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Abstract 
 

 
The aim of this study is to investigate on some molecular mechanisms contributing to 

the pathogenesis of osteoarthritis (OA) and in particular to the senescence of articular 

chondrocytes. It is focused on understanding molecular events downstream GSK3β 

inactivation or dependent on the activity of IKKα, a kinase that does not belong to the 

phenotype of healthy articular chondrocytes. Moreover, the potential of some 

nutraceuticals on scavenging ROS thus reducing oxidative stress, DNA damage, and 

chondrocyte senescence has been evaluated in vitro.  

The in vitro LiCl-mediated GSK3β inactivation resulted in increased mitochondrial 

ROS production, that impacted on cellular proliferation, with S-phase transient arrest, 

increased SA-β gal and PAS staining, cell size and granularity. ROS are also 

responsible for the of increased expression of two major oxidative lesions, i.e. 1) double 

strand breaks, tagged by γH2AX, that associates with activation of GADD45β and p21, 

and  2) 8-oxo-dG adducts, that associate with increased IKKα and MMP-10 expression. 

The pattern observed in vitro was confirmed on cartilage from OA patients.  

IKKα dramatically affects the intensity of the DNA damage response induced by 

oxidative stress (H2O2 exposure) in chondrocytes, as evidenced by  silencing strategies. 

At early time point an higher percentage of γH2AX positive cells and more foci in 

IKKα-KD cells are observed, but IKKα KD cells proved to almost completely recover 

after 24 hours respect to their controls. Telomere attrition is also reduced in IKKαKD. 

Finally MSH6 and MLH1 genes are up-regulated in  IKKαKD cells but not in control 

cells.  
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Hydroxytyrosol and Spermidine have a great ROS scavenging capacity in vitro. Both 

treatments revert the H2O2 dependent increase of cell death and γH2AX-foci formation 

and senescence, suggesting the ability of increasing cell homeostasis. These data 

indicate that nutraceuticals represent a great challenge in OA management, for both 

therapeutical and preventive purposes. 
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1- INTRODUCTION 
 
 

 
 
 

1.1 Osteoarthritis (OA) 

General characteristics.  

Osteoarthritis (OA), the most common arthritis in western population, is a degenerative 

joint disease characterized by progressive loss of cartilage, synovial inflammation, 

osteophyte formation, joint space narrowing and subchondral bone sclerosis (Castaneda, 

Roman-Blas et al. 2012); (Sharma, Jagga et al. 2013), and is responsible for structural 

and functional alterations of articular cartilage. This disease mostly affects knee, hip and 

hand and is one of the most common source of pain and disability in the elderly (Arden 

and Nevitt 2006) (Fig.1).  OA affects one in six adults, and by 2030 it is estimated that 

20% of people in Europe and United States will be affected by this pathology (De Bari, 

Kurth et al. 2010). 

 

 

 

 

Fig.1 (A) Osteoarthritis at level of hand (deformations of the distal interphalangeal joints). (B) 
Plain radiograph of an osteoarthritic  hip joint. (C) MRI of an osteoarthritic knee.  
Image modified by Bijlsma et al., 2001 
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The aetiology of OA is multi-factorial and includes not only age, gender, weight but 

also joint injury and genetic factors.  After the age of 50 years more women than men 

are affected (Bijlsma, Berenbaum et al. 2011). Osteoarthritis develops progressively 

over several years and chronic pain is frequently associated with significant functional 

impairment due to progressive degradation of articular cartilage,  inflammation, 

stiffness and loss of mobility (Felson 2006). These symptoms diminish the patients’ 

quality of life. 

On the biochemical level, OA is characterized by uncontrolled production of matrix-

degrading enzymes, including aggrecanases (ADAMTSs) and matrix metalloproteinases 

(MMPs), which results in the destruction of cartilage extracellular matrix (Goldring and 

Goldring 2007). Other hallmarks of the disease are new bone formation at the joint 

margins (called osteophytes), limited inflammation of the synovial tissue (synovitis), 

and changes in the subchondral bone structure (sclerosis and cysts) (Fig. 2). This 

process is driven, in part, by signalling mechanisms induced by stressful or 

inflammatory mediators. 

 

Histopathology of OA. 
Fig.2 Schematic drawing of an osteoarthritic joint Clinical and structural hallmarks of the 
disease are shown on the left. On the right the interplay between cartilage, bone and synovial 
tissue is displayed. 
Image modified by Lotz et al., 2012 
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Osteoarthritis affects not only articular cartilage but also subchondral bone, synovial 

membrane and joint capsule (Goldring and Goldring 2007). The very early 

histopathological features are characterized by hypertrophic repair (Dreier 2010). In this 

context articular chondrocytes increase proliferation rate so they form “clusters”. Some 

anabolic activities are up-regulated such as an increased synthesis of proteoglycans and 

type II collagen. Besides this very early hypertrophic phase, the process is followed by a 

high catabolic activity, leading to an increased production of matrix metalloproteinases, 

aggrecanases, higher expression of regulatory proteins, increase of stress, senescence 

and apoptotic markers (Goldring and Marcu 2009). Expression of MMP-1, MMP-3, 

MMP-9, MMP-13 and MMP-14, as well as aggrecanases (ADAMTS-5, ADAMTS-4, 

and ADAMTS-9),  drastically increases (van der Kraan, Blaney Davidson et al. 2010); 

(Madry, Luyten et al. 2012). The expression of MMP-13, known to be pivotal in OA 

pathology, is regulated by the interplay of two fundamental transcription factors (Runx-

2 and Sox-9), contributing to the cartilage degeneration process (Orfanidou, Iliopoulos 

et al. 2009). These early alterations lead to a progressive loss of the cartilaginous 

structure, beginning with fibrillation of the superficial zone, followed by matrix loss, 

and appearance of simple and then more complex fissures (Goldring and Goldring 

2007).  Moreover, there is evidence of chondrocyte death and of chondrons, in which 

the cells are disoriented with lack of their normal spatial organization (Pritzker, Gay et 

al. 2006) . As a result, the thickness of the articular cartilage decreases. 

In 2006, some OARSI (Osteoarthritis Research Society International) members 

proposed a grading and staging system for OA. This group has defined as “grade” a 

quantitative evaluation of the extent of OA progression into articular cartilage depth 

while the horizontal extent of the cartilage lesion is termed “stage”. The “score”, 

defined as the result of OA grade and stage, reflects OA severity and extent. The grade 
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value goes from 0.0 (articular cartilage surface is intact) to 6.0 (joint surface is 

deformed). On the other hand, with healthy cartilage being of stage 0, the stage value 

goes from 1 (less than 10% of joint involvement) to 4 (more than 50% of joint 

involvement) (Pritzker, Gay et al. 2006).  

 

1.2 Articular Cartilage 

Development of articular cartilage: from chondrogenesis to endochondral ossification. 

Chondrocytes are the only cellular component of articular cartilage and their primary 

function is to maintain cartilage homeostasis. During fetal development, the greater part 

of the skeleton is cartilaginous. At the level of the long bones, this “temporary” 

cartilage is gradually replaced by bone  in a process called endochondral ossification,  

that ends at puberty, although the growth plates will complete their ossification only 

some years later. In contrast, the cartilage in the joints remains un-ossified during the 

whole life and is, therefore, “permanent”. The development of both temporary and 

permanent cartilage is called chondrogenesis and begins with the proliferation of 

chondroprogenitor from mesenchymal stem cells; at the completion of the process, in 

articular cartilage, the chondrocytes are kept in a state of maturational arrest and are 

prevented to complete the default route of their maturation process which ends with 

hypertrophy and terminal differentiation. Stage-specific transcription factors and 

signalling pathways play a key role in the process of chondrocyte maturation (Dreier 

2010).  As articular cartilage is formed to last for life, chondrocytes display only 

moderate metabolic activity under normal conditions to maintain their surrounding 

extracellular matrix (ECM) comprising collagens, proteoglycans and non-collagenous 

proteins. Under non-diseased conditions, the cells remain in a resting state and refrain 

from proliferation and terminal differentiation; this process is regulated by the 
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transcription factor Sox9.  In a diseased OA state, however, some articular chondrocytes 

loose their differentiated phenotype and enter an endochondral ossification-like cascade 

of proliferation (Tallheden, Bengtsson et al. 2005) and hypertrophic differentiation 

followed by extracellular matrix calcification.  

 

 

 

 

This process is associated with an increase of environmental stress, articular 

chondrocyte  proliferation, expression of  hypertrophy markers (for example, MMP-13 

and collagen X), remodeling of the cartilage matrix by proteases, vascularization and 

focal calcification of joint cartilage with deposition of calcium hydroxyapatite crystals. 

This profound ECM perturbation and environmental stress can lead to chondrocyte 

programmed cell death. Hypertrophic differentiation and endochondral ossification are 

regulated by a transcription factor called Runx-2.  Therefore some of the characteristics 

Fig.3 Anatomy of articular cartilage and subchondral bone in normal and OA joints. 
Normal articular cartilage is divided into four zones. These zones consist of a small number of 
chondrocytes trapped in collagen matrix. Alteration in OA joint is represented by collagen matrix 
disruption in articular cartilage and thickening of subchondral bone. Fissuring and flanking in 
articular cartilage induces vascularization of cartilage, leading to exposure of subchondral bone 
to external surface.  
Image modified by Sharma et al., 2013 
 



8 

 

of osteoarthritic cartilage resemble chondrocyte differentiation processes during skeletal 

development (Dreier 2010) and  osteoarthritic chondrocytes undergo hypertrophy and 

terminal endochondral ossification, mimicking the pattern of differentiation of fetal 

skeletogenesis (Borzi, Olivotto et al. 2010); (Marcu, Otero et al. 2010) 

 

Structure of articular cartilage. 

In regard to its cellular composition, articular cartilage is less complex as compared to 

other tissues as it is neither vascularized nor innervated and does not contain tissue 

macrophages. Nevertheless it is a tightly regulated tissue,  kept in a low homeostatic 

turnover by the chondrocytes that represent approximately 5% of the total tissue volume 

(Buckwalter, Mankin et al. 2005). Articular cartilage covers the end of bones of 

synovial or diarthrodial joints and acts bearing static and dynamic forces (shear, 

compression and tension). These mechanical loads are absorbed by the cartilage 

extracellular matrix (ECM) that is mainly constituted by collagens and proteoglycans. 

Type II collagen is composed of three polypeptide chains forming the fibrillar unit that 

polymerize outside the cells in a network with type XI and type IX collagen  (Heinegard 

and Saxne 2011). Proteoglycans are mostly represented by large macromolecular 

aggregates of units called “aggrecan” anchored to a hyaluronan molecule. Aggrecan are 

macromolecular complexes with a core protein which establishes several interactions 

with glycosaminoglycans (GAG). The network of type II collagen fibrils is essential for 

maintaining the volume and shape, while proteoglycans ensure elasticity of the tissue. 

Collagens and proteoglycans are differently organized across the ECM thus it is 

possible to distinguished a territorial and an inter-territorial region as a function of the 

proximity to chondrocytes. In the inter-territorial area, the collagen component is highly 

prevalent. Conversely, the proteoglycan component is much more represented in the 
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territorial region (Madry, Grun et al. 2011). In articular cartilage four zones can be 

distinguished; the superficial, middle, deep and calcified zone.  From a structural point 

of view, the superficial layer of articular cartilage is composed by a network of 

extracellular matrix proteins, proteoglycans, collagen, and non-collagenous proteins, 

and maintains a high water content. This zone includes a large percentage of immature 

and progenitor cells (Grogan, Miyaki et al. 2009). Middle layer contains randomly 

oriented collagen fibers with larger chondrocytes. Deep stratum is formed by vertical 

columns separated by collagenous fibrils. The last layer of articular cartilage is 

represented by calcified cartilage with partial mineralization and hypertrophic 

chondrocytes. This zone is separated from the deep zone by the so called tidemark of 

collagen X fibrils (Poole, Kojima et al. 2001). Subchondral bone plate is placed under 

the deepest calcified area of the articular cartilage (Burr 2004) (Fig. 3). The unique 

composition and organization of the matrix in articular cartilage are determined during 

embryonic and postnatal development. Articular cartilage is avascular, alymphatic and 

aneural, and oxygen and nutrients arrive to chondrocytes by diffusion from the synovial 

space. Oxygen gradient is found in the tissue and surface chondrocytes have an aerobic 

metabolism while the deeper-layer chondrocytes have an almost complete anaerobic 

metabolism.  

 

1.3 Role of senescence in OA 

General features of senescence. 

The process of cell senescence is classically defined as the loss of the ability of mitotic 

cells to further divide in culture after a reproducible number of  population doublings 

(generally from 30 to 40), the so called ‘‘Hayflick limit” (Hayflick 1984). This process 

refers to the irreversible growth arrest that occurs when dividing cells encounter many 
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different stimuli. The limited growth of human cells in culture is due to telomere 

erosion at each S phase of cellular cycle; besides the gradual loss of DNA at the ends of 

chromosomes, the eroded telomeres generate a persistent DNA damage response 

(DDR), which initiates and maintains the senescence growth arrest (d'Adda di Fagagna, 

Reaper et al. 2003); (Takai, Smogorzewska et al. 2003); (Rodier, Coppe et al. 2009). 

Genomic damage affects both telomeric and non-telomeric sites; for example DNA 

double strand breaks are especially potent senescence inducers that generate the 

persistent DDR signaling needed for the senescence growth arrest (Nakamura, Chiang et 

al. 2008). Another cause of  senescence is the so-called “culture stress”, that includes 

not only inappropriate condition of culture (e.g., plastic, serum), but also an oxidative 

stress  (Parrinello, Samper et al. 2003). 

Senescence has been associated to several phenotypes that could be resumed in some 

points: 

1- The senescence associated growth arrest is permanent and not reversible. 

2- Senescent cells increase in size, enlarging more than two-fold relative to the size 

of non senescent cells (Hayflick 1965). 

3- Senescent cells express a senescence-associated β-galactosidase (SA-βgal) 

(Dimri, Lee et al. 1995). 

4-  Most senescent cells express p16INK4a, that causes formation of senescence-

associated heterochromatin foci (SAHF) (Narita, Nunez et al. 2003).   

5- DDR-induced senescence is characterized by persistent nuclear foci that contain 

activated DDR proteins (d'Adda di Fagagna, Reaper et al. 2003).  

6- Senescent cells with persistent DDR signaling secrete growth factors, proteases, 

cytokines, and other factors that have potent autocrine and paracrine activities 
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(Coppe, Patil et al. 2008) called senescence-associated secretory phenotype 

(SASP). 

 

The phenomenon of ‘‘intrinsic’’ or “replicative” senescence.  

According to its classical definition, senescence is a phenomenon affecting proliferating 

cells which loose their proliferative activity after a period of expansion in culture 

(‘‘intrinsic’’ or “replicative” senescence). It is accompanied by a reduction in 

proliferative potential and it is not only associated with an alteration of the morphology 

and cellular functions, but also with shortening of the total length of telomeres and the 

possibility of accumulating DNA damage (Lawless, Wang et al. 2010). Replicative 

senescence is characterized by a period of normal growth followed by cessation of cell 

divisions. The cells placed in long-term culture show a series of physiological, 

molecular and functional changes that lead to senescence (Bonab, Alimoghaddam et al. 

2006).  So this mechanism may have evolved in tissues to prevent cells with damaged 

DNA from being replicated and thus to prevent tumor formation (Loeser 2009).  In vivo 

studies have demonstrated the relevance of replicative senescence for tissues with  rapid 

turnover (such as skin), showing that fibroblasts isolated from older humans or animals 

reach replicative senescence sooner than cells isolated from younger individuals (Muller 

2009).  Replicative senescence is associated with changes in DNA structure and 

function including telomere shortening accompanied by telomere dysfunction (Itahana, 

Campisi et al. 2004); (Goyns 2002). 

Telomeres are big nucleoprotein complex found at the ends of chromosomes (Blackburn 

1994).   In humans, the repetitive sequence of telomeric DNA  is d(TTAGGG) (Meyne, 

Ratliff et al. 1989) and most of that DNA is organized in nucleosomes. Telomeric DNA 

is always oriented 5'-3' towards the terminal portion of the chromosome and has a 
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protrudent extreme of ~200 nucleotides as consequence of the problem of terminal 

replication. In humans, telomeres are bound by a six-protein complex called Shelterin,  

 

 

 

 

comprised of TRF1 and TRF2 which in turn recruit RAP1, TIN2, TPP1 and POT1 

which interacts with single-stranded and double-stranded telomeric DNA (Fig.4). This 

structure forms a large protective loop called T-loop which serves to sequester the 

chromosome terminus.  At the very end of the T-loop, the single-stranded telomere 

DNA is held onto a region of double-stranded DNA creating a triple-stranded structure 

called D-loop (Gomez, Armando et al. 2012). These structures prevent chromosome 

ends from being recognised as DNA break (de Lange 2002). Telomeric DNA is 

gradually lost with each S phase because DNA polymerases are unidirectional and 

cannot initiate a new DNA strand, resulting in progressive shortening of DNA near the 

end of a chromosome; additionally, most normal differentiated cells do not express 

Fig.4 Human telomeric structure.  A schematic representation of telomeric DNA bound by the 
Shelterin complex consisting of six telomere binding proteins: TRF1, TRF2, Rap1, TIN2, TPP1 and 
POT1.  
Image modified by Sandin et al., 2014 
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telomerase, the specialized enzyme that can restore telomeric DNA sequences de novo 

(Harley, Futcher et al. 1990); (Bodnar, Ouellette et al. 1998). Progressive telomere 

erosion with ongoing proliferation can therefore results in cell cycle arrest and 

replicative senescence. However, cell senescence appears to be much more complex 

than simple cell-cycle arrest occurring after a finite number of cell divisions. 

Replicative senescence has been associated with features of senescent phenotype such 

as enlarged flattened cells in culture, expression of the senescence-associated β-

galactosidase (SA-βgal),  and presence of markers of DNA damage (Rodier, Munoz et 

al. 2011). 

 

The phenomenon of ‘‘extrinsic’’ or “stress-induced” senescence.  

Progressive telomere shorting due to repeated cycles of cell division does not explain 

senescence in post-mitotic tissue like articular cartilage. It is known that cellular 

senescence might be provoked by various cellular events such as oxidative damage to 

DNA or other cell components. Oxidative damage, activated oncogenes, and 

inflammation can also damage telomeres and  this is a much more likely mechanism for 

senescence in cartilage. This model of senescence may be called ‘‘extrinsic’’ or stress-

induced and is relevant for post-mitotic tissues, in which damaged proteins, lipids and 

DNA accumulate over time. This type of senescence can occur following diverse 

stimuli including ultraviolet radiation, oxidative damage, activated  oncogenes, and 

chronic inflammation (Itahana, Campisi et al. 2004); (Patil, Mian et al. 2005). It has 

been shown that post-mitotic cells are more vulnerable to accumulation of aberrant 

protein and metabolic waste (Vicencio, Galluzzi et al. 2008). Oxidative damage to DNA 

can directly contribute to stress-induced senescence and, because the ends of 

chromosomes are particularly sensitive to oxidative stress, this can result in telomere 



14 

 

shortening similar to that seen with replicative senescence (Itahana, Campisi et al. 

2004); (Goyns 2002).   

 

Senescence in Aging and Osteoarthritis. 

Since the incidence of osteoarthritis increases with age, the aging of chondrocytes is 

accompanied by progressive cellular senescence and reduced ability to maintain and to 

restore articular cartilage. In fact chondrocytes from older adults share many of the 

changes exhibited by senescent cells, like telomere shortening, SA-β galactosidase 

staining, increase in p53 and p21 activity and in DNA damage (Mowla, Lam et al. 

2014); (Martin 2001). Adult articular chondrocytes rarely, if ever, divide in normal 

tissue in vivo (Aigner, Zien et al. 2001) so it would seem unlikely that they could 

experience telomere shortening due to classical replicative senescence in vivo. However,  

chondrocyte proliferation is a feature seen in OA tissues and both telomere shortening 

and the presence of SA-β  galactosidase have been observed in chondrocytes in OA 

lesions. Thus, it is much more likely that chondrocyte senescence is induced by chronic 

stress. This process,  besides limiting replicative potential of the cells, is also associated 

to the so-called “Senescence associated Secretory phenotype” (SASP) sharing many 

features with the OA chondrocyte phenotype, such as increased production of IL-6 and 

IL-1, MMP-3 and MMP-13 and growth factors (Freund, Orjalo et al. 2010). During 

aging and osteoarthritis, articular cartilage extracellular matrix changes with respect to 

the total amount and composition, and undergoes proteolysis and other posttranslational 

modifications (Fig. 5). 
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In OA, increased proteolytic activity in cartilage and synovial fluid causes cartilage 

matrix changes, with an increase in degraded collagen molecules. This degradation is 

accompanied by the loss of cartilage in the superficial zone and loss of aggrecan (Lotz 

and Loeser 2012). Moreover, during aging and OA, chondrocytes are less responsive to 

anabolic growth factors like IGF-1 and TGF-β (Fortier, Barker et al. 2011) able to 

regulate their synthetic activity. With OA progression, an increased catabolic activity 

causes imbalance of cartilage homeostasis and cartilage matrix breakdown. These 

events are largely mediated not only by proinflammatory cytokines and  matrix 

metalloproteinases (Sandell and Aigner 2001) but also by  reactive oxygen species 

(ROS).  

 

SASP: “Senescence associated Secretory phenotype". 

Judith Campisi and collaborators demonstrated that genotoxic stress in cells induces 

senescence and is accompanied by secretion of a myriad of factors associated with 

inflammation (Coppe, Patil et al. 2008). They called this cellular state the senescence-

associated secretory phenotype (SASP). Genotoxic stress, provoked by exhaustive 

replication, ionizing radiation or oxidative stress induced a similar type of SASP in 

Fig. 5 Safranin O staining of human cartilage derived  from young normal donor, old normal 
donor and OA patient. 
Image modified by Lotz et al., 2012 
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normal human fibroblasts and epithelial cells. Secreted factors included interleukins and 

chemokines, e.g. IL-1α/β, IL-6, IL-8, MCP-2 and MIP-1α, growth factors, such as 

bFGF, EGF and VEGF, and several matrix metalloproteinases (Coppe, Desprez et al. 

2010).  

The signaling regulation of cellular senescence seems characterized by several positive, 

cell type specific feedback loops driven by secreted inflammatory mediators which can 

boost senescence via transcriptional regulation acting in an autocrine and/or paracrine 

manner. In fact many of the secreted compounds have effects  not only in the tissue 

microenvironment but also at the systemic level.  For example some of the released 

proinflammatory cytokines and chemokines can arrest cell growth (Salminen, 

Kauppinen et al. 2012).  Moreover, inflammatory cytokines stimulate NF-κB signaling 

in senescent cells and can prevent apoptosis and thus maintain their senescent 

phenotype. Several studies have confirmed that apoptosis is reduced in senescent cells 

(Salminen, Ojala et al. 2011) . However, chronic inflammation is associated with many 

age-related diseases, e.g. metabolic disorders, cardiovascular and neurodegenerative 

diseases and osteoarthritis and the aging process itself also involves a low grade 

inflammation (Salminen, Huuskonen et al. 2008). 

 

1.4 Role of oxidative stress in OA 

Reactive Oxygen Species (ROS) are oxygen-containing molecules which are produced 

during normal metabolism. Oxidative stress results when the amount of ROS exceeds 

the anti-oxidant capacity of the cell. This process induces cell senescence not only in 

vitro but also in vivo, in fact there is evidence of age related oxidative stress in many 

tissues (Muller 2009). ROS are by-products of aerobic metabolism and include the 

superoxide anion (O2
-), hydrogen peroxide (H2O2) and hydroxyl radicals (OH∙), all of 
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which have specific chemical properties for different biological targets (Schieber and 

Chandel 2014). ROS are also generated by enzymes such as NADPH oxidase and 5-

lipoxygenase in response to specific cell signaling pathways. These ROS serve as 

secondary messengers that regulate signal transduction by activating redox-sensitive 

kinases and inhibiting redox-sensitive phosphatases (Finkel and Holbrook 2000). 

Oxidative stress may play a major role in the link between the process of aging and the 

development of osteoarthritis: it has been reported that oxidative stress plays a role in 

chondrocyte senescence in vitro;  exogenous addition of hydrogen peroxide or IL-1 (to 

mimic chronic inflammation) to cultured chondrocytes was found to induce markers of 

the senescent phenotype (Dai, Shan et al. 2006) and accelerates telomere shortening 

(Brandl, Hartmann et al. 2011). In this context ROS are often associated with the 

principles of oxidative stress contributing directly to cell senescence by causing damage 

to proteins, lipids, and DNA. 

Increased levels of intracellular ROS were detected in cartilage derived from old rats 

when compared to young adults (Jallali, Ridha et al. 2005) and make human 

chondrocytes  and rat chondrocytes more susceptible to cell death mediated by oxidants 

(Carlo and Loeser 2003) in an age-related manner. Not only aging and inflammation, 

but also other stressful factors contribute to production of ROS and induction of 

oxidative stress in chondrocytes of articular cartilage. In fact it has been reported that 

injurious mechanical loading may be a stimulus for excessive ROS production in 

cartilage (Green, Noble et al. 2006) and could thus contribute to stress-induced 

chondrocyte senescence and osteoarthritis.    

There are many clues about the fact that oxidative stress may involve not only articular 

cartilage, but also subchondral bone and synovial membrane. Different clinical 

presentations of OA are associated with cellular senescence that might occur in the 
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different joint tissues: fibrosis and stiffness of joint capsule is one of these. It is 

documented that the cellular mechanism of fibrosis control is accompanied by cellular 

senescence (Krizhanovsky, Xue et al. 2008) and since fibrosis is a feature of OA, it is 

conceivable that intra-articular paracrine ROS messaging might promote senescence of 

fibroid cells to limit fibrosis (Fig.6). Moreover, joint inflammation is a characteristic of 

OA so it is likely that ROS induced senescence of synovial and cartilage cells can 

promote the inflammatory transition of the osteoarthritic joint (Ziskoven, Jager et al. 

2010). Indeed senescent chondrocytes have paracrine effects on articular cartilage 

(Freund, Orjalo et al. 2010).  

It has also been reported that mitochondrial respiratory chain is one of the major sites of 

ROS production and that inhibition of Complex III not only induces ROS production 

but also pro-inflammatory molecules (Turrens 2003).  Moreover in aged and OA 

cartilage, a decrease of enzymes responsible of the cellular anti-oxidant defense (such as 

mitochondrial superoxide dismutase (SOD2)and glutathione peroxidase) has been 

documented. 

 

 

 
Fig.6 Hypothetical relation between oxidative stress and osteoarthritis.  
Image modified by Ziskoven et al., 2010 
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1.5 Involvement of oxidative stress in DNA damage 

When ROS production exceeds the detoxification and scavenging capacity of the cell, 

oxidative stress induces damage to DNA, proteins and lipids which consequently 

becomes implicated in the pathology of various diseases. Various forms of DNA 

damage were discovered such as those caused by oxidative damage that stimulate 

damage signals, activating checkpoint responses and in certain cases premature 

senescence (Colavitti and Finkel 2005). Regarding DNA damage, it is estimated that 

80% of ROS attack bases while the remaining 20% act on sugar moieties generating 

multiple lesions that may lead to  double strand breaks (Sedelnikova, Pilch et al. 2003). 

Another type of  oxidative DNA lesion is the adduct 7,8-dihydro-8-oxo-2’-

deoxyguanosine (8-oxo-G) that mostly affects purines (Brierley and Martin 2013) in 

genomic and mitochondrial DNA, as well as in RNA. 

To deal with oxidative damage to DNA from various endogenous and exogenous 

sources, mammalian cells have evolved many mechanisms to first detect, and 

subsequently repair such damage. 

 

Double-strand breaks and γH2AX. 

DSBs are formed when both DNA strands are broken in sufficiently close proximity 

(<20 bp). They are one of the most critical lesions with respect to preservation of 

genomic integrity because affect the continuity of the genome.  Cells undergo rapid and 

efficient error correction to preserve genomic stability by activating complex DNA 

repair pathways collectively known as the DNA damage response (DDR) (Khanna, 

Lavin et al. 2001 (Khanna, Lavin et al. 2001).   

Phosphorylation of H2AX is one of the earlier cellular response to DSBs that 

accumulates in DNA foci and activates a complex molecular response (Gire, Roux et al. 
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2004). H2AX is a minor histone H2A variant which makes up between 2 to 25% of the 

H2A pool, depending on the cell type (Rogakou, Pilch et al. 1998).  The H2AFX gene 

encodes H2AX; it is  mapped onto position 23 on the q arm of chromosome 11 (Mah, 

El-Osta et al. 2010) and the sequence is highly conserved. In mammalians, Ser-139 at 

the C-terminus of the H2AX molecule is phosphorylated to produce γH2AX, which in 

recent years has emerged as one of the most well known markers of  DNA damage and 

repair (Sedelnikova, Rogakou et al. 2002). This phosphorylation is mediated by the 

phosphatidylinositol 3-kinase-related kinase (PIKK) family of proteins. The three 

proteins potentially involved in the process are ataxia telangiectasia mutated (ATM), 

DNA-protein kinase catalytic subunit (DNA-PKcs) and ATM and RAD3-related (ATR) 

that act at the level of the highly conserved  Serine-Glutamine (SQ) motif of H2AX 

following damage occurring after either UV exposure or metabolic stress or reactive 

oxygen species (Falck, Coates et al. 2005), but ATM seems the main kinase involved in 

H2AX phosphorylation (Fernandez-Capetillo, Chen et al. 2002). One aspect of H2AX 

phosphorylation is that it is not limited to the immediate vicinity, but spreads to a large 

chromatin region surrounding the 2Mbp region of chromatin around DSB and 

comprises  about 2000 γH2AX molecules (Rogakou, Pilch et al. 1998). 

Each γH2AX focus acts as a platform for the accumulation of DDR and repair factors 

and functions by altering chromatin structure to increase its accessibility (Paull and Lee 

2005). Accumulating multiprotein complexes consist of other DNA repair and signaling 

molecules such as 53BP1, BRCA1, MDC1, NBS1, MRE11, RAD50 and RAD51 and 

form nuclear foci that have been also found to co-localize with γH2AX foci (Mah, El-

Osta et al. 2010) (Fig.7). These proteins are recruited not only for their high affinity for 

γH2AX but also thanks to changes in chromatin conformation induced by the 

phosphorylation process (Andegeko, Moyal et al. 2001). Along with the accumulation 
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of DSB response and repair factors, a small fraction of ATM responsible for H2AX 

phosphorylation is retained in the nucleus and is found associated with γH2AX foci 

(Bonner, Redon et al. 2008).  

H2AX phosphorylation is a crucial step in the DDR, because it induces DSB repair 

initiation by increasing DNA accessibility and facilitating the recruitment and 

accumulation of specific DDR proteins. The DDR is a cascade that senses DNA 

damage, induces cell cycle arrest and initiates DNA damage repair. Moreover, γH2AX 

modulates G2/M checkpoint responses and prevents cell cycle progression also 

inducing cellular senescence. This process avoids the duplication of damaged DNA into 

daughter cells to impede the propagation of corrupted genetic information (d'Adda di 

Fagagna 2008). Two types of γH2AX foci have been identified:  one type is “transient” 

and DSBs are repaired and removed from the nucleus, the other type involves the 

formation of “persistent” foci where DSBs accumulate and remain unrepaired 

(Sedelnikova, Horikawa et al. 2004). Low levels of ROS are important for signal 

transduction and modulation of gene expression but high concentrations or prolonged 

exposures to ROS may have deleterious effects (Colavitti and Finkel 2005) including 

unrepairable DSBs likely due to persistent oxidative stress caused by defects in redox 

homeostasis (Marnett 2000).   

The DNA damage response (DDR) is also responsible of the expression of a subset of 

SASP factors, including IL-6 and IL-8 (Rodier, Coppe et al. 2009). If the extent of DNA 

damage is broad, cells undergo either senescence or apoptosis, depending on the level of 

the DNA damage itself. In the case of senescence, cells arrest growth and maintain 

chronic low-level DDR signaling (d'Adda di Fagagna 2008). 
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This low-level DDR is persistent and necessary for a robust SASP. It is probable that 

the DDR stimulates the SASP by activating NF-κB that is a known target of ATM 

(Elkon, Rashi-Elkeles et al. 2005) 

 

DNA mismatch repair (MMR) pathway. 

DNA mismatch repair (MMR) is the main post-replicative correction pathway playing a 

key role in maintaining genomic stability and is therefore crucial for proliferating cells. 

The system corrects mispairs generated during replication, recombination and DNA 

damage and its efficiency can be monitored by assessing genomic instability at 

microsatellite loci (microsatellite instability or MSI) (Neri, Mariani et al. 2011). It has 

also been reported that it plays an important role in preventing mutations associated 

with the oxidative DNA lesion, 8-oxo-dG.  The eukaryotic MMR pathway is formed by 

two components, both functioning as heterodimeric complexes, called MutS and MutL. 

The most abundant mismatch-binding heterodimer is MutSα, composed of MSH2 and 

MSH6 (Kolodner, Tytell et al. 1999). MutSβ is the other heterodimer composed of 

MSH2 and MSH3. Similarly, the MutL complexes are formed by different 

heterodimeric complexes, thus yielding MutLα (made up of MLH1 and  PMS2 

proteins),  MutLβ (composed of MLH1 and PMS1 proteins) and MutLγ (containing 

MLH1 and MLH3) (Brierley and Martin 2013). 

The initial recognition of mismatches is carried out by MSH2 bound to either MSH6 or 

MSH3. A second heterodimer of MLH1 bound to either PMS2 or PMS1 mediates the 

recruitment of additional proteins completing the repair process (Fig.8). Oxidative DNA 

damage can increase the frequency of MSI (Jackson, Chen et al. 1998) due to a 

functional inactivation of MMR by non-cytotoxic levels of H2O2 (Chang, Marra et al. 

2002); (Lee, Chang et al. 2003). 
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Fig.7 Schematic representation of γH2AX-mediated DSB repair. DSBs induce the initial 
phosphorylation of H2AX mediated by ATM, or DNA-PK, that activates a nucleation reaction with 
the recruitment of the  proteins of the complex. 
This generates a feedback loop that leads to further phosphorylation of H2AX and the chromatin 
modifications required for the recruitment of 53BP1. The activation cascade culminates with the 
recruitment of RNF8 to phosphorylated MDC1 and the polyubiquitinylation of H2AX to recruit 
BRCA1/BARD1. γH2AX efficiently coordinates DDR signaling. 
Image modified by Kinner et al., 2008 
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Fig.8 Schematic representation of MMR pathway in response to oxidative stress.. 
MutS detects the oxidative damaged DNA bases and recruits MutL. The MutS/MutL 
complex leaves the damaged site and slides along the DNA double helix and eventually 
encounters a single-strand gap on the daughter strand bound by accessory proteins (PCNA 
and RFC). This encounter displaces RFC and allows EXO1 to access the daughter-strand 
DNA to degrade DNA across the site of oxidative damage, before becoming inactivated by 
MutL. The oxidative damaged DNA is then excised, followed by the synthesis of new DNA 
by a DNA polymerase. Finally, the new DNA strand is ligated onto the existing daughter 
strand by a DNA ligase. EXO1, DNA exonuclease. 
Image modified by Brierly et al., 2013 
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Role of Gadd45β and p21 in DNA damage response and senescence. 

 The gadd45 is a family of genes including gadd45α, gadd45β, and gadd45γ that encode 

for the Growth Arrest and DNA damage-inducible 45 proteins  that are key players in 

cellular stress responses. These are  small (18 kDa), evolutionarily conserved proteins 

that are highly homologous to each other (55– 57% overall identity at the aminoacid 

level), highly acidic, and localized within both the cell cytoplasm and nucleus 

(Liebermann, Tront et al. 2011). Expression of gadd45α, gadd45β, and gadd45γ is 

induced in response to environmental and physiological stresses (Gupta, Gupta et al. 

2006) and it has been shown that GADD45 proteins participate in cell cycle arrest, 

DNA repair, cell survival and apoptosis in response to these stresses, as well as having a 

role in development. 

In fact, GADD45β has been identified as an essential mediator of Col10a1 and Mmp13 

gene expression in late-stage hypertrophic chondrocytes in the mouse embryo, acting as 

a cell survival factor during terminal differentiation, driving chondrocyte hypertrophy 

via p38 MAPK activation and preventing apoptosis of hypertrophic chondrocytes (Ijiri, 

Zerbini et al. 2005). 

During cellular senescence cells show a variety of associated phenotypic changes and 

one of the most prominent initiator of senescence is the DNA damage response, with 

induction of cell cycle arrest through the activation of checkpoint proteins, notably p21 

(Passos, Nelson et al. 2010). In the process of cellular senescence, a clear relationship 

has been shown between p21 and GADD45β that interact in a feedback loop 

mechanism. This process  starts with mitochondrial dysfunction, production of reactive 

oxygen species (ROS) and p21 activation and results in the establishment of the 

senescent phenotype (Passos, Nelson et al. 2010). It has also been reported that p21 is a 

down-stream target of GADD45β suggesting the involvement of both proteins in the 
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molecular mechanism of chondrocyte senescence in mice (Shimada, Sakakima et al. 

2011). 

 

1.6 Role of GSK3β in OA 

GSK3β (Glycogen Synthase kinase 3β) was initially identified as a key regulator of 

insulin-dependent glycogenesis, because of its role as a protein kinase able to 

phosphorylate and inhibit glycogen synthase (Embi, Rylatt et al. 1980). However,  it is 

currently well known that it is a multi-functional kinase that performs a regulatory role 

in several cellular functions, including embryonic development, cell metabolism, 

proliferation and intracellular signaling (Cohen and Frame 2001). GSK3β in cells is 

present in a multiprotein complex with axin, APC (Adenomatosus Polposis Coli) and β-

catenin. It is involved in the so called Wnt canonical signaling: in the absence of 

secreted Wnt glycoproteins, GSK3β is active and phosphorylates the other proteins of 

the complex at the level of cytoplasm. The principal function of this complex is to 

maintain β-catenin in an inactive state via its phosphorylation, thus preventing its 

nuclear translocation and transcriptional activation of TCF/LEF complex (Seidensticker 

and Behrens 2000).   

Wnt binding to its receptors instead leads to stabilization of β-catenin via inhibition of 

GSK-3β (that occurs by phosphorylation of serine-9 that significantly decreases active 

site availability) (Fig. 9). Uncontrolled triggering of the Wnt pathway is linked to the 

development of a number of age-related pathologies such as osteoarthritis and an 

aberrant Wnt signaling can promote cell senescence (Maiese, Li et al. 2008). Disruption 

of the control of Wnt signaling has also been associated with altered joint formation, 

chondrogenesis, and OA (Dell'accio, De Bari et al. 2008); (Staines, Macrae et al. 2012). 
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For these reasons, in the context of skeletogenesis, GSK3β is considered among the 

major molecular constraints which keep chondrocytes in an “arrested state”, avoiding 

the process of endochondral ossification at the level of articular cartilage (Lories, Corr 

et al. 2013). It has also been reported that inhibition of GSK3β is a key event for 

chondrocyte maturation at the level of temporary cartilage during skeletogenesis. This 

process is under the control of regulatory kinases such as Akt (Rokutanda, Fujita et al. 

2009) and  cGMP dependent protein kinase II, that drive the process towards hypertrophy 

and terminal differentiation (Kawasaki, Kugimiya et al. 2008). 

Moreover, OA-like changes occur in mice following both under- and over-activation of 

the Wnt pathway (Zhu, Tang et al. 2009). A fine regulation of GSK3β activity is 

therefore fundamental for the chondrogenesis and skeletal development because it 

guarantees the correct balance between cytoplasmatic and nuclear β-catenin (Lories, 

Corr et al. 2013). 

In fact, evidence indicates that not only GSK3β inhibition induces OA changes in articular 

chondrocytes  (Miclea, Siebelt et al. 2011); (Litherland, Hui et al. 2014), but also the ablation of 

β-catenin signaling pathway is associated with cartilage degeneration in transgenic mice (Zhu, 

Chen et al. 2008). 

Collectively, functional genomics data about the effect of over- or under- activity of β-

catenin suggest that the a fine tuning of β-catenin signaling via GSK3β regulation must 

be maintained to avoid osteoarthritis features at the level of human articular cartilage. 

Moreover it has been reported that GSK3 is also present at the level of mitochondria, 

and inactivation of “mitochondrial GSK3β” contributes to decreasing mitochondrial 

complex IV activity thus leading to subsequent ROS generation responsible for cell 

senescence in human diploid fibroblasts (Seo, Jung et al. 2008); (Byun, Jung et al. 

2012).  
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1.7 NF-κB pathway: the role of IKKα 

With regards to cell senescence, the secretory component of SASP (Senescence 

Associated Secretory Phenotype) involves cytokines, chemokines, growth factors and 

matrix metalloproteinases and NF-κB signaling is recognized as the master regulator of 

this kind of inflammatory responses. The NF-κB system is a conserved signaling 

pathway which is activated in response to a wide variety of insults and cellular stress to 

facilitate innate immunity responses and to establish cellular defense in order to 

maintain cell and tissue homeostasis (Vallabhapurapu and Karin 2009). NF‐κB 

transcription factors guide a wide range of inflammatory responses, regulating cell 

differentiation and development programs and ultimately control cell growth (Bonizzi 

and Karin 2004); (Karin and Greten 2005); (Basak, Kim et al. 2007).  

NF-κB mediated transcriptional control is driven by the assembly of homodimers and 

heterodimers of 5 different NF-κB proteins (RelA/p65, RelB, c-Rel, NFκB1/p105 and 

Fig.9 Schematic 
representation of 
Wnt canonic 
pathway. The 
presence of Wnt 
protein induces 
GSK3β inactivation 
and dissociation of  
the cytoplasmatic 
complex. This process 
is followed by nuclear 
translocation of β-
catenin and 
transcription 
activation of specific 
target genes. 
Image modified by 
Cohen et al., 2001 
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NFκB2/p100).  In the absence of any stimulus, NF-κB dimers are sequestered in the 

cytoplasm and their transcriptional activities blocked by one out of three small 

inhibitory NF-κB proteins (IκBα, IκBβ, IκBε). NF‐κB transcription factors are then 

activated by N‐terminal phosphorylation of inhibitor IκBs, that releases the NF-κB 

dimers so they are free to migrate to the nucleus and activate target genes. The kinases 

responsible for this process are IKKα and IKKβ. IKKβ is essential for the nuclear 

translocation of NF‐κB while IKKα acts only occasionally as kinase of IκBα (Marcu, 

Otero et al. 2010). Interestingly, most of the signaling pathways acting in the cells in 

response to stressful conditions (genotoxic, environmental or inflammatory stress)   

target the IKK complex, which means that IKKα and IKKβ can even activate NF-κB 

independent targets, e.g. β-catenin, histone H3, TSC1, FOXO3a and several nuclear co-

activators (Salminen, Kauppinen et al. 2012). In addition, the NF-κB system participates 

in crosstalk with several transcription factors which join together different signaling 

pathways, e.g. p53 and Wnt (Mengel, Hunziker et al. 2010).  

Cellular senescence involves several morphological and energetic-metabolic changes 

during the generation of the senescent phenotype. It is known that NF-κB signaling can 

regulate energy homeostasis (Kawauchi, Araki et al. 2008)  and the major housekeeping 

system, i.e. the autophagic cleansing system (Baldwin 2012). Cellular stress induces 

autophagocytosis, a self-eating process, which has many crucial functions in cellular 

survival. Moreover, the autophagic degradation capacity declines with aging in many 

tissues (Salminen and Kaarniranta 2009). In conclusion, it seems that the IKK complex, 

in particular IKKα, is an important player in the regulation of cellular senescence 

induction (Tilstra, Robinson et al. 2012). 

It has also been reported that ablation of IKKα has peculiar effects on extracellular 

matrix remodeling (reducing the level of bioactive ECM degradation products), on 
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chondrocyte proliferative potential and cell cycle distribution, on hypertrophic 

differentiation and viability of the cells in maturing micromasses in conjunction with 

subcellular features of cell health (mitochondrial morphology and cell‐cell or cell‐ECM 

specialized junctions) thus suggesting that this kinase might contribute to the abnormal 

phenotype of osteoarthritic chondrocytes (Olivotto, Borzi et al. 2008). 

 

1.8 Nutraceuticals: a new way to counteract cell oxidative stress and senescence in 

osteoarthritic chondrocytes 

Osteoarthritis prevention is a major challenge for the research in this clinical field. 

Available pharmacological treatments are very expensive and almost not very effective; 

overall, there is currently no cure for OA, and there are no therapies which prevent, 

slow or arrest OA progression (Le Graverand-Gastineau 2010). Most treatments are 

focused on the control of the secondary symptoms of the disease, but fail to address the 

complex nature of OA, and have no beneficial effects on chondroprotection and 

therefore on OA prevention and modification. Furthermore, long-term use of available 

therapies is often associated with side effects at gastrointestinal, renal, and 

cardiovascular level  (Cheng and Visco 2012).  

In this scenario an alternative and safe opportunity is represented by nutraceuticals, 

defined as "Food, or parts of food, that provide medical or health benefits, including the 

prevention and/or treatment of disease". Indeed, it has been recognized that 

nutraceuticals may exert effects on molecular targeting of OA (Leong, Choudhury et al. 

2013;(Henrotin, Lambert et al. 2011). 

Recently,  it has been reported that natural compounds found in fruits, teas, spices, 

wine, and vegetables such as phytoflavonoids, polyphenols, and bioflavonoids, have a 

great potential in modifying OA disease and symptoms thanks to their anti-
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inflammatory and anti-catabolic actions, and their protective effects against oxidative 

stress (Shen, Smith et al. 2012). Another interesting compound with a protective effect 

on chondrocytes is sulforaphane, an isothiocyanate derived from cruciferous vegetables 

(Facchini, Stanic et al. 2011). An emerging role in reducing oxidative stress and DNA 

damage has been reported for hydroxytyrosol (HT), a phenolic compound found in the 

fruits of olive tree and in olive oil and highly present in Mediterranean diet, with an 

high anti-oxidant and cytoprotective activity (Facchini, Cetrullo et al. 2014). 

Spermidine (SPD), a natural dietary compound also found in high concentrations in 

Mediterranean diet (Soda 2010), belongs to the class of polyamines, naturally occurring 

polycations. It has been reported that supplementation with spermidine reduces 

oxidative stress and extends lifespan in yeast and flies by an autophagy-dependent 

mechanism (Eisenberg, Knauer et al. 2009; Guo, Harada et al. 2011; Minois, Carmona-

Gutierrez et al. 2012). 

These data open new perspectives for the study of possible ways to prevent, control or 

even revert osteoarthritis and for the development of a nutraceutical-based molecular 

targeting strategy  for chondroprotection as an alternative to classical treatments. 
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2- AIMS OF THE STUDY 

 

The main aim of this study is to investigate  about the molecular bases of osteoarthritis 

with particular regards to aspects of cellular senescence in disease. This study will focus 

on the molecular mechanisms whereby two major enzymatic systems in chondrocytes 

may affect oxidative stress and DNA damage leading to chondrocyte  senescence. More 

in detail we plan to investigate on the effects of pharmacological inhibition (LiCl) of 

GSK3β and of the activity of IKKα, by comparison with chondrocytes bearing a 

retroviral mediated IKKα Knock Down (KD).  Moreover we  will evaluate the ability of 

selected nutraceuticals of scavenging oxidative stress thus limiting senescence induction 

of osteoarthritic chondrocytes. 

The first aim of the study will focus on the effect of GSK3β pharmacological 

inactivation on cellular senescence by evaluation of : 

• ROS production by mitochondria;  

• induction of "intrinsic" oxidative damage (assessed by increased 8-oxo-guanine 

adducts) and DNA damage response (evaluated by γH2AX foci formation) in 

osteoarthritic chondrocytes; 

• induction of transient S phase arrest, reduced proliferation, and increased 

percentage of hypertrophic chondrocytes; 

• induction of increased expression of the senescence marker GADD45β, p21, 

SA-β galactosidase and PAS staining. 

The second aim of the project will focus on the DNA Damage Response in primary 

cultures of IKKα Wild Type or Knock Down osteoarthritic chondrocytes after induction 

of "extrinsic" oxidative stress using H2O2  and measuring: 
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•  telomere length by Flow‐FISH;  

•  γH2AX foci formation;           

• expression of the DNA Mismatch repair system genes 

(Msh2‐Msh6‐Msh3‐Mlh1‐Pms1‐ Pms2). 

The third aim of the project will focus on  the ability of some nutraceuticals (i.e. 

hydroxytyrosol and spermidine) to attenuate oxidative stress inducted using H2O2  and 

measuring: 

• effects of pre-treatment with hydroxytyrosol on γH2AX foci formation and 

cellular senescence; 

• effects of pre-treatment with spermidine on cellular viability and γH2AX foci 

formation. 
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3- MATERIALS AND METHODS 

 

 

3.1 Effects of GSK3β pharmacological inactivation 

Chondrocytes isolation. 

After Istituto Ortopedico Rizzoli Ethics Committee approval and patients’ informed 

consent, primary chondrocytes were obtained from 13 OA patients undergoing knee 

arthroplasty. Cartilage was cut from the subchondral bone using a sterile sharp scalpel 

blade and placed in serum free Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplemented with antibiotics. Once all the cartilage was obtained, it was diced as 

finely as possible. In fact dicing the tissue finely improved the efficiency of the 

subsequent enzymatic digestion. All the cartilage obtained was put into a sterile Petri. 

Chondrocytes were isolated by mean of a sequential enzymatic digestion. The first step 

was a proteolytic digestion of ECM, my mean of cartilage incubation with Protease 

from Streptomyces griseus 26,5U/ml (Sigma-Aldrich) in serum free DMEM for 1hour 

at 37°C 5% CO2.  At the end of this step supernatant was eliminated and cartilage was 

put into a sterile bottle containing Collagenase from Clostridium histolyticum 545U/ml 

(Sigma-Aldrich) in serum free DMEM and incubated for 1hour at 37°C in continuous 

stirring. Once digested, the cell suspension was strained through commercially available 

cell strainers (100µm pore size) and centrifuged (1800 rpm for 10 min) to obtain a cell 

pellet. This pellet was washed in DMEM containing 10% FBS and the cells counted. To 

obtain standard monolayer cultures, the cells were plated on culture plastic flasks at a 

density of 20,000 cells/cm2.  Chondrocytes were expanded in culture up to passage 1 

(p1) and then used as described below for monolayer culture.  
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ROS production  evaluation downstream GSK3β inactivation. 

Reactive oxygen species (ROS) production at the level of mitochondria was assessed in 

live OA chondrocytes undergoing GSK3β inactivation. More in detail, the accumulation 

of ROS within mitochondria was assessed by mean of the overlap of the signals of 

selective fluorescent dyes for both mitochondria and ROS.  Primary chondrocytes were 

plated in petri dishes with 0.17 mm thin glass well (Cell Culture Dish, World Precision 

Instruments Germany GmbH), suitable for signal detection at the confocal microscope. 

The cells were left to adhere for 72 hours, and then were either left unstimulated or 

treated with 5 or 10 mM LiCl or the highly selective GSK3β inhibitor SB216763 at 10 

µM (Coghlan, Culbert et al. 2000) for 4 hours.   

Analysis of the mitochondrial involvement was approached by “real time” and “time 

lapse” 30 µM DCHF-DA staining of increased ROS generation, overlapping with 

Mitotracker Orange CMTMRos mitochondrial staining (Molecular Probes ) along with 

Hoechst 33342 nuclear counterstaining. 

Fluorescent signals were acquired by NIKON confocal microscope system A1 equipped 

with a Nikon Eclipse Ti microscope and an Argon Ion laser for 488 nm line, a DPSS 

laser for 561nm line and a diode laser for 640mn line. Emission signals were detected 

by a photomultiplier tube (DU4) preceded by emission filters BP 525/50 nm, BP 595/50 

nm and BP 700/75 nm for Sybr green, Alexa Fluor555 or Dy Light 647, respectively. 

Laser scanning, image acquisition and processing were performed with Nikon Imaging 

Software NIS Elements AR-4 (Nikon Inc., USA). Fields of 210 µm x 210 µm (acquired 

with a Nikon plan apo 60x 1.40 oil objective) were acquired and analyzed.  
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Effects of GSK3β inhibition on proliferation and cell cycle. 

Some experiments were carried out to investigate the effect of GSK3β inhibition on 

growth and cell cycle distribution of chondrocytes as well as downstream effects on cell 

senescence. At this purpose, experiments were established  with p1 chondrocyte 

cultures obtained from 13 different patients. Cells were plated at low density (10,000-

15,000 cells per cm2) in order to avoid culture conditions which could bias evaluation 

of senescence (Severino, Allen et al. 2000) and left for 72 hours. Then parallel cultures 

were kept either unstimulated or stimulated with 5 mM LiCl for 8, 16, 24, 48 and 72 

hours.  In some cases cultures were also stimulated with SB216763 (Coghlan, Culbert et 

al. 2000) which, used at 10µM, behaves as a rather selective inhibitor for GSK3. At the 

end, for each experimental conditions cells were trypsinized, counted and either fixed 

(10 min at RT with  2% PFA and stored at 4°C) for Flow Cytometry or senescence 

detection or pelleted for western blot analysis.  

Cell cycle distribution was evaluated by flow cytometry by mean of DNA staining 

(Sytox green, Molecular Probes, at 5µM) of cells that had been previously fixed with 

2% PFA and then post-fixed with 100µl methanol 90% on ice for 10minutes. A RNAse 

treatment was then applied by resuspending the cells with 100µl RNAse ONE buffer 

(Promega), preheating at 65°C 10 min and then addition of 1 µl (2.5 U) of RNAse One 

(Promega) and 1µL RNAse A (Sigma-Aldrich). Digestion was left for 30’ at 37 °C. 

Analyses were performed using a FACS Canto II flow cytometer (BD). 

Light scattering properties of the cells were also analyzed by assessing both the forward  

scatter (FSC) of the cells which evaluate the cell size and therefore the hypertrophy 

promoting activity of LiCl as well as the side scatter (SSC), which correlates with 

granularity and has been reported to increase in cell senescence. The median values of 

several thousands of cells values were obtained and separated for each cell cycle phase 
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for both normal and lithium chloride treated cells,  and normalized to the median size of 

control cells in the G1 phase. 

 

Real time PCR analysis. 

Cells from 4 patients were also dedicated for Real Time PCR analysis of gene 

expression. Total RNA was isolated from pellets obtained from cells either unstimulated 

or stimulated with 5 mM LiCl for 8, 16 and 24 hours.  Total RNA was extracted from 

cells using TRIZOL (Invitrogen). RNA (0.5 μg) was reverse-transcribed using the 

Superscript VILO cDNA Synthesis kit (Invitrogen) and DNA treatment and removal 

was performed with DNA-free (Ambion). Each PCR reaction was carried out on 25 ng 

of cDNA sample using SYBR Premix EX Taq (Takara). The following conditions were 

used: 95 °C for 30 sec; 40 cycles at 95 °C for 5 s, 60 °C for 20 s and 65 °C for 15 s in a 

LightCycler 480 system (Roche diagnostics) and analyzed with the dedicated software. 

All values were normalized to GAPDH housekeeping gene and expressed as relative 

expression or fold change using the respective formulae 2− ΔCT or 2− ΔΔCt.  Primers were 

as follows:  GAPDH (NM_002046, forward 579–598 and reverse 701–683); 

IKKα/CHUK (NM_001278, forward 1803-1826 and reverse 1865-1888);  MMP10 

(NM_002425.2, forward 1278–1298 and reverse 1472–1449).  

 

Evaluation  of  senescence by mean of SA-β Gal activity and Glycogen content. 

Senescence was evaluated by both assessment of SA-β Gal activity with the Senescent 

Cells Staining kit (SIGMA)  and assessment of  the increased  glycogen content with the 

PAS staining (Sigma-Aldrich). Nearly 10,000 cells were cytospinned on a glass slide 

and further processed as recommended by the manufacturer. Development time was 

overnight for Senescent Cells Staining kit (Sigma-Aldrich). At the end, to facilitate their 
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automatic counting, the cells were treated with SyBr Green nuclear counterstaining. 

Then, an automatic analysis procedure was employed exploiting the NIS software 

which combined colorimetric and fluorescent staining. A threshold was set in order to 

take into account only cells above a given intensity of senescent staining. At least four 

fields were counted  for each condition.  The same cell suspension underwent evaluation 

of glycogen accumulation by mean of the PAS staining. 

 

Immunoblotting.  

Evaluation of the expression levels of  proteins that are induced upon DNA damage  

was carried out by western blotting.  Lysis buffer volumes were adjusted in order to 

load an equivalent of 150,000 cells. To achieve effective extraction of proteins, 

including those bound to DNA, radioimmunoprecipitation (RIPA) buffer with the 

addition of benzonase and protease inhibitor cocktail (PIC; Sigma-Aldrich) was used to 

extract proteins. The composition of the buffer was as follows: Tris-HCl 50mM pH 7.4, 

NaCl 150mM, Nonidet P-40 1%, SDS 0.1%, Na deoxicolate 0.5%, NaF 1mM, Na3VO4 

1mM, PMSF 1mM, 1:200 PIC, and 100U/mL benzonase. Briefly, total cellular lysates 

in  RIPA buffer were obtained from monolayers solubilized by keeping the pellet on ice. 

Samples were loaded in the wells of Nu-Page precast 4%–10% polyacrylamide gels 

(Invitrogen), which were subsequently transferred onto polyvinylidene fluoride 

membranes by a dry electroblotting method using I-Blot (Invitrogen) and then subjected 

to immunodetection exploiting the SNAP-ID device (Merck Millipore). Signals were 

detected with appropriate secondary antibodies and revealed with ECL Select kit (GE 

Healthcare), using the CCD camera acquisition system of Image Station 4000 MM and 

Carestream Molecular Imaging Software 5.0. (Carestream Health, Inc.). Immunoblot 

experiments were designed to kinetically assess the correlated protein expression of 
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phospho GSK3β (phospho-GSK-3-beta (Ser9), D85E12,  XP Rabbit monoclonal, Cell 

Signaling Technology),  total GSK3β (Rabbit monoclonal, Cell Signaling Technology), 

γH2AX (phospho-Histone H2A.X, Ser139, rabbit polyclonal antibody, Upstate–

Millipore), GADD45β (sc-8776) and cyclin-dependent kinases inhibitor p21 (Santa 

Cruz Biotechnology, rabbit polyclonal sc-756). IKKα was detected by mean of an IKKα 

mouse monoclonal IgG2B (BD Pharmingen, code 556532).  Monoclonal anti-GAPDH 

(clone 6C5, Chemicon–Millipore) or beta-actin (Sigma) served as loading controls. At 

least 4 different experiments were carried out for each analysis. 

 

3.2 Cartilage explants studies 

Osteochondral specimen (full thickness section of cartilage and subchondral bone 

obtained with a biopsy needle from knee articular cartilage derived from arthroplasty in 

respect of the Institutional Ethical Commitee) were established from seven patients with 

a detailed characterization of metabolic features.  After removal of the subchondral 

bone tissues, identified by visual inspection, the cartilage cylinders were embedded in 

OCT, snap frozen and kept at-80 °C for future sectioning at 5µm and processing, 

essentially as described in (Borzi, Olivotto et al. 2010).  

 

Immunohistochemistry and immunofluorescence. 

 Immunohistochemistry or immunofluorescence experiments were performed 

essentially as described in (Borzi, Olivotto et al. 2010) to detect expression and 

subcellular localization of: phosphorylated GSK3β (Anti-phospho-GSK3 β, Ser9, clone 

EPR2286Y, rabbit monoclonal antibody, Millipore), 8-hydroxy-2’-deoxyguanosine (8-

oxo-dG, a  marker of oxidative damage, Trevigen, clone 2E2, mouse monoclonal), 

GADD45β (GADD45β goat polyclonal sc-8776, Santa Cruz Biotechnology), p21 (Santa 
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Cruz Biotechnology, rabbit polyclonal sc-756), senescence associated  β-galactosidase  

(Santa Cruz Biotechnology, goat polyclonal sc-19119) in the articular cartilage tissue 

from superficial to deep zones. These samples were also processed for 

immunofluorescent staining and confocal microscopy analysis of GADD45β 

(GADD45β goat polyclonal sc-8776, Santa Cruz Biotechnology). GADD45beta signals 

were reported as Mean Intensity (i.e. mean of intensity values of pixels, NIS Elements 

AR2 Image Analysis) per cell positive area. The subcellular distribution of each signal 

was evaluated by reference to nuclear counterstaining (Sybr green or DAPI 1:10000, 

Molecular Probes). 

 

3.3 IKKα Knock Down cultures 

Chondrocyte retroviral transduction. 

Chondrocytes from 10 OA patients undergoing knee replacement surgery were isolated 

by sequential enzymatic digestion as described before and then expanded in vitro at a 

density of 20,000 cells per cm2 up to confluence. IKKα Knockdown was then obtained 

by transduction with retroviral vectors containing IKK-α-specific short hairpin RNAs as 

described (Olivotto et al., 2008). Knock-downs (KDs) of IKKα were achieved by 

transduction of early passage primary chondrocytes with retroviral vectors containing 

IKKα–specific shRNA. IKKα–specific oligonucleotides for each shRNA (shOligos) had 

been previously subcloned into the pSuper.retro(Puro) moloney retroviral vector 

according to the manufacturer (OligoEngine, Seattle, WA). To avoid potential off-target 

effects, multiple shOligos had been designed containing 19-22 nt complementary to 

sequences in different exons of IKKα. These were IKKα3 (19mer starting at Nt 1288) 

and IKKα4 (22 mer starting at Nt 1474). The phenotypes of chondrocytes stably 

transduced with IKKα specific shRNAs were compared with that of a negative control 
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(GL2), compromising cells obtained from the same patient infected by a retroviral 

vector harboring a firefly luciferase-specific shRNA (GL2). Early-passage primary OA 

chondrocytes were transduced by spinoculation with amphotyped retroviruses prepared 

from Phoenix A packaging cells (provided by Dr. Gary Nolan at Stanford University). 

Briefly viral supernatants were applied to cells by centrifugation at 1100×g at 32°C for 

45 minutes with continued incubation for 5 hours at 32°C in 5% CO2 followed by 

replacement with regular growth media. Seventy-two hours later, shRNA expressing 

cells were selected for puromycin resistance (1.5 μg/ml) with 3 changes of media over 6 

days.  At the end of the  selection, the cells were collected and 300.000  pelleted for 

western blot evaluation of the efficiency of the knockdown. IKK KD efficiency was 

determined with rabbit anti-human IKKα (Cell Signaling Technology, Beverly, MA) 

immunoblotting of total cellular protein, with bands visualized by chemiluminescence. 

Protein extraction, electrophoresis, blotting and immunodetection was performed 

essentially as described in (Guidotti, Facchini et al. 2013). Signals were revealed with 

ECL Select kit (GE Healthcare), using the CCD camera acquisition system of Image 

Station 4000 MM and Carestream Molecular Imaging Software 5.0. (Carestream 

Health, Inc.). Semi-quantitative analysis of bands was performed by using the “optical 

density” of each band and using  QuantityOne software (BioRad). Ratio values between 

target and housekeeping protein in GL2 control cells were obtained and put as 100%.  

IKKα KD of chondrocytes was calculated by mean of the formula: (IKKα vs 

housekeeping expression ratio of GL2 control cells –IKKα vs housekeeping expression 

ratio of IKKα KD cells) / (IKKα vs housekeeping expression ratio of GL2 control cells) 

* 100. Values for all specimens were pulled and presented as the mean with standard 

error. 
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Effect of oxidative stress induction on IKKα KD and control cells.  

IKKα KD and control cells cultured in monolayer at low density were exposed to 100 

µM H2O2 for 1 h at 37°C, 5% CO2. Cells were partly harvested and partly incubated in 

fresh medium for another 6h, 24h or 72h. Specificity of H2O2 effect was confirmed by 

exposure of the cells to 5mM N-acetyl-cysteine (NAC) 30min prior to H2O2 incubation. 

Double strand breaks (DSB) quantification was evaluated by γH2AX foci formation in 

chromatin immediately after H2O2 exposure and after 24h recovery in fresh medium. 

Cells fixed in 2%PFA and permeabilized in 90% methanol were stained with anti-

γH2AX mouse MoAb (clone JBW301, Millipore 05-636) followed by Alexa Fluor 647 

Donkey anti-mouse IgG secondary antibody (#715496150, Jackson Labs). Then, DNA 

was stained with the picogreen dye, and the cells underwent a flow cytometry analysis 

of the amount of γH2AX per cell cycle phase.  

 

Mismatch repair gene expression analysis. 

 Total RNA was extracted and reverse-transcribed from untreated and H2O2 treated 

IKKα KD and GL2 cells pellets, after 6h recovery in fresh medium as described above.  

MMR enzyme (MLH1, MSH2, MSH6, MSH3, PMS1 and PMS2) expression  was 

evaluated by semi-quantitative real-time RT-PCR using Sybr green dye and GAPDH as 

a reference control (Neri, Pawelec et al. 2007) .   

 

Flow-FISH determination of Telomere Length. 

150,000 IKKα KD and GL2 chondrocytes in low density monolayer cultures were 

exposed to 100 µM H2O2 for 1 h at 37°C, 5% CO2. After detachment with trypsin, cells 

were treated with RNasi ONE (Promega) and then washed and resuspended in 

hybridization buffer (70% deionized formamide, 20 mM Tris buffer pH 7.0, 1%BSA) 
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containing 2.0 µM FITC labeled (CCCTAA)3 peptide nucleic acid (PNA) probe 

(Biosynthesis INC, USA), specific for the telomeric sequence. Chondrocyte samples 

incubated in hybridization mixture without probe were used as negative controls. 

Samples and controls were heat-denatured for 7 min at 80°C and left to hybridize 2 

hours at room temperature in the dark. The cells were washed, DNA was stained with 

SYTOX 7-AAD (Invitrogen) and then analyzed by a FACSCanto II flow cytometer 

equipped with a 488 nm laser; FITC emission collected through 525/40BP; 7-AAD 

emission collected through 660/20BP;  5000 events were acquired for each sample. 

Telomere length was estimated on the basis of the fluorescence signal, and 

quantitatively assessed  as the difference between the geometric mean fluorescence 

intensity (MFI) of the cells hybridized with telomere PNA-probe and that of the 

corresponding unstained control sample. 

 

3.4 Nutraceutical treatments 

Hydroxytyrosol treatment of chondrocytes and protection from oxidative stress. 

Chondrocytes from 3 OA patients undergoing knee replacement surgery were isolated 

by sequential enzymatic digestion as described before, and then expanded in vitro in 

10% FBS D-MEM. After seeding in monolayer culture, cells were treated with 100µM 

H2O2 for 1 to 4 hours; 100µM hydroxytyrosol (Sigma-Aldrich) was added 30 minutes 

before H2O2 treatment. At the end of the incubation the cells were trypsinized, collected 

and fixed with 2% PFA. Detection of γH2AX at both 1 and 4 hours was performed by 

flow cytometry as described above. Senescence was evaluated only on the samples 

stimulated for 4 hours measuring SA-βGal activity by mean of the Senescent Cells 

Staining kit (SIGMA) as described before. 
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Spermidine treatment of chondrocytes and protection from oxidative stress. 

Chondrocytes from 3 OA patients undergoing knee replacement surgery were isolated by 

sequential enzymatic digestion as described before, and then expanded in vitro in 10% FBS D-

MEM until confluence. Then chondrocytes were seeded into high density  (62500 cells/cm2) 

monolayer culture, cultured for 72 hours, starved for 24 hours and then treated or not with 

100nM spermidine (SPD) for additional 24 hours. The different samples type of samples under 

analysis were: 1) unstimulated, 2) 500µM H2O2 3) 100 nM SPD. Then, all the cells received 

Sytox Green to allow for a real time detection of dying cells (Molecular Probes, at 5µM). At 

the same time some   prior to exposure to 500µM H2O2.  At the end of this incubation some cells 

were treated at the same time with 500µM H2O2  and  for 24 hours while control cells were only 

treated with Sytox Green.  This dye is a dead-cell staining with a high-affinity for nucleic 

acid and that easily penetrates cells with compromised plasma membranes while is 

uncapable of penetrating the membranes of live cells.  At the end of the incubation, the 

cells were fixed with 2% PFA, and cellular viability was evaluated by flow cytometry. On the 

same cells DNA damage due to the exogenous oxidative stress, was evaluated by measuring 

γH2AX foci by flow cytometry as described before. 

 

3.5 Statistics 

All data shown in graphs are expressed as mean ± standard error of the mean (S.E.M.)  

of n separated determinations  performed in different experiments and then analyzed by 

GraphPad Prism 5.0 (GraphPad software, San Diego, CA). Means of groups were 

compared with paired Student T Test (one-tailed P value) and considered significant 

when P < 0.05, with *P < 0.05; **P < 0.01;***P < 0.001.  
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4- RESULTS 

 

4.1 Effects of GSK3β inactivation in vitro 

GSK3β inactivation in vitro determines ROS production and oxidative damage in 

chondrocytes. 

The effects of GSK3β inactivation in articular chondrocytes from OA patients have 

been investigated. GSK3β phosphorylation was induced in low density monolayer 

cultures by treatment with either LiCl (at 5 mM or 10 mM)- or specific inhibitor 

SB216763 (at 10 µM) for 4 hours.  Confocal microscopy analysis of cells showed an 

endogenous production of reactive oxygen species at the level of mitochondria. This 

phenomenon was detected by combining the signal of the ROS-specific probe 

dichlorofluorescein diacetate with the red Mitotracker Orange CMTMRos 

mitochondrial staining (Figure 1A). In keeping with this observation, at 16 hours post 

stimulation, the LiCl treated cells but not the SB216763 treated cells accumulated a 

significantly higher level of 8-oxo-dG (p=0.032, n=6) compared to unstimulated cells 

(Figure 1A graph). 

 

GSK3β inactivation affects cell proliferation with S-phase arrest of chondrocytes 

cultured in monolayer. 

GSK3β inactivation has effects on chondrocyte proliferation as demonstrated on cells at 

passage 1 (p1) of culture across 8, 16, 24, 48 and 72 hours of incubation with or without 

GSK3β inhibitors. Cells at the various time points were counted and showed that LiCl-

dependent GSK3β inactivation impacts on cellular proliferation, with an evident and 

significant reduction at 8 hours (0.0122, n=12), 16 hours (p=0.0004, n=12), 24 hours 
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(p=0.0004, n=12), 48 hours (0.0193, n=4) post stimulation, as shown in figure 1B, 

reporting the cumulative evaluation of  experiments performed with cells of different 

patients, normalized to the 8 hours count of control cells. The percentage reduction 

compared to control cells was maximal at 24 hours, both in 5 mM LiCl and 10 µM 

SB216763 treated cells (Figure 1C). In subsequent time points the difference between 

control and GSK3β inhibited cells was partially recovered. Moreover, the DNA staining 

(Sytox green) of the LiCl treated cultures  showed a significant accumulation in the S 

phase at 24 hours (Fig. 1D, p=0.0320, n=5; with a representative example) coincident 

with the time point with maximal difference in cell counts between control cells and 

cells who had underwent LiCl mediated GSK3β inhibition.  

 

GSK3β inactivation in monolayer cultures induces senescence and hypertrophy in 

chondrocytes. 

Experiments performed with a specific hystochemical kit for SA-β galactosidase 

activity demonstrate that only LiCl-mediated GSK3β inhibition induces cell senescence. 

In fact, the treatment with 5mM LiCl significantly increases the level of β-

galactosidase; and noteworthy, larger cells, exhibiting a “hypertrophic” phenotype, were 

more positive to the staining than the others. The quantitative analysis of the increased 

percentage of senescent/hypertrophic cells indicated a significant increase of senescent, 

SA-βgal positive cells already at the time point of 8 hours (Figure 2A). On the other 

hand, the analysis of the percentage of the PAS positive cells indicated, as expected, 

that GSK3β inactivation in chondrocytes achieved by either LiCl or SB216763  leads to 

a progressive increase of glycogenesis so that the percentage increase of PAS positive 

cells became significant at 24 hours for both 5mM LiCl (n=5, p=0.0201) and 10µM 

SB216763 (n=4, p=0.0025). Similar to the analysis of SA-β gal activity (Figure 2B) also 
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the PAS staining confirmed a more positive signal in larger cells. Flow cytometric 

analysis confirmed that at each cell cycle phase, LiCl determines the accumulation of 

larger cells respect to the controls (size of the cells was quantitatively assessed  by 

forward scatter), and richer of intracellular granularity (a feature quantitatively assessed 

by side scatter, sometimes used as a marker of senescence) already at 8 hours 

stimulation as showed in Figure 2C; confirming the observation that LiCl treatment at 

the same time induces hypertrophy and senescence.  

 

GSK3β inactivation in monolayer determines the activation of DNA damage response 

and increases expression of IKKα and MMP10.   

The time course assessment of the total protein lysates following GSK3β inactivation 

indicated that LiCl treatment leads to a DNA damage response in monolayer 

chondrocytes. Figure 3A shows a representative western blot analysis demonstrating a 

LiCl-dependent increased level of γH2AX at each time point. Interestingly, Figure 3A 

shows that at the very early time point of 8 hours, the oxidative stress leads to the 

induction of GADD45β, and  to an increased expression of p21.  

Moreover, we investigated gene and protein regulation of IKKα. The treatment with 

5mM LiCl but not with 10 µM SB216763 significantly increased IKKα mRNA at 16 

hours as demonstrated in Figure 3B. Western blot analysis confirmed an increased 

IKKα protein expression at 16 hours.  At the same time point, we also observed an up-

regulation of MMP-10 mRNA (Figure 3C) an IKKα target gene, as previously reported 

(Olivotto, Otero et al. 2013). 
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Figure 1.  In vitro phosphorilation 
of GSK3β determines ROS 
production, oxidative damage, 
growth inhibition and activation of 
an intra-S checkpoint. 1A: 5 mM 
LiCl increases ROS production and 
mitochondria activation at 4 hours 
post stimulation (right column) 
compared to control samples (left 
column). On the right: high 
magnification detail of a LiCl treated 
cell. Right Graph: fluorescence 
intensity (MCFI) increment of the 
oxidative stress marker 8-oxo-dG, 
difference between the median 
channel of fluorescence intensity of 
the cells stained for 8-oxo-dG and 
that of the same cells probed with the 
negative control (isotype IgG2 
control). At 16 hours, the LiCl treated 
cells (black histogram) but not the 
SB216763 treated cells (grey 
histogram) accumulated a 
significantly higher level of 8-oxo-dG 
(p=0.032, n=6) compared to 
unstimulated cells (white histogram). 
1B and C: longitudinal assessment of 
the effects of GSK3β inhibition on 
cell growth versus the control (white 
column). B: LiCl (black histograms) 
and C: SB216763 (grey column): 
upper graphs indicate counts 
normalized versus the 8 hours count; 
lower graph indicate at each time 
point the percentage count reduction 
due to either LiCl or SB216763. *P< 
0.05; **P<0.01; ***P<0.001(see 
results for details). 1D Left: DNA 
staining (Sytox green) of the cells 
indicates that LiCl determines a 
significant increased of cells in the S 
phase (p=0.0320, n=5) at 24 hours. 
Right: a representative example with 
cell cycle analysis of control (left)  
versus 5mM LiCl (right) treated cells  
at each time point. 
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Figure 2. GSK3β inactivation in monolayer cultures induces senescence and 
hypertrophy in chondrocytes. 3A and B SA-βGalactosidase activity and PAS staining 
were quantitatively evaluated by image analysis (NIS software) in multiple experiments 
with different patients, examining at least four fields (with 40-160 cells each), with cells 
automatically detected by mean of DAPI nuclear counterstaining and whose staining 
intensity was assessed in order to objectively determine the percentage of cells above a 
given threshold of signal intensity. 3A. SA-βGalactosidase activity. Graph indicates 
the mean percentage of cells with staining intensity  above a given threshold. 5mM LiCl 
increases the percentage of SA-βGal positive cells already at 8 hours post stimulation. 
(n=6; p=0.0008). Right image: a representative picture showing that hypertrophic cells 
also show the strongest level of SA-β Gal activity. 3B. PAS staining. Graph indicates 
the mean percentage of cells with staining intensity  above a given threshold. At 24 
hours post treatment, both 5mM LiCl (p=0.0201, n=5) and SB216763 (p=0.0025, n=4) 
resulted in significantly increased PAS staining compared to control cells. Right 
image: a representative picture showing that hypertrophic cells also show the strongest 
level of PAS staining. 3C Cell cycle phase distribution of Forward Scatter (upper graph, 
a parameter related to cell size) and Side scatter (lower graph, a parameter related to 
cell granularity) of 4 different experiments, with the values normalized to the value of 
each control G1 phase cells. 5mM LiCl treatment determines an increase of scatter 
values at G1, S and G2/M phase.   
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Figure 3. GSK3β inactivation in monolayer determines the activation of a DNA 
damage response and increases expression of IKKα and MMP10. 3A Representative 
example of a Western Blot analysis : LiCl induces an increased GSK3β phosphorylation 
leading to a DNA damage response (DDR). The DDR includes markers of  DNA damage  
(double strand breaks evidenced as γH2AX), increased expression of  GADD45β and p21. 
3B 16 hours LiCl treatment significantly  increased IKKα gene expression (p=0.0058, 
N=3) and at this time point an increased IKKα protein expression was also appreciated 
(n=4). 3C 16 hours LiCl treatment significantly increased gene expression of MMP-10 
(p=0.0092, N=3), a target gene of  IKKα. 
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4.2 GSK3β phosphorilation in cartilage explants 

Evaluation of GSK3β inactivation in cartilage from OA patients. 

The extent of in vivo GSK3β inactivation was investigated on  knee cartilage samples 

derived from 7 osteoarthritic patients. Most phospho(Ser9) GSK3β positive cells were 

localized in mid-deep cartilage layers. PhosphoGSK3β in cartilage had only an 

extranuclear pattern (Figure 4) and an high phosphoGSK3β staining was also found in 

calcified cartilage areas. 

 

DNA damage response is associated with GSK3β inactivation in cartilage from OA 

patients. 

In samples derived from OA patients we found evidence that, even in vivo, GSK3β 

inactivation is responsible for the triggering of the pathway oxidative DNA 

damage>GADD45β>p21,  that we previously observed downstream pharmacological in 

vitro GSK3β inactivation. Figure 5 shows a representative immunohistochemistry 

experiment derived from an OA sample with a high prevalence of phosphorylated 

(Ser9) GSK3β positive cells. 

The presence of oxidative stress was evidenced at the tissue level by using 8oxo-d-G 

antibody, that gave a positive staining in mid-deep layers, therefore correlated with the 

distribution of phosphoGSK3β. The expression of GADD45β, was also found in mid-

deep layers with an exclusive cytoplasmic distribution.  The same pattern was found for 

p21, particularly evident in mid-deep layers. With regards to the intensity, in the same 

samples showing association of stronger staining of phosphoGSK3β, 8-oxo-dG, 

GADD45β and p21, we also detected higher staining of the senescence associated β- 

galactosidase, suggesting that not only in monolayer cultures, but also at the level of the 
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cartilage tissue,  there is a mechanistical link between GSK3β inactivation, DNA 

damage response and chondrocyte senescence and that in both settings GSK3β 

inactivation is  responsible of senescence and hypertrophy. 
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Figure 4. In vivo detection of phosphoGSK3β in articular chondrocytes derived from an 
osteoarthritic patient. High magnification images of chondrocytes in the superficial (upper 
picture) or mid-deep layers (lower picture) of cartilage derived from an OA patient indicates a 
extranuclear pattern of staining.  

 

Figure 5. DNA damage response is associated with GSK3β inactivation in cartilage 
from OA patients. A representative case of knee cartilage from an OA patient. 
pGSK3β was analyzed with immunofluorescence and images were taken at the confocal 
microscope (bar=25µm); 8-oxo-dG, GADD45β, p21 and SA-β-Gal were assessed with 
immunohistochemistry and colorimetric detection, and the bright field images were all 
taken at 400x magnification.  In the upper panel high magnification insets show the 
prevalent cytoplasmic localization of pGSK3β or GADD45β signals.  
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4.3 Functional genomics analysis of IKKα effects on oxidative DNA damage 

IKKα  impacts on double strand breaks (DSB) induction after an oxidative stress. 

In the second part of the work the role of IKKα on the chondrocyte response to an 

exogenous oxidative stress has been investigated by using IKKα Knock Down (KD) 

chondrocyes.  

Double strand breaks induction was evaluated by measuring γH2AX foci formation. In 

fact γH2AX serves as a marker of double strand breaks since it specifically labels sites 

of H2AX phosphorylation, which can subsequently lead to the recruitment of DNA 

repair factors. Moreover, γH2AX can be considered a marker of the senescent-

associated phenotype (d'Adda di Fagagna 2008).  

We saw that in the absence of any stimulus, the amount of γH2AX DNA foci as 

evaluated by the Flow Citometry (Figure 6C) is comparable in IKKα Knock Down and 

controls cells (Figure 6A). Data are showed as MCFI increment representing the 

difference between the median channel (MC) fluorescence intensity  of the sample 

labelled with the anti-γH2AX antibody and the MC fluorescence intensity of the sample 

labelled with the isotype control antibody. Immediately after H2O2 exposure, an higher 

percentage of γH2AX positive cells and more foci per cell are found in IKKα Knock 

Down cells as compared to their GL2 controls (Figure 6A). We then coupled γH2AX 

staining with cell cycle analysis and the results  indicated that G2-M cells are the more 

susceptible to DNA damage in both IKKα Knock Down and control chondrocytes 

(Figure 6B). However, IKKα KD cells proved to almost completely repair Double 

Strand Breaks after 24 hours of recovery after H2O2 treatment, as demonstrated by a 

sensitive reduction of the γH2AX signal  in IKKα KD cells at this time point. Moreover, 

NAC incubation prior to H2O2  completely reverts γH2AX induction (Figure 6B) thus 

confirming the specificity of the signal with regards to ROS induction.   
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IKKα  impacts on telomere length after an oxidative stress.  

We aimed to assess the effect of exogenous oxidative stress on the induction of 

"extrinsic senescence" by performing a Flow-FISH analysis in order to measure 

telomere length by using a FITC-PNA probe (Figure 7C), in IKKα Knock Down and 

their control chondrocytes after exposure to H2O2. The results we obtained 

demonstrated that under basal conditions, in the absence of any exogenous oxidative 

stress, there is no difference in the telomere length between control and IKKα KD 

chondrocytes (Figure 7A). We then measured the effects of oxidative stress on telomere 

shortening 72 hours after H2O2 exposure. In order to evaluate the effect of a specific 

stimulus on telomere attrition, 72 hours of recovery are necessary to allow the cells to 

replicate at least one time. Our data show that H2O2 exposure shortens telomere length 

particularly in the G2-M fraction of control cells but not in their IKKα KD counterparts 

that proved to be more resistant to the effect of "extrinsic senescence" following an 

extrinsic oxidative stress (Figure 7B).  

 

IKKα  impacts on DNA Mismatch Repair (MMR) system after an oxidative stress.  

DNA Mismatch Repair (MMR) is the main post-replicative correction pathway and 

playing  a key role in maintaining genomic stability is therefore crucial for actively 

proliferating cells. If this system does not work properly, for example because of an 

oxidative stress, a Microsatellite instability (MSI) might be observed (Neri, Mariani et 

al. 2011), leading to genomic aberrations that can lead to mutations. We evaluated the 

effect of hydrogen peroxide on the expression of MMR genes in IKKα Knock Down 

and control cells by semi-quantitative Real-Time PCR. 

The analysis involved all the major genes of the pathway (MSH2, MSH3, MSH6, 

MLH1, PMS1 and PMS2) and showed that only two of them are up-regulated after 
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oxidative stress induction. MSH6 and MLH1 mRNA are higher in  IKKα Knock Down 

cells than control cells after H2O2 exposure (Figure 8) indicating a higher  capacity of 

IKKα KD cells to avoid the Microsatellite instability that occurs after an exogenous 

oxidative stress thus preventing the process of  "extrinsic senescence". 
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Figure 6. Effect of oxidative stress on double strand breaks (DSB) induction in 
IKKα Knock Down chondrocytes. 6A Cumulative γH2AX MCFI derived from the 
samples (controls and IKKalpha Knock Down cells) analiyzed by flow cytometry  in 
basal conditions and immediately after H2O2 treatment are represented in the graph 
(n=7; p<0.001). 6B Representative flow cytometric analysis of γH2AX coupled with 
cell cycle cell by picogreen staining in control (GL2) and IKKα KD chondrocytes 
under basal conditions (NS) and after H2O2 exposure (immediately post stimulation 
and after 24h recovery). Isotype controls are in grey. Results are shown for G0-G1 and 
G2-M. 6C Representative confocal analysis of γH2AX foci in control and H2O2  
treated chondrocytes. Nuclei were stained with Sytox green and γH2AX antibody was 
revealed with a DyLight 649 labelled secondary antibody. Images magnification: 60X.  
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Figure 7. Effect of oxidative stress on telomere length in IKKα Knock Down 
chondrocytes. 7A Cumulative flow cytometry evaluation of telomere length in control 
and IKKα KD chondrocytes under basal condition (n=7). 7B  Upper panel: telomere 
length reduction after 72 hours recovery following H2O2 exposure of GL2 and IKKα KD 
cells onto two subsequent culture passages. MTL=Mean Telomere Length (upper panel). 
7B Lower panel: representative Flow-FISH analysis of telomere length coupled with cell 
cycle profile by picogreen staining in control (GL2) and IKKα KD chondrocytes under 
basal conditions (NS) and after H2O2 exposure (72h recovery). Isotype controls are in 
grey. Results are shown for G0-G1 and G2-M.  7C Representative confocal analysis of 
FITC-PNA telomere probe. Nuclei were stained with Sytox AAD. Image magnification: 
60X.  
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Figure 8. Effect of oxidative stress on the DNA Mismatch Repair (MMR) 
system in control and IKKα KD chondrocytes.  Semi-quantitative real time 
PCR analysis of gene expression of two MMR enzymes in  IKKα KD and 
control cells. MSH6 expression is significantly higher in IKKα KD cells 
compared to control cells after H2O2 treatment (n=10; **p=0.0028, 
***p<0.0001). MLH1 is significantly higher in IKKα KD cells compared to 
control cells after H2O2 treatment treatment (n=10; ***p<0.0001). 
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4.4 Nutraceutical treatments and anti-oxidant activity 

Hydroxytyrosol attenuates γH2AX-foci formation and senescence after H2O2 exposure 

in chondrocytes. 

In the third part of the work the potential protective role of some nutraceuticals 

compounds and their ability in scavenging Reactive Oxygen Species in monolayer 

culture has been investigated. We observed the effect of hydroxytyrosol (HT) after the 

treatment of chondrocytes in low density monolayer with 100µM H2O2  for 1 or 4 hours. 

Figure 9A shows the induction of DNA damage due to oxidative stress after 1 hour 

stimulation as indicated by the increased signal of the phosphorylated form of H2AX. 

Figures 9A and 9B also show that the treatment with HT completely reverts the increase 

of γH2AX-foci at 1 hour incubation, the time point corresponding to the greater extent 

of damage, which then undergoes repair so that at 4 hours the signal is greatly reduced.  

Data are showed as MCFI increment representing the difference between the MC 

fluorescence intensity  of the sample labelled with the anti-γH2AX antibody and the 

MC fluorescence intensity of the sample labelled with the isotype control antibody. The 

same cells were processed for the SA-β Gal staining to evaluate the occurrence of 

senescence after oxidative stress and the protective effect of HT treatment. Figures 10A 

and 10B show how H2O2  treatment for 4 hours induces a significant augmentation of 

the percentage of senescent cells respect to the control, unstimulated cells. Nevertheless, 

the pre-treatment with HT induces an almost complete recovery of the normal 

phenotype. Interestingly, the treatment with HT alone induces a significant reduction of 

the percentage of senescent cells in comparison to unstimulated cells, indicating an anti-

oxidant effect of the compound that is exerted in the absence of an oxidative stimulus. 
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Spermidine pre-incubation reduces cell death and γH2AX-foci formation after H2O2 

exposure in chondrocytes. 

In this part of the work the effect of 100 nM spermidine (SPD) pre-treatment prior to 

the exposure of high density chondrocyte monolayer to 500µM H2O2  for 24 hours has 

been investigated. Preliminary experiments to date have been only carried out with 

primary chondrocytes derived from two patients. Figure 11A shows the percentage of 

dead cells after treatment with H2O2 with or without SPD pre-treatment. The measure 

was performed by Sytox green staining and flow cytometry analysis. The data obtained 

indicate a marked augmentation of cell death after H2O2 incubation, but the pre-

treatment with SPD strongly reduces cell death respect to H2O2 alone. On the same 

cells, the extent of γH2AX-foci formation was evaluated. Figure 11B shows that  H2O2 

induces γH2AX-foci augmentation due to oxidative stress, but pre-treatment with 

spermidine completely reverts this phenotype. Interestingly, the treatment with SPD 

alone induces a reduction of the extent of γH2AX-foci respect to control cells, 

indicating an anti-oxidant effect of the compound independently of the exposure to the 

oxidative stimulus, as previously seen for hydroxytyrosol. Flow cytometric data are 

showed as MCFI increment, indicating the difference between the MC fluorescence 

intensity  of the sample labeled with the anti-γH2AX antibody and the MC fluorescence 

intensity of the sample labeled with the isotype control antibody. 
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Figure 9. Hydroxytyrosol attenuates γH2AX-foci formation after H2O2 
exposure in chondrocytes. 9A Representative flow cytometric analysis of γH2AX 
of  chondrocytes  incubated for 1 hour with H2O2.  Light grey histograms represent 
isotype while dark grey histograms represent γH2AX–specific antibody. 9B 
Cumulative MCFI derived from several samples analyzed by flow cytometry after 
1 hour (n=5; p***<0.001) and 4 hours (n=6; p*<0.05) incubation with H2O2 are 
represented in the graph.  
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Figure 10. Hydroxytyrosol reduces senescence after H2O2 exposure in chondrocytes. 
10A Representative pictures showing the increased SA-β Gal activity in. H2O2 treated 
chondrocytes. HT pre-treatment reduces this staining. 10B Graph indicating the “relative 
value (i.e. the value normalized to that of control cells)” of SA β-Gal staining across different 
treatments. H2O2 significantly increases the percentage of SA-βGal positive cells already at 4 
hours post stimulation and HT almost completely reverts this phenotype. (n=3; p*<0.05). 
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Figure 11. Spermidine pre-incubation reduces cell death and γH2AX-foci 
formation after H2O2 exposure in chondrocytes. 11A Graph represents  the 
percentage of dead cells in basal conditions and after treatment with H2O2 with or 
without SPD pretreatment, as measured by Sytox green staining and flow cytometry 
analysis (n=2). 11B Graph represents cumulative MCFI of γH2AX flow cytometry 
analysis in basal conditions and after treatment with H2O2, with or without SPD 
pretreatment (n=2)  
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5- CONCLUSIONS AND DISCUSSION 

 

In this study we investigated some molecular mechanisms that contribute to aspects of 

cellular senescence in osteoarthritis. Since chondrocyte senescence is mainly of the 

extrinsic or “stress induced” type, the study was mainly focused on the evaluation of the 

role of oxidative stress and DNA damage in cellular senescence. We evaluated the 

impact on this phenomenon of two major enzymatic systems, GSK3β and IKKα, that 

we manipulated either pharmacologically or by means of  retroviral mediated Knock 

Down (KD) and we also assessed the ability of selected nutraceuticals on scavenging 

oxidative stress, avoiding the senescent phenotype of osteoarthritic chondrocytes. 

The process of stress-induced senescence at the level of articular chondrocytes has a 

great impact on their ability to maintain and to restore tissue homeostasis and often 

leads to tissutal degeneration. In fact, articular cartilage is a post-mitotic tissue and it is 

very susceptible to extrinsically-delivered  or intrinsically-generated reactive oxygen 

species.  

In this work we performed in vitro experiments to understand the effects of GSK3β 

inactivation in articular chondrocytes derived from osteoarthritic patients. GSK3β 

pharmacological phosphorylation was induced by using two canonical inhibitors, LiCl 

and SB216763, both administered at the same concentrations used by Colghlan and 

collaborators  (Coghlan, Culbert et al. 2000). It is likely that GSK3β inactivation can be 

responsible of the chronic impairment found in articular chondrocytes of osteoarthritic 

chondrocytes, via an alterated mitochondrial mechanism (Byun, Jung et al. 2012; Byun, 

Jung et al. 2012) linked to ROS production and cellular senescence.   
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We first investigated the mitochondrial effects downstream LiCl- and SB216763- 

mediated GSK3β inactivation demonstrating, by time lapse confocal observation, that 

this process is responsible for the production of reactive oxygen species at the level of 

chondrocyte mitochondria, affecting their functions. This phenomenon is likely due to 

mitochondrial complex IV defects as previously reported by Byun and collaborators 

(Byun, Jung et al. 2012).  Moreover Rose and collaborators have recently studied the 

level of DNA damage in chondrocytes,  founding high levels in osteoarthritic samples, 

in conjunction with a progressive stress-induced senescence (Rose, Soder et al. 2012). 

Our data support the observation that chondrocytes are strongly susceptible to oxidative 

stress, in fact while reactive oxygen species (ROS), are responsible of damage at the 

level of several different intracellular compartments, nucleus and DNA seem to be 

highly susceptible to this kind of molecules in chondrocytes. One major ROS effect on 

DNA is represented by Double Strand Breaks (DSB), that occur when both DNA 

strands are broken closely. Cells respond to DSB activating γH2AX that regulates the 

recruitment and accumulation of multiple DNA damage response factors (DDR) (Haiko 

van Attikum et al., 2009).  

As we hypothesized, we demonstrated that ROS are able to induce Double Strand 

Breaks and are responsible of activation of a DNA damage response that starts with 

histone H2AX phosphorylation and culminates with GADD45β and p21 induction, 

driving chondrocytes to cellular senescence.  

DNA damage was assessed by measuring not only γ-H2AX, marker of double strand 

breaks,  but also 8-oxo-G, that is a known stable marker of oxidative stress because it 

stains 8-oxoguanine adducts caused by ROS at the level of both genomic and  

mitochondrial DNA (Markkanen, Hubscher et al. 2012). Mitochondrial DNA is 

notoriously more susceptible to oxidative damage than genomic DNA because ROS are 
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produced exactly in this compartment and because in mitochondria there is not a proper 

system of DNA repair (Yakes and Van Houten 1997). Also unstressed cells present a 

“steady state”, basal level of 8-oxo-dG that can increase when intracellular ROS level 

exceeds the cellular antioxidant systems and the cells become oxidatively stressed. We 

easily demonstrated both γH2AX and 8-oxo-dG increase following GSK3β inhibition, 

but the second marker seems enhanced only after LiCl and not SB216763 treatment. 

DNA damage induced by reactive oxygen species downstream GSK3β phosphorylation 

also activates the stress sensor GADD45β, a protein involved in cell cycle arrest that 

may be responsible for the intra S checkpoint (Bhattacharjee, Park et al. 2005), a 

phenomenon that we have observed after LiCl treatment of chondrocytes. GADD45β is 

also a mediator of p21 expression (Shimada et al., 2011), that is itself a cell-cycle 

regulator in response to DNA-damage  (d'Adda di Fagagna 2008). In fact, the 

expression of p21 increases as a function of senescence in a GADD45β-dependent 

manner in senescence-accelerated mice (Shimada, Sakakima et al. 2011). Our 

experiments evidenced an increased expression of p21 downstream GSK3β inactivation, 

in keeping with a report showing that even in healthy tissue, there is an association 

between increased p21 expression and increased chondrocyte hypertrophy at the level of 

articular cartilage (Stewart, Farnum et al. 1997). 

The pattern just described has been shown not only in in vitro chondrocyte cultures, but 

also in chondrocytes in vivo within articular cartilage, where we have highlighted a 

similar mechanism occurring in the middle-deep layers of articular cartilage as also 

confirmed by correlated staining of pGSK3β, 8oxo-dG, GADD45β and p21. Moreover, 

the data obtained indicate that GSK3β activity in chondrocytes from osteoarthritic 

patients is essential for the maintenance of their proliferative potential and cell cycle 

distribution, as evidenced by the reduction of their proliferation potential and by the 
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accumulation in the S phase of the cell cycle observed in our experiments. Overall, this 

process leads to the survival of chondrocytes but to their functional impairment via 

induction of hypertrophy and senescence.  

Extrinsic senescence is mostly due to oxidative stress and is responsible of the processes 

of aging in chondrocytes (Shane Anderson and Loeser 2010; Loeser 2011). The most 

common senescence markers are senescence associated β-gal staining (Price, Waters et 

al. 2002) and glycogen accumulation  (Seo, Jung et al. 2008). We found that GSK3β 

inactivation is responsible for chondrocyte senescence as demonstrated by the 

impairment of proliferation and by the expression of senescence markers. We 

demonstrated that the accumulation of SA-βGal and glycogen in chondrocytes do not 

overlap, but instead follow different kinetics. More precisely, LiCl treatment induces an 

increased cell expression of SA-βGal already after 8 hours and, at the same time point, a 

flow cytometric analysis indicates that lithium chloride is responsible for both the 

increased cell size and granularity as measured by the forward and side scatter 

respectively. The other aspect that we evaluated concerns the glycogen content as 

measured by the PAS staining in conjunction with the image analysis evaluation of the 

signal; as we expected, both LiCl and SB216763 treatment of chondrocytes resulted in 

increased percentage of glycogen containing cells after 24 hours, due to the increased 

activity of glycogen synthase, in keeping with findings previously reported by 

(Coghlan, Culbert et al. 2000) in other cell types.   

It has been reported that GSK3β inhibition in cartilage induces osteoarthritic features 

due to the activation of the canonical Wnt pathway following the use of a selective 

GSK3β inhibitor (Miclea et al., 2011). Indeed, chondrocyte stimulation with LiCl has 

been associated  with the nuclear translocation of β-catenin which is responsible of the 

chondrocyte terminal differentiation (Ryu, Kim et al. 2002).  These observations are 
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collocated in the context of the deleterious effects of LiCl-induced GSK3β inhibition on 

cartilage homeostasis.  

Our data indeed indicate that LiCl treatment has greater effects than SB216763 on gene 

and protein expression not only of IKKα but also of its target gene MMP-10, a pivotal 

molecule in the process of chondrocyte differentiation and extracellular matrix 

remodeling (Olivotto, Otero et al. 2013) in both human and murine chondrocytes. IKKα 

itself has effects on extracellular matrix remodeling and on chondrocyte proliferative 

potential suggesting  that this kinase might contribute to the abnormal phenotype of 

chondrocytes from OA patients  (Olivotto et  al., 2008). 

Starting from the idea that IKKα is involved in the regulation of cellular senescence and 

in particular in the induction of SASP (Senescence Associated Secretory Phenotype) we 

investigated how IKKα precisely impacts on various types of oxidative damage  by 

comparing wild type and IKKα  KD chondrocytes  and measuring the response of 

chondrocytes to an extrinsic oxidative stress, responsible of a stress-induced 

senescence. Our data indicate that IKKα controls the intensity of primary human OA 

chondrocyte DNA damage response induced by oxidative stress. In fact, IKKα KD 

induces an immediate increase of cell susceptibility to reactive oxygen species as 

demonstrated by higher γ-H2AX positivity, that is an indication of the presence of 

double strand breaks. Noteworthy, this phenomenon is also related to the capacity of the 

cells to respond to the oxidative stress and to repair the DNA breaks. In fact, IKKα KD 

cells show the capacity to completely recovery the DNA damage 24 hours after the 

oxidative stimulus. Thus, IKKα KD confers to the chondrocytes an higher capacity to 

repair respect to control osteoarthritic chondrocytes. 

Telomeres protect the ends of chromosomes, and short telomere length is associated 

with poor health and mortality. This structures are very susceptible to oxidative stress, 
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that may function as a common trigger for activation of the senescence programs 

(Kawanishi et al., 2006). In this perspective we have assessed the effect of exogenous 

oxidative stress on the induction of "extrinsic senescence" by measuring telomere length 

in IKKα KD chondrocytes. As expected, IKKα KD cells undergo less shortening in 

telomere length respect to control cells, demonstrating a greater resistance to oxidative 

stress. This scenario is completed by the knowledge that, after an oxidative stress, cells 

need to restore DNA damage. DNA mismatch repair (MMR) system is one of the main 

post-replicative correction pathway playing a key role in maintaining genomic stability 

and is therefore crucial for proliferating cells. We demonstrated that after an  exogenous 

oxidative stress only IKKα KD chondrocytes increase expression of two of the major 

genes of the system: MSH6, one components of the MutSα, that is  the most abundant 

mismatch-binding heterodimer (Kolodner, Tytell et al. 1999) and MLH1, that with 

PMS1 constitutes the MutLβ heterodimer (Brierley and Martin 2013). The activation of 

the expression of two genes codifying for components of both the major heterodimers of 

the DNA mismatch repair system seems to confirm the impact of IKKα in the complete 

and coordinate response to exogenous oxidative stress. 

When ROS production exceeds the detoxification and scavenging capacity of the cell, 

oxidative stress induces damage to DNA, proteins and lipids with production of several 

by-products that consequently becomes implicated in the pathology of various diseases. 

To deal with oxidative DNA damage from various endogenous and exogenous sources, 

mammalian cells have evolved many mechanisms firstly to detect, and subsequently to 

repair such damage. However, often cells alone are not able to eliminate ROS and 

necessitate the help from some exogenous scavenging systems. Natural compounds 

found in fruits and vegetables, collectively known as “Nutraceuticals”, could have a 

great potential as anti-oxidant thanks to their direct protective effects as well as their 
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ability to potentiate some cellular homeostatic mechanisms,  thus modifying OA disease 

(Shen, Smith et al. 2012).  

The ability of hydroxytyrosol (HT) to attenuate γH2AX-foci formation and senescence 

in chondrocytes after H2O2 exposure is due to its anti-oxidant and cytoprotective 

actions, according to some recent findings (Facchini, Cetrullo et al. 2014). Also 

spermidine (SPD) is able to reduce γH2AX-foci formation after H2O2 exposure in 

chondrocytes and is responsible of a marked reduction of cell death, a finding that is in 

agreement with the observation that supplementation with spermidine reduces oxidative 

stress and extends lifespan in yeast and flies (Eisenberg, Knauer et al. 2009; Guo, 

Harada et al. 2011; Minois, Carmona-Gutierrez et al. 2012). 

Mediterranean diet is rich of food that provide health benefits, such as olive oil, and it is 

possible that the nutraceuticals contained in this kind of alimentation may exert effects 

on molecular targeting of osteoarthritis (Leong, Choudhury et al. 2013; (Henrotin, 

Lambert et al. 2011). 

OA is a complex disease with an unclear etiology and multiple risk factors; recent 

studies suggest some critical events for OA initiation and disease progression: over 

activated catabolic activity primarily mediated by pro-inflammatory cytokines; 

deleterious stresses such as oxidative stress as well as the impaired defense mechanisms 

against these stress factors (i.e., oxidative stress); proteolytic enzymes which directly 

degrade the cartilage matrix such as matrix metalloproteinases. There is currently no 

cure for OA, and there are no therapies which prevent, slow or arrest its progression (Le 

Graverand-Gastineau 2010). Prevention of this pathology is a very intriguing field and 

only the rescue or activation of intrinsic homeostatic mechanisms could provide an 

effective solution for a robust chondroprotection. 



76 

 

Reactive oxygen species, which regulate many signaling pathways, are important 

mediators in the pathogenesis of OA (Lo et al., 1996), therefore ROS can be categorized 

as one among the key molecular therapeutic targets in OA management.  This target 

provides a significant rational foundation for pursuing nutraceuticals with anti-oxidative 

stress properties for an anti-OA nutraceutical selection and formulation. Nutraceuticals 

have been demonstrated to effectively suppress oxidative stress-induced deleterious 

responses, such as DNA damage, cell death and senescence (Facchini et al, 2014; Leong 

et al., 2014).  

In conclusion, in this study the role of cellular senescence in the pathology of 

osteoarthritis has been extensively examined  considering many points of view. The first 

one concerns the possible basal mechanism responsible of intrinsic reactive oxygen 

species production, that we observed in vitro downstream GSK3β inactivation, and that 

has the potential to drive articular chondrocytes to hypertrophy and senescence. The 

second one considers another basal mechanism; the involvement of IKKα in 

chondrocyte response to oxidative stress and induction of extrinsic senescence. 

Noteworthy, both the inactivated GSK3β and the increased IKKα expression are 

markers of the hypertrophic chondrocyte phenotype, and therefore contribute to the 

improper differentiation progression of osteoarthritic chondrocytes. The third one  is 

focused on the use of some nutraceuticals to prevent DNA damage and cellular 

senescence. 

Overall these data provide new perspectives for the study of viable ways to prevent 

osteoarthritis and its classical treatments by exploiting multiple approaches to restore 

the correct chondrocyte phenotype, by either preventing GSK3β phosphorylation, 

silencing IKKα or using an alternative nutraceutical-based molecular targeting strategy 

for chondroprotection. 
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