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Introduction

The light weight, simple processability, and mechanical flexibility of π-

conjugated organic small molecules and polymers has recently led to remark-

able research efforts towards the realization of new opto-electronic devices.

Moreover, organic materials can be deposited and grown by means of easy,

low temperature and low cost technologies as inkjet printing, with the possi-

bility of covering large areas onto flexible substrates. In recent years, opto-

electronic devices based on single crystals of conjugated organic molecules

have gained the attention of the research community because of their po-

tentiality in combining the high performances of molecular single crystals

with the advantages of organic electronics. Thanks to their high chemical

purity and the low density of defects (e.g. grain boundaries, typical of poly-

crystalline semiconductor thin films), organic single crystals can be indeed

considered as the most performing organic materials in terms of charge mo-

bility, exciton diffusion length and stability against degradation [1].

The present thesis is focused on the study of Organic Semiconducting

Single Crystals (OSSCs) and crystalline thin films. In particular solution-

grown OSSC, e.g. 4-hdroxycyanobenzene (4HCB) and crystalline films have

been characterized in view of their applications as novel sensors of X-rays,

gamma and alpha radiations, and as sensors to polar volatile molecules.

The study has been carried out at the Department of Physics and As-

tronomy of the University of Bologna, Italy, in close cooperation with the

Synchrotron Laboratory ELETTRA, Trieste, Italy.

In the first chapter a general introduction to the field of Organic Elec-

ix



x Introduction

tronics is given, with particular focus on the performance and interesting

properties of organic single crystals properties.

In the field of ionizing radiation detection, organic semiconductors have

been proposed so far mainly as indirect detectors, i.e. as scintillators or as

photodiodes active materials [2]. Although direct detection of the ionizing

radiation, i.e. its direct conversion into an electrical signal, allows to reduce

the signal-to-noise ratio and the response time of the device, only few exam-

ples of organic-based direct detectors have been reported in the literature,

all employing thin films of organic semiconducting or conductive materials

[3, 4, 5]. The state of the art of this kind of organic X-ray detectors, as well

as an overview on the commonly used radiation sources and on the general

characteristic of X-ray detectors, are discussed in chapter two.

The materials and experimental tools used for the devices under study

are described in chapter three.

I have focused my research activity, in chapter four, on the study of the

performance of 4HCB single crystals as direct X-ray detector, and the re-

sults indicate that they can effectively operate at room temperature and

in atmosphere, showing a stable and linear response with increasing dose

rate. In addition, a dedicated study of the collecting electrodes geome-

try, contacts materials, crystal thickness and interaction volume allowed us

to maximize the charge collection efficiency and to take advantage of the

transport and charge collection anisotropy of the crystals. In order to im-

prove our knowledge about the processes involved in the observed X-ray

induced photocurrent signal, a comparative study is presented on OSSCs

based on several small molecules, namely 1,5-dinitronaphthalene (DNN),

1,8-naphthaleneimide (NTI), with different molecular structures and polar-

izability, which crystallize with different geometries and molecular packing.

Furthermore, with the aim to investigate how the polarity of the molecule

affects the response of the detector, we characterized Rubrene OSSCs-based

devices and TIPS-pentacene thin films: which have well known electrical

performances and are considered the benchmarks in organic electronics.
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Chapter five is dedicated to the investigation of TIPS-pentacene thin film

as direct X-ray detectors.

Regarding others ionizing radiations, the proof of principle of alpha par-

ticles has been assessed for 4HCB single crystals in chapter six.

The electrical transport properties of organic materials are greatly af-

fected by environmental conditions [6], thus in chapter seven I have carried

out a thorough investigation of the electrical characterization of single crys-

tals when exposed to vapour of volatile molecules, both polar (ethanol and

heptane) and non-polar (isopropanol), to assess their potential as chemical

sensing devices.

The last chapter of this thesis (chapter eight) deals with rubrene, one

of the most promising molecular crystals for electronic and optoelectronic

applications, since it shows the highest intrinsic charge-carrier mobility (up

to 20 cm2/Vs at room temperature) [7] and the longest reported exciton dif-

fusion length (2-8 µm), [8] Indeed, the integration of crystalline rubrene thin

films, having the same performances as single crystals, in flexible electronic

devices, would represent a crucial technological improvement. We present

an investigation on high quality, millimeter-sized, crystalline and fully ori-

ented rubrene thin films of different thicknesses (varying in the range between

10 nm and 100 nm) realized by exploiting organic molecular beam epitaxy

on water-soluble substrates. To investigates the electrical and opto-electronic

transport properties of the thin films, Space Charge Limited Current (SCLC)

analyses and Wavelength-resolved photocurrent spectroscopy measurements

have been carried out, on samples with different thicknesses. Moreover, a

field-effect thin transistor (OTFT) employing rubrene thin film have been

fabricated and fully characterized.

In order to accomplish the research activity presented in this PhD thesis, I

have carried out two visiting research periods: one at Department of Physics,

University of Surrey, UK, under the supervision of Prof. P.J. Sellin and the

second one at the Optical Material Engineering Laboratory (OMEL), ETH,

Zurich, under the supervision of Prof. D. Norris and Dr. D. Braga.
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Chapter 1

Organic Electronics

1.1 Development of Organic Electronics

The first studies on organic materials date back to the beginning of the

20th century. In 1950s an intensive investigation on the photoconductivity

of organic semiconducting crystals began and later in the 1960s followed the

discovery of their electroluminescence. Since the 1970s, the successful syn-

thesis and controlled doping of conjugated polymers established the second

important class of organic conductors, and in the 1980s the demonstration

of an efficient photovoltaic cell with an organic p-n heterojunction and the

fabrication of the first thin film transistor based on conjugated polymers

were reported. In the last 20 years, under the thrust of the Nobel Prize

in Chemistry in the 2000, with a growing interest of private industries, the

technological development of organic electronics arises. The great appeal of

organic electronics is the low fabrication costs, low temperature processes

that not require big and expensive equipments, and the possibility to cover

large areas, almost on every substrate, also on extremely stretchable ones,

resulting in the easy fabrication of transparent and flexible devices. The

application of organic electronics, spans from transparent solar cells, OLED

displays and flexible screens to RFID tags and sensors, taking advantage

of their extremely sensitivity to environmental conditions like temperature,

3



4 1. Organic Electronics

Figure 1.1: Some of the most promising organic electronics applications.

gas, pressure and humidity (figure 1.1). Furthermore, because of their light

atomic weight and chemical composition organic semiconductors are tissue-

equivalent and bio-compatible materials, and this feature opens new ways to

their applications in bio-medical sensor field as smart tissues and bio-medical

patches able to inject a medicine in case of necessity. These new possibilities

are the engine that makes the challenge of this research so intriguing.

The key points to implement all these promises are the research efforts

to fabricate working devices able to accomplish the industrial challenges.

Organic materials properties are extremely encouraging for Organic Pho-

tovoltaic (OPV) to accomplish the third generation photovoltaic requests;

indeed very recently a new record for OPV has been established, reaching

40% of transparency and 12% of efficiency, overcoming the efficiency limit

of merchantability of 10% [9, 10]. Organic Light-Emitting Diodes (OLEDs)

are the most advanced technology among organic electronics, thanks to the

discovery of high-performance electroluminescent diodes, and the progress

in charge collection performances of blended films of conjugated polymers.

Nowadays low power consumption OLEDs are commercially available and

many of the new smartphones generation mount OLED display [11]; more-
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over many world leading electronics industries are assessing the commercia-

bility of OLED-based flexible screens [12]. Organic Field-Effect Transistors

(OFETs) are the most important devices for the development of organic

electronics, being the fundamental building-blocks of any complex electronic

system, e.g logic circuits. Very recently organic thin films have reached the

mobility value of amorphous silicon, open the way to real application like in

AMOLED (active matrix organic light emitting diode) that allow the real-

ization of a full organic and flexible displays [13]. Concerning the application

of OFETs as mechanical sensors, extraordinary performances have been as-

sessed in the realization of artificial robotic skins based on OFETs-based

pressure sensors matrices fabricated onto extremely flexible and light sub-

strates [14]. Moreover, a new class of organic transistor devices are rising in

the last years, i.e. Organic Electro-Chemical Transistors (OECTs), particu-

larly suitable for bioelectronic applications since they employ ions as charge

carriers in the same way of biochemical processes, being thus the connection

between electronic and biological system [15]. Nowadays organic electronic

devices are already a commercial reality, however, the next step to improve

their availability on the market is to face the challenge of exiting from the

laboratories, targeting low cost, reliable and high credit standing technology.

For example TetraPak, world leader in packaging, estimates that the cost for

an organic RFID devices cannot exceed about 0.2 Eurocents per package. In

addition two more steps are necessary to accomplish the commercially low

cost, the proper choice of the substrate and the integration of the same ac-

tive material for several devices; in fact, currently, for each type of organic

device (OLEDs, logic OFETs, sensor OFETs) a different organic molecule

have been optimized, in such a way more than 50 fabrication steps would

be necessary for the realization of a full organic system. One of the most

interesting fabrication technique, developed also in order to overcome this

issue, is inkjet printing of organic materials for the realization of organic

devices [16], it allows very low fabrication costs and a extremely controlled

pattern design, even for the deposition of several layers. Furthermore the
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possibility to print organic devices directly on paper, cheap and massive pro-

duced, has been already demonstrated through this method, and employing

PEDOT:PSS as organic active material, an OECT, a display with logic gates

and a pressure sensor on the same paper have been realised [17].

1.2 Organic Semiconducting Single Crystals

Many organic solids and polymers are perfect insulators and are used

to considerable extent technically as such. However, there is also a large

number of organic semiconductors employed, as already mentioned in the

previous paragraph, in the development of new flexible and disposable elec-

tronic devices, such as organic solar cells, OLEDs, smart tags and sensors.

The appealing market for these new applications requires a combination of

performance, low cost, light weight and easy processability. Under the lead

of industrial applications, the devices development is more focused on the

technological improvement, which often goes beyond the poor knowledge of

the underlying physics, with the drawback that the understanding of the

fundamental properties of this important class of semiconductor is limited

still today. This discrepancy is also strongly due to the structural disorder

of polycrystalline and amorphous organic thin films, which are extremely

complex systems, that suffer of lack of reproducibility and are challenging to

theoretically model with a good agreement with experimental results.

Organic Semiconducting Single-Crystals (OSSCs) offer a suited environ-

ment for fundamental research: high structural order (i.e. long range order

and the absence of grain boundaries), high chemical purity (i.e the absence of

unwilling chemical impurities within the crystalline structure), and the avail-

ability of several efficient methods for fabrication of high quality defect-free

single crystals. In some extremely high purity crystals the first demonstra-

tion of band-like transport in organic materials was observed [18] and thanks

to the success in the development of organic-dielectric interfaces with very

low defects, high performance OFETs based on single crystals, have shown
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very high performances in terms of charge carriers mobility at room tem-

perature, exceeding the value of 1 cm2/Vs, typical of amorphous silicon and

usually the reference value for most of the commercial electronic applications

[19]. Specifically, the most studied and purified crystals are p-type polycyclic

aromatic materials such as 5,6,11,12-tetraphenyltetracene (commonly called

“rubrene”, µRUB ∼ 5 - 40 cm2/Vs), tetracene (µTET ∼ 2.4 cm2/Vs) and

pentacene (µPEN ∼ 5 - 40 cm2/Vs); for n-type materials we can mention

N,N’-bis(n-alkyl)-(1,7 and 1,6)-dicyanoperylene-3,4:9,10-bis(dicarboximide)

(PDIF-CN2) (µPDIF−CN2 ∼ 1 - 6 cm2/Vs)[20] and 5,7,12,14-tetrachloro-6,13-

diazapentacene (TCDAP) (µTCDAP ∼ 3.36 cm2/Vs) [21]. In addition, the

intrinsic order and the low density of traps in OSSCs allow a series of funda-

mental studies upon the intrinsic polaronic transport, the correlation between

crystalline structure and material properties (like the anisotropy of mobility),

the investigation of Hall effect and the observation of very long excitons life-

time (100 µs) and diffusion length (∼ 10 µm) [8]. Furthermore the crystals

structure is easier to model and can be used in computational simulations

and calculation.

1.2.1 OSSCs growth techniques

A crucial stage for an high performance OSSC-based device is the purity

and the high quality of the single crystal, on account of this, several growth

methods have been developed [22]. As organic crystals show a good solubility

in numerous organic solvents and have low melting temperatures and high

vapour pressures, physical vapour transport methods, melt growth methods

and solution growth methods are exploited.

Physical vapour transport methods (PVT) are used to grow crys-

tals and to purify the material at the same time. The property of organic

semiconductors of subliming without decomposition makes PVT suitable for

their growth. Organic powder material or pristine impure crystals are heated

in a tube under a flow of inert gas (hydrogen, argon or nitrogen gas); the

evaporating molecules are transported by the gas flow through a tempera-
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(a)

(b)

Figure 1.2: a) Sketch of a typical PVT tube. Reported from [23]. b) Some

solution-based growth methods. From upper left: solvent evaporation, slow cool-

ing, vapour diffusion and liquid-liquid diffusion [22].

ture gradient since they reach a critical temperature and crystallization takes

place. Since impurities have melting temperatures different from those of the

specific molecules, they are thrown away by the gas (figure 1.2a). The gas

flow and temperature control is very important to tune the speed of sublima-

tion, deposition and crystal growth. Most of high quality organic crystals,

like rubrene, anthracene, pyrene, naphthalene and fullerene, are grown by

PVT.

Melt growth methods like Bridgman, zone melting and Czochralski

growth methods, are the most used for growing large inorganic semiconduc-

tor crystals. They are very efficient for inorganic materials but owing to

the high vapor pressure and chemical instability of large organic materials

around melting temperature, only few and available in large quantities or-

ganic molecules have been testes on this methods. For few of them large high

quality single-crystalline ingots were obtained.

Solution growth methods are used for various organic molecules, es-

pecially for those having good solubility in common organic solvents. Such

methods are easy, very low cost and capable of producing a large amount of

crystals in one step. The growth procedure is very simple and can be sum-

marized as follow: the small molecule is dissolved in a solution, and as the

mixture cools and solvent evaporates, the organic material crystallizes into a

vial or directly onto the substrates. The rate and size of the crystals may be



1.2 Organic Semiconducting Single Crystals 9

Figure 1.3: Dip-coating procedure (left): dip substrate in supersaturated semi-

conductor solution, remove and allow solvent to evaporate. Drop-casting procedure

(right): Apply a drop of semiconductor solution onto the substrate surface, and

allow solvent to evaporate. Adapted from [24].

controlled by tuning the cooling and the evaporation rates, along with solvent

type and solution concentration. The simplest and most efficient is the “Sol-

vent evaporation method” (figure 1.2a), where the molecule is dissolved in an

organic solvent like chloroform, toluene or benzene and a saturated solution

is placed in a closed beaker not hermetically sealed; the solvent can slowly

evaporate forming supersaturated solution and large crystals start to grow

from nuclei seeds. A large number of crystals can be grown by this method,

among them several polar crystals such as 4-hydroxycyanobenzene (3.4.1)

and other crystals discussed in this thesis. Other solution growth methods

(slow cooling, vapour diffusion, liquid-liquid diffusion, organic flux solid sol-

vent, supercritical solvent) are reported in [22] and some of them are show in

figure 1.2b. It is mandatory to mention two solution-phase growth methods

which are technologically relevant, for the ease of covering large substrate

with solution grown single crystals aggregate in thin films: drop-casting and

dip-coating (figure 1.3). The first simply refers to a drop of supersaturated

solution of a soluble semiconductor deposited onto a substrate and let dry;

in the second the substrate is soaked into the solution, then removed and let

dry. The main issue of these two coating techniques is that the crystals have

random orientations and sizes; moreover only few soluble small molecules are

able of forming single crystals by the employment of these techniques [25].

Printing techniques have recently rise the attention as simply way of
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(a) (b)

Figure 1.4: Schematic of the processes of a) inkjet printing of organic single-

crystal thin films[26]. b) solution shearing using a micropillar-patterned blade.

The arrow indicates the shearing direction [27].

producing organic electronic devices. “Printed electronics” is being explored

for the development of large-area and flexible electronic devices by the pat-

terned application of organic semiconductor-based functional inks [28]. Note-

worthy, solution growth methods can be developed to realize printed organic

single crystals. Recently, antisolvent crystallization has been exploited to

achieve a controlled solidification. An antisolvent ink (a liquid in which a

substance is insoluble) is first patterned, and then a second ink with the

material is added. The particular patterning choice promote the ordered

crystallization (figure 1.4a). High performances OSSCs-based devices have

been realized my means of this inkjet printing technique [26]. In addition,

high performing large area (several mm2) organic crystals have been made

by means of shear-deposition (figure 1.4b) by properly patterning the blade

and the substrate [27].

Organic molecular beam epitaxy (OMBE) is an ultra high vacuum

technique that is commonly used for thin film deposition. It’s not usually

employed for single crystals growth, in fact some organic semiconductors can-

not crystallize in high vacuum, for example Rubrene forms quasi-amorphous

disordered films. Nonetheless the crystallization can be enhanced by means

of a proper conditioning. In this thesis an highly crystalline thin film of

rubrene is discussed; it was grown with OMBE onto a particular substrate
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Figure 1.5: Schematic view of σ and π bonds and delocalization of π orbitals in

aromatic ring.

(an amino acid called β-alanina), resulting in a highly ordered rubrene film

thanks to the exceptionally good match between the crystallographic axes of

such substrate and the rubrene crystal itself (see chapter 8).

1.2.2 Structural Characteristics

In an aromatic molecule the hybridized atom orbitals of carbon atoms

are bounded by σ- or π- bonds: the first are strong connection parallel to

the molecular plane, the second are delocalized bonds that form molecu-

lar orbitals (figure 1.5), in particular two important molecular orbitals are

called Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied

Molecular Orbital (LUMO), respectively the outer orbital occupied by elec-

trons and the first unoccupied energy level. It has been proved that in conju-

gated molecules, an increase of aromatic rings (a longer chain) correspond to

a smaller energy gap between HOMO-LUMO and a larger bandwidth. In a

molecular non-ordered solid the interactions are dominated by weak Van der

Waals forces that only slightly perturb the energy levels of isolated molecule;

their morphology is usually undetermined or amorphous. Instead, in molec-

ular crystals long range order takes place, therefore a greater energetic shift

arises. From the morphological point of view the crystal structure is deter-

mined by intramolecular forces and weak interactions, i.e. dipolar, hydrogen

bonds or π − π interactions; they are really hard to predict and knowing

exactly the structure adopted by a specific compound it’s almost impossible.

Also in single crystals, several polymorphs with comparable cohesion energies
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Figure 1.6: Schematic view of two molecular arrangements; herringbone (left)

and brick-wall (right) [29].

are generally obtained employing the common growing techniques described

in the previous paragraph and such variability strongly depends on the slight

differences in growth conditions. Most of the properties are set by molecular

packing, starting from the high packing differences between axes, that give

rise to strong anisotropy properties. Usually, non-polar aromatic single crys-

tals have a 2D layered structure, in which the highest intermolecular orbital

overlap is found along the crystal plane; in the same way, molecules hav-

ing only one axis with a strong overlap grow in needle-like shape. However,

depending on molecular size and intermolecular forces, some different molec-

ular arrangements can be found, as a result of a competitive process between

strong π − π overlap and the minimization of lattice energy due to packing

density. The most common arrangement is the herringbone motif that com-

bine high packing density, short-range interaction and low repulsive forces

that give stability to the structure (figure 1.6). The π − π stacking does not

affect only the morphological structure of organic crystals, but has dramati-

cally effects on their electrical properties; in fact strong π−π overlap results

also in a better charge transport. In general the weak interactions involved

in molecular crystals yield narrow bandwidth, in the order of 0.1-0.5 eV for

rubrene single crystals [30], which marks the main difference with inorganic

materials that are tied by strong covalent bonding with large bandwidth (

W ≈ 10 eV) and a strong delocalization of electrons. Many charge transport

peculiarities arise for that reason in organic materials, they will be treated

in more details in the next section.
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1.3 Charge Transport in Organic Crystals

The earliest studies on the electrical conduction, dark current and pho-

toconductivity of organic materials were published in the first decades of the

20th century, but only from the second half of the century the scientists be-

gan to sequentially investigates organic solids [31, 32]. Many organic solids

and polymer are perfect insulators. There is, however, also a large number of

organic semiconductors, organic solids with high dark conductivity or quasi-

metallic conductivity. Organic crystals with conjugate π-electron systems

are highly resistive, semi-insulating materials (e.g. 4-hydroxycyanobenzene,

see par. 3.4.1) or semiconductor like rubrene (see par. 3.4.2) and TIPS-

pentacene (see par. 3.4.3). They have very small instrinsic charge carriers

density but can change their electrical properties by injections or extraction

of charge carriers generated by external stimuli.

In this section we briefly define the parameters used to describe conduc-

tion in solid, with particular attention to organic molecular crystals. The

electrical conductivity σ is defined by the relation between current density j

and the electric field E:

j = σE (1.1)

In general, organic single crystals are highly anisotropic and the conductivity

σ is a tensor. The charge carriers move in the crystal with a mean drift

velocity vD and it’s proportionality with electric field is called mobility µ:

vD = µE (1.2)

From the microscopic definition of current density j = qnvD results the

following relation 1.3:

σij = qnµij (1.3)

The conductivity is therefore the product of two independent quantities: the

carrier density n, and the mobility µ; thus from a simple measurement of

current I at a given voltage V, µ and n cannot be determined separately.

However n and µ are specific parameters of materials and often depend on
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the experimental conditions, such as applied electric field or temperature, and

their behaviour can be theoretically modelled, hence these two parameters

provide a powerful experimental tool for the investigation of charge trans-

port in solids. Some factors affecting charge carrier mobility are: molecular

packing, structural disorder, environmental conditions like temperature and

pressure, electric field applied, impurities of the material, charge-carrier den-

sity, size/molecular weight [33]. Because of the amount of variables a lot

of care in the control of experimental conditions is needed and also it could

make very complicated the interpretation of experimental output. However,

several experimental techniques allow to extract charge carrier mobility [18],

among them the most used are: Time-of-flight (TOF) [34, 35], Space Charge

Limited Current (SCLC) [36] method, Hall measurements [37], and Field-

Effect Transistors method (OFET) [38, 39]. In this thesis the SCLC (3.1.1)

and OFET (3.1.2) methods will be discussed and used.

From the electrical point of view, a narrow bandwidth means more local-

ized charges, thus charge carriers spend more time in every single molecular

state with a typical mean transfer time τ ≈ 10−16 s, lower than the elec-

tronic polarization relaxation time of ≈ 10−15 s [40]. By means of this effect

for each excess charge carrier (i.e electron) in the LUMO level, the charged

molecule polarizes the closest molecules. Thus the polarization follow the

charges along the lattice, and the resulting effect is that the charge carriers

are not electrons or holes, but charged polarization clouds that move through

the lattice: the so called polaron. The lattice relaxation due to polarons for-

mation leads to a shift of the energy levels which become different respect of

that of the isolated molecule, as displayed in figure 1.7. In the limit of an

ideal crystal with a perfect periodic lattice the energy levels can be considered

discrete. Any kind of deviation from ideal lattice perturbs the periodicity,

resulting in a shift of energetic levels Eh and Ee and the formation of shal-

low levels in the energy-gap (figure 1.7c). On the other hand, impurities or

defects in the crystal give rise to deep levels, with energies Et deeper in the

gap, enough that trapped carriers cannot be released by means of thermal
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Figure 1.7: The energy diagram of an organic semiconductor. a) The energy

levels of the neutral isolated molecules. IG is the molecular ionization energy,

AG the electron affinity of the isolated molecule. b) The energy bands of the

ionized states of the ideal crystal. Eh, Ee are the energies of holes and electrons

respectively, Ph and Pe are the mean polarization energies of the holes and the

electrons. IC and AC are the ionization energy and electron affinity of the crystal.

c) The energy levels of the ionized crystal states with a statistical distribution of

polarization energies. d) The energy levels of traps within the energy gap.

fluctuations (figure 1.7d). In both cases the levels in an organic material

have a continuous statistical distribution, typically gaussian-like:

Gt(E) =
Nt√
2πσt

· e
− (E−Et)

2

2σ2t (1.4)

where Et is the mean shallow energy level inside the gap, Nt is number of

shallow sites and σt is the energy spread of the level.

Narrow bandwidth combined with large energy gap leads to low mobility

values and very small intrinsic carrier density n0, i.e. small conductivity.

As a result the most important process in an organic device is the charge

injection and extraction at the metal/semiconductor contact (in a resistor

or in a field-effect transistor) or induction at the dielectric/semiconductor
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(a)

(b)

Figure 1.8: Sketch of the temperature dependence of the mobility a) in hopping-

like and b) in band-like transport models [41].

interface (in a field-effect transistor). The metal/semiconductor interface

can be injection limited, i.e. a potential barrier is formed at the interface

through the so called Schottky effect, or not injection limited, i.e. it forms an

ohmic contact. In the latter case and under proper conditions, the number of

injected charges becomes much larger than the intrinsic ones, i.e. ninj >> n0,

and it is no longer compensated by free charges. Therefore, an additional

electric field due to space-charge takes place, thus for large charge injection

at high electric field a deviation from linear ohmic behaviour in the current -

voltage characteristics can be observed due to Space-charge-limited current

(SCLC) more details in section 3.1.1.



1.3 Charge Transport in Organic Crystals 17

1.3.1 Band-like transport in Organic Single Crystals

Since the first studies, in the 1960s, on charge transport in organic mate-

rials, a debate was opened on the nature of the charge transport mechanism,

if it is band-like (as in inorganic materials) or hopping. In an inorganic ma-

terial, like silicon, there is a strong interaction between adjacent atoms in

the crystalline form, so the overlap of atomic orbitals gives rise to highly de-

localized electronic states in the crystal lattice and to the formation of band

structure. In a disordered materials no ordered interaction between atoms

is possible and the electronic states are spatially localized in the atoms. In

this case, charge transport occurs through hopping of the charges between

adjacent localized states. The main parameter to discriminate between band

transport and hopping transport is to measure the temperature dependence

of charge carriers mobility. In fact in a band-like transport the mobility

decreases with temperature, with a characteristic potential law T− 3
2 due to

an increasing of electron-phonon scattering, and only at very low T the mo-

bility µ increases with temperature, when ionization of shallow traps takes

place (figure 1.8b). On the other hand for typical hopping transport, the

charge transport process should be thermally assisted, therefore the mobil-

ity increases with temperature as Tn. A temperature activated hopping-like

model is typical of the majority of organic materials, and several examples can

be found in literature for thin films both by TOF and OFET measurements

[42, 43]. The first reliable model to describe hopping in organic materials

and to model experimental data was developed in 1991 by Bassler [44]; in

his description the mobility increases exponentially with the temperature:

µ = µ0 · e−
T0
T

2

(1.5)

Nowadays more theoretical studies are ongoing to understand deviations from

this model [45].

Regarding ordered structure, e.g. organic single crystals, the picture is

even more complex. Many organic molecular crystals, in particular naphtal-

ene, anthracene, tetracene, pentacene and perylene have been grown with ex-
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(a) (b)

Figure 1.9: a) Proof of band-like transport in naphtalene ultrapure single crys-

tal at low temperature [46]. b) Mobility vs Temperature dependence along all

crystallographic axis, showing a deviation from band-like model at T>100 K [35].

tremely high quality through improvement of purification and crystal-growth

procedures. In these ultrapure crystals the concentration of impurities and

structural defects is exceedingly low; so providing tools to investigate in-

trinsic mobility. Indeed, experimental evidences are in line with band-like

transport, as assessed by TOF mobility measurements in ultrapure naphta-

lene single crystal in figure 1.9. In figure 1.9a many intrinsic effects typical

of ultrapure organic crystals can be observed: i) organic single crystals have

the highest mobility among organic framework, approximately of 1 cm2/Vs

at room temperature, but they reach even much higher mobilities, up to 400

cm2/Vs, at low temperature of 10 K and 3 kV/cm of electric field. ii) the

inverse power law µ ∝ T−n is typical of band-like transport, in particular for

electron mobility µ−, n = 1.4, it is extraordinarily comparable to that typ-

ical of inorganic band model. iii) at high mobility values and temperatures

below 40K the mobility becomes dependent on the electric field strength in
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Figure 1.10: Drift velocity vs electric field behaviour in ultrapure naphtalene

single crystal. The velocity saturation at high electric field well fit with Schottky

model, typical of band transport [47].

a characteristic manner: it decreases with increasing field. The saturation

of drift velocity (related to the mobility by the eq.1.2) with electric field at

low T is reported in figure 1.10. The sub-linear velocity-field relation can

be interpreted with the aid of the Schottky model of acoustic deformation

potential scattering of hot charge carriers, typical of the inorganic materi-

als like silicon or germanium, that fits well with experimental values and by

which the following expression had been derived (eq. 1.6):

vD = µ0E ·
√

2

1 +

[
1 +

3π

8

(
µ0E

cl

)2
]1/2


−1/2

(1.6)

where E is electric field, µ0 is the mobility at low electric field (µ0 = µ(E → 0))

and cl the sound velocity. iv) Impurities in single crystals have the effects to

dramatically decrease mobility and break the band-like transport (e.g. look

at + symbol plot in figure 1.9a). These results are explained in more details

and are in [46] where similar measurements on perylene ultrapure crystals

are reported.

There is no doubt left that charge carrier transport in pure and perfect
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low molecular weight conjugated organic crystals at low temperatures has

to be described by coherent transport in a band of substantial width and

with unexpectedly high mobilities. In fact, the µ vs T measurement and

the extremely high mobility that results in carriers faster than the sound

velocity, are well fitted with band-like model (even some deviations still have

to be explained) and are not accountable with any hopping transport mod-

els. However, some problems, concerning the interpretation of the transport

mechanism, arise when temperature raises. In fact due to physically clear-cut

criteria for band conductivity, some conditions must be fulfilled: the mean

scattering time τ must be greater than ~/W (W is the bandwidth) to have

discrete values of the wavevector and to allow a description in terms of an

energy-band model:

τ � ~
W

(1.7)

Likewise the mean free path λ of the charge carriers must be long if compared

to the lattice constant a0:

λ� a0 (1.8)

A typical bandwidth in organic crystal is of the order of 0.1 - 0.5 eV (from

optical measurements), thus τ � 1015s, and a typical lattice constant is

a0 ≈ 0.5 nm, thus λ� 0.5 nm. Whether or not this condition are fulfilled is

not easy to discriminate, nevertheless an estimation of these values has been

done with the experimentally determined values of mobilities [41, 48]. The

results showed that for T < 150 K, the condition for the existence of band

conductivity are well fulfilled in high-purity naphtalene crystal within the a-b

plane. The same holds for other ultrapure molecular crystals at low temper-

ature. On the other hand at room temperature the above physical conditions

are no longer satisfied: the charge carriers get more frequently scattered and

mobility is reduced, moreover the coherent delocalization decreases and the

more localized charge carriers get more coupled to the polarizable crystal

lattice, whereby their effective mass m∗ (their inertia against acceleration)

is increased. In general resulting also in a smaller bandwidth, mean free

path reduce to on lattice constant and the extended Bloch waves are break
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Figure 1.11: Some fabrication method of single crystal FET: a) parylene coating

b) PDMS stamp c) lamination d) polymer gate flexible dielectric e) removable

membrane gate [1].

down. Through of this mechanism it is possible to explain the mobility devi-

ation from band-like behaviour reported in figure 1.9b for the weak coupling

crystallographic c-direction (µ3) in naphtalene, where the mobility is almost

constant up to 300 K. In this case a superposition between two competitive

processes, band-like transport and a thermally activated one, is shown. Fur-

ther studies through computational models show that transport depends on

the intermolecular transfer integral (i.e. the strength of π−π interaction) and

the electron-phonon coupling, via both Holstein and Peierls models [49, 33].

Recently, it has been shown that thermal fluctuations at T > 100 K induces

modulations in the transfer integrals that can be as large as the average

transfer intergral itself [50]. Therefore we can conclude that, even in well

ordered ultrapure molecular crystals, a polaron-hopping electronic transport

mechanism exists.

1.4 Single Crystal Field-Effect Transistors

The development of OFETs is driven by industrial application in plas-

tic electronics and large efforts have been made in pushing transistor per-

formances and in the optimization of materials and fabrication processes,

especially in Organic Thin Film Transistors (OTFTs). Thanks to such ef-
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(a) [52] (b) [37]

Figure 1.12: Intrinsic coherent charge transport in rubrene molecular crystals.

A band-like behavior is measured both for a and textbfb longitudinal axis (a) and

also in hall mobility measurements(b)

forts OTFTs have reached recently single crystalline performances [27, 51].

Nonetheless the investigation of Single Crystals FET (SCFETs) is arising

with the aim of studying the intrinsic transport properties of organic semicon-

ductors and their interfaces. In fact, SCFETs have now set the benchmarks

for the FETs performances and have led the knowledge of new phenomena in

molecular materials. A variety of techniques have been developed to realize

SCFETs, mostly divided in two big categories. The first refers to crystal

growth directly on substrates, e.g. by vapour phase on controlled location,

or by drop-casting a solution on the channel region and let the material crys-

tallize. However, the most common techniques involve separately the crystal

growth and the transistor assembly. The latter case helps the employment

of extremely high purity crystals. In figure 1.11 some SCFET fabrication

methods are shown [1]. Among others, in particular the methods reported

in figure 1.11b is interesting: a single crystal is electrostatically bonded on

a pre-fabricated transistor stamp of PDMS (polydimethylsiloxane), a soft

rubber-like insulating polymer that well adapt to organic crystal surface.

A thin gap is left between source-drain level and gate level, in this way a

thin layer of air plays the role of dielectric between gate electrode and or-
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ganic crystal, such kind of structure is therefore called air-gap OFET. The

organic/dielectric surface, that usually play a critical role in the device and

strongly influence the transistor performance [53, 54], is in this case com-

pletely free of defects. As a consequence, employing the trap-free surface of

air-gap OFET band-like transport also for SCFET have been observed. In

figure 1.12 it is shown for rubrene, but similar results have been obtained

also for tetracene and pentacene SCFET.

Beyond intrinsic transport investigation, the highest mobility in organic

materials has been recorded for rubrene single crystal FETs, µ = 40 cm2/Vs

[52, 55]. For many years it keeps the limit to reach for OTFTs based on

amorphous organic materials, that remain more suitable for practical appli-

cations, but with a smaller mobility of more than one order of magnitude

[56]. A big effort has been made in the last ten years to push such limit,

improving the growth techniques, that now allow to fabricate thin films with

aligned crystalline domains, thus reaching mobility values comparable to sin-

gle crystal FETs. this result has been trached employing the well know solu-

ble molecule of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene,

see par. 3.4.3) [27], and even better exploiting new promising materials such

as a meta stable blend of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene

(C8-BTBT) and polystyrene [51]. Rubrene is not soluble and hence its use for

thin film electronic is discouraged, however it still remains the best perform-

ing organic material in FET electronics. Following this way several works

are being carried on in trying to control the growth of very thin layer of

crystalline rubrene [57, 58, 59], leading to the possibility of combining the

intrinsic studies on bulk crystals properties to the good technological features

of thin films.
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Chapter 2

Overview on Organic X-ray

Detectors

2.1 General concept of X-ray detectors

X- and gamma-ray radiation constitutes the part of electromagnetic spec-

trum with wavelength in the range 0.1 ÷ 100 Å, or 0.12÷ 120 keV in energies.

X-rays have typical energies of the inner shell of the atomic orbitals since they

are generated by the electron decay, processes involving the inner shells, and

differ from gamma-rays radiation that have higher energies, in the order of

MeV, and are generated by nuclear reaction decays. The employment of

X-rays spans from material science (e.g. material properties investigation

techniques) to medicine (e.g. diagnostic imaging techniques) and to the con-

trol procedures of industrial processes [60, 61, 62]. The X-rays wavelengths

are of the same order of magnitude of the crystal lattice constant; this kind

of radiation is therefore widely used in diffraction techniques in order to an-

alyze details of material structures, and in absorption techniques to reveal

the presence of specific elements in a sample.

25
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Figure 2.1: Electromagnetic spectrum with X-ray, gamma ray and synchrotron

light range pointed out.

2.1.1 Sources of Electromagnetic Radiation

As already mentioned, the actual difference between gamma and X ra-

diation lays on their own generation processes [63]. Gamma rays can be

produced following a beta decay, following a nuclear reaction or by electron-

positron annihilation. They are emitted by excited nuclei in their transition

to lower nuclear levels: when a former beta decay leads the daughter nucleus

to an excited state, the subsequent relaxation to the equilibrium state takes

place through the emission of a photon with nucleus characteristic energies,

thus are used for the precise energy calibration of radiation detectors. Nuclear

relaxation is a very fast process (typically in the order of picoseconds), com-

pared to beta decay that is a relatively slow process. Therefore gamma rays

have an half-life typical of beta decay, but energies that reflect the nuclear

structure. This kind of photons are typically limitated to 2.8 MeV. Gamma

radiation is also generated by annihilation of a positron-electron couple after

a β+ decay, producing two gamma rays of 0.511 MeV traveling in opposite

directions. The third generation process occurs when a nuclear reaction leave

and the produced nuclei in an excited state. Although these gamma photons

have high energy, they have very short lifetime and aren’t useful for practice

application unless the exciting nuclear process is kept running.
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(a)

(b)

Figure 2.2: Illustration of two X-ray sources: an x-ray tube (a) and synchrotron

light (b).

X-ray photons, on the other hand, can be generated by three processes:

bremsstrahlung, atomic characteristic transitions and synchrotron radiation.

Bremsstrahlung is the electromagnetic radiation emitted when fast electrons

interact with matter. The fraction of electron energy converted into brems-

strahlung increases with the electron energy and is largest for absorbing

materials with an high atomic number. The energy spectrum is continuous

with a predominance of low photon energies that extent as high as the elec-

tron energy itself. The process is important in the production of X-rays from

conventional X-ray tubes. A characteristic X-ray of an element is produced

when an electron from an outer shell fills a vacancy in an inner shell of the

atom, such relaxation causes the emission of a photon with energy equal to

the difference between the initial and the final state. The discrete energies

emitted in the transition correspond to K, L and M shells of atomic or-

bitals and therefore identify the particular element from which are produced.

Bremsstrahlung and characteristic radiation are the two processes involved

in the generation of x-rays in typical x-ray tubes. In a X-ray tube an elec-

tron beam, produced by thermoionic emission from a hot filament (cathode)

heated through an high-current flow, is accelerated at very high potential

(tenth of kV) to an anode, made of a target material (usually W, Mo or Cu).
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The interaction between the electron beam and the target creates a vacancy

in the inner shell of the target exciting the inner-shell electrons to outer shells;

X-rays are the produce following the relaxation process described above. The

typical emitted spectra of an x-ray tube consists therefore in a convolution

of a continuous bremsstrahlung part and the target characteristics energies

(figure 2.2a). Compared to that produced by typical gamma-ray sources, the

radiation produced by a X-ray tube is more intense, but has a large broad

spectrum. The shape of the energy spectrum can be altered by an appropri-

ate insertion of filters, made of absorber materials, between the target and the

detector. A proper adjustment of the absorber, i.e. changing the materials

and the thickness, allows to shift from a broad to a peaked spectrum, even if

still far from monoenergetic one. The third highly exploitable kind of X-ray

radiation is synchrotron radiation [64, 65]. From classical electrodynamics

an accelerated charged particle emits electromagnetic radiation, synchrotron

radiation occurs when a charge moving at relativistic speeds follows a curved

trajectory, and part of the energy is irradiated in a tangent direction to the

orbit. For relativistic Doppler effects the angular dispersion is ∆Φ ' 1/γ, as

electron beam in a typical synchrotron facility has γ = 103−104, the emitted

electromagnetic radiation is highly collimated. An illustrative synchrotron

facility, a particle accelerator several hundred of meters long, is shown in

figure 2.2b: an electron gun emits particle in a booster ring and than the

beam is injected in the principal accelerator, the storage ring, where small

independent experimental setups, the beamlines, are built for every insertion

device that bent the beam and emits synchrotron radiation. Insertion devices

define the spectral distribution, the photon flux and coherence of the radia-

tion. Three different system are developed, all used depending on the specific

beamline application: bending magnet, wiggler or undulator. Synchrotron

facilities are spread in the world because they offer unique characteristics for

many applications [66]: high collimation, e.g. the possibility to focus the

beam down to few millimeters , high flux, e.g. up to 1015 photons/s·mrad

(0.1% bandpass), wide spectrum, e.g. from visible to hard X-rays; moreover
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photons can be polarized, temporal structured and monochromatic.

2.1.2 Radiation Interaction with Matter

Among the large number of interaction mechanisms (between electromag-

netic radiation and matter) known, the three major types take in account

to be important in radiation measurements are: photoelectric absorption,

Compton scattering and pair production. The importance of the three pro-

cesses is illustrated in figure 2.3, where it is plotted in function of the photon

energy and the atomic number of the absorber material. The photoelectric

absorption process involves a photon absorbed by an atom: after the ab-

sorption the photon completely disappears and an electron is emitted from

the inner shells of the atom. The kinetic energy of the electron is given

by Ee− = hν − Eb, where Eb is the binding energy of the shell and ν the

frequency of the photon. The emitted electron leaves a vacancy site in the

inner shells of the atom that is quickly filled through a capture of an electron

from outer shells. Similarly to what explained in the previous paragraph,

this transition generates the emission of characteristics x-ray photons of K,

L or M shells. In some cases the relaxation takes place through the emis-

sion of an Auger electron that may substitutes the characteristic radiation.

Furthermore, the emitted photoelectrons, the characteristic radiation and

the Auger electrons may be reabsorbed, thus a complex cascade sequence of

electron transitions and x-ray emissions. As the photoelectric effect, also the

Compton (or Incoherent) scattering takes place between a photon and an

electron in the absorbing materials. In this process the photon is deflected

and transfers a portion of its energy. The Compton scattering probability

increase with the number of electrons of the target material, and is typically

dominant at photon energies of MeV. The pair production process arises at

higher energy, when the photon energy exceeds twice the rest-mass on an

electron (1.02 MeV). In this process, the photon interacts with coulomb field

of a nucleus, having enough energy to create an electron-positron pair. In

the medium the pair is slowed down and the positron then annihilates with
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Figure 2.3: The relative importance of the three major types of gamma-rays

interaction[67]. The line represent the limits in which the adjacent effects having

equal probability.

the emission of two photons as secondary products of the interaction. Even

if the process is energetically possible at 1.02 MeV, its probability is still

very low and rises only at very high energies. In figure 2.4 the mass absorp-

tion coefficient (refers to paragraph 2.1.3) of Selenium (Z = 34), the most

used material in photoconductor detectors (see paragraph 2.2.2) is shown;

the relative contribution of the above described processes with the addition

of Rayleigh (or Coherent) scattering, a process in which the photon interacts

with the atom and medium and his trajectory is deflected without net trans-

fer of energy, so usually is ignored in radiation absorption processes. The

photoelectric absorption is the dominant process at low radiation energies,

and plays the main role in the absorption mechanism that occur in x-ray

detectors for medical, diagnostic or imaging applications.

2.1.3 Radiation Quantities Glossary

Mass Absorption Coefficient. The mass absorption coefficient (µ/ρ)

is a quantity that described the ability of a medium in stopping an electro-

magnetic radiation. It is defined as the weighting factor in the exponential
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Figure 2.4: a) Total attenuation mass coefficient of Selenium with all the rela-

tive contribution of interaction mechanisms, computed by XCOM database [68].

b) highlight on the energy range typical of medical applications; photoelectric

absorption is the main process involved at this energies.

decay of the radiation intensity through the medium (eq. 2.1).

I

I0

= e−
µ
ρ
·x (2.1)

where I is the transmitted intensity, I0 the incident intensity and x the

medium thickness (x = ρ · t). The theoretical value is correlated to the

atomic mass unit (u = 1.6605402 × 10−24g), atomic mass A, and to the

total cross-section σtot. It can be written as the sum over contribution from

the principal photon interactions: atomic photoelectric effect, coherent and

incoherent scattering, pair production and photonuclear effects.

µ/ρ =
σtot
u · A

(2.2)

In a compound or a mixture the mass attenuation coefficient is simply the

mass weighted sum of the µ/ρ factors of the single elements. In order to

describe photon interaction and absorption, two other quantities can be de-

fined: the mass energy-transfer coefficient (µtr/ρ, eq. 2.3) and the mass
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energy-absorption coefficient (µab/ρ, eq. 2.4)

µtr/ρ = (fPEσPE + fincohσincoh + fpairσpair + ftripσtrip)/u · A (2.3)

µab/ρ = (1− g) · µtr/ρ (2.4)

where fi are the factors representing the average energy transferred in the

i interaction, and g is the kinetic energy lost in bremsstrahlung. Tabulated

value of known elements and for more informations refer to [68]. It is note-

worthy that another quantity is used in spite of mass absorption coefficient:

the attenuation length δ. It is defined as the depth into the material mea-

sured along the surface normal where the intensity of x-rays falls to 1/e of

its value at the surface.

Activity The Activity of a radiation source is defined as the number of

decays per second.

Fluence Radiation from a radioactive source consists of a beam of pho-

tons, if the beam is monoenergetic the Fluence can be defined as the number

of photons per unit of area (eq 2.5):

Φ =
dN

dA

[
cm−2

]
(2.5)

Energy Fluence The Energy Fluence is another way to describe a radi-

ation beam. In terms of the energy transported, it is defined as the number

of photons crossing a specific area per energy carried by each photon.

Ψ =
dN · hν
dA

[
eV

cm2

]
(2.6)

Exposure The exposure (X) exists in each point of the space surrounding

a radiation source at fixed intensity and it is defined as the charge dQ due

to ionization in air volume-element with mass dm (eq. 2.7). In the SI units

it is thus defined as coulomb per kilogram (C/Kg), but the historical unit is

the röentgen (R): 1 R = 2.58× 10−4 C/Kg.

X =
dQ

dm
(2.7)
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KERMA Kinetic Energy Released per unit MAss in a medium.

Photons interact with matter through two stages: (a) energy is transferred to

charged particles and (b) charged particles transfer energy directly through

excitations and ionizations. The first interaction can be described with

KERMA, and is defined in eq. 2.8, where Etr stands for the kinetic energy

transferred to the medium. Kerma can be related to the photon Fluence

through the linear attenuation coefficient (eq. 2.9). The radiation intensity

in a specific point can be specified by the photon flux or the exposure, but

it is often given in terms of AIR KERMA, which is the energy released in

that point in a mass dm of air. This is a useful quantity because it can be

easily converted in the kerma in any medium simply multiplying to the ratio

between the linear attenuation coefficients of air and of the medium.

κ =
dEtr
dm

(2.8)

κ = Φ

(
µtr
ρ

)
Etr (2.9)

Absorbed Dose The second stage of energy transfer in a medium is de-

scribed with the absorbed dose, which is the energy absorbed from any type

of radiation per unit mass of the absorber. The unit in SI is joule per kilo-

gram (J/kg) and it is named as Gray(Gy). Sometimes it may be reported as

the old CGS definition of ergs/gram named rad. Thus 1 Gy = 1 J/kg = 100

rad. An exposure of 1 R corresponds to an absorbed dose in air of 8.7×10−3

Gy.

The energy transfer to the charge particles (Kerma) does not take place at

the same location of the energy absorption, because a charge particle moves

into the medium before being absorbed. However in a thick medium, if the

condition of electronic equilibrium has been reached, Etr = Eab, thus the

KERMA can be considered equal to Absorbed dose. Electronic equilibrium

is reached when, in each moment, in every volume of the medium an equal

number of particles are stopped and set in motion. Refers to [69] for details

about kerma, absorbed energy and Bragg-Grey cavity theory. The mathe-
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Radiation type Weighting factors, wR

Photons 1

Electrons and muons 1

Protons and pions 2

alpha particles and heavy ions 20

Neutronsa < 10keV 5

10keV to 100keV 10

100keV to 2MeV 20

2MeV to 20MeV 10

> 20MeV 5

Table 2.1: Radiation weighting factors in accordance with ICRP Publication 103

[70]

aNeutrons weighting factor is a continuous function with a peak about 1MeV. Here

only some approximated slot are reported.

matical expression for the absorbed dose i reported in eq.2.10

D =
dEab
dm

[
1
J

kg
= 1Gy = 100rad

]
(2.10)

Equivalent Dose The effects of radiation on tissues and biological sys-

tems strongly depend on the nature of the absorbed radiation. The equivalent

dose (HT ) in a specific tissue T is a quantity defined as the product between

the absorbed dose of the radiation R, in the tissue T , and a weighting factor

depending of the radiation type R. The weighting factors wR are given in

table 2.1 and refers to the recommendations of International Commission on

Radiological Protection [70].

HT = DT,R · wR (2.11)
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Figure 2.5: Schematic representation of indirect detection (left) and direct de-

tection (right).

2.2 X-ray Detectors

The detection of ionization radiation (e.g. X-rays, electrons and alpha

particles) is a constantly growing area of research thanks to its vast and

numerous application fields, which span from astrophysics to nuclear power

plants, to industrial and civil security and to medical imaging and diagnos-

tics. The first radiation detectors were developed in the 50s and were based

on gas devices, like ionization chambers or Geiger counters; they are very

effective still today for some specific and rough applications, but present

very slow charge collection and long dead time between two subsequent de-

tectable signals. The improvement in radiation detector technology of high

energy photons (X- and gamma-rays) arose from the development of two dif-

ferent categories of functional materials: scintillators and semiconductors. In

both cases, the interaction with a high energy photon first induces primary

excitations and ionization processes (ions and electrons) which, at a second

stage, interact within the volume of the detection material and produce a

majority of secondary excitations (electronhole pairs), within a picosecond

timeframe. The by-products of both the primary and secondary excitations

are electronhole pairs (excitons) that can be transduced into an output signal

following different pathways in semiconductor detectors and in scintillators,

described in more detail in the following. The material requirements for the
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two different detection mechanisms share some similarities: high stopping

power to maximize the absorption efficiency of the incident radiation, high

purity to minimize exciton trapping, and good uniformity to reduce scat-

tering and good transparency, possibly coupled to the ability to grow the

material into a large size to increase the interaction volume [71].

2.2.1 Scintillators

Scintillators are materials that exhibit luminescence upon irradiation by

charged particles, neutrons, gamma rays, and X-rays. There have been a wide

variety of materials studied and used for scintillation since the employment of

ZnS for a-particle detection early last century [72]. Scintillators had specific

features with different distinctions: sufficient detection efficiency, capability

for spectroscopy, excellent radiation hardness, ease of fabrication and short

response time. However, there is no ideal material that combines all of these

desirable features. The selection of a practical scintillator is always a com-

promise which depends on application specifications. The performance of a

scintillator depends on several factors, including stopping power (absorption

efficiency of the incident radiation), photoelectric generation, proportionality,

internal quantum efficiency, transparency, decay time, light yield, emission

wavelength, stability and physical form [73]. The process of photon gener-

ation involved three stages. First, an incident ionizing particle collides and

deposits its energy in the material, through excitons generations. Here high

stopping power is required to absorb incident energy as much as possible.

In the second step, the excitons transfer their energy to luminescent centers

which are often intentionally introduced. These centers release the energy

radiatively. Here high quantum efficiency ensures that more photons are

generated. The resulting photons, typically in the visible wavelength range,

escape the scintillator and are collected by a coupled photo-multiplier tube

(PMT) or a photodiode to obtain an electrical signal associated to the inci-

dent radiation beam (figure 2.5). Scintillators must have an efficient cascade

energy transition series to achieve a high light emission yield, in general,
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indicative of high sensitivity and also of high energy resolution. Sodium io-

dide doped with thallium, NaI(Tl) is the most significant scintillator. The

photoelectric peak can be readily observed in the NaI(Tl) spectrum, which

is considered to be a landmark in gamma ray spectroscopy [74]. A number

of new inorganic scintillators have been developed and optimized, including

bismuth germanate (BGO), gadolinium orthosilicate (GSO), caesium iodide

(CsI), yttrium aluminum perovskite (YAP), and lutetium aluminum per-

ovskite (LuAP). They have been proposed for different applications, though

none of these has reshaped the landscape of the field of gamma ray detection

dominated by NaI(Tl).

2.2.2 Semiconductor Detectors

In indirect detectors (scintillator-photodiode coupled) the radiation de-

tection passes through several stages of conversion, with a subsequent loss of

signal and enhancement of noise. In a semiconductor detector (e.g. CdTe,

SiC), an electric field is applied to dissociate the electronhole pairs and to

sweep the electrons and holes to the positive and negative electrodes, respec-

tively. The resulting photocurrent is directly recorded as the output electrical

signal associated to the high energy radiation particles (figure 2.5). The di-

rect conversion of ionizing radiation into an electrical signal within the same

material, and thus within one single device, is a more effective process than

indirect conversion, since it improves the signal-to-noise ratio and it reduces

the device response time. For semiconductors, high carrier mobility and low

intrinsic carrier density are essential to obtain high sensitivity and a low

background current. To fulfill this material properties, a combination of dif-

ferent properties are requested. Among others, high-Z materials to maximize

X-ray absorption, large bandgap to reduce dark current, but small enough to

have small pairs creation energy, and extremely pure crystal with low defects

concentration. Nowadays the detectors with the best performances at room

temperature are made with CZT ( Cd1−xZnxTe, x ≈ 0.1−0.2) crystals, with

direct bandgap of about 1.5 - 2.2 eV, depending on Zn concetration x. It
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is possible to produce extremely high purity crystals several centimeters in

size and up to 1 cm thick, almost free of defects. The resistivity is in the

order of 108 − 1011Ωcm, and the electron and hole mobilities, 1000 cm2/Vs

and 50 cm2/Vs respectively [75]. Unfortunately, such direct detectors are

very expensive devices and cannot cover large areas. To overcome this issue,

flat panel X-ray imagers based on amorphous or polycristalline X-ray photo-

conductors, such as amorphous selenium (see next section 2.2.2) have been

developed in the last fifteen years.

Photoconductor Material Properties

The characteristics required in order to achieve a photoconductor material

are several:

� Quantum Efficiency Q.E. Also called Attenuated fraction, reported

in eq. 2.12, where δ is the attenuation depth and must be substan-

tially less than the photoconductor layer thickness L. δ = δ(Eph, Z, ρ)

is a function of photon energy, atomic number and density, and can

be correlated to the mass attenuation coefficient. High-Z element are

suitable photoconductors, especially for high energies application.

Q.E. = 1− e−L/δ (2.12)

� Electron-hole pair Creation Energy W±. The amount of energy

required to create a free electron-hole pair should be as low as possible,

because the generated charges can be calculated as ∆Q = e∆E/W±,

where e elementary charge and ∆E is the absorbed energy. For most

of the crystalline inorganic semiconductor, the empirical Klein’s rule

states:

W± =' 2.8Eg + Ephonon (2.13)

� Dark Current. The dark current of the photoconductor under a bias

voltage should be small. Two factors affect the dark current flowing
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in a material: the injection of carriers from the contact and the ther-

mal generation of carriers. This implies that small dark current needs

blocking contacts and a wide semiconductor bandgap to reduce ther-

mal carrier generation. A generally accepted dark current should be

below 1 nA/cm2. A quantitative formulation of the dark current limit

estimation is in [76].

� Charge Collection Efficiency CCE. The photogenerated charges

could be lost due to recombination or trapping during the charge trans-

port from the collection at the electrodes. The mean distance that a

carrier can go through without occurring in recombination or trapping

is called schubweg or drift length and it is defined as µτF , where F is

the electric field, µ is the carrier mobility and τ is the mean lifetime

of carriers. In order to reduce loss and maximize CCE, the condition

µτF � L should be satisfied for both electrons and holes (L is the layer

thickness). The charge collection efficiency of a single pixel sandwich

structure, in the simplest geometry configuration, in uniform electric

field condition can be theoretically calculated by means of the following

expression (eq.2.14) as reported in [77, 78]

ηCC = ηHCC + ηECC (2.14)

= xh

(
1− 1− exp(−1/∆− xh)

[1 + (∆/xh)][1− exp(−1/∆)]

)
+ xe

(
1− exp(−1/xe)− exp(−1/∆

[1− (∆/xe)][1− exp(−1/∆)]

)
where ∆ = δ/L, xh,e = µh,eτh,eF/L. Obviously the CCE decreases as

the thickness L increases while keeping the same electric field.

� Radiation Hardness. A detector is exposed to high x-ray doses over

time, so the damage and structural changes due to irradiation have to

be taken into account. The primary effect is the generation of trapping

sites that modify µτ of the carriers and polarize the sample affecting

the charge collection efficiency.
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� Speed. Mammography works with interframe time equal to 33 ms for

30 fps. The collection time in the photodetectors must be much lower

than this value.

� X-ray Sensitivity The detection process involves three stages: x-

ray absorption(Q.E.), charge carriers generation (W±) and collection

(ηCC). The x-ray sensitivity of a photoconductor can be defined as the

charge collected per unit of incident radiation per unit area (eq.2.15,

and a more detailed expression is reported in the equation 2.16 in units

of C·m−2·R−1, or in terms of kerma in C·cm−2·Gy−1.

S =
charge collected

incident radiation× area
(2.15)

S =

(
5.45× 1013e

(αen/ρ)air

)
×Q.E.×

(
(αen/α)Eph

W±

)
× ηCC (2.16)

The 2.16 summarizes well the entire detection process: the first term

is the photon fluence per unit of roentgen, the second is the absorbed

fraction in terms of quantum efficiency, the third is the number of

electron-hole pairs generated and the last is the charge collection effi-

ciency. The sensitivity has a strong dependence on the photodetector

thickness L, since the x-ray absorption enhances as L increases, but

ηCC decreases with L at the same electric field: therefore there is an

optimum thickness value beyond which the sensitivity decreases [78].

Therefore, from experimental point of view, plotting the signal current,

i.e. the charge collected, in function of the incident radiation dose rate

is possible to estimate the X-ray detector sensitivity as the slope of the

linear of the plot (2.15).

Large Area Direct X-ray detectors

The requirement of large area detectors for applications in medical, secu-

rity and industrial imaging, highlighted the limits of Silicon photodiodes or

CCD sensors: typical CCD camera is no larger than 2 × 2 cm, thus to obtain

a detection area with a sufficient size for many clinical studies, several CCDs
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Figure 2.6: A simplified schematic diagram of a single pixel with a TFT and a

full FPXI matrix.

must be used together. Flat panel x-ray imagers (FPXI) consist of a large

array of pixels as part of an active matrix array (AMA), a two dimensional

array of pixels in which each pixels has a thin film transistor (TFT) that can

be electrically addressed [79, 80]. The active matrix is coated with a suitable

layer of x-ray photoconductor and a top electrode to provide bias voltage.

In figure 2.6 the principle of operation of a single pixel is shown: when a

x-ray is absorbed in the semiconductor a charged couple is generated and

collected by the applied electric field. Refers to [76], a good recent review on

FPXIs detectors and amorphous selenium properties, for more details. FPXI

detectors can easily reach an active panel area of 24 × 30 cm using an appro-

priate photoconductor that can be deposited over large areas with very few

defects, reproducible characteristics and employing low cost deposition tech-

niques. There are several semiconductor candidates that can be employed

as suitable photoconductors, such as: amorphous silicon (a-Si), amorphous

selenium (a-Se), polycristalline TlBr, PbI2, HgI2,CdZnTe and PbO, but the

most used and promising material until now is a-Se.

Regarding the photoconductor properties discussed above in 2.2.2, Selenium
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is possess several interesting features, among them it can be grown over large

area in its amorphous phase. Moreover, in terms of electron-hole pair cre-

ation energy W±, a-Se represents an exception to the rule as W± decreases

with the applied electric field as following the eq. 2.17:

W± = W 0
± +

B

F
(2.17)

The ”infinite field” intrinsic electron-hole pair creation (EHP) is given by

W 0
± ≈ 6 eV and constant is B ≈ 4.4 × 102eV · V µm−1. Working at high

electric field in order to reduce W± implies that dark current become too

large, and two blocking layers are necessary to reduce it to acceptable values.

As already mentioned before, in a-Se the strong electric field applied could

give rise to high dark current; such problem has been overcome with the

addition of an hole blocking layer on one electrode and an electron blocking

layer on the other one, that inhibit the charge injection from electrodes but

still enable the extraction of the photogenerated carriers with opposite sign.

The electron transit time of 1000 µm a-Se is typically 0.5 ms under an applied

field of 10 V/µm. In table 2.2 a summary of the main features of a-Se detector

material is reported.

Therefore, commercial FPXIs commonly use a-Se as photoconductor layer

with the aim to achieve a good compromise between all the characteristics

requested above, although it presents some drawbacks: the need of blocking

layers to reduce dark current, the necessity of being stabilized with arsenic

(otherwise it exhibits variation in performances upon prolongated irradia-

tion), the working point at several kV to obtain high electric fields (to reduce

the electron-hole pair creation energy W±). A typical a-Se layer of 200 µm

thick at 10 V/µm corresponds to an applied bias of 2000 V. New solutions

are under research to overcome these limitations, like the use of a lateral

structure electrode geometry, which allows to reduce the bias voltage and to

lower the dark current without the assistance of blocking layers [81]. The

most important requirement for a large area photoconductor in a FPXI is

that it must be capable of easily cover a large area Active Matrix Array

(AMA), at least 24×30 cm necessary for a mammography. This requirement
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is the most restrictive limit for the most sensitive silicon photdiode or CCD

camera. a-Se can be easily deposited in form of thick films (100 - 500 µ

m) onto suitable substrates by conventional vacuum deposition techniques,

keeping the substrate temperature below 60-70 °C and maintaining uniform

characteristics in very fine scale over large areas.

A great and potentially breakthrough innovation is brought in the field

by organic materials. Organic photoconductors can be easily deposited on

very large areas with low cost techniques, replacing a-Se, as deeply discussed

in the next section 4.1.1. For this reason they are currently dominating the

xerographic industry. Despite the low Z elements composition of organic

materials strongly limits their use for high-energy radiation detection, they

are currently used as blocking layers in a-Se FPXI [82]. However in the last

years, interesting effects concerning the electrical response of such materials

under irradiation has been seen, opening the way to their application as

active layer materials in x-ray detectors (paragraph 2.4).

2.3 Organic Indirect Radiation Detectors

As already seen in 2.2, radiation detector are divided in two main cat-

egories, indirect and direct detectors (figure 2.5). In this section we focus

on the organic materials used for indirect detection: the primary interaction

occurs in a scintillator (2.3.1) which absorb the incoming radiation and emits

photons in the visible range, and the secondary interaction is the detection

of visible photons by means of a photodiode (2.3.2).

2.3.1 Organic Scintillators

Organic scintillators commonly contain a large amount of aromatic com-

pounds whose electronic states are excited by radiation, and scintillation

occurs via relaxation from these excited state to the ground state, through
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a-Se

Eg 2.2 eV

δ 49 µm at 20 keV

998 µm at 60 keV

W± 45 eV at 10V/µm

20 eV at 30V/µm

Electron µeτe 3× 10−7 ÷ 10−5cm2/V

Hole µhτh 10−6 ÷ 6× 10−5cm2/V

Dark Current 0.1pA/mm2 at 10Vµm

Electric Field 10÷30V/µm

Thickness 200÷1000µm

Electron transit time 0.1÷0.5ms at 10Vµm

Table 2.2: Typical important parameters for a-Se. Other materials can be found

in [76]

a mechanism explained by Birk in the 1964 [83]. Organic scintillators can

be divided into 3 groups: crystals, liquids and plastics. The most widely

used are the plastic scintillators initially developed in 1960s. So far, they are

mostly based on polyvinyl-toluene (PVT), due to its ruggedness, extremely

low cost, and ease of fabrication. Based on the PVT system, various solute

combinations have been carefully examined and employed to obtain scintil-

lation emission at a desired wavelength, to reduce self-absorption, and to

relieve attenuation of light output as well. They serve as efficient lumines-

cence centers for energy decay and photon generation. Plastic scintillators

are by far the only viable choice for large area detection (several m2) with

spatial resolution. However, they have relatively poorly light yield (typically

10000 photons /MeV) and non-linear ionization energies in conjunction with

strongly ionizing radiation. Furthermore, due to the polymers’ low density

(∼ 1 g/cm3) and low effective atomic number (Z ∼ 6), plastic scintillators

have low stopping powers and low photoelectric peak ratio for gamma ray
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Figure 2.7: Solution-grown single crystals of organic scintillators. Picture were

under white- and UV-light (blue colour) illumination. The size of background

square is 6.5 cm [2].

radiation, which limits their use in high-energy spectroscopy [71]. It is worth

noting that the compatibility of polymers with other scintillator materials

could be exploited to fabricate composite materials with improved high en-

ergy resolution. Moreover, organic scintillators are employed to detect fast

neutrons partly thanks to their high content of hydrogen that allows neu-

tron detection via proton recoil [63]. At present, liquid organic scintillators

are the most used for neutron detection due to their high Pulse Shape Dis-

crimination (PSD) property. It is noteworthy that, among solid compounds,

single-crystals have been found to be the most effective material for PSD,

even though they present the limit of high production costs. However, scin-

tillation features of low cost solution-grown organic single crystals have been

assessed (figure 2.7) [2].

In conclusions, organic scintillators have been studied, so far, coupled

with inorganic photodetectors, taking advantage of flexibility and ease of

deposition on any shapes. The following step to be carried out in order to
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develop full-organic X-ray detectors, is to replace inorganic photodetectors

with organic ones, possibly directly covering the whole scintillator surface,

reaching a large increase of light collection and device performances [84].

2.3.2 Organic Photodiode

A photodetector is a device that converts an optical signal(UV - VIS -

IR) into an electrical one. Organic semiconductors are very appealing for

light detection thanks to their large absorption coefficient and an optimum

spectral sensitivity in the region spanning from UV to the near infrared and

they have rapidly moved from being emerging materials to reach commer-

cial exploitation. Several innovative applications of organic materials can be

gathered thanks to capability to cover large area, flexible and transparent

substrates by means of low-temperature processes. Therefore in several lab-

oratories researcher are working for the realization of fully organic or fully

printed devices. According to the different working mechanisms organic pho-

todetectors can be divided in organic photodiodes, organic photoconductors

and organic phototransistor. The operating principles and the structure of

these devices is well reviewed in [85] and here we will briefly review only

photodiodes since they are the most diffused structure. To assess the per-

formances of an organic photodiode some parameters are defined: i) spectral

photoresponse, i.e. the response to a specific wavelength; ii) external quan-

tum efficiency (EQE), i.e. the ratio of the number of photogenerated charge

carriers to the number of incident photons, interestingly in an organic pho-

toconductor can exceed 1; iii) responsivity, i.e. the ratio of output current

to the power of the input optical signal.

In an organic semiconductor upon light irradiation and photon absorp-

tion, a neutral excited state, called exciton, is formed as an electron-hole pair

with few hundreds of meV of binding energy, which does not spontaneously

dissociate as a result of low dielectric constant in organic materials. Charge

pair generation is assisted by an external applied electric field. To further

enhance photogeneration it is typically adopted a Donor(D)-Acceptor(A) ar-
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(a)

(b)

Figure 2.8: a) Typical device configuration of photodiode. b) A simplified

schematic diagram of D/A interface. 1) exciton creation.2)charge separation at

the interface.3) Possible, but ineffective, electron-hole recombination. Reported

from [85].

rangement, an interface between a low ionization potential(D) and and high

electron affinity (A) materials. An exciton that reach a D-A interface decays

into a charge transfer state (CT), a less bound state that promote dissocia-

tion(figure 2.8).

Several materials are investigated to perform the best donor-acceptor het-

erojunction, among them the most representative structure is the well studied

solution processed poly(3-hexylthiophene) (P3HT) - phenyl-C61-butryc acid

methyl ester (PC61BM) that provides an EQE above 70% in a good coverage

in the range 400-600 nm [86].

Only since 2006 the organic community began to concern about radiation

effects on organic semiconductors, to explore the potentiality of organic mate-

rials in space related applications. The effects of prolongated exposure under

x-rays of a pentacene organic thin film transistor (OTFT) have been studied

[87]. A threshold voltage shift has been observed but only a 14% decrease of

mobility has been recorded, suggesting that organic devices are intrinsically

radiation hard. Similar results have been observed in OTFTs based on other

polymers like polytriarylamine (PTAA) and polyfluorene (F8T2) [88] and
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more recently even with heavy radiation [89].

In 2008 the radiation hardness of three polymeric photodiodes for imag-

ing applications has been assessed [90], proving the stability of EQE of the

devices exposed to a dose of 500 Gy only for two polymers - Poly(9,9-di-n-

octylfluorene-cobenzothiadiazole):perylene diimide (F8BT:PDI) and poly[2,7

- (9,9-di-n-octylfluorene) - co - (1,4 - phenylene - [(4-secbutylphenyl)imino] -

1,2 - phenylene)]:perylene diimide (TFB:PDI) -, while for the P3HT:PCBM

based devices, slightly decrease of EQE is recorded. Coupling the photodi-

odes with a Gd2O2S:Pr phosphor scintillator layer, an x-ray photocurrent in

the device has been measured, opening the way to the development of organic

indirect detectors [91, 92, 93].

2.4 Organic Direct Detectors

Direct detectors are devices that absorb X-rays and directly convert it

to a current signal. The X-ray photon creates charge carriers inside the

device that are directly collected and converted into an electrical signal, with

the advantage of reduce charge loss between different stages of the detector,

reduce dead time and reduce the collection time, producing in practice a real-

time radiation detection. The ideal direct detector should have the following

characteristics:

� large active volume to maximize x-ray attenuation;

� high charge carrier mobility to reduce loss of energy in recombination

and to enhance the charge collection efficiency;

� low dark current, at least less than 1 nA, in order to have higher signal-

to-noise ratio;

� chemical (small reactivity to atmosphere gas or environment) and elec-

trical (small bias stress) stability;

� radiation hardness up to the typical dose required from the applications.
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Conventional silicon-based detectors have been the first choice for x-ray radi-

ation detection applications so far. However, regardless the excellent perfor-

mances, silicon suffers from several weakness. The size of device is limited by

silicon wafers, usually of 6 - 8 inches (15 - 20 cm) and cannot be bent. More-

over large area and high-quality silicon is really expensive and difficult to

fabricate. Large area inorganic detectors based on amorphous selenium have

been studied, nonetheless they still suffer of some disadvantages (par. 2.2.2).

On the other hand, organic materials offers several advantages to overcome

these problems: the possibility of producing large area devices with low-

cost techniques, their easy growth on flexible and bendable substrates (see

par. 1.2.1); moreover, since they are low-Z, human tissue equivalent, organic

materials can be considered the ideal candidates for medical diagnostic appli-

cation, as personal dosimeter or imagers. Despite the advantages and the fast

growing interest in organic electronics, in the past decade researchers work-

ing with organic materials for radiation detection focused the attention on

their employment in indirect detection approach, developing organic devices

as photodiodes (par. 2.3.2), which take advantages of the high conversion

efficiency of visible light or as scintillators (2.3.1), exploiting the possibility

of large area deposition and their flexibility. Very preliminary studies were

carried on in the 1950’s, by Fowler [94], on x-ray induced conductivity in

insulating materials. Among them poly(methyl methacrylate) (PMMA) and

polyethylene(PE) were employed and it was observed a x-ray induced cur-

rent characterized by very slow (several tenths of minutes) and temperature

dependent hyperbolic decharging transient, due to distribution of trapping

sites in the materials. Fowler concluded that the combination of very low

mobilities and short charge carrier lifetimes severely limited the insulating

polymer x-ray sensitivity.

Few research groups in the last years began to study conjugated polymer

films as direct x-ray organic detectors [3, 4]. Polymer films have the typi-

cal mechanical flexibility of organic materials, and are easy to process with

liquid-phase techniques i.e. dip coating, spin coating and inkjet printing. The
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Figure 2.9: a) Current-Voltage characteristics for variable x-ray dose rate in a

PFO device, b) and its corresponding deduced photocurrent. c) Dynamical x-ray

response of the detector [3].

first devices were composed by thick films of 5 ÷ 30 µm of poly[1-methoxy-4-

(2-ethylhexyloxy)-phenylenevinylene] (MEH-PPV), poly(9,9-dictylfluorene)

(PFO) and poly(triarylamine) (PTAA), spin coated on a glass substrate cov-

ered with ITO and PEDOT:PSS layer as bottom contact, an Aluminum layer,

thermally evaporated, as rectifying top electrode. The thick film is required

in order to maximize the x-ray photon attenuation and the interaction vol-

ume of the detectors, even if a 100 µm thick polymer layer has a quantum

efficiency (Q.E.) of only 1% (par. 2.1). The device consists in a Schottky

diode to limit the dark current to 10 nA/cm2 at -50V of applied bias. In

figure 2.9 the first X-ray direct detection signal in a polymer film is reported.

The film was exposes to the radiation coming from a X-ray tube with Molyb-
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Figure 2.10: a) Current voltage characteristics for ITO/PTAA/metal diodes,

with 20µm thick PTAA layer, showing the different rectification effects of Alu-

minum, Gold, Nichel and Palladium (from rectifying electrodes to the ohmic one).

b) Time-dependent x-ray response for the three rectifying metals(Al,Au,Ni)[96].

denum target (50kV of accelerating voltage and 1 mA of filament current at

its maximum intensity equal to dose rate of 18 mGy/s). The photocurrent

signal is in the order of nanoampere, an estimate of the response time of the

detector is higher than 150 ms. The signal increases proportionally to the

dose rate, from the linear region it is possible to evaluate the device Sensi-

tivity as the slope of the linear fit of the corrected photocurrent vs dose rate

plot (par. 2.1). In table 2.3 a review of the sensitivity of the three polymers

is reported: noteworthy the sensitivity is comparable with that of amor-

phous silicon, equal to 500 nC/mGy/cm3[95]. Regarding the stability, the

photocurrent shows a standard deviation of less than 0.1 nA after 6 months

and an accumulate dose of about 600 Gy, if the sample is stored in dark and

under controlled nitrogen atmosphere to prevent oxidation. To overcome this

problem the device can be encapsulated by wax dip coating. The relative

good transport properties of PTAA makes it a good candidate for a deeper

study of stability, repeatability and quality of the signal. In particular the

top electrode material has a great influence on the performance and on the

dynamic of the devices. In figure 2.10a the current-voltage characteristics of

four different metal electrodes - aluminum (Al), gold (Au), nickel (Ni) and
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palladium (Pd) - are shown. Because of the different work functions and their

relative value with PTAA HOMO level, generate different Schottky barriers

with the organic material. Palladium, which has the highest work function

(5.4 eV), makes an ohmic contact, thus it is not suitable for detection because

dark current in such system is too high; in the other three metals, the lower

is the work function, the higher is the barrier height and the bigger is the

rectification value (Irev/Ifw). Low rectification leads to two drawbacks: first,

higher dark current values, and second a very low x-ray transient response

(figure 2.10b). For the ITO/PTAA/Au device at an operating voltage of

200V and x-ray dose rate of 67 mGy/s, a characteristic time constant of 71 s

is obtained, and a even higher time constant is measured for ITO/PTAA/Ni

device. A similar effect has been reported in organic photodiodes [97]: the

authors describe the observed slow time constant in terms of a modified

space-charge distribution at the Schottky barrier: the injection of photocar-

riers generated by x-ray causes the build-up of space-charge limited current.

A large effective barrier minimizes the x-ray space-charge, compared to low

barrier diode that are more sensible to changes at the interface. In fact, from

the experimental point of view, the signal is fast for low voltages and low bi-

ases, but the slow transient time appears for high voltage(more space-charge

effects) and for high dose rate (more injected photocurrent). The stability

and the quality of the signal in terms of signal-to-noise ratio, are reported in

figure 2.11a,b respectively. Most of the times, organic polymer film devices

are covered by a protective layer of dip coated wax, to prevent oxidation

from environmental agent that quickly degrade the device. The flexibility of

polymeric active film has been demonstrated in 2009 with a F8T2 polymer

spin coated on a plastic (polymide) flexible substrate [98], and encapsulated

in a protective layer of dip coated wax, since F8T2 polymer shows marked

bias stress in air.

Despite the appealing properties of organic direct detectors based on poly-

mers, two drawbacks that limit the radiation detector performances can be

identified:
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Figure 2.11: Corrected x-ray photocurrent response for (a) ITO/PTAA/Al and

(b) ITO/PTAA/Au devices, irradiated at 67 mGy/s dose rate and biasing 300 V.

c,d) Corresponding signal-to-noise ratio expressed as SNR = ∆I
Idark

[96].

1. the first concerns the low atomic number of the molecular elements,

which strongly limits the stopping power of high energy electromagnetic

radiation (in a PTAA polymer no more than 1% of the incident x-ray

at 17 keV is absorbed in the active film and generates charge couple

carriers);

2. the second is related to the low mobility of charge carriers in polymers,

in the order of 10−5cm2/Vs for PTAA films, that limits the charge

collection at the electrodes and results in loss for recombination of the

photogenerated carriers.
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Figure 2.12: a)Correlation between x-ray sensitivity of the device and charge

carrier mobility of the PTAA:TIPS-pentacene blend[99].b) Theoretical quantum

efficiency of 20µm thick film of PTAA blended with Bi2O3 nanoparticles[5].

To overcome the latter issues a blend of PTAA and TIPS-pentacene has

been processed and employed[99]. TIPS-pentacene is a derivative molecule

of pentacene, well known for its solubility and a very hihg hole mobility (>1

cm2/Vs). The polymer blend mobility rises as the TIPS-pentacene concen-

tration increases, from TOF (Time of flight) experiments a field-averaged

mobility of 2.2 x 10−5cm2/Vs in the 1:25 molar ratios sample, which is about

17 times higher compared to the value of 1.3 x 10−6cm2/Vs in the pure

PTAA sample. In figure 2.12a trend of x-ray sensitivity increase as function

of the device mobility is plotted, for a device detector with an Al Schottky

barrier as described above. The highest performance reached in terms of

sensitivity for the 1:17 device is 457 nC/mGy/cm3, which is four times 116

nC/mGy/cm3, obtained for pure PTAA devices, that is the highest value

recorded for an organic direct detectors till now. As TIPS-pentacene has a

high charge carrier mobility, the rise in the blend sensitivity can be ascribed

to the better collection of generated charge carriers. However, higher concen-

tration of TIPS-pentacene in the blend enhance the conductivity, reduces the

rectifying diode effects but at the same time increases the dark current too

much to enable its use in detectors, marking an upper limit to the increase

in sensitivity through the addition of TIPS-pentacene. The other possibil-
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ity to enhance sensitivity of organic semiconductor detectors is to improve

the stopping power of the active film, adding heavy (high atomic number)

elements in the polymer blend[5, 100]. In figure 2.12b the strong quantum

efficiency increment in a PTAA film when adding nanoparticles of bismuth

oxide (Bi2O3, Z = 83) of less than 100nm diameter is shown. The quantum

efficiency increases from less than 1% in pure PTAA to 30% in the film with

60wt% of np-Bi2O3, and results in an increase in device sensitivity from 78

nC/mGy/cm3 (pure PTAA) to 200 nC/mGy/cm3 in 60wt% Bi2O3 sample

(see par. 2.3). Despite the increase in device sensitivity, a twofold values

is not enough to justify a stronger rise of Q.E.. This behavior could be

explained by the reduction of electrical transport performance with the ad-

dition of nanoparticles, since there is more x-ray absorption, but less charge

collection efficiency. A strong evidence of the latter mechanism has been ob-

tained adding metallic nanoparticles of Tantalium (Ta)[100]; the comparison

between pure F8T2 polymer film, a F8T2 blend with 30%wt of np-Bi2O3 and

one with 30%wt of np-Ta is reported in table 2.3. The np-Bi2O3 device has

better sensitivity than the pure one, as expected, but the np-Ta sample has

the highest sensitivity, even if its Q.E. is lower than that of Bi2O3 because

of the better charge transport of the metallic nanoparticles if compared to

the insulating ones.
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Polymer Bias Sensitivity Volume Sensitivity

V nC/Gy nC/mGy/cm3

MEH-PPV 10 100 200

PFO 50 240 480

PTAA 300 300 —

PTAA 100 — 116

PTAA 200 — 78

PTAA:TIPS 100 — 457

PTAA:np-Bi2O3 200 — 200

F8T2 (flex) 50 35 158

F8T2 50 — 141

F8T2:np-Bi2O3 50 — 288

F8T2:np-Ta 50 — 434

Table 2.3: Overview on the performance of the reported organic polymer direct

detectors.



Chapter 3

Materials and Methods

In this chapter several details about materials and experimental methods

will be presented. In the first part, two methods are described: the electrical

characterization techniques used to measures the electrical performances of

organic crystals, and the experimental setups characterization of the detec-

tor’s X-ray response. In the second part the investigated materials will be

shown, in particular the organic molecules, their crystal structures and their

main characteristic.

3.1 Electrical Characterization

Electrical characterizations are performed in air and at room tempera-

ture in a customized probe station equipped with micro-probe tips and with

a thick metal box to shield the low current (< 1 nA) output signal from envi-

ronmental electrical noise. BNC cables connect probes to a Keithley 6517A

electrometer or Keithley 2400 source-meter. GPIB-USB connection with the

computer, and a custom Labview software drives the instruments, composed

the acquisition system.

Temperature and atmosphere controlled measurements were performed

in a vacuum chamber. Vacuum is kept by means of a rotative pump at the

value of about 100 mTorr. A series of valves enable to purge the chamber

57
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Figure 3.1: Probe station.

with air, or insert a flow of gas like nitrogen or argon. The sample holder of

the chamber is a copper block of 5 x 5 x 2 cm2 provided with two independent

closed circuits: one for pumping liquid nitrogen and cooling the sample down

to 77 K, and the other one is a resistive circuit for heating through joule effect.

The describe measurement setup system has been employed to perform:

� Current-Voltage measurements (I-V), analysed by means of Space-Charge

Limited Current theory (SCLC, see par. 3.1.1);

� Organic Thin Film Transistors characterization (OTFT, see par. 3.1.2).

3.1.1 Space Charge Limited Current

Space-Charge Limited Current (SCLC) is a transport regime typical of

high resistivity materials, like insulators or organic crystals, which is ac-

tivated at high electric fields and high charge carriers injection. Thanks

to its simplicity it is used to analyse organic crystal properties. Several

charge-transport parameters like mobility, density of free charge carriers,

density of states and energy distribution of traps, can be extracted start-

ing from I-V characteristics. The earliest theory for SCLC was developed

by Mott and Gurney in 1940 [101] for insulating materials, and adapted

for organic crystals by Mark and Helfrich [31]. The theory was first devel-

oped for two ohmic sandwich-type electrodes (figure 3.2a) on a bulk mate-

rial. Within years the model was refined first taking into account different

distributions of traps (e.g. single levels, exponential distribution, gaussian
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Experimental Input parameters Output parameters

SCLC j(V) h(E) NT and µ0

DM-SCLC j(V) Nt and µ0 h(E)

TM-SCLC j(V) and j(T) - h(E)

Table 3.1: Summary of SCLC methods. Classical Mott-Gurney theory, Differen-

tial Method (DM-SCLC) and Temperature Modulated method (TM-SCLC).

distribution)[31, 102, 103], then introducing a formulation also for gap-type

electrodes (figure 3.2b) in thin films (Geurst,1966) [104]. In the last decades

a differential methods exploited by Nespurek and Sworakosvki [105] allowed

to extract from I-V curve the density and the energy distribution of trap

states without any a priori assumption on their distribution, namely the Dif-

ferential Method Space-Charge Limited Current (DM-SCLC). The theory

was refined with the Temperature Modulated Space Charge Limited Current

(TM-SCLC) model, that overcomes the main source of errors in the previous

methods, however it requires more complicated measurements in controlled

temperature and atmosphere, as well as more computational analysis. In the

present thesis we use classical, DM-SCLC with the gap-type formulation,

and all the methods will be briefly discussed in this section, in the follow-

ing. Table 3.1 gives the input and output parameters for the three different

methods. J(V) stands for the measured current-voltage characteristics, Nt

is the total trap density, µ0 the mobility of the delocalized states and h(E)

stands for the density of states distribution (DOS) in the energy gap.

SCLC basic theory

The fundamental concept to understand SCL transport is the dielectric

relaxation. It is well known from basic electromagnetic theory that a con-

ductive material cannot support any free charge that is not compensated by

an equal and opposite charge. Therefore, any injected free charge must be
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(a)

(b)

Figure 3.2: Schematic views of a) sandwich-type geometry and b) gap-type

geometry structure.

neutralized and this relaxation occurs in a finite amount of time, which re-

sults from Maxwell equations, the relaxation time τr = ε/σ. It is negligible

for a conductor, but it can be very large for an high resistivity material. In

particular, if we define the transit time of a mobile charge in the materials as

τt = L/vD (L is channel length and vD is the drift velocity), when the transit

time becomes shorter than the relaxation time, the injected carriers cannot

be relaxed by thermal carriers before they exit the material, and the SCLC

regime occurs. In figure 3.2a a schematic of the problem is shown and it may

be mathematically treated by solving simultaneously the current equation

and the Poisson equation, respectively:

j = eµ0

[
nf (x)E(x)− kT

e

dnf (x)

dx

]
(3.1)

dE

dx
= −e

ε
[ns(x)− ns0] (3.2)

where ns(x) = nt(x)+nf (x) is the total density of charge carriers in the sam-

ple after the voltage is applied (nf and nt are the free and trapped carriers,

respectively), and ns0, nf0 and nt0 are the corresponding values at thermo-

dynamic equilibrium. The basic SCLC theory makes some assumptions: i)

electric contacts are ohmic, i.e. they are an infinity reservoirs of charges:

nf (x = 0) → ∞; ii) only one type of charge carriers is taken into account,
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i.e. unipolar transport is considered; iii) electric filed E(x = 0) = 0 at the

contacts, iv) mobility µ and permittivity ε are constant in the sample; v)

the diffusion current is negligible, i.e. only the drift current is taken into ac-

count. Furthermore, considering a sufficient high injection ns � ns0 and an

ideal case of a trap free material (ns = nf ) the first formula of Mott-Gurney

theory is obtained (mathematical details in [101, 102]):

j =
9

8
µ0ε

V 2

L3
(3.3)

This is named the trap free case and it is also often called Child’s law.

In a real case, the materials, e.g. organic crystals, are not perfect and trap

local states play a role in the concentration of free carriers: trapped charges

are no longer available for conduction, while they still contribute to space

charge in the sample. Let us introduce the free-to-total charge concentration

ratio:

θ =
nf (x)

ns(x)
=

nf (x)

nf (x) + nt(x)
(3.4)

Upon solving eqs. 3.1 and 3.2 with θ, one obtains:

j =
9

8
θµ0ε

V 2

L3
(3.5)

The shape of the SCL current-voltage characteristic strongly depends on the

quasi-Fermi level and its position respect to the energy distribution of states.

The factor θ depends on traps distribution, and only for few simple cases it

has been analytically calculated: a discrete local level [102], an exponential

distribution [31], and a Gaussian distribution [103]. Traps levels may be

roughly classified in shallow levels (EF > Et) or deep levels (EF < Et). In

the first case traps are all ionized and almost empty, thus the states can act

as traps of injected carriers and the current-voltage characteristic follows the

eq. 3.5; in the second case trap levels are full and cannot act as traps. It

should be stressed that injected charges shift the quasi-Fermi level toward

the band edge, thus for sufficient high voltages all the traps are filled and

the sample behaves like the trap-free case (eq. 3.3). This happens over the
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Figure 3.3: Ideal plot of SCLC characteristics for a discrete level of traps.

Adapted from [106].

so called trap-filled-limit voltage which can be shown to amount to:

VTFL =
eNtL

2

2ε
(3.6)

In figure 3.3, the behaviour of SCLC plot in the ideal case of a discrete level

energy state is reported. Four main regime can be identified: a) ohmic regime

at low voltages: thermally generated ns0 are still dominant; b) SCLC trap-

dominated regime: trapped charge carriers in shallow traps limit the current;

c) trap fill limit : quasi-Fermi level reaches the trap energy Et, traps are filled

and a steep increase of current takes place; d) trap-free regime: all traps are

fulfilled and the child’s law occurs. From the experimental point of view, from

a typical SCLC current-voltage characteristic three important parameters of

a material can be extracted: the mobility µ from trap-fill regime, Nt from

trap-fill voltage, and ns0 from the ratio between Vx and VTFL.
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SCLC in a gap-type structure

The Child’s law (eq. 3.3) illustrated in the previous paragraph stands

for a 3D sandwich-type geometry. Two basic architectures can be used for a

SCLC analysis: sandwich-type geometry (3D), in which both electrodes are

on the opposite face of the sample (figure 3.2a) and the gap-type structure

(2D) where both contacts are deposited in the same side of the sample (figure

3.2b). The gap structure presents two limit cases as pointed out in [107]:

small thickness h of the film (h→ 0), or thickness h higher than the distance

between electrodes L. The first case corresponds to the current flowing in

a thin semiconductor layer as developed by Geurst [104] using a model in

which the thickness of the layer and the electrodes are considered negligible

if compared with the separation of the electrodes. He founds, theoretically

and experimentally [108], a quadratic inverse proportionality of the current

density to the value of channel length (j ∝ V 2/L2). In the second case the

current is function of h and the equation that describes the I-V characteristic

is similar to Mott-Gurney equation developed for 3D structure, in which the

current is inversely proportional to the cubic value of the channel length.

The current for each case is expressed by:

I · L
2

W
=

2

π
εµV 2(film) (3.7)

I · L
2

W
=

9

8
εµ
h

L
V 2(bulk) (3.8)

where L is the distances between two electrodes,W the width of channel and

h the sample thickness. Organic crystals (h � 0), with both the electrodes

on the same face, are in an intermediate situation in which the transition

between 2D and 3D cases depends on the ratio h/L [109]. It will be expected

that 2D Geurst law dominates for h/L� 1, while 3D Child’s law for h/L�
1; more precisely the bulk description is used as long as:

9

8

h

L
� 2

π
(3.9)

The above equation can be assumed as an expression to approximately dis-

criminate between the two limiting cases, however the common practice is
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to plot the current at a given voltage as function of electrode distance L in

order to recognize the Mott-Gurney bulk conduction (j ∝ L−3) or the Geurst

thin film conduction (j ∝ L−2).

Differential Method of SCLC

The method developed by Nespurek and Sworakowki [110] gives a simple

mathematical tool to calculate the bulk localized states h(E), from a single

experimental current-voltage characteristics. It is based on the concept that

on changing the position of the quasi-Fermi level EF , one can determine the

distribution of traps for which the occupancy is changed. The quasi-Fermi

level is shifted by increasing the voltage applied to the sample. Thus, the

shape of I-V characteristics contains informations about the density-of-states

(DOS) function.

h(E) =
dNt

dE
(3.10)

Referring to [110], this differential method is valid under the following as-

sumptions:

� a sample of a uniform dielectric in sandwich-type parallel plates elec-

trodes is considered. The density of traps and the mobility are assumed

constants over sample. Two contacts are placed at x =0 and x =D.

� The energy scale is referred to the band edge with positive direction

pointing towards the gap (valid for both electrons and holes).

� The diffusion current is neglected.

� To describe the free carriers density we use the Boltzmann statistics,

while we adopt the Fermi-Dirac statistics for trapped carriers.

If the contribution of the diffusion current is negligible, then the position of

the quasi-Fermi level at the collector electrode can be calculated by com-

bining the current equation 3.1 and the free carrier density being given by
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Boltzmann statistics:

EF (D) = kT ln
D

κ1N0eµ
+ kT ln

j

V
(3.11)

Upon the differentiation of the free-to-total carrier concentration θ with re-

spect to EF and after several manipulations, one obtains:

h(EF ) =
εκ1κ2

2eD2kT

V

m− 1
(3.12)

where m is the slope I-V characteristics in double logarithmic scale:

m =
dlnj

dlnV
(3.13)

and the correction parameters κ1 and κ2 describe the spatial distribution of

the electric field through the sample, they can be rewritten as:

κ1 =
2m− 1

m
(3.14)

κ2 =
m− 1

m
(1 +B) (3.15)

which have values of 1 ≤ κ1 ≤ 2 and 1
2
≤ κ2 ≤ 1, and B is a correction of

the second order that introduce an error of 10% if not considered. Although

DM-SCLC is a simple and powerful tool to extract energetic information

from a single experiment, it is strongly affected by noise and spikes in the

I-V curve, due to its derivative nature. Moreover, the correct calibration of

the energy scale is still an open issue and the results expressed by eq. 3.11

is not in agreement with that calculated by Arkhipov [111], who obtained a

different relation for Fermi level. Only experimentally obtained values of the

energy scale are reliable, and could overcome such discrepancy in the theory.

3.1.2 Organic Thin Film Transistors

The electrical characterization on OTFTs were carried out in air, at room

temperature. The measurements were analysed and the parameters were

extracted following the well know OFET theory [39]. In order to power an

OTFT, two voltages have to be applied to the device: the drain voltage
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Vds and the gate voltage Vgs (both referred to the usually grounded source

electrode). The complete electrical characterization of the transistor includes

the acquisition of two different curves:

1. the Ids vs Vds curve, named output characteristic, where the gate volt-

age is kept constant while the drain voltage is swept in a proper range.

Usually Ids vs Vds characteristics for different values of Vgs are recorded.

2. the Ids vs Vgs curve, named transfer characteristic, where the drain

voltage is kept constant while the gate voltage is swept in a proper

range. During such a measure also the current flowing between the

gate and the source electrodes (Igs) is collected in order to monitor

possible leakage phenomena.

3.2 Photocurrent Spectroscopy

The experimental technique named Photocurrent Spectroscopy (PC) is

based on photoconductivity, an optoelectronic phenomenon which is the in-

crease of electrical conductivity when a material is exposed to electromag-

netic radiation (i.e. visible light, ultraviolet light, infrared light, or X-ray

radiation). Essentially the physical phenomenon of photoconduction in a

semiconductor is based on the absorption of a photon by an electron (inter-

nal photoelectric effect). If the photon energy is higher than the energy gap,

the absorption causes the creation of an electron-hole pairs, i.e. an electron

is excited from the valence band to the conduction band in inorganic semi-

conductors, and from HOMO to LUMO in organic ones. Thus, the number

of free electrons and holes changes, and the conductivity is raised. The pho-

tocurrent is the increase of dark current observed when this optically injected

free charges are collected by an electric fied. It is also possible to observe pho-

toconductivity when the energy of the incident photon is smaller than that

of the band gap, actually also transitions from impurity levels eventually

present in the bandgap can occur.
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As regards photoconductivity in organic semiconductors, we have to con-

sider that charge carrier creation is not so easy as for inorganic materials,

owing to the different nature of excitons. An exciton is a bound state of

an electron and a hole, which in inorganic semiconductors has a weak bind-

ing force (1 meV to 20 meV), and so it can easily dissociate forming an

electron-hole pair, while in organic semiconductors the excitonic bond is

stronger (between 100 eV and 300 eV). However, the nature of the exci-

tons as well as the charge separation remains unclear and various optical

spectroscopic studies have been dedicated to shine light on this issue, typical

of organic photovoltaic and organic photodiode (2.4) [85]. It should be noted

that, since in an organic molecule several anti-bonding orbitals are present

(LUMO representing the lowest one), the absorption of radiation with energy

higher than the bandgap corresponds to transitions between higher energy

levels for an organic semiconductor. Also, once generated, the electron-hole

pair has an average life time τ , at the end of which the charge carriers are

not more available for conduction, due to recombination processes or trap-

ping. Traps states, usually associated with crystal imperfections, disloca-

tions, grain boundaries, and the surface of the material, can hold charge

carriers for a certain time, thus possibly causing the enhancement of the

recombination probability and a decrease of photocurrent [112].

The conductivity of a semiconductor in darkness condition can be ex-

pressed as function of electron end holes concentration, indicated with n and

p respectively, as follows:

σ = e(nµn + pµp) (3.16)

where e is the electronic charge and µn/p is the electrons/holes mobility.

As explained above, when the material is exposed to an electromagnetic

radiation with an appropriate energy, the absorption of a photon results

in the generation of an electron-hole pair and thus in an increase of the

conductivity:

σ + ∆σ = e[(n+ ∆n)µn + (p+ ∆p)µp)] (3.17)
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Figure 3.4: Electrical circuit employed in PC measurements.

Consequently, the current density J = σE, where E is the electrical field

applied, increases to the value:

J = (σ + ∆σ)E = Jbulk + Jph (3.18)

Through the measurement of the variation of J in the sample is therefore

possible to detect the light absorption by the material.

From the experimental point of view, the photocurrent is detected mea-

suring the voltage across a load resistor RL in series with the sample and

a stabilized voltage generator or a battery (figure 3.4). The change of con-

ductivity ∆σ, and the correponding photocurrent causes an increase of the

voltage drop across RL. In Figure 3.5 the block diagram of the experimental

set-up used for PC measurements is reported. As radiation source a QTH

(Quartz Tungsten Halogen) lamp (22 V, 150 W) is employed. The white

light produced by the lamp is collected by a Cornerstone 260 monochro-

mator (spectral resolution ∆λ=1 nm), which selects the output wavelength

radiation by means of a rotating diffraction grid and projects it on the sam-

ple through a system of optical mirrors. Two slits are located at the entry

and at the exit of the monochromator in order to collimate the light beam,

whose width is varied between 200 µm and 2 mm to search a good sensitivity

and a strong signal. Between the lamp and the monochromator a chopper

(a dark disk with periodic holes rating in order to chop the incident light

beam) is placed. A photodiode mounted on the chopper thus gives a refer-

ence square wave signal, corresponding to the dark/light alternative periods
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Figure 3.5: Block diagram of photocurrent experimental set-up.

(frequency=19 Hz), to a Stanford Research 530 lock-in amplifier, which ba-

sically makes the sampling of the alternate signal from the photodiode, in

order to separate the signal from the noise generated by the measuring sys-

tem. The circuit employed is reported in Figure 3.4: it is biased with two

chemical batteries, that can be of 3 V 18 V in order to maximize photocur-

rent signal. Organic semiconductors are characterized by very high resistivity

(about Rdark ÷ 10GΩ in organic crystals) so the choice is a compromise be-

tween a clean signal (low RL), as expressed in the chapter and a strong signal

(high RL). The RL of 100 kΩ is put in parallel with a capacitor of 4 nF, to

constitutes a low pass filter in order to cut high frequencies and don’t let

them enter the lock-in amplifier. The collected photocurrent spectra have to

be normalized to the intensity of light incident on the sample, since the lamp

spectra vary with wavelength. The photon flux of the employed QTH lamp

is in figure 3.6. For the photon flux measurement we used a thermopile, a

thermal detector which consists in a series of connection of a certain number

of thermocouple junction. It has the characteristics of having a flat respon-
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Figure 3.6: Photon flux of QTH lamp, with 2000 µm and 200 µm slits aperture.

sivity that is independent of wavelength. The photon flux is calculated from

eq. 3.19:

Φ =
signal

rAthhν
(3.19)

where r = 7.8 µV/µW is the thermopile responsivity, Ath = 0.0078 cm2 is

the thermopile area and hν is the photon energy.

3.3 Detectors Characterization

3.3.1 X-ray Mo Tube

The X-ray irradiation measurements have been performed with a com-

mercial PANalytical PW2285/20 X-ray tube with a Molybdenum target at

35 keV of accelerating voltage and for various filament currents, in order to

acquire data at different dose rates for detector sensitivity measurements. A

shutter is placed in front of the tube to allow an instantaneous (at least for

our purpose) opening/closing the beam. The samples is placed 21 cm far

from the source, in a metal box with a window of 4 cm2, in such way the

X-rays impinge on the sample without further filtration. At this position the

X-ray incident beam has a circular spot with a 7 mm diameter. The calibra-
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(a)

(b)

Figure 3.7: Simulated spectra of 35 keV 35 mA Mo tube (left) corresponding to

a dose rate of 137 mGy/s (right).

tion has been carried out replacing the sample with a PMX-III detector. The

calibration plot of the filament current vs dose rate and the simulated X-ray

spectrum of the Mo tube at maximum irradiation of 35 mA (137 mGy/s) are

reported in figure 3.7. The characteristic peak Kα ' 17.4 keV and Kβ ' 19.6

keV, and bremsstrahlung radiation are highlighted (see par. 2.1.1) The entire

X-ray irradiation system is located into a lead-glass cap for protection of the

operators by radiation, and the electrical connections and characterizations

have been carried out as described in 3.1.

3.3.2 SYRMEP Beamline - ELETTRA

SYRMEP is a beamline at ELETTRA Synchrotron Trieste, which was de-

signed for the study of synchrotron radiation in medical diagnostic radiology

applications [64]. Thus, the beamline is particularly suitable for exploiting

organic crystal detectors for dose rates and energy range typical of mam-

mography and medical applications. The light source is a bending magnet

coupled with a double-crystal Si (111) monochromator which works in an

energy range between 8 keV and 35 keV. The maximum dose rate is on the

order of few mGy/s and depends on the selected energy value. A series of Al
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Figure 3.8: Scheme of the SYRMEP@ELETTRA beamline experimental setup.

filters allows to reduce dose rate down to 50 µGy/s. The beamline provides,

at a distance of about 20 m from the source, a monochromatic laminar-

section X-ray beam with a maximum area of 120x4 mm2, but which two

series of motorized slits can focus with a precision of about 100 µm. A cali-

brated ionization chamber is placed in front of the sample, giving a real-time

monitoring of the incoming dose, while a CCD camera behind the sample

permits an accurate alignment of the beam-slit-sample system (figure 3.8).

A fast shutter, i.e. a lead chopper, at a frequency of 9 Hz, has been used to

carried out fast time-resolved X-ray transient measurements. The electrical

connections and characterizations have been carried out as described in 3.1,

with the Keithley 6517A electrometer for common I-V and I-t measurements,

and with AH501 digital oscilloscopes for fast I-t measurements.

3.3.3 Gamma Sources

The high energy gamma radiation used in this thesis consisted in a Cs137

radiation source sealed in dumpbell leaded shield. The source emits a pri-

mary electromagnetic radiation at 661 keV and the activity is 3.83 MBq (at

the 12/07/2014). The measurements were performed in air and at room tem-

perature, and the source laid on an adjustable spacer. Three source-sample

distances have been investigated: L1 = 7.1 mm (corresponding dose rate 5.8
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Figure 3.9: Scheme of the setup for high energy gamma irradiation of Cs137.

mSv/h), L2 = 9.2 mm (corresponding dose rate 3.5 mSv/h) and L1 = 13.1

mm (corresponding dose rate 1.7 mSv/h). As we tested also TIPS-pentacene,

which phoconductivity under visible light are well known, a dark tape strip

has been placed between the source and the organic sample blocking visible

light without affecting such high energy radiation.

3.4 Materials

In this section the organic molecules composing the crystals investigated

in this thesis will be presented. We will report about 4-hydroxycyanobenzene

(4HCB), a solution-grown single crystal that presents a 3D tunable structure,

particularly suitable for radiation detection (3.4.1). Two well known high

performance small-molecules will be presented: 5,6,11,12-Tetraphenyltetracene

(rubrene, see par. 3.4.2) , the benchmark for organic electronic based on sin-

gle crystals, and 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene,

see par. 3.4.3) widely used in organic thin film electronics for its particular-

ity of growing in polycristalline form when dropcasted. In addition, other

solution-grown molecule, e.g. 1,5-dinitronaphtalene (DNN) (3.4.4) and 1,8-

naphtaleneimide (NTI) (3.4.5), differing in polarizability, packing, molecular

structure and geometry was studied, to investigate how the above parameters

affect organic single crystal sensing properties.
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Figure 3.10: a) Optical microscopy image of 4HCB single crystal. b) 4HCB

molecule c) L-shaped contacts with epoxy silver paint to electrically investigate

the three crystallographic axes.

3.4.1 4-hydroxycyanobenzene (4HCB)

4-hydroxycyanobenzene (4HCB, C7H5NO) is a well characterized known

solution-grown semiconducting single crystal, the basic molecule and the op-

tical image of a large 4HCB crystal are shown in figure 3.10. 4HCB molecule

was purchased by FLUKA (99+%) and used as follows. A first crystallization

was obtained dissolving an amount of material in pure ethylic ether (tech-

nical grade), and letting the solvent evaporate under a hood in standard

laboratory conditions. The resulting crystals were washed thoroughly with

warm petroleum ether (technical grade). After this step, the remaining crys-

tals were completely dissolved in ethylic ether (concentrations ranging from

10 to 50 mg mL−1; at higher concentrations, larger crystals, both in size

and thickness, were obtained). The mixture was filtered through a 0.45 mm

Teflon filter, poured in a beaker, and covered with a Petri dish. The system

was then left undisturbed to allow the complete and slow evaporation of the

solvent. After that, the transparent crystals left in the beaker were gently

removed using a spatula, and used for the preparation of the devices with

no further treatments [113]. The crystals have 3D tunable dimensions, up

to few millimeters in lateral dimension and up to 1 mm in thickness (figure
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(a) (b)

Figure 3.11: Structure of a-axis of 4HCB single crystal. a) Lateral 3D view,

shows short distance between molecules. b) In line view, highlight the π − π

stacking and the particular position of N atoms [116, 113].

3.10a), by properly modifying the solution growth conditions. The large size

of the crystal translates into a radiation interaction volume for detector ap-

plications, which is much larger than those typically accessible with polymer

films (which are a few micrometers thick at most). The as obtained single

crystals are very robust to physical manipulation (they can be easily moved

and positioned on substrates, electrodes arrays, sample holders, etc.) and to

environmental conditions (air, light, room temperature) [114]. The molecule

possesses a string intrinsic dipolar charge distribution due to the presence

of the electron-attractor cyano-group connected via a conjugated benzenic

bridge to an electron-donor group, the hydroxylic one (figure 3.10b). The

crystal structure is known for a long time [115], but in figures 3.11, 3.12, 3.13

the structure and molecular packing confirmed by modern X-ray diffraction

(XRD) are shown. The axis are labelled as in figure 3.10c.

The packing along the a axis (figure 3.11), a group of four 4HCB molecules

at different torsion angles generates a sequence of as many infinite columns,

partly overlapping, where the benzenic rings are all eclipsed and separated

by a distance of 9.202(2) Å. In addition, the nitrogen atoms of the cyano

groups belonging to the outer molecules (recognizable in figure 3.11b as

blue-colored atoms) are sandwiched between the overlapping rings of the
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(a) (b)

Figure 3.12: Structure of b-axis of 4HCB single crystal. a) Lateral 3D view,

shows particular packing shape. b) In line view, shows that only some rings are

overlapped [116, 113].

Figure 3.13: Lateral 3D structure of c-axis of 4HCB single crystal. The long

distance between aromatic rings is highlighted [113].

two central ones, and may contribute to increase the net electron density

of the system. Concerning the b axis, it develops in two entangled ABAB

sequences of benzenic rings, arranged to form a sort of square-based columns

parallel to the crystallographic axis (figure 3.12a). The first sequence of the

AA and BB rings are side by side and connected with weak intermolecular

hydrogen interaction. Only in the second sequence the AA and BB rings are

partially overlapping, where the rings are separated by distance of 10.738(2)

Å, about 1.5 Ålarger than in the case of axis a. Finally, the structure along

the c axis grows in a complex pattern of parallel spirals (figure 3.13), and no

appreciable overlapping of benzenic rings can be identified. Therefore no ap-
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(a)
(b)

Figure 3.14: Electrical characterization of 4HCB single crystals. a) Current-

Voltage characteristics along two coplanar axes, a and b, in the dark (solid marks)

and under white light illumination (open marks) [116]. b) Photocurrent yield along

the two planar direction of the crystals. The arrow highlights the peak associated

to the band states located in the bad-gap [117].

preciable intrinsic charge transport is expected to occur along this direction.

In conclusion, a and b are the two axes that presents π− π overlapping and,

in agreement with organic single crystal structural properties (see1.2.2), they

are the planar and strongest growth axes [113].

Transport Properties

Current-voltage characteristic of a 4HCB crystal in the dark along the two

planar axes, in figure 3.14a, shows a better transport along a axis, than along

b, in agreement with the better π − π stacking and shorter intermolecular

distance in a. Under white light irradiation the current along a decreases of

about 20%, while the b current it is only slightly affected. The I-V character-

istic recovers to pristine values after few hours of relaxation in the dark. In

addition, the anisotropy transport properties have been assessed also with a

Field-Effect Transistor (FET) configuration, where the FET mobility of the

two planar axes differs of one order of magnitude (table 3.2), even though

the two mobilities have the same value under light exposure [116]. Moreover,
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due to the negative biasing of the gate electrode to induce field-effect, the p-

type transport have been assessed. The two above effects may both ascribed

to the presence of N atoms that imply a local electrostatic distortion that

may induce the formation of trapping sites able to interact with photons. It

has been hypothesized that the traps are neutral in their ground state and

that the interaction with photons may induce the emission of an electron

from trapping state, leaving a positive electrically active charged state. The

excess electrons may readily recombine with injected holes and reduce the

collected current.

The photoconductivity spectrum is reported in figure 3.14b, showing the

HOMO-LUMO transport edge located at 4.5 eV, for both planar axes [117].

A large band of deeper states is clearly visible at lower energies in the spec-

trum, starting at 3.9 eV, i.e. 0.45 eV from the HOMO-LUMO gap. It is also

evident that the number of electrons excited per incident photon is larger

along axis a than along axis b, confirming the presence of photo-activated

defective states, more effective along axis a than along b.

Typical SCLC measurement plot is reported in figure 3.15a, and the cal-

culated mobilities from trap-free regime is reported along all three crystal-

lographic axes. The inset shows the L−3 dependence of the current, typical

of bulk transport. The mobility and density of states values for 4HCB sin-

gle crystals have been summarized in table 3.2. SCLC mobilities values are

in agreement with FET ones, they confirm the anisitropy between a and b

planar axis, and highlight the very low mobility along c (µSCLCc ≈ 10−5).

A DM-SCLC analysis confirms the presence of electrically active states in

planar axes, around 0.46 eV, more pronounced for a axis. Density of trap

states NT calculated from VTFL are underestimated compared to N∗
T , which

are extracted from DOS function. I-V characteristics, FET mobility, pho-

tocurrent spectroscopy and DM-SCLC analysis are all in agreement with the

presence of electrically active states for the two planar axes, that are more

effective along axis a than along b.
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(a)

(b)

Figure 3.15: a) Typical SCLC characteristic, the ohmic, SCLC and trap-fill limit

voltage area highlighted. The inset shows the L−3 dependence of the measured

current as function of crystal thickness. b) DOS function as extracted from DM-

SCLC analysis [117].

3.4.2 5,6,11,12-Tetraphenyltetracene (Rubrene)

5,6,11,12-Tetraphenyltetracene(rubrene, C42H28) is one of the best per-

forming organic semiconducting single crystal for electronic device applica-

tion. At the same time it’s still presenting some open problems which limit

its performances, as its chemical instability in presence of oxygen and the dif-

ficulty to obtain a good crystalline quality samples. Rubrene belongs to the

group of polycyclic aromatic hydrocarbons and consists of a tetracene back-

bone (it’s built with four benzene rings placed side by side each other), with

a phenyl ring bonded on each side of the two central benzene rings, as shown
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Crystal axis µFET (cm2/Vs) µSCLC (cm2/Vs) NT (cm−3) N∗
T (cm−3)

Max Ave. Max Ave

a 8× 10−2 3× 10−2 1× 10−1 5× 10−2 3× 1011 9× 1012

b 9× 10−3 5× 10−3 2× 10−2 6× 10−3 1× 1011 4× 1012

c - - 2× 10−5 5× 10−6 5× 1012 2× 1013

Table 3.2: Summary of electrical parameters of 4HCB single crystal along all

three crystallographic axes [117].

(a)
(b)

Figure 3.16: a) Chemical structure of Rubrene. b) Optical microscopy image of

a rubrene single crystal.

in figure 3.16a. Rubrene molecules, in liquid or amorphous phase, tend to

oxidize when exposed to air; light strongly enhances this process [118, 119].

An oxidized rubrene molecule becomes a rubrene peroxide and experiments

show that the most common form of peroxide formed after oxidation is the

endoperoxide [120], in which molecular oxygen is lined to one of the two

central rings of the tetracene backbone. The bonding with oxygen generates

a deformation of the molecular organization, this causes a break of the π

molecular orbital. This contamination affects optical properties of the crys-

tal, at a first look rubrene solution and amorphous film became transparent

from their original reddish colour. One of the most important achievement
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Figure 3.17: Arrangement of molecules in the three known rubrene polymorphs:

monoclinic (a), triclinic (b), orthorhombic (c).

reached with rubrene is its highly crystalline structure which improves enor-

mously its potential application in electronic devices, thanks to its electrical

parameters and efficiency. The molecular arrangements in the three main

known rubrene polymorphs are monoclinic, triclinic and orthorhombic. In

figure 3.17 the three kinds of lattice in which it’s possible an arrangement of

rubrene molecules are shown. Looking at the three structures from a direc-

tion normal with respect to the long axis of molecule, it’s possible to identify

the amount of π − π stacking between the conjugate backbones of adjacent

molecules. In the monoclinic and trinclinic polymorphs only a partial π − π
stacking is present, instead in orthorhombic polymorph the molecules are ar-

ranged in the herringbone packing, with an almost complete π−π stacking in

the b lattice direction. The reported distance of the unit cell in orthorombic

configuration are: a = 26.86(1) Å, b = 7.193(3) Å, c = 14.433(5) Å[121]. To

obtain that form it’s necessary to follow a particular growth processing, since

the way used to create crystals influences their final structure. Operatively,

monoclinic and triclinic lattice structures can be obtained by solution crys-

tallization methods, while the third unit cell, orthorhombic, needs physical

vapour deposition (PVT) to be formed [122]. As mentioned above, Rubrene

is strongly affected by oxidation. Indeed, rubrene peroxide has been shown

to be the dominant impurity in commercial rubrene powder and the pres-

ence of small amounts of oxygen in the inert gas flow used for crystal growth
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has been shown to increase the amount of such impurities in the crystals

[123, 124]. In order to improve material quality a deal may be a purification

of the pristine material through several sublimation cycles and a carefully

controlled growth environment. Kafer et al. [120] performed a very interest-

ing analysis on the concentration of peroxide molecules in rubrene in function

of depth, when exposed to air for several days: it has been experimentally

proven that a crystalline form dramatically reduces the oxidation effects and

it is present only in the first layers of the material.

The interest on rubrene is mainly motivated by its outstanding electrical

transport properties, since the first measurements on rubrene single crystals

have presented high charge carriers mobility values. Charge carriers mo-

bility in rubrene orthorhombic single crystals can reach values as high as

40 cm2/Vs, a value comparable to that found for amorphous silicon [52].

As for most organic crystals, electrical transport in crystalline rubrene is

strongly anisotropic, with the highest mobility values measured along the b

lattice direction [52, 125], which corresponds to the direction of the maximum

π − π stacking (figure 3.17). Rubrene, like most organic semiconductors is

a unipolar p-type material, while electron mobility is several orders of mag-

nitude smaller [126]. The outstanding transport properties of rubrene single

crystals, and the inverse dependence of the mobility on temperature up to

temperatures as high as 300 K suggest that the conduction mechanism may

be band-like (see section 1.4).

In addition to extremely high charge carrier mobility, rubrene single-

crystals have a huge photoconductivity, with a photocurrent generation effi-

ciency close to unity. Najafov et al. have shown, by studying the photocur-

rent dynamics, that photoconductivity in rubrene single crystals is mainly

due to free charge carriers that are released from a long-lived intermediate

state ≈ 100 µs after the excitation pulse [127]. In subsequent works they

showed that this process is mainly limited to the surface region, suggest-

ing a role of the crystal surface in the photoconductivity of rubrene [128].

From photoconductivity measurements the longest exciton diffusion length
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(a) (b)

Figure 3.18: a) Chemical structure of TIPS-pentacene. b) Optical microscopy

image of solution-grown TIPS-pentacene single crystal.

in organic materials, in the range of 8-10 µm has been measured [8]. In this

thesis rubrene has been employed mainly for two purposes: the electrical

performances and potentiality of an highly oriented crystalline rubrene thin

film have been assessed (see par. 8); PVT rubrene single crystals have been

tested under X-rays to compare the behaviour of solution grown crystal-based

devices with a high performing benchmark material (see section 4.3).

3.4.3 TIPS-pentacene

6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene, C44H54Si2)

is a derivative of the organic molecule pentacene, which share with rubrene

the highest performances in terms of measured mobilities (up to 30 cm2/Vs

for single crystals) [129, 130]. Pentacene unprocessability in liquid phase rep-

resents a huge limitation in terms of low cost deposition techniques. TIPS-

pentacene is composed by the five fused benzene rings typical of pentacene,

functionalized by means of the carbon atoms of the triisopropylsilylethynyl

chains, chemical bonded with the carbon atoms in position 6 and 13 of the

pentacene molecule. It is soluble in most of the common organic solvents

(e.g. toluene, chlorobenzene, tetrahydrofuran and chloroform [131]) and, in
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addition, the bulky functionalized groups in TIPS-pentacene efficiently max-

imize π-orbital overlap, and the triple bond between the carbon atoms (fig-

ure 3.18) promotes the face-to-face packing motif between adjacent molecule

[132]. This inter-molecular interaction improves π-orbital coupling and po-

tentially increases the carrier mobility, making TIPS-pentacene one of the

most popular and appropriate materials used for thin-film transistors [133].

Thanks to its solubility, TIPS-pentacene is commonly spin coated [25], drop

cast [131] and inkjet printed [134] in order to constitute the active layer in

OTFTs. The electrical performances of TIPS-pentacene devices were found

to be strongly dependent on processing conditions, i.e. the solvent used, the

post processing treatment and the deposition method, since they determine

the morphology of the films. Usually the drop casting method and the use

of high boiling point solvent permit a slower evaporation rate leading to the

formation of films with polycristalline structure. Recently, employing shear-

aided crystallization technique, highly ordered films with oriented crystals

showing remarkable OTFTs mobility up to 11 cm2/Vs have been realized

[27]. In this thesis the exploitation of TIPS-pentacene as active materials

in ionizing radiation detection systems, in polycrystalline structure both in

resistor-like and in OTFT configuration, has been investigated (see par. 5).

In addition, X-rays photorensponse of solution-grown TIPS-pentacene single

crystals have been compared to other organic molecules (see par. 4.3).

3.4.4 DNN

1,5-dinitronaphthalene (DNN, C10H6N2O4) is a small molecule composed

by, as suggested by extended name, a naphtalene core with two nitro func-

tional groups in opposite position. Thus it doesn’t have a net dipole moment

due to its symmetric structure, however the charge distribution is strongly

localized to the functional groups (figure 3.19a). DNN grows in crystalline

form by solution-grown methods from a widely available solvent/non-solvent

solution of chloroform, benzonitrile, or acetone. Their size can be controlled

by varying parameter such as the solvent/non-solvent volume ratio or the or-
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(a) (b)

Figure 3.19: a) Chemical structure of DNN. b) Optical microscopy image of

DNN single crystal.

ganic molecule concentration in the solution. The solution is left to slowly dry

at room temperature in controlled atmosphere. Long needle-shaped single

crystal with an opaque yellow colour are formed by means of this procedure

and the common geometrical sizes are about 3-4 mm in the long growth

direction and 200-500 µm in lateral sizes. In figure 3.19b an optical image

of a DNN single crystal. The crystalline structure measured with XRD is

reported in figure 3.20a: is a monoclinic structure with the following cell

parameters a = 7.7(6) Å, b = 16.3(2) Å, c = 3.7(0) Åand β = 101◦ [135].

The density of the crystal, fundamental for the calculation of X-ray quantum

efficiency, results dDNN = 1,579 g cm−3. The crystal arrangement follow her-

ringbone shape. In this thesis the electrical characterization and the X-ray

response under X-ray have been performed along the crystal axis of major

growth (see par. 4.3).

3.4.5 NTI

1,8-naphthalimide (NTI, C12H7NO2) is a derivative molecule of naphtal-

ene. In similarity with DNN it is a solution-grown single crystal that grows

in needle-like shape at room temperature. The solvent is a tetrahydrofuran

(THF). The single crystals in figure 3.21b have a bright yellow colour. From
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(a)
(b)

Figure 3.20: a) Crystallographic structure [135] and b) absorption spectrum of

DNN.

the XRD structure reported in figure 3.22a the dimensions of the unit cells

have been calculated: a = 11.009(2) Å; b = 5.4134(8) Å; c = 15.675(3) Å,

α = 90◦, β = 108.917(15)◦, γ = 90◦ [136]; and it grow in herringbone packing

arrangement [137]. The density of the crystal is dNTI = 1,482 g cm−3.
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(a)
(b)

Figure 3.21: a) Chemical structure of NTI. b) Optical microscopy image of NTI

single crystal.

(a)
(b)

Figure 3.22: a) Crystallographic structure and b) absorption spectrum of NTI.

Figure 3.23: Some physical and chemical parameters of the molecular crystals

under study.
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Chapter 4

OSSCs as X-ray Detectors

The fourth chapter is dedicated to the study of OSSCs under X-ray irra-

diation. Organic materials have been so far mainly proposed as detectors for

ionizing radiation in the indirect conversion approach, i.e. as scintillators,

which convert ionizing radiation into visible photons (2.3.1), or as active layer

in photodiodes (2.3.2), which detect visible photons coming from a scintilla-

tor and convert them into an electrical signal. Recent examples of organic

devices used as direct photon detectors have been presented for operation in

the UV-NIR range [85], with very interesting values for figures of merit such

as photo-conversion efficiency, speed and minimum detectable signal level,

and even though the simultaneous attainment of all these relevant parame-

ters is demonstrated only in a limited number of papers, real applications are

within reach for this technology, where the best reported photo-responsivity

outperform amorphous silicon-based devices. Furthermore, organic semicon-

ductors are very promising candidates also for the detection of higher energy

photons (X- and gamma rays) [3, 138], nevertheless nowadays a small num-

ber of informations on the processes involved in organic/X-ray interaction

are known.

We report in this chapter on the characterization of OSSCs as X-ray di-

rect detectors, exploiting the variation of electrical properties induced by

X-ray beam in organic single crystals and to investigate on the X-ray re-

89
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sponse of a large number of samples, differing by molecular structure, crystal

morphology, electrode configuration and materials. This study offers the pos-

sibility to deeper understand the nature of the interaction between X-rays

and organic materials. In addition, the X-ray energies and dose rates are

comparable to those employed in medical diagnostic applications (typically

mammography), assessing thus the behaviour of the crystal-based detectors

in medically relevant conditions. In fact, the low atomic number of all organic

compounds is similar to the average human tissue-equivalent Z, and makes

them ideal candidates for radiotherapy and medical applications. The first

section is focused on 4HCB single crystal, providing a full characterization

of the X-ray response along the three crystal axis and different electrodes

configuration, showing, among others, the linearity of the intrinsic X-ray

response, the sensitivity and the radiation hardness. In the second section

the results will be compared with other molecular crystals, that differs in

molecular composition, shape and crystal structure. In the last section, a

preliminary assessment of detection of high energy X-ray (661 kev of Cs137)

will be discussed.

4.1 4HCB Single crystal direct detectors

This paragraph describes the research carried out on 4-hydroxycyanobenzene

(4HCB) single crystals (see par. 3.4.1) which have been grown from solution.

The large size of the crystals translates into a radiation interaction volume

which is much larger than those typically accessible with polymer films (which

are a few tens of micrometers thick at most)(2.4). The as obtained single

crystals are very robust to physical manipulation (they can be easily moved

and positioned on substrates, electrodes arrays, sample holders, etc.) and to

environmental conditions (air, light, room temperature).
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(a)

(b)

Figure 4.1: a) Sketch of the L-shaped contacts on a 4HCB platelet single crystal

and the single bottom contact. The three crystallographic axes are in evidence. b)

Current-voltage curves probed along the three axes with a 35 keV and 170 mGy/s

X-ray beam switched on (empty symbols) and off (filled symbols).

4.1.1 X-ray Direct Detectors

We investigated the photoelectric response of 4HCB crystals under an

X-ray beam in air at room temperature and under ambient light. The 4HCB

crystal is a solution grown crystal, with tunable dimensions up to few mil-

limeters in the a and b axis, and up to 1 millimeters along c axis, taking the

shape of a platelet that permits to easily investigates all crystallographic axis

as shown in figure 4.1a. The crystal structure and the electrical characteris-

tics of 4HCB single crystal are well known and were previously reported (see

par. 3.4.1). The electrodes consists in small drops of an epoxy conductive

silver paint (EPO-TEK E415G) with low solvent concentration. The mea-

surements were made with a Mo X-ray tube, accelerating at 35keV and with

dose rates ranging between 2 and 170 mGy/s (see par. 3.3.1).

In these conditions the bulk dark currents IOFF, that is, those measured

in the absence of the X-ray beam, along the two planar axes a and b are

comparable (Figure 4.1b), while the one along the vertical axis c differs (in



92 4. OSSCs as X-ray Detectors

(a) (b)

Figure 4.2: a) Comparison between the normalized X-ray induced photocurrents

(ION − IOFF )/IOFF along the planar and vertical axes of a 4HCB crystal. b)

Repeated onoff switching of the X-ray-beam along a planar direction (a-axis) of a

4HCB crystal, shown for different applied bias voltages.

line with previously reported data [116]). Therefore, we will refer in the

following only to the behaviour along vertical and planar axes, without dis-

tinguishing between the two planar axes a and b. As shown in Figure 4.1b,

the irradiation of 4HCB crystals with a 35 kV X-ray beam induces a signif-

icant increase in the photocurrent along both the planar and vertical axes,

indicating the creation of photogenerated charge carriers. Interestingly, the

normalized photocurrent (ION − IOFF )/IOFF vs V curve presents a maxi-

mum at rather low voltages for both axes, suggesting that practical devices

may be operated at voltages as low as 50 V, hence with low power require-

ments (Figure 4.2a). No hysteresis, and no appreciable current drift, are

observed upon repeated X-ray beam on/off cycles (Figure 4.2b) for different

bias voltages. The response time, shorter than 70 ms, is remarkably fast for

organic electronic devices[3]. Over thirty samples have been fabricated and

tested both electrically and under X-ray exposure, pointing out a remarkable

fluctuation between crystals, due to the extreme variability of organic mate-

rials: the data reported show the typical behaviour of 4HCB devices. The

photocurrent values ∆I = ION − IOFF obtained for the vertical and planar
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(a) (b)

Figure 4.3: The X-ray induced current variation ∆I = ION − IOFF is reported

for increasing dose rates and different biases for the vertical (a) and planar (b)

axes of a 4HCB crystal on a glass substrate with Ag electrodes shielded from the

X-ray beam.

directions (reported in figures 4.3a and 4.3b) demonstrate that the response

for an increasing X-ray dose rate is linear for each tested bias voltage for

both axes, confirming that it is possible to effectively drive a device even at

a few volts. The sensitivity defined as S = ∆I/D, where D is the dose rate,

was evaluated to be up to 50 nC/Gy at 400V for the reported devices.

4.1.2 Substrate and Electrodes contribution to X-ray

induced signal

The electrical response of radiation detectors based on organic semicon-

ductors may be influenced by the emission of secondary electrons from high-Z

electrodes or substrates. Therefore, an assessment of these possible contri-

butions to the detector response was carried out by testing several devices

fabricated using various combinations of substrates and electrode materials,

and different methods of device exposure to X-rays. Three different electrode

materials have been tested placed on glass or copper substrates: a bicompo-

nent epoxy silver paste (EPO-TEK E415G), colloidal graphite (AGAR SCI-



94 4. OSSCs as X-ray Detectors

(a) (b)

Figure 4.4: a) Current-Voltage characteristics of 4HCB crystal, showing ohmic

behavior for the reported electrode materials. b) Photocurrent vs Dose Rate plot

for three different electrode materials. It shows linear response for all tested elec-

trodes materials, colloidal graphite (red upper triangles), silver epoxy paint (blue

circles) and gold deposited from chloride solution (green lower triangles), and for

two typical bias 20V (open symbols) and 50V (filled symbols). Linearity and

sensitivity aren’t affected by contact materials.

ENTIFIC AQUADAG AGG303), and gold from chloride solution (SIGMA

ALDRICH 334049 AuCl3 ). All materials used have been chosen taking into

account the p-type conductivity of 4HCB crystals (3.4.1) and the possibility

of realizing different electrode geometries and sizes, from a small area (≈
0.15 cm2) to a large area (2 mm2) electrodes. The first test was to verify

that they make a good ohmic contacts to 4HCB OSSCs (Figure 4.4a). Then

they have been tested under X-ray and comparable electrical performances

has been proved. It is noteworthy that identical results have been obtained

and no major differences have been observed in the measured photocurrent

variation, that remain within the statistical samples variation error (about

15%) over about five tested crystals for each configuration type and with

different electrode materials (Figure 4.4b). Moreover, in some devices fab-

ricated on a glass substrate, the Ag electrodes have been shielded from the

incoming X-ray beam with Pb layers, as sketched in figure 4.5a. Figure 4.5b

reports the response along the vertical axis of a device, as already shown in
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(a)
(b)

Figure 4.5: a) Sketches of the two different measurement configurations used to

probe the detectors, that is, with unshielded (upper panel) and shielded (lower

panel) metallic electrodes. b) Comparison of the ∆I response vs the dose rate

at an applied bias V = 500 V for a device with shielded (solid red circles) and

unshielded (solid black squares) Ag electrodes, compared with an all-organic iden-

tical geometry device (solid blue stars). When organic electrodes were used, the

measurement configuration was the unshielded one.
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Figure 4.6: Optical microscopy images of top (left) and side (right) view of an

optically transparent and bendable all-organic device. The PDMS substrate, the

4HCB crystal and the PEDOT:PSS electrodes have been highlighted with colour

frames.

the previous section, with the metal electrodes directly exposed to the X-ray

beam (solid squares) and shielded from it (solid circles). It is evident that

the collected electrical signal is larger when the electrodes are exposed to

radiation, possibly due to an extra contribution of secondary electrons re-

leased by the interaction of the X-rays with the metal electrodes (an effect

already observed by other researchers in thin-film-based organic photodetec-

tors [90, 88]). We observed the same behavior for various combinations of

substrates (glass, SiO2, Cu), metal electrodes (Ag, Au, Cu), and geometries,

thus assessing that high-Z substrates and/or electrodes give a non-negligible

contribution to the collected electrical signal. In order to eliminate the con-

tribution, it has been estimated as ≈ 3 nA at 500 V (figure 4.5b) and ≈
100 pA at 10 V for dose rate of 180 mGy/s, thus it was substracted to the

measurements.
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4.1.3 All Organic Detectors

We fabricated all-organic devices to remove the possible contribution

from higher-atomic-number device components, using a low-Z organic elas-

tomer as a substrate (PDMS, poly(dimethylsiloxane)) and a low-Z conduct-

ing polymer for the electrodes (PEDOT:PSS, poly(ethylenedioxythiophene)-

:poly(styrenesulfonate)) [139]. Such devices are biocompatible and were

found to be optically transparent and reasonably conformable (figure 4.6),

hence possibly also useful for bioelectronic applications. A typical response

along the vertical axis of such a device is reported in Figure 4.5b (solid stars).

The signal is comparable to that obtained from devices with shielded metal-

lic electrodes, confirming that organic single crystals exposed to X-rays can

directly convert the incoming radiation into an electrical signal with no need

for additional high-Z components in the device. The X-ray induced pho-

togenerated current in the all-organic device and in devices with shielded

electrodes are compared to the data reported in figure 4.9c and 4.9d in the

previous section. The predominant mechanism of radiation conversion and

detection is thus intrinsically due to the crystals, that therefore can exploited

thanks to their considerable interaction volume with the incoming radiation

(thicknesses up to millimeters), much larger than for organic semiconducting

thin films (2.4) (which are typically only a few hundred nanometers thick).

Moreover, the highly ordered and tight molecular packing of OSSCs offers

the possibility of directly exposing the crystal surface to the radiation, with

no need for passivation layers to limit the interaction of the organic material

with the atmosphere.

4.1.4 Detector Characterization and Performances

So far we have shown the fundamental direct response of OSSC-based

device under X-rays, here we would deeply characterize the single crystal

detection features, assessing the detector performances and exploiting the

differences between planar and vertical axes.
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(a) (b)

Figure 4.7: a) Photo-response of a 4HCB detector under an on/off switching

X-ray beam (Synchrotron monochromatic beam with energy 10 keV, dose rate

40 mGy/s and 20 V applied bias) showing the fast rise time, < 5 ms, as better

reported in (b), and good repeatability and stability of response.

From the measured photocurrent ∆I = (ION − IOFF ) the fraction of e− -

h+ pairs collected at the electrodes following X-ray irradiation was evaluated.

We estimated that the quantum efficiency (see par. 2.1.3) within a typical

crystal thickness of 400 µm is about 5%, i.e. the fraction of the impinging

photons that are absorbed, by calculating the absorption coefficients to the

Mo K lines (17.9 and 19.5 keV) with the XCOM code [140]. The photon

absorption rate is then given by Φ = εDms/Eph ≈ 4 × 108 photons s−1,

where D is the dose rate, ms the sample mass, ε the fraction of absorbed

photons, and Eph the photon energy. Assuming that the maximum number

of photogenerated carriers per photon could be β = Eph/∆ , where ∆ ≈10

eV is the energy of pair creation (2.5 times the bandgap of 4 eV), for a

current variation ∆I ≈ 5 nA the effective efficiency for the production of

charge carriers can be evaluated as f = ∆I/[Φβ(2e)]. Therefore, we have

an estimated f ≈ 2%, which takes into account both the pair production

efficiency and the collection efficiency of the electrodes.

The Synchrotron X-ray source at ELETTRA (SYRMEP Beamline, see

par. 3.3.2) allowed to deliver onto a 4HCB-based device focused monochro-

matic X-ray beams with energies in the range 10-21 keV and highly controlled
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(a) (b)

Figure 4.8: a) On/off switching for a monochromatic 10 keV Synchrotron X-

ray beam, for low dose rate of 50 µGy/s. b) Electrical photo-response, i.e. ∆I,

reported as a function of increasing dose rate, for a 4HCB single crystal detector

under synchrotron X-ray monochromatic beams of different energies (from 10 keV

to 21 keV), with an applied bias of 50V. The calculated quantum efficiency (Q.E.)

and sensitivity are reported in inset.

dose rates. The speed and stability of the response provided by OSSCs-based

radiation sensors, and the minimum dose that they are able to detect, have

been probed. In fact, the monochromatic synchrotron radiation allows to

avoid all spurious effects due to used broad molybdenum x-ray emission spec-

trum, and, moreover, the SYRMEP beamline setup is set to obtain very low

and controlled dose rate values (≈ 50 µGy/s). Exploiting these peculiarities,

a lead-based chopper with a frequency of 9 Hz was placed in front of the

X-rays beam in order to explore the time response of the device. In figure

4.7 it is possible to appreciate that the signal rise time and the decay time

are below 5 ms, and that the overall response presents a very good stability

and repeatability, with a baseline shift below 5% after up to 50 on/off cycles.

Figure 4.8a shows the photoresponse of a crystal when exposed to doses of

50 µGy/s, using a 10 keV synchrotron X-ray radiation. The signal-to-noise

ratio is very good even at these extremely low dose rates. Remarkably, this

value is in line with the typical ones for medical imaging and clinical analy-

sis (presently dose rates around 25 µGy/s are required for such applications
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[141]).

Taking further advantage of the X-ray monochromatic beam @SYRMEP,

the focused monochromatic X-ray beams have been scanned with energies in

the range of 10-21 keV. Figure 4.8b shows the slope of the output electrical

signal vs. absorbed dose rate at some representative monochromatic photon

energies over this energy range. The absorbed dose rate for a 400 µm thick

4HCB crystal has been determined by the calculation of quantum efficiency

reported in table in inset in figure 4.8b. The observed change in the gradient

of the data reported as a function of photon energy indicates a increase in X-

ray sensitivity as the photon energy increase, from 17.2 nC/mGy at 10 keV to

32.1 nC/mGy at 21 keV (inset). In the inset is also shown the corresponding

increase in quantum efficiency as the photon energy decreases.

In order to assess their radiation hardness under X-rays, different 4HCB

crystal-based devices were continuously exposed for 3 h to a 170 mGy/s dose

rate (total dose of 2.1 kGy) and then tested under an X-ray beam that was

switched on and off (figures 4.9a and 4.9b); their electrical response along

both the vertical and planar axes was recorded. After this rather high dose

irradiation the devices response to X-rays did not vary significantly; more-

over, the same devices still provided a reliable response even after aging for

1 month. It is noteworthy that, in all the tested conditions, ∆I increases

almost linearly with the bias voltage applied to the crystal along the vertical

axis (figure 4.9c), while it tends to saturate along the planar ones (figure

4.9d). This behaviour can be ascribed to the anisotropy of both the molec-

ular packing and the electrical characteristics of the crystals, as is better

evidenced by the current-voltage curves measured on the two axes of the

same crystal with and without exposure to an X-ray beam (figure 4.10a and

4.10b, vertical and planar axes, respectively). In fact, the curves measured

along any direction when the crystal is in the dark follow the space charge

limited current (SCLC) behavior, typical of high resistivity semiconductors

(see par. 3.1.1). As is evident from figure 4.10a, the electrical response of

our crystals under X-ray exposure remains purely ohmic along the vertical
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(a) (b)

(c) (d)

Figure 4.9: Electrical response of a 4HCB device to a on-off switching X-ray

beam at a bias voltage V=100V. The response is reported for an as-prepared device

(black line) after it has been exposed for 3 hours to a 170mGy/s dose rate (total

dose of 2.1kGy) (red line) and after 1 month of storage in the ambient atmosphere

(blue line). X-ray induced current variation ∆I reported for different bias voltages

applied to crystals contacted with Ag electrodes, before (black squares) and after

irradiation (red circles). The responses of crystals after ageing (blue triangles) and

of crystals contacted with PEDOT:PSS electrodes (green stars) are also reported.

The response along the vertical (a,c) and planar (b,d) axes.

direction, while it still follows the SCLC behavior at higher voltages along

the planar axis. This suggests that the electrically active traps that control

the SCLC transport in the dark play no major role along the vertical axis
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(a) (b)

Figure 4.10: Current-Voltage curves for 4HCB-based devices in the dark (black

squares) and under X-ray irradiation at 170 mGy/s (red circles), for the vertical

(a) and planar (b) axes. Under X-ray irradiation no ohmic-SCLC transition is

detected along the vertical axis.

when the crystal is probed under X-rays.

Taking advantage from 4HCB platelet shape and 3D dimensions, we were

able to investigate different detector configurations, i.e. vertical and planar

ones, on the really same sample, permitting a deeper study on the anisotropy

effects, which are not negligible as already discussed above. In fact, as can

be inferred from the measured mobility values, the tighter π-stacking axes

are the two planar axes which possess good mobility (µa = 10−1 cm2/Vs,

µb = 10−2 cm2/Vs), while the vertical axis is characterized by a poorer π-

stacking degree and by a much smaller mobility value (µc = 10−5 cm2/Vs).

Starting from the above considerations an insight in the geometrical effects

has been carried on, preparing two devices with identical experimental con-

ditions (i.e. the same distance of 200 µm between the electrodes and the

same X-ray irradiation conditions). Quite surprisingly, a direct comparison

between the X-ray-induced photocurrent of a 4HCB crystal in the vertical

collection geometry (small electrode on the top and on the bottom of the

crystal) and in the planar collection geometry (two small electrodes on the

top crystal surface), shows that the X-ray sensitivity is smaller along the

planar axes (7 vs. 24 nC/Gy at 10 V) despite the fact that the charge car-
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(a) (b)

(c)

Figure 4.11: X-ray-induced current variation of a 4HCB crystal in the vertical

geometry (a) and planar geometry (b) for different X-ray doses. c) Sketch of the

electric field distribution in the vertical and planar geometries. The hypothet-

ical effect of polar environmental molecules at the crystal surface in the planar

geometry is also shown.
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rier mobility is about 3 order of magnitude higher than along the vertical

axis (figure 4.11). These results (i.e. the crystal axes characterized by the

strongest π-stacking, that generally coincide with the best current transport

axes, show a poorer X-ray photo-response) suggest that the planar electrode

configuration is less performing. Three main causes can be hypothesised for

this behaviour.

i. The better electrical transport properties along crystal axes with strong

π-stacking may be a limiting factor with respect to the crystals sensi-

tivity to X-rays, due to the higher off currents.

ii. The electric field distribution in the vertical geometry is much more ef-

fective in collecting the photogenerated carriers than that in the planar

geometry (see fig. 4.11c). In the vertical geometry the whole electrode

area can actively collect the induced charge carriers, while only a thin

region around the electrode edge is effective in the planar geometry,

even if the exciton diffusion length in OSSCs has been recently assessed

to be about 8 µm [8].

iii. The high polarizability of the π-electrons at the crystal surface, possibly

further enhanced by the direct exposure to X-rays that are known to

cause the ionization of organic molecules, may results in interactions

with polar environment molecules (water etc.), that when adsorbed at

the surface can affect the carrier density distribution or trapping states

in the first monolayer below the surface, as sketched in fig. 4.11c (an

effect which is analogous to the operating principle of organic field effect

transistors).

Even if the device electrode geometry appears to play a major role in

the performance of the radiation detector, it is noteworthy that all axes

can be used for the effective detection of ionizing radiation, paving the way

to unprecedented radiation detector architectures. Interestingly, in 4HCB

crystals, the largest sensitivity is obtained in the vertical geometry, even if

in this configuration the electrodes do not connect the crystal axis with the
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Sample Electrode Crystal Sensitivity

configurationarea thickness Mo Tube @35keV

50V 100V 500V

mm2 µm nC/Gy nC/Gy nC/Gy

S0 0.25 150a 18 28 77

S1 0.15 400 53 69 170

S2 2.0 400 87 117 175

S3 2.0 40 87 114 150

Table 4.1: Summary of the sensitivity of the reported 4HCB x-ray direct detec-

tors, under a Mo tube at 35kV. S0 is the sample in planar configuration. S1,S2,S3

are in vertical configuration with different geometrical dimensions.

a Electrodes distance in planar configuration is 400 µm.

best molecular π-stacking and carrier mobility. Further work is ongoing to

better understand this point and the photo-physical processes generating the

X-ray-induced charge carriers, together with their transport and collection

mechanisms within the organic semiconducting single crystals (see section

4.1.5).

4.1.5 Electrodes Geometric effects

In order to identify the role of: i) the electrode area, and ii) the crys-

tal thickness with respect to the X-rays detection response, we performed

Current-Voltage and Current-Time analyses on 4HCB crystals, in the con-

figurations reported in Table 4.1.

Table 4.1 summarize the four kind of electrode geometric configuration tested:

configuration S0 is the planar configuration (inset in figure 4.11b) with two

small area top silver epoxy electrodes; S1 is the small area electrodes, thick
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(a) (b)

Figure 4.12: Current-Voltage characteristics of 4HCB organic crystals under X-

ray exposure (measured along the vertical axis). The photo-response of the two

large electrode area (2 mm2) samples: a 400 µm thick crystal (a) and a 40 µm

thin crystal are reported.

crystal in vertical configuration (inset in figure 4.11a) with epoxy silver elec-

trodes; S2 and S3 are the large area, thick and thin crystals in vertical

configuration with colloidal graphite top electrode (inset in figure 4.12a and

4.12b), respectively. Different electrode materials do not affect induced X-

ray current, as already discussed in 4.1.2. Figure 4.11a, reported in section

4.1.1, shows the electrical photo-response induced by the X-ray beam from a

Mo tube and impinging on a 400 µm thick crystal with a small top electrode

(configuration S1). As is visible, the photo-current does not reach saturation

at any bias nor at any dose, indicating an incomplete collection of the photo-

generated charge carriers. Figure 4.12a, on the other hand, shows identical

measurements carried out on a crystal with the same thickness but with a

much larger (one order of magnitude, see Table 4.1) top electrode area (con-

figuration S2): the collected current signal reaches a saturation regime at

low bias voltages (< 200 V). Figure 4.12b reports the X-ray photo-response

obtained from a much thinner crystal (40 µm) with an electrode of the same

area of the previous case (configuration S3), showing that the collected cur-

rent tends to saturate at low bias values as well. It is noteworthy that the
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(a) (b)

Figure 4.13: a) Linear photo-response trend , i.e. ∆I, reported as a function of

increasing dose rate at 50 V applied bias for a small area and 400 µm thick sample

(green squares), for a large area and 400 µm thick sample (blue solid triangles),

and for a large area and 40m thin sample (red open triangles). b) Sensitivity pro-

gression with applied voltage for the same three samples. The maximum obtained

sensitivity for large electrode area samples is 175 nC/Gy.

current saturation value reached with the large electrode configuration is

comparable with the maximum value measured at the highest tested bias

voltage in the small area electrode sensors, providing a strong evidence of

a better charge collection process in devices with a large area electrode and

clearly assessing how the crystal thickness can be reduced down to few tens of

microns without affecting the charge collection properties of the sensor. This

observation could be associated and ascribed to the recently reported values

of several microns for exciton diffusion length in organic single crystals, as

directly measured by optoelectronic analyses [8], suggesting that only the

charge carriers photo-generated within a few microns from the electrode can

be effectively collected and generate an electrical output signal. Furthermore,

we have assessed that in all three tested configurations, S1, S2 and S3, or-

ganic semiconducting single crystals provide a perfectly linear response to

an X-ray beam with dose rates varying in the range 0.05-120 mGy/s and at

different bias voltages in the range 10-500 V. Figure 4.13a reports the linear
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response in the 1-15 mGy/s dose rate range at 50V applied bias. Crystals

with large area contacts (blue and red triangles in figure 4.13a), hence with

optimized charge collection, present the same sensitivity of 87.5 nC/Gy at

50V, despite the difference in thickness, while identical samples with small

electrode area have a significantly smaller sensitivity. Figure 4.13b shows a

direct comparison between the sensitivity of the same samples reported in

Figure 4.13a but as a function of increasing bias voltage. It clearly confirms

that thin (40 µm) and thick (400 µm) crystals with large area electrodes

have comparable sensitivity values at relatively low biases, while with in-

creasing ones some differences are noticed. In particular, thin crystals (S3)

evidence a slight decrease in sensitivity at higher voltages, likely due to the

onset of space charge effects in the dark current at lower bias voltages. It

is remarkable that crystals with large area electrodes (S2, S3) reach satura-

tion/change the curve slope at voltages about <150 V, while samples with

small contact area (configuration S1) reach the same sensitivity of those with

large electrode area only at biases as high as 500 V. Overall, the here reported

devices show a maximum sensitivity of 175 nC/Gy at 500 V, a value that is

four-times higher than the sensitivity values reported in the first experiment

with OSSC X-ray direct detectors (section 4.1.1) and than that reported for

thin film polymers with metal nanoparticles (see section 2.4). Most impor-

tantly, this value is comparable to those reported for inorganic semiconductor

Silicon-based dosimeters (e.g. 150 nC/Gy) [95, 142, 143, 144]. In addition,

state-of-the-art detectors based on a-Se, that can be considered a bench-

mark photoconductor material for dosimetry applications, have sensitivity

about 0.2 µCcm−2R−1 [145], is not so far from the performance of the here

reported 4HCB detectors (about 0.1 µCcm−2R−1, if converted in the same

unit of measure). The effective efficiency for the production of charge carriers

calculated in par. 4.1.4 results increased in the optimized detector geometry

(large area thin crystals of figure 4.12b) from 2% to 20 %. These findings

clearly indicate that the electrodes extension area and their separation are

crucial parameters to control the collection process of the photo-generated
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charge, and that the organic crystal thickness does not have an effect on

the device performance and sensitivity down to thicknesses of few tens of

micrometers, thus suggesting that the charge carriers drift length is less than

40 µm. Indeed, the charge carrier (exciton) diffusion length is quite short

in thin film organic semiconductors (< 50 nm [146, 147]), but recent direct

measurements in organic single crystals report top values of up to 8 µm [8].

Crystals only a few tens of microns thick thus grant a full photo-generated

charge collection (either in the vertical or planar electrode geometry) and

this opens the possibility to integrate radiation detectors based on organic

crystals into flexible electronic devices, exploiting the enhanced bendability

of thin crystals and the recently reported possibility to cover large areas with

inkjet printed single crystalline thin films [26, 27]. Moreover, by properly de-

signing the electrode geometry, by proper channel distance and an improved

collecting area, the sensor photo-response can be significantly enhanced at

lower operating voltages.

4.2 Flexible devices

Recently reported results indicate how thin organic crystals can be re-

liably used in flexible electronic devices thanks to their bending properties

[148, 149, 150] and the above described findings (section 4.1.5) suggest also

that 4HCB thin crystals can be excellently used to fabricate flexible X-rays

detecting devices. We combined two of the described results (i.e. thin crys-

tals are suitable for detection and large collection area improves their perfor-

mance) by realizing a flexible X-ray detector by bonding a thin 4HCB crystal

on an Au interdigitated electrode pattern (electrode separation 25µm), onto a

flexible and transparent PET substrate, as shown in Figure 4.14a and 4.14b.

Hence, the crystal/electrodes interface is maximized, as well as the collecting

area of the detector.

The X-ray induced photoresponse (under a monochromatic Synchrotron

17keV beam) of this device is shown in Figure 4.14c, together with the
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(a)

(b)

(c)

Figure 4.14: a) Schematic layout of the flexible X-ray detector fabricated with

interdigitated Au electrodes patterned onto a thin and flexible PET substrate.

The electrodes distance is 25 µm (b). The electrical photoresponse of a 4HCB

crystal in the dark (red circles) and under a monochromatic X-ray beam (energy

17keV and dose rate 50mGy/s) (blue triangles) is reported in (c) as a function of

the remarkably low applied bias voltage.
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current-voltage curve measured in the dark. The curve in the dark follows

the Space-Charge Limited Current trend typically observed in high resistiv-

ity semiconductors and in organic single crystals [109, 151], with the ohmic

region, the SCLC regime and the trap-filled limit voltage (VTFL) easily iden-

tified, and the notable characteristic of containing all these regimes within

5 V of bias, which is exceptionally low, and to the best of our knowledge

yet unreported. The current-voltage curve recorded under X-ray irradiation

shows much higher current values (almost one order of magnitude, as usual

for this type of devices), that reach the Mott-Gurney quadratic behaviour at

bias voltages above VTFL, which again remarkably is below 4 V. A further

point of interest is that the photo-current value is of the order of µA, already

at 3 V.

4.2.1 Space Charge Transport analyses

Figure 4.14c shows the typical SCLC behaviour for 4HCB single crystals

(see par. 3.4.1). However, in this case the short channel length L = 25 µm

(one order of magnitude less than the previously reported values [113, 117])

and the charge collection area offered by the interdigitated electrode pattern,

enable the activation of the trap-free regime (VTFL) for applied bias voltages

as low as 5 V, while it is usually observed at hundreds of volts. As the trap-fill

limit is reached both for X-ray beam off and on (figure 4.14c), it is possible

to perform SCLC analyses as explained in par. 3.1.1, in order to better

understand charge carrier transport processes in organic single crystals. In

particular, the effect of X-ray irradiation is to shift VTFL toward lower values,

from 5.1 V in the dark (red plot) to 3.2 V under X-rays (blue plot).

The mobility results equal in both cases with µ = (1.1± 0.1)× 10−2 cm2/Vs

and so does the density of states NT = 1 × 1013 cm−3 , in agreement with

previously reported value for planar axis [113, 117], and they are remarkably

unaffected by exposure to X-rays.

Moreover, single crystals excel for an intrinsically low trap concentration,

and are thus well suited to study traps in a controlled way. Thus, further
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(a) (b) (c)

Figure 4.15: Traps Density of States (DOS) of 4HCB single crystal reported in

figure 4.14. a) Pristine crystal in the dark. b) Under 17 keV monochromatic X-ray

beam. c) After X-ray irradiation, in the dark.

investigation has been carried out through the application to SCLC curves of

Nespurek-Sworakowski differential methods in order to estimate the Density

Of States (DOS) distribution of the traps states that control the transport

process. Figure 4.15a shows the energy distribution calculated from the mea-

surement in the dark (figure 4.15b), for the subsequent measurement under

monochromatic 17 keV X-ray beam, and in figure 4.15c another measure in

dark, after X-ray irradiation. One has to keep in mind that, by assuming a

unipolar majority carrier type conduction, the method of DM-SCLC allows

to reveal only the deep states that interact with the majority carrier band.

This means that the peak energies in the DOS functions shown in figure 4.15

correspond to the dominant deep states. In the first plot (a) the DOS in pris-

tine crystal presents a monoenergetic deep trap centered at an energy of (0.64

± 0.01) eV; in the second plot (b) under X-ray irradiation there is a broad

exponential trap distribution with an activation energy of (0.06 ± 0.01) eV;

in the last plot (c) the peak reappears as in pristine crystal at (0.65 ± 0.01)

eV. From the integration of the DOS distribution a more accurate density of

traps can be calculated. In fact, the density of traps NT extracted by means

of the VTFL method is often underestimated, due to inhomogeneities in the

traps distribution. In table 4.2 the integrated N∗
T values are reported, with

a summary of the SCLC analysis calculated parameters.
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Sample VTFL µ NT N∗
T DOS shape

V cm2/Vs cm−3 cm−3

pristine 5.1± 0.1 1.0± 0.1 1.6× 1013 1.6× 1013 peak

irradiated 3.2± 0.1 1.1± 0.1 1.0× 1013 1.4× 1013 exponential

Table 4.2: Summary of parameters extracted from SCLC analysis.

The very interesting result is that the crystal mobility µSCLC and the

total density of states NT are not affected by X-rays irradiation, that indeed

has the effect to produce a reversible change of the trapping sites, from

a energetically localized peak to a broad exponential distribution, which is

recovered to pristine shape once the X-rays are turned off. Further and deeper

investigations are needed, but the above results give a first insight into the

understanding of X-ray detection mechanism in organic single crystals.

4.2.2 Bendabilty Properties

The bendability of these detectors has been assessed by repetitively bend-

ing the device while monitoring the current, assessing how a bending radius

up to 1cm and up to 100 bending cycles do not affect the device electri-

cal response (Figure 4.16). This particular series of tests have been carried

out at the Department of Electrical and Electronic Engineering, University

of Cagliari. These noteworthy results suggest that flexible detectors can be

built and operated at extremely low voltages, possibly even fed with very

common button batteries, opening the way to envisaging novel portable and

low-power consumption X-ray detectors that can reliably provide output sig-

nals with a very good signal-to-noise-ratio, easily fed to an external readout

electronic circuit. Regarding flexible OSSCs detectors, it should be pointed

out that even the all-organic detector discussed in 4.1.3 is on a PDMS flex-

ible substrate, suggesting the possibility of realize an all-organic interdigi-

tated, flexible, low voltage detector. These features, together with the other

reported results (i.e. the proved effectiveness with crystal thicknesses con-
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Figure 4.16: a) Sketch of the interdigitated device on flexible PET substrate. b)

Optical image of bend radius measurement setup, showing the bendability of the

device. c) Normalized Current-Voltage characteristic of flat and bent device and

d) after 100 bending cycles.
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Figure 4.17: Sketch of planar geometry for needle-like crystals.

sistent with flexible devices, the stable and repeatable room temperature

response, and the spectroscopic grade operation) suggest that OSSCs allow

to envisage breakthrough and disruptive applications, such as a large area,

flexible matrices with direct X-ray detecting properties operating at room

temperature and with low power requirements, to be used in a vast variety

of fields spanning from for medical diagnostic, to civil security and industrial

applications.

4.3 Other molecules

Starting from the above reported results and considering the 4HCB de-

vice as benchmark single crystal based detector, we carried out a compara-

tive analysis on a novel class of low-cost solution-grown OSSCs, differing by

electrical transport properties, optical band-gap, geometry, molecular pack-

ing and polarizability, developed for ionizing radiation detection applications

[152]. The aim of this section it to investigate how the physical and chemical

properties of the crystals affect the X-ray sensing behaviour in order to reach

a deeper understanding on the intrinsic photon-charge conversion mechanism,

and to give an insight into the identification of the key parameters that con-

trol the photoconversion process. Two needle-like shaped polar molecular

crystals were studied, 1,5-dinitronaphthalene (DNN, see par. 3.4.4), 1,8-

naphthaleneimide (NTI, see par. 3.4.5), where the electronic transport axis,

i.e. the highest π-orbitals overlap, is clearly identifiable and easily electri-

cally accessible. In order to investigate how the polarizability of the molecule
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affects the response of the detector, we characterized Rubrene (RUB, see

par. 3.4.2) and 6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pen, see

par. 3.4.3) OSSCs-based devices, since they are characterized by high po-

larizability constants and molecular surface areas. Furthermore, it is note-

worthy that the assessment of the performances as detectors of TIPS-pen

based device are of great interest in order to evaluate if and how much the

Si-atoms contained in their molecular structure influence the photon/charge

conversion process.

Even if we have shown in section 4.1.4 that the crystal axes characterized

by the strongest π-stacking, that generally coincide with the best current

transport axes, show a poorer X-ray photo-response than the vertical one,

regardless of the crystal shape (either needle-like or platelet) [153], the planar

configuration is in the case of needle-like shaped crystal the easiest electrical

accessible. Therefore, in order to obtain comparable data for all the sample

tested, the electrical contacts have been realized in a planar configuration

(see figure 4.17), depositing the metal on the top face of the sample and with

a channel length of 45 µm between the electrodes.

DNN

Figure 4.18 reports the typical current-voltage and current-time curves

measured for a DNN crystal exposed to an X-ray beam from a Mo tube. The

dark current (figure 4.18a) always lies below 500 pA, a very good value for

radiation detection applications. We determined the intrinsic charge carrier

mobility of the material by means of Space Charge Limited Current (SCLC)

analysis, and the recorded mobility was about 1× 10−3 cm2/Vs for the DNN

crystals [153]. The strong modification induced in the current, measured as a

function of the applied voltage when the DNN crystal is exposed to the X-ray

beam, due to the photo-induced generation of charge carriers, is visible in

figure 4.18b. The I-V measurements were taken at different dose rates, which

an “off” current taken after each irradiation run. An evident dark current

drift arises after each measurement under X-rays; if the drift is due to bias
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(a) (b)

(c) (d)

Figure 4.18: Characterization of DNN solution-grown single crystal. Current-

voltage measurements performed (a) in the dark and (b) under different X-ray dose

rates (labels in chronological order) between 0 and 10 V. c) Current-time curve at

voltages of 0, 1, 2, 5, 7, 10, 15 V at dose rate of 117 mGy/s. X-rays are switched

on/off every 30 s for each voltage. d) Linearity of ∆I vs. dose rate plot.
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stress is still to be assessed but it is surely enhanced by X-ray exposure. Thus

the I-V characterization has been limited to 10 V as maximum bias voltage.

Figure 4.18c reports the I-t curve as function of the applied voltage when

on-off X-ray switching is performed. It is noteworthy that sharp response

was obtained even with applied voltages as low as 2 V, very small values for

radiation detectors. A further advantageous feature of this device is that the

current vs. time curve recorded under an on-off switching X-ray beam (figure

4.18c) clearly shows a fast dynamic response and how repetitive exposures

to X-rays do not alter the sensor photo-response in terms of ∆I and of the

baseline current shift if the applied bias is lower than 10 V. The induced

photocurrent values are reported in figure 4.18d and demonstrate that the

crystal response for an increasing X-ray dose rate is linear for each tested bias

voltage, assessing that it is possible to effectively drive an OSSC detector even

at a few bias volts. The detector sensitivity was evaluated to be about 6.1

nC/Gy at 10 V.

NTI

The same current-voltage and current-time measurements were performed

also for NTI single crystals (figure 4.19). It shows as well low dark current (≈
1 nA even at 100 V), but the space-charge current didn’t reach VTFL at even

voltages as high as 1000 V, thus only the upper limit of the mobility value

can be estimated as < 10−5 cm2/Vs. Figures 4.19b and 4.19c exhibit how

NTI single crystals are stable both under X-ray irradiation, i.e. dark current

in pristine crystal only slightly changes after all X-ray exposures (black and

dark yellow in figure 4.19b, respectively), and under bias stress (no dark

current drift is shown up to 200 V, figure 4.19c). The X-ray response is fast

and repeatable (figure 4.22b). The induce photocurrent increase linearly with

the dose rate (figure 4.19d) and sensitivity was evaluated about 5.6 nC/Gy

at 10 V and a maximum value of 27 nC/Gy at 100 V.
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(a) (b)

(c) (d)

Figure 4.19: Characterization of NTI solution-grown single crystal. Current-

voltage measurements performed (a) in the dark and (b) under different X-ray

dose rates (labels in chronological order) between 0 and 150 V. c) Current-time

curve at voltages of 0, 10, 20, 50, 100, 150, 200 V at dose rate of 117 mGy/s.

X-rays are switched on/off every 30 s for each voltage. d) Linearity of ∆I vs. dose

rate plot.
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(a) (b)

(c) (d)

Figure 4.20: Characterization of conventional RUB single crystal. Current-

voltage measurements performed (a) in the dark and (b) under different X-ray

dose rates (labels in chronological order) between 0 and 20 V. c) Current-time

curve at voltages of 0, 5, 10, 20, 50, 100 V at dose rate of 117 mGy/s. X-rays are

switched on/off every 30 s for each voltage. d) Linearity of ∆I vs. dose rate plot.
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RUB

Rubrene, indeed, has been chosen in order to test the performances as X-

ray detector of a high-mobility material, since it is considered the benchmark

for high performances OSSCs application. It should be noted that, even if

the mobility measured for the rubrene crystals tested in this work (µRUB ≈ 1

cm2/Vs) is one order of magnitude below the top-performing rubrene crystal

reported in literature (up to 20 cm2/Vs for Rubrene single crystal OFETs

[52]), it remains several order of magnitude higher than the average mobility

recorded for the other crystal under study and then still adapt for our pur-

poses. It is noteworthy that higher performing RUB single crystals present

a dark current too high to observe a good X-ray photo-induced signal. Re-

markably the dark current is stable under several X-ray irradiation (figure

4.20b), but it suffers of bias stress at high voltages (figure 4.20c). However,

the X-ray dynamic response is very slow, especially at high voltages, i.e. the

transient do not reach saturation in the time window chosen of 30 s (figures

4.20c and 4.7a). From the linear photocurrent vs. dose rate plot we estimate

a maximum sensitivity of 10 nC/Gy and of about 2.5 nC/Gy at 10 V.

TIPS-pen

TIPS-pentacene has been chosen because its molecular composition has

silicon atoms inside, heavier element compared to light weight atoms of most

of the organic materials. Furthermore, like rubrene, it is known to be a

high mobility material in its polycrystalline shape. Solution-grown TIPS-

pentacene single crystals has been synthesized in order to be comparable with

the other studied single crystals. Preliminary, but very interesting, results

are shown in figure 4.21. Current-time measurements have been performed

at a constant voltage of 10 V at different dose rates in order to evaluate

the X-ray photocurrent linearity. The calculated sensitivity is 3.63 nC/Gy.

Noteworthy, TIPS-pen X-ray response dynamic is really slow, current takes

tenths of seconds to saturates when irradiated, and the discharge dynamic,

i.e. the time taken to recover pristine dark current once the X-rays are
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(a) (b)

Figure 4.21: Characterization of TIPS-pen solution-grown single crystal. a)

Current-time measurement performed at 10 V for different dose rates. X-rays are

switched on for 60 s and then switched off. d) Corresponding linear ∆I vs. dose

rate plot.

switched off, is even slower as the discharge is not completed after 100 s

showed in the plots of figure 4.21a.

Comparison

Among the screened crystals the mobility values measured span of sev-

eral orders of magnitude, from about less than 10−5 cm2/Vs of NTI up to 1

cm2/Vs of Rubrene. Some common properties could be observed, for exam-

ple, for almost all the samples screened and the dose rates and bias voltages

employed, we observed a linear gradient of the photocurrent signal ∆I =

ION - IOFF with the dose rate. The X-ray response ∆I, the signal to noise

ratio (SNR= ∆ I/ IOFF ) and the sensitivity recorded at a bias voltage of

10V for all the devices tested are reported in table 4.23 together with their

typical charge carrier mobility values. Very interestingly, the sensitivity and,

in general, the detector performances of the devices, seem not to be corre-

lated to the charge carrier mobility of the material. Referring to table 4.23,

for example, we recorded a mobility for the DNN device of about 1 × 10−3

cm2/Vs, with sensitivity (about 6 nC/Gy at 10 V bias) comparable to that
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(a) (b)

Figure 4.22: Comparison between current-time measurements of NTI (fast re-

sponse time) and RUB (slow response time) over 4 repeated X-ray switched on/off

every 30 s. Reported for an applied bias of 20 V and dose rate of 78 nC/Gy.

Figure 4.23: Comparison of the main X-ray detection features of investigated

single crystals. Reference is the output of system (substrate + electrodes) without

organic crystals.
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(a) (b)

Figure 4.24: On/off switching electrical output of 4HCB single crystal at 50

V applied voltage, under Cs137 radiation source. a) vertical and b) planar axes,

respectively.

of 4HCB, while RUB-based detectors showed poor performances, with sensi-

tivity of 2.5 at 10 V, but much higher mobility values (up to 1 cm2/Vs). On

the other hand, we can also say that the low mobility doesn’t assure good

detectors performances. Neither the presence of silicon atoms in the molecule

have a dramatic effect on X-ray response, since TIPS-pen has a sensitivity

value higher than RUB but still lower than 4HCB and DNN single crystals.

Furthermore, RUB and TIPS-pen are both high polarizable molecules, and

both present slow X-ray response, thus suggesting a correlation between this

feature and the dynamic of X-ray sensing mechanism. The investigation of

X-ray sensing over organic molecule is still ongoing, nevertheless the study

of customized molecules with different properties in form of single crystals

(to reduce growth fluctuation) seems to be the right way.

4.4 High Energy Detection

So far OSSCs direct X-ray detectors were characterized under 35 kV Mo

tube and monochromatic synchrotron radiation, in a photon energy limited

between 10 keV and 35 keV, a range suitable for medical purposes, like
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mammography. In order to expand the assessment for practical applications,

in particular in the interesting field of security control, as airport luggage

security, the sensing of higher energy photon should be verified. We use a

γ source of Cs137 which has the primary emission at 661 keV 3.3.3. The

challenge arises from the high penetration depth of such high energy photons

(up to several cm in lead), thus reducing their absorption by the organic

crystals. However, we have assessed, how for low X-ray energies discussed

until now, that even a small fraction of absorbed photon can be collected

and generates a good electrical output signal in organic crystals devices.

Figure 4.24 shows the current signal output in function of time for 4HCB

single crystal with epoxy silver paint electrodes biased at 50 V, under the γ

radiation source placed at a distance of 7 mm from the sample, corresponding

to a dose rate of 5.8 mSv/h. The gamma source is added and removed from

top of the spacer every 30 s. Regarding the vertical axis (figure 4.24a) the

radiation source has the effect to induce a decrease of the current equal to

12 pA, and then, after few seconds, a slow increase just before recover to

the initial current when the source is removed. Analogue observations can

be made about planar axis (figure 4.24b), the induced current is about - 15

÷ - 18 pA, even if in this case the effects are even slower. In addition, here

the dark current is too high and the signal is affected by the superposition

of noise and current drift. Reference measurements have been carried out, in

order to exclude spurious effects due to charges extracted from substrate or

from the electrodes. First the top electrode has been physically disconnected

and exactly the same measurement has been performed. Then the same

procedure has been repeated with only the substrate in place of the sample.

In both cases no marked effects have been observed, only noisy fluctuation

< 1 pA in amplitude and big spikes corresponding to the induction of the

source when it is move in and out.

To summarize, we carried out very preliminary results on the detection

of high energy photons from Cs137 by 4HCB single crystals. The interaction

process is still unknown, considering that the induced current has a slow dy-
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namic and negative values, thus it exhibits the opposite behaviour to what we

have discussed until now for low energy X-rays, but the results are promising

for the use of organic crystals as γ radiation detectors.



Chapter 5

OTFTs as X-ray Sensors

The fifth chapter is dedicated to the investigation of direct X-rays de-

tection of organic semiconductor thin film structures widely used in flexible

organic electronics. TIPS-pentacene is a soluble derivative of pentacene (see

par. 3.4.3) and is one of the most common small molecule used as active

semiconducting layer in high-performance solution-processed Organic Thin

Film Transistors (OTFTs), thanks to its ability to form crystalline domains

upon the solvent evaporation [27, 154]. Recently, TIPS-pentacene has been

introduced in a blend with a polymer in sandwich-type organic direct detec-

tors based on spin-coated PTAA thick films in order to improve the transport

properties of the polymer and to enhance the X-ray sensitivity through a bet-

ter charge collection (see par. 2.4, [99]). Moreover, in the previous chapter,

the direct detection of pure TIPS-pentacene has been proved in its single

crystal shape (see par. 4.3).

In this chapter the characterization of TIPS-pentacene thin films as di-

rect photoconductor X-ray sensor will be reported. TIPS-pentacene solu-

tion in toluene was drop-casted onto flexible and transparent polyethylene

terephtalate (PET) substrate, patterned with interdigitated electrodes. The

so-obtained structure was characterized both under the irradiation of a Mo

tube (see par. 5.1.1) and under high energy radiation source (see par. 5.1.2),

assessing how TIPS-pentacene thin films are able to detect X-ray radiation

127
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(a)

(b)

Figure 5.1: a) Sketch and b) optical microscope image of the photoresistor thin

film planar structure.

at extremely low working voltages and with outstanding sensitivities. More-

over, the X-ray response of high performing Organic TFTs based on TIPS-

pentacene, deposited as described above, operating at extremely low voltages

(< 1 V) [155], was observed in function of the working regime of the transis-

tor (see par. 5.2). This study has been carried out in collaboration with the

group of Prof. A. Bonfiglio at the University of Cagliari, Italy.

5.1 Thin film planar structure

Ultrapure TIPS-pentacene in toluene solution was deposited, by drop-

cast method, on interdigitated gold electrodes deposited by thermal vacuum

evaporation, and then patterned by means of photolithography, onto a flex-

ible and transparent PET substrate. A high concentrated solution (5%wt.)

of TIPS-pentacene, that produces thick films once deposited, and a lower

concentrated solution (0.5%wt.) that originates thinner samples, have been

prepared. The interdigitated active area is 20 mm2, with electrodes 25 µm

spaced. The thin film configuration, about 100 nm thick, could strongly

limit the X-ray absorption, due to the small interaction volume compared

to that of single crystals, several tenths of micrometers thick. However in
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(a) (b)

Figure 5.2: X-ray induced photocurrent of TIPS-pentacene thin films biased at

0.5V when the beam is switched ON and switched OFF. a) 5%wt. and b) 0.5%wt.

The dose rate is fixed at 117 mGy/s.

the previous chapter it has been showed that even crystals as thin as 40 µm

can effectively detect X-rays and that the interdigitated structure strongly

enhances the charge collection efficiency. A schematic view of the thin film

planar device and an image under optical microscope of the full device are

shown in figure 5.1.

5.1.1 X-ray Direct Detectors

The devices sketched of figure 5.1 have been tested as direct X-ray detec-

tors under a Mo X-ray tube, operating at 35 kV of acceleration voltage and

up to 35 mA of filament current (see par. 3.3.1 for the description of appa-

ratus). The measurements have been carried out at room temperature and

in the dark, in order to exclude the high photosensitivity of TIPS-pentacene

to visible light, that induces strong current drift. Figures 5.2a and 5.2b show

the current-time measurements, probed under switching ON and OFF X-ray

beam, of 5%wt. and 0.5%wt. TIPS-pentacene films, respectively. The dose

rate is fixed at 117 mGy/s. The applied bias, equal to 0.5 V, is extraordinary

low for this kind of detectors that usually require tenths or hundreds of volts;
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(a) (b)

Figure 5.3: a) Current vs. time measurement of 0.5%wt. TIPS-pentacene biased

at 0.5 V under different dose rates. b) ∆I vs. dose rate plot and the calculated

sensitivity from the linear fit (red line).

it is in our knowledge the first X-ray organic detector working at such low

voltages (see par.2.4, table 2.3). The signal is slow, it takes more than 40 s to

reach saturation when X-ray beam is switched ON, and the relaxation tran-

sient, i.e. when X-rays are switched OFF, is even slower. Thus the absolute

photocurrent value ∆I = ION - IOFF has been extracted from the values ION

and IOFF after 40 s from the switching ON or OFF, respectively, and aver-

aged upon three repetitions. It is very high, ≈ 9 nA for 5%wt. sample and

≈ 70 nA for 0.5%wt. sample, comparable or higher than the best reported

organic film direct detectors, but with one order of magnitude less of biasing

voltage. The current induced variation has been investigated at different dose

rates, from 117 mGy/s down to 20 mGy/s, and the corresponding plots are

reported in figure 5.3a for the 0.5%wt sample at 0.5 V. The induced current

∆I scales roughly linearly with the dose rate, as shown in figure 5.3b. The

experimental data points are scattered respect to the ideal linearity, probably

due to the errors in the extraction of ∆I values, strongly dependent on the

chosen time window and on the dynamic of the response. The sensitivity

results of 88 ± 8 nC/Gy. If we consider the full active area (of 20 mm2)

and a film thickness of 100 nm, the sensitivity oer unit volume results of 44
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µC/mGy cm3, two orders of magnitude larger than the reported values of

organic film direct detectors in sandwich-type geometry (see table 2.3).

The extraordinary high sensitivity and the high current signal at such

low voltages make the TIPS-pentacene thin films on interdigitated pattern

extremely interesting for ionizing radiation detection; however, several draw-

backs have to be taken into account in order to realize an high performing

detector. The response time is really long, more than 40 s are necessary

to reach saturation of the signal when the X-rays are switched ON and the

detector does not fully discharge when the X-rays are turned OFF. The re-

sponse could be faster working at higher bias, but in this case the dark

current would also increase. In fact, the dark current is already very high

(in the order tenths of nA), with the consequence of an evident current drift,

clearly visible in the baseline shift of figure 5.2, and of the instability of the

dark current shown in figure 5.3a (i.e the Idark at 0.5 V is different at each

run). In addition, it strongly limits the signal-to-noise ratio despite the high

absolute photocurrent signal.

It is noteworthy that the 0.5%wt. film (the thinnest one) has a better

electrical transport (e.g. higher dark current) than the one at 5%wt. concen-

tration (as already observed in TIPS-pentace dropcast [16]), but it has also

the highest X-ray ∆I response. Therefore a better charge collection (strongly

dependent on a good charge transport) has a bigger contribution than the

interaction volume in the X-rays detection performance.

In conclusion, this preliminary assessment on the X-ray detection perfor-

mances of TIPS-pentacene thin films stated that they are very promising for

the realization of a flexible, transparent and low cost organic direct detec-

tor. Furthermore, the solution processability of TIPS-pentacene thin films

can be technologically exploited for the realization of ink-jet printed organic

detectors over large area and on any kind of substrate.
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(a) (b)

Figure 5.4: a) Current vs. time plot of 0.5%wt TIPS-pentacene biased at 0.5 V.

A Cs137 source has been placed and removed on top of the sample every 30 s. b)

Same measurements perfomed on a bare PET substrate and interdigitated gold

electrodes, as reference.

5.1.2 High Energy Detection

TIPS-pentacene films have been investigated also under a γ source of

Cs137 which has the primary emission at 661 keV, as have been already re-

ported for 4HCB single crystals (see par.4.4). The experimental setup is

described in par. 3.3.3. Figure 5.4a shows the current signal output in func-

tion of time for the 0.5%wt. film biased at 0.5 V, under the γ radiation source

placed at a distance of 7 mm from the sample, corresponding to a dose rate

of 5.8 mSv/h. The gamma source is added and removed from top of the

spacer every 30 s (IN and OUT in the picture, respectively). First, upon the

positioning of the source, a large spike is induced in the device, then the sam-

ple slowly relax, until another spike in the opposite direction appears when

the source is removed. Furthermore, after the device relaxation, a gap can

be seen between the two transient baselines (dotted red lines in figure 5.4a).

Thus the gamma Cs137 source has two macroscopic effects: i) causes large

spikes (greater than 10 nA), and ii) induces a persistent photocurrent equal

to 1.8 ± 0.4 nA, in average. Moreover, similar measurements on bare PET
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Figure 5.5: Sketch of the OTFT structure as described in [155].

substrate with interdigitated gold electrodes, without any organic materials

have been carried out, in order to evaluate the substrate and electrodes con-

tributions (figure 5.4b). Small spikes can be seen when the source in moved

IN or OUT, due to the electronic noise of the source movement, but the

absolute value is really small (≈ 100 pA) and no other persistent effect has

been observed.

5.2 OTFT structure

In the previous section the photoconductive effects of TIPS-pentacene un-

der X-ray irradiation have been shown. Despite the good sensing properties,

the devices are affected by an high dark current and baseline drift. In order to

figure out the role of dark current and to control the charge carrier flowing

into the semiconductor, an OTFT bottom-gate/bottom-contacts structure

has been employed. The OTFTs have been fabricated on flexible PET films.

The aluminium gate was deposited by thermal evaporation and patterned

using a shadow mask. The dielectric is a combination of 6 nm of Al2O3 (by

means of UV-ozone oxidation of bottom aluminium layer) and a layer of 35

nm of parylene C (by chemical vapour deposition). Thermally evaporated

gold source and drain contacts were realized on top of parylene layer with

a photolithographic process using an interdigiated mask, as in the previous

section. We performed the characterization of TIPS-pentacene deposited by

drop-casting of the 0.5%wt. concentrated solution in toluene. Figure 5.5
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(a)
(b)

Figure 5.6: a) Output characteristics of low-voltage dropcasted TIPS-pentacene

organic TFT. b) Corresponding transfer characteristic at VD = -2 V. The low

leakage current IG is also plotted on the right scale.

shows a sketch of the full device. The OTFTs fabricated, provided by group

of A. Bonfiglio at University of Cagliari, are ultra-low voltage devices (can be

operated at < 1 V), free of hysteresis effects and showing a very low leakage

current density (≈ 2 × 109) with TIPS-pentacene as active semiconducting

material [155]. In figure 5.6 the fundamental transistor characterization, per-

formed before the experiments under X-rays, is reported. The output and

the transfer characteristics (figures 5.6a and 5.6b, respectively) are in line

with the average performances for these devices. The low dark current (< 5

nA) is also shown in figure 5.6b (right axis).

A characterization, similar to that performed for resistor structure, has

been carried out under irradiation of X-ray Mo tube. The dynamic photocur-

rent plot at different dose rates is shown in figure 5.7a for VG = - 1 V and VD

= - 0.5 V (linear regime for the p-type transistor). The measurements were

performed from the lowest dose rate (19 mGy/s, magenta line) to the highest

one (117 mGy/s, black line). The X-ray response in the OTFT linear regime

is similar to what have been observed for the planar resistor structure de-

scribed in the previous section (see par. 5.1.1 and figure 5.3a). In particular,

the response is in the order of tenths of seconds and the ∆I is huge (≈ 40 nA)
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(a) (b)

Figure 5.7: a) Dynamic current vs. time measurement of the TFT biased at VG

= - 1 V and VD = -0.5 V (linear regime). b) Corresponding ∆I vs. dose rate plot.

The data are the average value over four switching ON and OFF.

at maximum dose. However, the signal is affected by large dark current (≈
600 - 700 nA) that causes low signal-to-noise ratio and an evident baseline

instability, i.e. the drift toward higher current of the baseline after each run.

Nonetheless, the signal repeatability is really good, over subsequent switch-

ing ON and OFF of the X-rays (figure 5.7a). The calculated sensitivity is

187 nC/Gy (linear fit in figure 5.7b).

Taking further advantage of the TFT configuration, the X-ray response

under different operating regimes of the transistor have been investigated

(figure 5.8). Figure 5.8a shows the saturation regime (i.e. working in the

zone where the output curve saturated) and the linear regime (i.e. working

in the zone where the output plot is linear with VD). Both transport regime

exhibited strong X-ray photocurrent responses and they are pretty similar,

even if the saturation dark current is higher and presents higher baseline

drift. Thus, it is convenient working in the linear regime, at lower bias and

lower dark current without affecting too much the generated photocurrent.

Remarkably, when the transistor is OFF (i.e. the accumulation of charge in

the active channel is interdicted through a positive gate voltage) no X-ray

signal has been recorded (figure 5.8b). The small current variation observed
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(a) (b)

Figure 5.8: Dynamic current vs. time measurement of the TFT at dose rate of

117 mGy/s in different regimes. a) Transistor turned ON: saturation (VG = - 1

V, VD = -2 V, red line) and linear (VG = - 1 V, VD = -0.5 V, red line) regime.

b) Transistor turned OFF with charge carriers transport interdicted.

concerns only the electrodes contribution. In this case the dark current is

very low due to the low charge carrier density in the channel, but a source-

drain bias of VD = - 0.5 V is still present between the two electrode to

collect the X-ray photogenerated carriers. The lack of an X-ray signal in

this latter case suggests two hypothesis: i) the X-ray generated charges are

not collected by the electrodes; ii) the photocurrent signal in the saturation

and linear regimes, as well as in the resistor configuration, has a different

nature. In both cases the processes involved in the X-ray detection in TIPS-

pentacene photoconductors and thin film transistors are still unknown, but

the OTFT structure offers great advantages for a deeper investigation of this

behaviour.



Chapter 6

OSSCs as Alpha particle

Sensors

Alpha particles consist of 2 protons and 2 neutrons bonded by the nu-

clear strong force, chemically a (fully ionized) helium atom (He++). They

are massive monoenergetic particles (range 4 ÷ 6 MeV) and they are usually

emitted by alpha decay of heavy nuclei. Alpha particles have strong inter-

action with matter and therefore a high ionizing power and low penetration

depth, up to few centimeters in air (figure 6.1) and few micrometers in mat-

ter. Charged particle detectors have wide application in any field that involve

nuclear radioactive materials, from nuclear physics and medical monitoring

to national security purposes. Semiconductors are widely used for charged

particle detectors. So far all such devices have been made of inorganic ma-

terials, primarily using silicon but also with wide bandgap materials such as

diamond or CZT. Since the great results obtained employing organic materi-

als in X-ray sensing application, their further exploitation in charge particles

detection application is extremely interesting. In this chapter I will discuss

the state of art of organic alpha detection (6.1) and the first experimental

evidence for charge particle detection employing 4HCB OSSCs, obtained by

means of pulse-height analysis and of the transient response of pulses gen-

erated from alpha particles at room temperature (6.3). This work has been

137
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(a)
(b)

Figure 6.1: Energy loss (a) and residual energy (b) in air of an alpha particle

with initial energy of 5.49 MeV (from SRIM calculation) [156].

carried out during my stay at the University of Surrey (UK), in the group of

Prof. P. Sellin.

6.1 Overview on Organic alpha particle de-

tectors

The possibility to detect charge particles with organic materials (poly-

mers) has been demonstrated by Beckerle and Strobele [157]. They used a

standard polyacetylene synthesized in foils of thicknesses of 10, 50 and 100

µm, mounted on a rigid frame. The charges, created by the α-particles of

5.4 MeV from 242Am source, were separated and transported to the elec-

trodes by the electric field which resulted from the very high voltage (1 - 5

kV) applied to two coplanar gold contacts. The foil dimensions were 1 cm x

1cm; the particle beam was collimated down to 3 mm and its position was

known to a precision of better than 1 mm. The experiment demonstrated

that charge transport was effective over the full distance between the elec-

trodes (about 1 cm) at a drift velocity of about 40 cm/s, but that only those

charges which were set free in the 6-7 µm nearest the contact surface of the
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Figure 6.2: Schematic diagram of the analog pulse height analysis arrangement.

foil were collected. All other charges were probably trapped when trying to

move perpendicular to the surface of the foils. This trapping process has the

implication of strongly limiting the charge collection efficiency. By stretch-

ing the foil, the drift velocity in the direction of the stretching is shown to

increase, indicating a strong anisotropy of the charge transport. During all

experiments the device was kept under dry argon atmosphere because poly-

acetylene was destroyed with time when exposed to traces of oxygen and

water.

6.2 Experimental Setup

The alpha particle detector used in this work was fabricated by a 150

µm thick 4HCB single crystals. Electrical contacts were fabricated both in

a planar structure, with pads 400 µm away from each other, and in a sand-

wich configuration with 100 nm thick gold electrodes on both the top surface

and the substrate surface of the crystal, forming a metal-semiconductor-

metal (MSM) device structure. The pulse height spectrum of alpha particles

produced by the 4HCB devices was acquired using the setup schematically

illustrated in figure 6.2. Alpha particle irradiation was performed in air at

room temperature using a 241Am source, with the alpha particles impinging

on the top surface. In sandwich configuration the bias voltage was supplied

to the electrode on the top surface, with the electrode on the substrate sur-

face connected to ground. Measurements were made with both positive and
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Figure 6.3: TRIM simulation of 4.48 MeV (residual energy after 1 mm of air)

alpha particles into the 4HCB crystal: a) trajectories struggling and b) energy loss

through the material.

negative bias, in the range 100-800 V, if this doesn’t make any differences

in planar configuration, it corresponds to irradiation of the anode and cath-

ode, respectively, in sandwich-type samples. The uncollimated 5.49 MeV
241Am source, with an activity of 185 kBq, was positioned inside a chamber

at a distance between approximately 5 mm and 17 mm from the device, so

that the mean energy loss of the alpha particles in air was evaluated from

the calculation-derived plot reported in figure 6.1b. In figure 6.3 the sim-

ulation of 4.48 MeV (energy after 1 mm of air) alpha particle trajectories

and energy loss in 4HCB crystal are shown. The mean particle range is

approximately 25 µm. The contact on the top surface of the device was

connected to a charge sensitive preamplifier (eV model 550), with a rise

time of approximately 160 ns, through which the bias voltage was applied.

The preamplifier output was connected to an analog multi-channel analyzer

(MCA CANBERRA model multiport II) via a spectroscopy shaper amplifier

(ORTEC model 570, max shaping time of 10 µs) which simultaneously ac-

quired pulse height spectra. The preamplifier and shaper amplifier outputs

were connected to a four channel digital oscilloscope (Tektronix TBS3034B,

300 MHz bandwidth), triggered on each pulse, to monitoring the signal and

the noise. The acquisition time was set to 1000 sec live (i.e. excluding the

MCA dead time that in this measurements can be as high as 20%). After a
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Figure 6.4: Schematic diagram of the digital pulse height analysis arrangement.

proper calibration, MCA channels were associated to energy values. In an-

other configuration the preamp output was directly connected to the digital

oscilloscope and the pulses were captured on an event-by-event basis and the

waveforms were digital stored in a file (figure 6.4). The acquired data file

was analysed offline on a pulse-by-pulse basic using Labview software. The

analysis used a digital CR-RC shaper (time constant of 50 µs) to histogram

the pulse amplitude and also the preamplifier 20-80% pulse rise time. An

example of the same digital shaping already used in detectors pulse height

analysis can be found in [158].

6.3 Results and Discussion

Figure 6.5 shows 241Am alpha pulse height analog spectra for 4HCB OS-

SCs devices, in planar and sandwich configuration respectively, acquired for

1000 s, with an analog MCA and shaping time of 10 µs, for various applied

positive voltages after the background subtraction. The first 150 channels of

the spectra are cut in order to exclude large background counts that cause

the instrument saturation; nevertheless the MCA acquisition dead time is

still about as high as 10%. The figures don’t show any characteristic alpha

peak but only large broad distributions in which the counts increase as the

voltage increases. Figure 6.6a reports the comparison between the spectrum

at V = 300 V in figure 6.5a and one obtained in the same conditions but

with a paper foil interposed between the alpha source and the detector. The
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(a) (b)

Figure 6.5: Pulse height spectra collected with analog MCA acquisition for a)

planar configuration (L = 400 µm) and source-sample distance Ds−α = 6 mm. b)

vertical sandwich configuration (L = 150 µm) and Ds−α = 10 mm.

paper is thick enough (≈ 100 µm) to stop all the alpha particles. The plot

obtained from the shielded sample is completely flat, hence the broad dis-

tribution in the black plot (obtained from the unshielded measurement) is

effectively due to alpha particles. Figure 6.6b shows the dependency of the

spectrum on shaping time. This, together with large dead time and broad

spectrum, suggests an incorrect shaping of the signal that causes high charge

loss. Indeed, in this configuration the measurements are affected by the very

slow transients typical of organic materials. The typical pulse in 4HCB sin-

gle crystal is reported in figure 6.7a, as acquired from preamp output; it

shows that the transient time is in the order of 100 µs, much longer than ns,

typical of inorganic semiconductor detectors. In such a system the shaping

time is limited by the shaper amplifier, thus a different setup based on digital

post-processing analysis, that allows arbitrary longer shaping time, has been

used. Digital post-process analysis allows to test different shaping settings

on the same series of data. After some tests and parameters optimization,

we chose an CR-RC shaper with slow time of 50 µs, fast time of 5 µs, and

a multi-channel digital analyser at 512 channels. An appropriate shaping

time reduces the charge loss during the shaping of the signal, and, there-
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(a) (b)

Figure 6.6: a) Spectrum differences between free (black) and shielded (red) alpha

radiation source. b) Shaping time dependence of the spectrum. Applied bias V =

+ 300 V in both plots.

fore, by employing digital analysis the detector shows a broad well-resolved

full-energy peak (figure 6.7b). Also in the comparison between the spec-

trum under alpha irradiation and the background spectrum the differences

are better resolved. In figures 6.8a and 6.8b the digital pulse heigh spectra

are reported as function of applied bias voltages for planar and sandwich

structure respectively. The detectors show full-energy peaks over the full

range of bias voltages. The position of the peak centroid increases to higher

channels with increasing bias voltage, i.e. due to better charge collection effi-

ciency. Actually, after a proper energy calibration employing the acquisition

of pulses of known values, the channel scale has been converted in energy

scale. For the calibration an electron-hole pair creation energy estimated as

W = 10 eV has been used. This procedure allows to perform the calculation

of Charge Collection Efficiency (CCE), defined as in eq. 6.1:

CCE(%) =
Collected Charges

Total generated charges
=

Peak Energy

Incident Energy
(6.1)

Figures 6.9a and 6.9b show the behaviour of calculated charge collection

efficiency. In planar configuration CCE initially increases approximately lin-

early and then saturates at high voltages ( V > + 600 V; electric field of 15
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(a)
(b)

Figure 6.7: a) Typical 241Am pulse in 4HCB single crystal at V = 500 V. b)

Digital processed pulse height spectrum of 241Am peak (black) compared to the

background noise (red) for V = 300 V and 50 µs of shaping time.

kV/cm). In the sandwich configuration, on the other hand, CCE increases

is linearly over the full tested voltage range 100 - 500 V (electric field up to

33 kV/cm). Overall, the maximum observed CCEs for organic crystals reach

55 % in planar and 50 % in sandwich configuration, much better than the

previous reported value for polymers (< 10 %) [157]. It should be stressed

that so far all the spectra have been reported for positive applied biases:

this doesn’t make any difference in planar geometry because the contacts are

ohmic and the alpha particles are stopped close to the crystal surface, thus

both electrons and holes are collected at the same time by the two electrode.

However, in sandwich configuration the positive bias voltage is referred to

the top electrode, i.e. only holes are drifted from top to bottom electrode.

Figure 6.10a shows the CCE for the same measurement performed on sand-

wich configuration for negative voltages (i.e. with cathode irradiation). In

this case the signal is due to electrons drifted and collected in the bottom

electrode. As in the case of positive bias, CCE is linear over the full range

of biases with comparable values (34 % for negative and 38 % for positive at

400 V).
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(a) (b)

Figure 6.8: Pulse heigh spectra obtained with digital analysis for a) planar and

b) sandwich configurations.

Taking further advantage of the low penetration depth of apha particle

in materials, we can perform time-of-flight analysis. In fact, the charges

are all generating in the first 25 µm from the top surface of 4HCB single

crystal and therefore under positive bias the holes are drifted and collected

toward bottom electrode in a finite amount of time. Histogram of the rise-

time of the pulses shows a gaussian distribution peaked around 50 µs [159].

Figure 6.10b reports the corresponding holes drift velocity in function of the

electric field. The drift velocity value, up to 280 cm/s, is much higher than

what have been reported for polymers with the same techniques (40 cm/s)

[157], this underlines the better charge transport in organic single crystals.

Remarkably, the holes mobility value, extracted from the linear fit of the

velocity vs. electric field plot, is equal to (5.6± 0.9)× 10−4 cm2/Vs, in very

good agreement with values reported in literature for best performing 4HCB

crystal along c-axis [113].

In this chapter preliminary assessments of the detection capability of al-

pha particle by means of organic single crystals have been reported, as well as

the possibility opened in terms of new tools for organic materials investiga-

tion (such as mobility, drift velocity or µτ measurements). However, further

investigations are needed in order to perform a direct measurement of the
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(a) (b)

Figure 6.9: Charge Collection Efficiency (CCE) vs. applied voltage plot for a)

planar and b) sandwich configurations (anode irradiation).

electron-hole pairs creation energy and a better estimation of CCE. More-

over, to verify the reliability of the exploitation of organic semiconductors

for particle detection, the long-term stability and radiation damage of the

envisaged material under alpha irradiation should be studied.
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(a) (b)

Figure 6.10: a) CCE vs. applied voltage plot for sandwich-type configuration

and negative voltage between - 100 V and - 400 V. b) Drift velocity vs. Electric

field plot for holes.
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Chapter 7

OSSCs as Chemical Sensors

One of the bottlenecks of organic electronics is its extreme reactivity of

organic materials to humidity, oxygen and other reagents in the atmosphere,

that strongly affect and deteriorate the electrical performances of devices,

which often require an encapsulation. However, their reactivity could be ex-

ploited for the realization of organic-based chemical sensor. One of the most

common transducing mechanisms for organic materials-based sensors is the

chemiresistive one, which relies on the variation of the sensing material re-

sistivity when this is exposed to an analyte [160]. Practical advantages of

organic-based chemiresistors (OCRs) include operability at room tempera-

ture, ease of fabrication (either by wet or vacuum processing), potential for

low-cost production and high throughput manufacturing. However, these de-

vices suffer from problems of long response times, pronounced drifts, limited

reversibility. Usually in most common OCSs based devices the resistivity

increases upon the analyte adsorption, e.g. in OCSs based on composites

constituted by carbon black-based phase, dispersed in a host matrix made

up by insulating or semiconducting polymers or molecules [160, 161]. This

approach allows to reach low detection limits (down to a few ppms of an-

alyte) [162], but the response reproducibility is limited by the difficulty of

controlling the film morphology and characteristics. A class of OCRs, based

on conjugated polymers are already on the market [163], even if, they suffer

149
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from pronounced sensitivity to humidity, low reproducibility, response drift

and short device lifetimes, linked to excessive analyte diffusion into the poly-

mer layer. Moreover, OCRs based on thin films of semiconducting molecules

have been made, that thanks to their nanostructured nature reach hence a

very good sensitivity, down to a few tens of ppbs [164].

The modulation of the resistivity in Organic Semiconducting Single Crys-

tals (OSSCs) by means of electronic functionalization of the surface with

self-assembled monolayers, has been recently assessed [165]. Up to date no

report on the use of organic semiconducting single crystals (OSSCs) as sens-

ing materials in OCRs has been published, despite their significant potential

interest. In fact, OSSCs possess a well definite bulk structure and controlled

and reproducible electronic characteristics, which could be translated into

reliable sensing responses. Moreover, the ordered packing of organic single

crystals offers a clear potential for an effective limitation of the diffusion of

analyte molecules into the compact crystalline lattice, which could results

in negligible degradation and/or hysteresis and lower current drifts. From a

more fundamental point of view, the study of OSSCs as sensing materials,

thanks to their structural order, could add important information on the

sensing mechanisms of organic semiconductors.

In this chapter will be presented the study over 4HCB single crystals (see

par. 3.4.1) These devices have been tested as chemiresistors under the effect

of saturated vapours of ethanol, isopropanol and heptane, in two different ex-

perimental setups. In both cases, when exposed to the alcohols, the devices

show a marked current increase, of one order of magnitude or more. Notably,

the response times are in the range of one second or lower and the overall re-

covery times found for these devices are very short, lower than 30-40 seconds,

with absent (or negligible) drift currents and hysteresis effects, and no need

for forced analyte desorption. When exposed to vapours of heptane, which

is an apolar molecule, the devices show no appreciable response. On the

basis of these evidences, hypotheses over the alcohols detection mechanism

are presented.



7.1 Experimental Setup 151

(a) (b)

Figure 7.1: Sketch of the two experimental configurations: a) free crystals (setup

A), b) sealed crystals (setup B).

7.1 Experimental Setup

4HCB single crystals have been contacted with an electrodes configu-

ration able to probe possible three-dimensional anisotropic response of the

crystals to the analytes, and with different measurement setups, aimed to

investigate different aspects of the detection phenomenon. In the first used

setup A, as depicted in figure 7.1a, electrodes 1, 2 and 3 probed the axes a

and b of the planar surface, and the corresponding bottom electrodes probed

the axis c (crystal thickness). In the setup B (figure 7.1b), the single crystals

contacted as in A, were embedded in epoxy resin on the sides. Saturated

vapours of the analyte (ethanol, isopropanol and heptane) were blown to-

wards the contacted crystals using a Pasteur pipette. This method allowed

to, simply and reliable, deliver to the crystal surface saturated vapours of

the selected analyte, minimizing possible interfering effects from other atmo-

sphere components, like water, nitrogen or CO2. A good reproducibility of

the response has been assessed over tens of devices (prepared using crystals

grown from different batches, with different geometrical parameters, in dif-

ferent experimental sessions and with different applied biases). Besides the

positive outcomes, this method had the drawback of not allowing to quanti-

tatively determine the amount of analyte blown onto the device surface. The
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(a) (b)

Figure 7.2: Response of 4HCB crystals exposed to ethanol vapours, at different

biases, a) along the planar axes and b) along the vertical axis for electrode distance

of 500 µm. Inset: response of the planar axes to repeated exposures of ethanol.

devices were tested with different bias voltages (between 20 V and 200 V)

applied between couples of electrodes selected in order to probe the response

of the desired axis of the crystal.

7.2 Chemiresistor effects

Upon exposure to ethanol vapours, 4HCB crystals contacted as in setup A

presented a marked current increase (almost two orders of magnitude) along

any crystal axis (figure 7.2). This behaviour occurs at all the tested biases,

and is opposite to the one observed for most of the currently studied OCRs,

where the presence of the analyte causes a decrease of the measured current

(i.e. a resistance increase) [160, 161, 162, 163, 164]. Despite the difference in

the crystal mobilities along the axes a and b (which are about 10−1 − 10−2

cm2/Vs) and that along c (which is about 10−5 cm2/Vs), we were not able

to detect significant and systematic anisotropy in the detected responses.

The starting currents were found to be in the range of 10−10 − 10−8 A for

each different couple of electrodes probed, and the corresponding current

increase upon exposure to the analyte was in the range of one-two orders of
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magnitude, independently from the considered crystal axis. Therefore, we

will refer from now on, unless differently stated, only to isotropic detection.

A typical sample measured in the planar configuration with a 50 V bias, with

a contact distance of about 500 µm exhibited a base current of 1×10−9 A and

a current response of 1× 10−7 A. Considering the device response to ethanol

under an applicative point of view, very interesting features are found:

� the response time (i.e. the time to rise from the baseline up to the

maximum peak upon analyte exposure), ranging always below 1 second,

are much faster than those of the currently considered OCRs, which

are in the best cases in the range of several tens of seconds [160, 161,

162, 163, 164];

� the recovery time (i.e. the decay time back to the baseline value after

the exposure) are shorter than 40-50 sec, shorter than those usually

found for other non-nanostructured OCRs, that are in the best cases

in the range of minutes [160, 161, 162, 163, 164]. This feature is well

reproducible over repeated analyte exposures and in several different

devices, and the visible changes in the intensities of repeated blows are

likely due to non-constant amounts of vapour delivered on the device;

� current drift after recovery is negligible;

� the baseline recovery is achieved without the need for any forced analyte

desorption.

All these features suggest a good potential for practical applications of these

crystals in alcohol sensing (as for example in portable ethylometers), pro-

vided that a more quantitative assessment of the detection performances is

conducted. It is also interesting to observe that the above mentioned features

are verified at each of the tested biases, clearly pointing to a negligible, if any,

penetration of the analyte within the crystal. Only for voltages higher than

100 V a very small current drift was observed, which could be attributed

to charge accumulation phenomena, rather common for 4HCB at such high
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(a) (b)

Figure 7.3: a) Response to ethanol (EtOH), isopropanol (i-prop) and heptane of

4HCB and a control glass slide, using the experimental setup A. The measurements

are referred to the planar axes of the crystal. b) Comparison of the response to

EtOH between setup A(free 4HCB) and setup B (sealed crystal) along c-axis. All

graph are reported at 50 V.

fields. The applied voltage does not seem to influence the current response

in terms of ∆I/I. As a general observation, the mentioned performances have

been obtained in the regime of analyte quasi-saturation. In these conditions

the high concentration of the alcohols, which are also solvents for 4HCB,

could in principle result in local dissolution of the external crystal layers.

However, this possibility was excluded by the enhanced repeatability of the

response upon frequent, subsequent measurements on the same sample (fig-

ure 7.2a, inset), highlighting an intrinsic robustness of the devices.

7.3 Intrinsic effects

To evaluate the possible influence of a surface thin film layer formed by

analyte molecules simply adsorbed on the crystal surface in terms of direct

conduction of charges between the electrodes, the response to ethanol of

a bare, electrically contacted glass slide, with identical geometries and in

the same experimental conditions (setup A) used for the previous tests was
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measured. As is visible in figure 7.3a this control device showed a current

response almost two orders of magnitude lower than that of the 4HCB crystal

(compare the pink curve - glass slide - vs. the violet curve - 4HCB). Using a

different alcohol, isopropanol, the overall results in terms of crystal response

were of the same magnitude and a similar result was obtained exposing the

quartz slide to isopropanol (dark cyan curve - glass - vs. blue curve - 4HCB).

In detail, the ∆ I = ION - IOFF (with ON = current when exposed to the

analyte, and OFF = base current) for 4HCB was about 5 × 10−8 A for

ethanol and 3 × 10−8 A for i-propanol, while for the glass slide these values

were found to be 2×10−9 A and 1×10−10 A, respectively. Therefore, in each

case the current that can be ascribed to the adsorbed analyte layer accounted

for no more than 5% of the total signal found when 4HCB was the detecting

element, assessing in this way the efficacy of 4HCB crystals as alcohol sensors,

and testifying that the conductive layer formed by analyte molecules on the

crystal/quartz surface contributed negligibly to the observed current increase

upon analyte exposure.

In another test, the apolar n-heptane molecule was blown over 4HCB devices.

This resulted in very low currents, similar to that of a glass-based control

device exposed to the same vapours (figure 7.3a, olive curve - glass - vs.

green curve - 4HCB). This suggests that the polarity of the analyte has an

important effect on the detection capabilities of the device. The substantial

equivalence of the response of the control quartz slides exposed to vapours

of ethanol, i-propanol and heptane indicates that these low-level signals are

due to thin layers of analyte adsorbed on the device surface. Although the

contribution to conduction of these surface-adsorbed analyte layers is clearly

minor with respect to the overall response of the 4HCB-based devices, it was

interesting to investigate the role of this conduction pathway with respect to

the crystal response along the c axis (crystal thickness).

Therefore, it was realized an experimental design aimed at preventing the

analyte to be adsorbed on the lateral crystal facets (i.e. the crystal thickness),

by means of embedding the 4HCB crystal in an epoxy resin (gas-impermeable
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to alcohols and olefins) (Setup B, figure 7.1b). The measurements carried

out along the vertical axis with setup B exhibited a systematic lower re-

sponse to ethanol with respect to the analogous devices realized with setup

A, while at the same time conserving very similar recovery times (see fig-

ure 7.3b). This suggests that the molecules that get physically adsorbed on

the sides of the crystals when the device is operated in the setup A, con-

tributed partly to the overall response, but not in a substantial way. Most

interestingly, the above described results highlight that the presence of a

surface-adsorbed analyte conductive pathway on the sides of the crystal is

not the primary cause of the current increase upon analyte detection along

the crystal thickness. This means that the detection mechanism involves

phenomena occurring in the crystal bulk, rather than on its surface, and this

represents a truly puzzling finding, especially considering that the average

crystal tested had thicknesses ranging from 350 to 700 µm, hence tunnelling

effects of any kind are definitely ruled out as possible sources of current in-

crease upon analyte detection. The effect of the alcohol polar molecules on

the crystal surface is easily explained considering the documented surface

conductivity increase determined by SAMs applied to organic semiconduc-

tors [166, 165]. However, these reports refer only to experiments in which the

conductivity of the semiconductor surface is enhanced, while in our case the

current increase phenomenon is measured through several hundreds of mi-

crons of crystal thickness. Therefore, it is necessary to hypothesize that some

electronic effect due to the presence of the polar analyte operates throughout

the bulk of the crystal, decreasing its bulk resistivity.

7.4 Modeling

The results relative to the poor response caused by the exposure to

heptane suggested also a fundamental question: what is the role of polar

molecules in inducing the observed current increase? To answer that, we

analysed in more depth the detection mechanism. In particular, observing
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(a) (b)

Figure 7.4: a) Transient section indicating different time constants and b) sketch

of apolar tails (up) and polar heads (down).

the profile of the response curves, it is possible to notice that the decay part of

the curves are not fully exponential, but present more than one contribution

to the desorption mechanism. On the basis of this observation, and consid-

ering the chemical nature of the analytes and of the 4HCB crystal, it seems

reasonable to explain this trend considering the different spatial approach of

the analyte molecules to the 4HCB crystal surface. In particular, ethanol

can approach the crystal surface via its polar head (the -OH group) or its

apolar tail (its -CH3 group), see figure 7.4b. Previous work carried out by

Ghimbeu et al. [167] showed that these two different approaches to the sur-

face of active carbons functionalized with -OH groups (hence a polar surface

not dramatically different from that of 4HCB crystals) present two different

desorption temperatures, detectable by temperature-programmed desorption

coupled to mass spectrometry (TPD-MS). In particular, the alkylic function

of ethanol results to be less bound to the polar surface than the alcoholic

one, and the higher affinity of the ethanol polar head towards polar surfaces

has been assessed also for silica [168]. The decay part of the curves obtained

along the planar axes may be divided into three different sections, which are

labelled as I, II and III in figure 7.4a. These three parts of the signal have

clearly different decay time constants: the fastest one can be ascribed to the
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(a) (b)

Figure 7.5: Comparison between multi-constant exponential decay. a) between

two and three time constant (τ) in 4HCB and b) between one and two time con-

stants in glass.

desorption of ethanol multilayer, the second can be due to the desorption of

the apolar tails and the slowest one to the desorption of the stronger bounded

polar heads. Upon fitting them with exponential curves, the time constants

for the three curve zones are to be determined: the fastest one ≈ 0.06 s, the

medium one ≈ 0.5 s and the slowest one ≈ 5 s (see the well fitted curves

with three time constant in figure 7.5a). Figure 7.5 highlights that the 4HCB

desorption transient is effectively well fitted only through a three time decay

constants. Moreover, the different nature of the reference transient on glass,

is supported by observing that only two time constants are sufficient to fit

the glass transient (see blue line in figure 7.5b), but not for the 4CHB one

(see the bad fit of two time constants, blue curve in figure 7.5a).



Chapter 8

High Mobility Crystalline

Organic TFTs

So far, rubrene (RUB) has been considered the benchmark among or-

ganic semiconductors, since it shows the highest performances observed in

its single-crystal phase (see section 3.4.2). Therefore, many efforts have been

made to utilize RUB in OFETs and solar cells [169, 170]. If single-crystal

thin films could be more easily obtained, they would represent a significant

step for the integration of RUB in electronics. Unfortunately, even if single

crystals as thin as 150 nm have been grown on flexible and plastic substrates,

the poor control of the growing process has limited their integration [148],

and only amorphous thin films have been obtained by conventional deposition

techniques [171].

Recently, crystalline thin films were deposited by strictly optimizing the

growth conditions. RUB films containing large distinct grains were grown by

hot-wall deposition [120], while polycrystalline thin films were obtained by

evaporating RUB on top of different organic buffer layers [172, 57, 58] or by

using post-growth treatments [173, 174]. However, the quality of the resulting

organic films was poor in terms of the coherence of the crystalline domains.

To overcome these limitations, homoepitaxial and heteroepitaxial RUB thin

films have been grown, they exhibited a unique orientation of the crystallites

159
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[175, 176]. These have also been integrated in field-effect transistors [177, 57].

However, in most of these examples, the integration was hindered by the na-

ture of the growth process. Specific crystalline substrates were required for

epitaxy, and this prevented the use of epitaxially grown films in FETs that

utilize conventional insulators. Recently, crystalline boron nitride as dielec-

tric material has been proposed as a solution to overcome this limitation,

allowing the direct integration of high-crystalline RUB thin films with the

dielectric in FETs [178]. Unfortunately, despite the good transistor efficiency

achieved, this technique gives crystalline RUB domains with lateral sizes lim-

ited to a few tens of micrometers. In this chapter, we report about use of

Organic Molecular Beam Epitaxy (OMBE see par. 1.2.1) to grow millimeter-

sized, crystalline, and fully oriented free-standing thin films of orthorhombic

RUB, without any post-growth treatment. The thin film growth, the struc-

tural and the morphological characterization were performed by the group of

Prof. A. Sassella at University of Milano Bicocca and have been submitted for

publication [179], as most of the results presented in this chapter. We carried

out the electrical characterization of film as-grown and transferred to differ-

ent substrates, the photocurrent characterization and in the end we realized

a thin-film transistors with the employment of free-standing RUB films, ob-

taining high-efficiency devices, with performances comparable to transistors

made based on RUB single crystals. This part of the work has been carried

out during may stay at the Department Mechanical and Process Engineering

(D-MAVT) at the Optical Materials Engineering Laboratory (ETH, Zurich)

in the group of Prof. D. Norris.

8.1 Rubrene Thin Film Structure and Mor-

phology

RUB thin films were grown by OMBE under ultra-high vacuum (pres-

sure ≤ 5 × 10−9 Torr). Film thickness varying between 15 nm and 150 nm

have been investigated. Centimeter-sized (010)-oriented single crystals of β-
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(a)
(b)

Figure 8.1: a) AFM images of 50 nm-thick RUB films grown on β-ala(010). b)

Specular XRD scans of the film wet-transferred onto a Si(100) plate, collected

before (black) and after (red) an annealing treatment at 80 � for 3 h in air. The

peaks are indexed in accordance to the orthorhombic polymorph structure. The

inset reports a zoomed view of the 200 reflections.

alanine (β-ala) [180] was chosen as substrates, in view of its potential ordering

effect on small molecule, thus giving crystalline RUB thin films without any

buffer layers or post-growth treatment [181]. The structure and morphol-

ogy of our RUB thin films were investigated ex-situ by combining atomic

force microscopy (AFM), X-ray diffraction (XRD), and electron diffraction.

A complete characterization and more detailed discussion about the thin

growth are in [179]. RUB thin films grow on β-ala(010) in layered islands,

they cover completely the substrate surface after few nanometers of deposi-

tion. These layers are arranged in a pyramidal morphology, with polygonal

edges having an elongated hexagonal shape. These elongated features run

parallel to two directions highlighted by the white arrows in figure 8.1a and

are uniformly spaced of around 1.35 nm. The two two symmetrically equiv-

alent RUB domains are rotated by exactly 26.5◦ (±13.25◦ to β-ala[001]), as

illustrated in figure 8.1a. The high solubility of this substrate in water and

the availability of relatively easy techniques for its growth in solution are

additional benefits. In particular, the solubility of β-ala enables the trans-
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fer of large-area (about 10 to 20 mm2), free-standing crystalline RUB thin

films onto any chosen substrate. In figure 8.1b are shown the results of XRD

specular scans on films wet-transferred onto Si(100) substrates. The (h00)

reflections of the orthorhombic polymorph of RUB [121] are visible, demon-

strating the crystallinity of the films and a complete textural order with the

RUB(100) plane in contact with β-ala(010).

8.2 Electrical Characterization

To get a further insight into the performances and transport properties

of RUB thin films grown on β-ala, an electrical characterization have been

carried out. Metallic gold electrodes were deposited on the growth side of

the film, by thermal evaporation in high vacuum chamber (10−6 Torr), by

means of shadow masks so that the conductive channels are aligned to the c

axis of β-ala (roughly corresponding to the high mobility b-axis of rubrene).

Two gaps were realised on each crystal, equal to 50 µm and 90 µm. In figure

8.2a an optical microscopy picture, in bright and dark field, of a millimiter

sized RUB thin film on β-ala substrate (with c-axis highlighted) as well as a

sketch of the device for electrical measurements are shown. Three kinds of

RUB film with thickness of 15 nm, 50 nm and 75 nm have been tested.

Current-voltage measurements were performed in the dark, in air and

at room temperature. Through the Space Charge Limited Current (SCLC,

see par. 3.1.1) analysis we studied the electrical transport properties of the

thin films determining also the charge carrier mobility as a function of the

thin film thickness. Experimental plots that exhibited SCLC behaviour are

reported in figure 8.2 for channels length of 90 µm. Two models can be used

for SCLC analysis of gap-type structure: the first for thin films that follows

the 2D geometry Geurst law (eq. 3.7), and the second for thick samples that

follows an equation similar to the Mott-Gurney one for 3D geometry (eq:

3.8). The experimental curves have been analysed employing Geurst law to

extract parameters, because in our case the thickness value that discriminate
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(a)
(b)

(c) (d)

Figure 8.2: a) Scheme of the RUB thin film device for electrical characterization.

W is the channel width, L is the channel length (50 µm and 90 µm). Optical

picture in bright and dark field microscopy are also reported. Current-voltage

characteristics for RUB thin film on β-ala, b) 15 nm, c) 50 nm and d) 75 nm thick.
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Thickness VTFL µ θ NT n0

nm V cm2/Vs ×1013 cm−3 ×1011 cm−3

15 570 ± 5 (1.3± 0.2)× 10−2 0.05 2.3 0.8

50 534 ± 5 0.20 ± 0.02 0.4 0.9 4.5

75 555 ± 5 0.31 ± 0.03 0.1 1.0 1.3

Table 8.1: Electrical parameters for rubrene thin film with three different thick-

nesses, calculated with the Geurst theory.

between the two models is ≈ 34 nm, according to 3.9. In the plots the

red lines indicate the ohmic region at low bias, the green lines the space

charge region dominated by traps and the blue lines stand for the trap-free

region. Values for VΩ, VΩ′ and VTFL are written on the graph. From the

ratio between VΩ and VΩ′ it is possible to calculate θ, i.e. the ratio between

the density of free carriers achieved under injection and the total density

of injected carriers, trapped and free. We note also that the knowledge of

VTFL makes it possible to calculate the mobility and to estimate the density

of traps Nt of the film. The in-plane rubrene static dielectric constant was

assumed to be εr = 2.6, the mean value extrapolated from the crystal full

dielectric tensor at ω = 0 [182]. The extracted values are reported in table

8.1 for L = 90 µm; the same measurements performed at channel length of

50 µm gave similar results in the experimental errors. The mobility increases

with the film thickness. The value of mobility of the thinnest film (15 nm)

is very low, suggesting that the electrical transport is not very good with a

so thin sample. A completely different situation occurs in thicker samples:

the mobility raises more than one order of magnitude already at 50 nm, and

only slightly increases for 75 nm film thickness. Also the other parameters

get better compared to the thinnest sample ones. The density of traps states

NT decreases, the θ value and the density of thermal carriers n0 increase.

Remarkably, the value of NT and n0 for 50 nm and 75 nm films are in good

agreement with what have been obtained for rubrene single crystals [109].
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Overall, the mobility reaches the average performance value of the rubrene

single crystals, however, by employing organic thin film transistor structure

and by improving the fabrication technique we reached high mobility values,

comparable to those typical of standard rubrene single crystals (see par.

8.4.2).

8.3 Opto-electronic Characterization

Wavelength-resolved photocurrent spectroscopy was performed on both

rubrene bulk single crystals and thin films using coplanar contacts oriented

along the high-mobility b-axis of rubrene, with the light sent on the sam-

ple at normal incidence on the (b,c) plane of the crystal. The spectra have

been collected using monochromatic light, emitted by an halogen lamp and

selected by a monochromator, with a spectral resolution of 1 nm. Measure-

ments were performed with the aperture of the two slits in input and output

of the monochromator equal to 2000 µm and 250 µm. The biases applied to

extract the photogenerated charge carriers were 3 V and 13 V. As has been

done for electrical characterization, both the two channels of 50 µm and 90

µm were investigated. Preliminary measurements were performed in all of

the configurations described above , in order to exclude the presence of effects

due to the variation of electric field (applied voltage) or due to the number of

photoinjected carriers (slits aperture). Once we assessed that no changes oc-

cur in the shape and in the peaks position of photocurrent spectra, 2000 µm

slits, 13 V of applied bias and 90 µm of channel length configuration has been

chosen. Figure 8.3 reports the photocurrent spectra of rubrene thin films of

three different thicknesses: 15 nm, 50 nm and 75 nm, compared with the PC

spectrum collected for a rubrene bulk single crystals. All the spectra show

the same onset i.e. the energy gap of the three thin film is the same of the

single crystal: 2.2 eV. Furthermore, also the peaks above band-gap (i.e. at

2.37 eV, 2.54 eV, 2.73 eV and 2.90 eV) are present in all the spectra collected,

indicating a comparable energetic structure of the thin film and single crystal
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Figure 8.3: Comparison between the photocurrent spectra of a standard Rubrene

bulk single crystal (blue line), and thin film samples with three different thicknesses

(75, 50 and 15nm).

samples and therefore assessing the single-crystal quality of the thin films of

all the investigated thicknesses. The thinnest 15 nm film exhibits a low and

noisy signal, denoting a poor charge collection, in accordance with the bad

electrical transport properties shown in current-voltage characterization; the

energy gap and the peak positions indicate, however, that the structure is

ordered even for such a thin film. Further measurements were performed on

thin films transferred on different substrates, in order to investigate how the

wet-transfer process affects the opto-electronic features of the films. In figure

8.4 the photocurrent spectra of rubrene thin films 150 nm thick transferred

on SiO2 and glass substrates are reported in comparison with an as-grown

film on β-ala. All the three spectra present energy gap of 2.2 eV and the same

peak positions, typical of rubrene single crystals and already observed for the

other thin films. Moreover, the spectra on β-ala and on glass are surprisingly

similar, almost completely overlapped; this points out the effective possibil-

ity of transferring the film on different substrates without affecting the film

structure. On the other hand, the intensity of the spectrum of the sample

on SiO2 is lower and more noisy, probably due to the rough surface of such
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Figure 8.4: Comparison between the photocurrent spectra three rubrene thin

film samples: SiO2 (green), β-ala (red) and glass (blue).

substrate, detrimental for the thin and fragile film more than the transfer

process itself. More informations on SiO2/RUB interface have been obtained

by OFET measurements in the next section (see par. 8.4.1). The comparison

of the photocurrent with the absorption spectrum of the same film shows an

antimodulation of the peaks, i.e. a peak in absorption spectrum corresponds

to a valley in the photocurrent spectrum and vice versa (figure 8.5a). In lit-

erature the antimodulation observed in bulk rubrene single-crystals has been

associated to trap-dominated transport related to oxygen traps, meanwhile

only high ultra-pure single crystals exhibit photocurrent spectra correlated

to the absorption spectra [128, 8]. Several photocurrent measurements have

been carried out on bulk rubrene single crystals. Only few cases present

good correlation, thus it may be asserted that the major part of rubrene sin-

gle crystals show antimodulation behaviour (as reported in figure 8.3). It is

noteworthy that photocurrent measurements performed on RUB thin film on

cytop in TFT structure (see next section 8.4.2) give spectra correlated with

absorption (figure 8.5a) and very similar to high purity pristine RUB single

crystal photocurrent sprectrum in [128] (figure 8.5b). This is also the con-
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(a)
(b)

Figure 8.5: a) Comparison between the absorption spectrum (red line) with

antimodulated thin film on β-ala (blue line) and the correlated spectrum of thin

film on cytop (green line). b) The same spectrum on cytop (green line) compared

to pristine (dark red line) and trap-dominated (black line) spectra reported in

[128].

figuration with the highest mobility recorded among the investigated RUB

thin films.

8.4 Rubrene OTFTs

In order to definitely assess the quality and versatility of our thin films

for electronic applications, we fabricated back-gate FETs on two different

gate/dielectric systems. The first presents a Si substrate as gate electrode,

with few nanometers of thermal SiO2 as dielectric, employing a wet-transfer

method. In the second the RUB thin has been transferred on Cytop® as

insulating layer. Cytop, a hydroxyl-free fluoropolymer, is the benchmark

for the fabrication of high-efficiency organic FETs, showing low-hysteresis

and low shift of the threshold voltage under bias-stress [183, 56, 184]. The

particular growth of transferable/free-standing RUB thin films overcomes the

limits imposed by the high hydrophobicity of Cytop in back-gated thin-film

transistors, where the active layer has to be deposited on top of the dielectric
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(a) (b)

Figure 8.6: Optical microscope picture of RUB thin film 90 nm thick wet-

transferred on Si/SiO2 substrate, a) as trasferred, b) details of active channel

of L = 200 µm after thermal evaporation of Au 30 nm thick. Sketch of the device

in inset.

[185].

8.4.1 OTFTs with SiO2 dielectric

RUB thin film has been transferred on Si/SiO2 substrate, by wet-transferred

method as described in section 8.1. Then 30 nm of two coplanar source-drain

electrode have been thermally evaporated in high vacuum through a shadow

mask (channel length of 200 µm) on top of the semiconducting film. The

method enables to transfer large area films on top of the dielectric surface.

Figure 8.6a shows a 10 mm2 films as transferred on SiO2 and the sketch of the

full device in inset. A detailed picture of source-drain and transistor channel

is shown in figure 8.6b. The source-drain current (ID) in function of the drain

voltage (VD) at constant gate voltage (VG), i.e. the output characteristic,

and the ID in function of VG) at constant VD, i.e. the transfer characteristic,

are reported in figure 8.7 for a 90 nm RUB thin film transistor. From output

characteristics the ID saturation at high VD in the I-V plot is clearly visi-

ble, as well as the good linearity at low biases, suggesting a low source-drain

contact resistance. Moreover, from transfer characteristic both conduction
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(a) (b)

Figure 8.7: Output (a) and transfer (b) characteristic at different VG and VD,

respectively, for the device reported in figure 8.6.

regimes: linear behaviour at VD = 10 V for linear regime and parabolic

behaviour at VD = 50 V for saturation regime, can be clearly recognized.

In the plot of I
1/2
D vs VG in figure 8.8a ideal linearity, typical of saturation

regime, is better appreciable; no series resistance effects are visible at high

voltages. Nonetheless, even if a working OTFT device has been proven, it

is far from being satisfactory, in fact it suffers of several drawbacks. The re-

sulting device parameters, extracted from transfer characteristic as shown in

figure 8.8a, are µSAT = 2.6×10−2 cm2/Vs and VT = -11.3 V, for mobility and

threshold voltage respectively. The mobility, in particular, is low compared

to the value reported for single crystal FETs [52] and even lower than mobil-

ity measured by means of SCLC (8.2). It should be noted that the mobility

has been extracted from saturation regime, where it is possible to obtain only

the mobility mean value because it is not constant along the channel [39].

The mobility value in the linear regime results µLIN = 9.2×10−2 cm2/Vs, for

VD = 10 V (black line in figure 8.7b). Moreover, the source-gate current IG,

i.e. the leakage current is quite high, in the order of 3× 10−8 A, and induces

a slight decrease of the saturation current at high voltages. In addition,

the transfer characteristics are affected by huge hysteresis (figure 8.8b), that

strongly suggest a really bad dielectric-film interface, probably due the high
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(a) (b)

Figure 8.8: a) I
1/2
D vs VG at VD = - 50 V, showing the linearity of the saturation

regime. b) Forward and reverse transfer characteristics at different drain voltages

showing the hysteresis.

SiO2 roughness. The limited mobility values may be ascribed to the several

inhomogeneities present in the active channel (figure 8.6b), consistently with

the above non-ideal effects. In conclusion, we need to improve the transfer

process and use a proper dielectric, in order to have an homogeneous film and

a better semiconductor/dielectric interfaces. An improved device on Cytop

dielectric will be presented in the next section.

8.4.2 OTFTs with Cytop® dielectric

Device fabrication

Bottom-gate/top-contact RUB FETs were fabricated in air or under dry

N2 atmosphere, by means of RUB thin film wet-transferred to a glass sub-

strate coated with Indium Tin Oxide (ITO) and Cytop. An ITO-coated

glass substrate was rinsed in acetone, isopropanol, deionized water, and

ultraviolet/ozone-cleaned for 10 min. The insulating fluoropolymer Cytop

was then deposited by spin-coating at 500 rpm from a 3:2 solution on the

substrate (270 to 400 nm final thickness), the structure was then subjected to

thermal annealing (10 min at room temperature followed by 30 min at 90 �
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(a)

(b)

Figure 8.9: a) Schematic of a RUB thin-film transistor. b) Dark-field optical

image of a rubrene FET, showing devices with different channel lengths on the

same rubrene thin film.

and 30 min at 120 �, in air). A rubrene thin film (thickness of 50 nm) on a

β-ala substrate was transferred upside-down onto the ITO/Cytop gate elec-

trode, after which the substrate was slowly dissolved in deionized water. The

transferred thin film on Cytop was thermally annealed in dry N2 at 45 � for

1 hour to desorb residual water (that would be detrimental for the transistor

performances) and to promote adhesion between the dielectric and the thin

film. Gold source and drain electrodes of width 300 ≤ W ≤ 1000 µm and at

different spacing (channel length, 25 ≤ L ≤ 120 µm) were thermally evapo-

rated in high vacuum (∼ 10−6 mbar) through a shadow mask on the RUB

thin film. The source-to-drain electric field was preferentially aligned along

the original [001]β-ala direction, to be able to exploit the highest mobility in

the RUB film (known to be along the [010]RUB in single crystals [186]), thus

the shadow mask was aligned to the crystallographic direction of the thin

film under an optical microscope equipped with two polarizers. The transis-

tors were characterized before and after annealing of the contacts, performed

in air for 3 h on a hot-plate at a temperature of 80 �. A scheme of the full

device is shown in figure 8.9a; the dark field image shows the good quality of

the transferred film over an area > 2 mm2 and the defect-free active channel

of transistors (8.9b).

After the deposition of the contacts, we investigated for imperfections in



8.4 Rubrene OTFTs 173

(a) (b)

Figure 8.10: a) Optical micrograph of the RUB-based FET acquired with an

Olympus B51 microscope in reflection mode with Nomarski differential interference

contrast. b) Red-green-blue (RGB) intensity profile of the channel. The channel

length L is estimated as the FWHM of the intensity profile, here L = 42 µm. Inset:

dark field optical image of the device channel.

the as-fabricated device through dark-field optical microscopy. Only devices

showing no microscopic imperfections in the active channel area were selected

for the electrical measurements. Because of the different morphology of dif-

ferent transferred thin films, the channel width (W) and length (L) of the

selected transistors were individually determined under the microscope, as

shown in figure 8.10.

Electrical Characterization

Figure 8.11a shows the dependence of the source-to-drain current (ID)

of a RUB-based FET on the drain voltage (VD), at different gate voltages

(VG). The characteristics show ideal FET behavior: at low VD the current

increases linearly with the applied drain voltage and saturates at VD ∼ VG,

as expected for a long-channel FET with negligible contact effects. More-

over, the characteristics are nearly hysteresis-free, indicating a reduced effect

of charge trapping at the insulator/semiconductor interface, as for single-

crystal OFETs employing Cytop as an insulator [183]. Also, a negligible
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(a) (b)

Figure 8.11: a) Output characteristic at different negative gate voltages. It shows

remarkable low hysteresis, linear ID - VD at low drain voltage, and good saturation

of the characteristic when VD is comparable to VG, as for a conventional long-

channel MOSFET. b) Transfer characteristic at different drain voltages. RUB thin

film transfer of W = 570 µm and L = 120 µm. The dielectric thickness is ∼ 380

nm.

hysteresis is seen in the transfer characteristics (ID - VG) of our transis-

tors at different drain voltages (figure 8.11b). However, the trend of the ID

- VG characteristics deviates from the ideal behaviour observed with RUB

single-crystal transistors [187]. In the linear (black curve, VD = - 5 V) and

saturation (blue curve, VD = - 35 V) regimes, a substantial decrease of the

slope is observed at high gate voltages, after the initial increase in the lin-

ear and parabolic ID vs. VG regimes. This behaviour has been attributed

to the contribution of the parasitic resistance of the contacts [188, 189] or

to the dependency of the mobility on the gate voltage [190]. Both issues

are well known and documented bottlenecks for the development of organic

thin-film transistors. To avoid incorrect extraction of the charge mobility

(due to incorrect determination of the VT ), the mobility was extracted from

the characteristics of devices working in saturation and at the peak of the

derivative of the (ID)1/2 ∼ µ1/2(VG - VT ) characteristics. RUB-based FETs

show reasonably high charge carrier mobility (1 to 2 cm2/Vs values were
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(a) (b)

Figure 8.12: Transfer characteristics ((a) ID and (b) I
1/2
D vs. VG) of a FET

before (black) and after (red) annealing at 80� for 3h, showing a drastic increase

of the source-to-drain current at the same VG and a decrease of slope degradation.

Transistor channel dimensions are W = 290 µm and L = 50 µm; the thickness of

the dielectric is 430 nm. The mobility increase by 1.5 times, from 1.39 cm2/Vs

(as evaporated) up to 2.14 cm2/Vs (annealed). Transfer curve after annealing

is perfect linear also at high gate voltages. This improvement is due to a lower

resistance contact.

obtained for different devices), together with a low threshold voltage (- 2 V

< VT < + 6 V), an ON/OFF ratio of about 104 at ±15 V from VT in the

saturation regime, and a normalized subthreshold swing as low as S = 17

V nF/dec cm2 [19]. The transistor ON/OFF ratio was determined from

figure 8.13 along with additional information regarding the behavior of the

thin-film transistors in the subthreshold regime. Clearly, even with a residual

current in the OFF-state, the transistors show a reasonably high ON/OFF

current ratio (ION/IOFF ∼ 1 × 104 at ± 15 V from the VT in the satura-

tion regime, and slightly lower in the linear regime). Figure 8.14a shows the

transfer characteristics of a rubrene thin film FET in the saturation regime

(VD = - 30 V) after a short positive gate-bias stress (VG = 20 V for 30 s).

A clear shift of the threshold voltage is observed, together with a current

increase, resulting in a small increase of the mobility. This behaviour has
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(a) (b)

Figure 8.13: Transfer characteristics of a rubrene FET measured at VD = - 5 V

(a) and - 30 V (b), with ID plotted in logarithmic (black) and linear (red) scale.

Transistor-channel dimensions are W = 570 µm and L = 120 µm.

been observed previously for single crystal rubrene transistors [191]. In table

8.2 the parameter extracted from five different devices are summarized.

After a mild thermal annealing of the devices, a considerable increase of

the transistor drain current ID is observed, with the consequent increase of

the charge-carrier mobility, possibly due to a reduction of the effect of the

contacts. For example, saturation mobility values of 1.39 cm2/Vs and 2.14

cm2/Vs were obtained from the characteristics of the same FET before and

after annealing, respectively (figure 8.12). Moreover, a significant reduction

of the slope degradation is observed in the (ID)1/2 vs. VG characteristics

at high gate voltages, after annealing. It is plausible that the thermal an-

nealing is relaxing the effect of the interface trap states induced during the

evaporation of the contacts, with substantial improvement of the charge in-

jection/extraction process. However, also an increased adhesion of the RUB

thin film on Cytop is likely to contribute to the observed efficiency increase.

Finally, to exclude the possibility of structural changes within the film upon

heating, XRD analyses were conducted both before and after annealing (fig-

ure 8.1b).

In summary, the group of Prof. A. Sassella at the University of Milano

- Bicocca demonstrated that large, crystalline, and fully oriented thin films
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W (µm) L (µm) W/L
VT (V) µ (cm2/Vs) S (V nF / dec cm2)

fw rev fw rev fw rev

A 570 120 4.8 2.84 1.97 1.42 1.45 30 24

B 500 98 5.1 2.65 1.84 1.88 1.91 39 36

C 580 80 7.3 5.95 3.74 1.28 1.46 47 32

D 290 50 5.8 -1.16 -2.00 1.32 1.39 30 28

E 1000 42 24 0.87 0.42 1.02 1.05 20 17

Table 8.2: Set of electrical parameters for five different RUB thin-film transistors,

as collected in forward (fw) and reverse (rev) bias. The device-channel width (W)

is defined by the lateral dimension of the Au contacts; the channel length (L) was

determined by post-processing dark-field optical images of the devices.

of orthorhombic RUB can be obtained by OMBE on suitable, water-soluble

crystalline substrates. By working at room temperature and without post-

growth treatments, epitaxial RUB film can be grown on (010)-oriented sin-

gle crystals of β-alanine, thus obtaining removable/free-standing RUB films.

We then post-growth transferred these RUB thin-films onto Cytop, which

is one of the most exploited high-efficient dielectrics for organic field-effect-

transistors. The high quality of the dielectric, together with the high quality

of the film, makes the mobility of our transistors remarkably high for an or-

ganic thin film transistor (table 8.3 for a comparison with similar RUB-based

TFT), but still lower than what reported for RUB single crystal devices [52].

Thin-film transistors fabricated with free-standing RUB and Cytop dielec-

tric demonstrate the high quality of the as-grown RUB thin films, and the

possible integration of this semiconductor into a wide variety of electronic

devices.



178 8. High Mobility Crystalline Organic TFTs

(a) (b)

Figure 8.14: a) Transfer characteristics of a FET in the saturation regime (VD

= - 30 V) after different positive gate-bias stresses at VG = 20 V. The inset

lists the mobility and threshold voltage values extracted from the different curves.

b)Drain and leakage gate current plotted in logarithmic scale. The transistor-

channel dimensions are W = 290 µm and L = 50 µm.

Device Dielectric Electrodes µ (cm2/Vs) VT (V) ION/IOFF

Fig. 8.12 Cytop Au 2.14 - 0.9 104

Ref. [57] SiO2/DPPC Au 0.98 - 8 107

Ref. [58] Si3N4/BCBO Au 3.0 - 7 106

Ref. [59] Si3N4/BCBO ITO 1.3 - 0.9 106

Table 8.3: Comparison between the electrical parameters of one of our RUB

thin-film transistors (first row) and those of other RUB-based thin film transistors

reported in the literature.
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In the present thesis I studied Organic Semiconducting Single Crystals

(OSSCs) and crystalline thin films, demonstrating how they can be employed

in novel sensing application as solid state detectors ionizing radiation (X-rays,

gamma-rays, and alpha particles), and as chemical sensor to polar volatile

molecules. In these research fields, organic materials offers a novel and smart

alternative to traditional inorganic semiconducting materials thanks to their

wide availability, and to the possibility of achieving novel functionalities,

such as flexibility and transparency, and of being deposited over large areas

by means of low-cost technologies as ink-jet printing. In particular, solution-

grown OSSCs have been assessed to be promising materials for radiation

detectors thanks to the following particular properties: (a) low dark current

due to the wide effective band gap; (b) high degree of packing order; (c) long

exciton diffusion length; (d) good carrier mobility; (e) possibility to tune

their volume up to mm3; (f) great stability in air.

The organic single crystal-based X-ray detectors fabricated and investi-

gated in this thesis’s work allow to direct detect ionizing radiation, that is,

the incoming X-ray photons are directly converted into an electrical signal.

They provide a linear response to the X-ray dose rate, even for driving volt-

ages as low as 5 V (hundreds of volts are usually required to operate at

room temperature for inorganic semiconductors), and they reliably respond

to repetitive ON/OFF switching X-ray beam with no hysteresis effects.

Moreover, the studied detectors, based on low-cost solution-grown organic

molecular crystals (e.g., 4HCB), can operate at room temperature, in air, and
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under ambient conditions with high reproducibility. The response is really

fast for an organic device, estimated below 5 ms, and the minimum detectable

dose rate has been assessed down to 50 µGy/s. 4HCB-based detectors pro-

vide a reliable response even after exposure to significant doses of X-ray

irradiation and after being aged for up to one month. Experiments carried

out on devices with different electrodes and substrate materials demonstrate

that the observed response has to be considered as intrinsically related to

the crystal.

A deep investigation of the photo-response of OSSCs along all crystallo-

graphic axes, with different crystals thicknesses and for several electrode

geometries, has been carried out. Even if the anisotropic packing of the

molecules affects the electronic transport properties of the crystal (carrier

mobility can vary up to four orders of magnitude along the three crystal

axes), it is noteworthy that all axes can be used for the effective detection of

ionizing radiation. The organic crystal thickness can be varied between 40 -

500 µm without affecting the device performance, as comparable sensitivity

values for thickness down to few tens of micrometers have been recorded. The

maximum measured sensitivity of an optimized detectors is over 170 nC/Gy

and the effective collection efficiency is up to 20%. Device geometries that

maximize the electrode active area (e.g. interdigitated electrodes 25 µm

spaced) allow to significantly increase the charge collection efficiency and the

X-ray electrical photoresponse of 4HCB single crystals; a strong increase of

the output electrical signal and a dramatic reduction of the operating bias

voltage (¡ 5 V) have been observed.

Other solution-grown (e.g. DNN, NTI and TIPS-pentacene) and vapour

grown (rubrene) organic molecular crystals showed interesting detection fea-

tures, giving a preliminary insight into the understanding of molecular and

crystal properties that rule the X-ray detection in organic materials.

Furthermore, the proof of principle of high energy gamma radiation (661

keV Cs137) and alpha particles detection has been given for 4HCB-based

devices.
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To further exploits the sensing performances of OSSCs, an investigation

on the electrical characteristics of single crystals exposed to vapour of volatile

molecules, has been carried out. The obtained results indicate that OSSCs

are good candidates for chemical polar molecule sensing applications.

Finally, the characterization of a highly crystalline rubrene thin film (15 -

100 nm thick), grown on water-soluble substrate, has been performed. Once

assessed its crystalline structure and morphology, the electrical properties

of the film have been investigated by means of Space Charge Limited Cur-

rent (SCLC) analyses and Wavelength-resolved photocurrent spectroscopy

measures. A working thin film FET in bottom-gate/top-contact configura-

tion was fabricated with a Cytop® layer acting as gate dielectric. The de-

vice showed extremely good characteristics, with FET mobility exceeding 2

cm2/Vs, definitely assessing the quality of RUB films grown by the proposed

strategy. The reliability and versatility of the wet-transfer process have been

demonstrated, as well as the potential integration of this semiconductor into

a wide variety of electronic devices.

In conclusion, solution-grown OSSCs are robust and easy to handle ma-

terials that can reliably detect ionizing radiation in the direct approach,

operating at room temperature and in air, providing a linear response to

increasing X-ray dose rates. The results presented in this thesis indicate how

OSSCs based sensors possess a great potential as novel solid-state low cost

and tissue equivalent ionizing radiation detectors and dosimeters, paving the

way to the development of large-area, thin, flexible and low-power consuming

sensors, applicable to biomedical and environmental tasks.
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