunta, 1985) by measuting the 

crown-rump length of the foetuses.  

 

AF was collected into 50 ml sterile syringes (IMI) and transported to the laboratory at 4 °C 

within 1 h. AF samples were then diluted with Dulbecco’s Phosphate Buffer Solution 

DPBS (1:1, v/v) containing 100 IU/ml penicillin and 100 mg/ml streptomycin and 

centrifuged (Heraeus Megafuge 1.0R; rotor: Heraeus #2704; ThermoFisher Scientific Inc.) 

for 15 min at 1500 rpm. Pellets were suspended in 5 ml of culture medium (DMEM/M199) 

containing DMEM and TCM199 (1:1), 10 % (v/v) FBS (Life Technologies), 100 IU/ml 
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penicillin and 100 mg/ml streptomycin and centrifuged for 15 min at 1500 rpm. 

Supernatant was discarded and cells were re-suspended in 1 ml of culture medium and 

counted in a Neubauer chamber. 

 

2.2.2 Cell Culture and Population Doublings 

Bovine AFSCs were seeded in 25 cm2 flasks at the density of 5 × 103 cells/cm2. Cells 

were cultured in DMEM/M199 in a humidified atmosphere with 5 % CO2 at 38.5 °C. 

Different cell populations found at P0 were classified on the basis of their morphology: 

spindle-shaped cells (SS), round-shaped (RS), fibroblastoid (fi) and large and flat (LF). 

Samples which presented both SS population and RS population were defined as mixed 

samples (MX). Different morphologies are reported in the Fig. 2.2. When cultures reached 

about 80–90 % confluence, cells were dissociated with 0.25 % (w/v) trypsin solution, 

counted and re-seeded to the subsequent passage, named “Passage 1” or P1.  

Cell-doubling time (DT) and cell-doubling numbers (CD) were calculated through the 

following formulae (Rainaldi et al. 1991):  

CD = ln(Nf/Ni) / ln(2) 

where Nf is the final number of cells and Ni the initial number of cells;  

DT = CT/CD 

where CT is the cell culture time. 

Growth curves of different cell populations persisting through passages (SS, RS and MX) 
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were compared to understand if DT and CD differ in relation to the cell type.  

 

2.2.3 Adhesion and migration assay 

In order to define differences between SS and RS populations, a spheroid formation-and-

migration test was performed to evaluate differences in adhesion and migration. Cells from 

each sample type were cultured in ‘hanging drops’ (5,000 cells/drop) for 24 h, until 

spheroid formation was observed. Spheroid areas were determined, then spheroids were 

cultured under standard conditions to allow their adhesion and the migration of cells from 

the spheroids themselves (Burk et al. 2013). The migration rate was calculated after 24 h of 

incubation, comparing images taken immediately before and after this incubation period. 

The pre-adhesion dimension of the spheroids gave also information about the adhesion 

ability of the cells: spheroid area and adhesion capability are inversely proportional. The 

migration capability of both population types was also evaluated by a scratch assay (also 

known as Wound-Healing assay), as previously described (Liang et al. 2007). Briefly, at 

80–90 % confluence the cell monolayer was scraped using a p1000 pipet tip. After washing 

twice with PBS, the dish was incubated for 24 h at 38.5 °C and 5 % CO2 in a humidified 

atmosphere. Images were acquired both immediately after the tip-scratch (time 0, T0) and 

after the incubation period (last time point or time 1, T1), and the distances of each scratch 

closure were calculated by ImageJ software. The migration percentages were calculated 

using the following formula:  

[(distance at T0 − distance at T1)*100] / distance at T0  
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2.2.4 In vitro differentiation 

Bovine AFSCs were expanded in culture at P3 and then their ability to differentiate into 

mesenchymal lineages was tested. Each experiment consisted of a treated group, cultured in 

specific inducing medium, and a control group, maintained in standard culture conditions. 

For differentiation, cells were seeded at 5 × 103 cells/cm2 in 6-well plates.  

  

2.2.4.1 Adipogenic differentiation  

In order to test their ability to differentiate into adipocytes, bAFSCs were cultured in 

DMEM/M199 plus rabbit serum (15 %), dexamethasone (1 μM), 3-isobutyl-1- 

methylxanthine (0.5 mM), ITS (Insulin Transferrin Selenite, 10 μg/ml), and indomethacin 

(0.2 μM). After 3 days of culture, 3-isobutyl-1-methylxanthine was removed and after 3 

additional days dexamethasone was also removed and cells were cultured for additional 15 

days (Iacono et al. 2012a). To test adipogenic differentiation, cells were stained with Oil 

Red O. Briefly, cells were washed with PBS and then fixed with 2 % paraformaldehyde 

(PFA) for 30 min at room temperature (RT). The PFA was removed and cells were washed 

with 60 % isopropanol. Cells were finally covered with Oil Red O solution (0.3 % in 60 % 

isopropanol) to make lipid vacuoles appear red. After 30 min at RT, cells were rinsed with 

distilled water (Mizuno and Hyakusoku 2003).  

 

2.2.4.2 Osteogenic differentiation 

Osteogenic differentiation consisted of culturing cells in culture medium supplemented 
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with dexamethasone (0.1 μM), beta-glycerophosphate (10 mM) and ascorbic acid-2-

phosphate (50 μM) (Mizuno and Hyakusoku 2003). Cells were cultured in a humidified 

atmosphere of 5 % CO2 at 38.5 °C and the differentiation medium was changed every 3 

days for 21 days. Under these culture conditions, cells are expected to produce a 

mineralized matrix. To reveal it, they were fixed with 10 % formalin for 1 h at RT and then 

stained with Von Kossa staining. Briefly, formalin was removed and cells were washed five 

times with distilled water. One ml of 5 % (w/v) silver nitrate was added and cells were 

exposed to yellow light for 45 min. After that, cells were washed 5 times with distilled 

water. Calcium phosphate deposits stained black.   

 

2.2.4.3 Chondrogenic differentiation 

For the purpose to stimulate the bAFSCs to differentiate into the chondrogenic lineage, 

they were cultured in DMEM/M199 supplemented with FBS (1 %), ITS (6.25 μg/ml), 

dexamethasone (0.1 μM), ascorbic acid-2- phosphate (50 nM) and human transforming 

growth factor (hTGF)-β1 (10 ng/ml), as previously described (Kim et al. 2007; Iacono et al. 

2012a; Iacono et al. 2012b; Filioli Uranio et al. 2011). Cells were cultured in a humidified 

atmosphere of 5 % CO2 at 38.5 °C and the medium was changed every 3 days for 3 weeks. 

To assess chondrogenic differentiation, cells were fixed with 10 % formalin for 1 h at room 

temperature, then stained with Alcian Blue solution (1 % in 3 % acetic acid, pH 2.5) for 15 

min at RT. Alcian Blue stains polysaccharides like glycosaminoglycans.  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2.2.5 Flow cytometry 

Bovine AFSCs of different gestational trimester at passages 3 (P3) and P7 were 

immunophenotyped by flow cytometric analysis. Cells were fixed and permeabilised at the 

concentration of about 106 cells/ml using Reagent 1 of Intraprep Kit (Beckman Coulter), 

according to manufacturer’s instructions. As previously reported, the International Society 

for Cytotherapy declared that human MSCs must be CD73, CD90 and CD105 positive and 

CD14, CD34 and CD45 negative (Dominici et al. 2006). Flow cytometry analysis was 

performed using anti-human antibodies routinely used. Cells were labelled with the 

following monoclonal antibodies: CD105, CD45, CD90, CD44, CD34, CD14 and CD73 

(all from Beckman Coulter). To verify cross-reactivity, circulating bovine lymphocytes 

were used as control.  

 

2.2.6 Immunocytochemistry 

Cultured SS, RS and MX samples at P3 and P7 were washed with DPBS, fixed with 4 % 

PFA for 20 min at RT and then washed in phosphate buffer (PB). Cells were blocked in 

goat serum 10 % (Sigma) for 1 h and incubated overnight with primary antibodies against 

Oct4 (Abcam, ab18976, 1:50), SSEA4 (Hybridoma Bank, 1:50), and alpha-SMA (Gene 

Tex, 1:500). Cells were washed in PB2 (Phosphate Buffer with 0.2 % of bovine albumin 

and 0.05 % of saponin) and incubated with anti-mouse- or anti-rabbit- FITC conjugated 

secondary anti-bodies for 1 h. After that, nuclei were labelled using Hoechst 33342. The 

excess of secondary antibody and Hoechst was removed by 3 washes in PB2. Bovine 

blastocysts and bovine fibroblasts were used respectively as positive and negative control. 

In order to define a profile of SS and RS cells, the expression of Vimentin, N-cadherin 
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(mesenchymal markers), E-cadherin and Cytokeratin (epithelial markers) was analysed. 

The following primary antibodies were used: Vimentin clone 9 (DAKO, 1:100), N-

Cadherin (Biorbyt, 1:100), E-Cadherin (Cell Signaling Technologies #, 1:200), pan-

Cytokeratin (Chemicon international, Millipore, 1:250). With the purpose to test the cross-

reactivity of our antibodies, the following types of cells were used as positive controls: 

bovine fibroblasts for Vimentin, bovine epithelial cells for pan-Cytocheratin, and bovine 

embryos for E-cadherin and N-Cadherin. Images were obtained with a Nikon Eclipse E400 

microscope at a 40X magnification using the software Nikon NIS-Elements. Percentages of 

positive cells were obtained evaluating ratio between positive cells and total nuclei.  

 

2.2.7 Molecular characterization 

In order to evaluate differences in markers expression between the two types of bAF-cells, 

qRT-PCR for the pluripotency genes OCT4, NANOG and SOX2 was performed on SS and 

RS cells both at P3 and at P7. Gene expression in the samples was normalized on bovine 

blastocysts, used as positive control, while bovine adult fibroblasts were used as negative 

control. To test cell differentiation, the following set of genes was evaluated on SS and RS 

differentiated samples both at P3 and P7: bovine PPARγ for adipogenic differentiation, 

collagen type I (Coll I) and Osteopontin (OPN) for osteogenic differentiation and collagen 

type I and type II (Coll II) for chondrogenesis. In all the reaction 18S was used as house- 

keeping reference gene and the differentiated samples were normalized on the respective 

undifferentiated P3. The specific set of primers used is listed in Table 2.1.  
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Table 2.1: Sequence of primers used for qPCR analysis 

Gene Primer sequence FW and RV Amplicon 

(bp) 

 (Reference) 

    

b18S FW: 5′-GAATAACGCCGCCGCATCG-3′ 

RV: 5′-CGGACCAGAGCGAAAGCATTTG-3′ 

133 (Thelie et al. 2007) 

bOCT4 FW: 5′- TGCAGCAAATTAGCCACATC -3′ 

RV: 5′- AATCCTCACGTTGGGAGTTG-3 

123 (Pant and Keefer 2009) 

bNANOG FW: 5′-GTCCCGGTCAAGAAACAAAA-3′ 

RV: 5′-TGCATTTGCTGGAGACTGAG-3′ 

107 (Pant and Keefer 2009) 

bSOX2 FW: 5′-ACAGTTGCAAACGTGCAAAG-3′ 

RV: 5′-AGACCACGGAGATGGTTTTG-3′ 

114 (Pant and Keefer 2009) 

bPPAR FW: 5′-CGCACTGGAATTAGATGACAGC-3 

RV: 5′-CACAATCTGTCTGAGGTCTGTC-3′ ′ 

214 (Pant and Keefer 2009) 

bOPN FW: 5′-CCAATGAAAGCCCTGAG-3′ 

RV: 5′-TCCTCCTCTGTGGCATC-3′ 

310 (Gao et al. 2014) 

bColl I FW: 5′-AGAAGCATGTCTGGGTAGGAG-3′ 

RV: 5′-AGGATAGGCAGGCGAGATR-3′ 

358 (Gao et al. 2014) 

bColl II FW: 5′- ATCCATTGCAAACCCAAAGG -3′ 

RV: 5′- CCAGTTCAGGTCTCTTAGAG -3′ 

147 (Sutradahar et al. 2012) 

 

For RNA extraction, cells were washed with PBS, dissociated using 0.25 % trypsin solution 

and the pellets were snap-frozen in liquid nitrogen. Total RNA was extracted using the 

RNeasy mini kit (Qiagen) following the manufacturer’s instructions and it was reverse-

transcribed using iScriptTM cDNA Synthesis Kit (Bio-Rad). Reactions were conducted for 

5 min at 25 °C, 30 min at 42 °C and 5 min at 85 °C. RT-products (cDNAs) were used 



CHAPTER 2 

Bovine AF-MSCs 

    

 35 

directly in PCR reactions. Real-time PCR reactions were performed in triplicate using iQ 

SYBR Green Supermix and a MyiQ Real-Time PCR Detection System. Data were 

analyzed with the iQ Optical System Software (BioRad) with the DDct method.  

 

2.2.8 Statistical Analysis 

CDs, DTs, cells yield, mean AF volume harvested, spheroids areas and percentages of 

migration are expressed as mean ± standard deviation. Statistical analyses were performed 

using IBM SPSS Statistics 21 (IBM Corporation, Milan, Italy). Data were analysed using 

one-way ANOVA or a Student’s t-test (when comparing SS and RS populations only). For 

statistical analyses, the unique sample with the spindle-shaped morphology was cultured in 

2 replicates. Significance has been assessed for P<0.05.  

 

2.3 Results 

2.3.1 Cell yield and morphology 

It was possible to isolate cells in 25/39 samples (64 %). In 7/39 samples, harvested at the 

same time, it was not possible to isolate cells because of a bacterial contamination, 

probably due to the non-sterile conditions of the slaughterhouse. In other 7/39 samples, 

harvested from cows at the third trimester of gestation (4/7) or at the end of the second 

trimester (3/7), cells did not grow. Of the 25 samples where cells were isolated, 3 

specimens were from the first trimester (0–93 days), 19 from the second one (94–187 days) 

and 3 were from the third one (188-term of pregnancy). Mean volume of amniotic fluid 

collected was 26.7 ± 20.8 ml in the first trimester, 41.1 ± 13.9 ml in the second one and 
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34.0±5.3 ml in the third one. Mean number of cell was 3533.3 ± 1747.4 cells/ml in the first 

trimester, 1035.0 ± 1260.9 cells/ml in the second trimester and 722.2 ± 502.3 cells/ ml in 

the third one. The cell yield was significantly higher in the first trimester compared to the 

second and the third ones (P < 0.05). At passage 0, it was possible to identify 4 different 

cell subpopulations in samples from all three trimesters: spindle-shaped cells, round-shaped 

cells, fibroblastoid cells and large and flat cells (Fig. 2.2). The last 2 types of cells (fi and 

LF) were lost after the first passage and they probably derived from foetal skin and urine. 

In 1/25 sample the spindle-shaped population predominated (SS sample) whereas in 7/25 

samples (28 %) the round morphology prevailed (RS samples). In the rest of the samples 

(17/25, 68 %) both population were present, where the percentages of SS cells ranged from 

10 to 40 % (mixed samples, MX). In these samples, spindle-shaped cells were only present 

until the third or fourth passage. This heterogeneity was found in samples from all three 

trimesters.  



CHAPTER 2 

Bovine AF-MSCs 

    

 37 

 

Fig. 2.2: Different types of adherent AF-cells isolated at P0: spindle-shaped (SS) cells (A), round-shaped 

(RS) cells (B), large and flat (LF) cells (D, black arrow) and fibroblastoid (fi) cells (E, green arrow). In most 

of the samples (17/25) a heterogeneous population composed of SS and RS cells, named mixed (MX) 

population, was found (C). Magnifications: A, B, D: 20X; C, E: 10X. 

 

 

2.3.2 Cell culture and growth curve 

Undifferentiated cells were cultured until the eighth passage and total cell doubling number 

(CDs) and population-doubling times (DTs) were calculated. At P8, total CDs were 
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statistically higher (P<0.05) in the SS sample (24.9 ± 0.8) than in the MX samples (18.6 ± 

2.5) and in the RS ones (17.3 ± 4.8) (Fig. 2.3). Mean doubling time was statistically lower 

(P<0.05) for SS cells (38.4 ± 12.0 h) than MX samples (67.1 ± 25.0 h) and RS samples 

(82.9 ± 38.6 h).  

 

Fig 2.3: Cell doubling numbers of SS-, RS- and MX- populations. At P8, total CDs were statistically higher 

(P<0.05) in the SS sample than in the MX and in the RS ones. 

 

2.3.3 Migration and adhesion assay 

Both SS and RS cells formed spheroids when cultured in hanging drops. Average areas of 

the spheroids were 33138.1 ±1401.6 μm2 for the SS and 45014.8 ± 1165.8 μm2 for the RS 

populations respectively. Spheroids from SS cells were significantly smaller than from RS 

cells (P<0.05), indicating a higher adhesion capability. Average percentages of migration 

were significantly higher (P<0.05) for spheroids originated from SS cells (94.9 ± 3.0 %) 

than for the spheroids from RS samples (76.2 ± 4.5 %). The faster migration of the spindle- 

shaped population was also confirmed by the scratch test. Average percentage of migration 
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was significantly higher (P<0.05) in SS (96.9 ± 2.5 %) compared to RS (79.9 ± 2.2 %).  

 

2.3.4 Molecular characterization 

OCT4 expression was not detected both in SS and in RS (Fig. 2.4 C), there was instead a 

very weak expression of NANOG in all the samples (Fig. 2.4 B). Fibroblasts were negative 

both for OCT4 and for NANOG. SOX2 was not found in the RS population, while a weak 

expression was detected in the SS at both passages, but also in the bovine fibroblasts (Fig. 

2.4 A).  

 

Fig. 2.4: qRT-PCR for the pluripotency genes OCT4, NANOG and SOX2. Evaluation of the expression in the 

two main cell type (SS- and RS-cells) at P3 and P7. Expression was normalized to bovine blastocysts, used as 

positive control. 
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2.3.5 In vitro differentiation 

All three types of cells (SS, RS and MX) were cultured in adipogenic, osteogenic and 

condrogenic condition. To better characterize the proliferating SS and RS subpopulations, 

real time PCR was performed both for P3 and P7 undifferentiated and differentiated. 

Generally, SS cells showed a higher differentiation potential compared to RS cells and in 

MX samples was evident how SS subpopulation had a higher adipogenic and chondrogenic 

differentiation potential (Fig. 2.5 D, F). In particular, in adipogenic induced cell cultures, 

after 1 week cells started to change morphology to a more rounded configuration. After 21 

days, cells were round and showed evident lipid droplets within the cytoplasm, indicated by 

Oil Red O staining. At P3 (Fig. 2.5 A, D, G), samples of all 3 types (SS, MX and RS) 

showed an adipogenic differentiation displayed by an intense Oil Red O staining. At P7 

(Fig. 2.5 M, J, P) SS cells showed a high accumulation of lipids in the cytoplasm, while 

MX and RS cells were still stained but with less intensity. Real Time PCR however 

indicated a significative (P < 0.05) upregulation of PPARγ mRNA in both passages of SS 

and RS cells (Fig. 2.6 A, B). All cell types grown in osteogenic medium both at P3 and P7 

showed deposition of matrix-like substance that appeared positive for Von Kossa staining 

(Fig. 2.5 B, E, H). Gene expression analysis indicated an upregulation of collagen type I 

and osteopontin in both SS passages and in RS at P7, while no changes were observed in 

RS at P3 (Fig. 2.5 C, D). Cells cultured in chondrogenic medium showed, after 3 weeks, 

depositions of glycosaminoglicans, which were stained by Alcian Blue. As for adipogenic 

differentiation, also in chondrogenic one it was evident that all three populations showed a 

higher ability to differentiate under the specific culture conditions at P3 (Fig. 2.5 C, F, I), 
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while at P7 (Fig. 2.5 L, O, R) this potential was reduced in terms of glycosaminoglicans 

accumulation. Real-time PCR indicated a significative (P < 0.05) upregulation of collagen 

type I in SS cells at both passages and in RS cells only at P3 (Fig. 2.6 E, F). Also collagen 

II expression was evaluated but none of the samples showed a significant upregulation, 

even if an increasing trend was found in the differentiated ones. Negative controls for all 

the 3 differentiation lineages were cultured in regular culture medium and stained with the 

3 different methods. No positive stained cells were found (data not shown). As additional 

control, differentiation into the three lineages described before was induced on bovine 

fibroblasts and no positive cells were found (data not shown).  

 

 

 

 

Fig. 2.5: Bovine AF samples were cultured over 3 weeks both at the third. passage (from A to I) and at the 

seventh one (from J to R) under adipogenic (A, D, G, J, M, P), chondrogenic (C, F, I, L, O, R) and osteogenic 

(B, E, H, K, N, Q) medium. Adipogenic induction was verified staining intra-cellular lipid droplets with Oil 

Red O, extracellular calcium deposition produced by cells under osteogenic induction was stained by von 

Kossa and chondrogenic differentiation was proved staining glycosaminoglycans of the cartilage matrix by 

Alcian Blue. All samples (SS-, MX- and RS- ones) differentiated well at P3 into all three lineages. At P7 

onlythe SS sample kept a good differentiation into adipogenic and osteogenic lineages. RS- and MX- samples 

differentiated less into these two lineages whereas they did not show chondrogenic differentiation. 

Magnifications: All figures are 20X, except for B (10X) 
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Fig. 2.5 
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Fig. 2.6: Relative expression of markers related to differentiation lineages in both populations (RS and SS) at 

both passages (P3 and P7). In detail, PPARγ for the adipogenic differentiation (A, B), Collagene type I and 

Osteopontin for the osteogenic differentiation (C, D) and Collagene type I and II for the osteogenic one (E, F). 

The differentiated samples were normalized on the respective undifferentiated at P3. 

 

2.3.6 Flow cytometry 

All cell types were positive for CD44 and CD105, with an increasing of their expression at 

P7 for all cell populations except for SS one (Fig. 2.7). All cell types also showed cross-

reaction with CD90 and the expression of this marker increased at P7 (Fig. 2.7). Overlay 
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histograms of these flow cytometric analyses are reported in Fig. 2.8. It was not possible to 

evaluate the expression of the markers CD45 and CD73 in the bAFSCs because these CDs 

were negative also for lymphocytes (data not shown). Surprisingly, all cell populations 

showed expression of CD34 both at P3 and at P7, and the percentages reached about 50 % 

in all samples at P7 (Fig. 2.7). It is important to underline that also bovine fibroblasts and 

MSCs from bovine adipose tissue at first passages showed CD34 expression at flow 

cytometry while bovine lymphocytes did not express this marker (data not shown).  

 

Fig. 2.7: SS-, MX- and RS samples analysed for different antigens expression (CD90, CD105, CD44, CD34, 

CD14) by FACS analysis both at P3 and at P7. 
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Fig. 2.8: Overlay histograms of cytometry analysis. In black isotypic controls are represented. Empty 

histograms represent the analysis with monoclonal antibodies on cell culture. 

 

2.3.7 Immunocytochemistry 

Immunocytochemical staining of bAFSCs showed heterogeneity in the expression of 

SSEA4, an antigen commonly used as a marker for undifferentiated cells, and in the 

expression of alpha-SMA, a mesodermal marker. All cell lines did not showed expression 

of Oct4. Only samples with spindle-shaped cells showed expression of SSEA4 both at P3 

(8.0 %) and at P7 (22.0 %), with an increasing of the expression through passages (Fig. 2.9 

A, B). Mixed populations (MX) and RS lines did not express this marker (data not shown). 

Alpha-SMA was expressed in all lines in different percentages at P3:9.4% in SS (Fig. 2.9 

C), 0.9% in RS (Fig. 2.9 E) and 14.8% in MX samples (Fig. 2.9 G). In MX population is 

evident that percentages of positive cells are related to the presence of the spindle shaped 

cells (Fig. 2.9 F, G, H). At P7 only SS sample maintained and increased the expression of 
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this mesodermal marker, assessing it at 27.5 % (Fig. 2.9 D). Both RS and SS cells did not 

express cytokeratin (Fig. 2.9 M, N) and E-Cadherin was expressed in few RS cells (Fig. 2.9 

Q) but not in SS cells (Fig. 2.9 P). Vimentin was expressed by SS cells (Fig. 2.9 I) while 

RS cells expressed this mesenchymal marker in a very low percentage, around 8 % (Fig. 

2.9 J). N-Cadherin was clearly expressed in the spindle shaped population (Fig. 2.9 K) 

while in the round shaped one the expression was weaker and not present in all cells (Fig. 

2.9 L).  

 

 

 

 

 

Fig. 1.9: Expression of the embryonic stem cell marker SSEA4 in the SS sample at P3 (A) and at P7 (B). 

Expression of the mesenchymal marker alpha-SMA in the SS-sample (c), in a RS-sample (e) and in aMX-

sample (F: Hoechst staining; G: FITC staining). It is clear how in the MX-samples cells positive to the FITC 

staining (G) are the spindle-shaped ones (H). F, G and H represent the same field. Expression of the 

mesenchymal marker Vimentin in the SS-population (I) and in the RS cells (J). Absence of expression of the 

epithelial marker Cytokeratin both for RS cells (N) and for SS ones (M). Bovine epithelial cells were used as 

positive control (O). Expression of the mesenchymal marker N-Cadherin in the SS-sample (K) and in a RS 

one (L). Absence of expression of E-Cadherin both in spindle shaped cells (P) and in round shaped ones (Q). 

All images, except for F, G and H, represent the merge of Hoechst and antibody stainings. Magnification: 

40X. 
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Fig. 1.9 
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2.4 Discussion 

Stem cells isolated from amniotic fluid represent an important source of cells with 

characteristics between pluripotent and adult stem cells (Kim et al. 2007; Klemmt et al. 

2011). In the present study samples of AF have been easily collected at slaughterhouse 

from pregnant cows at different trimesters of pregnancy and nucleated plastic-adherent 

cells have been isolated, and subsequently cultured and characterized, from the most part of 

the samples processed. Difficulties in isolation were found only for AF samples harvested 

at the end of the second trimester (about 180 days of gestation) or at the third, probably due 

to the relative small volume of sampling compared to the increasing amount of AF at these 

stages of pregnancy (Brace and Wolf 1989). Furthermore, cells yield was almost threefold 

higher from samples collected in the first trimester than in the second and third, confirming 

that the ratio cells/ml decreases during pregnancy with the higher production of AF. On the 

other hand, differences about sub-populations isolated were not found among bAFSCs 

collected at different trimesters and changes in markers expression are to be associated with 

different cell populations. In fact, depending on the morphology, a heterogeneous 

population was found, as previously reported both for human amniotic fluid (Kaviani et al. 

2003; Bossolasco et al. 2006; Bottai et al. 2011; Roubelakis et al. 2011) and in the 

veterinary field (Sartore et al. 2005). The two main populations isolated that persisted 

through passages were the spindle-shaped (SS) and the round-shaped (RS), even if at 

passage 0 there were also two other populations, as found by Bottai and colleagues (Bottai 

et al. 2011) in human AF samples, classified as large and flat cells and fibroblastoid cells, 

that were lost after the first-second passage. The best-represented subpopulation in our 

bovine-AF samples was the round-shaped. This is in contrast with results obtained by two 
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research groups (Corradetti et al. 2013, Gao et al. 2014) that found less heterogeneity 

among samples and a prevalence of the spindle-shaped subpopulation.  

As shown by proliferation assay, SS cells showed a lower mean doubling time (1.6 ± 0.5 

days) compared to RS ones (3.5 ±1.6 days). MX samples, which are composed by both 

populations until the third-fourth passage, had an intermediate average DT value (2.8 ± 1.0 

days). This result suggests that the spindle-shaped subpopulation showed a rapid expansion 

in vitro, compared to the RS one. Moreover, SS subpopulation also showed a higher cell 

doubling number at P8 than the other 2 types of samples.  

SS cells also migrated significantly faster and showed a statistically higher migration 

ability, compared to RS ones, as demonstrated by the migration assay. Migration ability is 

an important feature of MSCs because of its fundamental significance for systemic 

application (Burk et al. 2013). The expression of adhesion molecules and the homing to 

injured environments are also important characteristics of MSCs (Kavanagh et al. 2014). 

Migration assay showed a significant higher adhesion capability of the SS population than 

the round shaped one, as confirmed by higher expression at P3 of CD44, a glycoprotein 

which has a role in MSCs migration (Iacono et al. 2012a). At P7 all samples expressed this 

marker, highlighting an expression of CD44 through passages. In vitro differentiation assay 

supports results obtained with human AFCSs (Perin et al. 2008) and animal AFSCs (Lovati 

et al. 2011; Dev et al. 2012; Iacono et al. 2012a; Iacono et al. 2012b; Corradetti et al. 2013). 

The choice of the three differentiation protocols (adipogenic, osteogenic and chondrogenic 

ones) was established on the basis of the values listed by the International Society of Stem 

Cells (Dominici et al. 2006). When adipogenic and osteogenic differentiations were 

induced, SS population showed at both passages a higher differentiation potential compared 
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to RS capability in terms of accumulation of cytoplasmic lipids and deposition of 

glycosaminoglycans, respectively. At mRNA level, significant upregulation of specific 

differentiation markers was found for both populations, except for the expression of 

collagen type I in differentiated RS-cells at P3, indicating a selection through passages of 

cells able to differentiate toward the osteogenic lineage. Both cell types showed 

chondrogenic differentiation with production of cartilage matrix at P3 but not at P7. 

Observing differentiation potential of the mixed sample (MX) at P3, it is possible to see 

how SS cells differentiated better than the RS type, although there were not differences 

between the two cell types at mRNA level. Roubelakis and colleagues (Roubelakis et al. 

2011) also found that human AF (hAF)-SS population showed a better chondrogenic and 

osteogenic differentiation potential compared to hAF-RS- population one. An examination 

of the immunophenotype was performed observing the expression of different surface 

MSCs markers. Since there are no bovine-specific antibodies for flow cytometry analyses, 

we used human ones, after checking for cross-reactions. Among our samples, all cell types 

had an increase in the expression of the MSC marker CD90 (Thy-1) from P3 to P7 and SS 

sample had a higher expression compared to RS and MX subpopulations at both passages. 

The other MSCs marker, CD105 (SH2 or endoglin or TGFβ1/3 receptor), increased its 

expression through passages, with the exception of the SS sample. All cell types were 

negative for the haematopoietic progenitor CD14. On the other hand, the lack of reactivity 

of bovine cells with the marker CD73 (NT5E, ecto-5′-nucleotidase) and bovine 

lymphocytes with CD45 (pan-leukocyte marker) maybe indicate that human antibodies did 

not cross-react with the corresponding bovine epitopes. It is important to underline that we 

found a percentage of positive cells for CD34 (marker for endothelial cells and 
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hematopoietic progenitors cells) in all samples. At P3 this marker was expressed in high 

percentages by SS sample while in low percentages in RS and MX populations. At P7 there 

were about 50 % of CD34+ cells in all samples. Bovine MSCs isolated from the adipose 

tissue and bovine fibroblasts were also positive for this marker (unpublished data) whereas 

bovine lymphocytes revealed a CD34- profile, as expected. Since a human antibody anti-

CD34 was used, we could not exclude an aspecific cross-reaction with bovine adult cells. 

Anyway, the CD34 antigen is expressed on hematopoietic progenitor cells of all lineages as 

well as the most pluripotential stem cells. CD34 antigen expression is highest on the most 

primitive stem cells and is gradually lost as lineage com-mitted progenitors differentiate 

(Civin et al. 1989). Moreover, Corradetti and co-workers (Corradetti et al. 2013) did not 

find this marker at RT-PCR analyses, so further investigation is necessary.  

It was proved that there is an amniotic fluid subpopulation that exhibit gene expression 

associated with pluripotency (Siegel et al. 2008; Pappa and Anagnou 2009; Antonucci et al. 

2011; Klemmt et al. 2011) so investigation for markers such as OCT4, NANOG, SOX2 and 

SSEA4 was performed. By ICC it was discovered that SS population increased the 

expression of SSEA4 through passages, so it is probably due to a positive selection of a 

SSEA4+ population. Molecular analysis showed that only SS cells weakly expressed 

NANOG whereas OCT4 and SOX2 were not expressed by both subpopulations. The lack 

of expression of the embryonic marker OCT4 was also supported by ICC analyses. This is 

in contrast with previous studies performed on bAFSCs (Corradetti et al. 2013; Gao et al. 

2014). This result is also in contrast with phenotypic characterization of AF-MSCs made by 

numerous groups in human medicine (Prusa et al. 2003; Tsai et al. 2004; Kim et al. 2007; 
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Siegel et al. 2008; You et al. 2008; You et al. 2009) and in the veterinary field (Lovati et al. 

2011; Chen et al. 2011; Filioli Uranio et al. 2011; Dev et al. 2012) but recent studies on 

human AFSCs did also not find a population positive for Oct4 (Zia et al. 2013).  

ICC investigations also showed different expression of alpha-SMA, a protein expressed by 

cells towards the mesodermal lineage. At P3 this marker was expressed by SS sample and 

by MX samples, where it was clear that this marker was expressed only by cells with a 

spindle-shaped morphology. At P7 only the SS sample showed an alpha-SMA+ profile, 

MX specimens did not express the protein and this is probably related to the absence of 

spindle-shaped cells over the fourth passage. The spindle-shaped population also expressed 

other typical mesenchymal markers such as Vimentin and N-Cadherin, as found by other 

researchers (Kim et al. 2007; Siegel et al. 2008; Bottai et al. 2011; Zagoura et al. 2013), 

while RS-cells expressed these markers in a very low percentages. Furthermore, SS cells 

did not express epithelial markers like Cytokeratin and E-Cadherin, and RS-cells expressed 

only E-Cadherin in a very low percentage, revealing that they were not epithelial cells.  

 

2.5 Conclusions 

In conclusion, both subpopulations isolated at early passages, SS and RS, showed 

expression of mesenchymal markers (CD90, CD105, CD44), a multilineage differentiation 

into mesenchymal lineages (adipogenic, osteogenic and chondorgenic ones) and average 

doubling times (DTs) comparable to human ones (Bottai et al. 2011) and to DTs of AFSCs 

from other species (Filioli Uranio et al. 2011; Iacono et al. 2012a; Iacono et al. 2012b). SS 

cells also showed a low expression of stemness markers such as Nanog and SSEA4, which 
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are expressed over P3. Thus it is likely that SS cells are the presumptive AF mesenchymal 

subpopulation because they showed stem cells characteristics in addition to mesodermal 

markers, as for other species (Sartore et al. 2005) and for humans (Kim et al. 2007). 

Although RS cells showed some mesenchymal surface markers and had a good 

differentiation potential at early passages, the SS population is the ascribable to the 

mesenchymal one. The lack (Cytokeratin) or the very low expression (E-Cadherin) of 

epithelial markers in the RS population allows to exclude that these rounded cells are 

epithelial ones, and the low expression of mesenchymal markers (N-Cadherin, Vimentin), 

whose expression increases during the Epithelial to Mesenchymal transition, or EMT 

(Eastham et al. 2007), collocate these cells in an intermediate stage. The isolation of these 

two different populations does not depend on the trimesters of pregnancy and differences 

are only ascribable to different cell types.  
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These results were published in:  

- Rossi B, Merlo B, Iacono E, Tazzari PL, Ricci F, Galli C. Isolation and characterization 

of mesenchymal stem cells from bovine amniotic fluid at different gestational ages. 

Proceedings of the ISSCR 11th Annual Meeting, Boston, Massachusetts, June 12-15 2013: 

W3066. 

- Rossi B, Merlo B, Iacono E, Pagliaro PP, Tazzari PL, Ricci F, Galli C. Bovine amniotic 

fluid mesenchymal stem cells characterization after culture in vitro. Reproduction, Fertility 

and Development, 2014, 26(1): 207-8. 

- Rossi B, Merlo B, Colleoni S, Iacono E, Tazzari PL, Ricci F, Lazzari G, Galli C. Isolation 

and in vitro characterization of bovine amniotic fluid derived stem cells at different 

trimesters. Stem Cell Reviews and Reports 2014, 10(5): 712-24. doi: 10.1007/s12015-014-

9525-0. 
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3. Molecular and phenotypical characterization of pluripotency marker expression in 

equine mesenchymal stem cells isolated from amniotic fluid, Wharton’s jelly and 

umbilical cord blood 

 
3.1 Introduction 

It is reported in literature that human foetal adnexa such as amniotic fluid (AF), Wharton’s 

jelly (WJ) and umbilical cord blood (UCB), contain a mesenchymal stem cell population 

that express a panel of pluripotency markers, such as OCT4, NANOG, SOX2 and SSEA4 

(Pappa and Anagnou 2009). In the veterinary field, results are conflicting (Iacono et al. 

2015), expecially for equine foetal MSCs (De Schauwer et al. 2011). Pluripotency markers, 

generally analyzed are the transcription factors OCT4, also known as POU5F1, NANOG 

and SOX2. These three transcription factors are the master regulators of pluripotency and 

they act in a complex network where the balance of their activation and inhibition 

maintains ESCs in the pluripotent state (Pan and Thomson 2007; Shi and Jin 2010). Several 

groups were able to identify equine OCT4+ MSCs at the protein level (Hoynowski et al. 

2007; Reed and Johnson 2008; Corradetti et al. 2011) while Guest and colleagues (2008) 

found no expression. The absence of specific antibodies for equine cells represents a big 

deal for the research in the field. Gene expression analysis at the mRNA level is a valuable 

alternative when no cross-reacting antibodies are available, although these analyses must be 

interpreted with care (De Schauwer et al. 2011).   

Considering the conflicting and confusing results reported in literature, in addition to the 

species-specificity of stemness marker expression by MSCs, the aim of this study was to 

evaluate the expression of pluripotency markers in mesenchymal stem cells isolated from 

equine amniotic fluid (eAF-MSCs), Wharton’s jelly (eWJ-MSCs) and umbilical cord blood 



CHAPTER 3 

Equine foetal MSCs 

   

 56 

(eUCB-MSCs), as a continuation of the characterization of these cells previously 

performed by our research group (Iacono et al. 2012a). 

 

3.2 Materials and Methods 

3.2.1 Sample harvesting, cells isolation and culture 

AF, WJ and UCB samples were harvested as previously described (Iacono et al. 2012a). In 

summary: AF samples were taken soon after foal or placenta membranes passed through 

vulva. Each sample was diluted 1:1 with Dulbecco’s Phosphate Buffer Solution (DPBS) 

and centrifuged for 15 min at 1500 rpm. The pellet was resuspended in 5 ml of culture 

medium containing DMEM and TCM199 (1:1), 10% (v/v) FBS (Gibco, Life 

Technologies), 100 IU/ml penicillin and 100 mg/ml streptomycin. Cells were isolated by 

carefully loading sample on 5 ml of 70% Percoll solution in a 50 ml polypropylene tube, 

centrifuging for 30 min at 25° C at 2100 rpm. The interphase was collected after aspirating 

and discarding the supernatant and it was washed 3 times in culture medium. Cells were 

then resuspended in 1 ml of culture medium and counted by haemocytometer. 

UCB was collected immediately after foaling and before the umbilical cord (UC) breaks 

spontaneously or was broken according to management protocol. Venipuncture of the 

umbilical vein was performed with a 21 guage hypodermic needle attached to a 60 ml 

sterile syringe (IMI), containing 1 ml of heparin (Eparina Vister 5000 IU/ml; Marvecs 

Pharma) as anti-coagulant. Each sample was diluted 1:1 with DPBS containing 100 IU/ml 

penicillin and was centrifuged for 15 min at 1500 rpm. Supernatant was removed and the 

pellet was re-suspended in 5 ml of culture medium. The mononuclear cell fraction was 

isolated by carefully loading sample on 5 ml of 70% Percoll solution, centrifuging for 30 
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min at 2100 rpm at 25 °C. The interphase was then collected after aspirating and discarding 

the supernatant washed with 20 ml of culture medium by centrifuging at 470 g for 10 min 

at 25 °C. The supernatant was aspirated, cells were washed twice with culture medium and 

then resuspended in 1 ml to count them by haemocytometer. 

WJ is a gelatinous substance that could be present or not at birth, because of reduction of 

the water and substances content towards the end of pregnancy (Fig. 3.1).  

 

Fig. 3.1: Wharton’s jelly is clearly visible in the equine umbilical cord. In this figures WJ is highlighted by 

black arrows.  

 

It was harvested immediately after breaking the UC from the part closest to the colt. 

Umbilical cord was rinsed by repeated immersion in DPBS and WJ was isolated, weighed 

and minced finely (0.5 cm) by sterile scissors. Minced WJ was digested by 0.1% (w/v) 

collagenase type I (Gibco, Life Technologies) dissolved in DPBS solution and sterilely 

filtered. The tissue and digestion solution were mixed thoroughly, incubated in a 37 °C 

water bath for 30 min, and mixed every 10 min. After incubation, collagenase was 

inactivated by diluting 1:1 with DPBS plus 10% (v/v) FBS. The solution obtained was 
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filtered and undigested tissue was discarded. Nucleated cells were pelleted at 1500 rpm for 

10 min, then the supernatant was discarded and the pellet was washed in culture mediun 

three times. After the last wash, cell pellet was resuspended in 1 ml of culture medium and 

cells were counted at haemocytometer. 

 

Cells isolated from 3 AF, 3 WJ and 3 UCB samples (total of 9 samples) were cultured in 

DMEM/M199 in a humidified atmosphere with 5 % CO2 at 38.5 °C. When cultures 

reached about 80–90 % of confluence, cells were dissociated with 0.25 % (w/v) trypsin 

solution, counted and re-seeded to the subsequent passage. Immunophenotyping and RT-

PCR were carried out at P3-4 of culture.  

 

3.2.2 Immunocytochemistry 

Cultured cells were washed with DPBS, fixed with 4 % PFA for 20 min at RT and then 

washed in phosphate buffer (PB). Cells were blocked in goat serum 10 % (Sigma) for 1 h 

and incubated overnight with primary antibodies against Oct4 (Abcam, ab18976, 1:50) and 

SSEA4 (Hybridoma Bank, MC-813-70, 1:50). Cells were washed in PB2 and incubated 

with anti-mouse- or anti-rabbit- FITC conjugated secondary antibodies for 1 h. After that, 

nuclei were labelled using Hoechst 33342 and the excess of secondary antibody and 

Hoechst was removed by 3 washes with PB2. Equine fibroblasts were used as negative 

control. Percentages of positive cells were obtained doing ratio between FITC+ cells and 

nuclei.  
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3.2.3 RT-PCR 

Gene expression profile was performed by RT-PCR to search for OCT4, NANOG and 

SOX2 mRNA and GAPDH was employed as reference gene. Equine blastocysts and equine 

fibroblasts were used respectively as positive and negative controls. RNA extraction was 

performed as described in Paragraph 2.2.7 for bovine AFSCs. 

Reactions were conducted for 5 min at 25°C, 30 min at 42°C and 5 min at 85°C. RT-

products (cDNAs) were used directly in PCR reactions. The 25 L reaction mixtures 

contained 10X Taq buffer, 1U HotStarTaq® Plus (Qiagen), forward and reverse gene-

specific primers (final concentration: 0.25 M). Amplification was carried out for 35 cycles 

of denaturation at 95°C for 30 sec, annealing at 55°C for 30 sec and extension at 72°C for 

45 sec. PCR products were separated on a 2% agarose gel, results of the electrophoresis 

were captured with a Gel Logic 100 Kodak Imaging System and images were analysed 

with a Kodak Molecular Imaging Software. Primers used are listed in Table 3.1 

 

Table 3.1: Sequence of primers used for RT-PCR analysis 

Gene Primer sequence FW and RV Amplicon (bp) Ref. 

 

eGAPDH 

 

FW: 5′- GTCCATGCCATCACTGCCAC-3′ 

RV: 5′- CCTGCTTCACCACCTTCTTG-3′ 

 

262 
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eOCT4 FW: 5′-CCCAGGACATCAAAGCTCTGCAGA-3′ 

RV: 5′ - TCAGTTTGAATGCATGGGAGAAGCCCAGA -3 

 

679 

eNANOG FW: 5′- GACAGCCCCGATTCATCCACCAG-3′ 

RV: 5′- GCACCAGGTCTGACTGTTCCAGG-3′ 

 

492 

eSOX2 FW: 5′- GGCGGCAACCAGAAGAACAG-3′ 

RV: 5′- AGAAGAGGTAACCACGGGGG-3 

663 
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3.3 Results 

3.3.1 Cell culture 

It was possible to culture and expand spindle-shaped plastic-adherent cells from all samples 

of AF, WJ and UCB (Fig. 3.2). Cells were cultured until P3-4 before characterization. 

 

Fig. 3.2: Equine MSCs isolated from AF (A), WJ (B) and UCB (C) at P4. Magnifications: A, B: 20X; B: 10X. 

 

3.3.2 Immunophenotyping by immunocytochemistry 

ICC analysis showed a weak expression of the embryonic stem cells antigen SSEA4 in 

eAF-MSCs (14.8 ± 9.5 %), eWJ-MSCs (8.9 ± 2.6 %) and eUCB-MSCs (7.1 ± 4.8 %). In 

Fig. 3.2 results for one sample of each tissue are reported. 

All samples showed no nuclear expression of OCT4 (Fig. 3.3 B, D, F) but also the positive 

control did not show a strong nuclear expression (Fig. 3.3 H), so the antibody did not cross-

react with equine cells and it is clear that there is an aspecific cytoplasmic binding, very 

strong in the negative control (Fig. 3.3 J). For this reason, we further investigated mRNA 

profile. 
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Fig. 3.3: Expression of the embryonic stem cell marker SSEA4 at P3-4 in AF (A-B), WJ (C, D) and UCB (E, 

F). The first coloumn (A, C, E) represents Hoechst staining of the same fields of the pictures on the right (B, 

D, F). Here are reported, as example, pictures from 1/3 sample for each MSCs source. Magnification: 40X. 
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Fig. 3.4: Expression of the key pluripotency regulator OCT4 was evaluated at P3-4 in AF (A-B), WJ (C, D) 

and UCB (E, F). The first coloumn (A, C, E, G, I) represents Hoechst staining of the same fields of the 

pictures on the right (B,D, F,H, J). Here are reported, as example, pictures from 1/3 sample for each MSCs 

source. An equine blastocyst was used as positive control to test the antibody (Hoechst: G; FITC: H) while 

equine fibroblasts were used as negative control (Hoechst: I; FITC: J). Images with the FITC filter were taken 

with the same time exposure. Magnification: 40X. 
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3.3.3 Molecular characterization by RT-PCR 

RT-PCR demonstrated no expression of NANOG and SOX2 in all samples and some 

samples demonstrated a weak expression of OCT4, also weakly present in fibroblasts (Fig. 

3.5). 

 

Fig. 3.5: Gene expression profile of the stemness markers OCT4, NANOG and SOX2 in all three samples 

from each source of equine MSCs analyzed. Equine balstocysts were used as positive control (K+) and equine 

fibroblasts as negative (K-). GAPDH was used as internal control. 

 

3.4 Discussion 

Isolated cells from equine foetal adnexa showed a subpopulation positive for the 

pluripotency markers SSEA4. NANOG and SOX2 markers were not detected, unlike human 

AF-MSCs (Klemmt et al. 2011) and human WJ-MSCs (Fong et al. 2007).  

Weak expression of OCT4 found by RT-PCR could be related to the expression in a low 

percentage of cells or to a low expression in all cells. On the other hand, at least six OCT4 

pseudogenes are described to date and this implies that the expression of this marker at the 

gene level should be performed using variant specific primers (Zuk 2009). Further 

characterization at a protein level with an appropriate antibody will be also necessary. 
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3.5 Conclusion 

Equine MSCs isolated from foetal sources, previously characterized by our research group 

(Iacono et al. 2012a) through flow-cytometry analysis for MSCs markers expression 

(CD44+ CD90+, CD105+) and lack of expression of hematopoietic markers (CD14-, 

CD34-) and for their multipotent mesodermal potential (adipogenic, osteogenic, 

chondrogenic), were here studied to understand their stemness features. From our results, 

we cannot assert that equine MSCs are a source of cells expressing the key regulators of 

pluripotency.  

 

These results were published in: 

Rossi B, Merlo B, Iacono E, Colleoni S, Galli C. Stemness features in mesenchymal stem 

cells from equine amniotic fluid, Wharton’s jelly and umbilical cord blood. Atti del 26° 

Convegno Annuale dell'Associazione Italiana di Colture Cellulari (ONLUS-AICC) - 4th 

International Satellite Symposium AICC–GISM, Brescia, Italy, 20-22 novembre 2013: 50.  
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4. Production of induced pluripotent stem cells from bovine adult fibroblasts (biPSCs) 

 

4.1 Introduction 

Since the pioneering work of Takahashi and Yamanaka in 2006, the generation of 

pluripotent stem cells from livestock animals has started to be attempted hardly because of 

their importance in world food supply, as meat and dairy products, and because they 

represent also a good model for biomedical and clinical research. The initially generation of 

iPSCs in mice and humans was then extended to the production of iPSCs from 

agriculturally important species, including cow, sheep, and pig (Paragraph 1.1.3). Among 

these, the bovine has a pivotal economic importance in the livestock industry and a few 

research groups were able to generate bovine iPSCs lines until now. The generation of 

robust bovine pluripotent stem cell lines may allow complex genetic manipulations, 

including gene knockin and knockout technology (Sumer et al. 2011). Bovine iPSCs have 

been generated from fetal fibroblasts and skin fibroblasts by retroviral transduction, 

lentiviral transduction and virus-free polypromoter vector. Transcription factors cloned 

from cow, human or the combination of human and pig have all been used (Paragraph 

1.1.3, Table 1.1). In all these works biPSCs were culture on MEFs. iPSCs generated by 

OKSM (bovine or human) were not stable and could only be passaged 6 times (Han et al. 

2011). 

The aim of this project was to induce pluripotency in bovine adult fibroblasts following the 

protocol used and standardized for human iPSCs at Istituto Clinico Humanitas (Rozzano, 

Milano, Italy), where the most part of this work was carried out. 
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4.2 Materials and Methods 

4.2.1 Bovine fibroblasts reprogramming and culture  

Bovine adult fibroblasts were cultured in DMEM/M199 supplemented with 10 % FBS in a 

humidified atmosphere with 5 % CO2 at 38.5 °C. They were transfected between P1 and 

P3. After viral transduction, fibroblasts were cultured in Nutristem (Life Technologies) 

with the addition of 100 ng/ml bFGF for approximatively 3 weeks on matrigel-coated 

dishes in a feeder-free condition in a humidified atmosphere with 5 % CO2 at 37°C. After 

the first picking, colonies were propagated in Essential 8 medium (Life Technologies).  

Lentivirus was produced by transfecting HEK293 cells with a human STEMCCA Cre-

excisable constitutive polycistronic (OCT4, KLF4, SOX2 and C-MYC) vector and with the 

lentiviral packaging vectors (tat, rev, gag/pol, Vsv-g). Supernatant was collected by 

ultracentrifugation (20200 rpm at 4°C) and bovine fibroblasts were infected overnight. 

Experimental outline of transduction and culture is shown in Figure 4.1 and a timeline of 

biPSCs production attempt is reported in Figure 4.2. 

 

 

 

Fig. 4.1: (1) HEK293T cells were 

transfected with a 48h of incubation 

with a human STEMCCA Cre-

excisable constitutive polycistronic 

(OSKM) vector and with the 

lentiviral packaging vectors. 2) Virus 

were used to infect bovine fibroblasts 

overnight and (3) when colonies with 

an ESCs-like (morphology started to appear, they were picked and expanded (4) in order to create subclones 

(modified from http://en.wikipedia.org/wiki/Induced_pluripotent_stem_cell). 
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Fig. 4.2: Schematic diagram of transduction protocol for the generation of biPSCs. 

 

4.2.2 Karyotyping 

Bovine iPSCs were prepared for karyotype analysis by incubation in medium containing 

0.1 mg/ml KaryoMAX® Colcemid™ (Gibco, Life Technologies) for 5 hours. Cells were 

trypsinized, resuspended in 0.075 M KCl, incubated at 37°C for 30 min, and fixed in 3:1 

methanol:acetic acid at room temperature for 5 min. Correct chromosome arrangement of 

bovine fibroblasts used for reprogramming was evaluated by using CytoVision® software. 

 

4.3 Results 

4.3.1 Cell culture and fibroblasts karyotyping 

Karyotype analysis of bovine fibroblasts before transduction (Fig. 4.3) showed that they 

had a normal karyotype: 60, XY (Fig. 4.4). 

 

4.3.2 Reprogramming 

Putative biPS colonies, observed between 14 to 21 days post-transduction, were manually 
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picked and re-plated onto matrigel-coated dishes. 

Bovine adult fibroblasts were transduced with retrovirus encoding for human OCT4, 

SOX2, KLF4, and c-MYC, four transcription factors that were sufficient to reprogram 

human (Takahashi et al. 2007), monkey (Liu et al. 2008), rat (Liao et al., 2009), and 

porcine cells (Esteban et al., 2009; Ezashi et al., 2009; Wu et al., 2009; West et al, 2010; 

Hall et al 2012; Rodriguez et al. 2012). During the first transduction, fibroblasts were not 

able to survive so it was not possible to see the formation of colonies. After the second and 

the third transduction, despite the identification of putative iPSCs colonies 2-3 weeks after 

transduction, these colonies could not be expanded beyond the first passage because they 

were not able to proliferate. 

 

Fig. 4.3: Bovine adult fibroblasts at P2 of culture. 

 

Fig. 4.4: Bovine adult fibroblasts were karyotyped and they showed normal male karyotype of 60 

chromosomes. 
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4.4 Discussion 

In this work the generation of biPSCs in a feeder-free condition by using a lentiviral 

polycistronic vector carrying OSKM factors was attempted but this protocol failed to yield 

biPSCs clones that could be expanded beyond the first passage. It is possible that the 

feeder-free culture conditions were not suitable for biPSCs, so it is worth to try to culture 

them on feeders for the first passages (around 10), and then switch to the culture on 

matrigel-coated dishes. Moreover, there could be problems related to the factors transfected 

or to the reprogramming type. The successful generation of biPSCs reported in literature 

were performed by retroviral transduction of the OSKM factors plus NANOG (Sumer et al. 

2011) and by transduction of six bovine transcription factors (Han et al. 2011). It was also 

reported that only by using human or bovine OKSM, reprogramming seems to be 

incomplete and none of the colonies could be expanded beyond passage six (Cao et al. 

2011). But in our case, the problem was related to the very first steps, because we were not 

able to go beyond the first passage, so it is more ascribable to some culture condition. First, 

the adaption of iPSCs to a culture without MEFs was only achieved for human iPSCs and 

porcine iPSCs by only one research group (Montserrat et al. 2011; Montserrat et al. 2012). 

It is possible that these cells need to be cultured on feeder-layers for the first passages (until 

P10, for example), and then adapted to a feeder-free culture. Second, the use of commercial 

media for human iPSCs could not be the best choice for bovine cells. Third, based on the 

apparent inefficiency of OSKM cocktail to induce pluripotency in the bovine, it is possible 

to assert that species-specific requirements exist regarding the transcription factors 

necessary for a complete reprogramming in bovine somatic cells. 
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4.5 Conclusions 

Undoubtedly, one of the major problems regarding production, isolation, and 

characterization of pluripotent cells from ungulates is the lack of understanding of the 

species-specificities in the development process during the very early stages post-

conception (Malaver-Ortega et al. 2012). Our aim was to generate a line of biPSCs by using 

the standardized protocol (commercial media, feeder-free culture) routinely used at Istituto 

Clinico Humanitas, where biPSCs were generated, but it did not seem to work. Direct 

extrapolation from the knowledge accumulated from human and mouse work could be 

misleading for new advances in the field for livestock (Malaver-Ortega et al. 2012), so it is 

necessary to adapt and develop techniques and criteria to the particularities of bovine 

species. 
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5. Stimulus Triggered Acquired Pluripotency (STAP) in porcine embryonic 

fibroblasts: Could pH variation really induce pluripotency? 

 

5.1 Introduction 

After the discover of iPSCs in 2006 (Takahashi and Yamanaka), represented by the 

possibility to induce pluripotency by transduction of pluripotency genes, the current trend is 

to simplify the generation of iPSCs minimizing genetic manipulations (Masuda et al. 2013), 

for example incorporating the use of small chemical molecules (Paragraph 1.1.3). Induction 

of pluripotency by reprogramming techniques presents drawbacks, like low reprogramming 

efficency (Liao et al. 2009), time consuming protocols and high costs. In this contest, at the 

beginning of 2014, a group of japanese scientists at RIKEN institute asserted that, simply 

bathing somatic cells in a mild acid solution, they could be reprogrammed to become 

pluripotent. Murine CD45+ splenocytes were chemically stressed in acidified HBSS (pH 

5.7) and then cultured in DMEM-F12 for 25 min supplemented with B27 and LIF up to 7 

days, observing that the procedure activated the OCT4 promoter 2 days after the treatment. 

The authors named this procedure “Stimulus Triggered Acquired Pluripotency (STAP)” 

(Obokata et al. 2014a) (Fig. 5.1). 

 

Fig. 5.1: Schematic summary of low-pH pluripotency induction (from Obokata et al. 2014a) 

 

In a second pubblication, STAP cells were demonstrated to be able to form all organs and 
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tissues in chimeric embryos, and also they asserted that STAP cells could contribute to 

placenta, highlightening not only their pluripotency, but also totipotency (Obokata et al. 

2014b) (Fig. 5.2). 

 

Fig 5.2: Unlike iPSCs, that are able to self-renew and contribute to all the cell types in a developing embryo 

but not the placenta, STAP stem cells, when cultured in a medium that promotes the growth of trophoblast 

stem cells (a placenta-generating cell type), STAP cells acquire trophoblast-like characteristics, so they can 

contribute to the placenta (Smith 2014). 

 

These astonishing findings led us to try the chemical induction of pluripotency in porcine 

somatic cells. If the production of STAP stem cells could be reproduced in other species, 

human and large animal models, in the easy and efficient way as reported, it would 

dramatically increase the production, and consequently the avaiability, of patient-derived 

pluripotent cells for use in research for both biomedical and agricultural purposes. The pig 
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is a particularly desirable species to create pluripotent cell lines not only for the livestock 

industry, but also because it has a huge value as biomedical model in transplantation, 

considering its longer lifespan compared to laboratory mice, and organ size and physiology 

more similar to human. (Brevini et al. 2007; Telugu et al. 2010). The pig has already 

yielded iPSCs by several research groups, even though through the use of the less desirable 

viral approach, so the application of a virus-free method in this species could be of big 

interest. The ability to provide iPSC from animals with valuable traits would provide a 

permanent source of cells for clonal propagation that would likely avoid the inefficiencies 

and the problems arising from somatic cell nuclear transfer (SCNT), where many of the 

cloned offspring die or are developmentally abnormal even if they survive to term (Ezashi 

et al. 2009). 

The aim of this study was to attempt to replicate the production of STAP stem cells 

following their most updated protocol (Obokata et al. 2014c) starting from porcine 

embryonic fibroblasts (PEFs) instead of splenocytes, in order to study a new way to induce 

pluripotency in the pig model without any molecular modification. 

 

5.2 Materials and Methods 

5.2.1 Cell culture 

Embryonic fibroblasts isolated from male pig embryos were treated with low-pH medium. 

Before the acid treatment, PEFs were cultured and expanded in DMEM (Gibco, Life 

Technologies) supplemented with 10% FBS (Gibco, Life Technologies). To collect them, 

PEFs were trypsinized (0,25% trypsin, Gibco, Life Technologies), centrifuged at 1000 rpm 

for 5 min and counted at haemocytometer. 
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5.2.2 Acid treatment 

Around 2,4 - 3 millions of PEFs were treated with mild-acidic HBSS medium as described 

by Obokata et al. (2014c), titrating pH to 5.7 with HCl. pH was measured by a calibrated 

pH meter and titrated when cells have already been in the acid-medium, in order to reveal 

the real pH of the suspension. The acid bath was performed for 25 min at 39 °C. As 

negative control, 1 million of PEFs was kept in HBSS medium at 39 °C for 25 min, without 

modifying pH. The acid-treated cells and the related control were centrifuged at 1000 rpm 

for 5 min. Since these treated cells were not able to grow up, the experiment was repeated 

other two times with some modifications about the time of acidic-exposure (15 min instead 

of 25 min). Like for the first sample, 1 million of PEFs were treated in the same way, 

except for the acid-bath, as negative control (Fig. 5.3). Pellets were resuspended in DMEM-

F12 medium supplemented with 1,000 U LIF (Sigma) and 2% B27 (Gibco, Life 

Technologies) and plated onto non-adhesive culture plates (Nunc).  

 

 

Fig 5.3: The low-pH treatment was carried out three times. Firstly following the time of exposure reported by 

Obokata and colleagues (25 min), then other two times decreasing the acid exposure to 15 min. Two negative 

controls were performed using the same medium, except for the addition of HCl, and pH was evaluated. 
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5.2.3 STAP stem cells conversion and culture 

Obokata and colleagues reported that STAP cells do not proliferate, but subsequent 

treatment with pluripotency-promoting media produces STAP stem cells, which have the 

same properties as iPSCs. To establish STAP stem cell lines, STAP cell clusters were 

transferred to adrenocorticotropic hormone (ACTH)-containing medium. ACTH (1-24) is 

available from American Peptide and other companies. The composition of the medium 

was GMEM, 15% Knockout Serum Replacement (KSR, Gibco, Life Technologies), 1% 

non-essential amino acids (NEAA), 1% Sodium Pyruvate, 0.1 mM -mercaptoethanol, 

1000 U/ml LIF, and 10 μM ACTH (American Peptide). Several clusters (more than a dozen 

clusters per well of 96-well plates) were seeded on mouse embryonic fibroblasts (MEFs). 

After 7 days of culture, cells were subjected to a classic trypsinization method (trypsin 

0,05%) and plated in ESC maintenance medium containing 20% KSR. Alkaline 

phosphatase (AP) activity was analyzed with the AP kit (Sigma) following the 

manufacturer’s instructions during the ACTH-medium culture (day 2) and before the 

passage in ESC maintenance medium. The protocol is summarized in Fig. 5.4. 

 

Fig 5.4: Schematic protocol for porcine STAP and STAP stem cells production.  
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5.3 Results 

5.3.1 Low pH exposure and cell culture 

In the first experiment (25 min treatment), after the hydrocloridic acid treatment, cells were 

centrifuged and it was possible to see a lot of dead cells in the supernatant. Also Obokata 

and colleagues noticed high cell death and they asserted that this was due to the fact that the 

HCl-treatment stresses cells to the point of death. During the suspension culture in DMEM-

F12, supplemented with B27 and LIF, it was possible to observe the formation of clusters, 

both in the treated sample and in the control (Fig. 4-5). The clusters showed a little growth 

during the week of suspension culture but there were not differences between treated and 

not-treated samples. Although Obokata and colleagues noticed cell death either, we tried to 

decrease the time of exposure to the acid bath (15 min) and we repeated the experiment 2 

times. It was still possible to see a lot of dead cells in the supernatant (low-pH solution), but 

we plated precipitated cells anyway. Both in the samples and in the control, it was possible 

to see clusters as we saw during the first experiment, without any difference (Fig. 5.5). 

 

5.3.2 STAP stem cells conversion and culture 

Porcine STAP cells were induced into a proliferative state by culturing them in a medium 

containing (ACTH) on MEFs feeder layer. During this second step of the protocol, cells 

were not able to show growth (Fig. 5.6) and, moreover, they were negative to the AP assay 

both on day 2 and on day 7 (data not shown). 
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Fig 5.5: During the suspension culture in the STAP medium, it was possible observe clusters both during in 

the samples treated for 25 min (A), and in the samples HCl-stressed only 15 min (B, C). There were no 

differences among samples, as well as no differences were observed with both controls (D, E). 

 

 

Fig. 5.6: In both the acid treatments (A, 25 min; B, C, 15 min) it was not possible to see cell growth during 

the seven days in ACTH-medium, so it underlines that the conversion to STAP-stem cell did not work. 

Moreover, neither control samples (D, E) were able to grow under this medium. 
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We kept cells in ACTH-medium 7 days and then they were passaged in ESC maintenance 

medium, although it was not possible to see them grow and they were AP negative.  

For each treated sample it was possible to see a very few colonies (around 1-2 per sample) 

but they were not able to proliferate and cells seemed to die (Fig. 5.7). 

 

 

Fig. 5.7: Also in ESC maintenance medium cells were not able to grow and proliferate and the few putative 

colonies attended in each sample (A, B and C) did not increase in diametre and they seemed to die. Controls 

cells (D, E) were not able to survive too. 

 

5.4 Discussion  

In 2013 it has been reported the generation of mouse iPSCs cells using a cocktail of seven 

chemical molecules without any genetic manipulation (Hou et al. 2013). These intersting 

findings have been strengthened by astonishing results of two papers published on Nature 

at the beginning of 2014 by Obokata and colleagues (2014a, b). As described before, this 

research group asserted that they were able to activate the Oct4-GFP transgene in CD45+ 
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murine splenocytes, isolated from Oct4-GFP neonates, by a chemical stress made by a 

treatment with hydrocloric acid only. They called these cells “STAP cells” and they 

asserted that these cells, when injected into host blastocysts, were able to partecipate to the 

development of all tissues and organs, placenta included, giving to these cells not only 

features of pluripotency, but also totipotency. These astonishing findings lead us to try to 

replicate immediately STAP protocol on porcine somatic cells. The possibility to induce 

pluripotency in somatic cells without any genetic modification and in a very cheap way 

made us interested on this protocol. Simultaneously to our study, many research groups 

have started to debate about the truthfulness of Obokata’s papers because several 

laboratories failed when they tried to replicate the protocols, and one group reported that 

they were not able to produce STAP stem cells from murine neonatal splenocytes or lung 

fibroblasts using the acid-based treatment (Tang et al. 2014). 

 

5.5 Conclusions 

According to our results, low pH treatment is not an efficient external stimulus for inducing 

pluripotency in porcine foetal fibroblasts. The clear thing is that the method to produce 

STAP cells is not as simple and reproducible as it has been reported, and this is underlined 

by the fact that Obokata was later accused of misconduct and the paper was retracted. This 

fact is used as an example to highlight the importance of trust and repeatability of the 

protocols in biological science (Lancaster 2015). Despite these events, easily obtainable 

pluripotent stem cells are highly sought after and the study of transgene-free protocols to 

induce pluripotency in somatic cells represents the future of this field. 
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6. Production of porcine induced pluripotent stem cells (piPSCs) doxycycline-

dependent from porcine embryonic fibroblasts 

 

6.1 Introduction 

Since the acid-bath treatment turned out to be an insufficient method to induce pluripotency 

in porcine fibroblasts, we focused again on the classic strategy, namely ectopic expression 

of reprogramming genes in somatic cells by the use of lentiviral vectors. As previously 

explained in Chapter 5, the pig has been widely used as a model for preclinical studies 

because of its similarities in size and physiology to humans and for reasons due to its 

agricultural and economic interest. 

Here we induced pluripotency by a doxycycline-inducible lentiviral vector previously used 

to generate piPSCs (Rodriguez et al. 2012). The use of tetracycline- or doxycycline-

regulated expression of transgenes is one approach considered for silencing the transgenes 

effectively that has already been applied in the pig (Wu et al. 2009; Hall et al. 2012; 

Rodriguez et al. 2012), but on the other hand the withdrawal of doxycycline results not only 

in the expected loss of exogenous gene expression, but also in the loss of the ability to 

proliferate and maintain pluripotency in vitro, giving an incomplete and unstable 

reprogramming (Hall et al. 2012). Since our final aim was represented by the differentiation 

of piPSCs into the myogenic lineage (Chapter 7), we decided to use a doxycycline-

inducible vector to ease the differentiation program by the withdrawal of doxycycline.  

 

6.2 Materials and Methods 

6.2.1 Porcine embryonic fibroblasts reprogramming and culture 
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Porcine embryonic fibroblasts (PEFs) were cultured in DMEM supplemented with 10% 

fetal bovine serum (FBS) and containing also 1% glutamine, 1% penicillin/streptomycin, 

1% nonessential amino acids and 0.1 mM -mercaptoethanol. Induced pluripotent stem 

cells were generated from PEFs at P3. They were plated onto gelatinized dishes (0.1% 

porcine skin gelatin, Sigma) at a density of 0.1 million cells per 9.6 cm
2
 and they were 

infected with virus containing-medium overnight. Lentiviruses were produced by 

transfecting HEK293 cells with doxycycline inducible FUW-tetO vectors (Addgene), 

encoding the human cDNA sequences of the four transcription factors OCT4, KLF4, SOX2 

and C-MYC plus FUW-M2rtTA (Addgene), as previuosly described (Rodriguez et al. 

2012). The media containing the 4 factors and FUW-M2rtTA viruses were collected 48h 

after transfection and were pooled in equal volume, filtered through a 0.45 mm filter and 

supplemented with 4 mg/mL polybrene (Sigma). PEFs were passaged 48 h after 

transduction and cultured in KO-DMEM containing 20% Knock-out serum replacement 

(KSR) supplemented with 20 ng/ml bFGF (Peprotech) and 1 g/mL doxycycline (Dox, 

Sigma) (ESC medium). Between 11 and 19 days after Dox induction, colonies were 

mechanically picked by a 25 gauge 1 inch needle and plated onto feeder layers of MEFs 

mitotically inactivated by mitomycin C treatment. We selected colonies with a well defined 

edge and with a translucent light-refractive appearance, composed by cells showing a high 

ratio nucleus/cytoplasm, criteria used for identifying iPSCs (Wakao et al. 2012). piPSCs 

cells were passaged every 4-5 days and the timeline is summarized in Fig. 6.1 
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Fig. 6.1: Overview of the reprogramming protocol aimed to the production of piPSCs. 

 

6.2.2 Alkaline Phosphatase assay 

Alkaline phosphatase (AP) activity was analyzed with the AP kit (Sigma) following the 

manufacturer’s instructions. AP activity was checked both during the picking period, in 

order to understand which morphology was equivalent to AP positive colonies, and through 

passages to evaluate if cells were able to maintain AP activity.  

 

6.2.3 Embryoid Bodies assay 

We attempted to assess the ability of piPSCs to differentiate in vitro by producing 

embryoid bodies (EBs). EBs were prepared from piPSCs cells using the hanging drop 

method. Briefly, piPSCs cells were collected by StemPro® Accutase® (Gibco, Life 

Technologies) and counted at haemocytometer before preparing 30 l hanging drops at a 

density of 250 cells/EB. EBs were subsequently allowed to adhere and grown out under in 

vitro differentiation conditions. The differentiation medium consisted of DMEM 

supplemented with 10% FBS, 1% glutamine, 1% penicillin/streptomycin, 1% nonessential 

amino acids and 0.1 mM -mercaptoethanol. Aggregated EBs were transferred to non-

adherent dishes after 4 days. After 10 days, EBs were plated into matrigel-coated plates and 
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cultured for up to 22 days, when cells were collected for further molecular analysis.  

 

6.2.4 Immunocytochemistry 

Cells were fixed in 2,5% PFA, permeabilized with 0.1% Triton X-100 in PBS and blocked 

in 5% BSA in PBS. Pig iPSCs cells incubated with SSEA1-4 and TRA1-60 antibodies were 

not permeabilized. The following primary antibodies were incubated overnight at 4°C: 

NANOG (1:300, Peprotech), OCT4 (1:100, Santa Cruz Biotechnology), SOX2 (1:100, 

Santa Cruz Biotechnology, SSEA1 (1:50; Hybridoma bank), SSEA4 (1:50; Hybridoma 

bank), TRA1-60 (1:50; Hybridoma bank), all in 5% BSA in PBS. After three washes, cells 

were transferred to the appropriate secondary antibody and incubated for 1 h at RT, 

followed by two washes in PBS + 5% BSA. Cells were mounted in Vectashield with DAPI 

(49-6-diamidino-2-phenylindole, Vector Laboratories). 

 

6.2.5 RT-PCR 

RNA extraction was carried out using NucleoSpin® RNA kit (MACHEREY-NAGEL) 

following the manufacturer’s instructions. RNA reverse transcription was performed using 

Omniscript synthesis kit (Qiagen) and PCR was performed with ReadyMix (Sigma-

Aldrich) and 0.4 uM of each primer, amplyfing 10 ng of cDNA. Primers used are listed in 

Table 6.1. RT-PCR thermal profile included an initial step of 95°C (5 min), followed by 40 

cycles of 30 sec at 95°C, 30 sec at 60°C and an extension step of 30 sec at 72°C. PCR 

products were run in 1.5% agarose gel to determine the amplicon size. 
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Table 6.1: List of the primers used. 

 

Gene Primer sequences FW and RV Amplicon 

(bp) 

Accession number or 

(Reference) 

GAPDH FW: 5’- GGGCATGAACCATGAGAAGT – 3’ 162 AF017079.1 

 RV: 5’- GTCTTCTGGGTGGCAGTGAT – 3’ 

 

  

OCT4 FW: 5’- GCAAACGATCAAGCAGTGA – 3’ 201 NM_001113060 

 RV: 5’- GGTGACAGACACCGAGGGAA – 3’ 

 

  

NANOG FW: 5’- TTCCTTCCTCCATGGATCTG – 3’ 214 DQ447201 

 FW: 5’- ATCTGCTGGAGGCTGAGGTA – 3’ 

 

  

SOX2 FW: 5’- AAGAGAACCCCAAGATGCACAACT – 3’ 219 TC208722 

 RV: 5’- GCTTGGCCTCGTCGATGAAC – 3’ 

 

  

KLF4 FW: 5’- CCATGGGCCAAACTACCCAC - 3’ 154 EU669075.2 

 RV: 5’- TGGGGTCAACACCATTCCGT - 3’ 

 

  

STELLA FW: 5’- CTGAGTAGGTTGAGCCCACA – 3’ 281 AJ656181.1 

 RV: 5’- CCAAAAGAGGCAAAACCTGA – 3’ 

 

  

FGF5 FW: 5’- GGAGCAGAGCAGCTTTCAGT – 3’ 170 ENSSSCG00000009253 

 RV: 5’- GGAGCAGAGCAGCTTTCAGT – 3' 

 

  

CARDIAC FW: 5’- CAGGTATTGCTGATCGCATGCA – 3’ 201 TC270296 

ACTIN RV: 5’- ATTTGCGGTGGACGATGGA – 3’ 

 

  

TYROSINE 

HYDROX. 

FW: 5’- GTCTCGGACGAGGAAATTGA – 3’ 

RV: 5’- CGAAGTAGACGGGCTGGTAG – 3’ 

 

226 TC298649 

 

NESTIN FW: 5’- TACCTGGAAGCGGAAGAGAA – 3’ 201 TC295480 

 RV: 5’- CTGATCCAGGTCTGCCTTGT – 3’ 

 

  

GATA4 FW: 5’- AGATTCCTGCATGGACTTGG – 3’ 

RV: 5’- CTCAACTGGAAAGGCCTGAG – 3’ 

 

234 TC338844 

 

FUW- hOCT4 FW: 5’- CCCCTGTCTCTGTCACCACT – 3’ 148 (Rodriguez et al. 2012) 

 RV: 5’- CCACATAGCGTAAAAGGAGCA – 3’ 

 

  

FUW- hSOX2 FW: 5’- ACACTGCCCCTCTCACACAT – 3’ 122 (Rodriguez et al. 2012) 

 RV: 5’- CATAGCGTAAAAGGAGCAACA – 3’ 

 

  

FUW- hKLF4 FW: 5’- GACCACCTCGCCTTACACAT – 3’ 137 (Rodriguez et al. 2012) 

 RV: 5’- CCACATAGCGTAAAAGGAGCA – 3’ 

 

  

FUW- hCMYC FW: 5’- CAGCTACGGAACTCTTGTGC – 3’ 125 (Rodriguez et al. 2012) 

 RV: 5’- CCACATAGCGTAAAAGGAGCA – 3’   
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6.3 Results 

6.3.1 Generation of a Doxycycline dependent porcine iPSCs line 

ESC-like colonies started to appear only 4 days following transduction (Fig. 6.2 A, B). 

Twenty colonies were isolated from days 11 to 19 and cultured independently in order to 

generate different cell lines. During these days it was possible to identify colonies with a 

thick center and a well defined edge with cells showing a high ratio nucleus/cytoplasm 

(Fig. 6.2 C, D). 

 

Fig. 6.2: Four-five days after transduction it was possible to observe small colonies with an ESCs-like 

morphology (A, B: 10X). Colonies grew very fast showing a very thick center (C, day 10: 10X) and cells at 

the edge with a ratio nuclei/cytoplasms around 1 (D, day 10, 20X). 

 

Colonies were strongly positive to AP at day 11 (Fig. 6.3 A-D) while it was almost totaly 
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lost at day 19, when colonies started to lose defined edge and cells started to die (Fig. 6.3 

E-F).  

 

 

Fig. 6.3: Colonies were passaged between day 11 (A: 10X; B: 20X) and day 19 (E, F: 10X), picking only the 

homogeneous external part of the colonies and avoiding the thick center. In parallel expression of AP was 

evaluated to understand which kind of colonies were AP
+
: strong positive colonies were found on day 11 (A: 

1.6X; B: 5X) while no positive colonies were found on day 19 (G: 1.6X; H: 0.71X), so no colonies were 

picked after this day. 
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In order to expand subclones, 20 colonies were picked and one line passaged on day 12 

showed homogeneous colonies with a very defined border, a high nuclei-cytoplasm ratio 

and a phase-bright flat aspect (Fig. 6.5), so it was selected for further culture and in-depth 

analysis (piPSCs#1). Also other two lines showed homogeneous colonies but with a less 

defined edge, whereas the other 17 colonies picked were too thick and they did not 

proliferate, until death (Fig. 6.4). 

 

Fig. 6.4: Among 20 colonies picked to expand subclones, two lines showed colonies with a defined edge 

composed by cells with a high ratio nuclei/cytoplasm (A: 10X; C: 20X) while 17 subclones appeared very 

thick and they were not able to grow up (B, 10X; D; 20X). 

 

Porcine iPSCs#1 were grown until passage P12 without any changes in colony 

morphology, proliferation rate and AP positivity (Fig. 6.5). After that, they were frozen for 
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further use. 

 

 

Fig. 6.5: Among 20 colonies picked to expand subclones, one line picked on day 12 (piPSCs#1) showed very 

homogeneous colonies with a well defined border, with a high nuclei-cytoplasm ratio and a phase-bright flat 

aspect. These features were kept through culture passages (A, B: P0; C: P1; D: P7; E: P8; F: P12). At P4 AP 

activity was evaluated and piPSCs#1 were strongly AP
+
 (G). Magnifications: A, 10X; B-G: 5X. 
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At P5 doxycycline was withdrew to evaluate if piPSCs#1 were able to proliferate without 

the exogenous genes activated. It was possible to passage them for 2 more passages without 

drastic morphology changes but, after that, colonies started to be more flattened and they 

stopped proliferating (Fig. 6.6). 

 

Fig. 6.6: When Dox was withdrew, after only 2-3 days it was possible to see many differentiated cells at the 

edge (A, 10X). It was tried to passage not differentiated cells and, although they seemed to survive after one 

(B, 5X) or two (C, 10X) passages, after the third one colonies started to be flatten, with a differentiated edge 

and cells were very slow in proliferation (D, 10X). 

 

6.3.2 Embryoid Bodies assay 

EBs of 250 cells each, after 48 h of hanging drop culture and 3 days in suspension culture, 

were plated on matrigel-coated plates where they started to spread as monolayer after 3-4 

days (Fig. 6.7) 
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Fig. 6.7: 250 cells EBs appeared compact after 2 days in hanging drop culture (A, 5X) and, when plated on 

matrigel-coated dishes, after only 6 days cells were already spread as monolayer (B, 5X). Monolayer cells 

kept growing for 3 weeks changing medium every three days and on day 22 (D, 10X) they were harvested for 

gene-expression profile study. C: day 11, 10X. 

 

After 22 days of culture as monolayer, expression of ectoderm (NESTIN, THYROSINE 

HYDROXILASE), mesoderm (CARDIAC ACTIN), and endoderm markers (GATA4) was 

revealed by RT-PCR (Fig. 6.8). 
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Fig. 6.8: On day 22 cells grew from EBs resulted positive for markers of all the three germ layers: mesoderm 

(CARDIAC ACTIN), ectoderm (NESTIN and THYROSINE HYDROXILASE) and endoderm (GATA4). 

GAPDH was used as internal control. 

 

6.3.3 Immunocytochemistry 

Immunocytochemistry was performed at P4 and P11 on piPSCs#1 for the pluripotent 

markers OCT4, NANOG and SOX2, and the surface markers, SSEA1, SSEA4 and TRA-1-

60. OCT4 and SOX2 expression was detected (Fig. 6.9 C, D) but it was not possible to 

understand if they were proteins transduced by exogenous or endogenous genes. More 

important, cells were positive through passages to the surely endogenous markers NANOG 

and SSEA4 (Fig. 6.9 A, B). They did not express the cell-surface markers SSEA1 and 

TRA-1-60 at P4, so these markers were not studied further in culture. 

 

 

Fig. 6.9: Immunofluorescence images of iPSCs#1 colonies stained for SSEA4, NANOG, SOX2, OCT4 at P4 

(A-D) and P11 (G-J). SSEA1 and TRA1-60 expression was evaluated only at P4. All images represent the 

merge of DAPI staining (nuclei, blue) and staining for the indicated protein (FITC, green or TRITC, red). 

Magnification: 40X. 
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Fig. 6.9 
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6.3.5 Gene expression profile of piPSCs#1 

RT-PCR analyses revealed that all the four exogenous factors were expressed in piPSCs#1 

through passages, due to the presence of Dox in culture that induced their expression. Gene 

expression profile was studied using porcine specific primers both at P2 and at P10, 

revealing that piPSCs#1 expressed endogenous OCT4, SOX2, NANOG, KLF4 and FGF5 

while STELLA was weakly expressed (Fig. 6.10).  

 

Fig. 6.10: Porcine iPSCs#1 expressed naïve pluripotency endogenous markers through passages. Also FGF5 

and a weak STELLA expression (primed pluripotency markers) was kept from P2 to P10. Exogenous factor 

were strongly expressed at both passages because of the maintenance of Dox in culture. GAPDH was used as 

internal control (not shown). 

 

6.4 Discussion 

In this study a doxycycline-regulated and bFGF-dependent porcine iPSCs line was 

generated with genomic human OSKM integration in porcine embryonic fibroblasts. This 

line was stable in culture beyond passage 10, cells were AP positive and 
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immunocytochemistry analysis showed that they expressed other markers similar to those 

expressed in ESCs, such as SSEA4, NANOG, OCT4, and SOX2. While we cannot be sure 

if OCT4 or SOX2 represented the protein synthesized from endogenous or exogenous 

genes, the strong expression of SSEA4 and NANOG was endogenous for sure. Differently 

form Park et al. (2013), we were not able to find TRA1-60 positive cells. RT-PCR showed 

expression of all 4 exogenous factors (hOCT4, hSOX2, hKLF4 and hCMYC) as well as the 

expression of their endogenous counterparts (pig OCT4, pig SOX2 and pig KLF4), in 

contrast with Hall et al. (2012). Cells showed expression not only of naïve pluripotency 

markers, but also primed ones, showing how piPSCs cultured with bFGF displayed features 

of primed and naïve pluripotency, as found for porcine iPSCs LIF-dependent (Rodriguez et 

al. 2012). Cells were able to form EBs and differentiate in vitro into all the three germ 

layers. This differentiation was evaluated only by studying the gene-expression profile, so 

the effective protein expression needs to be further studied. Our piPSCs#1 line could not be 

sustained in the absence of doxycycline, as reported by Hall and colleagues (2012), 

underlining the inability of cells to proliferate in the absence of transgene expression. 

 

6.5 Conclusions 

Since our main aim was the differentiation of this line into the musculo-skeletal lineage 

(Chapter 7), we used Dox-dependence feature to induce differentiation by the simple 

withdrawal of Dox in culture, but appropriate culture conditions to sustain piPSCs only on 

the basis of their endogenous pluripotency machinery needs to be studied. It could be worth 

trying to remove Dox from the very beginning, in order to select not-dependent colonies. 

Moreover, considering the strong positivity of our piPSCs#1 line for SSEA4 marker, it 
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could be considered a live SSEA4 staining to select these cells and evaluate if this surface 

antigen protein may be a good markers for selection in the pig, as done for human iPSCs by 

using other selection markers (Chan et al. 2009). 
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7. Myogenic differentiation by a 4-hydroxytamoxifen-inducible lentiviral vector 

encoding human PAX7 

 

7.1 Introduction 

After the generation of a stable porcine iPSCs line, the project was carried out by studying 

piPSCs differentiation into a specific lineage, in detail the musculo-skeletal differentiation. 

The myogenic differentiation in a pig model is of interest both for agricultural and for 

clinical purposes. First, we are committed to a future in which a greater percentage of the 

world’s population will have easy access to food. For this reason, the creation of a porcine 

line of myoblastic precursors meets agronomic interest aimed to the improvement of the 

muscle mass in the pig. Second, therapeutic strategies that focus on the replacement of 

diseased muscle tissues with stem cells that can give rise to healthy myofibers are very 

attractive in human medicine (Darabi et al. 2012). In fact, considering the features of the 

pig as a good model for human medicine, the generation of a line of myoblastic precursors 

starting from piPSCs could be of interest for the possibility of generating patient-specific 

iPSCs for autologous therapies and a critical prerequisite for a potential therapeutic 

application is the generation of abundant engraftable tissue-specific cell preparations 

(Darabi et al. 2012). 

The mature skeletal muscle fiber is a complex multinucleated cell that is specialized for 

contraction (Sinowatz 2010). In mature skeletal muscle, most satellite cells are quiescent 

and are activated in response to injury, so their activation mediates muscle regeneration 

(Meregalli et al. 2011). After division, satellite cell progeny, termed myoblasts, undergoes 

terminal differentiation and becomes incorporated into muscle fibers (Bischoff and Heintz 

1994). Myogenesis is orchestrated by key transcription factors that regulate the progression 
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from quiescence, activation and proliferation of satellite cells to their self-renewal or 

differentiation (Yin et al. 2013). Quiescent satellite cells, as well as proliferating myoblasts, 

are characterized by the expression of the paired box transcription factor PAX7. Adult 

myoblasts express Myogenic factor 5 (MYF5) and Myogenic determination factor (MYOD) 

and they begin differentiation by downregulating PAX7 (Yin et al. 2013) (Fig. 7.1). 

 

Fig 7.1: Molecular control of myogenesis (modified from Enwere et al. 2014). 

 

Satellite stem cells would enter different developmental programs depending on whether 

MYF5 or MYOD expression predominates. Predominance of MYOD would drive the 

program toward early differentiation, analogous to the behavior of MYF5
–
 myoblasts, 

whereas predominance of MYF5 would drive the program toward enhanced proliferation 

and delayed differentiation (Rudnicki et al. 2008). Myoblasts coexpressing MYF5 and 

MYOD would exhibit an intermediate growth and differentiation program (Rudnicki et al. 

2008) (Fig. 7.2). 



CHAPTER 7 

Myogenic differentiation of porcine iPSCs 

     

 99 

 

Fig 7.2: Depending on whether MYF5 or MYOD expression predominates, satellite stem cells enter different 

developmental programs. MYF5
+
/MYOD

-
 myoblasts are driven to a “slow” differentiation program while 

MYF5
-
/MYOD

+
 myoblasts enter a “fast” differentiation. MYF5

+
/MYOD

+
 myoblasts show an intermediate 

differentiation (from Rudnicki et al. 2008). 

 

The initiation of terminal differentiation and fusion begins with the expression of 

Myogenin (MGN), that in concert with MYOD will activate muscle specific structural and 

contractil genes (Yin et al. 2013) (Fig. 7.1). Finally, differentiated mononuclear myocytes 

positive for MGN and Myosin Heavy Chain (MyHC) fuse together to form multinucleated 

myotubes or nascent myofibers (Fig. 7.1) (Kuang and Rudnicki 2008). 

The aim of this study was to derive a proliferating population of porcine skeletal myogenic 

progenitors from porcine iPSCs (piPSCs#1 line) previously generated (Chapter 6) and to 

verify their ability to fuse into myotubes, characteristic units of mature skeletal muscle. 
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7.2 Materials and Methods 

7.2.1 Lentivirus preparation 

Fresh lentiviral soup was generated by transfecting subconfluent HEK293T cells with a 

pSIN vector encoding the human PAX7 (hPAX7). The vector was designed with a HA-tag 

downstream of the hPAX7 gene and an estrogenic receptor (ER) domain upstream of 

hPAX7. The vector contained also a puromycin resistance marker to select transduced cells. 

Viral supernatant was collected 48h after transfection and it was filtered through a 0.45 mm 

filter and supplemented with 4 mg/mL polybrene (Sigma). It was then used to infect 

porcine iPSCs (piPSCs#1) previously generated (Chapter 6).  

 

7.2.2 Generation and culture of porcine inducible PAX7-iPSCs line (PAX7-piPSCs) 

Porcine iPSCs#1 at P6 of culture were infected for 6h plus an overnight with a dilution 1:2 

of the virus. In order to verify the transduction, cells were tested with a 24h induction of 4 -

hydroxytamoxifen (4OH-Tam, Sigma), that is a selective ER modulator (Miyazaki et al. 

2012), and expression of HA protein was evaluated by immunocytochemistry (Fig. 7.2.6). 

Cells were cultured in ESC medium (Paragraph 6.2.1) on mitomycin C-inactivated MEFs. 

Selection of hPAX7 transgenic iPSCs (PAX7-piPSCs) was conducted 2 passages after 

transduction by adding puromycin 0.5 g/ml for five days, in order to kill most 

untransduced cells. The optimal concentration of puromycin was evaluated by testing 

different concentrations of the antibiotic on piPSCs#1 (data not shown). Porcine iPSCs#1 

transduction is summarized in Fig. 7.3. 
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Fig. 7.3: Timeline of lentivirus preparation and transduction of PAX7-piPSCs. 

 

7.2.3 Differentiation by Embryoid Bodies (EBs) formation 

The generated line PAX7-piPSCs was firstly differentiated as EBs. Five passages after 

selection, puromycin-selected cells were collected by StemPro® Accutase® (GIBCO), 

counted at haemocytometer and cultured for 48h in 30 l hanging drops (250 cells each 

drop) of ESC medium. After that, EBs were transferred in 3.5 cm low attachment Petri 

dishes and cultured in suspension in myogenic induction medium (Darabi et al. 2012). It 

was composed by IMDM (GIBCO), 15% fetal bovine serum (GIBCO), 10% horse serum 

(Sigma), 1 % chick embryo extract (US Biological), 50 μg/ml ascorbic acid (Sigma), 4.5 

mM monothioglycerol (Sigma) and 10 μM ROCK inhibitor (Tocris - for only 24 h). After 5 

days, EBs were plated in matrigel-covered dishes and cultured 3 additional days in 

myogenic induction medium. Then medium was switched to a terminal differentiation 

medium composed by DMEM + 2% horse serum (HS medium). During culture in 

myogenic medium, 2 M 4OH-Tam was added every 2 days in order to induce hPAX7. At 

the same time, one group was cultured without 4OH-Tam as negative control. A summary 

of the protocol is reported in Fig. 7.4.  
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Fig. 7.4: Timeline of EBs protocol aimed to the differentiation into the myogenic lineage of PAX7-piPSCs. 

 

7.2.4 Direct differentiation into myotubes 

The PAX7-piPSCs line was secondly differentiated following a protocol of direct 

differentiation of colonies cultured on MEFs, without EBs stage. Since myogenic induction 

medium did not work well with EBs and cells seemed to die (Paragraph 7.3.2), we cultured 

cells in DMEM + 10% FBS. PAX7-piPSCs colonies were firstly left 2 days after the 

picking in ESC medium to let them grow up. Medium was then switched to DMEM + 10% 

FBS supplemented with 2 M 4OH-Tam and changed every 2 days. After 6 days, medium 

was switched to a terminal differentiation medium composed by DMEM + 2% horse serum 

(HS medium) and it was changed every three days for 2 weeks. Cells were characterized by 

immunocytochemistry after 6 days of differentiation (before the switching to HS medium), 

after 1 week in HS medium (13 days of differentiation) and at the end of the terminal 

differentiation (21 days). In this last step the gene expression profile was also studied. 

Differentiation protocol and characterization steps are summarized in Fig. 7.5.  

 

Fig. 7.5: Direct differentiation protocol of PAX7-piPSCs cultured on MEFs. 
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7.2.5 Generation and culture of porcine myoblastic cells line 

In order to generate a line of myogenic precursors, PAX7-piPSCs were plated into matrigel-

coated 3.5 cm Petri dishes, expanded in DMEM + 10% FBS containing 10 ng/mL bFGF 

and 2 M 4OH-Tam (myoblasts medium), and passaged by trypsinization (trypsin 0.05%) 

every 3 days. It was avoided the reaching of confluency to prevent cells fusion, so they 

were passaged at 60-70% of confluency. Cells were plated in 12-wells (60000 cells each 

well) and counted by haemocytometer every passage. Medium was changed every day after 

until P6 and 10 ng/ml bFGF was added every day. 

Cell-doublings (CD) and cell-doubling time (DT) were calculated through the following 

formulae (Rainaldi et al. 1991): 

  

1) CD = ln(Nf /Ni)/ln(2) 

where Nf is the final number of cells and Ni the initial number of cells; 

 

2) DT = CT/CD 

where CT is the cell culture time. 

 

We further wanted to evaluate if these cells were able to fuse into myotubes. Since we 

observed differentiation into myotubes of PAX7-piPSCs when differentiated on MEFs 

(Paragraph 7.3.2), we plated myoblasts at high density (around 400000 cells in a well of a 

12-well) on MEFs in DMEM + 10% FBS supplemented with 10 ng/ml bFGF and 2 M 

4OH-Tam. The day after, medium was switch to HS medium  
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7.2.6 Immunocytochemistry 

Cells were rinsed with PBS and fixed with 2,5% PFA for 20 min at RT. Subsequently, cells 

were permeabilized with 0.1% Triton X-100 in PBS and blocked with PBS + 5% BSA for 

1h at RT. Cells were incubated overnight at 4°C with the following primary antibodies: 

PAX7 (1:50; Hybridoma bank), Myogenin (1:100, Abcam), Myosin Heavy Chain (1:100, 

Abcam), HA (1:200, Millipore). After three washes in PBS + 5% BSA, cells were 

incubated with the appropriate secondary antibody for 1h at RT and then rinsed 2 times in 

PBS + 5% BSA. Cells were mounted in Vectashield with DAPI (49-6-diamidino-2-

phenylindole; Vector Laboratories). 

 

7.2.7 RT-PCR 

RNA was isolated using Nucleospin® RNA kit (MACHEREY-NAGEL) and cDNA was 

synthesized using Omniscript synthesis kit (Qiagen), following the manufacturers’ 

instructions. Then, PCR was performed with ReadyMix (Sigma-Aldrich) and 0.4 M of 

each primer (primers used are listed in Table 7.1) following a thermal profile including an 

initial step of 95°C (5 min), 40 cycles of 30 sec at 95°C, 30 sec at 60°C, and an extension 

step of 30 sec at 72°C. PCR products were run in 1.5% agarose gel to determine the 

amplicon size. For what concern myotubes, in order to select only them and not the some 

leftover pieces of the iPSCs colonies, myotubes were harvested by a cell-scraper. 
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Table 7.1. Sequences of primers used for RT-PCR analysis. 

 

Gene Primer sequences FW and RV Amplicon (bp) Accession number 

or (Reference) 

 

pGAPDH 

 

FW 5’- GGGCATGAACCATGAGAAGT -3’ 

 

162 

 

(Rodriguez et al. 2012) 

 RV 5’- GTCTTCTGGGTGGCAGTGAT -3’ 

 

  

hPAX7 FW 5’- CCACTGCGGGCTCTACTTC -3’ 

RV 5’- GACCCCTCCCAGCTGATTGAC -3’ 

227 Designed by Dr. Li 

    

MYOD FW 5’- GATAGAGCAGGGTGGTGGAC -3’ 222 U12574.1 

 RV 5’- TGCAAAGTTGCAGAGAGAGC -3’ 

 

  

PAX7 FW 5’- GGTGGGGTTTTCATCAATGG -3’ 155 (Wilschut et al. 2008) 

 RV 5’- GTCTCTTGGTAGCGGCAGAG -3’   

 

7.3 Results 

7.3.1 Generation of PAX7-piPSCs 

The piPSCs#1 line generated by a 4OH-Tam inducible lentiviral vector encoding hPAX7 

and selected by puromycin showed good colonies with a very defined edge and a thick 

center (Fig. 7.6). Except for the middle thick part, genetic modification did not alter 

morphology of piPSCs. When manually passaged, it was picked only the external part 

avoiding to passage cells from the center. 

 

Fig. 7.6: PAX7-piPSCs colonies at the fifth passage after selection by puromycin. Colonies did not modify 

their morphology after transduction. Magnifications: A, 10X; B, 20X. 
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Immunofluorence analysis showed expression of the HA-tag upon 24h of 4OH-Tam 

induction while in the not-induced negative control there were only a few positive cells, 

probably due to a leaky expression (Fig. 7.7). 

 

Fig. 7.7: HA was strongly expressed after 24h 4OH-Tam treatment in PAX7-piPSCs colonies (A, 20X; B, 

40X) and expressed by only a few cells in the not-treated sample (C, 20X).  

 

7.3.2 PAX7-piPSCs were not able to differentiate as EBs 

When PAX7-piPSCs were plated with the hanging drop method, after 24h they were able to 

form EBs, so genetic modification did not alter this ability. After one week of suspension 

culture in myogenic induction medium, cells were plated on matrigel-coated dishes where 



CHAPTER 7 

Myogenic differentiation of porcine iPSCs 

     

 107 

they started to grow up as monolayer. Unfortunately after 2-3 days cells started to die, 

underling how either the medium or the EBs protocol were not the suitable way to induce 

the myogenic program in the modified piPSCs line. For this reason, we proceeded by 

inducing PAX7-piPSCs colonies directly, only culturing them under differentiation 

medium. 

 

7.3.3 Differentiation of PAX7-iPS into myotubes 

When plated on feeders under myogenic medium, transgenic iPSCs differentiated directly 

into myotubes. It was possible to start observing a morphology clearly ascribable to 

myotubes after only 3 days of culture (Fig. 7.8). When the medium was switched to the HS 

medium, after 2-3 days myotubes started making spontaneous contractions. 

 

Fig. 7.8 
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Fig. 7.8: During direct differentiation, after only 3 days in DMEM-10% FBS supplemented with 4OH-Tam it 

was possible to notice cells at the edge of the colonies that started to assume a morphology ascribable to 

myotubes (A, 5X). Number of myotubes increased during 4OH-Tam induction and after 6 days of induction 

(B, 5X) the culture was switched to HS medium. During these culture conditions, myotubes started making 

contractions in the plate (C: day 12, 10X; D: day 19, 10X). 

 

Characterization by immunocytochemistry was performed for the late myogenic markers 

MGN and MyHC at different steps. At day 6, before the switch to HS medium, it was clear 

how MGN
+
 cells from hPAX7-iPSCs colonies were going to organize themselves to 

undergo fusion and form myotubes (Fig. 7.9). The already formed myotubes were positive 

both for MGN (Fig. 7.9) and MyHC (Fig. 7.10). 

Fig. 7.9 
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Fig. 7.9: After 6 days of 4OH-Tam induction, it was possible to see already formed myotubes that resulted 

positive for MGN (B: 20X; D, 40X). Looking at the nuclei, it was clear how cells from the colonies were 

organizing themselves to alineate and fuse to form myotubes. Cells were double-stained with MGN (FITC, 

green) and HA (TRITC, red) and it was possible to observe a pool of 4OH-Tam-induced HA
+
 cells in the 

center of the colonies ready to go to form myotubes. A and C (magnification: 40X) represents the phase 

contrast images of the same fields of B and D pictures, respectively. 

 

 

Fig. 7.10: After 6 days of 4OH-Tam induction, cells stained positive also for the late differentiation marker 

MyHC (B, D: 40X). A and C (magnification: 40X) represents the phase contrast images of the same fields of 

B and D pictures, respectively.  

 

Myotubes maintained a profile MGN
+
/MyHC

+
 also during the culture under HS medium 

and contracting myotubes showed a strong expression of MyHC with the classic banding 

both after 7 days in HS medium (Fig. 7.11) and after 13 days (Fig. 7.13). Moreover, MGN+ 
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nuclei were clearly organizing themselves to go aligned in order to let cells fusion and 

myotubes formation (Fig. 7.12). 

 

Fig. 7.11: When cultured in HS medium, after 7 days (13 total days of differentiation culture) MyHC was 

clearly expressed by myotubes (C, D: 40X). A and C (magnification: 40X) represents the phase contrast 

images of the same fields of B and D pictures, respectively. 
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Fig. 7.12: During culture under HS medium (7h day) MGN+ nuclei showed how cells were going to fuse 

together to form multinucleated myotubes (B, D: 40X). A and C (magnification: 40X) represent the phase 

contrast images of the same fields of B and D pictures, respectively. 
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Fig. 7.13: Contracting myotubes on day 22 of differentiation showed a strong expression of the late marker 

Myosin Heavy Chain with the classic banding. Magnifications: 40X. 
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7.3.4 Direct differentiation into myoblasts 

PAX7-piPSCs were plated into matrigel-coated wells, expanded in ESC medium and then 

induced under myoblasts medium. Four days after induction it was possible to observe at 

the edge of the colonies cells with a morphology ascribable to myoblasts, kept through 

passages (Fig. 7.14).  

 

Fig. 7.14: Differentiation of PAX7-piPSCs into myoblasts. Colonies were plated on matrigel-coated dishes 

(P0) and induced in myoblasts medium. Four days after 4OH-Tam induction, it was possible to observe a 

morphology ascribable to myoblasts of the cells at the border of the colonies (A, C: 10X; B, D: 20X). The line 

was purified by passaging and morphology was kept through passages (E: P2, 10X; F: P5, 10X). 
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PAX7-piPSCs showed a good expansion potential, averaging a total of 6.4 doublings 

during 2 weeks of expansion, as found by Darabi and colleagues (2012) for PAX7-human 

iPSCs. Under these proliferation conditions, cells from P1 to P5 decreased the expression 

of Myogenin, a marker of terminal muscle differentiation, and increased the expression of 

the earlier marker PAX7, as demonstrated by immunocytochemical analysis (Fig. 7.15).  

 

 

Fig. 7.15: Immunophenotype of proliferating myoblasts through passages. The intermediate marker MGN 

was highly expressed a few days after induction (A: P0, day 5 after 4OH-Tam induction, 20X), and decreased 

its expression going forward with passaging (B: P2, 40X; C: P5, 40X). On the other hand, PAX7 expression 

was not detected at P2 (D, 20X) but there was expression at P5 (E, 40X). 

 

When myoblasts were further plated at high density on MEFs, after 4-5 days they 

underwent fusion forming multinucleated myotubes (Fig. 7.16). 
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Fig. 7.16: Myoblasts plated in MEFs at high concentrations underwent fusion forming myotubes (A, 10X; B, 

20X) that were positive both for MGN (C, 40X) and for MyHC (D, 40X). 

 

7.3.5 RT-PCR 

Gene expression profile was evaluated both in contractin myotubes and in myoblasts at P1 

of culture. RT-PCR showed expression of the endogenous early markers PAX7 (weak 

expression in myotubes) and MYOD, both in myotubes and in myoblasts. All samples 

expressed the exogenous human PAX7 and no MYF5 (Fig. 7.17). 
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Fig. 7.17: Gene-expression profile of a sample of contracting myotubes at the end of the differentiation (day 

22) and a sample of myoblasts at P1 of culture. Both samples were positive for MYOD and negative for 

MYF5. Endogenous PAX7 was weakly expressed by myoblasts and very weakly expressed by myotubes. 

Exogenous PAX7 was present in both samples, also in myotubes that were not under 4OH-Tam induction 

anymore. GAPDH was used as internal control. 

 

7.4 Discussion 

The growth and development of skeletal muscle has long been of interest to animal 

scientists not only for human health implications, but also because a better understanding of 

this process leads to improved strategies aimed to increase the efficency of lean tissue 

deposition in domestic animals (Reecy et al. 2003). Here it was demonstrated how the 

overexpression of hPAX7 by a 4OH-Tam inducile vector was an efficient system to induce 

the myogenic program in porcine iPSCs and how piPSCs#1 Dox-regulated previously 

generated (Chapter 6) were amenable to genetic modifications oriented to musculo-skeletal 

differentiation. It was possible to generate myotubes able to make contractions in vitro, but 

more important it was possible to generate a purified line of myoblasts able to proliferate 

and differentiate in proper conditions. When cultured on MEFs feeder layers, PAX7-iPSCs 

were able to differentiate very fast into myotubes, and it was the same when myoblasts 

were plated on MEFs. Considering the MYOD+/MYF5-
 profile of myoblasts, it is possible 

that cells were driven to a “fast differentiation” into MGN+/MyHC+ myotubes able to do 
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contractions when cultured in the terminal differentiation medium (HS medium). It is also 

possible that some key molecules were produced by MEFs and this needs to be further 

studied. Both myotubes and myoblasts showed expression of the exogenous hPAX7. While 

myoblasts were expected to express it, considering that they were continuously under 4OH-

Tam induction, on the other side we did not expect to see its upregulation in myotubes, as 

well as for endogenous PAX7 and MYOD. It could be ascribable to the presence of 

estrogenic substances in FBS that are able to bind the ER domain, and activate hPAX7 as a 

consequence. Despite the role of these unknown molecules, we were able to control the 

early (myoblasts) or terminal (myotubes) differentiation of the modified PAX7-iPSCs line 

in the pig model. 

There are studies that have shown myogenic differentiation of murine iPSCs (Darabi et al. 

2011) or human iPSCs (Darabi et al. 2012; Tanaka et al. 2013), but to our knowledge this is 

the first time that the generation of a myoblastic line in the pig has been achieved.  

 

7.5 Conclusions 

In the system described in this study, porcine myogenic progenitors were derived by forced 

expression of hPAX7 and expanded in vitro. It was verified their ability to fuse into 

myotubes, the musculoskeletal subunit. In vivo functional regeneration needs to be 

evaluated, as well as the development of a safer viral- and transgenic- free method of in 

vitro differentiation, as it has been studied and achieved for human iPSCs (Borchin et al. 

2013, Shelton et al. 2014). 
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CHAPTER 8: FINAL DISCUSSION AND CONCLUSIONS  

Stem cells represent a booming area of research, because of their huge potential for clinical 

applications in current incurable diseases. However, the word “stem cell” is sometimes 

used without the demonstration of stem cell markers or the confirmation of stemness 

through gene expression analysis or differentiation (De Schauwer et al. 2011). In the case 

of mesenchymal stem/stromal cells, the ISCT postulated that the term mesenchymal stem 

cell, in contrast to the more general term mesenchymal stromal cell, should be reserved for 

those cells that show long-term survival in vivo, have self-renewal capacities and possess 

the ability for tissue repopulation with multilineage differentiation (Horwitz et al. 2005). 

MSCs isolated from bovine and equine foetal sources studied in this thesis did not show a 

significant expression of pluripotency markers nor a long life-span that would allow to use 

them as an alternative source for gene targeting experiments in genetic engineering. In any 

case, their immunomodulatory properties, well reported in literature, and their multi-

differentiation potential make them an interesting source of cells in the field of the 

regenerative medicine, even if they are not the best candidate to elucidate pluripotency 

networks.  

Therefore our attention was later focused on the generation of iPSC line in domestic 

animals.  Considering the unsuccessful 30 years efforts to generate bona fide ESCs line in 

these species, the scientific community switched to the field of iPSCs. However the current 

focus in this field for domestic animals is still represented by the definition of a standard 

protocol to generate iPSCs with an endogenous pluripotency machinery able to sustain 

themselves. In our experiments we started trying to induce pluripotency in bovine 

fibroblasts, as continuation of the study performed on bovine AF-MSCs, and because there 
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were very few studies reported on iPSCs from this species. Unfortunately, the protocol used 

did not work and this could be due to the reprogramming factors used or to the culture 

conditions. In fact, the culture on feeders could be crucial for these cells, as for the murine 

iPSCs lines, while in this work the culture of biPSCs was done on matrigel only. It is 

necessary to start from the beginning both by changing the factors transfected and 

optimizing the culture conditions. Later, studies were finalized to the production of a 

porcine iPSC line with the objective to use them to create a line of myoblastic progenitors. 

Since the chemical induction of pluripotency is not working yet, the classic Yamanaka’s 

technology was used. The reprogramming protocol used in porcine embryonic fibroblasts 

was successful and the line generated showed a consistent pluripotent profile, but issues 

related to exogenous factors silencing have to be solved.  

The ability of iPSCs to differentiate into cells belonging to all the three germ layers has 

been well demonstrated by the scientific community, both in vitro by EBs formation and 

differentiation, and in vivo, by teratoma formation after inoculation into immuno-deficient 

mice. The real challenge is represented by the driven differentiation into a specific lineage. 

Porcine iPSCs demonstrated a full differentiation potential into the myogenic lineage by 

forced expression of PAX7 expression vector, demonstrating that they could be induced 

into a desired lineage by genetic modification and appropriated culture conditions. Only a 

few cell types have been differentiated from domestic animal iPSCs to date, so the 

development of a reliable directed-differentiation protocol represents a very important 

result. Further studies are required for the production of iPSCs with a viral- free system in 

order to create a source of undifferentiated cells, with high proliferative capacity, useful 

both for genetic manipulation and for clinical applications. 
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