Effetti della viscoelasticità sulla misura
dell’energia di adesione tra film di polietilene

Presentata da: Castiglioni Andrea

Coordinatore Dottorato:
Prof. Fabio Ortolani
Relatore

Dr.ssa Lucia Del Bianco
Correlatore

Dr. Leonardo Castellani

Esame finale anno 2014
Indice

Introduzione 1

1 **Background teorico e stato dell’arte** 5
 1.1 Il Polietilene ... 6
 1.1.1 Stretch-film e tecnologia di filmatura 11
 1.2 Viscoelasticità dei polimeri 15
 1.2.1 Meccanismi di rilassamento nel polietilene 26
 1.3 Background teorico sull’adesione 33
 1.3.1 Meccanica della frattura 33
 1.3.2 Adesione tra materiali polimerici 36
 1.3.3 I pressure sensitive adhesives (PSAs) 41
 1.3.4 Metodi sperimentali 44
 1.3.5 Modelli teorici .. 49

2 **Peel testing** 53
 2.1 Meccanica del peeling 54
 2.1.1 TTS per il Peeling 57
 2.2 Protocollo ESIS - Peel Testing 58
 2.2.1 Approccio analitico 59
 2.2.2 ICPeel .. 68

3 **Tecniche di caratterizzazione e parte sperimentale** 71
 3.1 Materiali .. 71
 3.2 Filmatura cast ... 73
3.3 La calorimetria a scansione differenziale (DSC) 75
3.4 La cromatografia a permeazione di gel (GPC) 77
3.5 Testing meccanico, dinamico-meccanico e reologico 81
 3.5.1 Testing meccanico . 81
 3.5.2 Analisi dinamico-meccanica (DMA) 83
 3.5.3 Reologia Elongazionale 85
3.6 Procedura di adesione e peeling 87
 3.6.1 Peel testing . 89

4 Risultati 95
 4.1 Caratterizzazione chimico fisica dei materiali di partenza . . . 96
 4.2 Caratterizzazione Reologica e Meccanica 98
 4.2.1 Reologia elongazionale 98
 4.2.2 Analisi dinamico-meccanica (DMA) 99
 4.2.3 Proprietà meccaniche 105
 4.3 Risultati sui film . 108
 4.3.1 Proprietà meccaniche film 110
 4.3.2 Peeling: PE-A, PE-B e LDPE 111
 4.3.3 Peeling: trattamento termico 119
 4.3.4 Peeling: PE-B e Substrati 121

5 Discussione 129
 5.1 Adesione tra film . 129
 5.1.1 Transizione ad alta velocità 132
 5.1.2 Transizione a bassa velocità 134
 5.1.3 Peeling: trattamento termico 135
 5.2 Adesione sui substrati . 138
 5.2.1 Proprietà del residuo 140

6 Conclusioni 143

Bibliografia 155
RINGRAZIAMENTI

RINGRAZIAMENTI

169
Introduzione

Il film estensibile (*stretch wrap o stretch film*) è un’applicazione molto diffusa dei film in polietilene (PE). Questi film vengono usati per imballare oggetti di varia forma, dimensioni e pesi. Un aspetto chiave del loro funzionamento è la componente adesiva senza la quale il film, una volta esteso ed avvolto attorno all’imballo, tenderebbe a tornare al suo stato originale a causa dell’energia elastica immagazzinata dall’estensione. La bontà dell’imballo viene quindi determinata dalla capacità del film di mantenere la posizione. Tale comportamento di adesione è molto simile ai cosiddetti *pressure sensitive adhesives* (PSAs) [1].

I film stretch sono usualmente multistrato: questo perché in ogni strato è possibile usare il tipo di PE più opportuno per la specifica esigenza di applicazione. In particolare per lo strato superficiale, oggetto di studio di questo lavoro, è necessario scegliere con cura il grado giusto di PE in modo tale da ottenere la forza adesiva desiderata. Tipicamente vengono usati polietilene lineari a bassa densità (LLDPE) con valori relativamente bassi di densità a causa delle loro note proprietà adesive (questo strato è anche comunemente detto “cling”, o collante); è altresì noto che quest’effetto adesivo è ridotto all’aumentare della densità. Nel polietilene ad alta densità (HDPE), ad esempio, le proprietà adesive sono totalmente assenti.

Come per i PSAs, le proprietà adesive dei film stretch di PE possono essere opportunamente misurate mediante “peel testing”. Esistono diversi
Introduzione

metodi standard internazionali, ad esempio quelli pubblicati dall’American Society for Testing of Materials (ASTM) o dall’International Organization of Standardization (ISO) [3–6]. I risultati di questi test sono tuttavia fortemente dipendenti dalla geometria di prova usata.

L’interpretazione del peel testing di laminati flessibili secondo la meccanica della frattura, introdotto in maniera esaustiva da Kinloch et al. nel 1994 [2], definisce un’energia di frattura adesiva G_c che può essere determinata tenendo conto e calcolando le dissipazioni d’energia dovute a flessione plastica o viscoelastica e deformazione a trazione del braccio di peeling.

G_c è un parametro, indipendente dalla geometria di peel testing, che caratterizza efficacemente l’energia richiesta per portare a frattura il legame adesivo: G_c corrisponde alla tenacia dell’interfaccia.

Recentemente il lavoro è stato sistematicamente messo a punto [7] per descrivere al meglio la zona coesiva all’apice della frattura e un software di calcolo (“IC-Peel” [8]) è stato sviluppato ed è disponibile per eseguire i necessari calcoli numerici, combinando la geometria di peel test e i risultati delle proprietà sforzo-deformazione dei peel arms per ottenere G_c.

In questo lavoro di tesi si vuole misurare l’energia di adesione G_c di film stretch fatti aderire tra di loro e su diversi substrati sfruttando l’interpretazione della meccanica delle frattura per tener conto dell’alta flessibilità e deformabilità di questi film. La dipendenza dalla velocità di prova e dalla temperatura nei PSA è discussa in letteratura in riferimento alla natura viscoelastica dell’adesivo. Misurando G_c a diverse temperature e velocità si vuole ricavare la sua dipendenza tempo-temperatura; si vuole poi confrontare questa con il comportamento viscoelastico lineare dei materiali usati nello strato adesivo del film.

A differenza della letteratura esistente sui PSA, tuttavia, non è possibile disporre dell’adesivo e dunque caratterizzarlo direttamente né dal punto di vista chimico-fisico, né meccanico né dinamico-mecanico o reologico. Non è possibile inoltre conoscere a priori lo spessore dell’adesivo tra i due strati del
Introduzione

materiale.
L’assunzione di partenza è che ci sia una qualche porzione, o fase, del complesso materiale semicristallino di polietilene che svolga effettivamente il ruolo di adesivo in modo simile ai PSA.

Lo scopo di questo lavoro pertanto è esplorare le relazioni proprietà-struttura che possano evidenziare i meccanismi molecolari coinvolti nel processo di adesione e distacco nel film stretch di PE; in particolare si vuole arrivare ad una migliore identificazione e caratterizzazione di questa “fase adesiva” e del suo comportamento viscoelastico.
Questo lavoro di tesi è stato svolto presso i laboratori del centro ricerche Eni Versalis S.p.A. “Basic chemicals Research Centre” di Mantova (MN).
La tesi è organizzata in cinque distinti capitoli principali e uno di conclusioni.
Il primo capitolo introduce gli aspetti essenziali delle principali proprietà chimico-fisiche e morfologiche del PE e della tecnologia di filmatura. Vengono introdotte alcune proprietà viscoelastiche di carattere generale e viene poi riportato lo stato dell’arte sui meccanismi di rilassamento del PE.
Dopo aver introdotto alcuni principi basi di meccanica della frattura, si fa una panoramica dello stato dell’arte del mondo degli adesivi polimerici, con particolare attenzione alla letteratura inerente i PSAs. L’attenzione è sempre rivolta alle loro proprietà viscoelastiche e i metodi sperimentali usati per la loro caratterizzazione.
Nel secondo capitolo si introduce in maniera approfondita la principale tecnica di caratterizzazione dell’adesione dei film stretch usata in questa tesi. La prova di peeling è presentata prima dal punto di vista meccanico sia tramite l’approccio basato sul bilancio d’energia, come proposto da Kinloch et al. [2].
Nel terzo capitolo sono presentati i materiali usati con alcune loro proprietà chimico-fisiche note in partenza. Sono riportate le condizioni macchina per l’estruzione dei film e presentate le tecniche sperimentali usate per la caratterizzazione dei materiali tal quali e dei film e delle loro proprietà adesive.
Introduzione

Nel quarto capitolo sono presentati i risultati: l’inizio del capitolo è dedicato ai materiali di cui sono costituiti i film stretch e successivamente sono presentati i risultati di peeling.
Nel quinto capitolo si discutono i risultati ottenuti in funzione delle loro proprietà viscoelastiche sulla base dei modelli teorici presentati alla fine del primo capitolo.
Nel sesto ed ultimo capitolo si riportano le principali conclusioni.
Capitolo 1

Background teorico e stato dell’arte

In questo capitolo si vogliono introdurre diversi aspetti che sono tra loro legati per gli argomenti trattati in questa tesi. In primo luogo si introduce il materiale, il polietilene (PE), descrivendone brevemente le caratteristiche principali in funzione dei diversi tipi di polietilene presenti e approfondendo alcuni aspetti della sua struttura e morfologia.

Nel secondo paragrafo vengono introdotte alcune importanti proprietà viscoelastiche comuni a tutti i polimeri e successivamente del PE soffermandosi sui meccanismi di rilassamento.

Nel terzo paragrafo vengono introdotti i fenomeni di adesione, in particolare tra sistemi polimerici; viene rivista la letteratura pertinente ai Pressure Sensitive Adhesives (PSAs) insieme ad alcuni principali metodi di caratterizzazione.
Capitolo 1. Background teorico e stato dell’arte

1.1 Il Polietilene

Il polietilene (PE) è un polimero termoplastico che, insieme a polipropilene (PP), polistirene (PS) e polivinilcloruro (PVC) è una delle quattro plastiche per il mercato di massa più usate. Si tratta di una poliolefina molto importante dal punto di vista commerciale, industriale e scientifico. Chimicamente, una molecola di polietilene è costituita da una lunga catena formata da un numero pari di atomi di carbonio legati covalentemente tra loro, con due atomi di idrogeno legati ad ogni atomo di carbonio; le estremità della catena sono gruppi metilici (1.1). Da questo punto di vista è anche il polimero con la struttura più semplice.

Figura 1.1: Ricostruzione 3D di una catena di polietilene. A destra struttura chimica.

I polietileni sono classificati in diverse categorie basate principalmente sul tipo e sulla quantità di ramificazione (densità). Le proprietà meccaniche dipendono fortemente da parametri come il tipo e l’estensione delle ramificazioni, la struttura cristallina e il peso molecolare. Sono quattro i gruppi principali, a seconda della loro densità e del metodo di sintesi.

Il polietilene ramificato (Low Density Polyethylene, LDPE), con densità orientativamente tra 0.910-0.940 g/cm³, è stata una delle prime poliolefine prodotte commercialmente negli anni ’30 tramite un processo di polimerizzazione radicalica dell’etilene ad elevata temperatura (circa 200°C) e pressione (1400-3000 bar) [10]. La caratteristica principale di questo polimero è la presenza contemporanea di ramificazioni casuali corte e lunghe denominate rispettivamente short chain branches (SCB) e long chain branches.
1.1. Il Polietilene

(LCB) [11,12]. Una ramificazione è considerata lunga se il suo peso molecolare è superiore a quello tra gli entanglements \(M_e \), che per il polietilene è circa 1300 g/mol [13].

Nella metà degli anni ’50 lo sviluppo di processi con catalizzatori specifici ha portato alla produzione di polietilene lineare (High Density Polyethylene, HDPE).Questo tipo di catalisi è nota col nome di Ziegler-Natta (ZN) in onore degli inventori Karl Ziegler e Giulio Natta che furono premiati con il premio Nobel [14–21]. Questi polietileni sono prevalentemente lineari e non possiedono quantità misurabili di SCB. Essi possiedono una densità elevata (convenzionalmente uguale o superiore a 0.941 g/cm\(^3\)) come conseguenza dell’elevata cristallinità (tipicamente \(~70\%\) contro \(~40\%\) di LDPE).

Ulteriori sviluppi della tecnologia di catalisi hanno portato alla produzione di copolimeri dell’etilene con piccole quantità di \(\alpha\)-olefine (ad esempio 1-butene, 1-esene, 1-ottene). Questo tipo di polimerizzazione incorpora piccole catene laterali (ossia SCB) sulla catena principale di etilene e il polimero che ne risulta, il polietilene lineare a bassa densità (Linear Low Density Polyethylene, LLDPE), è stato sviluppato commercialmente per la prima volta alla fine degli anni ’70. LLDPE ha proprietà meccaniche (tensili, resistenza a puntura e ad impatto) superiori rispetto a quelle del polietilene ad alta pressione, bassa densità (LDPE) di densità simile.

La microstruttura degli LLDPE dipende da cinque parametri base: la percentuale in peso media di SCB, distribuzione di SCB (SCBD), il peso molecolare, la distribuzione di peso molecolare e l’ammontare di SCB su un dato componente di peso molecolare. E’ generalmente accettato che sia l’esistenza di SCB che SCBD siano i fattori chiave che influenzino le proprietà degli LLDPE [54].

La distribuzione di SCB negli LLDPE varia con la lunghezza di SCB. Quando il contenuto di SCB rimane costante, questa distribuzione diventa più larga via via che la lunghezza di SCB aumenta.

Una caratteristica importante di LLDPE è che la cristallinità (variazioni
Capitolo 1. Background teorico e stato dell’arte

di densità comunemente tra 0.910 e 0.940 g/cm3) e quindi le sue proprietà meccaniche possono essere modificate variando opportunamente contenuto e distribuzione del comonomero. E’ sostanzialmente diverso da LDPE a causa dell’assenza di ramificazioni lunghe. Una caratteristica indesiderata di ZN-LLDPE è la distribuzione disomogenea del comonomero in funzione del peso molecolare che porta ad una parziale separazione di fase [22–25]. Partendo da un LLDPE e aumentando ulteriormente l’inserimento di comonomero lungo la catena principale si arriva alla classe di polietilene nota come VLDPE. Questa presenta un range di densità orientativamente da 0.88 a 0.915 g/cm3. Questa classe è ottenuta comunemente dalla copolimerizzazione dell’etilene con SCB costituite da α-olefine.

Negli anni ’90 è stato introdotto su scala commerciale un nuovo gruppo di catalizzatori denominati metallocenici o a singolo sito (Single Site Catalysts, SSC). Confrontati con i tradizionali catalizzatori Ziegler-Natta dalla prima riga dei metalli di transizione (Ti, Cr, V . . .) usano elementi dei gruppo IVb con orbitali d complessi. Questo ha portato alla produzione di polietilene (m-PE) strutturalmente migliori che, dato il maggior controllo nella reazione, ha consentito un innesto del comonomero più uniforme e una distribuzione dei pesi molecolari più stretta ($M_w/M_n \sim 2$) rispetto a ZN-LLDPE. Recentemente questo tipo di catalisi è anche stato utilizzato per produrre LDPE a livello di ramificazione controllato, consentendo uno studio accurato dell’effetto della ramificazione e superando il problema irrisolto della descrizione chiara del tipo e quantità di ramificazioni presenti in LDPE da sintesi radi-calica.

La struttura cristallina

L’unità ripetitiva del polietilene (PE), $-(CH_2-CH_2)_n-$, conferisce a questo polimero una struttura molecolare tale da permettergli di generare una sorta di reticolo cristallino, con elementi di simmetria tipici dei cristalli.
Il gruppo spaziale che individua le simmetrie della cella unitaria del PE è Pnam-D2h (sistema cristallino ortorombico di tipo C). La cella elementare corrispondente è un parallelepipedo con lati \(a \neq b \neq c \) e angoli \(\alpha = \beta = \gamma = 90^\circ \). La cella unitaria ortorombica centrata in cui cristallizza il PE è mostrata in figura 1.2. Dato il volume della cella unitaria è immediato calcolare la densità del cristallo perfetto di PE \(\rho_c = 0.996 \text{ g/cm}^3 \).

Figura 1.2: Cella unitaria ideale del polietilene. \(a = 0.742 \text{ nm}, b = 0.495 \text{ nm}, c = 0.255 \text{ nm} \).

Il PE non è mai un cristallo perfetto, ma è piuttosto un sistema bifasico in cui le zone "disordinate" determinano una percentuale di fase amorfa. Questo è dovuto alle modalità di arrangiamento delle catene su scale spaziali maggiori. In generale, i sistemi polimerici non possono mai formare cristalli perfetti: si ritrovano sempre in uno stato metastabile, parzialmente cristallizzato, a causa del network di entanglements\(^1\).

In letteratura vengono riportate le densità della fase amorfa \(\rho_a \) e cristallina \(\rho_c \) del PE [155]. \(\rho_c = 1.003 \text{ g/cm}^3 \) (densità di impaccamento 0.7) alla temperatura T di 298K e \(\rho_c = 0.996 \text{ g/cm}^3 \) alla temperatura di fusione \(T_m \) (densità di impaccamento 0.69). Per la fase amorfa viene riportato \(\rho_a = 0.8519 \text{ g/cm}^3 \) a T = 298K (da estrapolazione di campioni a diverse densità) e a \(T_m \rho_a = 0.7835 \text{ g/cm}^3 \).

\(^1\)Gli entanglements, più volte citati nel testo, sono un tipo di vincolo topologico delle catene. In presenza di entanglements i moti molecolari terminali (reptazione) sono ostacolati ma non impediti.
Con l’ipotesi di un sistema bifasico (cristallo+fase amorfa) il grado di cristallinità può essere calcolato da ρ, usando la relazione:

$$\frac{1}{\rho} = \frac{X_c}{\rho_c} + \frac{1 - X_c}{\rho_a} \quad (1.1)$$

Dove (X_c) è la frazione cristallina del campione. Esplicitando X_c si ottiene

$$X_c = \frac{\rho_c (\rho_a - \rho)}{\rho (\rho_a - \rho_c)} \quad (1.2)$$

Generalmente le catene principali del PE proseguono linearmente per decine di nanometri per poi ripiegarsi su se stesse organizzandosi in strutture planari chiamate lamelle [25]. Durante la cristallizzazione da fuso si ottengono di solito spessori di cristalli da 10 a 50 nm.

Trasversalmente tali entità raggiungono invece dimensioni dell’ordine di micrometri. L’asse di catena, individuato dal parametro c, è quindi parallelo all’asse perpendicolare al piano della lamella (Fig. 1.3).

Nello stato semicristallino, le sferuliti 1.4 sono formate da una struttura lamellare che è separata da strati amorfi. Nel fuso polimerico sono sempre presenti entanglements che non possono essere risolti durante la cristallizzazione di un polimero di normale peso molecolare. Gli entanglements vengono semplicemente spostati nella fase amorfa durante il folding delle catene.

![Figura 1.3: Struttura lamellare del polietilene.](image)

Le lamelle si possono a loro volta organizzare in strutture a simmetria sferica denominate sferuliti (dimensione μm). Tale disposizione è globalmente
isotropa, ma localmente esistono zone anisotrope. Lo schema di accrescimento è tale che il parametro di cella b è parallelo al raggio della sferulite (fig 1.4).

1.1.1 Stretch-film e tecnologia di filmatura

Oggi gli LLDPE, come gli LDPE, vengono impiegati per realizzare sacchetti di plastica, fogli, film estensibili, ricoprimento di cavi, geomembrane, etc. Dal punto di vista della trasformazione LDPE e LLDPE si differenziano per le loro diverse e peculiari caratteristiche reologiche [26]. Durante un processo di trasformazione di taglio, come l’estrusione, LLDPE rimane più viscoso e, quindi, più difficile da processare rispetto ad un LDPE di pare indice di fluidità.

La più bassa suscettibilità agli sforzi di taglio consente agli LLDPE un più veloce rilassamento delle catene polimeriche durante l’estrusione. Gli LLDPE mostrano un comportamento di tipo meno shear thinning rispetto a LDPE a causa della loro distribuzione di pesi molecolari più stretta e alle ramificazioni più corte.

In estensione del fuso, gli LLDPE hanno invece una più bassa viscosità a tutte le velocità di deformazione. Questo significa che non mostrano strain-hardening come gli LDPE quando vengono esteso.

All’aumentare della velocità di deformazione elongazionale, LDPE mostra un drammatico aumento di viscosità a causa dell’entanglements tra catene.
Questo effetto non si vede in LLDPE a causa dell’assenza di LCB che dunque consente alle catene una maggiore libertà di scorrimento tra loro.

Le proprietà reologiche di LLDPE si possono quindi riassumere dicendo che ha maggiore viscosità in sollecitazioni di taglio e scarsa in estensione [26].

I film estensibili sono un prodotto commercializzato ormai da diversi anni come mezzo economico ed efficiente per imballo di oggetti durante il trasporto. Applicati a mano o tramite macchina, questi film vengono srotolati dalla loro bobina, estesi anche di 2-3 volte la loro dimensione originale e quindi avvolti attorno agli oggetti di interesse da proteggere (v. esempio di figura 1.5). Stirando il film prima di avvolgere il prodotto si immagazzina energia elastica nel film. Questa energia tende a far tornare il film alla sua configurazione iniziale con il risultato di avvolgere fermamente l’oggetto imballato. Il film svolge il suo lavoro solo se è in grado di aderire a se stesso fornendo la forza adesiva sufficiente per non svolgersi.

Il materiale più comune per il film estensibile è il polietilene lineare a bassa densità LLDPE, prodotto dalla copolimerizzazione dell’etilene con delle α-olefine (tra le più comuni: butene, esene, ottene). L’uso di α-olefine più lunghe (esene, ottene) rende possibile migliorare le caratteristiche di estensibilità del film, in particolare rispetto all’allungamento a rottura e alla resistenza alla puntura [9].

Da un punto di vista dei consumi, il mercato dello stretch film è raddoppiato ogni cinque anni. Tra il 1985 e il 1990 la domanda è cresciuta da 120 mila t/anno a 250 mila t; tra il 1990 e il 1995 è arrivata a 500 mila t. Solo negli ultimi anni la richiesta è rimasta costante intorno ad un 800 mila t/anno. Il film stretch per il 65-70% è realizzato in filmatura cast, perlopiù per avvolgitori automatizzati, e 30-35% da film in bolla, con destinazione avvoltimenti manuali e settori di mercato specializzati [9].

Come si è citato sono due i metodi per produrre stretch films:

1. Bolla: la resina viene fusa ed estrusa attraverso una filiera circolare, creando un cilindro di materiale raffreddato ad aria.
1.1. Il Polietilene

Figura 1.5: Utilizzo di un film estensibile per imballaggio: il film viene esteso e avvolto attorno all’oggetto.

Estrusione film cast

La funzione principale di un estrusore (figura 1.6) è di fondere i granuli di plastica e mescolare il polimero fuso in modo da ottenere un prodotto omogeneo. Questo è realizzato trasportando il materiale lungo un serbatoio cilindrico riscaldato al cui interno si trova una vite rotante. Tipici rapporti lunghezza/diametro (L/D) sono di 30:1. La funzione della vite è di trasportare in avanti il materiale e miscelarlo.

Nel processo di estrusione da film cast (figura 1.7) il polimero fuso attraversa un sistema di apertura planare per adattarsi alla sua forma finale di film planare. Il sistema di uscita è formato dall’apertura (*die*) e, nel caso di un processo di coestrusione, di una zona di convergenza dei flussi di polimeri fusi.
Capitolo 1. Background teorico e stato dell’arte

Figura 1.6: Schema di un estrusore. Per la descrizione vedi commenti nel testo.

Immediatamente dopo essere uscito dall’apertura il fuso entra nell’unità di raffreddamento in cui la sua temperatura viene abbassata velocemente da quella di processo (∼ 200°C) a quella del rullo (raffreddato a liquido, tipicamente ∼10-20°C) che congela il film. Il film quindi prosegue con rulli successivi lungo la linea di estrusione in zone in cui vengono tagliati i bordi, tipicamente più irregolari e nella parte finale viene avvolto in bobine.

1.2 Viscoelasticità dei polimeri

Recentemente si è arrivati a realizzare film a cinque, nove e anche undici strati con tre soli materiali. Questo risultato è permesso dalla tecnologia di ingresso del polimero fuso prima del sistema di apertura finale. Qui i flussi dei polimeri fusi vengono separati in due o più strati a seconda delle specifiche necessità [9].

Nel caso siano presenti linee in coestrusione, il numero degli estrusori dipende dal numero di diversi materiali che vogliono essere estrusi e non necessariamente dal numero di strati. Nella zona finale è presente un sistema che permetterà ai flussi di polimeri fusi di adeguarsi opportunamente a formare un film multistrato.

Condizione necessaria per ottenere multistrati omogenei al momento della convergenza dei flussi è che le viscosità η dei fusi siano simili.

1.2 Viscoelasticità dei polimeri

Il comportamento dei materiali se sottoposti a sforzi o deformazioni è di solito descritto in termini di due casi ideali: il solido elastico e il liquido viscoso [31, 36].

Il primo, se deformato da forze esterne, raggiunge una nuova forma di equilibrio immagazzinando energia elastica. Rimuovendo le forze esterne torna al suo stato originale grazie all’energia elastica precedentemente immagazzinata.

Di contro, un liquido viscoso non ha una forma definita e fluisce sotto l’azione di forze esterne. È noto dall’esperienza comune che i liquidi di basso peso molecolare sviluppano forze viscose e i solidi cristallini convenzionali rappresentano corpi perfettamente elastici sotto un campo limitato di sforzi imposto. Una caratteristica chiave dei polimeri è che possono mostrare tutti i comportamenti intermedi tra un solido elastico e un liquido viscoso in funzione della temperatura o del tempo di osservazione. Questo tipo di risposta,
Capitolo 1. Background teorico e stato dell’arte

che combina caratteristiche intermedie tra solido e fluido è detta viscoelasticità. Non solo i solidi polimerici ma anche i fusi polimerici mostrano sempre una combinazione di elasticità e viscosità. Per questo sono detti viscoelastici. Si usa comunque distinguere tra liquidi e solidi viscoelastici.

I polimeri, costituiti da lunghe catene di unità ripetitive (monomeri) e caratterizzati da una distribuzione di lunghezza di catena (vedi paragrafo 3.4), nello stato fuso sono un tipico esempio di liquido viscoelastico. A scale di tempi brevi il comportamento elastico è predominante ma a tempi lunghi si comportano come fluidi.

In reologia si usa caratterizzare la viscoelasticità dei materiali con il numero di Deborah [27]:

\[De = \frac{\tau}{t} \]

Il numero di Deborah (eq. 1.3) è il rapporto tra il tempo di rilassamento che caratterizza il materiale \(\tau \) e la scala temporale caratteristica dell’esperimento che misura la risposta del materiale \(t \). Più piccolo è \(De \) (maggiore è il tempo di osservazione \(t \)), più fluido è il materiale.

Nel solido viscoelastico le catene polimeriche sono tra loro connesse tramite punti di reticolazione chimici o entanglements, formando in questo modo un network complesso.

Se sottoposti ad uno sforzo, questi materiali ricoverano solo parzialmente la loro forma originale. Una parte dell’energia introdotta nel sistema è immagazzinata elasticamente e può essere recuperata dopo la rimozione dello sforzo ma una parte di energia è dissipata per frizione interna.

Nei prossimi sottoparagrafi sono presentate le caratteristiche caratterizzanti il comportamento dei liquidi, dei solidi elastici e di una gomma. Poiché la viscoelasticità è una proprietà complessa e non facile da descrivere si illustrano i suoi comportamenti principali attraverso dei semplici modelli fenomenologici: il modello di Maxwell e di Voigt.

Sono poi presentati alcuni comportamenti peculiari dei polimeri in funzione della temperatura (o tempo) e ai rilassamenti meccanici con particolare attenzione al caso del PE.
1.2. Viscoelasticità dei polimeri

Liquidi

Un liquido è detto Newtoniano se sotto sforzi di taglio soddisfa la legge di Newton:

\[\sigma = \eta \dot{\gamma} \] \hspace{1cm} (1.4)

Lo sforzo \(\sigma \) è proporzionale alla velocità di deformazione di taglio \(\dot{\gamma} \), che è un gradiente di velocità. La costante di proporzionalità è la viscosità \(\eta \). La viscosità quantifica l’abilità del liquido a dissipare energia a causa di frizione interna delle molecole: più alta la frizione interna, meno il liquido fluisce con facilità e più alta è \(\eta \).

Se \(\eta \) non è costante a tutte le \(\dot{\gamma} \) il liquido può esibire un comportamento o shear thinning (come il polietilene) o shear thickening. La viscosità dei liquidi shear thinning diminuisce all’aumentare della \(\dot{\gamma} \).

Al contrario, per i liquidi shear thickening, \(\eta \) aumenta all’aumentare di \(\dot{\gamma} \). Il loro comportamento può essere descritto da modelli fenomenologici: un liquido shear thinning è di solito caratterizzato da due valori limite: \(\eta_0 \) la viscosità per \(\dot{\gamma} \) tendenti a zero, \(\eta_\infty \) la viscosità a \(\dot{\gamma} \) elevate. Tra questi due livelli spesso \(\eta \) segue una semplice legge di potenza:

\[\eta = \eta_0 (k \dot{\gamma})^{n-1} \] \hspace{1cm} (1.5)

Dove \(k \) e \(n \) sono parametri di fit. Il liquido è shear thinning se \(n < 1 \). Mentre per \(n = 1 \) si ricade nel caso Newtoniano. L’equazione 1.5 è detta legge di Ostwald-de Waehle [31,32].

Solidi elastici

Si consideri un corpo rigido sottoposto ad una deformazione finita. La lunghezza iniziale del corpo sia \(l_0 \). La deformazione uniassiale \(\epsilon = \Delta l / l_0 \) produce uno sforzo \(\sigma_t \) (forza per unità di superficie). In regime elastico, la deformazione è legata allo sforzo attraverso il modulo elastico:

\[E = \sigma_t / \epsilon \] \hspace{1cm} (1.6)
Capitolo 1. Background teorico e stato dell’arte

In maniera analoga si definisce il modulo di taglio G:

\[G = \frac{\sigma_s}{\gamma} \] \hspace{1cm} (1.7)

Dove \(\sigma_s \) è lo sforzo di taglio e \(\gamma \) la deformazione di taglio.
La relazione lineare tra \(\sigma \) e \(\epsilon \) è detta legge di Hooke. Il materiale elastico si comporta come una molla di costante elastica \(E \). \(E \) e \(G \) sono collegati attraverso la compressibilità, espressa dal rapporto di Poisson, \(\nu \):

\[\nu = \frac{1}{2} \left[1 - \left(\frac{1}{V} \right) \frac{dV}{d\epsilon} \right]. \] \hspace{1cm} (1.8)

Dalla teoria dell’elasticità la relazione tra i due moduli è:

\[E = 2(1 + \nu)G \] \hspace{1cm} (1.9)

E per materiali incomprimibili, \(\nu=0.5 \), e quindi \(E = 3G \).

Gomme

I polimeri hanno l’abilità unica di potersi estendere di diverse volte la loro dimensione originale. L’alta estensibilità e l’elasticità hanno origini entropiche: la singola catena polimerica può avvolgersi, allungarsi, incastrarsi e sono in generale molto flessibili senza variazioni nelle distanza interatomiche. Una buona bibliografia per le gomme è riportata nelle referenze [33,34,36]. Una grande varietà di modelli descrive il comportamento e l’elasticità delle gomme polimeriche sotto sforzo. Nel modello *freely jointed chain model* il comportamento collettivo è derivato dal comportamento di una singola catena [34]. La principale assunzione è che la deformazione sia affine: ogni frammento del network, su livello microscopico, è supposto essere deformato esattamente nello stesso modo del campione macroscopico. Se questo network ha dimensioni originali \(l_0 \), la sua deformazione lungo la direzione i è quindi definita da:

\[\lambda_i = l_i/l_0 \] \hspace{1cm} (1.10)

Ulteriori ipotesi di questo modello riguardano la catena singola del polimero che si assume segua la statistica Gaussiana [34] e il suo volume \(V_0 \) si conserva.
1.2. Viscoelasticità dei polimeri

Si ricava una relazione tra la deformazione uniassiale e lo sforzo risultante:

\[\sigma_T = \frac{n k T}{V_0} \left(\lambda^2 - 1/\lambda \right) \] (1.11)

Dove \(\sigma_T \) è lo sforzo vero, ossia il rapporto tra la forza esercitata e l'area istantanea del campione A. \(n \) è il numero di catene polimeriche nel campione, \(T \) la temperatura e \(k \) la costante di Boltzmann. Questo comportamento si dice neo-hookeano [33–37]. Il modulo di taglio \(G \) può essere determinato dalle due equazioni:

\[G = \frac{n k T}{V_0} = \nu k T = \frac{\rho R T}{M_s} \] (1.12)

Dove \(\rho \) è la densità del network, \(R \) la costante universale dei gas, e \(M_s \) la massa molecolare numerale di una porzione di catena del network.

Modello di Maxwell

Il modello più semplice per un liquido viscoelastico è il modello di Maxwell che consiste di una molla (costante \(E \)) ed un elemento viscoso, un pistone, con viscosità \(\eta \), posti in serie. La deformazione totale in questo modello è la somma delle deformazioni in ognuno dei due elementi:

\[\epsilon = \epsilon_{molla} + \epsilon_{pistone} \] (1.13)

Lo sforzo è lo stesso in ognuno dei due elementi:

\[\sigma = E \epsilon_{molla} = \eta \dot{\epsilon}_{pistone} \] (1.14)

Dalle due equazioni si ricava l’equazione del moto:

\[\frac{d\epsilon}{dt} = \frac{\sigma}{\eta} + \frac{1}{E} \frac{d\sigma}{dt} \] (1.15)

Imponendo una deformazione costante \(d\epsilon/dt = 0 \), si ha

\[\sigma = \sigma_0 e^{-\frac{E t}{\eta}} = \sigma_0 e^{-t/\tau} \] (1.16)

dove \(\tau = \eta/E \) è detto tempo di rilassamento. \(\tau \) determina il tempo di scala del sistema: per tempi \(t < \tau \), il sistema risponde sostanzialmente come una molla a sforzo costante \(\sigma_0 \). Per tempi lunghi confrontati con \(\tau \), il sistema risponde come un liquido e lo sforzo decade a zero.
Capitolo 1. Background teorico e stato dell’arte

Modello di Voigt

Nel modello di Voigt i due elementi (molla e pistone) sono posti in parallelo e dunque l’equazione del moto è:

\[\sigma(t) = E\epsilon + \eta \frac{d\epsilon}{dt} \]

Se ora si applica uno sforzo costante (esperimento di creep) la deformazione varia secondo:

\[\epsilon(t) = \frac{\sigma_0}{E} \left(1 - e^{-t/\tau_V}\right) \]

Dove \(\tau_V \) è il tempo di rilassamento, definito come per il modello di Maxwell. La deformazione aumenta lentamente in questo modello e raggiunge il valore \(\gamma_0 \) dopo un certo tempo tipico determinato dal tempo di rilassamento viscoelastico. A differenza del liquido viscoelastico, il solido viscoelastico si comporta come un liquido per tempi \(t < \tau_V \), quando il sistema è deformato e il pistone rilassa. A tempi lunghi \(t > \tau \) invece il sistema ha raggiunto la sua deformazione massima \(\gamma_0 \) che rimane costante fintantoché lo sforzo \(\sigma_0 \) rimane applicato.

Principio di sovrapposizione ed Equivalenza tempo-temperatura

Entrambi i modelli presentati sono comunque adatti solo a rappresentare alcuni comportamenti peculiari di sistemi viscoelastici. Il comportamento di un polimero è molto più complesso e pertanto la soluzione è quella di affidarsi a modelli più complessi (costituiti da più elementi elastici e viscosi in serie e parallelo). Inoltre, al posto di singoli tempi di rilassamento, si fa spesso uso del concetto di spettro di rilassamento. La risposta di una serie di elementi di Maxwell può essere scritta come:

\[\sigma(t) = e \sum_{n} E_n e^{-t/\tau_n} \]

dove \(E_n e^{-t/\tau_n} \) si riferiscono al modulo elastico e al tempo di rilassamento dell’ennesimo componente. In forma integrale si ottiene:
1.2. Viscoelasticità dei polimeri

\[G(t) = G_R + \int_0^\infty H(\tau)e^{-t/\tau}d(ln\tau) \]

(1.20)

Dove \(G_R \) è il modulo che assicura un’elasticità a tempi lunghi. \(H(\tau)d(ln\tau) \) dà i contributi di rilassamento associati con tempi di rilassamento tra \(\ln(\tau) \) e \(\ln(\tau) + d(ln \tau) \).

Sperimentalmente non è possibile coprire un range di tempi (frequenze) così elevato ad una singola temperatura in modo da valutare tutto lo spettro di rilassamento. Sarebbe estremamente conveniente dunque, dal lato sperimentale, poter cambiare la temperatura dell’esperimento e portare il processo di rilassamento d’interesse entro una scala di tempo più accessibile. Questo implica assumere che ci sia una correlazione tra la scala dei tempi e delle temperature [31,34–36,38].

Le proprietà dei polimeri mostrano variazioni molto grandi come funzione lineare di \(T \). In figura 1.8 è mostrata la variazione in modulo elastico in funzione della temperatura \(T \) e del logaritmo dell’inverso del tempo di scala (frequenza, \(\omega \)) che subisce un polimero amorfo passando attraverso la temperatura di transizione vetrosa \(T_g \). A bassa \(T \) o alte \(\text{Log} \omega \), il polimero si comporta come un solido fragile vetroso con modulo elastico elevato (\(\sim 10^9 \) Pa). Avvicinandosi a \(T \) più elevate (basse \(\text{Log} \omega \)) il materiale si rammollisce. Attorno a \(T_g \), il modulo crolla di diversi ordini di grandezza. La \(T_g \) è definita dalla discontinuità del coefficiente di espansione termico [30,36,46,47] (figura 1.9). A questa \(T \) si instaurano moti molecolari coordinati a lungo raggio. Successivamente il modulo raggiunge il cosiddetto rubbery plateau. A \(T \) ancora maggiori il materiale può fluire (polimeri non reticolati a moderato peso molecolare) oppure il modulo rimane costante (polimeri reticolati o ad altissimo peso molecolare).

Le proprietà viscoelastiche, specialmente per \(T > T_g \), sono fortemente influenzate dalla \(T \). Per alcuni materiali, detti termoreologicamente sempli-
ci, può essere introdotto il principio di sovrapposizione tempo-temperatura [31, 35, 36]. Secondo questo principio, una certa proprietà viscoelastica (G', G'', $\tan \delta$,...) può essere traslata sull’asse dei tempi (o delle frequenze) cambiando la temperatura.

Di conseguenza è possibile visualizzare su una singola curva, detta curva maestra o più comunemente anche in italiano master curve, il comportamento viscoelastico del materiale su di uno spettro molto ampio di frequenze (o tempi), semplificando di molto l’analisi dell’influenza della temperatura sulle proprietà meccaniche.

Secondo questo metodo, ogni proprietà viscoelastica (ad esempio G'), valutata ad una certa temperatura T, può essere spostata rispetto l’asse delle frequenze $\log \omega$ (o tempi, $\log t$) e sovrapporsi ad un altra curva presa alla

Figura 1.8: Dipendenza dalla temperatura del modulo elastico di un polimero amorf in funzione della temperatura (o di $\log \omega$).
temperatura di riferimento T_0, come espresso nell’eq. 1.21:

$$\tilde{\omega}(T_0) = a_T \omega(T)$$ \hspace{1cm} (1.21)

dove $\tilde{\omega}$ è detta frequenza ridotta.

L’equivalenza tempo-temperatura nella sua forma più semplice implica che il comportamento viscoelastico ad una temperatura possa essere legato a quello di un’altra temperatura solo grazie ad una variazione nella scala dei tempi [31,35,36,38]. In pratica è possibile spostare tutte le curve sperimentali

Figura 1.9: Dipendenza dalla temperatura di Volume V, Entalpia H e modulo di immagazzinamento G' attraverso la T_g per un polimero amorfo. A destra sono riportati il coefficiente di espansione lineare e il calore specifico (rispettivamente la derivata prima di V e H) e il modulo di perdita G''.

ottenute alle diverse temperature sulla stessa curva (master curve), determin-
nata ad una temperatura di riferimento T_0. La quantità a_T, detta fattore di traslazione (o *shift factor*), si ottiene dalla valutazione della traslazione orizzontale necessaria a sovrapporre le curve ottenute alle diverse temperature T rispetto ai dati ottenuti alla temperatura di riferimento T_0.

La validità di questo principio implica che gli a_T siano gli stessi per tutte le proprietà viscoelastiche. È possibile visualizzare la costruzione della master curve a partire da dati ottenuti a diverse temperature, e gli a_T corrispondenti in figura 1.10. La dipendenza di a_T dalla temperatura può essere generalmen-

![Figura 1.10: Esperimenti dinamico-meccanici a diverse temperature. Costruzione della mastercurve traslando le singole curve sull’asse delle ascisse per un fattore di traslazione a_T rispetto una temperatura di riferimento T_0.](image)

La dipendenza di a_T dalla temperatura può essere espressa usando due relazioni: la legge di Williams-Landel-Ferry (WLF) e, per temperature elevate, una legge di tipo Arrhenius [31]. Nel caso dei materiali polimerici, l’equazione WLF fornisce una buona interpolazione degli a_T in un intervallo di temperature tra T_g e $T_g + 100K$:

$$
\log \frac{a(T)}{a(T_0)} = \frac{-C_1(T - T_0)}{C_2 + (T - T_0)}
$$

Sperimentalmente, per molti polimeri lineari amorfi, se $T_0 = T_g$ allora il valore delle costanti nell’equazione WLF è indipendente dalla struttura chimica.
(\(C_1 = 17.44 \) e \(C_2 = 51.6 \) K).

L’equazione di Arrhenius è invece espressa da:

\[
\log(a_T) = \frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{T_0} \right)
\]

(1.23)

Dove \(a_T \) è il fattore di traslazione, \(T_0 \) è la temperatura di riferimento, \(E_a \) è l’energia di attivazione e \(R \) è la costante universale dei gas.

Sulla base della teoria molecolare della viscoelasticità si dovrebbe tenere conto anche di un piccolo shift verticale, \(T_0 \rho_0 / T \rho \), dove \(\rho \) è la densità alla temperatura \(T \) dell’esperimento e \(\rho_0 \) è la densità alla temperatura di riferimento \(T_0 \) [31].

Condizioni dinamiche

La dipendenza da \(T \) e da \(\omega \) delle funzioni viscoelastiche lineari misurate in regime oscillatorio sono usate spesso per evidenziare alcune caratteristiche dello spettro di tempi di rilassamento.

Il comportamento dinamico di un polimero amorfo con una fase dispersa è governato dall’interazione delle fasi presenti. La concentrazione di fase dispersa, la sua agglomerazione e l’interazione tra la matrice ed essa giocano un ruolo importante nelle proprietà del composto [40,41].

L’analisi dinamico meccanica (DMA) è un potente mezzo per misurare le proprietà dei materiali allo stato solido sotto condizioni dinamiche in funzione di \(T \) o di \(\omega \).

In questa tecnica una deformazione sinusoidale \(\epsilon(t) \) con ampiezza \(\epsilon_0 \) e frequenza \(\omega \) viene applicata al campione. Lo stress \(\sigma(t) \) risultante segue una funzione sinusoidale con ampiezza \(\sigma_0 \) e un fattore di ritardo \(\delta \). Questi dati possono essere analizzati nei seguenti termini:

- Il modulo di immagazzinamento: \(G'(\omega) = (\sigma_0 / \epsilon_0) \cos(\delta) \) è legato alle componenti dello sforzo in fase con la deformazione (comportamento elastico).
Capitolo 1. Background teorico e stato dell’arte

- Il modulo dinamico di perdita: \(G'' = (\sigma_0/\epsilon_0) \sin(\delta) \), è legato alle componenti dello sforzo fuori fase di \(\pi/2 \) con la deformazione applicata

- il fattore di smorzamento o perdita: \(\tan \delta = G''/G' \).

Questi parametri sono sensibili ai moti molecolari, processi di rilassamento, eterogeneità strutturali e morfologia dei sistemi costituiti da più fasi.

1.2.1 Meccanismi di rilassamento nel polietilene

La struttura del polietilene (PE) si presta bene allo studio dei rilassamenti nei polimeri semicristallini grazie alla possibilità di disporre con strutture molto diverse [11–25, 36, 54]. Può essere infatti facilmente ottenuto come LDPE, che tipicamente contiene sia LCB (1/molecola) e SCB (30/1000C), come HDPE (\(\lesssim 5/1000C \)) che è il tipo che si avvicina di più ad un polimero lineare puro \(-(CH_2)_n-\); oppure come LLDPE, un copolimero tra PE e un’α-olefina che presenta solo SCB e il cui contenuto regola la densità del materiale finale.

Il PE esibisce tre processi di rilassamento comunemente osservati sotto la temperatura di fusione \(T_m \), noti (dalla T più bassa alla più alta) come \(\gamma \), \(\beta \) e \(\alpha \) [36,39–57].

Le principali caratteristiche della dipendenza dalla temperatura di \(\tan \delta \) sono schematicamente riportate in figura 1.11. LLDPE mostra chiaramente picchi di rilassamento ben distinti \(\alpha \), \(\beta \) e \(\gamma \) in ordine di temperature decrescenti. Nell’HDPE il picco \(\gamma \) è molto simile a LLDPE, il picco \(\beta \) è difficilmente risolvibile e il rilassamento \(\alpha \) appare talvolta modificato dall’inizio della fusione. Ad oggi si considera che i tre rilassamenti: \(\alpha \), \(\beta \) e \(\gamma \) siano presenti in tutte le forme di PE [36].

Parte fondamentale per la comprensione dei rilassamenti meccanici del PE è determinare se un determinato picco è riconducibile alla componente amorfa o cristallina o ad un’interazione che coinvolge entrambe le fasi. Secondo
Figura 1.11: Tipica DMA per PE. In grafico è mostrato l’andamento del fattore dissipativo $\tan\delta$ in funzione della temperatura (K).

Boyd [39,40] l’intensità di tutti e tre i rilassamenti è in qualche modo legata alla frazione amorfa.
Sono riassunte di seguito le principali descrizioni dei rilassamenti del PE secondo la letteratura pertinente.

Rilassamento α

Il rilassamento α occorre intorno a $T_\alpha \sim 0\pm 60^\circ$C. L’interpretazione accettata è che la posizione del picco α sia inversamente collegata allo spessore delle lamelle nella fase cristallina e una transizione α netta indichi una distribuzione stretta di dimensioni di cristalli [36,38,50,52,55].
La T_α di questa transizione è associata alla regione cristallina e al moto delle catene ripiegate sulla superficie delle lamelle o comunque alle regioni interfac-
ciali (*tie molecules, foldings, loops, cilia...*) che richiedono mobilità di catena nel cristallo come precursore [42].

T_α tende a spostarsi a più alte temperature T al diminuire della ramificazione, come ci si può attenere dal fatto che materiali più cristallini hanno punti di fusione più netti [45]

E’ stata anche proposta, per alcuni LLDPE, la presenza di una doppia transizione in questo range di T e quella a T più basse è stata chiamata α'. La transizione α' è descritta come una spalla della transizione principale α. Le caratteristiche strutturali e morfologiche che producono il rilassamento α' non sono state del tutto chiarite: questo rilassamento può essere dovuto a moti dovuti a cristalliti di diversa lunghezza rispetto a quelli che danno origine alla transizione α. L’esistenza di SCB in LLDPE aumenta la larghezza della distribuzione degli spessori dei cristalliti. Una distribuzione di spessori di cristalli molto ampia può influenzare molto le transizioni α e α' [54].

In conclusione il rilassamento α è dovuto a moti o deformazioni entro le regioni interfacciali (*tie molecules, folds, loops, etc.*) che sono attivate come conseguenza della mobilità di catena nel cristallo.

Rilassamento β

L’origine e il meccanismo del rilassamento β è tra i più discussi e controversi per la sua interpretazione [36,38–40,44,45,51,52,54,55,59]. Le temperature a cui avviene il picco β sono intorno a $T_\beta \sim$-40°C. In alcuni casi la misura del coefficiente di espansione ha mostrato una transizione vicino a T_β tipico di una T_g [30,38,44–46,53].

Al diminuire della densità si osserva uno spostamento di T_β a più basse temperature, ad un progressivo restringimento del massimo e ad un suo aumento di intensità. Poiché la densità e il grado di cristallinità del PE diminuiscono all’aumentare della ramificazione, questo comportamento è consistente con l’identificazione del rilassamento β con i domini amorfi del polimero: il pro-
1.2. Viscoelasticità dei polimeri

cesso β è di solito associato con moti segmentali delle catene laterali (punti di ramificazione) nelle regioni non cristalline [38]. Questo risultato è stato confermato sia da risonanza magnetica nucleare (NMR) che da misure dielettriche [38–40]. Questa transizione è molto debole negli HDPE, tanto che talvolta è difficile risolverla come anche in figura 1.11.

Il fatto che la transizione sia associata alla fase amorfa è ulteriormente confermato dal fatto che cristalli singoli di PE lineare non esibiscono questo rilassamento [38,56].

Il restringimento del picco è un indice che l’ambiente vicino ai punti di ramificazione (che danno origine a zone amorfe) sta diventando più omogeneo.

L’intensità del rilassamento β tende ad essere generalmente più alto per gli LDPE. Questo aumento dell’intensità è probabilmente una conseguenza di un aumento della frazione di volume amorfo dovuto alla ramificazione piuttosto che alle ramificazioni stesse.

Un rilassamento β a più alte T per LLDPE è stato spiegato come causato dall’ingombro di ramificazioni che si comportano come gruppi laterali [53]. E’ noto che l’introduzione di gruppi laterali aumenta la T_β e ciò favorirebbe, anche per LLDPE, lo spostamento del rilassamento β (o la T_g) a T più alte. Per esempio, LLDPE contenente 20 CH_3/1000 CH_2 lo renderebbe già un copolimero random contenente $[-CH_2-CH_2-]%$, e $[CH_2CH-(C_2H_5)-]$. Dunque il picco β degli LLDPE non è quello del polietilene omopolimero ma quello di un copolimero etilene. Questo punto è però controverso in quanto altri risultati hanno concluso che l’incremento dell’ingombro dei gruppi laterali non sposta la T_β e a fronte di questo risultato si è basata l’interpretazione che T_β non sia la T_g del polietilene [60].

Woo ha suggerito che al diminuire della cristallinità, come conseguenza di un incremento dell’uniformità dell’ambiente circostante e alla cooperatività dei moti molecolari, il rilassamento β assume sempre di più l’aspetto di una transizione vetrosa (T_g). Questa interpretazione è giustificata dal rapporto G_U/G_R, con $G_u =$ unrelaxed modulus, $G_r =$ relaxed modulus, che nei po-
Capitolo 1. Background teorico e stato dell’arte

Figura 1.12: Differenza tra il modulo prima e dopo la transizione β: $G_U = \text{unrelaxed modulus}$, $G_R = \text{relaxed modulus}$, in funzione della cristallinità $X_c(\%)$. Riadattato da [55].

L’analisi della dipendenza dalla frequenza di questo rilassamento hanno mostrato andamenti tipicamente di tipo Arrhenius con energie di attivazione E_a spesso non concordi, probabilmente a causa delle molte strutture diverse possibili. I valori riportati sono $E_a = 350 \pm 60 \text{ kJ/mol}$ [62], $E_a = 265 \pm 64 \text{ kJ/mol}$ [63], $E_a = 500 \text{ kJ/mol}$ [64].

Per concludere: il rilassamento β ha un’intensità che tende ad aumentare con l’incremento del volume amorfo (quenching o branching) e la T_β aumenta all’aumentare del peso molecolare e della densità ed è influenzata dal tipo e ammontare di ramificazione [36,38–40,50–52,55,58–61].

Per quanto riguarda la sua classificazione come T_g si trovano in letteratura risultati contrastanti.
Rilassamento γ

Il rilassamento γ compare tipicamente nel range di temperature tra $T_\gamma \approx -150 \div -100 ^\circ C$. Poiché il picco sembra allargarsi e aumentare di intensità al diminuire della densità dei campioni [38,50,52], o all’aumentare del contenuto di fase amorfa, esso è associato alla fase amorfa [36,38,44,45,51,52,54,55]. Inoltre è sempre presente indifferentemente dalla densità del PE in esame. Da misure del coefficiente di espansione termico, calorimetriche e DMA è stato proposto in letteratura che la transizione γ sia la T_g per il PE. E’ stato riportato che per $T < T_\gamma$ il coefficiente di espansione termica lineare è risultato quasi indipendente dalla cristallinità mentre a $T > T_\gamma$ è risultato aumentare sistematicamente al diminuire della cristallinità [46]. Tuttavia non mancano risultati contrastanti sia alla misura che all’interpretazione. Per i polimeri amorfi la temperatura a cui avviene T_g dipende dalla frequenza in accordo all’equazione WLF (v. eq. 1.22).

Le transizione secondarie, d’altra parte, hanno generalmente una dipendenza tipo Arrhenius da T. La dipendenza frequenza-temperatura del picco γ in letteratura non è concorde con un’unica interpretazione: è stato infatti riportato sia che abbia una dipendenza da T tipo WLF, ma i parametri differiscono da quelli universali, sia che γ abbia una dipendenza dalla T tipo Arrhenius e anche che non sia né Arrhenius né WLF [50]. Per quanto riguarda l’energia di attivazione, per la T_g, tipicamente ΔH è tra 30 e 100 kcal/mol. ΔH per la transizione γ è stato riportato variare tra 5 e 18 kcal/mol, a seconda della cristallinità del campione. La dipendenza esatta dalla frequenza di campioni di PE contenenti poca cristallinità non è ancora stata studiata [50].

Nonostante le difficoltà nell’attribuire a questo processo di rilassamento le proprietà di una transizione vetrosa, ad oggi sembra esserci un generale consenso circa il meccanismo alla base del rilassamento γ. Il rilassamento γ coinvolge il moto di un segmento corto di catena (da 3 a 4 gruppi CH_2) attaccato alla catena principale nella regione amorfa (meccanismo proposto
da Schatzki [48]). Il moto è di tipo crackshaft di sequenze di metileni: ossia il rilassamento di rotazioni ostacolate di quattro gruppi metilene. Per questa ragione, il meccanismo può avvenire solo nella frazione amorfa, non cristallina, del solido [36,39,48].

La T_g del polietilene

In conclusione il PE presenta tre principali rilassamenti: α, β e γ. Mentre c’è un comune accordo sulle fasi responsabili e i meccanismi del rilassamento α e anche per i rilassamenti β e γ sono stati ben caratterizzati, c’è invece molta confusione sulla scelta della T_g del PE. La situazione è rappresentata dalla figura 1.13 in cui si riassumono i risultati della determinazione sulla T_g del PE [58]. Ad oggi sono ancora molti i tentativi di definire una T_g nel

![Figura 1.13: Numero di articoli (fino al 1973) in cui la temperatura indicata è stata assegnata alla T_g del PE [58].](image-url)

PE [59–61]. Per gli scopi di questa tesi è sufficiente tenere in considerazione che entrambi i picchi di rilassamento β e γ offrono buone argomentazioni e
risultati sperimentali a favore di una T_g per il PE, o almeno per una certa fase in esso.

1.3 Background teorico sull’adesione

In questo paragrafo si vogliono introdurre i principali concetti riguardante l’adesione tra polimeri e in particolare i Pressure Sensitive Adhesives (PSAs). Nel sottoparagrafo dedicato alla meccanica della frattura sono introdotti alcuni concetti base che saranno poi ripresi più volte sia per descrivere la tenacità di un adesivo sia per descrivere l’analisi del test di peeling [71]. Successivamente si rivede brevemente lo stato dell’arte sui PSAs soffermandosi su alcuni modelli teorici che verranno ripresi in seguito. Infine si citano alcuni tra i principali metodi sperimentali usati per la caratterizzazione degli adesivi.

1.3.1 Meccanica della frattura

In meccanica della frattura si fa uso del formalismo della meccanica del continuo: vengono ignorati i dettagli della struttura molecolare del polimero e questo è visto come un corpo unico dotato di particolari proprietà fisiche [68]. Nella prima metà del 1900 Griffith dimostrò che lo sforzo teorico per la frattura di un solido fragile doveva essere dell’ordine di un decimo del modulo di Young, $\sigma_B=E/10$. Tuttavia dai risultati sperimentali questa previsione appariva largamente sovradimensionata [65].

La ragione di questi bassi sforzi di frattura era la presenza di piccole imperfezioni nel materiale, che agivano da concentratori di sforzi. La situazione è facilmente descrivibile in materiali che si deformano in modo lineare elastico. In figura 1.14 si mostra il tipico esempio di una fessura ellittica in un foglio di dimensioni infinite sotto l’azione di uno sforzo σ.

All’apice della fessura si ha [66]:
Capitolo 1. Background teorico e stato dell’arte

Figura 1.14: Concentrazione di sforzi all’apice di una fessura ellittica di semiasse maggiore a e raggio di curvatura ρ in un foglio di dimensioni infinite.

$$\sigma_t = \sigma_0 (1 + 2 \sqrt{\frac{a}{\rho}})$$

(1.24)

Dove ρ è il raggio di curvatura dell’apice e $2a$ l’asse maggiore dell’ellisse. Questa relazione predice che, quando $\rho \to 0$, allora $\sigma \to \infty$. Il risultato non è fisicamente accettabile. Si sono sviluppati diversi approcci per descrivere ciò che avviene nella zona intorno all’apice: uno è il classico bilancio d’energia e l’altro è il fattore di intensificazione degli sforzi.

Bilancio d’energia

Questo approccio è basato su un criterio del tipo energetico e descrive la propagazione di una frattura in termini della conversione del lavoro svolto W da una forza esterna e un’energia elastica disponibile U immagazzinata nel campione in una creazione di superficie descritta da un’energia libera di superficie γ.

$$\frac{d(W - U)}{da} \geq \gamma \frac{dA}{da}$$

(1.25)
1.3. Background teorico sull’adesione

Dove dA è l’aumento di area di superficie associata ad una propagazione della frattura da a ad a+da. Per una frattura che propaga in un foglio sottile di spessore b, si ottiene che dA = 2b da:

\[
\frac{1}{b} \frac{d(W - U)}{da} \geq 2\gamma = G_0
\] \hspace{1cm} (1.26)

Dove \(G_0\) rappresenta l’energia di frattura intrinseca per creare due superfici. Tuttavia, per la maggior parte dei polimeri, l’energia necessaria a far propagare la frattura è più del doppio del valore dell’energia di superficie. Questa discrepanza è dovuta al fatto che anche nel polimero più fragile, vicino all’apice della frattura, avviene una dissipazione di energia localizzata plastica o viscoelastica, di cui non si tiene conto nel valore di \(2\gamma\).

Il termine \(2\gamma\) può essere sostituito dal simbolo \(G_c\), che racchiude tutte le perdite di energia eventualmente avvenute attorno all’apice della frattura. \(G_c\) rappresenta l’energia richiesta ad un incremento della frattura per una lunghezza unitaria in un campione di larghezza unitaria.

Il criterio di frattura è espresso come:

\[
\frac{1}{b} \frac{d(W - U)}{da} \geq G_c
\] \hspace{1cm} (1.27)

\(G_c\) può essere scritto come la somma di un’energia di frattura intrinseca, \(G_0\), che rappresenta solo l’energia richiesta per la rottura dei legami, ed un termine \(\Psi\), che corrisponde all’energia dissipata in deformazioni plastiche o viscoelastiche all’apice. Il valore di \(\Psi\) è di solito il contributo principale a \(G_c\).

\[
G_c = G_0 + \Psi
\] \hspace{1cm} (1.28)

Il fattore di intensificazione degli sforzi viene introdotto nella descrizione della distribuzione degli sforzi attorno all’apice di una frattura:

\[
\sigma_r \propto \frac{K}{\sqrt{r}}
\] \hspace{1cm} (1.29)

dove \(\sigma_r\) è la distribuzione degli sforzi e K, come suggerisce il nome, descrive per la particolare tipologia di geometria e carico l’intensità degli sforzi. Per
i materiali fragili, in modo simile a G_c, si definisce un parametro critico K_c. Questo definisce il massimo livello di concentrazione degli sforzi oltre il quale si ha la frattura.

K e G sono legati dalla relazione:

$$G = \frac{K^2}{E}$$ \hspace{1cm} (1.30)

Dove E è il modulo di Young.

1.3.2 Adesione tra materiali polimerici

L’adesione è un processo estremamente complesso che riguarda la creazione e la tenacità dell’accoppiamento che può avvenire tra due materiali qualsiasi. In generale, due superfici (elettricamente neutre) si attraggono quando la separazione tra esse è nel range delle distanze interatomiche fino a pochi nanometri: le superfici si trovano allora in contatto intimo ad effetto delle forze di interazioni intermolecolari di van der Waals. Una trattazione esaustiva si trova in letteratura [72–75].

In questo paragrafo si concentra l’attenzione allo studio dell’adesione tra superfici polimeriche tra le quali non avvengano trasformazioni di fase (liquido/solido) o chimiche. In contatti polimero-polimero, il meccanismo importante di adesione è l’interdiffusione di catene polimeriche da una superficie all’altra.

Di molti fattori che influenzano le proprietà adesive, i tre più importanti sono: la viscoelasticità dei materiali in contatto, la rugosità superficiale e la geometria di contatto. Certe proprietà viscoelastiche permettono ai polimeri di soddisfare le specifiche richieste per essere classificati come adesivi.

I solidi viscoelastici non sono idealmente elastici ma hanno una risposta di tipo viscoso alle deformazioni: quando si separano due solidi viscoelastici in contatto tra loro, il lavoro speso per separarli è dissipato sia all’interno del materiale che all’interfaccia di contatto [80]. L’adesivo deve possedere due importanti caratteristiche: adesione e coesione.

L’adesione, o l’appiccicosità, è la capacità dell’adesivo di formare una grande
area di contatto ricoprendo al meglio la superficie su cui viene posto. In letteratura ci si riferisce a questo aspetto come *tackiness*.

Per coesione si intende lo sviluppo di una tenacità sufficiente dei legami fisici tra le molecole di polimero tale da resistere agli sforzi applicati esternamente. Tipicamente, a fronte della grande differenza nelle proprietà meccaniche tra elastomeri e termoplastici, si è soliti considerare i diversi meccanismi dell’adesione in questi due gruppi di materiali separatamente.

Ci si riferisce all’adesione tra due elastomeri identici non reticolati con il termine *tack*. Il tack è dovuto sia a forze dispersive alla superficie che per interdiffusione di lunghe catene di molecole attraverso l’interfaccia [76]. L’adesione equivalente tra polimeri vetrosi o semicristallini è realizzata portando i materiali sopra la loro temperatura di transizione vetrosa T_g per permettere l’interdiffusione; in questo caso si parla di saldatura o *crack-healing* [87,88].

La principale differenza tra il tack degli elastomeri e la saldatura dei termoplastici non è, comunque, nel meccanismo di unione delle interfacce che per entrambi i casi è interdiffusione ma nella loro separazione o nel processo di frattura.

La resistenza a frattura è controllata da meccanismi locali e dalle proprietà meccaniche del materiale e quindi c’è una grande differenza tra elastomeri e termoplastici [77].

L’adesione tra polimeri differenti è controllata dagli entanglements all’interfaccia tra i materiali e dalla loro compatibilità. Se i materiali sono essenzialmente insolubili uno nell’altro e l’interfaccia tra essi è molto sottile, allora ci si può aspettare una bassa adesione [76]. Viceversa se i materiali hanno un’interfaccia diffusa, allora normalmente aderiscono fortemente [89]. Ci sono comunque eccezioni a queste regole.

Ad esempio se si introduce un terzo polimero che è miscibile negli altri due e, essendo presente all’interfaccia, crea sufficienti entanglements con entrambi i polimeri; questa situazione incrementa notevolmente la tenacità dell’interfaccia.
Oppure se almeno uno dei due polimeri è elastomerico e ha un opportuno spettro di dissipazione energetica allora, per velocità finite di propagazione della frattura, si può anche in questo caso misurare un’adesione considerevole con essenzialmente zero interdiffusione.

Meccanismi di adesione interdiffusiva/frattura tra polimeri

L’adesione tra due superfici polimeriche è un argomento che in generale che coinvolge fasi diverse del materiale in diversi momenti. Per meglio comprendere i meccanismi che permettono di ottenere una buona tenacia dell’interfaccia è conveniente suddividere il problema in parti più piccole.

Concettualmente, il processo di adesione di due polimeri può essere diviso in una fase di bagnabilità della superficie [90] e una fase di interdiffusione.

Durante la fase iniziale di bagnabilità, le superfici polimeriche sono portate in contatto intimo tra loro. In funzione dell’energie libere di superficie di entrambi i polimeri (\(\Gamma_1\) e \(\Gamma_2\)), e l’energia libera d’interfaccia tra le fasi (\(\Gamma_{int}\)), può essere determinato un coefficiente di bagnabilità [85,86]:

\[
S = \Gamma_2 - \Gamma_1 - \Gamma_{int}
\]

(1.31)

dove \(S > 0\) rappresenta una buona bagnabilità; viceversa per \(S < 0\) si hanno scarse caratteristiche di bagnabilità.

L’energia totale per unità di superficie necessaria a produrre un’interfaccia, nel caso di un liquido, è \(\Gamma = 2\gamma\), dove \(\gamma\) è l’energia di superficie del liquido.

Per un liquido del tipo van der Waals, l’ordine di grandezza della tensione superficiale è \(\gamma = \frac{kT}{a}\), dove \(k\) è la costante di Boltzmann; \(T\) è la temperatura assoluta; e \(a\) è la dimensione molecolare. Una rapida stima fornisce energie massime dell’ordine di \(\gamma \approx 0.1\) J/m².

Dopo questa fase, e se \(T > T_g\) del polimero, è possibile per i segmenti di catena diffondere da una superficie all’altra [91]. L’estensione e la cinetica dell’interdiffusione tra polimeri dipende dalla lunghezze di catena dei
1.3. Background teorico sull’adesione

polimeri, i loro entanglements, e la compatibilità dei polimeri, quest’ultima espressa dal parametro di Flory-Huggins χ [29] (Se $\chi > 0$ l’interdiffusione è ostacolata). Poiché ogni segmento di catena polimerica è circondato da altri segmenti di catena, il loro moto non è più Browniano. Una catena polimerica può solo muoversi lungo un percorso con un meccanismo che è stato definito reptazione [29].

La diffusione è proporzionale all’ inverso del quadrato del grado di polimerizzazione (DP):

$$D_L = \frac{D_{\text{segm}}}{(DP)^2}$$ \hspace{1cm} (1.32)

Con D_L = coefficiente di diffusione traslazionale e D_{segm} = coefficiente di diffusione Browniano per un monomero, DP = grado di polimerizzazione.

Con sufficiente tempo l’ interfaccia tra due polimeri miscibili può essere spessa diversi micrometri e nell’ ipotesi di tempi molto lunghi non dovrebbe più essere possibile distinguere l’ interfaccia.

Tipici test per valutare l’adesione sono quelli di frattura e, in analogia con la frattura dei materiali tal quali, richiedono una conoscenza dei meccanismi che avvengono vicino all’ apice di frattura e delle deformazioni del materiale che sono così indotte da questa situazione meccanica.

Negli elastomeri la dissipazione d’ energia attorno all’ apice della frattura è di natura viscoelastica e dunque è dipendente sia dal tempo che dalla temperatura (v. paragrafo 1.2). L’ estrazione, pull-out di catene polimeriche è un processo viscoso e dunque l’ energia richiesta per separare i materiali tende a zero a velocità di avanzamento della frattura molto basse [78, 79].

Al limite, quando non è richiesta nessuna frattura di catene, l’ energia coinvolta nella propagazione della frattura, per velocità tendenti a zero, dovrebbe avere come limite l’ energia termodinamica di superficie (eq. 1.33).

$$\lim_{v \to 0} G_c \longrightarrow G_0 = 2\gamma$$ \hspace{1cm} (1.33)

L’ aumento di velocità di avanzamento della frattura e la diminuzione della temperatura possono aumentare G di diversi ordini di grandezza rispetto al
valore soglia [118,119], come mostrato in figura 1.15 nel caso di un elastomero. A bassa temperatura e alte velocità di separazione si assiste ad un notevole

Figura 1.15: Confronto tra la variazione di G_c in funzione della velocità di avanzamento di frattura V per un elastomero e un polimero vetroso. Riadattato da [76].

aumento della tenacità dell’interfaccia anche in assenza di interdiffusione o reazioni chimiche. Questa tenacità può essere rappresentata da un’equazione della forma:

$$G = G_0 [1 + \phi(a_T V)]$$ \hspace{1cm} (1.34)

Dove si riconosce la forma dell’eq. 1.28. G_0 è la tenacità soglia, V è la velocità della frattura e a_T è il fattore di shift di Williams, Landel e Ferry [31]. La funzione ϕ, che tende a zero al tendere a zero di V, descrive la dissipazione d’energia. Proprio per questo in passato è stata associata al modulo G'' [120].
Una spiegazione alternativa per la dipendenza di G dalla velocità richiede di calcolare l’energia persa per dissipazione viscosa in una regione attorno all’apice della frattura dove la velocità di deformazione (o la frequenza di sollecitazione) sono tali per cui l’elastomero è essenzialmente un materiale viscoso [93,94].

La dimensione di questa regione è controllata dalla velocità di avanzamento della frattura, il tempo di rilassamento effettivo del materiale visкоelastico e la dimensione della zona coesiva all’apice della frattura, che si sono dimostrate dipendere dalla velocità di frattura in un materiale visкоelastico [66,92,93]. La regione viscosa si espande all’aumentare della velocità di frattura quindi aumentando la dissipazione.

1.3.3 I pressure sensitive adhesives (PSAs)

Come si è accennato, per essere efficiente, un adesivo deve avere sia proprietà da liquido, ossia ricoprire la superficie durante la formazione del legame, e proprietà da solido, per sostenere un certo livello di sforzo durante il processo di distacco.

Per i pressure-sensitive adhesives (PSAs) questa transizione di comportamento da liquido a solido non avviene con variazioni di fase o reazioni chimiche. La risposta viscosa nel materiale, per i PSA, cambia alla variazione della velocità di deformazione: i PSA si comportano come liquidi a basse velocità di deformazione riuscendo ad adattarsi perfettamente alle superfici rugose. Questa proprietà, nota nel suo insieme come *tack* fornisce ai PSAs l’abilità di formare un legame di tenacità misurabile in seguito ad un semplice contatto con la superficie e con pressioni molto basse [1,80].

Ad alte velocità di separazione, tuttavia, i PSAs tendono a comportarsi come solidi. Tradizionalmente le proprietà di *tack* dei PSA sono state correlate con il loro comportamento reologico lineare, come il modulo di immagazzinamento G' e di perdita G'' [75].

Sebbene questa analisi abbia consentito di ricavare diversi elementi utili a comprendere il comportamento di un PSA è limitata dal fatto che l’esperi-
mente di tack coinvolge grandi deformazioni e comportamenti transienti che non possono essere predetti dai tradizionali metodi reologici o dinamico meccanici.

L’osservazione del distacco di un nastro con PSA da una superficie solida mette in risalto la complessità del fenomeno: la rottura finale spesso avviene in seguito alla formazione di una struttura fibrillare e le energie misurate sono di gran lunga superiori al lavoro termodinamico di adesione $W_a = 2\gamma$. In aggiunta l’adesivo non è l’unico fattore chiave poiché ci sono situazioni in cui gli effetti di superficie giocano un ruolo fondamentale: rugosità superficiale, tensione superficiale, modulo elastico, spessore del film adesivo sono tutte proprietà coinvolte nel processo di adesione e distacco di un PSA.

La bontà di un adesivo dipende oltre che dalla sua abilità di accoppiarsi alla superficie con una bassa pressione e piccolo tempo di contatto anche dalla capacità di formare una struttura fibrillare quando distaccato dal substrato. La rugosità superficiale, in generale, anche a scala nanometrica, riduce l’adesione. Solo materiali molto soffici come i PSAs o polimeri elastomerici, che sono in grado di adattarsi alla rugosità superficiale, possono tollerare un certo grado di rugosità. Per creare un buon contatto alla superficie dell’aderente è molto diffuso il criterio di Dahlquist [99]: un PSA deve avere un modulo elastico a trazione $E'(1\text{ Hz}) < 0.1$ MPa per aderire adeguatamente alla superficie.

Più recentemente questo criterio è stato razionalizzato in termini della rugosità della superficie in contatto con un piano elastico [101,102]. Da queste considerazioni ci si aspetta un buon contatto molecolare quando le forze di superficie bilanciano esattamente il costo di energia elastica necessario a deformare il film adesivo per conformarsi alla rugosità della superficie [100]. In termini di modulo elastico dell’adesivo questo è descritto come:

$$E < W_a \left(\frac{R^{1/2}}{\lambda^{3/2}} \right)$$ \hfill (1.35)

dove R rappresenta il raggio medio di curvatura delle asperità della superficie.
modello e χ rappresenta l’ampiezza media della rugosità. Per $R \sim 50\mu m$, $\chi \sim 2\mu m$, e $W_a \sim 50 \text{ mJ/m}^2$ si trova un valore soglia di modulo elastico dell’ordine di 0.1 MPa.

Dissipazione viscoelastica

In un materiale elastico ideale, quando una frattura propaga, la situazione d’equilibrio dell’energia diventa instabile appena:

$$\left(\frac{\partial G}{\partial A} \right)_d = 0 \quad (1.36)$$

e la frattura accelera fino alla separazione completa. Nei materiali viscoelastici la dissipazione viscoelastica nel materiale stabilizza la velocità di frattura ad una velocità limite V.

L’entità della dissipazione viscoelastica dipende sia dalla velocità che dalla temperatura.

Maugis e Barquins hanno proposto un’equazione empirica (vedi eq. 1.34) per la cinetica di una frattura interfacciale di un materiale viscoelastico che propaga a velocità costante V [71].

Nello stato stazionario, l’energia G che è fornita al sistema corrisponde all’energia G_c che è dissipata durante la propagazione della frattura a velocità V. $G_c - G_0$ è quindi la forza motrice della frattura, mentre $G_0 \Phi(a_T V)$ stabilizza la velocità dell’avanzamento della frattura a V.

Per gli elastomeri, la funzione di dissipazione Φ assume, a temperatura costante, la forma empirica:

$$\Phi \propto \left(\frac{V}{V^*} \right)^n \quad (1.37)$$

Dove V^* è una velocità caratteristica del sistema. Inoltre, per alte velocità o alte dissipazioni $G_c \gg G_0$ e

$$G_c \approx G_0 \Phi(a_T V) \quad (1.38)$$

Diversi autori hanno quindi tentato di stimare la forma di $\Phi(a_T V)$ con le proprietà viscoelastiche lineari dell’adesivo.
Capitolo 1. Background teorico e stato dell’arte

Nei PSA ad esempio, Ψ è stata approssimata come una funzione lineare di \(\tan \delta \) [104] e quindi:

\[
G_c \approx G_0 \tan \delta \tag{1.39}
\]

1.3.4 Metodi sperimentali

La misura della forza adesiva può sostanzialmente essere divisa in due gruppi, ossia misure dipendenti dalla geometria (per esempio, la forza per unità di larghezza necessaria a portare a frattura il componente) o una proprietà indipendente dalla geometria (per esempio la tenacità a frattura). Negli anni c'è stata una grande proliferazione di metodi dipendenti dalla geometria e conseguentemente un aumento dei modi di definire la forza adesiva. Parallelamente c'è stata una costante crescita nel raffinare l’analisi degli adesivi in modo da ottenere un valore di resistenza a frattura intrinseco. L’adozione dei concetti di meccanica della frattura ha mostrato significativi vantaggi nelle sue applicazioni per i laminati flessibili per la determinazione della tenacità a frattura dell’adesivo [71].

I test sugli adesivi basati sulla meccanica della frattura sono sostanzialmente test di propagazione della frattura che richiedono che questa propaghi lungo o vicino all’interfaccia.

E’ solito riportare i risultati o come \(G_c \), il valore critico di G (il tasso di rilascio dell’energia di deformazione), o \(K_c \), il fattore di intensificazione degli sforzi.

Come accennato prima, \(G_c \) è una misura dell’energia dissipata per unità di area di frattura formata e ha le unità di un’energia di superficie (\(J/m^2 \)). Numericamente è di solito diversi ordini di grandezza più grande delle energie di superficie termodinamiche. La maggiorparte dell’energia misurata da \(G_c \) è dovuta ai processi plastici o viscosi che avvengono attorno all’apice della frattura nel caricare l’apice fino al punto di rottura.
1.3. Background teorico sull’adesione

Probe Tack

Tutti i metodi basati su sonda sono concettualmente simili, nel principio, alla rappresentazione di figura 1.16. Una sonda, con una punta piatta o sferica, è portata a contatto con il film adesivo, mantenuta a contatto con esso per un dato tempo sotto una certa pressione e quindi rimossa a velocità costante V_{deb}. Il risultato del test è una curva Forza vs spostamento del film adesivo in tensione.

All’inizio di questa tecnica veniva considerata solo la forza massima raggiunta dall’adesivo ma questo comportava una bassa riproducibilità di dati e scarsa capacità predittiva. Un’importante passo in avanti fu compiuto da Zosel [97] che comprese l’importanza di studiare l’intera curva di distacco dell’adesivo. Inoltre fu anche il primo ad usare per primo osservazioni ottiche durante il processo di distacco della sonda, dimostrando così che i buoni adesivi sono in grado di formare fibrille tra le due superfici [98].

Uno dei principali problemi di questa geometria è l’allineamento della sonda piatta con il substrato e l’adesivo. In parallelo con il raffinamento della tecnologia per permettere di migliorare questi aspetti, molti gruppi hanno usato sonde con punta sferica per lo stesso tipo di test [106–108]. Tuttavia questo approccio, spesso detto metodo JKR [107], è limitato agli adesivi

![Figura 1.16: Rappresentazione schematica di un test di probe tack.](image)
Capitolo 1. Background teorico e stato dell’arte

molto elastici. La pressione nell’area di contatto della sfera è definita come:

\[P(r) = \frac{3Ka}{2\pi R} \left[1 - \left(\frac{r}{a}\right)^2 \right]^{1/2} - \left(\frac{3KW}{2\pi a}\right)^{1/2} \left[1 - \left(\frac{r}{a}\right)^2 \right]^{1/2} \tag{1.40} \]

Dove a è il raggio dell’area di contatto, K è un fattore che dipende dal coefficiente di Poisson \(\mu \) e dal modulo elastico \(E \) dei due materiali in contatto, R è il raggio della sfera.

Per sistemi fortemente viscoelastici e di basso modulo, l’uso di una sonda piatta ha il vantaggio di riuscire ad applicare un campo di spostamenti costante allo strato di adesivo facilitando così l’analisi del processo di fibrillazione.

Le caratteristiche generali di una curva sforzo-deformazione \((\sigma - \epsilon)\) ottenuta da un probe-test di un PSA sono quindi tipicamente caratterizzate da tre grandezze principali: uno stress massimo \(\sigma_{\text{max}} \), un’estensione massima \(\epsilon_{\text{max}} \) e un lavoro di separazione \(W \), definito come l’integrale sotto la curva \(\sigma - \epsilon \).

Peel testing

Le proprietà adesive possono essere misurate mediante peel testing [148]. Esistono diversi metodi standard internazionali, ad esempio quelli pubblicati dall’American Society for Testing of Materials (ASTM) o dall’International Organization of Standardization (ISO) [3–6]. I risultati di questi test sono sostanzialmente diversi per il modo in cui il carico è applicato al campione; tuttavia ci sono molte similitudini sui principi primi.

Tutti i metodi descrivono l’uso di campioni rettangolari con spessore dell’adere- rente costante e grandi rapporti larghezza su spessore. Il peeling va condotto in ordinarie macchine da testing in cui la forza è misurata mediante una cella di carico.

In una prova di peeling è d’uso specificare parametri come lo spessore \(h \) e la larghezza \(b \) della striscia che si va a delaminare, detta peel arm. L’angolo tra il substrato e la direzione di applicazione della forza, \(\theta \) e la velocità di peeling. Il risultato del test è la peel force, ossia la forza per unità di larghezza dell’adesivo.

Anche se sono spesso indicati alcuni valori standard, c’è ampia libertà di
1.3. Background teorico sull’adesione

scelta per la velocità di prova, la temperatura e umidità dell’ambiente a se-
conda dello scopo della prova. Spesso non viene nemmeno fatto riferimento,
nelle diverse normative, all’influenza dell’angolo così che i diversi metodi non
siano tra loro confrontabili.
In figura 1.17 sono riportate le configurazioni di prova più comuni per il Peel
testing così come si trova nelle norme internazionali. I test di peeling con

![Figura 1.17: Configurazioni per peel testing standard e non.](image)

un substrato fisso e l’altro deformato di un qualche angolo (configurazione
conosciuta con il nome di peel test a braccio fisso) possono essere eseguiti a
diversi angoli (tipicamente da $\theta = 45$ a 180°). Il problema di eseguire un test
di peeling ad angoli diversi da $\theta = 180^\circ$ risiede nel mantenere l’angolo costante
per tutta la durata della prova. Questo può essere realizzato mediante op-
portuni sistemi di fissaggio per i campioni, come ad esempio quello spiegato
più avanti ed usato in questa tesi (v. paragrafo 3.6.1).

Diversi standard [3, 6] descrivono un test a braccio fisso a 180°. L’ade-
rente è incollato ad un substrato rigido e tirato a 180° rispetto al suo stato
iniziale. La forza media di peel per unità di larghezza, ossia la resistenza di
peel, è quindi riportata.
In ogni caso, come si vedrà meglio nel prossimo capitolo, dal momento che
la resistenza di peel dipende dalle proprietà meccaniche del peel arm, i con-
fronti tra i diversi test di peeling sono solo possibili quando si usa un comune braccio di peel.
Il testing di campioni flessibili tra di loro può essere svolto convenientemente con una configurazione detta T-peel. In questa configurazione le due estremità dallo stesso lato non adese vengono separate con un angolo tra loro di 180° mentre l’altra estremità viene lasciata libera. La resistenza di peel viene riportata in modo simile al caso precedente. Anche in questo caso vi è la possibilità di avere un angolo minore di $\theta=180^\circ$ tra i due membri flessibili o che l’angolo vari durante la prova stessa.

La propagazione del fronte di peel, nei PSAs, è spesso accompagnato da un processo di cavitazione e fibrillazione dell’adesivo [103]. L’adesivo in prossimità del peel fronte è soggetto a forti tensioni idrostatiche a causa del confinamento laterale imposto dalle due superfici che unisce. Per adesivi molto forti, l’adesivo non si distacca; in questo modo si formano cavità che crescono verticalmente perpendicolarmente all’interfaccia. Le nuove cavità continuano a formarsi fintanto che la distanza media tra esse è sufficientemente grande da permettere un confinamento sufficiente. Queste cavità crescono rapidamente fino ad un livello critico in cui la tensione idrostatica serve per estenderle in un array di fibrille.

Nel loro modello Gent e Petrich hanno trascurato il contributo del test di peel, in cui viene spesa dell’energia non solo per rompere l’adesione ma anche per flettere e estendere il peel arm.
In generale la peel force non rappresenta esattamente la vera tenacità del-
1.3. Background teorico sull’adesione

L’interfaccia adesiva. La forza di peel misurata può rappresentare una combinazione della tenacità dell’interfaccia grazie all’adesivo e del lavoro spese per deformare elasticamente e plasticamente gli aderendi (solo il peel arm se il substrato è infinitamente rigido).

1.3.5 Modelli teorici

Gent e Petrich hanno proposto un modello che fornisce un’interpretazione semi-quantitativa del processo di distacco dell’adesivo durante il peel testing [105]. Nei sistemi elastomerici da loro studiati si osservavano nella curva della forza di peeling vs velocità di distacco due transizioni. Queste due transizioni erano già state osservate su altri adesivi elastomerici [128, 130].

I loro risultati sono stati il punto di partenza su cui si è iniziato la modellazione teorica delle proprietà adesive degli elastomeri affrontato da Pierre Gilles de Gennes più recentemente [93] e che continuano ad essere oggetto di approfondimento [94].

La prima delle due transizioni individuate, denominata transizione a bassa velocità, è stata associata alla transizione dell’adesivo da liquid-like a rubber-like.

La seconda transizione, ad alte velocità di separazione, dipende solo dal polimero ed è stata associata alla transizione dell’adesivo da elastomero a vetroso.

Le proprietà di deformazione uniassiale $\sigma - \epsilon$ dell’adesivo sono fondamentali. In figura 1.18 è riportato uno schema dell’apice della frattura per il peeling tra due film. Se si immagina l’adesivo come composto da elementi infinitesimi, ognuno dei quali contribuisce alla forza di peel sommando gli sforzi a trazione nello strato adesivo fino alla rottura, si può scrivere un’espressione che lega la forza di peel misurata alle proprietà estensionali dell’adesivo:

$$P = h \int_0^{\epsilon_m} f \, de$$ \hspace{1cm} (1.41)
Capitolo 1. Background teorico e stato dell’arte

Figura 1.18: Zona di processo all’apice della frattura in un esperimento di peeling. L’adesivo viene sottoposto ad un’estensione elongazionale.

Dove P è la *peel force*, ossia la forza per unità di larghezza in una prova di peeling, h è lo spessore dell’adesivo, e_m è la deformazione massima a cui arriva l’adesivo prima della rottura, f è lo sforzo.

Il comportamento meccanico dell’adesivo può essere di diversi tipi, come riportato in figura 1.19. La curva 1 presenta strain-hardening fin da basse deformazioni. La curva 2 presenta strain hardening ma solo ad alte deformazioni. Infine la curva 3, dopo aver raggiunto un certo livello di sforzo massimo, si mantiene a questo livello di sforzo fino a rottura.

Si può riscrivere la 1.41 in termini dello sforzo massimo a frattura:

$$P = \int_0^{f_m} f \, de$$ \hspace{1cm} (1.42)

dove f_m è lo sforzo massimo ottenuto durante il peeling. Ci sono allora due processi limite. Può avvenire:

- la rottura dell’adesivo, ossia lo sforzo massimo raggiunto è uguale allo sforzo di frattura del polimero: $f_m = f_b$.

- Il distacco dalla superficie del substrato dell’adesivo, e allora $f_m = f_a$.

50
1.3. Background teorico sull’adesione

Figura 1.19: Curve sforzo-deformazione per diversi comportamenti dell’adesivo.

Il comportamento meccanico dell’adesivo è fondamentale nel determinare la posizione del primo picco a basse velocità. Il livello f_a a sua volta ne controlla la posizione.

- Se $f_a > f_b$ cede l’adesivo, dissipando molta energia. Il sistema si comporta “fluid-like”. $f_m = f_b$.

- Se $f_a < f_b$ cede l’interfaccia, dissipando meno energia. $f_m = f_a$.

Il modello pertanto descrive la competizione tra lo sforzo a frattura dell’adesivo e lo sforzo di distacco dall’interfaccia. La “transizione a bassa velocità” nella mastercurve di forza di peel è determinata dagli effetti viscoelastici della velocità di deformazione e del comportamento $\sigma - \epsilon$ dell’adesivo. Quando la velocità è bassa (o la temperatura alta) l’adesivo è approssimativamente
Capitolo 1. Background teorico e stato dell’arte

liquid like e si deforma con bassi sforzi. In questo modo f_a è sempre maggiore di f_b e tutta l’estensibilità dell’adesivo viene sfruttata nel processo di distacco per aumentare la forza di peel.

Quando la velocità è alta (o la temperatura bassa), il comportamento $\sigma - \epsilon$ diventa tipo gomma e durante l’estensione si verifica strain-hardening. In questa situazione lo sforzo all’interfaccia viene superato velocemente ($f_b > f_a$) e l’energia dissipata dalla deformazione dell’adesivo sarà più bassa, fornendo forze di peel minori.
Capitolo 2

Peel testing

C’è molto interesse nella misura della tenacità dell’interfaccia dovuta all’adesione tra materiali che sono sottoforma di film sottile. Spesso, nel caso di laminati flessibili, si ricorre al test di peeling.

Questo funziona molto bene quando si tratta di misurare adesioni deboli, ma l’interpretazione diventa complicata quando l’adesione è forte. Questo problema capita perché adesioni forti causano alte forze di peel e quindi, per film sottili, la deformazione nel peel arm cessa di essere interamente elastica. Gran parte dell’energia spesa nel distacco del film, G_{tot}, è spesa a deformare e flettere il peel arm piuttosto che nei processi all’apice della frattura.

Ci sono due possibili strade per superare questo problema:

- calcolare e correggere questo lavoro plastico extra, sottraendolo a G_{tot};
- modificare il test in modo da diminuire il lavoro plastico.

Ad esempio Gent e Hamed [109, 110] hanno sviluppato un metodo per controllare il raggio di curvatura del peel arm dal suo spessore: in sostanza il raggio di curvatura R non poteva essere minore dello spessore del peel arm h: $R \leq h$.

Kim et al. [112–115] hanno invece considerato il peeling in cui $R \geq 4h$ del peel arm.

Il peel testing presenta ulteriori criticità qualora il campione possa snervare a
Capitolo 2. Peel testing

causa della flessione del peel arm. Gent et al. [116,117] hanno proposto di risolvere questo problema semplicemente riducendo l’angolo di peel: passando da \(\theta = 90^\circ \) a 45 o 30° e addirittura estrapolando a \(\theta 0^\circ \). Tuttavia anche questo approccio non risolve tutti i problemi, come ha infatti mostrato Kaelble [132] e spiegato anche più recentemente [76], l’adesivo può subire una transizione nel modo di frattura da I a III abbassando di molto l’angolo di testing. La transizione dipende dalle proprietà meccaniche dell’adesivo e del peel arm. A \(\theta = 0^\circ \) la prova di peeling si trasforma in una prova di resistenza meccanica dell’adesivo sottoposta a soli sforzi di taglio.

Nel paragrafo che segue vengono introdotte le relazioni meccaniche del test di peeling seguendo quella che è stata l’evoluzione teorica e sperimentale del metodo dal punto di vista meccanico, soprattutto ad opera di Kaelble [126–132]. Successivamente si affronta l’analisi di Kinloch et al. [2,7] descrivendo nei suoi punti essenziali il bilancio di energia sulla meccanica del peeling.

2.1 Meccanica del peeling

Le teorie fondamentali sul test di peeling sono il risultato principalmente del lavoro teorico e sperimentale di Kaelble [126–132]. Lo studio delle relazioni meccaniche alla base del test di peeling si può far iniziare con i lavori di Bikerman [122] e Chang [124].

Dall’analisi di Kaelble sono emersi molti degli sviluppi teorici successivi. Kaelble [126] descrive le caratteristiche del processo di peeling assumendo di trovarsi in presenza di una flessione a grandi angoli di una trave elastica [121].

Il problema è scomposto in reazioni normali e di taglio all’interfaccia. Per le reazioni normali, l’equazione differenziale per la flessione elastica durante il peeling è:

\[
EI \left(\frac{d\theta}{ds} \right) = M_c
\]

(2.1)
dove E è il modulo elastico, I è il momento di superficie del braccio di peel, \(\theta \) è l’angolo tra la zona di adesione e la direzione della forza P, ds è la lunghezza
2.1. Meccanica del peeling

L'infiniteima della curva elastica.
Le caratteristiche della curva elastica in flessione, che rappresenta il braccio di peel in tensione, permettono di ottenere la risultante distribuzione degli sforzi. L’equazione risultante per lo sforzo normale σ può essere scritta come:

$$\sigma = \sigma_0 e^{\beta x} (\cos \beta x + K \sin \beta x)$$ \hspace{1cm} (2.2)

dove:

$$K = \frac{\beta m_c}{\beta m_c + \sin \theta}$$ \hspace{1cm} (2.3)

e:

$$\beta = \left(\frac{Y b}{4 E I a}\right)^{1/4}$$ \hspace{1cm} (2.4)

dove Y è il modulo elastico dell’adesivo, b la larghezza del peel arm, a è lo spessore dell’adesivo. β ha dimensioni dell’ inverso di una lunghezza ed esprime la distanza su cui agisce lo sforzo normale. Il fatto interessante, misurato sperimentalmente da Kaelble, è che lungo il peel arm, dal punto di separazione, si alternano zone di compressione e trazione sull’adesivo. Questo risultato è rappresentato schematicamente in figura 2.1.

Per gli sforzi di taglio λ in modo simile si può scrivere:

$$\lambda = \lambda_0 e^{\alpha x}$$ \hspace{1cm} (2.5)

dove

$$\alpha = \left(\frac{G}{2 E a h}\right)^{1/2}$$ \hspace{1cm} (2.6)

L’intensità di λ è descritta da un decadimento esponenziale della sua intensità allontanandosi dal punto di contatto.

L’analisi degli sforzi combinati porta ad una relazione della forza di peeling del tipo:

$$P = \left(\left[\frac{b \sigma_0 (1 - K)}{2 \beta}\right]^2 + \left[\frac{\lambda_0 b}{\alpha}\right]^2\right)^{1/2}$$ \hspace{1cm} (2.7)

dove K è un fattore legato alla funzione di sforzo normale e dipende dall’angolo di peeling (per $\theta = 180^\circ$ K=1); b è la larghezza del film, a lo spessore
Figura 2.1: Sopra: schema della prova di peeling. Sotto: rappresentazione della distribuzione degli sforzi normali dell’adesivo. Può essere riscritta come:

\[
P = \frac{ba}{(1 - \cos \theta)} \left[\frac{K \sigma_0}{(2Y)^{1/2}} + \frac{3^{1/2} \cos \theta \lambda_0}{(2G)^{1/2}} \right]^2
\] (2.8)

Questa è l’espressione totale della forza di peeling che dipende dalle proprietà meccaniche e reologiche dell’adesivo (Y e G) e comporta sia sforzi normali all’interfaccia (\(\sigma_0\)), che di taglio(\(\lambda_0\)). L’equazione 2.8 può essere espressa in termini del lavoro. Questo è definito come il prodotto della forza di peel per il suo spostamento lungo la linea d’azione. Il lavoro totale di peel può essere scomposto in due componenti:

\[
W = W_T + W_D
\] (2.9)
2.1. Meccanica del peeling

Dove W_T è la componente di lavoro di traslazione e vale: $W_T = p(1 - \cos \theta)\Delta X$. Si può quindi scrivere:

$$
\frac{W_T}{b\Delta X} = a \left[\frac{K\sigma_0}{(2Y)^{1/2}} \left(\frac{3^{1/2} \cos \theta \lambda_0}{(2G)^{1/2}} \right) \right]^2
$$

(2.10)

Mentre W_D descrive il lavoro elastico del peel arm deformato in tensione:

$$
W_D = p^2\Delta X/(4bhE).
$$

Combinando le due equazioni si ottiene il lavoro totale W per unità d’area speso nel peeling:

$$
\frac{W}{b\Delta X} = a \left[\frac{K\sigma_0}{(2Y)^{1/2}} \left(\frac{3^{1/2} \cos \theta \lambda_0}{(2G)^{1/2}} \right) \right]^2 + \frac{1}{4} \left[\frac{\sigma_0^2(1 - K)^2(ha)^{1/2}}{3(Y E)^{1/2}} + \frac{2\lambda_0 a}{G} \right]
$$

(2.11)

Questa relazione, esatta dal punto di vista matematico, è indiscutibilmente difficile da trattare e nel prossimo paragrafo vedremo una trattazione analitica alternativa.

In presenza di cavitàzione e fibrillazione dell’adesivo la distribuzione degli sforzi predetta mostra un’improvvisa transizione da un massimo a sforzo nullo in prossimità del fronte di peeling.

Kaelble e Reylek [131] dimostrarono sperimentalmente che la forza di peeling è fortemente influenzata da processi di cavitàzione e fibrillazione dell’adesivo. Questo processo influenza la forza di peel anche sotto condizioni in cui le fibrille sono sostanzialmente non rilevabili. La corrispondente distribuzione degli sforzi è dunque diversa dalla precedente [130] (eq. 2.2). Lo sforzo mostra un valore di picco in prossimità del fronte di peel e quindi diminuisce moderatamente attraverso la zona fibrillata (vedi fig. 2.1).

2.1.1 TTS per il Peeling

Nel 1964 Kaelble ha dimostrato che era possibile usare il concetto di sovrapposizione tempo-temperatura per la forza di peeling e che si poteva ottenere una master-curve della peel force in funzione della velocità ridotta $a_T V$ [128]. Nella trattazione ci sono molti punti che si vedrà essere equivalenti agli argomenti introdotti con il modello semi-quantitativo di Gent e Petrich visto
Capitolo 2. Peel testing

in precedenza (v. paragrafo 1.3.5).
per angoli $\theta = 180^\circ$ tale che $\sigma_0 \gg \lambda_0$, la 2.8 si riduce a:

$$P = \frac{ba}{4} \frac{\sigma_0^2}{Y}$$ (2.12)

Dove si può riconoscere che $\frac{\sigma_0^2}{2Y}$ è l’area sotto la curva $\sigma - \epsilon$. Rappresenta l’energia immagazzinata dall’adesivo durante la trazione normale all’interfaccia. Se si assume che solo Y e σ hanno una dipendenza dalla temperatura, per le relazioni mostrate prima, la lunghezza d’onda della funzione di sforzo è $2\pi/\beta$. Assumendo una situazione stazionaria in cui la velocità di avanzamento del fronte di peel, R, sia costante, allora il periodo del ciclo completo, associato alla frequenza V è:

$$\frac{1}{t} = V = \frac{\beta R}{2\pi}$$ (2.13)

Il modulo dell’adesivo Y è considerato l’analogo del modulo di rilassamento. Per il parametro di sforzo normale σ_0 si assume siano necessarie due funzioni per descrivere la tenacità dell’interfaccia.

Una funzione, σ_{0c}, è pertinente al regime di frattura coesiva e la seconda σ_{0I} è relativa al processo di frattura adesiva interfacciale.

L’assunzione, basata sulla teoria di Bueche [69], è che anche per lo sforzo σ_0 si possa prevedere una dipendenza dal tempo-temperatura dato dalla viscoelasticità lineare.

Le dipendenze di σ e Y dalla temperatura sono date da:

$$\sigma_0(V, T) = \frac{T}{T_0} \sigma_0(Va_T, T_0)$$

$$Y(V, T) = \frac{T}{T_0} Y(Va_T, T_0)$$ (2.14)

pertanto, dall’eq 2.12 si può scrivere:

$$P(Ra_T, T_0) = \frac{T_0}{T} P(R, T)$$ (2.15)

2.2 Protocollo ESIS - Peel Testing

Il test di peeling dà informazioni circa la forza necessaria a delaminare un adesivo dal substrato. Ci si riferisce alla Peel force come al valore di cari-
2.2. Protocollo ESIS - Peel Testing

co medio per unità di larghezza del film durante il processo di separazione. Usualmente poi si fa riferimento ad una striscia flessibile adesa ad un substrato rigido e tipicamente l’angolo di peel è $\theta=90^\circ$ o 180°.

La resistenza dell’adesivo che può essere quantificata con un test di peeling rappresenta l’energia totale richiesta per rompere il legame adesivo, che è una somma dell’energia di frattura e l’energia dissipata viscoelasticamente. Quest’ultima è connessa alla formazione e crescita di strutture fibrillari nell’adesivo. L’energia dissipata viscoelasticamente è il contributo principale alla forza di peeling e mostra una forte dipendenza sulla condizione di test.

L’uso della meccanica della frattura al peel testing di laminati flessibili, introdotto da Kinloch et. al. nel 1994 [2], definisce un’energia di frattura adesiva G_c che può essere determinata quando si tiene conto e si misurano le dissipazioni d’energia dovute a flessione plastica o viscoelastica [112] e deformazione a trazione del braccio di peeling. G_c è un parametro, indipendente dalla geometria di peel testing, che caratterizza efficacemente l’energia richiesta per portare a frattura il legame adesivo, al contrario della forza di peel in cui sono presenti dissipazioni energetiche estrane.

Recentemente il lavoro è stato sistematicamente messo a punto [7] per descrivere al meglio la zona coesiva all’apice della frattura e un software di calcolo (IC-Peel [8]) è stato sviluppato ed è disponibile per eseguire i necessari calcoli numerici, combinando la geometria di peel test e i risultati delle proprietà sforzo-deformazione ($\sigma - \epsilon$)dei bracci di peeling per ottenere G_c.

L’analisi presentata di seguito è tratta da diversi riferimenti bibliografici e principalmente dalle trattazioni di Kinloch, Williams e Gent [2,7,8,109,110,121,150].

2.2.1 Approccio analitico

Il peel test nella sua forma più semplice (riportato in figura 2.2) è una sottile striscia, chiamata in seguito peel arm, infinitamente rigida in direzione
Capitolo 2. Peel testing

assiale ma completamente flessibile in flessione di larghezza b e spessore h. La geometria è identica a quella di Kaelble (figura 2.1). La striscia viene delaminata da un substrato rigido ad un angolo θ da una forza P. Quando un certo valore critico di P è raggiunto, la striscia si distacca dalla superficie e, se si assume che un tratto da sia rimosso, allora la forza compie uno spostamento $da(1 - \cos \theta)$. Il lavoro svolto è quindi pari a $Pda(1 - \cos \theta)$ e crea una nuova superficie di area bda.

Di conseguenza, l’energia, $G_{\infty, E}$, per unità di superficie per creare la nuova superficie è:

$$G_{\infty, E} = \frac{Pda(1 - \cos \theta)}{bda} = \frac{P}{b}(1 - \cos \theta)$$

Figura 2.2: Peel01.

Questo risultato rappresenta la base per tutte le analisi svolte sul peeling ed è piuttosto semplice ed intuitivo. Tuttavia non compaiono nella 2.16 quantità riconducibili alle proprietà meccaniche del materiale di cui è costituito il materiale o l’adesivo o allo spessore della striscia; questo perché la striscia è infinitamente rigida in tensione e completamente flessibile in flessione e dunque essa trasferisce semplicemente il lavoro esterno alla superficie nel punto di separazione.

Se la velocità di spostamento del punto di carico procede con velocità V, allora è immediato vedere che la velocità di avanzamento della frattura è:

$$R = \frac{V}{(1 - \cos \theta)}$$
Difficilmente ci si ritrova in un caso ideale. Pertanto è stato sviluppato un approccio basato sul bilancio d’energia, scritto di solito in termini di G, il tasso di rilascio di energia. Per un sistema in cui l’energia di frattura adesiva, G_c, è dato da:

$$G_c = \left(\frac{dU_{ext} - dU_s - dU_d - dU_k}{dA} \right)$$

(2.18)

dove per il test di peeling: $dA=bda$ è l’incremento di superficie creato, $dU_{ext} = Pda(1 - \cos \theta)$ è l’incremento di lavoro esterno svolto. Il termine dU_s è la variazione di energia di deformazione immagazzinata, dU_d è l’incremento dell’energia dissipata, diversa da quella dovuta alla creazione della superficie e dU_k è la variazione di energia cinetica. Tutti questi ultimi termini, nella 2.16 sono stati posti uguali a zero.

Per quanto riguarda dU_k, senza discuterla ulteriormente, si arriva ad una relazione del tipo [150]:

$$G_c^{\infty,E} = Eh(1 - \cos \theta) \left[\epsilon - \left(\frac{\dot{a}}{C} \right)^2 \right]$$

(2.19)

dove \dot{a} è la velocità di peeling e $C^2 = E/\rho$ è la velocità dell’onda acustica nel mezzo ed E è il modulo del braccio di peeling. Di conseguenza gli effetti cinetici sono importanti per valori di $\dot{a} \sim \sqrt{\epsilon C}$.

Per un polimero con $\epsilon \sim 0.01$, $C \sim 1500$ m/s si ottiene un $\dot{a} \sim 150$ m/s.

Deformazione tensile del braccio di peeling

La prima correzione che viene fatta è sull’estensione del film mentre si continua ad assumere di essere in presenza di una flessione elastica. Durante il peeling si assume di raggiungere un livello stazionario di forza P durante la delaminazione del film. Questa forza, quando applicata al braccio di peel, ne provoca l’estensione di una certa quantità ϵ. Infatti lo sforzo σ che agisce sul peel arm è dato da:

$$\sigma = \frac{P}{bh}$$

(2.20)
Si tratta di una quantità importante poiché si possono verificare casi in cui \(\sigma \) supera un qualche valore limite per il materiale del peel arm; se questo avviene allora il peel arm cede prima di iniziare la delaminazione. A causa dell’estensione del film si ha anche una variazione nel lavoro esterno, \(dU_{ext} \).

Questo avviene perché \(\sigma \) provoca un’estensione \(\epsilon \) che risulta in un aumento della distanza attraverso cui si muove la forza \(P \) di una quantità \((1 + \epsilon - \cos \theta)da\).

Quindi si ottiene:

\[
\frac{dU_{ext}}{bda} = \frac{P}{b} \left(1 + \epsilon - \cos \theta\right) \quad (2.21)
\]

E per lo stesso motivo si avrà una variazione nella somma di \(dU_s \) e \(dU_d \)

\[
\frac{d}{bda} (U_{ext} + U_d) = h \int_0^\epsilon \sigma d\epsilon \quad (2.22)
\]

Si ottiene allora un valore di \(G \):

\[
G_{eb}^{c} = \frac{P}{b} \left(1 + \cos \theta\right) + h \left(\sigma \epsilon - \int_0^\epsilon \sigma d\epsilon\right) \quad (2.23)
\]

Il termine \(\sigma \epsilon \) è il lavoro per unità di volume svolto nell’incremento della propagazione e \(\int_0^\epsilon \sigma d\epsilon \) è quello assorbito dal peel arm.

La relazione può anche essere scritta in termini di uno sforzo massimo a cui si arriva:

\[
G_{eb}^{c} = \frac{P}{b} \left(1 - \cos \theta + \frac{1}{\sigma} \int_0^\epsilon \epsilon d\sigma\right) \quad (2.24)
\]

Per una curva stress-strain del tipo power law: \(\sigma \propto \epsilon^n \), sostituendo in 2.24:

\[
\frac{1}{\sigma} \int_0^\epsilon \epsilon d\sigma = \left(\frac{n}{1+n}\right) \epsilon \quad (2.25)
\]

nel caso lineare il membro di destra vale \(\epsilon/2 \).

Correzioni plastiche

La striscia che viene delaminata durante il test, vicino al punto di contatto, è soggetta a forte flessione. Questa flessione comporta un dispendio di energia locale e non tenendone conto si misurano valori di \(G_{c} \) erroneamente più elevati. Per deformazioni elastiche e reversibili non c’è alcun effetto dovuto
2.2. Protocollo ESIS - Peel Testing

alla flessione ma, se c’è dissipazione di energia plastica che accompagna il processo di delaminazione, allora bisogna tener conto dell’effetto nel termine dU_d.

La soglia per il comportamento plastico può essere determinata dalla teoria elastica della trave di Eulero-Bernoulli: il momento a cui lo sforzo nella superficie esterna raggiunge lo sforzo di snervamento è dato da [109, 110, 150]:

$$M = \sigma \frac{I}{z} \Rightarrow M_1 = \frac{1}{6} bh^2 \sigma_y$$ \hspace{1cm} (2.26)

dove z nella relazione generale a sinistra è la distanza dall’asse neutro. σ_y è lo sforzo a snervamento del braccio di peel. L’energia fornita G può essere convertita in un momento elastico locale:

$$G_c^\infty E = \frac{P}{b} (1 - \cos \theta) = \frac{6M_1^2}{Eb^2 h^3} = \frac{h \sigma_y^2}{6E} = \frac{E h}{6} \epsilon_y^2$$ \hspace{1cm} (2.27)

dove ϵ_y è la deformazione a snervamento, ossia σ_y/E. Il raggio di curvatura locale, R_1, in questo punto in cui si instaura lo snervamento plastico è dato da:

$$\frac{1}{R} = \frac{M}{EI} \Rightarrow \frac{1}{R_1} = \frac{12M_1}{Eb h^2} = \frac{2\epsilon_y}{h}$$ \hspace{1cm} (2.28)

Dove ancora una volta l’espressione a sinistra si riferisce al caso generale elastico. La geometria di questa costruzione è riportata in figura 2.3. Nella
Capitolo 2. Peel testing

derivazione di M_1 si suppone che in questo punto l’angolo locale sia zero e che tutta l’energia fornita G sia trasmessa mediante flessione. Nel caso, più realistico, in cui l’angolo al punto di contatto non è zero ma ha un certo valore θ_0, allora questa ipotesi non è più soddisfatta e solo una proporzione di questa energia è trasmessa per flessione.
L’effetto di θ_0 può essere calcolato considerando il momento in ogni punto della striscia di coordinate v e x, come mostrato in figura 2.3:

$$M = P \left[(x_0 - x) \sin \theta - (v_0 - v) \cos \theta \right]$$

(2.29)
dove x_0 e v_0 sono le coordinate in cui è applicato il carico P. Se ϕ è l’angolo locale in un punto qualsiasi di coordinate x e v, allora la teoria elastica della trave a grandi spostamenti, per un pezzo di trave di lunghezza s, conoscendo la relazione elastica 2.28.

si può ricavare [150]:

$$M_0^2 = E b h^3 \frac{P}{b} \left[1 - \cos(\theta - \theta_0) \right]$$

(2.30)
dove M_0 è il momento locale al fronte di peel.
Quando $M_0 > M_1$ allora si verifica flessione elasto-plastica che può essere analizzata usando la teoria della flessione plastica. Ogni momento flettente $M > M_1$ può essere scritto come:

$$M = M_p \left[1 - \frac{1}{3} \left(\frac{c}{h} \right)^2 \right]$$

(2.31)

in cui M_p è il momento flettente completamente plastico ed è dato da:

$$M_p = \frac{1}{4} b h^2 \sigma_y = \frac{3}{2} M_1$$

(2.32)
e $c/2$ è la distanza dell’interfaccia elasto/plastica dall’asse neutro; questa può essere scritta in termini del raggio locale di curvatura, R:

$$\frac{1}{R} = \frac{\epsilon}{z} \Rightarrow \frac{1}{R} = \frac{2 \epsilon_y}{c}$$

(2.33)

Dove l’espressione a sinistra è valida generalmente nel caso elastico. Si introducono due variabili ridotte, k e m, rispettivamente del raggio di curvatura.
2.2. Protocollo ESIS - Peel Testing

Figura 2.4: Diagramma momento flettente vs raggio di curvatura per il peeling. Nella figura a sinistra sono riportati, sul braccio di peeling, le zone che corrispondono al grafico di destra.

e del momento flettente:

\[\frac{h}{c} = \frac{R_1}{R} = k \] \hspace{2cm} (2.34)

e per il momento flettente:

\[m = \frac{M}{M_p} = 1 - \frac{1}{3k^2} \] \hspace{2cm} (2.35)

La deformazione nel processo di peeling è piuttosto complessa e per rappresentarla si fa uso del diagramma momento-curvatura di figura 2.4. La linea OAC è il processo di carico che avviene durante la separazione e per \(m < 2/3 \) e \(k < 1 \), la relazione è elastica e \(m = \frac{2}{3}k \). In questo caso lo scarico avviene lungo la stessa linea e non c’è dissipazione d’energia dovuta alla flessione plastica del braccio.

Per \(2/3 < m < 1 \), la linea di carico è data dalla 2.35; ma lo scarico è elastico per \(1 < k < 2 \) e quindi la dissipazione d’energia è data dall’area OAB.

Per \(k > 2 \) c’è un parziale scarico plastico e la dissipazione è data dall’area OACDE.

Queste aree fanno parte del termine \(dU_d/bda \) descritto nell’equazione 2.18 e si possono scrivere nel seguente modo:
Capitolo 2. Peel testing

- Caso (i) per \(1 < k_0 < 2 \):
 \[
 \left(\frac{dU}{bda} \right)_{(i)} = \hat{G} \left(\frac{k_0^2}{3} + \frac{2}{3k_0} - 1 \right) \tag{2.36}
 \]

- Caso (ii) per \(k_0 > 2 \):
 \[
 \left(\frac{dU}{bda} \right)_{(ii)} = \hat{G} \left(2k_0 + \frac{10}{3k_0} - 5 \right) \tag{2.37}
 \]

Dove \(\hat{G} \) è la massima energia elastica che può essere immagazzinata nel braccio di peeling e, per un materiale che non presenta comportamento work-hardening, si ha:

\[
\hat{G} = \frac{1}{2} E h \epsilon_0^2, \text{ e dove } k_0 = \frac{R_1}{R_0} \tag{2.38}
\]

Si possono ricavare le energie fornite al sistema (caso di un materiale che non presenta work hardening):

- Caso (i) per \(1 < k_0 < 2 \):
 \[
 \frac{k_0^2}{3} = \frac{G_{c}^{\infty,E}}{\hat{G}} \left[\frac{1 - \cos(\theta - \theta_0)}{1 - \cos \theta} \right] \tag{2.39}
 \]

- Caso (ii) per \(k_0 > 2 \):
 \[
 2k_0 + \frac{8}{3k_0} - 4 = \frac{G_{c}^{\infty,E}}{\hat{G}} \left[\frac{1 - \cos(\theta - \theta_0)}{1 - \cos \theta} \right] \tag{2.40}
 \]

Relazioni simili possono essere trovate anche nel caso di materiali che presentano work-hardening (modellizzati tramite legge di potenza o modello bilinare [2]).

La vera energia di adesione, \(G_c \), per entrambe le soluzioni (modello bilineare e legge di potenza), è data da:

\[
G_c = G_{c}^{eb} - \left(\frac{dU}{bda} \right) + \hat{G} \tag{2.41}
\]

Se si considera il caso per \(k_0 \gg 2 \) e \(\theta = \pi/2 \), la 2.41 si riduce a:

\[
G_c \approx G_{c}^{eb} \sin \theta_0 + \hat{G}, \text{ e } k_0 = \frac{G_{c}^{eb}}{\hat{G}} \tag{2.42}
\]
Quando $\theta_0 \to 0$, $G_c \to \hat{G}$, e per $\theta_0 \to \pi/2$, allora $G_c \to G^{eb}_c$.

θ_0 è un parametro fondamentale per trovare G_c. Spesso però è piccolo e difficile da misurare, altrimenti, conoscendolo, si potrebbe trovare k_0 dall’eq. 2.40 e quindi dU_d/bda dalla 2.37. Poiché G^{eb}_c è generalmente molto più grande di \hat{G}, il valore di θ_0 è fondamentale e deve essere stimato.

Questo aspetto viene affrontato con l’analisi del prossimo sottoparagrafo.

Root rotation

Se la dissipazione di energia adesiva è molto prossima al fronte di peel, allora l’origine di θ_0 è principalmente dovuta alla deformazione elastica della parte della striscia aderente come schematizzato in figura 2.5. La deformazione, v,

![Figura 2.5: Deformazione, momento flettente e carichi in prossimità del fronte di peel.](image)

può essere dedotta a partire da un modello elastico, in modo simile a quanto visto fare da Kaelble, con alcune piccole differenze: si definisce la rigidità k_s della striscia:

$$k_s = \frac{2bE}{h} \quad (2.43)$$

Si risolve l’eq. differenziale per la trave:

$$\frac{d^4v}{dx^4} = \frac{-12k_s v}{Ebh^3} = -4\lambda_1^4 v \quad (2.44)$$
Si riconoscerà che λ è lo stesso parametro β di Kaelble dell’eq. 2.4; qui non sono comprese le proprietà meccaniche dell’adesivo. Esplicitando λ_1:

$$\lambda_1^4 = \frac{3k_s}{Ebh^3} = \frac{6}{h^4} \quad (2.45)$$

Per un momento flettente, M_0, applicato al fronte di peel, la pendenza dv/dx è data da:

$$\left(\frac{dv}{dx} \right)_{x=0} = -\frac{12M_0}{Ebh^3} \lambda_1 = -\theta_0 \quad (2.46)$$

E dall’eq. 2.28:

$$\theta_0 = \frac{1}{\lambda_1 R_0} = \frac{h}{6^{1/4} R_0} = 1.28 \epsilon_y k_0 \quad (2.47)$$

La lunghezza effettiva su cui avviene la flessione, λ_1^{-1} è piccola se confrontata con h, quindi le deformazioni di taglio possono essere importanti.

Se G è il modulo di taglio, allora si ha:

$$(\lambda_1 h)^{-2} = 0.24 + \frac{1}{10 \left[\frac{E}{G} - 2\nu \right]} \quad (2.48)$$

Anche la rigidità, in realtà, è data sia dal modulo del braccio di peel E_2 che dal modulo dell’adesivo E_a di spessore h_a:

$$\frac{b}{k_s} = \frac{7}{40} \frac{h}{E_2} + \frac{h_a}{E_a} \quad (2.49)$$

e quindi:

$$(\lambda_1 h)^{-2} = \left[\frac{0.175 + \frac{h_a E}{E_2}}{\frac{3k_s^2}{E}} \right]^{1/2} + \frac{1}{10 \left[\frac{E}{G} - 2\nu \right]} \quad (2.50)$$

2.2.2 ICPeel

Nei paragrafi precedenti è visto com’è possibile tener conto dei vari contributi di energia per ricavare l’energia di adesione G_c:

$$G_c = \left(\frac{dU_{ext} - dU_s - dU_d - dU_k}{dA} \right) \quad (2.51)$$

Si è anche visto più volte come questi contributi possano essere calcolati da un’analisi elastica della flessione e come i risultati dipendano dalle proprietà
meccaniche del materiale interamente definite dal suo comportamento sforzo-deformazione $\sigma - \epsilon$.

Il software di calcolo “IC-Peel”, versione “digitised” [8] permette di automatizzare questi passaggi tramite integrazione numerica della curva $\sigma - \epsilon$ sperimentale del materiale.

La procedura di analisi è divisa in tre step. Nel primo step il software prende in ingresso i valori sperimentali della curva $\sigma - \epsilon$. Il software prende in ingresso i valori del fit bilineare: modulo elastico E (GPa), spessore h (mm) e sforzo di snervamento σ_y (MPa) come valori iniziali.

Nel secondo step, per calcolare l’energia elasto-plastica dissipata dall’intero processo di flessione e stiramento, denotato G_{db}, è necessario per il software costruire i diagrammi normalizzati momento flettente - curvatura per il materiale di cui è costituito il peel arm. I valori di G_{db} sono connessi alle funzioni dell’area sotto questo diagramma per una data curvatura massima del peel arm, k_0. Queste funzioni sono calcolate usando integrazione numerica. L’accuratezza di questo passaggio è controllata da diversi parametri che possono essere controllati in fase di analisi.

Nell’ultimo passaggio vengono richiesti i parametri del peel testing: la larghezza del film, b (mm) e la forza di peeling misurata $F(N)$ per ogni prova. Per i laminati in cui lo spessore dell’adesivo è molto piccolo ($h_a \rightarrow 0$), non è necessario prendere in considerazione la deformazione dello strato adesivo nei calcoli. In caso opposto vengono richiesti il modulo dell’adesivo E_a e il suo spessore h_a di cui si tiene conto secondo l’analisi vista in precedenza (vedi eq. 2.50 e 2.49).
Capitolo 2. Peel testing
Capitolo 3

Tecniche di caratterizzazione e parte sperimentale

In questo capitolo vengono presentate le tecniche usate per la preparazione e caratterizzazione dei materiali. La prima sezione è dedicata alle condizioni operative della filmatura cast. Successivamente sono presentate le tecniche analitiche chimico fisiche (DSC e GPC). L’ultimo paragrafo è dedicato alla caratterizzazione meccanica e reologica: prove di trazione, peeling, analisi dinamico-meccanica, proprietà elongazionali sono qui discusse.

3.1 Materiali

In questo lavoro di tesi il confronto principale è stato fatto tra due polietileni lineari a bassa densità (LLDPE) con caratteristiche strutturali diversi. Per confronto si sono presi in considerazione altri due gradi di polietilene (PE), un polietilene a bassa densità (LDPE) con alto contenuto di ramificazioni lunghe (LCB) e un polietilene ad alta densità (HDPE), quest’ultimo come materiale riferimento per la sola analisi dinamico meccanica (DMA) perché come citato nell’introduzione, HDPE non presenta proprietà di adesione tipo PSA.
Le principali proprietà sono indicate in tabella 3.1. La quantità $CH_3/1000C$ è indicativa della quantità di comonomero, di tipo butene, dovuto alle SCB.

<table>
<thead>
<tr>
<th>Proprietà</th>
<th>Unità</th>
<th>Materiali</th>
<th>A</th>
<th>B</th>
<th>LDPE</th>
<th>HDPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densità</td>
<td>g/cm3</td>
<td></td>
<td>0.918</td>
<td>0.900</td>
<td>0.918</td>
<td>0.950</td>
</tr>
<tr>
<td>Melt flow rate (190°C – 2.16 Kg)</td>
<td>g/10 min</td>
<td></td>
<td>2.6</td>
<td>3</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>M_w</td>
<td>kDa</td>
<td></td>
<td>90</td>
<td>87</td>
<td>323</td>
<td>150</td>
</tr>
<tr>
<td>M_w/M_n</td>
<td></td>
<td></td>
<td>4.5</td>
<td>4.5</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>$CH_3/1000C$</td>
<td></td>
<td></td>
<td>~15</td>
<td>~30</td>
<td>~30</td>
<td>~0</td>
</tr>
</tbody>
</table>

Tabella 3.1: Proprietà fisico-chimiche dei materiali studiati.

Substrati

Come substrati si sono scelti quattro materiali: un Polistirene (PS) e un copolimero random Stirene-Acrlonitrile (SAN) (24 wt% AN), un foglio commerciale di Mylar® e delle lamine di acciaio inossidabile.

I substrati di PS e SAN sono stati stampati ad iniezione sottoforma di lastre rettangolari con dimensioni 150 x 100 x 3 mm.

Il foglio di Mylar® (spessore ~ 400µm) e le lamine d’acciaio inossidabile (spessore 1 mm) sono state ritagliate con la stessa geometria rettangolare delle lastre di PS e SAN.

Le caratteristiche base sono riportate in tabella 3.2. La rugosità superficiale è stata misurata con un rugosimetro portatile CE-RT 1200. Il principio di misurazione è di tipo induttivo con una punta in diamante di raggio 5µm con angolo 90°. La precisione dichiarata è ±10%. I risultati forniti dallo strumento riportati sono la media di cinque misure lungo la direzione di misura.

I valori riportati in tabella sono la media di tre misure effettuate in questo modo su tre posizioni diverse della superficie del substrato.

I valori riportati sono:

- R_a: è il valore medio aritmetico dei valori assoluti delle variazioni del profilo del tratto di misurazione.
3.2 Filmatura cast

Come si è visto nel paragrafo 1.1.1 ci sono due tecnologie per la realizzazione del film estensibile: film cast o film bolla. In questa tesi il film è stato realizzato con il primo metodo e sono discusse di seguito i principali parametri di macchina.

L’impianto di filatura comprende tre estrusori ad alimentazione forzata e rapporto lunghezza/diametro L/D = 30 mentre la testa del tristrato ha una larghezza di 900 mm ed è suddivisa in cinque zone di riscaldamento dotata di 36 bulloni di regolazione.

- **Estrusore A** (strato esterno) diametro 55 mm.
- **Estrusore B** (strato centrale) diametro 65 mm.
- **Estrusore C** (strato interno) diametro 55 mm.

Lo schema dei tre estrusori è riportato in figura 3.1. Una volta uscito dalla testa il film arriva sul chill-roll dove viene raffreddato e trascinato al gruppo avvolgitore. Il gruppo traino e raffreddamento è costituito da:

<table>
<thead>
<tr>
<th>Proprietà</th>
<th>Unità</th>
<th>Materiali</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densità</td>
<td>g/cm(^3)</td>
<td>1.04 1.05 - 7.8</td>
</tr>
<tr>
<td>(M_w)</td>
<td>kDa</td>
<td>180 130 - -</td>
</tr>
<tr>
<td>(M_w/M_n)</td>
<td></td>
<td>2.3 2.3 - -</td>
</tr>
<tr>
<td>Spessore</td>
<td>mm</td>
<td>3 3 0.4 1</td>
</tr>
<tr>
<td>Rugosità</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_a \pm 10%)</td>
<td>µm</td>
<td>0.21 0.13 0.2 0.13</td>
</tr>
<tr>
<td>(R_z \pm 10%)</td>
<td>µm</td>
<td>0.62 0.35 0.57 0.37</td>
</tr>
</tbody>
</table>

Tabella 3.2: Proprietà base dei substrati usati.

- **\(R_z\)**: è la media aritmetica delle maggiori profondità di rugosità.
• Gruppo chill roll formato da:
 – chill roll primario (⌀ 600 mm) alimentato dal gruppo frigorifero;
 – chill roll secondario (⌀ 250 mm);
 – rulli di rinvio che guidano il film allo zetatore;
 – distributore dello spessore (zetatore).

• Gruppo avvolgitore formato da:
 – gruppo di taglio con coltelli regolabili.
 – rulli di rinvio alla seconda calandra.
 – seconda calandra apribile.

• Misuratore di spessore in continuo ad ultrasuoni scorrevole su guide.

In tabella 3.3 sono riportate le condizioni macchina usate. Lo schema di riferimento è quello di figura 3.1. Negli estrusori il polimero entra sottoforma di granulo solido, viene trasportato in avanti dalla vite e raggiunge T = 250°C. Il polimero fuso viene estruso attraverso la testa piana che gli conferisce la tipica conformazione da film. Successivamente viene trascinato sul chill roll, a T = 20°C, e trasportato nei successivi passaggi. La velocità degli avvolgitori impone al film un orientamento in direzione di estrusione. Il film compie poi un certo percorso durante il quale si raffredda completamente; vengono rimossi i bordi ed infine viene avvolto su di una bobina pronto per l’utilizzo finale.

Il film finale è un tristrato composto nel seguente modo: A/A/X con una distribuzione degli spessori del 20%,60%,20%. I due strati A sono del solo LLDPE A. Al posto di X ci possono essere tre diversi materiali:

• A, e in questo caso il film è interamente composto di un solo materiale. Il film è chiamato PE-A.

• B. L’ultimo strato è interamente di questo secondo LLDPE a più bassa densità. Il film è chiamato PE-B.
3.3 La calorimetria a scansione differenziale (DSC)

La calorimetria a scansione differenziale (DSC) è, insieme all’analisi termica differenziale (DTA), la principale tecni-
Capitolo 3. Tecniche di caratterizzazione e parte sperimentale

di analisi termica per molti materiali tra cui polimeri, metalli e ceramiche [153]. Il principio alla base di questa tecnica è quello dell’azzeramento termico che consiste nel misurare la differenza di flusso termico necessaria a mantenere due campioni (quello in esame ed uno di riferimento) alla stessa temperatura seguendo storie termiche di vario tipo (rampe di temperatura, in raffreddamento o riscaldamento, isoterme, etc.) Il risultato che si ottiene da questa analisi è un termogramma in cui viene riportata, in funzione della temperatura, la differenza di flusso termico misurata tra campione e riferimento.

I picchi endotermici ed esotermici corrispondono rispettivamente ai processi di fusione e cristallizzazione; per quanto riguarda la transizione vetrosa si ha un aumento di entalpia associato al passaggio di fase (v. figura 1.9).

Nel caso dei materiali cristallini o semicristallini si ottengono informazioni riguardo la temperatura di fusione e cristallizzazione e all’entalpia associata al cambiamento di fase. Dall’entalpia di fusione si può ricavare la percentuale di cristallinità sapendo l’entalpia di fusione del cristallo perfetto. Nel caso del polietilene $\Delta H \simeq 290 \text{ J/g}$ [28, 154–156].

La condizione generale per determinare il punto di fusione di qualsiasi sostanza è che la variazione nell’energia libera di Gibbs Δg per unità di massa alla fusione sia zero, dove $\Delta g = \Delta h T \Delta s$. Δh e Δs sono rispettivamente le variazioni in entalpia ed entropia per unità di massa del materiale che fonde. La temperatura di fusione T_m è dunque data da:

$$T_m = \frac{\Delta h}{\Delta s}$$

Per ogni cristallite, l’energia libera totale di Gibbs è data dalla somma di una parte proporzionale al volume del cristallite ed una parte dovuta all’energia supplementare necessaria per formare le sue superfici. Al crescere delle dimensioni cristallo il rapporto V/S aumenta e il contributo dovuto alle superfici diventa trascurabile. L’abbassamento di T_m per un cristallo lamellare
dipende solo dal suo spessore \(l \), quindi:

\[
T_m = T_m^0 \left[1 - \frac{2\sigma}{l\Delta h} \right]
\]

(lo 3.2)

dove \(\sigma \) è l’energia libera di superficie per unità d’area (90x10^{-3} J/m²) e \(\Delta h \) è l’incremento in entalpia per unità di massa del fuso per un cristallo infinitamente spesso (285 10^6 J/m^3) e \(T_m^0 = 418.7 \) K è la temperatura di fusione del cristallo perfetto. La 3.2 è detta equazione di Thompson-Gibbs [154].

Lo strumento utilizzato in questo lavoro di tesi è il calorimetro DSC-Q1000, prodotto dalla ditta TA Instruments. Esso è composto da una cella DSC e da un sistema per controllare la velocità di raffreddamento.

La cella DSC contiene due porta-campioni: in uno viene posto il materiale da analizzare mentre l’altro, vuoto, costituisce il riferimento.

Prima dell’analisi vera e propria, i campioni hanno subito un processo di azzeramento della storia termica, ottenuto riscaldando il campione alla velocità di 20°C/min fino a 180°C e successivamente raffreddandolo a -10°C/min fino a 50°C. Al termine del raffreddamento è stata operata un’ulteriore scansione in riscaldamento a 5°C/min.

I risultati che verranno riportati in seguito sono tutti relativi a questa seconda salita.

3.4 La cromatografia a permeazione di gel (GPC)

Nelle sostanze molecolari, il peso (o massa) molecolare \(M \) è espresso come rapporto tra massa \(W \) e numero di moli \(N \) (\(M = W/N \)). Nel caso dei polimeri sintetici i sistemi sono tuttavia eterogenei dal punto di vista delle lunghezze di catena e ciò si riflette in una non unicità dei pesi molecolari.

Il termine polidispersità indica il fatto che il polimero è costituito da una miscela di specie omologhe che portano ad una distribuzione di pesi molecolari. Tale distribuzione non è casuale e disordinata; si può ammettere che
Capitolo 3. Tecniche di caratterizzazione e parte sperimentale

... segue una precisa legge che è una conseguenza della statistica di formazione delle macromolecole, e quindi della reazione di sintesi. Risulta perciò utile impiegare la funzione di distribuzione dei pesi molecolari per descrivere in modo quantitativo e predittivo tale distribuzione.

E’ frequente ricorrere a medie del peso molecolare, che sono in realtà punti singoli della funzione di distribuzione. Per ogni specie i-esima della distribuzione vale la relazione $M_i = W_i/N_i$. Si definisce come specie i-esima una frazione della curva di distribuzione caratterizzata dal fatto di essere formata tutta da catene aventi lo stesso peso molecolare.

Si introducono a questo punto le principali medie di peso molecolare. Si definisce peso molecolare medio numerale o numerico la sommatoria estesa a tutti gli M_i della distribuzione moltiplicati per la loro frazione molare n_i (il peso statistico della distribuzione):

$$M_n = \sum_{i=1}^{n} n_i M_i = \frac{\sum N_i M_i}{\sum N_i} \quad (3.3)$$

Essendo per definizione $n_i = N_i/\sum_{i=1}^{n} N_i$. Analogamente si definisce il peso molecolare medio ponderale, pesato sulla frazione ponderale:

$$M_w = \sum_{i=1}^{n} w_i M_i = \frac{\sum (N_i M_i)^2}{\sum (N_i M_i)} \quad (3.4)$$

Ricordando che $M = W/N$ da cui $W = NM$ e quindi $w_i = w_i/\sum w_i = N_i M_i/\sum N_i M_i$.

La distanza tra le varie medie crescerà con l’ampiezza della distribuzione (polidispersità) del polimero. In particolare si definisce come indice di polidispersità il rapporto M_w/M_n.

La cromatografia di esclusione sterica (SEC), originariamente anche conosciuta come cromatografia di permeazione su gel (GPC), è un tipo di cromatografia liquida in cui le molecole di soluto in soluzione sono separate in base alle loro dimensioni [159]. E’ una delle più comuni tecniche analitiche utilizzate per determinare le masse molecolari di polimeri di sintesi e naturali [157,158].

78
In questa tecnica una soluzione del campione polimerico viene eluita attraverso una o più colonne contenenti un impaccamento poroso. Le dimensioni dei pori determinano un’accessibilità differenziata alle molecole di soluto e quindi ne consentono la separazione.

Le molecole più grandi attraversano la colonna più velocemente, seguendo un percorso più breve rispetto a molecole di dimensioni minori. Di conseguenza, vengono eluite per prime, a valore di volume di eluizione V_e che corrispondono alle condizioni di esclusione totale.

Le molecole più piccole, in grado di penetrare alcuni dei pori della fase stazionaria, saranno eluite a V_e maggiori, poiché compiono un cammino più tortuoso e lungo per attraversare l’intera colonna. Le molecole così piccole da permeare tutti i pori saranno eluite insieme al solvente, al volume di permeazione totale, dato da $V_0 + V_p$. Il volume compreso tra il punto di esclusione totale e quello di permeazione totale definisce la regione di permeazione selettiva e corrisponde al volume dei pori dell’impaccamento V_p.

La figura 3.2 mostra l’andamento della curva di calibrazione dell’esclusione dimensionale che esprime la relazione tra il logaritmo della massa molecolare e il volume di eluizione.

Figura 3.2: Curva di Calibrazione Peso molecolare vs volume di eluizione.
lare dei soluti e il volume di eluizione. Il tratto analiticamente importante è quello lineare tra i due asintoti, corrispondenti alla permeazione totale e all’esclusione totale. Poiché tutte le frazioni di un determinato campione vengono eluite tra V_0 e $(V_0 + V_p)$, l’efficienza della separazione dipende fortemente dalle caratteristiche della porosità della fase stazionaria, mentre il ruolo della fase mobile è di semplice solvente.

Per determinare la distribuzione dei pesi molecolari si può utilizzare un rivelatore di indice di rifrazione posto all’uscita della colonna. In questo modo si ottiene una curva della concentrazione di polimero nella frazione eluita in funzione del volume di ritenzione. Per passare da questa alla distribuzione dei pesi molecolari è necessario disporre di una curva di taratura che leghi il peso molecolare al volume di eluizione o al tempo di ritenzione. Tale taratura viene effettuata utilizzando standard a peso molecolare noto.

La distribuzione dei pesi molecolari dei campioni di LDPE e LLDPE è stata determinata mediante un apparato strumentale costituito da un cromatografo GPC PL210 ad alta temperatura, un banco di colonne mixed TosohHaas TSK-Gel GMH6-HT con dimensionale 13 µm e da un rilevatore viscosimetrico Viscotek-210R3 ad alta temperatura.

Il contenuto di SCB è stato determinato mediante spettroscopia infrarossa IR5. IR5 è un detector infrarosso collegato alla GPC dotato di una cella a flusso in cui eluisce la soluzione polimerica. Il detector usa il principio della spettroscopia di assorbimento infrarosso a lunghezza d’onda fissa per misurare la concentrazione e la composizione di soluzioni polimeriche; in particolare vengono usati tre filtri interferenziali che permettono di filtrare determinate lunghezze d’onda:

- filtro per la concentrazione: banda di assorbimento intorno a 2900 cm^{-1}. In questa zona sono visibili i gruppi CH_2 e CH_3
3.5 Testing meccanico, dinamico-mecanico e reologico

- filtro per metili: banda stretta centrata su 2962 cm$^{-1}$ (Stretching asimmetrico CH_3).
- filtro per i metileni: banda stretta centrata su 2926 cm$^{-1}$ (Stretching asimmetrico CH_2).

Grazie ai due filtri interferenziali specifici per CH_2 e CH_3 è quindi possibile la determinazione delle ramificazioni corte (SCB) in funzione della distribuzione dei pesi molecolari nei polimeri come LLDPE.

3.5 Testing meccanico, dinamico-mecanico e reologico

3.5.1 Testing meccanico

La prova di trazione è sicuramente una delle più usate per ottenere informazioni quantitative fondamentali (modulo di Young E, sforzo e deformazione di snervamento (σ_y, ϵ_y), sforzo e deformazione a rottura (σ_B, ϵ_B), etc). Tramite essa è possibile descrivere il comportamento meccanico ($\sigma - \epsilon$) del materiale sottoposto ad una sollecitazione uniassiale. La deformazione uniassiale $\epsilon = \Delta l/l_0$ produce uno sforzo $\sigma = F/A_0$. Dove F è la forza letta dalla cella di carico del dinamometro e A_0 la sezione iniziale del campione. Le pro-

![Figura 3.3: Geometria dei provini per le prove di trazione sui materiali tal quali (A e B) stampati a compressione.](image)

ve sono state eseguite su di un dinamometro elettromecanico Instron classe
Capitolo 3. Tecniche di caratterizzazione e parte sperimentale

<table>
<thead>
<tr>
<th>Dimensioni del provino (mm)</th>
<th>ASTM type IV</th>
<th>film</th>
</tr>
</thead>
<tbody>
<tr>
<td>W - larghezza sezione utile</td>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>L - lunghezza sezione utile</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>W_0 - Larghezza</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>L_0 - Lunghezza</td>
<td>115</td>
<td>100</td>
</tr>
<tr>
<td>R - Raggio di curvatura</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>D - Distanza morsetti</td>
<td>65</td>
<td>50</td>
</tr>
</tbody>
</table>

Tabella 3.4: Geometria dei provini per le trazioni sul materiale tal quale (placca stampata a compressione) e film tristrato (estrusione cast).

4400 equipaggiato con una cella di carico da 1kN ed una cella in temperatura raffreddata ad azoto liquido in grado di mantenere la temperatura impostata con ±2°C. Lo strumento è interfacciato ad un computer mediante il software Serie IX che gestisce l’acquisizione dei dati. Per le prove che seguono si è usato il massimo campionamento possibile: 20 punti al secondo.

L’analisi sui materiali tal quali è stata eseguita stampando delle placchette (200x200x3 mm) in compressione da cui sono stati ottenuti campioni con geometria a osso di cane con fustella. La geometria dei provini è in accordo alla norma ASTM D 638 [161] riportata in figura 3.3. La velocità di spostamento trasversa è stata impostata a $v = 50$ mm/min. Per ogni temperatura T (T = 296, 273, 243, 223 K) i risultati riportati sono la media su tre diversi provini.

Nel caso del film le trazioni sono state effettuate sui due tristrato PE-A e PE-B secondo la denominazione indicata precedentemente. Per le prove sugli stessi film usati per il peeling sono state selezionate due velocità di spostamento trasversa: $v = 50$ mm/min e $v = 500$ mm/min. Anche in questo caso si riportano come risultati i valori medi su tre provini diversi.

Le dimensioni dei provini sono riportate in tabella 3.4.
3.5.2 Analisi dinamico-meccanica (DMA)

L’analisi dinamico-meccanica (Dynamic Mechanical Analysis, DMA) consiste nel sottoporre il campione da studiare ad una deformazione oscillatoria sinusoidale di frequenza angolare ω nota e misurare lo sforzo σ che ne risulta, o viceversa. Se il materiale fosse perfettamente elastico deformazione e sollecitazione sarebbero in fase tra loro. Se invece il materiale fosse perfettamente viscoso si avrebbe uno sfasamento tra deformazione e sollecitazione di 90°. I materiali viscoelastici hanno un comportamento intermedio rispetto ai casi ideali appena descritti: per imporre una deformazione sinusoidale si osserva, infatti, che è necessario uno sforzo di pari frequenza ma sfasato di una certa quantità.

Un metodo diffuso per caratterizzare le proprietà meccaniche di un polimero è quello di misurare il modulo dinamico complesso in funzione della temperatura. Il modulo complesso è composto da una parte reale (di conservazione o immagazzinamento), in fase con la sollecitazione, e una parte immaginaria (dissipativa o di perdita) fuori fase. La posizione del picco di dissipazione meccanico è stata associata all’instaurarsi di moti di parti particolari della molecola del polimero [31]. Si riassumono brevemente le principali relazioni alla base della misura dinamico meccanica.

Per un comportamento viscoelastico lineare, la deformazione, ϵ, è in ritardo rispetto allo sforzo sinusoidale, σ:

\[
\begin{align*}
\epsilon &= \epsilon_0 \sin \omega t \\
\sigma &= \sigma_0 \sin(\omega t + \delta)
\end{align*}
\]

(3.5)

Dove ω è la frequenza angolare e δ è l’angolo di fase. L’equazione di σ può essere riscritta come:

\[
\sigma = \sigma_0 \sin \omega t \cos \delta + \sigma_0 \cos \omega t \sin \delta
\]

(3.6)

σ può quindi essere considerato come la somma di due componenti: la prima, $\sigma_0 \cos \delta$, è in fase con ϵ; la seconda, $\sigma_0 \sin \delta$, è fuori fase di $\pi/2$ con ϵ. E’ quindi possibile definire due moduli dinamici: E', che è in fase con la deformazione
ed E'', che è sfasato di $\pi/2$:

$$
E_1 = \frac{\sigma_0}{\epsilon_0} \cos \delta \\
E_2 = \frac{\sigma_0}{\epsilon_0} \sin \delta
$$

(3.7)

Allora l’eq 3.6 diventa:

$$
\sigma = \epsilon_0 E_1 \sin \omega t + \epsilon_0 E_2 \cos \omega t
$$

(3.8)

E l’angolo di fase è dato da:

$$
\tan \delta = \frac{E_2}{E_1}
$$

(3.9)

Si usa spesso una notazione complessa per la rappresentazione delle proprietà dinamico meccaniche dei materiali viscoelastici. Lo sforzo e la deformazione sono dati da:

$$
\epsilon = \epsilon_0 e^{i\omega t} \\
\sigma = \sigma_0 e^{i(\omega t + \delta)}
$$

(3.10)

Il modulo complesso globale $E^* = \sigma/\epsilon$ è quindi dato da:

$$
E^* = \frac{\sigma_0}{\epsilon_0} e^{i\delta} = \frac{\sigma_0}{\epsilon_0} (\cos \delta + i \sin \delta)
$$

(3.11)

Dalla definizione di E_1 e E_2, segue che:

$$
E^* = E_1 + iE_2
$$

(3.12)

E, a causa di ciò, E' ed E'' sono talvolta chiamati le parti reali (immagazzinamento) ed immaginaria (perdita) del modulo, rispettivamente.

Lo strumento usato per la caratterizzazione dinamico-mecanica (DMA) è il reometro rotazionale a controllo di deformazione RMS 800 della ditta Rheometrics con geometria a torsione rettangolare.

I materiali per queste analisi sono stati stampati a compressioni sottoforma di lastre 200x200x2 mm a 190°C. Da queste si sono ricavati i provini per la
DMA sottoforma di sbarrette con dimensioni 48x12x2 mm.
La rampa in temperatura, con una velocità di riscaldamento di 1K/min è stata fatta da T=120K a T=400K con $\omega=6.28$ rad/s, e una deformazione applicata dello 0.1%. Per la caratterizzazione in frequenza dei picchi di rilassamento si sono esplorate le ω: 0.628, 6.28, 62.8 e 100 rad/s con una deformazione dello = 0.1%.

3.5.3 Reologia Elongazionale

I flussi in cui si ha allungamento sono abitualmente definiti flussi elongazionali. Tra questi, il caso più ampiamente studiato è quello uniassiale che si realizza in una comune prova di trazione. Si consideri un provino di polimero fuso di lunghezza L, vincolato alle estremità e sottoposto ad una prova di trazione uniassiale nella direzione x come schematizzato in figura 3.4:

L’allungamento in direzione x è compensato da una diminuzione della sezione e la velocità è nulla al centro ed è pari alla velocità imposta V all’estremità in cui è applicata la forza elongazionale. In posizioni intermedie, per valori di x compresi fra 0 e L, la velocità è:

$$V(x) = \frac{v}{L}x$$ \hspace{1cm} (3.13)

Differenziando rispetto a x, si ottiene il gradiente di velocità elongazionale $\dot{\epsilon}$:

$$\frac{dv(x)}{dx} = \frac{V}{L} = \dot{\epsilon}$$ \hspace{1cm} (3.14)

Il flusso uniassiale non è viscosimetrico in quanto il gradiente è parallelo al flusso. La viscosità elongazionale viene definita dalla relazione:

$$\eta_{EL} = \frac{\sigma_{xx}}{\dot{\epsilon}} = \frac{F/A}{\dot{\epsilon}}$$ \hspace{1cm} (3.15)

Figura 3.4: Esperimento di misura della viscosità elongazionale.
Dove F è la forza applicata e A è la sezione del provino. La figura 3.5 mostra che la viscosità elongazionale η_{EL} dipende dal tempo e dalla velocità di deformazione applicata: negli istanti iniziali, anche a velocità di deformazione costante, con l’aumentare della deformazione si nota un aumento dello sforzo e, conseguentemente, di viscosità. A tempi successivi, a seconda del valore di $\dot{\epsilon}$, si possono verificare due situazioni differenti. Per $\dot{\epsilon}$ piccoli si trova che la viscosità elongazionale segue la regola di Trouton ($\eta_{EL} = 3\eta_0$). Se invece $\dot{\epsilon}$ è elevato la crescita della viscosità elongazionale presenta generalmente un brusco aumento (strain hardening) ed il provino si rompe prima che essa raggiunga un valore costante [162]. Per la determinazione della viscosità elongazionale vengono impiegati reometri con geometrie come quella schematizzata in figura 3.6. Si tratta in questo caso di un accessorio (Elongational Viscosity Fixture, EVF) con cui si equipaggia un reometro rotazionale. Il provino preparato sotto forma di barretta rettangolare, viene inserito in una cella termostatata alla temperatura di prova e posto in contatto con due ci-

![Figura 3.5: Tipico andamento della viscosità elongazionale al variare del tempo. Le curve sono parametriche nella velocità di deformazione di Hencky (da [26])](image)
3.6. Procedura di adesione e peeling

lindri su cui viene fissato con una coppia di clips. Grazie alla rotazione di uno dei due bracci intorno all’altro ed intorno al proprio asse, il provino viene avvolto sui due cilindri.

Figura 3.6: Rappresentazione schematica dell’accessorio EVF.

Con la geometria di figura 3.6 le prove vengono effettuate a $\dot{\epsilon}_H$ costante. La forza misurata con un trasduttore di forza posto su uno dei due bracci permette così di calcolare la viscosità una volta nota la sezione iniziale del provino [163]. Le caratterizzazioni in elongazione sono state effettuate sfruttando il reometro rotazionale ARES della TA instruments equipaggiato con l’accessorio appena illustrato. I provini per l’analisi sono stati stampati a compressione a 130 $^\circ$C e recuperati sotto forma di barrette rettangolari di 18x12x0.8 mm. Con questa geometria la viscosità elongazionale è data da:

$$\eta_E = \frac{\sigma_E}{\dot{\epsilon}_H}$$ \hspace{1cm} (3.16)

dove σ_E è lo sforzo elongazionale dato da:

$$\sigma_E = \frac{F(t)}{A_0} \exp \dot{\epsilon}_H t$$ \hspace{1cm} (3.17)

3.6 Procedura di adesione e peeling

Tutte le adesioni sono state realizzate ponendo molta cura nella sovrapposizione dei due film, per evitare fin dall’inizio il crearsi di bolle e ripiegamenti
superficiali. Una volta sovrapposti i due fogli di film l’adesione è stata favorita manualmente passando su questi un pennello: la funzione del pennello è di rimuovere eventuali inomogeneità residue e di rendere l’adesione quanto più omogenea possibile.

I fogli di film di partenza con cui si sono realizzate le interfacce hanno dimensione circa 300x300 mm\(^2\): dopo la procedura di adesione sono stati ricavati dei provini sottoforma di striscia con dimensioni 35 x 200 mm\(^2\) nella direzione di estrusione del film (*machine direction*) per il test di peeling.

I seguenti campioni sono stati preparati e successivamente sottoposti a peel testing:

- PE-A su PE-A: due porzioni di film di PE-A sono state sovrapposte in modo tale da farle aderire creando così una superficie tra due strati superficiali di materiale A.

- LDPE su LDPE: come sopra, ma in questo caso i due strati di film da cui sono stati ricavati i provini per il peeling sono tra due superfici dell’LDPE preso in considerazione.

- PE-B su PE-B: come sopra, ma in questo caso i fogli di film sono stati ricavati da PE-B e si è ottenuta un’interfaccia tra due superfici B.

- PE-B su substrati: solo il film con materiale B è stato usato e l’interfaccia è stata realizzata facendo aderire la superficie di B con dei substrati selezionati.

Per questi sistemi si è verificato che la forza di adesione realizzata tra le interfacce si sviluppa in un tempo relativamente breve: la forza di peeling misurata dopo la procedura di adesione è risultata costante dopo un tempo di \(t = 5\) minuti fino ad oltre \(t = 60\) minuti. Di conseguenza, tutti gli esperimenti di peel successivi, sono stati effettuati dopo circa \(t = 10\) minuti la realizzazione dell’adesione.
3.6. Procedura di adesione e peeling

3.6.1 Peel testing

L’adesione dei campioni di film adesi tra loro (PE-A/PE-A, PE-B/PE-B e LDPE/LDPE) è stata misurata su di un dinamometro elettro meccanico Instron equipaggiato con una cella di carico da 10N e una cella in temperatura. Il peeling è stato effettuato a quattro diverse temperature T di test: T = 223, 243, 273 e 296 K con una precisione di ±2°C sulla temperatura impostata (esclusa T = 223K per LDPE).

Nel caso di T = 296K, l’adesione è stata misurata in configurazione di T-peel e con angoli θ=90, 60, 45 e 30°. La sperimentazione sui diversi angoli è stata resa possibile mediante l’accessorio Instron: 2820-036 Variable Angle Peel Fixture (figura 3.7) che, tramite un sistema di carrucole, muove la slitta sottostante in proporzione alla distanza percorsa dalla traversa. Con questo accorgimento l’angolo rimane costante durante tutta la prova.

Per le temperature T< 296K è stata usata solo la configurazione di T-peel. Per ogni T si sono usate quattro diverse velocità di spostamento della traversa V: V = 10, 100, 200, 400 e 800 mm/min. Per ogni T e V sono stati testati tre provini; il risultato riportato è la media dei tre e come errore si è usato la deviazione dalla media.

Trattamenti termici

Sui film di PE-B e LDPE (con la stessa procedura di adesione descritta precedentemente (v. 3.6)) è stato effettuato un trattamento termico prima del peel testing. I film sono stati collocati in una stufa a T = 45° con un controllo in temperatura ±2°C per un tempo di un’ora. Questi campioni sono stati denominati come PE-B@45/1h e LDPE@45/1h. Dove il suffisso indica la temperatura e il tempo di trattamento.

Una volta estratti dalla stufa sono stati lasciati a temperatura ambiente per 1 ora.

A questo punto il peel testing è stato effettuato in configurazione a T come descritto precedentemente: si sono selezionate quattro velocità, v = 100, 200,
Figura 3.7: Accessorio Instron (Variable angle peel fixture) per effettuare peeling a diversi angoli costanti. Sono visibili sul retro le pulegge con diametri diversi per accoppiare opportunamente gli spostamenti verticali con quelli orizzontali.

400, 800 mm/min e tre temperature, T = 296, 273, 243 K.
Substrati

L’adesione di PE-B sui substrati è stata valutata alle stesse T del peeling tra film descritte sopra. Il peel testing è stato condotto delaminando PE-B dai substrati con una geometria di peel a $\theta=180^\circ$. I test a temperatura ambiente sono stati svolti anche a $\theta=90^\circ$ con lo stesso accessorio usato precedentemente (v. figura 3.7).

Le prove sul residuo lasciato dal film sul substrato è stata condotte solo tra PE-B e Acciaio inossidabile. Si è scelto l’acciaio come la superficie più idonea per la caratterizzazione di questo residuo perché poteva essere pulita con solventi in grado di rimuoverlo senza danneggiare la superficie. La prova è stata condotta a 90° a $T = 296K$ e la procedura di adesione è rimasta la stessa dei casi precedenti.

Le prove di peeling sono state condotte con due diverse metodologie:

- Dopo ogni prova il film di PE-B è stato riadeso sul substrato quasi esattamente nella posizione iniziale. Sul film è stata riapplicata la stessa procedura di adesione descritta precedentemente e quindi è stato nuovamente testato.

- Dopo ogni prova il substrato è stato pulito con alcohol. Il campione di film testato è stato tenuto da parte e, una volta asciutto il substrato, è stato riadeso con la stessa procedura di adesione nella posizione precedente.

L’analisi GPC del residuo è stata effettuata preparando undici dischetti di acciaio di diametro pari a circa 6.3 cm (area totale: 685 cm2) su cui è stata effettuata la procedura di adesione e distacco come precedentemente descritto ($T = 296K$, $v = 200$ mm/min, $\theta = 180^\circ$). Una volta rimosso il film PE-B tutti i dischetti sono stati lavati in acetone; il solvente è stato lasciato evaporare. Il residuo, denominato r-PE-B, è stato poi analizzato mediante GPC.
Capitolo 3. Tecniche di caratterizzazione e parte sperimentale

Risoluzione cella di carico

Poiché tipicamente le forze in gioco sono piccole si è effettuata una verifica della risoluzione della cella di carico, di fondoscala 10 N. La precisione dichiarata è di almeno 0.1% f.s.

Alla cella di carico sono stati applicati diversi campioni, ciascuno da 1 o

![Diagrama](10N_Load_Cell.png)

Figura 3.8: Verifica calibrazione cella in funzione del peso misurato. Il peso in ascissa è stato misurato da una bilancia con precisione 1mg.

0.5 g (0.01 - 0.005 N), in ordine crescente fino a 100g e poi a ritroso fino a scaricare completamente la cella di carico per verificare la linearità della risposta ed eventuali isteresi.

Gli stessi campioni sono stati pesati su di una bilancia da laboratorio con risoluzione 1mg. In figura 3.8 è riportato il grafico che mette a confronto i valori letti dai due strumenti: in ordinate la Forza letta dalla cella di carico,
moltiplicata per l’accelerazione di gravità (\(g = 9.80665 \, m/s^2 \)) e in ascisse il peso letto dalla bilancia. Nel grafico è anche riportata, con una linea rossa, la retta \(y=x \).
La risoluzione della cella di carico è risultata adeguata per forze fino a \(F=(0.01 \pm 0.002)\)N.

Analisi dati

Il calcolo dell’energia di adesione \(G_c \), in accordo con i riferimenti della letteratura, è stato effettuato mediante il software IC-Peel [8]. In questa tesi si è usata la versione 2007 “Digitised”, in cui vengono dati come input di dati le curve sforzo-deformazione, insieme ai parametri di best fit lineare \(E \) e sforzo di snervamento, oltre che lo spessore del film \(h \). Dopo i vari passaggi di integrazione numerica per la valutazione delle proprietà del film in flessione, vengono elaborati i parametri del test di peeling (larghezza del braccio di peel \(b \), spessore dello strato adesivo \(h_a \), modulo dell’adesivo \(E_a \), angolo di peeling \(\theta \)). A questi si aggiunge la forza media di Peel e l’output è un’energia di frattura adesiva \(G_c \).
Parametri come \(h_a \) e \(E_a \), come è stato anticipato più volte, non sono noti nel nostro caso in cui non c’è un vero e proprio strato adesivo. Nel software si può impostare lo spessore dell’adesivo pari a 0 (e dunque anche il suo modulo elastico diventa irrilevante).
Questi due parametri sono重要 when si voglia andar a tener conto del contributo di deformazione (solo normale alla superficie) dello strato adesivo all’energia di peeling totale \(G_{tot} \).
Capitolo 3. Tecniche di caratterizzazione e parte sperimentale
Capitolo 4

Risultati

In questo capitolo sono presentati, nella prima parte, i risultati relativi alla caratterizzazione chimico-fisica, meccanica e dinamico-mecanica dei materiali usati (vedi tabella 3.1 nel paragrafo 3.1). La denominazione dei campioni segue quanto descritto nel paragrafo 3.1 in cui i due LLDPE sono detti A e B in ordine di densità decrescente. Gli altri due materiali appartengono a due tipologie di polietileni (PE) che sono rispettivamente un polietilene a bassa densità (LDPE) e un polietilene ad alta densità (HDPE).

Successivamente sono presentati i risultati delle proprietà meccaniche dei diversi film e poi della misura dell’energia di adesione, G_c, prima dei film tra loro e poi su substrati selezionati in funzione della velocità di separazione R e della temperatura di prova, T.

Anche per i film la denominazione dei campioni segue lo schema della tabella 3.1. PE-A, PE-B e LDPE sono rispettivamente i due tipi di LLDPE e il grado di LDPE di cui è costituito lo strato superficiale dei film poi studiati mediante peel testing.
4.1 Caratterizzazione chimico fisica dei materiali di partenza

In figura 4.1 sono riportati i termogrammi sui tre materiali considerati per le successive prove di adesione: A, B e LDPE (le curve sono rispettivamente di colore rosso, nero e viola). In grafico è riportato il flusso di calore (W/g) in funzione della temperatura (°C). La risposta esotermica è verso il basso.

Si possono subito notare alcune differenze significative: la temperatura del picco di fusione è $T_m = 103.5^\circ$C per LDPE. Prima di T_m, a partire da circa 70°C, si ha un progressivo aumento del segnale endotermico. Per B si hanno almeno due picchi di fusione: il primo $T_m = 115^\circ$C e un secondo picco, di intensità più bassa, a $T_m = 120^\circ$C. Inoltre si ha una reazione endotermica diffusa tra i 60 e i 110°C in cui si distingue un picco molto allargato. Per quanto riguarda A, questo presenta un primo picco a $T= 120^\circ$C e un secondo

Figura 4.1: Curve DSC per i tre materiali riportati in legenda.
4.1. Caratterizzazione chimico fisica dei materiali di partenza

picco, di più bassa intensità a $T_m = 122^\circ C$. Anche per A è presente una reazione endotermica a temperature più basse ma in un range più ristretto di temperature: tra gli 80 e i 110$^\circ C$.

La bassa T_m di LDPE potrebbe dipendere sia da ramificazioni più lunghe che da diverse distribuzioni delle ramificazioni stesse.

Per quanto riguarda gli LLDPE, il termogramma di B rivela già di per sé una struttura con presenza di separazione di fase. La larga reazione endotermica che si ha a temperatura inferiore a T_m, presente sia in B che, in misura minore, in A, è rappresentativa di una popolazione di spessori di lamella più piccoli generati dalla cristallizzazione della parte maggiormente ramificata. Questa è una caratteristica di alcuni tipi di LLDPE che si spiega con la presenza di frazioni di polimero che possiedono diversi gradi di SCB. Il picco che si trova a temperatura più elevata si deve alla cristallizzazione di tratti di catena prevalentemente lineari o comunque con minore densità di SCB.

Integrando l’area sotto la curva si ottengono le entalpie di fusione per questi materiali: 85.6 J/g per B, 139.4 J/g per A e 114.9 per LDPE. Poiché l’entalpia di fusione è legata alla percentuale di cristallinità X_c (v. paragrafo 3.3). Si ricavano per i tre materiali valori compresi tra il 30 e il 48% riportati in tabella 4.1. Questi risultati, insieme a quelli riportati in tabella 3.1, completano la descrizione delle proprietà base dei tre PE.

<table>
<thead>
<tr>
<th>Materiale</th>
<th>T_m ($^\circ C$)</th>
<th>ΔH (J/g)</th>
<th>X_c (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>120</td>
<td>139.4</td>
<td>48</td>
</tr>
<tr>
<td>B</td>
<td>115</td>
<td>85.6</td>
<td>30</td>
</tr>
<tr>
<td>LDPE</td>
<td>103</td>
<td>114.9</td>
<td>40</td>
</tr>
</tbody>
</table>

Tabella 4.1: Risultati DSC dei materiali riportati con temperatura di fusione principale, T_m, ed entalpia di fusione ΔH e corrispondente percentuale di fase cristallina X_c.

97
4.2 Caratterizzazione Reologica e Meccanica

4.2.1 Reologia elongazionale

Le curve di viscosità elongazionale sono state misurate per tutti i materiali a tre velocità di deformazione di Hencky $\dot{\epsilon}_H = 0.01 \, s^{-1}$, $0.1 \, s^{-1}$ e $1 \, s^{-1}$ e ad una temperatura del fusore $T = 130^\circ C$.

In figura 4.2 sono riportate le curve di viscosità elongazionale in funzione del tempo alle diverse $\dot{\epsilon}_H$.

In nero e rosso sono riportate rispettivamente le curve per B e A e in viola per LDPE. I diversi stili di curva rappresentano le diverse $\dot{\epsilon}_H$: 0.01, 0.1 e $1 \, s^{-1}$.

La viscosità elongazionale è legata allo sforzo dall’eq. 3.16.

Figura 4.2: Viscosità estensionale per A, B e LDPE. Vedi testo per commenti.
Le curve dei due LLDPE sono piuttosto simili a fronte di una distribuzione di pesi molecolari molto simile mentre il diverso quantitativo di ramificazioni corte non influisce. Dopo un incremento di η_{el} le curve per i due LLDPE arrivano ad un plateau per $\dot{\epsilon}_H=0.01$ e 0.1. Per $\dot{\epsilon}_H=1$ il campione si rompe prima di arrivare a fine prova senza comunque mostrare strain-hardening.

LDPE è caratterizzato sia da pesi molecolari molto più alti, sia da una polidispersità molto maggiore ed inoltre un quantitativo importante di LCB (vedi tabella 3.1). In questo caso η_{el} parte fin da subito da un livello nettamente più alto rispetto agli LLDPE.

Per LDPE si osserva alle $\dot{\epsilon}_H=0.1$ e 1 s$^{-1}$ uno strain-hardening rispetto alla curva a $\dot{\epsilon}_H=0.01$. Quest’ultima non raggiunge mai un plateau come nel caso degli LLDPE.

4.2.2 Analisi dinamico-meccanica (DMA)

Per i quattro materiali presentati in tabella 3.1, i due LLPDE, un LDPE e un HDPE, è stata eseguita una caratterizzazione dinamico meccanica (DMA) con una rampa in temperatura. Le modalità di analisi sono state descritte nel paragrafo 3.5.2.

Nel grafico di figura 4.3 sono riportati come risultati il modulo di immagazzinamento G' (simboli aperti) e $\tan \delta$ (simboli chiusi) in funzione di T tra 125 e 375K con una velocità di riscaldamento di 1K/min. Per LDPE la rampa in temperatura parte da 175K mentre per B si ferma a 325K. Si possono individuare alcune caratteristiche tipiche della risposta dinamico meccanica del polietilene (vedi paragrafo 1.2.1).

In particolare, guardando gli andamenti di $\tan \delta$:

- Per tutti i materiali è distinguibile una transizione a bassa T, $T_\gamma \sim 150K$, nota come rilassamento γ. L’intensità del picco di questo rilassamento e la sua larghezza aumentano al diminuire della densità del materiale.
Un picco di rilassamento intermedio, $T_\beta \sim 240\text{K}$, noto come rilassamento β, di intensità maggiore per PE-B e LDPE, intensità più bassa per PE-A e non distinguibile in HDPE.

Il picco alle temperature più alte, $T_\alpha \sim 330\text{K}$ noto come rilassamento α che è noto avvenire in tutti i PE semicristallini, ben visibile per i due LLDPE e LDPE, è invece parzialmente sovrapposto dall’inizio del processo di fusione per HDPE.

Per quanto riguarda G' si può notare come sotto $T < 200\text{K}$ tutti i materiali seguono lo stesso andamento. In particolare A, B e LDPE sono sostanzialmente sovrapposti mentre HDPE è caratterizzato da dei valori di G' leggermente superiori.
Per $T > 200 \text{K}$, le curve di G' iniziano a differenziarsi. La temperatura a cui questo avviene dipende essentialsamente dalla densità. Un riferimento visivo adeguato sembra essere il picco T_β di $\tan \delta$ della transizione β.

I picchi di rilassamento, parzialmente sovrapposti, si possono esprimere in termini di una o più gaussiane.

L’equazione di fit per un singolo picco è dato dall’eq 4.1 mentre nel caso di più picchi sovrapposti è la somma di più gaussiane.

$$y = y_0 + \frac{A}{w \sqrt{\pi / 2}} \exp\left(-2\frac{(T - T_{\beta})}{w}\right)^2$$

(4.1)

Dalle curve di fit corrispondenti, riportate in figura 4.4, si può studiare come varino i parametri caratteristici della curva che descrive un particolare rilassamento in funzione del materiale.

In figura 4.4 sono riportati questi best fit sui rilassamenti α e β per i tre materiali che mostrano anche un rilassamento β (A, B e LDPE).

In tabella 4.2 sono riportati i risultati del best fit in termini di posizione del centro del picco, larghezza e area per i rilassamenti α e β.

Concentrandosi sul rilassamento β si può notare che per B si ha la T_β più bassa mentre A ha la T_β più elevata. Anche l’area del picco per B è più grande, seguito sempre nell’ordine da LDPE e infine A.

L’intensità del rilassamento β per gli LDPE è spesso collegato ad un aumento della frazione di volume della fase amorfà dovuto alla ramificazione piuttosto che alle ramificazioni stesse come nel caso degli LLDPE [36].

Per quanto riguarda il picco α, questo appa più accentuato in LDPE ri-

<table>
<thead>
<tr>
<th>Materiale</th>
<th>T_α (K)</th>
<th>Area$_\alpha$</th>
<th>w_α</th>
<th>$T_\beta \pm 2$ (K)</th>
<th>Area$_\beta$</th>
<th>w_β</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>350 ± 1</td>
<td>~ 23</td>
<td>~ 82</td>
<td>257 ± 1</td>
<td>~ 4.7</td>
<td>~ 67</td>
</tr>
<tr>
<td>B</td>
<td>327 ± 2</td>
<td>~ 15</td>
<td>~ 65</td>
<td>243 ± 1</td>
<td>~ 7.2</td>
<td>~ 55</td>
</tr>
<tr>
<td>LDPE</td>
<td>330 ± 2</td>
<td>~ 17</td>
<td>~ 59</td>
<td>254 ± 1</td>
<td>~ 6.7</td>
<td>~ 53</td>
</tr>
</tbody>
</table>

Tabella 4.2: Risultati dei picchi relativi ai rilassamenti α e β dalla DMA dei materiali riportati a $f=1\text{Hz}$.
Capitolo 4. Risultati

Figura 4.4: Analisi dei picchi di rilassamento per A, B e LDPE mediante fit con due gaussiane. I risultati sono riportati in tabella 4.2. Per commenti vedi testo.
4.2. Caratterizzazione Reologica e Meccanica

spetto ad A e B. Inoltre LDPE mostra una larghezza del picco più stretta. Questo risultato è in accordo con un meccanismo che coinvolga le lamelle cristalline che, per LDPE, sono caratterizzate da una distribuzione di dimensioni più stretta come evidenziato anche dai risultati DSC.

Per HDPE, in cui non si distingue un chiaro rilassamento β, la temperatura a cui il modulo G' inizia a calare con la stessa proporzione degli altri materiali cade intorno a $T \sim 300K$. A questa T si trova già l’inizio del rilassamento α per questo PE.

In figura 4.5 si sono riportati i valori di G' in funzione della frazione cristallina X_c alle diverse temperature per i materiali indicati in legenda. Le curve tratteggiate uniscono campioni a diverso contenuto di frazione cristallina X_c alla stessa T. Come ci si aspetta, il modulo elastico ad una particolare tempe-

![Figura 4.5: Modulo di immagazzinamento (G') in funzione della frazione cristallina X_c alle diverse temperature indicate in legenda. Vedi testo per commenti.](image)
Capitolo 4. Risultati

La temperatura T aumenta all’aumentare della densità ρ (Xc) del PE. Questo si spiega con il fatto che mentre il modulo del cristallo dipende dalla T solo attraverso ρ, il modulo della fase amorfa ha una dipendenza da T molto maggiore. La fase amorfa, passando dal suo stato rilassato \(G_R \sim 10^6 \) Pa a non rilassato \(G_U \sim 10^9 \) Pa, passa attraverso una variazione del modulo \(G_U/G_R \sim 10^3 \).

Inoltre, nelle curve di figura 4.5, si osserva un cambio netto di pendenza passando da \(T = 243 \) K a \(T = 213 \) K. Per \(T < 200K \) i valori di \(G' \) diventano equivalenti, come già descritto in precedenza.

Figura 4.6: Andamento del rapporto tra modulo Relaxed \((G_R) \) vs Unrelaxed \((G_U) \) (simboli aperti) per A,B, LDPE e HDPE in funzione della frazione cristallina. A destra temperatura \(T_\beta \) (simboli chiusi blu).

In figura 4.6 è riportato il rapporto tra \(G'_R \) valutato a \(T = 300K \) e \(G'_U \) valutato a \(T = 175K \) per i diversi materiali (HDPE, A, LDPE, B in ordine di densità) in funzione di \(X_c \). Nella scala delle ordinate a destra, con simboli chiusi, è riportato l’andamento di \(T_\beta \) con \(X_c \). Questo tipo di rappresentazione è stata suggerita da Woo (vedi paragrafo 1.2.1) per evidenziare il comporta-
mento simile ad una T_g del rilassamento β [55].
Si può notare che al diminuire di X_c il rapporto G_U/G_R aumenta e paralle
lamente T_β si sposta a temperature più basse.

Dipendenza dalla frequenza del rilassamento β

In figura 4.7 sono riportati i risultati dell’analisi del rilassamento β in funzione della T a diverse frequenze f per B. In tabella 4.3 sono riportati i risultati

<table>
<thead>
<tr>
<th>f(Hz)</th>
<th>$T_\beta \pm 0.5$ (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>240.1</td>
</tr>
<tr>
<td>1</td>
<td>241.2</td>
</tr>
<tr>
<td>10</td>
<td>243.5</td>
</tr>
<tr>
<td>15.92</td>
<td>244.6</td>
</tr>
</tbody>
</table>

Tabella 4.3: Risultati dei picchi T_β dalle DMA alle diverse frequenze f per PE-B.

dell’analisi.

All’aumentare di f il picco relativo a questo rilassamento si restringe e si sposta verso T_β più basse. E’ possibile analizzare questo comportamento in termini di un processo energeticamente attivato. In figura sotto è riportato il grafico di logf in funzione dell’inverso della temperatura assoluta 1000/T (K^{-1}).

Da un best fit dei punti sperimentali con una legge tipo Arrhenius si ottiene un’energia di attivazione $E_a \simeq 233 \pm 42$ kJ/mol. Questo valore ricade nel range che in letteratura si usa attribuire a questo rilassamento [62–64].

4.2.3 Proprietà meccaniche

In figura 4.8 sono riportate le curve sforzo-deformazione (σ-ϵ) ottenute dalle prove di trazione su provini a osso di cane (ASTM - IVb) di A e B alle tempe

rature $T = 296$K, 273K, 243K, 223K fino alla deformazione $\epsilon = 0.3$ mm/mm
Figura 4.7: Sopra: rampa in temperatura a diverse frequenze per PE-B. Sotto: Dipendenza di Logf dall'inverso della temperatura assoluta per il rilassamento β.

(per chiarezza si sono omesse le curve di LDPE, comunque confrontabili ad A). Maggiori dettagli sono dati nel paragrafo 3.5.1.

Lo stile curva, continua o trattegiata, è stata usata rispettivamente per A e B mentre i colori distinguono le diverse T.

Le differenze tra i due materiali sono significative fin da $T = 296K$. Il mate-
4.2. Caratterizzazione Reologica e Meccanica

Figura 4.8: Curve σ-ϵ per A (linea continua) e B (linea tratteggiata) su provini a osso di cane (ASTM type IVb) alle diverse temperature indicate in legenda.

Il materiale A è sempre caratterizzato da modulo elastico E e sforzi di snervamento σ_y maggiori rispetto a B com’è logico attendersi a fronte della notevole differenza di X_c (48% per A e 30% per B).

Inoltre, al diminuire di T, si assiste ad un progressivo irrigidimento del materiale che quindi mostra un aumento di E e σ_y.

Le curve di A per $T = 243$ e 223 K e in misura minore di B a $T = 223$K mostrano, dopo la parte elastica, un massimo nello sforzo σ e poi un calo di σ che poi rimane circa costante all’aumentare di ϵ.

La ragione di tale calo è soltanto apparente: è dovuto ad un restringimento della sezione durante la trazione, detto comunemente *necking*, e successiva fase di stiro a freddo. σ cala poiché è calcolato rispetto all’area iniziale A_0:
\[\sigma = \frac{F}{A_0} \] (come descritto nel paragrafo 3.5.1).

In tabella 4.4 sono riportati i moduli E e gli sforzi di snervamento \(\sigma_y \) per le

<table>
<thead>
<tr>
<th>Temperatura (K)</th>
<th>E (MPa)</th>
<th>(\sigma_y) (MPa)</th>
<th>E (MPa)</th>
<th>(\sigma_y) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>296</td>
<td>192±8</td>
<td>8.4±0.4</td>
<td>109±4</td>
<td>3.1±0.1</td>
</tr>
<tr>
<td>273</td>
<td>340±12</td>
<td>14.2±0.2</td>
<td>115±18</td>
<td>6.3±0.1</td>
</tr>
<tr>
<td>243</td>
<td>324±25</td>
<td>23.9±0.2</td>
<td>167±5</td>
<td>12±0.1</td>
</tr>
<tr>
<td>223</td>
<td>486±20</td>
<td>28.6±0.8</td>
<td>314±8</td>
<td>18.6±0.4</td>
</tr>
</tbody>
</table>

Tabella 4.4: Modulo di Young E e sforzo di snervamento \(\sigma_y \) per le trazioni sui materiali tal quali tra T = 296 e 223 K.

diverse T per i due materiali. Questi sono anche riportati in figura 4.9.

Il modulo elastico corrisponde alla zona più pendente nella parte iniziale (elastica) della curva, ottenuto mediante best fit lineare su una larghezza della curva dello 0.25%; \(\sigma_y \) (figura 4.8) è stato preso pari al massimo della curva laddove possibile e altrimenti risulta dal punto d’intersezione del proseguimento del modulo e il best fit lineare della regione di dati ad alte deformazioni (deformazione plastica).

Dai dati riportati appare evidente la differenza in termini di valore assoluto di E e \(\sigma_y \) a causa della diversa cristallinità dei due LLDPE.

E e \(\sigma_y \) mostrano una dipendenza da T simile (figura 4.9). Tuttavia la dipendenza di B da T è leggermente superiore. Questa risultato è in accordo con la dipendenza di \(G'(\omega) \) da T visto precedentemente nelle curve DMA (figura 4.3) in cui per T <200K i moduli \(G' \) dei tre materiali considerati (A, B e LDPE) sono essenzialmente equivalenti.

4.3 Risultati sui film

Si presentano ora i risultati sui film di PE. Si ricorda che i film sono dei tri-strati (con spessore nominale totale ~ 23μm) con distribuzione degli spessori
4.3. Risultati sui film

Figura 4.9: Valori di modulo elastico, E (simboli aperti) e sforzo a snervamento, σ_y (simboli pieni) per i due materiali, A (rosso) e B (nero) in funzione della temperatura T.

20-60-20\% dello spessore totale per ogni strato. Nei primi due strati, per tutti i campioni, è sempre presente A, mentre l’ultimo strato può essere A,B o LDPE. Lo spessore nominale dell’ultimo strato è $\sim 4.6\mu m$.

In figura 4.10 è riportata una foto ottenuta con microscopio ottico della sezione trasversa di un film di PE-A. In foto sono parzialmente visibili anche i due strati esterni del film che hanno uno spessore $\sim 5\mu m$.

I campioni sono stati quindi denominati PE-A, PE-B o LDPE in funzione del materiale presente nell’ultimo strato.

Nella prima parte del paragrafo sono presentati i risultati sulle proprietà meccaniche dei film. Nella seconda parte sono riportati i risultati delle prove di peeling alle diverse velocità V e temperature T tra film dello stesso materiale.

Infine si riportano i risultati di peeling (solo PE-B) sui substrati selezionati.

4.3.1 Proprietà meccaniche film

Com’è stato descritto nel paragrafo 2.2, le curve di trazione stress-strain ($\sigma - \epsilon$) sono necessarie per calcolare G_c. In figura 4.11 sono riportate le curve ottenute dalle prove di trazione sui film PE-A e PE-B alle stesse temperature T su cui si sono condotti i test di peeling fino alla deformazione $\epsilon = 0.3$ mm/mm.

Le differenze tra i due film sono piccole, come ci si può aspettare in considerazione del fatto che solo uno dei due strati superficiali è diverso nei due casi e quest’ultimo costituisce solo il 20% dello spessore totale del film.

Una panoramica più generale sulla dipendenza tempo-temperatura del comportamento $\sigma - \epsilon$ è riportata in figura 4.12, dove sono graficati E e σ_y in funzione di T e della velocità di deformazione $\dot{\epsilon}$ per il film PE-B (i risultati per PE-A sono del tutto analoghi, come suggerisce fig. 4.11 e sono stati omessi per chiarezza).

I valori di E e σ_y di figura 4.12 sono stati calcolati, in maniera simile al caso precedente, dalle curve sperimentali $\sigma - \epsilon$ mediante fit bilineare, come sug-
4.3. Risultati sui film

Figura 4.11: Curve di trazione ($\sigma - \epsilon$) sui peel arms alle temperature indicate per i film PE-A (simboli rossi) e PE-B (simboli neri).

Dai dati in figura emerge un significativo effetto di T e il modulo passa da $E \sim 0.1$ GPa a $T = 296$K a $E \sim 1$ GPa per $T = 223$K.

Analogamente lo sforzo di snervamento passa da $\sigma_y \sim 5$ MPa a $T = 296$K a $\sigma_y \sim 25$ MPa a $T = 223$K. L’effetto di $\dot{\epsilon}$, invece, risulta minore e i risultati, entro l’errore di riproducibilità delle misure, risultano equivalenti.

In tabella 4.5 sono riportati i valori di figura 4.12.

4.3.2 Peeling: PE-A, PE-B e LDPE

Il risultato tipico di una prova di peeling (Forza vs Spostamento) a diverse velocità di esecuzione è riportato in figura 4.13.

Questo tipo di risultato è comune a prove effettuate a temperature $T = 296$
Capitolo 4. Risultati

Figura 4.12: Sforzo a snervamento, σ_y (linea continua) e Modulo di Young, E, (linea trattegiata e colorata) in funzione di T e di V per PE-B.

<table>
<thead>
<tr>
<th>Temperatura (K)</th>
<th>v=50 mm/min</th>
<th>v=500 mm/min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E (MPa)</td>
<td>σ_y (MPa)</td>
</tr>
<tr>
<td>296</td>
<td>130±10</td>
<td>7.3±0.1</td>
</tr>
<tr>
<td>273</td>
<td>200±20</td>
<td>10.0±0.1</td>
</tr>
<tr>
<td>243</td>
<td>800±50</td>
<td>17±3</td>
</tr>
<tr>
<td>223</td>
<td>1100±50</td>
<td>25±1</td>
</tr>
</tbody>
</table>

Tabella 4.5: Modulo di Young E e sforzo di snervamento σ_y per le trazioni su PE-B alle velocità di 50 e 500 mm/min.

e 273K: ad ogni velocità indagata si trova sempre una regione di dati in cui la forza (F) oscilla intorno ad un valor medio. Le prove a più alta velocità ($v = 800$ mm/min) mostrano un rumore più accentuato.
4.3. Risultati sui film

Dalle curve riportate si può vedere che, a T = 296K, le forze medie risultano estremamente piccole. Si passa da $\sim 20 \text{ mN (0.02 N)}$ per $v = 100 \text{ mm/min}$ a $\sim 90 \text{ mN (0.09 N)}$ per $v = 800 \text{ mm/min}$. Entrambi questi valori sono superiori al limite inferiore dato dalla risoluzione della cella e da effetti di rumore/isteresi che sono dell’ordine di $\sim 5 \text{ mN (0.005 N)}$.

Il valore di F poi considerato per le analisi successive è il risultato della media tra tre diverse ripetizioni di peel testing su campioni diversi della stessa coppia di film, alla stessa velocità v e temperatura T. Tipicamente in questo modo si ottengono deviazioni rispetto al valor medio delle tre prove non superiori al 10%.

Quando il peeling viene effettuato alle T più basse ($T=243 \text{ K e 223 K}$) si

Figura 4.13: Curve Forza vs Spostamento per PE-B a T = 296K in configurazione T-peel per le diverse velocità di spostamento traversa riportate in legenda.
Capitolo 4. Risultati

osserva il fenomeno di stick-slip. In figura 4.14 è riportata la curva Forza vs Spostamento a due diverse velocità (v = 100 mm/min e v = 800 mm/min) per PE-B a T = 223K.

A questa T il fenomeno di stick-slip è stato osservato a tutte le velocità di spostamento. A T = 243K, invece, si è osservato un comportamento intermedio con diverse regioni di peeling a F costante con la comparsa di slip occasionali a basse v e sempre più frequenti all’aumentare della stessa. Nel caso di figura 4.14 è impossibile determinare una F media di peeling e i risultati poi mostrati seguono il criterio di riportare, per le prove in cui avviene stick-slip, due valori di F. Il primo è la media statistica tra i picchi di F massima. Il secondo, in maniera analoga, per le “valli” di F minima.
4.3. Risultati sui film

In figura 4.15 è riportato un esempio degli effetti delle correzioni effettuate dal software IC-peel sui valori misurati dell’energia di adesione. L’energia totale G, ossia il lavoro esterno per unità di area superficiale delaminata (che include anche i contributi di dissipazione per l’estensione e la flessione del film), è confrontata con i valori dell’energia di adesione G_c ottenuti per le diverse velocità di fronte di avanzamento della frattura R (la relazione tra velocità di spostamento traversa e velocità di avanzamento della frattura è riportato dall’eq. 2.17) e temperature T.

IC-Peel fornisce un parametro per valutare l’entità della correzione, che è dato dal rapporto tra il lavoro plastico dissipato nella flessione G_{db} e l’energia totale spesa G_{tot}.

Figura 4.15: Energia totale G e energia di frattura adesiva G_c in funzione della velocità di propagazione del fronte di peeling R alle temperature T indicate.
In questo caso i valori del parametro di correzione sono significativi e spaziano dal 20% fino al 70%.

Questo risultato sottolinea quanto importante sia, nell’analisi della prova di peeling, l’approccio della meccanica della frattura per la valutazione dell’energia di adesione G_c quando sono coinvolti nel testing film così sottili e facilmente deformabili.

I risultati sperimentali del peeling, processati con IC-peel con i rispettivi dati di trazione (σ vs ϵ), hanno fornito, per ognuna delle T testate, delle curve G_c vs R per i film PE-A, PE-B e LDPE. In caso di comportamento stick-slip, i valori di forza sul braccio di peel sono stati elaborati separatamente come spiegato precedentemente.

Queste curve, di cui è riportato in figura 4.15 l’esempio per PE-B, possono essere combinate per costruire una mastercurve scegliendo un opportuno valore di traslazione per l’asse della velocità di avanzamento della frattura ridotta.

In figura 4.16 sono riportati i fattori di shift associati alle traslazioni a_T in funzione del reciproco della temperatura assoluta 1000/T (K^{-1}). Tutti e tre i materiali (PE-B, PE-A e LDPE) mostrano una dipendenza simile di a_T da 1000/T (per LDPE manca il punto a $T = 223 K$).

$$R(T) = R(a_T T_R)$$

Dove T_R è la temperatura di riferimento.

Prima della sovrapposizione, i risultati G_c sono stati moltiplicati per il fattore 296/T, dove T (K) è la temperatura di test. Questa correzione è spesso fatta nella costruzione di master curves di funzioni viscoelastiche lineari e spesso utilizzato anche nel caso del peel testing [31,105,128].

Le curve di G_c traslate rispetto a $T_R = 296 K$ di un fattore a_T in modo da averle sovrapposte, in modo simile a quanto viene normalmente fatto in letteratura, formano delle mastercurves. Queste sono riportate in figura 4.17. In rosso sono riportati i risultati per PE-A, in nero per PE-B e in viola per LDPE. In figura i simboli identificano i risultati sperimentali, mentre le linee
4.3. Risultati sui film

Figura 4.16: Fattori di shift empirici applicati per la sovrapposizione tempotemperatura delle curve di peeling. $T_R = 296K$.

tratteggiate sono in tutti i casi una guida per gli occhi.

La curva di PE-B (simboli neri), a basse velocità ridotte $Ra_T < 1 \, \text{mm/min}$, tende asintoticamente ad un valore soglia $G_c \sim 0.5 \, \text{J/m}^2$. All’aumentare della velocità si osserva un aumento di G_c che prosegue fino a circa $Ra_T \sim 10^4 \, \text{mm/min}$. A questo punto G_c mostra un primo picco, $G_c \sim 130 \, \text{J/m}^2$, e poi una diminuzione fino a $Ra_T \sim 10^5 \, \text{mm/min}$.

Per $Ra_T \geq 10^5$ si innescano fenomeni di stick-slip (vedi figura 4.14 e discussione sull’analisi dei risultati) che portano G_c ad oscillare tra due valori $G_c \sim 30 \div 240 \, \text{J/m}^2$. I valori di slip sono riportati in figura come una curva separata. Aumentando ulteriormente $Ra_T \sim 10^6 - 10^7$, G_c mostra un netto crollo a circa $G_c \sim 1 \, \text{J/m}^2$.

117
La curva di PE-A (simboli rossi) per \(Ra_T < 1 \text{ mm/min} \), tende asintoticamente a \(G_c \sim 0.5 \text{ J/m}^2 \). All’aumentare della velocità fino a \(Ra_T \sim 10^3 \) si osserva un aumento di \(G_c \) fino ad un primo massimo \(\sim 3 \text{ J/m}^2 \). Aumentando ancora \(Ra_T \), \(G_c \) mostra un netto calo arrivando a \(G_c \sim 1.5 \text{ J/m}^2 \). In un intervallo di \(Ra_T \) compreso tra \(10^3 \) e \(10^4 \), \(G_c \) torna ad aumentare fino a \(\sim 2.6 \text{ J/m}^2 \). Per \(Ra_T \gtrsim 10^6 \) i valori di \(G_c \) crollano e diventano confrontabili con il rumore durante la prova; i valori riportati rappresentano il limite superiore. Per PE-A non si sono osservati fenomeni di stick-slip.

La curva di LDPE, per \(Ra_T < 1 \text{ mm/min} \), tende asintoticamente a \(G_c \sim \)
4.3. Risultati sui film

0.3 J/m². All’aumentare di \(Ra_T \) fino a \(10^2 \div 10^4 \) mm/min si osserva un aumento di \(G_c \) fino ad un primo massimo \(G_c \sim 1 \) J/m². Per \(Ra_T \) tra \(10^3 \) e \(10^4 \), \(G_c \) mostra valori essenzialmente costanti fino a \(\sim 1.5 \) J/m². Anche per \(Ra_T \) superiori, entro gli errori sperimentali, \(G_c \) rimane dell’ordine di \(\sim 1.5 \) J/m². Per LDPE i punti si fermano per \(Ra_T \lesssim 10^6 \). Anche per LDPE non si sono osservati fenomeni di stick-slip.

Le tre curve hanno alcune caratteristiche comuni:

- Per \(Ra_T \) basse tendono ad un valore soglia \(G_c \sim 0.4 \div 0.5 \) J/m². Questo valore si può confrontare con il lavoro termodinamico di adesione \(2\gamma \simeq 0.1 \) J/m².

- All’aumentare di \(Ra_T \), \(G_c \) aumenta fino ad un primo massimo: il massimo si trova a \(Ra_T \) più basse per LDPE e a \(Ra_T \) più alte per PE-B.

- Dopo il primo picco \(G_c \) torna a mostrare un debole aumento in funzione di \(Ra_T \) fino ad un secondo massimo. Oltre questa seconda soglia, \(G_c \) crolla. Il valore di \(Ra_T \) a cui avviene questo secondo picco è maggiore per PE-B e minore per LDPE.

4.3.3 Peeling: trattamento termico

In figura 4.18 sono riportati, per due film che hanno mostrato caratteristiche molto differenti nell’adesione tradizionale, PE-B e LDPE, i valori di \(G_c \) vs \(Ra_T \) ottenuti in seguito ad un trattamento termico a 45°C per 1 ora. I dettagli della preparazione dei campioni sono stati discussi nel paragrafo 3.6.1. I campioni sono stati denominati PE-B@45°C/1h e LDPE@45°C/1h rispettivamente. I risultati sono poi stati ottenuti in maniera analoga al caso precedente, descritto nel paragrafo 3.6.1.

In figura sono anche riportate le curve di \(G_c \) vs \(Ra_T \) per i film non trattati (PE-B e LDPE) per confronto. Come nel caso dei risultati precedenti, i valori
di G_c prima della sovrapposizione per la realizzazione delle mastercurves, sono stati prima moltiplicati per il fattore $296/T$ e poi traslati degli stessi fattori riportati in figura 4.16. In ascisse è riportata la velocità ridotta Ra_T con temperatura di riferimento $T_R = 296$ K.

Figura 4.18: Mastercurves di PE-B e LDPE a confronto rispettivamente con PE-B@45°C/1h e LDPE@45°C/1h. Le linee tratteggiate sono guida per gli occhi. Per commenti vedi testo.

L’effetto del trattamento termico si è tradotto in valori di G_c essenzialmente sovrapposti, entro l’incertezza sperimentale, tra PE-B e PE-B@45°C/1h fino a circa $Ra_T \sim 10^4$. A questi valori di Ra_T, per PE-B, si è osservato un massimo e poi un debole aumento di G_c con accentuati fenomeni di stick-slip. Nel caso di PE-B@45°C/1h la curva non mostra la presenza del primo massimo. Questa continua ad aumentare fino a $Ra_T \sim 10^6$ dove si innesca
4.3. Risultati sui film

il meccanismo di stick-slip. Anche in questo caso i valori di slip sono stati riportati su di una curva separata.

Per LDPE l’effetto del trattamento termico è stato quello di raddoppiare circa G_c su tutto il range di Ra_T investigato. Fino a circa $Ra_T \sim 10^2$ mm/min infatti la curva di LDPE@$^\circ$C/1h è sovrapposta alla curva di PE-B. In questo caso tuttavia si osserva ancora un aumento di G_c con Ra_T, spostato leggermente a Ra_T maggiori. Il successivo andamento di G_c con Ra_T segue quello di LDPE non trattato ma i valori di G_c sono traslati verticalmente sempre di un fattore due.

4.3.4 Peeling: PE-B e Substrati

Per il solo PE-B si è affrontato lo studio della dipendenza di G_c in funzione di T e R su diversi substrati selezionati. Le proprietà dei substrati sono state riportate precedentemente in tabella 3.2 mentre le procedure di adesione sono riportate nel paragrafo 3.6.1.

I risultati del peel testing tra PE-B e i substrati sono stati analizzati e processati come descritto in precedenza (v. 3.6.1). Per le diverse velocità di peeling e le diverse temperature sono stati usati gli appropriati dati σ - ϵ. I valori del parametro di “correzione” sono risultati superiori rispetto all’adesione tra film, mostrando una variazione dal 40 al 70%.

La caratterizzazione a basse temperature/alte velocità è risultata inoltre più complessa in questo caso probabilmente a causa della geometria di peel a $\theta = 180^\circ$. Con questa geometria l’allineamento tra gli afferraggi è più complesso e le correzioni per l’energia dissipata nella flessione mediante IC-Peel sono più elevate. Questi fattori aumentano l’incertezza sperimentale.

In figura 4.19 sono riportati i risultati sperimentali sui quattro substrati selezionati. Da sinistra a destra e dall’alto in basso si hanno rispettivamente: PE-B su PS, SAN, Mylar® e infine Acciaio Inox.

Come già fatto in precedenza, i valori di G_c prima della sovrapposizione per la realizzazione della mastercurve sono stati moltiplicati per il fattore 296/T.

121
Figura 4.19: Mastercurves di PE-B e i diversi substrati indicati in legenda. Le linee tratteggiate sono guida per gli occhi. Per commenti vedi testo.

e poi, per tutti i substrati, traslati orizzontalmente per gli stessi valori di a_T riportati in figura 4.16. In figura 4.20 sono riportate tutte le curve di PE-B sui diversi substrati in un unico grafico. Tutti i valori di G_c sono compresi tra ~ 0.5 J/m2 e $G_c < 10$ J/m2. In ascisse è riportata la velocità ridotta R_{aT} con temperatura di riferimento $T_R = 296$ K.

A basse velocità $R_{aT} < 1$ mm/min le curve di PE-B su PS e Acciaio e di PE-B su SAN e Mylar® partono da due livelli diversi di G_c, rispettivamente ~ 0.6 J/m2 vs ~ 0.9 J/m2.

A differenza dei risultati di figura 4.17 in questo caso è più difficile individuare la presenza di valore di soglia G_0 a basse R_{aT}.

Nella parte di R_{aT} più bassi $G_c \sim 0.8$ J/m2 e le curve di PE-B sui substrati SAN, Mylar® e Acciaio Inox, rispettivamente rossa, verde e blu, seguono
4.3. Risultati sui film

Figura 4.20: Sovrapposizione delle mastercurves di PE-B e i diversi substrati indicati in legenda. Le linee tratteggiate sono guide per gli occhi. Vedi testo per commenti.

approssimativamente lo stesso trend. All’aumentare di Ra_T aumenta G_c fino ad un massimo, intorno a $Ra_T \sim 10^4$ mm/min. Il livello di G_c più elevato è per il Mylar®, che vale ~ 7 J/m2 e seguono SAN e acciaio inossidabile con rispettivamente $G_c \sim 5$ e 4.3 J/m2.

La curva di PE-B su PS mostra, in funzione di Ra_T, dei valori di G_c più bassi con dipendenza di G_c da Ra_T che sembra cambiare pendenza poco sotto $Ra_T \sim 10^5$ mm/min.

Dopo il massimo, tra $Ra_T \sim 10^4$ e 10^5 mm/min tutte le curve mostrano valori di G_c equivalenti in un certo range di Ra_T. Oltre $Ra_T \sim 10^5$ i quattro substrati mostrano ancora un comportamento sostanzialmente simile. Per il Mylar® G_c diminuisce debolmente all’aumentare di Ra_T. In maniera analoga
Capitolo 4. Risultati

per le curve di PE-B su PS e SAN si osserva una tendenza di G_c a diminuire per tutto il restante range di Ra_T arrivando ad un valore di $G_c \sim 3.2 \text{ J/m}^2$ per $Ra_T = 10^7 \text{ mm/min}$.

Nel substrato con Acciaio, PE-B mostra un comportamento decrescente più accentuato: G_c diminuisce all’aumentare di Ra_T passando da $\sim 4 \text{ J/m}^2$ fino a $\sim 1.6 \text{ J/m}^2$ per $Ra_T = 10^7 \text{ mm/min}$.

Sul substrato in acciaio inox, in particolare per $T = 296K$, si è osservato un residuo lasciato dal film dopo ogni test di peeling. La quantità di questo residuo cala visibilmente tra $T = 296K$ e $T = 243K$ suggestendo effettivamente la presenza di una transizione nella modalità di frattura da coesiva ad adesiva.

Sugli altri substrati la presenza del residuo è di più difficile identificazione a causa della difficoltà di disporre di un opportuno solvente in grado di rimuoverlo dalla superficie senza danneggiarla.

Peeling: Analisi Residuo

Nelle precedenti prove di peeling di PE-B su acciaio si è visivamente osservata la presenza di un modesto quantitativo di residuo su di essi appartenente al film.

Si è approfondita l’influenza di questa fase residua nella dipendenza di G_c vs R a $T = 296K$. La procedura utilizzata è stata descritta nel paragrafo 3.6.1. In figura 4.21 sono riportate le prove di peeling a $\theta=90^\circ$ effettuate sempre sullo stesso campione di PE-B in funzione di R. Nel grafico sopra di figura 4.21 sono riportati i valori di G_c in funzione del numero di rimozioni del residuo (o ripetizioni senza rimozione) ai diversi R. Per confronto è riportato nello stesso grafico il risultato di una prova ripetuta (con lo stesso campione) un numero uguale di volte senza pulire il substrato prima della ripetizione (simboli aperti). Dai risultati riportati appare evidente che la rimozione del residuo dal substrato porti ad una misurabile diminuzione di G_c in funzione del numero di rimozioni effettuate. Tuttavia il livello di G_c sembra stabiliz-

zarsi dopo circa 3/4 rimozioni. La diminuzione di G_c inoltre è maggiore per le alte velocità che per le basse velocità.

Invece, la prova di ripetizione senza rimozione, simboli blu aperti, ha mostrato un valore di G_c essenzialmente indipendente dal numero di ripetizioni.
Capitolo 4. Risultati

In figura 4.21 sotto è riportato il classico grafico G_c vs R. In questo caso si sono graficati per chiarezza solo i risultati corrispondenti alla prova iniziale (0) a alle rimozioni successive (1,2,4). La scala delle ordinate è ora lineare per facilitare il confronto tra le diverse prove.

Dagli andamenti riportati si osserva una netta differenza tra la prima prova (0) e le successive. Tuttavia nonostante l’intensità diminuisca in funzione del numero di rimozioni del residuo, la forma generale della dipendenza di G_c da R sembra esserne influenzata in misura minore.

Il residuo, denominato r-PE-B, è stato analizzato mediante GPC secondo la procedura indicata nel paragrafo 3.6.1 e confrontato con il materiale tal quale. La quantità di materiale ricavata dalla rimozione del residuo dai dischetti è risultata di 0.68 mg. L’area totale dei dischetti è di ≈ 685 cm2. Ipotizzando una densità del materiale rimosso vicino a quello della fase amorfa $\rho_a=0.8519$ g/cm3, si ottiene uno spessore medio del residuo di 11 nm. Questa stima rappresenta un limite inferiore perché si è assunto che tutta la superficie sia uniformemente ricoperta da r-PE-B.

I risultati della distribuzione dei pesi molecolari e della quantità e distribuzione di SCB sono riportati in figura 4.22.

Le caratteristiche della distribuzione di pesi molecolari (PM) di B sono state riportate in tabella 3.1. Il residuo mostra una distribuzione di PM drasticamente spostata sui bassi pesi, con una polidispersità minore (la curva è più stretta $M_w/M_n \sim 2$). E’ inoltre importante notare il quantitativo molto elevato di SCB, come riportato in figura, che passa da circa $\sim 30CH_3/1000C$ per B a $\sim 100CH_3/1000C$. In tabella 4.6 sono riportate le grandezze principali ricavate dall’analisi GPC a confronto tra B e r-PE-B.

Una quantità così elevata di SCB è tale da rendere questo campione confrontabile a degli oli o cere mentre il PM è molto più elevato.
4.3. Risultati sui film

Figura 4.22: Analisi GPC del residuo estratto dal substrato in acciaio dopo la prima rimozione e confronto con il materiale tal quale (B).

<table>
<thead>
<tr>
<th>Materiale</th>
<th>M_w (g/mol)</th>
<th>M_w/M_n</th>
<th>$CH_3/1000C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>\sim87000</td>
<td>\sim4.49</td>
<td>\sim34</td>
</tr>
<tr>
<td>r-PE-B</td>
<td>\sim14000</td>
<td>\sim2</td>
<td>\sim100</td>
</tr>
</tbody>
</table>

Tabella 4.6: Pesi molecolari, polidispersità e quantitativo di comonomero per i due materiali riportati.
Capitolo 4. Risultati
Capitolo 5

Discussione

Come descritto nel secondo capitolo, la relazione tra la dipendenza delle proprietà di adesione dalla velocità/temperatura e la viscoelasticità lineare degli adesivi sfrutta la possibilità di misurare la risposta viscoelastica dell’adesivo stesso, che di solito è un materiale polimerico soffice, intenzionalmente messo tra la superficie e il substrato con lo scopo di unirli.

Nel caso di questa tesi l’adesivo è contenuto nei polietileni stessi, come loro componente intrinseca, e dunque non può essere isolato e misurato separatamente. Tuttavia possiamo prendere in considerazione la dipendenza velocità/temperatura dell’energia di adesione G_c ottenuta dal peel testing e confrontarla con la viscoelasticità lineare dei polietileni, studiata mediante DMA.

La discussione dei risultati ottenuti verrà fatta separatamente in riferimento agli esperimenti di adesione dei film PE tra loro e di PE-B con i diversi substrati.

5.1 Adesione tra film

Si riportano in figura 5.1 per comodità di confronto i grafici relativi alla caratterizzazioni DMA (figura 4.3) e ai risultati di peel testing sui materiali
Capitolo 5. Discussione

studiati (figura 4.17). Ci sono diverse caratteristiche interessanti, che sono:

- G_c per PE-A, PE-B e LDPE, in funzione di Ra_T mostra un graduale aumento a bassi Ra_T fino ad una regione estesa ad alta energia, tra 10^3 e 10^7 mm/min. In questa regione si possono distinguere due massimi locali. Dopo questa regione, intorno a 10^7 mm/min per PE-B, 10^6 mm/min per PE-A e 10^4 mm/min per LDPE si ha una netta diminuzione di G_c che, come descritto nel precedente capitolo, per PE-B corrisponde al manifestarsi del fenomeno di stick-slip.

- G_c per PE-B, in particolare nella regione ad alta energia, è notevolmente superiore a PE-A e LDPE.

- Il secondo massimo in G_c per PE-B e in particolare la sua netta transizione a bassi valori e al comportamento stick-slip, avvengono a Ra_T superiori (ossia temperature minori) dei corrispondenti picchi di transizione per PE-A e LDPE.

- Come si può osservare nelle rampe in temperatura DMA in figura 5.1, le principali differenze tra i materiali A e B sono relativi all’intensità del loro rilassamento β. LLDPE-B, che è il PE che mostra i più grandi valori di G_c, mostra anche il picco $\tan \delta$ più intenso nella regione β. E’ utile ricordare che il materiale HDPE, per cui non c’è rilassamento β risolubile nelle DMA in figura, non ha proprietà di adesione. Un ipotetico esperimento di peel testing con film in HDPE risulterebbero in energie di adesione non misurabili a tutte le temperature e velocità considerate nel presente lavoro.

Per LDPE invece, anche lui caratterizzato da un picco β intenso, i bassi valori di G_c sono riconducibili alle sue caratteristiche estensionali.

- Il picco di $\tan \delta$ nel rilassamento β per B è spostato a più basse temperature rispetto all’analogo picco nel caso di A. Su queste considerazioni, si avanza l’interpretazione secondo cui la “fase”, entro la struttura dei materiali LLDPE, responsabile del rilassamento dinamico meccanico β,
5.1. Adesione tra film

Figura 5.1: Sopra: rampa in temperatura da 125K a 375K ($f=1$ Hz) ad 1 K/min per i materiali indicati in legenda. Sotto: mastercurves di G_c vs Ra_T per i materiali indicati. Vedi commenti nel testo.
è anche responsabile delle proprietà di adesione di questi materiali o, in altre parole, rappresenta la “fase adesiva”.

- Le proprietà estensionali dei tre materiali sono state riportate in figura 4.2. Si sottolinea come i due LLDPE non mostrino mai un significativo comportamento di strain-hardening alle $\dot{\epsilon}_H$ indagate. LDPE, a fronte della sua struttura ramificata (SCB e LCB), anche per $\dot{\epsilon}_H$ più basse mostra invece un notevole strain hardening.

Sulla base di questa interpretazione, sono di seguito esaminati i dettagli delle mastercurves di G_c. Come accennato sopra, l’ampia regione ad alte energie tra 10^3 e 10^7 mm/min delle curve di G_c vs RaT (mm/min) mostra due massimi locali. Il primo avviene a circa $4 \cdot 10^3$ per LDPE, $3 \cdot 10^3$ per PE-A e $1 \cdot 10^4$ per PE-B. Il secondo avviene vicino a $2 \cdot 10^4$ per LDPE, 10^6 per PE-A e 10^7 per PE-B.

Nei prossimi paragrafi i due massimi sono denominati “transizione a bassa velocità” e “transizione ad alta velocità” e la discussione sulle loro proprietà e la loro interpretazione è fatta sulla base della letteratura [105, 128]. Il modello di Gent e Petrich è stato discusso nel paragrafo 1.3.5.

5.1.1 Transizione ad alta velocità

La transizione ad alta velocità rappresenta la transizione da una condizione di elevata adesione, in effetti il livello più alto esibito dai diversi materiali nel range di Ra_T studiato, ad un netto calo in G_c in seguito ad un aumento in Ra_T (o diminuzione di T).

Secondo l’interpretazione accettata, questa transizione corrisponde ad un irrigidimento dell’adesivo causato dall’avvicinarsi della sua transizione gomma-
5.1. Adesione tra film

vitro. Kaelble, in particolare, fornisce un’interpretazione quantitativa dell’effetto della rapida crescita del modulo elastico sul comportamento dell’adesivo all’avvicinarsi della sua temperatura di transizione vetrosa \(T_g \) (vedi paragrafi 1.3.5 e 2.1.1). La forza di peel raggiunge un massimo e successivamente si osserva una regione in cui la forza di peel diminuisce all’aumentare della velocità di peeling. Questa pendenza negativa dà una diretta spiegazione dell’instabilità comunemente detta “stick-slip” [128].

Nel caso presente è possibile spiegare la transizione ad alta velocità di \(G_c \) come corrispondente al rilassamento \(\beta \). La fase coinvolta in questo rilassamento passa dal suo stato rilassato \(G_R \) al suo stato non rilassato \(G_U \).
Il rilassamento \(\beta \) del polietilene è stato in genere associato, come quantità e proprietà, alla fase amorfa del polietilene che a sua volta dipende dal tipo e grado di ramificazione [30, 36, 38–40, 44–46, 51–56, 59].
Talvolta il rilassamento \(\beta \) è anche stato interpretato come la \(T_g \) del materiale amorfo confinato tra le superfici lamellari [52, 55]. Di conseguenza, l’interpretazione dei risultati mostrati sulla transizione ad alta velocità nelle mastercurves di \(G_c \) vs \(R_{aT} \) e il comportamento associato stick-slip allo stato \(G_U \) del rilassamento viscoelastico \(\beta \) è anche confermato dalla traslazione relative di queste transizioni in PE-A (la transizione avviene a più basse \(R_{aT} \)/alte \(T \)) se confrontate con quelle di PE-B (la transizione avviene a più alte \(R_{aT} \)/basse \(T \)).
L’apparente eccezione a questa interpretazione è rappresentata da LDPE che, in funzione dell’intensità e \(T_{\beta} \) del suo rilassamento, dovrebbe avere una transizione tra PE-A e PE-B. L’eccezione è risolta da un lato ricordando il fatto che l’intensità del rilassamento \(\beta \) per gli LDPE è spesso collegato ad un aumento della frazione di volume della fase amorfa [36], dall’altro ricordando le sue proprietà estensionali (figura 4.2). Questo punto viene meglio discusso in seguito.
Capitolo 5. Discussione

5.1.2 Transizione a bassa velocità

Come si è visto nel paragrafo 1.3.5, Gent e Petrich hanno proposto una spiegazione per il picco a T più alte (velocità più basse). Il loro modello descrive il processo di peeling in termini di un’estensione delle porzioni di adesivo. Il polimero è caratterizzato da uno sforzo di rottura f_b. D’altro canto anche l’interfaccia è caratterizzata da uno sforzo critico d’interfaccia, f_a. Lo sforzo massimo a cui può arrivare l’adesivo, prima di cedere, è f_m che è sempre il minore tra i due parametri sopra citati.

In primo luogo è immediato sostituire alla resistenza di peel P dell’adesivo, la sua energia di frattura G_c qui misurata, che rappresenta un parametro caratteristico dell’adesivo, indipendente dai dettagli geometrici del test di peeling. La (1.42) si può ora scrivere:

$$G_c = h \int_0^{f_m} f \, de$$

(5.1)

E la (5.1) definisce le proprietà meccaniche estensionali dell’adesivo in cui sono implicitamente inclusi i contributi di dissipazione viscoelastica. Ogni curva è valutata alla velocità e temperatura appropriata. In secondo luogo, il ruolo di f_b e f_a e di conseguenza la competizione tra frattura coesiva e adesiva (o interfacciale) dev’essere qui adattata al caso del particolare adesivo qui considerato.

Nei campioni qui presenti, infatti, l’interfaccia di adesione è creata dal contatto diretto tra due superfici di polietileno simili. Di conseguenza la tenacità del legame è determinata dall’interdiffusione di macromolecole attraverso la superficie e dagli entanglements presenti tra di loro.

L’adesivo qui considerato, pertanto, non è un tradizionale strato adesivo di un preciso spessore e modulo elastico, interposto tra le superfici di due substrati o laminati che vengono grazie ad esso adesi. E’ piuttosto una complessa e singola interfaccia polimero-polimero la cui esistenza e tenacità dipende dalla “fase adesiva” che abbiamo assunto esistere nei polietilени qui studiati.
Possiamo quindi considerare la tenacità di questa interfaccia come descritta dal massimo sforzo a trazione che questa può sostenere. Questo è l’equivalente dello sforzo f_a del modello sopracitato. Inoltre, possiamo assumere che la “fase adesiva” sia presente all’interfaccia stessa, e che tra le sue proprietà meccaniche chiave si include la deformabilità estensionale simile a quella dei \textit{pressure sensitive adhesives} (ossia un polimero amorfo soffice sopra la sua T_g). A questa “fase adesiva” possiamo associare uno sforzo massimo a trazione, equivalente al termine f_b nel citato modello.

La transizione a bassa velocità nelle mastercurves di figura 5.1 può in questi termini essere considerato come una transizione di regime da frattura coesiva ad un regime di frattura interfacciale. A bassi valori di Ra_T (o alte temperature) lo sforzo esercitato sulla fase adesiva durante la sua estensione, fino a rottura, è sempre minore della resistenza dell’interfaccia ($f_b < f_a$). Dopo il massimo, ad alti valori di Ra_T (o più basse T), lo sforzo opposto dalla fase adesiva a causa della sua estensione diventa troppo elevato rispetto alla resistenza dell’interfaccia, e dunque cede quest’ultima ($f_b > f_a$).

E’ ora chiaro come, nel caso di LDPE, le sue proprietà estensionali dell’adesivo siano fondamentali nel governare il processo di frattura. Questo materiale, il cui comportamento estensionale segue l’andamento visto (figura 4.2) si ritrova sempre nella situazione $f_b > f_a$ a causa dello strain-hardening. Dunque, anche avendo una regione di dispersione (rilassamento β) eventualmente favorevole, a causa della microstruttura della sua fase adesiva non riesce a sfruttarlo per raggiungere livelli elevati di G_c.

5.1.3 Peeling: trattamento termico

Nello studio dei PSAs di solito si individua la transizione coesiva/adesiva in funzione del residuo dell’adesivo lasciato sul substrato. Tuttavia nel presente caso di adesione tra film di polimeri simili l’interfaccia è complessa e non si può estrarre o visualizzare un residuo da una delle due superfici.
Capitolo 5. Discussione

Figura 5.2: Mastercurves di PE-B e LDPE a confronto rispettivamente con PE-B@45°C/1h e LDPE@45°C/1h. Le linee tratteggiate sono guida per gli occhi. Per commenti vedi testo.

In figura 5.2 si sono riportati i risultati per i campioni su cui è stato effettuato un trattamento termico, denominati PE-B@45°C/1h e LDPE@45°C/1h. Dai risultati riportati si può osservare come le due mastercurves per i materiali trattati e quelli non trattati abbiano sostanzialmente lo stesso andamento nella regione delle basse velocità. Sia per PE-B@45°C/1h che per LDPE@45°C/1h il primo picco (che nei materiali non trattati è stato chiamato la transizione a bassa velocità) si sposta, nella curva dei materiali trattati, a valori di \(Ra_T\) più elevati. Per PE-B@45°C/1h arriva quasi a sovrapportarsi al secondo picco di PE-B, la transizione ad alta velocità.

La transizione ad alta velocità appare invece avvenire per entrambi i mate-
5.1. Adesione tra film

Figura 5.3: Curve sforzo-deformazione e innalzamento sforzo critico dell’interfaccia f_a.

riali allo stesso valore di Ra_T nelle due mastercurves. I risultati di figura 5.2 possono dunque essere spiegati in termini di un aumento di f_a d’interfaccia in seguito al trattamento termico.

Questo ha consentito di raggiungere livelli di G_c maggiori. Nei campioni trattati il regime di frattura coesiva si è esteso a più alte velocità di frattura (più basse temperature) dove lo sforzo estensionale della fase adesiva raggiunge livelli maggiori.

Allo stesso modo per LDPE@45°/1h, il trattamento termico ha aumentato la soglia di f_a consentendo di raggiungere livelli maggiori di f_m. Per LDPE la transizione coesiva/adesiva è assente a causa del generale comportamento strain-hardening del materiale. Questa descrizione è chiara se si guarda il grafico di figura 5.3. In questo caso è ben rappresentata l’operazione di trattamento termico come un innalzamento del livello di f_a.

LDPE si trova sempre nella situazione della curva I: un aumento di f_a comporta un aumento di G_c ma non potrà mai portare ad una frattura coesiva
Capitolo 5. Discussione

perché la curva presenta sempre strain-hardening. L’andamento G_c vs R inizialmente crescente si spiega dunque grazie alle sole proprietà estensionali della “fase adesiva” di LDPE. Aumentando $R a_T$ aumenta lo sforzo permettendo di dissipare più energia; parallelamente diminuisce il valore della deformazione a rottura ϵ_B perché la curva mostra strain hardening a estensioni sempre minori. La forma generale della curva è dunque un bilancio tra questi due effetti.

Questo esperimento di trattamento termico, dunque, conferma la validità dell’applicazione del modello di Gent e Petrich nel caso presente. Questo, a sua volta, supporta l’interpretazione fin qui data delle proprietà adesive dei film di PE come originarsi dalla presenza di una “fase adesiva” e quantitativamente collegate alle proprietà estensionali $\sigma - \epsilon$ della fase adesiva e alla competizione tra gli sforzi limite: quello a rottura della fase adesiva f_b e quello dell’interfaccia f_a.

5.2 Adesione sui substrati

Le mastercurves tra PE-B e i substrati (PS, SAN, Mylar® e Acciaio Inox) riportate in figura 5.4 presentano molte caratteristiche simili alle mastercurves tra i film:

- G_c in funzione di $R a_T$ mostra un graduale aumento dalle basse velocità fino ad un’allargata regione di alta energia.

- Oltre questa regione, la dipendenza di G_c da $R a_T$ cambia.

Queste caratteristiche generali, indipendentemente dal substrato su cui si è misurato PE-B, possono essere interpretate come diretta conseguenza delle proprietà viscoelastiche degli LLDPE (il materiale B in questo caso) e in particolare del rilassamento β come descritto precedentemente. L’adesione di PE-B con i substrati e la sua dipendenza tempo/temperatura, sembrano essere governate dalla stessa fase adesiva presente negli LLDPE.
5.2. Adesione sui substrati

Figura 5.4: Sovrapposizione delle mastercurves di PE-B e i diversi substrati indicati in legenda. Le linee tratteggiate sono guide per gli occhi. Vedi testo per commenti.

Il comportamento di G_c sopra i 10^6 mm/min è equivalente alla transizione ad alta velocità osservato nel caso dell’adesione tra i film e corrisponde alla transizione del rilassamento β al suo stato non rilassato. Dall’analisi delle curve è inoltre presente un primo massimo locale, corrispondente alla transizione a bassa velocità. Per SAN, Mylar® e Acciaio Inox questo primo massimo si trova in corrispondenza dello stesso valore di R_{aT} mentre per PS non è distinguibile. Per il PS si raggiunge solo un massimo intorno a 10^5 mm/min e poi i valori di G_c tornano a scendere all’aumentare di R_{aT}.

L’interpretazione di questi risultati si può fare ancora una volta facendo riferimento al modello di Gent e Petrich. Il parametro f_b nel modello man-
Capitolo 5. Discussione

tiene lo stesso significato di prima: rappresenta lo sforzo a frattura della fase adesiva; il parametro f_a, invece, rappresenta ora lo sforzo massimo a trazione che l’interfaccia di PE-B con ogni substrato può sopportare.

In termini del modello, i risultati di peel testing di PE-B su SAN, Mylar® e Acciaio Inox danno evidenza di una transizione da un meccanismo di frattura coesiva, che domina nella regione della basse velocità, ad un regime di frattura adesiva che domina le alte velocità.

Nella regione di frattura coesiva, $f_a > f_b$ e la fase adesiva viene stirata fino a frattura dando quindi livelli di G_c relativamente elevati.

5.2.1 Proprietà del residuo

Nello studio che coinvolge le proprietà dei PSA, l’evidenza della transizione nel modo di frattura da coesivo ad adesivo è di solito confermato dalla presenza di residuo dell’adesivo lasciato sulle superfici delaminate.

Dal peel testing di PE-B sui substrati si è osservata la presenza di un residuo lasciato da PE-B, denominato r-PE-b, che qualitativamente diminuisce drasticamente passando dal peeling ad alta temperatura/basse velocità e quello a bassa temperatura/alte velocità.

Poiché la forma qualitativa dell’andamento di G_c con R rimane lo stesso e l’interdiffusione non è un meccanismo coinvolto nell’adesione tra PE-B e acciaio, l’ipotesi è che r-PE-B sia costituito da una porzione di materiale che funziona nel primo stadio dell’adesione, quello di bagnabilità.

Questa ipotesi è supportata dai risultati GPC, in cui si è visto che il livello del comonomero (100 $CH_3/1000CH_2$) rende questa componente confrontabile ad un olio, ossia un fluido viscoelastico ad alto peso molecolare in grado di migliorare il contatto superficiale tra il film e il substrato.

Inoltre, negli LLDPE-VLDPE, X_c (o densità ρ) è inversamente proporzionale alla quantità di comonomero. Si può pensare di dare una stima qualitativa di quanto potrebbe essere la densità di questa fase. Ipotizzando che la relazione tra contenuto di CH_3 e ρ si conservi lineare per livelli così elevati di rami ficazione, si estrapola un valore $\rho \sim 0.84$g/cm3 che è leggermente più basso.
5.2. Adesione sui substrati

della densità della fase amorfa del PE a $T = 298\,\text{K}$ ($\rho_a = 0.8519\,\text{g/cm}^3$).
Poiché il PE amorfo dovrebbe avere un modulo elastico $E \sim 1\,\text{MPa}$, in accordo con il criterio di Dahlquist (e successive analisi [76,99–102]) è logico aspettarsi che questa componente, qui chiamata r-PE-B, possa essere caratterizzata da $E<0.1\,\text{MPa}$ a $f=1\,\text{Hz}$.
Capitolo 5. Discussione
Capitolo 6

Conclusioni

E’ stata misurata l’energia di adesione G_c di film stretch di PE fatti aderire tra di loro e su diversi substrati. L’analisi dei dati è stata effettuata, secondo l’interpretazione delle meccanica della frattura al peel testing di laminati flessibili, per tener conto della flessibilità e deformabilità dei film secondo l’approccio analitico di Kinloch et al. [2,7,8].

Si è discussa la dipendenza di G_c dalla velocità di prova R e temperatura T in riferimento alle proprietà viscoelastiche lineari dei materiali scelti per la realizzazione dello strato adesivo dei films.

G_c è una quantità propria della “fase adesiva” che è stata ipotizzata esistere per i diversi gradi di PE.

Sulla base dell’analisi DMA, dai risultati sperimentali di reologia elongazionale e di peeling discussi nel capitolo precedente e dell’applicazione del modello di Gent e Petrich [105] a questi risultati, si possono trarre diverse conclusioni.

La dipendenza velocità/temperatura delle proprietà adesive dei film stretch di LLDPE sono direttamente collegate alle proprietà viscoelastiche dei materiali base LLDPE e in particolare al rilassamento β come osservato nella funzione di modulo complesso G^* vs T, misurato da esperimenti in regime viscoelastico lineare.

G_c è risultata più alta nel materiale LLDPE che mostra un rilassamento β più
intenso e le velocità ottimali (temperatures) per l’adesione in diversi campioni di LLDPE sembrano essere legate alle frequenze di picco (temperatures) dei rispettivi rilassamenti β. Il crollo di G_c a determinate velocità (temperatures) è stato associato alla transizione del rilassamento β al suo stato non-rilassato. Gli LLDPE, in questo senso, sono caratterizzati sia da una regione di dispersione efficace (il rilassamento β) sia da proprietà meccaniche dell’adesivo tali da risultare in alti G_c.

Per LDPE, caratterizzato anch’esso da un pronunciato picco β, le sue proprietà estensionali sono risultate determinanti e, a causa di esse, il materiale mostra scarse proprietà di adesione. Questi risultati sono in accordo con quanto riportato in letteratura in merito ai PSA [105,138].

L’adesione di film in PE a se stessi (come avviene anche in applicazione) o su diversi substrati è meglio compresa se descritta dal semplice modello semi quantitativo proposto da Gent e Petrich [105].

In questo modello G_c è direttamente collegata all’energia assorbita durante l’estensione degli elementi dell’adesivo. G_c è quindi controllata dalla competizione tra lo sforzo massimo a frattura dell’adesivo f_b e il massimo sforzo che può sostenere l’interfaccia f_a.

Questo modello ed interpretazione sono in grado di spiegare sia la transizione dell’adesione da coesiva ad interfacciale nell’adesione di film PE sia le transizioni di PE-B dai substrati.

Sulla base delle considerazioni fatte, le proprietà adesive dei film in PE possono essere descritte in termini della presenza di una “fase adesiva” che è strettamente connessa a quella fase di materiale che, nella complessa struttura semicristallina degli PE, dà origine al rilassamento viscoelastico β e che si comporta come un pressure sensitive adhesive quando la superficie di un film PE è adeso ad un altro film simile o ad un diverso substrato.

Dai risultati sul residuo del film lasciato sul substrato e le transizioni
del modo di frattura da coesivo ad adesivo permettono di interpretare il complesso meccanismo di adesione e distacco, nei film PE, in termini di tre meccanismi essenziali: bagnabilità, interdiffusione molecolare e proprietà estensionali (\(\sigma - \epsilon\)) della “fase adesiva”. I risultati ottenuti per LDPE suggeriscono che proprio quest’ultime siano fondamentali per i valori di \(G_c\) misurati.

Per l’adesione di PE-B su acciaio, in cui la bagnabilità è governata dalla rugosità superficiale e l’interdiffusione è impossibile, le proprietà estensionali dell’adesivo (\(f_b\)) e la sua interazione con il substrato (\(f_a\)) risultano fondamentali nel governare le proprietà di adesione (\(f_m\)). Le proprietà del residuo lasciato sui substrati lo rendono un elemento favorevole allo sviluppo del processo di adesione. Il suo alto contenuto di ramificazioni (\(\sim 100\) CH\(_3\)/CH\(_2\)) lo rende confrontabile ad un fluido viscoso (soddisfacendo il criterio di Dahlquist).

La sua rimozione riduce l’energia di adesione \(G_c\) ma non sembra influenzare la dipendenza di \(G_c\) vs R nel range di T e R indagati. Pertanto il residuo sembra avere un ruolo particolarmente importante nel determinare la bagnabilità del substrato da parte della “fase adesiva”.

In conclusione, sono state messe in evidenza le relazioni proprietà-struttura che hanno consentito di identificare la complessa fase presente nel materiale responsabile per il comportamento “tipo-PSA” dei film stretch di PE. Sono stati individuati tre meccanismi importanti e fondamentali tipici dei PSA: bagnabilità, interdiffusione e dissipazione viscoelastica nel distacco. La loro dipendenza dalla particolare struttura è stata messa in evidenza selezionando opportuni gradi di PE (due LLDPE e un LDPE).

Per quanto riguarda la bagnabilità è stata individuata una certa porzione di materiale come residuo sui substrati in seguito alla frattura coesiva. Questo residuo si è rilevato essere un fattore chiave nella creazione di un contatto di superficie ottimale tra il film e i diversi substrati. Nella sola adesione tra film di PE simili, successivamente, vi è lo sviluppo di un’interfaccia caratterizzata da un certo livello di tenacità grazie all’interdif-
Capitolo 6. Conclusioni

fusione molecolare (meccanismo non presente nel caso di substrati inorganici o sotto T_g). Nel caso qui presentato il meccanismo di interdiffusione non è stato caratterizzato in quanto troppo veloce per la tipologia di testing.

Infine, nella fase di distacco, si sono individuati due parametri fondamentali: le proprietà estensionali della “fase adesiva” e un ottimale meccanismo di dissipazione viscoelastica.

Le proprietà estensionali, messe in luce dalla reologia elongazionale, insieme ai rilassamenti meccanici (nel caso dei PE qui discussi il rilassamento β) sono requisiti fondamentali per un buon grado di adesione. La loro interazione sinergica ha portato infatti, nel caso di PE-B, a valori di G_c di circa 3 ordini di grandezza superiori rispetto ai valori a bassa velocità/alta temperatura mentre in mancanza di uno di questi due requisiti le prestazioni di adesione sono scarse (PE-A e LDPE).
Elenco delle tabelle

3.1 Proprietà fisico-chimiche dei materiali studiati 72
3.2 Proprietà base dei substrati usati 73
3.3 Condizioni operative di estrusione e filmatura cast 75
3.4 Geometria dei provini per le trazioni sul materiale tal quale (placca stampata a compressione) e film tristrato (estrusione cast) 82

4.1 Risultati DSC dei materiali riportati con temperatura di fusione principale, T_m, ed entalpia di fusione ΔH e corrispondente percentuale di fase cristallina X_c. 97
4.2 Risultati dei picchi relativi ai rilassamenti α e β dalla DMA dei materiali riportati a $f=1$Hz. 101
4.3 Risultati dei picchi T_β dalle DMA alle diverse frequenze f per PE-B 105
4.4 Modulo di Young E e sforzo di snervamento σ_y per le trazioni sui materiali tal quali tra $T = 296$ e 223 K 108
4.5 Modulo di Young E e sforzo di snervamento σ_y per le trazioni su PE-B alle velocità di 50 e 500 mm/min 112
4.6 Pesi molecolari, polidispersità e quantitativo di comonomero per i due materiali riportati 127
Elenco delle tabelle
Elenco delle figure

1.1 Ricostruzione 3D di una catena di polietilene. A destra struttura chimica. ... 6
1.2 Cella unitaria ideale del polietilene. a = 0.742 nm, b = 0.495 nm, c = 0.255 nm. .. 9
1.3 Struttura lamellare del polietilene. .. 10
1.4 Schema di accrescimento di una sferulite. 11
1.5 Utilizzo di un film estensibile per imballaggio: il film viene esteso e avvolto attorno all’oggetto. 13
1.6 Schema di un estrusore. Per la descrizione vedi commenti nel testo. .. 14
1.7 Schema del processo di filmatura cast: il fuso esce dall’estrusore già sottoforma di film grazie alla conformazione dello stampo finale. Il film fuso arriva sul primo cilindro raffreddato che congela la struttura del film. Viene poi trasportato nelle diverse zone dell’impianto e infine avvolto su di una bobina. 14
1.8 Dipendenza dalla temperatura del modulo elastico di un polimero amorfo in funzione della temperatura (o di Logω). 22
1.9 Dipendenza dalla temperatura di Volume V, Entalpia H e modulo di immagazzinamento G’ attraverso la T_g per un polimero amorfo. A destra sono riportati il coefficiente di espansione lineare e il calore specifico (rispettivamente la derivata prima di V e H) e il modulo di perdita G”. 23
Elenco delle figure

1.10 Esperimenti dinamico-mecanici a diverse temperature. Costruzione della mastercurve traslando le singole curve sull’asse delle ascisse per un fattore di traslazione \(a_T \) rispetto una temperatura di riferimento \(T_0 \). ... 24

1.11 Tipica DMA per PE. In grafico è mostrato l’andamento del fattore dissipativo \(\tan \delta \) in funzione della temperatura (K). ... 27

1.12 Differenza tra il modulo prima e dopo la transizione \(\beta \): \(G_U = \) unrelaxed modulus, \(G_R = \) relaxed modulus, in funzione della cristallinità \(X_c(\%) \). Riadattato da [55]. ... 30

1.13 Numero di articoli (fino al 1973) in cui la temperatura indicata è stata assegnata alla \(T_g \) del PE [58]. ... 32

1.14 Concentrazione di sforzi all’apice di una fessura ellittica di semiasse maggiore \(a \) e raggio di curvatura \(\rho \) in un foglio di dimensioni infinite. ... 34

1.15 Confronto tra la variazione di \(G_c \) in funzione della velocità di avanzamento di frattura \(V \) per un elastomer e un polimero vetroso. Riadattato da [76]. ... 40

1.16 Rappresentazione schematica di un test di probe tack. ... 45

1.17 Configurazioni per peel testing standard e non. ... 47

1.18 Zona di processo all’apice della frattura in un esperimento di peeling. L’adesivo viene sottoposto ad un’estensione elongazionale ... 50

1.19 Curve sforzo-deformazione per diversi comportamenti dell’adesivo. ... 51

2.1 Sopra: schema della prova di peeling. Sotto: rappresentazione della distribuzione degli sforzi normali. ... 56

2.2 Peel01. ... 60

2.3 Schema dei momenti flettenti in un test di peeling. ... 63

2.4 Diagramma momento flettente vs raggio di curvatura per il peeling. Nella figura a sinistra sono riportati, sul braccio di peeling, le zone che corrispondono al grafico di destra. ... 65
2.5 Deformazione, momento flettente e carichi in prossimità del fronte di peel. 67

3.1 Schema impianto con i tre estrusori e la convergenza dei fusi nella testa piana di estrusione. 75

3.2 Curva di Calibrazione Peso molecolare vs volume di eluizione. 79

3.3 Geometria dei provini per le prove di trazione sui materiali tal quali (A e B) stampati a compressione. 81

3.4 Esperimento di misura della viscosità elongazionale. 85

3.5 Tipico andamento della viscosità elongazionale al variare del tempo. Le curve sono parametriche nella velocità di deformazione di Hencky (da [26]). 86

3.6 Rappresentazione schematica dell’accessorio EVF. 87

3.7 Accessorio Instron (Variable angle peel fixture) per effettuare peeling a diversi angoli costanti. Sono visibili sul retro le pullegge con diametri diversi per accoppiare opportunamente gli spostamenti verticali con quelli orizzontali. 90

3.8 Verifica calibrazione cella in funzione del peso misurato. Il peso in ascissa è stato misurato da una bilancia con precisione 1mg. 92

4.1 Curve DSC per i tre materiali riportati in legenda. 96

4.2 Viscosità estensionale per A, B e LDPE. Vedi testo per commenti. 98

4.3 Rampa in temperatura da 125K a 375K ($f=1$ Hz) ad 1 K/min per i materiali indicati in legenda. 100

4.4 Analisi dei picchi di rilassamento per A, B e LDPE mediante fit con due gaussiane. I risultati sono riportati in tabella 4.2. Per commenti vedi testo. 102

4.5 Modulo di immagazzinamento (G') in funzione della frazione cristallina X_c alle diverse temperature indicate in legenda. Vedi testo per commenti. 103
4.6 Andamento del rapporto tra modulo Relaxed (G_R) vs Unrelaxed (G_U) (simboli aperti) per A,B, LDPE e HDPE in funzione della frazione cristallina. A destra temperatura T_β (simboli chiusi blu) .. 104

4.7 Sopra: rampa in temperatura a diverse frequenze per PE-B. Sotto: Dipendenza di Logg dall’inverso della temperatura assoluta per il rilassamento β. .. 106

4.8 Curve σ-ϵ per A (linea continua) e B (linea trattegiata) su provini a osso di cane (ASTM type IVb) alle diverse temperature indicate in legenda. .. 107

4.9 Valori di modulo elastico, E (simboli aperti) e sforzo a snervamento, σ_y (simboli pieni) per i due materiali, A (rosso) e B (nero) in funzione della temperatura T. .. 109

4.10 Foto al microscopio ottico con luce polarizzata della sezione trasversa del film di PE-A. Il marker è da 50μm. ... 110

4.11 Curve di trazione (σ – ϵ) sui peel arms alle temperature indicate per i film PE-A (simboli rossi) e PE-B (simboli neri). ... 111

4.12 Sforzo a snervamento, σ_y (linea continua) e Modulo di Young, E, (linea trattegiata e colorata) in funzione di T e di V per PE-B. 112

4.13 Curve Forza vs Spostamento per PE-B a $T = 296K$ in configurazione T-peel per le diverse velocità di spostamento trasversa riportate in legenda. .. 113

4.14 Evidenza del comportamento stick-slip a $T = 223K$ su PE-B per le due velocità $v = 100$ mm/min (linea continua) e $v = 800$ mm/min (linea trattegiata). .. 114

4.15 Energia totale G e energia di frattura adesiva G_c in funzione della velocità di propagazione del fronte di peeling R alle temperature T indicate. .. 115

4.16 Fattori di shift empirici applicati per la sovrapposizione tempo-temperatura delle curve di peeling. $T_R = 296K$. 117
Elenco delle figure

4.17 Mastercurves dell’energia di adesione G_c per PE-A, PE-B e LDPE. $T_R = 296K$. Le linee tratteggiate sono guida per gli occhi. Per commenti vedi testo. 118

4.18 Mastercurves di PE-B e LDPE a confronto rispettivamente con PE-B@45°C/1h e LDPE@45°C/1h. Le linee tratteggiate sono guida per gli occhi. Per commenti vedi testo. 120

4.19 Mastercurves di PE-B e i diversi substrati indicati in legenda. Le linee tratteggiate sono guida per gli occhi. Per commenti vedi testo. .. 122

4.20 Sovrapposizione delle mastercurves di PE-B e i diversi substrati indicati in legenda. Le linee tratteggiate sono guide per gli occhi. Vedi testo per commenti. 123

4.21 Sopra: effetto della rimozione del residuo di film dal substrato in funzione del numero di rimozioni alle diverse velocità R. In basso: peeling ripetuto tra PE-B e Acciaio inossidabile a $T = 296K$ con rimozione del substrato in funzione della velocità di peeling. Per commenti vedi testo. 125

4.22 Analisi GPC del residuo estratto dal substrato in acciaio dopo la prima rimozione e confronto con il materiale tal quale (B). . 127

5.1 Sopra: rampa in temperatura da 125K a 375K ($f = 1$ Hz) ad 1 K/min per i materiali indicati in legenda. Sotto: mastercurves di G_c vs R_aT per i materiali indicati. Vedi commenti nel testo. 131

5.2 Mastercurves di PE-B e LDPE a confronto rispettivamente con PE-B@45°C/1h e LDPE@45°C/1h. Le linee tratteggiate sono guida per gli occhi. Per commenti vedi testo. 136

5.3 Curve sforzo-deformazione e innalzamento sforzo critico dell’interfaccia f_a. ... 137

5.4 Sovrapposizione delle mastercurves di PE-B e i diversi substrati indicati in legenda. Le linee tratteggiate sono guide per gli occhi. Vedi testo per commenti. 139
Elenco delle figure
Bibliografia

Bibliografia

160

[81] ChungYuen Hui, DaBen Xu, and Edward J. Kramer, “A fracture model for a weak interface in a viscoelastic material (small scale yielding analysis)” J. Appl. Phys. 72, 3294 (1992);

Bibliografía

[121] Timoshenko, Theory of Elasticity

Bibliografia

Ringraziamenti

Sento il dovere di fare dei sinceri ringraziamenti alla Dr.ssa Lucia Del Bianco del Dipartimento di Fisica dell’Università di Bologna. L’avventura del dottorato è iniziata con lei e, anche se successivamente ci siamo ritrovati a lavorare su argomenti molto differenti, ha sempre saputo darmi dei validi suggerimenti. Inoltre devo ringraziare sia lei che il prof. Ortolani per avermi suggerito di continuare il dottorato in azienda.

Ringrazio il mio tutor aziendale, il Dr. Castellani del Basic Research Centre di eni Versalis S.p.A. dove attualmente lavoro. Per essere paziente anche quando non dovrebbe, per avermi insegnato così tanto e per avermi dato la fiducia e il supporto necessari a sviluppare una tematica di studio così interessante e vasta.

Voglio ringraziare tutti i ricercatori e tecnici dei laboratori del centro ricerche, in particolare quelli che hanno condiviso con me tanti momenti ed esperienze. Senza di loro non sarei riuscito a terminare questo lavoro.

Il Dr. Ferri, il Dr. Callaioli e il Dr. Lomellini per la loro capacità di insegnare e guidare. La consapevolezza di avere persone come voi che condividono l’interesse per la ricerca scientifica è confortante.

Ringrazio gli amici! Tanti conosciuti durante gli studi, alcuni da prima, altri più recentemente... con molti diventa sempre più difficile vedersi, ma non per questo i sentimenti cambiano! Siete fondamentali!

Ringrazio Viola, per essere così com’è, per capirmi e sapermi aiutare..e soprattutto per sopportarmi, io non ce la farei!
Ringraziamenti

Infine, ma non per importanza, ringrazio la mia famiglia... Tutti i momenti passati con voi sono preziosi.

A tutti voi vanno i miei ringraziamenti.