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Summary 
 

The present work reports the outcome of the GIMEMA CML WP study CML0811, 

an independent trial investigating nilotinib as front-line treatment in chronic phase 

chronic myeloid leukemia (CML). Moreover, the results of the proteomic analysis 

of the CD34+ cells collected at CML diagnosis, compared to the counterpart from 

healthy donors, are reported. 

Nilotinib has been approved as front-line of CML based on the results of the 

Company-sponsored ENESTnd trial, where nilotinib showed a superior efficacy 

compared to imatinib. However, cardiovascular thrombotic events have been 

recently uncovered, rising concerns on the long-term safety profile of nilotinib. 

The treatment-free remission is considered one of the most important goals in 

CML, and a sustained deep molecular response (DMR, MR 4.0 or better) is a 

pre-requisite for treatment discontinuation. To date, very few data on the stability 

of the DMR with nilotinib are currently available. Even when treatment is stopped 

during a stable DMR, about half of the patients eventually relapse due to the 

persistence of leukemic stem cells resistant to therapy. 

Based on these considerations, it is extremely relevant to:  a) assess in an 

independent study the efficacy, including the stability of the molecular response, 

and the safety, with particular attention to the cardiovascular events, of nilotinib 

front-line; b) characterize the leukemic stem cells, understanding their differences 

with the normal counterpart. 

One hundred thirty CML patients in early chronic phase have been enrolled in 32 

Italian hematologic centers, with a median age at diagnosis of 50 years (range 

18-85). After a median follow-up of 24 months all patients are still alive, and only 

2 patients progressed to accelerated/blast phase (AP/BP). At the last contact, 

107/130 (82%) patients were still on treatment with nilotinib. The main reasons 

for treatment discontinuation were toxicity in 11 patients (8%), and failures in 5 

(4%) patients. Six patients (5%) had a cardiovascular event, including myocardial 

infarction and arterial thrombosis. Both LDL and HDL cholesterol fractions 

significantly increased during treatment. The optimal responders at 3, 6, and 12 



months according to ELN 2013 recommendations were 82.3%, 80%, and 53%, 

respectively; failures at the same time points were 10.7%, 3.8%, and 2.3%, 

respectively. The estimated 24 months cumulative rates of MR 4.0 and MR 4.5 

were 47% and 22%, respectively. Overall, 27/57 (47%, or 21% of the total) 

patients had a sustained MR 4.0; 6/30 (20%, or 5% of the total) patients had a 

sustained MR 4.5. The estimated 24-month overall-survival, progression-free 

survival, failure-free survival, and event-free survival were 100%, 98%, 94%, and 

73%, respectively. 

The proteomic analysis showed that the CD34+ cells from CML patients at 

diagnosis, compared to a normal counterpart, have: a lower phosphorylation of 

STAT2, STAT5, and of tyrosine kinases of the Src family (Lck, Fyn, Lyn, and 

Yes); a lower expression of the catalase, and a higher expression of FADD, 

HSP60 and HSP70. Taken together, these data show that CML CD34+ cells 

have a proteomic profile that promotes the quiescence through the inhibition of 

proliferation, and that favors cell survival despite cytotoxic stimuli. These 

characteristics may explain, at least partially, why these cells are resistant to the 

treatment with TKIs, which is highly effective in targeting more differentiated and 

proliferating cells.  

In conclusion, our study confirmed that nilotinib is highly effective in the 

prevention of the progression to AP/BP, a condition that today is still associated 

with high mortality rates. Despite the relatively short follow-up, cardiovascular 

issues, particularly atherosclerotic adverse events (AE), have emerged, and the 

frequency of these AEs may counterbalance the anti-leukemic efficacy. The deep 

molecular response rates in our study compare favorably to those obtained with 

imatinib, in historic cohorts, and confirm the findings of the Company-sponsored 

ENESTnd study164. Considering the increasing rates of deep MR over time, a 

significant proportion of patients will be candidate to treatment discontinuation in 

the next years, with higher probability of remaining disease-free in the long term. 

However, the presence of the additional and complex changes we found at the 

proteomic level in CML CD34+ cells should be taken into account for the 

investigation on novel targeted therapies, aimed at the eradication of the disease. 



1. Background and introduction  
 

1.1. Chronic Myeloid Leukemia: natural history and treatment results.  
 
Chronic Myeloid Leukemia (CML) is a hematopoietic stem cell disorder 

associated with a specific chromosomal translocation known as the Philadelphia 

(Ph) chromosome1. The molecular consequence of the translocation is the fusion 

of the Abl proto-oncogene to the Bcr gene, resulting in the production of a 

constitutively activated form of the ABL protein-tyrosine kinase2,3, whose activity 

gives growth advantage to leukemic cells, increases proliferation and cytokine-

independent growth, inhibits apoptosis, and alters adhesion pathways4-6. 

Expression of the BCR-ABL protein is able to induce leukemia in mice7,8. 

Clinically, CML progresses through three distinct phases of increasing 

refractoriness to therapy: chronic phase (CP, median duration without TKI 

therapy 3 to 4 years), accelerated phase (AP, median survival 8 to 18 months), 

and blast phase (BP, median survival 3 to 6 months)1. Most patients present in 

the chronic phase, which is characterized by splenomegaly and leukocytosis 

with, generally, few symptoms.  

CML can be effectively treated with imatinib (Glivec, Novartis Pharma): after 6-

year follow-up, the International Randomized Study of Interferon vs STI571 

(IRIS) showed a cumulative complete cytogenetic response (CCgR) rate of 82%9; 

however, after 8 years, only 56% of the patients were still on imatinib treatment10. 

Moreover, not all patients achieve an optimal response11 and about 10% of 

patients of patients loose the previously obtained response, particularly within the 

first three years of treatment9. For these patients second- and third-generations 

TKIs have been developed: nilotinib and dasatinib have been approved for first 

and second line treatment; bosutinib, and ponatinib for second line treatment. 

1.2. Response Monitoring  
 
Alongside the development of targeted therapies, that allows more patients to 

achieve optimal responses, the diagnostic procedures have also been refined. 

The objectives of treatment of CML are the normalization of hematopoiesis 



(complete hematologic response - CHR), the elimination of the Ph+ cells from the 

bone marrow (complete cytogenetic response - CCgR), the reduction of the 

BCR-ABL transcript levels from samples of peripheral blood by a factor of at least 

three logs, compared to the standardized baseline (major molecular response - 

MMR, corresponding to a BCR-ABL/ABL ratio ≤ 0.1% International Scale), and 

four logs or more (deep molecular response – DMR: MR 4.0 or more)12-14. 

Assessing the molecular response by quantitatively measuring the BCR-ABL 

transcripts, using real-time reverse transcriptase polymerase chain reaction (RQ-

PCR), is an established parameter of response that can be easily assessed from 

peripheral blood. Patients achieving a CCgR and a MMR have a better prognosis 

than patients achieving a CCgR alone15. Standardized molecular monitoring has 

become widely available in Europe through the efforts of EUTOS cooperation16 

and, in Italy, through the cooperative efforts of a group of laboratories nationwide 

which agreed to harmonize their activity and to share results of the molecular 

monitoring, managed within the frame of the Labnet network. These efforts led to 

the generation of comparable data on the residual disease. 

The response to TKI treatment is the most important prognostic factor. For this 

reason, the European Leukemia Net, since 200617, has provided 

recommendations that define the response to first-line treatment with any TKI. 

The updated definitions (ELN 2013) are reported in Table 118. 

 
 
 
 
 
 
 
 
 
 
 



Table. 1. 2013 ELN definition of response to front-line treatment with TKIs 
 

 
 

 

1.3. Nilotinib  
 
1.3.1. Introduction  
Nilotinib (Tasigna, AMN107, Novartis Pharma) is an aminopyrimidine derivative, 

available as an oral formulation: it is a rationally designed second-generation 

tyrosine kinase inhibitor with improved target specificity over imatinib. The ATP-

competitive inhibition of the BCR-ABL protein tyrosine kinase activity prevents 

the activation of BCR-ABL dependent mitogenic and anti-apoptotic pathways 

(e.g., PI3 kinase and STAT5). Following the administration to animals, nilotinib is 

moderately absorbed (approximately 30% bioavailability) and well tolerated. The 

effects of a systemic exposure (Cmax, AUC) over the range of 50 to 1200 mg 

once daily have been assessed in patients with imatinib-resistant CML in chronic, 

accelerated or blast phase, relapsed or refractory Ph+ acute lymphoblastic 

that any one of the 3 risk scores is superior or more convenient, and there is no
clear evidence that intermediate-risk patients behave differently from low-risk
ones. Therefore, regardless of which system is used, we recommend dividing
patients into low- (including intermediate) and high-risk populations. Chro-
mosome 9 deletions and variant translocations have no value for prognosis,81-83

whereas CCA/Ph1 have been reported to have an adverse prognostic value,
particularly in the case of the so-called “major route” abnormalities, includ-
ing trisomy 8, trisomy Ph (1der(22)t(9;22)(q34;q11)), isochromosome 17
(i(17)(q10)), trisomy 19, and ider(22)(q10)t(9;22)(q34;q11).83,84 High-risk
and major route CCA/Ph1 can help identify patients eligible for inves-
tigational approaches, but in daily practice they do not mandate different
initial treatments. Major route CCA/Ph1 developing during treatment were
confirmed to be a signal of acceleration.4,5,42,78,79,85

Many other baseline factors, including the gene expression profiles, spe-
cific polymorphisms of genes coding for TKI transmembrane transporters or
TKI-mediated apoptosis, and the detailed molecular dissection of the genome,
have been reported to have prognostic implications, but these data are not yet
sufficiently mature to use for planning treatment.4,5,42,86-92

Response to treatment

The response to TKI is the most important prognostic factor. In the
previous versions of the ELN recommendations the response to first-
line treatment was limited to imatinib. Now that there are more
TKIs, we do not recommend which TKI should be used but which
response should be achieved, irrespective of the TKI that is used.
The responses are defined as “optimal” or “failure” (Table 5).
Optimal response is associated with the best long-term outcome—that
is, with a duration of life comparable with that of the general
population, indicating that there is no indication for a change in that
treatment. Failure means that the patient should receive a different
treatment to limit the risk of progression and death. Between optimal
and failure, there is an intermediate zone, which was previously
referred to as “suboptimal” and is now designated as “warning.”
Warning implies that the characteristics of the disease and the
response to treatment require more frequent monitoring to permit
timely changes in therapy in case of treatment failure.

In the definition of response, a controversial point is the value of
early molecular response, particularly after 3 months of treatment. A
BCR-ABL1 transcripts level .10% was reported to be prognostically
significant in several studies.93-103 However, the conclusion of the
panel is that a single measurement of BCR-ABL transcripts level is not
sufficient to define as failure necessitating a change of treatment,
whereas 2 tests (at 3 and 6months) and supplementary tests in between
provide more support for the decision to change the treatment. Failures
must be distinguished as either primary (failure to achieve a given
response at a given time) or secondary (loss of response) (Table 5).

The definitions of the response to second-line treatment, based on
the same concepts, are shown in Table 6. They are limited to dasatinib
and nilotinib,5,42-46,69,77,104-109 but until more data become available,
they may provisionally serve also for the other TKIs. These defi-
nitions have profound therapeutic implications because they mark the
difficult and critical boundaries between TKIs and alloSCT.

Treatment recommendations

It is recommended that in practice outside of clinical trials, the first-
line treatment of CP CML can be any of the 3 TKIs that have been
approved for this indication and are available nearly worldwide,

namely imatinib (400mg once daily), nilotinib (300mg twice daily),
and dasatinib (100 mg once daily). These 3 TKIs can also be used in
second or subsequent lines, at the standard or at a higher dose (400
mg twice daily for imatinib, 400 mg twice daily for nilotinib, and
70 mg twice daily or 140 mg once daily for dasatinib). Bosutinib
(500 mg once daily) has been approved by the FDA and EMA for
patients resistant or intolerant to prior therapy. Ponatinib (45 mg
once daily) has also been approved by the FDA for patients
resistant or intolerant to prior TKI therapy. Also approved, for
patients in whom prior TKI therapy fails, are radotinib, which is
available in Korea,110 and omacetaxine, which is a non-TKI drug
approved by the US FDA.111,112

Busulfan is not recommended. Hydroxyurea can be used for
a short time before initiating a TKI, until the diagnosis of CML has
been confirmed. rIFNɑ alone is recommended only in the rare
circumstances in which a TKI cannot be used. The combinations of
TKIs and rIFNɑ are potentially useful but still investigational.113

Cytotoxic chemotherapy is never recommended in CP but may be
useful to control BP and to prepare BP patients for alloSCT.

Treatment recommendations for CP are proposed in Table 7.
These recommendations are based on a critical evaluation of efficacy,
but it is acknowledged and recommended that the choice of the TKI
must take into account tolerability and safety, as well as patient
characteristics, particularly age and comorbidities, which may be
predictive of particular toxicities with the different TKIs. In all cases
of “warning,” research and investigational studies are warranted and
should be encouraged to improve treatment results.

Table 5. Definition of the response to TKIs (any TKI) as first-line
treatment

Optimal Warning Failure

Baseline NA High risk

Or

CCA/Ph1, major

route

NA

3 mo BCR-ABL1 #10%

and/or

Ph1 #35%

BCR-ABL1 .10%

and/or

Ph1 36-95%

Non-CHR

and/or

Ph1 .95%

6 mo BCR-ABL1 ,1%

and/or

Ph1 0

BCR-ABL1 1-10%

and/or

Ph1 1-35%

BCR-ABL1 .10%

and/or

Ph1 .35%

12 mo BCR-ABL1 #0.1% BCR-ABL1 .0.1-1% BCR-ABL1 .1%

and/or

Ph1 .0

Then, and

at any time

BCR-ABL1 #0.1% CCA/Ph– (–7, or 7q–) Loss of CHR

Loss of CCyR

Confirmed loss of

MMR*

Mutations

CCA/Ph1

The definitions are the same for patients in CP, AP, and BP and apply also to
second-line treatment, when first-line treatment was changed for intolerance. The

response can be assessed with either a molecular or a cytogenetic test, but both are
recommended whenever possible. Cutoff values have been used to define the
boundaries between optimal and warning, and between warning and failures.

Because cutoff values are subjected to fluctuations, in case of cytogenetic or molecular
data close to the indicated values, a repetition of the tests is recommended. After 12
months, if an MMR is achieved, the response can be assessed by real quantitative

polymerase chain reaction (RQ-PCR) every 3 to 6 months, and cytogenetics is
required only in case of failure or if standardized molecular testing is not available.

Note that MMR (MR3.0 or better) is optimal for survival but that a deeper response
is likely to be required for a successful discontinuation of treatment.

NA, not applicable; MMR, BCR-ABL1 #0.1% 5 MR3.0 or better; CCA/Ph1,

clonal chromosome abnormalities in Ph1 cells; CCA/Ph–, clonal chromosome
abnormalities in Ph– cells.

*In 2 consecutive tests, of which one with a BCR-ABL1 transcripts level $1%.
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leukemia (ALL), or other hematologic malignancies19. With once daily (QD) 

dosing, the steady-state, the Cmax, and the AUC increased with increasing dose 

from 50 mg to 400 mg/day in a generally dose-proportional manner, but 

appeared to plateau at dose levels of 400 mg/day or higher, remaining relatively 

constant over the dose range from 400 mg to 1200 mg. QD doses of nilotinib 400 

mg or 800 mg showed no appreciable differences in serum exposure to drug. 

Using a twice daily schedule (BID), the dose-limiting exposure has been partially 

overcame, with a daily steady-state serum nilotinib exposure at a dose of 400 mg 

BID being approximately 35% greater than with a dose of 800 mg once daily. 

However, there was no further relevant increase in nilotinib exposure observed 

with the administration of the 600 mg BID dose (1200 mg/day). With multiple oral 

doses of nilotinib, steady-state conditions were achieved by day 8 after initiating 

nilotinib treatment. The median time to reach Cmax of nilotinib (tmax) was 3 hours. 

Drug half-life averaged 17 hours for once daily dosing. CYP3A4 appears to be 

the major enzyme responsible for the metabolism of nilotinib under in vivo 

conditions whereas the contribution of CYP2C8 is expected to be minor (~8%). 

Nilotinib also seems to inhibit CYP2C8, CYP2C9, CYP2D6, CYP3A4/5, and 

UGTIA1 activity in clinical settings. 

 
1.3.2. Clinical studies  
The efficacy and safety of nilotinib in the treatment of patients who are resistant 

to or intolerant of imatinib led to its further evaluation in the treatment of newly 

diagnosed CML20-22.  

Data from two Investigator-initiated (GIMEMA and MDACC) trials demonstrate 

high rates of cytogenetic and molecular responses in patients with newly 

diagnosed CML23,24: the 12-months complete molecular response rates were 7% 

in the GIMEMA trial and 10 % in the MDACC trial. A phase 3 randomized study 

comparing the efficacy and safety of 300 or 400 mg bid nilotinib with imatinib 400 

mg daily in patients with newly diagnosed Ph+ CP-CML (ENESTnd) is actually 

ongoing25. This study showed a superiority of nilotinib 300 mg or 400 mg BID 

over imatinib: CCgR rates at 12 months were 80%, 78% and 65%, respectively; 



MMR rates at 12 months were 44%, 43% and 22%, respectively. The 

progression to advanced disease was lower for nilotinib 300 mg bid (2 pts) and 

nilotinib 400 mg bid (1 pt) compared with imatinib 400 mg (11 pts).  

The best cumulative MMR rates at 24 months26 were 62%, 59% and 37%, for 

nilotinib 300 mg BID, nilotinib 400 mg BID, and imatinib 400 mg OAD 

respectively.  Recently, the ENESTnd trial has been updated27: for nilotinib 300 

mg BID, nilotinib 400 mg BID, and imatinib 400 mg OAD, MMR rates by 60 

months were 77%, 77% and 60% (p < 0.001), respectively; and MR 4.5 rates by 

60 months were 54%, 53% and 31% (p < 0.001), respectively. By the 60-month 

data cut-off date, 17 patients progressed to AP/BC on core treatment, 12 in the 

imatinib arm, 2 in the nilotinib 300 mg BID arm and 3 in the nilotinib 400 mg BID 

arm. No additional patients with progression to AP/BC were observed on core 

treatment in any treatment arm since the 24-month analysis.  

Nilotinib 300 mg BID has been shown to be equally effective and better tolerated 

than 400 mg BID. Novartis Pharma has submitted regulatory applications 

worldwide, obtaining the registration for the first-line indication in USA, EU and 

Japan. 

 

1.3.3. Toxicity profile 
1.3.3.1. Adverse events 
The most frequently reported drug-related adverse events (AEs) in CML-AP and 

CML-CP patients who are resistant to or intolerant of imatinib are shown in Table 

1. At 24 months follow-up, almost all CML patients experienced AEs during the 

course of the study. In CML-CP patients, the most frequent SAEs were 

thrombocytopenia (3.4%), neutropenia (2.2%), angina pectoris (2.8%) and 

pyrexia (2.5%). In CML-AP patients, the most frequent SAEs were 

thrombocytopenia (8.0%), neutropenia (5.8%), pneumonia (5.1%), and pyrexia 

(4.4%). The rate of discontinuations due to AEs, regardless of relationship to 

study medication, was similar for both stages of the disease (19.0% of CML-CP 

patients and 17.5% of CML-AP patients). For CML-CP, the incidence of AEs 

leading to discontinuation was low; the most frequent AEs associated with 



discontinuation were neutropenia and thrombocytopenia, which occurred in 10 

(3.1%) patients each. For CML-AP, the incidence of AEs leading to 

discontinuation was low; the most frequent AE associated with discontinuation 

was thrombocytopenia, which occurred in 10 (7.3%) patients. 

 
Table 2.  Most frequent drug-related adverse events (more than 5%) at 
24-months in CML-AP and -CP patients (Study 2101 E1 and E2) 
 
 All grades CML-AP,  

N=137, n (%) 
All grades CML-CP,  

N=321, n (%) 
Any event 120 (87.6) 304 (94.7) 
Thrombocytopenia 
Neutropenia 
Rash  
Anemia  
Pruritus  
Lipase increased  
Fatigue  
Constipation  
Diarrhea  

52 (38.0) 
31 (22.6) 
29 (21.2) 
24 (17.5) 
24 (17.5) 
18 (13.1) 
14 (10.2) 
13 (9.5) 
13 (9.5) 

90 (28.0) 
48 (15.0) 
99 (30.8) 
42 (13.1) 
84 (26.2) 
41 (12.8) 
65 (20.2) 
43 (13.4) 
39 (12.1) 

Leukopenia  
Muscle spasms  
Nausea  
Alopecia  
Myalgia  
Blood bilirubin increased  
Headache  
Hyperbilirubinemia  

13 (9.5) 
13 (9.5) 
13 (9.5) 
12 (8.8) 
12 (8.8) 
11 (8.0) 
11 (8.0) 
11 (8.0) 

13 (4.0) 
24 (7.5) 

79 (24.6) 
27 (8.4) 

33 (10.3) 
22 (6.9) 

57 (17.8) 
23 (7.2) 

Abdominal pain  
Pyrexia  

10 (7.3) 
9 (6.6) 

17 (5.3) 
13 (4.0) 

Anorexia   
Pain in extremity  
Arthralgia  
Hypophosphataemia  
Peripheral edema  
Vomiting  

8 (5.8) 
8 (5.8) 
7 (5.1) 
7 (5.1) 
7 (5.1) 
5 (3.6) 

23 (7.2) 
17 (5.3) 
24 (7.5) 
8 (2.5) 

20 (6.2) 
41 (12.8) 

Alanine aminotransferase increase  
Bone pain 
Erythema  
Asthenia  
Aspartate aminotransferase 
increase 
Dry skin   
Dyspnea  

5 (3.6) 
5 (3.6) 
2 (1.5) 
5 (3.6) 
4 (2.9) 
5 (3.6) 
0 (0.0) 
3 (2.2) 

34 (10.6) 
24 (7.5) 
23 (7.2) 
21 (6.5) 
20 (6.2) 
20 (6.2) 
17 (5.3) 
17 (5.3) 

AE = adverse event, AP = accelerated phase, CML = chronic myeloid leukemia, CP = chronic phase, 
1The source used for 24-month 2101E1 data (cut-off 29-Aug-2008) and 24-month 2101E2 data (cut-off 20-
Apr- 
2008 
Source: [CAMN107A2101E1] and [CAMN107A2101E2 CSR]. 



 

Furthermore, a subgroup analysis evaluated the occurrence of cross-intolerance 

to nilotinib in imatinib-intolerant patients with CML- CP or AP (n=122; CP:95 

AP:27). Only 4/75 (5%) patients with non-hematologic imatinib-intolerance 

experienced similar grade 3/4 AE on nilotinib. Only 7/40 (18%) patients with 

hematologic toxicity on imatinib discontinued nilotinib for the same reason (all 

due to grade 3/4 thrombocytopenia). 

The frequency and the degree of non-hematologic AEs in the 5-years update of 

the first line treatment trial ENESTnd are reported in Table 2. 

 

Table 3. Most frequently reported study drug-related non-hematologic 
adverse events (at least 5% in any treatment group) by preferred term 
(Safety set) - ENESTnd 
 

 All grades CTC grade 3 or 4 

Preferred term 

Imatinib 
400 mg 

QD 
N=280 
n (%) 

Nilotinib 
300 mg 

BID 
N=279 
n (%) 

Nilotinib 
400 mg 

BID 
N=277 
n (%) 

Imatinib 
400 mg 

QD 
N=280 
n (%) 

Nilotinib 
300 mg 

BID 
N=279 
n (%) 

Nilotinib 
400 mg 

BID 
N=277 
n (%) 

ANY AE 264 (94.3) 257 (92.1) 269 (97.1) 125 (44.6) 120 (43.0) 158 (57.0) 

Rash 39 (13.9) 93 (33.3) 109 (39.4) 5 (1.8) 2 (0.7) 7 (2.5) 

ALT Increased 17 (6.1) 67 (24.0) 81 (29.2) 6 (2.1) 13 (4.7) 16 (5.8) 

Headache 29 (10.4) 46 (16.5) 62 (22.4) 1 (0.4) 5 (1.8) 3 (1.1) 

Nausea 97 (34.6) 39 (14.0) 58 (20.9) 1 (0.4) 2 (0.7) 3 (1.1) 

Hyper-bilirubinaemia 4 (1.4) 46 (16.5) 47 (17.0) 0 8 (2.9) 10 (3.6) 

Pruritus 15 (5.4) 49 (17.6) 43 (15.5) 0 1 (0.4) 1 (0.4) 

AST increased 14 (5.0) 34 (12.2) 42 (15.2) 4 (1.4) 5 (1.8) 5 (1.8) 

Hypophosphataemia 38 (13.6) 35 (12.5) 41 (14.8) 13 (4.6) 6 (2.2) 16 (5.8) 

Alopecia 16 (5.7) 29 (10.4) 38 (13.7) 0 0 0 

Dry skin 13 (4.6) 27 (9.7) 32 (11.6) 0 0 0 

Myalgia 35 (12.5) 29 (10.4) 32 (11.6) 1 (0.4) 2 (0.7) 2 (0.7) 

Fatigue 37 (13.2) 34 (12.2) 30 (10.8) 4 (1.4) 0 2 (0.7) 

Arthralgia 23 (8.2) 23 (8.2) 28 (10.1) 1 (0.4) 1 (0.4) 0 

Lipase increased 10 (3.6) 30 (10.8) 28 (10.1) 7 (2.5) 23 (8.2) 20 (7.2) 

Vomiting 52 (18.6) 16 (5.7) 25 (9.0) 0 0 3 (1.1) 



 
1.3.3.2. Lipid and glucose elevations 
 
Lipid and glucose elevation represent important adverse events that have been 

associated with nilotinib treatment, and with potential important implications on 

the overall cardiovascular risk. In the ENESTnd Study25, considering all the 

observed adverse events (not only drug-related events) the proportion of patients 

with high cholesterol (almost all grade 1 or 2) was greater in the nilotinib treated 

patients compared to the imatinib ones (27.6% and 26.7% in the nilotinib 300 mg 

BID and 400 mg BID groups, versus 3.9% in the imatinib group). Also the 

proportion of patients with post-baseline LDL values >100 mg/dL was higher in 

the nilotinib 400 mg BID group (43.3%) and the nilotinib 300 mg BID group 

(38.4%) as compared to imatinib group (18.6%). Triglyceride abnormalities were 

slightly more frequent in the nilotinib treated patients compared to the imatinib 

ones (11.8% and 10.5% in the nilotinib 300 mg and 400 mg groups, vs. 7.9% in 

the imatinib group). 

Abdominal pain 22 (7.9) 28 (10.0) 24 (8.7) 2 (0.7) 3 (1.1) 0 

Muscle spasms 83 (29.6) 25 (9.0) 24 (8.7) 3 (1.1) 0 2 (0.7) 

Diarrhoea 86 (30.7) 24 (8.6) 20 (7.2) 9 (3.2) 1 (0.4) 0 

Amylase increased 9 (3.2) 18 (6.5) 19 (6.9) 3 (1.1) 2 (0.7) 2 (0.7) 

Constipation 7 (2.5) 27 (9.7) 19 (6.9) 0 0 1 (0.4) 

Oedema peripheral 49 (17.5) 15 (5.4) 19 (6.9) 0 1 (0.4) 0 

Erythema 9 (3.2) 7 (2.5) 17 (6.1) 0 0 0 

Abdominal pain 11 (3.9) 17 (6.1) 16 (5.8) 0 0 2 (0.7) 

Hypercholesterolaemia 0 9 (3.2) 16 (5.8) 0 1 (0.4) 0 

Asthenia 24 (8.6) 26 (9.3) 15 (5.4) 0 1 (0.4) 2 (0.7) 

Dyspepsia 16 (5.7) 13 (4.7) 15 (5.4) 0 0 1 (0.4) 

Hyperglycaemia 2 (0.7) 12 (4.3) 15 (5.4) 0 2 (0.7) 4 (1.4) 

Blood ALP increased 7 (2.5) 6 (2.2) 14 (5.1) 1 (0.4) 0 0 

Bone pain 10 (3.6) 11 (3.9) 14 (5.1) 1 (0.4) 0 1 (0.4) 

Pain in extremity 23 (8.2) 13 (4.7) 9 (3.2) 1 (0.4) 1 (0.4) 2 (0.7) 

Face oedema 37 (13.2) 1 (0.4) 6 (2.2) 1 (0.4) 0 0 

Eyelid oedema 50 (17.9) 2 (0.7) 5 (1.8) 1 (0.4) 0 1 (0.4) 

Weight increased 18 (6.4) 8 (2.9) 4 (1.4) 2 (0.7) 3 (1.1) 0 

Periorbital oedema 40 (14.3) 1 (0.4) 3 (1.1) 0 0 0 



Elevated glucose values were more frequent in the nilotinib treated patients than 

in the imatinib ones. The proportion of patients with grade 3/4 increased serum 

glucose was higher in the nilotinib groups (7.2%; 20 patients in the nilotinib 300 

mg BID and 6.9%; 19 patients in the nilotinib 400 mg BID), while grade 3/4 

glucose increase was reported only in one patient (0.4%) in the imatinib group. 

The proportion of patients with glycosylated hemoglobin >5.7% at any time in the 

study was higher in the nilotinib 400 mg BID arm (24.2%) and nilotinib 300 mg 

BID arm (21.9%) as compared to the imatinib arm (18.2%). Also the proportion of 

patients with glycosylated hemoglobin ≥6.5% was higher in the nilotinib 300 mg 

BID group (11.8%) and the nilotinib 400 mg BID group (11.6%) as compared to 

imatinib group (3.6%). 

 
1.3.3.3. Ischemic vascular or ischemic cardiovascular events 
 

Peripheral ischemic vascular adverse events have been reported with unusual 

incidence in nilotinib treated patients28,29; the underlying mechanisms are object 

of active investigations.  

In the ENESTnd Study, newly diagnosed or worsened Ischemic Vascular and 

Ischemic Cardiovascular Events such as Ischemic Heart Disease (IHD), Ischemic 

Cerebrovascular Event (ICVE) or Peripheral Artery Occlusive Disease (PAOD) 

have occurred in a relatively small number of CML-CP patients treated with 

nilotinib. However, such events have been reported with higher frequency in the 

nilotinib treatment arms compared with the imatinib treatment arm.  

Up to the data cut-off for the 60 Month analysis (30-Sep-2013)27, the number of 

patients reported with events is as follows: 

• Nilotinib 300mg BID: IHD, 11 (3.9%); ICVE, 4 (1.4%); PAOD, 7 (2.5%) 

• Nilotinib 400mg BID: IHD, 24 (8.7%); ICVE, 9 (3.2%); PAOD, 7 (2.5%) 

• Imatinib 400mg QD: IHD, 5 (1.8%); ICVE, 1 (0.4%); PAOD, 0 (0.0%) 

The majority of reported ischemic vascular and ischemic cardiovascular events 

were in patients with associated risks factors (e.g., advanced age, hypertension, 

hyperlipidemia, hypercholesterolemia, smoking, diabetes mellitus, pre-existing 



peripheral vascular disease). The background incidence of these events has not 

been established for the CML patient population. However, other studies 

reported an increased incidence of vascular events in nilotinib treated patients 

compared to imatinib ones30,31. 

Ischemic heart disease 

Ischemic heart disease (IHD) group included angina pectoris, coronary artery 

disease, acute myocardial infarction, coronary artery stenosis, myocardial 

infarction, myocardial ischaemia, angina unstable, blood creatin-phosphokinase 

MB increased, coronary artery occlusion, coronary artery restenosis, and 

troponin increased. AEs grouped under IHD were more frequent with nilotinib 

than with imatinib: there were 11 patients (3.9%) in the nilotinib 300 mg BID 

group and 24 patients (8.7%) in the nilotinib 400 mg BID group with IHD, 

compared to five patients (1.8%) in the imatinib group. Fourteen patients in the 

nilotinib 400 mg BID group and one patient in the nilotinib 300 mg BID group had 

AEs grouped under IHD that were considered study drug-related. Most of the 

IHD events were considered serious and were grade 3/4. Ten patients (3.6%) in 

the nilotinib 400 mg BID group discontinued study drug due to the events 

grouped under ischemic heart disease. The cumulative incidence of such events 

continue to increase over time: since the 48-month data cut-off, there were 12 

additional patients with IHD; two in the imatinib group with no suspected 

relationship to study treatment, and ten in the nilotinib 400 mg BID group, and 

five were considered nilotinib-related. 

Peripheral arterial occlusive disease 

Peripheral arterial occlusive disease (PAOD) group included peripheral arterial 

occlusive disease, peripheral artery stenosis, intermittent claudication, peripheral 

ischemia, and arterial occlusive disease.  

Since the beginning of the study there were 14 patients with reported PAOD: no 

patients in the imatinib group, seven patients (2.5%) each in the nilotinib 300 mg 

BID and 400 mg BID group. Serious PAOD events were reported for nine 

patients (four in the nilotinib 300 mg BID group and five patients in the nilotinib 



400 mg BID group). Seven patients (three in nilotinib 300 mg BID group and four 

in nilotinib 400 mg BID group) had study drug related peripheral arterial occlusive 

disease. One patient in nilotinib 300 mg BID group discontinued the study 

treatment due to PAOD and three patients in nilotinib 400 mg BID group 

discontinued the study drug due to peripheral artery stenosis and intermittent 

claudication. Since the 48-month data cut-off, there were five patients (three in 

the nilotinib 300 mg BID group and two in the nilotinib 400 mg BID group) with 

newly reported PAOD. 

Ischemic cerebrovascular events 

Ischemic cerebrovascular events group included cerebrovascular accident, 

ischemic stroke, transient ischemic attack, carotid artery stenosis, cerebral 

infarction, cerebral ischemia, amaurosis fugax, basilar artery stenosis, and 

cerebrovascular disorder. 

At the 60-month data cut-off, 14 patients were reported with AEs grouped under 

ischemic cerebrovascular events: one patient (0.4%) in the imatinib group, four 

patients (1.4%) in the nilotinib 300 mg BID group and nine patients (3.2%) in the 

nilotinib 400 mg BID group. The majority of patients (11 patients) were reported 

with AEs that were considered serious by investigators (one patient in imatinib 

group, four patients in nilotinib 300 mg BID group and six patients in nilotinib 400 

mg BID). Since the 48-month data cut-off, there were five additional patients with 

reported ischemic cerebrovascular events (one in the nilotinib 300 mg BID group 

and four in the nilotinib 400 mg BID group).  



1.4. Molecular pathways involved in CML 
 

Several molecular events are implicated in the disease, with BCR- ABL 

possessing the capacity to target a number of intermediary adapter molecules 

(including, GRB2, CBL and CRKL) that have been shown to be important in the 

activation of multiple signal transduction cascades facilitating unregulated 

proliferation and inappropriate survival of malignant cells32. Specifically, results 

from co-immunoprecipitation experiments observed the formation of stable 

complexes between BCR-ABL and several adapter proteins such as CRKL, 

SHC, CBL, p62DOC, and PI3-kinase33,34. In addition, tyrosine phosporylation of 

BCR-ABL at specific residues regulated the binding of other proteins such as 

GRB235. As a result, important pro-survival, proliferative and anti-apoptotic 

pathways are activated including RAS, STAT5, and Akt. Conversely, functional 

cooperation between these pathways is required to promote the full oncogenic 

activity of BCR-ABL36. 

 

Signal transducer and activator of transcription 5 (STAT5). The importance 

of the transcription factor STAT5 in chronic myeloid leukemia is well established. 

Over-expression of a constitutively active STAT5 protein in total bone marrow 

and long-term hematopoietic stem cells results in the induction of a CML-like 

condition comparable to the BCR-ABL induced disease37. Conversely, deletion of 

the Stat-5 gene locus prevented the development of myeloid or lymphoid 

leukemia in primary murine recipients of bone marrow transduced with a 

retrovirus encoding BCR-ABL38. Overall, STAT5 has been shown to have the 

capacity to mediate anti-apoptotic mechanisms and enhance cell viability via the 

up-regulation of genes such as BCL-XL and MCL1, in addition to stimulating cell 

proliferation39. The BCR-ABL oncoprotein is required in order to phosphorylate a 

critical tyrosine residue that regulates oligomerization of STAT5, and its 

subsequent nuclear translocation and DNA binding40,41. Interestingly, STAT5 has 

been implicated in the development of drug resistance to tyrosine kinase 

inhibitors (TKI; first-line CML therapy). Enhanced STAT5 expression has shown 



to result in the increased probability of acquiring BCR-ABL mutations, as well as 

contributing to a loss of responsiveness in prolonged disease42. Low expression 

levels of STAT5 correlate with increased sensitivity to treatment in vitro, while 

enhanced expression leads to a decreased therapeutic response43. Warsch and 

co-workers reported a highly significant association between the expression level 

of STAT5 mRNA and the occurrence of BCR-ABL mutations in a cohort of fifty 

CML patients, with the production of reactive oxygen species (ROS) mediating 

the effect42. The upregulation of STAT5 also has been shown to increase the 

number and rate of double-stranded breaks contributing to the enhanced 

mutation rate. 

 

Janus kinase 2 (Jak2). Evidence suggests that the STAT5/Jak pathway is 

involved in the signalling of more than fifty growth factors and cytokines, 

regulating various cellular events including proliferation, differentiation, apoptosis, 

survival, and migration44,45. In physiological conditions, Jak2 possesses a 

functional role in immune cell development and hematopoiesis. Activation of Jak2 

may also be observed in the initiation and maintenance of cancer, with the 

discovery of a single point mutation within the non-receptor tyrosine kinase Jak2 

(a substitution of a valine residue by phenylalanine at amino acid 617, resulting in 

Jak2V617F) responsible for facilitating the development of a subset of 

myeloproliferative disorders46. In addition, as the primary activator of STAT5, it is 

hypothesized that Jak2 is an essential component of BCR-ABL-driven 

leukemogenesis40. 

Activation of Jak2 via BCR-ABL phosphorylation, has been verified in several cell 

lines expressing different BCR-ABL variants, as well as in leukemic cells derived 

from CML patients47. Although inhibition of its kinase activity has been reported 

to induce apoptosis in BCR-ABL expressing leukemia cells, recent studies 

suggest that complete deletion of the Jak2 gene significantly accelerate disease 

development with increased white blood cell counts and severe splenomegaly 48. 

It has been proposed that as an important component of BCR-ABL signaling, 

Jak2 is important in the regulation of Ph+ cells through the capacity to mediate 



disease maintenance and progression49,50. Due to the conflicting literature 

however, further study is required in order to completely elucidate the role of 

Jak2 in CML as well as confirm its validity as a therapeutic target. 

 

Mitogen-activated protein kinase (MAPK) pathway. The MAPK pathway is 

involved in the regulation of various cellular processes, including proliferation, 

differentiation, and survival51. Activation of MAPK signalling via Ras results in the 

nuclear translocation of extracellular signal regulated kinase (ERK) in order to 

effect gene expression. BCR-ABL has been determined to be a potent activator 

of Ras, with autophosphorylation of tyrosine 177 within the BCR first exon 

providing a docking site for the adapter molecule Grb-2, and subsequent 

stabilization of Ras in its active GTP-bound form35. Interestingly, activating 

mutations in Ras are rarely observed in Ph+ CML suggesting that BCR-ABL is 

required for the constitutive activation of Ras and therefore, the regulation of 

downstream mechanisms52. Mitogen-activated protein kinase kinase (MEK) is 

important in the phosphorylation of ERK, promoting cell proliferation53. Recently, 

the importance of a persistently high level of MEK-dependent negative feedback 

was published, with the ability to facilitate BCR-ABL-mediated oncogene 

addiction by regulating myeloid growth factor receptor (GF-R) signaling54. In 

addition, the anti-apoptotic factor Mcl-1 is also constitutively expressed via Ras 

activation in BCR-ABL-expressing cells enhancing survival55. A number of MAPK 

pathways have been implicated in the pathogenesis of Ph+ disease contributing 

to malignant transformation, including the main MAPK family members: ERK1/2, 

ERK5, c-Jun N- terminal kinase (JNK) and p38 MAPK. Extensive research 

involved in the determination of the cellular pathways involved in the 

pathogenesis of BCR-ABL+ CML has been conducted, with the activation of the 

ERK1/2 pathway important in disease development and progression. In 

embryonic stem cells transformed by BCR-ABL, ERK1/2 is constitutively 

activated56. Conversely, the oncogenic potential of BCR-ABL is enhanced by Ras 

via the activation of the ERK signaling cascade57. Important in cellular survival, 

activation of the ERK1/2 pathway is also thought to be important in the down-



regulation of the pro- apoptotic factor Bcl-2 interacting mediator of cell death 

(BIM) in both hematopoietic progenitor cells and BCR-ABL transformed murine 

bone marrow-derived Ba/F3 cells55. Furthermore, the ERK1/2 pathway has been 

implicated as a mediator in the BCR- ABL-induced activation of the transcription 

factor STAT3 in both primary CML progenitor cells and in murine embryonic stem 

cells58. Evidence suggests that ERK1/2 may also regulate BCR-ABL-mediated 

disruption of the translational-regulator heterogenous nuclear ribonucleoprotein K 

(hnRNP-K) which has been shown to have an important role in the development 

of blast phase CML59. Despite this, inhibition of ERK1/2 signaling alone failed to 

significantly induce cell death in BCR-ABL+ leukemic cells, indicating that these 

cells utilize multiple survival pathways60. Interestingly, a number of studies have 

implicated a paradoxical activation of the ERK1/2 pathway in TKI resistance 61. In 

the K562 cell line resistant to TKI treatment, imatinib effectively attenuated the 

phosphorylation of all MAPK signaling, except ERK1/262. Additionally, co-

incubation with an ERK1/2 inhibitor (U0126) resulted in reduced phospho-

ERK1/2 levels in resistant K562 cells, restoring sensitivity to TKI therapy. It thus 

proposed that activation of ERK1/2 may be independent of BCR-ABL in select 

cases of CML. 

Observed as a parallel MAPK pathway to ERK1/2, ERK5 has been recognized 

as a component of regulatory cell signaling, with the capacity to mediate the 

transcription of myocyte-specific enhancer factor 2C (MEF2C), an important 

factor in the differentiation of myeloid cells, influencing the cellular fate between 

monocyte and granulocyte63. Buschbeck and co-workers investigated the role of 

ERK5 in pro-survival signaling of BCR-ABL+ leukemia cells64. Results indicated 

that BCR-ABL tyrosine kinase activity may affect the ERK5 pathway by at least 

two independent mechanisms: (1) through the capacity to mediate ERK5 

activation and, (2) by increasing the protein level of ERK5. Subsequent 

experiments aimed to provide insight regarding the functional association 

between ERK5 and oncogenic BCR-ABL signaling, with the basal activity of 

ERK5 enhancing cellular transformation of Rat-1 fibroblasts and contributing to 

the cellular survival of the human megakaryoblastic leukemia cell line, MEG-01. 



Suppression of the p38 MAPK signaling pathway appears to contribute to BCR-

ABL leukemogenesis via the ability to mediate growth inhibitory and apoptotic 

mechanism in BCR-ABL+ cells65. Ectopic expression of BCR-ABL in embryonic 

stem cells was shown to attenuate p38 MAPK activation. Furthermore, studies 

indicate that BCR-ABL-mediated leukemic transformation may progress in part 

by nuclear factor κB (NFκB) activation via the p38 MAPK pathway66. Studies 

have shown that imatinib may activate p38 MAPK and its downstream molecules, 

MapKapK2 and MSK1 in primary leukemic progenitor cells isolated from CML 

patients67. Recently, it was shown that the phosphorylation of histone 2A family, 

member X (H2AX) is regulated by p38 MAPK and required for the induction of 

apoptosis in K562 cells68. In contrast, Galan-Moya and co-workers reported that 

constitutive active ABL may activate p38 MAPK in an independent mechanism to 

its innate tyrosine kinase activity and, via its ability to stabilize MKK6, an 

upstream activator of p38 MAPK69. Elucidation of the mechanisms involved in the 

interactions between BCR-ABL and p38 MAPK is thus important in order to 

assess its role in disease progression, and therapeutic intervention. 

 

Phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway. The 

PI3K/Akt pathway is well characterized in CML, with its constitutive activation in 

BCR-ABL+ cells observed to possess an important role in cell survival and 

malignant transformation dependent on the BCR-ABL oncogene70,71. Subsequent 

phosphorylation of critical survival proteins by Akt including transcription factor 

regulator glycogen synthase kinase 3β (GSK3β), is important in regulating 

downstream events resulting in a decrease in the susceptibility of cells to 

undergo apoptosis72. Naughton and co-workers reported that elevated ROS 

production (expression of BCR-ABL is associated with increased production of 

intracellular ROS) in cells expressing BCR-ABL was found to activate the 

PI3K/Akt pathway through the ability to regulate important factors and 

downstream effectors including Akt, GSK3β, β-catenin, and Mcl-170. The tumour 

suppressor gene, phosphatase and tensin homologue deleted on chromosome-

10 (PTEN) has also been shown to be down-regulated by BCR-ABL in CML 



progenitor cells, with the deletion accelerating disease development through the 

regulation of the Akt1 gene73. The anti-apoptotic signaling of PI3K/Akt has also 

been shown to contribute to TKI resistance, with the inhibition of PI3K enhancing 

the efficacy of imatinib74. Demonstration of imatinib treatment activating the 

PI3K/Akt pathway in BCR-ABL+ cells and primary leukemia cells in vitro, as well 

as in a chronic phase CML patient in vivo was reported75. It was found that this 

activation was critically important in mediating survival during the early phases of 

resistance acquisition, and was prior to the manifestation of BCR-ABL-dependent 

resistance mechanisms. Similarly, in five Ph+ cell lines observed to be TKI-

resistant despite no underlying mutations or other molecular aberrations 

indicated in conventional resistance, the activation of the PI3K/Akt pathway was 

unaffected following imatinib treatment76. Inhibition of Akt1 however led to 

apoptosis in these cell lines, indicating that select forms of TKI resistance are 

attributable to mechanisms independent of BCR-ABL, including the constitutive 

activation of PI3K/Akt signaling. Most recently, the drug efflux pump, ATP-binding 

cassette sub-family G member 2 (ABCG2) implicated in multidrug resistance 

(MDR), and observed to be upregulated in TKI-resistant K562 cell lines, was 

involved in MDR in CML through the PI3K/Akt signaling pathway, and more 

specifically via PTEN down-regulation77. More specifically, ABCG2 function was 

correlated with drug resistance and disease progression, mediated at least in 

part, by Akt activation. 

 

Focal adhesion signaling pathway. Expression of the BCR-ABL oncoprotein 

has been demonstrated to affect hematopoietic cell adhesion to the bone marrow 

via a number of mechanisms, including the ability to mediate important 

interactions between cellular adhesion receptors and protein components of the 

extracellular matrix (ECM)78.  

 

  



1.5. Leukemic stem cells (Cancer progenitor cells) in CML 
 

Due to the finding that TKI therapy may only induce cell death in proliferating 

mature cells, coupled with the increasing biological evidence for a population of 

malignant cells with self-renewal properties that may initiate cancer development, 

it is suggested that a reservoir of primitive quiescent progenitor cells insensitive 

to TKI treatment is present in residual disease and is responsible for CML 

relapse and progression79,80. Interestingly, incubation of CML stem cells with 

TKIs in vitro led to an increased number of quiescent progenitor cells compared 

to untreated cells80-82. As a rare phenotypically distinct subpopulation of cancer 

cells that are thought to be responsible for tumorigenesis, it is proposed that an 

anticancer therapeutic strategy that targets CML stem-like cells may effectively 

eradicate the disease with a decreased risk of reoccurrence and phase 

advancement. 

 

1.5.1. Biological identification and characterization of CML progenitor cells 
 

The characterization of CML progenitor cells has been difficult with a selective 

method for their isolation not yet established, however a focus on subsets of 

normal and leukemic human hematopoietic (CD34+) cells is of particular interest 

in research to date. The CD34+CD38- /Lin- fraction of the leukemic clone has 

been implicated as an enriched subset which gives rise to such CML stem-like 

cells83,84. They may also be further refined by their aldehyde dehydrogenase 

(ALDH) 1 activity, with high ALDH expression in CML stem-like cells capable of 

engrafting mice compared to more differentiated CML progenitor cells within the 

CD34+/CD38- population85. However, normal hematopoietic stem cells may also 

exhibit this phenotype, which demonstrates a requirement for the identification of 

additional markers that may distinguish CML progenitor cells from the normal 

population86. A number of markers have been described as differentially 

expressed on CML progenitor cells in comparison to normal bone marrow stem 

cells.  



Genome-wide profiling of CML stem-like cell populations via microarray analysis 

resulted in the finding that CML subsets display greater variability in the gene 

expression patterns than their normal counterparts85. Thirty-one transcripts were 

found to be upregulated in CML CD34+/CD38-/ALDHhigh cells in comparison to 

normal CD34+/CD38-/ALDHhigh or CD34+/CD38- cells, including genes in key 

cell signaling and metabolic pathways. 

Functional annotation of the genes highlighted several plasma membrane-

associated genes, with DPP-IV (CD26), IL-2RA (CD25), RAB31, PTPRD, 

CACNA1D, IL-1RAP, SLC4A4, and KCNK5 all upregulated and exhibiting cell 

surface protein localization. Microarray expression levels were further verified by 

qRT-PCR. Expressed on normal myeloid cells as well as on CD34+ blast cells in 

acute myeloid leukemia, the cell surface antigen CD33, has also been shown to 

be expressed at significantly higher levels on stem cell-enriched CD34+/CD38- 

leukemic cells compared to normal CD34+/CD38- stem cells87.  

Samples collected from chronic phase CML patients, CD33 was found to be 

expressed invariably in the majority of cells, in comparison to the highly variable 

levels observed in those stem-like cells from patients with accelerated or blast 

phase disease. The surface antigen CD44 has also been found to be 

upregulated on CML BCR-ABL-expressing leukemic stem-like cells from human 

bone marrow88. Similar results were also observed from bone marrow samples of 

mice with CML-like leukemia, with decreased CD44 levels observed in malignant 

progenitors from the blood or spleen, suggested that CD44 may be involved in 

the retention of BCR-ABL+ stem cells in the bone marrow stroma89. The 

identification of the IL-1 receptor accessory protein (IL-1RAP) as a candidate 

marker of CML has also been widely reported90.  

The adenosine A1 receptor has also been implicated, with differential mRNA 

expression and protein levels observed on CD34+ CML cells compared to their 

normal counterparts91.  

A recent study from Nievergall and co-workers showed that CD123 expression 

was increased in CD34+/CD38- of both chronic-phase and blast-phase CML 

patients92. In addition, IL-3 plasma levels in chronic-phase CML patients was 



seen to be higher at diagnosis relative to plasma samples of healthy donors, and 

reduced in matched samples of patients treated with TKIs. 

Various studies have also displayed an importance of CD117 (c-Kit) expression 

in the identification of CD34+ CML progenitor cells93-95. CD117 is a 

transmembrane receptor with tyrosine kinase activity and is widely expressed in 

CD34+ cells including hematopoietic stem cells and myeloid progenitor cells for 

their physiological development and survival. The proportion of CD34+/CD117+ 

cells is found to be higher in patients with CML in comparison to healthy subjects. 

In CML, it is suggested that the upregulation of CD117 on CD34+ progenitor cells 

is critical in the activation of survival mechanisms independent of BCR-ABL.  

CD25, the α-chain of the IL-2 receptor (IL-2Rα), is a subunit of the high-affinity 

IL-2 receptor and is involved in the transduction of the cytokine to regulate cell 

survival and proliferation. Using a CML-like mouse model of myeloproliferative 

disease, it was demonstrated that CML progenitor cells may be divided into 

CD25+/Lin-/Sca-1+/c-Kit+ (LSK) cells and CD25- LSK cells96. Similar results 

were reported in a study, with CD25 aberrantly and specifically expressed on 

human CD34+/CD38-/Lin- CML progenitor cells in comparison to the finding that 

CD25 was undetectable or weakly expressed on normal hematopoeitic stem 

cells. 

Most recently, the surface enzyme CD26 (DPP-IV) was identified as a specific, 

reliable, and functionally important marker of leukemic stem cells in CML97. 

Results from gene array, PCR and flow cytometry studies found that CD26 was 

invariably expressed on progenitor cells in all CML patient bone marrow, but 

failed to be detected on CD34+/CD38- stem cells in normal samples or on cancer 

stem-like cells in other myeloid malignancies. Furthermore, CD26 was not 

detected on more mature CD34+/CD38+ progenitor cells in CML patients. An 

association between the expression of CD25 and CD26 on CML stem-like cells 

was also observed, with only CD26+ cells found to express the BCR-ABL1 gene 

by FISH and qPCR. Notably, the expression of CD26 was not dependent on 

BCR-ABL1, or inhibited by imatinib treatment. Further study is required in order 

to assess the potential of CD26 as a therapeutic target, although preliminary data 



from this publication is promising.  

 

1.5.2. Molecular pathways involved in the survival and function of CML 
leukemic stem cells 
 

Despite the biological evidence for a CML stem cell population that possesses 

the capacity to sustain disease, the immunophenotypic identification of a 

leukemic stem-like cell remains to be completely elucidated. In fact, CML 

progenitor cells (CD34+ cells) are thought to be similar to normal hematopoietic 

stem cells with self-renewal properties as well as the ability to give rise to a 

heterogeneous population of cells, and only differ by the presence of the bcr-abl 

gene mutation. Interestingly however, is the finding that these CML progenitor 

cells are not dependent on the BCR-ABL oncoprotein for survival98. This is 

perhaps the most important consideration to understanding the factors that 

contribute to the survival of CML stem-like cells and their innate resistance to TKI 

therapy. Therefore, complete elucidation of the mechanisms involved in the 

functional maintenance and survival of CML progenitor cells is required in order 

to determine molecular pathways alternative to BCR-ABL which may be 

therapeutically targeted, ultimately leading to their eradication and/or 

sensitization to TKI treatment.  

 

ALOX5 and lipid metabolism. Important in a number of processes including 

oxidative stress response, lipid metabolism, and synthesis of leukotriene B4, 

arachidonate 5-lipoxygenase (ALOX5) has been shown to be upregulated by 

BCR-ABL in CML stem-like cells99. In addition, administration of TKI failed to 

affect the increase in both gene expression and function of ALOX5, suggesting 

that this upregulation was independent of kinase activity. Chen and co-workers 

further demonstrated that ALOX5 is critical in disease development, with Alox5-

null mice failing to develop CML following implantation of BCR-ABL- transduced 

bone marrow cells. Co-expression of BCR-ABL and Alox5 in mice resulted in 

disease induction, confirming the finding. More specifically, ALOX5 was observed 



to regulate the function of CML stem-like cells exclusively, with a deficiency 

leading to a reduction in the bone marrow affecting differentiation, cell division 

and survival of the CML progenitor cells, while maintaining the function of normal 

hematopoietic stem cells. Furthermore, comparative DNA microarray analysis 

was performed in order to identify the pathways regulated by the Alox5 gene in 

CML stem-like cells implicated the macrophage scavenger receptor (Msr1) as a 

candidate gene, which has been shown to be down-regulated via BCR-ABL and 

restored by an Alox5 deficiency in cells100. The loss of functional Msr1 was 

shown to accelerate CML development in murine recipients of BCR-ABL-

transduced bone marrow cells, as well as enhance CML progenitor cell function 

by inhibiting apoptosis and regulating the cell cycle to increase proliferation. 

Inhibition of ALOX5 function via the selective 5-lipoxygenase (5-LO) inhibitor 

Zileuton, has been demonstrated in a CML murine model99 with promising resuts.  

Due to these findings, clinical trials were initiated in order to evaluate the safety 

of Zileuton in combination with TKIs in CML patients (clinicaltrials.gov). A phase I 

study of the 5-LO inhibitor with imatinib was terminated with no results published 

(NCT01130688), and another involving its combination with dasatinib is currently 

recruiting eligible patients (NCT02047149). 

 

Autophagy. The term autophagy is derived from the Greek words “auto” (self) 

and “phagy” (eating) and was firstly used to describe intracellular vesicles that 

contained degraded cytoplasmic material. Since then, autophagy has been 

characterized as a cell survival pathway that functions to degrade and recycle 

cellular components, such as aged proteins and organelles, that can be re-used 

to generate ATP and essential building blocks during nutrient and/or oxygen 

deprivation to maintain homeostasis101. 

Autophagy has been shown to be induced by various drugs in CML cells, 

including TKI treatment in both CML cell lines and primary stem/progenitor 

(CD34+CD38-) cells102. Specific autophagy inhibition, either with ATG7 or ATG5 

knockdown, or pharmacological inhibition using cloroquine (CQ), resulted in 

enhanced TKI-induced death in CML cell lines and primary CML stem cells. 



These promising results have led to the initiation of clinical trials, where hidroxy-

CQ is being tested in combination with imatinib in imatinib-sensitive patients103. 

The fact that autophagy is induced following BCR-ABL inhibition suggests that 

BCR-ABL down-regulates autophagy. In support of this hypothesis, Altman et 

al.,104 demonstrated that BCR-ABL expressing cells exhibited low basal 

autophagy, but were highly dependent on it. They also showed that autophagy 

inhibition following Atg3 deletion in BCR-ABL expressing cells led to increased 

p53 phosphorylation and accumulation, as well as increased expression of the 

p53 target gene, p21 and the pro-apoptotic Bcl-2 family protein Puma. However, 

it was not clear if autophagy inhibition had any effect on mitochondrial number or 

function that could possibly lead to increased DNA damage, as has been shown 

in normal HSCs105. 

The exact mechanism by which BCR-ABL suppresses autophagy is not entirely 

clear. However, two recent papers have shed some light on this. Firstly, Sheng et 

al., showed that BCR-ABL, through the PI3K/Akt pathway, transcriptionally up-

regulated activating trans-cription factor 5 (ATF5) in a FoxO4 dependent 

manner106 and ATF5 in turn, stimulated mTORC1 transcription, required for 

autophagy inhibition. So this model suggests that BCR-ABL not only activates 

mTORC1 kinase activity, but also leads to increased mTORC1 transcription. The 

authors further showed that imatinib-induced autophagy was dependent on 

inhibition of the PI3K/Akt/mTORC1 pathway, as ectopic expression of 

constitutively active PI3K (PI3KCAE545K) suppressed autophagy induced by 

imatinib. Secondly, Yu et al., showed that imatinib inhibited expression of 

microRNA-30a (mir-30a) in CML cells leading to autophagy induction and up-

regulation of BECLIN1 and ATG5 expression107. Taken together this suggests 

that BCR-ABL expression inhibits autophagy by at least two mechanisms 1) in an 

mTORC1 independent manner by inducing mir-30a expression and 2) in an 

mTORC1 dependent manner by inducing mTORC1 activity/expression. To 

support the involvement of active mTORC1 in autophagy inhibition in CML cells, 

OSI-027, an mTOR inhibitor (inhibits both mTORC1 and mTORC2 complexes) 

has been shown to induce protective autophagy in K562 cells and combination of 



OSI-027 and CQ-mediated autophagy inhibition resulted in increased apoptosis 

compared to OSI-027 alone108. Therefore, autophagy may be a key defensive 

mechanism that provides survival and/or limits the apoptotic responses following 

mTOR inhibition in CML cells and combined use of potent mTOR inhibitors with 

autophagy inhibitors may provide an approach to enhance the effect of single 

drug treatment. In reality, autophagy, a tumor suppressor in normal HSC can be 

exploited therapeutically in CML. 

 

Wnt/β-catenin pathway. Canonical Wnt/β-catenin signaling has been implicated 

in numerous biological processes in embryogenesis, and hematopoiesis. β-

catenin is the critical downstream effector molecule that has an observed role in 

the proliferation and survival of normal hematopoietic stem cells. Specifically, 

mice deficient in β-catenin possessed the capacity to form hematopoietic stem 

cells, but failed in the maintenance of these cells long term109. In CML, the 

aberrant activation of the Wnt pathway is thought to have a critical role in both 

disease progression and CML progenitor cell self-renewal and survival. Elevated 

levels of nuclear β-catenin were detected in the granulocyte-macrophage 

progenitor pool from patients with blast-phase CML and imatinib-resistant CML 

compared with marrow collected from healthy individuals110. Implicated in the 

evolution of CML and progression to the blast phase, BCR-ABL has been 

observed to directly interact with β-catenin to control levels of protein stabilization 

and nuclear signaling in malignant cells111. Cross-talk between β- catenin and 

interferon-regulatory factor 8 (Irf8) as also been shown to affect this progression 

to blast phase CML, with an Irf8 deletion and constitutive β-catenin activation 

resulting in the elevated leukemic potential of BCR-ABL+ CML progenitor cells, 

as well as TKI resistance in the CML murine model112. 

Deletion of β- catenin in established CML however, was shown to synergize with 

imatinib to eliminate CML progenitor cells and to delay disease recurrence 

following discontinuation of TKI treatment in vivo113. 

Pharmacological inhibition of β-catenin via a number of mechanisms in 

combination with imatinib has produced promising results for the effective 



treatment of CML, and eradication of CML progenitor cells. 

 

TGF-β/FOXO/BCL-6 signalling. As previously described, the PI3K/Akt pathway 

is activated in CML cells via BCR-ABL-dependent mechanisms leading to 

enhanced cellular survival and malignant transformation. In addition, activation of 

this pathway leads to the phosphorylation, cytoplasmic retention, and inactivation 

of forkhead O (FOXO) transcription factors. In normal hematopoietic stem cells, 

FOXOs localize in the nucleus for the regulation of cell proliferation with its 

transcriptional activity resulting in cell cycle arrest114. Loss of functional FOXO 

has been observed to result in an aberrant increase in ROS production, an 

increase in the number of stem cells in active cell cycling and eventual population 

exhaustion. In the BCR-ABL transduction/transplantation CML murine model, 

active FOXO3a in CML progenitor cells was shown to possess an important role 

in the maintenance of their self-renewal capacity, with deletion of the 

transcription factor resulting in increased proliferation, and decreased apoptosis 
115(243). In CML CD34+ CML progenitor cells, BCR- ABL expression leads to an 

increase of FOXO3a in the cytoplasm rendering the factor transcriptionally 

inactive. Conversely, induction of FOXO3a in leukemic cell lines inhibits cell cycle 

progression, and induces apoptosis via the activation of tumour necrosis factor-

related apoptosis-inducing ligand (TRAIL) and p53116. Full restoration of FOXO 

activity in CML progenitor cells also led to the significant decrease in cyclin D1 

mRNA level, and modulation of key target genes including ATM, p57/CDKN1C 

and BCL-6 which are all required for maintenance of their stem cell-like 

properties117,118. Studies also suggest that FOXOs possess a role in the 

mechanism of action associated with TKI therapy in CML, with imatinib exposure 

in several BCR-ABL-expressing cell lines resulting in FOXO3a activation and cell 

cycle arrest119. Interestingly however, is the finding that activation of FOXOs by 

TKIs is a paradoxical, with signaling also contributing to the protection of CML 

CML progenitor cells. In general, the anti-proliferative activity of TKIs against 

CML CD34+ CML progenitor cells is thought to be mediated by the reactivation of 

FOXO1, 3a, and 4 resulting in quiescence120. 



As an important downstream effector of FOXO, B-cell lymphoma 6 (BCL-6) 

protein has been identified as a critical factor in the survival and self-renewal of 

CML progenitor cells through its ability to mediate the repression of Arf and p53 
117,121.  

Transforming growth factor-β (TGF-β) has also been implicated in the acquisition 

of drug resistance in CML progenitor cells via its ability to inhibit Akt activation 

leading to the release and activation of FOXOs to promote their quiescent 

properties115.  

 

Sonic hedgehog signaling pathway. As a critical pathway active during 

embryogenesis and adult homeostasis, the sonic hedgehog (Shh) pathway is 

important in the modulation of hematopoietic stem cell proliferation and survival 

in both physiological and pathological conditions. Briefly, Shh protein ligands bind 

to Patched (Ptch) leading to the release of the transmembrane protein 

smoothened (Smo), and a subsequent signal transduction cascade resulting in 

the nuclear translocation of Gli transcription factors122. Multiple studies have 

indicated that the aberrant activation of the Shh pathway in CML possesses an 

important role in the regulation of CML progenitor cell survival, as well as in 

disease progression. The significant upregulation of Shh, Smo, and Gli has been 

observed in patients with CML compared with normal controls123. Loss of 

functional Smo in the CML murine model led to an impairment of stem cell 

renewal, a subsequent depletion of these progenitor cells and a subsequent 

decrease in the induction of disease by BCR-ABL124. Conversely, constitutively 

active Smo increased the number of circulating CML progenitor cells thereby 

accelerating disease. In addition, pharmacological inhibition of Shh signalling 

impaired the propagation of BCR-ABL+ CML resistant to imatinib in both murine 

and human studies. 

Furthermore, the upregulation of Shh, Smo and Gli-1 protein expression in blast 

phase CML in comparison to chronic phase disease suggests that the Shh 

signaling pathway is critical in the transformation and progression of human CML 
123. Most recently, upregulation of Smo was associated with reduced expression 



of microRNA-326 in leukemic CD34+ progenitor cells collected from human 

patients with CML at diagnosis compared to healthy controls125.  

Taken together, targeting the Shh pathway and its downstream effector proteins 

may lead to the elimination of disease progenitor cells, with inhibition of Smo or 

Gli-1 of greatest potential in current research settings. 

 

Promyelocytic leukemia protein (PML). The promyelocytic leukemia protein 

(PML), which is critical in normal hemopoiesis, has been shown to regulate 

important processes including apoptosis, proliferation, and senescence in 

hematopoietic stem cells. Deregulation of PML has been observed in CML, with 

increased expression in bone marrow collected from patients with chronic-phase 

disease118. Interestingly, an inverse correlation between PML expression and the 

rates of complete cytogenetic and/or molecular response was determined in 

these patients, suggesting an important association with prognosis. Ito and co-

workers also demonstrated the importance of PML for CML progenitor cell 

maintenance.  

Furthermore, treatment of mice with arsenic trioxide, which induces the 

degradation of PML protein, in combination with chemotherapeutic agent 

cytarabine, led to the down-regulation of PML and an increase in survival. The 

administration of arsenic sulfide in combination with imatinib also displayed 

therapeutic benefit in a BCR-ABL+ murine model126. It was found that while the 

arsenic sulfide targeted BCR-ABL through ubiquination of important lysine 

residues leading to proteasomal degradation, imatinib inhibited the PI3K/Akt 

pathway that ultimately led to cell cycle arrest, decreased tyrosine kinase activity 

and activation of apoptosis in CML progenitor cells. 

 

Interferon signaling (IFN). The role of both IFN-α and IFN-γ in hematopoiesis 

has led to the investigation of their importance in CML. IFN-γ has been shown to 

directly induce the rapid expansion of lineage-Sca-1+c-kit+ (LSK) cells, with IFN-

γ- induced genes important for hematopoietic stem cell survival and maintenance 
127,128. Interestingly, evidence suggests a comparable effect of IFN-γ in CML 



progenitor cells, with the mediator inducing proliferation in leukemia progenitor 

cells as well as in primary CD34+ cells collected from newly diagnosed CML 

patients129. In an in vivo model of CML, accelerated disease progression was 

observed following the secondary transplantation of IFN-γ-treated CML 

progenitor cells suggesting its importance in the expansion of the population.  

IFN-α has been shown to activate quiescent hematopoietic stem cells, mediating 

proliferation130. Prior to the discovery of TKI therapies, IFN-α was the standard 

first-line treatment for CML despite the association with severe adverse effects 

(304). Its mechanism of action involves the capacity to restore adhesion of CML 

progenitor cells to the bone marrow stroma, downregulate the expression of the 

bcr-abl1 gene, and activate several transcription factors that regulate cell 

proliferation, maturation, and apoptosis131-133. IFN-α may also induce recognition 

and elimination of CML cells by the immune system134,135. Most importantly, the 

chronic administration of IFN-α may lead to a depletion in CML progenitor cells, 

via direct and indirect mechanisms involving stromal cells130,136. 

Subsequently, the combination of TKI and IFN-α as a potential treatment 

approach is hypothesized to synergistically eradicate disease through an ability 

to target the CML progenitor cell population in disease. Numerous clinical studies 

have been completed or are in progress to assess the significance of the 

combinatorial therapeutic strategy, with varying results. All the published trials 

reported significant incidence of toxicity, with a discontinuation of high dose 

pegylated IFN-α common during the first year of treatment137,138.  

 

Stromal-derived factor-1 (CXCL12)/ C-X-C chemokine receptor type 4 
(CXCR4) axis. The interaction between the chemokine receptor CXCR4 and its 

ligand CXCL12 is known to be important in early-stage hemopoiesis, and has a 

critical role in normal hematopoietic stem cell migration139. BCR-ABL activity is 

associated with the down-regulation of CXCR4 expression resulting in the 

defective adhesion of CML cells to bone marrow stroma mediating the malignant 

phenotype, and suppressing the CXCL12-induced chemotactic response of CML 

cells140,141. The CXCR4-dependent migration of immature CD34+ CML cells has 



also been shown to be impaired, with the integrin-dependent migration and 

adhesion in response to CXCL12 significantly decreased142. 

It is suggested that CML progenitor cells are protected by the bone marrow 

stroma from imatinib-induced apoptosis, and significantly upregulate the 

expression of the antiapoptotic factor BCL6 in response to TKI therapy143.  

 

Protein phosphatase 2A (PP2A). The inactivation of the tumour suppressor 

protein PP2A has been observed in CML, via the increased expression of SET, a 

nucleus/cytoplasm-localized phosphoprotein which is induced by BCR-ABL in a 

dose- and kinase-dependent manner, progressively increasing during transition 

to blast phase disease144. BCR-ABL may also inactive PP2A by the induction of 

Jak2- and/or src-dependent mechanisms145. The activity of PP2A involves the 

interaction and de-phosphorylation of several factors implicated in the regulation 

of cell cycle progression, proliferation, survival, and differentiation. Interestingly, 

several signaling pathways targeted by PP2A phosphatase are also modulated 

by BCR-ABL, with the expression and/or activity of substrates including myc, 

STAT5, Akt, BAD and Rb known to be essential in leukemogenesis, found to be 

altered in blast phase CML146. The inhibition of SET expression or induced 

expression of PP2Ac in 32D-BCR-ABL cells led to the inhibition of MAPK, STAT5 

and Akt phosphorylation, decreased myc expression, and increased levels of 

pro-apoptotic BAD144.  

Thus, the suppression of PP2A observed in CML progenitor cells may have a 

critical role in the prevention of inactivating mitogenic and survival signals.  

 

Sirtuin-1 (SIRT-1). The upregulation of the nicotinamide adenine dinucleotide 

(NAD+)-dependent protein deacetylase SIRT-1 through the BCR-ABL-dependent 

activation of STAT-5 signalling, has been shown to promote cellular survival, and 

DNA damage repair under oxidative and genotoxic stress147. Yuan and co-

workers detected an upregulation in chronic phase CML CD34+ progenitor cells, 

with a further increase observed in advanced stages. Conversely, normal adult 

hematopoietic stem cells were shown to express low levels of SIRT-1. 



Furthermore, activation of SIRT-1 was associated with the deacetylation of 

multiple substrates, including FOXO1, p53, and Ku70.  

In addition, it is suggested that SIRT-1 possesses an important role in the 

acquisition of TKI-resistant BCR-ABL mutations due to an ability to alter the 

function of DNA repair mechanisms in CML cells, stimulating activity of error-

prone repair following DNA damage148.  

  



2. Rationale of the study 
 
The following considerations have lead the GIMEMA CML WP to design the CML 

0811 trial, a phase III-b study with nilotinib 300 mg BID as first-line treatment of 

chronic-phase CML. 

A) Two independent phase 2 studies reported very high rates of cytogenetic and 

molecular responses in newly diagnosed CML patients treated with nilotinib 400 

mg BID23,149. The GIMEMA CML WP trial 0307 reported a 12-month CCyR, 

MMR, and MR 4.0 rates of 96%, 85%, and 7%, respectively23. A phase 3 

randomized study comparing the efficacy and safety of 300 or 400 mg BID 

nilotinib with imatinib 400 mg daily in early chronic phase CML patients showed 

the superiority of nilotinib25. Nilotinib 300 mg BID is equally effective and better 

tolerated than nilotinib 400 mg BID. Based on these results, nilotinib has been 

registered (FDA and EMA) for the frontline treatment of Ph+ CML at the dose of 

300 mg BID. However, nilotinib-associated atherosclerotic adverse events (AAE) 

were recently uncovered, particularly peripheral arterial occlusive 

disease28,30,31,150,151, raising concerns on the long-term safety of nilotinib. 

Therefore, since it may be possible that nilotinib will be more and more used for 

the first-line treatment of CML, it is important and useful to explore and to assess 

the efficacy and safety of nilotinib in a multicenter, independent study of an 

unselected cohort of patients.  

B) Currently, the most important target of the treatment of CML with TKIs is the 

deep MR, marker of better long-term outcome. Patients with CML on IFN therapy 

that achieve a ratio of BCR-ABL/ABL transcripts of 0.05% or less have an 

excellent long-term prognosis152. Another study published by the MDACC 

reported that achieving a MMR on imatinib correlates with an improved 

probability of a durable cytogenetic remission153. Results from the IRIS study 

suggest that obtaining the MMR after 12 months of imatinib therapy may be a 

marker of stable response. Further on, in the same study, patients with a MMR 

after 12 months of therapy had a significantly better probability of disease-free 



survival compared with those in complete cytogenetic remission, but without a 

MMR154.  

C) Deep MR as been identified as a prerequisite to treatment discontinuation: 

few experiences have been published aimed to evaluate the persistence of the 

MR after imatinib discontinuation. In a pilot study155, 12 patients discontinued 

imatinib after at least 2 years of MR 5.0 (median duration of negativity, 32 

months). Six patients displayed a molecular relapse with a detectable BCR-ABL 

transcript at 1, 1, 2, 3, 4, and 5 months. Imatinib was then reintroduced and led to 

a novel molecular response. Six other patients (50%) still have an undetectable 

level of BCR-ABL transcript after a median follow-up of 18 months (range, 9-24 

months). The results of this pilot trial have been confirmed and extended in a 

second trial, the STIM trial, published in 2010156. One hundred patients were 

enrolled, and 69 patients had at least 12 months follow-up: 42 (61%) of these 69 

patients relapsed (40 before 6 months, one patient at month 7, and one at month 

19). At 12 months, the probability of persistent MR 5.0 for these 69 patients was 

41% (95% CI 29–52). All patients who relapsed responded to reintroduction of 

imatinib. In another study on 80 patients who stopped TKIs after a prolonged 

deep MR (MR 4.5 – 5), 29 patients (36%) lost MMR after a median of 4 months 

off therapy (range, 2 to 17 months); Authors identified the loss of MMR as a safe 

condition for restarting treatment with TKIs.  

Higher rates of deep MR induced by nilotinib compared to imatinib could 

translate in a higher proportion of patients candidate to stopping anti-CML 

treatment, with higher probability of remaining disease-free in the long term. The 

advantages of this possible future scenario could be: first, the chance of 

treatment discontinuation, at least in patients with chronic clinical adverse events; 

second, a potential reduction of the costs of TKI treatment (after the introduction 

of TKI, with the increasing prevalence of CML patients, the costs of CML 

treatment is increasing year by year). 

D) The relapses observed in patients with a stable deep molecular response, 

together with several biologic studies showing the persistence of leukemic stem 

cells in patients with deep molecular response, suggest that targeting the 



leukemic stem cells would be useful for the eradication of the disease. However, 

several mechanisms could be implicated in leukemic stem cells persistence, and 

probably most of them are similar to those that are active in normal stem cells. 

Therefore, the characterization of the leukemic stem cells and the understanding 

of their differences with the normal counterpart are of utmost importance. 

 

Based on these considerations, the aim of the current study is to assess the 

efficacy, mainly in terms of deep MR rates, of nilotinib 300 mg BID treatment in 

newly diagnosed CML-CP patients, in an independent, investigator sponsored 

study. Monitoring of molecular response provides a straightforward opportunity to 

assess patients' response and possible prognosis in the use of targeted therapy. 

The most important endpoint of the present study is the rate of MR 4.0 at 24 

months, which will provide important information to plan and perform future 

studies aimed to discontinue the treatment, either primarily or after addition of 

other drugs targeting residual leukemic stem cells. Translational studies are 

conducted on leukemic stem cells, in order to identify those characteristics that 

may promote the persistence of the disease despite TKI treatment. 

  



3. Methods 
3.1. Objective of the trial 
 
3.1.1. Primary objective 
The primary objective of the CML 0811 trial is to evaluate the efficacy of nilotinib, 

300 mg twice daily with dose increase to 400 mg twice daily in case of 

suboptimal response or failure11 (excluding patients who will fail for progression 

to AP/BP), in a population of patients with Ph-positive, BCR-ABL positive CML in 

early CP. 

 
3.1.2. Secondary Objectives 

• the assessment of the treatment safety; 

• the evaluation of complete cytogenetic response (CCyR) rates and 

kinetics of molecular response; 

• the estimation of the overall survival (OS), the progression-free survival 

(PFS), the failure-free survival (FFS) and the event-free survival (EFS); 

• the characterization of the leukemic stem cells at the proteomic level 

 

3.2. Trial Design 
 

3.2.1 Patient selection criteria 
 
Inclusion Criteria 

• Age ≥ 18 

• Male or female patients with diagnosis of Ph+ and/or BCR-ABL+ CML 

• Early chronic phase (within 6 months from diagnosis) 

• Pretreatment with Hydroxyurea or Anagrelide for a duration of up to 3 

months and/or pretreatment with Imatinib for up to 30 days are permitted 

• Normal serum levels of potassium, magnesium, phosphorus , total calcium 

corrected for serum albumin or phosphorus, or correctable to within 

normal limits with supplements prior to the first dose of study medication 



• Written informed consent prior to any study procedures being performed 

• AST and ALT ≤ 2.5 x ULN or ≤ 5.0 x ULN if considered due to leukemia 

• Alkaline phosphatase ≤ 2.5 x ULN unless considered due to leukemia 

• Total direct bilirubin ≤ 1.5 x ULN, except know Mb. Gilbert 

• Serum creatinine ≤ 1.5 x ULN 

 
Exclusion criteria 

• Known impaired cardiac function, including any of the following: 

• LVEF < 45% 

• Complete left bundle branch block 

• Right bundle branch block plus left anterior hemiblock, bifascicular block 

• Use of a ventricular-paced pacemaker 

• Congenital long QT syndrome 

• History of or presence of clinically significant ventricular or atrial 

tachyarrhythmias 

• Clinically significant resting bradycardia (<50 beats per minute) 

• QTc>450 msec on screening ECG. If QTc > 450 msec and electrolytes 

are not within normal ranges before Nilotinib dosing, electrolytes should 

be corrected and then the patient rescreened for QTc criterion. 

• Myocardial infarction within 12 months prior to starting study drugs 

• Other clinical significant heart disease (e.g. unstable angina, congestive 

heart failure, uncontrolled hypertension) 

• Serum lipase and amylase > 1.5 x ULN (upper limit of normal) or history of 

acute (i.e., within 1 year of starting study medication) or chronic 

pancreatitis 

• Other concurrent uncontrolled medical conditions (e.g., uncontrolled 

diabetes, active or uncontrolled infections, acute or chronic liver and renal 

disease) that could cause unacceptable safety risks or compromise 

compliance with the protocol 

• Impaired gastrointestinal function or disease that may alter the absorption 

of study drug (e.g., ulcerative disease, uncontrolled nausea, vomiting and 



diarrhea, malabsorption syndrome, small bowel resection or gastric by-

pass surgery) 

• Concomitant medications with potential QT prolongation (see link for 

complete list: http://www.torsades.org/medical-pros/drug-lists/printable-

drug-list.cfm) 

• Concomitant medications known to interact with CYP450 isoenzymes 

(CYP3A4, CYP2C9, and CYP2C8: see link for complete list 

(http://medicine.iupui.edu/flockhart/table.htm) 

• Patients who have undergone major surgery ≤ 2 weeks prior to starting 

study drug or who have not recovered from side effects of such therapy 

• Patients who are pregnant or breast feeding, or women of reproductive 

potential not employing an effective method of birth control. (Women of 

childbearing potential must have a negative serum pregnancy test within 

48 hours prior to administration of nilotinib). 

• Patients with a history of another primary malignancy that is currently 

clinically significant or currently requires active intervention. 

• Patients unwilling or unable to comply with the protocol. 

 

 
3.2.2. Treatment scheme 
This study is an open-label, multicenter, phase III-b study of nilotinib 

administered orally at the dose of 300 mg twice daily (total daily dose 600 mg 

daily) for 24 months (study core), and indefinitely if it is in the interest of the 

patient. Nilotinib dose is increased to 400 mg BID in case of suboptimal response 

or failure, according to ELN 2009 recommendations, with the exception of 

patients who will fail for progression to AP/BP: in this case the patient will not be 

treated with study drug and the choice of the treatment will be up to the physician 

(Figure 1). 

Study duration is estimated in 6 years, 1 year of estimated enrollment, 2 years 

therapy duration. Thereafter, information is due for other 3 years. 

 



The main data analysis will be performed when all patients will complete 24 

months of treatment (or discontinued earlier). Safety and tolerability profile will be 

assessed by collecting hematologic and non-hematologic adverse events, 

laboratory examinations and ECG data. The molecular response will be 

assessed using the GIMEMA standardized molecular laboratories (Labnet 

network). 

 

Figure 1. Study flow-chart 
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*Complete Response HR (CHR) definition 
- WBC < 10x109/L  
- Platelet count < 450x109/L  
- No immature granulocytes in differential  
- Basophils less than 5%  
- Spleen non palpable  
 
*Hematologic response loss definition 
-the loss of any of the criteria which define CHR 
 

**Definition of failure,  
- No CHR at 3 months  
- No CgR (Ph pos 95%) at 6 months  
- Less than PCgR at 12 months  
- Less than CCgR at 18 months  
- Loss of CHR, any time  
- Loss of CCgR, any time  
- Clonal Chromosomal Abnormalities (CCA) in Ph+ cells.  
- BCR-ABL kinase domain mutations, any time  
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3.2.3. Primary endpoint 
To assess the deep molecular response (MR 4.0) rate at 24 months of treatment. 

For the purpose of this protocol, MR 4.0 is defined as a BCR-ABL/ABL 

transcripts ratio ≤ 0.01%, or undetectable BCR-ABL transcripts, with quantitative 

RT-PCR in a peripheral blood sample of at least 10 ml, with a at least 10,000 

copies of the control gene ABL14. 

  

3.2.4. Secondary endpoints 
• The toxicity and the compliance to treatment 

• The complete cytogenetic response (CCgR) rate at 3, 6, 12, 18, 24 and 60 

months; 

• The rate and the degree of molecular response at 3, 6, 12, 18, 24 and 60 

months; 

• The time to CCgR, the time to MMR and the time to MR 4.0; 

• Overall Survival (OS), from the date of the first nilotinib dose to death, 

Progression Free Survival (PFS), from the date of the first nilotinib dose to 

progression to AP or BP or death, Failure Free Survival (FFS) from the 

date of the first nilotinib dose to failure or progression or death, Event Free 

Survival (EFS) from the date of the first nilotinib to any event, including 

treatment discontinuation for adverse events, failure, progression to AP or 

BP, or death, whichever comes first. Failure is defined according to ELN 

2013 criteria18. 

 

3.2.5. Therapeutic regimens, expected toxicity, dose modifications 
 
Drug information 
Investigational treatment: nilotinib (AMN107, Tasigna, Novartis Pharma). 

  
Dose and schedule 
 

Patients will be treated with nilotinib: 



- From day 1 onward, 300 mg orally each morning and evening 

approximately 12 hours apart (300 mg BID). 

- In case of suboptimal response or failure (excluding progression to 

AP/BP) and in absence of safety concerns at 300mg BID, the dose is 

increased to 400 BID for 3 months; after 3 months, Nilotinib is continued at 

400 BID in case of optimal or suboptimal response and Nilotinib is 

discontinued in case of failure. 

- After 3 additional months at 400 mg BID, patients still suboptimal may 

continue at the same dose but after agreements with the Treatment 

Monitoring Committee. 

 

Therapy with nilotinib will be continued for up to 24 months, until progression to 

AP/BP or the development of intolerance of treatment. After 24 months of 

treatment, all the patients who at 24 months are in MR 4.0, will be offered to 

continue the study drug free-of-charge until the responsible physician and the 

patient will consider this in the best interest of the patient. For all the patients who 

will not be in MR 4.0 at 24 months, the choice of the treatment will be up to the 

physician. However, all the patients, whether or not in MR 4.0, will be followed-up 

for at least 5 years, and will be offered to participate in subsequent studies of the 

GIMEMA CML WP.  

 

Dose and schedule modifications 
Subjects will be monitored continuously for adverse events (toxicity) while on 

study therapy. This study uses the CTCAE (NCI Common Terminology Criteria 

for Adverse Events) version 4.0 for toxicity and AE reporting. The highest 

reported AE grade should be used to determine the dose modification action. 

 
Dose reduction guidelines for study drugs-related non-haematologic toxicity 
Grade ≥ 2 non-haematologic toxicity must be resolved within 28 days in order to 

resume study drug at the reduced dose. If a grade ≥ 2 non-haematologic toxicity 

does not resolve after 28 days of study drug interruption, the continuation of the 



treatment must be discussed by Local Investigator and Treatment Monitoring 

Committee (TMC) to decide if continuing therapy is in the patient's best interest. 

 

This applies to all clinical AEs, with the exception of cardiac AEs which have 

specific guidelines and to biochemical AEs with the exception of transaminases, 

bilirubin, lipase and amylase for which specific recommendations are made, 

aimed to keep the treatment at the same dose in case of grade 2 AEs. 

 

3.2.6. Clinical evaluation, laboratory tests and follow-up  
A patient can be enrolled within 6 months from diagnosis. Pretreatment with 

Hydroxyurea or Anagrelide for a duration of up to 3 months and/or pretreatment 

with Imatinib for up to 30 days are permitted. Patients can be enrolled only if 

spleen size, peripheral blood percentage of blast cells, eosinophils and 

basophils, and platelet count have been recorded prior to any antileukemic 

treatment, because these data are necessary for assessing the risk.  
 
Before treatment starts 

• Inclusion/exclusion criteria  

• Informed consent  

• Symptoms  

• Physical examination (height, weight, spleen, in cm below costal margin, 

vital signs and other relevant findings, including pulse rate and blood 

pressure)  

• Bone Marrow (BM) aspirate for cytogenetics, qualitative and mutational 

analysis (chromosome banding analysis is mandatory;). A sample must be 

stored for mutational analysis.  

• Blood counts and differential  

• Serum protein concentration and electrophoretic profile, IgG, IgA, IgM 

concentration  



• Serum chemistry (BUN, creatinine, AST, ALT, ALP, GT, bilirubine, 

glycemia,glycated hemoglobin, amylase, lipase, Na, K, Ca, P, Cl and Mg, 

cholesterol, HDL cholesterol, LDL cholesterol, tryglicerides)  

• Pregnancy test  

• Peripheral Blood (PB) for the assessment of BCR-ABL level (RT-Q-PCR). 

Optional if performed at diagnosis.  

• A PB sample for quantitative molecular analysis (RT-Q-PCR) and FISH  

• Peripheral blood for translational studies  

 
Before treatment starts - BASELINE (day 1) 

• Demography  

• Medical history  

• Current medical conditions  

• Prior and concomitant medications  

• Symptoms  

• Physical examination (height, weight, spleen, in cm below costal margin, 

vital signs and other relevant findings, including pulse rate and blood 

pressure)  

• 12-leads ECG and Echocardiogram  

 
During treatment (first 24 months) 

• Physical examination (spleen, in cm below costal margin, vital signs and 

other relevant findings, including body weight, pulse rate and blood 

pressure), is due every 15 day for three months, hence every 3 months.  

• Symptoms and adverse events are recorded continuously  

• Concomitant medications and nilotinib dosing are recorded continuously  

• Blood counts and differential are due at least every 15 days for the first 3 

months, hence at least every month until month 6 and at least every 3 

months thereafter.  

• Serum protein concentration and electrophoretic profile, IgG, IgA, IgM 

concentration are due every 6 months.  



• Serum chemistry is due to every 15 days for 3 months, hence every month 

until month 6 and every 3 months thereafter.  

• A 12 lead ECG is due after 1, 3, 6 and 12 and 24 months.  

• A BM aspirate for cytogenetics (chromosome banding analysis) is due 

after 3, 6, and 12, 18 and 24 months. 

• A PB sample for quantitative molecular analysis (RT-Q-PCR) is collected 

at 3, 6, 9, 12, 15, 18 and 24 months. FISH is optional baseline, due at 3, 6, 

12, 18 and 24 months in case of insufficient n. of metaphases (< 20) for 

BM cytogenetic evaluation  

 

During treatment (from 24 to 60 months) 
The assessment is due for three years and includes: 

• Physical examination every 6 months 

• Symptoms every 6 months 

• Concomitant medications, nilotinib dosing, and adverse events are 

recorded continuously 

• Blood counts and differential every 6 months 

• Serum protein concentration and electrophoretic profile, IgG, IgA, IgM 

concentration every 6 months 

• Serum chemistry every 6 months 

• PB sample for quantitative molecular analysis (RT-Q-PCR) will be 

collected every 3 months. A BM aspirate for cytogenetics (chromosome 

banding analysis) as per clinical practice   

• 12 lead ECG and echocardiogram are due every 12 months  

• Any SAE must be communicated immediately also after the end of study 

core.  

 
End of treatment  
At any time in case of treatment failure or treatment discontinuation:  



• Physical examination (spleen in cm below costal margin, vital signs and 

other relevant findings, including body weight, pulse rate and blood 

pressure)  

• Symptoms and adverse events  

• Concomitant medications and nilotinib dosing.  

• Blood counts and differential  

• Serum protein concentration and electrophoretic profile, IgG, IgA, IgM 

concentration  

• Serum chemistry  

• 12 lead ECG  

• BM aspirate for cytogenetics (chromosome banding analysis) and 

mutational analysis. In case of blast crisis, PB can substitute for BM.  

• PB sample for quantitative molecular analysis (RT-Q-PCR)  

 

3.2.7. Criteria of evaluation  
 
Definition of chronic phase (CP)  
All the following criteria:  

- less than 15% blasts in blood (marrow)  

- less than 30 % blasts + promyelocytes in blood (marrow)  

- less than 20% basophils in blood (marrow)  

- no extrahematologic involvement, apart from spleen and liver  

 
Definition of accelerated phase (AP) 
Any of the following criteria:  
- more than 15% but less than 30% blasts in blood (marrow)  

- more than 30 % but less than 50% blasts + promyelocytes in blood (marrow)  

- more than 20% basophils in blood (marrow)  

 
Definition of blast phase (BP)  
Any of the following criteria:  

- more than 30 % blasts in blood (marrow)  



- more than 50% blasts + promyelocytes in blood (marrow)  

- any extrahematologic involvement, apart from spleen  

 
Definition of risk 
For risk definition, the following criteria are required at diagnosis, prior to any 

treatment:  

- Age  

- Spleen size (cm below costal margin – max distance)  

- Platelet count  

- Blood blasts %  

- Blood eosinophils %  

- Blood basophils %  

 

The risk is calculated according to the international prognostic formulations, 

Sokal157, EURO158, and EUTOS159. 
Definition of failure  
The definition of failure, adapted to the European LeukemiaNet 2013 

recommendations18, includes:  

- No CHR and/or no CgR (Ph+ > 95%) at 3 months  

- Less than PCgR at 6 months and/or BCR-ABL >10% 

- Less than CCgR at 12 months and/or BCR-ABL >1%  

- Loss of CHR, any time  

- Loss of CCgR, any time 

- Confirmed loss of MMR, any time  

- Clonal Chromosomal Abnormalities (CCA) in Ph+ cells, any time.  

- BCR-ABL kinase domain mutations, any time  

 
Complete HR (CHR)  
Complete HR (CHR) is defined by all the following criteria:  

- WBC < 10x109/L  

- Platelet count < 450x109/L  

- No immature granulocytes in differential  



- Basophils less than 5%  

- Spleen non palpable  

- Hematologic response loss is defined by the loss of any of the criteria which 

define CHR  

 
Cytogenetic response 
Conventional Banding Analysis (CBA) is performed on bone marrow cells after 

short term culture (24 and/or 48 hours). The cells are treated with colchicine and 

with hypotonic solution. The pellet is fixed and washed in methanol-acetic acid 

(3:1). The cells are resuspended in fixative and dropped on slides. Karyotypes 

are examined after G-banding or Q-banding. 

The minimum number of metaphases to be scored is 20. 

CBA is performed with the purpose to evaluate: 

- the proportion of Ph pos metaphases 

- the presence of variant translocations 

- the presence of clonal chromosome abnormalities (CCA) in Ph pos cells 

- the presence of clonal chromosome abnormalities (CCA) in Ph neg cells 

All the cytogenetic abnormalities are captured and reported in the e-CRF. 

 

The CgR is defined based on the percentage of Ph pos metaphases, as 

evaluated by chromosome banding analysis of at least 20 marrow cell 

metaphases: 

- Complete (CCgR) if Ph pos 0 

- Partial (PCgR) if Ph pos 1-34% 

- Minor (mCgR) if Ph pos 35-65% 

- Minimal or none (min/none CgR) if Ph pos > 65% 

If only interphase FISH data from PB are available, the response can be defined 

only as non-complete or complete – to be complete by FISH, it is required that 

less than 1% of cells (minimum number 200) have a positive signal. 

 

CgR loss is defined whenever a CCgR is lost to PCgR or less. 



 
Clonal Chromosome Abnormalities (CCA) 
CCA are defined by any chromosome abnormality that becomes detectable in at 

least two cells in two subsequent cytogenetic examinations. 

 

Fluorescence-in-situ-hybridization (FISH) 

FISH analysis of PB cells is required if marrow cells cannot be obtained, at any 

time point. FISH is performed on the cytogenetic pellet of blood cells or marrow, 

using DNA probes that hybridizes to BCR and ABL regions. Only Extra-Signal 

(ES), Dual-Color Dual-Fusion (DCDF) or D-FISH BCR-ABL commercial probes 

can be used. 

 

Molecular Response (MR)  

RT-Q-PCR of BCR-ABL transcripts will be performed with the TaqMan 

technology as previously set up and standardized within the framework of the 

Europe Against Cancer (EAC) program ABL will be used as control gene to 

compensate for differences in RNA quality or RT efficacy, and results will be 

expressed as ratio of BCR-ABL/ABL%.  

The molecular response is assessed on peripheral blood samples using RT-Q-

PCR and is expressed as a ratio between BCR-ABL and ABL:  

 

- Major Molecular Response (MMR) is defined as a BCR-ABL/ABL ratio 

lower than 0.10% (as corrected by lab conversion factor, according to the 

international scale).  

- Deep Molecular Response: 2 different degree and deepness of response 

will be analyzed, the MR 4.0, which defines the primary endpoint and the 

MR 4.5  

- MR 4.0 is defined as an undetectable BCR-ABL transcripts level, or 

detectable BCR-ABL transcripts with BCR-ABL/ABL ratio < 0.01%, with a 

sensitivity of at least 10.000 copies of ABL.  



- MR 4.5 is defined as an undetectable BCR-ABL transcripts level, or 

detectable BCR-ABL transcripts with BCR-ABL/ABL ratio < 0.0032%, with 

a sensitivity of at least 32.000 copies of ABL.  

 

3.2.8. Statistical methods and data analysis 
 
Sample size 
Currently, the most important target of the CML therapy is the deep molecular 

response, a pre-requisite for treatment discontinuation. The aim of the current 

study is to investigate the deep MR rates of nilotinib. The primary endpoint is the 

MR 4.0 rate at 24 months. Sample size estimation has been performed using a 

two-sided binomial test. The MR 4.0 rate at 24 months during imatinib therapy is 

approximately 10%. Establishing that the minimum rate of interest with nilotinib is 

20%, a sample size of 109 patients is required for a 85% power (1-beta) and a 

two-sided type 1 error alfa of 5%. Assuming a 1% of patients with atypical BCR-

ABL transcript (not evaluable for molecular response) and a 10% drop-out rate, 

the total number of patients becomes 122. Patients dropping out early or not 

providing sufficient or missing data for any other reason will be included in the 

analysis set as non-responders. A minimum of 19 patients with MR 4.0 at 24 

months should be observed to define a study success. 

 
Populations for analysis  
This study follows an open-label, single-arm, multi-center design. It is planned 

that the data from all centers that participate in this protocol will be pooled and 

utilized. The main analysis will be performed when the last patient completes the 

24-month visit. ITT analysis set: all patients who received at least one dose of 

study drug. The ITT analysis set will be used for all safety and efficacy analyses.  

 
Statistical analysis  
Patient demographics/baseline characteristics: Qualitative data will be 

summarized by means of contingency tables and quantitative data will be 

summarized by appropriate descriptive statistics.  



Cytogenetic response will be calculated for the Ph positive patients only. Patients 

with atypical transcripts will not be considered for the molecular analysis. The 

cytogenetic and molecular response rates at each time-point will be calculated 

according to the ITT principle (ITT analysis set). Time-to-response is defined as: 

[date of first response - date of first study drug administration +1]. All the time-to-

response variables will be calculated using Kaplan Meier’s product limit 

estimates. The corresponding 95% confidence intervals will be computed as well.  

OS, PFS, FFS and EFS will be calculated from the date of start of treatment until 

death (OS), progression or death (PFS), failure or death (FFS), or any event 

(EFS), whichever comes first. Failure is defined according to ELN 2013 criteria18. 

For overall survival and progression-free survival, follow-up data after the 

discontinuation of the treatment will also be included. All the time to event 

variables will be calculated using Kaplan Meier’s product limit estimates. The 

corresponding 95% confidence intervals will be computed as well. 

The assessment of safety will be based mainly on the frequency of AEs, 

laboratory abnormalities and clinically notable ECG data. All AEs and laboratory 

abnormalities recorded during the study will be summarized by system organ 

class, severity (based on CTC v 4.0 AE grades) and type of AE. The duration of 

exposure to the study medication and total doses taken by the patient will be 

summarized. 

Deaths reportable as SAEs and non-fatal SAEs will be listed by patient and 

tabulated by type of AE. Other safety data (e.g., vital signs, special tests) will be 

considered as appropriate. 

 

3.3. Leukemic Stem cell collection and proteomic analysis 
 
CD34+ cells were purified by immune-magnetic separation from peripheral blood 

(PB) of 7 newly diagnosed chronic phase (CP) CML patients and compared to 

the normal counterpart obtained from normal bone marrow of three healthy 

donors (NBM) and/or from umbilical cord blood (CB) of three donors.  



The phosphorylation status of 40 different proteins belonging to numerous signal-

transduction pathways, and the expression of 31 proteins of the apoptotic 

machinery, were assessed using a customized direct phase proteome profiler 

antibody array. The resulting dots were visualized using ECL and quantified by 

densitometric analysis. 
 
Figure 2. List of proteins and corresponding phosphorylation sites 
detected in the study 
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4. Results 

4.1. Clinical results 

4.1.1. Patients characteristics 

 

One hundred thirty patients were enrolled in 33 Centers in Italy. The median age 

was 50 years (range 18-85); 19% of the patients were ≥ 65 years old; 66% of the 

patients were males. At baseline, 5% of the patients had clonal cytogenetic 

abnormality in the Philadelphia-positive cells (CCA Ph. Variant translocations 

were observed in 7% of the patients. 

The proportion of low risk patients according to Sokal, EURO, and EUTOS 

scores was 43%, 50%, and 92% respectively. The proportion of intermediate risk 

patients according to Sokal and EURO score was 37% and 45%; the proportion 

of patients with high-risk score was 20%, 5%, and 8%, respectively. 

The median follow-up at the cut-off of the present analysis was 24 months (range 

18-36). Patients characteristics are summarized in table 4. 

 

 

Table 4. Patients Characteristics 
 

Patients, n 130 

 

Age, years; median (range) 

65 years or older; n (%) 

Sex male, n (%) 

 

Cytogenetics; n (%) 

CCA Ph+ 

Variant translocations 

 

 

50 (18-85) 

25 (19) 

86 (66) 

 

 

7 (5) 

9 (7) 

 



Relative Risk; n (%) 

! Low 

! Intermediate 

! High 

 

Follow-up, months; median (range) 

Sokal       EURO    EUTOS 

56 (43)      65 (50)    120 (92) 

48 (37)      58 (45)          - 333 

26 (20)        7 (5)         10 (8)3 

 

24 (18-36) 

 

4.1.2 Molecular response 
 
The primary end-point of the trial was the rate of MR 4.0 at 24 months. 

Secondary end-points included the analysis of the rates of MR 4.5. For these 

analyses, the availability of samples with adequate sensitivity is of utmost 

importance. In fact, the definition of the different levels of deep molecular 

response, according to international accepted criteria14, is: 

• MR 4.0: detectable disease ≤ 0.01% BCR-ABL or undetectable disease, with ≥ 

10.000 ABL copies 

• MR 4.5: detectable disease ≤ 0.0032% BCR-ABL or undetectable disease, with ≥ 

32.000 ABL copies 

• MR 5.0: detectable disease ≤ 0.001% BCR-ABL or undetectable disease, with ≥ 

100.000 ABL copies  

 

Considering all the samples with a BCR-ABL/ABL ratio < 0.1% (corresponding to 

MMR), 90% of them had a number of copies of the control gene > 10,000, 

therefore appropriate to define this level of response. More in detail, 52% of the 

samples had a number of ABL copies of 10,001 – 31,999, therefore able to 

define a MR 4.0; 27% had a number of copies of ABL of 32,000 – 99,999, 

therefore enough to define a MR 4.5; 10% of the samples had a number of 

copies > 100,000, therefore able to define a MR 5.0 (Table 5). 

 

 

 
 



Table 5. Sensitivity of molecular samples 

 

 

 
The molecular response at each time point is illustrated in figure 3. The analysis 

is according to the intention-to-treat principle, therefore, not evaluable samples 

are considered as non-responders. 

At 3 months the rates of MMR, MR 4.0, and MR 4.5 were 18%, 3%, and 0%, 

respectively; At 6 months the rates of MMR, MR 4.0, and MR 4.5 were 53%, 

12%, and 2%, respectively; At 12 months the rates of MMR, MR 4.0, and MR 4.5 

were 57%, 28%, and 7%, respectively; At 18 months the rates of MMR, MR 4.0, 

and MR 4.5 were 65%, 29%, and 11%, respectively. 

The median time to major molecular response was 6 months. 

The estimated 24 months rates of MR 4.0 and MR 4.5 were 47% (38 – 57%) and 

22% (16 – 31%) (Figure 4). 

The stability of the molecular response was also analyzed. Sustained MR 4.0 

(4.5.) was defined as MR 4.0 (4.5) for at least 1 year, with at least 3 evaluable 

analyses. Overall, 57/130 (44%) patients achieved a MR 4.0; 27/57 (47%, or 

21% of the total) had a sustained MR 4.0; 30/130 (23%) patients achieved a MR 

4.5; 6/30 (20%, or 5% of the total) had a sustained MR 4.5. 

  

 
  

Number of ABL copies Percentage of samples 

< 10.000 10% 

10.000 - 31.999 (MR4.0) 52% 

32.000 - 99.999 (MR4.5) 27% 

> 100.000 (MR5.0) 10% 



Figure 3. Molecular response at each time-point 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Estimated 24 months cumulative rates of MR 4.0.and MR 4.5 
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4.1.3. Response according to ELN 2013 recommendations 
The response at the 3rd month, according to the cytogenetic evaluation, was 

classified as optimal, warning, failure, or not evaluable in 61.5%, 3%, 0.7%, and 

34.6% of the patients, respectively.  According to the molecular evaluation it was 

classified as optimal, warning, or not evaluable in 76.9%, 4.6%, and 18.4% of the 

patients, respectively. 

The response at the 6th month, according to the cytogenetic evaluation, was 

classified as optimal, warning, failure, or not evaluable in 70.8%, 1.5%, 3%, and 

24.6% of the patients, respectively.  According to the molecular evaluation it was 

classified as optimal, warning, failure, or not evaluable in 73.1%, 6.9%, 2.3, and 

18.4% of the patients, respectively. 

The response at the 12th month, according to the cytogenetic evaluation, was 

classified as failure, or not evaluable in 1.5%, and 20.7% of the patients, 

respectively.  According to the molecular evaluation it was classified as optimal, 

warning, failure, or not evaluable in 53.1%, 19.2%, 1.5%, and 25.4% of the 

patients, respectively. 

 

 

Figure 5. Response at different time-points according to ELN 2013 
recommendations 
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Combining the hematologic, cytogenetic, and molecular data (Figure 5), the 

response at the 3rd month was classified as optimal, warning, failure, or not 

evaluable in 82.3%, 6.1%, 0.7%, and 10.7% of the patients, respectively. At the 

6th month, it was classified as optimal, warning, failure, or not evaluable in 80%, 

6.9%, 3.8%, and 9.2% of the patients, respectively. At the 12th month, it was 

classified as optimal, warning, failure, or not evaluable in 53.1%, 18.4%, 2.3%, 

and 25.4% of the patients, respectively. 

 

4.1.4. Events 
Overall, events that lead to permanent nilotinib discontinuation were recorded in 

23 patients (18.4%). Failures according to ELN 2013 criteria were observed in 7 

(5.3%) patients, and progression to accelerated/blast phase in 2 (1.5%) patients. 

At last contact, all patients were alive. 

The estimated 24-months event-free survival (EFS), failure-free survival (FFS), 

progression-free survival (PFS), and overall survival (OS), were 74%, 93%, 98%, 

and 100%, respectively (Figure 6). 

 

Figure 6. Estimated 24-months survival measures 
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4.1.5. Cardiovascular events 
Seven cardiovascular events were observed (Table 6). In 5 cases, they had an 

atherosclerotic pathogenesis: 3 coronary artery diseases and 2 peripheral arterial 

thrombosis. All patients had CV risk factors at baseline. Of note, the total 

cholesterol, and both LDL and HDL cholesterol fractions significantly increased 

during treatment. On the contrary, triglycerides concentrations had not significant 

variations, and neither a significant increase of HbA1c was observed.  

 

Table 6. Cardiovascular adverse events  

 N (%) 
Overall incidence 
 

-  Coronary artery disease 
-  Arterial thrombosis 
-  QTc prolongation 
-  Atrioventricular block 

7/130 (5%) 
 

3 
2 
1 
1 

 
 
4.1.6. Patient disposition 

After a median follow-up of 24 months (range 18-36) all the enrolled patients are 

alive, and 107 (82%) of the patients are still on study (Table 7). The nilotinib daily 

dose was 800 mg, 600 mg, 300 mg or less, in 2%, 75%, and 5% of the patients, 

respectively. The main reason for treatment discontinuation was toxicity (11 

patients, 8%); other reasons included failures (5 patients, 4%), and progression 

to accelerated/blast phase (2 patients, 2%). 

 
Table 7. Patient disposition 
 

 N (%) 
Still on study 
Off-study 
Progression to AP/BP 
Failure 
Toxicity 
Other* 
* Pregnancy, lost follow-up, withdrawal of informed consent 

107 (82) 
23 (18) 

2 (2) 
5 (4) 

11 (8) 
5 (4) 

 



4.2. Biological results 
 
4.2.1 Samples 
 
CD34+ cells were purified by immune-magnetic separation from peripheral blood 

(PB) of 7 newly diagnosed chronic phase (CP) CML patients and compared to 

the normal counterpart obtained from normal bone marrow of three healthy 

donors (NBM) and/or from umbilical cord blood (CB) of three donors.  

CP-CML samples were obtained from patients with WBC counts ranging 

between 41,900 to 421,400; Sokal score resulted intermediate in six patients and 

low in one (Table 8). 

 

Table 8. Characteristics of patients with CD34+ cells collected at diagnosis 
 

 

4.2.2. Analysis of the phospho-proteomic profile 
The comparison between the phospho-proteomic profile of CP-CML CD34+ cells 

and NBM CD34+ cells (Figure 7, 8) showed that the former are characterized by:  

1) lower phosphorylation of STAT2 (p=0.023), STAT5 (p=0.036), and of tyrosine 

kinases of the Src family - Lck, Fyn, Lyn, and Yes (p=0.04) -, involved in the 

regulation of growth and cell survival;  

2) higher phosphorylation of p53, at Ser15 (p=0.047).   

MATERIALS & METHODS 

 
•  CD34+ cells were purified from: 

  peripheral blood (PB) of 7 chronic phase (CP) CML patients, 
  normal bone marrow of 3 healthy donors (NBM), 
  umbilical cord blood (CB) of 3 donors, 
  one leukapheretic product of a normal volunteer (PBSC).  

•  The phosphorylation status of 40 proteins 
from proliferation STP and the expression of 
31 proteins from the apoptotic machinery 
were assessed by using a customized direct 
phase proteome profiler antibody array. The 
resulting dots were visualized using ECL and 
quantified by densitometric analysis.  



Figure 7. Analysis of phospho-proteomic profile reveals that STATs and 
SRK family members resulted differently activated in CML CD34+ cells 
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Figure 8. Detail of STAT2 phospho-proteomic profile  
 
 

 
 
 
 
 
 
 
 
4.2.3 Analysis of the expression of apoptotic proteins 
The analysis of the expression of 32 apoptotic proteins revealed that CD34+ cells 

from CP-CML, compared to normal CD34+ cells (Figure 9, 10), are characterized 

by:  

1) lower expression of the catalase (p=0.044), an enzyme that protects cells from 

the toxic effects of hydrogen peroxide and promotes growth of normal and 

neoplastic cells including myeloid leukemia cells;  

2) higher expression of FADD, a death receptor involved in extrinsic apoptosis 

and necroptosis, and of the heat shock proteins HSP60 and  HSP70, essentials 

for the survival of the cells after toxic stimuli.  
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Figure 9. FADD, HSP60, HSP70 and catalase are differently expressed in 
CML CD34+ cells compared to normal CD34+ cells. 
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Figure 10. Detail of HSP70 expression  
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5. Discussion 
 
Nilotinib is a derivative of imatinib with greater potency and specificity against the 

tyrosine kinase activity of BCR-ABL1, the characteristic leukemogenic protein of 

chronic myeloid leukemia (CML)160. Due to the efficacy shown in imatinib 

resistant or imatinib-intolerant patients, nilotinib has been tested in the first-line 

setting. The randomized phase III trial ENESTnd demonstrated the superior 

efficacy of nilotinib (both at 300 mg and 400 mg twice daily [TD]) compared to 

imatinib 400 mg once daily25. On the basis of this study, Nilotinib was approved 

for the first-line treatment of CML at the dose of 300 mg TD (less toxic and 

equally effective). The latest update, with 5 years of follow-up, confirmed the 

superior anti-leukemic activity of nilotinib, with higher progression-free survival, 

and higher rates of deep molecular responses161. Only other two small phase II 

trials testing prospectively nilotinib frontline (400 mg TD) have been so far 

published by independent investigators (GIMEMA and the MD Anderson)23,149. 

These studies, although with a short follow-up (median less than 18 

months)23,149, showed that nilotinib induced high and fast response rates, with 

few progressions to accelerated-blast phase (AP/BP), and favorable early toxicity 

profile. On the other hand, nilotinib-associated atherosclerotic adverse events 

(AAE) were recently uncovered, particularly peripheral arterial occlusive 

disease28,30,31,150,151, raising concerns on the long-term safety of this drug. 

Since it may be possible that nilotinib will be more and more used for the 1st line 

treatment of CML, this prospective phase III-b trial was performed by the 

GIMEMA CML WP to explore and to assess the efficacy and safety of nilotinib in 

a multicenter, independent study of an unselected cohort of patients. Here, after 

a median follow-up of 24 months, all patients are alive, and only 2 patients have 

progressed to AP/BP. Therefore, our study confirmed that nilotinib is highly 

effective in the prevention of the progression to AP/BP, a condition that today is 

still associated with high mortality rates. 

Failures according to ELN 2013 recommendations were few (7 patients, 5.3%); 

however, about a quarter of patients have discontinued nilotinib treatment by 24 

months, being toxicity the most common reason (11 patients, 8.4%). Despite the 



relatively short follow-up, cardiovascular issues, particularly atherosclerotic 

adverse events (AE), have emerged. The frequency of these AEs may 

counterbalance the anti-leukemic efficacy. Therefore, it seems crucial to identify 

at diagnosis patients at higher risk for atherosclerotic complications during 

nilotinib therapy, evaluating baseline known CV risk factors, promoting the 

improvement of modifiable ones, and, possibly, as recently described162, studying 

biochemical and genetic traits predictive of thrombotic vascular events. 

Importantly, for patients with an unfavorable CV risk profile, other TKIs (i.e. 

imatinib, dasatinib) may be used.  

Currently, one of the most important targets of the treatment of CML with TKIs is 

the achievement of the deep MR, marker of better long-term outcome. Moreover, 

deep MR has been identified as a prerequisite to treatment discontinuation156,163.  

The primary endpoint of the present study is the rate of MR 4.0 at 24 months, 

which can provide important information to plan and perform future studies aimed 

at treatment discontinuation, either primarily or after addition of other drugs 

targeting residual leukemic stem cells.  Here, the estimated 24-month rates of 

MR 4.0 and MR 4.5 were 47% and 22%, respectively. These results compare 

favorably to those obtained with imatinib, in historic cohorts, and confirm the 

findings of the Company-sponsored ENESTnd study164.  

Additional important information derived from the present trial, and not yet 

reported in other nilotinib studies, is the stability of the deep molecular response. 

A stable molecular response for one year or more was maintained by 27/57 

(47%, or 21% of the total) patients that achieved a MR 4.0, and by 6/30 (20%, or 

5% of the total) patients that obtained a MR 4.5, respectively. Considering the 

increasing rates of deep MR over time (MR 4.0: 2%, 12%, 28%, 29% at 3, 6, 12, 

18 months, respectively; MR 4.5: 0%, 2%, 7%, 12% at 3, 6, 12, 18 months, 

respectively), a significant proportion of patients will be candidate to treatment 

discontinuation in the next years, with higher probability of remaining disease-

free in the long term. The advantages of this possible future scenario could be: 

first, the possibility of treatment discontinuation, at least in patients with chronic 

clinical adverse events; second, a potential reduction of the costs of TKI 



treatment (after the introduction of TKI, the costs of CML treatment is increasing 

year by year, with the increasing prevalence of CML patients). 

However, even when a stable deep MR is reached, a significant proportion of 

patients, 40 – 60% depending to the molecular criteria used, will eventually 

relapse156,163. In almost all cases the restarting of the treatment with TKI was able 

to restore a molecular response 

The persistence of detectable disease in most patients, and the clinical relapses 

observed after TKI discontinuation despite a prolonged deep molecular 

response, are mainly related to the persistence of a quiescent population of 

leukemic stem cells. Thus, targeting the leukemic stem cells could be necessary 

for the eradication of the disease. Several mechanisms are implicated in 

leukemic stem cells persistence, and probably most of them are similar to those 

active in normal stem cells. Therefore, the characterization of the leukemic stem 

cells and the understanding of their differences compared to the normal 

counterpart are of utmost importance.  

In our study, patient’s samples were collected at the CML diagnosis, prior to any 

anti-leukemic treatment, to separate the CD34+ stem cells. We focused on their 

proteomic characterization in comparison to CD34+ cells derived from healthy 

donors. The results showed a different phospho-proteomic profile between the 

leukemic and normal CD34+ cells. In particular, in the CD34+ CML cells we 

found: a lower phosphorylation of STAT2, STAT5, and tyrosine kinases of the 

Src family (Lck, Fyn, Lyn, and Yes), involved in the regulation of growth and cell 

survival; a higher phosphorylation of p53.  

The analysis of the expression of proteins involved in the apoptotic machinery 

and in the cell cycle regulation, revealed that CD34+ cells from CP-CML, are 

characterized by lower expression of the catalase, an enzyme that protects cells 

from the toxic effects of hydrogen peroxide and promotes growth of normal and 

neoplastic cells; a higher expression of FADD, a death receptor involved in 

extrinsic apoptosis and necroptosis, and of the heat shock proteins HSP 60 and 

HSP70, essentials for the survival of the cells after various cytotoxic stimuli. 



Taken together, these data show that CD34+ cells from leukemic patients at 

diagnosis, have a proteomic profile that promotes the quiescence through the 

inhibition of proliferation, and that favors cell survival despite cytotoxic stimuli. 

These characteristics may explain, at least partially, why these cells are resistant 

to the treatment with TKIs, which is highly effective in targeting more 

differentiated and proliferating cells, and, ultimately, why these CD34+ cells can 

determine the relapse after treatment discontinuation. 

The presence of these additional and complex changes in the signaling network 

of chronic phase CML must be taken into account for the investigation on novel 

targeted therapies, aimed at the eradication of the disease. 
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