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Abstract

The recent advent of Next-generation sequencing technologies has revolution-

ized the way of analyzing the genome. This innovation allows to get deeper infor-
mation at a lower cost and in less time, and provides data that are discrete mea-

surements. One of the most important applications with these data is the differen-
tial analysis, that is investigating if one gene exhibit a different expression level

in correspondence of two (or more) biological conditions (such as disease states,
treatments received and so on). As for the statistical analysis, the final aim will be

statistical testing and for modeling these data the Negative Binomial distribution
is considered the most adequate one especially because it allows for “over disper-

sion”. However, the estimation of the dispersion parameter is a very delicate issue
because few information are usually available for estimating it. Many strategies

have been proposed, but they often result in procedures based on plug-in estimates,
and in this thesis we show that this discrepancy between the estimation and the

testing framework can lead to uncontrolled first-type errors. We propose a mix-
ture model that allows each gene to share information with other genes that exhibit

similar variability. Afterwards, three consistent statistical tests are developed for
differential expression analysis. We show that the proposed method improves the

sensitivity of detecting differentially expressed genes with respect to the common
procedures, since it is the best one in reaching the nominal value for the first-type

error, while keeping elevate power. The method is finally illustrated on prostate

cancer RNA-seq data.
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Chapter 1

Introduction

In the last decade the next-generation sequencing (NGS) assays, such as
RNA-seq or ChIP-seq, have been revolutionizing the depth of understanding

of the genome structure and the DNA or RNA interaction regions, due to the
higher resolution of the data provided by these technologies [Soon et al., 2013,

Wang et al., 2009]. From a statistical point of view, this innovation has gone

along with a change in the nature of the data. Indeed, whilst the past mostly-used
microarray technologies measured the abundance of a particular transcript as a

fluorescence intensity expressed as continuous real data, the NGS experiments
give read counts assigned to target genome regions, measuring the expression

level or the abundance of the target transcript.

When the purpose of the assay is to perform differential analysis, that is com-
paring the counts of a given region between conditions, the statistical task is then

to provide an appropriate model to account for biological and technical variations,
as well as a testing framework to test the hypothesis of no difference. Here we

deal with the case where regions of interest are given a priori, contrarily to analysis

where the regions themselves have to be discovered [Frazee et al., 2014].

Generalized linear models based on count distributions now constitute a
consensus framework for the analysis, with the original Poisson distribution

[Marioni et al., 2008, Wang et al., 2010] being replaced by the Negative Bino-
mial model [Robinson and Smyth, 2008, Anders and Huber, 2010, Robinson et al.,

2010]. Indeed, the simplest choice of the Poisson distribution was rapidly identi-
fied as the cause of uncontrolled first-type errors, due to a poor adjustment to the

larger observed variability compared with the equal mean-variance specification of
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the Poisson model (see, for a discussion, Anders and Huber [2010]). Since then,
the correct modeling and estimation of this observed overdispersion has been a key

issue in differential analysis.
Taking perspective from our past experience in micro-array analysis, the proper

modeling of the dispersion parameter has long been a subject of debate in differ-

ential analysis, with a difficult trade-off between a common variance for every
genes and gene-specific variances. Given the limited number of replicates, the first

strategy provides robust estimates, but the testing procedure lacks of power and the
model is not realistic, whereas the second is more sensitive at the price of increased

first-type errors. Actually, the debate is still ongoing with the Negative Binomial
framework, but the problem is much more difficult to solve due to this complex

(and unknown) mean-variance relationship.
Several contributions have been proposed to find a trade-off between the com-

mon overdispersion and the gene-specific overdispersion frameworks, and we will
describe the three mostly used strategies in the next Chapter.

Despite the rapidly increasing diffusion of these statistical procedures, also
thanks to the availability of several well documented Bioconductor packages, the

estimation of the dispersion in NGS data remains a crucial and tricky issue because
of the limited number of available observations for each gene. However, less atten-

tion has been focused on the consistency between the estimation and the testing
frameworks. Indeed, many strategies consider the use of plug-in estimators, but

an important drawback of this choice is that the expected variations of the test
statistics are no longer controlled under the null hypothesis, which may result in an

un-controlled level of the test. We will illustrate this point by a simulation study,
showing that most proposed methods do not reach the nominal level of the test,

whereas it is precisely what is expected to be controlled when performing standard
hypothesis testing.

Our contribution is to explore and discuss a mixture model approach
[McLachlan and Peel, 2000, Fraley and Raftery, 2002] based on the idea of shar-

ing information among genes that exhibit similar dispersion. More specifically,
mixtures of negative binomial distributions are investigated as a way to get more

accurate estimations for the dispersion parameter of each gene, exploiting also the
information provided by the others. Such an approach has already been considered

in the same context for the differential analysis of microarray data [Delmar et al.,
2005]. A consistent statistical testing procedure is then developed within the uni-

fied model based clustering framework. The proposed method improves the sen-
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sitivity of detecting differentially expressed genes with small replicates, and we
show that our method controls the nominal level of the test by simulation.

A description of the procedures that provide these data together with a review
of the most used methods that have been proposed in last years for performing

differential analysis will be presented in Chapter 2. In Chapter 3 the negative

binomial distribution and mixtures of negative binomials will be introduced. The
novel method, together with the derivation of three statistical tests for performing

the differential analysis will be described in Chapter 4. We will show through
a large simulation study in Chapter 5 that the proposed statistical test procedure

outperforms the mostly used strategies in the literature, because it is the best one
in reaching the nominal value for the first-type error, while keeping elevate power,

thus indicating its inferential reliability. The method will be applied on prostate
cancer data in Chapter 6. A final discussion is presented in Chapter 7.





Chapter 2

NGS technologies and differential
analysis

2.1 NGS technologies and RNA-Seq data

The advent of the Next-Generation Sequencing (NGS) technologies has led
to the production of sequencing platforms that allow to obtain high-throughput

genomic data. These technologies can be used for many kinds of experiment, and
in this work we will focus on those that lead to the analysis and the quantification

of the transcriptome (that is the set of all RNA molecules), namely RNA-Seq data.
The procedure for getting this kind of data can be summarized in three main steps

[Oshlack et al., 2010]:

1. Sequencing: the studied transcriptome has to be preliminarily split into mil-
lions of fragments. The sequencing process produces the short reads, that

represent the sequence of the nucleotide basis that compose each fragment.

Many types of NGS sequencing platforms have been produced for this fun-
damental procedure (among the others, 454 Genome Sequencer by Roche,

Genome Analyzer by Illumina and SOLiD by Applied Biosystems). Each
machine has its specific characteristics. We will not go into technical details,

but as regards the mostly used one, the Illumina Genome Analyzer, we can
say that the samples are put on the flow-cell that is a sequencing plate com-

posed by several (usually 8) lanes (independent regions on the support). This
makes possible to sequence different samples at once.

2. Read mapping, or alignment: mapping the reads means to find a unique
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location where a short read is identical (or, in practice, almost identical) to a
reference genome or transcriptome.

3. Summarizing: after that as more reads as possible have been mapped on
the genome, the data can be summarized simply by counting the number of

reads overlapping the exons (the codifying regions) in a gene.

As such, they are discrete measurements. It is important to underline that dif-
ferent lanes could be characterized by different sequencing depth (or library size),

and potentially also by other technical effects. This makes normalization proce-
dures mandatory for comparative purpose (see, for instance, Bullard et al. [2010],

Tarazona et al. [2011], Risso et al. [2011] and Dillies et al. [2013]), but in this the-
sis we will not go into details of normalization methods.

The statistical procedures used for the analysis have to account for the features of
count data, for the limited number of available information for each gene (due to

high costs in sequencing procedures) and for the fact that NGS data are very often
characterized by excess of zeros (inactivated regions).

2.2 Differential Analysis

Preliminaries: notation

RNA-seq data consist of nonnegative counts indicating the number of reads
observed for each gene. Suppose we analyze p genes in d different conditions, and

on each of them observations are taken over nj replicates.
We denote Yijr the random variable that expresses the counts of reads mapped to

gene i (i=1, ..., p), in condition j (j=1, ..., d; in this work, d=2 w.l.g.), in sample r
(r= 1, ..., nj).

Differential analysis

One of the most important and largely studied applications for NGS data is
differential analysis, that is comparing the expression level of a specific gene (or

exon) between samples observed in correspondence of two different biological con-
ditions such as tissue types, disease states or treatments. Identifying differentially

expressed genes could be a first step in detecting possible connections between one
of these situations and the expression level of a specific gene [Kvam et al., 2012].
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From the statistical viewpoint, the differential analysis implies to perform sta-
tistical testing to decide whether, for a given gene, an observed difference in

read counts between two biological conditions is significant under a specific dis-

crete probabilistic distribution or if it is just due to natural random variability

[Anders and Huber, 2010]. The final aim consists in testing the null-hypothesis:

H0 : expression levelscondition 1 = expression levelscondition 2.

The benchmark distribution for count data is the Poisson [Cameron and Trivedi,
1998], but it can be too restrictive because it implies that variance and mean are

equal (“equi-dispersion” property), while the RNA-seq data could be characterized
by higher dispersion, leading to the so-called “over-dispersion problem”, and

therefore the resulting statistical test would be unreliable.

The quasi-Poisson model had been proposed as alternative [Ismail and Zamani,
2013], which is fitted on the basis of a quasi-likelihood function, specifying a rela-

tionship between the mean and the variance. However the provided estimators do
not have great properties.

A more appropriate distribution is the negative binomial (NB), that is characterized
by two parameters (a mean and a dispersion one) where the variance is a function

of both oh them. For a deeper description of the NB distribution we refer to Section
3.1. A severe issue associated with this probabilistic framework is the reliable esti-

mation of the dispersion parameter, reinforced by the limited number of replicates
generally observable for each gene.

2.3 State of the art

Differential expression analysis is a largely studied application of RNA-Seq

data, and many works have been published about it; here we report a brief overview
of the mostly known ones. Bloom et al. [2009] have proposed to use the Fisher’s

exact test for comparing the proportion of reads mapped to each gene in correspon-
dence of different conditions.

Several strategies arose considering the Poisson distribution as reference for mod-
eling the data. Among the others, Marioni et al. [2008] have fitted a Poisson model,

thus performing a χ2 goodness of fit test; Bullard et al. [2010] have explored the
likelihood ratio test possibility. Wang et al. [2010] have assumed the normality
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distribution for the log ratios of the counts and thus have computed a z-score, pro-
viding an R package that is called DEGseq (available on Bioconductor); Li et al.

[2011] proposed a score statistic on the basis of a Poisson log-linear model, pro-
viding an R package that is called PoissonSeq (available on CRAN). Various ap-

proaches based on the negative binomial distribution have been studied, for han-

dling the overdispersion problem. Hardcastle and Kelly [2010] proposed to itera-
tively estimate the dispersion using the quasi-likelihood approach, thus providing a

ranking of the genes on the basis of the posterior probabilities of being DE instead
of the classical p-values; they published the R package baySeq. Zhou and Wright

[2011], with their R package BBSeq, modeled the dispersions on the means, thus
computing a Wald test. Other three strategies, probably the mostly used at all, are

described in next sections with much more detail. These strategies have lead to
largely used R packages, available and well documented from Bioconductor: DE-

Seq, edgeR and DSS. We will present each method assuming that we are comparing
just d = 2 different biological conditions.

2.3.1 edgeR

Robinson and Smyth (Robinson and Smyth [2007], Robinson and Smyth

[2008]) proposed to estimate a common dispersion parameter for all genes ex-
pressed as a quadratic combination of the mean, and then, by making use of a

weighted likelihood procedure, they provide an estimation of each dispersion pa-
rameter as a weighted combination of the common and of the individual ones, as-

suming empirical weights. Then an approximation is introduced in order to develop
an exact test. This procedure is available in the R package edgeR [Robinson et al.,

2010].

The model

Let us assume a NB distribution for the random variable Yijr that describes
the counts for gene i in the r − th sample of condition j: Yijr ∼ NB(µijr, ϕ)

where ϕ is the dispersion parameter such that E(Yijr) = µijr and V ar(Yijr) =

µijr(1 + µijrϕ). Let us suppose that E(Yijr) = µijr = sjrλij such that λij
describes the real abundance of transcripts for gene i in condition j and sjr is
the size factor. Performing differential expression analysis means to test the null

hypothesis
H0 : λi1 = λi2, for i = 1, . . . , p.
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Robinson and Smyth [2008] have proposed a new way for estimating the disper-

sion parameter with this kind of data, that consists in making use of the information
provided from all genes in order to estimate a common dispersion ϕ, maximizing

the common likelihood function lC(ϕ).

Afterwards, they applied a quantile adjustment for avoiding problems due to
differences in sample sizes.

The assumption of common dispersion is a good way for gain more stable results
but it is not realistic for this kind of data, and therefore an Empirical Bayesian

strategy has been proposed. Such procedure had already been applied to microarray
data [Smyth, 2004]. The idea is to use a weighted conditional log-likelihood for

estimating each gene-wise dispersion ϕi (WL(ϕi)):

WL(ϕi) = li(ϕi) + αlC(ϕi) (2.1)

where we can recognize a special case of weighted likelihood [Wang, 2006], where

the common likelihood rules as a prior for ϕi and α plays the rule of the prior
precision. The value for α has to be chosen accordingly to the strength of the

similarity between the different dispersion parameters: the greater is α, the stronger
is the effect of the common component.

As regards the selection of an appropriate value for α, first of all they have
introduced their strategy considering a hierarchical model assuming (ideally) that

the gene-specific estimators ϕ̂i were normally distributed: ϕ̂i|ϕi ∼ N(ϕi, τ
2
i ) and

ϕi ∼ N(ϕ0, τ
2
0 ). The Bayes posterior mean estimator of ϕi would be:

ϕ̂Bi = E(ϕi|ϕ̂i) =
ϕ̂i/τ

2
i + ϕ0/τ

2
0

1/τ2i + 1/τ20
. (2.2)

ϕ0 and τ0 can be estimated from the marginal distribution of ϕ̂i to get a EB

rule. Under this idealistic model, we could derive:

ϕ̂WL
i =

ϕ̂i/τ
2
i + α

∑d
j=1 ϕj/τ

2
j

1/τ2i + α
∑d

j=1 1/τ
2
j

, (2.3)

that coincides with the (2.2) for ϕ0 = ϕ̂0 =
∑p

i=1 ϕ̂i/τ
2
i∑p

i=1 1/τ
2
i

and 1/α =∑p
i=1 τ

2
0 /τ

2
i . As for the estimation of τ20 , under the normal model we would have

that (ϕ̂i − ϕ0)
2/(τ2i + τ20 ) ∼ χ2

1, so that a consistent estimator for τ20 could be
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computed by solving:

p∑
i=1

(
(ϕ̂i − ϕ̂0)

2

τ2i + τ20
− 1

)
= 0. (2.4)

In practice the individual estimators ϕ̂i are not normally distributed and we do
not know their variances, but since the score statistics converge to normality more

rapidly than maximum likelihood (ML) estimators and (2.4) can be written in terms
of the score likelihood function and the expected information, they have proposed

the following algorithm: first of all they have estimated the common dispersion ϕ̂0,
maximizing lC ; then they evaluated, for each gene, the score function Si(ϕ̂0) =

∂li(ϕ̂0)/∂(ϕ̂0) and the expected information Ii(ϕ̂0) = E(−∂2li(ϕ̂0)/∂ϕ̂20). Af-
terwards they estimated τ0 by solving

∑p
i=1

(
S2
i

Ii(1+Iiτ20 )
− 1
)

= 0 and they set

1/α = τ20
∑p

i=1 Ii and finally they got weighted likelihood estimators ϕ̃i by maxi-
mizing WL(ϕi).

This way, if ϕi = ϕ0 for i = 1, . . . , p then E(S2
i ) = Ii so that τ0 will be estimated

close to 0 and α will be large. Conversely, if the gene-specific dispersion parame-

ters are dissimilar, the algorithm will account for that proposing greater values for
τ0 (and therefore weakening the shrinkage effect).

Testing for differential expression

After computing the dispersion parameters through the Empirical Bayes esti-

mator, Robinson and Smyth [2007] have proposed an exact test analogous to the
Fisher’s one. It is adapted for this kind of data, replacing the hypergeometric prob-

abilities with negative binomial ones and conditioning on the sum of all the reads
that are mapped to gene i. For doing so, they had needed to introduce an approx-

imation considering the normalized data as identically distributed. Finally they
computed the exact p-values as the probabilities of observing counts as or more

extreme than the observed.

2.3.2 DESeq

Anders and Huber [2010] proposed to use a mean-dependent local regression
to smooth the gene-specific dispersion estimates, related to the idea that genes that

share a similar mean expression level have also a similar variance, and therefore
they can contribute to the estimation of the respective parameters. The method is
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implemented in the DESeq R package, available from Bioconductor.

The model

We denote Yijr the number of reads that have been mapped to gene i in con-
dition j, for sample r. DESeq assumes Yijr ∼ NB(µijr, σ

2
ijr) where µijr is the

mean and σ2ijr is the variance. The mean µij is supposed to be equal to λijsjr, that
is the product of two terms: the first one is proportional to the real abundance of

transcripts for gene i in condition j, and the latter is the size factor, that is lane-
dependent. The variance σ2ijr is the sum of two components: σ2ijr = µijr + s2jrνij .

The first one is called shot noise, and it is the variance that would be computed as-
suming a Poisson model for the data. The second is the raw variance term and it is

supposed to be a smooth function of λij . The novel aspect of this strategy consists
indeed in considering that the estimation of the overdispersion component can be

gained pooling information among genes that exhibit a similar expression level.
This model requires the estimation of three sets of parameters:

• the size factors sjr (for each sample r in condition j),

• the expression strength parameters λij (for each gene i in condition j),

• the smooth functions νj : ℜ+ → ℜ+ (for each condition j), for modeling
the dependence of the raw variances νij on the expectations λij .

As regards the first set of parameters, Anders and Huber [2010] have proposed
a new way for computing the library sizes sjr, that is:

ŝjr = mediani
yijr

(
∏

j

∏
r yijr)

1/n
,

where n is the total number of samples (n =
∑2

j=1 nj), and the denominator is a

geometric mean of the counts computed on the n information available for gene i.
For the estimation of the expression level,

λ̂ij =
1

nj

nj∑
r=1

yijr
ŝjr

. (2.5)
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As regards the νj , first of all they have computed the sample variances for the
normalized counts:

ωij =
1

nj − 1

nj∑
r=1

(
yijr
ŝjr

− λ̂ijr

)2

, (2.6)

and they have defined:

zij =
λ̂ij
nj

nj∑
r=1

1

ŝjr
. (2.7)

It can be proved that νij = ωij − zij is an unbiased estimator for the raw variance.

Nevertheless, the limitedness of the number of observations that are usually col-
lected make the ωij very variable, leading to unreliable estimates. Therefore the

authors have suggested to fit a local regression model on (λ̂ij , ωij) to get a smooth
function νj(λ) with ν̂j(λ̂ij) = ωj(λ̂ij)− zij as estimation of the raw variance.

Testing for differential expression

The differential expression analysis consists in testing the null hypothesis

λi1 = λi2, for i = 1, . . . , p. Anders and Huber [2010] have derived a test statistic
that is the total counts in each condition: Yi1 =

∑n1
r=1 Yi1r and Yi2 =

∑n2
r=1 Yi2r;

we define also the overall sum Yi+ = Yi1+Yi2. For each pair of values (a, b), with
a + b = yi+, they needed to compute the probability of the events: Yi1 = a and

Yi2 = b and we denote it as p(a, b). The p-value of a pair of observed count sums
(yi1, yi2) has been defined as:

pi =

∑
a+b=yi+

p(a,b)≤p(yi1,yi2)

p(a, b)∑
a+b=yi+

p(a, b)
. (2.8)

They assume that, under the null hypothesis, the samples are independents:

p(a, b) = p(Yi1 = a)p(Yi2 = b).
Yi1 and Yi2 are sums of NB random variables, and they suggested to approximate

their distribution by a NB. For the derivation of the parameters, first of all they
computed λ̂i0 =

∑d
j=1

∑nj

r=1
yijr
sjr

(pooling the counts of all conditions), that is

an average on all the normalized information for gene i, considering the hypoth-
esis λi1 = λi2 as true. The final mean and variance parameters of the resulting

NB distribution are: µ̂ij =
∑nj

r=1 sjrλ̂i0 and σ̂2ij =
∑nj

r=1 ŝjrλ̂i0 + ŝ2jrν̂j(λ̂i0) for
j = 1, 2.
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2.3.3 DSS

Wu et al. [2013] introduced an empirical Bayes shrinkage approach choosing
a log-normal prior distribution on the dispersion parameters and therefore impos-

ing a negative binomial likelihood. Then the estimations are plugged-in the Wald
statistic to perform the statistical test. The method is implemented in the DSS R

library.

The model

Wu et al. [2013] have assumed a hierarchical model:

ϕi ∼ log −Normal(m0, τ
2)y

θij |ϕi ∼ Gamma(λij , ϕi)y
Yijr|θij ∼ Poisson(θijsjr)

The marginal distribution of Yijr given λij and ϕi is a NB with mean µijr =

λijsjr (where λij describes the real abundance of transcripts for gene i in condition

j, sjr is the library size), and dispersion ϕi, that is variance equal to λij + ϕiλ
2
ij .

As it is well known there is not a conjugate prior for ϕi, and they imposed a prior

that seems to reflect the empirical behavior of the dispersion parameters, that is the

log-normal distribution.
It is possible to derive a conditional posterior distribution of ϕi given all observed

counts and means:

log
(
p(ϕi|Yijr, µijr, j = 1, 2; r = 1, . . . , nj)

)
∝∑

j,r

ψ(ϕ−1
i + Yijr)− nψ(ϕ−1

i )− ϕ−1
i

∑
j,r

log(1 + µijrϕi)

+
∑
i

Yijr
(
log(µijrϕi)− log(1 + µijrϕi)

)
− (log(ϕi)−m0)

2

2τ2
− log(ϕi)− log(τ) (2.9)

where n =
∑

j nj is the number of samples. We could consider the posterior mean
as a good estimate for ϕ̂i, but it would be too computationally intensive. Therefore
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they propose to compute the posterior mode by maximizing an approximation of
(2.9). In practice, they substitute µijr by µ̂ijr = λ̂ijsjr where λ̂ij =

∑
r Yijr/sjr

nj
,

and they plug-in the two hyper-parameters m0 and τ2 by pooling the data pro-
vided by all genes. Finally they maximized the approximated equation (2.9) using

the Newton-Raphson method. The estimated ϕ̂ is an empirical Bayes estimator,

shrunken toward the common prior.

Testing for differential expression

Performing differential analysis means testing the null hypothesis λi1 = λi2,

for i = 1, . . . , p.
For this aim, they simply proposed to use the estimated parameters to plug-in the

Wald test:

ti =
λ̂i1 − λ̂i2
σ̂2i1 + σ̂2i2

(2.10)

where σ̂2ij is the estimated variance for λij : σ̂2ij = 1/n2j
(
λ̂ij(

∑nj

r=1 1/sjr) +

nj λ̂
2
ijϕi
)
.



Chapter 3

Mixtures of Negative Binomials

As it has already been explained, the Negative Binomial (NB) distribution is
an appropriate choice for fitting RNA-Seq data. The analysis of these data requires

to work with few replicates for each gene in each condition. Statistical strategies
involving mixture models could provide additional flexibility and could be useful

for sharing information among genes that exhibit similar features, thus leading to

more reliable estimations.
In this chapter we are going to describe the NB and mixtures of NB distributions,

and in the next chapter we will illustrate the usefulness of this strategy in perform-
ing differential analysis.

3.1 The Negative Binomial distribution

As reported in Hilbe 2011 (Hilbe [2011]), the Negative Binomial probability

density function can be defined according to several parameterizations. Among
these, the so-called Negative Binomial 2 (NB2) is convenient because it is charac-

terized by two parameters that are particularly related to its moments: the first one
corresponds to the expectation and the second one has a particular role to deter-

mine the variance.
Let us define a random variable y ∼ NegBin(λ, α) with λ, α > 0 and

E(y) = λ,

V ar(y) = λ

(
1 +

1

α
λ

)
;
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Y has density:

f(y|λ, α) =
(
y + α− 1

α− 1

)(
λ

λ+ α

)y ( α

λ+ α

)α

. (3.1)

It is possible to show that (3.1) reduces to the Poisson for α→ ∞.

An interesting characteristic of this parametrization is that it can be derived
from a Poisson-Gamma mixture model, by considering a random variable having

a Poisson distribution with parameter depending on a second random variable
distributed according to a Gamma distribution with mean equal to 1.

3.1.1 Poisson-Gamma mixture model

Let us define:

• a random variable u following a Gamma(α, β) distribution (with α, β > 0)

such that
f(u;α, β) =

βα

Γ(α)
uα−1e−βu

with E(u) = α
β and V ar(u) = α

β2 .
We have E(u) = 1 for α = β and

f(u;α, α) =
αα

Γ(α)
uα−1e−αu

• a random variable y that conditional on u follows aPoisson(λu) distribution

(with λ > 0) such that

f(y;λu) =
e−λu(λu)y

y!

with E(y) = V ar(y) = λu.

Then if we consider the following structure:

u ∼ Gamma(α, α)y
y|u ∼ Pois(λu)
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it can be proved that Y is marginally distributed according to:

y ∼ NegBin(λ, α).

This means that the parameter λ of the Poisson component rules the expectation of
the negative binomial distribution, and the parameter α of the Gamma component

controls the heterogeneity, allowing overdispersion.

3.2 Finite mixture models

The history of finite mixture models goes back to the end of the XIX century,
when the famous biometrician Karl Pearson (Pearson [1894]) fitted a mixture of

two normal probability density functions with different means and variances to
some data about measurements on the ratio of forehead to body length of 1000

crabs sampled from the Bay of Naples, suggesting that there were two subspecies
present.

“When a series of measurements gives rise to a normal curve,

we may probably assume something approaching a stable condition;

there is production and destruction impartially round the mean. In the

case of certain biological, sociological, and economic measurements

there is, however, a well-marked deviation from this normal shape, and

it becomes important to determine the direction and amount of such de-

viation. The asymmetry may arise from the fact that the units grouped

together in the measured material are not really homogeneous. It may

happen that we have a mixture of 2, 3, ... n homogeneous groups, each

of which deviates about its own mean symmetrically and in a man-

ner represented with sufficient accuracy by the normal curve. Thus

an abnormal frequency-curve may be really built up of normal curves

having parallel but not necessarily coincident axes and different pa-

rameters.” (Pearson [1894])

We denote y = {y1, ..., yi, ..., yp} a random sample of size p where yi is a

n-dimensional random vector (with n =
∑

j nj) with probability density function
f(yi). If we suppose a K-component mixture model we can write it in parametric

form as:

f(yi; θ) =
K∑
k=1

wkfk(yi; θ), (3.2)
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where the vector θ contains all the unknown parameters in the mixture model, i.e.
the parameters of the K probability density functions fk of the K components and

the K weights wk, i.e. the mixing proportions (with the constraints 0 ≤ wk ≤ 1

and
∑K

k=1wk = 1).

The data matrix y is called “incomplete” since we actually do not know at which

one of the mixture components each unit belongs. A new random variable
z = {z1, ..., zi, ..., zp} is then introduced, called “allocation variable”; zi will be

a K− dimensional vector of zeros except from the element that is in the position
corresponding to the mixture-component at which the i− th unit belongs.

We will denote zik = 1 when

zi=
[

0 0 . . . 1 . . . 0
]

↑
kth position

Thus zi is assumed to be distributed according to a Multinomial distribution,

and in particular:
zi ∼Multin(1;w1, ..., wK) (3.3)

We consider now y and z all together we have the “complete data”, where y has

been observed whilst z is hidden. If the label z of each observation was known, it
would be easy to estimate the mixture parameters. However z is a hidden variable,

hence it is very difficult to reach closed form formulas for the parameters and it
is often complicated to estimate them. We will see in the next section one of the

available algorithms to do it.

3.3 Mixtures of Negative Binomials

We consider a random variable yi that follows a K-component mixture model

of NB distributions:

f(yi; θ) =
K∑
k=1

wkfk(yi; θk) =
K∑
k=1

wkNBk(λk, αk), (3.4)
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that is:

f(yi; θ) =
K∑
k=1

wk

(
yi + αk − 1

αk − 1

)(
λk

λk + αk

)yi ( αk

λk + αk

)αk

(3.5)

and therefore yi|zi ∼ NegBin (λk, αk) hence E(yi|zi) = λk and

V ar(yi|zi) = λk

(
1 + 1

αk
λk

)
.

3.3.1 Estimation issues

One of the mostly used algorithms for estimating mixture models is the
Expectation-Maximization (EM) algorithm (Dempster et al. [1977]). It is able to fit

models in presence of missing data and it provides maximum-likelihood estimates,
that have useful inferential properties. Nevertheless, as it is well known, the estima-

tion of the whole parameters θ is meaningful only if θ is identifiable. Otherwise, the
maximum likelihood estimator would not be consistent, i.e. the estimators would

not converge to the true parameters values as the amount of information increases.

Identifiability

We can define a parametric family of densities f(yi, θ) with θ ∈ Θ, where Θ

is the parameter space; f(yi, θ) is identifiable if distinct values for the parameter θ
determine distinct members of the family of densities, that is:

f(yi, θ) = f(yi, θ
′) if and only if θ = θ′

for each θ, θ′ ∈ Θ.

Identifiability for mixture distributions [McLachlan and Peel, 2000] has to take
into account also the possible permutations of the component labels. If we

consider f(yi, θ) =
∑K

k=1wkfk(yi, θk) and f(yi, θ′) =
∑K′

k=1w
′
kfk(yi, θ

′
k), we

must require that f(yi, θ) = f(yi, θ′) if and only if K = K ′ and we can permute

the component labels so that wi = w′
i and fk(yi, θk) = fk(yi, θ′k) (k = 1, . . . ,K)

for almost all yi. The lack of identifiability of θ due to labels permutation can be

handled by imposing appropriate constraints, such as w1 ≤ w2 ≤ . . . ≤ wK .

As regards the identifiability of mixtures of NB distributions, we can refer to
Yakowitz and Spragins [1968]. In this work, the authors have defined and demon-
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strated the following proposition:

“The family F of all non-degenerate negative binomial distributions

induces an identifiable set of finite mixtures”.

The identifiability of mixture models is a largely studied issue, and other more
recent works have confirmed the statement above. Among the others we can cite

Sapatinas [1995] and, because of the specific structure of the data that will be
illustrated in the next chapter, also Allman et al. [2009].

The Expectation-Maximization algorithm

The mostly used algorithm for estimating the parameters of a finite mixture
model is the Expectation-Maximization (EM) algorithm. First of all, we have to

define the density of the complete data, which can be written

f((y, z); θ) = f(y; θ)f(z|y; θ), (3.6)

where f(y; θ) is the density of the observed data and f(z|y; θ) is the conditional
density of the hidden variable given the data.

Therefore we will have to define two different likelihoods:

- the “incomplete-likelihood” is the one that is referred just to the observed
data, i.e L(y; θ);

- the “complete-likelihood” Lc((y, z); θ) is the one that involves both the ob-

served data and the hidden variable.

Taking the logarithm we have:

lc((y, z); θ) = l(y; θ) + logf(z|y; θ), (3.7)

where:

• lc((y, z); θ) is the “complete” log-likelihood,

• l(y; θ) is the “incomplete” likelihood, i.e. referred only to the observed data,

• logf(z|y; θ) is the log-likelihood of the hidden (“allocation”) variable, given

the observed data.
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The EM algorithm is used in this context by treating the allocation variable z
as missing data. It proceeds iteratively in two steps; at the h− th iteration:

at the E-step (Expectation step) we can handle the hidden variable z, computing
the expectation of the complete-data log likelihood given the observed data

y, using the current estimates for θ (noted θ(h−1) ; at the first iteration, it
will correspond to the initialization values θ(0)) . The E step requires the

computation of
Ez|y;θ(h−1)(lc(θ)) (3.8)

where the subscript z|y; θ(h−1) means that we are conditioning on y and we

are using the estimates of the parameters obtained at the previous iteration;

at the M-step (Maximization step) of each iteration we update the estimates of
the parameters, through the computation of the roots of the partial derivatives

of the conditional expectation of the complete log-likelihood given y, with
respect to each parameter. Thus, at the end of the h − th iteration we have

θ̂(h) and we will use it for al the computations at the E-step of the (h+1)−th
iteration.

The E-step and the M-step are alternately repeated until convergence is reached.

One of the classical criteria to detect convergence consists in computing

l(h) − l(h−1)

| l(h−1) |
< ϵ

where l(h) is the likelihood at the h-th iteration, and ϵ is an arbitrary small value.

Dempster et al. [1977] proved that the likelihood function is monotonically not
decreasing during the EM iteration. Nevertheless, it has to be noted that it could

get trapped in local maxima and the initialization is a crucial point. One possible
procedure for overcoming this problem and getting good approximations for the

global maximum has been proposed by Böhning [2003]. This strategy is based
on the combination of the EM algorithm with a gradient function update. At least

for the moment, we will not go into details of such procedure because the EM
algorithm seems to provide consistent results, as it will be shown in simulation

studies.





Chapter 4

The proposed method

In this chapter we are going to propose a new strategy for estimating the vari-
ances of RNA-seq data, based on mixtures of NB distributions (Section 4.1). Af-

terwards three consistent statistical procedures for performing differential analysis
are developed (Section 4.2).

4.1 The proposal

As it has been described in Section 3.1, an interesting characteristic of the

Negative Binomial distribution is that it can be derived from a Poisson-Gamma

mixed process, defined by an heterogeneity component u that follows a Gamma
distribution, and a random variable y that, conditioning on u, follows a Poisson

distribution.
The innovative idea of the proposed method consists in considering the heterogene-

ity component u as a random variable distributed as a mixture of Gamma distri-
butions, with the purpose of getting a more reliable estimation of the dispersion

parameters:

zi ∼Multinom(1,w) where w = (w1, ..., wK)y
ui|zik = 1 ∼ Gamma(αk, αk)y

yi|ui ∼ Pois(λiui)

(4.1)

and therefore yi|zi ∼ NegBin (λi, αk) hence E(yi|zi) = λi and
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V ar(yi|zi) = λi

(
1 + 1

αk
λi

)
.

In so doing yi follows a particular Negative Binomial mixture distribution:

yi ∼
∑
k

wkNegBin (λi, αk) (4.2)

Proof.

f(y) =

∫ +∞

0
f(y, u)du

=

∫ +∞

0
f(y|u)f(u)du

=

∫ +∞

0

e−(λu)(λu)y

y!

∑
k

wk
ααk
k

Γ(αk)
uαk−1e−αkudu

=
1

y!
λy
∑
k

wk
ααk
k

Γ(αk)

∫ +∞

0
uyuαk−1e−αkue−λudu

=
∑
k

wk
λyααk

k

Γ(y + 1)Γ(αk)

∫ +∞

0
uy+αk−1e−u(αk+λ)du︸ ︷︷ ︸

kernel of a Gamma(y + αk, αk + λ)

=
∑
k

wk
λyααk

k

Γ(y + 1)Γ(αk)

Γ(y + αk)

(λ+ αk)y+αk

=
∑
k

wk

(
y + αk − 1

αk − 1

)(
λ

λ+ αk

)y ( αk

λ+ αk

)αk

(4.3)

and we can recognize that this is the probability density function of a mixture

of K Negative Binomial distributions each one with expectation equal to λ and
dispersion parameter equal to αk.

It is interesting to underline that in this particular mixture model the expectation

λi is not component-varying, and the estimation of just K dispersion parameters
(where K ≪ p) is required.

During the last years, many methods to estimate the dispersion parameter have

been proposed. The two extreme possibilities are: “a specific estimation per gene”,
that is the most realistic but is based on few information and therefore is not reli-

able, and “one estimation for all the genes”, that is based on more data but is too
restrictive.

We consider the use of mixture models to share information between genes with
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similar heterogeneity in order to estimate the dispersion parameter on the basis of
a larger number of observations.

4.1.1 Modeling RNA-Seq data

The NGS data we will analyze have a hierarchical structure. Borrowing the

terminology of multilevel models we have:

1. first-level units are the replicates (r = 1, ..., nj);

2. at the second level we have the conditions (j = 1, ..., d);

3. at the third level there are the genes (i = 1, ..., p).

Therefore this is the hierarchical structure of our model:

zi ∼Multinom(1,w) where w = (w1, ..., wK)y
{uj,r}i|zik = 1 ∼ Gamma(αk, αk)y
{yj,r}i|{uj,r}i ∼ Pois(λijuijr)

and {yj,r}i|{zj,r} ∼ NegBin (λij , αk) from which E(yijr|zijr) = λij and
V ar(yijr|zijr) = λij

(
1 + 1

αk
λij

)
and marginalizing with respect to z, {yj,r}i follows a Negative Binomial mixture
distribution:

{yj,r}i ∼
∑
k

wkNegBin (λij , αk) . (4.4)

Therefore we consider the model:

f(yi) =
K∑
k=1

wkf(yi|zik = 1), (4.5)

where

f(yi|zik = 1) =
d∏

j=1

f(yij |zik = 1), (4.6)

and

f(yij |zik = 1) =

nj∏
r=1

f(yijr|zik = 1), (4.7)
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where yijr|zik = 1 is the r − th realization from a Negative Binomial distribution
with mean equal to λij and Variance equal to λij

(
1 + 1

αk
λij

)
.

Hence

f(yi) =
K∑
k=1

wk

d∏
j=1

nj∏
r=1

f(yijr|zik = 1), (4.8)

and, for θ = {λij , wk, αk}i=1,...p;j=1,...,d;k=1,...,K the (incomplete) likelihood

function will be:

L(θ) =

p∏
i=1

K∑
k=1

wk

d∏
j=1

nj∏
r=1

f(yijr|zik = 1). (4.9)

4.1.2 Estimation

Given the features of our model, we have to derive an EM algorithm with two
hidden layers (one for the Gamma component u, that rules the heterogeneity, and

one for the Multinomial component z, that rules the mixture).

The complete Log-Likelihood

The complete log-likelihood for our model is:

lc(θ) =

p∑
i=1

d∑
j=1

nj∑
r=1

ln f(yijr, uijr, zi)

=
∑
i

∑
j

∑
r

ln(f(yijr|uijr, zi)) +
∑
i

∑
j

∑
r

ln(f(uijr|zi)) +
∑
i

ln(f(zi))

(4.10)

The initialization

One of the most crucial points concerning the EM algorithm is the initialization.

For h = 1, that is at the first iteration, we initialize the parameters as follows:

• for the wk we draw K values from K Uniform(0, 1) distributions and then
we normalize these values so as to respect the constraint

∑K
k=1wk = 1;

• for the αk we generate a regular sequence of K values from 5 and 700.
This range has been chosen considering plausible values from the empirical

situation, and considering a regular sequence can be a good way for
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exploring the whole interval;

• for the λij we compute the sample mean (that is also the ML estimate), i.e.

initial λij=
∑nj

r=1 yijr
nj

.

The algorithm

The EM algorithm consists of two steps (the E-step and the M-step) that are

repeated alternately until the stop criterion is satisfied.

The E-step

Considering the h − th iteration, at the E-step we have to compute the
Ez,u|y,θ(h−1)(lc(θ)), i.e. the Expectation of the complete-likelihood assuming that

θ = θ(h−1) and conditioning on y but considering both the two hidden variables u
and z as random.

Therefore we have to calculate:

Ez,u|y,θ(h−1)(lc(θ)) =∫ +∞

0

K∑
k=1

p∑
i=1

d∑
j=1

nj∑
r=1

ln(f(yijr|zi, uijr; θ))f(uijr, zi|yi; θ(h−1))duijr+

+

∫ +∞

0

∑
k

∑
i

∑
j

∑
r

ln(f(uijr|zik = 1; θ))f(uijr, zik = 1|yi; θ(h−1))duijr+

+
∑
k

∑
i

ln(f(zik = 1|θ))f(zik = 1|yi; θ(h−1)) (4.11)

Where we have:

f(yijr|zi, uijr) = Pois(λijuijr) (4.12)

f(uijr, zi|yi) = f(uijr|yi, zi)f(zi|yi) (4.13)



28 4. The proposed method

with:

f(uijr|yi, zi) =
f(yi|uijr, zi)f(uijr|zi)f(zi)

f(yi|zi)f(zi)

=
f(uijr|zi)

∏
j

∏
r f(yijr|uijr)∏

j

∏
r f(yijr|zi)

∝
∏
j

∏
r

e−uijrλij (λijuijr)
yijruαk−1

ijr e−αkuijr

=
∏
j

∏
r

e−uijr(λij+αk)u
αk−1+yijr
ijr

(4.14)

and since we are considering just the single uijr, we can recognize that it is simply

the kernel of a Gamma(yijr + αk, λij + αk) since all the factors of the products
that concerned i′ ̸= i and j′ ̸= j can be viewed as constant terms;

f(zi|yi) =
f(yi|zi)f(zi)

f(yi)
=

wk
∏

j

∏
r f(yijr|zi)∑

k wk
∏

j

∏
r f(yijr|zik = 1)

(4.15)

f(uijr|zi) = Gamma(αk, αk) (4.16)

f(zi) =Multin(1,w) (4.17)

The M-step

The M step consists in maximizing the conditional expectation of the complete-
likelihood with respect to each one of the parameters that have to be estimated.

For the estimation of λij we can focus on the first term of (4.11) given that it is the
only one addend that involves the parameters λij .
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∂

∂λij
Ez,u|y,θ(h−1)(lc(θ)) =

=
∂

∂λij

∫ +∞

0

K∑
k=1

p∑
i=1

d∑
j=1

nj∑
r=1

ln f(yijr|zi, uijr)f(uijr, zi|yi; θ(h−1))duijr

=
∂

∂λij

∫ +∞

0

∑
k

∑
i

∑
j

∑
r

ln f(yijr|zik = 1, uijr)︸ ︷︷ ︸
Pois(λijuijr)

f(uijr|yi, zik = 1)·

· f(zik = 1|yi)duijr

=
∂

∂λij

∫ +∞

0

∑
k

∑
i

∑
j

∑
r

(−λijuijr + yijr lnλij − ln yijr!)f(uijr|yijr, zik = 1)·

· f(zik = 1|yi)duijr

=

∫ +∞

0

∑
k

∑
r

(
−uijr +

yijr
λij

)
f(uijr|yijr, zik = 1)f(zik = 1|yi)duijr

=
∑
r

yijr
λij

−
∑
k

∑
r

E(uijr|yijr, zik = 1)f(zik = 1|yi)

(4.18)

and if we set it equal to 0 we have that

λ̂ij =

∑
r yijr∑

k f(zik = 1|yi)
∑

r E(uijr|yi, zi)
(4.19)

where E(uijr|yi, zi) =
yijr+αk

λij+αk
. It can be proved (see Appendix A.1) that (4.19)

simply reduces to: λ̂ij =
∑

r yijr
nj

With regards to αk we can focus on the second term of (4.11) and we need an

optimization algorithm, since
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∂

∂αk
Ez,u|y,θ(h−1)(lc(θ)) =

=
∂

∂αk

∫ +∞

0

K∑
k=1

p∑
i=1

d∑
j=1

nj∑
r=1

ln f(uijr|zi)f(uijr, zi|yi; θ(h−1))duijr

=
∂

∂αk

∫ +∞

0

∑
k

∑
i

∑
j

∑
r

(αk lnαk + (αk − 1) lnuijr − αkuijr − ln Γ(αk))

f(uijr|yijr, zi)f(zik = 1|yi)duijr
= αk lnαk − ln Γ(αk) + (αk − 1)E(lnuijr|yijr, zik = 1)−

− αkE(uijr|yijr, zik = 1)f(zi|yi)
(4.20)

and this does not have close-form solution. We can make use of a quasi-

Newton algorithm that is called L-BFGS. This strategy has been proposed by
Byrd et al. [1995] for solving large nonlinear optimization problems, when bounds

of the searching interval are provided by the user. This procedure provides
solutions on the basis of the second-order Taylor expansion of the function that

has to be maximized, and an approximation of the Hessian matrix [Byrd et al.,
1994] is used in order to overcome many issues related to its exact computation. It

also makes use of the gradient projection method for detecting useful constraints
at each iteration.

With regards to E(lnuijr|yijr, zi) we can use an already-known results that

states that, given a random variableX ∼ Gamma(α, β),E(lnX) = ψ(α)−ln(β)

where ψ is the digamma function. Thus, for the (4.14) we have:

E(lnuijr|yijr, zi) = ψ(yijr + αk)− ln(λij + αk) (4.21)

Finally for wk we can take advantage of an already known result, since the
third addend of (4.11) is usually present in all the mixture models. Introducing

Lagrange multipliers (considering the constraints that wk ≥ 0 and
∑K

k=1wk = 1)
we obtain:

ŵk =

∑
i f(zi|yi)
p

(4.22)

Hence θ(h) = {λij , wk, αk}i=1,...p;j=1,...,d;k=1,...,K and we can proceed with

the (h+ 1)− th iteration until convergence.
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The EM algorithm has been implemented in R. A discussion about how to

choose the number of components K is defer to Section 5.1, and in Section 5.2 an
analysis of the properties of the estimations that we get is presented.

4.2 The proposed test statistics

Our final goal is to identify the genes (i = 1, ..., p) that differentially express
under two (j = 1, 2) different conditions.

Hence, now that we have defined and estimated our model we want to make use of
three different statistical testing procedures with the aim of comparing the expres-

sion levels of a gene in the two conditions:

1. H0 : λi1 − λi2 = 0

2. H0 :
λi1
λi2

= 1

3. H0 : ln
λi1
λi2

= ln(λi1)− ln(λi2) = 0

In order to perform testing, we can use the Wald test (Wald [1943]) since the

estimations provided by the EM algorithm are maximum likelihood (ML); as it
is known, the maximum-likelihood estimators have many asymptotic properties as

consistency, normality, efficiency, (i.e., they achieve the Cramér–Rao lower bound).
Although we have few observations for each gene, these properties can be consid-

ered as approximately true even for our data, as it will be shown by the results of
our simulation studies.

Therefore we can propose the following alternative test-statistics:

1. “Difference”: λ̂i1−λ̂i2√
V ar(λ̂i1−λ̂i2)

|H0 ∼ N(0, 1)

2. “Ratio”:
λ̂i1
λ̂i2

−1√
V ar

(
λ̂i1
λ̂i2

) |H0 ∼ N(0, 1)

3. “Log Ratio”: ln λ̂i1−ln λ̂i2√
V ar(ln λ̂i1−ln λ̂i2)

|H0 ∼ N(0, 1)

where λ̂i1 and λ̂i2 are the EM-estimators.
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4.2.1 Variances for each test statistic

For computing the test statistics we need to estimate the variances at each de-
nominator. First of all we can make some observations:

1. V ar(λ̂i1 − λ̂i2) = V ar(λ̂i1) + V ar(λ̂i2)

2. To compute V ar
(
λ̂i1

λ̂i2

)
we can use Delta method (van der Vaart [2000]), and

as reported in Cox 1990 (Cox [1990]) we have:

f(λi1, λi2) =
λi1
λi2

∂f(λi1, λi2)

∂λi1
=

1

λi2

∂f(λi1, λi2)

∂λi2
= − λi1

λi2
2

hence

V ar

(
λ̂i1

λ̂i2

)
≈ V ar(λ̂i1)

E(λ̂i2)2
+
E(λ̂i1)

2

E(λ̂i2)4
V ar(λ̂i2)

3. V ar(ln λ̂i1 − ln λ̂i2) = V ar(ln λ̂i1) + V ar(ln λ̂i2)

Computing E(λ̂ij)

As regards the E(λ̂ij) we can say that

E(λ̂ij) = λij

since MLE are asymptotically correct.

Computing V ar(λ̂ij)

V ar(λ̂ij) is the variance of a function of yijr; in particular, noting
∑

r yijr as

yij+:
λ̂ij = f(yij+) =

yij+
nj

(4.23)

Therefore:

V ar(λ̂ij) =
1

n2ij
V ar(yij+)
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Computing V ar(yij+)

For the law of total variance,

V ar(yij+) = E[V ar(yij+|zik = 1)] + V ar[E(yij+|zik = 1)] (4.24)

where V ar[E(yij+|zik = 1)] = 0 because the expectation is not component vary-

ing, and as regards E[V ar(yij+|zik = 1)] we can consider the conditional expec-

tation given the observed data because of the multilevel structure of the data, and
therefore:

V ar(yijr) = Ezi|yi [V ar(yijr|zik = 1)] =

λ̂ij

(
1 + λ̂ij

∑
k

f(zik|yi)
α̂k

)
. (4.25)

This formula enlightens the effect of the mixture model we propose: the over-
dispersion term is a weighted average of the (estimated) over-dispersion terms

λij/αk one would get in each component of the mixture. These terms are weighted
according to the posterior probability for observation i to belong to each compo-

nent k: f(zik|yi).

Computing Var( lnλij)

V ar(lnλij) = V ar(ln(f(yij+)))

= V ar

(
ln

(
yij+∑

k f(zik = 1|yi)
∑

r E(uijr|yi, zi)

))
= V ar(ln(yij+))

(4.26)

and using Delta method we can state that

V ar(ln yij+) = V ar(g(yij+)) ≈ V ar(yij+)

(
∂

∂yij+
g(yij+)

)2

=
1

y2ij+
V ar(yij+)

(4.27)





Chapter 5

A simulation study

The performance of the proposed strategy is evaluated by a large simulation
study comprising several data generating processes.

First of all, in a first simulation we have studied the behavior of the proposed

strategy and its capability in estimating the variances as the number of components

of the mixture model varies. Afterwards in a second simulated experiment we
have evaluated the properties of the estimates provided by the EM algorithm as

the number of replicates nj increases, together with the accuracy of the three
statistical test procedures in terms of power and first-type error. It is important to

underline that for each data-set we have to test p null-hypothesis H i
0 (i = 1, . . . , p)

for the p genes, each one by itself.

In particular, a statistical test procedure can be considered as well working and
reliable if the empirical first type error (i.e. the proportion of times in which we

reject the null-hypothesis for the genes that have been drawn as not differentially
expressed) reaches the nominal value. Otherwise, if this does not occur, it means

that the statistical distribution that has been considered as the reference one for the
statistic under the null hypothesis is not correct.

We have compared the results of the three proposed statistical tests with the pro-

cedures of Robinson et al. [2010], Anders and Huber [2010] and Wu et al. [2013],
implemented in the R packages edgeR, DESeq and DSS, respectively.
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5.1 Simulation A

In the first simulation study, we evaluated the capability of the proposed mix-
ture model to estimate the variances of the genes as the number of components, K,

increases. We also computed some conventional information criteria in order to
select the optimal number of components. We have simulated H = 100 data-sets,

each one drawing:

• p = 300 genes, of which:

– 1
3 genes (= 100 genes) are differentially expressed (λi1 ̸= λi2)

– 2
3 genes (= 200 genes) are not differentially expressed (λi1 = λi2)

• d = 2 conditions

• nj = 5 replicates for each condition;

• as regards λij :

– for the 100 differentially expressed genes λi1 ∼ Unif(0, 250) ;

λi2 =
λi1

eϕi
where ϕi is randomly drawn from a N(µ = 1, σ = 0.125)

– for the 200 non-differentially expressed genes λi1 ∼ Unif(0, 250) and
λi1 = λi2

• for all the genes, the αi (i = 1, . . . , p) are randomly drawn from a

Unif(0.5, 600).

All the values for the parameters have been chosen to be consistent with the
empirical situation.

On each data-set we fitted the proposed mixture model for K ranging from 1
to 6, and we have computed the relative distances in absolute values across the 100

data-sets between the estimated variances ̂V ar(yijr) and the true ones V ar(yijr)
as K varies, as follows:

distance(h)ij =
|V ar(yijr)− ̂V ar(yijr)

(h)
|

V ar(yijr)
(5.1)

for j = 1, 2, i = 1, . . . , p and h = 1, . . . , H; for the computation of the variances,
since the number of replicates is limited we applied the factor nj/(nj − 1) to the

variance in (4.25), in order to obtain the corresponding correct estimator. Figure

5.1 shows the average distances and the standard error bands (mean ± 2· standard
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error), and looking at the graph we could say that from K = 3 components the
gain of fitting more complex mixture models becomes irrelevant. In other terms, it

seems that K = 2 and K = 3 components well describe the variability of the p
genes.
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Figure 5.1: Simulation A: Relative distances between the estimated variances and the true
ones as K varies. The dashed lines depict the standard error bands (mean± 2 ·
se).

This insight is also confirmed by the information criteria. More specifi-
cally, we have considered the Akaike’s Information Criterion (Akaike [1974]),

AIC = −2 logmaxL + 2b, where b is the total number of required parameters
and the more conservative Bayesian Information Criterion (Schwarz et al. [1978]),

BIC = −2 logmaxL + b log p. In addition, we have also computed the so-called
Integrated Classification Likelihood Criterion (Biernacki et al. [2000]) that com-

bines the BIC penalty term with the entropy of the posterior classification. As a
result, ICL-BIC is characterized by a heavier penalty term and it tends to favor

simpler models against mixture models with more components.
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In Table 5.1 the number of times each criterion suggests a specific number of
components K is shown. These results recommend that K = 3 mixture compo-

nents are enough to give a good description of the data.

Table 5.1: Simulation A: number of times each information criterion suggests a specific
value for K.

K AIC BIC ICL-BIC

1 0 0 0

2 0 2 76
3 76 86 24

4 6 4 0
5 6 4 0

6 12 4 0

In Figure 5.2 the classic trend that we can observe for these information criteria
is shown, and it is interesting to note that it is very similar to the one that describes

the relative errors in the computation of the variances.
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Figure 5.2: Simulation A: Information criteria as K varies.

The relative errors of the variances have been computed also for the other
already-known methods, using the Formula (5.1). In Figure 5.3 the boxplots that

describe the distribution of these measures of bias for all the genes are presented. It
is clear from this graph that the proposed method actually improves the estimation

of the variances.
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Figure 5.3: Simulation A: Relative distances between the estimated variances and the true
ones for all the methods.

5.2 Simulation B

In this simulation study we considered the same data-generating scheme pre-

sented above, with a varying number of replicates nj = 3, 5, 10. For each case
we have generated H = 1000 data-sets, and we have estimated the mixture model

withK = 3 components, accordingly to the results provided by Simulation A. The
properties of the ML estimators that we get through the EM algorithm have been

studied, and afterwards the three proposed test statistics have been computed. For
comparative purposes, we have performed all the analyses also through DESeq,

edgeR and DSS.

5.2.1 Properties of the EM algorithm estimates

For the analysis of the properties of the EM algorithm estimates for the pro-

posed Negative Binomial mixture model we have drawn inspiration from the paper
by Nityasuddhi and Böhning [2003], and for each number-of-replicates simulation
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scheme (nj = 3, 5, 10) we have computed the bias of the λ estimators:

BIAS(λ̂ij) =

∑H
h=1 λ̂

(h)
ij

H
− λij , (5.2)

where λ̂(h)ij is the estimation for λij that we obtain from the analysis of the h− th

dataset.

We have computed also the mean square errors as:

MSE(λ̂ij) =

∑H
h=1(λ̂

(h)
ij − λij)

2

H
. (5.3)

The same error-measures have been computed also for the variances V ar(yijr).
The analysis of these indicators offers a global idea of the ability of the algorithm,

since for obtaining consistent estimates for the variances it is necessary to have
consistent estimates of all the parameters (see (4.25)).

It is interesting to study the distribution of these quantities as nj varies, for
assessing the capability of the mixture model to improve the estimates as the

number of observations increases.

In Figures 5.4, 5.5, 5.6 and 5.7 we can see the box-plots describing their be-
havior. As expected, both the BIAS and the MSE suggest that the EM algorithm

provides reasonable estimates of the parameter values, and they get better as nj
increases, thus revealing consistency.
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Figure 5.4: Box-plots of the distribution of the BIAS for the λij estimators.
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Figure 5.5: Box-plots of the distribution of the BIAS for the V ar(yijr) estimators.
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Figure 5.6: Box-plots of the distribution of the mean square errors for the λij estimators.
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Figure 5.7: Box-plots of the distribution of the mean square errors for the V ar(yijr) esti-
mators.

5.2.2 The first-type error

The adequateness of the statistical procedures can be evaluated by observing

the approximation towards the nominal significance level under the null hypoth-
esis as the number of replicates increases. For each of the 200 not-differentially

expressed genes, we have computed the empirical first-type errors across the 1000
data-sets for all the considered strategies.
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Figures 5.8, 5.9 and 5.10 report the box-plots of the empirical first-type errors
that we get through each one of the different methods as the number of replicates

varies; different levels of the test (0.05, 0.01 and 0.001) have been considered.
It can be useful to underline that we have a value for each gene, describing

the empirical first-type error for the specific null hypothesis H i
0 (i = 1, . . . , p).

The three proposed statistical tests fast converge to the nominal level (indicated by
the red dashed line) as the number of the replicates increases, while the DESeq,

edgeR and DSS based tests are always under the nominal level. It is clear from
these graphs that the proposed test statistics are the only ones that actually reach

the nominal value for the first-type error. The distribution of the first-type errors
that have been obtained from the estimations provided by edgeR and DSS crosses

the nominal values only with the upper whisker, and DESeq distribution does not
cross the nominal value at all. From a first observation of these plots it could seem

that the variability of the first-type errors gets larger as nj increases, thus indicat-
ing some possible problems in the stability of the estimates provided by the EM

algorithm. Actually, as it has been shown in the simulation experiment presented
above, this problem does not occur. We must be careful in interpreting these plots,

because comparing the variability of the first-type errors just looking directly at
the inter-quartile range (that is the difference between the third quartile Q3 and the

first quartile Q1) could lead to mistakes. We have to analyze an appropriate mea-
sure of the variability that takes into account also of the differences in the orders

of magnitude, and therefore we can check that actually the variability of the first
type errors decreases as nj increases, as expected. We refer to Appendix A.2.1 for

more details, and in particular to Table A.1.
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Figure 5.8: Box-plots of the distribution of the first-type errors computed on the null genes.
Comparison between the performances of the proposed “Difference” test statis-
tic, DESeq, edgeR and DSS as nj varies. The dashed line indicates the nominal
value that has been considered.
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Figure 5.9: Box-plots of the distribution of the first-type errors computed on the null genes.
Comparison between the performances of the proposed “Ratio” test statistic,
DESeq, edgeR and DSS as nj varies. The dashed line indicates the nominal
value that has been considered.
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Figure 5.10: Box-plots of the distribution of the first-type errors computed on the null
genes. Comparison between the performances of the proposed “Log Ratio”
test statistic, DESeq, edgeR and DSS as nj varies. The dashed line indicates
the nominal value that has been considered.

The average values for the first type errors are reported in Table 5.2 together

with the correspondent standard errors. The median values are shown in the Ap-
pendix A.2.1, Table A.2. It is important to underline that the distribution of the

errors is skewed, and therefore the average values should be analyzed together
with the quartiles information.
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Table 5.2: Simulation B: means and standard errors for first-type errors, at different confi-
dence levels.

Statistic nj = 3 nj = 5 nj = 10

Confidence level= 0.05

Difference 0.0392 (0.0356) 0.0483 (0.0273) 0.0505 (0.0213)

Ratio 0.0418 (0.0351) 0.0501 (0.0267) 0.0516 (0.0211)

Log Ratio 0.0395 (0.0366) 0.0485 (0.0278) 0.0506 (0.0217)
DESeq 0.0143 (0.0242) 0.0172 (0.0206) 0.0201 (0.0187)

edgeR 0.0337 (0.0454) 0.0333 (0.0335) 0.0346 (0.0229)
DSS 0.0380 (0.0624) 0.0352 (0.0499) 0.0293 (0.0318)

Confidence level= 0.01

Difference 0.0107 (0.0179) 0.0121 (0.0134) 0.0119 (0.0098)
Ratio 0.0135 (0.0197) 0.0146 (0.0142) 0.0131 (0.0104)

Log Ratio 0.0110 (0.0190) 0.0123 (0.0138) 0.0120 (0.0100)
DESeq 0.0036 (0.0111) 0.0034 (0.0072) 0.0037 (0.0061)

edgeR 0.0102 (0.0252) 0.0085 (0.0155) 0.0074 (0.0085)
DSS 0.0128 (0.0382) 0.0102 (0.0260) 0.0066 (0.0125)

Confidence level= 0.001

Difference 0.0031 (0.0086) 0.0025 (0.0047) 0.0021 (0.0032)

Ratio 0.0045 (0.0105) 0.0037 (0.0063) 0.0026 (0.0039)
Log Ratio 0.0033 (0.0092) 0.0027 (0.0051) 0.0021 (0.0034)

DESeq 0.0012 (0.0053) 0.0007 (0.0023) 0.0005 (0.0012)
edgeR 0.0032 (0.0126) 0.0018 (0.0058) 0.0012 (0.0024)

DSS 0.0048 (0.0211) 0.0032 (0.0117) 0.0013 (0.0038)

The capability of controlling the first-type error can be checked also looking

at the empirical cumulative distribution function (ECDF) of the null p-values; the
more their distribution is close to the diagonal, the more they can be considered as

actually uniformly distributed, as requested by the probability integral transform
theorem.

In Figure 5.11 the ECDFs for the null p-values obtained through the proposed
test statistics, DESeq, edgeR and DSS as nj varies are shown. It is clear that the

proposed test statistics behave better than the others already in correspondence of
nj = 3, then the correspondent ECDFs become closers and closers to the diagonal

as the number of replicates increases and for nj = 10 the ECDFs for the null

p-values of the proposed procedures even overlap the diagonal, whereas edgeR,
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DESeq and DSS reveal curves that lie behind the diagonal for all the three scenarios.
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Figure 5.11: Empirical cumulative distribution functions for the null p-values that are ob-
tained by the Log Ratio test statistic, DESeq, edgeR and DSS. The dashed
line indicates the ECDF of the uniform distribution, that is the target one.

Finally, it could be interesting to look at how the capability of controlling the
first type error is influenced by the real dispersion parameter from which each gene

has been generated. Figures 5.12 and 5.13 show for each of the 200 null-genes

the empirical first-type errors (at a confidence level of 0.05) in correspondence of
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the true levels of dispersion αi and for different numbers of replicates, for all the
compared methods (the proposed test statistics, based on the mixture of NB are

presented in Figure 5.12, and the others in Figure 5.13). For the other confidence
levels we refer to Appendix A.2.1, Figures A.1, A.2, A.3 and A.4. These plots high-

light that, as expected, controlling the first-type error is more difficult for the genes

that have been generated with a lower αi, that is with a greater variance, and this
behavior holds for all the method. These figures also confirm the already explained

results about the effective capability of reaching the nominal level (indicated by
the red dashed line) as nj increases, that is valid only for the three proposed test

statistics.
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Figure 5.12: Empirical first-type errors at a confidence level of 0.05 as a function of the true
dispersion parameters αi, computed on the 200 null genes for the proposed
test statistics, as nj varies. Red dashed lines indicate the nominal levels.
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Figure 5.13: Empirical first-type errors at a confidence level of 0.05 as a function of the
true dispersion parameters αi, computed on the 200 null genes for the already-
known strategies, as nj varies. Red dashed lines indicate the nominal levels.

5.2.3 The second-type error

After that we have checked the reliability of the proposed strategy in terms of

controlling the level of the tests, we have computed the second-type errors for each
of the 100 differentially expressed genes across the 1000 data-sets, again for the
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three proposed test statistics and for the other already known methods. The lower
is the second-type error, the more the method is able to detect the differentially

expressed genes. In Table 5.3 are reported the average second-type errors together
with the correspondent standard errors. See the appendix A.2.2 for the boxplots of

the distributions of the second-type errors, and for the median values.

Table 5.3: Simulation B: means and standard errors for second-type errors, at different
confidence levels.

Statistic nj = 3 nj = 5 nj = 10

Confidence level= 0.05

Difference 0.1582 (0.2738) 0.1002 (0.2267) 0.0543 (0.1455)
Ratio 0.2112 (0.3259) 0.1304 (0.2812) 0.0764 (0.2046)

Log Ratio 0.1569 (0.2726) 0.0991 (0.2246) 0.0534 (0.1443)
DESeq 0.1987 (0.3007) 0.1196 (0.2568) 0.0642 (0.1809)

edgeR 0.1444 (0.2526) 0.0945 (0.2197) 0.0529 (0.1533)
DSS 0.1354 (0.2449) 0.0892 (0.2109) 0.0513 (0.1526)

Confidence level= 0.01

Difference 0.2341 (0.3289) 0.1442 (0.2867) 0.0874 (0.2199)

Ratio 0.3336 (0.3874) 0.1897 (0.3334) 0.1146 (0.2775)
Log Ratio 0.2331 (0.3278) 0.1430 (0.2845) 0.0856 (0.2167)

DESeq 0.3141 (0.3472) 0.1755 (0.3102) 0.0980 (0.2462)
edgeR 0.2268 (0.2997) 0.1384 (0.2740) 0.0815 (0.2170)

DSS 0.2159 (0.3014) 0.1357 (0.2710) 0.0813 (0.2181)

Confidence level= 0.001

Difference 0.3441 (0.3703) 0.2037 (0.3345) 0.1228 (0.2834)

Ratio 0.5075 (0.3996) 0.2889 (0.3847) 0.1545 (0.3260)
Log Ratio 0.3433 (0.3693) 0.2026 (0.3333) 0.1212 (0.2799)

DESeq 0.4873 (0.3635) 0.2620 (0.3572) 0.1382 (0.3016)
edgeR 0.3609 (0.3359) 0.2066 (0.3193) 0.1166 (0.2753)

DSS 0.3508 (0.3471) 0.2061 (0.3230) 0.1176 (0.2758)

As it has already been noticed for the first-type errors, we have to recall that
the distribution of the errors is very skewed and thus the average information is

not completely explicative of the behavior of each test. From Table 5.3 we can see
that the proposed “Difference” and “Log Ratio” test statistics are competitive with

the edgeR and DSS ones, and looking at this information together with observing
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the quartiles we can conclude that the proposed strategy is the most powerful. The
“Ratio” one performs worse, even if it is anyway preferable than DESeq in terms

of detecting DE genes.
This is a very good result because it means that the estimation of the parameters

through the Mixture of Negative Binomial distributions together with the proposed

test statistics (especially the “Difference” and the “Log Ratio” ones) are the only
ones that are actually able to control the first-type error and they are the best ones

also in terms of power. We can conclude taht they are the most reliable procedures
for differential analysis.





Chapter 6

Application to Prostate Cancer
Data

We have analyzed RNA-Seq data on prostate cancer cells collected in cor-

respondence of two different conditions: a group of patients has been treated
with androgens, and the second one with an inactive compound. The data

have been sequenced and analyzed by Li et al. [2008]. It is well known that
androgen hormones stimulate some genes, and they also have a positive effect

in curing prostate cancer cells. Therefore the connection between these stim-
ulated genes and the survival of these cells is a largely studied issue. Seven

biological replicates of prostate cancer cells (three for the androgen-treated
condition and four for the control-group) for 37435 genes have been sequenced

using the Illumina 1G Genome Analyzer. Then they have been mapped to
the NCBI36 build of the human genome using Bowtie (allowing up to two

mismatches) and then the number of reads that corresponded to each Ensembl
gene (version 53) was counted. The resulting read count table is available from

https://sites.google.com/site/davismcc/useful-documents.

For the analysis we have considered the p = 16424 genes with mean count greater
than 1, because they provide sufficient statistical information on the differential

analysis.
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6.1 Normalization and explorative analyses

Normalization procedures

In order to account for the bias introduced by the different lanes of the experi-
ment and the eventual effect the gene length, we preliminarily normalized the data

using quantile-based normalization scheme implemented in the R package EDASeq

[Risso et al., 2011].

As it has been described in Chapter 2, the total number of reads could depend
on the sequencing depth and it could vary between lanes or samples, or it could

be influenced by the gene length, thus affecting the differential analysis procedure.
Therefore data have to be preliminarily normalized before performing the analysis

(see, for instance, Tarazona et al. [2011] and Dillies et al. [2013]). Bullard et al.
[2010] evaluated a variety of normalization procedures in order to detect the sensi-

tivity of the differential expression detection. We used the quantile-based normal-
ization scheme implemented in the R package EDASeq that consists in matching

counts in term of quantiles, scaling them within and between lanes by a center mo-
ment, such as their median, so that to remove the bias due to the gene length and

the different lanes. In Figure 6.1 the boxplots of the read counts distribution for
each lane before and after normalization are shown. They give evidence how the

distribution of the read counts strongly depends on the lane and normalization is
necessary in order to make samples sequenced by different lanes comparable.
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Figure 6.1: In the first plot, the boxplots of the counts per lane without the between-lane
normalization. In the second plot, the boxplots of the counts per lane with the
normalization.
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Moreover, the correlation between the genome region lengths and the read
counts was significant (0.1193 with p-value < 2.2e-16) on the raw data; after

the normalization procedure, we obtained a residual correlation of 0.0076 (p-
value=0.333).

Explorative analyses

After that the normalization procedures have been applied to the data, we can
consider the samples sequenced through different lanes comparable, and we can

compound the information provided by different genes for estimating the variances.
First of all we can have a look at the first rows of the dataset:

Genes Control group Treatment group
lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000124208 766 934 698 782 392 651 560
ENSG00000182463 19 12 13 12 20 23 26
ENSG00000124201 192 205 223 203 215 167 130

...

The data matrix y is constituted by p = 16424 rows (one for each gene) and

n = 7 columns (one for each sample). The first four columns contain the counts
that have been got for people to whom the inactive compound was given, and the

last three columns regard the androgen-treated group of patients.
In Figure 6.2 the empirical relationship between the mean and the variance

for all the genes is plotted; the black line describes the theoretical relationship

that would be observed under a Poisson model; the red line indicates the locally
weighted scatter plot smooth (lowess) fit. It is clear from this graph that the Poisson

assumption would not be adequate for these data.
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Figure 6.2: Relationship between mean and variance, computed on the logarithm of the
counts.

6.2 Analysis and Results

The proposed NB mixture model has been fitted on the data with a number

of components K ranging from 1 to 6. As it is reported in Figure 6.3, the BIC
and AIC criteria suggested K = 3 components while, as expected, the ICL-BIC

suggested that even just K = 2 components would well fit the data. Indeed, the lat-
ter information criterion usually supports simpler models, giving a greater weight

to the number of parameters. We have chosen to consider K = 3 components.
Convergence has been obtained with 50 iterations of the EM-algorithm at the log-

likelihood of -384886 (BIC= 1088660, AIC= 835479, ICL-BIC= 1107665).
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Figure 6.3: Information criteria as K varies.

Differential expression analysis has been conducted by computing the three
proposed test statistics. For comparative purposes we have performed differential

analysis also using the DESeq, edgeR and DSS methods implemented in R using
the default settings.

All the obtained p-values have been adjusted following the procedure of
Benjamini and Hochberg [1995] in order keep under control the total first error

in multiple comparison testing. Indeed, even if basically we have to perform p

statistical testings, one for each gene under investigation, in practice it could be

more prudent applying some adjustments in order to get a global first-type error
that approximates the level of each test.

In Table 6.1 the number of genes declared differentially expressed (DE) by each

method at the confidence levels of 0.05, 0.01 and 0.001 is shown. The different
methods detect a proportion of DE genes ranging from about 10% to 25%.

Table 6.1: Number of genes declared DE for all the compared methods at different confi-
dence levels (adjusted p- values)

Statistic α = 0.05 α = 0.01 α = 0.001

Difference 3167 2146 1360
Ratio 3538 2591 1914
Log Ratio 4254 2941 2024
DESeq 2695 1828 1271
edgeR 3918 2774 1886
DSS 4215 2737 1737
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In order to investigate the degree of accordance between two methods, we mea-
sured the proportion between the number of genes declared DE jointly by both

methods and the average number of the genes declared DE marginally at a certain
confidence level.

The first panel of Figure 6.4 shows the pairwise comparison between the pro-

posed “Difference” test statistic and the DESeq, edgeR and DSS methods. The
other two pictures of Figure 6.4 show the same results for the “Ratio” and “Log

Ratio” test statistics respectively.
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Figure 6.4: Proportion of genes declared DE as the confidence level increases for the dif-
ferent methods where the proposed “Difference” (panel a), “Ratio” (panel b)
and “Log Ratio” test statistic (panel c) are taken as baseline.

It is clear from these graphs that the proposed test statistics provide results that

are strongly consistent with the ones obtained by edgeR and DSS, with a degree
of accordance of about 90% when the “Difference” or the “Log Ratio” is used.

The set of DE genes detected by DESeq seems to be slightly different by the ones

selected by all the other methods, even if the accordance level is between 60% and
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80%.
Moreover, since often people are interested in grading the strength of the dif-

ference in the expression levels, another way for comparing the results is shown
in Figures 6.5, 6.6 and 6.7, where the accord between the rankings of the adjusted

p-values between each proposed test statistic and the other considered methods are

plotted. These graphs confirm the results that has been described above.

Figure 6.5: Rankings of the adjusted p-values - Comparison between the “Difference” test
statistic and the other methods.
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Figure 6.6: Rankings of the adjusted p-values - Comparison between the “Ratio” test statis-
tic and the other methods.

Figure 6.7: Rankings of the adjusted p-values - Comparison between the “Log Ratio” test
statistic and the other methods.



Chapter 7

Concluding remarks

Massive parallel sequencing has deeply changed our understanding of gene ex-
pression thanks to a higher resolution, and this revolution has implied also the need

of new statistical methods for detecting genes that are differentially expressed in
correspondence of diverse biological conditions. This procedure is called differ-

ential expression analysis, and it is notable because it could reveal connections

between the expression of specific genes and, for example, the presence of some
pathologies or the effect of some treatments.

In this thesis we have focused on RNA-Seq data, that provide information about the
sequencing of the transcriptome. As it has been described in Chapter 2, analyzing

these data is a complex and delicate issue because they are discrete measurements,
they are characterized by overdispersion and they have a hierarchical structure that

requires some attention. Moreover, usually few information are available for each
gene in each condition, because of costs in producing these data.

The major difficulty regards the estimation of the variances, and in Chapter 4 we
have illustrated a new strategy for accounting for the heterogeneity of the disper-

sion parameter across genes. We have shown that the mixture of Negative Binomial
distributions can be an appropriate new way for sharing information among genes

about their dispersion levels, and to gain a more accurate estimation of the vari-
ances. We have also developed three test statistics, and the proposed approach is

fully consistent in terms of parameter estimation and hypothesis testing. As a result,
the simulation studies that have been illustrated in Chapter 5 have revealed that the

first-type error of the proposed test statistics is controlled, and they are good also in
containing the second-type ones. The comparative study we performed shows that

the proposed strategy is competitive with existing methods. It also shows that some
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popular testing procedures like DEseq, edgeR and DSS actually do not control the
first-type error.

The considered methods have been employed also for the analysis of a real
dataset on prostate cancer cells, aiming to compare the expression level of thou-

sands of genes in an androgens-treated group of a patients and a control one. The

results have been shown in Chapter 6, and they pointed out a high accordance level
between the proposed test statistics (especially for the “Difference” and the “Log

Ratio” ones) and the already known methods.

In this thesis we have focused on two sample comparison, but the procedure
can indeed be adapted to any contrast, in an obvious manner, especially when us-

ing the “Difference” statistic. In a similar way, because our approach can be cast in
the generalized linear model framework, normalization or correction for some ex-

ogenous effects could also be considered. Indeed, for example, since the RNA-seq
replicates are often observed during specific time intervals, it would be interesting

to relate the gene expression levels to time, thus allowing to measure the evolution
of the expression of the genes at several time points in correspondence to different

conditions. Finally, an extension of the model could be examined considering the
imposition of an additional Poisson component (i.e. a NB distribution with dis-

persion parameter α that goes to infinity) in the mixture model. Indeed, since an
iterative algorithm is used for the estimation of the dispersion parameter, the im-

position of an upper bound to limit the searching interval is needed. The presence
of a mixture component with α → ∞ could be a good way for overcoming this

forced limit.
An R package implementing the EM algorithm and the proposed test statistics will

be available soon.
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Appendix

A.1 Appendix - The λ estimator

From the Maximization step that is described in Section 4.1.2, for the λij es-

timators we have that λ̂ij =
∑

r yijr∑
k f(zi|yi)

∑
r E(uijr|yi,zi)

. It can be proved that the
denominator

∑
k f(zi|yi)

∑
r E(uijr|yi, zi) is simply equal to nj :

Proof. We set:

δij =

K∑
k=1

f(zi|yi)
nj∑
r=1

E(uijr|yi, zi)

and for the (4.14)

δij =

K∑
k=1

f(zi|yi)
nj∑
r=1

yijr + αk

λij + αk

We note that we are considering one specific gene i in the condition j, and

given that the mixture structure involves the gene level, yijr with r = 1, ..., nj can
be considered as independently distributed according to a negative binomial, with

dispersion parameter depending on the group membership of the gene i to the k-th
component of the mixture; therefore f(zi|yi) is equal to 1 in correspondence to the

k − th group at which the gene i belongs, and 0 otherwise:

δij =

nj∑
r=1

yijr + αk

λij + αk

therefore:
nj∑
r=1

(yijr + αk) = δij(λij + αk)
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nj∑
r=1

yijr + njαk = δijλij + δjαk

but since
∑nj

r=1 yijr = δjλij , njαk must be equal to δijαk and nj = δij .

And finally

λ̂ij =

∑
r yijr
nj

. (A.1)

A.2 Appendix - Simulation B

A.2.1 First-type error

An appropriate measure for studying the behavior of the variability of the first-

type errors as nj varies could be based on the quartile coefficient of dispersion
(QCD), [Johnson, 2014] that is defined as Q3−Q1

Q3+Q1
. This indicator is useful in eval-

uating the dispersion of the first type errors without being affected by dimensions,
and the QCDs that we get in correspondence of each simulation scheme for the

different confidence levels are reported in Table A.1. These results indicate that ac-
tually the variability of the first type errors decreases as nj increases, as expected.
Since the first-type errors are skewed (and especially the ones for the smaller confi-

dence levels), for some strategies we have that both the first and the third quartiles
are equal to 0 and therefore we get QCD= “NaN”.
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Table A.1: Simulation B: quartile coefficients of dispersion for the empirical first-type er-
rors (Section 5.2).

Statistic nj = 3 nj = 5 nj = 10

Confidence level= 0.05

Difference 0.4025 0.3023 0.2292

Ratio 0.3774 0.3005 0.2343

Log Ratio 0.4083 0.2962 0.2292
DESeq 0.5714 0.5455 0.4286

edgeR 0.5767 0.4470 0.3629
DSS 0.6444 0.6087 0.5814

Confidence level= 0.01

Difference 0.6000 0.5294 0.4286
Ratio 0.5714 0.4545 0.3636

Log Ratio 0.7778 0.5294 0.4286
DESeq 1.0000 1.0000 1.0000

edgeR 0.7500 0.7778 0.6364
DSS 1.0000 1.0000 1.0000

Confidence level= 0.001

Difference 1.0000 1.0000 1.0000

Ratio 1.0000 1.0000 1.0000
Log Ratio 1.0000 1.0000 1.0000

DESeq NaN NaN NaN
edgeR 1.0000 1.0000 1.0000

DSS 1.0000 1.0000 NaN

Tables A.2 and A.3 report the medians and standard errors of the first- and
second-type errors computed in the simulation study B described in the Section

5.2.
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Table A.2: Simulation B: medians and standard errors for first-type errors, at different con-
fidence levels.

Statistic nj = 3 nj = 5 nj = 10

Confidence level= 0.05

Difference 0.0235 (0.0356) 0.0385 (0.0273) 0.0445 (0.0213)

Ratio 0.0260 (0.0351) 0.0395 (0.0267) 0.0460 (0.0211)

Log Ratio 0.0230 (0.0366) 0.0385 (0.0278) 0.0445 (0.0217)
DESeq 0.0060 (0.0242) 0.0092 (0.0206) 0.0132 (0.0187)

edgeR 0.0210 (0.0454) 0.0260 (0.0335) 0.0310 (0.0229)
DSS 0.0170 (0.0624) 0.0180 (0.0499) 0.0180 (0.0318)

Confidence level= 0.01

Difference 0.0030 (0.0179) 0.0070 (0.0134) 0.0090 (0.0098)
Ratio 0.0060 (0.0197) 0.0090 (0.0142) 0.0100 (0.0104)

Log Ratio 0.0030 (0.0190) 0.0070 (0.0138) 0.0090 (0.0100)
DESeq 0.0000 (0.0111) 0.0010 (0.0072) 0.0011 (0.0061)

edgeR 0.0030 (0.0252) 0.0040 (0.0155) 0.0050 (0.0085)
DSS 0.0020 (0.0382) 0.0020 (0.0260) 0.0020 (0.0125)

Confidence level= 0.001

Difference 0.0000 (0.0086) 0.0010 (0.0047) 0.0010 (0.0032)

Ratio 0.0010 (0.0105) 0.0010 (0.0063) 0.0010 (0.0039)
Log Ratio 0.0000 (0.0092) 0.0010 (0.0051) 0.0010 (0.0034)

DESeq 0.0000 (0.0053) 0.0000 (0.0023) 0.0000 (0.0012)
edgeR 0.0000 (0.0126) 0.0000 (0.0058) 0.0000 (0.0024)

DSS 0.0000 (0.0211) 0.0000 (0.0117) 0.0000 (0.0038)
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Figure A.1: Empirical first-type errors at a confidence level of 0.01 as a function of the true
dispersion parameters αi, computed on the 200 null genes for the proposed test
statistics, as nj varies. Red dashed lines indicate the nominal levels.
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Figure A.2: Empirical first-type errors at a confidence level of 0.01 as a function of the
true dispersion parameters αi, computed on the 200 null genes for the already-
known strategies, as nj varies. Red dashed lines indicate the nominal levels.
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Figure A.3: Empirical first-type errors at a confidence level of 0.001 as a function of the
true dispersion parameters αi, computed on the 200 null genes for the pro-
posed test statistics, as nj varies. Red dashed lines indicate the nominal levels.
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Figure A.4: Empirical first-type errors at a confidence level of 0.001 as a function of the
true dispersion parameters αi, computed on the 200 null genes for the already-
known strategies, as nj varies. Red dashed lines indicate the nominal levels.
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A.2.2 Second-type error

Table A.3: Simulation B: medians and standard errors for second-type errors, at different
confidence levels.

Statistic nj = 3 nj = 5 nj = 10

Confidence level= 0.05

Difference 0.0140 (0.2738) 0.0000 (0.2267) 0.0000 (0.1455)

Ratio 0.0245 (0.3259) 0.0000 (0.2812) 0.0000 (0.2046)
Log Ratio 0.0140 (0.2726) 0.0000 (0.2246) 0.0000 (0.1443)

DESeq 0.0302 (0.3007) 0.0000 (0.2568) 0.0000 (0.1809)
edgeR 0.0160 (0.2526) 0.0000 (0.2197) 0.0000 (0.1533)

DSS 0.0120 (0.2449) 0.0000 (0.2109) 0.0000 (0.1526)

Confidence level= 0.01

Difference 0.0530 (0.3289) 0.0020 (0.2867) 0.0000 (0.2199)

Ratio 0.1210 (0.3874) 0.0050 (0.3334) 0.0000 (0.2775)
Log Ratio 0.0530 (0.3278) 0.0010 (0.2845) 0.0000 (0.2167)

DESeq 0.1693 (0.3472) 0.0056 (0.3102) 0.0000 (0.2462)
edgeR 0.0865 (0.2997) 0.0030 (0.2740) 0.0000 (0.2170)

DSS 0.0581 (0.3014) 0.0020 (0.2710) 0.0000 (0.2181)

Confidence level= 0.001

Difference 0.1460 (0.3703) 0.0135 (0.3345) 0.0000 (0.2834)
Ratio 0.4440 (0.3996) 0.0460 (0.3847) 0.0000 (0.3260)

Log Ratio 0.1445 (0.3693) 0.0120 (0.3333) 0.0000 (0.2799)
DESeq 0.4894 (0.3635) 0.0552 (0.3572) 0.0000 (0.3016)

edgeR 0.2810 (0.3359) 0.0315 (0.3193) 0.0000 (0.2753)
DSS 0.2580 (0.3471) 0.0225 (0.3230) 0.0000 (0.2758)

Figures A.5, A.6 and A.7 show the box-plots of the empirical second-type er-

rors obtained by the “Difference”, “Ratio” and “Log Ratio” test statistic respec-
tively and of the other considered approaches, in relation to the number of repli-

cates (nj = 3, 5, 10) and for the different levels of the test (0.05, 0.01 and 0.001).
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Figure A.5: Box-plots of the distribution of the second-type errors computed on the DE
genes. Comparison between the performances of the proposed “Difference”
test statistic, DESeq, edgeR and DSS as nj varies.
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Figure A.6: Box-plots of the distribution of the second-type errors computed on the DE
genes. Comparison between the performances of the proposed “Ratio” test
statistic, DESeq, edgeR and DSS as nj varies.
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Figure A.7: Box-plots of the distribution of the second-type errors computed on the DE
genes. Comparison between the performances of the proposed “Log Ratio”
test statistic, DESeq, edgeR and DSS as nj varies.
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