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SUMMARY 

 

 Ribosome-inactivating proteins (RIPs) are a family of plant toxic enzymes that 

permanently damage ribosomes and possibly other cellular substrates, thus causing cell 

death involving different and still not completely understood pathways. The high 

cytotoxic activity showed by many RIPs makes them ideal candidates for the production 

of immunotoxins (ITs), chimeric proteins designed for the selective elimination of 

unwanted or malignant cells. Saporin-S6, a type 1 RIP extracted from Saponaria 

officinalis L. seeds, has been extensively utilized to construct anticancer conjugates 

because of its high enzymatic activity, stability and resistance to conjugation 

procedures, resulting in the efficient killing of target cells. 

 This thesis investigates the anticancer properties of two saporin-based ITs, anti-

CD20 RTX/S6 and anti-CD22 OM124/S6, designed for the experimental treatment of 

B-cell NHLs, and the possibility to enhance their cytotoxic effects using proteasome 

inhibitors or fludarabine. The experiments demonstrate that both ITs shows high 

cytotoxicity towards CD20-positive B-cells, and their antitumor efficacy might be 

enhanced synergistically by a combined treatment with proteasome inhibitors or 

fludarabine. Furthermore, the two ITs show differencies in potency and ability to 

activate effector caspases, and a different behavior in the presence of ROS scavenger 

catalase. Taken together, these results suggest that the different carriers employed to 

target saporin might influence saporin intracellular routing and saporin-induced cell 

death mechanisms.  

 We also investigate the early cellular response to stenodactylin, a recently 

discovered highly toxic type 2 RIP which represents an interesting candidate for the 

design and production of a new IT for the experimental treatment of cancer. The gene 

expression microarray analysis shows an enhanced transcription of genes regulating 

cellular processes like cellular response to stress and cell death in stenodactylin-treated 

acute monocytic leukemia cells and the activation of p38 and JNK MAPKs signaling. 

These informations could be useful to design a highly specific stenodactylin-based IT 

for the experimental treatment of hematological malignancies and to design 

combination therapies to further enhance ITs cytotoxicity. 
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INTRODUCTION 

 

1. Ribosome-inactivating proteins (RIPs) 

 The term “ribosome-inactivating proteins” (RIPs) was introduced to designate 

plant proteins that inactivate animal ribosomes. Firstly discovered over a century ago in 

the castor oil plant Ricinus communis after the characterization of ricin, RIPs have 

become of great scientific interest due to their importance in human health, either as 

pathogens or as potential therapeutics. RIPs form a family of well-characterized toxins 

that specifically and irreversibly inhibit protein synthesis in eukaryotic cells by altering 

the 28S rRNA of the large 60S ribosomal subunit. The term RIPs was introduced by 

Stirpe to define plant proteins that inactivate animal ribosomes, in a period when the 

details of their enzymatic activity and structure were still unknown (Stirpe et al., 1982). 

The designation “RIP” can be associated with their enzymatic activity, namely RNA N-

glycosylase activity. Widely distributed in nature, RIPs have been found predominantly 

in plants, bacteria and fungi, often in multiple isoforms (Stirpe, 2013). Most of them are 

produced by plants, where their physiological role is still controversial. It has been 

hypothesized that plants accumulate RIPs in some of their tissues as a defensive 

mechanism against biotic and abiotic stresses (Nielsen et al., 2001; Polito et al., 2013b). 

Well-known examples of plant-derived RIPs include ricin, abrin, ebulin, nigrin, saporin, 

trichosanthin and volkensin. Bacterial RIPs include Shiga and Shiga-like toxins, which 

are part of the AB5 enterotoxin family and are produced by gram-negative pathogenic 

bacteria as virulence factors in order to aid their survival and replication in the host 

organism (Walsh et al., 2013). RIPs have been also purified from several mushroom 

species, including Calvatia caelata, Flammulina velutipes, Hypsizigus marmoreus, 

Lyophyllum shimeiji, and Pleurotus tuber-regium (Xu et al., 2011). Notable example of 

RIP from mushrooms is represented by α-sarcin, isolated from Aspergillus giganteus.  

 Small doses of some of these toxins can be lethal through injection, ingestion or 

inhalation and can trigger irreversible inhibition of host cellular protein synthesis 

accompanied by diffuse inflammation and acute necrosis of affected tissues. RIPs 

elevated cytotoxic activity together with the development of monoclonal antibodies 

(mAbs) as tools for the identification and targeting of specific cell surface marker, made 
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this class of proteins of great interest as possible candidates for the production of 

immunotoxins (ITs). ITs are chimeric proteins that consists of a targeting portion 

(usually a mAb) linked to a toxin, designed for the selective elimination of unwanted or 

malignant cells.  

 Furthermore, RIPs also possess antiviral and antifungal properties that can be 

exploited in human therapy and agriculture. For these reasons, current biotechnological 

research into RIPs is focused into the better understanding and subsequent improvement 

of the cell entry mechanism, reducing RIP antigenicity, prolonging their plasma half-life 

and elucidating the mechanism of RIP-induced cell death (Puri et al., 2012).  

 

2. Classification of RIPs 

 Plant RIPs are currently classified into three groups based on their physical 

properties and the presence or absence of a lectin-like chain. A schematic representation 

showing a comparison of the characteristic primary structure of the three groups is 

given in fig. 1. 

 

 

Fig. 1 Schematic representation showing a comparison primary structure of the three RIP 

groups. Blank boxes show regions present in the mature form of the enzymes. Modified from 

Van Damme et al., 2001. 
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2.1 Type 1 RIPs 

 The majority of RIPs discovered so far actually belong to type 1 and are 

preferentially distributed within particular plant families such as Caryophyllaceae, 

Cucurbitaceae and Euphorbiaceae (Stirpe, 2004). Notably examples of type 1 RIPs are 

pokeweed antiviral protein (PAP, (from Phytolacca Americana)), saporin (from 

Saponaria officinalis L.), dianthin (from Dianthus caryophyllus), momordin (from 

Momordica charantia) and gelonin (from Gelonium multifluorum). Type 1 RIPs are 

single-chain basic enzymes (usually showing a pI ≥ 9) with an approximate molecular 

weight of 30 kDa. Most of them are synthesized as pre-proteins composed of a signal 

peptide, the mature protein and a C-terminal extension (Fig. 1), as demonstrated by 

different studies on protein and DNA sequences (Nielsen et al., 2001). It is likely that 

the synthesis of type 1 RIPs follows the secretory pathway, so that these cytotoxic 

proteins are segregate into the vacuoles or other extra-cytoplasmatic compartment, but 

detailed localization studies are available only for a few type 1 RIPs (Van Damme et al., 

2001). It has been shown that in pokeweed leaves, for example, PAP is primarily 

located in the cell wall matrix and a small amount in the vacuole (Ready et al., 1986); 

while in Saponaria officinalis seeds, saporin is mainly located in the intercellular 

spaces, between the primary cell wall and the plasmalemma and the vacuole of the 

periplasmic cells (Carzaniga et al., 1994). 

 Type 1 RIPs are generally purified from plant tissues by cation-exchange 

chromatography on carboxymethyl or sulfopropyl-derivatized matrices, taking 

advantage of their pI in the alkaline region (Barbieri et al., 1987). 

 

Table 1: type 1 RIPs from plant, modified from Gilabert-Oriol et al., 2014. 

 

Plant RIP 

Absolute 

molecular mass 

(kDa) 

Abelmoschus esculentus (L.) 

Moench 
Abelesculin 30 

Adenia ellenbeckii Harms Adenia ellenbeckii RIP 30 

Adenia goetzii Burtt-Davy Adenia goetzii RIP 30 
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Adenia racemosa W.J. de Wilde Adenia racemosa RIP 30 

Adenia venenata Forssk. Adenia venenata RIP 30 

Agrostemma githago L. Agrostin-2; agrostin-5; agrostin 6 30.6; 29.5; 29.6 

Amaranthus caudatus L. 
Amaranthin (Amarantus caudatus agglutinin, 

ACA) 
33-36 

Amaranthus tricolor L. 
Amaranthus tricolor antiviral protein-27 (AAP-

27) 
27 

Amaranthus viridis L. Amaranthin 30 

Asparagus officinalis L. Asparagus officinalis RIP; asparin 1; asparin 2 32.5; 30.5; 29.8 

Basella rubra Roxb. 
Basella rubra RIP 2a; Basella rubra RIP 2b; 

Basella rubra RIP 3 
30.6; 31.2; 31.2 

Benincasa hispida (Thunb.) Cogn. Hispin 21 

Beta vulgaris L. Betavulgin; beetin 27; beetin 29 28; 27; 29 

Bouganvillea spectabilis Willd. Bouganin (Bouganvillea spectabilis RIP) 26.2 

Bouganvillea xbuttiana Willd. Bouganvillea xbuttiana antiviral protein 35.5 

Bryonia dioica Jacq. Bryodin-L; bryodin-1 (BD-1); bryodin-2 (BD-2) 28.8; 30; 27 

Celosia cristata L. 
Celosia cristata antiviral protein 25 (CCP-25); 

Celosia cristata antiviral protein 27 (CCP-27) 
25; 27 

Charybdis maritima L. Charybdin 29 

Chenopodium album L. Chenopodium album antiviral RIP (CAP30) 30 

Cinnamomum camphora (L.) J. 

Presl. 
Camphorin 23 

Citrullus colocynthis Schrad. Colocin 1; colocin2 26.3; 26.3 

Clerodendrum inerme (L.) Gaertn CIP-29; CIP-34 29; 34 

Croton tiglium L. Crotin I; crotin II ND; 34 

Cucumis figarei Naud. Cucumis figarei RIP (CF-RIP) 31.8 

Cucumis melo L. Melonin 23.5 

Cucurbita moschata Duchesne ex 

Poir. 

Moschatin; cucurmosin (CUS); cucurmosin 2; 

Cucurbita moschata RIP 
29; 27; 27.2; 30.7 

Cucurbita pepo L. Pepocin 26 

Cucurbita texana (Scheele) A. Gray Texanin 29.7 

Dianthus barbatus L. Dianthin-29 29 

Dianthus caryophyllus L. Dianthin-30; dianthin-32 29.5; 31.7 

Dianthus sinensis L. Dianthus sinensis RIP (DsRIP) 33.3 

Gelonium multiflorum A. Juss. Gelonin (GAP31) 31 

Gynostemma pentaphyllum (Thunb.) 

Makino 
Gynostemmin 27 

Gypsophila elegans Bieb. Gypsophilin 28 

Hordeum vulgare L. 
Barley translation inhibitor (barley toxinI, BRIP); 

barley toxin II; barley toxin III 
31; 30; 30 

Hura crepitans L. Hura crepitans RIP 28 

Iris hollandica L. Iris RIP A1 (IRIP A1); Iris RIP A2 (IRIP A2); Iris 30.9; 31; 30.9 
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RIP A3 (IRIP A3) 

Jatropa curcas L. Curcin; Jc-SCRIP 28.2; 38.9 

Lagenaria siceraria Molina Lagenin 20 

Luffa acutangula Roxb. Luffaculin-1; luffaculin-2 28; 28 

Luffa aegyptiaca Mill. 
Luffin-c; Luffa ribosomal inhibitory protein 

(LRIP) 
ND; 30 

Luffa cylindrica Mill. Luffin-A (alpha-luffin); luffin-B (beta-luffin) 27; 28 

Lychnis chalcedonica L. Lychnin 26.1 

Manihot palmate Mill. Mapalmin 32.3 

Manihot utilissima Mill. Manutin 30.7 

Marah oreganus (Torr. Ex S. Wats.) 

Howell 

MOR-I (Marah oreganus RIP-I); MOR-II (Marah 

oreganus RIP-II) 
28; 27.6 

Mesembryanthemum crystallinum L. RIP1 32.7 

Mirabilis expansa Standl. ME1; ME2 27; 27.5 

Mirabilis jalapa L. 
Mirabilis antiviral protein (MAP); MAP-2; MAP-

3; MAP-4 
27.8; 30.4; 29.7; 29.3 

Momordica balsamina L. 
Momordica balsamina RIP-1 (MbRIP-1); 

momordin II; balsamin 
30; 32; 28 

Momordica charantia L. 

Momordin (Momordica charantia inhibitor, 

momordin-a); alpha-momorcharin (alpha-MMc); 

beta-momorcharin (beta-MMc); delta-

momorcharin; epsilon-momorcharin; momordin I 

(Momordica charantia inhibitor) 

23; 29; 28; 30; 24; 31 

Momordica cochinensis Spreng Momorcochin-S; momorcochin; cochinin B 30; 32; 28 

Momordica grosvernorii Swingle Momorgrosvin 27.7 

Muscari armeniacum Leichtlin ex 

Baker 

Musarmim-1 (MU-1); musarmin-2 (MU-2); 

musarmin-3 (MU-3) 
28.7; 30; 27.6 

Nicotiana tabacum L. Tobacco RIP (TRIP); CIP31 26; 31 

Oryza sativa L. 
Oryza sativa RIP; Oryza sativa cultivar Kazemi 

RIP 
33; 29 

Petrocoptis glaucifolia (Lag.) Boiss. Petroglaucin-1; petroglaucin-2 26.7; 27.5 

Peterocoptis grandiflora Rothm. Petrograndin 28.6 

Phytolacca americana L. 

PAP (pokeweed antiviral protein, Phytolacca 

antiviral protein); PAP II (pokeweed antiviral 

protein II); PAP III (pokeweed antiviral protein 

III); PAP-S; PAP-C; PAP-R; PAP-H 

30; 30; 30; 29; 29.8; 

29.5 

Phytolacca dioca L. 

PD-S1 (Phytolacca dioica RIP1); PD-S2 

(Phytolacca dioica RIP2); PD-S3 (Phytolacca 

dioica RIP3); PD-L1; PD-L2; PD-L3; PD-L4; 

dioicin 1; dioicin 2 

30; 32.7; 31.5; 30.4; 

29.2; 30; 29.9 

Phytolacca dodecandra L’Herrit Dodecandrin 29 

Phytolacca heteropala H. Walter Heterotepalin-4 (Mexican pokeweed RIP-4, 29.3; 30.5 
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Phytolacca heteropala anti-viral protein PAP); 

Heterotepalin-5b (Mexican pokeweed RIP-5b) 

Phytolacca insularis Nakai 

Phytolacca insularis antiviral protein (PIP, 

insularin); Phytolacca insularis antiviral protein 2 

(PIP2) 

35; 35.7 

Pisum sativum L. Alpha-pisavin; beta-pisavin; sativin 20.5; 18.7; 38 

Sambucus ebulus L. Alpha-ebulitin; beta-ebulitin; gamma-ebulitin 32; 29; 29 

Sambucus nigra L. Nigritin f1; nigritin f2 24.1; 23.6 

Saponaria ocymoides L. Ocymoidine 30.2 

Saponaria officinalis L. 

Saporin-6; saporin-9; saporin-L1; saporin-L2; 

saporin-R1; saporin-R2; saporin-R3; saporin-S5; 

Saporin-S6; saporin-S8; saporin-S9 

29.5; 29.5; 31.6; 31.6; 

30.2; 30.9; 30.9; 30.9; 

31.6; 29.5; 29.5 

Secale cereale L. Secale cereale RIP 31 

Sechium edule (Jacq.) Sw. Sechiumin 27 

Spinacia oleracea L. 
Spinacia oleracea RIP1 (SoRIP1, BP31); Spinacia 

oleracea RIP2 (SoRIP2) 
31; 29 

Stellaria aquatica Scop. Stellarin ND 

Stellaria media (L.) Vill. RIP Q3 28.2 

Trichosantes anguina L. Trichoanguin 35 

Trichosanthes cucumeroides 

Maxim. 
Beta-trichosanthin 28 

Trichosantes kirilowii Maxim. 

Alpha-kirilowin; beta-kirilowin; Trichosanthin 

(TCS); TAP-29 (Trichosanthes anti-HIV protein 

29 kDa); Trichobitacin; alpha-trichosanthin; 

karasurin-A; karasurin-B; karasurin-C; 

trichomislin; trichokirin 

28.8; 27.5; 25-26; 29; 

27.2; 31.7; 27.1; 27.2; 

27.4; 27.2; 27 

Trichosantehes lepiniate Maxim. Trichomaglin 24.7 

Trichosantes sp. Bac Kan 8-98 Trichobakin 27 

Triticum aestivum L. Tritin 30 

Vaccaria pyramidata Medik. Pyramidatine 28 

Zea mays L. Maize seed RIP (b-32, corn RIP) 32.4 

 

 

2.2 Type 2 RIPs 

 Type 2 RIPs can be composed of two or four polypeptide chains, with an 

approximate molecular weight of 60 kDa or 120 kDa, respectively. At least one chain 

possess enzymatic activity and is therefore called A-chain (A, active). The A-chain is 

linked by disulphide bonds and other non-covalent bonds to a galactose-specific lectin 

B-chain. The majority of type 2 RIPs known are heterodimers composed of one A-chain 

linked to a B-chain, like abrin, modeccin, ricin, volkensin and stenodactylin. The 
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tetrameric structure is typical of the Ricinus communis agglutinin (RCA), and also 

viscumin form tetramers in concentrate solutions (Van Damme et al., 2001).  

 Most of the knowledge about type 2 RIPs byosynthesis has been obtained by 

studies on ricin in castor bean seeds. Ricin, and probably most of type 2 RIPs, is 

synthesized as a preprotein formed by a signal peptide, the mature A-chain and the 

mature B-chain linked by a 12-residue linker peptide (Fig. 1). The pre-proRIP is co-

translationally translocated into the endoplasmic reticulum (ER) lumen, where the 

signal peptide is cleaved and four exposed asparagine residues are N-glycosylated. The 

formation of disulfide bonds between A-chain and B-chain, and also within the B-chain, 

occurs in the ER. The pro-RIP is subsequently transported via the ER and the Golgi 

complex into protein storage vacuoles, where the excision of the internal 12-residue 

linker yields mature protein. This maturation step implies that the protein becomes 

active only after its arrival in the storage compartment, probably a mechanism to 

prevent unwanted activation of the toxin in the cytoplasm (Lord et al., 1994).  

 Type 2 RIPs are generally more cytotoxic than type 1 RIPs. The presence of the 

lectin B-chain facilitates the translocation of the A chain into the cytosol binding to 

galactosyl moieties of glycoproteins and/or glycolipids that are present on the surface of 

eukaryotic cells. However, several non-toxic type 2 RIPs have been described. Despite 

strong anti-ribosomal molecular activity in vitro, non-toxic type 2 RIPs lack the high 

toxicity in cultured animals cells and in vivo rodents, maybe because of individual 

changes in the high-affinity sugar binding sites of the B-chains, which alter their 

intracellular trafficking (Ferreras et al., 2011). 

 The purification of type 2 RIPs takes advantage of the lectin properties of their 

B-chains and it is performed by affinity chromatography on Sepharose, acid-treated 

Sepharose or other galactose-containing stationary phases. Elution of bound protein is 

obtained with galactose or lactose.  
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Table 2: type 2 RIPs from plant, modified from Gilabert-Oriol et al., 2014. 

 

Plant RIP 

Absolute 

molecular mass 

(kDa) 

Abrus precatorius L. 

Abrin-a; abrin-b; abrin-c; abron-d; abrin-I; abrin-

II; abrin-III; APA-I; APA-II; Abrus agglutinin; 

Abrus agglutinin 

63; 67; 63; 67; 64; 63; 

63; 130; 128; 67; 134 

Abrus pulchellus L. Pulchellin 61.5-63 

Adenia digitata Burtt-Davy Modeccin 57 

Adenia ellenbeckii Harms. Adenia ellenbeckii RIP 60 

Adenia goetzii Burtt-Davy Adenia goetzii RIP 60 

Adenia keramanthus Harms. Adenia keramanthus RIP 60-65 

Adenia lanceolata Engl. Adenia lanceolata RIP; lanceolin 60; 61.2 

Adenia stenodactyla Harms. Adenia stenodactyla RIP; stenodactylin 60; 63.1 

Adenia venenata Forssk. Adenia venenata RIP 60 

Adenia volkensii Harms. Volkensin 62 

Aralia elata (Miq.) Seem Aralin (Aralia elata lectin) 61.3 

Camellia sinensis (L.) Kuntze Camellia sinensis RIP (CS-RIP) 63.6 

Cinnamomun camphora (L.) J. 

Presl. 
Cinnamomin 61 

Cinnamomum porrectum L. Porrectin 64.5 

Cucurbita foetidissima Kunth Foetidissima; foetidissimin II 63; 61 

Eranthis hyemallis Salisb. Eranthis hyemalis lectin (EHL) 62 

Iris hollandica L. Iris agglutinin b (IRAb); Iris agglutinin r (IRAr) 65; 65 

Malania oleifera Malanin 61.9 

Momordica charantia L. Momordica charantia lectin (MCL) 130 

Phoradendron californicum  Nutt. Phoradendron californicum lectin (PCL) 69 

Polygonatum multiflorum Kunth. 

Polygonatum multiflorum RIP monomer 

(PMRIPm); Polygonatum multiflorum RIP 

tetramer (PMRIPt) 

60; 240 

Ricinus communis L. 

Ricin; ricin 1; ricin 2; ricin 3; ricin D; ricin E; 

Ricinus agglutinin (RCA 120); Ricinus agglutinin 

1 (RCA 1); Ricinus agglutinin 2 

62; 64; 67; 66; 60; 60; 

120; 134; 140 

Ricinus sanguineus Hort. ex 

Groenland 

Ricin R2; ricin R11; ricin R12; Ricinus 

sanguineus agglutinin 
63.1; 57.8; 62.2; 120 

Sambucus ebulus L. Ebulin r; ebulin I (ebulin 1) 56; 56 

Sambucus nigra L. 
Nigrin b; Sambucus nigra agglutinin I (SNAI); 

SNLRP 
58; 140; 60-62 

Sambucus racemosa L. Basic racemosin b 58 

Sambucus sieboldiana L. Sieboldin-b 59.4 
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Viscum album L. Viscumin (mistletoe lectin I) 60 

Viscum articulatum Burm. F. Articulatin-D 66 

Ximenia americana L. Riproximin 63 

 

 

2.3 Type 3 RIPs 

 Type 3 RIPs are a group that comprises two proteins characterized only from 

maize and barley (b-32 and JIP60, respectively). Type 3 RIPs are synthesized as single-

chain inactive precursors (proRIPs) that require proteolytic processing events to produce 

two noncovalently linked chains equivalent to a type 1 RIP. The absence of a signal 

peptide in the gene encoding type 3 RIPs indicates that these proteins are synthesized on 

free-polysomes in the cytoplasm. The function of the extra domains in the type 3 RIPs 

is not known (Van Damme et al., 2001).  

 

Table 3: type 3 RIPs from plant, modified from Gilabert-Oriol et al., 2014. 

 

Plant RIP 

Absolute 

molecular mass 

(kDa) 

Hordeum vulgare L. JIP60 (60 kDa jasmonate-induced protein) 60 

Zea mays L. Maize proRIP 34 

 

 

3. Interaction of RIPs with cells: mechanism of entry 

 A general mechanism of cell entry could be depicted for all RIPs: after binding 

to cell surface, RIPs are endocytosed and follow retrograde transport through the Golgi 

apparatus to the endoplasmic-reticulum (ER), then enter the cytosol possibly exploiting 

the ER-associated degradation pathway (ERAD). Differences in cytotoxicity between 

type 1 and type 2 RIPs are due to the presence of a lectin B-chain in the latter, which 

facilitates cell entry. The B-chain of type 2 RIPs possesses galactose-specific lectin 

activity, which allows its interaction with galactose-containing glycoproteins and 

glycolipids on the cell surface. Interactions between mannose cell receptors and RIPs 

carbohydrate side chains also occur (Stirpe, 2004).  
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 Most of the knowledge on type 2 RIPs endocytic mechanism comes from studies 

on ricin. It has been shown that, after binding to cell surface, ricin and possibly other 

type 2 RIPs reach the endosomal compartment through clathrin-dependent or clathrin-

independent pathways. Once in the cell, RIPs could be recycled to cell surface or 

transported to lysosomes for degradation. The majority of RIPs entered translocate to 

the Golgi apparatus, then to the ER, where they can gain access to cytosol interacting 

with the ERAD machinery (Sandvig et al., 2005). Since translocation through the ER 

membranes implies the unfolding of the protein and subsequent loss of activity, RIPs 

are thought to escape degradation because of the low number of lysines that they 

contain (Johannes et al., 2008).  

 The mechanism of cell entry of type 1 RIPs have been examined in various 

studies, but some questions remain unanswered. It has been proposed that type 1 RIPs 

could be endocytosed by pinocytosis or after binding to either the galactosyl residues or 

the mannose receptor on the cell membrane. A comparison between the endocytosis of 

ricin and saporin indicated that the type 1 RIP follows a Golgi-independent pathway to 

the cytosol and does not require a low pH for membrane translocation which allows the 

internalization of the toxin without receptor binding (Vago et al., 2005). Type 1 RIP 

intracellular routing seems to present some diversity within the group or depending on 

the cell type: while saporin seems to follow a Golgi-independent pathway and to 

localize also in the cell nucleus (Bolognesi et al., 2012); PAP presents a type 2 RIP-

similar retro-translocation mechanism from the ER into the cytosol (Parikh et al., 2005). 

The latter observation suggests that type 1 RIPs may also be able to follow the 

intracellular route of misfolded proteins without being degraded by the proteosome. 

 

4. Biological activities of RIPs 

4.1 Glycosylase activity 

 RIPs are officially classified as rRNA N-glycosylases (EC 3.2.2.22). They 

recognize a specific and highly conserved region in the large subunit of rRNA and 

cleave a specific N-glycosidic bond between an adenine and the nucleotide on the 

rRNA. The first description of the mechanism underlying RIP-induced ribosomal 

damage was described by Endo and co-workers (Fig. 2). Using ricin and rat liver 

ribosomes as substrate, they showed that the adenine cleavage was highly selective and 
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that the specific adenine removed (A4324) lies in a highly conserved sequence, GAGA, 

that is present in a universally conserved loop (termed sarcin/ricin loop, SRL) located at 

the top of a stem region in the 28S rRNA (Endo et al., 1987). The SRL is important for 

binding and GTPase activation of the translational GTPases, which include the 

elongation factor 1 (EF1) and the elongation factor 2 (EF2), by the ribosome. The 

irreversible removal of this adenine from GAGA sequence prevents the binding of EF2 

to ribosomes and affects both the EF1- and EF2-dependent GTPase activities with 

subsequent arrest of protein synthesis at the translocation step, thus inhibiting 

irreversibly cellular protein synthesis. All RIPs known are able to deadenylate larger 

rRNA, but marked differences in efficiency and substrate specificity exist between 

different RIPs. For example, ricin shows activity on mammalian and yeast ribosomes, 

but not on bacterial or plant ones. Conversely, PAP is able to deadenylate ribosomes 

from bacteria, plant and yeast. This differential sensitivity may be accounted to a 

different interaction with ribosomal proteins that may limit accessibility to the substrate 

(Tumer et al., 2012).  

 Some RIPs were found to be catalytically active in vitro also on other nucleotide 

substrates, such as herring sperm DNA, poly(A) and RNAs from different sources. 

Following these observation, the redefinition of RIPs as polynucleotide: adenosine 

glycosidases was proposed (Barbieri et al., 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 RIPs mechanism of action on larger rRNA, modified from Girbés et al., 2004.  
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4.2 RIPs and apoptosis 

 It was initially thought that RIPs cytotoxicity depended solely on their ability to 

arrest cellular protein synthesis, thus causing intoxicated cells to undergo necrosis. 

However, a rich series of experimental evidences and reports support the notion that 

RIPs are able to induce apoptosis in intoxicated cells, but very little progress has been 

made on elucidating the mechanism and pathways of RIP-induced apoptosis. RIP-

treated cells undergo apoptosis via different mechanisms including the loss of 

mitochondrial membrane potential, caspases activation and modulation of regulator 

proteins (Narayan et al., 2005), but the relationship between apoptosis induction and 

RIPs N-glycosylase activity remains an open question. There are contradictory reports 

on the importance of translation inhibition by RIPs in apoptosis induction: some authors 

indicate that protein synthesis inhibition activity is necessary for triggering apoptosis, 

while others suggest that induction of apoptosis by RIPs is not necessarily consequent to 

the translation inhibition (Sikriwal et al., 2010). Even if all RIPs share a common 

activity on 28S rRNA, it is becoming clear that they not share a single common 

pathway for the induction of apoptosis, instead, it is likely that RIPs are able to induce 

multiple cell death pathways in different cell types. In addition to the inhibition of 

translation, alternative mechanisms were proposed to explain how RIPs induce 

apoptosis, such as (a) the ribotoxic stress response; (b) ER-stress and the activation of 

unfolded protein response (UPR) genes; (c) interactions with anti-oxidant proteins and 

the production of reactive oxygen species. All these mechanisms could cooperate in 

RIP-induced apoptosis at different levels and in different ways depending on cell type.  

 

4.2.1 Apoptosis induction by ribotoxic stress response 

 It was shown for the first time by Iordanov et al., 1997, that ricin, α-sarcin and 

anysomycin were able to activate signaling through the c-Jun NH2-terminal (JNK) 

mitogen-activated protein kinase (MAPK) pathway in response to specific damage to 

28S rRNA. They provided evidence that the peptidyl transferase reaction center of 

eukaryotic ribosomes could function as a sensor of translational stress and that 

activation of SAPK/JNK1 was not simply due to protein synthesis arrest, but to specific 

signaling starting from damaged 28S rRNA. This novel pathway of kinase activation 

was then termed “ribotoxic stress response”. Initiation of the ribotoxic stress response 
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required actively translating ribosomes at the time of ribosome damage, and activation 

of p38 and extracellular signal-regulated kinases (ERKs) together with JNKs can also 

occur. Activation of the ribotoxic stress response was observed to increase the 

expression of pro-inflammatory proteins, such as IL-8, GRO-α, IL-1β and TNF-α, as 

well as pro-apoptotic genes like FasL (Jandhyala et al., 2012). 

 Signaling through the ribotoxic stress response has been linked to RIP-induced 

apoptosis. In the immortalized, non-transformed epithelial cell line, MAC-T, inhibition 

of the JNK pathway reduced ricin-induced caspase activation and poly(ADP-ribose) 

polymerase cleavage, suggesting the requirement of JNK for apotosis induction (Jetzt et 

al., 2009). In ricin-treated RAW 264.7 cells, inhibition of p38 MAPK strongly inhibited 

the release of TNF-α and reduced ricin-induced apoptosis. Similar observations were 

obtained with modeccin, suggesting that ribotoxic stress response may trigger the 

multiple signal transduction pathways through the activation of p38 MAP kinase, which 

in turn leads to TNF-α release and apoptosis (Higuchi et al., 2003). Similarly, the 

blocking of the p38 and JNK activation prevented intestinal epithelial cell line HCT-8 

death and diminished Shiga toxin 1-associated caspase 3 cleavage (Smith et al., 2003). 

An interesting observation was made in shiga toxin-treated Burkitt’s lymphoma cell line 

Ramos, where inhibitors of p38 actually increased apoptosis. The authors suggested that 

persistent p38 MAPK activation in lymphoid cells may induce survival pathways that 

render those cells less sensitive to the toxin (Garibal et al., 2010).  

 How cells sense 28S damage and trigger signalling through the ribotoxic stress 

response is not fully understood, but three upstream effectors have been described: the 

double-stranded RNA activated protein kinase (PKR); hematopoietic cell kinase (Hck); 

and the zipper sterile alpha motif kinase (ZAK). 

 Zhou et al. (2014) proposed a role for PKR as a ribosome guardian, as it was 

found to associate with 18S and 28S rRNA sequences in a region-specific manner and 

to be phosphorylate upon ricin and other ribotoxins addition in a concentration-

dependent way, suggesting that PKR is able to rapidly respond to subtle alterations in 

secondary and/or tertiary rRNA structure. This would result in recruitment and 

activation of MAPKs to the ribosome thereby initiating downstream signalling (Bae et 

al., 2010). Treatment of RAW 264.7 cells with PKR inhibitors or antisense knockdown 

of PKR resulted in a decrease of ribotoxic insult-driven MAPK activation as well 
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apoptosis (Zhou et al., 2003). Furthermore, expression of a dominant-negative PKR in 

human monocytic U937 blocked ricin-induced IL-8 expression (Gray et al., 2008).  

 Hck was also shown to play a potential role in ribotoxic stress response, as 

knockdown of Hck was found to decreased both TNF-α production, ERKs, p38, JNKs 

activation and apoptosis following ribotoxic insult (Zhou et al., 2005). Both PKR and 

Hck were found to interact with 40S rRNA subunit, but knocking down of PKR 

expression suppress interaction between Hck and 40S subunit (Bae et al., 2010). 

 The MAP3K ZAK was considered as a third upstream mediator of the ribotoxic 

stress response. ZAK was shown to transduce activation of JNKs and p38 by ricin and 

shiga-toxin 2. Treatment with ZAK inhibitors or siRNA blocked SAPK activation in 

COS-7, Vero and HCT-8 cells and resulted in a modest but statistically significant 

improvement of cell viability (Jandhyala et al., 2008). 

 

4.2.2 RIP-induced ER-stress and the activation of UPR genes 

 The ER is the intracellular site functioning as Ca2+ storage and represents the site 

for correct folding and post-translational processing of proteins. Three proteins, RNA-

dependent protein kinase-like ER kinase (PERK), inositol-requiring ER to nucleus 

signal kinase-1 (IRE1) and activating transcription factor-6 (ATF6), serve as sensors of 

unfolded proteins. The unfolded protein response (UPR) acts by halting protein 

translation and transcription of genes to restore ER function. If ER homeostasis is 

compromised, UPR activates apoptotic signaling cascade. The central activator of UPR 

is the chaperone binding immunoglobulin protein BiP (also named GRP78), which in 

the presence of unfolded proteins starts UPR signalling by dissociating from PERK, 

IRE-1 and ATF-6. Once BiP is titrated away by unfolded proteins, PERK and IRE-1 are 

activated: PERK phosphorylates and inhibits eukaryotic translation initiation factor two 

subunit α (eIF2α) that produce a general translational arrest, while enhancing the 

transcription of activating transcription factor 4 (ATF4). After BiP detachment, ATF6 

re-localizes to the Golgi apparatus to activate UPR and ERAD genes, including X-box 

binding protein 1 (XBP-1), whose mRNA is alternatively spliced by activated IRE-1 

whose product activates ERAD components as well as several chaperones and foldases 

(Yadav et al., 2014).  
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 UPR is another stress response that may contribute to RIPs-induced pro-

apoptotic signaling. Ricin was shown to induce Bip degradation, starting ER-stress 

which in turn triggered IL-6 production (Shi et al., 2009). RIP-treated human 

adenocarcinoma cell lines MDA-MB-231 and HCT116 were shown to activate in a 

concentration-dependent manner the PERK and ATF6 branches of UPR, but not the 

branch involving XBP-1 alternative splicing by IRE1 (Horrix et al., 2011). Similarly, 

Shiga toxin 1 treatment was found to increase activation of the ER stress sensors IRE1, 

PERK and ATF6 in human monocytic cells, leading to apoptosis (Lee et al., 2008). 

 

4.2.3 Oxidative stress 

 RIPs were found to induce apoptosis by increasing the reactive oxygen species 

(ROS) and intracellular calcium levels. Trichosanthin causes ROS production in human 

choriocarcinoma cells (JAR cells) after its interaction with a membrane-bound receptor. 

ROS production in trichosanthin-treated cells might be a consequence of calcium 

signaling, as ROS levels were shown to increase in parallel with calcium levels (Zhang 

et al., 2001). In U937 cells, mistletoe lectin II (MLII) toxin generated high levels of 

hydrogen peroxide, which in turn activated the intracellular stress signaling and 

JNK/SAPK pathways, concomitant with apoptosis. Treatment with a ROS scavenger 

was successful in reducing apoptosis (Kim et al., 2003). The same cell line treated with 

a low dose of abrin showed an increase in ROS levels, followed by DNA damage 

(Bhaskar et al., 2008); while N-Acetyl-l-cysteine (NAC) and Trolox were found to 

confer significant protection in Jurkat cells by restoring antioxidant molecules depleted 

by abrin treatment (Saxena et al., 2014).  

 Abrin was also found to interact with antioxidant protein-1 (AOP-1). AOP-1 is 

located in the mitochondria protecting them from the action of ROS. Direct binding of 

abrin to AOP-1 promotes apoptosis by inhibiting the mitochondrial AOP-1, resulting in 

the increase of intracellular ROS and the release of cytochrome c from the mitochondria 

to the cytosol, which in turn activates caspase-9 and caspase-3 (Shih et al., 2001).  
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4.3 Antiviral activity 

 Type 1 and some type 2 RIPS have been shown to be active against plant, fungal 

and animal viruses, but the exact mechanism of their broad-spectrum anti-viral activity 

is still not clear. Some of the first studies showed that RIPs were effective against 

viruses as broad as poliovirus, influenza and herpes simplex virus (Parikh et al., 2004). 

Initially it was thought that RIPs could come in contact with and damage ribosomes of 

the infected cells, with consequent death of the cells and arrest of viral proliferation. 

However, with the help of recombinant techniques, mutated RIPs were produced and it 

was possible to ascertain that the ribosome-inactivating and antiviral activities can be 

separated (Stirpe et al., 2006). For example, two non-toxic recombinant mutants of PAP 

from Phytolacca americana depurinate HIV-1 RNA much better than cellular rRNA 

(Uckun et al., 2003). PAP was also shown to inhibit the production of the human T-cell 

leukemia virus 1 (HTLV-1) (Mansouri et al., 2009).  

 RIPs inhibit replication of RNA as well as DNA viruses. This activity appears to 

exhibit some specificity, as not all the substrates are equally affected. For example, PAP 

has been shown to inhibit the translation of capped but not of uncapped viral RNAs 

(Hudak et al., RNA 2000). Barnett et al., 1995, described the activity of single-chain 

RIP gelonin on human DNA virus cytomegalovirus, (HCMV). These authors evaluated 

the antiviral activity of gelonin after its chemical linkage to a polyclonal human IgG 

specific for infected cells. In uninfected cells, there was no difference in 

[35S]methionine incorporation between untreated cultures and cultures treated with 

immunotoxin at 100 micrograms/ml. In HCMV-infected cells, there was a significant 

decrease in [35S]methionine incorporation in the immunotoxin-treated cultures, 

suggesting a selective cytotoxic effect on the virus-infected cells. An immunotoxin 

specific for murine cytomegalovirus (MCMV) was prepared by linking gelonin to a 

polyclonal anti-MCMV IgG. Protein synthesis inhibition-based cytotoxic assay showed 

that the anti-MCMV immunotoxin had a 50% cytotoxic concentration of 35 

micrograms/ml in MCMV-infected cells and greater than 200 micrograms/ml in 

uninfected cells. MCMV yields measured at 7 days post-inoculation were reduced by 2 

log in cultures treated with immunotoxin at 20 micrograms/ml at 1 day post-inoculation 

(Barnett et al., 1996). Following first observations by McGrath et al., 1989; the antiviral 

efficacy of RIPs were also tested in some phase I/II clinical trials using RIPs and RIP-
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based immunotoxins, especially to treat HIV patients, unfortunately without success 

(Kaur et al., 2011). 

 

5. RIPs employment in experimental and clinical medicine 

 Many efforts have been spent to exploit cytotoxicity and antiviral properties of 

RIPs in medicine. Clinical employment of unmodified type 1 RIPs have been very 

limited: inhibitory effects of RIPs on HIV proliferation in cells were tested in clinical 

trials involving AIDS patients, but the results were unfortunately too poor (Kaur et al., 

2011). On the other hand, the lack of cell-binding specificity of type 2 B-chain renders 

the use of these proteins unsafe in clinical practice. Most of the interest in RIPs in the 

biomedical field has been the possibility of directing their high cytotoxicity in a 

selective manner to deplete populations of undesired cells, as for example malignant, 

virus infected or autoreactive cells. This was achieved by linking them to molecules, in 

particular monoclonal antibodies (mAbs), but also lectins, hormones, growth factors, to 

form “immunotoxins” (ITs) or other cell-binding conjugates capable of selective killing 

of unwanted cells (Madhumathi et al., 2012). To date, RIP-based ITs have been 

employed to treat cancer and also autoimmune disorders (Madhumathi et al., 2012). 

 

5.1 RIP-containing immunotoxins in anti-tumor therapy 

 The term immunotoxin is generally referred to a toxin targeted by an antibody, 

while toxins linked to other carriers are commonly referred to as “chimeric toxins” or 

“conjugates”. After the IT targeting moiety binds to the target cell surface, the payload 

is internalized to the endocytic compartment. Processing and trafficking of these 

molecules is target- and toxin-specific, but converge in the delivery of the toxic cargo to 

appropriate cellular compartment. 

 The efficiency of ITs in killing the target cells have been shown with excellent 

results in numerous pre-clinical models (Fracasso et al., 2010) and clinical trials (Polito 

et al., 2011; Palanca-Wessels et al., 2014), with the best resultsobtained in the 

experimental treatment of hematological malignancies. The cell-killing efficiency of an 

IT mainly depends on the cell type, antigen availability, binding affinity and 

intracellular routing. First ITs produced were obtained by chemical coupling of native 

toxins to antibody moieties by the formation of disulphide bonds between the toxin and 
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the carrier. Despite great advantages like good stability and ease of production, the 

resulting product was heterogeneous and poorly suitable for commercialization. New 

generation ITs are produced using recombinant DNA techniques, using modified toxins 

and antibody fragments (as single-chain variable fragments, scFvs). The production of 

these ITs could be achieved using different expression hosts, such as bacteria (Wang et 

al., 1997), yeasts (Lombardi et al., 2010) and algae (Mayfield, 2013), however yields 

are often very poor and sometimes with low stability. 

 Main issues reported by clinical trials which have had limited ITs development 

and expansion in clinical practice are immunogenicity and vascular leak syndrome 

(VLS). Approximately 90% of IT-treated patients with solid tumors develop anti-toxin 

antibodies after 1 or 2 cycles of treatment, while better results were achieved with 

hematologic cancer: end-stage onco-hematological patients are often heavily 

immunosuppressed, and several cycles of therapy were needed to observe formation of 

anti-toxin antibodies (Fitzgerald et al., 2011). A patient could either develop antibodies 

against the mAb portion or the toxin part. Host antibodies against the antibody portion 

of the IT can be avoided for example by humanizing this portion of the molecule, while 

several immunosuppressive regimen where tested to reduce IT-associated immune 

response, often with poor results (Alewine et al., 2015). Recently, the pentostatin plus 

cyclophosphamide nonmyeloablative regimen was found to be effectively 

immunosuppressive, resulting in a marked durable suppression of T-cell effector 

function (Mariotti et al., 2011). The efficacy of the combination of pentostatin plus 

cyclophosphamide in reducing ITs immunogenicity was confirmed in a preclinical mice 

model (Mossoba et al., 2011) and then tested in a pilot clinical study achieving 

promising results. In fact, after induction therapy with pentostatin plus 

cyclophosphamide regimen, 8 of 10 patients could receive repeated cycles of IT before 

development of anti-IT neutralizing antibodies, delaying markedly anti-IT antibodies 

formation (Hassan et al., 2013).  

 VLS is caused by an endothelial damage which cause an increase in vascular 

permeability associated with edema, hypotension and, in severe form, signs of 

pulmonary and cardiovascular failure. VLS often sets the major dose-limiting toxicity in 

IT therapy, and several attempts were made to limit this side effect (Wang et al., 2007; 

Wang et al., 2008; Liu et al., 2012). Ricin and other toxins were shown to contain short 
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aminoacid motifs that bind endothelial cells and initiate VLS (Baluna et al., 1999). 

Modification or deletion of these sequences were shown to be effective in reducing 

toxin-induced VLS (Wang et al., 2007; Weldon et al., 2013). 

 Beside modification of the carrier and toxic moieties to reduce immunogenicity 

of ITs (i.e. PEGylation or removal of B cell epitopes), some efforts have been made to 

enhance the toxicity of ITs, in order to reduce the dose in vivo. The use of 

photochemical internalization (PCI) technology could increase the efficacy of ITs. PCI 

is a drug delivery technology which allows the cytosolic release of drugs from the 

endocytic compartment. This method utilizes photosensitizers that localize to the 

membrane of endocytic vescicle and can cause controlled membrane breakage after 

light exposure. As ITs are taken up by receptor-mediated endocytosis, PCI could allow 

controlled release of the drug inside the tumor. In several studies, PCI was found to 

effectively enhance ITs efficacy in tumor treatment (Weyergang et al., 2011). 

 Another strategy followed to improve ITs efficacy resulted from the 

employment of a mixture of saponins in combination with ITs. Saponins are in general 

tenside-like compounds able to interact with cholesterol within membranes, they were 

found to enhance endosomal escape of the toxin moiety, which in turn resulted in 

apoptosis. The concomitant use of saponins from Saponaria officinalis L. and 

Gypsophila paniculata L. was shown to synergistically enhance the toxicity of saporin-

EGF and dianthin-EGF (Gilalbert-Oriol et al., 2014).  

 

5.2 Clinical Trials in cancer diseases  

 Several ITs have been investigated in recent or ongoing trials. Moxetumomab 

pasudotox is a recombinant IT that combines an anti-CD22-Fv with a 38-kDa fragment 

of Pseudomonas exotoxin A. It is currently in clinical trials for the treatment of hairy 

cell leukemia (phase III, NCT01829711); adult acute lymphoblastic leukemia (ALL) 

(phase I/II, NCT01891981); and childhood ALL or non-Hodgkin’s lymphoma (NHL) 

(phase I, NCT00659425). Anti-CD25 recombinant immunotoxin LMB-2 is in a phase II 

trial for hairy cell leukemia as single agent (NCT00321555) and for adult T-cell 

leukemia in combination with fludarabine and cyclophosphamide (NCT00924170). 

SS1P is another Pseudomonas exotoxin A-based IT designed for the treatment of 

mesothelioma currently in a phase II clinical trial in combination with fludarabine and 



Introduction 

 

22 

 

cyclophosphamide (NCT01362790). Two diphtheria toxin-based ITs are currently in 

phase I and I/II, clinical trials as single agents, A-dmDT390-bisFv(UCHT1) and 

DT2219ARL (NCT00611208; NCT00889408, respectively). An anti-CD33 IT that 

contains type I RIP gelonin recently successfully completed a phase I clinical trial in 

patients with advanced myeloid malignancies as a single agent (Borthakur et al., 2013). 

To date, the only FDA approved ITs are denileukin diftitox and gemtuzumab 

ozogamicin. However, the latter was approved in 2000 as a single agent under the 

category of "accelerated" approval in patients with relapsed acute myelogenous 

leukemia, but the lack of evidence to confirm clinical benefit and safety concerns have 

altered the benefit/risk assessment unfavorably for gemtuzumab ozogamicin and have 

led to the decision to withdraw the accelerated approval. 

 

5.3 Immunotoxins in autoimmune disorders 

 The ability to target specific cells taking advantage of surface markers was also 

exploited in the experimental treatment of some autoimmune diseases, showing 

promising results. In 1999, the FDA approved the use of an engineered IT combining 

interleukin-2 and diphtheria toxin known as denileukin diftitox for patients with 

persistent or relapsed CD25-positive cutaneous T-cell lymphoma (CTCL). Denileukin 

diftitox was subsequently reported to be an effective therapy for other non-neoplastic 

conditions, such as autoimmune disorders like psoriasis, rheumatoid arthritis, systemic 

lupus, scleroderma and vasculitis (Manoukian et al., 2009). Similarly, a Pseudomonas 

exotoxin A-based IT to folate receptor beta was effective in the intra-articular treatment 

of antigen-induced arthritis in a rat model of disease (Nagai et al., 2012). The same IT 

have had previously shown efficacy on the activation and proliferation of rheumatoid 

arthritis synovial cells. (Nagai et al., 2006). Type 1 RIP gelonin was conjugated to 

amino acids 4-181 of the extracellular domain of the alpha-subunit of the human muscle 

acetylcholine receptor and used in the experimental treatment of Myasthenia gravis. 

This approach was found to be also useful for the therapy of further autoimmune 

diseases by substituting other autoantigens for the AchR fragment in the fusion protein. 

(Hossann et al., 2006). RIPs-based ITs, such as ATG-saporin-S6 (Polito et al., 2009b) 

and CTLA-4-saporin-S6 (Tazzari et al., 2001), have been also utilized for the 
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prevention and treatment of graft-versus host disease (GVHD), showing promising 

efficacy in vitro and in animals, respectively. 

 



Materials and Methods 

 

24 

 

 

 

 

 

 

 

 

 

Chapter II 

MATERIALS AND METHODS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Materials and Methods 

 

25 

 

  



Materials and Methods 

 

26 

 

 

2.1 Materials 

 

RIPs 

Stenodactylin was purified from the caudex of Adenia stenodactyla as described by 

Stirpe et al., 2007. Saporin was purified from the seeds of Saponaria officinalis as 

described by Barbieri et al., 1987. Ricin was purified from the seeds of Ricinus 

communis as described by Nicolson et al., 1974.  

 

Immunotoxins 

Anti-CD20 monoclonal antibody (mAb) rituximab-S6 immunotoxin (RTX-S6) and anti-

CD22 OM124-S6 immunotoxin were produced as described in Polito et al., 2004 and 

Bolognesi et al., 1998, respectively. Briefly, mAbs and saporin-S6 were dissolved in 50 

mM sodium borate buffer, pH 9.0, and were derivatized by adding 2-iminothiolane 

(Sigma-Aldritch, St.Louis, MO, USA). mAbs and the reduced RIP were allowed to 

react for 16 h (RTX/S6) or 24 h (OM124/S6) at room temperature. The resulting 

conjugates were separated from RIP homopolymers and free antibody by gel filtration 

on a Sephacryl S200 high-resolution column (100 cm × 2.5 cm) (GE-Healthcare, 

Buckinghamshire, UK), equilibrated and eluted with phosphate-buffered saline (PBS, 

0.14 M sodium chloride in 5 mM sodium phosphate buffer, pH 7.4). The 

immunoconjugates were analyzed by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS–PAGE) under non-reducing conditions. Proteins were incubated 

in sample buffer (40 mm Tris-HCl pH 6.8, 2% SDS, 0.005% bromophenol blue) 

containing 1 mg/ml iodoacetamide, for 30 min at room temperature, analyzed on a 4–

15% PhastGel gradient, and then stained with Coomassie brilliant blue, following 

manufacturer’s instructions (Pharmacia Biotech, Uppsala, Sweden). Molecular weight 

markers were from Sigma: myosin (205 kDa), beta-galactosidase (116 kDa), 

phosphorylase B (97 kDa), bovine serum albumin (66 kDa). The RIP/antibody ratio of 

the immunotoxins was estimated by densitometric analysis, performed with a Kodak 

DC 290 apparatus, using Kodak 1D, 3.6 software version. The final immunoconjugate 

concentration was expressed as RIP content. 
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Cell lines and cultures 

Human anaplastic large-cell lymphoma (D430B) cells, (a kind gift from Dr. Tazzari 

P.L., Department of Immunohaematology and Transfusion Medicine, Sant'Orsola-

Malpighi Hospital), human Burkitt’s lymphoma (Raji and Ramos) cells (American Type 

Culture Collection), human acute monocytic leukemia (AML) (MOLM-13) cells (a kind 

gift from Prof. Gjertsen B.T., Department of Clinical Science, Hematology Section, 

University of Bergen) were maintained in RPMI 1640 medium (Sigma-Aldrich) 

containing 10% heat-inactivated foetal bovin serum 2 mM L-glutamine, 100U/ml 

penicillin and 100 µg/ml streptomycin (Sigma-Aldrich), hereafter named complete 

medium. All cells were cultured at 37 ˚C in a humidified environment with 5% CO2 in a 

HeraCell Haereus incubator (Hanau, Germany) and routinely checked for the absence of 

Mycoplasma infection. Trypan blue, was obtained from BioWhittaker (Vervies, 

Belgium). Cytotoxicity was evaluated using L-[4,5-3H] leucine purchased by GE 

Healthcare (Buckingam shire, UK). Flasks and plates were from Falcon (Franklin 

Lakes, NJ, USA). 

 

Antibodies 

Western blots were performed with rabbit antibodies against phospho-SAPK/JNK 

(Thr183/Tyr185), p38, phospho-p38 (Thr180/Tyr182), COX IV, horseradish 

peroxidase-conjugated anti-mouse or anti-rabbit IgG purchased from Cell Signaling 

Technology, Inc. (Danvers, MA, USA). Mouse anti-caspase 3 was purchased from 

Santa Cruz Biotechnology, Inc (Santa Cruz, CA, USA). Antibodies were diluted 

following manufacturer’s instructions. 

Phosflow cytometry was performed with Alexa Fluor® 647 conjugate mouse antibodies 

against phospho-p38 (Thr180/Tyr182), phospho-JNK (Thr183/Tyr185) and phospho-

ERK1/2 (Thr202/Tyr204) purchased from BD transduction Laboratories (Heidelberg, 

Germany).  

 

Kits 



Materials and Methods 

 

28 

 

Caspases activity was evaluated using the luminescent kit Caspase-Glo™3/7 Assay, 

CaspaseGlo™ 2 Assay, Caspase-Glo™ 8 Assay, Caspase-Glo 9™ Assay (Promega 

Corporation, Wisconsin, USA)  

Morphological membrane changes were detected using Annexin V-EGFP/PI detection 

kit (Biovision, Mt. View, CA).  

Viability was measured using the colorimetric CellTiter 96® Aqueous One Solution 

Cell Proliferation Assay (Promega). The CellTiter 96® Aqueous One Solution Reagent 

contains a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, MTS] and an electron 

coupling reagent (1-methoxy phenazine methosulfate, PMS).  

Total RNA was isolated using the RNeasy Plus Minikit purchased from QIAGEN 

(Valencia CA, USA).  

 

Reagents 

The liquid scintillation was the Ready-Gel (Beckman Instrument, Fullerton, USA). The 

reagents and the molecular weight standard were purchased from GE Healthcare. 

The pan-caspase inhibitor Z-VAD-fmk (carbobenzoxy-valyl-alanyl-aspartyl-[O-

methyl]fluoromethylketone), proteasome inhibitors PS-341 and MG-132 were supplied 

by Vinci-Biochem (Florence, Italy).  

The Immobilon Western detection Reagent and the PVDF membrane were purchased 

from Millipore (Milford, MA, USA). 

For SDS-PAGE, precasted gels and buffer strips obtained from GE Healthcare were 

used. 

The iScript cDNA synthesis Kit and the SsoFast™ EvaGreen® Supermix were obtained 

from Bio-Rad (Hercules, CA, USA). 

Other reagents used were from Merck (Darmstadt, Germany), Carlo Erba (Milano, 

Italy) and Sigma. 

 

Instruments 

Cells were maintained at 37°C in humidified atmosphere at 5% CO2 in the HeraCell 

Haereus incubator (Hanau, Germany). 
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Cell-incorporated radioactivity was measured by a β-counter (Beckman Coulter, 

Fullerton, CA, USA). 

Morphological cell analysis was carried out with a digital camera from Motic 

Microscopes, (Xiamen,China).  

Absorbance at 492 nm was measured by a microtiter plate reader Multiskan EX, 

ThermoLabsystem, (Helsinki, Finland). 

Flow cytometry analysis, was done using the FACSAria BD analyzer or FACS Fortessa 

(Franklin Lakes, New Jersey, USA). 

The luminescence was read using the Fluoroskan Ascent FL (Labsystem, Finland). 

Protein concentration was determined by UVICON 860 Spectrophotometer (Kontron 

Instruments, Milano, Italy).  

The protein were separated on SDS-PAGE and then blotted using the Mini Protean 3 

Cell electro-blotting apparatus (Bio-Rad). 

The SDS-PAGE analysis of immunotoxins was conducted using the the PhastSystem 

(GE-Healthcare). 

qRT-PCR was performed using the CFX96 Real-Time PCR System (Bio-Rad). 

PCR was conducted using the thermal cycler PCR system 2400 (Perkin Elmer). 

Nucleic acids were quantified using NanoDrop 1000 Spectrophotometer (Thermo 

Fischer Scientific, Inc. Waltham, Ma, USA ). 

RNA integrity was evaluated with Agilent 2100 Bioanalyzer (Agilent Technologies, 

USA). 

 

Statistical analysis 

Statistical analyses were conducted using the XLSTAT-Pro software, version 6.1.9 

(Addinsoft 2003). Result are given as means ± SD. Data were analyzed by 

ANOVA/Bonferroni, followed by a comparison with Dunnett’s test.  
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2.2 Methods 

 

Cell protein synthesis inhibition assay 

The inhibitory activity of free RIPs and immunotoxins on blood-derived cell lines was 

evaluated as inhibition of L-[4,5-3H] leucine incorporation. Cells (4 × 104/well) were 

seeded in 96-well microtiter plates in 100 µl of complete medium in the presence or 

absence of 100 µl of stenodactylin added to final concentrations ranging from 10-9 to 10-

13 M, or in the presence of 100 µl of immunotoxin added to final concentrations ranging 

from 10-7 to 10-11 M. Control samples were run with RIP alone, mAb alone, a mixture of 

unconjugated anti-CD20 or anti-CD22 mAb and RIP. At different time-points, 1µCi of 

L-[4,5-3H] leucine was added to each well. After further 6 h cells were harvested with 

an automatic cell harvester (Skatron Instruments, Lier, Norway) onto glass-fiber 

diskettes. Cell-incorporated radioactivity was determined by a β-counter with Ready-

Gel scintillation liquid containing 0.7% acetic acid. The IC50 and IC100 (concentration of 

immunotoxin or RIP required to inhibit cell protein synthesis by 50% and 100%, 

respectively), were calculated by regression analysis. 

 

Cell viability assay 

Cell viability was evaluated with the colorimetric assay CellTiter 96® Aqueous One 

Solution Cell Proliferation. This colorimetric kit allows to determine the number of 

viable cells. The MTS tetrazolium compound is bioreduced by cells into a colored 

formazan product that is soluble in RPMI medium. This conversion is presumably 

accomplished by NADPH or NADH produced by dehydrogenase enzymes in 

metabolically active cells. The quantity of formazan product is measured by the 

absorbance at 490 nm. Cells (2 × 104/well) were seeded in 96-well microtiter plates in 

100 µl RPMI complete medium. After 24 h, cells were incubated in the absence (control 

culture) or in the presence of stenodactylin, ricin or ITs at desired concentrations in 

complete medium. After the indicated times 20 µl/well of colorimetric kit solution were 

added. After 1 h of incubation at 37°C the absorbance at 492 nm was measured. 
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Cell morphology 

Cells (1 × 105 / 500 µl complete RPMI medium) were incubate with stenodactylin in 

24-well microtiter plates for 24 and 48 h at 37°C. Morphology was assessed by phase 

contrast microscopy. 

 

Assessment of apoptosis 

Apoptotic cell death was examined by flow cytometry Annexin V-EGFP/PI detection 

kit and by luminometer measuring of caspase activation. Apoptosis inhibitor Z-VAD 

was added 3 h before treatment with stenodactylin or ITs. 

 

Quantification by flow cytometry 

Cells (2 × 105/ 1 ml complete RPMI) were seeded in 24-well microtiter plate, and after 

incubation with ITs or RIP, the cells were centrifuged at 400×g for 5 min, washed in 2 

ml fresh medium, centrifuged again and resuspended in 294 µl binding buffer provided 

in the kit. Annexin V-EGFP (3 µl) and propidium iodide (3 µl) were added. Tubes were 

incubated for 10 min in the dark at room temperature. Cells were analyzed by flow 

cytometry within 30 min, using the FACSAria BD analyzer. Data were analyzed using 

FlowJo software. 

 

Caspase -3/7, -8,-9,-2 activities 

The caspase-2, -8, -9 and -3/7 were assessed by the luminescent assay Caspase-GloTM, 

specific for each caspase. Each kit provides a luminogenic caspase substrate, which 

contains the tetrapeptide sequence specific for each caspase (VDVAD, LETD, LEHD, 

DEVD for caspase -2, -8, -9, 3/7, respectively). The caspase cleaves its substrate 

generating a luminescent signal, produced by luciferase. Luminescence is proportional 

to the amount of caspase activity present. Cells (2 ×1 04/well) were seeded in 96-well 

microtiter plates in 40 µl RPMI complete medium. Cells were treated with 40 µl RPMI 

containing ITs or stenodactylin to reach desired concentration. After incubation at the 

indicated times, 80 µl/well of Caspase-Glo™ 2, Caspase-Glo™ 8, Caspase-Glo™ 9, 

and Caspase-Glo™ 3/7 were added. Plates were shaken at 420 rpm for 1 min and then 
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incubated for 20 min at room temperature in the dark. The luminescence was measured 

by Fluoroskan Ascent FL (integration time 10 sec).  

 

SDS- PAGE 

RTX/S6 and OM124/S6 were analyzed by polyacyilamide electrophoresis gels under 

denaturing conditions. IT was incubated in SDS-Sample Buffer (40 mM Tris-HCl pH 

6.8, 0.005% bromophenol blue) for 20 min at 37°C. Then the samples were analyzed on 

the PhastGel 4-15% gradient using the PhastSystem instrument. The gel was stained 

with Coomassie Brilliant Blue G250 0.1% (w/v) in 50% methanol and 10% acetic acid. 

 

Western Blot analysis 

Cells (3 × 106/ 15 ml RPMI complete) were seeded in 25 cm2 flasks and stenodactylin 

(10-9 M) was added. At different times of incubation, ranging from 2 to 6 h, cells were 

harvested and collected by centrifugation at 500×g for 5 min at room temperature. Cell 

pellets were lysed by adding 75 µl of Cell Lytic-M (Sigma-Aldrich) supplemented with 

Protease inhibitor Cocktail (1:100), Phosphatase inhibitor cocktail 1 (1:100) and 

sodium-orthovanadate (1:500). After 45 min at 0°C, vortexing every 5 min, insoluble 

material (nuclear pellet plus membranes) was removed by centrifugation at 14,000×g 

for 25 min at 4°C. Protein supernatant (cell lysate) was collected and stored at -20°C. 

Protein content was quantified by spectrophotometer using Bradford assay (Bio-Rad). 

Protein (40 µg/lane) were separated by SDS-PAGE (10% gel or 4-15%) and blotted for 

45 min at 100 V to Immobilon (polyvinylidene difluoride, PVDF) membrane 

(Millipore). Non-specific antibody binding sites were blocked by incubation with 

blocking buffer (TRIS buffered saline, 0.1% Tween 20 (TBS/T)) with 5% non-fat dry 

milk, for 1 h at room temperature. For phosphoepitopes, 5% bovine serum albumin 

(BSA) was used as blocking reagent. After 5 washes with TBS/T, membranes were 

incubated overnight at 4°C with various primary antibodies. COX IV was used as 

protein loading control. All antibodies were diluted in TBS/T with 5% bovine serum 

albumin. After 5 washes with TBS/T, membranes were incubated for 1 h at room 

temperature with horseradish peroxidase-conjugated anti-mouse or anti-rabbit antibody 

or secondary antibody used at 1:10000, diluted in blocking buffer with 5% non-fat dry 

milk. After further 5 washes, proteins were detected by incubating the membrane with 
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Immobilon Western detection Reagent (Millipore) according to manufacturer’s protocol 

and the image was taken on ImageQuant imager. The level of expression of different 

proteins was analysed by using the public domain software Image J. 

 

Intracellular phospho-specific flow cytometry 

MOLM-13 cells (1 × 106/5 ml RPMI complete) 25 cm2 flasks and stenodactylin (10-9 

M) was added. At different times of incubation, ranging from 2 to 6 h, cells were 

harvested and collected by centrifugation at 500×g for 5 min at room temperature. Cells 

were fixed in 1.6% paraformaldehyde, permeabilized with 100% methanol and stored at 

−80°C until flow cytometric analysis. PFA fixed, methanol-permeabilized cells were 

rehydrated by addition of 2 mL PBS, resuspension by vortexing, and then 

centrifugation. The cell pellet was washed once with 2 mL PBS, 1% BSA (Sigma), 

resuspended in 50 µL PBS, 1% BSA, and then split evenly into new cytometry tubes for 

staining. To achieve high-throughput and to reduce costs, the cells were barcoded 

(Krutzik et al., 2006). Then, 50 µL of an antibody mix containing 0.13 µg Alexa Fluor® 

647 conjugate mouse primary phospho-specific antibody per sample was added to each 

tube of MOLM-13 cells and staining proceeded for 20 minutes at room temperature. 

Stained cells were washed by adding 2 mL PBS, 1% BSA and resuspended in 200 µL 

PBS. At least 30000 live cell events were collected for each sample on a FACS Fortessa 

(Becton Dickinson). FCS data analysis was performed with FlowJo. 

 

Microarray experiments 

Sample preparation and RNA extraction 

MOLM-13 cells (4 × 106/ 20 ml complete medium) were seeded in 75 cm2 flasks and 

then stenodactylin (10-9 M) was added. At different times of incubation, ranging from 2 

to 6 h, cells were harvested and collected by centrifugation at 500×g for 5 min at room 

temperature. Cell pellets were frozen at -80˚C, then total RNA was extracted using the 

RNeasy Plus Minikit, following manufacturer’s instructions. Amount and quality of the 

extracted RNA were measured by the NanoDrop® ND-1000 spectrophotometer 

(NanoDrop Technologies, USA) and the Agilent 2100 Bioanalyzer (Agilent 

Technologies, USA). 
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Illumina iScan system 

A microarray study of early gene expression changes induced by 10-9 M stenodactylin 

on MOLM-13 cells was conducted using the Illumina iScan, which is based upon 

fluorescence detection of biotin-labeled cRNA. Using the Illumina TotalPrep RNA 

Amplification Kit (version 280508, Applied Biosystems/Ambion, USA), 300ng of total 

RNA from each sample was reversely transcribed, amplified and Biotin-16-UTP–

labeled. The amount (15–52 µg) and quality of labeled cRNA were measured using both 

the NanoDrop spectrophotometer and Agilent 2100 Bioanalyzer. Biotin-labeled cRNA 

(750 ng) was hybridized to the The Illumina Sentrix BeadChip according to 

manufacturer's instructions. The Human HT12 v4 BeadChip targets approximately 

47231 annotated RefSeq transcripts. 

 

Microarray data extraction and analysis 

Quality control and preprocessing 

Bead summary data was imported into GenomeStudio to remove control probes and to 

produce a text file containing the signal and detection p-values per probe for all 

samples. The text file was imported into J-Express Pro 2012 (http://jexpress.bioinfo.no), 

and signal intensity values were quantile normalized (Bolstad et al., 2003) and log 

transformed (base 2). Correspondence Analysis (CA) (Fellenberg et al., 2001) and 

hierarchical clustering with Pearson Correlation as a distance measure were performed 

to look for global trends in the data. In the CA plot, the microarray data for genes and 

samples are projected onto a two-dimensional plane defined by the first and second 

principal components. The first principal component (along the x-axis) explains most of 

the total chi square, the second principal component explains second most of the total 

chi square. Samples that are close together in the plot have more similarity than samples 

further apart. The quality of the data in this experiment were good, with a tendency for 

samples to create a gradient, with control samples and samples treated with 

stenodactylin for 2 hours at one end, and samples treated with stenodactylin for 6 hours 

at the other end. No sample was excluded from analysis since no outliers were detected.  
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Microarray Gene Expression Data Analysis 

Correspondence analysis (CA) (Fellenberg et al., 2001), significance analysis of 

microarrays (SAM) (Tusher et al., 2001), and hierarchical clustering of samples and 

transcripts were performed on the sub-data sets in J-Express 2012. For pathway and 

gene onthology analysis, the PANTHER classification system was used (Mi et al., 

2013). 

 

cDNA synthesis and qRT-PCR for apurinic sites 

For detection of apurinic sites in the 28S rRNA, the qRT-PCR method of Melchior et 

al., 2010 was applied with some modifications. Briefly, 800 ng of total RNA was 

reverse transcribed with the iScript cDNA Synthesis kit (Bio-Rad) following the 

manufacturer’s direction, applying 4 µl of 5× iScript Mix, 1 µl of iScript reverse, the 

sample and Nuclease free water to a total volume of 20 µl. The reaction mix was 

incubated for 5 min 25°C, followed by 30 min incubation at 42°C, then by 5 min at 

85°C and then the cDNA product was stored at -20˚C. The resulting cDNA was used in 

the real time PCR reaction. Then 3 μl of a 1:125 dilution of the resulting cDNA was 

used for qRT-PCR. qRT-PCR was performed in 20 µl of reaction mixture consisting of 

10 µl of 2×EvaGreen Supermix (Bio-Rad), 1 µl of each primer (final concentration of 

0.4 µM), 3 µl of template and 6 µl of Nuclease free water. A sequence of the 28S rRNA 

near the apurinic site served as internal control. The following primers were used: 28S 

rRNA control, 5′-GATGTCGGCTCTTCCTATCATTGT-3′ (forward); 28S rRNA 

control, 5′-CCAGCTCACGTTCCCTATTAGTG-3′ (reverse); 28S rRNA depurination, 

5′- TGCCATGGTAATCCTGCTCAGTA-3′ (forward); 28S rRNA depurination, 5′-

TCTGAACCTGCGGTTCCACA-3′ (reverse). RT-PCR was performed using the 

CFX96 Bio-Rad Real-Time System and the following cycling program: enzyme 

activation for 30 sec at 98ºC, 44 cycles of denaturation for 3 sec at 98ºC and 

annealing/extension for 8 sec at 60°C, and melt curve for 5 sec/step at 65°C-95°C (in 

0.5°C increments). The relative gene expression changes (given as fold changes 

compared to untreated controls, which were set to 1) were calculated with BioRad CFX 

Manager software using the ΔΔCt method. The data represent mean ± SE of three 

independent experiments, each performed in duplicate. 
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BACKGROUND 

 

 Non-Hodgkin’s lymphoma (NHL) consists of a large group of hematological 

malignancies and represents a heterogeneous group of diseases involving monoclonal 

expansion of both B- and T-lymphocytes. B-cell lymphomas account for over 90% of 

all NHLs. Nearly 70000 new cases in the United States (American Cancer Society) and 

approximately 37000 new cases in the European Union (European Cancer Observatory 

http://eco.iarc.fr/EUCAN/) of aggressive B-cell NHLs are diagnosed every year. The 

CD20 antigen is a 33-37 kDa tetra-membrane spanning protein located on chromosome 

11q12-q13.1, reliably expressed on most NHL malignant B-cells and normal B-cells, 

but not on hematologic stem cells. In the last two decades, CD20 has emerged as an 

excellent target for immunotherapy as it is expressed in multimeric forms on the cell 

surface and it is not shed, internalized or significantly down-regulated once the binding 

with an antibody has occurred. Rituximab, a genetically engineered chimeric anti-CD20 

monoclonal antibody, has been the first mAb approved by Food and Drug 

administration (FDA) in 1997 as single agent for the treatment of follicular and low-

grade NHL and subsequently of untreated aggressive NHL in combination with CHOP 

regimen (cyclophosphamide, adriamycin, oncovin, prednisone). Rituximab cell-killing 

efficiency is due to the activation of effector mechanisms, such as complement-

dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), 

phagocytosis, induction of apoptosis and inhibition of proliferation (Maloney DG, 

2012). Rituximab is routinely incorporated into all phases of conventional treatment, 

including first-line therapy, maintenance and salvage therapy, however, approximately 

two-thirds of lymphoma patients eventually develop disease recurrence (Siegel et al., 

2014), so a urgent need of novel therapeutic options exists.  

 Acquirement of rituximab resistance has been observed in lymphoma patients 

and could be reasonably attributed to the loss of expression of the CD20 antigen, even if 

this loss has been observed only in a small number of patients (Davis et al., 1999). In 

vitro studies using rituximab-resistant cell lines have shown that the development of 

rituximab resistance could be attributed to significant changes that occur to the CD20 

antigen, including a moderate down-regulation of CD20 and its altered reorganization 
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into the lipid raft domain; a possible role of the ubiquitin-proteasome system in the 

degradation of the COOH-terminal of CD20; abnormal CD20 promoter activity; and/or 

a defect in the Golgi-to-surface protein transport (Czuczman et al., 2008; Tsai et al., 

2012). Since the up-regulation of components of the ubiquitin-proteasome system 

(UPS) is involved in mediating rituximab resistance, the use of proteasome inhibitors 

could overcome resistence and augment rituximab efficacy. It has been shown that 

treatment of mantle lymphoma cells with bortezomib, rituximab and cyclophosphamide 

were shown to act synergistically in apoptosis induction (Wang et al., 2008) and 

rituximab + bortezomib chemotherapy was effective with low toxicity in patients with 

refractory or relapsed indolent B cell NHL (Yun et al., 2015). However, bortezomib and 

other proteasome inhibitors were found to affect rituximab-mediated CDC but not 

ADCC. Surprisingly, treatment with bortezomib was shown to increase CD20 

ubiquitination and to reduce surface CD20 levels (Bil et al., 2010). In preclinical 

studies, additive cytotoxic effects have been reported with the combination of 

bortezomib and rituximab in B-cell lymphoblastic leukemia (B-CLL) and mantle cell 

lymphoma (MCL) (Smolewski et al., 2006; Alinari et al., 2009).  

 A strategy to improve monoclonal antibodies efficacy is to conjugate them with 

a cytotoxic agent to enhance their specific cell-killing properties and to broaden their 

action even involving different mechanisms of cytotoxicity. In the past years, several 

groups evaluated the efficacy of rituximab conjugated with different cytotoxic agents, 

such as iodine-131 (Leahy et al., 2008; Wagner et al., 2013), the antibiotic 

calicheamicin (Dijoseph et al., 2007) and the type 1 RIP saporin-S6 (Polito et al., 2004). 

In all these studies, a significant increase in cytotoxic efficacy of mAbs were reported. 

 CD22 antigen is a B-cell restricted 135 kDa transmembrane sialoglycoprotein 

located on chromosome 19q13.1 that plays a role in modulating B-cell function, 

survival and apoptosis (Walker et al., 2008). B-cell malignancies express CD22 in up to 

60-80% of cases and in more than 90% of the most common types of NHL, namely, 

follicular and diffuse large B-cell lymphoma (Derby et al., 2011). Based on the 

potential for CD22 to become internalized upon antigen binding, it has emerged as an 

ideal target for mAb-based therapy of B-cell malignancies (Sullivan-Chang et al., 

2013). Antibody-drug conjugates and ITs were made with several anti CD22 antibodies. 

Inotuzumab ozogamicin is an anti-CD22 mAb conjugated with the antibiotic 
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calicheamicin that showed promising results in a phase I clinical trial in patients with 

relapsed or refractory NHL (Advani et al., 2010). HB22.7 conjugated with the RIP 

saporin demonstrated antitumor efficacy in a murine xenograft model of human NHL 

(Kato et al., 2012). Humanized mAb epratuzumab conjugated to a topoisomerase I 

inhibitor derived from irinotecan showed promising results both in vitro and in in vivo 

murine models of NHL (Sharkey et al., 2012). A pre-treatment with HB22.7 was found 

to increase bortezomib cytotoxicity in vitro and in vivo, indicating that combined 

therapy with proteasome inhibitors could also increase anti-CD22 immunotargeted 

therapy (Martin et al., 2011). 

 Saporin-S6 is a type 1 RIP purified from soapwort seeds (Saponaria officinalis, 

Caryophyllaceae family) showing an extremely high rRNA N-glycosylase activity in 

cell-free systems. Purified saporin-S6 is very stable and extremely resistant to high 

temperature, to denaturation by urea or guanidine and to attack by proteolytic enzymes. 

Saporin-S6 is also very stable in response to chemical modifications such as those 

necessary for derivatization and conjugation procedures (Polito et al., 2013). Saporin-S6 

was shown to induce apoptosis in intoxicated cells, but the exact mechanism of cell 

death involved is still not completely understood, as saporin-S6 seems to be able to 

induce different cell death pathways in lymphoma cells (Polito et al., 2009), possibly 

involving protein synthesis inhibition, apoptosis, autophagy, necroptosis, oxidative 

stress and DNA damage (Polito et al., 2013). Taken together, these properties make 

saporin-S6 an ideal candidate for the design and production of ITs.  

 Since different studies have shown that RIPs toxicity could be reduced due to 

proteasome degradation (Freudlsperger et al., 2007; Battelli et al., 2010), it is possible 

that pre-treatment of cells with proteasome inhibitors could led to an increase of the 

amount of active enzyme inside the cell.  
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AIM OF THE PROJECT 

 

 The vascular nature of the majority of lymphomas represents a favorable 

condition for the immunotherapy, since single malignant cells result very accessible to 

mAbs. Several mAbs targeting different CD markers have been developed to treat 

lymphoma, often with promising results either in preclinical models than in patients 

(Polito et al., 2013b). Generally, mAbs eliminate target cells as a consequence of 

different possible cytotoxic pathways: CDC, ADCC and direct apoptosis induction. 

Cytotoxic efficacy of mAbs has been improved with several strategies, included the 

conjugation with toxic compounds such as radionuclides, drugs or toxins.  

 Rituximab is a genetically engineered chimeric anti-CD20 monoclonal antibody 

approved in 1997 by FDA for the treatment of NHL. Safety and clinical efficacy of 

rituximab have been investigate in more than 300 phase II/III clinical trials in 

aggressive, indolent NHL either as single agent than in combination with 

chemotherapeutics. However, despite its efficacy, adverse effect and development of 

resistance to rituximab treatments have been reported (Bonavida, 2014). Several 

attempts have been made to improve rituximab efficacy. Here, we tested the anti-tumor 

efficacy of RTX/S6, an IT produced by chemical conjugation of rituximab to plant toxic 

rRNA N-glycosylase saporin-S6, a type 1 ribosome-inactivating protein purified from 

seeds of Saponaria officinalis. This IT has been previously shown to have an enhanced 

in vitro cytotoxic activity compared to rituximab in CD20-positive cells. Since little is 

known about the mechanism of action of RTX/S6, the aim of this project is to evaluate 

the ability of RTX/S6 to induce apoptosis in target cells and compare its action to an 

anti-CD22 IT, OM124/S6, to understand if saporin-based ITs share a common cell 

death pathway independently from the carrier-moiety. 

 Since it has been described in literature that rituximab efficacy is improved by 

combination with proteasome inhibitor bortezomib (Smolewski et al., 2006; Wang et 

al., 2008; Alinari et al., 2009, Yun et al., 2015), and ribosome-inactivating proteins 

could be degraded by the proteasome following the ERAD pathway (Freudlsperger et 

al., 2007; Battelli et al., 2010), we designed our experiments to test the efficacy of a 

combined treatment of RTX/S6 and bortezomib on CD20-positive cells. Furthermore, 

proteasome inhibitor MG-132, that was shown to induce apoptosis in drug resistant 
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cancer cells (Zhang et al., 2008; Han et al., 2009; Guo e Peng, 2013; Li et al., 2013), 

was considered as a candidate to increase ITs anti-tumor efficacy.  

 In this research, we tested the cytotoxic effect of the immunoconjugate 

rituximab/saporin-S6 (RTX/S6) on CD20/CD22-positive cell line Raji and compared it 

to an anti-CD22 immunotoxin obtained by conjugating mAb OM124 to saporin-S6. We 

explored the possibility of combining RTX/S6 or OM124/S6 with proteasome inhibitors 

to augment the efficiency of killing target cells. 
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RESULTS 

 

 Saporin-S6 was conjugated to rituximab through the insertion of an artificial 

disulphide bond as described by Polito et al., 2004, to obtain RTX/S6 immunotoxin. 

Briefly, sulphydryl groups (SH) were inserted by an imidoester reaction between 2-

iminothiolane and the primary amino group of each protein. After conjugation, the 

composition of purified conjugate was analyzed by SDS-PAGE in a 4-15% gradient gel 

under non-reducing conditions. Reaction yielded three products, a 1:1 product 

containing 1 molecule of saporin conjugated to rituximab, a 2:1 product formed by 2 

molecules of saporin conjugated to rituximab and a 3:1 product containing 3 molecules 

of saporin conjugated to rituximab. Densitometric analysis revealed that the 1:1 product 

represented the 36% of the total intensity, while 2:1 and 3:1 products represented the 

39% and 25% respectively. 

 OM-124/S6 immunotoxin was produced in similar conditions as described in 

Bolognesi et al., 1998. After purification the conjugate was composed by a mixture of 

three different products containing one molecule of mAb linked to 1-3 molecule of 

saporin. Densitometric analysis revealed that the 1:1 product represented the 42.8% of 

the total intensity, while 2:1 and 3:1 products represented the 36.2% and 21%, 

respectively. 

 The inhibitory activity of immunoconjugates on cell-free protein synthesis was 

evaluated in vitro using a rabbit reticulocyte lysate system. Characteristics of the two 

ITs are summarized in Table 1. After conjugation process, saporin retained its ability to 

inhibit protein synthesis by a rabbit retyculocytes lysate, with IC50 values in the 

picomolar range, moreover, the RIP/mAb molar ratio was in the optimum range. It is 

possible to conclude that derivatization and conjugation processes followed had low 

impact on RIP enzymatic activity. 
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Table 1. Immunotoxins properties 

 

DERIVATIZATION CONJUGATION 

CELL-FREE PROTEIN 

SYNTHESIS INHIBITORY 

ACTIVITY 

Number of SH-group inserted per 

molecule 

RIP/mAb 

(mol/mol) 

IC50 (M) 

 mAb RIP IT IT RIP 

RTX/S6 3.70 0.81 1.89 7.0×10-11 6.2×10-11 

OM-124/S6 1.30 1.20 1.43 8.1×10-11 6.2×10-11 

 

Cellular protein synthesis inhibition assays 

 To test the ability of saporin to inhibit cellular protein synthesis after the 

conjugation process, global cellular protein synthesis was assayed in CD20/CD22-

positive Raji cells after 96 hours of treatment with RTX/S6 or OM124/S6 ITs (Fig. 1). 

Compared to a mixture of unconjugated rituximab and saporin-S6, RTX/S6 showed an 

enhanced efficacy, with IC50 values of 1.99 × 10-9 M and > 10-7 M for the immunotoxin 

and the mixture, respectively. Protein synthesis was almost completely abolished at 10-8 

M concentration, expressed as RIP content (Fig. 1A). OM124/S6 showed a higher 

inhibitory activity. A complete inhibition of protein synthesis was observed at 10-9 M 

concentration, while a mixture of unconjugated OM124 and saporin produced no effect 

on protein synthesis at the same concentration. OM124/S6 showed an IC50 value of 6.03 

× 10-11 M, about two logs lower than RTX/S6 (Table 2).  
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Fig. 1 A) Protein synthesis inhibition assay on Raji cells treated for 96 hours with RTX/S6 IT 

(▲), a mixture of unconjugated rituximab and saporin-S6 (♦) or B) with OM124/S6 IT (■) or a 

mixture of unconjugated OM124 and saporin-S6 (●). A total of 2 × 104 cells were seeded in 96-

well plates in a final volume of 200 µl of complete medium containing appropriate 

concentration of RTX/S6, OM124/S6 or a mixture of unconjugated mAb and saporin, expressed 

as RIP concentration. After 96 h of incubation and further 6 h with [3H] leucine, the 

radioactivity incorporated was determined. Results are the means of three independent 

experiments each performed in triplicate. SD never exceeded 10%.  

 

Table 2. Calculated IC50 values for RTX/S6 and OM124/S6 ITs in Raji cells. 

 

 RTX/S6 OM124/S6 FREE RIP + mAb 

IC50 (M) 1.99 × 10-9  6.03 × 10-11 > 10-7 

 

Cell viability assays 

 Cytotoxicity of the two ITs was evaluated after a 96 h treatment in Raji cells. 

Dose-response curves, shown in Fig. 2, appeared very similar to protein synthesis 

inhibition curves, being OM124/S6 the most toxic between the two immunoconjugates. 

No viable cells were observed after a 96 h treatment with RTX/S6 at 10-7 M 

concentration, while no relevant effect on cell viability was achieved by a mixture of 

unconjugated rituximab and saporin at the same concentration. OM124/S6 was able to 
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completely inhibit cell viability at 10-9 M concentration, being this IT 2 log more 

effective in killing Raji cells than RTX/S6. Again, a mixture of free-RIP and OM124 

produced no relevant effect on Raji cells viability. EC50 values for the two ITs are 

reported in table 3.  

 

        

 

 

Fig. 2 A) Viability assay on Raji cells treated for 96 h with RTX/S6 IT (▲), a mixture of 

unconjugated rituximab and saporin-S6 (♦) or B) with OM124/S6 IT (■) or a mixture of 

unconjugated OM124 and saporin-S6 (●). A total of 2 × 104 cells were seeded in 96-well plates 

in a final volume of 200 µl of complete medium containing appropriate concentration of 

RTX/S6, OM124/S6 or a mixture of unconjugated mABs and saporin. After 96 H, viability was 

evaluated using a colorimetric assay based on MTS reduction. Results are the means of three 

independent experiments each performed in triplicate. SD never exceeded 10%. 

 

Table 3. Calculated EC50 values for RTX/S6 and OM124/S6 ITs in Raji cells. 

 

 RTX/S6 OM124/S6 FREE RIP + mAb

EC50 (M) 4.06 × 10-9  4.81 × 10-11 > 10-7 

 

  

0

20

40

60

80

100

120

1E-12 1E-10 1E-8 1E-6

M
T

S
 r

e
d

u
c

ti
o

n
 (

%
)

RTX/S6

Concentration [M]

A 

0

20

40

60

80

100

120

1E-12 1E-10 1E-8 1E-6

OM124/S6B 



In vitro comparison of antitumor activity of saporin-based immunotoxins  

 

47 

 

 Viability of Raji cells after IT exposure was also measured in a time-course 

experiment to evaluate the minimum time required to observe a cytotoxic effect. To this 

purpose, cells were exposed to different IT concentrations and viability assessed at 24, 

48, 72 and 96 hours (Fig. 3). As expected, resulting curves showed that cytotoxicity of 

the ITs increased in prolonged incubation times and the maximum cytotoxic effect was 

observed only at the higher tested doses after 96 h. Dose-response curves showed a 

similar tendency for the two ITs. 

 

       

 

Fig. 3 Viability assay on Raji cells treated for with A) RTX/S6 IT or B) with OM124/S6 IT for 

24 h (♦), 48 h (■), 72 h (▲), and 96 h (●). Cells (2 × 104 / well) were seeded in 96-well plates in 

a final volume of 200 µl of complete medium containing appropriate concentration of RTX/S6 

or OM124/S6. Viability was evaluated using a colorimetric assay based on MTS reduction. 

Results are the means of three independent experiments each performed in triplicate. SD never 

exceeded 10%. 
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Complement-dependent cytotoxicity (CDC) of RTX/S6 on Raji cells 

 Since rituximab is currently used in clinical practice to treat several forms of 

NHL, we compared the cell-killing efficacy of RTX/S6 to rituximab alone in the 

presence or absence of human complement. RTX/S6 IT significantly reduced cell 

viability at 10-8 and 10-7 M concentrations, whereas at the same concentrations, 

rituximab alone showed little effect even in the presence of 25% of human serum in the 

medium. Furthermore, the presence of human serum significantly increased RTX/S6 

cytotoxicity compared to the same IT in the absence of a source of complement (Fig. 4). 

 

Fig. 4 Complement-dependent and complement-independent cytotoxicity of rituximab and 

RTX/S6 on Raji cells. Cells were incubated in medium supplemented with 25% active human 

serum (white symbols) or in medium supplemented with 10% heat-inactivated FBS (black 

symbols) in the presence of rituximab (circles) or RTX/S6 (squares). After 96 h of incubation, 

cell viability was evaluated by a colorimetric assay based on MTS reduction. Results are the 

means of four independent experiments, each performed in triplicate. SD never exceeded 10%. 

 

Evaluation of RTX/S6 cytotoxicity in different CD20-positive cell lines 

 Potential anti-tumor activity of RTX/S6 was also evaluated on two other CD20-

positive lymphoblastoid lines, namely D430B and Ramos cell lines. Viability was 

assessed after a 96 h incubation with scalar doses of the IT. D430B and Ramos cells 

were found to be more sensitive to RTX/S6 than Raji cells, showing a complete loss of 

viability when treated with a 10-8 M concentration of IT, whereas a 10-7 M concentration 

of the IT is necessary to achieve a complete depletion of Raji cells (Fig. 5). Estimated 
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EC50 values at 96 hours for Raji, D430B and Ramos cells were 4.1 × 10-9 M; 3.6 × 10-10 

M and 2.7 × 10-10 M, respectively. The cause of this difference in sensitivity was not 

investigated in the present work. 

 

Fig. 5 Viability assay on Raji (■), D430B (▲), and Ramos (●) cells treated for 96 h with 

RTX/S6 IT. Cells (2 × 104 / well) were seeded in 96-well plates in a final volume of 200 µl of 

complete medium containing appropriate concentration of RTX/S6 or OM124/S6. Viability was 

evaluated using a colorimetric assay based on MTS reduction. Results are the means of three 

independent experiments each performed in triplicate. SD never exceeded 10%. 

 

Evaluation of apoptotic membrane changes induced by RTX/S6 and OM124/S6 on 

Raji cells 

 We evaluated the presence of membrane apoptotic changes in Raji cells treated 

for 96 h with RTX/S6 or OM124/S6 at EC50 concentrations by a double staining with 

Annexin V-EGFP and propidium iodide. As shown in fig. 6 panel A, after exposure to 

RTX/S6 for 96 h almost 50% of the cells were positive for Annexin V and propidium 

iodide double staining localizing in Q2, indicating a late apoptosis. In panel B, almost 

60% of the cells treated with EC50 concentration of OM124/S6 for 96 h were positive 

for both Annexin V and propidium iodide. 
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Fig. 6 Cytofluorimetric analysis of Annexin V/propidium iodide double staining of Raji cells 

treated with EC50 concentrations of A) RTX/S6 or B) OM124/S6 for 96 h compared to C) 

untreated cells. FITC-A channel (x axis) is used for the detection of Annexin V-EGFP 

fluorescence. PE-A channel (y axix) is used for the detection of propidium iodide fluorescence. 
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Evaluation of caspase 3/7 activation in Raji cells treated with ITs  

 Since it has been previously shown that saporin and saporin-based ITs are able 

to induce apoptosis in target cells (Bolognesi et al., 1996; Polito et al., 2013), activation 

of effector caspases 3/7 was measured in Raji cells after 48, 72 and 96 h of treatment 

with RTX/S6 and OM124/S6. Raji cells were treated with 10-9 M concentration of 

RTX/S6. A significant activation of caspase 3/7 after 48 h was detected (p < 0.0001). 

Intensity of caspase 3/7 activation was almost constant between 24, 48 and 96 h, 

reaching about 900% of controls after 96 h (Fig. 7 A). A concentration of 10-11 M of 

OM124/S6 was able to significantly activate caspases 3/7 in Raji cells after 48 h (p < 

0.0001), but with less intensity compared to RTX/S6 at the same time-point. However, 

after 48 and 96 h of exposure to OM124/S6, caspases 3/7 activation augmented, 

reaching about 2300% of controls after 96 h (Fig. 7 B). Caspases 3/7 activation profiles 

were very different between the two ITs. RTX/S6 induced a rapid activation of caspases 

3/7, reaching a plateaux at 48 h that lasted until 96 h, while OM124/S6 induced a time-

dependent gradient of caspases 3/7 activity, resulting in a greater activity of effector 

caspases at 72 h and 96 h. Both ITs were shown to efficiently induce activation of 

caspases 3/7 in target cells, but with different potency, being OM124/S6 the stronger, 

even if slower, inducer of caspases 3/7 activation. The difference in caspases 3/7 

activity suggests a different intracellular fate of saporin. High level of caspases 3/7 

activation measured were consistent with the idea that saporin-based ITs are able to 

induce caspase-dependent apoptosis in target cells.  
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Fig. 7 Caspases 3/7 activation in Raji cells exposed to RTX/S6 1 nM or OM124/S6 10 pM. 

Cells (2 × 104 / well) were seeded in 96-well plates in a final volume of 200 µl of complete 

medium containing appropriate concentration of RTX/S6 or OM124/S6 (black columns) or a 

mixture of unconjugated mAb and saporin (white columns). Caspases activity was expressed as 

the percentage of control values. The results are the means of three independent experiments, 

each performed in triplicate. Asterisks indicate level of significance in ANOVA/Bonferroni 

followed by Dunnett’s test (****p < 0.0001). 

 

Effects of caspases inhibition on ITs cytotoxicity 

 To determine the role of caspase-dependent apoptosis in ITs-induced cell death, 

we designed further experiments including pan-caspase inhibitor Z-VAD. Raji cells 

were treated with RTX/S6 and OM124/S6 at 10-8 and 10-10 M concentrations, 

respectively. Those concentration were chosen to verify if caspase inhibition was 

effective in preventing apoptosis at IT doses causing almost 70% of reduction of viable 

cells. Raji cells viability was measured after 48, 72 and 96 h of exposure to ITs in the 

presence or absence of Z-VAD (10 µM), added 3 h before ITs treatment (Fig. 8). Cell 

survival at 48 h increased significantly (p < 0.0001) from 40.5% ± 2.4% for RTX/S6 

alone at 10-8 M concentration to 72.2% ± 2% in the presence of Z-VAD (Fig. 8, left). In 

Raji cells treated with OM124/S6 for 48 h, cell survival increased significantly (p = 

0.039) from 54.5% ± 4.7% to 63.9% ± 4.2% in the presence of Z-VAD (Fig. 8, right).  
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 Z-VAD effect on cell survival was also assayed after 72 and 96 h of treatment 

with both ITs. As shown in fig. 10A, Z-VAD pre-treatment improved significantly cells 

survival treated with RTX/S6 after 72 h, even if the effect seems to be less prominent if 

compared to observed protective effect at 48 h; while a significant increase in cell 

viability is observed at 72 h only in OM124/S6-treated cells (fig. 8, right). Even after 96 

h of treatment, the presence of Z-VAD resulted in a highly significant increase in 

RTX/S6-treated cells viability (Fig. 8, left), while a slight protective effect was 

observed with OM124/S6 (Fig. 8, right). 

 Taken together, these results suggest that caspase-dependent apoptosis may play 

a major role in RTX/S6-induced cell death, even if the lack of a complete protection 

following caspases inhibition may suggest other cell death pathways involved in 

RTX/S6 toxicity. OM124/S6 treatment induced a delayed strong activation of effector 

caspases in Raji cells, even if a little increase in cell survival was observed after 

caspases activity inhibition. These results may suggest that even if OM124/S6 is a 

strong activator of caspases 3/7, caspase-dependent apoptosis may not be the main cell 

death pathway involved in mediating OM124/S6 cell-killing activity.  
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Fig. 8 Viability of Raji cells (2 × 104 cells/well) treated for 48, 72, 96 h with RTX/S6 (left 

panel) or OM124/S6 (right panel) alone (black columns) or in the presence (white columns) of 

pan-caspase inhibitor Z-VAD 10 μM. Z-VAD was added 3 h before the IT, and the viability was 

measured after 48 h. The results are the means of two independent experiments, each performed 

in triplicate, and are presented as the percentage of untreated control values. Asterisks indicate 

level of significance in ANOVA/Bonferroni followed by Dunnett’s test (****p < 0.0001). Only 

highly significant differences were reported. 

 

Evaluation of the effect of catalase on ITs cytotoxicity 

 Several studies in literature have reported that in some cell types treatment with 

RIPs induce the production of ROS, as reported for example in HeLa cells treated with 

ricin (Sutres et al., 2005). To evaluate if ROS production may be involved in saporin-

based ITs induction of apoptosis in Raji cells, we pre-treated cells with a ROS 

enzymatic scavenger, catalase. Viability was assessed after a 96 h treatment with 

minimum concentration of the ITs causing a complete inhibition of protein synthesis 

(fig. 9). Pre-treatment with catalase reduced significantly RTX/S6 cytotoxic effect, 

leading at a 50% of cell survival. An opposite effect was observed with OM124/S6, 

where no protective effect occurred at any concentration of catalase tested. This result 

suggests that production of hydrogen peroxide may have a role in RTX/S6- induced cell 
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death, while OM124/S6 exerts its cytotoxic effect following a pathway that is 

independent from hydrogen peroxide production. 

 

  

 

Fig. 9 Viability of Raji cells (2 × 104 cells/well) treated with RTX/S6 (10-8 M) or OM124/S6 

(10-9 M) in the presence of varius concentrations of catalase added 3 h before ITs. Viability was 

evaluated after 96 h using a colorimetric assay based on MTS reduction. The results are the 

means of three independent experiments, each performed in triplicate, and are presented as the 

percentage of untreated control values. Asterisks indicate level of significance in 

ANOVA/Bonferroni followed by Dunnett’s test (****p<0.0001). 
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Combined cytotoxic effect of ITs with proteasome inhibitors 

 To test the possibility of enhancing ITs cytotoxic effect on Raji cells, we tested 

two proteasome inhibitors (MG-132 or PS-341, also known as bortezomib) given to 

Raji cells as single agent or in combination with the two ITs RTX/S6 and OM124/S6.  

 Sensitivity of Raji cells to either RTX/S6 and OM124/S6 was augmented when 

pre-treated for 3 h with 10-7 M MG-132. ANOVA/Bonferroni test followed by 

Dunnett’s test was utilized to compare toxicity by each IT and MG-132 alone or mixed. 

A combination of MG-132 10-7 M + RTX/S6 10-9 M produced a significant synergistic 

effect, showing an enhanced toxicity of 2.3 fold compared to MG-132 alone; and 2.8 

fold compared to IT alone (fig. 10 A). A combination of MG-132 10-7 M + RTX/S6 10-

10 M produced a significant synergistic effect, showing an enhanced toxicity of 2 fold 

compared to MG-132 alone; and 10 fold compared to IT alone (fig. 10 B). 

 

  

 

Fig. 10 Combined cytotoxic effect of 10-7 M MG-132 and A) 10-9 M RTX/S6; or B) 10-10 M 

RTX/S6 IT on Raji cells. Toxic effect is given as cytotoxic index, the percentage of non-viable 

cells. Viability was evaluated after 96 h using a colorimetric assay based on MTS reduction. 

The results are the means of three independent experiments, each performed in triplicate, and 

are presented as the percentage of untreated control values. Asterisks indicate level of 

significance in ANOVA/Bonferroni followed by Dunnett’s test (****p < 0.0001). 
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 The combination of MG-132 with 10-11 M OM124/S6 gave similar results, 

showing a significant increase in toxicity of 2 fold compared to MG-132 alone; and 2.5 

fold compared to IT alone (fig. 11 A). A combination of MG-132 + OM124/S6 10-12 M 

produced a non significant increase in toxicity of 1.6 fold compared to MG-132 alone 

(fig. 11 B), thus suggesting that either MG-132 and IT need to be administered at 

certain concentrations to produce a synergistic toxic effect on Raji cells. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 Combined cytotoxic effect of 10-7 M MG-132 and A) 10-11 M OM124/S6; or B) 10-12 M 

OM124/S6 IT on Raji cells. Toxic effect is given as cytotoxic index, the percentage of non-

viable cells. Viability was evaluated after 96 h using a colorimetric assay based on MTS 

reduction. The results are the means of three independent experiments, each performed in 

triplicate, and are presented as the percentage of untreated control values. Asterisks indicate 

level of significance in ANOVA/Bonferroni followed by Dunnett’s test (****p < 0.0001). 
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RTX/S6 produces a synergistic toxic effect with bortezomib (PS-341) 

 Since additive cytotoxic effects have been reported in pre-clinical studies with 

the combination of PS-341 (bortezomib) and rituximab in the treatment of B-cell 

malignancies (Smolewski et al., 2006; Alinari et al., 2009), we tested the efficacy of a 

combined treatment with PS-341 and RTX/S6 IT. As expected, sensitivity to RTX/S6 

was augmented when cells were coincubated with PS-341. The combination of 10-9 M 

PS-341 and 10-9 M RTX/S6 produced a significant increase in cytotoxic activity 

compared to single compounds (p < 0.0001) (fig. 12).  

                                

Fig. 12 Combined cytotoxic effect of 10-9 M PS-341 and 10-9 M RTX/S6 IT on Raji cells. Toxic 

effect is given as cytotoxic index, the percentage of non-viable cells. Viability was evaluated 

after 96 h using a colorimetric assay based on MTS reduction. The results are the means of two 

independent experiments, each performed in triplicate, and are presented as the percentage of 

untreated control values. Asterisks indicate level of significance in ANOVA/Bonferroni 

followed by Dunnett’s test (****p < 0.0001). 
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Fludarabine acts synergistically with RTX/S6 and OM124/S6 in killing Raji cells 

 Fludarabine (FLU) is a purine analog used in the treatment of hematological 

malignancies. It is employed in various combinations with cyclophosphamide, 

mitoxantrone, dexamethasone and rituximab in the treatment of indolent non-Hodgkin 

lymphomas (Cabanillas, 2000). In a previous work (Polito et al., 2004) our group 

showed that a combination of RTX/S6 with FLU was successful to produce an 

enhanced cytotoxic effect in CD20-positive NHL cells. To test the hypothesis if the 

observed synergistic effect was not restricted to RTX/S6, we designed our experiments 

to verify if a combined treatment with OM124/S6 and FLU was able to produce similar 

results. To evaluate the possible combined effect of the drug and the IT, in our 

experiments FLU was tested at 7.5 × 10-7 M, the maxima concentration that in the 

previous experiments gave a limited cell toxicity. 

 FLU and RTX/S6 combinations were found to significantly reduce Raji cells 

viability compared to single compounds, resulting in a super additive effect. FLU alone 

showed an increase in the percentage of dead cells compared to untreated control of 

14.5% ± 9.1%, while 10-8 M RTX/S6 alone produced an increase of 41.8% ± 5.3%. 

Combination of the two compounds resulted in an almost complete depletion of Raji 

cells (95% ± 3.2%) (fig. 13 A, left). 10-9 M RTX/S6 alone showed an increase in the 

percentage of dead cells compared to untreated control of 23.8% ± 2.8% and of 65.5% ± 

0.8% in combination with FLU (fig. 13 A, right).  

 FLU was also tested in combination with two concentrations of OM124/S6, 

resulting in a significant increase in the cytotoxic effect compared to single drugs. 10-10 

M OM124/S6 showed an increase in the percentage of dead cells compared to untreated 

control of 57.3% ± 6.1% and of 92.3% ± 0.5% in combination with FLU (fig. 13 B, 

left); 10-11 M OM124/S6 alone produced an increase of 17.8% ± 6.3% and of 52.5% ± 

1.6% in combination with FLU (fig. 13 B, right).  

 Taken together, these results showed that FLU cytotoxic effect may be enhanced 

by contemporary administration of saporin-based ITs. The effect seems to be 

independent of the type of antibody used to target saporin to unwanted cells.  
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Fig. 13 Combined cytotoxic effect of 0.75 µM FLU and A) RTX/S6 10-8-M (left) or 10-9 M 

(right); and B) OM124/S6 10-10 M (left) or 10-11 M (right) on Raji cells. Toxic effect is given as 

cytotoxic index, the percentage of non-viable cells. Viability was evaluated after 96 h using a 

colorimetric assay based on MTS reduction. The results are the means of three independent 

experiments, each performed in triplicate, and are presented as the percentage of untreated 

control values. Asterisks indicate level of significance in ANOVA/Bonferroni followed by 

Dunnett’s test (****p < 0.0001). 
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DISCUSSION 

 

 Saporin-S6 is a highly toxic rRNA N-glycosylase with potential therapeutic 

application in a variety of human diseases as toxic moiety of immunotargeted 

conjugates. Saporin-S6 has been previously shown to be able to inhibit protein synthesis 

by removing an adenine in a well-conserved region of eukaryotic ribosomes and to 

induce multiple cell death pathways in lymphoma cells (Polito et al., 2009). Those 

properties render saporin an attractive molecule for the production of immunotoxins for 

the treatment of NHLs, because its ability to induce cell death by more than one 

pathway may render more difficult to tumor cells to acquire a resistant phenotype to 

saporin-induced cell death. mAbs are currently used in cancer therapy both alone and 

conjugated to drugs or radioactive compounds, to selectively eliminate unwanted cells 

(Polito et al., 2013b). Several mAbs have been conjugated to RIPs to take advantage of 

high toxicity of those enzymes with the selective targeting properties of mAbs (Polito et 

al., 2011).  

 In our study, we tested and compared in vitro the anticancer properties and the 

cell death pathways of two saporin-based immunotoxins: RTX/S6, obtained by 

chemical coupling of saporin-S6 to anti-CD20 FDA approved mAb rituximab; and 

OM124/S6, produced coupling saporin-S6 to anti-CD22 mAb OM124 (Bolognesi et al., 

1998). Cell-killing activity of those immunotoxins was tested on CD20/CD22-positive 

cell line Raji. 

 Native saporin-S6 showed in a cell-free system the ability to inhibit protein 

synthesis by a rabbit retyculocytes lysate with an IC50  of 6.2 × 10-11 M. After 

conjugation processes, both RTX/S6 and OM124/S6 retained almost the same activity 

on cell-free protein synthesis, while the ability to inhibit protein synthesis in Raji cells 

was highly augmented, being RTX/S6 able to completely inhibit protein synthesis after 

96 h at 1.84 × 10-7 M concentration and OM124/S6 at 1.16 × 10-9 M. RTX/S6 IC50 value 

was almost 2 log lower than IC50 of native saporin-S6, while OM124/S6 showed an IC50 

4 logs lower than saporin-S6. In both cases, the toxicity of ITs was time-dependent. 

OM124/S6 was shown to be more toxic than RTX/S6. The reason of this difference in 

cytotoxic activity may be represented by the efficiency of toxic payload internalization 

and intracellular routing of saporin, as the intracellular itinerary may modulate 
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cytotoxicity of ITs (Tortorella et al., 2012). In fact, while it is know from literature that 

CD20 antigen is poorly internalized after ligand binding, CD22 undergo a rapid 

internalization after binding (Countouriotis et al., 2002; Sullivan-Chang et al., 2013). In 

both cases, saporin-S6 internalization is demonstrated by the great increase in cellular 

protein synthesis inhibition and cytotoxicity observed compared to the mixture of 

unconjugated mAb and saporin-S6.  

 According to literature (Polito et al., 2004; Polito et al., 2009; Polito et al., 

2013) both ITs were found in our study to induce apoptosis in target cells, but a 

difference in timing and intensity was observed in caspases 3/7 activation. RTX/S6 

showed a higher activity of caspases 3/7 after 48 h of treatment reaching a plateau of 

activity, while OM124/S6 showed a gradual activation of caspases 3/7 that became 

more intense in a time-dependent manner. Caspases 3/7 maximum activity induced by 

OM124/S6 was found to be slower, but 3 fold more intense than that induced by 

RTX/S6. Cells pre-treatments with pan-caspase inhibitor Z-VAD resulted in a 

significant increase of survival in Raji cells treated with RTX/S6 suggesting that in cells 

treated with RTX/S6 caspase-dependent apoptosis may be the main cell death pathway 

activated, but the lack of a complete protection indicate that other pathways may 

contribute to cell death. Surprisingly, even if OM124/S6 was shown to strongly activate 

caspases, Z-VAD produced a poor reduction in OM124/S6 cytotoxicity, suggesting that 

inhibition of caspases was less efficient in improving cell survival. OM124/S6 may thus 

trigger also caspase-independent cell death pathways and possibly caspase-dependent 

cell death is not the main mechanism involved.  

 Several studies in literature reported an increase in intracellular ROS production 

in RIP-treated cells (Suntres et al., 2005; Bhaskar et al., 2008; Saxena et al., 2014). We 

therefore investigated the role of hydrogen peroxide by treating cells with an enzymatic 

scanvenger, catalase. RTX/S6 cytotoxic effect was significantly reduced by catalase, 

suggesting a role for hydrogen peroxide and ROS formation in RTX/S6 induced cell 

death. Conversely, catalase pre-treatment produced no effect in OM124/S6-treated cells. 

 Taken together with the differencies in caspase activity induced by the two ITs, 

these results suggest that the two ITs might trigger different pathways of cell death, 

possibly due to differencies in the intracellular routing followed. In fact, a saporin-based 
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IT might show a different anti-tumor activity depending on the targeted CD marker, 

showing different effects according to different CD marker properties. 

 The study of the mechanisms of action of ITs in target cells may help to design 

new immunoconjugates with higher cytotoxic potential and specificity to target cells, 

and to reduce IT related side-effects. Many studies in literature have reported new 

strategies to improve IT efficacy, often in combination with other chemotherapeutic 

agents (Alewine et al., 2015). Since in a previous work by Battelli et al., 2010 the 

possibility that RIP cytotoxic effect was reduced by proteasomal degradation was 

observed, we designed our experiments to verify if proteasome inhibition was effective 

in enhancing IT cytotoxic effect. To this purpose, we choose to test the cytotoxic 

efficacy of a combination of the proteasome inhibitor MG-132 and the ITs. MG-132 is 

an experimental compound showing antitumor efficacy (Han et al., 2009; Guo e Peng, 

2013; Li et al., 2013). The combination of MG-132 with RTX/S6 showed a 

superadditive toxic effect (p < 0.0001) at concentrations of IT that are suitable for an in 

vivo therapy. A superadditive effect was observed also with lower concentrations of 

OM124/S6, thus suggesting that in normal conditions the proteasome may be involved 

in the partial degradation of saporin. We then tested a combination of RTX/S6 with PS-

341 (bortezomib), since in preclinical studies, additive cytotoxic effects was reported 

with the combination of bortezomib and rituximab in B-CLL and MCL. Again, a 

significant increase in RTX/S6 efficacy was observed. Bil et al., 2010 showed that 

exposure of Raji cells to bortezomib at concentrations above 20 nM increase CD20 

ubiquitination and reduce surface CD20 levels, possibly enhancing CD20 lysosomal or 

autophagic degradation. In our study, the enhanced cytotoxic effect was achieved with a 

concentration of bortezomib 20-fold lower, reducing the risk of the downregulation of 

CD20 due to treatment with the proteasome inhibitor. 

 In an attempt to improve the antitumor efficacy of the treatment, we also tried 

the simultaneous administration of RTX/S6 and fludarabine to target cells. Fludarabine 

is an adenine nucleoside analog used in clinic to treat several hematological 

malignancies, for example chronic lymphocytic leukemia (Lukenbill et al., 2013). The 

combination of FLU with 10-8 M RTX/S6 or 10-10 M OM124 produced a synergistic 

toxic effect that led to an almost total elimination of target cells.  
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 In conclusion, the low doses tested in our experiments strongly suggest that a 

combined IT/proteasome inhibitor or IT/FLU therapy should give synergistic cytotoxic 

effect also in vivo. Our study points out that it is possible to enhance ITs toxicity to 

target cells by an opportune combination with agents that not interfere with cell death 

pathways induced by ITs. 
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BACKGROUND 

 

 Stenodactylin is a 63.1 kDa highly toxic lectin belonging to type 2 RIPs purified 

from the caudex of Adenia stenodactyla (Stirpe et al., 2007; Pelosi et al., 2005). RIPs 

are family of RNA N-glycosylases (EC 3.2.2.22) widely expressed in the plant 

kingdom, which have been investigated for their anti-neoplastic potential. All RIPs are 

able to hydrolyze a specific adenine from the sarcin/ricin loop of the ribosomal 28S 

RNA, thus introducing an irreversible damage to ribosomes causing protein translation 

inhibition, finally resulting in cell death (Stirpe, 2013). Stenodactylin has been shown to 

possess a high enzymatic activity towards ribosomes and hsDNA substrates, but not on 

tRNA or poly(A). Stenodactylin separated A-chain was shown to inhibit protein 

synthesis by a rabbit reticulocytes lysate, with an IC50 of 4.4 ×10-8 M, while the 

separated lectin B- chain showed no effect on protein synthesis at concentrations up to 3 

× 10-5 M. (Stirpe et al., 2007). Compared to ricin A chain, which was shown to be able 

to inhibit protein synthesis by a rabbit reticulocytes lysate with an IC50 of 1 × 10-10 M 

(Hale, 2001), stenodactylin separated A chain possess a lower enzymatic activity, 

possibly due to reduction processes. In fact, native stenodactylin was found to be 

extremely toxic to several cell lines of different origin, with extremely low IC50 values, 

often in the picomolar range. Furthermore, 48 h LD50 for mice receiving stenodactylin 

by intraperitoneal injection is 2.76 µg/kg (2.12–3.58), a value very close to ricin toxin, 

whose LD50 in mice is calculated to be 2.8–3.3 µg/kg when administered by injection 

(Schep et al., 2009; Battelli et al., 2010; Stirpe et al., 2007). For these reasons, 

stenodactylin is considered to be amongst the most potent toxins of plant origin. 

Moreover, similarly to modeccin and volkensin, two other RIPs isolated from Adenia 

genus, (Wiley et al., 2000), stenodactylin is retrogradely transported when injected into 

the central nervous system (Monti et al., 2007).  

 Besides protein synthesis inhibition, a series of evidences suggest that RIPs are 

able to elicit alternative molecular mechanisms to trigger different cell death programs 

(Polito et al., 2009; Bora et al., 2010). The capability of RIPs, either type 1 than type 2, 

to induce cell death by apoptosis has extensively demonstrated using different models, 

both in vitro and in vivo (i.e. Rao et al., 2005; Zhang et al., 2012; Fang et al., 2012). 
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However, the mechanisms involved in the regulation of RIP-induced apoptosis is still 

quite controversial and whether apoptosis is dependent on the inhibition of protein 

synthesis is not clear. 

 Very few informations are currently available in literature about how RIPs 

globally affect gene expression. It has been previously demonstrated in vivo that 

exposure of mice to ricin triggers the phosphorylation of JNK and p38 MAPK, whose 

activation is required for ricin-mediated expression of mRNAs encoding inflammatory 

cytokines and chemokines (Korcheva et al., 2005). Macrophages appeared to be 

primary targets of ricin intoxication (Lindauer et al., 2009), and exposure of 

macrophage cell lines to ricin resulted in apoptosis, activation of SAPKs and release of 

chemokines and cytokines (Higuchi et al., 2003; Korcheva et al., 2005; Gonzalez et al., 

2006; Gray et al., 2008). A gene expression microarray analysis performed on ricin-

treated airway cells showed after 24 h of exposure a significant increase in expression of 

transcription factors and DNA-binding proteins, such as c-Jun, c-Fos, early growth 

response-1 (EGR-1) and activating transcription factor 3 (ATF3), which are known to 

be associated with the transcriptional regulation of proinflammatory genes (Wong et al., 

2007). A similar inflammatory response was reported in response to ricin exposure in 

Balb/c mice (David et al., 2009). A transcriptomic profile of host response in mouse 

brain after exposure to plant toxin abrin showed a similar tendency, with a number of 

differentially expressed genes responsible for various activities, such as immune 

response, cell adhesion, chemotaxis, inflammatory processes, transcription and signal 

transduction (Bhaskar et al., 2012). Furthermore, an antibody-avidin fusion protein 

(ch128.1Av) conjugated to biotinylated saporin was shown to induce a transcriptional 

response consistent with oxidative stress and DNA damage, with differential expression 

of genes connected to apoptosis, regulation of cell cycle, immune response, signaling, 

stress response and transcription (Daniels-Wells et al., 2013). An interesting finding 

was reported by Li et al., 2011: a miRNA microarray assay on colorectal cancers cell 

lines treated with mistletoe lectin I reported a down-regulation of some miRNAs that 

was shown to be determined by direct degradation of miRNAs precursors. In fact, pre-

miRNAs could represent a substrate for RIPs due to their characteristic stem-loop 

structures. 
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AIM OF THE PROJECT 

 
 Firstly discovered and purified from the caudex of Adenia stenodactyla by Pelosi 

et al., 2005; Stirpe et al., 2007, stenodactylin has been shown to be among the most 

potent toxins of plant origin and an attractive candidate for the design of new ITs. To 

date, RIPs have been used alone or as toxic component of ITs for the experimental 

treatment of several diseases, such as cancer, immune disorders, graft-versus-host 

disease and as an antiviral agent for the treatment of AIDS, achieving the most 

promising results in the treatment of hematological cancers (Stirpe et al., 2006). Despite 

several studies on RIP-induced cell death, a complete comprehension of the mechanism 

underlying induction of apoptosis is still missing. The knowledge of the cell death 

pathway(s) induced by RIPs in intoxicated cells, may be useful for the design of new 

specific immunotherapies and for clarifying the mechanism of damage, since some of 

this proteins represent a serious treat, as accidental or intentional contact may occur (for 

example ricin, which has been listed from the USA Centers for Disease Control and 

Prevention as a Category B Agent).  

 The aim of this project was to identify the early gene expression changes 

induced by stenodactylin in intoxicated cells following a whole-genome expression 

analysis approach, linking gene expression data to protein modification and to the 

activity of stenodactylin on host ribosomes. The identification of stenodactylin-induced 

cell death pathway(s) may provide new informations about RIP activity at cellular level, 

and could help to the design of new specific ITs or combination therapies with ITs to 

enhance RIP-based ITs cytotoxic activity.  

 In the present work, we evaluated early changes induced by stenodactylin 

treatment in acute monocytic leukemia cells MOLM-13. We performed a global gene 

expression microarray analysis to identify early gene expression changes, focusing on 

the shortest time needed to the toxin to produce a detectable change in cell viability and 

28S rRNA integrity. 
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RESULTS 

 

MOLM-13 cells are more sensitive to stenodactylin than Raji and Ramos cells 

 Stenodactylin is a highly toxic rRNA N-glycosylase whose activity could be 

potentially employed in the design and production of ITs against hematological 

malignancies. To evaluate the early response to stenodactylin-induced cell damage, we 

tested native stenodactylin on three cell lines of hematologic origin: lymphoblast 

Burkitt’s lymphoma Raji and Ramos cells and acute monocytic leukemia cell line 

MOLM-13. Protein synthesis inhibition assays were performed after 48 h of exposure to 

the toxin, showing that stenodactylin was able to almost completely inhibit protein 

synthesis in all cell lines tested at 10-9 M concentration. A marked difference in 

sensitivity to stenodactylin was observed at lower concentrations, being MOLM-13 

cells the most sensitive, with an IC50 value almost 1 log lower than Raji and Ramos cells 

(fig.1, table 1).  

 Viability assays were also performed after 48 h of stenodactylin treatment. As 

shown in fig. 2, MOLM-13 were the most sensitive to the toxin among cell line tested. 

Despite the marked difference reported in the ability of stenodactylin to inhibit protein 

synthesis in the three cell lines, viability test showed that all tested cell lines were 

similarly sensitive to the toxin, showing very close EC50 values (fig 2, table 2). These 

results may partially support the idea that RIP-induced cell death is not fully dependent 

on the ability to inhibit cellular protein synthesis, but also other mechanisms participate 

(Das et al., 2012).  

 Since MOLM-13 were found to be more sensitive to stenodactylin-induced 

inhibition of protein synthesis, this cell model was chosen for further analysis. 
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Fig. 1 Protein synthesis inhibition assay on MOLM-13 (▲), Raji (●), and Ramos (■) cells 

treated for 48 hours with stenodactylin. A total of 2 × 104 cells were seeded in 96-well plates in 

a final volume of 200 µl of complete medium containing appropriate concentration of 

stenodactylin or control medium. After 48 hours of incubation and further 6 hours with [3H] 

leucine, the radioactivity incorporated was determined. Results are the means of three 

independent experiments, each performed in triplicate. SD never exceeded 10%.  

 

 

Table 1 Calculated IC50 values for stenodactylin in MOLM-13, Raji and Ramos cells. 

 

 MOLM-13 RAJI RAMOS 

IC50 (M) 3.75 × 10-12 1.95 × 10-11 3.49 × 10-11 
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Fig. 2 Viability assay on MOLM-13 (▲), Raji (●), and Ramos (■) cells treated for 48 hours 

with stenodactylin. A total of 2 × 104 cells were seeded in 96-well plates in a final volume of 

200 µl of complete medium containing appropriate concentration of stenodactylin or control 

medium. After 48 hours, viability was measured using a colorimetric assay based on MTS 

reduction and expressed as percentage of untreated control value. Results are the means of three 

independent experiments each performed in triplicate. SD never exceeded 10%. 

 

 

Table 2 Calculated EC50 values for stenodactylin in MOLM-13, Raji and Ramos cells. 

 

 MOLM-13 RAJI RAMOS 

EC50 (M) 1.06 × 10-10 2.09 × 10-10 3.43 × 10-10 

 

 

Ricin is more toxic than stenodactylin in MOLM-13 cells 

 Ricin from Ricinus communis seeds is the most known and studied type 2 RIP. 

Its modified A chain has been used to the design and production of immunotoxins for 

the experimental treatment of different hematological disorders achieving promising 

results, either in vitro than in vivo (Herrera et al., 2009; Furman et al., 2011; Schindler 

et al., 2011; Liu et al., 2012 ). We therefore compared ricin cytototoxicity to 

stenodactylin in MOLM-13 cells. After a 48 h exposure of cells to the toxin, viability 

was assessed. Ricin resulted to be more toxic than stenodactylin: a complete loss of 
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viability was observed at 10-9 M concentration, whereas a complete loss in viability was 

observed at a concentration 10-8 M of stenodactylin. EC50 value of ricin resulted of 2.29 

× 10-11, almost 1 log lower than what observed for stenodactylin (fig. 3). 

 

Fig. 3 Viability assay on MOLM-13 cells treated for 48 hours with stenodactylin (▲) or ricin 

(■). A total of 2×104 cells were seeded in 96-well plates in a final volume of 200 µl of complete 

medium containing appropriate concentration of stenodactylin or control medium. After 48 

hours, viability was measured using a colorimetric assay based on MTS reduction and expressed 

as percentage of untreated control value. Results are the means of three independent 

experiments each performed in triplicate. SD never exceeded 10%. 

 

Stenodactylin depurinates the 28S rRNA in a time-dependent manner 

 RIPs are known to remove a specific adenine from 28S rRNA, leading to 

translational arrest. To verify depurination induced by stenodactylin in MOLM-13 cells, 

we applied the method based on qRT-PCR developed by Melchior et al., 2010, that 

allows the detection of apurinic sites in intact cells. Cells were treated with 

stenodactylin 10-9 M, which has been shown to be the minimum concentration causing a 

complete inhibition of protein synthesis after 48 h. A time-dependent increase of 

apurinic sites in 28S rRNA was detected upon stenodactylin treatment. A significant 

increase in the relative amount of apurinic rRNA increased by 12.1 ± 3.2 fold in 

response to stenodactylin after a 4 h exposure (p = 0,0003) and by 41.2 ± 7.4 fold after 6 

h (p = 0,0001), while no significant difference compared to control was observed after 2 

h (fig. 4). 
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Fig. 4 Depurination of the 28S rRNA by stenodactylin in MOLM-13 cells. Cells were incubated 

for indicated time with 10-9 M stenodactylin. The resulting relative amount of apurinic sites in 

28S rRNA compared to untreated control was determined by qRT-PCR. 28S rRNA aside from 

the depurination site was used for the normalization of the samples. Data are given as mean fold 

change ± standard error of the mean (SEM) of three independent experiments, each performed 

in duplicate. ***p = 0,0003; ****p = 0,0001 (comparison between control and treatment). 

 

Evaluation of apoptotic changes in stenodactylin-treated cells 

 Cell death induced by 10-9 M stenodactylin was observed after 24 h and 48 h 

with phase contrast microscopy. As shown in fig. 5, cell morphology after 24 h and 48 h 

of exposure to the toxin appeared to become progressively compatible with apoptotic 

cell death, like nuclear condensation and membrane alterations.  
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Fig. 5 MOLM-13 cells untreated or treated with stenodactylin for 24 or 48 h. Cell morphology 

was assessed by phase contrast microscopy (20× magnification). 

 

 Apoptosis involvement was monitored by Annexin V/PI double staining and 

then analyzed by flow cytometry (fig. 6). Double staining with Annexin V/PI 

demonstrated that MOLM-13 cells treated with 10-9 M stenodactylin showed a time-

dependent increase in Annexin V positive cells. Quantitative analysis showed a 

significant increase in Annexin V positivity after 6 h compared to untreated control 

(11.5% ± 1.4%), and percentage of viable cells was 84.2% ± 1.5%. After a 24 h 

treatment with stenodactylin 10 -9 M, percentage of viable cells decreased to 38.2% ± 

3.2%; while after 48 h, only 11.8% ± 1.7% of viable cells were detectable. A small 

amount of necrotic cells appeared only after 48 h, suggesting that apoptosis is the main 

cell death pathway followed after stenodactylin intoxication (fig. 7).  
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Fig. 6 Flow cytometric analysis of apoptosis in MOLM-13 cells measured by using Annexin V 

– EGFP apoptosis detection Kit. Representative cytometric dot-plots images of MOLM-13 cells 

obtained after incubation with stenodactylin (10-9 M, 2-4-6-24-48 h). Each specimen presents: 

viable cells (left down corner Q3); early apoptotic cells (right down corner Q4); late apoptotic 

cells (right upper corner Q2); and necrotic cells (left upper corner Q1). 

 

 

Fig. 7 Flow cytometric analysis of MOLM-13 cells stained with Annexin V – EGFP apoptosis 

detection Kit. Cells were treated for indicated time with stenodactylin (10-9 M). Results are the 

means of six independent experiments. SD never exceeded 10%. Apoptosis induced by 

stenodactylin resulted significant by ANOVA/Bonferroni (P < 0.0001) starting after 6 h of 

exposure to the toxin compared to untreated control.  

 

Caspases activation in stenodactylin-treated MOLM-13 

 Once we had established that the MOLM-13 cell line was responsive to 

stenodactylin in terms of depurination and protein synthesis inhibition, and that 

apoptotic membrane changes were observed in response to the treatment, we evaluated 

the involvement of caspases activation in apoptotic cell death induced by stenodactylin. 

As shown in fig. 8, stenodactylin treatment (10-9 M) caused a time-dependent increase 

in the activity of all tested caspases (fig. 8). All caspases were significantly activated 

after 6 h (p < 0.0001). Despite a similar activity compared to caspase 8, only caspase 9 

was found to be significantly activated after 4 h (p = 0.0001). Effector caspases 3/7 also 

shown a significant activation after 4 h and a marked increase in activity after 6 h. The 

luminometric assay used to determine caspases activity cannot discriminate between 
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caspase 3 and caspase 7 as both have substrate specificity for the amino acid sequence 

Asp-Glu-Val-Asp. A further western blot analysis was performed to evaluate caspase 3 

activation. As shown in fig. 9, caspase 3 cleavage appeared after 5 h. It is possible that 

the difference in activity observed with the luminometric assay may be due to a 

different sensitivity of the two assays, or to an early activation of caspase 7 before 5 h 

that cannot be excluded. 

  

 

 

Fig. 8 Caspase activation in MOLM-13 cells exposed to 10-9 M stenodactylin. Caspase-2, -8, -9 

and -3/7 activation were determined as described in materials and methods. Caspase activity is 

expressed as the percentage of control values obtained from cultures grown in the absence of the 

RIPs. All caspases were significantly activated after 6 h (p < 0.0001). Despite a similar activity 

compared to caspase 8, only caspase 9 was found to be significantly activated after 4 h (p = 

0.0001). Mean results ± SD are reported. 
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Fig. 9 Western blot analysis of stenodactylin-induced caspase 3 cleavage. MOLM-13 cells were 

serum treated for the indicated time with 10-9 M stenodactylin. Cell lysates (40 μg total protein) 

were separated by SDS-PAGE and immunoblotted. Figure is representative of 3 separate 

experiments.  

 

Evaluation of early gene expression changes induced by stenodactylin in AML cells 

 Early gene expression changes were evaluated in a time-course experiment 

considering 2-4-6 hours of treatment with stenodactylin 10-9 M. RNA from MOLM-13 

cells exposed to the toxin was used for the analysis of 47231 annotated RefSeq 

transcripts. After data quality control and pre-processing, significance analysis of 

microarrays (SAM) (Tusher et al., 2001) was applied. SAM ranks the transcripts in a 

data set according to the regularized t-score that it calculates, providing also a q-value 

which is a measure of the statistical significance of the differences in expression levels 

between the compared groups. To select only interesting genes from the analysis, we set 

up a cut-off considering statistically interesting genes showing a q-value and a false 

discovery rate (FDR) = 0 and a fold change ± 1.5.  

 After 2 hours of exposure to stenodactylin, no significant changes in gene 

expression were detectable, while after 4 hours, 6 transcripts were up-regulated. SAM 

analysis revealed stenodactylin-mediated increased expression of transcription factors 

such as c-Jun, early growth response-1 (EGR-1) and activating transcription factor 3 

(ATF3), which are known to be associated with the transcriptional regulation of 

proinflammatory genes. Dual specificity protein phosphatase 1 (DUSP1) was also up-

regulated. This enzyme is known to have a role in the inactivation of mitogen-activated 

protein (MAP) kinase and also an important role in the human cellular response to 
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environmental stress as well as in the negative regulation of cellular proliferation 

(RefSeq, Jul 2008). Proinflammatory cytokine interleukin-1B (IL1B) and chemokine 

interleukin-8 were also up-regulated (listed in table 3).  

 

Table 3 SAM ranked gene list after 4 h of exposure to stenodactylin 

 

Symbol Definition FDR q-value 
Fold 

Increase 

JUN jun oncogene 0.0 0.0 5.3 

EGR1 early growth response 1 0.0 0.0 2.5 

ATF3 activating transcription factor 3 0.0 0.0 1.8 

DUSP1 dual specificity phosphatase 1 0.0 0.0 1.5 

IL1B interleukin 1, beta 0.0 0.0 1.6 

IL8 interleukin 8 0.0 0.0 1.7 

 

 

 After 6 hours, 65 transcripts were found to be up-regulated (listed in table 4). 

Correspondence analysis (CA) (Felleberg et al., 2001) was applied to look for 

associations between the samples and expression levels of the transcripts in the data set. 

CA plot showed a tendency for samples to create a gradient, with control samples and 

samples treated with stenodactylin for 2 hours at one end, and samples treated with 

stenodactylin for 6 hours at the other end. Stenodactylin produced a time-dependent 

upregulation of selected genes (fig. 11).  
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Fig. 11 CA plot. The principal components 1 and 2, which explain the highest amounts of 

variance in the data set, are shown on the x-axis and y-axis, respectively. In green are reported 

control samples, 2 h treatment samples are light blue, 4 h samples are lilac blue, 6 h samples are 

red. Letters A-F indicate six biological replicates. The total variance retained in the plot is 

13.248%, the x-axis component variance is 7.504% and the y-axis component variance is 5.744.  
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Table 4 SAM ranked gene list after 6 h of exposure to stenodactylin 

 

Symbol Definition FDR q-value 
Fold 

Increase 

JUN jun oncogene 0.0 0.0 30.9 

IL8 interleukin 8 0.0 0.0 11.7 

ATF3 activating transcription factor 3 0.0 0.0 9.4 

EGR1 early growth response 1 0.0 0.0 9.1 

IL1B interleukin 1, beta 0.0 0.0 5.9 

DUSP1 dual specificity phosphatase 1 0.0 0.0 3.7 

CCL3 chemokine (C-C motif) ligand 3 0.0 0.0. 3.6 

BTG2 BTG family, member 2 0.0 0.0. 3.8 

RNU6-15 U6 small nuclear 15 RNA 0.0 0.0 4.3 

RNU6-1 U6 small nuclear 1 RNA 0.0 0.0 4.4 

PPP1R15A 
protein phosphatase 1, regulatory 

(inhibitor) subunit 15A 
0.0 0.0 2.3 

SLC25A24 

solute carrier family 25 (mitochondrial 

carrier; phosphate carrier), member 24 

nuclear gene encoding mitochondrial 

protein, transcript variant 1 

0.0 0.0 4.0 

ZFP36 
zinc finger protein 36, C3H type, 

homolog (mouse) 
0.0 0.0 3.0 

CCL3L3 chemokine (C-C motif) ligand 3-like 3 0.0 0.0 3.2 

CCL3L1 chemokine (C-C motif) ligand 3-like 1 0.0 0.0 2.8 

CYP4B1 
cytochrome P450, family 4, subfamily 

B, polypeptide 1 
0.0 0.0 1.9 

 
Human small nuclear RNA U6atac, 

partial sequence 
0.0 0.0 2.8 

RPPH1 ribonuclease P RNA component H1 0.0 0.0 2.2 
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RNase P RNA. 

IER2 immediate early response 2 (IER2) 0.0 0.0 2.1 

RNU6ATAC 
RNA, U6atac small nuclear (U12-

dependent splicing) RNA 
0.0 0.0 2.5 

TRIB1 
tribbles homolog 1 (Drosophila) 

(TRIB1) 
0.0 0.0 2.0 

RNU1A3 RNA, U1A3 small nuclear RNA 0.0 0.0 3.0 

RNU1-3 RNA, U1 small nuclear 3 RNA 0.0 0.0 3.6 

RNU1G2 RNA, U1G2 small nuclear RNA 0.0 0.0 3.4 

TNFSF9 
tumor necrosis factor (ligand) 

superfamily, member 9 
0.0 0.0 1.9 

CDKN1A 
cyclin-dependent kinase inhibitor 1A 

(p21, Cip1) transcript variant 2 
0.0 0.0 1.9 

IER3 immediate early response 3 0.0 0.0 2.1 

PLAU plasminogen activator, urokinase 0.0 0.0 1.8 

RNU1-5 RNA, U1 small nuclear 5 RNA. 0.0 0.0 3.6 

RN7SK 
RNA, 7SK small nuclear (RN7SK), 

non-coding RNA. 
0.0 0.0 3.8 

RNU1F1 RNA, U1F1 small nuclear RNA 0.0 0.0 2.7 

NFKBIA 

nuclear factor of kappa light 

polypeptide gene enhancer in B-cells 

inhibitor, alpha 

0.0 0.0 2.2 

ALB albumin 0.0 0.0 2.0 

MIR302C microRNA 302c 0.0 0.0 1.9 

CD83 CD83 molecule transcript variant 1 0.0 0.0 1.6 

DUSP2 dual specificity phosphatase 2 0.0 0.0 1.7 

RNU4ATAC 
U4atac small nuclear (U12-dependent 

splicing) RNA 
0.0 0.0 1.8 
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TIPARP 
TCDD-inducible poly (ADP-ribose) 

polymerase 
0.0 0.0 2.2 

SNORD13 small nucleolar RNA, C/D box 13 0.0 0.0 2.0 

FOS 
v-fos FBJ murine osteosarcoma viral 

oncogene homolog 
0.0 0.0 2.2 

TNFAIP3 
tumor necrosis factor, alpha-induced 

protein 3 
0.0 0.0 1.7 

HBEGF 
heparin-binding EGF-like growth 

factor 
0.0 0.0 1.6 

MAFF 

v-maf musculoaponeurotic 

fibrosarcoma oncogene homolog F 

(avian), transcript variant 1 

0.0 0.0 1.8 

LOC338758 
PREDICTED: hypothetical protein 

LOC338758 
0.0 0.0 2.1 

OBFC2A 
oligonucleotide/oligosaccharide-

binding fold containing 2A 
0.0 0.0 1.6 

SNORD104 small nucleolar RNA, C/D box 104 0.0 0.0 2.0 

RNU4-2 U4 small nuclear 2 RNA 0.0 0.0 2.8 

RNU4-1 U4 small nuclear 1 RNA 0.0 0.0 1.6 

OSM oncostatin M (OSM) 0.0 0.0 1.9 

PHLDA1 
pleckstrin homology-like domain, 

family A, member 1 
0.0 0.0 2.1 

PTGER4 
prostaglandin E receptor 4 (subtype 

EP4) 
0.0 0.0 1.9 

CD83 CD83 molecule transcript variant 2 0.0 0.0 1.5 

SERTAD1 SERTA domain containing 1 0.0 0.0 1.7 

KIAA1666 
PREDICTED: Homo sapiens 

KIAA1666 protein 
0.0 0.0 2.1 

HIST2H2BE histone cluster 2, H2be 0.0 0.0 1.7 
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ARL4A 
ADP-ribosylation factor-like 4A 

transcript variant 1 
0.0 0.0 1.5 

PTGS2 

prostaglandin-endoperoxide synthase 

2 (prostaglandin G/H synthase and 

cyclooxygenase) 

0.0 0.0 1.5 

FAM53C 
Homo sapiens family with sequence 

similarity 53, member C 
0.0 0.0 1.6 

SNORD3D small nucleolar RNA, C/D box 3D 0.0 0.0 1.9 

NFE2L2 
nuclear factor (erythroid-derived 2)-

like 2 
0.0 0.0 1.5 

KLF6 
Kruppel-like factor 6 transcript variant 

2 
0.0 0.0 1.6 

TXNIP thioredoxin interacting protein 0.0 0.0 1.9 

CDKN1A 
cyclin-dependent kinase inhibitor 1A 

(p21, Cip1) transcript variant 1 
0.0 0.0 1.8 

HIST2H2AA3 Histone cluster 2, H2aa3 0.0 0.0 1.6 

 

 Hierarchical clustering of treatments vs control was performed considering genes 

showing q-values and FDR = 0 in SAM and a fold change of ± 1.5. Hierarchical 

clustering showed a clear tendency to upregulation of selected gene in a time-dependent 

manner. Highest differences between treatment group and control are at the top of the 

plot (fig. 12). 
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Fig. 12 Hierarchical clustering of sample groups and transcripts. Sample groups are arranged in 

columns, while the transcripts are arranged in rows. Only the transcripts with q-value of 0, FDR 

= 0 and a fold change ± 1.5 fold were clustered. Negative log intensity ratios are shown in green 

and positive log ratios are shown in red in the heat map, as indicated by the color bar. Highest 

differences are at the top of the plot. 
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Gene ontology and pathway analysis  

 To identify overrepresented gene-onthology groups (GO) and biological 

pathways associated with the genes upregulated by stenodactylin treatment, SAM gene 

list was imported into PANTHER (http://www.pantherdb.org/), and the binomial test 

(Cho et al., 2000) was used to statistically determine overrepresentation of PANTHER 

classification categories. Bonferroni corrected p-values < 0.05 and a fold enrichment > 

5 were considered as significant. As shown in table 5, pathway analysis by PANTHER 

tool showed that inflammation mediated by chemokine and cytokine signaling, 

apoptosis signaling, gonadotropin releasing hormone receptor and Toll receptor 

signaling pathways contained the largest number of upregulated genes. The most highly 

overrepresented genes activated following stenodactylin exposure were associated with 

cellular response to stress, intracellular signal transduction, regulation of cell death and 

apoptosis (in table 5, only biological processes showing ≥ 15 genes are reported). The 

molecular functions of these induced genes were associated with transcription, DNA-

binding and chemokine and cyrtokine activity. molecular functions are linked to 

transcription factor, cytokine and chemokine activities.  

 

Table 5 PANTHER Overrepresentation Test 

 

PANTHER Pathway No. of genes p-value 

Inflammation mediated by chemokine and cytokine 

signaling  
8 1.76E-05 

Apoptosis signaling  6 6.23E-05 

Gonadotropin releasing hormone receptor  7 2.42E-04 

Toll receptor signaling  4 2.34E-03 

   

 GO Molecular Function   

cytokine activity 7 2.44E-03 

RNA polymerase II transcription regulatory region 

sequence-specific DNA binding transcription factor 

activity involved in positive regulation of 

transcription 

7 5.18E-03 

cytokine receptor binding 7 7.12E-03 

chemokine activity 4 1.47E-02 

transcription regulatory region DNA binding 9 2.74E-02 

regulatory region nucleic acid binding 9 2.90E-02 
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regulatory region DNA binding 9 2.90E-02 

chemokine receptor binding 4 3.13E-02 

   

 GO Biological process   

cellular response to stress 22 3.06E-09 

response to external stimulus 24 6.16E-09 

regulation of response to stress 17 8.61E-07 

intracellular signal transduction 20 1.69E-06 

regulation of cell death 19 2.67E-06 

regulation of apoptotic process 18 8.62E-06 

regulation of programmed cell death 18 9.72E-06 

positive regulation of multicellular organismal 

process 
17 1.01E-05 

negative regulation of response to stimulus 17 1.31E-05 

response to oxygen-containing compound 17 1.84E-05 

regulation of cell proliferation 18 1.92E-05 

immune response 17 2.16E-05 

negative regulation of signaling 15 1.72E-04 

negative regulation of cell communication 15 1.81E-04 

regulation of protein modification process 16 2.76E-04 

 

p38 and JNK MAPK signaling pathway is induced by stenodactylin 

 Gene expression microarray profiling showed that early changes induced by 

stenodactylin converge on the activation of c-Jun transcription factor and 

proinflammatory cytokines. The JUN protein is a critical component of activator 

protein-1 (AP-1) transcription factor. JUN can stably associate with itself or FOS 

protein to form AP-1 complex. JUN can also interact with some activating transcription 

factor (ATF) members, such as ATF2, ATF3 and ATF4, to form heterodimers that bind 

to the cAMP-responsive element (CRE) DNA sequence, TGACGTCA. Members of the 

AP-1 family of transcription factors are activated by SAPKs, such as p38 and JNK, 

which are in turn activated by a cascade of upstream kinase further regulated by 

phosphatases (Wada et al., 2004; Huang et al., 2009) RIPs were previously shown to 

activate SAPKs eliciting a complex response termed the ribotoxic stress response 

(Iordanov et al., 1997). We therefore investigated the involvement of p38, JNK and 

ERK signaling at early stages of stenodactylin intoxication. Flow cytometry was used to 

obtain a single-cell profiling of signal transduction using modification-specific 

antibodies and western blot was used to confirm observed changes.  
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 As shown in fig. 13, stenodactylin induced a time-dependent increase in p38 

phosphorylation (Thr180/Tyr182). Percentage of phospho-p38 cells increased 

significantly after 4 h of exposure to the toxin.  

 

 

Fig. 13 A) Phosflow analysis of MOLM-13 cells with Alexa-Fluor 647 anti-phospho-p38 

antibody, representative plot out of six independent experiments. Cells were barcoded (see 

materials and methods) with Pacific Blue staining (x-axis). Control (black), 2 h (red), 4 h (blue) 

and 6 h (green) samples are represented in dot plot and B) histogram plot. C) Percentage of 

phospho-p38 positive cells increased significantly after 4 h and 6 h. Asterisks indicate level of 

significance in ANOVA/Bonferroni followed by Dunnett’s test (****p < 0.0001). D) Western 

blot analysis of phospho-p38. Cell lysates (40 µg total protein) were separated by SDS-PAGE 

and immunoblotted. Figure is representative of 3 separate experiments.  
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 A time-dependent increase in phosphorylation of JNK (Thr183/Tyr185) was also 

observed. Phosflow analysis showed a significant increase in phospho-JNK-positive 

cells after 6h, while western blot showed an increased band intensity for phospho-JNK 

at 2, 4 and 6 hours. The observed difference between two analysis may be due to 

differencies in antibody sensitivity, or a poor accessibility of the epitope in intact cells. 

  

Fig. 14 A) Phosflow analysis of MOLM-13 cells with Alexa-Fluor 647 anti-phospho-JNK 

antibody, representative plot out of six independent experiments. Cells were barcoded with 

Pacific Blue staining (x-axis). Control (black), 2 h (red), 4 h (blue) and 6 h (green) samples are 

represented in dot plot and B) histogram plot. C) Percentage of phospho-JNK positive cells 

increased significantly after 6 h. Asterisks indicate level of significance in ANOVA/Bonferroni 

followed by Dunnett’s test (****p < 0.0001). D) Western blot analysis of phospho-JNK. Cell 

lysates (40 µg total protein) were separated by SDS-PAGE and immunoblotted. Figure is 

representative of 2 separate experiments. 
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 Both JNKs and p38 MAPK are known to be activated in response to a variety of 

cellular and environmental stresses, such as DNA damage, heat shock, inflammatory 

cytokines, UV irradiation or oxidative stress. ERK1 and ERK2 are well-characterized 

MAPKs, usually activated in response to growth stimuli. Phosflow analysis of 

phosphorylation of ERK1/2 (Thr202/Tyr204) showed no differencies between 

stenodactylin-treated and control samples (fig. 15).  

  

 

 

 

 

 

 

 

 

Fig. 15 Phosflow analysis of MOLM-13 cells with Alexa-Fluor 647 anti-phospho-ERK1/2 

antibody, representative plot out of six independent experiments. Cells were barcoded with 

Pacific Blue staining (x-axis). Control (black), 2 h (red), 4 h (blue) and 6 h (green) samples are 

represented in dot plot (left) and histogram plot (right).  
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DISCUSSION 

 

 The enzymatic activity of RIPs was firstly postulated by Endo et al., 1987, who 

discovered the N-glycosylase activity of ricin A-chain, which is able to remove a 

specific adenine (A4324 in rat ribosomes, A4605 in human ribosomes) located in a well-

conserved stem-loop region in the 28S rRNA of the large ribosomal subunit. It was then 

proposed that the cytotoxic effects of type 2 RIPs were a direct consequence of 

ribosome damage causing an irreversible inhibition of protein synthesis, finally leading 

to apoptotic cell death. The question whether depurination is necessary for RIP-induced 

cell death has been controversially discussed (Battelli, 2004), and the mechanism 

linking depurination activity to the induction of programmed cell death is still not clear. 

Recently, a series of experimental evidences showed that several mechanisms contribute 

to RIP-induced cell death, often in a cell-type specific manner. Oxidative stress has 

been shown to significantly contribute to RIP cytotoxic activity. For example, a mutant 

form of abrin lacking N-glycosylase activity was found to induce apoptosis increasing 

intracellular ROS levels (Shih et al., 2001), and treatment with antioxidant compounds 

was shown to confer significant protection in Jurkat cells by restoring antioxidant 

enzymes depleted by abrin treatment (Saxena et al., 2014). Unfolded protein response 

was also shown to contribute to type 2 RIPs cytotoxicity (Lee et al., 2008; Horrix et al., 

2011). RIPs are also able to activate MAPK pathway in response to the specific damage 

to 28S rRNA, inducing the so-called “ribotoxic stress response”. Signaling through the 

ribotoxic stress response has been linked to RIP-induced apoptosis, as the inhibition of 

components of this pathway resulted in a reduction of RIP-induced apoptotic features 

(Higuchi et al., 2003; Smith et al., 2003; Jetzt et al., 2009, Wahome et al., 2012). Taken 

together, those evidences suggest that RIPs might exert their toxicity not only by their 

N-glycosylase activity, but also by additional mechanisms, often involving multiple 

pathways of cell death (Polito et al., 2009).  

 In the present work, we described the activity of stenodactylin, a recently 

identified type 2 RIP from Adenia stenodactyla showing a high cytotoxic potential. 

Stenodactylin was able to inhibit protein synthesis in the AML cell line MOLM-13 

showing an IC50 of 3.75 × 10-12 M. Compared to ricin, the most studied type 2 RIP, it 

showed to be almost 1 log less toxic in MOLM-13 cells, even if in other cellular models 
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it showed an extremely high toxicity, being more toxic than volkensin, the most toxic 

type 2 RIP known so far (Battelli et al., 2010). Thus, stenodactylin can be considered 

among the most toxic RIPs from plant origin. At a concentration completely inhibiting 

cellular protein synthesis after 48 h of exposure, stenodactylin induce significant 

apoptotic membrane changes within 6 h. We therefore decided to evaluate early changes 

induced by stenodactylin treatment to identify the early response to toxin treatment. The 

qRT-PCR analysis of 28S rRNA revealed that stenodactylin-induced depurination of the 

ribosomal subunit occurred significantly after 4 h, and an increase in depurination was 

observed in a time-dependent manner. A significant time-dependent activation of 

caspases -2, -8, -9, 3/7 was observed after 6 h, while activation of caspases -9 was 

significant after 4 h. Caspases 3/7 showed a significant increase in activity at 4 h, even 

if western blot analysis showed activation of caspase 3 only after 5 h. As caspases 3/7 

were evaluated using a luminometric assay, the difference observed may reflect a 

difference in sensitivity of the two methods. An earlier activation of caspase-7 over 

caspase-3 cannot be excluded, since the luminometric assay used to determine caspases 

activity cannot discriminate between caspase 3 and caspase 7 as both have substrate 

specificity for the amino acid sequence Asp-Glu-Val-Asp. In fact, although caspase-3 

and caspase-7 can be activated in concert by the initiator proteases caspase-8 and 

caspase-9 in response to classical apoptotic triggers, the executioner caspases differ in 

their upstream activation mechanisms in response to inflammatory stimuli (Lamkanfi et 

al., 2008). As ricin and other RIPs have been shown to induce inflammatory responses 

in intoxicated cells, further studies will be required to elucidate stenodactylin-induced 

caspase activation (Lindauer et al., 2010; Jandhyala et al., 2012).  

 MAPKs are serine/threonine kinases that can either positively or negatively 

regulate gene expression, mitosis, proliferation, motility, metabolism, cell survival and 

programmed cell death. Depurination of 28S rRNA by different ribotoxins, RIPs 

included, was shown to activate a MAPKs-mediated signaling pathway called the 

ribotoxic stress response (Iordanov et al., 1997). Our treatment with stenodactylin 

resulted in an early increase in phosphorylation levels of p38 and JNK but not ERK1/2. 

JNK and p38 pathways are known to be involved in activating the proinflammatory 

response as well as apoptosis, two physiological responses that were shown to mediate 

RIPs toxicity (Korcheva et al., 2005; Korcheva et al., 2007; Lindauer et al., 2010). 
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Mobilization of p38, JNK and ERK1/2 to the ribosome and subsequent phosphorylation 

was observed in monocytes and macrophages during ribotoxic stress response induced 

by trichothecene mycotoxin deoxynivalenol, suggesting a role for the ribosome as a as a 

scaffold to initiate the ribotoxic stress response (Bae et al., 2008). JNK and p38 

inhibition was found to decrease inflammation and apoptosis-induced by ricin, 

suggesting a major role of these MAPKs in mediating ricin toxicity (Wong et al., 2007; 

Jetzt et al., 2009). 

 Our microarray analysis provided a list of genes whose expression was increased 

following treatment with stenodactylin. Major pathways involved were inflammation 

mediated by chemokine and cytokine signaling, and apoptosis signaling. Early gene 

expression changes occurred after 4 h and involved upregulation of JUN, EGR1, ATF3, 

DUSP1, IL1B and IL8. Transcription factors and cytokine as well as chemokines were 

significantly overrepresented, regulating cellular processes like cellular response to 

stress and cell death. These findings were consistent with previous findings regarding 

RIPs-induced gene expression changes (Wong et al., 2007; Bhaskar et al., 2012; 

Daniels-Wells et al., 2013 ).  

 In summary, stenodactylin treatment induces in MOLM-13 AML cells a stress 

response compatible with the previously described ribotoxic stress response, shared by 

different type 2 RIPs and also other ribotoxins targeting 28S rRNA. Further studies are 

required to elucidate p38 and JNK role in the regulation of inflammation and apoptotic 

processes induced by stenodactylin. For its elevated cytotoxicity, stenodactylin might 

represent a valuable option for the design and construction of a new immunotoxin for 

the experimental treatment of hematological malignancies. 
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