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Introduction

Higher gauge theory is a branch of mathematical physics which studies the gener-
alization of ordinary gauge theory to higher algebraic structures. The latter are higher
extensions of the concepts of Lie groups, Lie algebras and principal bundles, such as
n-groupoids, L∞-algebras and gerbes. In particular, higher gauge theory deals with
the development of parallel transport along higher dimensional surfaces instead of just
paths. This is usually called higher parallel transport.

This subject firstly appeared in string theory. String theory introduced fundamen-
tal objects which are no longer points, and therefore have nonzero dimension, such
as strings and branes. Instead of a one dimensional worldline, these objects trace hy-
persurfaces (worldsheets for strings and worldvolumes for higher dimensional branes)
during their time evolution. Therefore if we want to define a suitable notion of “Wil-
son surfaces” for strings and branes, to generalize the Wilson loops associated with
charged particles, a theory of higher parallel transport is needed.

The first evidence of this was in 1986, when Gawedtzki [1] showed that the Kalb-
Ramond (also known as Neveu-Schwarz) field B, which is a 2-form that generalizes the
electromagnetic potential to strings, can be seen as a connection on a bundle gerbe,
although the precise mathematical introduction of the concept of a gerbe came into
this field only later with the works of Carey, Johnson and Murray [2] and of Gawedtzki
and Reis [3]. Freed and Witten [4] exploited this viewpoint to understand the anomaly
cancellation in the worldsheet path integral in superstring theory.

Another important occurrence of a higher gauge structure in string theory comes
with the String structure. This is an higher analog of the Spin structure, a lift of the
group SO(n), which arises because in order to define spinors in Dirac theory a Spin(n)
principal bundle is needed. In superstring theory the worldsheet anomaly cancellation
implies that the Spin(n) bundle must be improved further to a lift of Spin(n) which is
called String(n) [5]. The resulting String(n) bundle is called a String structure. The
group String(n) is topological and infinite dimensional, but it was realized that it can
be seen as the nerve of a smooth 2-group. This 2-group remains somewhat mysterious
and very hard to describe finite dimensionally [6], but it can be treated with differential
geometry being smooth and its infinitesimal version, the string 2-algebra is very simple.
Recently another step was added in this ladder by Sati, Schreiber, and Stasheff, [7],[8],
who found that the anomaly freedom of the spinors on the fivebrane’s worldvolume in
M-theory requires the target manifold to carry an higher analog of a String structure,
which they call Fivebrane structure, obtained by lifting String(n) to Fivebrane(n).
The latter is a smooth 6-group they introduced.

Recently, Fiorenza, Sati and Schreiber [9] proposed a higher seven dimensional
Chern-Simons model, whose field is a connection 2-form valued in the string group,
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as the AdS7/CFT6 counterpart of the N = (2, 0) six dimensional M5-brane theory in
M theory. Other links between M -theory and higher gauge theory and in particular
higher twisted cohomology are exposed in [10]. Other application to supergravity are
found in [11].

Alongside with these connections with superstring theory, higher gauge theory has
found several other applications in theoretical physics, for example in loop quantum
gravity and in spin foam models. Representations of the Poincaré 2-group can be
used to build spin foam models that describe quantum field theory in 4d Minkowski
space-time [12],[13], although this can’t be generally be seen as resulting from the
quantization of some classical higher gauge theory with gauge structure the Poincaré 2-
group. 2-Connections for a closely related 2-group, the tangent 2-group of the Lorentz
group, are the solutions to topological gravity.

The Kalb-Ramond field coupled with a bosonic string was also seen to be con-
nected with multisymplectic geometry, as was shown by Baez, Hoffnung and Rogers
[14]. Multisymplectic geometry is the higher analog of symplectic geometry, where
symplectic forms of degree greater than two are introduced.

BF theory can be reinterpreted as a higher gauge theory with structure 2-group
the tangent 2-group of a Lie group G. In particular, the solution 4-dimensional BF
theory can be seen as a 2-connection on a 2-bundle. When G is the Lorentz group it
provides a 4-dimensional model for topological gravity. Observables are 1-dimensional
holonomies around worldsheets as well as 2-dimensional holonomies around worldlines
of the Aharonov-Bohm kind, whose particle interpretation is still problematic. Palatini
formulations of gravity also admits a higher gauge interpretation in these terms.

The BF theory with cosmological constant can also be viewed as a theory of
connections of a particular 2-group, namely the Inner automorphism 2-group of a
group G. The quantization of this theory is conjectured to give a spin foam model
called the Crane-Yetter model [15],[16]. These and other interesting applications of
higher gauge theory to physics can be found discussed in much more detail in [17].

Mathematically higher gauge theory finds its natural environment in the theory of
higher categories. A category is roughly a collection of objects and of arrows between
objects. These arrows, called morphisms, can be composed in an associative manner
and they admit an identity for every object. The categorical interpretation of various
aspects of gauge field theories is very well acknowledged, the most trivial example
of this being a group seen as a category with just one object and only invertible
morphisms. Going from ordinary categories to higher categories means to add another
level of morphisms, called 2-morphisms, which are arrows between arrows, and which
have to obey several axioms. One gets so a 2-category. We can go further and define
3-morphisms, 4-morphisms and so on, leading to the general concepts of n-categories
and∞-categories. This ladder provides a straightforward and simple way to generalize
physical concepts which have a categorical interpretation: we can define higher groups,
higher bundles, higher connections and so on. The latter are connections with form
degree greater than one, and these are exactly the objects that are found in higher
gauge theories.

Many features of higher gauge theory remain unknown. In this thesis we explore
the possible definition of a higher gauge field theory and we try to study it. We define
a higher version of the Chern-Simons theory and investigate its canonical quantiza-
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tion. Chern-Simons theory is one of the most renowned quantum field theory. It is
a topological gauge theory, it can be solved exactly and it has been shown to have
topological invariants as observables. Furthermore it has remarkable links with con-
formal field theory in two dimensions. The only dynamical field is a connection on a
principal bundle, thus it is particularly suitable for the generalization to higher gauge
theory. The field content of our model is a connection with values in a 2-term L∞
algebra, which is the lowest nontrivial higher generalization of a Lie algebra, on a four
dimensional smooth manifold, and the action is built in such a way that the classical
equations of motion enforce the flatness of this connection, mimicking what happens in
ordinary Chern-Simons. Understanding the gauge structure and invariance, the pos-
sible quantization schemes and the class of observables of this model should provide
several important clues about other higher generalizations and higher gauge theory in
general.

Unluckily, the proneness of category theory to the generalization of concepts, stem-
ming from its intrinsic abstractness, corresponds on the other hand to a theoretically
heavy and hard-to-handle machinery which makes it cumbersome to use in concrete
computations. Indeed, despite its great achievements in some fields of mathematics
which are of physical interest, category theory remains unused and unknown among
physicists. In our work, my advisor and I tried to face a higher gauge theory model
of our construction, the 2-term L∞ algebra Chern-Simons theory defined in 4 dimen-
sions, with methods and techniques which belong to usual quantum field theory. In
this way we were able to touch concrete aspects of this higher gauge theory. On the
other hand, we had to face difficulties arising from the incomplete understanding of
many mathematical features of higher gauge theory at the state of the art and the
partial inadequacy of our methods to solve some of the problems we met.

The biggest obstacle to overcome is the unclear relation between 2-groups and 2-
term L∞ algebras, which should play the role of infinitesimal counterpart to 2-groups,
see sect. 2.5. Up to now, there is no way to relate 2-groups to 2-term L∞ algebras
which is viable for our purposes. This poses serious problems to a direct approach to
the generalizations of gauge theories to 2-groups, because ordinary gauge theories rely
heavily on both the finite and the infinitesimal version of the gauge group. Namely, one
needs a Lie algebra to define a local connection 1-form and the Lie group integrating
it to define gauge transformations. To circumvent this difficulty, we exploit an idea
by Zucchini firstly introduced in [21], whose point of view we adopt throughout this
thesis. The main point is to reformulate local ordinary gauge theory in such a way
that only the Lie algebra is essential. Given a Lie algebra g and a smooth manifold
M , which can be taken to be contractible since we are only interested in local aspects,
a g-connection on M is a 1-form

ω ∈ Ω1(M, g). (0.0.1)

Usually gauge transformations of connections are governed by smooth maps γ : M →
G where G is the Lie group integrating g, and they act on connections as

ω → γω = γωγ−1 − dγγ−1. (0.0.2)

This can be rephrased by saying that a gauge transformation consists of a map g :
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M → Aut(g) and a 1-form σg ∈ Ω1(M, g) which satisfy the relations

g−1dg(·)− [σg, ·] = 0, (0.0.3a)

dσg +
1

2
[σg, σg] = 0, (0.0.3b)

and that they act on a connection ω as

ω → gω = g(ω − σg), (0.0.4)

see sect 3.1.1. This form of gauge transformations is prone to the generalization to the
higher setting, because it suffices to substitute g with the desired 2-term L∞ algebra
and the job is done. Every mention to the gauge group has disappeared.

Notice that this formulation, while being useful towards higher gauge theory, spoils
some aspects of ordinary gauge theory. This new formulation of gauge transformations
includes the old one as a particular case, but it is more general. That’s why we call
them extended gauge transformations. First of all, the automorphism g is not required
to be an inner automorphism, as happens ordinarily. This is because we have no way
to generalize the concept of inner automorphism to the higher setting. Secondly, the
flat connection σg is not required to be the pull-back of a Maurer-Cartan form, for
the same reason. This means that the gauge transformations we define for 2-term
L∞ gauge could be too general too, but this is the best we can do in order to have
something to work with in a gauge field theory.

Another more subtle point is important regarding gauge transformations. The data
(g, σg) encoding our extended gauge transformations hide the data γ which constitutes
the usual gauge transformations, but we can’t extract γ from (g, σg). Generalizing the
extended gauge transformations to the higher setting as they stand, we are probably
ending up with some data which hide some more fundamental objects too. This
makes our higher gauge transformations not fully useful to completely comprehend
some aspects of the higher Chern-Simons theory, such as the possible quantization of
the gauge anomaly, which has been determined only for particular cases (see sect. 6.4).

Nevertheless, this approach proved useful under many points of view. We were able
to build a well defined action, to study its gauge invariance and to perform canoni-
cal quantization on it. We found that our higher Chern-Simons displays remarkable
similarities with the ordinary one. Concerning the classical level, the equations of
motion imply the flatness of the connection fields and the gauge anomaly shows fea-
tures resembling the anomaly of ordinary Chern-Simons theory. At the quantum level
canonical quantization is carried out exactly as in ordinary Chern-Simons theory, ex-
cept for the polarization scheme which remains a bit mysterious in some aspects. We
also speculate that Wilson surfaces can be used as observables for the theory in order
to compute higher knot invariants.

This thesis is divided into three parts. Part I is a self-contained introduction to
the mathematical tools that are needed in subsequent parts. In chapter 1 we discuss
the basis of category theory, and we give the main definitions that we will use there-
after, with particular emphasis on the theory of 2-categories and double categories. In
chapter 2 L∞ algebras are defined and we study in some detail 2-term L∞ algebras,
which are the main algebraic ingredient of higher gauge theory.
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Part II is devoted to the development of the 2-term L∞ gauge theory. In chapter 3
we generalize connection and curvature forms from the ordinary setting to the case of a
gauge structure governed by a 2-term L∞ algebra, introducing gauge transformations
for such forms and all key elements for the definition of a 2-term L∞ gauge field
theory. In chapter 4 we focus on higher parallel transport, and we display a technical
framework for surface holonomies which makes use of double categories and double
groupoids.

Part III faces Chern-Simons theory. Chapter 5 is a short review of some aspects
of the ordinary Chern-Simons theory, in preparation of its higher partner. Chapter
6 targets the main subject of the thesis, dealing with the definition of a 2-term L∞
algebra Chern-Simons theory and with the study of its gauge structure and its possible
quantization schemes. Finally in the last chapter we discuss what remains unclear and
what requires further study in this model.

The original results are concentrated in some sections of chapter 4 and, which is
taken from [18], and in chapter 6, which is taken from [19].
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Chapter 1

Category Theory

Category theory was first introduced in the 1945 by Eilenberg and Mac Lane and
it has since then immensely developed, growing fast to an enormous extent. It was
firstly used in homological algebra and in algebraic geometry, but it is now influential
in almost every field of mathematics. Its versatility comes from the fact that it captures
the abstract essence of mathematical concepts in order to work with few simple and
basilar axioms. This makes it easy to obtain results in full generality, or to further
generalize ideas and definitions already known.

Uses of category theory in mathematical physics have also been made, for example
in the study of axiomatic Topological Quantum Field Theories (TQFT) introduced
by Atiyah in [20], where TQFT’s are viewed as maps between categories, or in the
construction of Higher Gauge Theories ( [17], [21]), where categories are employed to
define a generalization of gauge transformations, which is the case of study in this
thesis.

In this chapter we will briefly expose the notions we need about category theory.
Due to the largeness of this field and to the great variety of tasks that can be pursued
studying it, we will not attempt a full discussion of the subject, which is out of our
reach for lack of space and knowledge, nor will we achieve a complete introduction to
the basics of categories. There is plenty of good references for the interest reader, for
example [22], [23] and [24].

1.1 Basics of category theory

Categories abstractly generalize the concepts of sets and functions, and they are
defined as collection of objects (sets) and arrows between them (functions). In order to
make things work similarly as in set theory, they must be endowed with an associative
composition of arrows.

Definition 1. a Category C consists of a set of objects ObjC and a set of morphisms
HomC, such that for every morphism f there is a unique source object X and a unique
target object Y in the category, and we will write f : X → Y . The set of all morphisms
going from X to Y is denoted HomC(X, Y ). Moreover for every couple of morphisms
f : X → Y and g : Y → Z such that the target of the first is equal to the source of the
second there exists a composite morphism g ◦ f : X → Z, and for every object X

15



16 CHAPTER 1. CATEGORY THEORY

there is an identity morphisms iX : X → X such that:

(h ◦ g) ◦ f = h ◦ (g ◦ f), (1.1.1)

iY ◦ f = f ◦ iX = f for f : X → Y. (1.1.2)

What we have defined is more often called a small category. In mathematical
literature the collections of all objects and of all morphisms in a category are classes
instead of sets. A category C is then called locally small if for every couple of objects
X and Y the morphisms HomC(X, Y ) form a set, and small if it is locally small and
if the class of all objects does be a set.

Generally, there is no requirement about the invertibility of the morphisms, which
may or may not be invertible. Given a morphism f : X → Y a left (right) inverse to
f is a morphism g : Y → X such that g ◦ f = 1X (f ◦ g = 1Y ). A morphism which
has both a left and a right inverse, which must therefore coincide, is said to be an
isomorphism.

It is very useful to introduce diagrams while working with categories. Diagrams
in category theory are pictorial representations of objects and morphisms, the former
drawn as points and the latter drawn as arrows connecting points, for example

X
f // Y (1.1.3)

is a morphism f : X → Y . A concatenation of several morphisms means composition:

X f //

h◦g◦f

''
Y g // Z h //W. (1.1.4)

The great help of diagrams is that through them one is able to write relations between
morphisms in a quite concise and understandable way. This is done thanks to com-
muting diagrams: these are diagrams where two or more morphisms or sequences of
morphisms go from a chosen object to another. The fact that the diagram commutes
means that these sequences of morphisms are equal. For instance, the associativity
axiom for the composition can be restated by requiring that, given any f : X → Y ,
g : X → Z and h : Z → W morphisms in the category, the diagram

X
f //

g◦f
��

Y

h◦g
��

g

~~
Z

h
//W

(1.1.5)

commutes. Similar diagrams that encode the neutrality of the identity can be easily
drawn: given any f : X → Y the diagram

X
f //

1X
��

f
  

Y

1Y
��

X
f
// Y

(1.1.6)
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commutes. These examples may not be very illuminating on the utility of commuting
diagrams, but we will meet later on diagrams whose transposition in usual written
equalities would be terribly cumbersome and rather incomprehensible (see for example
the pentagon identity (1.2.2)).

We turn now to some basic operations that can be done on categories:

Definition 2. Let C be a category. Then the opposite category Cop is defined as
the category which has the same objects and morphisms of C, where the target and the
source of a morphism as well as the arguments of composition are exchanged.

Definition 3. Let C and D be two categories. The product category of C and D

denoted C × D is the category whose objects are pairs of one object in C and one in D

and whose morphisms are pairs of one morphism in C and one in D, where composition
acts component-wise:

(f, g) ◦ (h, k) = (f ◦ h, g ◦ k), (1.1.7)

i(X,Y ) = (iX , iY ). (1.1.8)

We are now going to introduce other very important objects, i.e. the functors.
These are just homomorphisms of categories, because they are map from one cat-
egory to another preserving the structure and the properties of the composition of
morphisms.

Definition 4. Given two categories C and D a Fuctor F from C to D, also denoted
F : C → D, is a map that associates to every object X in C an object F (X) in D and
to every morphism f : X → Y in C a morphism F (f) : F (X)→ F (Y ) in D such that

F (iX) = iF (X), (1.1.9)

F (g ◦ f) = F (g) ◦ F (f). (1.1.10)

As maps in set theory can be divided into several kinds depending on how their
image is close to their domain or their codomain, that is they can be injective, sur-
jective or bijective, similar distinctions are defined for functors. Since functors really
are couples of maps, namely a map between sets of objects and a map between sets of
morphisms, injectivity and surjectivity can be defined in two different context. Actu-
ally, only injectivity or surjectivity at the level of morphisms is usually used, because
functors find their interestingness on their action on morphisms:

Definition 5. A functor F : C→ D between locally small categories is said to be faith-
ful if for every X, Y objects in C the map F : HomC(X, Y )→ HomD(F (X), F (Y )) is
injective, is said full if the same map is surjective and it is fully faithful if it is both
full and faithful.

Analogous definitions can be made at the level of objects, leading to the definitions
of an injective-on-objects functor, a surjective-on-objects functor and a bijective-on-
objects functor, but these definition are not widely employed.

Another interesting definition concerning functors introduces contravariant func-
tors:
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Definition 6. A functor F : C→ D is also called a covariant functor from C to D.
A functor F : Cop → D is called a contravariant functor from C to D.

Strictly speaking, a contravariant functor F : C → D is not a functor from C to
D, because it reverses the direction of morphisms and it doesn’t meet the criteria of
definition (4). Nevertheless, there are so many interesting examples of contravariant
functors that they are usually just regarded as functors with a little abuse of language.

Functors can be obviously composed. Given two functors F : C→ D and G : D→ E

their composition on objects is defined by (G ◦ F )(X) = G(F (X)) and on morphisms
by (G ◦ F )(f) = G(F (f)). There is also an identity functor from a category to itself
which sends every object and every morphism to itself. These two elements allow us
to make the first example of a category through the following definition:

Definition 7. Cat is the category whose objects are small categories and whose mor-
phisms are functors between them.

There are many other examples of categories:

• Sets is the category whose objects are sets and whose morphisms are functions.
This is the inspiring example for all category theory.

• Every kind of algebraic structure on a set makes it possible to define a cate-
gory with those algebraic sets as objects and homomorphisms between them as
morphisms. Hence Grp is the category of all groups and group homomorphisms,
Vectk is the category of vector spaces on the field k and linear maps, R− Mod is
the category of modules over a ring R and module homomorphisms and so on.

• Top is the category of topological spaces and continuous maps, and every topo-
logical space X can be regarded as a category Top(X) whose objects are the
open subsets and the morphisms are the inclusions.

• Geometric objects such as manifolds can also be gathered in a category. SmoothMfld
is the category of smooth manifolds and smooth maps, HolMfld is the category
of holomorphic manifolds and holomorphic maps, Bund is the category of fiber
bundles and bundle maps, LieGrp is the category of Lie groups and smooth maps
preserving the group structure.

• Cmplx is the category of differential complexes and chain maps.

Notably, these are not a small categories, because the collections of all small categories,
all sets, all smooth manifolds and so on do not form sets but rather classes. This avoids
logical problems of the kind of the Russell’s paradox, since Cat can’t be an object of
itself.

Concerning functors, there are some examples:

• A category C is a subcategory of another category D if all objects and morphisms
of C are also objects and morphisms of D. The inclusion functor i : C→ D is the
identity functor on D restricted to C.

• A presheaf of R-modules on X can be seen as a functor Top(X)→ R− Mod.
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• The de Rham complex of differential forms is a contravariant functor from
SmoothMfld to Cmplx.

• Given a small category C and X an object in C, taking the morphisms in C from
X provides a functor from C to Sets. This is called the Hom-Functor. Namely,
an object Y in C is mapped to HomC(X, Y ) in Sets, and a morphism f : Y → Z
in C is mapped to the morphisms HomC(X, f) : HomC(X, Y ) → HomC(X,Z)
that sends g : X → Y to f ◦ g : X → Z. A similar construction which takes
morphisms “to X” instead of morphisms “from X” generates the contravariant
Hom-Functor.

We come now to another central concept in category theory, that are natural trans-
formations. As functors are morphisms between categories, natural transformations
are morphisms between functors, in that they transform a functor between two fixed
categories into another functor with the same target and source category.

Definition 8. Given two categories C, D and two functors F,G : C → D, a natural
transformation from F to G, denoted η : F ⇒ G, is a map that associates to every
object X of C a morphism in D η(X) : F (X) → G(X) such that, for every morphism
f : X → Y in C we have that the following diagram

F (X)
F (f) //

η(X)
��

F (Y )

η(Y )
��

G(X)
G(f)

// G(Y )

(1.1.11)

commutes. The last property is also usually called naturality. A natural transfor-
mation η such that η(X) is an isomorphism for every object X is said a natural
isomorphism.

Natural transformations can be composed in two different ways, horizontally and
vertically. Let us define both of these operations:

Definition 9. Let C, D be categories, F,G,H : C → D functors, η : F ⇒ G and
θ : G ⇒ H natural transformations. The vertical composition θ · η : F ⇒ H of θ
and η is the natural transformation defined by (θ·η)(X) = θ(X)◦η(X) : F (X)→ H(X)
for X object in C.

Definition 10. Let C, D, E be categories, F,G : C → D and H,K : D → E functors,
η : F ⇒ G and θ : H ⇒ K natural transformations. The horizontal composition
θ ◦ η : H ◦F ⇒ K ◦G of θ and η is the natural transformation defined by (θ ◦ η)(X) =
K(η(X)) ◦ θ(F (X)) = θ(G(X)) ◦H(η(X)) : H(F (X)) → K(G(X)) for X and object
in C

Natural transformations provide a way to define a notion of equivalence in category
theory, a generalization of the concept of isomorphism. One is tempted to extend the
definition of isomorphism from set theory to category theory, saying that two categories
C and D are isomorphic if there are functors F : C → D and G : D → C such that
G ◦ F = 1C and F ◦ G = 1D. Unluckily, this is a very restrictive definition, and in
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category theory it is very difficult to find such two functors between similar categories.
Instead, there is a weaker notion of isomorphisms that suits well for categories, the
notion of equivalence, which rises when we relax the requirements G ◦ F = 1C and
F ◦G = 1D.

Definition 11. Let C and D be categories. C and D are said to be equivalent if there
are functors F : C → D and G : D → C and natural isomorphisms ε : F ◦G ⇒ 1D and
η : G ◦ F ⇒ 1C.

In this way, two categories are equivalent if they are connected by two functors
whose compositions send objects to other objects which are isomorphic to the starting
ones. This concept is very useful and widely employed in category theory. For instance,
it is easy to see that it is an equivalence relation on categories: if C is equivalent to
D and D to E, then C is equivalent to E, and every category is obviously equivalent to
itself.

1.2 Monoidal categories

Tensor product over a field k between vector spaces provides Vectk with a product
that composes two objects to obtain a new object. This finds a generalization in
the monoidal categories, which are categories equipped with some notion of tensor
product.

Definition 12. A monoidal category C is a category together with a functor ⊗ :
C × C → C called product, an object 1 called unit object, natural isomorphisms ax,y,z :
(x⊗ y)⊗ z → x⊗ (y ⊗ z), lx : 1⊗ x→ x and rx : x⊗ 1→ x called the associator, the
left and the right unitors, such that the following diagrams commute:

(x⊗ 1)⊗ y
ax,1,y //

rx⊗1y &&

x⊗ (1⊗ y)

1x⊗lyxx
x⊗ y

(1.2.1)

(x⊗ y)⊗ (z ⊗ w)
ax,y,z⊗w

,,
((x⊗ y)⊗ z)⊗ w

ax⊗y,z,w
22

ax,y,z◦1w

##

x⊗ (y ⊗ (z ⊗ w))

(x⊗ (y ⊗ z))⊗ w
ax,y⊗z,w // x⊗ ((y ⊗ z)⊗ w)

1x◦ay,z,w

;;

(1.2.2)
A monoidal category can also be denoted as (C,⊗, 1, a, l, r) to clarify the notation of
all the monoidal structure.

In this section we will use small letters to denote objects for convenience.
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The aim of the natural isomorphisms ax,y,z, lx and rx is to relax the usual properties
of a tensor product. Here the neutrality of the identity object 1 and the associativity
of the product ⊗ are asked to hold on objects only up to invertible morphisms.

The two axioms are coherence requirements for the unitors and the associators.
Relation (1.2.2) is called the pentagon equation. It is possible to prove a coherence
theorem that states that if the axioms of a monoidal category are satisfied then every
diagram made up with associators, unitors and identity morphisms commutes [25].

There is also a notion of monoidal category in which the tensor product is associa-
tive and the unit object is a true unit with respect to the tensor product.

Definition 13. A strict monoidal category (C,⊗, 1) is a monoidal category where
the associator and the unitors are identity morphisms. A monoidal category which is
not strict is called weak.

This distinction between weak and strict categories is very common in category
theory, and we shall meet it again later.

Functors that respect the monoidal structure of two monoidal categories are called
monoidal functors. In the following definition we assume that the target and source
categories are strict. Everything applies to weak monoidal categories with few more
requirements. We refer the interested reader to [26].

Definition 14. Let (C,⊗C, 1C) and (D,⊗D, 1D) be strict monoidal categories. A lax
monoidal functor from C to D is a functor F : C → D equipped with a natural
transformation ηx,y : F (x)⊗D F (y)→ F (x⊗C y) and a morphism in D φ : 1D → F (1C)
such that the following diagrams:

F (x)⊗D F (y)⊗D F (z)
1F (x)⊗Dηy,z //

ηx,y⊗D1F (z)

��

F (x)⊗D F (y ⊗C z)

ηx,y⊗Cz

��
F (x⊗C y)⊗D F (z) ηx⊗Cy,z

// F (x⊗C y ⊗C z)

(1.2.3)

1D ⊗D F (x)
lF (x) //

φ⊗D1F (x)

��

F (x)

F (1C)⊗D F (x)η1C,x

// F (1C ⊗D x)

F (lx)

OO
(1.2.4)

and an analogous diagram for rx commute. If ηx,y and φ are a natural isomorphism and
an isomorphism then F is called a strong monoidal functor. If they are identities
then F is a strict monoidal functor.

There is also a notion of monoidal natural transformations between monoidal func-
tors:

Definition 15. Let (C,⊗C, 1C) and (D,⊗D, 1D) be strict monoidal categories and (F, η, φ), (G, ξ, ψ)
lax monoidal functors from C to D. A monoidal natural transformation α : F ⇒
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G is a natural transformation from F to G such that the diagrams

F (x)⊗D F (y)
α(x)⊗Dα(y) //

ηx,y

��

G(x)⊗D G(y)

ξx,y
��

F (x⊗C y)
α(x⊗Cy)

// G(x⊗C y)

(1.2.5)

1D
φ

||

ψ

""
F (1C)

α(1C)
// G(1C)

(1.2.6)

commute.

1.3 Higher Categories

As categories encode the general idea of having objects and arrows connecting
them, like sets and functions, higher categories generalize this concept by adding the
notion of higher morphisms which connect morphisms that are one step below. So
we have objects, morphisms between objects, 2-morphisms between morphisms, 3-
morphisms between 2-morphisms and so on. There is number of good references for
higher category theory, among which we mention [27] and the more advanced [28].
Other introductions to higher category theory which use a notation very similar to the
one adopted here can be found in the appendixes of [39] and [40].

In this chapter we will be only interested in 2-categories. As said, 2-categories add
to usual categories the notion of morphisms between morphisms, or 2-morphisms. In
diagrams these are usually drawn as doubled arrows, for example the diagram

X

f
##

g

==α
�� Y (1.3.1)

represents a 2-morphisms α going from f : X → Y to g : X → Y .
Analogously to what happens for monoidal categories, 2-Categories admit two def-

inition, depending on how we want to generalize the axioms for ordinary categories.
We may want to extend them straightforwardly as they stand, just adding rules for
2-morphism, and we would get what is called a strict 2-category. Otherwise we may
think of a 2-morphism as a homotopy between morphisms, and we can ask that ob-
jects and ordinary morphisms respect the axioms of a category only up to these higher
homotopies. In this case we get a weak or non-strict 2-category.

Definition 16. A weak 2-category C consists of a set of objects; for every two
objects X, Y a set of 1-morphisms 1 − HomC(X, Y ), where given a 1-morphism f we
denote f : X → Y ; for every two 1-morphisms f, g with the same source and target a
set of 2-morphisms 2−HomC(f, g), where given a 2-morphism α we denote α : f ⇒ g.

For every couple of 1-morphisms f : X → Y , g : Y → Z there is a 1-morphism
g ◦ f : X → Z called the composition of f and g. For every couple of 2-morphisms
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α : f ⇒ g, β : g ⇒ h, for f, g, h : X → Y , there is a 2-morphism β • α : f ⇒ h called
the vertical composition of α and β. For every couple of 2-morphisms α : f ⇒ g,
β : h⇒ k, such that f, g : X → Y , h, k : Y → Z, there is a 2-morphism β ◦α : h◦f ⇒
k ◦ g called the horizontal composition of α and β.

Furthermore, for every object X there is an identity 1-morphism 1X : X → X. For
every triple of 1-morphisms f : X → Y, g : Y → Z, h : Z → W there is an invertible
2-morphism ah,g,f : (h ◦ g) ◦ f ⇒ h ◦ (g ◦ f). For every 1-morphism f : X → Y , there
are three invertible 2-morphisms lf : f ◦ iX ⇒ f , rf : 1Y ◦ f ⇒ f called left and right
unifiers and 1f : f ⇒ f .

These data must satisfy the following axioms:

1. γ • (β • α) = (γ • β) • α whenever possible.

2. α • 1f = 1g • α = α and 1f ◦ 1g = 1f◦g whenever possible.

3. (1g ◦rf )•ag,1Y ,f = lg ◦1f whenever possible, or equivalently the following diagram
of 2-morphisms commutes:

(g ◦ 1Y ) ◦ f
ag,1Y ,f +3

lg◦1f "*

g ◦ (1Y ◦ f)

1g◦rft|
g ◦ f

(1.3.2)

4. (δ ◦ γ) • (β ◦ α) = (δ • β) ◦ (γ • α) whenever possible.

5. The associator 2-morphisms satisfy the pentagon identity, that is the following
diagram of 2-morphisms

(k ◦ h) ◦ (g ◦ f)
ak,h,g◦f

'/
((k ◦ h) ◦ g) ◦ f

ak◦h,g,f
/7

ak,h,g◦1f

�&

k ◦ (h ◦ (g ◦ f))

(k ◦ (h ◦ g)) ◦ f
ak,h◦g,f +3 k ◦ ((h ◦ g) ◦ f)

1k◦ah,g,f

8@

(1.3.3)
commutes.

Sometimes the 1-morphisms and the 2-morphisms are called 1-cells and 2-cells
respectively, and the objects are called 0-cells.

Let us clarify the meaning of these axioms. Axioms 1 and 2 just say that vertical
composition of 2-morphisms is associative and that the 2-morphism 1f is an identity
under the composition of 2-morphisms, as happens in ordinary categories for mor-
phisms and 1X . Axiom 3 is a coherence relation between unifiers and associators,
and it says that there is only one 2-morphism that plays the role of the unifier for a
sequence of several 1-morphisms containing identity 1-morphisms, independent of the
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order according to which these identities are absorbed if the order of the remaining
compositions is preserved. Axiom 4 is known as the exchange law, and it states that
the two different ways of composing the following four 2-morphisms:

X

f

��
g //

h

GG

α

��

γ

��

Y

k

��
l //

m

GG

β

��

δ
��

Z (1.3.4)

namely, first composing horizontally β ◦α and δ ◦ γ and then composing vertically the
two resulting 2-morphisms, or first composing vertically γ•α and δ•β and then compos-
ing horizontally the two resulting 2-morphisms, obtaining a 2-morphisms k◦f ⇒ m◦h,
lead to the same result. Thanks to this, it is possible to paste together diagrams, where
the surfaces enclosed by some arrows are understood as the 2-morphisms connecting
the 1-morphisms that edge it. Axiom 5 is a coherence relation similar to (1.2.2), and
it assures that any diagram of 2-morphisms made up with associators and unitors
commutes.

Notice that in diagrams (1.3.2) and (1.3.3) the vertexes are morphisms instead of
objects and the arrows are 2-morphisms instead of ordinary morphisms. Nevertheless,
these diagrams are treated exactly as the diagrams that we saw earlier with objects
and morphisms, i.e. they simply picture equalities of 2-morphisms. This similitude
hints the following definition:

Definition 17. Let C be a 2-category. Then, for every couple of objects X, Y in C

there is a small category C(X, Y ) called the Hom-category of X and Y , whose set of
objects is 1−HomC(X, Y ) and whose morphisms are the 2-morphisms of C with target
and source in 1− HomC(X, Y ). Composition of morphisms in C(X, Y ) is the vertical
composition of 2-morphisms in C.

It is simple to see that the axiom of a category are satisfied by C(X, Y ). Making
a comparison with ordinary categories, we may say that if a locally small category is
enriched over sets, i.e. the collection of arrows between two chosen objects is a set,
any 2-category is a category enriched over categories, where all kinds of morphisms
between any two objects define a category instead of a set.

In weak 2-categories it is useful to introduce the notion of weak inverse for 1-
morphisms. Since everything at the level of 1-morphisms is expected to hold only up
to 2-morphisms, it makes sense to define a weaker notion of invertibility than the one
usually employed.

Definition 18. Let f : X → Y be a 1-morphism in a weak 2-category C. A weak
inverse for f is a 1-morphism f̄ : Y → X in C such that there are 2-isomorphisms
f ◦ f̄ ⇒ 1Y and f̄ ◦ f ⇒ 1X . An 1-morphism which has a weak inverse is also called
an equivalence

As mentioned earlier, there is also a notion of strict 2-category, where the axioms
of an ordinary category are extended to 2-morphisms without being relaxed for 1-
morphisms.
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Definition 19. a strict 2-category C is a weak 2-category whose associator and
unifier 2-morphisms are the identity 2-morphisms.

This distinction between strict and weak definitions is very common in category
theory, and indeed it is the same difference that we encountered in the last section
between weak monoidal categories and strict monoidal categories. The main difference
between weak and strict objects (monoidal categories, 2-categories etc.) is that the
latter are much easier to handle and study, while the former enclose a much wider and
more useful list of examples and cases of interest.

The first example of a strict 2-category comes from the previous sections: we call
2-Cat the 2-category having small categories as objects, functors as 1-morphisms and
natural transformations as 2-morphisms. This is clearly strict, since composition of
functors is associative and the identity functor is a true unit under this composition.
This category is the extension of Cat obtained by adding natural transformations as
2-morphisms. This 2-category also allows us to show another example of category:
given two categories C and D, Fun(C, D) is the category having functors from C to D

as objects and natural transformations as morphisms. This is the Hom-category of
2-Cat.

Definition (17) makes it possible to show another example of 2-category which
illustrates a construction that will be used again later on. Let C be a monoidal category.
Then BC is the 2-category which has only one object, the objects of C as 1-morphisms
and the morphisms of C as 2-morphisms. Horizontal composition of both 1- and 2-
morphisms is given by the product ⊗ in C, while vertical composition of 2-morphisms
is the usual composition of morphisms in C. Remarkably, BC is strict as a 2-category
if and only if C is strict as a monoidal category.

Conversely, it can be shown that the Hom-category of a 2-category inherits a
monoidal structure from the horizontal composition on 1-morphisms of the original
2-category. The monoidal structure is strict if and only if the 2-category is strict.

Since in what follows we will be interested only in strict categories, by now we
will outline other concepts related to 2-categories, such as 2-functors, only in the strict
case. Nevertheless, this is not the most general framework, and many of the definitions
and results that we will explain have a non trivial generalization for weak 2-categories.

As functors are maps between categories, 2-functors are maps between 2-categories.
Even in this case there is a distinction between weak and strict 2-functors.

Definition 20. Let C and D be two (strict) 2-categories. A weak 2-functor F from
C to D, also denoted F : C → D, is a map that associates to every object X in C

an object F (X) in D, to every 1-morphism f in C a 1-morphisms F (f) in D and to
every 2-morphism α in C a 2-morphism F (α) in D, together with a 2-isomorphism
uX : F (1X)⇒ 1F (X) in D for every object X in C, and a 2-isomorphism mf,g : F (f) ◦
F (g) ⇒ F (f ◦ g) in D for every couple of composable morphisms in C, such that the
following axioms are satisfied:

1. F (1f ) = 1F (f) and F (α • β) = F (α) • F (β).
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2. For any α : f ⇒ h and β : g ⇒ k in C, the following diagram commutes:

F (f) ◦ F (g)
F (α)◦F (β) +3

mf,g

��

F (h) ◦ F (k)

mh,k

��
F (f ◦ g)

F (α◦β)
+3 F (h ◦ k)

(1.3.5)

3. The following diagram commutes:

F (f) ◦ F (g) ◦ F (h)
1F (f)◦mg,h +3

mf,g◦1F (h)

��

F (f) ◦ F (g ◦ h)

mf,g◦h
��

F (f ◦ g) ◦ F (h) mf◦g,h
+3 F (f ◦ g ◦ h)

(1.3.6)

4. the following relations are satisfied:

mf,1X = 1F (f) ◦ uX and m1Y ,f = uY ◦ 1F (f). (1.3.7)

Definition 21. A 2-functor F : C → D is called strict if uX and mf,g are identity
2-morphisms for every X object in C and for every f, g composable 1-morphisms in C.

Notice that, as mentioned earlier, both these definitions employ strict 2-categories.
Only weak 2-functors can be defined for weak 2-categories, while there is no sensible
definition of a strict 2-functor between weak 2-categories. There is also a more general
notion of 2 functors that is a lax 2-functor. This is a weak 2-functor whose uX and
mf,g need not to be natural isomorphisms, but we will not deal with these objects.

Now we define the generalization of natural transformations for 2-categories.

Definition 22. Let C and D be (strict) 2-categories, and F,G : C → D 2-functors. A
pseudonatural transformation η from F to G, also denoted η : F ⇒ G, associates
to every object X in C a 1-morphism η(X) : F (X) → G(X) in D and to every 1-
morphism f : X → Y in C a 2-isomorphism η(f) : η(Y ) ◦ F (f)⇒ G(f) ◦ η(X), such
that the following axioms are satisfied:

1. For every f : X → Y and g : Y → Z in C, the following diagram commutes:

η(Z) ◦ F (g) ◦ F (f)
1η(Z)◦m

(F )
g,f +3

η(g)◦1F (f)

��

η(Z) ◦ F (g ◦ f)

η(g◦f)

��

G(g) ◦ η(Y ) ◦ F (f)

1G(g)◦η(f)

��
G(g) ◦G(f) ◦ η(X)

m
(G)
g,f ◦1η(X)

+3 G(g ◦ f) ◦ η(X)

(1.3.8)

where m(F ) and m(G) are respectively the 2-morphisms for the composition of F
and G.
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2. For every 2-morphism α : f → g in C the following diagram commutes:

η(Y ) ◦ F (f)
η(f) +3

1η(Y )◦F (α)

��

G(f) ◦ η(X)

G(α)◦1η(X)

��
η(Y ) ◦ F (g)

η(g)
+3 G(g) ◦ η(X)

(1.3.9)

This definition is closely related to the definition of natural transformations. The
assignment f → η(f) is best understood in the following diagram:

F (X)
F (f) //

η(X)

��

F (Y )

η(Y )

��
η(f)

w�
G(X)

G(f)
// G(Y )

(1.3.10)

The commutativity of this diagram at the level of 1-morphisms is the naturality prop-
erty of natural transformation. Here it is relaxed so that it holds only up to an iso-
morphism. Furthermore, naturality strictly holds at the level of 2-morphisms, thanks
to axiom (2).

There is another definition which is needed and which relates two pseudonatural
transformations:

Definition 23. Let C and D be (strict) 2-categories, F,G : C → D 2-functors and
η, ξ : F ⇒ G pseudonatural transformations. A modification M from η to ξ, also
denoted M : η ⇒ ξ, is a map that assigns to every object X in C a 2-morphism
M(X) : η(X)⇒ ξ(X) in D such that the following diagram

η(Y ) ◦ F (f)
η(f) +3

M(Y )◦1F (f)

��

G(f) ◦ η(X)

1G(f)◦M(X)

��
ξ(Y ) ◦ F (f)

ξ(f)
+3 G(f) ◦ ξ(X)

(1.3.11)

commutes.

All these objects admit several composition rules.

Definition 24. Let C, D and E be strict 2-categories and F : C → D and G : D → E

be weak 2-functors. The horizontal composition of G and F is the weak 2-functor
G◦F : C→ E that sends every object X in C to G(F (X)) in E, every 1-morphism f in
catC to G(F (f)) in catE and every 2-morphism α in C to G(F (α)) in E, and whose
natural isomorphisms for composition and identities are given by

uG◦FX = uGF (X) •G(uFX) (1.3.12)

mG◦F
f,g = G(mF

f,g) •mG
F (f),F (g) (1.3.13)
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The restriction of this composition to strict 2-functor is obvious. This composition
is also associative thanks to the associativity of vertical composition of 2-morphisms
in a 2-category.

Regarding pseudonatural transformations, they can be composed both horizontally
and vertically, as happens for ordinary natural transformations.

Definition 25. Let C and D be strict 2-categories, F,G,H : C→ D be 2-functors and η :
F ⇒ G and ξ : G ⇒ H pseudonatural transformations. The vertical composition
of ξ and η is a pseudonatural transformation ξ • η : F → H which sends every object
X in C to the 1-morphism (ξ • η)(X) = ξ(X) ◦ η(X) : F (X)→ H(X) in D and every
1-morphism f : X → Y in C to the 2-isomorphism

(ξ•η)(f) = (ξ(f)◦1η(X))•(1ξ(Y )◦η(f)) : (ξ•η)(Y )◦F (f)⇒ H(f)◦(ξ•η)(X) (1.3.14)

in D.

Horizontal composition of pseudonatural transformations is more delicate to de-
fine. Recall that while defining horizontal composition of natural transformations (see
definition (10)) there are two ways to construct the morphism in the target category
that links the two functors. With ordinary categories these two ways are equiva-
lent, but in higher categories this is not the case, due to the fact that naturality
does not hold strictly at the level of 1-morphism. Namely, suppose that we have
η : F ⇒ G and ξ : H ⇒ K pseudonatural transformations for F,G : C → D and
H,K : D → E 2-functors, and we want to define a pseudonatural transformation
(ξ ◦ η) : H ◦ F ⇒ K ◦ G. We must look for a map that sends an object X in C to a
1-morphism (ξ ◦ η)(X) : H(F (X)) → K(G(X)) in E, but this can be naturally done
in two different ways: ξ(G(X)) ◦H(η(X)) and K(η(X)) ◦ ξ(F (X)). The result is that
we have two possible horizontal compositions for pseudnatural transformations. We
thus get to the following definition:

Definition 26. Let C,D and E be strict 2-categories, F,G : C → D and H,K : D → E

2-functors and η : F ⇒ H and ξ : H ⇒ K pseudonatural transformations. There are
two horizontal compositions of ξ and η, pseudonatural transformations (ξ ◦ η)i :
H ◦ F ⇒ K ◦G for i = 0, 1, given by

(ξ ◦ η)0(X) = ξ(G(X)) ◦H(η(X)) (1.3.15)

(ξ ◦ η)0(f) = (ξ(G(f)) ◦ 1H(η(X))) •
[
1ξ(G(Y )) ◦

(
mH
G(f),η(X)

−1 •H(η(f)) •mH
η(f),F (f)

)]
(1.3.16)

(ξ ◦ η)1(X) = K(η(X)) ◦ ξ(F (X)) (1.3.17)

(ξ ◦ η)1(f) =
[(
mK
G(f),η(X)

−1 •K(η(f)) •mK
η(Y ),F (f)

)
◦ 1ξ(F (X))

]
• (1K(η(Y )) ◦ ξ(F (f)))

(1.3.18)
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These two pseudonatural transformations are not completely unrelated, as they
differ only up to a 2-isomorphisms in the target category. Namely we have the following
result:

Proposition 1. There is an invertible modification τ : (ξ ◦ η)0 ⇒ (ξ ◦ η)1 given by
τ(X) = ξ(η(X)).

Modifications can also be composed in various manners, but we will not see them.

1.4 Double categories

This section is taken from the appendix of [18]. Here we present the basic notions
and results of double category theory, which is required by our cocycle based formu-
lation of parallel transport theory (see chapter 4). Most of the material is not original
and is included to help the reader. (See for instance [34].) However, to the best of our
knowledge, the notions of double natural transformation and modification we present
and use in the main body of the paper are original. We also define the plane rectangle
double groupoid playing an essential role in our construction and recall the definition
of the edge symmetric double groupoid of a crossed module for its relevance.

1.4.1 Double categories

Double categories are categories internal to the category of categories [35]. They
are however more conveniently defined as follows.

Definition 27. A double category D consists of the following elements

1. A set of objects a, b, c, . . . .

2. For each pair of objects a, b a set of horizontal and vertical arrows,

b a
xoo

b

a

x

OO (1.4.1)

3. For each quadruple of objects a, b, c, d, pair of horizontal arrows b a
yoo ,

d c
uoo and pair of vertical arrows c a

xoo , d b
voo (here written horizon-

tally for convenience), a set of arrow squares

d c
uoo

X
|�

b

v

OO

a

x

OO

y
oo

(1.4.2)

Objects and horizontal arrows form an ordinary category with composition ◦h and
identity assigning map idh. Similarly, objects and vertical arrows form a category with
composition ◦v and identity assigning map idv. Furthermore, arrow squares can be
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composed both horizontally and vertically compatibly with the composition of horizontal
and vertical arrows,

f e
voo

Y
|�

d
uoo

X
|�

c

t

OO

by
oo

s

OO

a

r

OO

x
oo

=

f d
v◦huoo

Y ◦hX
t|

c

t

OO

a

r

OO

y◦hx
oo

(1.4.3)

f e
zoo

Y
|�

d

t

OO

cyoo

r

OO

X
|�

b

s

OO

a

q

OO

x
oo

=

f e
zoo

Y ◦vX
t|

b

t◦vs
OO

a

r◦vq

OO

x
oo

Compatible horizontal and vertical identity arrow squares are also defined,

b b
idhboo

Idhx

t|
a

x

OO

a

x

OO

idha
oo

b a
xoo

Idvx

t|

b

idvb

OO

a

idva

OO

x
oo

(1.4.4)

Vertical arrows and arrow squares connecting them form an ordinary category with
composition ◦h and identity assigning map Idh. Similarly, horizontal arrows and arrow
squares form a category with composition ◦v and identity assigning map Idv. Finally
the exchange law holds, which means that the result of the composition of the four
arrow squares of the form

i h
voo

U
|�

g
uoo

Z
|�

f

s

OO

ewoo

q

OO

Y
|�

dzoo

n

OO

X
|�

c

r

OO

by
oo

p

OO

a

m

OO

x
oo

(1.4.5)

does not depend on whether the horizontal composition of the bottom and top pairs of
squares or the vertical composition of the right and left pairs of squares is performed
first.

The transpose of a double category D, which switches the vertical and horizontal
arrows, is again a double category TD.

Definition 28. A double groupoid D is a double category in which the horizontal
and vertical arrow categories are groupoid with inverse operations −1h, −1v , respectively,
and each arrow square has an horizontal and vertical inverse compatible with the arrow
inversions

c d
u−1hoo

X−1h

t|

a

x

OO

b

v

OO

y−1h

oo

b a
yoo

X−1v

t|

d

v−1v

OO

c

x−1v

OO

u
oo

(1.4.6)
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1.4.2 Double functors

Double functors are structure preserving maps of double categories.
Let D, E be double categories.

Definition 29. A double functor F : D → E consists of the following elements

1. A mapping a
� // F (a) of the set of objects of D into that of E.

2. Mappings

b a
xoo � // F (b) F (a)

F (x)oo
b

a

x

OO
� //

F (b)

F (a)

F (x)

OO
(1.4.7)

of the sets of horizontal and vertical arrows of D into those of E, respectively,
compatible with the mapping of objects.

3. A mapping

d c
uoo

X
|�

b

v

OO

a

x

OO

y
oo

� //

F (d) F (c)
F (u)oo

F (X)

s{

F (b)

F (v)

OO

F (a)

F (x)

OO

F (y)
oo

(1.4.8)

of the set of arrow squares of D into that of E compatible with the mappings of
objects and arrows.

These mappings are required to preserve all types of compositions and units.

Let D, E be double groupoids.

Definition 30. A double groupoid functor F : D → E is a double category functor
that preserves all types of inverses.

Proposition 2. Small double categories and double functors with the obvious compo-
sition and identity assigning map constitute a category. Small double groupoids and
double functors form a full subcategory of it.

1.4.3 Edge 2–categories of double categories

Edge categories are 2–categories canonically associated with double categories
playing an important role in many double categorical constructions.

Proposition 3. With a double category D there are associated two strict 2–categories
HD and VD, called edge 2–categories of D.

The 2–category HD is defined as follows.

1. The 0–cells of HD are the objects of D.

2. The 1–cells of HD are the horizontal arrows of D.

3. The 2–cells of HD are the arrow squares of D of the form
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b a

x

bb

y

||
X �� ≡

b a
yoo

X
|�

b

idvb

OO

a

idva

OO

x
oo

(1.4.9)

The composition of two 1–cells of HD is the composition of the corresponding horizontal
arrows of D. The identity 1–cells of HD are the horizontal identity arrows of D.
The horizontal composition of two 2–cells of HD is the horizontal composition of the
corresponding arrow squares of D. The vertical composition of two 2–cells of HD is
the vertical composition of the corresponding arrow squares of D. The unit 2–cells of
HD are the vertical unit squares of D.

The 2–category VD is defined as follows.

1. The 0–cells of VD are the objects of D.

2. The 1–cells of VD are the vertical arrows of D.

3. The 2–cells of VD are the arrow squares of D of the form

b a

y

bb

x

||
X �� ≡

b b
idhboo

X
{�

a

y

OO

a

x

OO

idha
oo

(1.4.10)

The composition of two 1–cells of VD is the composition of the corresponding vertical
arrows of D. The identity 1–cells of VD are the vertical identity arrows of D. The
horizontal composition of two 2–cells of VD is the vertical composition of the corre-
sponding arrow squares of D. The vertical composition of two 2–cells of VD is the
horizontal composition of the corresponding arrow squares of D. The unit 2–cells of
VD are the horizontal unit squares of D.

We denote by HD0 and VD0 the ordinary categories underlying HD and VD. HD0

is the category whose 0– and 1– cells are the objects and horizontal arrows of D with
the composition ◦h and identity assigning map idh inherited from D. Similarly, VD0

is the category whose 0– and 1 cells are the objects and vertical arrows of D with the
composition ◦h and identity assigning map idh inherited from D.

Proposition 4. If D is a double groupoid, then HD and VD are 2–groupoids.
The inverse of a 1–cell of HD is the inverse of the corresponding horizontal arrow

of D. The horizontal inverse of a 2–cells of HD is the horizontal inverse of the cor-
responding arrow square of D. The vertical inverse of a 2–cells of HD is the vertical
inverse of the corresponding arrow square of D.

The inverse of a 1–cell of VD is the inverse of the corresponding vertical arrow of
D. The horizontal inverse of a 2–cells of VD is the vertical inverse of the corresponding
arrow square of D. The vertical inverse of a 2–cells of VD is the horizontal inverse of
the corresponding arrow square of D.

In such a case, HD0 and VD0 are ordinary groupoids.
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Definition 31. A double category D is said edge symmetric if there is an invertible
2–functor S : VD → HD. Similarly, for a double groupoid D.

S induces an invertible functor S0 : VD0 → HD0.

Proposition 5. A double functor F : D → E of two double categories or groupoids
D, E induces strict 2–functors HF : HD → HE, VF : VD → VE of the associated
horizontal and vertical 2–categories or 2–groupoids HD, HE and VD, VE, respectively.

The edge 2–categories of double categories enter in an essential way in the definition
of the notion of folding.

1.4.4 Folding of edge symmetric double categories

Let D be an edge symmetric double category or a double groupoid. Then, as
we explained in subapp. 1.4.3, we have an invertible functor of VD0 into HD0,

b

a

x

OO
� // b a

x̃oo

(1.4.11)

Definition 32. A horizontal folding of D consists of a single datum.

1. A mapping of the set arrow squares of D into that of 2–cells of HD

d c
uoo

X
|�

b

v

OO

a

x

OO

y
oo

� //

c a
u◦hx̃oo

X̃
w�

c

idvc

OO

a

idva

OO

ṽ◦hy
oo

(1.4.12)

The following axioms

f e
voo

Y
|�

d
uoo

X
|�

c

t

OO

by
oo

s

OO

a

r

OO

x
oo

� //

f a
v◦hu◦hr̃oo

Idvv ◦hX̃
rz

f

idvf

OO

av◦hs̃◦hxoo

idva

OO

Ỹ ◦hIdvx

rz

f

idvf

OO

a

idva

OO

t̃◦hy◦hx
oo

(1.4.13)

f e
zoo

Y
|�

d

t

OO

cyoo

r

OO

X
|�

b

s

OO

a

q

OO

x
oo

� //

f a
z◦hr̃◦hq̃oo

Ỹ ◦hIdvq̃

rz

f

idvf

OO

at̃◦hy◦hq̃oo

idva

OO

Idvt̃ ◦hX̃

rz

f

idvf

OO

a

idva

OO

t̃◦hs̃◦hx
oo

(1.4.14)
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b b
idhboo

Idhx

t|
a

x

OO

a

x

OO

idha
oo

� //

b a
x̃oo

Idvx̃

t|

b

idvb

OO

a

idva

OO

x̃
oo

(1.4.15)

must be fulfilled. For a double groupoid D we have further

c d
u−1hoo

X−1h

t|

a

x

OO

b

v

OO

y−1h

oo

� //

c b
u−1h◦hṽoo

Idvx̃ ◦hX̃−1h◦hIdvṽ

nv
c

idvc

OO

b

idvb

OO

x̃◦hy−1h

oo

(1.4.16)

b a
yoo

X−1v

t|

d

v−1v

OO

c

x−1v

OO

u
oo

� //

b c
y◦hx̃−1hoo

Id
vṽ−1h

◦hX̃−1v◦hId
vx̃−1h

nv
b

idvb

OO

c

idvc

OO

ṽ−1h◦hu
oo

(1.4.17)

A vertical folding is defined similarly.

We shall consider only horizontal foldings aiming to define double natural trans-
formations.

1.4.5 Double natural transformations

In double category theory, there is a standard notion of double natural trans-
formation, which has two variants. This notion however does not fit our purposes.
Here, we present a new one, which is original to the best of our knowledge.

Let D, E be double categories or groupoids. Further, let E be edge symmetric and
equipped with a folding (cf. subsections 1.4.3, 1.4.4). Let F,G : D → E be two double
functors (cf. subsection 1.4.2).

Definition 33. A double natural transformation ρ : F ⇒ G consists of the
following data.

1. A mapping of the set of object of D into the set of vertical arrows of E,

a
� //

G(a)

F (a)

ρ(a)

OO
(1.4.18)

2. Two compatible functors from the horizontal and vertical arrow categories of D
into the horizontal truncation category Eh of E.

b a
xoo � //

G(b) G(a)
G(x)oo

ρ(x)

x�

F (b)

ρ(b)

OO

F (a)

ρ(a)

OO

F (x)
oo

(1.4.19)
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b

a

x

OO
� //

G(b) G(a)
G̃(x)oo

ρ̄(x)

x�

F (b)

ρ(b)

OO

F (a)

ρ(a)

OO

F̃ (x)

oo

Above Eh is the category whose objects are the vertical arrows of E and whose mor-
phisms are the arrow squares of E connecting them with the composition ◦h and iden-
tity assigning map Idh inherited form E. The data must fulfill a special naturality
condition. For any arrow square

d b
yoo

X
{�

c

u

OO

a

x

OO

z
oo

(1.4.20)

one has

G(d) G(b)
G(y)oo

ρ(y)

v~

G(a)
G̃(x)oo

ρ̄(x)

v~

F (d)

ρ(d)

OO

F (b)F (y)oo

ρ(b)

OO

F (a)F̃ (x)oo

ρ(a)

OO

F̃ (X)

qy

F (d)

idvF (d)

OO

F (a)

idvF (a)

OO

F̃ (u)◦hF (z)

oo

=

G(d) G(a)
G(y)◦hG̃(x)oo

G̃(X)

qy

G(d)

idvG(d)

OO

G(c)G̃(u)oo

ρ̄(u)

v~

G(a)G(z)oo

idvG(a)

OO

ρ(z)

v~

F (d)

ρ(d)

OO

F (c)
F̃ (u)

oo

ρ(c)

OO

F (a)

ρ(a)

OO

F (z)
oo

(1.4.21)

The conventionally defined double natural transformations do not require a prior
assignment of a folding. Further, they can be either horizontal or vertical. The natu-
rality condition they satisfy mimics that of the ordinary natural transformations with
arrows replaced by arrow squares of the form (1.4.19) and arrow composition replaced
by the horizontal and vertical square compositions, respectively.

If we forget the distinction between horizontal and vertical arrows of E exploit-
ing the edge symmetry of the latter, the naturality condition can be viewed as the
requirement of commutativity of the cube diagram

ρ(y)

��

ρ̄(u) //

G(d) G(b)
G(y)oo

G(X)

G(c)

G(u)

``

G(a)

G(x)
``

G(z)
oo

F (d)

ρ(d)

OO

F (b)
F (y)oo

ρ(b)

OO

F (X)

F (c)

F (u)

``
ρ(c)

OO

F (a)

F (x)
``

F (z)
oo

ρ(a)

OO
ρ̄(x)oo

ρ(z)

__

(1.4.22)

Here, we have dropped all double arrows in order not to clog the diagram.
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1.4.6 Double modifications

The non standard definition of double modification given below is dictated by
the non standard notion of double natural transformation of the last subsection.

Let D, E be double categories or groupoids with E edge symmetric and folded (cf.
subsections 1.4.3, 1.4.4). Let F,G : D → E be double functors and σ, σ : F ⇒ G be
double natural transformations (cf. subsections 1.4.2,1.4.5).

Definition 34. A double modification ρV σ consists of a single datum.

1. A mapping of the set of objects of D into the set of 2–cells of VD,

a
� //

G(a) G(a)
idhG(a)oo

T (a)

s{

F (a)

σ(a)

OO

F (a)

ρ(a)

OO

idhF (a)

oo

(1.4.23)

This must satisfy the modification axioms. For any horizontal arrow of D

b a
xoo (1.4.24)

one has

G(b) G(b)
idhG(b)oo

T (b)

v~

G(a)
G(x)oo

ρ(x)

v~

F (b)

σ(b)

OO

F (b)
idhF (b)

oo

ρ(b)

OO

F (a)

ρ(a)

OO

F (x)
oo

=

G(b) G(a)
G(x)oo

σ(x)

v~

G(a)
idhG(a)oo

T (a)

v~

F (b)

σ(b)

OO

F (a)
F (x)
oo

σ(a)

OO

F (a)

ρ(a)

OO

idhF (a)

oo

(1.4.25)

For any vertical arrow of D

b

a

x

OO (1.4.26)

one has

G(b) G(b)
idhG(b)oo

T (b)

v~

G(a)
G̃(x)oo

ρ̄(x)

v~

F (b)

σ(b)

OO

F (b)
idhF (b)

oo

ρ(b)

OO

F (a)

ρ(a)

OO

F̃ (x)

oo

=

G(b) G(a)
G̃(x)oo

σ̄(x)

v~

G(a)
idhG(a)oo

T (a)

v~

F (b)

σ(b)

OO

F (a)
F̃ (x)

oo

σ(a)

OO

F (a)

ρ(a)

OO

idhF (a)

oo

(1.4.27)

The axioms can be interpreted as the commutativity condition of the following
cylinder diagrams

ρ(b)

��
ρ(a)

��
ρ(x)

G(b)
G(x)oo G(a)

F (b)

T (b)

F (a)
F (x)oo

T (a)

σ(b)

OO

σ(a)

OO

σ(x)

(1.4.28a)
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ρ(b)

��
ρ(a)

��
ρ̄(x)

G(b)
G(x)oo G(a)

F (b)

T (b)

F (a)
F (x)oo

T (a)

σ(b)

OO

σ(a)

OO

σ̄(x)

(1.4.28b)

Above all double arrows have been dropped. Further the identity morphisms of the
modification arrow squares have been collapsed.

1.4.7 The double groupoid of plane rectangles

Rectangles in R2 can be organized in a double groupoid.

Proposition 6. There is a double groupoid GR2 defined as follows.

1. For each x, y ∈ R, there is an object (x, y) of GR2.

2. For each x, x′, y ∈ R there is a unique horizontal arrow

(x′, y) (x, y)oo (1.4.29)

For each x, y, y′ ∈ R there is a unique vertical arrow

(x, y′)

(x, y)

OO
(1.4.30)

3. For each quadruple x, x′, y, y′ ∈ R there is a unique arrow square

(x′, y′) (x, y′)oo

v~

(x′, y)

OO

(x, y)

OO

oo

(1.4.31)

The horizontal and vertical composition of arrows and arrow squares are codified in
the diagrams

(x′′, y′) (x′, y′)oo

v~

(x, y′)oo

v~

(x′′, y)

OO

(x′, y)oo

OO

(x, y)

OO

oo

=

(x′′, y′) (x, y′)oo

v~

(x′′, y)

OO

(x, y)

OO

oo

(1.4.32)

(x′, y′′) (x, y′′)oo

v~

(x′, y′)

OO

(x, y′)oo

OO

v~

(x′, y)

OO

(x, y)

OO

oo

=

(x′, y′′) (x, y′′)oo

v~

(x′, y)

OO

(x, y)

OO

oo
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respectively. The horizontal and vertical composition identity arrows and arrow squares
are similarly encoded in the diagrams

(x, y′) (x, y′)oo

v~

(x, y)

OO

(x, y)

OO

oo

(x′, y) (x, y)oo

w�

(x′, y)

OO

(x, y)

OO

oo

(1.4.33)

respectively. Finally, the horizontal and vertical inverses of arrows and arrow squares
in (1.4.31) are

(x, y′) (x′, y′)oo

v~

(x, y)

OO

(x′, y)

OO

oo

(x′, y) (x, y)oo

v~

(x′, y′)

OO

(x, y′)

OO

oo

(1.4.34)

1.4.8 The double groupoid of a crossed module

Let (G,H) be a crossed module with target map t : H → G and G action
m : G×H → H (see definition 51).

Proposition 7. There is a double groupoid B(G,H) defined as follows.

1. There is a unique object ∗.

2. For each element x ∈ G, there is one horizontal and one vertical arrow,

∗ ∗xoo

∗

∗

x

OO (1.4.35)

3. For each quadruple x, y, u, v ∈ G and each X ∈ H satisfying the target matching
condition

vy = uxt(X) (1.4.36)

there is one arrow square

∗ ∗uoo

X
{�

∗

v

OO

∗

x

OO

y
oo

(1.4.37)

The horizontal and vertical composition of arrows and arrow squares are codified in
the diagrams

∗ ∗voo

Y
{�

∗uoo

X
{�

∗

t

OO

∗y
oo

s

OO

∗

r

OO

x
oo

=

∗ ∗vuoo
Xm(x−1)(Y )

px
∗

t

OO

∗

r

OO

yx
oo

(1.4.38)
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∗ ∗zoo

Y
{�

∗

t

OO

∗yoo

r

OO

X
{�

∗

s

OO

∗

q

OO

x
oo

=

∗ ∗zoo
m(q−1)(Y )X

px
∗

ts

OO

∗

rq

OO

x
oo

respectively. The horizontal and vertical identity arrows and arrow squares are simi-
larly encoded in the diagrams

∗ ∗
1Goo

1H

t|
∗

x

OO

∗

x

OO

1G
oo

∗ ∗xoo
1H

t|
∗

1G

OO

∗

1G

OO

x
oo

(1.4.39)

respectively. Finally the horizontal and vertical inverses of arrows and arrow squares
in (1.4.37) are

∗ ∗u−1
oo
m(y)(X−1)

qy
∗

x

OO

∗

v

OO

y−1
oo

∗ ∗
yoo

m(x)(X−1)

qy
∗

v−1

OO

∗
x−1

OO

u
oo

(1.4.40)

We remark that the target matching condition (1.4.36) is essential for the exchange
law (1.4.5) to be satisfied.

Proposition 8. The double groupoid B(G,H) is edge symmetric.

The invertible functor VB(G,H) → HB(G,H) implementing edge symmetry is
defined as

∗ ∗
1Goo

X
{�

∗

y

OO

∗

x

OO

1G
oo

� //

∗ ∗
yoo

X−1

w�

∗

1G

OO

∗

1G

OO

x
oo

(1.4.41)

Proposition 9. The mapping

∗ ∗uoo

X
{�

∗

v

OO

∗

x

OO

y
oo

� //

∗ ∗uxoo

X
w�

∗

1G

OO

∗

1G

OO

vy
oo

(1.4.42)

defines a folding of B(G,H).
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Chapter 2

L∞ algebras

In this chapter we will introduce L∞-algebras and higher groups, central concepts
in higher gauge theory. They are higher generalizations of Lie algebras and groups,
and can thus be used to define gauge theories with higher gauge structure. We will
focus mainly on 2-term L∞ algebras, which are the basic algebraic ingredient of the
higher Chern-Simons model. In the last section we will briefly discuss some important
issues in the generalization of the Lie theory for L∞ algebras.

2.1 Review of Lie groups theory

In this section we will briefly summarize the theory of Lie groups and Lie algebras,
so that everything that we will do in the following will be a clear generalization of the
classical Lie theory. We start with the two central definitions:

Definition 35. A group is a set G with a multiplication m : G×G→ G, also denoted
m(g, h) = gh, such that there is an identity e ∈ G, m is associative and every element
of G is invertible. A Lie group is a group which is also a smooth manifold, with the
multiplication m and the inversion ·−1 : G→ G smooth maps.

Definition 36. A Lie algebra is a vector space g endowed with an antisymmetric
bilinear bracket [·, ·] : g ∧ g→ g that satisfies the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. (2.1.1)

If {ea} is a basis for g, the Lie brackets can be expanded in the following way:
[ea, eb] = f cabec, with an understood sum over repeated indexes. The real coefficients
f cab are called the structure constants of g, and they uniquely define the Lie algebra g.
The Jacobi identity in this basis expansion reads

f eadf
d
bc + f ebdf

d
ca + f ecdf

d
ab = 0. (2.1.2)

Groups are a cornerstone in physics and mathematics, due to the fact that they
abstractly describe symmetries. Lie algebras encode the infinitesimal structure of Lie
groups, as the following well known result shows:

Proposition 10. Given a Lie group G, its tangent space at the identity g := TeG is
a Lie algebra. It is called the Lie algebra associated with G, and is denoted Lie(G).

41
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Let us give some quick details about the construction of the Lie algebra structure
on g. Denote Lg for g ∈ G the left multiplication map: Lg(h) = gh. It is a smooth
map Lg : G → G. A left invariant vector field on G is a vector field V satisfying
Lg∗V |h = V |gh. Given two vectors x, y ∈ g, we can build two unique left-invariant
vector fields Vx and Vy on G such that Vx|e = x and Vy|e = y: Vx|g := Lg∗x and
similarly for Vy. Their commutator [Vx, Vy] is again a left invariant vector field. The
Lie bracket on g is then defined as [x, y] := [Vx, Vy]|e.

Moreover Lie’s third theorem or Cartan-Lie theorem states that every real finite
dimensional Lie algebra can be integrated:

Theorem 1. Given a Lie algebra g, there is a simply connected Lie group G such that
Lie(G) = g.

The exponential map exp : g → G integrates the Lie algebra to the Lie group,
sending every vector in g to a finite group element. Given x ∈ g, the left invariant
vector field Vx generates a one-parameter group of transformations of G: σx(t, g) :
R × G → G, such that σx(t, σx(t

′, g)) = σx(t + t′, g), σx(0, g) = g. The exponential
map is defined as exp(x) := σx(1, e). In the case of a matrix group, this map is the
exponential map of matrices:

exp(x) =
∞∑
n=0

xn

n!
. (2.1.3)

We can associate with every Lie algebra g a differential complex called the Chevalley-
Eilenberg complex of g. This is a very important construction that we will use later
on in the definition of a L∞ algebra (see section (2.4)). Given a Lie algebra g, its
algebraic dual g∗ is naturally equipped with a bilinear product 〈·, ·〉 : g∗⊗g→ R. This
pairing can be canonically extended to the exterior algebras ∧•g∗ ∼= (∧•g)∗ and ∧•g:
given ξ = ξ1 ∧ · · · ∧ ξk ∈ ∧kg∗ and x = x1 ∧ · · · ∧ xh ∈ ∧hg it is defined as

〈ξ, x〉 =

{ ∑
σ∈Sh(−1)k(k−1)/2(−1)σ〈ξ1, xσ(1)〉 · · · 〈ξk, xσ(k)〉 if k = h

0 if k 6= h
. (2.1.4)

Here (−1)σ denotes the signature of the permutation σ. This pairing together with
the Lie bracket [·, ·] : ∧2g→ g defines an operator QCE : g∗ → ∧2g∗:

〈QCEξ, x ∧ y〉 := 〈ξ, [x, y]〉. (2.1.5)

We can now extend the operator QCE to all the exterior algebra ∧•g∗, so that QCE :
∧kg∗ → ∧k+1g∗, through the graded Leibniz identity:

QCE(ξ1 ∧ ξ2) = (QCEξ1) ∧ ξ2 + (−1)degξ1ξ1 ∧ (QCEξ2), (2.1.6)

where deg is the natural grading of the exterior algebra: degξ = k if ξ ∈ ∧kg∗. Also
the Lie bracket of g can be extended from ∧2g to ∧•g:

[x1 ∧ · · · ∧ xk] :=
∑

1≤i<j≤k

(−1)i+j−1[xi, xj] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xk, (2.1.7)
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where the hat means a missing entry. In this way [·] : ∧•g → ∧•−1g, with [x] = 0 for
x ∈ g. It is possible to show that these extended brackets are dual to the operator
QCE, in fact for any ξ ∈ ∧kg∗ and x ∈ ∧k+1g we have

〈QCEξ, x〉 = 〈ξ, [x]〉. (2.1.8)

The operator QCE enjoys the following property:

Proposition 11.
Q2
CE = 0. (2.1.9)

Proof. Given ξ = ξ1 ∧ · · · ∧ ξk an element of ∧kg∗ with ξi ∈ g, we have that

Q2
CEξ = QCE(

k∑
i=1

(−1)i+1ξ1 ∧ · · · ∧ dξi ∧ · · · ∧ ξk) =

=
k∑
i=1

(−1)i+1

(
i−1∑
j=1

(−1)j+1ξ1 ∧ · · · ∧ dξj ∧ · · · ∧ dξi ∧ · · · ∧ ξk+

+(−1)i+1ξ1 ∧ . . . d2ξi ∧ · · · ∧ ξk +
k∑

j=i+1

(−1)jξ1 ∧ · · · ∧ dξi ∧ · · · ∧ dξj ∧ . . . ξk

)
=

=
k∑
i=1

ξ1 ∧ · · · ∧ d2ξi ∧ . . . ξk. (2.1.10)

Using the coordinate expression

dξa = −1

2
fabcξ

b ∧ ξc, (2.1.11)

where {ξa} is a basis of g∗, it is easy to compute

〈d2ξ, x ∧ y ∧ z〉 = 〈ξ, [[x, y]z] + [[y, z], x] + [[z, x], y]〉 = 0 (2.1.12)

and (2.1.9) follows. 2

This makes QCE a differential and ∧•g∗ a differential complex. We can now give
this definition:

Definition 37. Given a Lie algebra g, the cochain complex CE•(g) := ∧•g∗ is called
the Chevalley-Eilenberg complex associated with g, and QCE is the Chevalley-
Eilenberg differential.

What is more, given any differential of degree 1 on the wedge power of some vector
space, namely Q : C → C with C = ⊕n∧nV , that satisfies the graded Leibniz rule, we
can find a Lie algebra structure on the algebraic dual of V . Expanding the differential
on a basis {ξa} of V we obtain the usual expression

Q(ξa) = −1

2
fabcξ

b ∧ ξc, (2.1.13)
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and the fact that Q squares to zero implies that the constants fabc satisfy (2.1.2). Since
they are intrinsically antisymmetric, they define Lie bracket [ea, eb] = f cabec on V ∗.
This shows that Lie algebras and Chevalley-Eilenberg complexes are in one-to-one
correspondence.

Through the definition π := ξa⊗ ea, with {ea} basis of g and {ξa} dual basis of g∗,
we can write the Chevalley-Eilenberg differential in the concise form

QCEπ = −1

2
[π, π]. (2.1.14)

We will give a generalization of this formula for a 2-term L∞ algebra.
Remarkably, the correspondence between Lie algebras and Chevalley-Eilenberg

complexes holds at the level of morphisms. Given two Lie algebras g and h, a homomor-
phism of Lie algebras is a linear map f : g→ h such that [f(x), f(y)]h = f([x, y]g) for
any x, y ∈ g. Homomorphisms of a Lie algebra generate chain maps of the Chevalley-
Eilenberg complex:

Proposition 12. Homomorphisms of a Lie algebra g and chain maps of the Chevalley-
Eilenberg complex CE•(g) are in 1-to-1 correspondence

The correspondence is based on the fact that every linear map f : g→ g generates
a dual map f ∗ : g∗ → g∗ which can be naturally extended to the complex CE•(g).
The fact that f preserves the Lie bracket of g implies that the dual map f ∗ respects
the Chevalley-Eilenberg differential, f ∗QCE = QCEf

∗, and vice versa.
It is worth to notice that the Chevalley-Eilenberg complex of a Lie algebra g can

be generalized to take values in an arbitrary module carrying a representation of g.

Definition 38. Given a real Lie algebra g and a real module m, a representation
of g on m is a bilinear map ϕ : g×m→ m, also denoted ϕ(x, a) = x · a, such that

x · (y · a)− y · (x · a) = [x, y] · a , ∀x, y ∈ g,∀a ∈ m (2.1.15)

In this case the cochain complex is defined to be CE•ϕ(g,m) := ∧•g∗⊗m. Through
the pairing between g and g∗ this complex is the set of linear maps from ∧•g to m:
Given ξ ∈ ∧•g∗, a ∈ m and x ∈ ∧•g the pairing is

〈ξ ⊗ a, x〉′ = 〈ξ, x〉a. (2.1.16)

The Chevalley-Eilenberg differential is also slightly modified according to this expres-
sion:

〈QCE,ϕ(ξ ⊗ a), x1 ∧ · · · ∧ xk+1〉′ := 〈QCEξ, x1 ∧ · · · ∧ xk+1〉a−

−
k+1∑
j=1

(−1)k+j〈ξ, x1 ∧ · · · ∧ x̂j ∧ · · · ∧ xk+1〉xj · a, (2.1.17)

where QCE,ϕ is the Chevalley-Eilenberg differential of CE•ϕ(g,m) and QCE is the
Chevalley-Eilenberg differential that we have previously defined. The complex CE•(g)
is the particular case of CE•ϕ(g,m) for m = R and ϕ the trivial zero representation.
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2.2 Groups and Groupoids

In this section we discuss some extensions of the concept of group, namely groupoids,
higher groupoids and higher groups, with a special focus on 2-groups.

Groupoids are a categorical generalization of groups. The inspiring example for
groupoids, which is also of interest for our purposes (see sect. 4.3.1), is the path
groupoid: given a smooth manifold M and x, y ∈ M , a path in M from x to y is a
smooth map γ : [0, 1] → M such that γ(0) = x and γ(1) = y. The set of all paths
in M is called the path space. There is a composition defined on this space, which is
concatentation. Without going into details, which will be discussed later, it is possible
to show that if we mod out a certain homotopy equivalence on the path space, then
composition acquires nice properties: first of all it becomes associative; at any point
x ∈ M , the constant path γ(t) = x is a unit for the composition; every path has
an inverse. These properties resemble the ones of a group, but with a substantial
difference: in the path space not every two elements can be composed, it depends on
their source and target points. There are two maps s, t going from the path space to
M , namely the starting point and the target point of a path, and two paths γ and γ′

admit a composition γ ◦ γ′ if and only if s(γ) = t(γ′). Thus, the path space isn’t a
group, and the algebraic structure that it reveals is instead a groupoid. This is very
similar to what happens in category theory, where only consecutive morphisms con
be composed. Capturing the essence of these properties, we arrive at the following
definition:

Definition 39. A groupoid is a category where every morphism is invertible.

This definition is very simple, but it sums up all the properties we want. In our
previous example, the set of objects is M and the set of morphisms is the path space.
The axioms of a category provide all the algebraic structure which is needed, except
for the invertibility. The relation between groups and groupoids is clarified by the next
definition and proposition:

Definition 40. Given G a group, the delooping of G is the category BG which has
only one object and G as set of morphisms, with 1G as identity morphism and the
group multiplication as composition.

Proposition 13. Given G a groupoid with a single object, there is a group G such
that G = BG:

This simple result illustrates the difference between a group and a groupoid: the
former is a groupoid whose morphisms are concentrated on a single object.

In the same way as higher categories extend the concept of categories, higher
groupoids extend the concept of groupoids, and the same happens for higher groups,
which are particular higher groupoids in exactly the same way as groups are particular
groupoids. There are n-groupoids for arbitrary n, where the meaning of the natural
number n is the same as in higher category theory, and n-groups are n-groupoids with
just one object. We will limit our discussion to the case n = 2.

2-groupoids and 2-groups can be either weak or strict, depending on the underlying
categorical structure. Thus we distinguish two different notions of 2-groupoids:
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Definition 41. A weak 2-groupoid is a 2-category in which every 1-morphism is
an equivalence and every 2-morphism is invertible under vertical composition.

Definition 42. A strict 2-groupoid is a weak 2-groupoid whose underlying 2-category
is strict.

We can now come to the definition of weak or strict 2-groups:

Definition 43. A weak (strict) 2-group is a weak (strict) 2-groupoid with only one
object.

The relation between 2-groups and 2-groupoids (actually between n-groups and n-
groupoids) according to this definition is the same as the relation between groups and
groupoids, with a slight difference: mimicking the ordinary case, we would have stated
that a groupoid with a single object is BG for some 2-group G. A 2-group would then
have been defined as the Hom category of a 2-groupoid with a single object, which
we know is a monoidal category. Indeed, another more self contained definition of
2-groups which doesn’t require 2-groupoids says that 2-groups are monoidal categories
whose objects are all weakly invertible and whose morphisms are all invertible. This
is the definition employed for example in [36].

In [36] Baez and Lauda define another kind of 2-groups, which they call coherent
2-groups. To proceed similarly to before, we modify slightly their definition and we
adopt the point of view of 2-categories instead of the one of monoidal categories:

Definition 44. A coherent 2-group is a weak 2-category with one object in which ev-
ery 2-morphism is invertible and every 1-morphism f is equipped with a triple (f̄ , if , ef )
where f̄ is a 1-morphism and if : 1⇒ f ◦ f̄ and ef : f̄ ◦ f ⇒ 1 are 2-isomorphisms.

The difference between a weak 2-group and a coherent 2-group is that in the latter
we assign a precise weak inverse together with all its structure to every 1-morphism
instead of just saying that it exists. Nevertheless every weak 2-group can be enhanced
to become a coherent one, and every coherent 2-group becomes a weak 2-group just
by forgetting the extra structure. Indeed, theorem 17 in [36] states that there is an
equivalence between the 2-category of weak 2-groups and the 2-category of coherent
2-groups.

There are other definitions of strict 2-groups which are used in literature. We will
not go through all the details of these definitions, nor we will prove that they are all
equivalent, but we’ll mention them for completeness. More details on these definitions
and for the proofs of the equivalences between most of them, see [49].

2-groups can be introduced as group objects in Cat, the category of categories.
Given a category C with products and a terminal object 1, a group object in C is
defined as an object G in C together with morphisms m : G × G → G, i : G → G
and e : 1 → G in C that fulfill some relations resembling the axiom of associativity,
invertibility and identity of usual groups. Such an object in the category of categories
is a monoidal category, with the tensor product provided by m, where every object
and every morphism is invertible, with i giving the inverse function, and the image of e
is the identity object and morphism (the terminal object in Cat is the trivial category
with one object and the identity morphism on it only).
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Another definition adopts the opposite point of view, as it says that 2-groups are
internal categories in Grp, the category of groups and group homomorphisms. An
internal category in a category C is defined as a pair of objects O and M in C, the
former called object of objects and the second object of morphisms, together with
morphisms s, t : M → O, id : O → M , ◦ : M ×O M → M in C that satisfy axioms
similar to those of a category. An internal category in the category of groups consists
of a two groups O and M with source and target homomorphisms s, t : M → O.
Horizontal composition is given by the group law on O and by ◦ : M ×O M → M on
M and vertical composition is given by the group law on M .

The definitions we gave up to now are very concise but a bit implicit. Let us unpack
them and make more precise definitions with which it will be easier to work. Since we
will deal only with the strict version of higher groups and groupoids, we will restrict
ourself to them:

Definition 45. A groupoid G consists of the following set of data:

1. a set of objects G0;

2. for each pair of objects x, y, a set of 1-morphisms G1(x, y);

3. for each triple of objects x, y, z, a composition law of 1–morphisms ◦ : G1(x, y)×
G1(y, z)→ G1(x, z);

4. for each pair of objects x, y, a inversion law of 1–morphisms −1◦ : G1(x, y) →
G1(y, z);

5. for each object x, a distinguished unit 1–morphisms 1x ∈ G1(x, x);

These are required to satisfy the following axioms.

(c ◦ b) ◦ a = c ◦ (b ◦ a), (2.2.1a)

a−1◦ ◦ a = 1x, a ◦ a−1◦ = 1y, (2.2.1b)

a ◦ 1x = 1y ◦ a = a, (2.2.1c)

Here and in the following, x, y, z, · · · ∈ G0, a, b, c, · · · ∈ G1, where G1 denotes the set of
all 1–morphisms. All identities hold whenever defined.

Definition 46. A strict 2-group G consists of the following set of data:

1. a set of 1-morphisms G1;

2. a composition law of 1–morphisms ◦ : G1 × G1 → G1;

3. a inversion law of 1–morphisms −1◦ : G1 → G1;

4. a distinguished unit 1–morphism 1 ∈ G1;

5. for each pair of 1–morphisms a, b ∈ G1, a set of 2–morphisms G2(a, b);

6. for each quadruple of 1–morphisms a, b, c, d ∈ G1, a horizontal composition law
of 2–morphisms ◦ : G2(a, c)× G2(b, d)→ G2(b ◦ a, d ◦ c);
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7. for each pair of 1–morphisms a, b ∈ G1, a horizontal inversion law of 2–morphisms
−1◦ : G2(a, b)→ G2(a−1◦ , b−1◦);

8. for each triple of 1–morphisms a, b, c ∈ G1, a vertical composition law of 2–
morphisms • : G2(a, b)× G2(b, c)→ G2(a, c);

9. for each pair of 1–morphisms a, b ∈ G1, a vertical inversion law of 2–v −1• :
G2(a, b)→ G2(b, a);

10. for each 1–morphism a, a distinguished unit 2–morphism 1a ∈ G2(a, a).

These are required to satisfy the following axioms.

(c ◦ b) ◦ a = c ◦ (b ◦ a), (2.2.2a)

a−1◦ ◦ a = a ◦ a−1◦ = 1, (2.2.2b)

a ◦ 1 = 1 ◦ a = a, (2.2.2c)

(C ◦B) ◦ A = C ◦ (B ◦ A), (2.2.2d)

A−1◦ ◦ A = A ◦ A−1◦ = 11, (2.2.2e)

A ◦ 11 = 11 ◦ A = A, (2.2.2f)

(C •B) • A = C • (B • A), (2.2.2g)

A−1•• A = 1a, A • A−1• = 1b, (2.2.2h)

A • 1a = 1b • A = A, (2.2.2i)

(D • C) ◦ (B • A) = (D ◦B) • (C ◦ A). (2.2.2j)

All identities involving the vertical composition and inversion hold whenever defined.
Relation (2.2.2j) is the exchange law.

Definition 47. A strict 2-groupoid G consists of the following set of data:

1. a set of objects G0;

2. for each pair of objects x, y, a set of 1-morphisms G1(x, y);

3. for each triple of objects x, y, z, a composition law of 1–morphisms ◦ : G1(x, y)×
G1(y, z)→ G1(x, z);

4. for each pair of objects x, y, a inversion law of 1–morphisms −1◦ : G1(x, y) →
G1(y, z);

5. for each object x, a distinguished unit 1–morphisms 1x ∈ G1(x, x);

6. for each pair of objects x, y and for each pair of 1–morphisms a, b ∈ G1(x, y), a
set of 2–morphisms G2(a, b);

7. for each triple of objects x, y, z and for each pair of 1–morphisms a, c ∈ G1(x, y)
and for each pair of 1–morphisms b, d ∈ G1(y, z), a horizontal composition law
of 2–morphisms ◦ : G2(a, c)× G2(b, d)→ G2(b ◦ a, d ◦ c);

8. for each pair of objects x, y and for each pair of 1–morphisms a, b ∈ G1(x, y), a
horizontal inversion law of 2–morphisms −1◦ : G2(a, b)→ G2(a−1◦ , b−1◦);
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9. for each pair of objects x, y and for each triple of 1–morphisms a, b, c ∈ G1(x, y),
a vertical composition law of 2–morphisms • : G2(a, b)× G2(b, c)→ G2(a, c);

10. for each pair of objects x, y and for each pair of 1–morphisms a, b ∈ G1(x, y), a
vertical inversion law of 2–morphisms −1•: G2(a, b)→ G2(b, a);

11. for each pair of objects x, y and for each 1–morphism a ∈ G1(x, y), a distinguished
unit 2–cell 1a ∈ G2(a, a).

These are required to satisfy the following axioms.

(c ◦ b) ◦ a = c ◦ (b ◦ a), (2.2.3a)

a−1◦ ◦ a = 1x, a ◦ a−1◦ = 1y, (2.2.3b)

a ◦ 1x = 1y ◦ a = a, (2.2.3c)

(C ◦B) ◦ A = C ◦ (B ◦ A), (2.2.3d)

A−1◦ ◦ A = 11x A ◦ A−1◦ = 11y , (2.2.3e)

A ◦ 11x = 11y ◦ A = A, (2.2.3f)

(C •B) • A = C • (B • A), (2.2.3g)

A−1•• A = 1a, A • A−1• = 1b, (2.2.3h)

A • 1a = 1b • A = A, (2.2.3i)

(D • C) ◦ (B • A) = (D ◦B) • (C ◦ A). (2.2.3j)

Here and in the following, x, y, z, · · · ∈ G0, a, b, c, · · · ∈ G1, A,B,C, · · · ∈ G2, where G1

and G2 denote the set of all 1– and 2–morphisms, respectively. All identities involving
the horizontal and vertical composition and inversion hold whenever defined. Relation
(2.2.3j) is again the exchange law.

Morphisms of higher groups and higher groupoids are just higher functors between
them. This leads to the following definitions:

Definition 48. Given two groupids G and H, a groupid morphism F : G → H
consists of the following set of data:

• a map F0 : G0 → H0;

• for every couple of objects x, y ∈ G0, a map F1(x, y) : G1(x, y)→ H1(F0(x), F0(y)).

These are required to satisfy the following axioms.

F1(x, x)(1x) = 1F0(x), (2.2.4a)

F1(x, z)(a ◦G b) = F1(x, y)(a) ◦H F1(y, z)(b). (2.2.4b)

In the following, F1(x, y) will be denoted simply as F1 for notational convenience.

Definition 49. Given two strict 2-groups G and H, a strict 2-group morphism
F : G → H consists of the following set of data:

• a map F1 : G1 → H1;
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• for every couple of 1-morphisms a, b ∈ G1 a map F2(a, b) : G2(a, b)→ H2(a, b).

These are required to satisfy the following axioms.

F1(1G) = 1H, (2.2.5a)

F1(a ◦G b) = F1(a) ◦H F1(b), (2.2.5b)

F2(a, a)(1a) = 1F1(a), (2.2.5c)

F2(a ◦G c, b ◦G d)(A ◦G B) = F2(a, b)(A) ◦H F2(c, d)(B), (2.2.5d)

F2(a, c)(A •G B) = F2(a, b)(A) •H F2(b, c)(B). (2.2.5e)

In the following F2(a, b) will be denoted simply as F2 for notational convenience.

Definition 50. Given two strict 2-groupoids G and H, a strict 2-groupoid mor-
phism F : G → H consists of the following set of data:

• a map F0 : G0 → H0;

• for every couple of objects x, y ∈ G0 a map F1(x, y) : G1(x, y)→ H1(x, y);

• for every couple of 1-morphisms a, b ∈ G1(x, y) a map F2(a, b) : G2(a, b) →
H2(a, b).

These are required to satisfy the following axioms

F1(x, x)(1x) = 1F0(x), (2.2.6a)

F1(x, z)(a ◦G b) = F1(x, y)(a) ◦H F1(y, z)(b), (2.2.6b)

F2(a, a)(1a) = 1F1(a), (2.2.6c)

F2(a ◦G c, b ◦G d)(A ◦G B) = F2(a, b)(A) ◦H F2(c, d)(B), (2.2.6d)

F2(a, c)(A •G B) = F2(a, b)(A) •H F2(b, c)(B). (2.2.6e)

In the following F1(x, y) and F2(a, b) will be denoted simply as F1 and F2 respectively
for notational convenience.

2.3 Crossed modules

We are turning now to a very interesting definition which is closely related to
2-groups:

Definition 51. A crossed module is a quadruple (G,H,m, t) where G and H are
groups, m : G→ Hom(H,H) and t : H → G are group homomorphisms such that the
following relations are satisfied:

t(m(g)(h)) = gt(h)g−1 , ∀g ∈ G, h ∈ H, (2.3.1)

m(t(h))(h′) = hh′h−1 , ∀h, h′ ∈ H. (2.3.2)

Relation (2.3.2) is also called the Peiffer idendity.

The link with 2-groups is shown in the next proposition:
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Proposition 14. There is one-to-one correspondence between crossed modules and
strict 2-groups

Proof. Let G be a strict 2-group with G1 set of 1-morphisms and G2 set of 2-morphisms.
We need to find a quadruple (G,H,m, t) starting from G. Since G1 is itself a group
with the multiplication given by the horizontal composition, we set G = G1. Denoting
1 the identity 1-morphism in G1 and s : G2 → G1 the source map of the 2-group on
2-morphisms, we will prove that s−1(1) is a group too. It is the set of all 2-morphisms
starting at 1. Two such 2-morphisms can be composed horizontally to give another
2-morphism in s−1(1), and this composition provides the group law on s−1(1). This
composition is associative since horizontal composition of 2-morphisms is associative,
and it has 11, the identity 2-morphism on the identity 1-morphism in G, as identity.
We can thus set H = s−1(1).

The map m is constructed in this way: given g ∈ G = G1, the action of m(g) on
h ∈ H = s−1(1) is given by

m(g)(h) = 1g ◦ h ◦ 1g−1 . (2.3.3)

This map is well defined since s(1g ◦h◦1g−1) = g◦1◦g−1 = 1. This is a homomorphism
onH becausem(g)(h)◦m(g)(h′) = 1g◦h◦1g−1◦1g◦h◦1g−1 = 1g◦h◦h′◦1g−1 = m(g)(h◦h′)
and it is a homomorphism from G to Hom(H,H) because m(g)(m(g′)(h)) = 1g ◦ 1g′ ◦
h ◦ 1g′−1 ◦ 1g−1 = 1g◦g′ ◦ h ◦ 1(g◦g′)−1 = m(g ◦ g′)(h).

The map t : H → G is simply the restriction to H of the target map t : G2 → G1. It
is a group homomorphism because the target map of the horizontal composition of two
2-morphisms is the horizontal composition of the targets of the composed 2-morphisms.

We must now check the axioms of a crossed module. Relation (2.3.1) is very simple
and follows straightforwardly from our definitions: t(m(g)(h)) = t(1g ◦ h ◦ 1g−1) =
g ◦ t(h) ◦ g−1. Relation (2.3.2) is a bit trickier:

m(t(h))(h′) = 1t(h) ◦ h′ ◦ 1t(h)−1 = (1t(h) ◦ h′ ◦ 1t(h)−1) • (h ◦ 11 ◦ h−1) =

= (1t(h) • h) ◦ (h′ • 11) ◦ (1t(h)−1 • h−1) = h ◦ h′ ◦ h−1. (2.3.4)

Here we used the exchange law (4) for the 2-group G, as shown in this diagram:

·

t(h)

��

t(h)

CC
1t(h)

��

·

1

��

t(h′)

CCh′

��

·

t(h)−1

��

t(h)−1

CC
1t(h)−1

��

· = ·

1

��
t(h) //

t(h)

GG

h
��

1t(h)

��

·

1

��
1 //

t(h′)

GG

11

��

h′

��

·

1

��
t(h)−1 //

t(h)−1

GG

h−1

��

1
t(h)−1

��

· =

= ·

1

��

t(h)

CCh

��

·

1

��

t(h′)

CC11

��

·

1

��

t(h)−1

CCh−1

��

· (2.3.5)

This proves that (G1, s
−1(1),m, t) is a crossed module.
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Conversely, given (G,H,m, t) a crossed module we can define a strict 2-group
G as G1 = G and G2 = H o G. Horizontal composition on 1-morphisms is the
group multiplication on G with the corresponding identity. Given a 2-morphisms
(h, g), we set s(h, g) = g and τ(h, g) = t(h)g (here we denoted τ : G2 → G1 the
target map of G not to cause confusion with the homomorphism t of the crossed
module). Horizontal and vertical compositions of 2-morphisms are defined as fol-
lows: (h′, t(h)g) • (h, g) = (h′h, g) and (h′, g′) ◦ (h, g) = (h′m(g′, h), g′g). The identity
2-morphism on g is (1H , g). it is easy to show that this is a strict 2-category: horizon-
tal composition is well defined since s((h′, g′) ◦ (h, g)) = s(h′m(g′, h), g′g) = g′g and
τ((h′, g′) ◦ (h, g)) = t(h′m(g′, h))g′g = t(h′)g′t(h)g′−1g′g = t(h′)g′t(h)g. Both vertical
and horizontal compositions are associative and have identities as 1G and ig = (1H , g).
The exchange law is readily checked:

((k′, t(h′)g′) ◦ (k, t(h)g)) • ((h′, g′) ◦ (h, g)) =

= (k′h′m(g′, k)h′
−1
, t(h′)g′t(h)g) • (h′m(g′, h), g′g) =

= (k′h′m(g′, kh), g′g) = (k′h′, g′) ◦ (kh, g) =

= ((k′, t(h′)g′) • (h′, g′)) ◦ ((k, t(h)g) • (h, g)). (2.3.6)

Furthermore every morphism is invertible: g−1◦ = g−1, (h, g)−1• = (h−1, t(h)g) and
(h, g)−1◦ = (m(g−1, h−1), g−1). Thus G is a strict 2-group. 2

The last proposition is very important because it means that at the core strict
2-groups theory reduces to usual group theory. All the techniques which are known
in group theory can be used to study in full depth strict 2-groups. This is not true
for non strict 2-groups, which appear to be extremely different from ordinary groups:
unluckily, in the non strict case there isn’t any result analogous to proposition (14),
and usual group theory is of little or no use in this case.

What we have said up to now generalizes the algebraic structure of a group. In
order to implement the continuity and the differential structure of Lie groups we have
to combine higher groupoids with smooth manifolds and maps. This is done by defining
obvious generalizations of Lie groups, which are called Lie groupoids:

Definition 52. A Lie n-groupoid is a n-groupoid whose sets of objects and of i-
morphisms, i = 1, . . . , n, are smooth manifolds, with all the target and source maps,
the identity and inversion maps and all the composition maps being smooth maps.

2.4 L∞ algebras

2.4.1 L∞ algebra cohomology

L∞ algebras are a generalization of Lie algebras. They appeared with the name
of strong homotopy Lie algebras in [50], see also [51], and since then they have been
largely explored, see [52], [37] and references therein. They play a pivotal role in the
present work, therefore we will try to discuss them in some depth. In this subsection
we will explain how they are related to Lie algebras and where their definition comes
from.
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To begin we will outline some basic concepts of graded algebra and fix some nota-
tions that will be of use later on.

Definition 53. A graded vector space is a direct sum V = ⊕n∈ZVn. An element
x ∈ Vn is said to be in degree n, and we write |x| = n. A graded vector space is said
to be positively (negatively) graded if Vn = {0} for n < 0 (n > 0).

Definition 54. A graded linear map of degree k is a linear map f : V → W
between graded vector spaces V and W such that |f(x)| = |x|+ k.

Given a graded vector space V , we can define the k-shifted graded vector space
V [k] which is defined as V [k]i := Vi+k. Basically V [k] has the same elements of V with
the degree increased by k.

It is possible to make the usual operations between vector space on graded vector
spaces. If we have two graded vector space V = ⊕n∈ZVn and W = ⊕n∈ZWn we can
define their direct sum and their tensor product, which also are graded vector spaces,
according to the following relations:

(V ⊕W )n := Vn ⊕Wn, (2.4.1)

(V ⊗W )n :=
⊕
p+q=n

(Vp ⊗Wq). (2.4.2)

The symmetric group Sn acts on⊗nV for V a vector space in two manners according
to the two 1-dimensional representations of Sn. The trivial representation gives the
symmetric action:

σ : v1 ⊗ v2 ⊗ · · · ⊗ vn → vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n), (2.4.3)

while the signature gives the antisymmetric action:

σ : v1 ⊗ v2 ⊗ · · · ⊗ vn → (−1)σvσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n). (2.4.4)

Taking the orbits of these two actions of the permutation group leads respectively to
the symmetric algebra Sn(V ) and the exterior algebra ∧nV . It is possible to generalize
this action to graded vector spaces.

Definition 55. Given the tensor algebra ⊗•V of a graded vector space V , we define
the symmetric algebra of V S•(V ) as the quotient of ⊗•V with respect to the ideal
of elements of the form

x⊗ y − (−1)|x||y|y ⊗ x, (2.4.5)

and we define the exterior algebra of V ∧•V as the quotient of the tensor algebra
with respect to the ideal of elements of the form

x⊗ y + (−1)|x||y|y ⊗ x = 0. (2.4.6)

These two spaces come naturally equipped with a graded symmetric (respectively
graded skew-symmetric) bilinear product given by the tensor product. The grading
on S•(V ) is defined in the following way:

|x1 ⊗ x2 ⊗ · · · ⊗ xn| = |x1|+ |x2|+ · · ·+ |xn|. (2.4.7)
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Instead we have two kinds of degrees on ∧•V . One derives from the original grading
of V , it is denoted | · | and is computed as in (2.4.7), the other is the exterior degree, it
is denoted deg(x) and is computed according to deg(x) = k ⇔ x ∈ ∧kV . The wedge
product on ∧•V is graded commutative in the following way:

x ∧ y = (−1)|x||y|+deg(x)deg(y)y ∧ x. (2.4.8)

A permutation σ acts on these spaces sending a string of vectors x1 ⊗ · · · ⊗ xn to
xσ(1)⊗ · · · ⊗ xσ(n) times an appropriate sign. The following definition is very useful to
keep track of the signs arising from permutations of graded elements:

Definition 56. Let V be a graded vector space and σ ∈ Sn a permutation. The Koszul
sign of σ relative to the set x1, . . . , xn of elements of V , denoted K(σ;x1, . . . , xn) or
K(σ) for brevity, is defined as

x1 ⊗ x2 ⊗ · · · ⊗ xn = K(σ)xσ(1) ⊗ xσ(2) ⊗ · · · ⊗ xσ(n) (2.4.9)

where xi ∈ V and ⊗ is the symmetric product in S•(V ).

A permutation σ ∈ Sn acts on ∧nV in the following manner:

σ : x1 ∧ x2 ∧ · · · ∧ xn = (−1)σK(σ)xσ(1) ∧ xσ(2) ∧ · · · ∧ xσ(n). (2.4.10)

Before facing a precise but obscure definition on L∞ algebras, let us explain how
they are linked to Lie algebras. Instead of adopting the category theory point of view,
we will show how they rise from a generalization of the Chevalley-Eilenberg complex.
We know from section (2.1) that, given a vector space V , the presence of a differential
on the complex C = ∧•V ∗ furnishes a Lie algebra structure to V . What is more,
Lie algebras and Chevalley-Eilenberg complexes are in one-to-one correspondence. We
can now assume that the real vector space V is substituted by a negatively graded
real vector space V = ⊕n≤0Vn. The dual V ∗ is then positively graded V ∗ = ⊕n≥0V

∗
n ,

so that the sum of the degrees of two dual elements is zero. In this way the natural
pairing V ⊗ V ∗ → R preserves the grading, since the real numbers have degree 0 by
definition. To construct an analog of the Chevalley-Eilenberg complex for V we define:

C = S•(V ∗[1]) = V ∗0 [1]⊕(V ∗0 [1]⊗V ∗0 [1]⊕V ∗1 [1])⊕(V ∗0 [1]⊗V ∗1 [1]⊕V ∗2 [1])⊕· · · (2.4.11)

If we take V concentrated in degree 0, i.e. Vn = 0 for n 6= 0, the complex defined in
(2.4.11) is just ∧•V ∗. We can now give a differential Q of degree 1 to C as happens for
Chevalley-Eilenberg complexes. Its action on the basis {ea(n)} of V ∗n [1] can be written
in full generality as

Qea(0) = −1

2
fabce

b
(0)e

c
(0) + φabe

b
(1) (2.4.12)

Qea(1) = −ρabceb(0)e
c
(1) +

1

6
Ra
bcde

b
(0)e

c
(0)e

d
(0) − ψab eb(2)

Qea(2) = −εabceb(0)e
c
(2) +

1

2
T abce

b
(1)e

c
(1) −

1

2
Ga
bcde

b
(0)e

c
(0)e

d
(1) +

1

24
Ha
bcdee

b
(0)e

c
(0)e

d
(0)e

e
(0) − Sab eb(3) . . .

...
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(Here the signs are put by convention, and we denoted the indexes of the different set of
basis {ea(n)} with the same small latin letters a, b, c, . . . just for notational simplicity).
The coefficients fabc, φ

a
b , ρ

a
bc, R

a
bcd, . . . are called the structure constants and can be used

to define several multilinear brackets between the Vn’s. For example, fabc defines a
bracket [·, ·] : V0∧V0 → V0, as happens for an usual Lie algebra, and the constant Ga

bcd

defines a trilinear bracket [·, ·, ·] : V0 ∧ V0 ⊗ V1 → V2. The constraint Q2 = 0 implies
then several algebraic identities that must be satisfied by the structure constants, and
in turn this implies that there are the same amount of algebraic relations that must be
satisfied by the brackets. These relations can then be viewed as generalizations of the
Jacobi identity for a Lie algebra, because the Jacobi identity is the relation we would
get if V is concentrated in degree 0. The graded vector space V with this infinite tower
of multibrackets is called L∞ algebra.

We turn now to a more concise definition. Define the i(n− i)-unshuffle Si(n−i) as
the subset of Sn made of all permutations σ such that σ(1) < σ(2) < · · · < σ(i) and
σ(i + 1) < σ(i + 2) < · · · σ(n). They are all permutations of n elements that do not
change the ordering of the first i elements nor of the last n− i elements. We can now
define an L∞ algebra:

Definition 57. A L∞ algebra is a negatively graded vector space v with multilinear
skewsymmetric brackets ln : ∧nv → v for n ∈ N of degree deg(ln) = 2 − n such that
they satisfy the following relations:∑

i+j=n+1

∑
σ∈Sj,n−j

(−1)σK(σ)(−1)i(j+1)li(lj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(n)) = 0

(2.4.13)
for n ≥ 1. If vk = 0 for k ≤ n then the L∞ algebra is called a n-term L∞ algebra.

We remark that there are different conventions for the signs in formula (2.4.13) and
other choices can be found in the literature. The differential chain complex which is
naturally associated to a L∞ algebra v as described above will be called the Chevalley-
Eilenberg complex of v and denoted CE•(v).

Let us examine in detail some examples of equation (2.4.13). For n = 1 we need
just one element x ∈ v and the equation becomes

l1(l1(x)) = 0, (2.4.14)

stating that the linear operator l1 : v• → v•+1 squares to zero. This makes (v, l1) a
chain complex with l1 a differential of degree 1. As a convention, l1 is denoted ∂. For
n = 2 the relation (2.4.13) becomes

∂l2(x1, x2)− l2(∂x1, x2)− (−1)|x1|l2(x1, ∂x2) = 0, (2.4.15)

which is exactly a graded Leibniz identity, so that ∂ acts as a derivation of degree 1
with respect to the operator l2. Another interesting case is n = 3, which reads

[[x1, x2], x3] + (−1)|x1|(|x2|+|x3|)[[x2, x3], x1] + (−1)|x3|(|x1|+|x2|)[[x3, x1], x2]+

+∂l3(x1, x2, x3)+l3(∂x1, x2, x3)+(−1)|x1|l3(x1, ∂x2, x3)+(−1)|x1|+|x2|l3(x1, x2, ∂x3) = 0,
(2.4.16)
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where we used square brackets [·, ·] to denote the operator l2 : vp ∧ vq → vp+q. The
first line of this relation is the Jacobi identity for the square brackets, and the second
line can be viewed as an homotopy equivalence between the Jacobi identity and zero.
This means that in a L∞ algebra the Jacobi identity for l2 holds only up to a higher
homotopy governed by a higher operator (l3) and the differential ∂. Remarkably, the
failure of the Jacobi identity to hold is equal to the failure of the differential ∂ to
fulfill a graded Leibniz rule with respect to l3. This is why in the works of Stasheff et
al. [50] and [51] L∞ algebra were called strong homotopy Lie algebras. Notice that if
v = v0 relation (2.4.16) would actually be the Jacobi identity for [·, ·], because if v is
concentrated in degree 0 there is no room for ∂ and l3 which would vanish identically.
This again confirms that a 1-term L∞ algebra is just a Lie algebra.

So far we gave two different definitions of L∞ algebras. We will now prove that
these two definitions coincide [51]. First of all we define a homomorphisms η : ∧•V →
S•(V [−1]) for V a negatively graded vector space. To avoid confusion between these
two spaces, we will denote with xi elements of V and with vi the corresponding elements
in V [−1], so that |vi| = |xi| − 1. The map η can then be defined as:

η(x1 ∧ · · · ∧ xn) = (−1)
∑n−1
i=1 (n−i)|xi|v1 ⊗ · · · ⊗ vn. (2.4.17)

This is an algebra homomorphism which preserves the action of Sn. It is enough to
check this on a transposition of two elements:

η(t12(x1 ∧ x2)) = (−1)|x1||x2|+1η(x2 ∧ x1) = (−1)|x2|(|x1|+1)+1v2 ⊗ v1, (2.4.18)

t12(η(x1 ∧ x2)) = (−1)|x1|t12(v1 ⊗ v2) = (−1)|x1|+(|x1|−1)(|x2|−1)v2 ⊗ v1. (2.4.19)

The map η doesn’t have a fixed degree. If we call ηk the restriction of η to ∧kV , then
|ηk| = −k.

Now take v an L∞ algebra as in definition (57). We can use the map η to define
multilinear operators on v[−1]:

l̂n : Sn(v[−1])→ v[−1]; , l̂n := η ◦ ln ◦ η−1. (2.4.20)

Notice that |l̂n| = |η1|+ |ln|+ |η−1
n | = 1. We can extend the operators l̂n to the whole

S•(v[−1]):

l̃k(v1⊗· · ·⊗vn) :=

{ ∑
σ∈Sk(n−k)

K(σ, v)l̂k(vσ(1) ⊗ · · · ⊗ vσ(k))⊗ vσ(k+1) ⊗ · · · ⊗ vσ(n) if k ≤ n

0 if k > n
.

(2.4.21)
These linear maps define by duality an operator Q on S•(v∗[1]) in the following way:

〈Qξ, v〉 := 〈ξ,
∑
n≥1

l̃n(v)〉, (2.4.22)

where ξ ∈ S•(v∗[1]) and v ∈ S•(v[−1]). The operator Q has degree 1. S•(v∗[1]) is the
Chevalley-Eilenberg complex of the L∞ algebra v. The following result shows that Q
defines a differential on it:

Theorem 2.
Q2 = 0. (2.4.23)
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Proof. We have that

〈Q2ξ, v〉 = 〈ξ,
∑
i,j

l̃i(l̃j(v))〉, (2.4.24)

thus we have to show that
∑

i,j l̃i(l̃j(v)) vanishes. Suppose v = v1 ⊗ · · · ⊗ vn with
vi ∈ v[−1] for i = 1, 2, . . . , n. The sum can be rearranged in the following way:∑

i,j≥1

l̃i(l̃j(v1 ⊗ · · · ⊗ vn)) =
∑
k≥1

∑
i+j=k+1

l̃i(l̃j(v1 ⊗ · · · ⊗ vn)). (2.4.25)

In the last sum there are two kinds of terms, namely those appearing like

l̂i(l̂j(vσ(1) ⊗ · · · ⊗ vσ(j))⊗ vσ(j+1) ⊗ · · · ⊗ vσ(j+i−1))⊗ · · · ⊗ vσ(n) (2.4.26)

and those like

l̂i(vσ(1) ⊗ · · · ⊗ vσ(i))⊗ l̂j(vσ(i+1) ⊗ · · · ⊗ vσ(i+j))⊗ · · · ⊗ vσ(n), (2.4.27)

times an appropriate sign, where σ is the composition of the two unshuffles arising
from l̃i and l̃j, see (2.4.21). Let us analyze the terms like (2.4.26):

K(σ, v)l̂i(l̂j(vσ(1) ⊗ · · · ⊗ vσ(j))⊗ vσ(j+1) ⊗ · · · ⊗ vσ(j+i−1))⊗ · · · ⊗ vσ(n) =

= K(σ, v)(−1)
∑j
p=1(j−p)|xσ(p)|l̂i(η1lj(xσ(1), . . . , xσ(j))⊗vσ(j+1)⊗· · ·⊗vσ(j+i−1))⊗· · ·⊗vσ(n) =

= K(σ, v)(−1)
∑j
p=1(j−p)|xσ(p)|+(i−1)|lj(xσ(1),...,xσ(j)|+

∑i
q=2(i−q)|xσ(j+q−1)|×

×η1li(lj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(j+i−1))⊗ · · · ⊗ vσ(n). (2.4.28)

Using the fact that |lj(x1, . . . , xj)| = 2 − j +
∑j

p=1 |xp|, we find that the sign in the
last term is equal to

K(σ, v)(−1)(i−1)j+
∑i+j−1
p=1 (i+j−1−p)|xσ(p)|. (2.4.29)

Now notice that for a string of n elements of v x1, . . . , xn and a permutation σ ∈ Sn,
the following technical result holds:

(−1)
∑n
p=1(n−p)|xσ(p)|K(σ, v) = (−1)

∑n
p=1(n−p)|xp|(−1)σK(σ, x). (2.4.30)

As usual, it is enough to check it on a transposition ti,i+1, for which a simple compu-
tation shows the result. Finally terms like (2.4.26) can be written as

(−1)
∑n
p=1(n−p)|xp|(−1)σK(σ, x)(−1)(i+1)j×

×η1li(lj(xσ(1), . . . , xσ(j)), xσ(j+1), . . . , xσ(j+i−1))⊗ · · · ⊗ vσ(n). (2.4.31)

Since the map η and the tensor product are linear and the sign in front doesn’t depend
on σ, i or j, they can be factored out of the sum over i and j, which vanishes due to
(2.4.13).
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We turn now on terms as in (2.4.27). They simply cancel in pairs because each of
them appears two times with opposite signs. First of all notice that since l̂j has odd
degree, (2.4.21) can be cast in the form

l̃j(v1 ⊗ · · · ⊗ vn) =
∑

σ∈Sj(n−j)

K(σ, v)(−1)
∑i
p=1 |vσ(p)|×

×vσ(1) ⊗ · · · ⊗ vσ(i) ⊗ l̂j(vσ(i+1) ⊗ · · · ⊗ vσ(i+j))⊗ · · · ⊗ vσ(n). (2.4.32)

If we use this to move l̂j i times with l̂i left in the first place in l̃i(l̃j(v)), we see that
we get a term like (2.4.27) with the sign

K(σ, v)(−1)
∑i
p=1 |vσ(p)|. (2.4.33)

Consider now the summand l̃j(l̃i(v)), take the same permutation σ and leave at first

position l̂i while moving l̂j of 1 step so that it goes at the right of l̂i(vσ(1)⊗ · · ·⊗ vσ(i)).
The result is again the term in (2.4.27), but the sign is

K(σ, v)(−1)|l̂i(vσ(1)⊗···⊗vσ(i))|, (2.4.34)

which is exactly the opposite of (2.4.33). 2

This theorem proves the equivalence between the two definitions that we gave for
L∞ algebra: the one that defines it as a graded vector space with an infinite number
of brackets satisfying (2.4.13) and the one that defines it as the dual of a graded
Chevalley-Eilenberg differential complex.

2.4.2 2-term L∞ algebras

We will now focus on 2-term L∞ algebras, which are the simplest example of
L∞ algebras which are not Lie algebras [37]. Above we defined general L∞ algebras
including also the case of 2-term L∞ algebra. Nevertheless, let us give another more
pedantic definition for 2-term L∞ algebra, which is a main character in this thesis.
The equivalence between the two definitions is a trivial check.

Definition 58. A 2-term L∞ algebra v consists of two real vector spaces v0 and v1

together with the following linear maps:

• ∂ : v1 → v0

• [·, ·] : v0 ∧ v0 → v0

• [·, ·] : v0 ⊗ v1 → v1

• [·, ·, ·] : v0 ∧ v0 ∧ v0 → v1

which are required to satisfy the following relations:

∂[x,X]− [x, ∂X] = 0 (2.4.35)

[∂X, Y ] + [∂Y,X] = 0 (2.4.36)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]]− ∂[x, y, z] = 0 (2.4.37)

[x, [y,X]]− [y, [x,X]]− [[x, y], X]− [x, y, ∂X] = 0 (2.4.38)

[x, y, [z, t]] + [x, z, [t, y]] + [x, t, [y, z]]− [y, z, [t, x]]− [z, t, [y, x]]− [t, y, [z, x]]−
− [x, [y, z, t]] + [y, [z, t, x]]− [z, [t, x, y, ]] + [t, [x, y, z]] = 0 (2.4.39)
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for all x, y, z, t ∈ v0 and X, Y ∈ v1.

The algebraic structure is very complicated already at this level, since going from
a Lie algebra to a 2-term L∞ algebra the number of brackets goes from 1 to 4, and the
number of constraints that these brackets must satisfy grows even more. It appears
that it is very uncomfortable to handle L∞ algebras with more than 2 terms in such
an explicit way.

Notice that in this definition both v0 and v1 have degree 0, and everything re-
duces to standard linear algebra. We also denoted v1 instead of v−1 for notational
convenience. The original grading of definition (57) here is hidden in the relative signs
that appear in the axioms and in the symmetry properties of the brackets. To avoid
confusion later on while dealing with 2-term L∞ algebras, we introduce the following
notation: we will write v, v0 and v1 for the linear vector spaces without any grading,
or equivalently with zero grading, as in definition 58; we will write ṽ, ṽ0 and ṽ1 for
the graded version of the 2-term L∞ algebra. Practically the only difference is that
degv1 = 0 while degṽ1 = −1.

The Chevalley-Eilenberg cohomology of a 2-term L∞ algebra v can be written
concisely in the following way. The complex is generated by v∗0[1] ⊕ v∗1[2], where the
second grading takes into account the fact that here v1 has degree 0 instead of -1.
Taking {ea} and {EA} basis for v0 and v1 respectively, and dual basis {ξa} and {ΞA}
of v∗0[1] and of v∗1[2], we define π := ξa⊗ea and Π = ΞA⊗EA, where a sum over repeated
indexes is understood. The Chevalley-Eilenberg differential can then be written as

QCEπ = −1

2
[π, π] + ∂Π, (2.4.40a)

QCEΠ = −[π,Π] +
1

6
[π, π, π]. (2.4.40b)

This formalism can be used to write shorter forms of the identities involving multi-
brackets. For example relation (2.4.39) can be rewritten as

6[π, π, [π, π]]− 4[π, [π, π, π]] = 0. (2.4.41)

The expressions for QCE can be readily cast into coordinates:

QCEξ
a = −1

2
fabcξ

bξc + ∂aBΞB, (2.4.42)

QCEΞA = −fAaBξaΞB +
1

6
RA
abcξ

aξbξc, (2.4.43)

where the constants ∂aA, fabc, f
A
aB and RA

abc define the multilinear brackets of v.
It is worth to remark that 2-term L∞ algebra can be viewed in a different fashion,

through which the analogy with Lie algebras and especially the categorical setting
become more apparent. Indeed, 2-term L∞ algebras are equivalent to Lie 2-algebras,
which are a categorical generalization of Lie algebras. They consist of the following
data:

• a category L internal to Vect, that is a category whose sets of objects and
morphisms are vector spaces and whose composition, source, target and identity
maps are linear maps;
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• a bilinear antisymmetric functor {·, ·} : L× L→ L;

• a natural isomorphism Jx,y,z : {{x, y}, z} ⇒ {x, {y, z}} + {{x, z}, y} called the
Jacobiator ;

all these structures are required to satisfy some axioms, see [37] for details. Lie 2-
algebras are immediately seen as generalized Lie algebras: the underlying vector space
is replaced by a category internal to vector spaces, the bracket becomes then a functor
and the Jacobi identity is asked to hold up to a natural isomorphism. In [37] it was
shown that the category of all Lie 2-algebras and the category of all 2-term L∞ algebras
are equivalent. Even more, these two objects are in one to one correspondence. Given
a 2-term L∞ algebra m we can construct a Lie 2-algebra in the following way:

• L0 := v0,

• L1 := v0 ⊕ v1,

• s(x,X) := x,

• t(x,X) := x+ ∂X,

• i(x) := (x, 0),

• {x, y} := [x, y],

• {(x,X), (y, Y )} := ([x, y], [x, Y ]− [y,X] + [∂X, Y ]),

• Jx,y,z = ([[x, y], z], [x, y, z]),

where L0 and L1 are respectively the space of objects and of morphisms of L. On the
other hand, given a Lie 2-algebra L we can define a 2-term L∞ algebra in this way:

• v0 := L0,

• v1 := kers ⊆ L1,

• ∂X := t(X),

• [x, y] := {x, y},

• [x,X] := {1x, X},

• [x, y, z] := Jx,y,z − 1[[x,y],z].

These definitions fulfill all axioms of both 2-term L∞ algebra and of Lie 2-algebra,
again we refer the interested reader to [37] for the details. Furthermore these two
maps between the set of Lie 2-algebras and te set of 2-term L∞ algebras are one the
inverse of the other.
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2.4.3 Differential Lie crossed module

The L∞ algebra we have defined is also called semistrict L∞ algebra. Analogously
to what happens in higher category theory, there is also a notion of strict L∞ algebra,
which we introduce now.

Definition 59. An L∞ algebra v is called strict if ln = 0 for n ≥ 2.

A strict L∞ algebra turns then out to be simply a differential chain complex ∂ :
vi → vi−1 together with a bilinear graded skewsymmetric bracket [·, ·] of degree zero,
such that the differential ∂ enjoys the graded Leibniz identity (2.4.15) and the graded
Jacobi identity holds (2.4.16).

The most interesting example is that of a 2-term strict L∞ algebra. In this case
we recover a differential Lie crossed module:

Definition 60. A differential Lie crossed module is a pair of Lie algebras (g, h)
together with two Lie algebra homomorphisms τ : h → g and µ : g → Der(h), where
Der(h) is the Lie algebra of derivations of h, such that the following relations hold:

τ(µ(g)(h)) = [g, τ(h)], (2.4.44)

µ(τ(h))(h′) = [h, h′]. (2.4.45)

Proposition 15. strict 2-term L∞ algebras and differential Lie crossed modules are
in one to one correspondence.

Proof. The correspondence is given by the following expressions:

• g = v0,

• h = v1,

• [x, y]g = [x, y]v,

• [X, Y ]h = [∂X, Y ]v,

• τ = ∂,

• µ(x)(X) = [x,X]v.

These relations provide a strict 2-term L∞ algebra if a differential Lie crossed module
is given, and a differential Lie crossed module if a strict 2-term L∞ algebra is given.
It’s easy to check that all axioms are satisfied. 2

As their name suggests, differential Lie crossed modules are the infinitesimal version
of Lie crossed modules: givenn a Lie crossed module (G,H, t,m), its differential Lie
crossed module is (g, h, τ, µ) where g, h are the Lie algebras of G, H, respectively, and
τ and µ are the differential of the maps t and m repsectively:

τ(X) =
dt(C(v))

dv

∣∣∣
v=0

, (2.4.46)

µ(x)(X) =
∂

∂u

(∂m(c(u))(C(v))

∂v

∣∣∣
v=0

)
|u=0, (2.4.47)
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where x ∈ g, X ∈ h, c(u) is any curve in G such that c(u)
∣∣
u=0

= 1G and dc(u)/du
∣∣
u=0

=

x and C(v) is any curve in H such that C(v)
∣∣
v=0

= 1H and dC(v)/dv
∣∣
v=0

= X.
Much as for their finite counterparts, differential Lie crossed modules are very sim-

ple to handle because well known Lie algebra techniques are all is needed to manipulate
them, but they are only a particular case of semistrict L∞ algebras, and do not display
all their interesting features.

Together with the usual adjoint representation of G on g and of H on h, due to the
extra structure of crossed modules there are other ways in which the groups G and H
act on the differential Lie crossed module (g, h). We have an action of G on h, denoted
ṁ : G× h→ h, defined as

ṁ(g)(X) :=
d

ds
(m(g)(h(s))) |s=0, (2.4.48)

where g ∈ G and h(s) : R → H is a smooth curve such that h(0) = 1H and
(dh(s)/ds)|s=0 = X ∈ h. Differentiating the same map m on the first argument
leads instead to an operator Q : H × g→ h:

Q(h)(x) :=
d

ds
(m(g(s))(h)) |s=0, (2.4.49)

where h ∈ H and g(s) : R → G is a smooth curve such that g(0) = 1G and
(dg(s)/ds)|s=0 = x ∈ g.

The relation between Lie crossed modules and differential Lie crossed modules is
the only case in the theory of higher groups in which Lie theory has found a full
generalization. Nevertheless this is of little use and interest, since the differentiation
of a Lie crossed module or the integration of a differential Lie crossed module simply
exploit usual Lie differentiation or Lie integration of usual Lie groups and Lie algebras.
The semistrict case is extremely more complicated and obscure. Despite some notable
efforts, at the state of the art we lack a satisfactory theory for the integration of L∞
algebras or for the differentiation of higher groups, and this poses severe obstacles to
the theoretical development of higher gauge theories. We will come back to this in
later subsections.

2.4.4 L∞ algebra morphisms

Through the Chevalley-Eilenberg complex it is possible to define what a L∞ algebra
morphism is. Recall that the chain maps of CE(g) for g a Lie algebra are dual to the
homomorphisms of g. We can generalize this equivalence:

Definition 61. Given ṽ and w̃ two L∞ algebras, a L∞ algebra homomorphism
from ṽ to w̃ is a linear map φ : ∧•ṽ→ ∧•w̃ such that the dual map φ∗ : S•(w̃∗[1])→
S•(ṽ∗[1]) is a graded algebra homomorphism of degree 0 which induces a chain map
from CE(w) to CE(v), i.e.:

φ∗QCE(w) = QCE(v)φ
∗. (2.4.50)

For 2-term L∞ algebras morphisms take this form:
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Proposition 16. Given two 2-term L∞ algebras v and w, a morphisms φ : v → w
consists of a triple of linear maps (φ0, φ1, φ2):

• φ0 : v0 → w0,

• φ1 : v1 → w1,

• φ2 : v0 ∧ v0 → w1,

that satisfy the following relations:

∂wφ1(Π) = φ0∂v(Π), (2.4.51)

φ0([π, π]v)− [φ0(π), φ0(π)]w − ∂wφ2(π, π) = 0, (2.4.52)

φ1([π,Π]v)− [φ0(π), φ1(Π)]w − φ2(π, ∂vΠ) = 0, (2.4.53)

φ1([π, π, π]v)− [φ0(π), φ0(π), φ0(π)]w − 3[φ0(π), φ2(π, π)]w − 3φ2(π, [π, π]v) = 0.
(2.4.54)

Proof. Despite being very easy, let us carry out all the proof of this proposition. It
is best done in coordinates. Assume φ∗ to be a chain map from CE(w) to CE(v).
Since it has to be a graded algebra homomorphism also, it is determined by its action
on a basis of S1(w∗[1]): taking {ea}, {EA}, {hi}, {HI} basis for v0, v1, w0 and w1

considered in degree 0, and dual basis {ξa}, {ΞA}, {χi} and {XI} for v∗0[1], v∗1[2], w∗0[1]
and w∗1[2] respectively, the action of φ∗ can be written as

φ∗(χi) = (φ0)iaξ
a , φ∗(XI) = (φ1)IAΞA − 1

2
(φ2)Iabξ

aξb, (2.4.55)

where φ0, φ1 and φ2 are constants. It is a straightforward computation to check that
the condition QCE(v)φ

∗ = φ∗QCE(w) on χi and XJ implies the following relations:

−1

2
(φ0)ia(fv)

a
bcξ

aξb + (φ0)ia(∂v)
a
AΞA = −1

2
(fw)ijk(φ0)ja(φ0)kbξ

aξb+

+(∂w)iI(φ1)IAΞA − 1

2
(∂w)iI(φ2)Iabξ

aξb, (2.4.56)

−(φ1)IA(fv)
A
aBξ

aΞB +
1

6
(φ1)IA(Rv)

A
abcξ

aξbξc − 1

2
(φ2)Iab(fv)

b
cdξ

aξcξd − (φ2)Iab(∂v)
a
AΞAξb =

= −(fw)IiJ(φ0)ia(φ1)JAξ
aΞA +

1

2
(fw)ijk(φ0)ja(φ2)kbcξ

aξbξc +
1

6
(Rw)Iijk(φ0)ia(φ0)jb(φ0)kcξ

aξbξc,

(2.4.57)
which are equivalent to relations (2.4.51)-(2.4.54). The converse is also true in virtue
of the same computation: given a triple (φ0, φ1, φ2) as in the hypothesis of this propo-
sition, through formula (2.4.55) we can find a chain map between the Chevalley-
Eilenberg complexes of v and w. Therefore the two things are completely equivalent.
2

Looking only at the algebraic structure of L∞ algebras, homomorphisms do not
look like true homomorphisms according to the usual naive meaning of this word, in
that they do not preserve any bracket, and they can be interpreted in this way only
considering the Chevalley-Eilenberg complex. Nevertheless relations (2.4.51)-(2.4.54)
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can be given a meaningful understanding. Relation (2.4.51) states that, viewing 2-term
L∞ algebras as differential complexes, homomorphisms are chain maps between them.
The remaining relations say that homomorphisms come equipped with a homotopy
that measures how much the preservation of the other brackets fails. Notice that this
is true even for a differential Lie crossed module: relations (2.4.52) and (2.4.53) imply
that if φ : (g, h) → (g′, h′) is a homomorphisms between differential Lie crossed mod-
ules, then neither φ0 : g→ g′ or φ1 : h→ h′ need to be Lie algebra homomorphisms.

L∞ algebras homomorphisms can be composed. Given 2-term L∞ algebras v, w
and z, and homomorphisms φ : v → w and ψ : w → z, their composition is the
homomorphism ψ ◦ φ : v→ z described by the triple

(ψ ◦ φ)0(x) = ψ0(φ0(x)), (2.4.58)

(ψ ◦ φ)1(X) = ψ1(φ1(X)), (2.4.59)

(ψ ◦ φ)2(x, y) = ψ1(φ2(x, y)) + ψ2(φ0(x), φ0(y)). (2.4.60)

The form of the composed homomorphism is obtained by looking at the composition
of the dual chain maps φ∗ and ψ∗. This triple satisfies conditions (2.4.51)-(2.4.54), as
can be readily checked by a simple computation.

A 2-term L∞ algebra homomorphism φ : v → w is invertible if there is a second
homomorphism φ−1 : w→ v such that φ◦φ−1 = (1w0 , 1w1 , 0) and φ−1◦φ = (1v0 , 1v1 , 0).
It is simple to see that a homomorphism φ is invertible if and only if φ0 and φ1 are
invertible as linear maps. In such a case, the inverse homomorphism is the triple

(φ−1)0 = (φ0)−1, (2.4.61)

(φ−1)1 = (φ1)−1, (2.4.62)

(φ−1)2(x, y) = −φ−1
1 φ2(φ−1

0 (x), φ−1
0 (y)). (2.4.63)

This triple fulfills requirements (2.4.51)-(2.4.54) and thus defines a honest 2-term L∞
algebra homomorphism. Given a 2-term L∞ algebrav, all invertible homomorphisms
from v to itself are called automorphism of v. Their set, denoted Aut1(v), is a Lie
group, with the group law, unit and inversion described above.

We can also define 2-morphisms between 2-term L∞ algebras homomorphisms.
Homomorphisms have been defined as chain maps between the Chevalley-Eilenberg
complexes of the L∞ algebras, therefore it is natural to define 2-morphisms as homo-
topies between these chain maps.

Definition 62. Given ṽ and w̃ L∞ algebras and φ, ψ : ṽ→ w̃ homomorphisms between
them, a 2-morphisms F from φ to ψ, also denoted F : φ ⇒ ψ, is a linear map
F : ∧•ṽ→ ∧•w̃ such that the dual map F ∗ : ∧•w̃∗[1]→ ∧•ṽ∗[1] is a degree -1 homotopy
between φ∗ and ψ∗:

ψ∗ − φ∗ = QCE(v)F
∗ + F ∗QCE(w). (2.4.64)

In the case of a 2-term L∞ algebra we have the following result concerning 2-
morphisms:

Proposition 17. Given v and w 2-term L∞ algebras and φ, ψ : v → w homo-
morphisms between them, a 2-morphism F : φ ⇒ ψ is determined by a linear map
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F : v0 → w1 such that:

φ0 − ψ0 = ∂wF, (2.4.65)

φ1 − ψ1 = F∂v, (2.4.66)

φ2(x, y)− ψ2(x, y) = F ([x, y])− [φ0(x), F (y)] + [ψ0(y), F (x)]. (2.4.67)

Proof. We follow the same notations as in proposition (16). Take F ∗ to be a degree
1 homotopy between φ∗ and ψ∗ as is definition (62). F ∗ can’t be a homomorphism of
algebras because this is not compatible with the non vanishing degree of F ∗. Notice
that if φ∗ and ψ∗ are two degree 0 algebra homomorphisms, then their difference
K := φ∗ − ψ∗ enjoys the following property:

K(ξ ⊗ ζ) = K(ξ)⊗ 1

2
(φ∗ + ψ∗)(ζ) +

1

2
(φ∗ + ψ∗)(ξ)⊗K(ζ). (2.4.68)

In our case K = QCE(v)F
∗ + F ∗QCE(w). This forces F ∗ to fulfill the relation

F ∗(ξ ⊗ ζ) = F ∗(ξ)⊗ 1

2
(φ∗ + ψ∗)(ζ) + (−1)|ξ|

1

2
(φ∗ + ψ∗)(ξ)⊗ F ∗(ζ). (2.4.69)

In this way F ∗ is still determined by its action on a basis of S1(ṽ∗[1]). Since it has
degree -1, the only possibility is

F ∗(χi) = 0, F ∗(XI) = F I
a ξ

a. (2.4.70)

With these formulas we see that (2.4.64) is equivalent to the relations

(φ0)iaξ
a − (ψ0)iaξ

a = (∂w)iIF
I
a ξ

a, (2.4.71)

(φ1)IAΞA − 1

2
(φ2)Iabξ

aξb − (ψ1)IAΞA +
1

2
(ψ2)Iabξ

aξb =

= −1

2
F I
c (fv)

c
abξ

aξb + F I
a (∂v)

a
AΞA +

1

2
(fw)IiJ

(
(φ0)ia + (ψ0)ia

)
F J
b ξ

aξb. (2.4.72)

It’s easy to check that these relations are equivalent to (2.4.65)-(2.4.67) for F defined
by F (ea) = F I

aHI . 2

Notice that the right hand side of (2.4.67) has to be antisymmetric in x and y
because the left hand side is, although it is not apparent. Manifest antisymmetry can
be restored combining (2.4.67) with (2.4.65). The right hand side can then be put in
the following form:

F ([x, y])− [φ0(x), F (y)] + [φ0(y), F (x)] + [∂F (x), F (y)], (2.4.73)

where antisymmetry emerges more evidently.
2-term L∞ algebras 2-morphisms can be composed in two ways, horizontally and

vertically. Given two 2-morphisms F : φ⇒ ψ and G : ψ ⇒ γ for φ, ψγ : v→ w, their
vertical composition is the 2-morphism G • F : φ⇒ γ defined by the map

F +G : v0 → w1. (2.4.74)
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Given homomorphisms φ, φ′ : v → w and ψ, ψ′ : w → z and 2-morphisms F : φ ⇒ φ′

and G : ψ ⇒ ψ′, their horizontal composition is the 2-morphism G◦F : ψ ◦φ⇒ ψ′ ◦φ′
defined by the map

Gφ0 + ψ′1F = Gφ′0 + ψ1F : v0 → z1. (2.4.75)

Defining the identity 2-morphism 1φ for φ a homomorphism as the zero map, we
can define invertibility for 2-morphisms. Notice that every 2-morphism is vertically
invertible, with the inverse defined by

F−1• = −F, (2.4.76)

while a 2-morphism F : φ ⇒ ψ is horizontally invertible if and only if both φ and ψ
are invertible homomorphisms. In such a case the horizontal inverse F−1◦ : φ−1 ⇒ ψ−1

is given by
F−1◦ = −ψ−1

1 Fφ−1
0 = −φ−1

1 Fψ−1
0 . (2.4.77)

Altogether these compositions make up the structure of a strict 2-groupoid, whose
objects are 2-term L∞ algebras, whose morphisms are invertible homomorphisms of
2-term L∞ algebras and whose 2-morphisms are 2-morphisms between these. In par-
ticular, for every 2-term L∞ algebra we call Aut(v) the 2-group of the automorphisms
of v. The set of 1-morphisms Aut1(v) is the set of all automorphisms of v and the
set of 2-morphisms Aut2(v) collects the 2-morphisms between these automorphisms.
In the spirit of 2-category theory, from now on we will call a L∞ algebra homomor-
phism simply a 1-morphism. Notice that Aut2(v) is not simply the set of all maps
F : v0 → v1 such that there exist two 1-morphisms satisfying (2.4.65)-(2.4.67). In
principle one such map F could link several different pairs of 1-morphisms, if there are
several couples of 1-morphisms satisfying relations (2.4.65)-(2.4.67) for F . Such a map
will appear in Aut2(v) a number of times equal to the number of pairs of 1-morphisms
it connects, labeled by its source and target. In the following we will denote by F
both a 2-morphism and the linear map F : v0 → v1 that is associated with it. It will
be hopefully clear whether we mean one or the other.

The 2-group Aut(v) is strict for every 2-term L∞ algebra v, be v strict or not.
Thus it can be viewed as a crossed module (G,H,m, t). The group of 1-morphisms G
is Aut1(v), the group of all 1-morphisms of v, with the associated identity, composition
and inversion. The group H is a subset of Aut2(v) and we will denote it Aut∗2(v) ⊂
Aut2(v). It is the group of all 2-morphisms whose source is the identity 1-morphism.
Once the source of a 2-morphism F ∈ Aut2(v) is specified together with the linear
map defining the 2-morphism, its target is also determined: if F : 1v ⇒ t(F ), then

t(F )0 = 1v0 − ∂F, (2.4.78a)

t(F )1 = 1v1 − F∂, (2.4.78b)

t(F )2(x, y) = [x, F (y)]− [y, F (x)]− F ([x, y]). (2.4.78c)

A map F : v0 → v1 then belongs to Aut∗2(v) if it represents a 2-morphism in Aut2(v),
namely if its target is an invertible 1-morphism. Notice that if t(F )0 is invertible, then
so is t(F )1: using Ft(F )0 = t(F )1F we find that the inverse maps are related in this
way:

t(F )−1
1 = 1v1 + Ft(F )−1

0 ∂. (2.4.79)



2.4. L∞ ALGEBRAS 67

We can then characterize Aut∗2(v) as follows:

Aut∗2(v) = {F : v0 → v1, such that (1v0 − ∂F ) : v0 → v0 is an invertible map} .
(2.4.80)

The composition in this group is just the horizontal composition of 2-morphisms in
Aut(v), which is defined by relation (2.4.75). Given two maps F,G ∈ Aut∗2(v) this
expression takes the simpler form

G ◦ F = F +G−G∂F. (2.4.81)

The identity is 11v which is the trivial map from v0 to v1. The inversion is defined by

F−1◦ = −
∞∑
n=0

F (∂F )n = −(1− F∂)−1F = −F (1− ∂F )−1. (2.4.82)

The map t of the crossed module is the restriction of the target map of the associ-
ated 2-category (see section (2.2)), and is thus described in formulas (2.4.78a)-(2.4.78c).
It’s readily checked that it is a group homomorphism.

The map m is defined in (2.3.3), and in this case it becomes

m(φ)(F ) = φ1Fφ
−1
0 . (2.4.83)

2.4.5 2-term L∞ algebra derivation

A derivation of a 2-term L∞ algebra v is the infinitesimal version of an automor-
phism of v. They must therefore obey linearized versions of relations (2.4.51)-(2.4.54):

Definition 63. Given a 2-term L∞ algebra v, a 1-derivation α of v is a triple of
linear maps (α0, α1, α2):

• α0 : v0 → v0,

• α1 : v1 → v1,

• α2 : v0 ∧ v0 → v1,

such that the following relations are satisfied:

α0(∂X)− ∂α1(X) = 0, (2.4.84)

α0([π, π])− 2[α0(π), π]− ∂α2(π, π) = 0, (2.4.85)

α1([π,Π])− [α0(π),Π]− [π, α1(Π)]− α2(π, ∂Π) = 0, (2.4.86)

3[π, α2(π, π)] + 3α2(π, [π, π]) + 3[π, π, α0(π)]− α1([π, π, π]) = 0. (2.4.87)

the set of all derivations of v is denoted aut0(v).

It is possible to define also 2-derivations, which are infinitesimal 2-morphisms.
Their definition is quite simple:

Definition 64. Given a 2-term L∞ algebra, a 2-derivation of v is a linear map
Γ : v0 → v1. The set of all 2-derivations of v is denoted aut1(v).
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As 1-morphisms and 2-morphisms of a 2-term L∞ algebra are a strict 2-group or
Lie crossed module, 1-derivations and 2-derivations of a 2-term L∞ algebra are a strict
2-term L∞ algebra or differential Lie crossed module. This algebra is denoted aut(v)
and is called the derivation 2-term L∞ algebra of v. The brackets are defined as

(∂autΓ)0 = −∂Γ, (2.4.88)

(∂autΓ)1 = −Γ∂, (2.4.89)

(∂autΓ)2(π, π) = 2[π,Γ(π)]− Γ([π, π]), (2.4.90)

([α, β]aut)0 = α0β0 − β0α0, (2.4.91)

([α, β]aut)1 = α1β1 − β1α1, (2.4.92)

([α, β]aut)2(π, π) = α1(β2(π, π)) + 2α2(β0(π), π)− β1(α2(π, π))− 2β2(α0(π), π),
(2.4.93)

[α,Γ]aut = α1Γ− Γα0. (2.4.94)

The three-bracket is zero because this 2-term L∞ algebra is strict. The differential
Lie crossed module is (aut0(v), aut1(v), τ, µ) where the Lie bracket of the Lie algebra
aut0(v) are written in (2.4.91)-(2.4.93), while the Lie bracket associated with aut1(v)
are defined as

[Γ,Ξ]aut1(v) := [∂autΓ,Ξ]aut = −Γ∂Ξ + Ξ∂Γ, (2.4.95)

and the maps τ : aut1(v)→ aut0(v) and µ : aut0(v)× aut1(v)→ aut1(v) are

τ(Γ) := ∂autΓ, (2.4.96)

µ(α)(Γ) := [α,Γ]aut. (2.4.97)

aut0(v) and aut1(v) are the Lie algebras of Aut1(v) and Aut∗2(v) respectively.
Thus there is naturally defined an adjoint action of Aut1(v) on aut0(v): given a 1-
automorphism g and a 1-derivation α the 1-derivation gαg−1 is defined by the triple

(gαg−1)0 = g0α0g
−1
0 , (2.4.98)

(gαg−1)1 = g1α1g
−1
1 , (2.4.99)

(gαg−1)2(π, π) = −g1α1g
−1
1 g2(g−1

0 (π), g−1
0 (π))+

+ g1α2(g−1
0 (π), g−1

0 (π)) + 2g2(α0g
−1
0 (π), g−1

0 π). (2.4.100)

There is also an action of Aut1(v) on aut1(v) and on operator Q : Aut∗2(v)×aut0(v)→
aut1(v) according to definitions (2.4.48) and (2.4.49):

ṁ(φ)(Γ) = φ1Γφ−1
0 , (2.4.101)

Q(F )(α) = α1F − Fα0. (2.4.102)

It is evident that relations (2.4.91)-(2.4.94) are the linearization of these actions.
It is possible to explicitly integrate a derivation of v to an automorphism of v.

Namely, a 1-derivation can be integrated to a 1-automorphism and a 2-derivation to
a 2-automorphism. This is done through the exponential map.

Definition 65. Let α = (α0, α1, α2) be a 1-derivation of a 2-term L∞ algebra v. We
define eα as the triple ((eα)0, (e

α)1, (e
α)2), where
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• (eα)0 := eα0 : v0 → v0,

• (eα)1 := eα1 : v1 → v1,

• (eα)2(π, π) :=
∫ 1

0
dt e−tα1α2

(
e(1−t)α0(π), e(1−t)α0(π)

)
.

Proposition 18. Given α a 1-derivation of v, the triple eα defines a 1-automorphism
of v.

Proof. The maps (eα)0 and (eα)1 are invertible because every exponential of a linear
map is invertible, with inverses e−α0 and e−α1 . To be actually a 2-term L∞ algebra
morphism from v to itself eα has to enjoy relations (2.4.51)-(2.4.54). These proofs are
easy but tedious computations implying power series. Let us just show the compu-
tation for (2.4.52). For α a 1-derivation and for n ≥ 1, the following formula can be
shown by induction:

αn0 ([x, y]) =
n∑

m=0

(
n
m

)
[αm0 (x), αn−m0 (y)]+

+∂
n−1∑
k=0

n−1−k∑
m=0

(
n− 1− k

m

)
αk1(α2(αm0 (x), αn−1−k−m

0 (y))). (2.4.103)

After few manipulations involving this expression, we have that

eα0([x, y])− [eα0(x), eα0(y)] =
∞∑
n=0

αn0
n!

([x, y])−
∞∑

q,p=0

1

q!p!
[αq0(x), αp0(y)] =

= ∂
∞∑
n=1

n−1∑
k=0

n−1−k∑
m=0

(n− 1− k)!

n!m!(n− 1− k −m)!
αk1(α2(αm0 (x), αn−1−k−m

0 (y))) =

= ∂

∞∑
r=0

∞∑
s=0

∞∑
t=0

(s+ t)!

s!t!(r + s+ t+ 1)!
αr1(α2(αs0(x), αt0(y))). (2.4.104)

Applying the identity∫ 1

0

dt(1− t)ntm =
n!m!

(n+m+ 1)!
, m,n ∈ N (2.4.105)

to the power expansion of the definition of (eα)2, we see that it is equal to (2.4.104).
This proves axiom (2.4.52) for eα. The other needed relations are demonstrated anal-
ogously. 2

2-derivations can also be exponentiated to 2-morphisms:

Definition 66. Let Γ be a 2-derivation of the 2-term L∞ algebra v. Then we define
eΓ as the map

eΓ :=
∞∑
n=0

(−1)nΓ(∂Γ)n = Γ
1v0 − e−∂Γ

∂Γ
=

∫ 1

0

dt Γ e−t∂Γ : v0 → v1. (2.4.106)
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Proposition 19. For Γ a 2-derivation of a 2-term L∞ algebra v, eΓ is a 2-automorphism
of v, i.e. eΓ ∈ Aut∗2(v).

Proof. All we have to prove is that (1v0 − ∂eΓ) is invertible, but this follows immedi-
ately:

(1v0 − ∂eΓ)−1 = (e−∂Γ)−1 = e∂Γ. (2.4.107)

2

As happens for ordinary Lie algebras, there is a notion of adjoint representation of
a 2-term L∞ algebra of itself.

Proposition 20. Let v be a 2-term L∞ algebra. Then there is 2-term L∞ algebra
morphism ad : v→ aut(v) consisting of the triple (ad0, ad1, ad2):

• ad0 : v0 → aut0(v),

• ad1 : v1 → aut1(v),

• ad2 : v0 ∧ v0 → aut1(v),

defined as:

(ad0(x))0(y) := [x, y], (2.4.108)

(ad0(x))1(X) := [x,X], (2.4.109)

(ad0(x))2(y, z) := [x, y, z], (2.4.110)

(ad1(X))(x) := [x,X], (2.4.111)

(ad2(x, y))(z) := [x, y, z]. (2.4.112)

This is called the adjoint representation of v on itself.

Proof. We have to show that the map ad is well defined.
First of all we have to show that ad0(x) does belong to aut0(v) for every x ∈ v0,

namely we have to show that the triple ((ad0(x))0, (ad0(x))1, (ad0(x))2) satisfies axioms
(2.4.84)-(2.4.87). This follows by the properties of the L∞ brackets of v. Let us prove
axiom (2.4.87) as an example:

−3[π, (ad0(π))2(π, π)] + 3(ad0(π))2(π, [π, π])+

+3[π, π(ad0(π))0(π)]− (ad0(π))1([π, π, π]) =

= −3[π, [π, π, π]] + 3[π, π, [π, π]] + 3[π, π, [π, π]]− [π, [π, π, π]] = 0, (2.4.113)

in virtue of axiom (2.4.39). The minus sign in the first term of this equation is due to
the grading of π, which renders ad0(π) an odd derivation which has to anticommute
with other odd elements. The other relations which define a 1-derivation are shown in
a similar manner.

Next we need to prove that the map ad fulfills relations (2.4.51)-(2.4.54) that define
a 2-term L∞ algebra morphism. Again, this follows from the algebra of the 2-term L∞
algebra brackets. Let us show just axiom (2.4.54):

(ad1([π, π, π]))(π)− [(ad0(π)), (ad0(π)), (ad0(π))]aut(π)−
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−3[(ad0(π)), (ad2(π, π))]aut(π)− 3(ad2(π, [π, π]))(π) =

= (ad1([π, π, π]))(π)− 3(ad0(π))1(ad2(π, π))(π)+

+3(ad2(π, π))(ad0(π))0(π)− 3(ad2(π, [π, π]))(π) =

= −[π, [π, π, π]]− 3[π, [π, π, π]] + 3[π, π, [π, π]]− 3[π, [π, π], π] = 0, (2.4.114)

again due to (2.4.39). Here we used the fact that [·, ·, ·]aut = 0. The other relations are
proved with similar computations. 2

We can give more explicit formulas for the exponential of an adjoint derivation in
the case of a differential Lie crossed module (g, h). In this case we have exponential
maps relative to the Lie algebras that are in the crossed module: exp : g → G,
exp : h→ H, where (G,H) is the Lie crossed module integrating (g, h). Given x ∈ g,
the associated adjoint 1-derivation is the triple

[x, ·]g , µ(x)(·) , 0. (2.4.115)

The exponentiated 1-morphism can be expressed as the triple

adγ , ṁ(γ)(·) , 0, (2.4.116)

where γ is the element of G that integrates x. For X ∈ h the adjoint 2-derivation
reads

µ(·)(X), (2.4.117)

and the integrated 2-morphism is the operator

Q(h)(·), (2.4.118)

recall definition (2.4.49), where again h ∈ H is the exponential of X.

2.4.6 Invariant form

We wish now to generalize the concept of an invariant form on a Lie algebra to an
L∞ algebra.

Definition 67. An L∞ algebra V is cyclic if it is endowed with a non degenerate
graded symmetric bilinear form C : V ⊗ V → R such that for every k ≥ 1 the map

C(lk(·, . . . , ·), ·) : V ⊗(k+1) → R (2.4.119)

is graded antisymmetric.

The axiom (2.4.119) is an invariance requirement for the bilinear form. It states
that

C (lk(x1, x2, . . . , xk−1, xk), xk+1) = (−1)|xk||xk+1|+1C (lk(x1, x2, . . . , xk−1, xk+1), xk) .
(2.4.120)

It is immediately seen that if the cyclic L∞ algebra V = V0 is a Lie algebra then the
cyclicity condition for C reduces to the usual invariance condition for a bilinear form
on a Lie algebra:

C([x, y], z) = −C([x, z], y). (2.4.121)

We turn now to 2-term L∞ algebra. We define a more restrictive notion of cyclic
2-term L∞ algebra than in the general case:
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Definition 68. A 2-term L∞ algebra v is balanced if dim v0 = dim v1. A balanced
bilinear form on v is a non degenerate pairing (·, ·) : v0 ⊗ v1 → R such that

(∂X, Y )(∂Y,X) = 0, (2.4.122)

([x, y], X) + (y, [x,X]) = 0, (2.4.123)

([x, y, z], t) + (z, [x, y, t]) = 0. (2.4.124)

A balanced 2-term L∞ algebra with invariant form is a cyclic 2-term L∞ algebra
with the bilinear form restricted to have off-diagonal non degenerate blocks. The
reason why we need this particular notion emerges in studying the higher gauge Chern
Simons model we will define later: in this field theory the non degeneracy of the pairing
between v0 and v1 is a necessary requirement in order to have sensible equations of
motion.

The constraint that v0 and v1 must have the same dimension may seem very re-
strictive, but there is the possibility to extend every 2-term L∞ algebra v to a balanced
one v∼ perturbing it minimally. By this, we mean:

• v is contained in v∼;

• dimv∼ is minimal;

• v∼ is as trivial as possible outside v.

Let us sketch the construction of such a v∼. Suppose we start with a 2-term L∞
algebra such that dimv0 < dimv1. We then define v∼0 := v0⊕w with w a vector space
such that dimw = dimv1−dimv0 and v∼1 := v1. The brackets on v∼ are defined in the
following way: for x, y, z ∈ v0, a, b, c ∈ w and X ∈ v1

∂∼X := ∂X ⊕ 0, (2.4.125)

[x⊕ a, y ⊕ b]∼ := [x, y]⊕ 0, (2.4.126)

[x⊕ a,X]∼ := [x,X], (2.4.127)

[x⊕ a, y ⊕ b, z ⊕ c]∼ := [x, y, z]. (2.4.128)

On the other hand, if dimv0 > dimv1 we take w such that dimw = dimv0−dimv1 and
we define v∼0 := v0 and v∼1 := v1⊕w. For x, y, z ∈ v0, X ∈ v1 and A ∈ w the brackets
are

∂∼(X ⊕ A) := ∂X, (2.4.129)

[x, y]∼ := [x, y], (2.4.130)

[x,X ⊕ A]∼ := [x,X]⊕ 0, (2.4.131)

[x, y, z]∼ := [x, y, z]⊕ 0. (2.4.132)

Such an extended v∼ is unique up to non canonical isomorphism.
Next we study morphisms that preserve the bilinear form of a balanced 2-term L∞

algebra. These are said orthogonal, and play a central role in 2-term L∞ algebra gauge
theory.
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Definition 69. Let v be a balance 2-term L∞ algebra with invariant bilinear form
(·, ·). A 1-automorphism φ of v is orthogonal if

(φ0(x), φ1(X)) = (x,X) , (2.4.133)

(φ0(x), φ2(y, z)) + (φ0(z), φ2(y, x)) = 0. (2.4.134)

The set of orthogonal 1-automorphisms of v is denoted OAut1(v). Since it is closed
under composition, it is a subgroup of Aut1(v).

We can extend this definition to 2-automorphism:

Definition 70. Let v be a balance 2-term L∞ algebra with invariant bilinear form
(·, ·). A 2-automorphism is orthogonal if both its source and its target are orthogonal
1-automorphisms.

The set of orthogonal 2-automorphisms is called OAut2(v). This is a subset of
Aut2(v) and since it is closed under horizontal and vertical composition, we have that
OAut(v) = (OAut1(v),OAut2(v)) is a 2-subgroup of Aut(v). This 2-group can be
described as a Lie crossed module. The two underlying groups are OAut1(v) and
OAut∗2(v). The latter is the subgroup of Aut∗2(v) formed by all elements whose target
is an orthogonal 1-automorphism. It can be characterized as the group of all maps
F : v0 → v1 belonging to Aut∗2(v) such that

(∂F (x), X) + (x, F (∂X))− (∂F (x), F (∂X)) = 0, (2.4.135)

(y + ∂F (y), [x, F (z)] + [z, F (x)]) + (x− ∂F (x), F ([y, z])) + (z − ∂F (z), F ([y, x])) = 0.
(2.4.136)

The strict 2-term L∞ algebra associated with OAut(v) (or analogously the differ-
ential Lie crossed module associated with (OAut1(v),OAut∗2(v))) is denoted oaut(v)
(or (oaut0(v), oaut1(v))), and it’s a subalgebra of aut(v). Its elements are orthogonal
1- and 2-derivations, and they are defined as follows:

Definition 71. Let v be a balance 2-term L∞ algebra with invariant bilinear form
(·, ·). A 1-derivation α is said orthogonal if

(α0(x), X) + (x, α1(X)) = 0, (2.4.137)

(x, α2(y, z)) + (z, α2(y, x)) = 0. (2.4.138)

Definition 72. Let v be a balance 2-term L∞ algebra with invariant bilinear form
(·, ·). A 2-derivation Γ is said orthogonal if

(∂Γ(x), X) + (x,Γ(∂X)) = 0, (2.4.139)

(y, [xΓ(z)] + [z,Γ(x)]) + (x,Γ([y, z])) + (z,Γ([y, x])) = 0. (2.4.140)

It is evident that the derivations just defined are infinitesimal version of the or-
thogonal morphisms defined in definition (69) and (70), since the axioms they obey
are the linearization of the axioms of orthogonal 1- and 2-morphisms. The exponential
map exp : oaut(v)→ OAut(v) is just the restriction of the map exp : aut(v)→ Aut(v)
to orthogonal derivations.

The next proposition shows that an adjoint morphism in a balanced 2-term L∞
algebra with invariant form is always orthogonal:
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Proposition 21. Let v be a balanced 2-term L∞ algebra with invariant form (·, ·).
Then the image of the adjoint representation lies in oaut(v), i.e. ad : v→ oaut(v).

Proof. First, we need to prove that a 1-derivation of the form ([x, ·], [x, ·], [x, ·, ·]) for
some x ∈ v0 satisfies relations (2.4.137) and (2.4.138). This follows straightforwardly
from the invariance of the bilinear form, (2.4.123)-(2.4.124).

Then we have to show that the 2-derivations [·, X] for X ∈ v1 and [x, y, ·] for
x, y ∈ v0 fulfill (2.4.139) and (2.4.140). Again, for each 2-derivation both the relations
follow from (2.4.122)-(2.4.124). 2

It follows from this proposition that the exponential of an adjoint derivation is an
orthogonal morphism.

2.4.7 Examples

There are several interesting examples of 2-term L∞ algebras.

• Any pre-Lie algebra h can be cast in the form of a non-strict 2-term L∞ algebra.
Recall that a pre-Lie algebra is a vector space endowed with a bilinear operation
[·, ·]h : h ∧ h → h which is not required to satisfy the Jacobi identity. We can
define a 2-term L∞ algebra v with v0 = v1 = h, ∂ = 1h, both the 2-brackets are
equal to [·, ·]h and the 3-bracket is the jacobiator :

[x, y, z] := [x, [y, z]h]h + [y, [z, x]h]h + [z, [x, y]h]h. (2.4.141)

As a subexample, every non-associative algebra can be used to define such a
2-term L∞ algebra, because every non-associative algebra a can be given the
structure of a pre-Lie algebra by endowing it with the antisymmetric bracket

[x, y] = xy − yx, (2.4.142)

which in general do not fulfill the Jacobi identity due to the non-associativity.
An interesting example of this construction is given by the octonions’ algebra.

• A very important example is the so called string 2-algebra. Given a Lie algebra
g with an invariant bilinear form 〈·, ·〉 and a real number k ∈ R, the string 2-
algebra stringk(g) is defined as the 2-term L∞ algebra having stringk(g)0 = g
and stringk(g)1 = R. The bracket [·, ·] : g ∧ g→ g are the Lie bracket of the Lie
algebra g, the linear map ∂ as well as the bracket [·, ·] : g⊗R→ R vanish, while
the 3-bracket [·, ·, ·] : g ∧ g ∧ g→ R are defined as

[x, y, z] = k〈x, [y, z]〉. (2.4.143)

• Rather than an example, we will now illustrate a particular kind of balanced
2term L∞ algebras. Let v be a balanced 2-term L∞ algebra with a non-degenerate
invariant bilinear form (·, ·). Suppose that ∂ = 0. This means that the 2-bracket
[·, ·] on v0 satisfy the Jacobi identity, therefore v0 is a Lie algebra. The non-
degeneracy of the pairing (·, ·) between v0 and v1 canonically identifies v1 with
the algebraic dual of v0. Furthermore the invariance of the bilinear form implies
that the 2-bracket [·, ·] : v0⊗v1 → v1 realizes the coadjoint action of v0 on its dual
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v1. Due to property (2.4.39), the 3-bracket [·, ·, ·] defines a Chevalley-Eilenberg
cocycle φ ∈ CE3(v0, v

∗
0). Since the bilinear form (·, ·) is invariant, φ belongs to

the subcomplex of the cyclic Chevalley-Eilenberg cochains, i.e. those elements
ψ ∈ CEp(v0, v

∗
0) satisfying(
x, ψ(y, π, . . . , π)

)
+
(
y, ψ(x, π, . . . , π)

)
= 0. (2.4.144)

Since if ψ is a cyclic cochain then QCEψ is also cyclic, cyclic cochains form a
subcomplex of the Chevalley-Eilenberg complex, denoted cCE•(v0, v

∗
0). It is a

fact that there is an isomorphism

cCE•(v0, v
∗
0) ∼= CE•[−1](v0) (2.4.145)

for v0 a Lie algebra [57]-[58]. The correspondence is given by

ψ(π, . . . , π)→
(
π, ψ(π, . . . , π)

)
. (2.4.146)

Since it commutes with the Chevalley-Eilenberg differential, this isomorphism
descends to cohomology.

We have thus shown that every balanced 2-term L∞ algebra with invariant form
and vanishing ∂ is determined by a Lie algebra v0 together with a closed element
of CE4(v0). On the converse given a Lie algebra g we can construct a balanced
2-term L∞ algebra v with v0 = g and v1 = g∗ where the 3-bracket is given
by a cocycle in CE4(g). It can be shown that this 2-term L∞ algebra is non-
strict provided that this 4-cocycle defines a non-vanishing cohomology class in
the Chevalley-Eilenberg cohomology of g.

2.5 Integrating L∞ algebras

In this section we present the state of the art of Lie theory applied to L∞ algebras.
This is a very technical and complicated subject which we can’t face in full depth, and
since it is not of primary interest to our purpose we will just sketch the main ideas.

As every Lie algebra can be integrated to a Lie group, every n-term L∞ algebra can
be integrated to a smooth n-group. The general integration procedure (see [29],[30])
takes a L∞ algebra V to build a simplicial manifold

∫
V . A simplicial manifold M is an

infinite tower of manifolds Mk for k ∈ N together with smooth maps di : Mk →Mk−1

for i = 0, . . . , k called face maps and morphisms si : Mk →Mk+1 for i = 0, . . . , k called
degeneracy maps which must obey several axioms. In this case,

∫
V is defined as

(
∫
V )k = HomDGA(CE•(V ),Ω•(∆k)). (2.5.1)

This means that (
∫
V )k is the space of all differential graded algebra homomorphisms

from the Chevalley-Eilenberg complex of V and the de Rham complex on the standard
k-dimensional simplex ∆k. Elements in (

∫
V )k are roughly V -connections on ∆k. The

face and degeneracy maps for
∫
V are defined by the restriction of such a connection

on a face ∆k−1 of the k-simplex or by its trivial extension to the k + 1-simplex. It
can be shown that

∫
V is a Kan complex. This means that it can be obtained as the
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nerve of a smooth higher group. Given a n-groupoid G, its nerve is a simplicial set
(simplicial manifold if the groupoid is smooth) which has k-morphisms at the level
k < n and sequences of composible morphisms for k > n, and face and degeneracy
maps are the target and source maps of G and the composition. For more details on
simplicial sets and Kan complexes see [28] and [31]. Furthermore, it can be proved
that all the information carried by

∫
V lies in the first n+ 1 manifolds for V a n-term

L∞ algebra, so that a finite number of manifolds and maps is enough to extract a
smooth n-group from

∫
V . This n-group is the one integrating V .

This integration procedure doesn’t work for L∞ algebras as nicely as standard Lie
integration does for Lie algebras. The main difference is that the n-group arising from
a n-term L∞ algebras is generally infinite dimensional, as can be deduced from (2.5.1).
This is not fully satisfactory, not only because infinite dimensional objects are much
harder to control than finite ones, but mostly because it is reasonable to expect that
this is not the most precise result. It is likely that the finite counterpart of a n-term
L∞ algebra is a finite dimensional n-group which is somehow contained in the infinite
dimensional one we are able to construct. Evidence for this arises from some better
results that have been achieved for particular cases, most notably for the string 2-group
[6] and for nilpotent L∞ algebras [30],[32]. Another good hint for this lies in the strict
case: strict n-term L∞ algebras can be integrated to finite dimensional strict n-groups.
For example, differential Lie crossed module are integrated to Lie crossed modules. It
is very unnatural that passing from strict to non strict algebras forces us to consider
infinite dimensional higher groups: as shown in [33], the two integration procedures of
strict and non-strict 2-term L∞ algebras are morita equivalent. For instance, even if
V is a Lie algebra the algorithm we readily described produces an infinite dimensional
space where the Lie group integrating V is hidden. Furthermore, this picture leaves no
room for an infinitesimal counterpart to finite dimensional non strict higher groups.

There is another approach to the problem which is promising and deserves to be
mentioned. A way of defining global semistrict higher gauge theory has been recently
investigated by Jurčo, Saemann and Wolf in [74], inspired by a previous work of Ševera
[75]. In this paper the authors focus on the differentiation of semistrict 2-groups using
descent data associated with 2-bundles with values in these 2-groups. Infinitesimally
these descent data are seen to encode a semistrict 2-term L∞ algebra. This is used
in [74] to define gauge transformations for 2-groups connections in terms of maps
and forms with values in the gauge 2-group, achieving a description which is more
elementary than ours (see chapter 3). The drawback of this approach could be the
heavier presence of the categorical framework at every stage, making it harder to make
concrete computations.
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Chapter 3

2-term L∞ algebra gauge theory

In this chapter we will develop the basic ingredients of 2-term L∞ algebra gauge
theory. We will first of all recall the main features of ordinary gauge theories, then
we will adapt them to define a suitable generalization which takes into account the
possibility of a gauge structure that is encoded in a 2-term L∞ algebra instead of
an usual Lie algebra. The subject covered here is taken from [21] and [19]. We will
be mainly focused on the local theory, neglecting global issues, which will be briefly
targeted at the end of the chapter.

3.1 Ordinary gauge theory

In this section we review ordinary gauge theory. The basic ingredients in ordinary
gauge theory are connection forms on principal bundles. Since, as mentioned, we are
not interested in discussing global topology, we will only deal with a trivial principal
bundle M × G with M a smooth orientable manifold diffeomorphic to Rn for some
n and G a Lie group. M is the base manifold and G is the structure group or gauge
group. The fields are usually differential forms with values in g := Lie(G). We can
make the following definition:

Definition 73. A field of bidegree (m,n) is an element of Ωm(M, g[n]).

Of central importance is the connection 1-form, which is a bidegree (1, 0) field
denoted ω ∈ Ω1(M, g).

ω is characterized by its curvature f , which is the bidegree (2, 0) field given by

f = dω +
1

2
[ω, ω]. (3.1.1)

From its definition, f satisfies the standard Bianchi identity

df + [ω, f ] = 0. (3.1.2)

The connection ω is said to be flat if the curvature 2-form vanishes, f = 0. The
relation

dω +
1

2
[ω, ω] = 0 (3.1.3)

that realizes this condition is also called Maurer-Cartan equation.

79
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Of central importance is the concept of gauge transformations. These are sym-
metries of the theory encoded in the action of the gauge group G on the principal
bundle. Given a smooth map γ ∈ Map(M,G) this induces a gauge transformation
whose action on a generic bidegree (n,m) field φ is

φ→ φ′ = γφγ−1 = Ad γφ. (3.1.4)

The connection 1-form behaves differently under a gauge transformation, and it is
shifted in the following way:

ω → ω′ = γωγ−1 − dγγ−1 = Ad γω − dγγ−1. (3.1.5)

Map(M,G) is the set which governs gauge transformations, and it is a group with
the multiplication in G as group law and the trivial map γ ≡ 1G as identity. Gauge
transformation action is a left action of Map(M,G) on the space of g-connections
Ω1(M, g).

The term −dγγ−1 is a bidegree (1, 0) field. If we make the change γ → ξγ for
ξ ∈ Map(M,G) the 1-form −dγγ−1 becomes Ad ξ(−dγγ−1) − dξξ−1. Moreover it
satisfies identically the Maurer-Cartan equation, therefore it can be regarded itself as
a flat connection.

Notice that the the curvature 2-form behaves covariantly under a gauge transfor-
mation:

f → f ′ = Ad γf. (3.1.6)

Instead the de Rham differential of a field φ doesn’t, as the adjoint action of the
gauge transformation doesn’t commute with d: dφ′ 6= Ad γdφ. Covariant expressions
which include the de Rham differential, essential in defining sensible gauge theories, are
obtained through the covariant derivative of a field φ, which is given by the well–known
expression

Dφ = dφ+ [ω, φ], (3.1.7)

for φ any bidegree (n,m) field. The covariant derivative satisfies the standard Ricci
identity:

DDφ = [f, φ]. (3.1.8)

What is more, as its name suggests it transforms covariantly under gauge transforma-
tions:

Dφ→ D′φ′ = Ad γDφ (3.1.9)

The Bianchi identity (3.1.2) obeyed by f can be written compactly through the co-
variant derivative as

Df = 0. (3.1.10)

In standard gauge theory, gauge symmetry is most efficiently analyzed concen-
trating on infinitesimal gauge transformation of the adjoint type. Infinitesimal gauge
transformations are contained in Map(M, g), the Lie algebra of Map(M,G). The ac-
tion of an element ξ ∈ Map(M, g) on a connection is the linearization of a finite gauge
transformation:

ω → ω′ = ω − [ω, ξ]− dξ = ω −Dξ, (3.1.11)
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or
δξω := ω′ − ω = −Dξ. (3.1.12)

Since infinitesimal gauge transformations are a Lie algebra, a commutator of two
infinitesimal gauge transformations is again an infinitesimal gauge transformation:

[δξ, δη]ω = (δξδη − δηδξ)ω = −D[ξ, η] = δ[ξ,η]ω. (3.1.13)

Infinitesimal gauge transformations can then be elevated to an odd differential, called
the BRST operator, whose cohomology classifies the observables of the theory. This
is done by introducing a bidegree (0, 1) ghost field c ∈ Ω0(M, g[1]) which parametrizes
the ghost degree 1 infinitesimal gauge transformation. This shifted infinitesimal gauge
transformation gives the odd BRST operator s. Its action on the connection ω is

sω = −Dc (3.1.14)

To make s nilpotent we have to suitably define the variation sc of c. Since by (3.1.14)
we have

s2ω = D
(
sc+

1

2
[c, c]

)
, (3.1.15)

we can enforce s2ω = 0 by setting

sc = −1

2
[c, c]. (3.1.16)

s2c = 0, as is readily verified, and so s is nilpotent as required,

s2 = 0. (3.1.17)

For completeness, we report also the BRST variation of the curvature f of ω which,
by (3.1.39), reads

sf = −[c, f ]. (3.1.18)

3.1.1 The Weil algebra and the extended gauge transforma-
tions

In order to extend these concepts to higher gauge structures such as a 2-term
L∞ algebra, we need to reformulate them in a different fashion. Connection and
curvature differential forms have a useful interpretation in term of differential graded
commutative algebras which we will now illustrate ([21]). This approach makes use
of the Weil algebra. The theory of the Weil algebra is classical and well-established
[53],[54],[55],[56]. The way we are going to present it here is by no means general,
since it is a particular case that applies to trivial fiber bundles and it is of use for our
scopes.

Definition 74. Given a Lie algebra g, the Weil algebra of g W (g) is the graded
commutative algebra defined as

W •(g) := S•(g∗[1]⊕ g∗[2]). (3.1.19)
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It is possible to turn this algebra into a differential complex by defining a differential
on it. Notice that the Chevalley-Eilenberg complex of g sits into W •(g) as a subalgebra.
The Weil differential is defined on this subalgebra as the sum of the Chevalley-Eilenberg
differential plus a shift operator:

QW = QCE + σ. (3.1.20)

Here σ : g∗[1] → g∗[2] is an operator that acts as the identity on the vector space g∗

but increases the degree by 1. Denoting {ea} a basis for g, {πa} a basis for g∗[1] and
{γa} a basis for g∗[2], and setting π := πa ⊗ ea and γ := γa ⊗ ea the action of QW on
g∗[1] is summarized in the formula

QWπ = −1

2
[π, π] + γ. (3.1.21)

Knowing that Q2
CEπ = σ2π = 0, to achieve Q2

Wπ = 0 we need (QCEσ + σQCE)π = 0.
This determines the action of QW on γ:

QWγ = QCEγ = −σQCEπ = −[π, γ]. (3.1.22)

With a straightforward computation we see that Q2
Wγ = 0 due to the Jacobi identity

and the fact that [γ, γ] = 0 by antisymmetry. This turns W •(g) into a differential
graded commutative algebra (dgca).

The usefulness of the Weil algebra lies in that it captures the algebraic properties of
connection and curvature differential forms. The link between theses objects is cleared
in the next proposition:

Proposition 22. Given a Lie algebra g and a manifold M ∼= Rn for some n, a dgca
homomorphisms A : W •(g) → Ω•(M) uniquely defines a g-connection on M and
vice-versa.

Proof. Any homomorphism A : W •(g) → Ω•(M) defines by its action on the
generators {πa} a 1-form ω ∈ Ω1(M, g):

ωa := A(πa) ∈ Ω1(M), (3.1.23)

which is a g-connection on M .
On the other hand, since the Weil algebra is free, to determine the dgca homomor-

phism A we need both a g-connection ω and a 2-form f ∈ Ω2(M, g) which gives the
action of A on the generators {γa}:

A(γa) := fa ∈ Ω2(M). (3.1.24)

But since A is a dgca homomorphism, we need to impose dA = AQW . Applying this
to (3.1.21) and (3.1.22) we obtain the constraints

dω = −1

2
[ω, ω] + f, (3.1.25)

df = −[ω, f ]. (3.1.26)
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These relations identify the 2-form f ∈ Ω2(M, g) as the curvature of the connection
ω, which is therefore enough to completely define A. 2

This proposition furnishes a powerful tool to deal with connections and curvatures
in a merely algebraic way. Actually, this result can be used to define a connection as
a dgca homomorphism from a Weil algebra to a de Rham complex, and to define the
curvature 2-form and the covariant derivative looking at the relations induced by the
Weil differential.

We shall also give a different definition of gauge transformations:

Definition 75. Given a smooth manifold M ∼= Rn and a Lie group G, an extended
gauge transformation (g, σg) consists of

1. a map g ∈ Map(M,Aut(g)),

2. a flat connection σg,

dσg +
1

2
[σg, σg] = 0, (3.1.27)

such that
g−1dg(π)− [σg, π] = 0, (3.1.28)

where as usual π = πa ⊗ ea. We shall denote by Gau(M, g) the set of all extended
gauge transformations.

We shall denote the gauge transformation by (g, σg) or simply by g, having in mind
that now σg is not determined by g but participates with g in the transformation.

The definition of gauge transformation given here is more general than the one we
gave previously. If G is a Lie group exponentiating g and γ ∈ Map(M,G), then the
pair (Ad γ, γ−1dγ) is a gauge transformation in the sense just defined. However, not
every extended gauge transformation (g, σg) is of this form, since there is no require-
ment that the automorphism g is the adjoint action, nor that the connection σg is the
pullback of the left invariant Maurer-Cartan form on G. Nevertheless, extended gauge
transformations can be defined disregarding the gauge group G and using as funda-
mental algebraic datum only the Lie algebra g. This makes it much easier to extend
them to higher algebraic structures bypassing the challenging problem of integrating
an L∞ algebra to a higher group.

Gau(M, g) substitutes Map(M,G), which is the group that contains all gauge trans-
formations defined by (3.1.5). As already mentioned, the latter is included in the for-
mer according to the correspondence γ → (Ad γ, γ−1dγ). The action of an extended
gauge transformation g ∈ Gau(M, g) on a connection ω ∈ Ω1(M, g) must then be
coherent with (3.1.5). Then, the gauge transform gω of ω reads

gω = g(ω − σg). (3.1.29)

The gauge transform gf of the curvature curvature f of ω is

gf = g(f), (3.1.30)

due to (3.1.27)-(3.1.28). In the case of a gauge transformation of the form (Ad γ,−γ−1dγ)
this is compatible with (3.1.6).
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Gau(M, g) is an infinite dimensional Lie group, which contains Map(M,G) as a
proper subgroup. The composition, denoted �, can be determined by performing two
gauge transformations:

h�gω = (h � g)(ω − σh�g), (3.1.31)

h�gω = h(gω) = h(g(ω − σg)− σh). (3.1.32)

Comparing the two terms one obtains

h � g = hg, (3.1.33a)

σh � g = σg + g−1(σh). (3.1.33b)

It is readily checked that these relations define an extended gauge transformation
which respects (3.1.27)-(3.1.28).

The inversion and the unit of Gau(M, g) can be obtained in a similar manner and
are defined by the relations

g−1� = g−1, (3.1.33c)

σg−1� = −g(σg), (3.1.33d)

i = idg, (3.1.33e)

σi = 0, (3.1.33f)

where g, h ∈ Gau(M, g) and, in (3.1.33a), (3.1.33c), (3.1.33e), the composition, inver-
sion and unit in the right hand side are those of Aut(g) thought of as holding pointwise
on M .

The form of (3.1.29) ensures that covariant differentiation is gauge covariant (cf.
eq. (3.1.7)):

gDgφ = d(g(φ)) + [g(ω − σg), g(φ)] = g(Dφ), (3.1.34)

and that gauge transformation action is a left action of the group Gau1(M, g) on the
space of g–connections as required.

Ordinary gauge transformation can be studied in infinitesimal form, and so do
extended gauge transformations. An infinitesimal extended gauge transformation is an
extended gauge transformation in linearized form. It consists of:

1. a map u ∈ Map(M, aut(g)),

2. a linearized flat connection σ̇u,

dσ̇u = 0, (3.1.35)

obeying the relation

du(π)− [σ̇u, π] = 0, (3.1.36)

as follows from expanding (3.1.27), (3.1.28) to first order around the unit transforma-
tion i. We shall denote the transformation as (u, σ̇u), understanding as usual that σ̇u
is the partner of u in the gauge transformation, or simply as u. We shall denote the
set of all infinitesimal gauge transformations by gau(M, g).
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gau(M, g) is an infinite dimensional Lie algebra, in fact that of the gauge transfor-
mation Lie group Gau(M, g). The brackets of gau(M, g) are defined by

[u, v]� = [u, v], (3.1.37a)

σ̇[u,v]� = u(σ̇v)− v(σ̇u), (3.1.37b)

where u, v ∈ gau(M, g). In (3.1.37a), the brackets in the right hand side are those of
aut(g) thought of as holding pointwise on M .

Given an infinitesimal extended gauge transformation (u, σ̇u) ∈ gau(M, g), the
gauge variation δuω of ω is

δuω = u(ω)− σ̇u. (3.1.38)

The gauge variation δuf of f reads similarly as

δuf = u(f). (3.1.39)

Since Gau(M, g) contains Map(M,G) as a subgroup, gau(M, g) contains Map(M, g)
as a subalgebra. The infinitesimal extended gauge transformations corresponding to
elements of Map(M, g) are of the form

u = ad s, (3.1.40a)

σ̇u = ds, (3.1.40b)

where s ∈ Map(M, g). In (3.1.40a), the adjoint operator in the right hand side is
that of g holding pointwise on M . Formulas (3.1.40) are the infinitesimal version of
(Ad γ, γ−1dγ) for γ ∈ Map(M,G).

Infinitesimal extended gauge transformation can be exponentiated to finite ones.
The exponential map exp� : gau(M, g)→ Gau(M, g) is given by

exp�(u) = exp(u), (3.1.41a)

σexp�(u) =
1g − exp(−u)

u
(σ̇u), (3.1.41b)

where u ∈ gau(M, g). In (3.1.41a), the exponentiation in the right hand side is that
of aut(g) thought of as holding pointwise on M . As one expects, the exponentiation
of an infinitesimal extended gauge transformation of the adjoint kind, as in (3.1.40),
gives an ordinary gauge transformation in Map(M,G). For s ∈ Map(M, g), we have

exp(ad s) = Ad exp(s) = Ad γ, (3.1.42)

where γ ∈ Map(M,G) is pointwise an element of the gauge group exponentiating s.
Furthermore

1g − exp(− ad s)

ad s
(ds) =

∫ 1

0

dt exp(−t ad s)(ds) = exp(−s)
∫ 1

0

dt exp((1−t)s)ds exp(ts) =

= exp(−s)d exp(s) = γ−1dγ. (3.1.43)



86 CHAPTER 3. 2-TERM L∞ ALGEBRA GAUGE THEORY

3.1.2 Orthogonal gauge transformation

The notion of extended gauge transformation as it stands so far is not precise
enough to be of real use in gauge theory. Usually to build an action functional an
invariant bilinear form (·, ·) on g, most often a trace over some representation, is
taken. To have an action invariant under gauge transformations it is crucial to require
invariance of the bilinear form:

(Ad γ(x),Ad γ(y)) = (x, y) (3.1.44)

for any x, y ∈ g. If we are dealing with extended gauge transformation we admit
arbitrary automorphisms of g, without restricting ourself to adjoint automorphisms.
General automorphisms are not guarantee to respect invariance of the bilinear form.
Thus we have to impose this by hand.

Given a Lie algebra g equipped with an invariant bilinear form (·, ·), an orthogonal
automorphism g of g is an automorphism of g such that

(g(x), g(y)) = (x, y) (3.1.45)

for any x, y ∈ g. The set of orthogonal automorphisms of g is denoted OAut(g), and
it is in fact a Lie subgroup of Aut(g). An extended gauge transformation (g, σg) of
Gau(M, g) is said orthogonal if g is pointwise orthogonal,

1. g ∈ Map(M,OAut(g)).

We shall denote by OGau(M, g) the set of all orthogonal elements g ∈ Gau(M, g).
OGau(M, g) is an infinite dimensional Lie proper subgroup of the gauge Lie group
Gau(M, g), nevertheless it still contains Map(M,G) as a subgroup.

An infinitesimal extended gauge transformation (u, σ̇u) of gau(M, g) is accordingly
orthogonal if u is pointwise orthogonal,

1. u ∈ Map(M, oaut(g)).

Here oaut(g) is the Lie algebra of OAut(g), and it is defined by all derivations u of g
such that

(u(x), y) + (x, u(y)) = 0 (3.1.46)

for any x, y ∈ g. We let ogau(M, g) be the set of all orthogonal elements u ∈ gau(M, g).
ogau(M, g) is an infinite dimensional Lie subalgebra of the gauge Lie algebra gau(M, g).
ogau(M, g) is also the Lie algebra of the orthogonal gauge Lie group OGau(M, g).

For s ∈ Ω0(M, g), the adjoint type infinitesimal gauge transformation adM s ∈
gau(M, g) is clearly orthogonal, adM s ∈ ogau(M, g), since it belongs to Map(M, g),
the prdinary infinitesimal gauge trasfnormations which are orthogonal by construction.

The exponential map exp� : ogau(M, g) → OGau(M, g) of ogau(M, g) is simply
the restriction of the exponential map exp� : gau(M, g) → Gau(M, g) of gau(M, g)
to ogau(M, g). In particular, the orthogonal exponential is still computed by the
expressions (3.1.40).
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3.2 Semistrict higher gauge theory

The expression semistrict higher gauge theory stands for a gauge theory whose
algebraic structure is encoded in a (2-term) L∞ algebra which is generally taken to be
non- strict. In this section we define suitable generalizations of the central concepts of
gauge theory to 2-term L∞ algebras. Namely, we will define fields and connection forms
with value in a 2-term L∞ algebra v, gauge transformations for such fields and, in the
spirit of the higher categorical setting of higher gauge theory, 2-gauge transformations,
which have no analog in ordinary gauge theory.

Again, we will limit ourself to the local theory. We work on a smooth manifold M
diffeomorphic to Rn. Here we intentionally avoid any mention to a flat higher bundle
which should replace G ×M , or to a structure or gauge 2-group which should take
the place of G. Our formulation of higher gauge theory works consistently without
needing these delicate concepts.

3.2.1 Field and connection doublets

First of all we have to define the field content. In semistrict higher gauge theory
with structure Lie 2–algebra v, fields are organized in field doublets, due to the fact
that v is a direct sum of two vector spaces, v0 and v1.

Definition 76. A bidegree (m,n) field doublet is a couple of differential forms

(φ, Φφ) ∈ Ωm(M, v0[n])× Ωm+1(M, v1[n]), (3.2.1)

where −1 ≤ m ≤ d. If m = −1, the first component of the doublet vanishes. If m = d,
the second component does.

Above, we attached a suffix φ to Φφ to indicate that Φφ is the partner of φ in the
doublet, not to mean that Φφ depends on φ in any way. This allows us to concisely
denote the doublet (φ, Φφ) simply as φ in many instances.

The forms entering in a doublet have not the same form degree, the second compo-
nent of the doublet being of form degree greater than the degree of the first component
by 1. The reason lies in the grading of the 2-term L∞ algebra v. A field doublet of
bidegree (m,n) is just an homogeneous degree m+n element of Ω•(M)⊗ ṽ[n], see sub-
section 2.4.2. The way it is defined in (3.2.1) makes it explicit the difference between
the component that takes value in v0 and the one with value in v1.

To define connection and curvature forms for semistrict higher gauge theory, we
employ the Weil algebra, in parallel to subsection 3.1.1. Given a 2-term L∞ algebra,
its Weil algebra is given by

W •(v) = S•(v∗0[1]⊕ v∗1[2]⊕ v∗0[2]⊕ v∗1[3]). (3.2.2)

We pick basis {ea}, {EA},{πa}, {ΠA}, {γa} and {ΓA} for v0, v1, v∗0[1], v∗1[2], v∗0[2] and
v∗1[3] respectively, and as usual we define π := πa ⊗ ea, Π := ΠA ⊗ EA, γ := γa ⊗ ea
and Γ := ΓA ⊗ EA. The Weil differential QW is defined as the sum of the Chevalley-
Eilenberg differential QCE plus a shift operator σ. The action of QW on elements of
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v∗0[1] and of v∗1[2] is thus obtained looking at (2.4.40) and is defined as

QWπ = −1

2
[π, π] + ∂Π + γ, (3.2.3)

QWΠ = −[π,Π] +
1

6
[π, π, π] + Γ. (3.2.4)

The action of QW on elements of v∗0[2] and v∗1[3] is instead computed by enforcing
Q2
W = 0 on π and Π:

QWγ = −[π, γ]− ∂Γ, (3.2.5)

QWΓ = −[π,Γ] + [γ,Π]− 1

2
[π, π, γ]. (3.2.6)

Now we extend the correspondence between connection forms and dgca algebra homo-
morphism between the Weil algebra and the de Rham complex on M from ordinary
gauge theory to the present setting. Thus a v-connection on M is determined by a
homomorphism A : W •(v) → Ω•(M). Such a homomorphism is defined by its action
on the generators π and Π. Since ω := A(π) and Ω := A(Π) belong to Ω1(M, v0) and
Ω2(M, v1) respectively, we make the following definition:

Definition 77. Given a 2-term L∞ algebra v, a v-connection on M is a bidegree
(1,0) doublet (ω,Ωω).

Analogously to what happens in ordinary gauge theory, the image of γ and Γ
under the action of the homomorphism A defines a 2-form f ∈ Ω2(M, v0) and a 3-
form F ∈ Ω3(M, v1) which are the curvatures. The forms f and F are completely
determined by ω and Ωω, due to the fact that A preserves the differential, and this
tells us how curvature and connection forms are related:

Definition 78. Given a connection doublet (ω,Ωω), its curvature is the bidegree
(2,0) doublet (f, Ff ) defined by

f = dω +
1

2
[ω, ω]− ∂Ωω, (3.2.7)

Ff = dΩω + [ω,Ωω]− 1

6
[ω, ω, ω]. (3.2.8)

A connection doublet is said flat if f = Ff = 0.

The 2-form f is also known as the fake curvature of the connection doublet. The
reason is that some properties of the curvature in ordinary gauge theory apply to Ff
in higher gauge theory provided that f = 0, as we shall see later.

The last information we can obtain from the Weil algebra and from the dgca algebra
homomorphism A is the shape of the covariant derivative. We saw in the last section
that the covariant derivative in ordinary gauge theory can be guessed by looking at the
preservation of the differential acting on γ (or f), which is translated to the Bianchi
identity in the language of differential forms. In higher gauge theory we use the same
argument. From (3.2.5) and (3.2.6) we find that

df + [ω, f ] + ∂Ff = 0, (3.2.9)

dFf + [ω, Ff ]− [f,Ωω] +
1

2
[ω, ω, f ] = 0. (3.2.10)
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These are the Bianchi identities for the curvature doublet (f, Ff ). It is easy to check
that they hold from the definition of the curvature (3.2.7)-(3.2.8). We wish to write
them as

Df = 0, (3.2.11)

DFf = 0, (3.2.12)

as is the case for the ordinary Bianchi identity, (3.1.10). Therefore we make the
following definition:

Definition 79. Let (φ, Φφ) be a field doublet of bidegree (p, q). The covariant deriva-
tive doublet of (φ, Φφ) is the field doublet (Dφ,DΦφ) of bidegree (p + 1, q) given by

Dφ = dφ+ [ω, φ] + (−1)p+q∂Φφ, (3.2.13a)

DΦφ = dΦφ + [ω, Φφ]− (−1)p+q[φ,Ωω] +
(−1)p+q

2
[ω, ω, φ]. (3.2.13b)

The sign (−1)p+q is conventional, since the relative sign of φ, Φφ cannot be fixed
in any natural manner. The covariant derivative doublet of (φ, Φφ) should be properly
written as (Dφ,DΦDφ). We shall write it as (Dφ,DΦφ) for simplicity.

From (3.2.13), we deduce easily the appropriate version of the Ricci identities,

DDφ = [f, φ], (3.2.14a)

DDΦφ = [f, Φφ]− [φ, F ]− [φ, ω, f ]. (3.2.14b)

The explicit appearance of the connection component ω in the right hand side of
(3.2.14b) is a consequence of the presence of a term quadratic in ω in (3.2.13b).

3.2.2 2-term L∞ algebra higher gauge transformations

The definition of gauge transformations for field and connection doublets is very
delicate and complicated. Unlike connection and curvature forms, for which the Weil
algebra provided a safe and easy path to the generalizations done in the last subsection,
there is no straightforward way to extend the concept of gauge transformation from
the ordinary setting to the higher one. Nevertheless, it is possible to build a sensible
and useful notion of higher gauge transformation which we shall now show [21]. While
proceeding we will try to explain which are the main reasons that lead to this definition.

We start from the extended gauge transformations defined for ordinary gauge the-
ory. Since they are the only kind of gauge transformations that we will be able to
treat in the higher setting, from now on we will call them simple gauge transforma-
tions, forgetting about the distinction between them and the original kind of gauge
transformations typical of usual gauge theory.

There are two basic ingredients in the ordinary gauge transformations: an auto-
morphism of the Lie algebra g (local on M) g and a flat connection σg. These data
can be generalized as they stand with no difficulties. We pick

1. a smooth map g = (g0, g1, g2) ∈ Map(M,Aut1(v)),
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2. a flat connection doublet (σg,Σg) ∈ Ω1(M, v0)× Ω2(M, v1),

dσg +
1

2
[σg, σg]− ∂Σg = 0, (3.2.15a)

dΣg + [σg, Σg]−
1

6
[σg, σg, σg] = 0. (3.2.15b)

g and σg are not unrelated. The pullback by g of the left invariant Maurer-Cartan
form on aut(g) must be equal to the adjoint of σg, (3.1.28). First of all we have to
find the left invariant Maurer-Cartan form for Aut1(v), which takes values in aut0(v).
Given g ∈ Map(M,Aut1(v)), the triplet

g−1
0 dg0, (3.2.16)

g−1
1 dg1, (3.2.17)

g−1
1 dg2(x, y)− g−1

1 g2(g−1
0 dg0(x), y)− g−1

1 g2(x, g−1
0 dg0(y)). (3.2.18)

defines a 1-form on M with values in aut0(v). It is easy to check that it satisfies the
Maurer-Cartan equation and that it is invariant under the left composition in Aut1(v).
This triplet can then be regarded as the pullback by g of the left invariant Maurer-
Cartan form, and we will denote it simply as g−1dg. It is now tempting to require
that

g−1dg − ad0(σg) = 0, (3.2.19)

in the spirit of (3.1.28). Unfortunately, this is not a good choice. In the ordinary
case, the flatness of σg as a connection was equivalent to the Maurer-Cartan equation
for g−1dg. In the higher setting this is no longer true. Since Aut1(v) is an ordinary
Lie group the Maurer-Cartan equation for g−1dg isn’t different from the ordinary one,
but the flatness condition for σg is changed due to the fact that v isn’t a Lie algebra.
(3.2.19) means

dad0(σg) +
1

2
[ad0(σg), ad0(σg)]aut = 0, (3.2.20)

which in turn implies the following three constraints:

∂(
1

2
[σg, σg, x]− [x,Σg]) = 0, (3.2.21)

1

2
[σg, σg, ∂X]− [∂X,Σg] = 0, (3.2.22)

[x,
1

2
[σg, σg, y]− [y,Σg]]− [y,

1

2
[σg, σg, x]− [x,Σg]]−

1

2
[σg, σg, [x, y]] + [[x, y],Σg] = 0,

(3.2.23)

for x, y ∈ v0, X ∈ v1. These can be satisfied by putting

1

2
[σg, σg, ·]− [·,Σg] =

1

2
ad2(σg, σg)− ad1(Σg) = 0, (3.2.24)

but this purely algebraic constraint on the flat connection doublet (σg,Σg) is very
unnatural and doesn’t fit into any interpretation.

To circumvent this obstacle, we choose to relax equation (3.2.19). As is usual in
higher category theory, we ask that (3.2.19) holds only up to higher homotopy. Since
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the equation takes value in Ω1(M, aut0(v)), we pick an element τg ∈ Ω1(M, aut1(v))
and we set

g−1dg − ad0(σg)− ∂autτg = 0. (3.2.25)

Now the Maurer-Cartan equation for g−1dg translates into the following differential
constraint on τg:

dτg +
1

2
[∂autτg, τg]aut + [ad0(σg), τg]aut − ad1(Σg) +

1

2
ad2(σg, σg) = 0. (3.2.26)

To sum up, we have the following definition:

Definition 80. A higher 1–gauge transformation consists of the following data:

1. a map g ∈ Map(M,Aut1(v)),

2. a flat connection doublet (σg, Σg),

3. an element τg of Ω1(M, aut1(v)) satisfying

dτg(π) + [σg, τg(π)]− [π,Σg] +
1

2
[σg, σg, π] + τg([σg, π] + ∂τg(π)) = 0. (3.2.27)

g, σg, Σg, τg are required to satisfy a number of relations. If g = (g0, g1, g2) , these
relations read:

g0
−1dg0(π)− [σg, π]− ∂τg(π) = 0, (3.2.28a)

g1
−1dg1(Π)− [σg, Π]− τg(∂Π) = 0, (3.2.28b)

g1
−1(dg2(π, π)− 2g2(g0

−1dg0(π), π))− [σg, π, π]− τg([π, π])− 2[π, τg(π)] = 0.
(3.2.28c)

We shall denote the set of all higher 1–gauge transformations by Gau1(M, v).

In the following, we are going to denote a 1–gauge transformation such as the
above as (g, σg, Σg, τg) or simply as g. Again, in so doing, we are not implying that
σg, Σg, τg are determined by g, but only that they are the partners of g in the gauge
transformation.

This definition of higher gauge transformation gives a generalization of Gau(M, g),
but still we have to define its action on field and connection doublets in order to see
its validity and to employ it in a higher gauge field theory.

To argue the action of Gau1(M, v) on doublets we start from some requirements.
First of all, we want that higher gauge transformations contain ordinary gauge trans-
formations as a special case. In the particular case of a 2-term L∞ algebra which
actually is a Lie algebra, i.e. v1 ≡ 0, a field doublet (φ,Φφ) reduces simply to φ and
a 1–gauge transformation (g, σg,Σg, τg) boils down to (g0, σg). Thus, we require that
the first component of a doublet transforms as

gφ = g0(φ), (3.2.29)

because this is the most general linear transformation rule that reduces to the ordinary
case if v1 = 0. A similar argument fixes the transformation law for the connection
1-form ω:

gω = g0(ω − σg). (3.2.30)
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The transformation of the second component Φφ of a doublet as well as of the
connection 2-form Ωω cannot be guessed in this way. Asking the gauge action to be
linear on fields and completely general on connections, the most general form it can
take on Φφ and Ωω reads

gΦφ = g1(Φφ) + κ(φ), (3.2.31)

gΩω = g1(Ωω) + η(ω) + Ξ +
1

2
ξ(ω, ω), (3.2.32)

where κ, η ∈ Ω1(M,Map(v0, v1)), Ξ ∈ Ω2(M, v1) and ξ ∈ Ω0(M,Map(v0 ∧ v0, v1)) are
undetermined parameters, which we now wish to fix as functions of the gauge elements
g, (σg,Σg) and τg. In order to do so we adopt another requirement: we impose to our
gauge transformations to render the covariant derivative D we defined in (3.2.13) really
covariant, that is to commute with the gauge action. Applied to the first component
φ of a (p, q) bidegree doublet (φ,Φφ) this translates into

gDgφ = g0(Dφ), (3.2.33)

or, more explicitly,

dg0(φ)+[g0(ω−σg), g0(φ)]+(−1)p+q∂(g1(Φφ+κ(φ)) = g0(dφ)+g0([ω, φ])+(−1)p+qg0(∂Φφ).
(3.2.34)

This relation is fulfilled if

κ = −(−1)p+qg1(τg(·)) + (−1)p+qg2(ω − σg, ·). (3.2.35)

The transformation law for the second component of the doublet is thus totally deter-
mined:

gΦφ = g1(Φφ − (−1)p+qτg(φ)) + (−1)p+qg2(ω − σg, φ). (3.2.36)

This formula shows some new features if compared to the ordinary gauge transforma-
tions of fields. Most evidently it shuffles the components of the doublet, but this is of
no surprise if we think of the two fields entering the doublet as just two component
of the same vector in ṽ. What is more, here we have an explicit appearance of the
connection 1-form ω. Therefore in semistrict higher gauge theory, the gauge action on
the fields is not independent of the choice of the connection doublet, as was the case
in ordinary gauge theory.

If we try to impose covariance on the second component of the covariant derivative
of a doublet, we run into problems. The formula

gDgΦφ = g1(DΦφ − (−1)p+q+1τg(Dφ)) + (−1)p+q+1g2(ω − σg, Dφ) (3.2.37)

cannot hold as it stands, even if we adjust the maps η, Ξ and ξ ad hoc. The point is
that on the left-hand side the term g2(f, φ) appears, with f the fake curvature, and it
can’t be canceled by any term on the right-hand side. Therefore we have to relax the
form of covariance obeyed by the second component of a covariant derivative to

gDgΦφ = g1(DΦφ − (−1)p+q+1τg(Dφ)) + (−1)p+q+1g2(ω − σg, Dφ) + (−1)p+qg2(f, φ).
(3.2.38)
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This can be achieved, and it fixes the free parameters entering in the gauge transfor-
mation of Ωω:

η(·) = g1(τg(·)) + g2(σg, ·), (3.2.39)

Ξ = −g1(τg(σg) + Σg)−
1

2
g2(σg, σg), (3.2.40)

ξ(·, ·) = −g2(·, ·). (3.2.41)

The gauge transformation action of the connection doublet can then be completely
written:

gω = g0(ω − σg), (3.2.42a)

gΩω = g1(Ωω −Σg + τg(ω − σg))−
1

2
g2(ω − σg, ω − σg). (3.2.42b)

As a last consistency requirement, we have to check that these gauge transforma-
tions are coherent with the definition of curvature doublet. Namely, we want that
the curvature 2-from and 3-form transform as a bidegree (2, 0) doublet according to
(3.2.29) and (3.2.36). This is indeed the case: the gauge transform of the curvature
doublet f = (f, Ff ) of ω is computed as

gf = g0(f), (3.2.43a)
gFf = g1(Ff − τg(f)) + g2(ω − σg, f). (3.2.43b)

Here we can make an interesting remark on why f is also called fake curvature. The
point is that if f = 0, two important features of ordinary gauge theory straightfor-
wardly extend to the semistrict case: the covariance of the covariant derivative and of
the curvature (3-form in this case). Indeed, if f = 0 then (3.2.37) holds, and so

gDgΦφ = g(DΦφ). (3.2.44)

Moreover if f = 0 the transformation law for F becomes

gF = g1(F ). (3.2.45)

In analogy to higher category theory, in higher gauge theory it is possible to define
a notion of 2-gauge transformation. These can be interpreted as gauge for gauge
symmetry in the language of ordinary field theory. We will present now how they can
be constructed within our framework.

We will build 2-gauge transformations as all deformation that transform a gauge
transformation (g, σg,Σg, τg) into another gauge transformation (h, σh,Σh, τh). The
former will be called the source and the latter the target of the 2-gauge transformation.

It is legit to take as first datum of a 2-gauge transformation a map F ∈ Ω0(M,Aut2(v)),
such that point-wise on M F is a 2-morphism in Aut2(v) going from g to h, F : g ⇒ h.
We can think of h as the 2-gauge transformed of g. We have:

h0 = g0 − ∂F, (3.2.46)

h1 = g1 − F∂, (3.2.47)

h2(π, π) = g2(π, π)− F ([π, π]) + 2[g0(π), F (π)]− [∂F (π), F (π)]. (3.2.48)
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Next, we perturb the flat connection doublet (σg,Σg) by shifting it. It is an easy
computation to show that, in order to have a transformed doublet which is again flat
as a connection, the shifted doublet must be

σh = σg − ∂AF , (3.2.49)

Σh = Σg − dAF − [σg, AF ] +
1

2
[∂AF , AF ], (3.2.50)

with AF ∈ Ω1(M, v). The transformed of τg, denoted τh, is determined by forcing equa-
tions (3.2.27)-(3.2.28) to hold for the transformed gauge transformation h. Putting all
together, we come to the following definition:

Definition 81. Let g and h be gauge transformations. A 2-gauge tranformations
from g to h, also denoted F : g ⇒ h, consists of the following data.

1. a map F ∈ Map(M,Aut2(v))(g, h), where Map(M,Aut2(v))(g, h) is the space of
sections of the fiber bundle

⋃
m∈M Aut2(v)(g(m), h(m))→M

2. an element AF ∈ Ω1(M, v1).

F , AF are required to satisfy the relations,

σg − σh = ∂AF , (3.2.51a)

Σg −Σh = dAF + [σg, AF ]− 1

2
[∂AF , AF ], (3.2.51b)

τg(π)− τh(π) = −[π,AF ] + g1
−1
(
dF (π)− F ([σh, π] + ∂τh(π))

)
. (3.2.51c)

The set of all 2-gauge transformations is denoted Gau2(M, v), and the set of all 2-gauge
transformations from g to h is denoted Gau2(M, v)(g, h).

In the following, we are going to denote a 2–gauge transformation like the above
as (F,AF ), meaning that AF is the partner of F in the transformation, or simply as
F .

In the following, we will call gauge transformations 1-gauge transformations, to
make the relashionship between them and 2-gauge transformations explicit.

We just defined 2-gauge transformations as having a source and a target. In the
spirit of gauge field theory, we could think of them as being intrinsically independent of
1-gauge transformation, on which they act, much as a 1-gauge transformation acting on
a connection doublet is independent on the connection itself (recall that this is not true
if one considers also field doublets). In this case, the set of 2-gauge transformations is
the subset of Gau2(M, v) having the identity 1-gauge transformation as source, denoted
Gau∗2(M, v). This set can be characterized as the set of pairs (F,AF ) with:

1. F ∈ Map(M,Aut2
∗(v));

2. AF ∈ Ω∗(M, v1).
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A 2-gauge transformation G ∈ Gau∗2(M, v) has a target 1-gauge transformation t(G)
defined by the quadruple

t(G), (3.2.52)

σt(G) = −∂AG, (3.2.53)

Σt(G) = −dAG +
1

2
[∂AG, AG], (3.2.54)

τt(G)(π) = [π,AG]+ (3.2.55)

where the t map in the first line is the crossed module homomorphism of Aut(v), see
(2.4.78). Such a 2-gauge transformation G acts on a 1-gauge transformation g as:

Gg = t(G)g, (3.2.56a)

σGg = σg − ∂g1
−1(AG), (3.2.56b)

ΣGg = Σg − d(g1
−1(AG))− [σg, g1

−1(AG)] +
1

2
[∂g1

−1(AG), g1
−1(AG)], (3.2.56c)

τGg(π) = τg(π) + [π, g1
−1(AG)]− g1

−1(1v1 −G∂)−1dGg0(π). (3.2.56d)

3.2.3 The categorical structure of higher gauge transforma-
tions

In ordinary gauge theory, gauge transformations can be viewed as the action of a
group on the set of all connections. Semistrict higher gauge theory is richer under this
perspective, and it admits several interpretations.

As our notation could hint, Gau1(M, v) and Gau2(M, v) combine to form an infi-
nite dimensional strict Lie 2–group, the gauge transformation 2–group of the theory,
denoted Gau(M, v). 1-gauge transformations in Gau1(M, v) are the 1-morphisms and
2-gauge transformations in Gau2(M, v) are the 2-morphisms. The composition (de-
noted �) and inversion laws and the unit 1-gauge transformation and the horizontal (�)
and vertical (•) composition and inversion laws and the unit 2–gauge transformations
of Gau(M, v) are defined by

h � g = h ◦ g, (3.2.57a)

σh � g = σg + g0
−1(σh), (3.2.57b)

Σh � g = Σg + g1
−1
(
Σh +

1

2
g2(g0

−1(σh), g0
−1(σh))

)
− τg(g0

−1(σh)), (3.2.57c)

τh � g(π) = τg(π) + g1
−1
(
τh(g0(π))− g2(g0

−1(σh), π)
)
, (3.2.57d)

g−1� = g−1◦ , (3.2.57e)

σg−1� = −g0(σg), (3.2.57f)

Σg−1� = −g1(Σg + τg(σg))−
1

2
g2(σg, σg), (3.2.57g)

τg−1� (π) = −g1(τg(g0
−1(π)))− g2(σg, g0

−1(π)), (3.2.57h)

i = id, (3.2.57i)

σi = 0, (3.2.57j)

Σi = 0, (3.2.57k)

τi(π) = 0, (3.2.57l)
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G � F = G ◦ F, (3.2.57m)

AG �F = AF + h−1
1(AG)− g1

−1Fh0
−1(σk), (3.2.57n)

F−1� = F−1◦ , (3.2.57o)

AF−1� = −g1(AF )− F (σh), (3.2.57p)

K •H = K ·H, (3.2.57q)

AK •H = AH + AK , (3.2.57r)

H−1• = H−1· , (3.2.57s)

AH−1• = −AH , (3.2.57t)

Ig = Idg, (3.2.57u)

AIg = 0, (3.2.57v)

where g, h, k, l ∈ Gau1(M, v) and F,G,H,K ∈ Gau2(M, v), with F : g ⇒ h, G : k ⇒ l
and H,K composable. In (3.2.57a), (3.2.57e), (3.2.57i), the composition, inversion
and unit in the right hand side are those of Aut1(v) thought of as holding pointwise on
M . In (3.2.57m), (3.2.57o), (3.2.57q), (3.2.57s), (3.2.57u), the horizontal and vertical
composition and inversion and the units in the right hand side are those of Aut2(v)
thought of as holding pointwise on M .

All these 2-group laws can be determined by comparing the consecutive action of
two transformations, as we did for the ordinary case. For example, equations (3.2.57a)-
(3.2.57d) can be obtained requiring

h(gω) = h�gω , h(gΩω) = h�gΩω. (3.2.58)

Therefore the gauge action is the action of the group Gau1(M, v) on the set of all
connection doublets.

The strict 2–group Gau(M, v) can be described also as a crossed module. The
two groups underlying it are Gau1(M, v) and Gau2

∗(M, v). The crossed module mul-
tiplications, inversions, units, target map and action are linked to the 2-group laws
according to proposition 14, and they are given by the expressions

h � g = h ◦ g, (3.2.59a)

σh � g = σg + g0
−1(σh), (3.2.59b)

Σh � g = Σg + g1
−1
(
Σh +

1

2
g2(g0

−1(σh), g0
−1(σh))

)
− τg(g0

−1(σh)), (3.2.59c)

τh � g(π) = τg(π) + g1
−1
(
τh(g0(π))− g2(g0

−1(σh), π)
)
, (3.2.59d)

g−1� = g−1◦ , (3.2.59e)

σg−1� = −g0(σg), (3.2.59f)

Σg−1� = −g1(Σg + τg(σg))−
1

2
g2(σg, σg), (3.2.59g)

τg−1� (π) = −g1(τg(g0
−1(π)))− g2(σg, g0

−1(π)), (3.2.59h)

i = id, (3.2.59i)

σi = 0, (3.2.59j)

Σi = 0, (3.2.59k)

τi(π) = 0, (3.2.59l)

G � F = G ◦ F, (3.2.59m)
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AG �F = AF + (1v1 − F∂)−1(AG), (3.2.59n)

F−1� = F−1◦ , (3.2.59o)

AF−1� = −(1v1 − F∂)(AF ), (3.2.59p)

I = Idi, (3.2.59q)

t(F ) = t(F ) (3.2.59r)

σt(F ) = −∂AF , (3.2.59s)

Σt(F ) = −dAF +
1

2
[∂AF , AF ], (3.2.59t)

τt(F )(π) = [π,AF ]− (1v1 − F∂)−1dF (π) (3.2.59u)

AIg = 0, (3.2.59v)

m(g)(F ) = m(g)(F ), (3.2.59w)

Am(g)(F ) = g1(AF − F (1v0 − ∂F )−1(σg)), (3.2.59x)

where g, h ∈ Gau1(M, v) and F,G ∈ Gau2
∗(M, v). In (3.2.59a) (3.2.59e), (3.2.59i), the

composition, inversion and unit in the right hand side are those of Aut1(v) thought
of as holding pointwise on M . In (3.2.59m), (3.2.59o), (3.2.59q), the composition,
inversion and unit in the right hand side are those of Aut2

∗(v) thought of as holding
pointwise on M . In (3.2.59r), the target map in the right hand side is that of Aut2

∗(v)
thought of as holding pointwise on M . Finally, in (3.2.59w), the crossed module action
in the right hand side is that of Aut1(v) on Aut2

∗(v) thought of as holding pointwise
on M .

The action of Gau∗2(M, v) on Gau1(M, v) (3.2.56) is also compatible with the com-
position � in Gau∗2(M, v), because

G(Fg) = G�Fg. (3.2.60)

Under this point of view, 2-gauge transformations behave on 1-gauge transformations
exactly as 1-gauge transformations do on connections.

This is not the only interpretation we can give to the higher gauge structure.
Another interesting point of view, which we didn’t discuss in the ordinary case, employs
2-groupoids instead of 2-groups, absorbing connection doublets as the objects. This
is particularly useful when dealing with field doublets, because gauge transformations
cannot act on the second component of a doublet without knowing which is the chosen
connection 1-form. We can therefore define the 2-groupoid Conn(M, v) in the following
way:

• objects are connection doublets (ω,Ωω) on M ;

• given two objects ω and ω′, the 1-morphisms going from ω to ω′ are all those
1-gauge transformations g ∈ Gau1(M, v) such that ω′ = gω;

• given two 1-morphisms g and h, the set of 2-morphisms going from g to h is
Gau2(M, g)(g, h).

All the compositions, units and inversions are those of Gau(M, v). Notice that the
gauge structure encoded in Conn(M, v) is slightly different to that encoded in Gau(M, v).
First of all, any 1-gauge transformation in Gau1(M, v) appears several times in Conn(M, v),
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with different source and target connections. Furthermore, not every 2-gauge transfor-
mation belonging to Gau2(M, v) has room in Conn(M, v), due to the target matching
condition of the 2-groupoid. In Conn(M, v), given two 2-gauge transformations g and
h with source the connection doublet ω, they can be linked by a 2-gauge transforma-
tion F : g ⇒ h only if they share also the same target connection doublet, that is
if

gω = hω. (3.2.61)

In Gau(M, v) this restriction lacks, and we can meet 2-gauge transformations between
totally unrelated 1-gauge transformations. These are not present in Conn(M, v). 2-
gauge transformations between 1-gauge transformations with the same source and
target can be nicely characterized provided that the fake curvature is zero. Let us
define the 2-groupoid Connf (M, v), which is identical to Conn(M, v) but restricted to
object whose fake curvature vanishes. This is well defined because f = 0 is a gauge
invariant condition. It can be shown that if f = 0, given a 2-gauge transformation
F : g → h between two 1-gauge transformations with the same source ω and the same
target connection doublet, the condition gω = hω is equivalent to the condition

AF = h−1
1 F (ω − σg). (3.2.62)

3.2.4 The 2-term L∞ algebra of infinitesimal gauge transfor-
mations

In higher gauge theory, as in ordinary gauge theory, many aspects of gauge sym-
metry are often conveniently studied by switching to the infinitesimal form of gauge
transformations.

Consider a higher gauge theory with symmetry 2-term L∞ algebra v. A infinites-
imal higher 1–gauge transformation is a 1–gauge transformation in linearized form as
in the ordinary case. Expanding (3.2.15), (3.2.27) around the unit transformation i to
first order reveals that it consists of a set of data of the following form:

1. a map u ∈ Map(M, aut0(v));

2. a linearized flat connection doublet (σ̇u, Σ̇u),

dσ̇u − ∂Σ̇u = 0, (3.2.63a)

dΣ̇u = 0; (3.2.63b)

3. an element τ̇u of Ω1(M, aut1(v)) such that

dτ̇u(π)− [π, Σ̇u] = 0. (3.2.64)

u, σ̇u, Σ̇u, τ̇u are required to satisfy the relations stemming from (3.2.28) by lineariza-
tion. If u = (u0, u1, u2) then these read

du0(π)− [σ̇u, π]− ∂τ̇u(π) = 0, (3.2.65a)

du1(Π)− [σ̇u, Π]− τ̇u(∂Π) = 0, (3.2.65b)

du2(π, π)− [σ̇u, π, π]− τ̇u([π, π])− 2[π, τ̇u(π)] = 0. (3.2.65c)
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In the following, we shall denote the infinitesimal 1–gauge transformation as (u, σ̇u, Σ̇u, τ̇u),
indicating as usual σ̇u, Σ̇u, τ̇u as the partners of u in the gauge transformation data,
or simply as u. We shall denote the set of all infinitesimal Lie 2–algebra 1–gauge
transformations by gau0(M, v).

Elements of gau0(M, v) act on connections and fields, generating infinitesimal gauge
variations. For an infinitesimal 1–gauge transformation u ∈ gau0(M, v), the gauge
variation (δuω, δuΩω) of (ω,Ωω) obeys (3.2.42) in infinitesimal form, which reads

δuω = u0(ω)− σ̇u, (3.2.66a)

δuΩω = u1(Ωω)− Σ̇u + τ̇u(ω)− 1

2
u2(ω, ω). (3.2.66b)

The gauge variation (δuφ, δuΦφ) of a field doublet (φ,Φ) of bidegree (p, q) is (see
(3.2.29)-(3.2.36))

δuφ = u0(φ), (3.2.67)

δuΦφ = u1(Φφ)− (−1)p+q τ̇u(φ) + (−1)p+qu2(ω, φ). (3.2.68)

The gauge variation (δuf, δuFf ) of (f, Ff ) reads similarly as

δuf = u0(f), (3.2.69a)

δuFf = u1(Ff )− τ̇u(f) + u2(ω, f). (3.2.69b)

2-gauge transformations can be put in infinitesimal form too. Expansion around
the unit transformation Ii to first order shows that an infinitesimal higher 2–gauge
transformation consists of the data

1. a map P ∈ Map(M, aut1(v));

2. an element ȦP ∈ Ω1(M, v1).

There are no further relations these objects must obey. We shall denote the infinites-
imal 2–gauge transformation as (P, ȦP ), indicating ȦP as the partner of P in the
gauge transformation, or simply as P . We shall denote the set of all infinitesimal
higher 2–gauge transformations by gau1(M, v).

The action of an infinitesimal 2–gauge transformation P ∈ gau1(M, v) on a 1–gauge
transformation g ∈ Gau1(M, v) correspondingly is

g−1δPg = τ◦P, (3.2.70a)

δPσg = −∂g1
−1(ȦP ), (3.2.70b)

δPΣg = −d(g1
−1(ȦP ))− [σg, g1

−1(ȦP )], (3.2.70c)

δP τg(π) = [π, g1
−1(ȦP )]− g1

−1dPg0(π). (3.2.70d)

This in turn induces an action of P on an infinitesimal 1–gauge transformation u ∈
gau0(M, v) given by

δPu = τ◦P, (3.2.71a)

δP σ̇u = −∂ȦP , (3.2.71b)

δP Σ̇u = −dȦP , (3.2.71c)

δP τ̇u(π) = [π, ȦP ]− dP (π). (3.2.71d)
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2–gauge symmetry represents gauge for gauge symmetry, that is gauge symmetry of
1–gauge transformation.

As one might expect, gau0(M, v) and gau1(M, v) combine together to form an infi-
nite dimensional 2-term L∞ algebra, denoted gau(M, v), in fact that of the gauge trans-
formation Lie 2–group Gau(M, v). Since Gau(M, v) is strict as a 2-group, gau(M, v)
is strict as a 2-term L∞ algebra. The boundary map and the brackets of gau(M, v)
are given by the expressions

∂�P = ∂◦P, (3.2.72a)

σ̇∂�P = −∂ȦP , (3.2.72b)

Σ̇∂�P = −dȦP , (3.2.72c)

τ̇∂�P (π) = [π, ȦP ]− dP (π), (3.2.72d)

[u, v]� = [u, v]◦, (3.2.72e)

σ̇[u,v]� = u0(σ̇v)− v0(σ̇u), (3.2.72f)

Σ̇[u,v]� = u1(Σ̇v)− v1(Σ̇u) + τ̇u(σ̇v)− τ̇v(σ̇u), (3.2.72g)

τ̇[u,v]�(π) = u1τ̇v(π)− v1τ̇u(π) + τ̇uv0(π)− τ̇vu0(π) + u2(σ̇v, π)− v2(σ̇u, π), (3.2.72h)

[u, P ]� = [u, P ]◦, (3.2.72i)

Ȧ[u,P ]� = u1(ȦP )− P (σ̇u), (3.2.72j)

[u, v, w]� = [u, v, w]◦ = 0, (3.2.72k)

where u, v, w ∈ gau0(M, v) and P ∈ gau1(M, v). In (3.2.72a), (3.2.72e), (3.2.72i),
(3.2.72k), the boundary and the brackets in the right hand side are those of aut(v)
thought of as holding pointwise on M .

The strict Lie 2–algebra gau(M, v) can also be described as a differential Lie crossed
module. The two underlying Lie algebras are gau0(M, v) and gau1(M, v). The differen-
tial Lie crossed module Lie brackets, target map and action are given by the expressions

[u, v]� = [u, v]◦, (3.2.73a)

σ̇[u,v]� = u0(σ̇v)− v0(σ̇u), (3.2.73b)

Σ̇[u,v]� = u1(Σ̇v)− v1(Σ̇u) + τ̇u(σ̇v)− τ̇v(σ̇u), (3.2.73c)

τ̇[u,v]�(π) = u1τ̇v(π)− v1τ̇u(π) + τ̇uv0(π) (3.2.73d)

− τ̇vu0(π) + u2(σ̇v, π)− v2(σ̇u, π),

[P,Q]� = [P,Q]◦ (3.2.73e)

Ȧ[P,Q]� = −P (∂ȦQ) +Q(∂ȦP ) (3.2.73f)

τ�P = τ◦P, (3.2.73g)

σ̇τ�P = −∂ȦP , (3.2.73h)

Σ̇τ�P = −dȦP , (3.2.73i)

τ̇τ�P (π) = [π, ȦP ]− dP (π), (3.2.73j)

µ�(u)(P ) = µ◦(u)(P ), (3.2.73k)

Ȧµ�(u)(P ) = u1(ȦP )− P (σ̇u), (3.2.73l)
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where u, v ∈ gau0(M, v) and P,Q ∈ gau1(M, v). In (3.2.73a), (3.2.73e), (3.2.73g),
(3.2.73k), the brackets, the target map and the Lie algebra morphism in the right
hand side are those of aut(v) thought of as holding pointwise on M . Note that eqs.
(3.2.71) can be concisely written as δPu = τ�u by (3.2.73g)–(3.2.73j).

For any s ∈ Ω0(M, v0), an element adM s ∈ gau0(M, v),

adM s = ad0 s, (3.2.74a)

σ̇adM s = ds, (3.2.74b)

Σ̇adM s = 0, (3.2.74c)

τ̇adM s(π) = 0 (3.2.74d)

is defined, the adjoint of s. In (3.2.74a), the adjoint operator in the right hand side
is that of v0 holding pointwise on M . Similarly, with any s, t ∈ Ω0(M, v0) and any
S ∈ Ω0(M, v1), there are associated elements adM s ∧ t, adM S ∈ gau1(M, v) by

adM s ∧ t = ad2(s, t), (3.2.75a)

ȦadM s∧t = 0, (3.2.75b)

adM S = ad1 S, (3.2.75c)

ȦadM S = 0, (3.2.75d)

the adjoints of s, t and S, respectively. In (3.2.75a), (3.2.75c), the adjoint operators in
the right hand side are those of v1 holding pointwise on M (cf. proposition 20).

Infinitesimal Lie 2–algebra gauge transformation can be exponentiated to finite
ones. The exponential map exp� : gau(M, v)→ Gau(M, v) can be described explicitly.
We have

exp�(u) = exp◦(u), (3.2.76a)

σexp�(u) =
1v0 − exp(−u0)

u0

(σ̇u), (3.2.76b)

Σexp�(u) =
1v1 − exp(−u1)

u1

(Σ̇u), (3.2.76c)

−
∫ 1

0

ds exp(−su1)τ̇u
1v0 − exp(−(1− s)u0)

u0

(σ̇u)

+

∫ 1

0

ds

∫ s

0

dt exp(−(s− t)u1)

× u2

(
exp(−tu0)(σ̇u), exp(−tu0)

1v0 − exp(−(1− s)u0)

u0

(σ̇u)

)
,

τexp�(u)(π) =

∫ 1

0

ds exp(−su1)τ̇u exp(su0)(π) (3.2.76d)

+

∫ 1

0

ds exp(−su1)u2

(
exp(su0)(π),

1v0 − exp(−(1− s)u0)

u0

(σ̇u)

)
,

exp�(P ) = exp◦(P ), (3.2.76e)

Ȧexp�(P ) =
exp(P∂)− 1v1

P∂
(ȦP ) (3.2.76f)
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where u ∈ gau0(M, v), P ∈ gau1(M, v). In (3.2.76a), the exponentiation in the right
hand side is that of aut0(v) thought of as holding pointwise on M . Similarly, in
(3.2.76e), the exponentiation in the right hand side is that of aut1(v) pointwise on M .

3.2.5 Orthogonal gauge transformations

At the end of the previous section, we introduced orthogonal extended gauge trans-
formations for ordinary gauge theories. The necessity of this concept rises from the
necessity of having an invariant bilinear form on the Lie algebra g in order to define a
sensible theory. This is true in semistrict higher gauge theory: to build a field theory
we need to extract from our algebraic datum a number, so that it is possible to define
an action functional. Thus we need an invariant form.

We consider now a semistrict higher gauge theory having as symmetry algebra a
balanced2-term L∞ algebra v equipped with an invariant bilinear form (·, ·).

Definition 82. A 1–gauge transformation (g, σg, Σg, τg) of Gau1(M, v) is said or-
thogonal if:

1. g ∈ Map(M,OAut1(v));

2. τg ∈ Ω1(M, oaut1(v)), i.e.

(x, τg(y)) + (y, τg(x)) = 0. (3.2.77)

We shall denote by OGau1(M, v) the set of all orthogonal elements g ∈ Gau1(M, v).

Condition (3.2.77) is at first glance a bit mysterious, but it emerges naturally in
many contexts and is a necessary condition for orthogonal symmetry invariance in
higher Chern–Simons theory.

A 2–gauge transformation (F,AF ) of Gau2(M, v)(g, h), g, h ∈ Gau1(M, v) being
two 1–gauge transformations, is said orthogonal if both g, h are orthogonal. For
g, h ∈ OGau1(M, v), we shall set OGau2(M, v)(g, h) = Gau2(M, v)(g, h). We further
set OGau2(M, v) =

⋃
g,h∈OGau1(M,v) Gau2(M, v)(g, h).

Remarkably, OGau(M, v) = (OGau1(M, v),OGau2(M, v)) is a Lie 2–subgroup of
the strict Lie 2–group Gau(M, v) = (Gau1(M, v),Gau2(M, v)), meaning that OGau(M, v)
is closed under all 2–group operations of Gau(M, v) (cf. subsect. 3.2.2).

OGau(M, v) can be described as a crossed module. The two groups underlying it
are OGau1(M, v) and OGau2

∗(M, v) =
⋃
g∈OGau1(M,v) Gau2(M, v)(i, g). OGau2

∗(M, v)

can be characterized as the set of pairs (F,AF ) with:

1. F ∈ Map(M,OAut2
∗(v)) and

(x, dF (y)) + (y, dF (x))− d(∂F (x), F (y)) = 0, (3.2.78)

for x, y ∈ v0.

2. AF ∈ Ω1(M, v1).
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Condition (3.2.78) is required by compatibility with (3.2.77). In this description, as
expected, OGau(M, v) is a Lie crossed submodule of the Lie crossed module Gau(M, v)
(cf. subsect. 3.2.2).

An infinitesimal higher 1–gauge transformation (u, σ̇u, Σ̇u, τ̇u) of gau0(M, v) is or-
thogonal if:

1. u ∈ Map(M, oaut0(v));

2. For x, y ∈ v0, one has
(x, τ̇u(y)) + (y, τ̇u(x)) = 0. (3.2.79)

(3.2.79) arises from (3.2.77) by linearization around i. We shall denote by ogau0 (M, v)
the set of all orthogonal elements u ∈ gau0(M, v).

An infinitesimal 2–gauge transformation (P, ȦP ) of gau1(M, v) is said orthogonal
if:

1. P ∈ Map(M, oaut1(v)) and

(x, dP (y)) + (y, dP (x)) = 0, (3.2.80)

for x, y ∈ v0.

(3.2.80) stems from (3.2.78) through linearization around Ii. We shall denote by
ogau1(M, v) the set of all orthogonal elements P ∈ gau1(M, v).

ogau(M, v) = (ogau0(M, v), ogau1(M, v)) is an infinite dimensional strict Lie 2–
subalgebra of the gauge algebra gau(M, v) = (gau0(M, v), gau1(M, v)), meaning that
ogau(M, v) is closed under all 2–algebra operations of gau(M, v). Furthermore, ogau(M, v)
is the strict Lie 2–algebra of the orthogonal gauge Lie 2–group OGau(M, v).

For s ∈ Ω0(M, v0), the infinitesimal 1–gauge transformation adM s ∈ gau0(M, v) is
orthogonal, adM s ∈ ogau0(M, v) (cf. eqs. (3.2.74)). Likewise, for and s, t ∈ Ω0(M, v0)
and any S ∈ Ω0(M, v1), the infinitesimal 2–gauge transformations adM s ∧ t, adM S ∈
gau1(M, v) are orthogonal, adM s ∧ t, adM S ∈ oaut1(M, v) (cf. eqs. (3.2.75)).

The exponential map exp� : ogau(M, v) → OGau(M, v) of ogau(M, v) is simply
the restriction of the exponential map exp� : gau(M, v) → Gau(M, v) of gau(M, v)
to ogau(M, v). In particular, the orthogonal exponential is still computed by the
expressions (3.2.76).

3.2.6 BRST cohomology in semistrict higher gauge theory

In semistrict higher gauge theory, analogously to ordinary gauge theory, higher
gauge symmetry is most efficiently analyzed concentrating on higher infinitesimal
gauge transformation of the adjoint type. Infinitesimal higher 1–gauge transforma-
tion is codified by a bidegree (0, 1) ghost field doublet (c, Cc) through the ghost degree
1 infinitesimal 1–gauge transformation w ∈ gau0(M, v)[1] given by w = − adM c and
σ̇w = dc−∂Cc, Σ̇w = dCc and τ̇w(π) = −[π,Cc] (cf. eqs. (3.2.74) for a special case) and
is implemented by the odd BRST operator s1 = δw. Infinitesimal 2–gauge transfor-
mations turn out to be field dependent necessitating the specification of a connection
doublet (ω,Ωω) by the requirement of BRST nilpotence. It is codified by a bidegree
(−1, 2) ghost field doublet (0, Γ ) through the ghost degree 2 infinitesimal 2–gauge
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transformation W ∈ gau1(M, v)[2] given by W = − adM Γ and ȦW = −[ω, Γ ] (cf. eqs.
(3.2.75a), (3.2.75b) for a special case) and is implemented by the odd BRST operator
s2 = δW . The total BRST operator is therefore given by

s = s1 + s2. (3.2.81)

By (3.2.66a), (3.2.66b), then,

s1ω = −Dc, (3.2.82a)

s1Ωω = −DCc (3.2.82b)

(cf. eqs. (3.2.13a), (3.2.13b)). As 2–gauge transformations are inert on ω, Ωω,

s2ω = 0, (3.2.83a)

s2Ωω = 0, (3.2.83b)

trivially. In conclusion, we have

sω = −Dc, (3.2.84a)

sΩω = −DCc. (3.2.84b)

We can try to make s nilpotent by suitably defining the variations sc, sCc of c, Cc.
From (3.2.82a), (3.2.82b), we find the relation

s1
2ω = D

(
s1c+

1

2
[c, c]

)
, (3.2.85a)

s1
2Ω = D

(
s1Cc + [c, Cc]−

1

2
[ω, c, c]

)
+

1

2
[f, c, c], (3.2.85b)

Here the covariant derivatives are applied to the pair (s1c + 1
2
[c, c], s1Cc + [c, Cc] −

1
2
[ω, c, c]) considered as a field doublet. This suggests to set

s1c = −1

2
[c, c], (3.2.86a)

s1Cc = −[c, Cc] +
1

2
[ω, c, c]. (3.2.86b)

Of course, this is not enough to eventually make s2Ω vanish unless f = 0, but it is the
best we can do. From (3.2.71a)–(3.2.71d), we find the relations

[s2c− ∂Γ, π] = 0, (3.2.87a)

d(s2c− ∂Γ ) + ∂(s2C +DΓ ) = 0, (3.2.87b)

d(s2C +DΓ ) = 0, (3.2.87c)

[π, s2C +DΓ ] = 0 (3.2.87d)
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which reveal that

s2c = ∂Γ (3.2.88a)

s2Cc = −DΓ. (3.2.88b)

From (3.2.86), (3.2.88), we conclude that

sc = −1

2
[c, c] + ∂Γ (3.2.89a)

sCc = −[c, Cc] +
1

2
[ω, c, c]−DΓ. (3.2.89b)

We can now check that, with above definition of sc, sCc, one has s2ω = 0 and s2Ω = 0
for connection doublets (ω,Ωω) satisfying the condition f = 0, called vanishing fake
curvature condition in the literature. To make s nilpotent, we have to suitably define
also the variation sΓ of Γ . To this end, we note that

s2c = ∂
(
sΓ + [c, Γ ]− 1

6
[c, c, c]

)
, (3.2.90a)

s2Cc = D
(
sΓ + [c, Γ ]− 1

6
[c, c, c]

)
. (3.2.90b)

Thus, we succeed to enforce s2c = 0 and s2Cc = 0 by requiring that

sΓ = −[c, Γ ] +
1

6
[c, c, c]. (3.2.91)

s2Γ = 0 as wished.
In conclusion s is nilpotent as desired

s2 = 0, (3.2.92)

provided we restrict to connection doublets (ω,Ωω) such that f = 0. We note here
that the ghost sector here is not pure, as the BRST variation sCc explicitly depends
on the connection component ω.

For completeness, we report the BRST variation of curvature doublet (f, Ff ) of
(ω,Ωω), which by (3.2.69), (3.2.69b) read

sf = −[c, f ], (3.2.93a)

sFf = −[c, Ff ] + [f, Cc]− [c, ω, f ]. (3.2.93b)

We expect BRST cohomology to play the same basic role in semistrict higher gauge
theory, which it does in ordinary gauge theory.

The results of above analysis keep holding with no modifications in the case where
the Lie 2–algebra v is balanced and equipped with an invariant bilinear form, the
gauge 2–group Gau(M, v) and the gauge Lie 2–algebra gau(M, v) being replaced by
their orthogonal counterparts OGau(M, v) and ogau(M, v), respectively (cf. subsect.
3.2.5). In particular, no additional restriction on the ghost fields c, Cc and Γ is
required.
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3.2.7 Crossed module gauge transformations

In [65] and [66] formulas for the gauge transformations of connections on a principal
2-bundle with gauge structure encoded in a stricit 2-group (or crossed module) were
found. Without going into details, let us say that this was made by viewing a connec-
tion on a principal bundle as a functor from the path groupoid of the base manifold to
the delooped version of the structure group, so that a principal 2-bundle (see section
3.3) with connection can be defined as a 2-functor from the path 2-groupoid of the base
manifold to the delooped version of the structure 2-group. Gauge transformations for
the higher connection can then be extracted from the theory of higher bundles.

Here we are only interested in the local theory. Given a smooth manifold M and
a crossed module (G,H), a (G,H)-connection is given by a couple (A,B) with

A ∈ Ω1(M, g) , B ∈ Ω2(M, h). (3.2.94)

The curvature is a couple of differential forms f ∈ Ω2(M, g), F ∈ Ω3(M, h) given by

f = dA+
1

2
[A,A]− ṫ(B). (3.2.95)

F = dB + [A,B]. (3.2.96)

A 1-gauge transformation is parametrized by a smooth function γ : M → G and a
1-form χγ ∈ Ω1(M, h). It acts on the connection doublet (A,B) as

A′ = γAγ−1 − dγγ−1 − ṫ(χγ), (3.2.97)

B′ = ṁ(γ)(B)− m̂(A′)(χγ)− dχγ −
1

2
[χγ, χγ]. (3.2.98)

Under this transformation the curvature forms change as

f ′ = γfγ−1, (3.2.99)

F ′ = ṁ(γ)(F )− m̂(f ′)(χγ). (3.2.100)

Crossed module 2-gauge transformations are determined by a smooth function θ :
M → H and a 1-form Ξθ ∈ Ω1(M, h). The action on a 1-gauge transformation γ is

γ′ = t(θ)γ, (3.2.101)

χγ′ = χγ − Ξθ. (3.2.102)

1-gauge transformations and 2-gauge transformations make up a 2-group called
Gau(M,G,H). 1-morphisms are 1-gauge transformations (γ, χγ) and 2-morphisms
are 2-gauge transformations (θ,Ξθ) : γ → γ′ (here we write γ for the whole doublet
(γ, χγ)). The identity and composition for 1-morphisms is as follows:

1 = (1G, 0), (3.2.103)

γ′ � γ = γ′γ, (3.2.104)

χγ′�γ = χγ′ + ṁ(γ′)(χγ), (3.2.105)

γ−1� = γ−1, (3.2.106)

χγ−1� = −ṁ(γ−1)(χγ). (3.2.107)
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Instead vertical and horizontal composition of 2-morphisms and the respective identi-
ties and inverses are as follows:

1γ = (1H , 0), (3.2.108)

η � θ = ηm(ζ)(θ), (3.2.109)

Ξη�θ = Ξη + ṁ(ζ)(Ξθ) +Q(ζṫ(χγ′)ζ
−1, η), (3.2.110)

θ−1� = m(γ−1)(θ−1), (3.2.111)

Ξθ−1� = −ṁ(γ−1)(Ξθ) + ṁ(γ−1)(Q(ṫ(θ−1χγ′θ), θ)), (3.2.112)

θ′ • θ = θ′θ, (3.2.113)

Ξθ′•θ = Ξθ′ + Ξθ, (3.2.114)

θ−1• = θ−1, (3.2.115)

Ξθ−1• = −Ξθ. (3.2.116)

Here θ : γ → γ′, θ′ : γ′ → γ′′ and η : ζ → ζ ′.
Since a Lie crossed module has as infinitesimal version a differential Lie crossed

module, that we know to be equivalent to a strict 2-term L∞ algebra, one expects that
these result are compatible with the theory developed in section 3.2, otherwise what
we have done lacks in consistency. Indeed, the formulas above are a particular case of
the relations found previously for the general case of a gauge theory for a semistrict
2-term L∞ algebra v. Since the strict 2-term L∞ algebra corresponding to a differential
Lie crossed module (g, h) consists as a couple of vector spaces of the two Lie algebras
(g, h), the connection doublet for the Lie crossed module and the connection doublet
for the strict 2-term L∞ algebra (g, h) agree:

ω = A, (3.2.117)

Ω = B. (3.2.118)

Concerning gauge transformation, there is a 2-group morphism Φ from Gau(M,G,H)
to Gau(M, v), where v = (g, h) is the strict 2-term L∞ algebra associated with the Lie
crossed module (G,H). This 2-group morphism is defined by the relations:

Φ(γ)0 = adγ, (3.2.119)

Φ(γ)1 = ṁ(γ)(·), (3.2.120)

Φ(γ)2 = 0, (3.2.121)

σΦ(γ) = γ−1dγ + γ−1ṫ(χγ)γ, (3.2.122)

ΣΦ(γ) = ṁ(γ−1)

(
dχγ +

1

2
[χγ, χγ]

)
, (3.2.123)

τΦ(γ)(x) = m̂(x)(ṁ(γ−1)(χγ)), (3.2.124)

Φ(θ)(x) = Q(γxγ−1, θ), (3.2.125)

AΦ(θ) = ṁ(γ−1)(−θ−1dθ + χγ − θ−1χγ′θ
−1). (3.2.126)

It’s easy to check that this is indeed a 2-group morphism, i.e. all the compositions are
preserved.
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3.3 Global higher gauge theory

In this section we will target the global aspects of higher gauge theory, explaining
how the 2-term L∞ algebra gauge theory developed in the previous sections can be
generalized to non-trivial base manifolds, and why our version of semistrict higher
gauge theory can’t fill into any higher bundle theoretic interpretation, which instead
work well for the strict case. Our presentation will follow the analysis made in sections
(3.7)-(3.8) of [21].

3.3.1 Higher bundles

Going from the local point of view to the global one is a matter of gluing local data
on different patches. Let us show how it works in ordinary gauge theories. Given a non
trivial smooth manifold M , we pick a good open cover U = {Ui}, with M = ∪iUi. On
each open subset Ui we can define fields and connections in local form, as elements of
Ω•(Ui) with values in some linear space, usually the Lie algebra g of the gauge group
G. Fields and connections defined in this way define global fields and connections if
they transform in a suitable way on the overlaps Uij := Ui∩Uj. These transformations
are governed by the gauge transformations: to every overlap Uij we associate a gauge
transformation gij : Uij → G, and given a collection of local connections ωi ∈ Ω1(Ui, g),
one on every open subset in the cover, for a global connection to be consistently defined
we have to require that

ωj = gijωig
−1
ij − dgijg−1

ij (3.3.1)

on every Uij. Simlarly, given a collection of fields φi ∈ Ωp(Ui, g), this defines a global
field if we have that

φj = gijφig
−1
ij (3.3.2)

on every Uij. The gauge transformations {gij} must satisfy a coherence relation on
triple overlaps, to avoid non-uniqueness paradoxes. This is called the cocycle condition,
and it reads

gijgjk = gik (3.3.3)

on every Uijk := Ui∩Uj ∩Uk. Collection of functions {gij} satisfying (3.3.3) are called
transition functions.

Transition functions are the codifying data of principal bundles, which come out to
be the basic geometric ingredient for ordinary gauge theory. The easiest way to define
them is by saying that a principal bundle on a base manifold M is given by a smooth
surjection p : P → M , such that P , the total space, is locally on M isomorphic to
M × G, for G a Lie group called the structure group. More precisely, for any good
open cover {Ui} of M there exist diffeomorphisms φi : p−1(Ui)→ Ui×G such that the
following diagram

p−1(Ui)
φi //

p

��

Ui ×G

yy
Ui

(3.3.4)

is commutative, where the map on the right is the obvious projection on the first
factor. This property of the maps φi makes it possible to define transition functions
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gij : Uij := Ui ∩ Uj → G by requiring that

φj ◦ φ−1
i = idUij × Lgij : Uij ×G→ Uij ×G. (3.3.5)

Here Lg means the left multiplication by g in G.
A connection can then be defined as a separation of the tangent bundle of the

principal bundle into a vertical and a horizontal component, and fields can be defined
as sections of the associated vector bundle.

It is a well-known classical fact that given a set of transition functions on a cover
U = {Ui} of a manifold M satisfying the cocycle condition (3.3.3) then a unique
principal bundle on M is determined by these data. This can be made precise by
defining a particular groupoid, which we call P (U,G), which is associated to the open
cover U :

• objects in P (U,G) are collections of transition functions {gij} satisfying the
cocycle condition. The set of objects is denoted by P0(U,G);

• given objects {gij} and {g′ij} in P (U,G), a morphism {gij} → {g′ij} is a collection
{hi} of maps hi : Ui → G, one for every open subset in the covering, such that

higij = g′ijhj. (3.3.6)

Composition is given by multiplication in G, and the identity morphism is given
by the collection {1G} which associated to every Ui the constant map to the
identity in G. The set of morphisms is denoted P1(U,G).

It’s easy to see that every such morphism is invertible, so that this is a well defined
groupoid. From this groupoid we can go to Čech cohomology. It can be shown that the
set of isomorphism classes of objects of P (U,G), which is denoted H1(U,G), is the first
Čech cohomology of the covering U with values in the Lie group G. Two transition
functions which are related by a morphism in P (U,G) define, according to (3.3.1)-
(3.3.2), global fields which differ by a global gauge transformation. Data {hi} thus
define an isomorphism between the principal bundles defined by its source and target
transition functions. This means that H1(U,G) is the set of isomorphisms classes of
principal bundles associated with the covering U . To disregard the dependence on the
particular cover we define

H1(M,G) := lim−→
U

H1(U,G), (3.3.7)

where the limit is an inductive limit on cover refinement. Namely, H1(M,G) is the set
of equivalence classes induced by the following equivalence relation on ∪UH1(U,G):
on representatives, two transition functions {gij} and {gij} on coverings U = {Ui}
and U ′ = {U ′i} are equivalent if there is a covering V = {Va} which is a refinement
for both U and U ′ with a set of transition functions {γab} such that the restriction of
every gij or g′kl to some Vab ⊂ Uij, U

′
kl agrees with γab. The group H1(M,G) is the set

of diffeomorphism classes of principal G-bundles on M .
Furthermore, given two transition functions g = {gij} and g′ = {g′ij}, the set of

morphism h = {hi} : g → g′, denoted H2(U,G)(g, g′), depends only on the common
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equivalence class of g and g′ in H1(U,G). Again, taking the limit under covering
refinement gives the group

H2(P ) := lim−→
U

H2(U,G)(g, g′), (3.3.8)

where P is the principal G-bundle associated with the isomorphism class of g and g′.
The group H2(P ) is the set of the automorphisms of P .

All this can be reformulated in terms of groupoid morphisms. This view will be the
ideal path towards the generalization to the higher setting. Given an open cover {Ui}
of a manifold M , we can define its Čech groupoid Č(U). It is the smooth groupoid
defined as follows:

• the set of objects is Č(U)0 :=
∐

i Ui = {(x, i), x ∈ Ui};

• the set of morphisms is Č(U)1 :=
∐

i,j Uij = {(x, i, j), x ∈ Uij}.

A morphism (x, i, j) goes from (x, j) to (x, i), with the identity morphism on (x, i)
given by (x, i, i) and the composition by

(x, i, j) ◦ (x, j, k) = (x, i, k). (3.3.9)

The usefulness of this groupoid is made explicit in the following proposition:

Proposition 23. The groupoids P (U,G) and Fun(Č(U), BG) are isomorphic. Explic-
itly, transition functions {gij} on U and functors F : Č(U) → BG are in one-to-one
correspondence, and gauge transformations {hi} from {gij} to {g′ij} are in one-to-
one correspondence with natural transformations between the functors corresponding
to {gij} and {g′ij}

Proof. The proof is very easy: BG is trivial at the level of objects, so the functor F is
determined by its action on morphisms, which is equivalent to a collection of functions
from the Uij to G:

gij(x) := F (x, i, j). (3.3.10)

The cocycle condition is the conservation of the composition of morphisms by F .
A natural transformation η : F ⇒ F ′ is specified by a map from Č(U)0 to G,

namely
hi(x) := η(x, i), (3.3.11)

and relation (3.3.6) is the naturality condition. 2

This proposition underlines how all the informations about principal bundles on
M are contained in the functor category Fun(Č(U), BG).

This notion can be extended straightforwardly to the strict higher setting, and this
leads to the so called higher bundles, or more precisely 2-bundles if we are dealing with
2-groups. These were first introduced by Bartels in [67] and then further developed in
[65]-[66]. Here, we employ the equivalent functorial definition which can be found for
example in [63].

Let us mention that in literature there are many other objects that are related to
higher bundles and that aim to a generalization of (some aspects of) ordinary principal
bundles, such as gerbes,[70],[72], bundle gerbes [70] and nonabelian bundle gerbes [68],
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which we will not be interested in. For details on these topics and deep comparisons
between different approaches see [63],[69],[65],[73] and references therein. Let us now
go back into the discussion of 2-bundles.

For G a strict 2-group we define G-2-bundles on M as (equivalence classes of) 2-
functors from a higher version of the Čech groupoid to BG. The Čech 2-groupoid,
denoted Č2(U) is a trivial extension of its lower version Č(U) obtained by adding
trivial 2-morphisms, which are only identities on 1-morphisms.

Now we define as higher generalization of P (U,G) the 2-groupoid 2-Fun(Č2(U), BG)
([21]). In this way we also go one steep ahead than in ordinary gauge theory, tak-
ing into account 2-gauge transformations, which are encoded in the 2-morphisms of
2-Fun(Č2(U), BG), or modifications.

We define a transition function on a covering {Ui} with values in a 2-group G as
a 2-functor from Č2(U) to BG. The key point is that we assume this 2-functor to be
(possibly) non-strict. Recalling that a strict 2-group is equivalent to a crossed module
(G,H), and definition 20, we see that such a functor F is determined by set of functions
{gij, ξi,Wijk} with gij : Uij → G, ξi : Ui → H and Wijk : Uijk → H. Functions gij
are the images F (x, i, j) of 1-morphisms, the Wijk and the ξi are the H part of the
isomorphisms m and u of definition 20 respectively. Relations (1.3.7) are equivalent
to

ξi = m(g−1
ij )(Wijj), (3.3.12)

so that the functions {ξi} are determined by the {gij} and the {Wijk} and are thus
inessential. Target matching condition for the isomorphism m implies

t(Wijk)gijgjk = gik on Uijk, (3.3.13)

while axiom (1.3.6) translates into the relation

Wijlm(gij)(Wjkl) = WiklWijk on Uijkl. (3.3.14)

These relation are now taken as the defining cocycle conditions for transition functions
{gij,Wijk} with values in a strict 2-group G. The first relation is similar to the cocycle
relation (3.3.6) for ordinary transition functions, but it is required to hold only up to
higher morphisms. The second is a coherence relation that makes the triple product
gijgjkgkl uniquely defined.

Continuing the analogy with ordinary principal bundles, gauge transformations
are represented by pseudonatural transformations of 2-functors from Č2(U) to BG.
Given two such 2-functors F and F ′ defined by the transition functions {gij,Wijk}
and {g′ij,W ′

ijk}, a pseudonatural transformation η : F ⇒ F ′ is defined by the functions
{hi} and {Jij} with hi : Ui → G and Jij : Uij → H which have to fulfill the following
relations:

t(Jij)higij = g′ijhj on Uij, (3.3.15)

Jijm(gij)(Jjk)Wijk = m(hi)(W
′
ijk)Jik. (3.3.16)

which are the target matching condition for η(x, i, j) and axiom (1.3.8) in definition
22. The first relation again is similar to (3.3.6), but it is relaxed and it is valid
only up to higher morphisms. The second relation states that the two 2-morphisms
gik ◦ hk ⇒ hi ◦ g′ij ◦ g′jk which can be built using J and W have to be equal.
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We can go beyond and define 2-gauge transformations, which are described by
modifications between pseudonatural transformations. If η and η′ are pseudonatural
transformations defined by the functions {hi}, {Jij} and {h′i}, {J ′ij}, between the 2-
functors F and F ′, defined by the transition functions {gij}, {Wijk} and {g′ij}, {W ′

ijk},
a modification from η to η′ is determined by functions {Ki}, Ki : Ui → H satisfying

h′i = t(Ki)hi, (3.3.17)

J ′ijKi = m(g′ij)(Kj)Jij on Uij, (3.3.18)

The first relation is just the target matching condition intrinsic in the definition of a
modification, the second relation is axiom (1.3.11).

If we defineH1(U,G) as the set of 1-isomorphisms classes of objects in Fun(Č2(U), BG),
then the set of isomorphisms classes of principal G-2-bundles on M is given by the in-
ductive limit under covering refinement

lim−→
U

H1(U,G) =: H1(M,G). (3.3.19)

Analogously, if we defineH2(U,G, F ) to be set of 2-isomorphisms classes of 1-morphisms
in Fun(Č2(U), BG) going from F to F , then the inductive limit

lim−→
U

H2(U,G, F ) =: H2(M,G, P ). (3.3.20)

is the group of isomorphisms classes of automorphisms of P , where P is the principal
G-2-bundle defined by the equivalence class of F . If we define H3(U,G, η) to be set of
2-morphisms in Fun(Č2(U), BG) going from η to η, then the inductive limit

lim−→
U

H3(U,G, η) =: H3(M,G, f). (3.3.21)

is the group of 2-automorphisms of f , which is the automorphism of principal G-2-
bundles defined by the equivalence class of η.

3.3.2 Global semistrict higher gauge theory

So far we have achieved a definition of principal 2-bundle for strict higher gauge
theory. This leads to the gauge theory with gauge structure encoded in a strict 2-
group or crossed module, see subsection 3.2.7. We can try to repeat this analysis for
the semistrict case.

Let M be a smooth manifold endowed with an open cover U = {Ui}, and let
v = (v0, v1) be a 2-term L∞ algebra. On every open subset Ui we can define local field
doublets (φi,Φφi) and local connection doublets (ωi,Ωωi) as elements of Ω•(Ui, v0) ⊕
Ω•+1(Ui, v1). To glue together these local doublets, we assign to every open intersection
Uij a 1-gauge transformation gij ∈ Gau1(Uij, v), consisting of data (gij, σgij ,Σgij , τgij)
that satisfy the axioms of definition 80, and to every triple intersection Uijk a 2-gauge
transformation Wijk ∈ Gau2(Ujik, v), such that Wijk : gij �gjk ⇒ gik, consisting of data
(Wijk, AWijk

) satisfying the axioms of definition 81 and fulfilling the relation

Wijl •
(
1gij �Wjkl

)
= Wikl • (Wijk � 1gkl) . (3.3.22)
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Mimicking what is done in the strict case, we use this as starting point for the defini-
tion of a 2-groupoid, which we denote P (U, v), which should contain the information
governing the gluing structure, the 1-isomorphism and the 2-isomorphisms of the ge-
ometric framework of v gauge theory.

The objects of this groupoid are collections of 1- and 2-gauge transformations
{gij,Wijk} as formerly mentioned. We define 1-morphisms of P (U, v) going from
{gij,Wijk} to {g′ij,W ′

ijk} as collections {hi, Jij}, with hi ∈ Gau1(Ui, v) and Jij ∈
Gau2(Uij, v), explicitly made up by the elements {hi, σhi ,Σhi , τhi , Jij, AJij}, such that

Jij : hi � gij ⇒ g′ij � hj on Uij, (3.3.23)

Jik • (1hi �Wijk) =
(
W ′
ijk � 1hk

)
•
(

1g′ij � Jjk
)
•
(
Jij � 1gjk

)
. (3.3.24)

Given two 1-morphisms {hi, Jij} and {h′i, J ′ij}, a 2-morphism in P (Ui, v) between them
is a collection {Ki} of 2-gauge transformations Ki ∈ Gau2(Ui, v), with Ki : hi ⇒ h′i
consisting of (Ki, Aki), such that(

1g′ij �Kj

)
• Jij = J ′ij •

(
Ki � 1gij

)
. (3.3.25)

All compositions are inherited by the compositions in Gau(U, v), and the identities are
the obvious ones.

Unfortunately, this 2-groupoid can’t be cast into the form 2-Fun(Č(U), BG) for
some 2-group G. The reason lies in the inner structure of the relations obeyed by the
objects and the morphisms in P (U, v): part of the data are differential forms on some
open subsets of M obeying differential constraints, for example

dσgij +
1

2
[σgij , σgij ]− ∂Σgij = 0 on Uij. (3.3.26)

We wouldn’t meet this obstruction if we were doing strict higher gauge theory. If
the 2-group Gau(U, v) is substituted by its strict version Gau(U,G,H), containing
the crossed module gauge transformations explained in subsection 3.2.7 for some Lie
crossed module (G,H), then no differential equations appear into the constraints.
The basic data are functions γ and a to G and H respectively and a 1-form χγ with
values in h. Just forgetting about χγ provides a way to go fromGau(U,G,H) to
2-Fun(Č(U), B(G,H)).

The best we can do in the semistrict case is to forget about the differential forms,
but in this case we don’t obtain maps into a semistrict 2-group representing the struc-
ture 2-group, but instead we get maps into Aut(v), which is not the structure 2-group.

The point is that the approach we have used previously in defining higher gauge
transformations is not convenient for dealing with the global theory. This can be seen
more clearly by adopting our point of view in the ordinary case: if we use extended
gauge transformations, the gluing data would be represented by collections {gij, σgij},
with values in Gau(U, g). A complete integration of these transition functions is im-
peded by the differential constraints imposed by the flatness of σgij . If we forget about
σgij , we are left with {gij} which are not maps into the gauge group, but into Aut(g),
which lacks information about the center of the gauge group.
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Nevertheless, global semistrict higher gauge theory can be defined just by requiring
gauge covariance. It will lack a bundle theoretic interpretation, but it will be usable
to the definition of field theories.



Chapter 4

Higher parallel transport

A connection on a principal bundle separates the tangent space of the bundle into
a vertical and a horizontal space. Therefore it makes it possible to define parallel
transport, which is a way to ’move’ in the principal bundle along paths on the base
manifold keeping our tangent vector fully horizontal. Parallel transport along closed
loops gives the holonomy of the loop, which is a gauge invariant and is an observable
in gauge theories.

In this chapter, which is taken from [18], we extend the notion of parallel transport
to strict higher gauge theory. Many papers have been written about the precise and
rigorous definition of parallel transport. We have in mind in particular for the influence
they had on our work the papers by Schreiber and Waldorf [38, 39, 40] and Martins
and Picken [41, 42, 43]. Recent contributions include [44] and [45, 46]. Here we
propose a new formulation of parallel transport in strict higher gauge theory. We do
not claim any new results but we only offer a new perspective from which to view old
ones, which hopefully may provide new insight. Our interest in this subject has been
prompted by our formulation of semistrict higher gauge theory aimed to higher Chern–
Simons theory, in which we circumvent the difficulties related to the integration of the
underlying semistrict Lie 2–algebra to a semistrict 2–group, when possible, by relying
on the automorphism 2–group of the Lie 2–algebra, which is always strict [21, 19].
(See also [74] for an alternative approach.)

Our formulation is based on an original notion of Lie crossed module cocycle and
cocycle 1– and 2–gauge transformation with a non standard double category theoretic
interpretation. (See [41, 42] and [44] for related approaches.)

4.1 Main idea

In this introductory subsection, we want to convey an intuitive idea of our formula-
tion of higher parallel transport theory by reviewing first the cocycle approach to the
ordinary theory and then outlining the higher generalization of it we propose. Here,
we have no pretension of full mathematical rigor. Everything we say below holds in
the smooth category.

Let G be a Lie group. A G–cocycle is a map f : R2 → G obeying

f(x′′, x′)f(x′, x) = f(x′′, x). (4.1.1)

115
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A G–connection a is just a g–valued 1–form on R. G–cocycles are in one–to–one
correspondence with G–connections. The G–connection af corresponding to a G–
cocycle f is defined by

afx(x) = −dx′f(x′, x)f(x′, x)−1
∣∣
x′=x

. (4.1.2)

The G–cocycle fa corresponding to a G–connection a is given by fa(x, x0) = ux0(x),
where ux0 is the unique solution of the differential problem

dxux0(x)ux0(x)−1 = −ax(x), ux0(x0) = 1G. (4.1.3)

A G–gauge transformation is simply a mapping κ : R→ G. G–gauge transformations
act on G–cocycles and G–connections. The gauge transform of a cocycle f by a gauge
transformation κ is

κf(x′, x) = κ(x′)f(x′, x)κ(x)−1. (4.1.4)

The gauge transform of a connection a by a gauge transformation κ is given by the
familiar relation

κax(x) = Adκ(x)(ax(x))− dxκ(x)κ(x)−1. (4.1.5)

These actions are furthermore compatible with the cocycle to connection correspon-
dence. The above has a categorical formulation. Let GR be the oriented segment
groupoid of R, the familiar groupoid of pairs of elements R, and BG be the delooping
of G, the one object groupoid whose morphisms set is G. Then, a G–cocycle f can be
viewed as a functor f : GR → BG. Further, any G–gauge transformation κ encodes
a natural transformation κ : f ⇒ κf .

Parallel transport in a gauge theory with gauge group G on a manifold M can
now be defined as follows. For simplicity we assume that the background principal
G–bundle is trivial. A G–connection θ is then simply a g–valued 1–form on M . Given
two points p0, p1 of M a curve γ : p0 → p1 in M with sitting instants joining them,
the pull–back γ∗θ is a G–connection in the sense defined in the previous paragraph.
With this, there is associated a G–cocycle fγ∗θ. The parallel transport induced by θ
along γ is then given by

Fθ(γ) = fγ∗θ(1, 0). (4.1.6)

A G–gauge transformation is just a G–valued map g on M . It acts on a G–connection
θ in the well–known way,

gθ = Ad g(θ)− dgg−1. (4.1.7)

The associated parallel transport transforms correspondingly as

Fgθ(γ) = g(p1)Fθ(γ)g(p0)−1. (4.1.8)

since g yields aG–gauge transformation γ∗g on γ∗θ in the sense defined in the preceding
paragraph. From a categorical point of view, it is found that Fθ defines a functor
Fθ : (M,P1M) → BG from the path groupoid (M,P1M) of M to BG and that g
defines a natural transformation g : Fθ ⇒ Fgθ.

In the next sections, we show that the cocycle based formulation of parallel trans-
port of ordinary gauge theory outlined above admits a non trivial extension to strict
higher gauge theory. Let (G,H) be a Lie crossed module. In sect. 4.2, we introduce
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the notion of (G,H)–cocycle, a triple of three maps f : R3 → G, g : R3 → G and
W : R4 → H obeying relations extending (4.1.1) and a target matching condition
relating f g and W , and recall that of (G,H)–connection doublet, a pair of a g–valued
1–form a and a h–valued 2–form B on R2 satisfying the so–called zero fake curvature
condition familiar in higher gauge theory. We show then that there is a one–to–one
correspondence between (G,H)–cocycles and (G,H)–connection doublets analogous
to (4.1.2), (4.1.3). We introduce next the notion of integral (G,H)–1–gauge transfor-
mation, a triple constituted by three maps κ : R2 → G and Ψ : R3 → H, Φ : R3 → H
obeying certain cocycle relations, and of differential (G,H)–1–gauge transformation,
a pair of a G–valued map κ and a h–valued 1–form Γ on R2. We prove then the
existence of a one–to–one correspondence between integral and differential (G,H)–1–
gauge transformations. Integral (G,H)–1–gauge transformations are next shown to
act on (G,H) cocycles by an extension of (4.1.5) and, similarly, differential (G,H)–1–
gauge transformations on (G,H)–connection doublets through the usual higher gauge
theoretic prescription generalizing (4.1.6) and these actions are found to be compatible
with the correspondences between cocycles and connection doublets and integral and
differential gauge transformations. Finally, we introduce the notion of (G,H)–2–gauge
transformation, a single mapping A : R2 → H, and show that (G,H)–2–gauge trans-
formations act both on integral and differential (G,H)–1–gauge transformations in a
way that is compatible with the correspondence between the two.

The above construction has a remarkable double categorical interpretation. The
basic ingredients of this are the double groupoid GR2 of oriented rectangles of R2 and
the edge symmetric double groupoid B(G,H) canonically associated to the Lie crossed
module (G,H). A (G,H)–cocycle amounts to a double functor R2 → B(G,H). An in-
tegral (G,H)–1–gauge transformation encodes a form of double natural transformation
between a (G,H)–cocycle and its 1–gauge transform. Finally, a (G,H)–2–gauge trans-
formation yields a double modifications between an integral (G,H)–1–gauge transfor-
mation and its 2–gauge transform. The notion of double natural transformation and
modification we use are not standard and are precisely defined in section 1.4. This
may be of some interest in category theory.

In sect. 4.3, we rederive higher parallel transport theory originally obtained in
the references recalled above using higher cocycle theory. We consider a strict higher
gauge theory with gauge crossed module (G,H) on a manifold M for a trivial (G,H)
2–bundle. A (G,H) connection doublet is a pair of a g–valued 1–form θ and a h–
valued 2–form Υ on M satisfying the zero fake curvature condition. If γ0, γ1 are
curves with the same endpoints and Σ : γ0 ⇒ γ1 is a surface connecting them, all with
sitting instants, then Σ∗θ, Σ∗Υ constitute a (G,H) connection doublet in the sense
defined two paragraphs above with which there is associated a (G,H)–cocycle fΣ∗θΣ∗Υ ,
gΣ∗θΣ∗Υ , WΣ∗θΣ∗Υ . The 1–parallel transport along the γi and the 2–parallel transport
along Σ are Fθ,Υ (γi) = fΣ∗θΣ∗Υ |i(1, 0) and Fθ,Υ (Σ) = WΣ∗θΣ∗Υ (0, 1; 1, 0), extending
the prescription (4.1.6). Next, a (G,H)–1–gauge transformation is a pair of a G–
valued map g and a h–valued 1–form J on M . (G,H)–1–gauge transformations act
on (G,H)–connection doublets θ, Υ according the higher gauge theoretic prescription
generalizing (4.1.7) and thus on parallel transport. This action comes through the
action of the integral (G,H)–1–transformation κΣ∗g,Σ∗J , ΨΣ∗g,Σ∗J , ΦΣ∗g,Σ∗J associated
to the differential (G,H)–1–gauge transformation Σ∗g, Σ∗J on the (G,H)–cocycle
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fΣ∗θΣ∗Υ , gΣ∗θΣ∗Υ , WΣ∗θΣ∗Υ and leads to the appropriate extension of (4.1.8). Similar
considerations hold for 2–gauge transformations.

We find that the higher parallel transport operation constructed in this way agrees
with that developed in earlier literature [47, 48, 38, 39, 40, 41, 42, 43]. In particular,
we recover the remarkable interpretation of the higher transport Fθ,Υ as a 2–functor
Fθ,Υ : (M,P1M,P2M)→ B0(G,H) from the path 2–groupoid (M,P1M,P2M) of M to
the strict 2–group B0(G,H) corresponding to (G,H) and of (G,H)–1– and 2–gauge
transformation as pseudonatural transformations and modifications, respectively.

4.2 Lie crossed module cocycle theory

In this section, we expound our theory of Lie crossed module cocycles. Hints
of this approach were already present in refs. [38, 39, 40], to which we are indebted
for inspiration. We illustrate our construction stressing its being an extension of the
ordinary Lie group cocycle theory. The theory of Lie crossed module 1– and 2–gauge
transformations is presented on the same lines.

4.2.1 Lie crossed module cocycles

Cocycle theory plays a basic tole in higher holonomy theory and gauge theory.
We begin by recalling the definition and main properties of Lie group cocycles and then
move to state the definition and study the properties of Lie crossed module cocycles.

Let G be a Lie group.

Definition 83. A G–cocycle is a map f ∈ Map(R2, G) such that

f(x′′, x) = f(x′′, x′)f(x′, x), (4.2.1)

for x, x′, x′′ ∈ R. We denote the set of G–cocycles as Cyc(G).

A few basic properties of cocycles follow immediately from the definition.

Proposition 24. If f is a G–cocycle, then

f(x, x) = 1G, (4.2.2a)

f(x, x′) = f(x′, x)−1, (4.2.2b)

for x, x′ ∈ R.

Lie group cocycles have a categorical interpretation. Though this is well known,
we review it here since it points to and justifies the less known generalization to Lie
crossed module cocycle presented below.

The segment groupoid GR has one object for each real number x ∈ R and one
arrow for each pair of real numbers x, x′ ∈ R

x′ xoo . (4.2.3)
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Composition of arrows is carried out by concatenation at their common end. The
identity arrows are those with equal ends. Inversion of an arrow is performed by
exchange of its ends. GR is evidently isomorphic to the pair groupoid of R.

A Lie group G can be viewed as a one object groupoid BG, the delooping of G,
with one arrow for each element of g ∈ G

∗ ∗
goo . (4.2.4)

Composition is given by group multiplication. The identity arrow is that corresponding
to the neutral element 1G. Inversion is the same as group inversion.

Proposition 25. A G–cocycle f is equivalent to a smooth functor GR→ BG

x′ xoo � // ∗ ∗
f(x′,x)oo . (4.2.5)

Proof. The cocycle relation (4.2.1) is a necessary and sufficient condition for the
functoriality of the above mapping. 2

Every Lie group cocycle yields and can be reconstructed from a Lie valued differ-
ential form datum.

Definition 84. A G–connection is a form a ∈ Ω1(R, g). We denote the set of G–
connections by Conn(G).

The following theorem holds [39].

Theorem 3. There is a canonical one–to–one correspondence between the set Cyc(G)
of G–cocycles and that Conn(G) of G–connections. The G–connection af correspond-
ing to a G–cocycle f is

afx(x) = −dx′f(x′, x)f(x′, x)−1
∣∣
x′=x

. (4.2.6)

The G–cocycle fa corresponding to a G–connection a is

fa(x, x0) = ux0(x), (4.2.7)

where ux0 is the unique solution

dxux0(x)ux0(x)−1 = −ax(x) (4.2.8)

with ux0 : R→ G smooth and satisfying the initial condition

ux0(x0) = 1G. (4.2.9)

Proof. If f is a G–cocycle, then (4.2.6) clearly defines a G–connection af . If a is a
G–connection, then the solution ux0 of the differential problem (4.2.8), (4.2.9) exists,
is unique and smooth in x0. The G–valued maps

u1(x) = fa(x, x1)fa(x1, x0), (4.2.10a)

u2(x) = fa(x, x0) (4.2.10b)
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solve the differential equation dxu(x)u(x)−1 = −ax(x) with initial condition u(x1)
= fa(x1, x0), by (4.2.7)–(4.2.9). As this differential problem has only one solution,
we have u1 = u2. From (4.2.10), it follows then that fa obeys the cocycle condition
(4.2.1). (4.2.8) implies immediately that afa = a. By (4.2.6) and (4.2.2a), f = faf .
The mappings f → af and a→ fa are thus reciprocally inverse. 2

We now present the definition of Lie crossed module cocycle. Let (G,H, t,m) be a
Lie crossed module.

Definition 85. A (G,H)–cocycle consists of three mappings f ∈ Map(R2 × R, G),
g ∈ Map(R×R2, G) and W ∈ Map(R2×R2, H) satisfying the target matching condition

t(W (x′, x; y′, y)) = g(x; y′, y)−1f(x′, x; y′)−1g(x′; y′, y)f(x′, x; y) (4.2.11)

and the relations

f|y(x
′′, x) = f|y(x

′′, x′)f|y(x
′, x), (4.2.12a)

g|x(y
′′, y) = g|x(y

′′, y′)g|x(y
′, y), (4.2.12b)

W|y′,y(x
′′, x) = W|y′,y(x

′, x)m(f|y(x
′, x)−1)(W|y′,y(x

′′, x′)), (4.2.12c)

W|x′,x(y
′′, y) = m(g|x(y

′, y)−1)(W|x′,x(y
′′, y′))W|x′,x(y

′, y) (4.2.12d)

for x, x′, x′′, y, y′, y′′ ∈ R. We denote the set of (G,H)–cocycles as Cyc(G,H).

Above, we have set f|y(x
′, x) = f(x′, x; y), g|x(y

′, y) = g(x; y′, y) and W|y′,y(x
′, x) =

W|x′,x(y
′, y) = W (x′, x; y′, y) for convenience.

Lie crossed module cocycles enjoy a number of properties generalizing (4.2.2).

Proposition 26. If (f, g,W ) is a (G,H)–cocycle, then

f|y(x, x) = 1G, (4.2.13a)

f|y(x, x
′) = f|y(x

′, x)−1, (4.2.13b)

g|x(y, y) = 1G, (4.2.13c)

g|x(y, y
′) = g|x(y

′, y)−1, (4.2.13d)

W|y′,y(x, x) = W|x′,x(y, y) = 1H , (4.2.13e)

W|y′,y(x, x
′) = m(f|y(x

′, x))(W|y′,y(x
′, x)−1), (4.2.13f)

W|x′,x(y, y
′) = m(g|x(y

′, y))(W|x′,x(y
′, y)−1) (4.2.13g)

for x, x′, x′′, y, y′, y′′ ∈ R.

As we announced above, Lie crossed module cocycles enjoy a categorical interpre-
tation analogous to and extending that of ordinary Lie group cocycles. Its statement
requires basic notions of double category theory that are reviewed in sect. 1.4.

The rectangle double groupoid GR2 has one object (x, y) for each x, y ∈ R, one
horizontal arrow

(x′, y) (x, y)oo , (4.2.14)
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for each x, x′, y ∈ R, one vertical arrow

(x, y′)

(x, y)

OO
, (4.2.15)

for each x, y, y′ ∈ R and one arrow square

(x′, y′) (x, y′)oo

v~

(x′, y)

OO

(x, y)

OO

oo

, (4.2.16)

for each quadruple x, x′, y, y′ ∈ R. The various operations of composition, identity
assignment and inversion of arrows and arrow squares are defined in subsect. 1.4.7.
Arrow operations are essentially the same as those of the segment groupoid. Intuitively,
arrow square operations go by concatenation through a common arrow, identification
of opposite arrows and exchange of opposite arrows in either the horizontal or the
vertical direction.

With a Lie crossed module (G,H) there is canonically associated a double groupoid
B(G,H) in many ways analogous to the delooping of a Lie group. B(G,H) has a single
object ∗, one horizontal arrow and one vertical arrow

∗ ∗xoo

∗

∗

x

OO (4.2.17)

for each element x ∈ G and one arrow square

∗ ∗uoo

X
{�

∗

v

OO

∗

x

OO

y
oo

(4.2.18)

for each x, y, u, v ∈ G and X ∈ H satisfying the target matching condition

vy = uxt(X). (4.2.19)

The various operations of composition, identity assignment and inversion of arrows
and arrow squares are defined in subsect. 1.4.8. Arrow operations are essentially the
same as those of the delooping BG of G. Arrow square operations involve the full
crossed module structure of (G,H). The target matching condition is required for the
exchange law to hold.

Proposition 27. A (G,H)–cocycle (f, g,W ) is equivalent to a smooth double functor
GR2 → B(G,H)

(x′, y′) (x, y′)oo

v~

(x′, y)

OO

(x, y)

OO

oo

� //

∗ ∗
f(x′,x;y′)oo

W (x′,x;y′,y)

qy

∗

g(x′;y′,y)

OO

∗

g(x;y′,y)

OO

f(x′,x;y)
oo

(4.2.20)
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Proof. Inspection of the double groupoid operations of GR2, B(G,H) (cf. subsects.
1.4.7,1.4.8) reveals that the cocycle relations (4.2.12) are an equivalent to the double
functoriality of the above mapping (cf. subsect. 1.4.2). 2

Analogously to ordinary Lie group cocycles, any Lie crossed module cocycle yields
and can be reconstructed from differential Lie crossed module valued differential form
data.

Definition 86. A (G,H)–connection doublet is a pair of forms (a,B) ∈ Ω1(R2, g)×
Ω2(R2, h) satisfying the zero fake curvature condition

da+
1

2
[a, a]− ṫ(B) = 0. (4.2.21)

We denote the set of (G,H)–connection doublets by Conn(G,H).

The following theorem holds.

Theorem 4. There is a canonical one–to–one correspondence between the set Cyc(G,H)
of (G,H)–cocycles and the set Conn(G,H) of (G,H)–connection doublets. The con-
nection doublet (af,g,W , Bf,g,W ) corresponding to a (G,H)–cocycle (f, g,W ) is given by

af,g,Wx(x, y) = − ∂x′f(x′, x; y)f(x′, x; y)−1
∣∣
x′=x

, (4.2.22a)

af,g,Wy(x, y) = − ∂y′g(x; y′, y)g(x; y′, y)−1
∣∣
y′=y

,

Bf,g,Wxy(x, y) = − ∂x′(∂y′W (x′, x; y′, y)W (x′, x; y′, y)−1)
∣∣
x′=x,y′=y

(4.2.22b)

= − ∂y′(W (x′, x; y′, y)−1∂x′W (x′, x; y′, y))
∣∣
x′=x,y′=y

.

The (G,H)–cocycle (fa,B, ga,B,Wa,B) corresponding to a (G,H)–connection doublet
(a,B) is given by

fa,B(x, x0; y) = u|y,x0(x), (4.2.23a)

ga,B(x; y, y0) = v|x,y0(y), (4.2.23b)

Wa,B(x, x0; y, y0) = E|x0,y0(x, y), (4.2.23c)

where u|y,x0, v|x,y0, E|x0,y0 are the unique solution of the differential problem

∂xu|y,x0(x)u|y,x0(x)−1 = −ax(x, y), (4.2.24a)

∂yv|x,y0(y)v|x,y0(y)−1 = −ay(x, y), (4.2.24b)

∂x(∂yE|x0,y0(x, y)E|x0,y0(x, y)−1) (4.2.24c)

= −ṁ(v|x0,y0(y)−1u|y,x0(x)−1)(Bxy(x, y)) or

∂y(E|x0,y0(x, y)−1∂xE|x0,y0(x, y))

= −ṁ(u|y0,x0(x)−1v|x,y0(y)−1)(Bxy(x, y))



4.2. LIE CROSSED MODULE COCYCLE THEORY 123

with u|y,x0, v|x,y0(y) and E|x0,y0 smooth and satisfying the initial conditions

u|y,x0(x0) = 1G, (4.2.25a)

v|x,y0(y0) = 1G, (4.2.25b)

E|x0,y0(x0, y) = E|x0,y0(x, y0) = 1H (4.2.25c)

(cf. eq. (2.4.48)). The two forms of the differential problem (4.2.24c) with the initial
condition (4.2.25c) are equivalent: any solution of one is automatically solution of the
other.

Proof. If (f, g,W ) is a (G,H)–cocycle, then (4.2.22a), (4.2.22b) clearly define a g–
valued 1–form af,g,W and a h–valued 2–form Bf,g,W on R2. The identity of the two
expressions of Bf,g,W follows from the relation

∂x′(∂y′W (x′, x; y′, y)W (x′, x; y′, y)−1) (4.2.26)

= AdW (x′, x; y′, y)(∂y′(W (x′, x; y′, y)−1∂x′W (x′, x; y′, y)))

and (4.2.13e). Using relations (4.2.22a), (4.2.22b) and the target matching condition
(4.2.11), we find,

ṫ(Bf,g,W xy(x, y)) (4.2.27)

= − ∂x′(∂y′t(W (x′, x; y′, y))t(W (x′, x; y′, y))−1)
∣∣
x′=x,y′=y

= − ∂x′
(
∂y′(g(x; y′, y)−1f(x′, x; y′)−1g(x′; y′, y)f(x′, x; y))

× f(x′, x; y)−1g(x′; y′, y)−1f(x′, x; y′)g(x; y′, y)
)∣∣
x′=x,y′=y

= − ∂x(∂y′g(x; y′, y)g(x; y′, y)−1
∣∣
y′=y

) + ∂y(∂x′f(x′, x; y)f(x′, x; y)−1
∣∣
x′=x

)

+ [∂x′f(x′, x; y)f(x′, x; y)−1
∣∣
x′=x

, ∂y′g(x; y′, y)g(x; y′, y)−1
∣∣
y′=y

]

= ∂xaf,g,Wy(x, y)− ∂yaf,g,Wx(x, y) + [af,g,Wx(x, y), af,g,Wy(x, y)]

verifying the zero fake curvature condition (4.2.21). Thus, the pair (af,g,W , af,g,W ) is a
(G,H)–connection doublet. This shows the first part of the theorem.

Proving the second part of the theorem requires some preparatory work. We as-
sume that r, l are G–valued maps and D is an h–valued 2–form on R2 satisfying the
differential relations

∂x(r(x, y)−1∂yr(x, y)− l(x, y)−1∂yl(x, y)) (4.2.28a)

+ [r(x, y)−1∂xr(x, y), r(x, y)−1∂yr(x, y)− l(x, y)−1∂yl(x, y)] = ṫ(Dxy(x, y)),

∂y(r(x, y)−1∂xr(x, y)− l(x, y)−1∂xl(x, y)) (4.2.28b)

+ [l(x, y)−1∂yl(x, y), r(x, y)−1∂xr(x, y)− l(x, y)−1∂xl(x, y)] = ṫ(Dxy(x, y))
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and the initial conditions

r(x0, y)l(x0, y)−1 = r(x, y0)l(x, y0)−1 = 1G. (4.2.29)

The differential problem

∂x(∂yR(x, y)R(x, y)−1) = ṁ(r(x, y))(Dxy(x, y)), (4.2.30)

R(x0, y) = R(x, y0) = 1H (4.2.31)

with R a smooth H–valued map on R2 has a unique solution, since it is equivalent to
the differential problem

∂yR(x, y)R(x, y)−1 =

∫ x

x0

dξ ṁ(r(ξ, y))(Dxy(ξ, y)), (4.2.32)

R(x, y0) = 1H , (4.2.33)

which does. Similarly, the differential problem

∂y(L(x, y)−1∂xL(x, y)) = ṁ(l(x, y))(Dxy(x, y)), (4.2.34)

L(x0, y) = L(x, y0) = 1H (4.2.35)

with L a smooth H–valued map on R2 has a unique solution by being equivalent to
the problem

L(x, y)−1∂xL(x, y) =

∫ y

y0

dη ṁ(l(x, η))(Dxy(x, η)), (4.2.36)

L(x0, y) = 1H . (4.2.37)

Suppose that Q is an H–valued map on R2 such that

t(Q(x, y)) = r(x, y)l(x, y)−1. (4.2.38)

Then, R(x, y) = Q(x, y) solves the differential problem (4.2.30), (4.2.31) if and only if
L(x, y) = Q(x, y) does that (4.2.34), (4.2.35), by the relation

∂x(∂yQ(x, y)Q(x, y)−1) = AdQ(x, y)(∂y(Q(x, y)−1∂xQ(x, y))) (4.2.39)

and the Peiffer identity.

The auxiliary differential problem

∂x(∂yρ(x, y)ρ(x, y)−1) = Ad r(x, y))(ṫ(Dxy(x, y))), (4.2.40)

ρ(x0, y) = ρ(x, y0) = 1G (4.2.41)
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with ρ a smooth G–valued map on R2 has has a unique solution, by a reasoning
completely analogous to that indicated two paragraphs above. Similarly, the auxiliary
differential problem

∂y(λ(x, y)−1∂xλ(x, y)) = Ad l(x, y))(ṫ(Dxy(x, y))), (4.2.42)

λ(x0, y) = λ(x, y0) = 1G (4.2.43)

with λ a smooth G–valued map on R2 has has a unique solution.

Suppose that Q is an H–valued map on R2 such that R(x, y) = Q(x, y) solves
the differential problem (4.2.30), (4.2.31). Then, ρ(x, y) = t(Q(x, y)) solves (4.2.40),
(4.2.41). Using (4.2.28a) and (4.2.29), it is straightforward to verify that ρ(x, y) =
r(x, y)l(x, y)−1 also solves (4.2.40), (4.2.41). By uniqueness, it then follows that
(4.2.38) holds. Similarly, by using (4.2.28b) and (4.2.29) and making reference to
the problem (4.2.42), (4.2.43) instead, one finds that when Q is an H–valued map on
R2 such that L(x, y) = Q(x, y) solves the differential problem (4.2.34), (4.2.35) and
that (4.2.38) holds. We conclude that, under the assumptions (4.2.28) and (4.2.29),
the differential problems (4.2.30), (4.2.31) and (4.2.34), (4.2.35) have a unique solution
and that this solution is the same for both and obeys (4.2.38).

We can now complete the proof of the second part of the theorem. Let (a,B) be
a (G,H)–connection doublet. The solution u|y,x0 of the differential problem (4.2.24a),
(4.2.25a) exists, is unique and is smooth in y and x0. Similarly, the solution v|x,y0

of the differential problem (4.2.24b), (4.2.25b) exists, is unique and is smooth in x
and y0. Using (4.2.24a), (4.2.24b) and (4.2.25a), (4.2.25b) and the zero fake curvature
condition (4.2.21), it is straightforward to check that the G–valued maps r, l and the
h–valued 2–form D on R2 defined by

r(x, y) = v|x0,y0(y)−1u|y,x0(x)−1, (4.2.44a)

l(x, y) = u|y0,x0(x)−1v|x,y0(y)−1, (4.2.44b)

Dxy(x, y) = −Bxy(x, y) (4.2.44c)

obey relations (4.2.28a), (4.2.28b) and (4.2.29). Therefore, by what was shown above,
the solution E|x0,y0 of the twin differential problems (4.2.24c), (4.2.25c) exists, is unique
and is smooth in x0, y0 and furthermore it is the same for both and satisfies

t(E|x0,y0(x, y)) = v|x0,y0(y)−1u|y,x0(x)−1v|x,y0(y)u|y0,x0(x). (4.2.45)

Relations (4.2.23a)–(4.2.23c) define in this way a G–valued map fa,B on R2 × R, a
G–valued map ga,B on R × R2 and an H–valued map W on R2 × R2 fulfilling the
target matching condition (4.2.11). We have now to show that these objects satisfy
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the cocycle relations (4.2.12). Consider the G– and H–valued maps

u1(x) = fa,B|y(x, x1)fa,B|y(x1, x0), (4.2.46a)

u2(x) = fa,B|y(x, x0), (4.2.46b)

v1(y) = ga,B|x(y, y1)ga,B|x(y1, y0), (4.2.46c)

v2(y) = ga,B|x(y, y0), (4.2.46d)

E1(x, y) = Wa,B|y,y0(x1, x0)m(fa,B|y0(x1, x0)−1)(Wa,B|y,y0(x, x1)), (4.2.46e)

E2(x, y) = Wa,B|y,y0(x, x0), (4.2.46f)

E3(x, y) = m(ga,B|x0(y1, y0)−1)(Wa,B|x,x0(y, y1))Wa,B|x,x0(y1, y0), (4.2.46g)

E4(x, y) = Wa,B|x,x0(y, y0). (4.2.46h)

By (4.2.23a), (4.2.24a), (4.2.25a), u1, u2 both solve the differential equation dxu(x)u(x)−1 =
−ax(x, y) with initial condition u(x1) = fa,B|y(x1, x0). By the uniqueness of the solu-
tion of this differential problem, u1 = u2. By (4.2.46a), (4.2.46b), then, fa,B|y fulfills the
cocycle condition (4.2.12a) as required. Similarly, by (4.2.23b), (4.2.24b), (4.2.25b),
v1, v2 both solve the differential equation dyv(y)v(y)−1 = −ay(x, y) with initial condi-
tion v(y1) = ga,B|x(y1, y0), so that v1 = v2. By (4.2.46c), (4.2.46d), then, ga,B|x fulfills
the cocycle condition (4.2.12b). By (4.2.23c), (4.2.24c), (4.2.25c), E1, E2 both solve
the differential equation

E(x, y)−1∂xE(x, y) = −
∫ y

y0

dη ṁ(fa,B|y0(x, x0)−1ga,B|x(η, y0)−1)(Bxy(x, η))

with initial condition E(x1, y) = Wa,B|y,y0(x1, x0). Again by the uniqueness of the
solution of this differential problem, we have E1 = E2, from which through (4.2.46e),
(4.2.46f) it follows that Wa,B obeys the cocycle condition (4.2.12c). By considering
instead the equation

∂yE(x, y)E(x, y)−1 = −
∫ x

x0

dξ ṁ(ga,B|x0(y, y0)−1fa,B|y(ξ, x0)−1)(Bxy(ξ, y))

one finds that E3 = E4. from which through (4.2.46g), (4.2.46h) it follows that Wa,B

also obeys the condition (4.2.12d).
To conclude the proof of the theorem, we have to show that the mappings (f, g,W )→

(af,g,W , Bf,g,W ) and (a,B) → (fa,B, ga,B,Wa,B) are reciprocally inverse. For a given
doublet (a,B), inserting the (4.2.23) into the (4.2.22) and using (4.2.24), (4.2.25),
it is immediately verified that afa,B ,ga,B ,Wa,B

= a, Bfa,B ,ga,B ,Wa,B
= B. For a given

cocycle (f, g,W ), from the (4.2.22), using the cocycle relations (4.2.12), it is rel-
atively straightforward to check that u|y,x0(x) = f(x, x0; y), v|x,y0(y) = g(x; y, y0)
and E|x0,y0(x, y) = W (x, x0; y, y0) solve the differential problem (4.2.24), (4.2.25) with
a = af,g,W , B = Bf,g,W , so that faf,g,W ,Bf,g,W = f , gaf,g,W ,Bf,g,W = g, Waf,g,W ,Bf,g,W = W .
The claim is so shown. 2

We have so achieved our first goal, the formulation of a Lie crossed module cocycle
theory naturally relating to higher gauge theory.
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4.2.2 Lie crossed module 1–gauge transformations

In ordinary as in higher gauge theory, parallel transport must be gauge covari-
ant. It is important therefore to have the appropriate notion of gauge transformations
of cocycles. We review first gauge transformation of ordinary group cocycles and then
we define gauge transformation of crossed module cocycles.

Let G be a Lie group.

Definition 87. A G–gauge transformation is a map κ ∈ Map(R, G). The G– gauge
transformations form a set Gau(G).

The following proposition is basic.

Proposition 28. For any G–cocycle f and any G–gauge transformation κ, the map-
ping κf ∈ Map(R, G) defined by the expression

κf(x′, x) = κ(x′)f(x′, x)κ(x)−1. (4.2.47)

is also a G–cocycle, the gauge transform of f by κ.

Proof. It is readily checked that κf obeys the cocycle relation (4.2.1). 2

As we showed in subsect. 4.2.1, every Lie group cocycle represents secretly a smooth
functor form the segment groupoid to the delooping groupoid of the Lie group. In the
same spirit, every gauge transformation defines a natural transformation between a
Lie group cocycle and its gauge transform.

Proposition 29. If f is G–cocycle and κ is a G–gauge transformation, then κ yields
a natural transformation κ : f ⇒ κf of the functors f, κf : GR→ BG.

Proof. By (4.2.47), a gauge transformation κ amounts to a mapping

x
� //

∗

∗

κ(x)

OO (4.2.48)

of the objects of GR to the arrows of BG such that for each arrow

y xoo (4.2.49)

of GR, the diagram of BG

∗ ∗
κf(x′,x)oo

∗

κ(y)

OO

∗

κ(x)

OO

f(x′,x)
oo

(4.2.50)

commutes. This is precisely the statement that κ is a natural transformation f ⇒ κf
of the functors f, κf : GR→ BG. 2

By theor. 3, there is one–to–one correspondence between G–cocycles f and G–
connections a. Hence, the action of a G–gauge transformation κ on f must translate
into one on the form af .
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Theorem 5. Let f be a G cocycle and κ be a gauge transformation. Then, the form
aκf associated with the gauge transformed cocycle κf is

aκf = Adκ(af )− dκκ−1. (4.2.51)

Proof. This follows readily from inserting (4.2.47) into (4.2.6). See also ref. [39]. 2

An action of G–gauge transformations on G–connections is so yielded.

Definition 88. Let a be a G–connection. For a G–gauge transformation κ,

κa = Adκ(a)− dκκ−1. (4.2.52)

We now extend the above to a Lie crossed module (G,H, t,m).

Definition 89. Let (f, g,W ) be a (G,H)–cocycle. An (f, g,W )–1–gauge transfor-
mation, or an integral (G,H)–1–gauge transformation when (f, g,W ) is understood,
consists of three maps κ ∈ Map(R×R, G), Ψ ∈ Map(R2×R, H), Φ ∈ Map(R×R2, H)
satisfying the relations

Ψ|y(x
′′, x) = Ψ|y(x

′, x)m(f|y(x
′, x)−1)(Ψ|y(x

′′, x′)), (4.2.53a)

Φ|x(y
′′, y) = Φ|x(y

′, y)m(g|x(y
′, y)−1)(Φ|x(y

′′, y′)), (4.2.53b)

where we have set Ψ|y(x
′, x) = Ψ(x′, x; y) and Φ|x(y

′, y) = Φ(x; y′, y) for clarity. The
(f, g,W )–1–gauge transformations form a set Gau1 f,g,W (G,H).

The following properties of crossed module cocycles are immediately proven.

Proposition 30. If (f, g,W ) is a (G,H)–cocycle and (κ, Ψ, Φ) is an (f, g,W ) –1–
gauge transformation, then

Ψ|y(x, x) = 1H , (4.2.54a)

Ψ|y(x, x
′) = m(f|y(x

′, x))(Ψ|y(x
′, x)−1), (4.2.54b)

Φ|x(y, y) = 1H , (4.2.54c)

Φ|x(y, y
′) = m(g|x(y

′, y))(Φ|x(y
′, y)−1) (4.2.54d)

for x, x′, x′′, y, y′, y′′ ∈ R.

Just as ordinary gauge transformation act on group cocycles 1–gauge transforma-
tions act on crossed module cocycles.

Proposition 31. Let (f, g,W ) be a (G,H)–cocycle and (κ, Ψ, Φ) be an (f, g,W ) –gauge
transformation. Then, the mappings κ,Ψ,Φf ∈ Map(R2×R, G), κ,Ψ,Φg ∈ Map(R×R2, G)
and κ,Ψ,ΦW ∈ Map(R2 × R2, H) defined by the expressions

κ,Ψ,Φf|y(x
′, x) = κ|y(x

′)f|y(x
′, x)t(Ψ|y(x

′, x))−1κ|y(x)−1, (4.2.55a)

κ,Ψ,Φg|x(y
′, y) = κ|x(y

′)g|x(y
′, y)t(Φ|x(y

′, y))−1κ|x(y)−1, (4.2.55b)

κ,Ψ,ΦW (x′, x; y′, y) = m(κ(x; y))
(
Φ|x(y

′, y)m(g|x(y
′, y)−1)(Ψ|y′(x

′, x)) (4.2.55c)

×W (x′, x; y′, y)m(f|y(x
′, x)−1)(Φ|x′(y

′, y))−1Ψ|y(x
′, x)−1

)
,
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where we have set κ|x(y) = κ|y(x) = κ(x; y) for clarity, constitute a (G,H)–cocycle
(κ,Ψ,Φf , κ,Ψ,Φg, κ,Ψ,ΦW ), the gauge transform of (f, g,W ) by (κ, Ψ, Φ).

Proof. Exploiting the (4.2.53), one checks that (κ,Ψ,Φf, κ,Ψ,Φg, κ,Ψ,ΦW ) satisfies the
target matching condition (4.2.11) and the cocycle relations (4.2.12) whenever (f, g,W )
does. 2

As we showed in subsect. 4.2.1, every Lie crossed module cocycle represents se-
cretly a smooth functor from the rectangle double groupoid to the delooping double
groupoid of the Lie crossed module. Analogously to the ordinary case, every 1–gauge
transformation defines a double natural transformation between a Lie crossed module
cocycle and its gauge transform. The notion of double natural transformation we use,
however, is not the customary one and presupposes that the target category is edge
symmetric and folded (cf. subsects. 1.4.3, 1.4.4, 1.4.8).

Proposition 32. If (f, g,W ) is (G,H)–cocycle and (κ, Ψ, Φ) is a (f, g,W )–1–gauge
transformation, then (κ, Ψ, Φ) is equivalent to a double natural transformation (f, g,W )⇒
(κ,Ψ,Φf, κ,Ψ,Φg, κ,Ψ,ΦW ) of the double functors (f, g,W ), (κ,Ψ,Φf , κ,Ψ,Φg, κ,Ψ,ΦW ) : GR2 →
B(G,H).

Proof. The data of a (f, g,W )–1–gauge transformation (κ, Ψ, Φ) are equivalent to a
mapping of the set of object of GR2 into the set of vertical arrows of B(G,H),

(x, y)
� //

∗

∗

κ(x;y)

OO (4.2.56)

and two compatible functors from the horizontal and vertical arrow groupoids of GR2

into the horizontal truncation groupoid B(G,H)h of B(G,H)

(x′, y) (x, y)oo � //

∗ ∗
κ,Ψ,Φf(x′,x;y)oo

Ψ(x′,x;y)

rz
∗

κ(x′;y)

OO

∗

κ(x;y)

OO

f(x′,x;y)
oo

(4.2.57)

(x, y′)

(x, y)

OO
� //

∗ ∗
κ,Ψ,Φg(x;y′,y)oo

Φ(x;y′,y)

rz
∗

κ(x;y′)

OO

∗

κ(x;y) .

OO

g(x;y′,y)
oo

(cf. eqs. (1.4.18), (1.4.19)). The fulfillment of the target matching condition (1.4.36) is
guaranteed by relations (4.2.55a), (4.2.55b). The functoriality of the mappings (4.2.57)
is equivalent to relations (4.2.53a), (4.2.53b) and the ensuing relations (4.2.54a)-
(4.2.54d). (4.2.56), (4.2.57) are precisely the data required for a double natural
transformation from the first to the second of the double functors (f, g,W ), (κ,Ψ,Φf ,
κ,Ψ,Φg, κ,Ψ,ΦW ) : GR2 → B(G,H). The only thing left to check is the double natural-
ity condition (1.4.21). Using the expressions of the operations of the double groupoid
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B(G,H) of subsect. 1.4.8, it is easily checked that this is equivalent to relation (4.2.55c)
written in the form

Φ(x; y′, y)m(g(x; y′, y)−1)(Ψ(x′, x; y′))W (x′, x; y′, y) (4.2.58)

= m(κ(x; y)−1)(κ,Ψ,ΦW (x′, x; y′, y))Ψ(x′, x; y)m(f(x′, x; y)−1)(Φ(x′; y′, y)).

Intuitively, the double naturality condition can be interpreted as the requirement that
the cube diagram of B(G,H)

Ψ(x′,x;y′)

��

Φ(x′;y′,y) //

∗ ∗
κ,Ψ,Φf(x′,x;y′)oo

κ,Ψ,ΦW (x′,x;y′,y)

∗
κ,Ψ,Φg(x′;y′,y)

__

∗

κ,Ψ,Φg(x;y′,y)
__

κ,Ψ,Φf(x′,x;y)
oo

∗

κ(x′,y′)

OO

∗
f(x′,x;y′)oo

κ(x;y′)

OO

W (x′,x;y′,y)

∗
g(x′;y′,y)

__ κ(x′;y)

OO

∗

g(x;y′,y)
__

f(x′,x;y)
oo

κ(x;y)

OO
Φ(x;y′,y)oo

Ψ(x′,x;y)

__

(4.2.59)

commutes for any arrow square of GR2,

(x′, y′) (x, y′)oo

v~

(x′, y)

OO

(x, y)

OO

oo

, (4.2.60)

where we have dropped all double arrows in order not to clog the diagram (cf. eq.
(1.4.22)). The precise meaning of this statement is given by the diagrammatic identity
(1.4.21) adapted to the edge symmetric folded groupoid B(G,H). 2

In contrast to ordinary gauge transformations, a crossed module 1–gauge transfor-
mation yields and can be reconstructed from differential Lie crossed module valued
differential form data.

Definition 90. A differential (G,H)–1–gauge transformation is a pair (κ, Γ ) ∈ Map(R2, G)×
Ω1(R2, h). We denote the set of differential (G,H)–1–gauge transformation by Gau1(G,H).

The following theorem holds.

Theorem 6. For a fixed (G,H)–cocycle (f, g,W ), there is a canonical one–to–one
correspondence between the set Gau1 f,g,W (G,H) of (f, g,W )–1–gauge transformations
and the set Gau1(G,H) differential (G,H)–1–gauge transformations. The differential
(G,H)–1–gauge transformation (κκ,Ψ,Φ, Γκ,Ψ,Φ) corresponding to a (f, g,W )–1–gauge
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transformation (κ, Ψ, Φ) is given by

κκ,Ψ,Φ(x, y) = κ(x; y), (4.2.61a)

Γκ,Ψ,Φ x(x, y) = −ṁ(κ(x; y))(Ψ(x′, x; y)−1∂x′Ψ(x′, x; y)
∣∣
x′=x

), (4.2.61b)

Γκ,Ψ,Φ y(x, y) = −ṁ(κ(x; y))(Φ(x; y′, y)−1∂y′Φ(x; y′, y)
∣∣
y′=y

)

(cf. eq. (2.4.48)). Conversely, the (f, g,W )–1–gauge transformation (κκ,Γ , Ψκ,Γ , Φκ,Γ )
corresponding to a differential (G,H)–1–gauge transformation (κ, Γ ) is

κκ,Γ (x; y) = κ(x, y), (4.2.62a)

Ψκ,Γ (x, x0; y) = Λ|y,x0(x), (4.2.62b)

Φκ,Γ (x; y, y0) = Ξ|x,y0(y), (4.2.62c)

where Λ|y,x0, Ξ|x,y0 are the unique solutions of the differential problem

Λ|y,x0(x)−1∂xΛ|y,x0(x) = −ṁ(f(x, x0; y)−1κ(x, y)−1)(Γx(x, y)), (4.2.63a)

Ξ|x,y0(y)−1∂|yΞ|x,y0(y) = −ṁ(g(x; y, y0)−1κ(x, y)−1)(Γy(x, y)) (4.2.63b)

with the initial conditions

Λ|y,x0(x0) = 1H , (4.2.64a)

Ξ|x,y0(y0) = 1H . (4.2.64b)

Proof. If (κ, Ψ, Φ) is an (f, g,W )–1–gauge transformation, then (4.2.61a), (4.2.61b)
clearly define a G–valued map κκ,Ψ,Φ and an h–valued 1–form Γκ,Ψ,Φ on R2, so a dif-
ferential 1–gauge transformation. This shows the first part of the theorem.

Let (κ, Γ ) be a differential 1–gauge transformation. The solution Λ|y,x0 of the
differential problem (4.2.63a), (4.2.64a) exists, is unique and is smooth in y and x0.
Similarly, the solution Ξ|x,y0 of the differential problem (4.2.63b), (4.2.64b) exists, is
unique and is smooth in x and y0. Relations (4.2.62a), (4.2.62b) define in this way
a G–valued map κκ,Γ on R × R and two H–valued maps Ψκ,Γ and Φκ,Γ on R2 × R
and R×R2, respectively. We have now to show that the cocycle relations (4.2.53) are
identically obeyed. Consider the H–valued maps

Λ1(x) = Ψκ,Γ |y(x1, x0)m(f|y(x1, x0)−1)(Ψκ,Γ |y(x, x1)), (4.2.65a)

Λ2(x) = Ψκ,Γ |y(x, x0), (4.2.65b)

Ξ1(y) = Φκ,Γ |x(y1, y0)m(g|x(y1, y0)−1)(Φκ,Γ |x(y, y1)), (4.2.65c)

Ξ2(y) = Φκ,Γ |x(y, y0). (4.2.65d)



132 CHAPTER 4. HIGHER PARALLEL TRANSPORT

In virtue of (4.2.62b), (4.2.63a), (4.2.64a), Λ1, Λ2 are both solution of the differential
equation

Λ(x)−1dxΛ(x) = −ṁ(f|y(x, x0)−1κ(x, y)−1)(Γx(x, y))

with initial condition Λ(x1) = Ψκ,Γ |y(x1, x0). By the uniqueness of the solution of this
differential problem, Λ1 = Λ2. By (4.2.65a), (4.2.65b), then, Ψκ,Γ |y fulfills the cocycle
condition (4.2.53a) as required. Similarly, by (4.2.62c), (4.2.63b), (4.2.64b), Ξ1, Ξ2

are both solution of the differential equation

Ξ(y)−1dyΞ(y) = −ṁ(g|x(y, y0)−1κ(x, y)−1)(Γy(x, y))

with initial condition Ξ(y1) = Φκ,Γ |x(y1, y0), so that Ξ1 = Ξ2. By (4.2.65c), (4.2.65d),
then, Φκ,Γ |x fulfills the cocycle condition (4.2.53b).

To conclude the proof of the theorem, we have to show that the mappings (κ, Ψ, Φ)→
(κκ,Ψ,Φ, Γκ,Ψ,Φ) and (κ, Γ ) → (κκ,Γ , Ψκ,Γ , Φκ,Γ ) are reciprocally inverse. For a given
differential 1–gauge transformation (κ, Γ ), inserting the (4.2.62) into the (4.2.61) and
using (4.2.63), (4.2.64), it is immediately verified that

κκκ,Γ ,Ψκ,Γ ,Φκ,Γ = κ,

Γκκ,Γ ,Ψκ,Γ ,Φκ,Γ = Γ.

For a given integral 1–gauge transformation (κ, Ψ, Φ), from the (4.2.61), using the
cocycle relations (4.2.53), it is straightforwardly checked that Λ|y,x0(x) = Ψ(x, x0; y),
Ξ|x,y0(y) = Φ(x; y, y0) solve the differential problem (4.2.63), (4.2.64) with κ = κκ,Ψ,Φ,
Γ = Γκ,Ψ,Φ, so that

κκκ,Ψ,Φ,Γκ,Ψ,Φ = κ,

Ψκκ,Ψ,Φ,Γκ,Ψ,Φ = Ψ,

Φκκ,Ψ,Φ,Γκ,Ψ,Φ = Φ.

The claim is so shown. 2

Remark 4.2.2.1. Since κ, Γ do not obey any conditions, the sets Gau1 f,g,W (G,H)
with varying cocycle (f, g,W ) are all in canonical one–to–one correspondence.

By theor. 4, there exists one–to–one correspondence between (G,H)–cocycles
(f, g,W ) and connection doublets (a,B). Hence, the action of a (f, g,W ) –1–gauge
transformation (κ, Ψ, Φ) must translate into one on the associated doublet (af,g,W , Bf,g,W ).

Theorem 7. Let (f, g,W ) be a (G,H)–cocycle and (κ, Ψ, Φ) be an (f, g,W )– 1–gauge
transformation. Then, the (G,H)–connection doublet (aκ,Ψ,Φf,κ,Ψ,Φg,κ,Ψ,ΦW , Bκ,Ψ,Φf,κ,Ψ,Φg,κ,Ψ,ΦW )
associated with the gauge transformed cocycle (κ,Ψ,Φf, κ,Ψ,Φg, κ,Ψ,ΦW ) is given by the ex-
pressions

aκ,Ψ,Φf,κ,Ψ,Φg,κ,Ψ,ΦW = Adκκ,Ψ,Φ(af,g,W )− dκκ,Ψ,Φκκ,Ψ,Φ−1 − ṫ(Γκ,Ψ,Φ), (4.2.66a)

Bκ,Ψ,Φf,κ,Ψ,Φg,κ,Ψ,ΦW = ṁ(κκ,Ψ,Φ)(Bf,g,W )− dΓκ,Ψ,Φ −
1

2
[Γκ,Ψ,Φ, Γκ,Ψ,Φ] (4.2.66b)

− m̂(Adκκ,Ψ,Φ(af,g,W )− dκκ,Ψ,Φκκ,Ψ,Φ−1 − ṫ(Γκ,Ψ,Φ), Γκ,Ψ,Φ)
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Proof. These relations follow from substituting the (4.2.55) into the (4.2.22) through
a relatively straightforward calculation. See also ref. [39]. 2

If we take the (G,H)–connection doublets and the differential (G,H)–1–gauge
transformations as basic cocycle and gauge transformation data relying on theors.
4, 6, then the (4.2.66) define an action of differential 1–gauge transformations on
connection doublets.

Definition 91. Let (a,B) be a (G,H)–connection doublet. For a differential (G,H)–
1–gauge transformations (κ, Γ ) let

κ,Γa = Adκ(a)− dκκ−1 − ṫ(Γ ), (4.2.67a)

κ,ΓB = ṁ(κ)(B)− dΓ − 1

2
[Γ, Γ ]− m̂(Adκ(a)− dκκ−1 − ṫ(Γ ), Γ ). (4.2.67b)

It can be checked that this gauge transformation is compatible with the zero fake
curvature condition (4.2.21).

We have in this way achieved our second goal, the incorporation of gauge transfor-
mation into Lie crossed module cocycle theory in a manner that naturally relates to
gauge invariance in higher gauge theory.

4.2.3 Lie crossed module 2–gauge transformations

We consider now 2–gauge transformations, which have no nontrivial counterpart
in ordinary gauge theory.

Definition 92. A (G,H)–2–gauge transformation is a mapping A ∈ Map(R×R, H).
We denote by Gau2(G,H) the set of all (G,H)–2–gauge transformations.

2–gauge transformations are gauge for gauge transformations: they act on 1–gauge
transformations.

Proposition 33. Let (f, g,W ) be a (G,H)–cocycle, (κ, Ψ, Φ) be an (f, g,W )–1–gauge
transformation and A be a (G,H)–2–gauge transformation. Then, the maps Aκ ∈
Map(R×R, G), AΨ ∈ Map(R2×R, H), AΦ ∈ Map(R×R2, H) defined by the expressions

Aκ(x; y) = κ(x; y)t(A(x; y)), (4.2.68a)

AΨ|y(x
′, x) = A|y(x)−1Ψ|y(x

′, x)m(f|y(x
′, x)−1)(A|y(x

′)), (4.2.68b)

AΦ|x(y
′, y) = A|x(y)−1Φ|x(y

′, y)m(g|x(y
′, y)−1)(A|x(y

′)), (4.2.68c)

where we have set A|y(x) = A|x(y) = A(x; y) for clarity, constitute an (f, g,W )–1–
gauge transformation (Aκ, AΨ, AΦ), the 2–gauge transform of (κ, Ψ, Φ) by A.

Proof. Using the defining relations (4.2.68), one verifies that (Aκ, AΨ, AΦ) satisfies
1–gauge cocycle conditions (4.2.53) whenever (κ, Ψ, Φ) does. 2

2–gauge equivalent 1–gauge transformations yield the the same gauge transform of
the underlying cocycle.
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Proposition 34. Let (f, g,W ) be a (G,H)–cocycle, (κ, Ψ, Φ) be an (f, g,W )–1–gauge
transformation and A be a (G,H)–2–gauge transformation. Then the transformed
cocycles (κ,Ψ,Φf, κ,Ψ,Φg, κ,Ψ,ΦW ), (

Aκ,AΨ,AΦf,
Aκ,AΨ,AΦg,

Aκ,AΨ,AΦW ) are equal.

Proof.This is readily checked by computing (
Aκ,AΨ,AΦf,

Aκ,AΨ,AΦg,
Aκ,AΨ,AΦW ) inserting

the expressions (4.2.68) into the (4.2.55) and using the target matching condition
(4.2.11). 2

As we proved in subsects. 4.2.1, 4.2.2, every Lie crossed module cocycle can be
regarded as a smooth functor form the rectangle double groupoid to the delooping
double groupoid of the Lie crossed module and any 1–gauge transformation as a double
natural transformation between a Lie crossed module cocycle and its gauge transform.
In the same spirit, a 2–gauge transformation can be viewed as a double modification
between a 1–gauge transformation and its 2–gauge transform (cf. subsect. 1.4.6). We
warn the reader that our definition of double modification hinges on that of double
natural transformation (cf. subsect. 1.4.5), which, as we have recalled above, differs
from the one customarily provided in the literature.

Proposition 35. If (f, g,W ) is (G,H)–cocycle, (κ, Ψ, Φ) is a (f, g,W )–1–gauge trans-
formation and A is a (G,H)–2–gauge transformation. Then, A is equivalent to a
double modification (κ, Ψ, Φ) V (Aκ, AΨ, AΦ) of the double natural transformations
(κ, Ψ, Φ), (Aκ, AΨ, AΦ).

Proof. The data of a 2–gauge transformation A are equivalent to a mapping of the
set of object of GR2 into the set of arrow square of B(G,H),

(x, y)
� //

∗ ∗
1Goo

A(x;y)

rz
∗

Aκ(x;y)

OO

∗

κ(x;y)

OO

1G
oo

(4.2.69)

(cf. eqs. (1.4.23)). The fulfillment of the target matching condition (1.4.36) is guar-
anteed by relation (4.2.68a). (4.2.69) are precisely the data required for a double
modification from the first to the second of the double natural transformations

(κ, Ψ, Φ) : (f, g,W )⇒ (κ,Ψ,Φf, κ,Ψ,Φg, κ,Ψ,ΦW ),

(Aκ, AΨ, AΦ) : (f, g,W )⇒ (
Aκ,AΨ,AΦf,

Aκ,AΨ,AΦg,
Aκ,AΨ,AΦW ) = (κ,Ψ,Φf, κ,Ψ,Φg, κ,Ψ,ΦW ).

The only thing left to check is the double modification conditions (1.4.25), (1.4.27)
Using the expressions of the operations of the double groupoid B(G,H) of subsect.
1.4.8, it is easily checked that these are equivalent to relations (4.2.55c) written in the
form

A(x; y)AΨ(x′, x; y) = Ψ(x′, x; y)m(f(x′, x; y)−1)(A(x′; y)), (4.2.70a)

A(x; y)AΦ(x; y′, y) = Φ(x; y′, y)m(g(x; y′, y)−1)(A(x; y′)), (4.2.70b)

Intuitively, the double modification condition can be interpreted as the requirement
that, for any horizontal and vertical arrow of GR2

(x′, y) (x, y)oo
(x, y′)

(x, y)

OO
(4.2.71)
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the cylinder diagrams

κ(x′; y)

��

κ(x; y)

��

Ψ(x′,x;y)

∗
κ,Ψ,Φf(x′,x;y)oo ∗

∗A(x′;y) ∗
f(x′,x;y)oo

A(x;y)

Aκ(x′; y)

OO

Aκ(x; y)

NN

AΨ(x′,x;y)

(4.2.72a)

κ(x; y′)

��

κ(x; y)

��

Φ(x;y′,y)

∗
κ,Ψ,Φg(x;y′,y)oo ∗

∗A(x;y′) ∗
g(x;y′,y)oo

A(x;y)

Aκ(x; y′)

OO

Aκ(x; y)

NN

AΦ(x;y′,y)

(4.2.72b)

both commute, where all double arrows have been dropped for clarity and the identity
morphisms of the modification arrow squares have been collapsed (cf. eqs. (1.4.28a),
(1.4.28b)). The precise meaning of this statement is given by the diagrammatic iden-
tities (1.4.25), (1.4.27) adapted to the edge symmetric folded groupoid B(G,H). 2

By theor. 6, there exists one–to–one correspondence between integral (f, g,W )–1–
gauge transformations (κ, Ψ, Φ) and differential (G,H)–1–gauge transformations (κ, Γ ).
So, the action of a (G,H)–2–gauge transformation A must translate into one on the
data (κκ,Ψ,Φ, Γκ,Ψ,Φ).

Theorem 8. Let (f, g,W ) be a (G,H)–cocycle, (κ, Ψ, Φ) be an (f, g,W )–1–gauge
transformation and A a (G,H)–2–gauge transformation. Then,

κAκ,AΨ,AΦ = t(Ã)κκ,Ψ,Φ, (4.2.73a)

ΓAκ,AΨ,AΦ = ÃΓκ,Ψ,ΦÃ
−1 − dÃÃ−1 −Q(aκ,Ψ,Φf,κ,Ψ,Φg,κ,Ψ,ΦW , Ã) (4.2.73b)

(cf. eq. (2.4.49)), where we have set

Ã = m(κ)(A) (4.2.74)

with Ã viewed as an element of Map(R2, H).

Proof. These relations follow from substituting the (4.2.68) into the (4.2.61) through
a relatively straightforward calculation. See also ref. [39]. 2

If we take the (G,H)–connection doublets and the differential (G,H)–1–gauge
transformations as basic cocycle and gauge transformation data relying on theors. 4,
6, then the (4.2.73) define an action of 2–gauge transformations on differential 1–gauge
transformations for any assigned connection doublet.
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Definition 93. Let (a,B) be a (G,H)–connection doublet and (κ, Γ ) be a differential
(G,H)–1–gauge transformation. For any (G,H)–1–gauge transformation Ã, one sets

Ãκ|a,B = t(Ã)κ, (4.2.75a)

ÃΓ|a,B = ÃΓ Ã−1 − dÃÃ−1 −Q(κ,Γa, Ã). (4.2.75b)

By theor. 4 and def. 91, the action of the integral (G,H)–1–gauge transformation
on the (G,H)–cocycles translates into an action of the differential (G,H)–1–gauge
transformations corresponding to the integral ones onto the (G,H)–connection dou-
blets corresponding to the cocycles, as given by eqs. (4.2.67). 2–gauge equivalent
differential 1–gauge transformations yield the the same gauge transformed connection
doublet.

Proposition 36. Let (a,B) be a (G,H)–connection doublet, (κ, Γ ) be a differential
(G,H)–1–gauge transformation and A be (G,H)–2–gauge transformation. Then, one
has

Ãκ|a,B ,ÃΓ|a,Ba = κ,Γa, (4.2.76a)

Ãκ|a,B ,ÃΓ|a,BB = κ,ΓB. (4.2.76b)

Proof. Let (f, g,W ) be a cocycle, (κ, Ψ, Φ) be a (f, g,W )–1–gauge transformation and
A be a 2–gauge transformation. By prop. 33, (Aκ, AΨ, AΦ) is also a (f, g,W )–1–gauge
transformation. By (4.2.66), (4.2.67) combined, we have

(aκ,Ψ,Φf,κ,Ψ,Φg,κ,Ψ,ΦW , Bκ,Ψ,Φf,κ,Ψ,Φg,κ,Ψ,ΦW )

= (κκ,Ψ,Φ,Γκ,Ψ,Φaf,g,W ,
κκ,Ψ,Φ,Γκ,Ψ,ΦBf,g,W )

and similarly with (κ, Ψ, Φ) replaced by (Aκ, AΨ, AΦ). By (4.2.75), (4.2.76), we have
further

(κAκ,AΨ,AΦ, ΓAκ,AΨ,AΦ) = (Ãκκ,Ψ,Φ|af,g,WBf,g,W ,
ÃΓκ,Ψ,Φ|af,g,WBf,g,W )

. By prop. 34, we have then that

(κκ,Ψ,Φ,Γκ,Ψ,Φaf,g,W ,
κκ,Ψ,Φ,Γκ,Ψ,ΦBf,g,W ) (4.2.77)

= (
Ãκκ,Ψ,Φ|af,g,WBf,g,W

,ÃΓκ,Ψ,Φ|af,g,WBf,g,W af,g,W ,

Ãκκ,Ψ,Φ|af,g,WBf,g,W
,ÃΓκ,Ψ,Φ|af,g,WBf,g,WBf,g,W ).

By theors. 4, 6, (f, g,W ) and (κ, Ψ, Φ) being arbitrary, (4.2.76a), (4.2.76b) hold true.
2

4.3 Higher parallel transport theory

In this section, we rederive the higher parallel transport theory worked out in
refs. [38, 39, 40] and [41, 42, 43] relying on the theory of Lie crossed module cocycles
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and their gauge transformation developed in sect. 4.2. We review first the theory of
the path and fundamental 2–groupoids of a manifold to recall the reader the basic
properties of these which are most relevant in the following. Next, we show how
the 1– and 2–parallel transport induced by a connection doublet can be defined in
terms of an associated cocycle. Then, we exhibit how 1–gauge transformation of the
connection doublet affects the associated parallel transport by inducing an integral
1–gauge transformation of the underlying cocycle. The role of 2–gauge transformation
is also highlighted. The 2–categorical interpretation of parallel transport and 1– and
2–gauge transformation thereof is recovered. We also touch the issue of smoothness
of the parallel transport. Finally we make explicit the equivalence of our approach to
the earlier ones recalled above. Again, to help intuition, we present our construction
stressing its being an extension of the ordinary parallel transport theory.

4.3.1 Path and fundamental 2–groupoid

In this subsection, we review the basic notions of smooth thin homotopy and
homotopy aiming to the definition of the path 2–groupoid of a manifold, one of the
essential elements of higher parallel transport theory. As this material is not original,
we provide no proof of the basic results.

We begin by considering the ordinary path and fundamental groupoids of a mani-
fold M . Roughly, these are groupoids having points and curves joining pairs of points
as its 0– and 1–cells. We make this more precise next.

Definition 94. Let p1, p2 be points. A curve γ : p0 → p1 with sitting instants is a
mapping γ ∈ Map(R,M) such that

γ(x) = p0 for x < ε, (4.3.1a)

γ(x) = p1 for x > 1− ε (4.3.1b)

for some ε > 0 with ε < 1/2 depending on γ. All curves will have sitting instants
unless otherwise stated. We denote the set of all curves of M by Π1M .

Definition 95. Let p be a point. The unit curve ιp : p→ p of p is defined by

ιp(x) = p. (4.3.2)

Let p0, p1 be points and γ : p0 → p1 be a curve. The inverse curve of γ is the curve
γ−1◦ : p1 → p0 defined by

γ−1◦(x) = γ(1− x). (4.3.3)

Let p0, p1, p2 be points and γ1 : p0 → p1, γ2 : p1 → p2 be curves. The composition of
γ1, γ2 is the curve γ2 ◦ γ1 : p0 → p2 defined by

γ2 ◦ γ1(x) = γ1(2x) for x ≤ 1/2, (4.3.4a)

γ2 ◦ γ1(x) = γ2(2x− 1) for x ≥ 1/2. (4.3.4b)
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The above are the type of operations which would be required for (M,Π1M) to be a
groupoid, but (M,Π1M) is not, as is well–known, as invertibility and associativity do
not hold. To construct a groupoid out of (M,Π1M), one has to quotient out by the
relation of either thin homotopy or homotopy.

Definition 96. Let p1, p2 be points and γ0, γ1 : p0 → p1 be curves. A thin homotopy
of γ0, γ1 is a mapping h ∈ Map(R2,M) such that

h(x, y) = p0 for x < ε, (4.3.5a)

h(x, y) = p1 for x > 1− ε, (4.3.5b)

h(x, y) = γ0(x) for y < ε, (4.3.5c)

h(x, y) = γ1(x) for y > 1− ε (4.3.5d)

for some ε > 0 with ε < 1/2 and that

rank(dh(x, y)) ≤ 1. (4.3.6)

γ0, γ1 are thin homotopy equivalent, a property denoted as γ1 ∼1 γ0, if there is thin
homotopy h of γ0, γ1. If condition (4.3.6) is not imposed, then h is a homotopy of γ0,
γ1 and γ0, γ1 are homotopy equivalent, γ0 ∼0

1γ1.

∼1, ∼0
1 are both equivalence relations. We denote by P1M and P 0

1M the set of all
thin homotopy and homotopy classes of curves of M .

Theorem 9. (M,P1M) and (M,P 0
1M) are both groupoids, the path groupoid and the

fundamental groupoid of M .

By modding out thin homotopy equivalence, the algebraic structure we have defined
on Π1M induces one of the same form on P1M satisfying the axioms of invertibility
and associativity, rendering (M,P1M) a true groupoid. Similarly, by modding out
homotopy equivalence, (M,P 0

1M) also turns out to be a groupoid. Diagrammatically,
the content of these groupoids can be represented as

p1 p0
γoo . (4.3.7)

where γ is understood as a (thin) homotopy class of curves.
LetM be a manifold. The path and fundamental 2–groupoids ofM are 2–groupoids

roughly having points, curves joining pairs of points and surfaces joining pairs of
curves with common endpoints as its 0–, 1– and 2–cells. They are the simplest higher
extensions of path and fundamental groupoids.

Definition 97. For points p0, p1, a curve γ : p0 → p1 is defined as before. The set of
all curves is denoted again by Π1M .

Let p1, p2 be points and γ0, γ1 : p0 → p1 be curves. A surface Σ : γ0 ⇒ γ1 is a map
Σ ∈ Map(R2,M) such that
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Σ(x, y) = p0 for x < ε, (4.3.8a)

Σ(x, y) = p1 for x > 1− ε, (4.3.8b)

Σ(x, y) = γ0(x) for y < ε, (4.3.8c)

Σ(x, y) = γ1(x) for y > 1− ε (4.3.8d)

for some ε > 0 with ε < 1/2 depending on γ0, γ1, Σ. All surfaces will be assumed
to have sitting instants unless otherwise stated. The set of all surfaces is denoted by
Π2M .

Definition 98. For a point p, the unit curve ιp : p → p of p is defined as before.
For points p0, p1 and a curve γ : p0 → p1, the inverse curve γ−1◦ is also defined as
before. For points p0, p1, p2 and curves γ1 : p0 → p1, γ2 : p1 → p2, the composed curve
γ2 ◦ γ1 : p0 → p2 is again defined as before.

Let p0, p1 be points and γ : p0 → p1 be a curve. The unit surface Iγ : γ ⇒ γ of γ is
the surface defined by

Iγ(x, y) = γ(x). (4.3.9)

Let p0, p1 be points and γ0, γ1 : p0 → p1 be curves and Σ : γ0 ⇒ γ1 be a surface. The
vertical inverse of Σ is the surface Σ−1• : γ1 ⇒ γ0

Σ−1•(x, y) = Σ(x, 1− y). (4.3.10)

Let p0, p1 be points and γ0, γ1, γ2 : p0 → p1 be curves and Σ1 : γ0 ⇒ γ1, Σ2 : γ1 ⇒ γ2 be
surfaces. The vertical composition of Σ1, Σ2 is the surface Σ2 • Σ1 : γ0 ⇒ γ2 defined
by

Σ2 •Σ1(x, y) = Σ1(x, 2y) for y ≤ 1/2, (4.3.11a)

Σ2 •Σ1(x, y) = Σ2(x, 2y − 1) for y ≥ 1/2. (4.3.11b)

Let p0, p1 be points and γ0, γ1 : p0 → p1 be curves and Σ : γ0 ⇒ γ1 be a surface. The
horizontal inverse of Σ is the surface Σ−1◦ : γ0

−1◦ ⇒ γ1
−1◦

Σ−1◦(x, y) = Σ(1− x, y). (4.3.12)

Let p0, p1, p2 be points and γ0, γ1 : p0 → p1, γ2, γ3 : p1 → p2 be curves and Σ1 : γ0 ⇒
γ1, Σ2 : γ2 ⇒ γ3 be surfaces. The horizontal composition of Σ1, Σ2 is the surface
Σ2 ◦Σ1 : γ2 ◦ γ0 ⇒ γ3 ◦ γ1 defined by

Σ2 ◦Σ1(x, y) = Σ1(2x, y) for x ≤ 1/2, (4.3.13a)

Σ2 ◦Σ1(x, y) = Σ2(2x− 1, y) for x ≥ 1/2. (4.3.13b)

The above are the type of operations which would be required for (M,Π1M , Π2M)
to be a 2–groupoid, but (M,Π1M,Π2M) fails to be one as invertibility and associa-
tivity do not hold both for curves and surfaces. To construct a 2–groupoid out of
(M,Π1M,Π2M), one has to quotient out by a suitable higher version of the relation
of either thin homotopy or homotopy.
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Definition 99. For points p0, p1 and curves γ0, γ1 : p0 → p1 the notions of thin
homotopy h and thin homotopy equivalence of γ0, γ1 are defined exactly as before. We
denote again by ∼1 thin homotopy equivalence and by P1M the set of all thin homotopy
classes of curves of M .

Let p0, p1 be points, γ0, γ1, γ2, γ3 : p0 → p1 be curves and Σ0 : γ0 ⇒ γ1, Σ1 : γ2 ⇒ γ3

be surfaces. A thin homotopy of Σ0, Σ1 is a mapping H ∈ Map(R3,M) with the
property that

H(x, y, z) = p0 for x < ε, (4.3.14a)

H(x, y, z) = p1 for x > 1− ε, (4.3.14b)

H(x, y, z) = H(x, 0, z) for y < ε, (4.3.14c)

H(x, y, z) = H(x, 1, z) for y > 1− ε, (4.3.14d)

H(x, y, z) = Σ0(x, y) for z < ε, (4.3.14e)

H(x, y, z) = Σ1(x, y) for z > 1− ε (4.3.14f)

for some ε > 0 and that

rank(dH(x, 0, z)), rank(dH(x, 1, z)) ≤ 1, (4.3.15a)

rank(dH(x, y, z)) ≤ 2. (4.3.15b)

Σ0, Σ1 are thin homotopy equivalent, which fact we write as Σ1 ∼2 Σ0, if there is thin
homotopy H of Σ0, Σ1. If condition (4.3.15b) is not imposed, then H is a homotopy
of Σ0, Σ1 and Σ0, Σ1 are homotopy equivalent, Σ0 ∼0

2Σ1.

∼2, ∼0
2 are both equivalence relations by conditions (4.3.14a)–(4.3.14f). Condition

(4.3.15a) implies that the source and target curves of of Σ0, Σ1 are thin homotopy
equivalent, γ0 ∼1 γ2, γ1 ∼1 γ3. We denote by P2M and P 0

2M the set of all thin
homotopy and homotopy classes of surfaces of M .

Theorem 10. (M,P1M,P2M) and (M,P1M,P 0
2M) are bot 2–groupoids, the path

2–groupoid and the fundamental 2–groupoid of M , respectively.

By modding out thin homotopy equivalence, the algebraic structure we have defined
on Π1M , Π2M induces one of the same form on P1M , P2M satisfying the axioms
of invertibility and associativity, rendering (M,P1M,P2M) a true 2–groupoid. Sim-
ilarly, modding out homotopy equivalence, (M,P1M,P 0

2M) also turns out to be a
2–groupoid. Diagrammatically, the content of these 2–groupoids can be represented
as

p1 p0

γ1

ee

γ0

{{
Σ �� (4.3.16)

where γ0, γ1 is understood as thin homotopy class of curves and Σ as a (thin) homotopy
class of surfaces.

Now we are ready to formulate our parallel transport theory.
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4.3.2 2–parallel transport

In this subsection, we shall define and study higher parallel transport. Our
approach is inspired by that of ref. [39], but relies systematically on the cocycle set–up
developed in sect. 4.2. We assume throughout a trivial principal bundle background.

We begin by reviewing parallel transport in ordinary gauge theory. Let M be a
manifold and G be a Lie group. The basic datum required to define parallel transport
is a G–connection.

Definition 100. A G–connection on M , or simply a G–connection, is a form θ ∈
Ω1(M, g). We denote the set of G–connections by Conn(M,G).

If γ is a curve and θ is a G–connection on M , γ∗θ is a G–connection in the sense of
def. 100. By theor. 3, to γ∗θ there then corresponds a G–cocycle fγ∗θ.

Definition 101. Let θ be a G–connection. Let further p0, p1 be points and γ : p0 → p1

be a curve. The parallel transport along γ induced by θ is

Fθ(γ) = fγ∗θ(1, 0). (4.3.17)

Let us fix a G–connection θ. We have then a mapping Fθ : Π1M → G.

Proposition 37. For any point p, one has

Fθ(ιp) = 1G. (4.3.18)

For any two points p0, p1 and curve γ : p0 → p1, one has

Fθ(γ
−1◦) = Fθ(γ)−1. (4.3.19)

For any three points p0, p1, p2 and two curves γ1 : p0 → p1, γ2 : p1 → p2, i

Fθ(γ2 ◦ γ1) = Fθ(γ2)Fθ(γ1). (4.3.20)

Proof. If f is a G–cocycle and φ : R→ R is a map, then the mapping φ∗f : R2 → G
defined by the expression

φ∗f(x′, x) = f(φ(x′), φ(x)) (4.3.21)

satisfies (4.2.2) and, so, is also a G–cocycle, the pull–back φ∗f of f by φ. The one–to–
one correspondence between G–connections a and G–cocycles f ∈ Cyc(G) established
by theor. 3 is natural with respect to pull-back, as fφ∗a = φ∗fa and aφ∗f = φ∗af .

For illustration, we show (4.3.20). Define φ1, φ2 : R → R by φ1(x) = x/2 and
φ2(x) = x/2 + 1/2. It follows from (4.3.4) that (γ2 ◦ γ1) ◦ φ1(x) = γ1(x) for x ≤ 1 and
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(γ2 ◦ γ1) ◦ φ2(x) = γ2(x) for x ≥ 0. Then,

Fθ(γ2 ◦ γ1) = fγ2◦γ1
∗θ(1, 0) (4.3.22)

= fγ2◦γ1
∗θ(1, 1/2)fγ2◦γ1

∗θ(1/2, 0)

= fγ2◦γ1
∗θ(φ2(1), φ2(0))fγ2◦γ1

∗θ(φ1(1), φ1(0))

= φ2
∗fγ2◦γ1

∗θ(1, 0)φ1
∗fγ2◦γ1

∗θ(1, 0)

= fφ2
∗γ2◦γ1

∗θ(1, 0)fφ1
∗γ2◦γ1

∗θ(1, 0)

= f(γ2◦γ1)◦φ2
∗θ(1, 0)f(γ2◦γ1)◦φ1

∗θ(1, 0)

= fγ2
∗θ(1, 0)fγ1

∗θ(1, 0) = Fθ(γ2)Fθ(γ1).

(4.3.18), (4.3.19) are proven by similar techniques. 2

Fθ has the fundamental property of homotopy invariance as stated by the following
proposition.

Theorem 11. Let p0, p1 be points and γy : p0 → p1, y ∈ R, be a smooth 1–parameter
family of curves such that the mapping h : R2 → M defined by h(x, y) = γy(x) is a
thin homotopy of γ0, γ1. Then,

Fθ(γ1) = Fθ(γ0). (4.3.23)

Proof. The proof is based on the variational formula

fγy∗θ(x, x0)−1∂yfγy∗θ(x, x0) (4.3.24)

= −
∫ x

x0

dξ fγy∗θ(ξ, x0)−1h∗(dθ + [θ, θ]/2)yx(ξ, y)fγy∗θ(ξ, x0)

− fγy∗θ(x, x0)−1h∗θy(x, y)fγy∗θ(x, x0) + h∗θy(x0, y),

which is straightforward though lengthy to derive. Since h is a thin homotopy, h∗(dθ+
[θ, θ]/2)xy(x, y) = 0, by (4.3.6), and h∗θy(1, y) = h∗θy(0, y) = 0, by (4.3.5a), (4.3.5b).
Hence, by(4.3.17), in virtue of (4.3.24),

Fθ(γy)
−1∂yFθ(γy) = fγy∗θ(1, 0)−1∂yfγy∗θ(1, 0) = 0, (4.3.25)

from which (4.3.23) follows. 2

The map Fθ : Π1M → G factors so through one F̄θ : P1M → G from the path groupoid
1–cell set P1M into G, giving a categorical map F̄θ : (M,P1M)→ BG

p1 p0
γoo � // ∗ ∗

F̄θ(γ)oo , (4.3.26)

from the path groupoid (M,P1M) into the delooping groupoid BG of the group G (cf.
subsects. 4.2.1 and 4.3.1).

Proposition 38. F̄θ is a groupoid functor.
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Proof. The statement follows from combining props. 37, 11. Functoriality results
from relations (4.3.18)–(4.3.20). 2

Definition 102. The G–connection θ is said flat if

dθ +
1

2
[θ, θ] = 0. (4.3.27)

Theorem 12. Let θ be flat. Let p0, p1 be points and γy : p0 → p1, y ∈ R, be a
smooth 1–parameter family of curves such that the mapping h : R2 → M defined by
h(x, y) = γy(x) is a homotopy of γ0, γ1. Then,

Fθ(γ1) = Fθ(γ0). (4.3.28)

Proof.The proof is based on relation (4.3.24) and follows the same lines as that of
theor. 11 except for the vanishing of the integral term in the right hand side of (4.3.24)
which is now due to the flatness of θ instead of the thinness of H. 2

Hence, the map Fθ : Π1M → G factors through one F̄ 0
θ : P 0

1M → G from the funda-
mental groupoid 1–cell set P 0

1M into G yielding a categorical map F̄θ : (M,P 0
1M)→

BG of the fundamental groupoid (M,P 0
1M) into the delooping groupoid BG.

Proposition 39. When the connection θ is flat, F̄ 0
θ : (M,P 0

1M)→ BG is a groupoid
functor.

Proof. The statement follows from combining prop. 37 and theor. 12 with functoriali-
ty resulting again from relations (4.3.18)–(4.3.20). 2

We consider now the higher case. Let M be a manifold and (G,H) be a Lie crossed
module. The basic datum required to define parallel transport is a (G,H)–connection
doublet.

Definition 103. A (G,H)–connection doublet on M , or simply a (G,H)–connection
doublet, is a pair of forms (θ, Υ ) ∈ Ω1(M, g) × Ω2(M, h) satisfying the zero fake cur-
vature condition

dθ +
1

2
[θ, θ]− ṫ(Υ ) = 0. (4.3.29)

We denote the set of (G,H)–connection doublets by Conn(M,G,H).

If Σ is a surface and (θ, Υ ) is a (G,H)–connection doublet on M , then (Σ∗θ, Σ∗Υ ) is
a (G,H)–connection in the sense of def. 103. By theor. 4, with (Σ∗θ,Σ∗Υ ) there is
then associated a (G,H)–cocycle (fΣ∗θ,Σ∗Υ |0, gΣ∗θ,Σ∗Υ |0,WΣ∗θ,Σ∗Υ |0).

Definition 104. Let (θ, Υ ) be a (G,H)–connection. Let further p0, p1 be points, γ0, γ1 :
p0 → p1 be curves and Σ : γ0 ⇒ γ1 be a surface. The 1–parallel transport along γ0, γ1

and 2–parallel transport along Σ induced by (θ, Υ ) are

Fθ,Υ (γ0) = fΣ∗θ,Σ∗Υ |0(1, 0) (4.3.30a)

Fθ,Υ (γ1) = fΣ∗θ,Σ∗Υ |1(1, 0) (4.3.30b)

Fθ,Υ (Σ) = WΣ∗θ,Σ∗Υ (0, 1; 1, 0) (4.3.30c)
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From the target matching condition (fΣ∗θ,Σ∗Υ |0, gΣ∗θ,Σ∗Υ |0,WΣ∗θ,Σ∗Υ |0) obeys (cf.
eq. (4.2.11)), one has the following result.

Proposition 40. Let p0, p1 and let γ0, γ1 : p0 → p1 be curves and Σ : γ0 ⇒ γ1 be
surfaces. Then, one has

Fθ,Υ (γ1) = t(Fθ,Υ (Σ))Fθ,Υ (γ0) (4.3.31)

Proof. To begin with, we observe that there is ε > 0 with ε < 1/2 such that

gΣ∗θ,Σ∗Υ |x(y
′, y) = 1G (4.3.32)

for x < ε or x > 1 − ε and arbitrary y, y′. This follows from the fact that, by theor.
4, gΣ∗θ,Σ∗Υ |x(y

′, y) is the solution of the differential problem (4.2.24b), (4.2.25b) with
ay(x, y) replaced by Σ∗θy(x, y) and that Σ∗θy(x, y) = 0 identically for the values of x
indicated on account of (4.3.5a), (4.3.5b).

By (4.3.30a)–(4.3.30c), using the properties (4.2.11), (4.2.13b) and taking (4.3.32)
into account, we find

t(Fθ,Υ (Σ)) = t(WΣ∗θ,Σ∗Υ (0, 1; 1, 0)) (4.3.33)

= gΣ∗θ,Σ∗Υ |1(1, 0)−1fΣ∗θ,Σ∗Υ |1(0, 1)−1gΣ∗θ,Σ∗Υ |0(1, 0)fΣ∗θ,Σ∗Υ |0(0, 1)

= fΣ∗θ,Σ∗Υ |1(1, 0)fΣ∗θ,Σ∗Υ |0(1, 0)−1

= Fθ,Υ (γ1)Fθ,Υ (γ0)−1,

which leads immediately to (4.3.31). 2

Physical intuition suggests that it should be possible to express the 1–parallel transport
Fθ,Υ (γ) along a curve γ independently from any other curve γ′ with the same endpoints
and surface Σ connecting γ to γ′. This is indeed the case, as we shall show next.

Lemma 1. Let p0, p1 be points and γ : p0 → p1 be a curve. Then, fIγ∗θ,Iγ∗Υ |y, where
Iγ : γ ⇒ γ is the unit surface of γ (cf. eq. (4.3.9)), is independent from the value of
y.

Proof. By theor. 4, fIγ∗θ,Iγ∗Υ |y(x, x0) is the solution of the differential problem
(4.2.24a), (4.2.25a) with ax(x, y) = Iγ

∗θx(x, y). Since Iγ
∗θx(x, y) = γ∗ax(x) is in-

dependent from y, so is fIγ∗θ,Iγ∗Υ |y(x, x0). 2

Definition 105. If p0, p1 are points and γ : p0 → p1 is a curve, one sets

Fθ,Υ (γ) = fIγ∗θ,Iγ∗Υ |y(1, 0). (4.3.34)

Proposition 41. If p0, p1 are points, γ0, γ1 : p0 → p1 are curves and Σ : γ0 ⇒ γ1

is a surface, then the value of Fθ,Υ (γi) computed using (4.3.30a), (4.3.30b) equals that
obtained using (4.3.34).
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Proof. By theor. 4, fΣ∗θ,Σ∗Υ |y(x, x0) is the solution of the differential problem
(4.2.24a), (4.2.25a) with ax(x, y) = Σ∗θx(x, y). Likewise, fIγi∗θ,Iγi∗Υ |y(x, x0) solves the
differential problem (4.2.24a), (4.2.25a) with ax(x, y) = Iγi

∗θx(x, y). Since Iγi
∗θx(x, y) =

Σ∗θx(x, i) for i = 1, 2 and any y, we have fIγi∗θ,Iγi∗Υ |y(x, x0) = fΣ∗θ,Σ∗Υ |i(x, x0). Hence,
(4.3.30a), (4.3.30b) and (4.3.34) furnish the same value of Fθ,Υ |y(γi). 2

Let us fix a (G,H)–connection doublet (θ, Υ ). We have then two mappings Fθ,Υ :
Π1M → G and Fθ,Υ : Π2M → H.

Proposition 42. For any point p, one has

Fθ,Υ (ιp) = 1G. (4.3.35)

For any two points p0, p1 and curve γ : p0 → p1, one has

Fθ,Υ (γ−1◦) = Fθ,Υ (γ)−1. (4.3.36)

For any three p0, p1, p2 and two curves γ1 : p0 → p1, γ2 : p1 → p2,

Fθ,Υ (γ2 ◦ γ1) = Fθ,Υ (γ2)Fθ,Υ (γ1). (4.3.37)

For any two points p0, p1 and curve γ : p0 → p1,

Fθ,Υ (Iγ) = 1H . (4.3.38)

If p0, p1 are points, γ0, γ1 : p0 → p1 are curves and Σ : γ0 ⇒ γ1 is a surface, then

Fθ,Υ (Σ−1•) = Fθ,Υ (Σ)−1. (4.3.39)

If p0, p1 are points, γ0, γ1, γ2 : p0 → p1 are curves and Σ1 : γ0 ⇒ γ1, Σ2 : γ1 ⇒ γ2 are
surfaces, then

Fθ,Υ (Σ2 •Σ1) = Fθ,Υ (Σ2)Fθ,Υ (Σ1). (4.3.40)

If p0, p1 are points, γ0, γ1 : p0 → p1 are curves and Σ : γ0 ⇒ γ1 is a surface, then

Fθ,Υ (Σ−1◦) = m(Fθ,Υ (γ0)−1)(Fθ,Υ (Σ)−1). (4.3.41)

If p0, p1, p2 are points, γ0, γ1 : p0 → p1, γ2, γ3 : p1 → p2 are curves and Σ1 : γ0 ⇒ γ1,
Σ2 : γ2 ⇒ γ3 are surfaces, then

Fθ,Υ (Σ2 ◦Σ1) = Fθ,Υ (Σ2)m(Fθ,Υ (γ2))(Fθ,Υ (Σ1)). (4.3.42)

Proof.For any map φ : R → R, we define two maps lφ : R2 → R2, rφ : R2 → R2 by
setting lφ(x, y) = (φ(x), y), rφ(x, y) = (x, φ(y)). If (f, g,W ) is a (G,H)–cocycle, the
maps lφ

∗f : R2 × R→ G, lφ
∗g : R× R2 → G, lφ

∗W : R2 × R2 → H given by

lφ
∗f(x′, x; y) = f(φ(x′), φ(x); y), (4.3.43a)

lφ
∗g(x; y′, y) = g(φ(x); y′, y), (4.3.43b)

lφ
∗W (x′, x; y′, y) = W (φ(x′), φ(x); y′, y) (4.3.43c)
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and those rφ
∗f : R2 × R→ G, rφ

∗g : R× R2 → G, rφ
∗W : R2 × R2 → H by

rφ
∗f(x′, x; y) = f(x′, x;φ(y)), (4.3.44a)

rφ
∗g(x; y′, y) = g(x;φ(y′), φ(y)), (4.3.44b)

rφ
∗W (x′, x; y′, y) = W (x′, x;φ(y′), φ(y)) (4.3.44c)

satisfy (4.2.11) and (4.2.12) and, consequently, constitute two (G,H)–cocycles, the left
and right pull-back (lφ

∗f, lφ
∗g, lφ

∗W ), (rφ
∗f, rφ

∗g, rφ
∗W ) of (f, g,W ) by φ.

The one–to–one correspondence between (G,H)–connections (a,B) and (G, H)–
cocycles (f, g,W ) stated by theor. 4 is natural with respect to left/right pull-back, as
one has

(flφ∗a,lφ∗B, glφ∗a,lφ∗B,Wlφ∗a,lφ∗B) = (lφ
∗fa,B, lφ

∗ga,B, lφ
∗Wa,B)

and

(alφ∗f,lφ∗g,lφ∗W , Blφ∗f,lφ∗g,lφ∗W ) = (lφ
∗af,g,W ,lφ

∗Bf,g,W )

for left pull-back and

(frφ∗a,rφ∗B, grφ∗a,rφ∗B,Wrφ∗a,rφ∗B) = (rφ
∗fa,B, rφ

∗ga,B, rφ
∗Wa,B)

and

(arφ∗f,rφ∗g,rφ∗W , Brφ∗f,rφ∗g,rφ∗W ) = (rφ
∗af,g,W , rφ

∗Bf,g,W )

for right pull-back.

As an illustration, we prove (4.3.40). Define φ1, φ2 : R → R by φ1(x) = x/2 and
φ2(x) = x/2 + 1/2. It follows from (4.3.13) that (Iγ2 ◦ Iγ1) ◦ lφ1(x, y) = Iγ1(x, y) for
x ≤ 1 and (Iγ2 ◦ Iγ1) ◦ lφ2(x, y) = Iγ2(x, y) for x ≥ 0. Then, by (4.2.12c) and (4.2.13b),
we have

Fθ,Υ (Σ2 ◦Σ1) = WΣ2◦Σ1
∗θ,Σ2◦Σ1

∗Υ |1,0(0, 1) (4.3.45)

= WΣ2◦Σ1
∗θ,Σ2◦Σ1

∗Υ |1,0(1/2, 1)

×m(fΣ2◦Σ1
∗θ,Σ2◦Σ1

∗Υ |0(1/2, 1)−1)(WΣ2◦Σ1
∗θ,Σ2◦Σ1

∗Υ |1,0(0, 1/2))

= WΣ2◦Σ1
∗θ,Σ2◦Σ1

∗Υ |1,0(φ2(0), φ2(1))

×m(fΣ2◦Σ1
∗θ,Σ2◦Σ1

∗Υ |0(φ2(0), φ2(1))−1)(WΣ2◦Σ1
∗θ,Σ2◦Σ1

∗Υ |1,0(φ1(0), φ1(1)))

= lφ2

∗WΣ2◦Σ1
∗θ,Σ2◦Σ1

∗Υ |1,0(0, 1)

×m(lφ2

∗fΣ2◦Σ1
∗θ,Σ2◦Σ1

∗Υ |0(0, 1)−1)(lφ1

∗WΣ2◦Σ1
∗θ,Σ2◦Σ1

∗Υ |1,0(0, 1))
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= Wlφ2
∗Σ2◦Σ1

∗θ,lφ2
∗Σ2◦Σ1

∗Υ |1,0(0, 1)

×m(flφ2
∗Σ2◦Σ1

∗θ,lφ2
∗Σ2◦Σ1

∗Υ |0(0, 1)−1)(Wlφ1
∗Σ2◦Σ1

∗θ,lφ1
∗Σ2◦Σ1

∗Υ |1,0(0, 1))

= W(Σ2◦Σ1)◦lφ2
∗θ,(Σ2◦Σ1)◦lφ2

∗Υ |1,0(0, 1)

×m(f(Σ2◦Σ1)◦lφ2
∗θ,(Σ2◦Σ1)◦lφ2

∗Υ |0(0, 1)−1)(W(Σ2◦Σ1)◦lφ1
∗θ,(Σ2◦Σ1)◦lφ1

∗Υ |1,0(0, 1))

= WΣ2
∗θ,Σ2

∗Υ |1,0(0, 1)m(fΣ2
∗θ,Σ2

∗Υ |0(0, 1)−1)(WΣ1
∗θ,Σ1

∗Υ |1,0(0, 1))

= Fθ,Υ (Σ2)m(Fθ,Υ (γ2))(Fθ,Υ (Σ1))

(4.3.40) is proven by a similar procedure involving this time right pull-back. The other
relations are shown by using similar techniques. 2

Analogously to the ordinary case, Fθ,Υ is thin homotopy invariant as established
by the following theorem.

Theorem 13. Let p0, p1 be points and γ0z, γ1z : p0 → p1 and Σz : γ0z ⇒ γ1z, z ∈ R
be 1–parameter families of curves and surfaces such that the mapping H : R3 → M
defined by H(x, y, z) = Σz(x, y) is a thin homotopy of Σ0, Σ1. Then, one has the
identities

Fθ,Υ (γ01) = Fθ,Υ (γ00), (4.3.46a)

Fθ,Υ (γ11) = Fθ,Υ (γ10), (4.3.46b)

Fθ,Υ (Σ1) = Fθ,Υ (Σ0). (4.3.46c)

Proof. The proof is based on the variational formulae

fΣz∗θ,Σz∗Υ |y(x, x0)−1∂zfΣz∗θ,Σz∗Υ |y(x, x0) (4.3.47)

= −
∫ x

x0

dξ fΣz∗θ,Σz∗Υ |y(ξ, x0)−1ṫ(H∗Υzx(ξ, y, z))fΣz∗θ,Σz∗Υ |y(ξ, x0)

− fΣz∗θ,Σz∗Υ |y(x, x0)−1H∗θz(x, y, z)fΣz∗θ,Σz∗Υ |y(x, x0) +H∗θz(x0, y, z),

gΣz∗θ,Σz∗Υ |x(y, y0)−1∂zgΣz∗θ,Σz∗Υ |x(y, y0) (4.3.48)

= −
∫ y

y0

dη gΣz∗θ,Σz∗Υ |x(η, y0)−1ṫ(H∗Υzy(x, η, z))gΣz∗θ,Σz∗Υ |x(η, y0)

− gΣz∗θ,Σz∗Υ |x(y, y0)−1H∗θz(x, y, z)gΣz∗θ,Σz∗Υ |x(y, y0) +H∗θz(x, y0, z),

WΣz∗θ,Σz∗Υ (x, x0; y, y0)−1∂zWΣz∗θ,Σz∗Υ (x, x0; y, y0) (4.3.49)

= −
∫ x

x0

dξ

∫ y

y0

dηWΣz∗θ,Σz∗Υ (x, x0; η, y0)−1ṁ(gΣz∗θ,Σz∗Υ |x0(η, y0)−1

× fΣz∗θ,Σz∗Υ |η(ξ, x0)−1)(H∗(dΥ + [θ, Υ ])xyz(ξ, η, z))WΣz∗θ,Σz∗Υ (x, x0; η, y0)
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−
∫ x

x0

dξ
[
WΣz∗θ,Σz∗Υ (x, x0; y, y0)−1ṁ(gΣz∗θ,Σz∗Υ |x0(y, y0)−1

× fΣz∗θ,Σz∗Υ |y(ξ, x0)−1)(H∗Υxz(ξ, y, z))WΣz∗θ,Σz∗Υ (x, x0; y, y0)

− ṁ(fΣz∗θ,Σz∗Υ |y0(ξ, x0)−1)(H∗Υxz(ξ, y0, z))
]

+

∫ y

y0

dη
[
WΣz∗θ,Σz∗Υ (x, x0; y, y0)−1

× ṁ(gΣz∗θ,Σz∗Υ |x0(η, y0)−1)(H∗Υzy(x0, η, z))WΣz∗θ,Σz∗Υ (x, x0; y, y0)

− ṁ(fΣz∗θ,Σz∗Υ |y0(x, x0)−1gΣz∗θ,Σz∗Υ |x(η, y0)−1)(H∗Υzy(x, η, z))
]

+Q(H∗θz(x0, y0, z),WΣz∗θ,Σz∗Υ (x, x0; y, y0)−1),

which are straightforward albeit very lengthy to obtain. Since H is a thin homo-
topy, H∗Υzx(x, i, z) = 0 for i = 0, 1, by (4.3.15a), H∗(dΥ + [θ, Υ ])xyz(x, y, z) = 0, by
(4.3.15b), and H∗θz(i, j, z) = 0 and H∗Υyx(i, y, z) = 0 for i, j = 0, 1, by (4.3.14a),
(4.3.14b). Therefore, by (4.3.30a)–(4.3.30c), in virtue of (4.3.47), (4.3.49), we have

Fθ,Υ (γ0z)
−1∂zFθ,Υ (γ0z) = 0, (4.3.50a)

Fθ,Υ (γ1z)
−1∂zFθ,Υ (γ1z) = 0, (4.3.50b)

Fθ,Υ (Σz)
−1∂zFθ,Υ (Σz) = 0, (4.3.50c)

from which (4.3.46a)–(4.3.46c) follow. 2

The thin homotopy invariance of 1–parallel transport holds also if the latter is
defined autonomously according to def. 105.

Theorem 14. Let p0, p1 be points and γy : p0 → p1, y ∈ R, be a smooth 1–parameter
family of curves such that the mapping h : R2 → M defined by h(x, y) = γy(x) is a
thin homotopy of γ0, γ1. Then,

Fθ,Υ (γ1) = Fθ,Υ (γ0). (4.3.51)

Proof. Under the assumptions made, the 1–parameter family of surfaces Iγz : γz ⇒ γz
is such that H(x, y, z) = Iγz(x, y) = γz(x) is a thin homotopy of Iγ0 , Iγ1 . The statement
then follows from theor. 13 with γ0z = γ1z = γz and Σz = Iγz . 2

The maps F̄θ,Υ : Π1M → G, F̄θ,Υ : Π2M → H factor therefore through others F̄θ,Υ :
P1M → G, F̄θ,Υ : P2M → H from the path groupoid 1– and 2–cell sets P1M , P2M
into G, H, respectively, and, so, it induces a categorical map F̄θ,Υ : (M,P1M,P2M)→
B0(G,H)

p0 p1

γ1

ee

γ0

{{
Σ ��

� // ∗ ∗

F̄θ,Υ(γ1)

ii

F̄θ,Υ(γ0)

uu
F̄θ,Υ(Σ)

��
(4.3.52)

of the path 2–groupoid (M,P1M, , P2M) into the delooping 2–groupoid B0(G,H) of
the Lie crossed module (G,H). (cf. subsects. 4.2.1 and 4.3.1).
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Proposition 43. F̄θ,Υ is a 2–groupoid 2–functor.

Proof. The statement follows from combining props. 42, 13. Functoriality results
from relations (4.3.35)–(4.3.42). 2

Definition 106. The (G,H)–connection (θ, Υ ) is said flat if

dΥ + [θ, Υ ] = 0 (4.3.53)

Theorem 15. Let (θ, Υ ) be flat. Let p0, p1 be points and γ0z, γ1z : p0 → p1 and
Σz : γ0z ⇒ γ1z, z ∈ R be 1–parameter families of curves and surfaces such that the
mapping H : R3 →M defined by H(x, y, z) = Σz(x, y) is a homotopy of Σ0, Σ1. Then,
one has the identities

Fθ,Υ (γ01) = Fθ,Υ (γ00), (4.3.54a)

Fθ,Υ (γ11) = Fθ,Υ (γ10), (4.3.54b)

Fθ,Υ (Σ1) = Fθ,Υ (Σ0). (4.3.54c)

Proof. The proof is based on the variational formulae (4.3.47), (4.3.49) and follows
the same lines as that of theor. 13 except for the vanishing of the double integral term
in the right hand side of (4.3.49) which is now due to the flatness of (θ, Υ ) instead of
the thinness of H. 2

Theor. 14 of course keeps holding unchanged.
In this way, the maps F̄θ,Υ : Π1M → G, F̄θ,Υ : Π2M → H factor through others

F̄ 0
θ,Υ : P1M → G, F̄ 0

θ,Υ : P 0
2M → H from the fundamental groupoid 1– and 2–

cell sets P1M , P 0
2M into G, H, respectively, yielding so a a categorical map F̄ 0

θ,Υ :
(M,P1M,P 0

2M) → B0(G,H) of the fundamental 2–groupoid (M,P1M, , P 0
2M) into

the delooping 2–groupoid B0(G,H).

Proposition 44. When the connection doublet (θ, Υ ) is flat, F̄ 0
θ,Υ : (M,P1M , P 0

2M)→
B0(G,H) is a 2–groupoid 2–functor.

Proof. The statement follows from combining prop. 42 and theor. 15 with functoriali-
ty resulting again from relations (4.3.35)–(4.3.42). 2

We now turn to the analysis of 1–gauge transformation of parallel transport.

4.3.3 2–parallel transport and 1–gauge transformation

In this subsection, we shall analyze 1–gauge transformation of higher parallel
transport relying on the cocycle 1–gauge transformation set–up of sect. 4.3.

We begin by reviewing parallel transport in ordinary gauge theory. Let M be a
manifold and G be a Lie group.

Definition 107. A G–gauge transformation is a map g ∈ Map(M,G). We denote by
Gau(M,G) the set of all gauge transformations.

G–gauge transformations act on G–connections (cf. def. 100).
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Definition 108. Let a be a G–connection and g be a G–gauge transformation. The
gauge transformed G–connection gθ is

gθ = Ad g(a)− dgg−1. (4.3.55)

Proposition 45. If θ is a flat G–connection, then, for any G–gauge transformation
g, gθ is also a flat G–connection (cf. def. 102).

Proof. Indeed, using (4.3.55), one computes

dgθ +
1

2
[gθ, gθ] = Ad g

(
dθ +

1

2
[θ, θ]

)
= 0, (4.3.56)

which shows the flatness of gθ. 2

The following theorem is a classic result.

Theorem 16. Let θ be a G–connection and g be a G–gauge transformation. Let
further p0, p1 be points and γ : p0 → p1 be a curve. Then, the parallel transports Fθ(γ)
and Fgθ(γ) along γ are related as

Fgθ(γ) = g(p1)Fθ(γ)g(p0)−1. (4.3.57)

Proof. According to theor. 3, there exists a one–to–one correspondence between g–
valued 1–forms a on R and G–cocycles f . By (4.2.51), (4.2.52), the action of a gauge
transformation κ on a cocycle f is such that aκf = κaf . Then,

κa = aκf

∣∣
f=fa

. (4.3.58)

From this relation, it follows so that

fκa = κfa. (4.3.59)

Setting a = γ∗θ and κ = γ∗g in the above relation, we obtain

fγ∗gγ∗θ = γ∗gfγ∗θ. (4.3.60)

From here, noting that γ∗gθ = γ∗gγ∗θ, we find

Fgθ(γ) = fγ∗gθ(1, 0) = fγ∗gγ∗θ(1, 0) = γ∗gfγ∗θ(1, 0) (4.3.61)

= γ∗g(1)fγ∗θ(1, 0)γ∗g(0)−1 = g(p1)Fθ(γ)g(p0)−1

as was to be shown. 2

Recall that, for a G–connection θ, the mapping Fθ : Π1M → G induces a groupoid
functor F̄θ : (M,P1M) → BG of the path groupoid (M,P1M) of M in the delooping
BG of G in virtue of its thin homotopy invariance (cf. prop. 38). Likewise, when
the G–connection θ is flat, by its homotopy invariance, Fθ induces a groupoid functor
F̄ 0

θ : (M,P 0
1M) → BG of the fundamental groupoid (M,P 0

1M) of M into BG (cf.
prop. 39).
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Proposition 46. For any G–connection θ, a G–gauge transformation g encodes a
natural transformation F̄θ ⇒ F̄gθ of functors. If θ is flat, then g yields a natural
transformation F̄ 0

θ ⇒ F̄ 0
gθ.

Proof. By (4.3.57), the diagram

∗
g(p1)

��

∗
Fθ(γ)oo

g(p0)

��
∗ ∗

Fgθ(γ)
oo

(4.3.62)

commutes, identifying g as a natural transformation F̄θ ⇒ F̄gθ or F̄ 0
θ ⇒ F̄ 0

gθ. 2

We now shift to higher gauge theory, introduce the notion of 1–gauge transforma-
tion and study its action on connection doublets and 2–parallel transport.

Let M be a manifold and (G,H) be a Lie crossed module.

Definition 109. A differential (G,H)–1–gauge transformation is a pair of a map
g ∈ Map(M,G) and a form J ∈ Ω1(M, h). We denote by Gau1(M,G,H) the set of all
1–gauge transformations.

Differential (G,H)–1–gauge transformations act on (G,H)–connections doublets
(cf. def. 103).

Definition 110. Let (θ, Υ ) be a (G,H)–connection doublet and (g, J) be a (G, H)–1–
gauge transformation. The gauge transformed (G,H)–connection doublet (g,Jθ, g,JΥ )
is

g,Jθ = Ad g(θ)− dgg−1 − ṫ(J), (4.3.63a)

g,JΥ = ṁ(g)(Υ )− dJ − 1

2
[J, J ]− m̂(Ad g(θ)− dgg−1 − ṫ(J), J). (4.3.63b)

It can be checked that this gauge transformation is compatible with the zero fake
curvature condition (4.3.29).

Proposition 47. If (θ, Υ ) is a flat (G,H)–connection doublet, then, for any (G,H)–
1–gauge transformation (g, J), (g,Jθ, g,JΥ ) is also a flat (G,H)–connection doublet (cf.
def. 106).

Proof. Indeed, using (4.3.63), taking (4.3.29) into account, one finds

dg,JΥ + [g,Jθ, g,JΥ ] = ṁ(g)(dΥ + [θ, Υ ]) = 0, (4.3.64)

which shows the flatness of (g,Jθ, g,JJ). 2

Recall that, by theor. 4, with a (G,H)–connection doublet (a,B) in the sense of



152 CHAPTER 4. HIGHER PARALLEL TRANSPORT

def. 86 there is associated a (G,H)–cocycle (fa,B, ga,B,Wa,B). Further, by theor. 6,
with a differential (G,H)–1–gauge transformation (κ, Γ ) in the sense of def. 90, there
is associated an (fa,B, ga,B,Wa,B)–1–gauge transformation (κκ,Γ ;a,B, Ψκ,Γ ;a,B, Φκ,Γ ;a,B).
This depends not only on the differential transformation (κ, Γ ) but also on the con-
nection doublet (a,B), when this latter is allowed to vary. The following basic result
extends theor. 16 to higher gauge theory in a non trivial manner.

Theorem 17. Let (θ, Υ ) be a (G,H)–connection doublet and (g, J) be a (G, H)–1–
gauge transformation. Let further p0, p1 be points, γ0, γ1 : p0 → p1 be curves and
Σ : γ0 ⇒ γ1 be a surface. Then, we have

Fg,Jθ,g,JΥ (γ0) = g(p1)t(Gg,J ;θ,Υ(γ0))Fθ,Υ (γ0)g(p0)−1, (4.3.65a)

Fg,Jθ,g,JΥ (γ1) = g(p1)t(Gg,J ;θ,Υ(γ1))Fθ,Υ (γ1)g(p0)−1, (4.3.65b)

Fg,Jθ,g,JΥ (Σ) = m(g(p1))
(
Gg,J ;θ,Υ(γ1)Fθ,Υ (Σ)Gg,J ;θ,Υ(γ0)−1

)
, (4.3.65c)

where Gg,J ;θ,Υ(γ0), Gg,J ;θ,Υ(γ1) are given by (g, J) are

Gg,J ;θ,Υ(γ0) = ΨΣ∗g,Σ∗J ;Σ∗θ,Σ∗Υ |0(0, 1), (4.3.66a)

Gg,J ;θ,Υ(γ1) = ΨΣ∗g,Σ∗J ;Σ∗θ,Σ∗Υ |1(0, 1). (4.3.66b)

Proof.. By (4.2.66), (4.2.67), the one–to–one correspondence between (G,H)–cocycles
(f, g,W ) and (G,H) connections (a,B) (in the sense of def. 103) on one hand and
integral (f, g,W )–1–gauge transformations (κ, Ψ, Φ) and differential (G,H)–1–gauge
transformations (in the sense of def. 90) on the other is such that aκ,Ψ,Φf,κ,Ψ,Φg,κ,Ψ,ΦW =
κκ,Ψ,Φ,Γκ,Ψ,Φaf,g,W , Bκ,Ψ,Φf,κ,Ψ,Φg,κ,Ψ,ΦW = κκ,Ψ,Φ,Γκ,Ψ,ΦBf,g,W . Using these results, it is read-
ily checked that

κ,Γa = aκ,Ψ,Φf,κ,Ψ,Φg,κ,Ψ,ΦW (4.3.67a)∣∣
κ=κκ,Γ ;a,B ,Ψ=Ψκ,Γ ;a,B ,Φ=Φκ,Γ ;a,B ;f=fa,B ,g=ga,B ,W=Wa,B

,

κ,ΓB = Bκ,Ψ,Φf,κ,Ψ,Φg,κ,Ψ,ΦW (4.3.67b)∣∣
κ=κκ,Γ ;a,B ,Ψ=Ψκ,Γ ;a,B ,Φ=Φκ,Γ ;a,B ;f=fa,B ,g=ga,B ,W=Wa,B

.

From these relation, it follows immediately that

fκ,Γ a,κ,ΓB = κκ,Γ ;a,B ,Ψκ,Γ ;a,B ,Φκ,Γ ;a,Bfa,B, (4.3.68a)

gκ,Γ a,κ,ΓB = κκ,Γ ;a,B ,Ψκ,Γ ;a,B ,Φκ,Γ ;a,Bga,B, (4.3.68b)

Wκ,Γ a,κ,ΓB = κκ,Γ ;a,B ,Ψκ,Γ ;a,B ,Φκ,Γ ;a,BWa,B. (4.3.68c)
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Setting a = Σ∗θ, B = Σ∗Υ and κ = Σ∗g, Γ = Σ∗J in the (4.3.68), we obtain

fΣ∗g,Σ∗JΣ∗θ,Σ∗g,Σ∗JΣ∗Υ (4.3.69a)

= κΣ∗g,Σ∗J;Σ∗θ,Σ∗Υ ,ΨΣ∗g,Σ∗J;Σ∗θ,Σ∗Υ ,ΦΣ∗g,Σ∗J;Σ∗θ,Σ∗Υ fΣ∗θ,Σ∗Υ ,

gΣ∗g,Σ∗JΣ∗θ,Σ∗g,Σ∗JΣ∗Υ (4.3.69b)

= κΣ∗g,Σ∗J;Σ∗θ,Σ∗Υ ,ΨΣ∗g,Σ∗J;Σ∗θ,Σ∗Υ ,ΦΣ∗g,Σ∗J;Σ∗θ,Σ∗Υ gΣ∗θ,Σ∗Υ ,

WΣ∗g,Σ∗JΣ∗θ,Σ∗g,Σ∗JΣ∗Υ (4.3.69c)

= κΣ∗g,Σ∗J;Σ∗θ,Σ∗Υ ,ΨΣ∗g,Σ∗J;Σ∗θ,Σ∗Υ ,ΦΣ∗g,Σ∗J;Σ∗θ,Σ∗ΥWΣ∗θ,Σ∗Υ .

We can now complete the proof of the theorem. We show relation (4.3.65c) only, the
proof of (4.3.65a), (4.3.65b) being analogous. We showed earlier that gΣ∗θ,Σ∗Υ |x(y

′, y) =
1G for x < ε or x > 1 − ε and arbitrary y, y′ (cf. eq. (4.3.32)). Similarly, we can
show that ΦΣ∗g,Σ∗J ;Σ∗θ,Σ∗Υ |x(y

′, y) = 1H for the same range of x and y, y′ values, by
considering the differential problem (4.2.63b), (4.2.64b) with κ, Γ replaced by Σ∗g,
Σ∗J and observing that Σ∗Γy(x, y) = 0 identically for the values of x indicated on
account of (4.3.5a), (4.3.5b). Then, from (4.3.69c), using (4.2.55c) and noting that by
(4.3.63) Σ∗g,Jθ = Σ∗g,Σ∗JΣ∗θ, Σ∗g,JΥ = Σ∗g,Σ∗JΣ∗Υ , we find

Fg,Jθ,g,JΥ (Σ) = WΣ∗g,Jθ,Σ∗g,JΥ (0, 1; 1, 0) (4.3.70)

= WΣ∗g,Σ∗JΣ∗θ,Σ∗g,Σ∗JΣ∗Υ (0, 1; 1, 0)

= κΣ∗g,Σ∗J;Σ∗θ,Σ∗Υ ,ΨΣ∗g,Σ∗J;Σ∗θ,Σ∗Υ ,ΦΣ∗g,Σ∗J;Σ∗θ,Σ∗ΥWΣ∗θ,Σ∗Υ (0, 1; 1, 0)

= m(κΣ∗g,Σ∗J ;Σ∗θ,Σ∗Υ (1; 0))
(
ΦΣ∗g,Σ∗J ;Σ∗θ,Σ∗Υ |1(1, 0)

×m(gΣ∗θ,Σ∗Υ |1(1, 0)−1)(ΨΣ∗g,Σ∗J ;Σ∗θ,Σ∗Υ |1(0, 1))

×WΣ∗θ,Σ∗Υ (0, 1; 1, 0)

×m(fΣ∗θ,Σ∗Υ |0(0, 1)−1)(ΦΣ∗g,Σ∗J ;Σ∗θ,Σ∗Υ |0(1, 0)−1)

× ΨΣ∗g,Σ∗J ;Σ∗θ,Σ∗Υ |0(0, 1)−1
)

= m(g(p1))
(
Gg,J ;θ,Υ(γ1)Fθ,Υ (Σ)Gg,J ;θ,Υ(γ0)−1

)
,

showing (4.3.65c). 2

In theor. 17, a new object appears, Gg,J ;θ,Υ(γ). As it turns out, it has a number o
relevant properties which are the topic of the rest of this subsection.

Gg,J ;θ,Υ(γ) can be defined for any curve γ independently from any other curve γ′

with the same endpoints and surface Σ connecting γ to γ′.

Lemma 2. Suppose that p0, p1 are points and γ : p0 → p1 is a curve. Then, ΨIγ∗g,Iγ∗J ;Iγ∗θ,Iγ∗Υ |y,
where Iγ : γ ⇒ γ is the unit surface of γ (cf. eq. (4.3.9)), is independent from y.
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Proof. By theor. 6, ΨIγ∗g,Iγ∗J ;Iγ∗θ,Iγ∗Υ |y is the solution of the differential problem
(4.2.63a), (4.2.64a) with f(x, x0; y) = fIγ∗θ,Iγ∗Υ (x, x0; y), κ(x, y) = Iγ

∗g(x, y) and
Γx(x, y) = Iγ

∗Jx(x, y). Now, by lemma 1, fIγ∗θ,Iγ∗Υ (x, x0; y) is independent from y.
Further, Iγ

∗g(x, y) = γ∗g(x), Iγ
∗Jx(x, y) = γ∗Jx(x) are also independent from y. So,

ΨIγ∗g,Iγ∗J ;Iγ∗θ,Iγ∗Υ |y is y independent.

Definition 111. If p0, p1 are points and γ : p0 → p1 is a curve, one sets

Gg,J ;θ,Υ(γ) = ΨIγ∗g,Iγ∗J ;Iγ∗θ,Iγ∗Υ |y(0, 1). (4.3.71)

(4.3.71) gives the same result as (4.3.66a), (4.3.66b).

Proposition 48. If p0, p1 are points, γ0, γ1 : p0 → p1 are curves and Σ : γ0 ⇒ γ1 is a
surface, then then the value of Gg,J ;θ,Υ(γi) computed using (4.3.66a), (4.3.66b) equals
that obtained using (4.3.71).

Proof. By theor. 4, ΨΣ∗g,Σ∗J ;Σ∗θ,Σ∗Υ |y(x
′, x) is the solution of the differential problem

(4.2.63a), (4.2.64a) with f(x, x0; y) = fΣ∗θ,Σ∗Υ |y(x, x0), κ(x, y) = Σ∗g(x, y), Γx(x, y) =
Σ∗Jx(x, y). Likewise, ΨIγi∗g,Iγi∗J ;Iγi

∗θ,Iγi
∗Υ |y(x

′, x) solves the differential problem (4.2.63a),
(4.2.64a) with f(x, x0; y) = fIγi∗θ,Iγi∗Υ |y(x, x0), κ(x, y) = Iγi

∗g(x, y), Γx(x, y) = Iγi
∗Jx(x, y).

Now, we have fIγi∗θ,Iγi∗Υ |y(x, x0) = fΣ∗θ,Σ∗Υ |i(x, x0) (see the proof of prop. 41) and
also Iγi

∗g(x, y) = Σ∗g(x, i), Iγi
∗Jx(x, y) = Σ∗Jx(x, i) for i = 1, 2 and any y. So,

ΨIγi∗g,Iγi∗J ;Iγi
∗θ,Iγi

∗Υ |y(x, x0) = ΨΣ∗g,Σ∗J ;Σ∗θ,Σ∗Υ |i(x, x0). From this relation, recalling
(4.3.66a), (4.3.66b) and (4.3.71), the statement follows. 2

Let us fix a (G,H)–connection doublet (θ, Υ ) and a (G,H)–1–gauge transformation
(g, J). We have then a mapping Gg;J ;θ,Υ : Π1M → H.

Proposition 49. For any two points p0, p1 and curve γ : p0 → p1, one has

Fg,Jθ,g,JΥ (γ) = g(p1)t(Gg,J ;θ,Υ(γ))Fθ,Υ (γ)g(p)−1, (4.3.72)

Proof. This follows from (4.3.65a), (4.3.65a), setting Σ = Iγ and using (4.3.34) and
(4.3.71). 2

Proposition 50. For any point p, one has

Gg,J ;θ,Υ (ιp) = 1H . (4.3.73)

For any two points p0, p1 and curve γ : p0 → p1, one has

Gg,J ;θ,Υ (γ−1◦) = m(Fθ,Υ (γ)−1)(Gg,J ;θ,Υ (γ)−1). (4.3.74)

For any three p0, p1, p2 and two curves γ1 : p0 → p1, γ2 : p1 → p2,

Gg,J ;θ,Υ (γ2 ◦ γ1) = Gg,J ;θ,Υ (γ2)m(Fθ,Υ (γ2))(Gg,J ;θ,Υ (γ1)). (4.3.75)

Proof. The proof is analogous to that of prop. 42, relying on the pull–back action
of the map lφ : R2 → R2, lφ(x, y) = (φ(x), y), induced by a function φ : R →
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R. The left pull–back (lφ
∗f, lφ

∗g, lφ
∗W ) of a (G,H)–cocycle (f, g,W ) is the (G,H)–

cocycle defined by eqs. (4.3.43). The left pull–back (lφ
∗κ, lφ

∗Ψ, lφ
∗Φ) of an (f, g,W )–

1–gauge transformation (κ, Ψ, Φ) is the (lφ
∗f, lφ

∗g, lφ
∗W )–gauge transformation given

by

lφ
∗κ(x; y) = κ(φ(x); y), (4.3.76a)

lφ
∗Ψ(x′, x; y) = Ψ(φ(x′), φ(x); y), (4.3.76b)

lφ
∗Φ(x; y′, y) = Φ(φ(x); y′, y). (4.3.76c)

The verification of the validity of the cocycle relations (4.2.53) is straightforward.
The one–to–one correspondence between form pairs (a,B) ∈ Ω1(R2, g)×Ω2(R2, h)

and (G,H)–cocycles (f, g,W ) ∈ Cyc(G,H) established by theor. 4 is natural with
respect to left pull-back. Likewise, the one–to–one correspondence between pairs
(κ, Γ ) ∈ Map(M,G)× Ω1(R2, h) and (fa,B, ga,B,Wa,B)–gauge transformation is natu-
ral, meaning that the relations

(κlφ∗κ,lφ∗Γ ;lφ∗a,lφ∗B, Ψlφ∗κ,lφ∗Γ ;lφ∗a,lφ∗B, Φlφ∗κ,lφ∗Γ ;lφ∗a,lφ∗B) = (lφ
∗κκ,Γ ;a,B, lφ

∗Ψκ,Γ ;a,B, lφ
∗Φκ,Γ ;a,B)

as well as

(κlφ∗κ,lφ∗Ψ,lφ∗Φ, Γlφ∗κ,lφ∗Ψ,lφ∗Φ) = (lφ
∗κκ,Ψ,Φ, lφ∗Γκ,Ψ,Φ)

hold.
Given these results, the proof of relations (4.3.73), (4.3.74), (4.3.75) is totally anal-

ogous to that of (4.3.38), (4.3.41), (4.3.42). For instance, the verification of (4.3.75)
proceeds along the same lines as that of (4.3.42) as indicated in (4.3.45): replace Σi

by Iγi and WΣi∗θ,Σi∗Υ by ΨIγi∗g,Iγi∗J ;Iγi
∗θ,Iγi

∗Υ and use (4.2.53a). 2

Naturally, thin homotopy invariance holds for gauge transformation along a curve.

Theorem 18. Let p0, p1 be points and γy : p0 → p1, y ∈ R, be a smooth 1–parameter
family of curves such that the mapping h : R2 → M defined by h(x, y) = γy(x) is a
thin homotopy of γ0, γ1. Then,

Gg,J ;θ,Υ (γ1) = Gg,J ;θ,Υ (γ0). (4.3.77)

Proof. The proof is based on the variational formula

∂zΨIγz ∗g,Iγz ∗J ;Iγz
∗θ,Iγz

∗Υ |y(x, x0)ΨIγz ∗g,Iγz ∗J ;Iγz
∗θ,Iγz

∗Υ |y(x, x0)−1 (4.3.78)

= −
∫ x

x0

dξ ΨIγz ∗g,Iγz ∗J ;Iγz
∗θ,Iγz

∗Υ |y(ξ, x0)ṁ(fIγz ∗θ,Iγz ∗Υ |y(ξ, x0)−1)(
H∗(ṁ(g−1)(dJ + [J, J ]/2 + m̂(Ad g(θ)− dgg−1 − ṫ(J), J)))zx(ξ, y, z)

+ m̂
(∫ ξ

x0

dξ0 fIγz ∗θ,Iγz ∗Υ |y(ξ, ξ0)ṫ(H∗Υzx(ξ0, y, z))fIγz ∗θ,Iγz ∗Υ |y(ξ, ξ0)−1

− fIγz ∗θ,Iγz ∗Υ |y(ξ, x0)H∗θz(x0, y, z))fIγz ∗θ,Iγz ∗Υ |y(ξ, x0)−1,
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H∗(ṁ(g−1)(J))x(ξ, y, z)
))

ΨIγz ∗g,Iγz ∗J ;Iγz
∗θ,Iγz

∗Υ |y(ξ, x0)−1

− ΨIγz ∗g,Iγz ∗J ;Iγz
∗θ,Iγz

∗Υ |y(x, x0)ṁ(fIγz ∗θ,Iγz ∗Υ |y(x, x0)−1)

(H∗(ṁ(g−1)(J))z(x, y, z))ΨIγz ∗g,Iγz ∗J ;Iγz
∗θ,Iγz

∗Υ |y(x, x0)−1

+H∗(ṁ(g−1)(J))z(x0, y, z),

where H : R3 → M is the mapping defined by H(x, y, z) = Iγz(x, y) = γz(x). Under
the assumptions made, the 1–parameter family of surfaces Iγz : γz ⇒ γz is such that
H is a thin homotopy of Iγ0 , Iγ1 with the property that rank(dH(x, y, z)) ≤ 1. So,
H∗(dJ + [J, J ]/2 + m̂(Ad g(θ)− dgg−1− ṫ(J), J)) = 0 and H∗Υzx(x, y, z) = 0. Further,
H∗θz(i, y, z) = 0 and H∗Jz(i, y, z) = 0 for i = 0, 1, by (4.3.14a), (4.3.14b). So, by
(4.3.71) and (4.3.78), we have

∂zGg,J ;θ,Υ (γz)Gg,J ;θ,Υ (γz)
−1 = 0 (4.3.79)

from which (4.3.77) follows immediately. 2

Recall that, for a (G,H)–connection doublet (θ, Υ ), the mappings F̄θ,Υ : Π1M → G,
F̄θ,Υ : Π2M → H induce a 2–groupoid functor F̄θ,Υ : (M,P1M,P2M) → B0(G,H) of
the path 2–groupoid (M,P1M,P2M) of M into the delooping 2–groupoid B0(G,H)
of the Lie crossed module (G,H) by their thin homotopy invariance (cf. prop. 43).
Furthermore, when the (G,H)–connection doublet (θ, Υ ) is flat, the F̄θ,Υ induce a 2–
groupoid functor F̄ 0

θ,Υ : (M,P1M,P 0
2M)→ B0(G,H) of the fundamental 2–groupoid

(M,P1M,P 0
2M) of M into B0(G,H) by their homotopy invariance (cf. prop. 44). By

what found above, the map Gg,J ;θ,Υ : Π1M → H factors through one Ḡg,J ;θ,Υ : P1M →
H from the path groupoid 1–cell set P1M into H.

Proposition 51. For any (G,H)–connection doublet (θ, Υ ), a (G,H)–1–gauge trans-
formation (g, J) encodes a pseudonatural transformation Ḡg,J ;θ,Υ : F̄θ,Υ ⇒ F̄g,Jθ,g,JΥ
of 2–functors. If (θ, Υ ) is flat, then (g, J) yields a pseudonatural transformation
Ḡ0

g,J ;θ,Υ : F̄ 0
θ,Υ ⇒ F̄ 0

g,Jθ,g,JΥ .

Proof. By (4.3.72), for any curve γ : p0 → p1 we have a 2–cell of B0(G,H)

∗
g(p1)

��
G̃g,J;θ,Υ (γ)

#+

∗
Fθ,Υ (γ)

oo

g(p0)

��
∗ ∗

Fg,J θ,g,JΥ (γ)
oo

(4.3.80)

where G̃g,J ;θ,Υ (γ) is given by

G̃g,J ;θ,Υ = m(g(p1))(Gg,J ;θ,Υ ) (4.3.81)

The 2–cells (4.3.80) define a pseudonatural transformation F̄θ,Υ ⇒ F̄g,Jθ,g,JΥ if

∗
g(p2)

��
G̃g,J;θ,Υ (γ2)

$,

∗
g(p1)
��

Fθ,Υ (γ2)
oo

G̃g,J;θ,Υ (γ1)
$,

∗
Fθ,Υ (γ1)

oo

g(p0)

��
∗ ∗

Fg,J θ,g,JΥ (γ2)
oo ∗

Fg,J θ,g,JΥ (γ1)
oo

=

∗
g(p2)

��
G̃g,J;θ,Υ (γ2◦γ1)

$,

∗
Fθ,Υ (γ2◦γ1)

oo

g(p0)

��
∗ ∗
Fg,J θ,g,JΥ (γ2◦γ1)
oo

(4.3.82)
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for any pair of curves γ1 : p0 → p1, γ2 : p1 → p2 and

∗
g(p1)

��
G̃g,J;θ,Υ (γ0)

%-

∗
Fθ,Υ (γ0)

oo

g(p0)

��
∗ ∗Fg,J θ,g,JΥ (γ0)oo

Fg,J θ,g,JΥ (γ1)

]]
Fg,J θ,g,JΥ (Σ)

��

=

∗
g(p1)

��
G̃g,J;θ,Υ (γ1)

%-

∗Fθ,Υ (γ1)oo

Fθ,Υ (γ0)

��
Fθ,Υ (Σ)
��

g(p0)

��
∗ ∗

Fg,J θ,g,JΥ (γ1)
oo

(4.3.83)

for any surface Σ : γ0 → γ1 hold, where the diagrams are composed by the usual past-
ing algorithm. These conditions are in fact satisfied. (4.3.82) holds as a consequence
of (4.3.75). (4.3.83) follows from relation (4.3.65c). The first part of the proposition
follows. The proof of the second half is essentially identical. 2

4.3.4 2–parallel transport and 2–gauge transformation

In this subsection, we shall study 2–gauge transformation in higher parallel
transport theory. This has no analogue in ordinary gauge theory.

Let M be a manifold and (G,H) be a Lie crossed module.

Definition 112. A (G,H)–2–gauge transformation is a mapping Ω̃ ∈ Map(M , H).
We denote by Gau2(M,G,H) the set of all 2–gauge transformations.

(G,H)–2–gauge transformations act on (G,H)–2–gauge transformations, the ac-
tion depending on an assigned (G,H)–connection doublet.

Definition 113. Let (θ, Υ ) be a (G,H)–connection doublet, (g, J) be a (G,H)–1–gauge
transformation and Ω̃ a (G,H)–2–gauge transformation. The 2–gauge transformed 1–

gauge transformation (Ω̃g|θ,Υ ,
Ω̃J|θ,Υ ) is

Ω̃g|θ,Υ = t(Ω̃)g, (4.3.84a)

Ω̃J|θ,Υ = Ω̃JΩ̃−1 − dΩ̃Ω̃−1 −Q(g,Jθ, Ω̃). (4.3.84b)

where g,Jθ is given by (4.3.63a) and Ω̃ is defined by

Ω̃ = m(g)(Ω). (4.3.85)

2–gauge equivalent 1–gauge transformations yield the the same gauge transformed
connection doublet.

Proposition 52. Let (θ, Υ ) be a (G,H)–connection doublet, (g, J) be a (G,H)–1–
gauge transformation and Ω be a (G,H)–2–gauge transformation. Then,

Ω̃g|θ,Υ ,
Ω̃J|θ,Υ θ = g,Jθ, (4.3.86a)

Ω̃g|θ,Υ ,
Ω̃J|θ,ΥΥ = g,JΥ. (4.3.86b)
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Proof. This is straightforwardly verified evaluating (4.3.63a), (4.3.63b) for the 1–

gauge transformation (Ω̃g|θ,Υ ,
Ω̃J|θ,Υ ) and using the zero fake curvature condition (4.3.29).

2

The action of 2–gauge transformations on 1–gauge transformations translates into
one on the map Gg,J ;θ,Υ : Π1M → H.

Proposition 53. Let (θ, Υ ) be a (G,H)–connection doublet, (g, J) be a (G,H)–1–
gauge transformation and Ω be a (G,H)–2–gauge transformation. Then, for any curve
γ : p0 → p1, one has

GΩ̃g|θ,Υ ,Ω̃J|θ,Υ ;θ,Υ (γ) = Ω(p1)−1Gg,J ;θ,Υ (γ)m(Fθ,Υ (γ))(Ω(p0)) (4.3.87)

where Ω is related to Ω̃ by

Ω = m(g−1)(Ω̃). (4.3.88)

Proof. In the course of the proof of prop. 36, it was found that (κAκ,AΨ,AΦ, ΓAκ,AΨ,AΦ) =

(Ãκκ,Ψ,Φ|af,g,WBf,g,W ,
ÃΓκ,Ψ,Φ|af,g,WBf,g,W ) for any (G,H)–cocycle (f , g,W ), (f, g,W )–1–

gauge transformation (κ, Ψ, Φ) and (G,H)–2–gauge transformation A, where A and
Ã are related by (4.2.74). Setting (f, g,W ) = (fa,B, ga,B, Wa,B) and (κ, Ψ, Φ) =
(κκ,Γ,a,B, Ψκ,Γ,a,B, Φκ,Γ,a,B, )) in this relation, where (a,B) and (κ, Γ ) are a (G,H)–
connection doublet and a differential (G,H)–1–gauge transformation in the sense of
defs. 90 and 90, respectively, we find that

(κÃκ|a,B ,ÃΓ|a,B ;a,B, ΨÃκ|a,B ,ÃΓ|a,B ;a,B, ΦÃκ|a,B ,ÃΓ|a,B ;a,B) (4.3.89)

= (Aκκ,Γ ;a,B,
AΨκ,Γ ;a,B,

AΦκ,Γ ;a,B)

Using the mid component of (4.3.89) and the cocycle relation (4.2.68b) and the defi-
nitions (4.3.34) and (4.3.66), we find

GΩ̃g|θ,Υ ,Ω̃J|θ,Υ ;θ,Υ (γ) = ΨIγ∗Ω̃g|θ,Υ ,Iγ∗Ω̃J|θ,Υ ;Iγ∗θ,Iγ∗Υ |y(0, 1) (4.3.90)

= ΨIγ∗Ω̃Iγ∗g|Iγ∗θ,Iγ∗Υ ,Iγ
∗Ω̃Iγ∗J|Iγ∗θ,Iγ∗Υ ;Iγ∗θ,Iγ∗Υ |y(0, 1)

= Iγ∗ΩΨIγ∗g,Iγ∗J ;Iγ∗θ,Iγ∗Υ |y(0, 1)

= Iγ
∗Ω|y(1)−1ΨIγ∗g,Iγ∗J ;Iγ∗θ,Iγ∗Υ |y(0, 1)

×m(fIγ∗θ,Iγ∗Υ |y(0, 1)−1)(Iγ
∗Ω|y(0))

= Ω(p1)−1Gg,J ;θ,Υ (γ)m(Fθ,Υ (γ))(Ω(p0)).

(4.3.87) is so proven 2

Recall that, for a (G,H)–connection doublet (θ, Υ ) and a (G,H)–1–gauge trans-
formation (g, J), the map Gg,J ;θ,Υ : Π1M → H furnishes the data of a pseudonatural
transformation Ḡg,J ;θ,Υ : F̄θ,Υ ⇒ F̄g,Jθ,g,JΥ of the parallel transport 2-functor F̄θ,Υ of
(θ, Υ ) to that F̄g,Jθ,g,JΥ of (g,Jθ, g,JΥ ) and likewise one Ḡ0

g,J ;θ,Υ : F̄ 0
θ,Υ ⇒ F̄ 0

g,Jθ,g,JΥ

when (θ, Υ ) is flat (cf. prop. 51).
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Proposition 54. For every (G,H)–connection doublet (θ, Υ ) and (G,H)–1– gauge
transformation (g, J), a (G,H)–2–gauge transformation Ω̃ encodes a modification
H̄g,J ;θ,Υ ;Ω̃ : Ḡg,J ;θ,Υ V ḠΩ̃g|θ,Υ ,Ω̃J|θ,Υ ;θ,Υ of pseudonatural transformations. If (θ, Υ ) is

flat, then Ω̃ yields a pseudonatural transformation modification H̄0
g,J ;θ,Υ ;Ω̃ : Ḡ0

g,J ;θ,Υ V
Ḡ0

Ω̃g|θ,Υ ,Ω̃J|θ,Υ ;θ,Υ .

Proof. By (4.3.84a), for any point p we have a 2–cell of B0(G,H),

∗ ∗

Ω̃g|θ,Υ (p)

aa

g(p)

}}
Ω̃(p)
��

(4.3.91)

Ω̃ defines a modification H̄g,J ;θ,Υ ;Ω̃ : Ḡg,J ;θ,Υ V GΩ̃g|θ,Υ ,Ω̃J|θ,Υ ;θ,Υ if

∗

g(p1)

��
G̃g,J;θ,Υ (γ)

%-

∗
Fθ,Υ (γ)

oo

g(p0)

��

Ω̃g|θ,Υ (p0)

rr

Ω̃(p0) +3

∗ ∗
Fg,J θ,g,JΥ (γ)

oo

(4.3.92)

∗

Ω̃g|θ,Υ (p1)

��

g(p1)

,,

Ω̃(p1) +3 G̃Ω̃g|θ,Υ ,
Ω̃J|θ,Υ ;θ,Υ

(γ)

%-

∗
Fθ,Υ (γ)

oo

Ω̃g|θ,Υ (p0)

��
∗ ∗

Fg,J θ,g,JΥ (γ)
oo

for every curve γ : p0 → p1, where G̃g,J ;θ,Υ is given in (4.3.81) and similarly G̃Ω̃g|θ,Υ ,Ω̃J|θ,Υ ;θ,Υ

and the diagrams are composed by the usual pasting algorithm. This conditions is in-
deed fulfilled as a consequence of (4.3.87). The first part of the proposition follows.
The proof of the second half is essentially identical. 2

4.3.5 Smoothness properties of parallel transport

In this subsection, we shall examine the smoothness properties of the parallel
transport functors constructed in the preceding sections.

Let M be a manifold and G be a Lie group.

Proposition 55. Let θ be a G–connection. Then, the parallel transport functor F̄θ :
(M,P1M) → BG is smooth in the diffeological sense: if γα is a family of curves
depending smoothly on a set of parameters α varying in a bounded closed domain
A of Rd for some d, then the mapping α ∈ A → Fθ(γα) ∈ G is smooth. When
the connection θ is flat, the same property holds for the parallel transport functor
F̄ 0

θ : (M,P 0
1M)→ BG.

Proof. Let aα be a G–connection in the sense of def. 84 depending smoothly on a set
of parameters α varying in a bounded closed domain A of Rd for some d. Then the
G–cocycle faα given by (4.2.7) solving the differential problem (4.2.8), (4.2.9) with a
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replaced by aα depends smoothly on α meaning that the mapping α ∈ A→ faα(x′, x) ∈
G is smooth for any fixed x, x′ ∈ R.

Let now θ be a G–connection and γα be a family of curves depending smoothly on
α ∈ A. Then, γα

∗θ is a G–connection in the sense of def. 84 depending smoothly on
α. By (4.3.17), then, α→ Fθ(γα) = fγα∗θ(1, 0) is smooth. The statement follows. The
flat case is treated similarly. 2

The above results extend straightforwardly to higher parallel transport. Let M be
a manifold and (G,H) be a Lie crossed module.

Proposition 56. Let (θ, Υ ) be a (G,H)–connection doublet. Then, the parallel trans-
port 2–functor F̄θ,Υ : (M,P1M,P2M)→ B0(G,H) is smooth in the diffeological sense:
if Σα : γ0α ⇒ γ1α is a family of surfaces depending smoothly on a set of parame-
ters α varying in a bounded closed domain A of Rd for some d, then the mappings
α ∈ A→ Fθ,Υ (γ0α) ∈ G, α ∈ A→ Fθ,Υ (γ1α) ∈ G, α ∈ A→ Fθ,Υ (Σα) ∈ H are smooth.
When the connection doublet (θ, Υ ) is flat, the same property holds for the parallel
transport functor F̄ 0

θ,Υ : (M,P1M,P 0
2M)→ B0(G,H).

Proof. Let (aα, Bα) be a (G,H)–connection doublet in the sense of def. 86 depending
smoothly on a set of parameters α varying in a bounded closed domain A of Rd for some
d. Then, the (G,H)–cocycle (faα,Bα , gaα,Bα ,Waα,Bα) given by (4.2.23) solving the differ-
ential problem (4.2.24), (4.2.25) with a, B replaced by aα, Bα depends smoothly on α
meaning that the mapping α ∈ A→ faα,Bα(x′, x; y) ∈ G, α ∈ A→ gaα,Bα(x; y′, y) ∈ G,
α ∈ A→ Waα,Bα(x′, x; y′, y) ∈ H are all smooth for any fixed x, x′, y, y′ ∈ R.

Let now (θ, Υ ) be a (G,H)–connection doublet and Σα : γ0α ⇒ γ1α be a family of
surfaces depending smoothly on α ∈ A. Then, (Σα

∗θ,Σα
∗Υ ) is a (G,H)–connection

doublet in the sense of def. 86 depending smoothly on α. By (4.3.30), then, α →
Fθ,Υ (γ0α) = fΣα∗θ,Σα∗Υ |0(1, 0), α→ Fθ,Υ (γ1α) = fΣα∗θ,Σα∗Υ |1(1, 0) and α→ Fθ,Υ (Σα) =
WΣα∗θ,Σα∗Υ (0, 1; 1, 0) are smooth. The statement follows. The flat case is treated
similarly. 2

The above proposition has a counterpart at the level of 1–gauge transformations.

Proposition 57. Let (θ, Υ ) be a (G,H)–connection doublet and (g, J) a (G,H)–1–
gauge transformation. Then, the gauge pseudonatural transformation Ḡg,J ;θ,Υ : F̄θ,Υ ⇒
F̄g,Jθ,g,JΥ is smooth in the diffeological sense: if γα is a family of curves depending
smoothly on a set of parameters α varying in a bounded closed domain A of Rd for
some d, then the mapping α ∈ A→ Gg,J ;θ,Υ (γ0α) ∈ H is smooth. When the connection
doublet (θ, Υ ) is flat, the same property holds for the gauge pseudonatural transforma-
tion Ḡ0

g,J ;θ,Υ : F̄ 0
θ,Υ ⇒ F̄ 0

g,Jθ,g,JΥ .

Proof. The statement is proven by a reasoning analogous to that showing prop.
56 relying on the smoothness properties of the solution of the differential problem
(4.2.63a), (4.2.64a) and using (4.3.71). 2

4.3.6 Relation to other formulations

In this subsect, we shall analyze the relation between our formulation of higher
parallel transport and other formulations appeared in the literature. This is an im-
portant point.
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Let M be a manifold and (G,H) be a Lie crossed module. According to Schreiber
and Waldorf [38, 39, 40], higher parallel transport is constructed as follows.

Definition 114. Let (θ, Υ ) be a (G,H)–connection. For a curve γ, the 1–parallel
transport along γ is given by

FSWθ,Υ (γ) = fSWθ,Υ ;γ(1), (4.3.93)

where fSWθ,Υ ;γ(x) is the solution of the differential problem

dxu(x)u(x)−1 = −γ∗θx(x), (4.3.94)

u(0) = 1G (4.3.95)

with u : R→ G a smooth mapping. For a surface Σ, the 2–parallel transport along Σ
is given by

FSWθ,Υ (Σ) = WSWθ,Υ ;Σ(1), (4.3.96)

where WSWθ,Υ ;Σ(y) is the solution of the differential problem

∂yE(y)E(y)−1 =

∫ 1

0

dξ ṁ(FSWθ,Υ (γΣξ,y))Σ
∗Υxy(ξ, y), (4.3.97)

E(0) = 1H (4.3.98)

with E : R → H a smooth mapping. Here, γΣξ,y : Σ(ξ, y) → Σ(1, y) is the curve
defined by the expression

γΣξ,y(x) = Σ(ξ + (1− ξ)ϕ(x), y), (4.3.99)

where ϕ : R→ R is a smooth function such that ϕ(x) = 0 for x < ε and ϕ(x) = 1 for
x > 1− ε for some small ε > 0.

The function ϕ is introduced to ensure that γΣξ,y has sitting instants. Its choice is
immaterial, as a change of it amounts to a thin homotopy that leaves FSWθ,Υ (γΣξ,y)
invariant. The following proposition holds.

Proposition 58. For any curve γ,

FSWθ,Υ (γ) = Fθ,Υ (γ). (4.3.100)

Similarly, for any surface Σ,

FSWθ,Υ (Σ) = Fθ,Υ (Σ). (4.3.101)

Proof. We show first (4.3.100). As γ∗θx(x) = Iγ
∗θx(x, y) for any y, the differen-

tial problem (4.3.94), (4.3.95) is identical to that (4.2.24a), (4.2.25a) with ax(x, y) =
Iγ
∗θx(x, y) and x0 = 0, which is solved precisely by fIγ∗θ,Iγ∗Υ |y(x, 0). So,

fSWθ,Υ ;γ(x) = fIγ∗θ,Iγ∗Υ |y(x, 0). (4.3.102)

(4.3.100) then follows from (4.3.93) and (4.3.34).
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The proof of (4.3.101) requires more work but follows a similar route. We begin
with noticing that fSWθ,Υ ;γΣξ,y(x) is the solution of the differential problem (4.3.94),
(4.3.95) with γ = γΣξ,y. Since

γΣξ,y
∗θx(x) = (1− ξ)dxϕ(x)Σ∗θx(ξ + (1− ξ)ϕ(x), y) (4.3.103)

by (4.3.99), the differential problem can thus more explicitly be stated as

dxu(x)u(x)−1 = −(1− ξ)dxϕ(x)Σ∗θx(ξ + (1− ξ)ϕ(x), y), (4.3.104)

u(0) = 1G. (4.3.105)

Comparing this with the differential problem (4.2.24a), (4.2.25a) with ax(x, y) =
Σ∗θx(x, y) and x0 = ξ, solved by fΣ∗θ,Σ∗Υ |y(x, ξ), we find that

fSWθ,Υ ;γΣξ,y(x) = fΣ∗θ,Σ∗Υ |y(ξ + (1− ξ)ϕ(x), ξ). (4.3.106)

From (4.3.93) with γ = γΣξ,y, it follows that

FSWθ,Υ (γΣξ,y) = fΣ∗θ,Σ∗Υ |y(ξ, 1)−1. (4.3.107)

Recalling (4.3.32), we also have that

1G = gΣ∗θ,Σ∗Υ |1(y, 0)−1. (4.3.108)

Taking (4.3.107), (4.3.108) into account, we can recast the differential problem (4.3.97),
(4.3.98) in the form

∂yE(y)E(y)−1 (4.3.109)

=

∫ 1

0

dξ ṁ(gΣ∗θ,Σ∗Υ |1(y, 0)−1fΣ∗θ,Σ∗Υ |y(ξ, 1)−1)Σ∗Υxy(ξ, y),

E(0) = 1H . (4.3.110)

This is equivalent to the first form of the differential problem (4.2.24c), (4.2.25c) with
v|x0,y0(y) = gΣ∗θ,Σ∗Υ |x0(y, y0), u|y,x0(x) = fΣ∗θ,Σ∗Υ |y(x, x0) and Bxy(x, y) = Σ∗Υxy(x, y)
after integrating with respect to x and setting x = 0, x0 = 1 and y0 = 0. From here,
it follows that

WSWθ,Υ ;Σ(y) = WΣ∗θ,Σ∗Υ |0,1(y, 0). (4.3.111)

(4.3.101) then follows from (4.3.96) and (4.3.30c). 2

The prescription given by Martins and Picken in [41, 42] for the computation of
higher parallel transport is essentially equivalent to that of Schreiber and Waldorf and,
consequently, to ours.
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Chapter 5

Chern-Simons theory

We will now review ordinary Chern-Simons theory, to pave the way for the defi-
nition of the 2-term L∞ Chern-Simons model which will be the subject of the next
chapter and the main task of this thesis.

Chern-Simons is a topological field theory of the Schwarz kind. The classical action
is the integral of the Chern-Simons form associated with a connection on a principal
bundle [76], and although it had been considered as a field theory before [77],[78], it
was with a famous paper by Witten [64] that it gained his great popularity. Witten
found out that Chern-Simons theory is quantizable and solvable, and showed that it
has remarkable connections with topology and knot theory. Thereafter, much effort
have been spent studying this theory [79],[80], which has been analyzed and understood
very deeply.

5.1 Classical action and gauge invariance

We start with a principal G bundle P on a three manifold M . Usually G is a
compact semisimple Lie group, we will restrict ourselves to G = SU(N) for simplicity.
For our purposes the principal bundle can well be taken to be trivial, P = M × G.
The dynamic fields are connections ω ∈ Ω1(M ; g), and the Chern-Simons action for ω
is defined to be

SCS(ω) = κ

∫
M

(
ω, dω +

1

3
[ω, ω]

)
, (5.1.1)

where κ is a real number and (·, ·) is an invariant bilinear form on g. If we take this
form to be realized by the trace over some representation of the Lie algebra g this
action can be rewritten in the more explicit form

SCS(ω) = κ

∫
M

tr(ω ∧ dω +
2

3
ω ∧ ω ∧ ω). (5.1.2)

This action is topological because it doesn’t depend on a choice of metric on M . The
equation of motion is the condition of flatness for the connection:

δSCS(ω)

δω
= 2κFω = 0. (5.1.3)

In order to be integrated over the base manifold and to give a well defined func-
tional on the space of connections on the principal bundle M ×G, the Chern-Simons
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lagrangian needs to enjoy gauge invariance with respect to gauge transformations of
the conncetion forms. Unfortunately this invariance doesn’t hold completely. In fact,
under a gauge transformation g ∈ Map(M,G) acting on the connection as

ω → ω′ = gωg−1 − dgg−1, (5.1.4)

the Chern-Simons lagrangian varies according to

LCS(ω′) = LCS(ω)− κ

3
tr(g−1dgg−1dgg−1dg)− κd tr(ωg−1dg). (5.1.5)

The last term is exact and thus can be neglected when integrating on the compact
manifold M , therefore is doesn’t affect the action. On the other hand there is no reason
for the second term to vanish somehow, and this leads to a gauge non-invariance of
the theory. Luckily, this term can be scaled in such a way that the invariance holds
only up to integers. In this way the action SCS can be defined as a functional taking
values in R/Z instead of simply R, and with the appropriate choice of κ it’s possible
to enforce that the variation of the action due to a gauge transformation is 2πk with
k ∈ Z. Therefore the quantity

eiSCS(ω) (5.1.6)

will be well defined, leading to a sensible quantum theory.
Things work as follows. The following integral

w(g) :=
1

24π2

∫
M

tr(g−1dgg−1dgg−1dg) (5.1.7)

for g : M → G is called the winding number of the map g in topology. It is a classical
result that w(g) is an integer. Thus, it is enough to restrict κ to be

κ =
k

4π
(5.1.8)

with k ∈ Z to restrict the gauge anomaly of the Chern-Simons action generated by
the term κ

3
tr(g−1dgg−1dgg−1dg) to 2π times an integer. k remains a free parameter

which is called the level of the theory.
Another, more elegant way of seeing this is as follows. Take a 4-manifold N which

has M as its boundary, extend the trivial bundle P to a new trivial bundle P ′ as well
as the connection ω to a new connection ω′ on the bulk of N , which is always possible.
The differential of the Chern-Simons lagrangian extended to the whole N reads:

d tr(ω′ ∧ dω′ + 2

3
ω′ ∧ ω′ ∧ ω′) = tr(Fω′ ∧ Fω′), (5.1.9)

which is a representative of the second Chern class of P ′ ch2(P ′) up to a factor 1/(8π).
In fact, this is the defining property of the Chern-Simons 3-form, which is the la-
grangian of the Chern-Simons action and from which the theory takes its name [76].
Stokes theorem makes it possible to redefine Chern-Simons action in this way:

SCS(ω) := κ

∫
N

tr(Fω′ ∧ Fω′). (5.1.10)
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This is well defined and gauge invariant. Nevertheless there is an ambiguity in this
definition, since it looks like (5.1.10) depends on the manifold N we chose and on how
we extended our original data P and ω to P ′ and ω′. Actually, there is no ambiguity
relying on P ′ and ω′: since we are dealing with trivial bundles we are forced to the
obvious definition P ′ = N ×G and it is known that the Chern classes are independent
of the choice of connection and are determined by the principal bundle itself. Instead,
the arbitrariness of the choice of N truly affects the uniqueness of SCS(ω) as defined
in (5.1.10). Nevertheless, if we choose two different manifolds N and L that have M
as boundary, the difference∫

N

tr(Fω′ ∧ Fω′)−
∫
L

tr(Fω′ ∧ Fω′) =

∫
N∪L̄

tr(Fω′ ∧ Fω′) (5.1.11)

is the integral of tr(Fω′ ∧ Fω′) on a closed manifold, as we glued N and L along
their common boundary M . (Here with an abuse of notation we indicated by ω′ any
extension of ω to the manifold on which we integrate.) By a well-known result in
topology stating that ch2(P ′) is an integral cohomology group of the base manifold,
this integral gives 8π times an integer. Again, if we put κ = k/4π we see that (5.1.10)
defines SCS(ω) up to 2π times an integer.

Now we can write the Chern-Simons action more precisely as

SCS(ω) =
k

4π

∫
M

tr(ω ∧ dω +
2

3
ω ∧ ω ∧ ω), (5.1.12)

with k ∈ Z. This phenomenon is called quantization of the level.

5.2 Perturbative quantization

We will now look at the large k limit of the partition function

Z =

∫
Dω exp

(
ik

4π

∫
M

tr(ω ∧ dω +
2

3
ω ∧ ω ∧ ω)

)
. (5.2.1)

Our treatment will follow closely Witten [64].
For k → ∞ the phase of the integrand oscillates uncontrollably and the integral

must be evaluated by a stationary phase method. Namely, the fast oscillations will
cancel out upon integration and the only contribution to Z will come from the points
where the phase is zero. These stationary points are the connections ω such that

δSCS(ω)

δω
= 0, (5.2.2)

i.e. flat connections on M modulo gauge transformations. For simplicity, we assume
that the topology of M is such that the set of all flat G connections on M modulo gauge
transformations is discrete and finite. The partition function can then be written as
the sum

Z =
∑
i∈J

µ(ω(i)), (5.2.3)
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where J is the set of indexes labeling the flat connections and µ(ω(i)) is the evaluation
of the integral (5.2.1) by expansion around the flat connection ω(i). The µ(ω(i)) can
be computed by changing the integration variable. We make the shift

ω = ω(i) + β, (5.2.4)

and we use the 1-form β as new integration variable, leaving the flat connection ω(i)

as a background field. Since this is a linear shift, the measure doesn’t change:

Dω = Dβ. (5.2.5)

We now expand SCS(ω(i)+β) in a power series of β around ω(i). The first non vanishing
order in β is the quadratic term, due to the fact that ω(i) is a critical point of SCS
being flat. We neglect all terms of third order in β or superior as we consider just the
1-loop approximation. A straightforward computation shows that

SCS(ω) = SCS(ω(i)) +
k

4π

∫
M

tr(β ∧Dβ), (5.2.6)

where
Dβ = dβ + [ω(i), β] (5.2.7)

is the covariant derivative with respect to ω(i). Notice that β transforms covariantly
under gauge transformations, being a 1-form in the adjoint representation of g, and
this renders the β dependent part of the action fully gauge invariant.

The very first term SCS(ω(i)) doesn’t depend on β and can thus be factored out of
the integral. To perform the gaussian integral over β of the second term we need a
gauge fixing. We choose to adopt the Lorenz gauge fixing

D ∗ β = 0, (5.2.8)

where ∗ is the Hodge star. This relies on a choice of metric on M , therefore it spoils
the topological flavor of the Chern-Simons action. This would happen with every
choice of gauge fixing, but remarkably at the end of the computation the result will
be topologically invariant, regardless of the choice of gauge fixing.

We implement the gauge fixing by means of the Faddeev-Popov mechanism. First
of all, we add to the lagrangian the term

k

4π
tr(φD∗β), (5.2.9)

where φ is a 0-form in the adjoint representation of g, which acts as a Lagrange
multiplier enforcing the gauge fixing condition (5.2.8). We then need to adjust the in-
tegration measure by inserting a functional determinant which is realized as a gaussian
integration over anticommuting ghost. In our case the term to be added is

k

4π
tr(c̄ D∗Dc), (5.2.10)

where c and c̄ are the scalar ghosts. The quantity we wish now to compute is

µ(ω(i)) = eiSCS(ω(i))

∫
DβDφDc̄Dc exp

(
ik

4π

∫
M

tr(β ∧Dβ + φD∗β + c̄ D∗Dc)
)
.

(5.2.11)



5.2. PERTURBATIVE QUANTIZATION 169

To carry this out, we use the fact that the operator

L := ∗D +D∗ (5.2.12)

is self adjoint on the space of differential forms on M in the adjoint representation of
g with respect to the usual inner product

〈ξ, η〉 =

∫
M

tr(ξ ∧ ∗η). (5.2.13)

Using the duality between 0-forms and 3-forms induced by the Hodge star, we can
think of φ as being a 3-form on M instead of a scalar, and rewrite the gauge fixing
term as

k

4π
tr(∗φD∗β). (5.2.14)

A simple computation shows that

〈β + φ, L(β + φ)〉 =

∫
M

tr(β ∧Dβ + 2 ∗ φD∗β), (5.2.15)

which can be made equivalent to the quadratic terms in φ and β in the exponent of
(5.2.11) up to an irrelevant rescaling of the variables which can cancel the relative
factor. Since L sends forms of odd degree to forms of odd degree, the integral over β
and φ gives

(det(L−))−
1
2 , (5.2.16)

where by L− we denote precisely the restriction of L to odd forms. The ghost sector
is even more immediate: the operator ∆ := D∗D is self adjoint on 0-forms, and the
result of the integral is just det(∆). Altogether these computations lead to the result

µ(ω(i)) = eiSCS(ω(i)) det(∆)√
det(L−)

. (5.2.17)

As was shown in [81], the modulus of this ratio of determinants is nothing else than the
Ray-Singer analytic torsion of ω(i), which is a topological invariant and doesn’t depend
on the particular metric chosen on M for the gauge fixing. However, the phase of this
determinants needs a deeper analysis to be determined. We will now summarize some
of the main steps in the study of this phase, whose technical details can be found in
[64].

The ∆ operator has real determinant, so we only need to compute the phase of
det(L−). It can be shown that this phase is

exp
(
i
π

2
η(ω(i))

)
, (5.2.18)

where η(ω(i)) is the eta invariant defined as

η(ω(i)) :=
1

2
lim
s→0

∑
k

signλk|λk|−s. (5.2.19)
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In the previous formula {λk} is the full set of eigenvalues of L−. A hint of how the
phase (5.2.18) arises from the determinant of L− can be given by looking at the integral∫

DβDφ exp (〈β + φ, L−(β + φ)〉) (5.2.20)

after expanding β + φ =
∑

k xkvk, for {vk} a complete set of eigenvectors of L− with
eigenvalues λk. The functional integral (5.2.20) defining det(L−) becomes then∏

i

∫ +∞

−∞
dx e−iλix

2

, (5.2.21)

which, after a sensible regularization method is adopted, gives the phase

ei
π
4

∑
k signλk . (5.2.22)

The eta invariant obeys the rule

η(ω(i))− η(0) =
c2(G)

π
S1
CS(ω(i)), (5.2.23)

where S0
CS is the Chern-Simons action with level k = 1, and c2(G) denotes the value

of the quadratic Casimir operator of the gauge group in the adjoint representation.
For G = SU(N) we have c2(SU(N)) = 2N . This expression can be put into the
computation of Z, but still we haven’t reached manifest topological invariance because
η(0), the eta invariant associated with the trivial gauge field ω = 0, is not a topological
invariant, depending on the choice of a metric for the gauge fixing. To bypass this
inconvenience, a counterterm is required in the Chern-Simons action. The right choice
is a term proportional to a gravitational Chern-Simons:

I(g) =
1

4π

∫
M

tr(ωg ∧ dωg +
2

3
ωg ∧ ωg ∧ ωg), (5.2.24)

with ωg the Levi-Civita connection associated with the metric g, because the Atiyah-
Patodi-Singer theorem implies that the quantity

η(0)

dimG
+
I(g)

12π
(5.2.25)

is a topological invariant. Putting all the pieces together we finally come then to the
answer to our computation:

Z = exp

(
i
π

2
(η(0) +

dimGI(g)

12π
)

)∑
i

ei(k+
c2(G)

2
)S1
CS(ω(i))Ti, (5.2.26)

being Ti the Ray-Singer torsion of the flat connection field ω(i). In truth, this is not a
honest topological invariant, because the term I(g) depends intimately on a choice of
trivialization of the tangent bundle of M . Nevertheless, the behavior of I(g) under a
change in the choice of framing is fully determined in terms of the number n of relative
twists between the new framing and the old one, and it is

I(g)→ I(g) + 2πn, (5.2.27)

leading to the following change in the partition function:

Z → Zei
nπdimG

12 . (5.2.28)
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5.3 Canonical quantization

The canonical quantization of the Chern-Simons theory can be performed if we
take the base manifold to be of the form M = Σ × R, with Σ an arbitrary closed
2-manifold. The R direction coordinate will be denoted by t and it will play the role
of time throughout the quantization process.

The connection 1-form can be split as the sum of two distinguished components:

ω = ωΣ + ω0, (5.3.1)

where ωΣ contains only the form degrees in the Σ directions while ω0 is a 1-form in the
time direction, but both of them vary on the whole Σ×R. Choosing local coordinates
x, y on Σ we can thus write

ωΣ = ωxdx+ ωydy , ω0 = ωtdt. (5.3.2)

Also the de Rham differential can be divided explicitly:

d = dt ∂t + dΣ , dΣ = dx ∂x + dy ∂y. (5.3.3)

The Chern-Simons action is cast in the following form:

SCS(ω) =
k

4π

∫ +∞

−∞
dt

∫
Σ

tr (−ωΣ ∧ ∂tωΣ + 2ωt ∧ FωΣ
) . (5.3.4)

Here FωΣ
= dΣωΣ + 1

2
[ωΣ, ωΣ] is the curvature of ωΣ, computed as if the latter was a

connection form on Σ at fixed time. Notice that FωΣ
as well as ωΣ depend on t. In

this expression it is immediately clear that ωt plays the role of a Lagrange multiplier
instead of a dynamic variable. We can thus integrate it away and take into account
the constraint that its equation of motion imposes, namely:

FωΣ
= 0. (5.3.5)

From now on the dynamic fields will be those ωΣ fulfilling (5.3.5). The effective action
reduces to

SCS(ω) = − k

4π

∫ +∞

−∞
dt

∫
Σ

tr (ωΣ ∧ ∂tωΣ) . (5.3.6)

Since this action is linear in the time derivative, the phase space will come out to be
constrained. Indeed, the momentum conjugated to the field ωΣ is ωΣ itself times a
constant:

δL
δ(∂tωΣ)

=
k

4π
ωΣ, (5.3.7)

and the Poisson brackets accordingly are

{ωaΣ,µ(x, y), ωbΣ,ν(x
′, y′)} =

4π

k
εµνδ

abδ(x− x′)δ(y − y′), (5.3.8)

where µ, ν = x, y, a, b are indexes in the Lie algebra g and εµν is the antisymmetric
tensor in two dimensions (regarding x, y as 0, 1).



172 CHAPTER 5. CHERN-SIMONS THEORY

This means that the phase space to be quantized is the space of g connections on
Σ. To quantize this space, we have to choose a polarization, that is we have to formally
separate variables into coordinates and momenta, and the Hilbert space of the states
of the theory will be the space of functionals of the coordinates. Both coordinates and
momenta will act on these states as operators, in such a way that the classical Poisson
brackets become commutators.

We also have to take into account that the constraint (5.3.5) needs to be imposed.
We can do this before or after the quantization process. Doing it before leads to
the quantization of a different space, the space of flat g-connections modulo gauge
transformations. This brings the advantage that this space is finite dimensional, unlike
the full space of g-connection on Σ we start with. Using this approach Witten [64]
showed a very important result which relates the quantization of Chern-Simons theory
to two dimensional conformal field theory: he proved that the space of states obtained
by the quantization of Chern-Simons theory on a two dimensional surface Σ is exactly
the space of conformal blocks of the Wess-Zumino-Witten model on that same Σ.
Furthermore this means that if Σ is compact the space of quantum states of the
Chern-Simons theory is finite-dimensional. The Wess-Zumino-Witten model is a two-
dimensional CFT on which we will say more in the next section.

Here we will follow the other path, namely we will first quantize our phase space
and then we will impose the constraint on the states at the quantum level.

To define a polarization on the phase space we pick a complex structure J on Σ,
J : TΣ → TΣ, J2 = −1. This makes it possible to work with holomorphic and
antiholomorphic coordinates on Σ. Locally the picture is as follows: we introduce
complex variables

z = x+ iy , z̄ = x− iy. (5.3.9)

The de Rham differential is
d = dz ∂z + dz̄ ∂z̄. (5.3.10)

The connection also naturally splits into holomorphic and antiholomorphic component:

ωΣ = ωzdz + ωz̄dz̄, (5.3.11)

defined as

ωz =
1

2
(ωx − iωy) , ωz̄ =

1

2
(ωx + iωy). (5.3.12)

The Poisson bracket expressed in these variables are

{ωaz (x, y), ωbz̄(x
′, y′)} =

2πi

k
δabδ(x− x′)δ(y − y′), (5.3.13)

{ωaz (x, y), ωbz(x
′, y′)} = {ωaz̄ (x, y), ωbz̄(x

′, y′)} = 0. (5.3.14)

The holomorphic and the antiholomorphic components of the connection are thus
mutually conjugate. We choose to define our physical states as the functionals of the
holomorphic component ωz. ωz will then act as a multiplication operator on the states,
while the Poisson brackets imply that the antiholomorphic part ωz̄ has to be realized
as a functional derivative operator:

ω̂z̄ = −2πi

k

δ

δωz
. (5.3.15)
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The scalar product on the Hilbert space of physical states will be defined in the fol-
lowing way. Given two states Ψ and Φ, their product is

〈Ψ,Φ〉 :=

∫
DωzDωz̄ exp

(
− k

4π

∫
Σ

tr(ω∗zωz)dz ∧ dz̄
)

Ψ(ωz)
∗Φ(ωz). (5.3.16)

Now we have to impose the constraint arising from the classical equation of motion
of ω0. This is done by requiring

F̂ωΣ
Ψ(ωz) = 0 (5.3.17)

which, in holomorphic coordinates, becomes(
∂z̄ωz −

2πi

k
∂z

δ

δωz
− 2πi

k
[ωz,

δ

δωz
]

)
Ψ(ωz) = 0. (5.3.18)

This is a Ward identity that must be fulfilled by the physical states of the theory.
What we have done so far depends on the particular choice of complex structure J

we made on Σ. This is a bit unpleasant, because the topological flavor of Chern-Simons
theory is spoiled and we would have preferred a quantum theory determined only by
the topological datum, which is the 2-manifold Σ. Nevertheless, we can regard our set
of Hilbert spaces arising from the canonical quantization for different choices of J as
a fiber bundle on the space of all complex structures on Σ. This bundle admits a flat
connection, which allows us to go from one Hilbert space to another and therefore to
link the spaces of states arising from different complex structures J in a unique way.

5.4 Wess-Zumino-Witten model

In this section we will explain some of the multiple connections that exist between
Chern-Simons theory and the Wess-Zumino-Witten model (WZW). This is a confor-
mal two dimensional sigma model which rises naturally when studying Chern-Simons
theory. In particular, the space of conformal blocks in WZW theory is also the Hilbert
space of states of the canonically quantized Chern-Simons. We will not attempt to go
deeper in the details behind this statement, instead we will show some direct appear-
ances of the WZW functional in the quantization of the Chern-Simons theory.

We begin with the definition of the WZW model. Given a closed two dimensional
manifold Σ and a compact semisimple Lie group G, the field content of the WZW
model is a smooth map g : Σ→ G. The action is defined as:

SWZW (g) = − ik
8π

∫
Σ

tr(g−1dzg ∧ g−1dz̄g)− ik

24π

∫
B

tr(g−1dg ∧ g−1dg ∧ g−1dg), (5.4.1)

with k ∈ Z. The first of the summands is the kinetic term, while the second is a
topological term. Here it is understood that a complex structure has been picked
on Σ, analogously to what we did in the last section in the canonical quantization
of Chern-Simons theory, so that we can work with complex variables z and z̄. The
topological term of this action is defined on a compact three dimensional manifold
which contains Σ as its boundary. We denoted this 3-manifold B. The g entering in



174 CHAPTER 5. CHERN-SIMONS THEORY

the second integral is an extension of the original g from Σ to the whole bulk of B.
This extension is not unique, therefore there is an ambiguity in this action. Again,
this ambiguity is only up to integers, because, as the reader may have noticed, the
three dimensional term in this action is proportional to the winding number w(g) we
introduced in section 5.1, and which is quantized. For instance, ifG is simply connected
and Σ = S2 then everything is well defined because π2(G) vanishes. Disregarding this
ambiguity, this action only depends on the two dimensional data g and Σ even if its
definition is intrinsically three dimensional.

If we put a G-connection 1-form ω on Σ, it is possible to define the so-called gauged
WZW model, whose action reads

SWZW (g;ω) = − ik
8π

∫
Σ

tr
(
(g−1dzg − 2ωz dz) ∧ g−1dz̄g

)
−

− ik

24π

∫
B

tr(g−1dg ∧ g−1dg ∧ g−1dg). (5.4.2)

The holomorphic part of the kinetic term is shifted by −2ωz dz. We could have shifted
the antiholomorphic part and leave the holomorphic one unchanged as well. Here the
connection ω is treated as a background field and the only dynamic variable is g as in
the ordinary WZW model. The importance of this gauged model will be shown soon.

Under an infinitesimal variation δg of the field the variation of the action is

δSWZW (g) =
ik

4π

∫
Σ

tr
(
g−1δgdz(g

−1dz̄g)
)
, (5.4.3)

and the variation of the gauged action reads

δSWZW (g;ω) =
ik

4π

∫
Σ

tr
(
g−1δgdz(g

−1dz̄g) + δgg−1dz̄(gωzdzg
−1)
)
. (5.4.4)

From these formulas we can derive the classical equation of motion which is

∂z(g
−1∂z̄g)− ∂z̄ωz − [g−1∂z̄g, ωz] = 0 (5.4.5)

for the gauged model, and the equation of motion for the action (5.4.1) is recovered
from this by putting ωz = 0.

Let us make the following remark which will be of use later: if the infinitesimal
variation of SWZW is taken near the identity map g = 1G, expression (5.4.4) takes the
form

δSWZW (g, ω)|g=1G = − k

2π

∫
Σ

tr(α∂z̄ωz), (5.4.6)

where the integration measure idzdz̄/2 has been made understood. In the last formula
α = δgg−1 : Σ → g is the element of the Lie algebra of G which parametrizes the
variation around g = 1G.

A remarkable property of the WZW model is the Polyakov-Wiegmann formula,
which describes how the action behaves under the composition of maps in G. For the
simple model it is

SWZW (hg) = SWZW (h) + SWZW (g)− ik

4π

∫
Σ

tr(h−1dz̄h ∧ dzgg−1). (5.4.7)
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For the gauged model, this formula becomes simpler:

SWZW (hg;ω) = SWZW (h; gω) + SWZW (g;ω). (5.4.8)

The first formula can be recovered from the second one by putting ω = 0. The extra
term in (5.4.7) is due to the dgg−1 shift in the gauge transformed connection gω.

In the last section we quantized Chern-Simons theory to obtain the Hilbert space of
physical quantum states of the theory, which are functionals of ωz that satisfy a Ward
identity (5.3.18). We need that these functionals behave under a gauge transformation
of the connection in such a way that the physics is not affected. Namely, we want that
Ψ(ωz) and Ψ(gωz) change only by a phase, so that every quantity computed using the
inner product of the Hilbert space is unchanged:

Ψ(gωz) = exp (iΞ(g, ωz)) Ψ(ωz). (5.4.9)

This phase cannot be arbitrary but it must fulfill some coherence conditions.
The first one derives from the Ward identity (5.3.18). Consider an infinitesimal

gauge transformation governed by α : Σ→ g:

ω → ω + δω = ω +Dωα. (5.4.10)

The variation of the state Ψ is

Ψ(ωz + δωz) = Ψ(ωz) +

∫
Σ

tr

(
δΨ(ωz)

δωz
Dωzα

)
=

= Ψ(ωz) +

∫
Σ

tr

(
Dωz

δΨ(ωz)

δωz
α

)
= Ψ(ωz)−

ik

2π

∫
Σ

tr(∂z̄ωzα). (5.4.11)

We used (5.3.18) in the last equality. If we now expand (5.4.9) in the first order in α
for the infinitesimal gauge transformation g = 1g + α we have:

Ψ(ωz + δωz) = exp (iΞ(1g + α, ωz)) Ψ(ωz) = Ψ(ωz) + iδΞ(g, ωz)|g=1GΨ(ωz). (5.4.12)

Comparing the two computation we come to the constraint

δΞ(g, ωz)|g=1G = − k

2π

∫
Σ

tr(∂z̄ωzα). (5.4.13)

The second coherence condition follows from the gauge action being a group action
on the space of connections. To implement the relation

Ψ(h(gωz)) = Ψ(hgωg) (5.4.14)

we need that

exp (iΞ(h, gωz)) exp (iΞ(g, ωz)) Ψ(ωz) = exp (iΞ(hg, ωz)) Ψ(ωz). (5.4.15)

Relation (5.4.13) is identical to the infinitesimal variation of the gauged WZW
model (5.4.6), while formula (5.4.15) is equivalent to the Polyakov-Wiegmann formula
(5.4.8). These two conditions are enough to determine that the functional Ξ must be
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the WZW gauged model. The states Ψ therefore transform under a gauge transfor-
mation as

Ψ(gωz) = exp (iSWZW (g;ωz)) Ψ(ωz). (5.4.16)

That’s how WZW model naturally rises in the quantization of the Chern-Simons the-
ory. As we mentioned, the WZW action as an ambiguity in its definition which is
contained in the winding number w(g) of the extension g of the gauge transformation
to the bulk of a three manifold having Σ as its boundary. Looking at formula (5.4.16)
is appears that we need the well-definiteness only of the imaginary exponential of the
WZW action functional, and this happens provided that the constant k in the action
is integer. This is another way to obtain level quantization in Chern-Simons theory.

Let us now consider the canonical quantization of Chern-Simons theory on a man-
ifold M with boundary [79]. Again, in order to employ canonical quantization we
take M = R × Σ with R regarded as the time direction and Σ this time is a com-
pact 2-manifold with non trivial boundary ∂Σ. The presence of a boundary in the
base manifold spoils the classical equation of motion and the gauge invariance of the
model: the variation of the action reads

δSCS(ω) =
k

2π

∫
M

tr(δω ∧ Fω) +
k

4π

∫
∂M

tr(δω ∧ ω), (5.4.17)

with a boundary term arising from integration by parts; gauge invariance suffers the
non-vanishing of the total differential in (5.1.5), which gives a contribution on the
boundary to the gauge transformed action. Both these problems can be circumvented
by choosing a suitable gauge fixing on the boundary ∂M = R× ∂Σ. For example we
set ω0|∂M = 0.

We can proceed as we did in the last section to obtain the action

SCS(ω) = − k

4π

∫
dt

∫
Σ

tr(ωΣ ∧ ∂tωΣ). (5.4.18)

with the constraint FωΣ
= 0. Now suppose that the topology of Σ is trivial with no

non-contractible loops, π1(Σ) = 0, such as for the disc Σ = D2, ∂Σ = S1. In this case
it is far more convenient to first impose the constraint and then to quantize, because
with no nontrivial loops all the flat connections are gauge equivalent to the trivial one
and the constraint FωΣ

= 0 has the only solution:

ωΣ = −dΣUU
−1, (5.4.19)

with U : M → G. We can now make a change of variable in the functional integral
of the partition function. Fortunately there is no Jacobian involved because it cancels
out with the change of variable in the delta function δ(FωΣ

):∫
DωΣ δ(FωΣ

) =

∫
DU δωΣ

δU

δ(F−dΣUU−1)

(δωΣ/δU)
=

∫
DU. (5.4.20)

Rewriting the action in terms of U leads straightforwardly to

SCS(U) = SCS(ωΣ = −dΣUU
−1) =

=
k

4π

∫
∂M

tr
(
U−1dtU ∧ U−1dθU

)
+

k

12π

∫
M

tr
(
U−1dU ∧ U−1dU ∧ U−1dU

)
. (5.4.21)

which is SWZW (U) up to a constant. This shows that the Chern-Simons theory canon-
ically quantized on a disc is the same as a WZW model on the disc.
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Figure 5.1: How the knots in the skein relation differ

5.5 Wilson Loops and Knot invariants

Chern-Simons theory can be successfully used to compute several kinds of topo-
logical invariants of the base manifold. The most remarkable results in this direction
are obtained in the computation of knot invariants.

Let M be a three dimensional manifold. Given two smooth maps φ, ψ : S1 → M ,
we say that φ and ψ are ambient isotopy equivalent if there is a smooth map F :
[0, 1]× S1 → M such that φ = F (0, ·) and ψ = F (1, ·). A knot in M is defined as an
ambient isotopy equivalence class of smooth maps from the circle S1 to M . Concretely,
two embeddings of the circle in M are identified if their images can be stretched and
moved without breaking them in such a way that they coincide. Usually M = S3 is
chosen, but other manifolds can be used. The most elementary knot is the unknot,
which is intuitively an embedded circle which is not knotted on itself. More rigorously,
is can be defined as a knot which is isotopic to a circle in M .

A link is instead a collection of knots in M which do not intersect. It can also be
viewed as an ambient isotopy class of maps from n-fold products of S1 to M . These
knots can be both knotted one with each other or disconnected. A knot can be seen
as a link with just one component.

The classification of knots and links is a very complicated task. A main tool are
the so called knot invariants, which are topological invariants of the embeddings of
the circle which are preserved by ambient isotopy. Among these there are the knot
polynomials. These are polynomials in one or more formal variables which can be
associated with knots. Here we are interested in the Jones polynomial. It is defined
by means of a particular recursive formula called skein relation as follows. First of all
the value of the polynomial for the unknot, denoted O, has to be normalized. It is
usually normalized to 1:

P (O) = 1. (5.5.1)

Then, for every other knot (or link) the polynomial can be computed using the formula

−tP (L+) + (t
1
2 − t−

1
2 )P (L0) + t−1P (L−) = 0. (5.5.2)

Here L+, L0 and L− are three links that are identical but in a small region where they
are as in figure 5.1.

Relation (5.5.2) is called skein relation. It’s easy to see that (5.5.2) together with
(5.5.1) makes it possible to compute the Jones polynomial for every link.

This definition relies on a projection of the knot on a two dimensional plane. This
plane is arbitrary and there is no way to prefer a choice over another, nevertheless it
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has been proved that the polynomial doesn’t depend on the particular two dimensional
projection.

The Jones polynomial is an important tool in the classification of knots and links,
but there are still some open questions: it’s known that different Jones polynomials
can belong only to non equivalent knots, but it is not sure that different knots always
generate different polynomials.

In [64] Witten showed that the Chern-Simons theory can be used to compute Jones-
like polynomial invariants of knots and links. This is done by the evaluation of the
Wilson loop

WR(C) = trR P exp

(∫
C

ω

)
, (5.5.3)

associated with a knot C and a representation R of the gauge group. This Wilson loop
is gauge invariant and is a quantum observable of the theory. Its expectation value is

Z(C) =

∫
DωeiSCS(ω)WR(C). (5.5.4)

We can also take a link with several knots C1, . . . , Ck and compute the product of their
Wilson loops:

Z(C1, · · · , Ck) =

∫
DωeiSCS(ω)

k∏
i=1

WRi(Ci). (5.5.5)

Let us takeG = SU(N). Furthermore all the representations Ri associated with the
Wilson loops are taken to be the defining N dimensional ones. Now suppose that the
partition function of the Chern-Simons theory is calculated on a base manifold M with
boundary ∂M . Let us denote it with Z(M). By canonical quantization an Hilbert
space H is associated with the two dimensional closed manifold ∂M . Z(M) then
defines a vector in H. If the orientation of the boundary is reversed then the Hilbert
space is the canonical dual H∨. Take now two three manifold M̃1 and M̃2 which have a
two sphere S2 as boundary, with opposite orientation. Z(M̃1) and Z(M̃2) are vectors
in reciprocally dual Hilbert spaces. If we consider the three manifold M obtained by
gluing M̃1 and M̃2 along their boundaries, then we have that Z(M) = 〈Z(M̃1), Z(M̃2)〉,
where 〈·, ·〉 is the canonical dual pairing. Now take two three balls B1 and B2 whose S2

boundaries have opposite orientation. Then also Z(B1) and Z(B2) are vectors in dual
spaces. These balls can be glued together to get a three sphere S3, or they can be glued
to M̃1 and M̃2 to obtain new closed three manifolds M1 and M2. This is illustrated
in figure 5.2. Now we have that Z(S3) = 〈Z(B1), Z(B2)〉, Z(M1) = 〈Z(M̃1), Z(B2)〉,
Z(M2) = 〈Z(B1), Z(M̃2)〉. The Hilbert spaces associated to some two manifolds via
the Feynman path integral of the Chern-Simons theory can be found with CFT on the
same manifolds as we saw. The interesting point now is that for S2 this space comes
out to be one dimensional. Thus it follows from simple linear algebra observations
that

Z(M)Z(S3) = Z(M1)Z(M2) (5.5.6)

or alternatively
Z(M)

Z(S3)
=
Z(M1)

Z(S3)

Z(M2)

Z(S3)
. (5.5.7)
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Figure 5.2: Manifolds M̃1, M̃2, B1 and B2 can be glued together to form M1, M2, M
and S3.

Suppose that we have S3 with several mutually unknotted knots C1, . . . , Ck em-
bedded in it. Denote by Z(S3, C1, . . . , Ck) the evaluation of (5.5.5) in this case. Define

〈C1 . . . Ck〉 := Z(S3;C1, . . . , Ck). (5.5.8)

Then from (5.5.7) it follows that

〈C1 . . . Ck〉 =
k∏
i=1

〈Ci〉. (5.5.9)

This is obtained by cutting the original S3 into several pieces which contain only one
knot.

If we have S3 with a link C embedded in it, we can cut out a region M which
includes two segments of the link, and view the three sphere with the link as the
union of M and the remainder N . We have that Z(S3, C) = 〈Z(M), Z(N)〉. The
pairing is the natural pairing on the mutually dual Hilbert spaces arising from the
boundaries of M and N , which are identical but with opposite orientation. These
boundaries are 2-spheres with four marked points - the points where the two segments
of the link C which were included in M were cut and separated from the rest of C,
and each point inherits a representation of SU(N) from C: two of them carry the
defining N -dimensional representation, the other two its dual version. Exploiting the
correlation with CFT, one finds that the quantum Hilbert space H associated by the
Chern-Simons theory with a marked 2-sphere is two- dimensional with this choice of
representations for the points. This means that every two vectors φ, ψ in H will fulfill
the relation

aZ(M) + bφ+ cψ = 0 (5.5.10)
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Figure 5.3: The geometric action of the operator B on the marked points of the 2-
sphere and its effect on the segments in M

for some complex numbers a, b, c. Two such vectors can be found just by changing the
braid of the lines in M when computing the path integral. This can be done by using
the operator B, which realizes on H the geometric swapping of two of the marked
points by making a half turn of one point around the other. Applying B once and
twice we obtain two different braids as shown in fig. 5.3. So we have

φ = BZ(M) , ψ = B2Z(M). (5.5.11)

Notice that if we take the two balls with the lines rearranged as in the second and
third images of fig. 5.3 and then we glue it with N in place of M , we obtain a 3-sphere
S3 with a link that is identical to C but for a small region (the one that was cut)
where the lines differ from C as L0 and L− differ from L+ in fig. 5.1. Let us call the
new links C1 and C2. Now we have that (5.5.10) implies

a〈Z(M), Z(N)〉+ b〈φ, Z(N)〉+ c〈ψ,Z(N)〉 = 0 (5.5.12)

which means
a〈C〉+ b〈C1〉+ c〈C2〉 = 0. (5.5.13)

The last equation is formally a skein relation for our invariant 〈C〉 defined in (5.5.8).
To make it explicit we have to determine the numbers a, b, c. To do this we notice that
since B acts on a two dimensional vector space, it obeys

B2 − trB + detB = 0, (5.5.14)

which means that relation (5.5.10) is satisfied by

a = detB , b = − trB , c = 1. (5.5.15)

Thus, to compute a, b, c we just need to find the eigenvalues of B which are functions
of N and k [64][82]. The final result is:

a = −eiπ
2

N(N+k) , (5.5.16)

b = −eiπ
2−N−N2

N(N+k) + eiπ
2+N−N2

N(N+k) , (5.5.17)

c = eiπ
2−2N2

N(N+k) . (5.5.18)
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After multiplying by an overall factor of exp(iπ N2−2
N(N+k)

) and introducing the notation

t = e
2πi
N+k , (5.5.19)

the final result is

a = −tN/2, (5.5.20)

b = t1/2 − t−1/2, (5.5.21)

c = t−N/2. (5.5.22)

It appears immediately that relation (5.5.13) with these coefficients for N = 2 is
exactly the skein relation for the Jones polynomials (5.5.2). It remains to determine
the value of 〈O〉. This can’t be fixed arbitrarily, as a simple use of the skein relation
(5.5.13) shows that

〈O〉 = −a+ c

b
(5.5.23)

which with the explicit expressions of the coefficients reads

〈O〉 =
tN/2 − t−N/2

t1/2 − t−1/2
, (5.5.24)

which for the case of N = 2 becomes

〈O〉 = t1/2 + t−1/2. (5.5.25)

This is different from the usual normalization that one chooses for the Jones polyno-
mial, which is 〈O〉 = 1 for the unknot, and this is due to the fact that our Wilson lines
observable respect the multiplicativity rule (5.5.9), which forces this normalization for
the unknot and does not hold under other normalizations.
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Chapter 6

2-Term L∞ Chern-Simons

In this chapter we shall construct and analyse a 4–dimensional semistrict analog
of the standard Chern–Simons theory [64]. Beside providing a potentially interesting
example of higher gauge theory, our construction, if it turns out successful, may furnish
a basic field theoretic framework for the study of 4–dimensional topology. This chapter
is taken from [19].

Our model was already introduced in lesser generality in ref. [21], where it was
analysed mainly employing the Batalin–Vilkovisky quantization algorithm [59, 60] in
the geometric AKSZ formulation [61]. Generalized Chern-Simons theory were studied
in [11] and in [62] in an AKSZ framework. See also [63].

6.1 Semistrict higher Chern–Simons theory

In this section, we shall describe in detail Lie 2–algebra Chern–Simons theory.
To highlight the way in which the model generalizes ordinary Chern–Simons theory
[64], we first review this latter using the gauge theoretic framework developed in chap-
ter 3.

Ordinary Chern–Simons Theory
The basic algebraic datum of ordinary Chern–Simons theory is a Lie algebra g

equipped with an invariant symmetric form (·, ·). The topological background is a
compact oriented 3–fold N . The field content consists in a g–connection ω on N . The
classical action functional reads

CS1(ω) = κ1

∫
N

[
(ω, f)− 1

6
(ω, [ω, ω])

]
, (6.1.1)

where the curvature f is given by (3.1.1). The classical field equations are

f = 0, (6.1.2)

(cf. eq. (3.1.1)) and entail that the connection ω is flat. We shall denote this classical
field theory by CS1(N, g) or simply CS1.

Let X be any manifold. In gauge theory, the de Rham complex Ω∗(X) contains the
special subcomplex Ωg

∗(X) formed by those forms that are polynomials in one or more
connections ωa and their differentials dωa. In turn, Ωg

∗(X) includes the subcomplex

183
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Ωginv
∗(X) of the elements invariant under the action (3.1.29) of the orthogonal gauge

transformation group OGau(X, g). For any g–connection ω on X, a form L1 ∈ Ω3(X),

L1 = (ω, f)− 1

6
(ω, [ω, ω]), (6.1.3)

formally identical to the Lagrangian density of the CS1 action is defined. While L1 ∈
Ωg

3(X), one has L1 6∈ Ωginv
3(X), since, as is well–known,

gL1 = L1 −
1

3
(σg, dσg) + d(σg, ω) (6.1.4)

for g ∈ OGau(X, g). It is a standard result of gauge theory that

dL1 = C1, (6.1.5)

where C1 ∈ Ω4(X) is the curvature bilinear

C1 = (f, f). (6.1.6)

Clearly, C1 ∈ Ωg
4(X). Unlike L1, however, C1 is invariant under OGau(X, g),

gC1 = C1. (6.1.7)

Thus, C1 ∈ Ωginv
4(X) as well. By (6.1.4) and (6.1.5), C1, while exact in the complex

Ωg
∗(X), is generally only closed in the OGau(X, g)–invariant complex Ωginv

∗(X). It
thus defines a class [C1]inv ∈ Hginv

4(X). More can be said. The variation δC1 of C1

under arbitrary variations of δω of ω is given by

δC1 = 2d(δω, f). (6.1.8)

where the 3–form in the right hand side is OGau(X, g) invariant

(gδω, gf) = (δω, f). (6.1.9)

It follows that, albeit C1 is not necessarily exact in Ωginv
∗(X), its variation δC1 always

is. This property characterizes L1 as the Chern–Simons form of a characteristic class
[C1]inv, in fact the 2nd Chern class.

The CS1 action is not invariant under the OGau(N, g) action (3.1.29). In fact,
from (6.1.4), one has

CS1(gω) = CS1(ω)− κ1Q1(g) (6.1.10)

for g ∈ OGau(N, g), where the anomaly Q1(g) is given by

Q1(g) =
1

3

∫
N

(σg, dσg). (6.1.11)

Q1(g) is in fact simply related to the CS1 functional itself,

Q1(g) = κ1
−1 CS1(σg). (6.1.12)
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The independence of Q1(g) from the connection ω implies so that the field equations
(6.1.2) are gauge invariant. Indeed this follows directly and independently from eq.
(3.1.30).

From (6.1.11), the anomaly density is the form q1 ∈ Ω3(N)

q1 =
1

3
(σg, dσg). (6.1.13)

Note that, since σg is a connection, q1 ∈ Ωg
3(N). From (6.1.4), (6.1.5) and (6.1.7), it

is readily seen that q1 is closed. The variation of q1 under continuous deformations of
the gauge transformation g is instead exact

δq1 = d(δσg, σg). (6.1.14)

Q1(g) is so a topological invariant of g. Another way of showing this is by using relation
(6.1.12): since flat connections ω are the ones solving the classical field equations
(6.1.2), and σg is a flat connection for any g (cf. eq. (3.1.27)), the variation of Q1(g) =
κ1
−1 CS1(σg) under an infinitesimal variation of g necessarily vanishes. Q1(g) reduces

in fact up to a factor to the customary winding number of the gauge transformation g
when g = Ad γ, σg = γ−1dγ for a map γ ∈ Map(N,G), G being a Lie group integrating
g.

By (3.1.27), the anomaly density q1 can be cast as

q1 = −1

6
(σg, [σg, σg]). (6.1.15)

This relation indicates that with q1 there is associated a special Chevalley–Eilenberg
cochain χ1 ∈ CE3(g),

χ1 = −1

6
(π, [π, π]), (6.1.16)

which is in fact a cocycle. By (3.1.27) and (2.1.14), if χ1 is exact in CE(g), then q1 is
exact in Ωg

∗(N). In order the anomaly Q1(g) to be non vanishing, so, it is necessary
that HCE

3(g) 6= 0. This is the case if g is semisimple.
Since Q1(g) vanishes for any gauge transformation g continuously connected with

the identity i, CS1 is annihilated by the BRST operator s (cf. eq. (3.1.14)),

sCS1(ω) = 0, (6.1.17)

as can be directly verified from (6.1.1). This property opens the way to the gauge
invariant perturbative quantization of the model.

Due to the OGau(N, g) gauge non invariance of the CS1 action functional, the
gauge invariant path integral quantization of the CS1 field theory is possible only if
the value of κ1 is such that κ1Q1(g) ∈ 2πZ for all g ∈ OGau(N, g). For g = u(n) and
(·, ·) = − trfund( · · ) this is achieved if

κ1 = − k

4π
, (6.1.18)

where k ∈ Z is an integer called level.
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Semistrict higher Chern–Simons theory
After reviewing ordinary Chern–Simons theory, we introduce the semistrict higher

Chern–Simons theory, which is the main topic of this paper. The basic algebraic
datum of the model is a balanced Lie 2–algebra v equipped with an invariant form
(·, ·) (cf. sect. 2.4.6). The topological background is a compact oriented 4–fold N .
The field content consists in a v–connection doublet (ω,Ωω) on N . The classical action
functional is

CS2(ω,Ωω) = κ2

∫
N

[
1

2
(2f + ∂Ωω, Ωω)− 1

24
(ω, [ω, ω, ω])

]
, (6.1.19)

where f is given by (3.2.7). The classical field equations of CS2(N, v) are

f = 0, (6.1.20a)

Ff = 0 (6.1.20b)

(cf. eqs. (3.2.7), (3.2.8)). They imply that the connection doublet (ω,Ωω) is flat,
analogously to standard CS theory. We shall denote this classical field theory by
CS2(N, v) or simply CS2.

Let X be any manifold. In semistrict gauge theory, in analogy to ordinary gauge
theory, the de Rham complex Ω∗(X) contains the special subcomplex Ωv

∗(X) formed
by those forms that are polynomials in the components of one or more connection
doublets (ωa, Ωa) and their differentials (dωa, dΩa). In turn, Ωv

∗(X) includes the sub-
complex Ωvinv

∗(X) of the elements invariant under the action (3.2.42) of the orthogonal
1–gauge transformation group OGau1(X, v). For any v–connection doublet (ω,Ωω) on
X, a form L2 ∈ Ω4(X)

L2 =
1

2
(2f + ∂Ωω, Ωω)− 1

24
(ω, [ω, ω, ω]). (6.1.21)

formally identical to the Lagrangian density of the CS2 action is defined. While L2 ∈
Ωv

4(X), one has L2 6∈ Ωvinv
4(X), since

gL2 = L2 −
1

4
(σg, dΣg)− d

[
1

2
(σg, Σg) (6.1.22)

+
1

6
(ω − σg, g1

−1g2(ω − σg, ω − σg) + 6Σg − 3τg(ω − σg))
]
.

for g ∈ OGau1(X, v). Similarly to standard gauge theory, one has

dL2 = C2, (6.1.23)

where C2 ∈ Ω5(X) is the curvature bilinear

C2 = (f, Ff ). (6.1.24)

Clearly, C2 ∈ Ωv
5(X). Unlike L2, however, C2 is invariant under OGau1(X, v),

gC2 = C2, (6.1.25)
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implying that C2 ∈ Ωvinv
5(X). By (6.1.22) and (6.1.23), C2, while exact in the complex

Ωv
∗(X), is generally only closed in the OGau1(X, v)–invariant complex Ωvinv

∗(X). It
thus defines a class [C2]inv ∈ Hvinv

5(X). Further, the variation δC2 of C2 under arbitrary
variations variations δω, δΩω of ω, Ωω is given by

δC2 = d
[
(δω, Ff ) + (f, δΩω)

]
. (6.1.26)

where the 5–form in the right hand side is OGau1(X, v) invariant

(gδω, gFf ) + (gf, gδΩω) = (δω, Ff ) + (f, δΩω). (6.1.27)

It follows that, although C2 is not necessarily exact in Ωvinv
∗(X), its variation δC2

always is. This property characterizes then L2 as the Chern–Simons form of a higher
characteristic class [C2]inv.

The CS2 action is not invariant under the OGau1(N, v) action (3.2.42). In fact,
from (6.1.22), analogously to ordinary Chern–Simons theory, one has

CS2(gω, gΩω) = CS2(ω,Ωω)− κ2Q2(g) (6.1.28)

for g ∈ OGau1(N, v), where the anomaly Q2(g) is given by

Q2(g) =
1

4

∫
N

[
2(dσg, Σg)− (σg, dΣg)

]
. (6.1.29)

Q2(g) is in fact simply related to the CS2 action itself,

Q2(g) = κ2
−1 CS2(σg, Σg). (6.1.30)

Again, the independence of Q2(g) from the connection doublet (ω,Ωω) implies that
the field equations (6.1.20) are gauge invariant, a property that follows also directly
and independently from eqs. (3.2.43).

From (6.1.29), the anomaly density is the form q2 ∈ Ω4(N)

q2 =
1

4

[
2(dσg, Σg)− (σg, dΣg)

]
. (6.1.31)

Note that, since (σg, Σg) is a connection doublet, q2 ∈ Ωv
4(N). From (6.1.22), (6.1.23)

and (6.1.25), it is readily seen that q2 is closed. The variation of q2 under continuous
deformations of the gauge transformation g is instead exact

δq2 = d(δσg, Σg). (6.1.32)

In CS2 too, Q2(g) is so a topological invariant of g. Another way of showing this is by
using relation (6.1.30): since flat connections (ω,Ωω) are the ones solving the classical
field equations (6.1.20) and (σg, Σg) is a flat connection doublet for any g (cf. eqs.
(3.2.15)), the variation of Q2(g) = κ2

−1 CS2(σg, Σg) under an infinitesimal variation of
g necessarily vanishes. In analogy to ordinary Chern–Simons theory, Q2(g) represents
a higher winding number of the higher gauge transformation g.

By using (3.2.15b), the anomaly density q2 can be cast as

q2 = − 1

24
(σg, [σg, σg, σg]) +

1

2
(∂Σg, Σg). (6.1.33)
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With q2 there is therefore associated a special higher Chevalley–Eilenberg cochain
χ2 ∈ CE4(v),

χ2 = − 1

24
(π, [π, π, π]) +

1

2
(∂Π,Π), (6.1.34)

which is in fact a cocycle. By (3.2.15) and (2.4.40), if χ2 is exact in CE(v), then q2

is exact in Ωv
∗(N). In this way, in order the anomaly Q2(g) to be non trivial, it is

necessary that HCE
4(v) 6= 0.

Since Q2(g) vanishes for any 1–gauge transformation g continuously connected with
the identity i, CS2 is invariant under the BRST operator (3.2.84),

sCS2(ω,Ωω) = 0, (6.1.35)

a property that can be directly verified from (6.1.19). As shown in subsect. 3.2.6, defin-
ing the BRST variations of the ghost fields c, Cc, Γ according to (3.2.89a), (3.2.89b)
(3.2.91), the BRST operator s turns out to be nilpotent provided the vanishing fake
curvature condition f = 0 is satisfied, since s2F = 0 for all fields and ghost fields F
except for Ωω, in which case one has

s2Ωω = −[f, Γ ] +
1

2
[f, c, c]. (6.1.36)

Being f = 0 one of the field equations, s is nilpotent on shell. Perturbative quantiza-
tion of the model is still possible, but it requires the Batalin–Vilkovisky quantization
algorithm [21].

As in ordinary Chern–Simons theory, the fact that the CS2 action is not OGau1(N, v)
invariant makes the gauge invariant path integral quantization of the CS field theory
impossible unless certain conditions are met. The pair of the 4–fold N and the bal-
anced Lie 2–algebra v with invariant form is said admissible if there exists a positive
value of κ2 such that κ2Q2(g) ∈ 2πZ for all g ∈ OGau1(N, v). Letting κ2Nv be the
smallest value of κ2 with such property, the gauge invariant path integral quantization
of the CS2(N, v) theory is possible, at least in principle, provided that

κ2 = kκ2Nv, (6.1.37)

where k ∈ Z is an integer, which we shall call level as in the ordinary theory.
An important issue of the theory is the classification of the admissible pairs (N, v).

We cannot provide any solution of it presently. This is also related to the fact that
the integrability of a semistrict Lie 2–algebra v to a semistrict Lie 2–group V is not
guaranteed in general. In the canonical quantization of semistrict higher Chern–Simons
theory carried out in the next subsections, we assume as a working hypothesis that
v is a balanced Lie 2–algebra with invariant form such that (N, v) is admissible for a
sufficiently ample class of closed 4–folds N .

6.2 Canonical quantization

In this section, we shall briefly review the canonical quantization of ordinary
Chern–Simons theory and then pass to that of the semistrict higher Chern–Simons
theory.
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To carry out the canonical quantization of a field theory, we restrict to the case
where the base manifold N is of the form N = R ×M with M a compact oriented
manifold. Let t denote the standard coordinate of R. Then, the derivation operator
dt is a globally defined nowhere vanishing vector field on R × M . We denote by
Ωh

p(R × M) the subspace of Ωp(R × M) consisting of those p–forms α such that
idtα = 0. Every p–form α ∈ Ωp(R×M) decomposes uniquely as α = dtαt +αs, where
αt ∈ Ωh

p−1(R × M), αs ∈ Ωh
p(R × M). Analogously, the differential d of R × M

decomposes as d = dtdt + ds, ds being the differential along M in R×M .
Ordinary Chern–Simons theory
In the CS1(R×M, g) theory, the g–connection ω decomposes as

ω = dtωt + ωs, (6.2.1)

where ωt ∈ Ωh
0(R×M, g), ωs ∈ Ωh

1(R×M, g). The curvature f of ω splits as

f = dtft + fs, (6.2.2)

where ft ∈ Ωh
1(R ×M, g), fs ∈ Ωh

2(R ×M, g), in similar fashion (cf. eqs. (3.1.1)).
ωs is itself a g–connection and fs is the associated curvature. The CS1 action (6.1.1)
reads then as

CS1(ω) = κ1

∫
R×M

dt

[
− (ωs, dtωs) + 2(ωt, fs)

]
. (6.2.3)

The field equations read then as

fs = 0, (6.2.4a)

dtωs −Dsωt = 0, (6.2.4b)

where Ds denotes the covariant differentiation operator associated with the connection
ωs defined according to (3.1.7) and ωt is treated as a bidegree (0, 0) field.

The momenta ξt, ξs canonically conjugate to ωt, ωs can easily be read off from
(6.2.3). In virtue of the linear isomorphisms g∨ ' g induced by the bilinear form (·, ·),
we have ξt ∈ Ωh

2(R×M, g), ξs ∈ Ωh
1(R×M, g),

ξt = 0, (6.2.5a)

ξs = −κ1ωs. (6.2.5b)

Ordinary Chern–Simons theory is therefore constrained. This requires the application
of Dirac’s quantization algorithm.

To this end, we set below

〈g, g′〉 =

∫
M

(g, g′) (6.2.6)

for g ∈ Ωp(M, g), g′ ∈ Ω2−p(M, g), for notational convenience. Further, for any
Ωp(M, g)–valued phase function ψ, we denote by gψ a Ω2−p(M, g)–valued phase con-
stant.
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In the Hamiltonian formulation of CS1(R ×M, g), the canonical field coordinates
are ωt ∈ Ω0(M, g), ωs ∈ Ω1(M, g) and their canonically conjugate momenta are re-
spectively ξt ∈ Ω2(M, g), ξs ∈ Ω1(M, g). The basic Poisson brackets are

{〈gωt , ωt〉, 〈ξt, gξt〉}P = 〈gωt , gξt〉, (6.2.7a)

{〈gωs , ωs〉, 〈ξs, gξs〉}P = 〈gωs , gξs〉, (6.2.7b)

The canonical Hamiltonian drawn from (6.2.3) is

H = −2κ1〈ωt, fs〉. (6.2.8)

The primary constraints corresponding to the relations (6.2.5a), (6.2.5b) are

ξt ≈ 0, (6.2.9a)

κ1ωs + ξs ≈ 0. (6.2.9b)

Implementation of the Dirac’s algorithm leads to the secondary constraints

fs ≈ 0, (6.2.10)

and no higher order constraints. Further, the phase functions ξt and fs are identified as
generators of gauge symmetries. Gauge fixing is thus required. A complete fixing of the
symmetry, however, leads to unwanted non locality in the resulting gauge fixed theory.
To remain in the framework of local field theory, we fix only the gauge symmetry
associated with ξt leaving that corresponding to fs unfixed. The gauge fixing condition
we choose to impose is

ωt ≈ 0, (6.2.11)

The constraints (6.2.9a), (6.2.9b), (6.2.11) form a second class set and, so, they can be
used to construct the Dirac brackets on the associated constrained phase space. The
only independent phase variable remaining after the constraints are taken into account
is ωs, whose Dirac brackets are

{〈gωs , ωs〉, 〈ωs, gωs ′〉}D = − 1

2κ1

〈gωs , gωs ′〉. (6.2.12)

The constraint (6.2.10) remains pending. fs generates now the constrained phase space
BRST transformations. Introducing a ghost field cs ∈ Ω0(M, g[1]), we have

{〈fs, cs〉, 〈ωs, gωs〉}D =
1

2κ1

〈ssωs, gωs〉, (6.2.13)

where ssωs is given by

ssωs = −Dscs, (6.2.14)

in agreement with (3.1.14).
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We quantize CS1(R×M, g) by replacing the classical field ωs satisfying the Dirac
brackets (6.2.12) with a corresponding quantum field ω̂s satisfying the commutation
relations

[〈gωs , ω̂s〉, 〈ω̂s, gωs ′〉] = − i

2κ1

〈gωs , gωs ′〉. (6.2.15)

The constraint (6.2.10), which we left pending in the classical theory, becomes a con-
dition obeyed by the state vectors Ψ of the theory,

〈f̂s, gfs〉Ψ = 0. (6.2.16)

Semistrict higher Chern–Simons theory
The canonical quantization of semistrict higher Chern–Simons theory proceeds on

the same lines as the ordinary case. The structural similarities and differences of the
two models should be evident to the reader.

In the CS2(R×M, v) theory, the v–connection doublet (ω,Ωω) splits as

ω = dtωt + ωs, (6.2.17a)

Ωω = dtΩωt +Ωωs, (6.2.17b)

where ωt ∈ Ωh
0(R × M, v0), ωs ∈ Ωh

1(R × M, v0), Ωωt ∈ Ωh
1(R × M, v1), Ωωs ∈

Ωh
2(R×M, v1). Similarly, the curvature doublet (f, Ff ) of (ω,Ωω) splits as

f = dtft + fs, (6.2.18a)

Ff = dtFft + Ffs (6.2.18b)

(cf. eqs. (3.2.7), (3.2.8)), where ft ∈ Ωh
1(R ×M, v0), fs ∈ Ωh

2(R ×M, v0), Fft ∈
Ωh

2(R×M, v1), Ffs ∈ Ωh
3(R×M, v1). Here, (ωs,Ωωs) is itself a v–connection doublet

and (fs, Ffs) is the associated curvature doublet. The CS2 action (6.1.19) reads then
as

CS2(ω,Ωω) = κ2

∫
R×M

dt

[
1

2
(dtωs, Ωωs) (6.2.19)

− 1

2
(ωs, dtΩωs) + (ωt, Ffs) + (fs, Ωt)

]
.

The field equations read then as

fs = 0, (6.2.20a)

Ffs = 0, (6.2.20b)

dtωs −Dsωt = 0, (6.2.20c)

dtΩωs −DsΩωt = 0, (6.2.20d)
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where Ds denotes the covariant differentiation operator associated with the connection
doublet (ωs,Ωωs) defined according to (3.2.13a), (3.2.13b) and (ωt,Ωωt) is treated as a
bidegree (0, 0) field doublet.

The expressions of momenta Ξξt, Ξξs, ξt, ξs canonically conjugate to ωt, ωs, Ωωt,
Ωωs can easily be read off from (6.2.19). In virtue of the linear isomorphisms v0

∨ ' v1,
v1
∨ ' v0 induced by the non singular bilinear pairing (·, ·) of v0 and v1, we have

Ξξt ∈ Ωh
3(R×M, v1), Ξξs ∈ Ωh

2(R×M, v1), ξt ∈ Ωh
2(R×M, v0), ξs ∈ Ωh

1(R×M, v0)
and

Ξξt = 0, (6.2.21a)

Ξξs =
κ2

2
Ωωs, (6.2.21b)

ξt = 0, (6.2.21c)

ξs = −κ2

2
ωs. (6.2.21d)

Higher semistrict Chern–Simons theory, as ordinary one, is therefore constrained. This
requires once more the application of Dirac’s quantization algorithm. Its implementa-
tion turns out to be straightforward.

For notational convenience, below we set

〈g,G〉 =

∫
M

(g,G) (6.2.22)

for g ∈ Ωp(M, v0), G ∈ Ω3−p(M, v1). Further, for any Ωp(M, v0)–valued phase function
ψ, we denote by Gψ a Ω3−p(M, v1)–valued phase constant and, for any Ωp(M, v1)–
valued phase function Ψ , we denote by gΨ a Ω3−p(M, v0)–valued phase constant.

In the Hamiltonian formulation of CS2(R ×M, v), the canonical field coordinates
are ωt ∈ Ω0(M, v0), ωs ∈ Ω1(M, v0), Ωωt ∈ Ω1(M, v1), Ωωs ∈ Ω2(M, v1) and their
canonically conjugate momenta are respectively Ξξt ∈ Ω3(M, v1), Ξξs ∈ Ω2(M, v1),
ξt ∈ Ω2(M, v0), ξs ∈ Ω1(M, v0). The basic Poisson brackets are

{〈ωt, Gωt〉, 〈gΞξt , Ξξt〉}P = 〈gΞξt , Gωt〉, (6.2.23a)

{〈ωs, Gωs〉, 〈gΞξs , Ξξs〉}P = 〈gΞξs , Gωs〉, (6.2.23b)

{〈gΩωt , Ωωt〉, 〈ξt, Gξt〉}P = 〈gΩωt , Gξt〉, (6.2.23c)

{〈gΩωs , Ωωs〉, 〈ξs, Gξs〉}P = 〈gΩωs , Gξs〉. (6.2.23d)

The canonical Hamiltonian implied by (6.2.19) is

H = −κ2[〈ωt, Ffs〉+ 〈fs, Ωωt〉]. (6.2.24)
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The primary constraints stemming from relations (6.2.21a)–(6.2.21d) are

Ξξt ≈ 0, (6.2.25a)

κ2

2
Ωωs − Ξξs ≈ 0, (6.2.25b)

ξt ≈ 0, (6.2.25c)

κ2

2
ωs + ξs ≈ 0. (6.2.25d)

Implementation of the Dirac’s algorithm leads to the secondary constraints

fs ≈ 0, (6.2.26a)

Ffs ≈ 0 (6.2.26b)

and no higher order constraints. Further, the phase functions ξt, Ξξt, fs and Ffs are
identified as generators of gauge symmetries. Gauge fixing is thus required. A complete
fixing of the symmetry, however, leads to a problematic non local gauge fixed theory
as in the ordinary case. To remain in the framework of local field theory, we fix only
the gauge symmetry associated with ξt, Ξξt leaving that corresponding to fs and Ffs
unfixed. The gauge fixing conditions we impose are

ωt ≈ 0, (6.2.27a)

Ωωt ≈ 0. (6.2.27b)

The constraints (6.2.25a)–(6.2.25d), (6.2.27a), (6.2.27b) form a second class set and, so
they can be used to construct the Dirac brackets on the associated constrained phase
space. The only independent phase variables remaining after the constraints are taken
into account are ωs, Ωωs and their Dirac brackets are

{〈ωs, Gωs〉, 〈gΩωs , Ωωs〉}D =
1

κ2

〈gΩωs , Gωs〉. (6.2.28)

The constraints (6.2.26a), (6.2.26b) are left pending. As it is immediate to see, fs,
Ffs generate constrained phase space BRST transformations. Introducing ghost fields
cs ∈ Ω0(M, v0[1]) and Ccs ∈ Ω1(M, v1[1]), we have

{〈fs, Ccs〉+ 〈cs, Ffs〉, 〈ωs, Gωs〉}D =
1

κ2

〈ssωs, Gωs〉, (6.2.29a)

{〈fs, Ccs〉+ 〈cs, Ffs〉, 〈gΩωs , Ωωs}D = − 1

κ2

〈gΩωs , ssΩωs〉. (6.2.29b)

where ssωs, ssΩωs are given by

ssωs = −Dscs, (6.2.30a)

ssΩωs = −DsCcs, (6.2.30b)
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in agreement with (3.2.84a), (3.2.84b).
We quantize CS2(R × M, v) by replacing the classical fields ωs, Ωωs satisfying

the Dirac brackets (6.2.28) with corresponding quantum fields ω̂s, Ω̂ωs satisfying the
commutation relations

[〈ω̂s, Gωs〉, 〈gΩωs , Ω̂ωs〉] =
i

κ2

〈gΩωs , Gωs〉. (6.2.31)

The constraints (6.2.26a), (6.2.26b), which we left pending in the classical theory,
translate into conditions obeyed by the state vectors Ψ of the theory

〈f̂s, Gfs〉Ψ = 0, (6.2.32a)

〈gFfs , F̂fs〉Ψ = 0. (6.2.32b)

6.3 Choice of polarization and Ward identities

To build a representation of the operator algebra yielded by canonical quantiza-
tion, we must choose a polarization, a maximal integrable distribution on the classical
phase space, the restriction of the Dirac symplectic form to which vanishes. The
polarization must be gauge invariant by consistency.

Henceforth, we shall make reference exclusively to the space manifold M . We shall
thus suppress the index s throughout as it is no longer necessary lightening in this way
the notation.

Ordinary Chern–Simons theory
In the canonically quantized CS1(R ×M, g) theory reviewed in subsect. 6.2, the

space manifold M is a 2–dimensional surface. The conventionally normalized Dirac
symplectic form is in this case

〈δω, δω〉 = −2κ1

∫
M

(δω, δω). (6.3.1)

This can be checked to be invariant under any gauge transformation g ∈ OGau (M, g)
acting by (3.1.29).

A generic phase space vector field is of the form〈
g δ
δω
,
δ

δω

〉
F =

∫
M

(
g δ
δω
,
δF

δω

)
(6.3.2)

where δ/δω is a Ω1(M, g)–valued vector field. A standard polarization of the phase
space ω is built as follows. One picks a complex structure on the surface M and uses
the marks 10, 01 to denote the holomorphic and antiholomorphic components of a
1–form. Setting δ/δω10 = −i(δ/δω)01, δ/δω01 = i(δ/δω)10, the polarization is defined
by the integrable distribution of the vector fields〈

v δ
δω

10,
δ

δω10

〉
, (6.3.3)

where vδ/δω
10(ω) is a phase function. The distribution is gauge invariant, since one has

gδ/δω10 = g(δ/δω10) for g ∈ OGau(M, g).
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With the above choice of polarization, the quantum Hilbert space H of the CS1

theory consists of phase space functionals Ψ(ω) satisfying〈
v δ
δω

10,
δΨ

δω10

〉
= 0, (6.3.4)

that is of holomorphic wave functionals Ψ(ω01). The Hilbert structure appropriate for
H, as realized in [80], is thus of the Bargmann type. The Ψ belonging to H must
satisfy the formal square integrability condition∫

Dω01Dω10 exp
(
2iκ1〈ω10, ω01〉

)
|Ψ(ω01)|2 <∞, (6.3.5)

where Dω01Dω10 is a formal functional measure. Note that a restriction on the sign of
κ1 is implied by the convergence of (6.3.5). The Hilbert inner product is correspond-
ingly given by Bargmann expression

〈Ψ1, Ψ2〉 =

∫
Dω01Dω10 exp

(
2iκ1〈ω10, ω01〉

)
Ψ1(ω01)∗ Ψ2(ω01). (6.3.6)

The field operators ω̂01, ω̂10 satisfying (6.2.31) are represented by

〈gω10, ω̂01〉 = 〈g10
ω , ω

01 · 〉, (6.3.7a)

〈ω̂10, gω
01〉 =

〈
− 1

2κ1

δ

δω01
, gω

01
〉
. (6.3.7b)

In virtue of the exponential factor in the inner product, one has ω̂01+ = ω̂10 as required.
In the representation (6.3.7), the vanishing curvature constraint (6.2.16) takes the

form 〈
d10ω01 − 1

2κ1

(
d01 δ

δω01
+
[
ω01,

δ

δω01

])
, gf

〉
Ψ(ω01) = 0, (6.3.8)

This is a WZW type Ward identity determining the variation of Ψ(ω01) under an
infinitesimal gauge transformation u ∈ oaut(M, g) with u = ad θ, σ̇u = dθ with θ
being a bidegree (0, 0) field. Noting that the resulting variation of ω is

δuω
01 = D01θ (6.3.9)

by (6.2.14), we have
δuΨ(ω01) = 2iκ1〈d10ω01, θ〉Ψ(ω01). (6.3.10)

Therefore, the gauge variation of Ψ(ω01) under a finite gauge transformation g ∈
OGau(M, g) is given by a universal multiplicative factor

Ψ(gω01) = exp(iSWZW1(g, ω01))Ψ(ω01), (6.3.11)

where SWZW1(g, ω01) is the gauged WZW action. By consistency with the group action
property of gauge transformation on connections, SWZW1(g, ω01) obeys the Polyakov-
Wiegmann identity

SWZW1(h � g, ω01) = SWZW1(h, gω01) + SWZW1(g, ω01) mod 2π. (6.3.12)
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To reproduce the infinitesimal variation (6.3.24), SWZW1(g, ω) must satisfy the nor-
malization condition

δuSWZW1(g, ω̃01)|g=i = 2κ1〈d10ω01, θ〉, (6.3.13)

where the tilde notation indicates that δu is inert on ω01. (6.3.12), (6.3.13) essentially
determine the expression of SWZW1(g, ω). When M is the boundary of a 3–fold B and
g can be extended to an element of OGau(B, g), we have

SWZW1(g, ω01) = κ1

∫
M

[
(σg

10, σg
01)− 2(σg

10, ω01)
]

(6.3.14)

+
κ1

3

∫
B

(σg, dσg) mod 2π,

a classic result [83]. The independence of exp(iSWZW1(g, ω01)) from the choice of
B requires that the CS1 anomaly density 3–form κ1q1 (cf. eq. (6.1.13)) integrates
to an integer multiple of 2π on any closed 3–fold of the form N = B ∪ −B′ with
∂B = ∂B′ = M . This is how the quantization condition of κ1 emerges in the canonical
quantization of the CS1 theory.

Semistrict Chern–Simons theory
In the canonically quantized CS2(R × M, v) theory worked out in subsect. 6.2,

the space manifold M is a 3–dimensional space. The associated normalized Dirac
symplectic form is in this case

〈δω, δΩω〉 = κ2

∫
M

(δω, δΩω). (6.3.15)

The form is invariant under any 1–gauge transformation g ∈ OGau1(M, v) acting via
(3.2.42). In 3 dimensions, 1– and 2–forms have the same number of functional degrees
of freedom. The phase space has thus the usual Hamiltonian form.

The vector fields δ/δω, δ/δΩω are specified by the relation[〈
g δ
δω
,
δ

δω

〉
+
〈 δ

δΩω

, G δ
δΩω

〉]
F (6.3.16)

=

∫
M

[(
g δ
δω
,
δF

δω

)
+
( δF
δΩω

, G δ
δΩω

)]
,

for any phase function F (ω,Ωω). A canonical polarization in the phase space (ω,Ωω)
is defined as follows. It is spanned by the vector fields of the form〈 δ

δΩω

, V δ
δΩω

〉
, (6.3.17)

where Vδ/δΩω(ω,Ωω) is a phase function and it is understood that δ/δΩω does not act
on Vδ/δΩω . The distribution (6.3.17) is clearly integrable. It is also checked that it is
gauge invariant by noting that gδ/δω = g1(δ/δω) + terms linear in δ/δΩω, gδ/δΩω =
g0(δ/δΩω) under a gauge transformation g ∈ OGau1(M, v).

With the above choice of polarization, the quantum Hilbert space H consists of
phase space functionals Ψ(ω,Ωω) satisfying〈 δΨ

δΩω

, V δ
δΩω

〉
= 0, (6.3.18)
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that is of wave functionals Ψ(ω) depending on ω only. The Ψ belonging to H must
satisfy a square integrability condition of the form∫

Dω |Ψ(ω)|2 <∞. (6.3.19)

where Dω is a suitable formal functional measure. The Hilbert inner product has then
the familiar form

〈Ψ1, Ψ2〉 =

∫
Dω Ψ1(ω)∗ Ψ2(ω). (6.3.20)

The field operators ω̂, Ω̂ω satisfying (6.2.31) are represented by

〈ω̂, Gω〉 = 〈ω · , Gω〉, (6.3.21a)

〈gΩω , Ω̂ω〉 =
〈
gΩω ,−

i

κ2

δ

δω

〉
. (6.3.21b)

They are manifestly formally selfadjoint with respect to the Hilbert product (6.3.20):

ω̂+ = ω̂ and Ω̂ω
+ = Ω̂ω.

By (6.3.21), the constraints (6.2.32) take the form〈
dω +

1

2
[ω, ω] +

i

κ2

∂
δ

δω
,Gf

〉
Ψ(ω) = 0, (6.3.22a)〈

gF ,−
i

κ2

(
d
δ

δω
+
[
ω,

δ

δω

])
− 1

6
[ω, ω, ω]

〉
Ψ(ω) = 0. (6.3.22b)

These are the Ward identities obeyed by Ψ . They determine the variation of Ψ(ω)
under an infinitesimal gauge transformation u ∈ oaut0(M, v) with u = ad θ, σ̇u =
dθ + ∂Θθ, Σ̇u = dΘθ, τ̇u(π) = −[π,Θθ], (θ, Θθ) being a bidegree (0, 0) field doublet.
Noting that the resulting variation of ω is

δuω = Dθ (6.3.23)

(cf. eq. (6.2.30a)), we have

δuΨ(ω) = iκ2

[〈
dω +

1

2
[ω, ω], Θθ

〉
− 1

6
〈θ, [ω, ω, ω]〉

]
Ψ(ω). (6.3.24)

Therefore, the gauge variation of Ψ(ω) under a finite gauge transformation g ∈ OGau1(M, v)
is given by a universal multiplicative factor

Ψ(gω) = exp(iSWZW2(g, ω))Ψ(ω), (6.3.25)

where SWZW2(g, ω) is a higher analog of the gauged WZW action. In analogy to its
ordinary counterpart, SWZW2(g, ω) obeys a higher version of the Polyakov-Wiegmann
identity

SWZW2(h � g, ω) = SWZW2(h, gω) + SWZW2(g, ω) mod 2π. (6.3.26)
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To reproduce the infinitesimal variation (6.3.24), SWZW2(g, ω) must satisfy further the
normalization condition

δuSWZW2(g, ω̃)|g=i = κ2

[〈
dω +

1

2
[ω, ω], Θθ

〉
− 1

6
〈θ, [ω, ω, ω]〉

]
, (6.3.27)

where the tilde indicates that δu is inert on ω. An expression of SWZW2(g, ω) fulfilling
relations (6.3.26), (6.3.27) holding when M is the boundary of a 4–fold B and g can
be extended to and element of OGau1(B, v) is

SWZW2(g, ω) = −κ2

2

∫
M

[
(σg − ω, τg(σg − ω))− 2(ω − σg, Σg) (6.3.28)

+
1

3
(σg − ω, g1

−1g2(σg − ω, σg − ω))
]

+
κ2

4

∫
B

[
2(dσg, Σg)− (σg, dΣg)

]
mod 2π.

As in the ordinary case, the independence of exp(iSWZW2(g, ω)) from the choice of
B requires that the CS2 anomaly density 4–form κ2q2 (cf. eq. (6.1.31)) integrates
to an integer multiple of 2π on any closed 4–fold of the form N = B ∪ −B′ with
∂B = ∂B′ = M . This will be the case if the pair (N, v) is admissible for a sufficiently
broad class of closed 4-folds N , as we assumed earlier at the end of subsect. 6.1

The polarization we have constructed above is fully topological in the sense that its
definition does not require the choice of any auxiliary structure on the threefold M . In
this respect, the associated semistrict Chern–Simons theory is manifestly topological
in a way ordinary Chern–Simons theory is not. There is however another choice of
polarization more similar in flavour to standard Chern–Simons’ in that it assumes the
assignment of a strictly pseudoconvex CR structure on M .

We review briefly a few basic facts about CR structures to the reader’s benefit. (See
refs. [84, 85]for background material.) In a CR 3–fold M , the complexified cotangent
bundle T ∗M ⊗C has a direct sum decomposition T ∗100M ⊕ T ∗010M ⊕ T ∗001M , where
T ∗100M , T ∗010M , T ∗001M are line subbundles of T ∗M ⊗ C, T ∗001M = T ∗100M and
T ∗010M is the complexification of a trivial line subbundle E of T ∗M , the one fiberwise
generated by the underlying contact form. Forms of M are graded accordingly. For
instance, a 1–form α ∈ Ω1(M) has three components, α = α100 +α010 +α001. A 2–form
β ∈ Ω2(M) has also three components, β = β110 + β101 + β011. Strictly pseudoconvex
CR spaces are the closest 3–dimensional analog of Riemann surfaces. In particular,
with the strictly pseudoconvex CR structure of a space there is associated a class of
metrics, called Webster metrics, related to each other by a change of the normalization
of the contact form, much as with a conformal structure of a surface there is associated
a conformal class of metrics.

A second polarization of the phase space (ω,Ωω) is built as follows. One picks a
strictly pseudoconvex CR structure on M . Setting δ/δω100 = −i(δ/δω)011, δ/δω010 =
−i(δ/δω)101, δ/δω001 = −i(δ/δω)110 and δ/δΩω

011 = −i(δ/δΩω)100, δ/δΩω
101 = −i(δ/δΩω)010,

δ/δΩω
110 = −i(δ/δΩω)001, the polarization is spanned by the vector fields of the form〈 δ

δΩω
110
, V δ

δΩω

110
〉

+
〈 δ

δΩω
011
, V δ

δΩω

011
〉

+
〈
v δ
δω

010,
δ

δω010

〉
, (6.3.29)
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where Vδ/δΩω(ω,Ωω)110, Vδ/δΩω(ω,Ωω)011, vδ/δω(ω,Ωω)010 are phase functions and again
it is understood that δ/δΩω

110, δ/δΩω
011 does not act on Vδ/δΩω

110, Vδ/δΩω
110. It is

easily checked that the distribution (6.3.29) is integrable. It is also checked that it
is gauge invariant by noting that gδ/δω010 = g1(δ/δω010) + terms linear in δ/δΩω

110,
δ/δΩω

011 and gδ/δΩω
110 = g0(δ/δΩω

110), gδ/δΩω
011 = g0(δ/δΩω

011) under a gauge
transformation g ∈ OGau1(M, v).

With the above choice of polarization, the quantum Hilbert space H consists of
phase space functionals Ψ(ω,Ωω) satisfying

〈 δΨ

δΩω
110
, V δ

δΩω

110
〉

+
〈 δΨ

δΩω
011
, V δ

δΩω

011
〉

+
〈
v δ
δω

010,
δΨ

δω010

〉
= 0 (6.3.30)

that is of wave functionals Ψ(ω100, ω001, Ωω
101). The Ψ must satisfy a square integra-

bility condition of the form∫
Dω100Dω001DΩω

101 |Ψ(ω100, ω001, Ωω
101)|2 <∞. (6.3.31)

where Dω100Dω001DΩω
101 is a suitable functional measure. The Hilbert inner product

is then

〈Ψ1, Ψ2〉 =

∫
Dω100Dω001DΩω

101 (6.3.32)

× Ψ1(ω100, ω001, Ωω
101)∗ Ψ2(ω100, ω001, Ωω

101).

The field operators ω̂, Ω̂ω satisfying (6.2.31) are realized as

〈ω̂100, Gω
011〉 = 〈ω100 · , Gω

011〉, (6.3.33a)

〈ω̂010, Gω
101〉 =

〈
− 1

κ2

δ

δΩω
101
, Gω

101
〉
,

〈ω̂001, Gω
110〉 = 〈ω001 · , Gω

110〉,

〈gΩω100, Ω̂ω
011〉 =

〈
gΩω

100,
1

κ2

δ

δω100

〉
, (6.3.33b)

〈gΩω010, Ω̂ω
101〉 = 〈gΩω010, Ωω

101 · 〉,

〈gΩω001, Ω̂ω
110〉 =

〈
gΩω

001,
1

κ2

δ

δω001

〉
.

They satisfy the natural adjunction relations ω̂100+ = ω̂001, ω̂010+ = ω̂010 and Ω̂ω
011+ =

Ω̂ω
110, Ω̂ω

101+ = Ω̂ω
101.

By (6.3.33), the constraints (6.2.32) presently read

〈 1

κ2

(
d100 δ

δΩω
101

+
[
ω100,

δ

δΩω
101

]
(6.3.34a)
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+ ∂
δ

δω001

)
− d010ω100, Gf

001
〉
Ψ(ω100, ω001, Ωω

101) = 0,

〈d100ω001 + d001ω100 + [ω100, ω001]− ∂Ωω
101, Gf

010〉Ψ(ω100, ω001, Ωω
101) = 0,〈 1

κ2

(
d001 δ

δΩω
101

+
[
ω001,

δ

δΩω
101

]
+ ∂

δ

δω100

)
− d010ω001, Gf

100
〉
Ψ(ω100, ω001, Ωω

101) = 0,〈
gF ,

1

κ2

(
d100 δ

δω100
+ d001 δ

δω001
+
[
ω100,

δ

δω100

]
+
[
ω001,

δ

δω001

]
(6.3.34b)

−
[ δ

δΩω
101
, Ωω

101
]

+
[
ω100,

δ

δΩω
101
, ω001

])
+ d010Ωω

101
〉
Ψ(ω100, ω001, Ωω

101) = 0.

In the fifth term of (6.3.34b), it is understood that δ/δΩω
101 is inert onΩω

101. These are
the Ward identities obeyed by Ψ in this CR canonical quantization scheme. They deter-
mine the variation of a Ψ(ω100, ω001, Ωω

101) under an infinitesimal gauge transformation
u ∈ oaut0(M, v) of the form u = ad θ, σ̇u = dθ + ∂Θθ, Σ̇u = dΘθ, τ̇u(π) = −[π,Θθ],
(θ, Θθ) as earlier. The resulting variations of ω100, ω001, Ωω

101 are given by

δuω
100 = (Dθ)100 = d100θ + [ω100, θ] + ∂Θθ

100, (6.3.35a)

δuω
001 = (Dθ)001 = d001θ + [ω001, θ] + ∂Θθ

001,

δuΩω
101 = (DΘθ)

101 = d100Θθ
001 + [ω100, Θθ

001] (6.3.35b)

+ d001Θθ
100 + [ω001, Θθ

100]− [z,Ωω
101] + [ω100, ω001, z]

(cf. eq. (6.2.30a)). On account of (6.3.35), we have

δuΨ(ω100, ω001, Ωω
101) = iκ2

[
〈θ, d010Ωω

101〉 (6.3.36)

+ 〈d010ω100, Θθ
001〉+ 〈d010ω001, Θθ

100〉
]
Ψ(ω100, ω001, Ωω

101).

Therefore, the gauge variation of Ψ(ω) under a finite gauge transformation g ∈ OGau1(M, v)
is given by a universal multiplicative factor

Ψ(gω100, gω001, gΩω
101) (6.3.37)

= exp(iSWZW2(g, ω100, ω001, Ωω
101))Ψ(ω100, ω001, Ωω

101),

where SWZW2(g, ω100, ω001, Ωω
101) is another higher analog of the gauged WZW action.

Again, as its ordinary counterpart, it obeys a higher Polyakov-Wiegmann identity

SWZW2(h � g, ω100, ω001, Ωω
101) (6.3.38)

= SWZW2(h, gω100, gω001, gΩω
101) + SWZW2(g, ω100, ω001, Ωω

101) mod 2π



6.3. CHOICE OF POLARIZATION AND WARD IDENTITIES 201

To reproduce the infinitesimal variation (6.3.36), SWZW2(g, ω100, ω001, Ωω
101) must sat-

isfy the normalization condition

δuSWZW2(g, ω̃100, ω̃001, Ω̃ω
101)|g=i (6.3.39)

= κ2

[
〈θ, d010Ωω

101〉+ 〈d010ω100, Θθ
001〉+ 〈d010ω001, Θθ

100〉
]

where again the tilde notation indicates that δu is inert on ω100, ω001, Ωω
101. An

expression of SWZW2(g, ω100, ω001, Ωω
101) fulfilling relation (6.3.38) holding when M is

the boundary of a 4–fold B and g can be extended to an element of Gau1(B, v) is

SWZW2(g, ω100, ω001, Ωω
101) (6.3.40)

= −κ2

2

∫
M

[
2(σg

100 − ω100, τg
010(σg

001 − ω001))

− 2(ω100 − σg100, Σg
011)− 2(ω001 − σg001, Σg

110) + 2(σg
010, Ωω

101)
]

+
κ2

4

∫
B

[
2(dσg, Σg)− (σg, dΣg)

]
mod 2π,

where for the last term the same considerations as before hold. This action does not
fulfill (6.3.39) however, but a weaker version of it,

δuSWZW2(g, ω̃100, ω̃001, Ω̃ω
101)|g=i (6.3.41)

= κ2

[
〈θ, d010Ωω

101〉+ 〈d010ω100, Θθ
001〉+ 〈d010ω001, Θθ

100〉

+ 〈d100ω001 + d001ω100 + [ω100, ω001]− ∂Ωω
101, Θθ

010〉
]
.

This however poses no problem. By the second Ward identity (6.3.34a), the field func-
tionals Ψ(ω001, Ωω

101) are supported precisely on the functional hypersurface d100ω001+
d001ω100 + [ω100, ω001]− ∂Ωω

101 = 0. Thus the last offending term in (6.3.41) vanishes
identically upon insertion in (6.3.37).

To summarize, we have found that, when certain conditions are met, semistrict
higher Chern–Simons theory admits two distinct canonical quantizations and corre-
spondingly two sets of higher WZW Ward identities each characterized by a gauged
WZW action.

The first canonical quantization is manifestly topological, as it does not necessitate
a choice of any additional structure on the spacial 3–fold. The second one requires
instead a choice of a CR structure on the latter. The unitary equivalence of the
quantizations associated with distinct CR structures is an open problem. A solution
of it on the same lines as that presented in ref. [80] for the ordinary case requires a
full fledged deformation theory of CR structure, which to the best of our knowledge is
missing presently. Furthermore, the relationship between the the topological and CR
quantizations remains mysterious.

It would be interesting to investigate the properties of the solutions of the Ward
identities for both canonical quantizations. Here, we limit ourselves to observe that
the solutions are generically functional distributions. For instance, the second Ward
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identity (6.3.34a) entails that the wave functional is supported on connections with
vanishing 101 curvature component and thus exhibits a corresponding functional Dirac
delta singularity.

6.4 Examples

We present a few examples to illustrate the higher Chern–Simons theory devel-
oped in subsect. 6.1.

Balanced differential Lie crossed modules

A differential Lie crossed module (g, h) is balanced if it is so when viewed as a strict
Lie 2–algebra. Thus, (g, h) is balanced if it is equipped with a non singular bilinear
pairing (·, ·) : g× h→ R such that

(τ(X), Y )− (τ(Y ), X) = 0, (6.4.1a)

([π, x], X) + (x, µ(π)(X)) = 0 (6.4.1b)

(cf. eqs. (2.4.122), (2.4.123)). Below, we assume that (g, h) is the differential Lie
crossed module of a Lie crossed module (G,H).

By (6.1.19), since the three argument bracket vanishes in the present case, the
higher Chern–Simons theory CS2(N, g, h) is formally a BF theory, with the 2 form
connection component playing the role of the B field. This conclusion is however
unwarranted, because the symmetry structure of CS2(N, g, h) is basically different
from that of an ordinary BF model.

There exists a distinguished 2–subgroup Gau(N,G,H) of the gauge transforma-
tion strict 2–group Gau(N, g, h) [21]. The 1–gauge transformations belonging to
Gau(N,G,H) are of the form

gγ = φγ, (6.4.2a)

σgγ = γ−1dγ + Ad γ−1(τ(χγ)), (6.4.2b)

Σgγ = ṁ(γ−1)
(
dχγ +

1

2
[χγ, χγ]

)
, (6.4.2c)

τgγ (x) = µ(x)(ṁ(γ−1)(χγ)), (6.4.2d)

where γ ∈ Map(N,G), χγ ∈ Ω1(N, h). Here, for a ∈ G, φa ∈ Aut1(v) is defined by
φa0(π) = Ad a(π), φa1(Π) = ṁ(a)(Π) and φa2(π, π) = 0 and (6.4.2a) is understood
to hold pointwise on N . τ , µ, t and m are related by (2.4.46), (2.4.47) and ṁ is
given by (2.4.48). For two 1–gauge transformations gζ , gη associated with the data
ζ, η ∈ Map(N,G) and χζ , χη ∈ Ω1(N, h), the 2–gauge transformations of Gau(N,G,H)
with source gζ and target gη are those of the form
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FΛ(x) = Φζ,Λ(x), (6.4.3a)

AFΛ = ṁ(ζ−1)(−Λ−1dΛ+ χζ + AdΛ−1(BΛ − χζ)), (6.4.3b)

where Λ ∈ Map(N,H) and BΛ ∈ Ω1(N, h) with

η = t(Θ)ζ, (6.4.4a)

χζ − χη = BΛ. (6.4.4b)

Here, for a ∈ G and A ∈ H, Φa,A is defined by Φa,A(π) = Q(Ad a(π), A) and (6.4.3a)
is understood to hold pointwise on N . Q is given by (2.4.49).

Let (ω,Ωω) be a connection doublet and (f, Ff ) be its curvature doublet. Inserting
eqs. (6.4.2b)–(6.4.2d) into the relations (3.2.42), we obtain

gγω = Ad γ(ω)− dγγ−1 − τ(χγ), (6.4.5a)

gγΩω = ṁ(γ)(Ωω)− dχγ −
1

2
[χγ, χγ]. (6.4.5b)

− µ(Ad γ(ω)− dγγ−1 − τ(χγ))(χγ)

Inserting eqs. (6.4.2b)–(6.4.2d) into (3.2.43), we find further

gγf = Ad γ(f), (6.4.6a)

gγFf = ṁ(γ)(Ff )− µ(Ad γ(f))(χγ). (6.4.6b)

These expressions are identical to those obtained originally in refs. [47, 48].
The anomaly Q2(gγ) turns out to vanish for all 1–gauge transformations gγ of

Gau(N,G,H). Indeed, the anomaly density q2 is exact

q2 =
1

2
(τ(Σgγ ), Σgγ ) =

1

2
d
(
τ(χγ), dχγ +

1

3
[χγ, χγ]

)
. (6.4.7)

Therefore the higher Chern–Simons theory CS2(N, g, h) is non anomalous, at least
when restricting to the 1–gauge transformations drawn from Gau(N,G,H), and there
is no level quantization.

Balanced Lie 2–algebra v with invertible ∂
Let v be a balanced Lie 2–algebra with invariant form such that ∂ is invertible.

Then, the gauge anomaly Q2(g) of the classical action of the Chern–Simons theory
CS2(N, v) vanishes identically. Indeed, the Chevalley–Eilenberg cocycle χ2 ∈ CE4(v)
of eq. (6.1.34) turns out to be exact in this case, being

χ2 = QCE(v)
1

2

(
π,Π − 1

6
∂−1[π, π]

)
(6.4.8)

and, as we have shown in sect 6.1, this implies that Q2(g) = 0. Consequently, in this
case too the higher Chern–Simons theory CS2(N, v) is non anomalous and there is no
level quantization.
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Balanced Lie 2–algebra v with vanishing ∂
In the category of Lie 2–algebras, seen as 2–term L∞ algebras, every Lie 2–algebra

v is equivalent to one with vanishing boundary map ∂. We are thus led to consider
a balanced Lie 2–algebra v with invariant form such that ∂ = 0. By (2.4.37), v0 = g
is a Lie algebra with brackets [·, ·]. Since the invariant form (·, ·) is non singular,
v1 = g∗ with duality pairing 〈·, ·〉 = (·, ·). By the invariance of the pairing (·, ·), eq.
(2.4.123), v1 is just the coadjoint g–module. The property (2.4.39) is equivalent to
the three argument bracket [·, ·, ·] defining a g∗–valued Chevalley–Eilenberg cocycle
φ ∈ CE3(g, g∗)

Recall that the Chevalley–Eilenberg complex CE∗(g, g∗) of g with values in g∗ is
the graded vector space Fun(g[1], g∗) equipped with the coboundary operator QCE(g,g∗)

defined by

QCE(g,g∗)φ(π, . . . , π) = [π, φ(π, . . . , π)]− p

2
φ([π, π], π, . . . , π),

for a p–cochain φ ∈ CEp(g, g∗) seen as as a linear map φ ∈ Hom(∧pg, g∗). The
associated cohomology is HCE

∗(g, g∗). A p–cochain φ ∈ CEp(g, g∗) is cyclic if

〈x, φ(y, π, . . . , π)〉+ 〈y, φ(x, π, . . . , π)〉 = 0,

where 〈·, ·〉 is the duality pairing of g. The cyclic cochain form a subcomplex CCE∗(g, g∗)
of CE∗(g, g∗) with cohomology HCCE

∗(g, g∗) isomorphic to HCE
∗(g)[−1], the −1 degree

shifted real valued cohomology of g [52]. The correspondence is defined by

φ̂(π, . . . , π) =
1

p+ 1
〈π, φ(π, . . . , π)〉

at the level of representatives. (See also [86] for reference.) On account of the cyclicity
property (2.4.124), φ is cyclic and, so,

φ̂ =
1

4
〈π, [π, π, π]〉, (6.4.9)

is a Chevalley–Eilenberg cocycle φ ∈ CE4(g). φ̂ is in fact simply related to the
Chevalley–Eilenberg cocycle χ2 ∈ CE4(v) of eq. (6.1.34).

χ2 = −φ̂/6 (6.4.10)

Since CE∗(g) is a subcomplex of CE∗(v) when ∂ = 0 by (2.1.14) and (2.4.40a), χ2 is
exact in CE∗(v) if φ̂ is in CE∗(g). In that case, we have Q2(g) = 0 and there is no
level quantization in the associated CS2(N, v) Chern–Simons model. If the 4–cocycle
φ̂ is not a coboundary, then Q2(g) may be non trivial and level quantization may
obtain. Now HCE

4(g) = 0 for all simple Lie algebras g. HCE
4(g) 6= 0, e. g. g = u(n)

with n ≥ 2. Below, we assume tacitly that manifold on which fields are defined is
oriented and that the fields satisfy asymptotic or boundary conditions allowing for the
convergence of the integration and integration by parts.



Chapter 7

Outlook and open problems

Our study on the higher Chern-Simons theory is divided roughly in two parts. The
first part is devoted to the analysis of the gauge invariance of higher Chern–Simons
theory. We find that, analogously to ordinary Chern–Simons theory, the higher Chern–
Simons action is invariant under a higher gauge transformation up to a higher winding
number only. Full gauge invariance of the quantum theory requires that the winding
number be quantized in appropriate units. In all the examples which we have been
able to work out in detail, the winding number actually vanishes, but we cannot prove
its quantization in general and we are forced to assume it as a working hypothesis.
This is a first aspect of the theory that requires further investigation.

The second part deals with quantization. Several approaches to the problem of
quantization are possible in principle. Perturbative quantization based on a straight-
forward extension of Lorenz gauge fixing involves the choice of a background metric
on the base manifold as well as the introduction of Faddeev–Popov ghost and ghost
for ghost fields. In the presence of a metric we cannot maintain gauge covariance
without resorting to gauge rectifiers whose existence and interpretation is still prob-
lematic [21]. We are left with canonical quantization. We find that the theory admits
two apparently inequivalent canonical quantizations. We obtain correspondingly two
sets of higher WZW Ward identities and we find the explicit expressions of two higher
versions of the gauged WZW action.

The canonical quantization of the first kind is manifestly topological in that it
does not require a choice of any additional structure on the spacial 3–fold. That of the
second kind involves fixing a CR structure on the latter. This is more akin to ordinary
Chern–Simons theory’s canonical quantization. CR spaces are in fact in many ways
the closest 3–dimensional analog of Riemann surfaces. The unitary equivalence of the
quantization associated with distinct CR structures is an open problem necessitating a
non trivial extension of the analysis of ref. [80]. Furthermore, the relationship between
the the topological and CR quantizations remains elusive.

It is necessary to clarify a point on the higher WZW actions emerging in the
process of canonically quantizing our higher Chern–Simons theory. They encode the
gauge covariance of the relevant wave functionals and, so, are determined by the Ward
identities these obey and by a cocycle conditions extending the familiar Polyakov–
Wiegmann relation. Presently, however, we have no evidence that they are related
to some kind of 3–dimensional sigma model as the ordinary gauged WZW action, al-
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though this remains a distinct possibility. In this respect it may be more useful to
consider the restriction of the higher Chern–Simons action to flat connection configu-
rations expressed as gauge transformation of the trivial connection on the same lines
as [79].

The solution of the questions raised in the preceding paragraphs requires a more
fundamental theory of higher gauge transformation than that employed in the present
paper. Until recently, this was available only for the strict case [47, 48]. Promising
new results in this direction can be found in ref. [74] .

Using the results of the present work and restricting to the flat case, we plan to
reconsider in the companion paper [87] the theory of higher holonomy, already studied
in [41, 42, 43] and reanalyzed recently in a very general setting in [45, 46], and tackle
the problem of the proper definition of higher holonomy invariants. The quest for the
latter is particularly important for the applications they may have in a study of 2–
knots in 4–folds based on the higher Chern–Simons theory. (See ref. [88] for a related
endeavour.)

Our 2-term L∞ Chern-Simons theory has non-strict higher gauge structure, while
higher parallel transport works only for strict 2-groups. Nevertheless, to any semistrict
connection doublet we can associate a strict one by suitably applying the adjoint
functor of the 2-term L∞ algebra (see prop. 20). Even more, it is possible to make
this association a strict 2-functor. Recall that given an orientable smooth manifold M
and a weak 2-term L∞-algebra v we can define the strict 2-groupoid of v-connection
doublets on M with vanishing fake curvature, which we call Connf (M, v) (see subsect.
3.2.3).

It is also possible to define the strict 2-groupoid Connf (M, (g, h)) of (g, h)-connection
doublets with vanishing fake curvature on a smooth manifold M for (g, h) a differential
Lie crossed module:

Objects Objects are, as before, connection doublets (A,B) ∈ (Ω1(M)⊗g)⊕(Ω2(M)⊗
h) with vanishing fake curvature, dA+ 1

2
[A,A]− ṫ(B) = 0.

1-Morphisms Given two connection doublets (A,B) and (A′, B′), a 1-morphism γ :
(A,B) → (A′, B′) is a couple (γ, χγ) made of a map γ : M → G and a 1-form
χγ ∈ Ω1(M)⊗ h such that

A′ = AdγA− ṫ(χγ)− γ∗µG, (7.0.1)

B′ = ṁ(γ,B)− dχγ +
1

2
[χγ, χγ]h − [AdγA,χγ] + [γ∗µG, χγ], (7.0.2)

where µG is the Maurer-Cartan 1-form on G.

2-Morphisms Given two 1-morphisms γ, ξ with the same source (A,B) and target
(A′, B′), a 2-morphism θ : γ ⇒ ξ is a map θ : M → H such that

ξ = t(θ)γ, (7.0.3)

χξ = −Q(A′, θ) + Adθχγ − θ∗µH . (7.0.4)
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We are now going to define a strict 2-functor Φ from the strict 2-groupoid Connf (M, v)
to the strict 2-groupoid Connf (M, (aut0(v), aut1(v)), where v is an arbitrary weak 2-
term L∞ algebra and aut(v) is the strict 2-term L∞ algebra associated to the strict
2-group Aut(v):

Objects On objects the functor Φ is:

Φ(ω) = (ad0(ω), ad1(Ωω)− 1

2
ad2(ω, ω)) =: (ω̃, Ω̃). (7.0.5)

1-Morphisms To a 1-morphism g = (g, σg,Σg, τg) : ω → ω′ in Connf (M, v) the
functor associates a 1-morphism Φ(g) : (ω̃, Ω̃) → (ω̃′, Ω̃′) which is the couple
consisting of the map g itself and the 1-form

φg(x) = g1τgg
−1
0 x− g2(ω − σg, g−1

0 x). (7.0.6)

From the definition of (ω̃, Ω̃) and from the target matching condition for g it
follows that Φ(g) also fulfills the target matching condition. The units are pre-
served, and we have that

Φ(h ◦ g) = Φ(h) ◦ Φ(g). (7.0.7)

2-Morphisms To a 2-morphism F : g ⇒ h in Connf (M, v) the functor associates the
2-morphism in Connf (M, (aut0( fv), aut1(v)) defined by Φ(F ) = Fg−1

0 . Target
matching condition, units and both compositions are preserved.

This result makes it possible to employ semistrict connection doublet in the compu-
tation of surface holonomies, and this in turn may be exploited to build gauge invariant
observables for the higher Chern-Simons alike the knot invariants that play a role in
ordinary Chern-Simons theory. Indeed, if a v connection doublet ω is flat, F = 0, then
the strict doublet Φ(ω) also is flat. This means that the critical points of the higher
Chern-Simons action would generate homotopy invariant Wilson surfaces, as happens
in the ordinary Chern-Simons regarding Wilson loops. But for all this to work, many
steps still have to be climbed and many holes have to be filled. The biggest gap is
the definition of trace: this is essential in ordinary gauge theory to extrapolate a real
number from a Wilson loops and to ensure full gauge invariance. At the state of the
art a suitable notion of representation for Lie crossed modules is lacking, and therefore
a working notion of trace is still missing. Wilson surfaces behave in a very particular
manner under gauge 1-transformations, and although for closed surfaces this behaviour
simplifies it still non trivial to build some kind of map from a Lie crossed module to
the real numbers that renders Wilson surfaces gauge invariant.
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state sum application,” [arXiv:math.0306440].

209



210 BIBLIOGRAPHY

[13] A. Baratin and L. Freidel, “Hidden Quantum Gravity in 4-D Feynman dia-
grams: Emergence of spin foams,” Class. Quant. Grav. 24, 2027 (2007) [hep-
th/0611042].

[14] J. C. Baez, A. E. Hoffnung and C. L. Rogers, “Categorified Symplectic Ge-
ometry and the Classical String,” Commun. Math. Phys. 293, 701 (2010)
[arXiv:0808.0246 [math-ph]].

[15] L. Crane and D. Yetter, “A Categorical construction of 4-D topological quantum
field theories,” In *Dayton 1992, Proceedings, Quantum topology* 120-130 [hep-
th/9301062].

[16] J. C. Baez, “Four-Dimensional BF theory with cosmological term as a topological
quantum field theory,” Lett. Math. Phys. 38, 129 (1996) [q-alg/9507006].

[17] J. C. Baez and J. Huerta, “An Invitation to Higher Gauge Theory,”
arXiv:1003.4485 [hep-th].

[18] E. Soncini and R. Zucchini, arXiv:1410.0775 [hep-th].

[19] E. Soncini and R. Zucchini, “4-d Semistrict Higher Chern-Simons Theory I”,
arXiv:1406.2197 [hep-th].

[20] M. Atiyah, “Topological quantum field theories,” Inst. Hautes Etudes Sci. Publ.
Math. 68 (1989) 175.

[21] R. Zucchini, “AKSZ models of semistrict higher gauge theory,” JHEP 1303
(2013) 014 [arXiv:1112.2819 [hep-th]].

[22] S. Mac Lane, “Categories for the Working Mathematician,” Springer (1998)
second edition
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