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Abstract

Changepoint analysis is a well-established area of statistical research, but

in the context of spatio-temporal point processes it appears to be as yet rel-

atively unexplored. Some substantial differences with regard to the standard

changepoint analysis in time or in space have to be taken into account: firstly,

at every time point the datum is not a single point but an irregular pattern of

points distributed over a possibly irregular observation window; secondly, in

many real situations spatial dependence between points and temporal depen-

dence within time segments (i.e. time intervals delimited by two consecutive

changepoints) have to be taken into account, and issues are raised in analyti-

cally obtaining mathematical quantities of interest, such as likelihood values

and posterior distributions.

Our motivating example consists of data concerning the monitoring and

recovery of radioactive particles from Sandside beach in Dounreay, in the

North of Scotland; over recent years, there have been two major changes in

the equipment used to detect the particles in the study area, representing

known potential changepoints. In addition, offshore particle retrieval cam-

paigns are believed may reduce the particle intensity onshore with an un-

known temporal lag, potentially generating multiple unknown changepoints

in the intensity function of the particle distribution.

In this work, we propose a Bayesian approach for detecting multiple

changepoints in the intensity function of a spatio-temporal point process,

allowing for spatial and temporal dependence within time segments. We re-

strict the study to Log-Gaussian Cox Processes, a very flexible class of point
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process models suitable for environmental applications that can be extended

to the spatio-temporal case. Log-Gaussian Cox models can be implemented

using Integrated Nested Laplace Approximation (INLA), a computationally

efficient alternative to Monte Carlo Markov Chain methods for approximat-

ing the posterior distribution of the parameters of interest. The use of INLA

allows the posterior distribution of number and positions of multiple change-

points to be accurately approximated even for complex models, without be-

coming computationally prohibitive.

Once the posterior distribution is obtained, we propose a few methods

for detecting significant changepoints. We present a simulation study assess-

ing the validity and properties of the methods, which consists in generating

spatio-temporal point pattern series with zero, one or multiple changepoints,

with or without spatial and temporal dependence; the proposed models are

fitted on all data series, and the performance of the methods is assessed in

terms of type I and II errors, detected changepoint locations and accuracy

of the segment intensity estimates. We show that our methods have a good

overall performance in detecting changepoints over such complex data se-

ries, and we highlight good and bad aspects of all methods. For instance,

one method based on a modified version of the Bayes Factor obtained using

backward-type recursions performs well on simple models but is too con-

servative when used on more complex models including spatial dependence.

Another method, based on fixing a threshold for the posterior distribution,

suffers from the issues deriving from the arbitrariness of the threshold choice

but is more flexible and holds better over all models. We also show that,

when changepoints are detected, they are located in the correct position by

all methods. Finally, we show that INLA is a tool of great help: it returns

tractable posterior distributions in all cases, it is computationally fast and it

produces accurate estimates of the intensity function for every time segment.

We finally apply the above methods to the motivating real dataset, extend

the models by including extra information and find good and sensible results

concerning the presence and quality of changes in the process.
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Chapter 1

Introduction

In this Chapter, a brief overview of the work is presented, giving the

analysis context together with the main research questions and aims to meet.

Afterwards, the thesis structure is outlined.

1.1 Motivation for the work

Changepoint analysis consists in looking for significant changes in the

parameters of a model from a subset of a data series to the following one;

it is an interesting area of statistics, potentially able to answer many open

research questions; it is frequently applied in a temporal context, less fre-

quently over space and very rarely on spatio-temporal data. Nevertheless, as

more and more data become available that show both a spatial and a tem-

poral dimension (e.g. spatio-temporal lattice or point process data) there is

a need to extend existing methods that currently apply to spatial data or

temporal series separately.

We now introduce some theoretical and practical issues that are current chal-

lenges in changepoint analysis.

1.1.1 Theoretical issues

Some of the existing changepoint methods can potentially be extended

to the general spatio-temporal context; however, for spatio-temporal point

1
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processes this branch of analysis appears to be relatively unexplored. When

dealing with point processes, some differences and difficulties with regard to

a standard changepoint analysis in time have to be accounted for. Firstly,

at every time point the datum is not a single point but an irregular pattern

of points, distributed over a possibly irregular observation window. Sec-

ondly, frequently, point process data are collected over space, and it is not

usual to have repeated measurements on the same observation window over

time, in a sequence large enough to allow changepoint analysis. Further-

more, the response variable is the point location; further information, called

mark, can be collected for every point but is not an essential component of

a changepoint analysis. In addition, in many real situations spatial depen-

dence among points and temporal dependence within time segments have to

be taken into account, and analytically obtaining mathematical quantities of

interest, such as likelihood values and posterior distributions, is not trivial.

Modelling dependence within data segments in the context of unknown mul-

tiple changepoints is currently a challenge even for simple temporal series.

Despite these complications, most of the studies on point processes aim at

describing the behaviour of the intensity function, therefore its changes over

time are certainly of interest, and the provision of tools for changepoint anal-

ysis on spatio-temporal processes would enlarge the number of questions that

can be answered.

We do not have knowledge of a changepoint analysis carried over a spatio-

temporal point process with recently developed techniques. For all the men-

tioned reasons, we believe a statistical analysis of changepoint detection

methods in the context of spatio-temporal point processes is a challenging

and interesting study area.

1.1.2 Motivating dataset

Our study was originally motivated by questions on the monitoring and

recovery of radioactive particles from Sandside beach, North of Scotland,

resulting from the presence of a former nuclear reactor and fuel processing

facility (Tyler et al., 2010); the distribution of particles and their behaviour

over time in the offshore and foreshore areas are of interest for a retrieval
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campaign that has taken place over recent years with environment cleaning

purposes. Questions on this dataset cover both the case of potential change-

points in a known position and the most general case of unknown changes.

Known potential changepoints are represented by two major changes in the

equipment used to detect the particles. The interest lies in verifying if they

significantly increased the ability to detect particles in the area. As for un-

known changes, offshore particle retrieval campaigns might have reduced the

particle intensity onshore with an unknown temporal lag; we want to check

if the offshore campaigns have been effective in decreasing the point process

intensity on the beach.

Questions on how to build a method able to detect changepoints in such a

complex dataset are raised; the proposed method has to deal with the issues

of spatial inhomogeneity, spatial dependence among points and temporal de-

pendence of the process. The dataset motivates very interesting questions

but is not big enough for relying on the performance of an untested method:

the time series is quite short (T = 15) and some yearly patterns only contain

very few data. Since we propose a new approach, we carry out a simulation

study in order to evaluate the proposed methods before applying them to

real data.

1.2 Background and tools

For understanding this work, the reader is required to have some knowl-

edge of Bayesian statistics (in particular, the computational tool INLA),

changepoint analysis techniques and spatio-temporal point processes. A gen-

eral introduction of these main fields is given here, and a more detailed review

of the recent literature can be found in Chapter 2.

Bayesian changepoint analysis

The basic assumption in a changepoint analysis is that data are ordered

and split into segments, which generally follow the same model but under

different parameter specifications (Wyse et al., 2011). The other common

assumption is that observations are i.i.d. within a segment of time between
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two changes. Modelling dependence within data segments in the context of

unknown multiple changepoints is currently a challenge. Fearnhead (2006)

proposed a method for simulating from the posterior distribution of multiple

changepoints using a recursive technique; this is an important step forward in

multiple changepoint analysis. When dependence is allowed, though, the seg-

ment marginal likelihood required by Fearnhead’s method usually becomes

intractable: including any type of dependence increases the computational

complexity of the problem, and there is a need for fast methods providing

an accurate and tractable approximation of the likelihood. Recent work by

Wyse et al. (2011) extended the method to allow for dependence within seg-

ments, using Integrated Nested Laplace Approximation (INLA) (Rue et al.,

2009), an alternative, computationally efficient approach to MCMC methods

for fitting a class of Bayesian hierarchical models to face the well known diffi-

culty with analytically obtaining the posterior distribution of the parameters.

The authors combined recursive methods with INLA to produce estimates

for the segment marginal likelihoods and approximations for the posterior

of both the number of changepoints and their position. The computational

speed and flexibility of INLA has not been exploited for a spatio-temporal

changepoint analysis yet.

Point process models

Our work extends these new techniques to the context of spatio-temporal

point processes, in particular Log-Gaussian Cox point processes (LGCPs).

Cox processes assume the point distribution over space (and potential ag-

gregation) is due to stochastic environmental heterogeneity modelled as a

random intensity function Λ(s) (Illian et al., 2008); given Λ(s), the distri-

bution of points follows an inhomogeneous Poisson process. In LGCPs, the

logarithm of the intensity surface over an observation window W is assumed

to be a Gaussian (latent) field η(s), i.e. Λ(s) =
∫
W
λ(s)ds = exp(η(s)), and

conditional on η(s) the number of points N ∼ Poi(Λ(s)). LGCPs constitute

a very flexible class of models that can potentially be extended to spatio-

temporal data; tractability issues that have impeded the use of these models

up to very recent years can now be overcome using Integrated Nested Laplace
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Approximation (INLA, Rue et al. (2009)).

Integrated Nested Laplace Approximation

INLA is an effective computational tool for implementing complex mod-

els. It is simulation free, which is the key to its fastness, and it exploits two

approximations. Firstly, a Laplace approximation is employed to represent

the posterior distributions with a Gaussian shape; secondly, the Gaussian

Field is substituted by a Gaussian Markov Random Field with a sparse pre-

cision matrix, which makes calculations very efficient.

Thanks to its computational efficiency it allows extension from the temporal

to the spatio-temporal context even for large datasets. Moreover, likelihood

values resulting from different changepoint positions can be evaluated, and

the posterior probability of every time point of being a changepoint is re-

turned, allowing the changepoint position to be inferred a posteriori. We

present a simulation study of a Bayesian approach to changepoint analysis

using INLA by extending it to the spatio-temporal point process context,

without reducing the problem to a one dimensional, simply temporal series.

1.3 Research objectives

Our work aims at finding a method for detecting multiple unknown

changepoints over time in the spatially inhomogeneous intensity function

of a spatio-temporal point process, when both spatial dependence among

points and temporal dependence within time segments are allowed. We want

to understand what happens when the usual assumptions of a changepoint

analysis (simply temporal i.i.d. data) do not hold, which raises a few chal-

lenging issues especially when applied to the context of point processes.

When the point process under study is assumed spatially homogeneous, the

intensity is constant over the window and can therefore be represented by

a single number for each time point; this means we may achieve good and

sensible results with a traditional changepoint analysis on a temporal series

made by the number of points at each instant, since the observation window

is fixed and the spatial distribution is of no interest as it is assumed constant
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and completely random. In a more general inhomogeneous process, which is

likely to be the case in many real situations, though, a changepoint analysis

of the behaviour of the intensity function over time can concern different

aspects:

• a change in scale, when the overall number of points increases or de-

creases significantly after a certain time point

• a change in spatial structure, when the expected number of points re-

mains constant, but their distribution over space changes after a certain

time point

• a change in both scale and spatial distribution.

We are interested in a method that is able to detect any of these changes

over time, and that can therefore provide answers to a much wider variety

of cases and carry much more information than a traditional changepoint

analysis that ignores spatial structure. Focusing in changes over time on

spatio-temporal data means that in this work there is no focus on analysing

changes over space (i.e. describing the spatial inhomogeneity) at a fixed time

point.

In this study, we take a Bayesian approach to changepoint analysis for two

main reasons, that will be further discussed in Chapter 6. First of all,

Bayesian inference allows knowledge brought by data (the likelihood) to be

enriched by including extra information in the prior distributions of the pa-

rameters. This is very useful as in many real situations for contextual reasons

some changepoints might be considered more likely than others. Secondly, a

Bayesian approach allows dependence to be dealt with, while there are cur-

rently no satisfactory frequentist solutions to the problem.

Moreover, we aim at including the use of INLA in our approach as it brings

several fundamental advantages when it comes to detecting multiple change-

points in a spatio-temporal point process context: first of all, the flexibility

of LGCPs allows an extension of changepoint methods from the temporal

to the spatio-temporal context, and very complex models can be accurately

fitted using INLA. The extension to spatio-temporal models is not trivial

and requires a higher computational effort, but, due to INLA’s efficiency, it
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is still feasible even for large datasets. Secondly, thanks to INLA’s compu-

tational efficiency again, we can explore all the time series and compare the

likelihood values resulting from different changepoint positions to choose the

best position a posteriori. This is more efficient than traditional changepoint

algorithms (Eckley et al., 2011), that often encounter computational issues.

Such a complex exploration in such a complex dataset would not be possible

in reasonable time without INLA. Moreover, we want to produce accurate

and tractable approximations of the segment marginal likelihoods and with

INLA we can fit general models including both spatial and temporal depen-

dence within segments in our data so as to face all the real situations where

assuming i.i.d. data is unrealistic. Besides, when the time series is very

long and computations become too demanding (which may easily be the

case with spatio-temporal data), the Reduced Filtering Recursion technique

(Wyse et al., 2011), carefully applied and combined with INLA, overcomes

computational issues.

In conclusion, with our approach we can provide a case study with new

changepoint detection techniques, in the very general and complex frame-

work of unknown multiple changepoints with dependence within segments;

we can bring innovation by extending recent approaches such as Wyse et al.

(2011) to the spatio-temporal context and to point process data, adapting the

methods and solving computational issues. Furthermore, we move one step

forward with respect to the traditional changepoint detection algorithms,

that require data to be reduced to a temporal series: with this method, the

3 dimensions of the problem (two spatial and one temporal) are maintained.

These theoretical issues have been motivated by the work on radioactive par-

ticle data; they are addressed in order to provide a method which is able to

answer new questions and in particular to analyse our motivating dataset.

We can therefore summarize our aims as follows: define some methods for

the detection of multiple changepoints in the intensity of a spatio-temporal

point process; allow decisions on whether, and how many, temporal change-

points are present; assess the methods’ performance via simulation; finally,

apply them to real data.
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1.4 Thesis outline

This first introductory Chapter is aimed at giving an idea of the context

and the objectives of our work. The next Chapter consists of a literature re-

view on the topics of interest, presenting the state of art and the most recent

developments in the field of Log-Gaussian Cox point processes, Integrated

Nested Laplace Approximation and the Bayesian approach to changepoint

analysis. In Chapter 3, the novelty in the methodology of the work is pre-

sented, explaining what models we use and what innovation they bring to

the existing literature, and presenting and motivating the chosen detection

methods. Chapter 4 illustrates the simulation study structure, and the per-

formance of all methods is assessed and discussed. Chapter 5 shows the

application to real data and how our method can answer the practical re-

search questions. Lastly, Chapter 6 summarises what has been done, adds

some general concluding remarks and gives some directions for further work.



Chapter 2

Literature Review

In this Chapter, we present the necessary background for understand-

ing our work: firstly, an introduction to spatial and spatio-temporal point

processes, with special focus on the class of point process models we fit to

our data, i.e. Log-Gaussian Cox Processes; then, a presentation of the re-

cently developed Integrated Nested Laplace Approximation (INLA) approach

for obtaining the posterior distributions in case of computationally complex

models with dependence between data. Lastly, we give an overview of the

most recent Bayesian changepoint analysis techniques and of the current

challenges in this field.

As the reader will understand, the presented topics are extremely broad and

much more can be said about them. We choose to give some basic informa-

tion in order to make the analysis context understandable, then we rapidly

move on to the specific tools for our work.

2.1 Spatio-temporal Log-Gaussian Cox

Processes

Spatial statistics is divided into three main branches: geostatistics, areal

processes and point processes. The latter is the less studied, mainly because

it is mathematically intense: analyses are often complicated in this field as

the datum is the pattern of points altogether, therefore variables describing

9
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such a structure and its distribution are likely to be complex, and the math-

ematical background is often heavy (Illian et al., 2013). Moreover, in most

cases only a single spatial point pattern, i.e. a single realisation of the pro-

cess, is available, which makes temporal analyses infeasible. Nevertheless,

interest in this field has been recently raising, and new questions arise on

how to adapt general methods to the context of point processes.

2.1.1 Introduction to spatial point processes

Points are defined as �reference locations for non overlapping objects of

finite size�(Gelfand et al., 2010), and are sometimes called events, in or-

der to distinguish them from arbitrary spatial locations in the considered

space that do not belong to the process. A spatial point pattern is a set

of random locations, irregularly distributed within a finite designated (usu-

ally bi-dimensional) region, where it is assumed that all points are observed

and that points can potentially occur anywhere. In a spatial point pattern,

randomness and questions concern the number of points and their locations.

The pattern is generated by a stochastic mechanism called spatial point pro-

cess, therefore the pattern itself is the observation or ’response’ of interest.

A realization of a point process is an unordered set of points, i.e. the points

do not have a serial order in space, unless they are marked.

Point processes can in general also be temporal or spatio-temporal, but if

the occurrence time is ignored and a picture of a situation is taken, spa-

tial point processes are considered (Baddeley and Turner, 2006). Usually,

point processes are assumed stationary and isotropic (i.e. invariant to the

rigid motions of translation and rotation), even if in practice it is sufficient

that these properties are acceptable for the planar region of interest (Diggle,

2014).

Point processes have numerous application areas, as forestry, ecology, geol-

ogy, geography, astronomy and epidemiology (Diggle, 2014). A few simple

examples of possible questions that can be addressed via point process anal-

ysis are: are two patterns independent? How much spatial segregation is

present? Is it constant over time? Does it depend on any spatial covariate?

For a complete introduction to spatial point processes, we refer to Diggle
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(2014) and Illian et al. (2008). We follow the notation in Illian et al. (2008)

and define

• N(W ): random number of points of the process in the observation

window W ;

• X: point process defined on a measurable space and observed inside

the window W ;

• xi, i = 1, . . . , N : generic point/event of the process;

• P (N(W ) = n): (univariate) number distribution;

• E(N(W )) = Λ(W ): expected number of points in W .

The intensity function

Interest lies in the distribution of X, which is unknown and depends on

the behaviour of an intensity function. The intensity of a process is defined as

the abundance/frequency of events in an area (Baddeley and Turner, 2006),

i.e. as the expected density of points per unit area; it is also defined as a

measure of the potential for an event to appear at any location in the window

(Cressie and Collins, 2001). Given a small spatial region ds with area |ds|
around a random location s, the first order intensity function λ(s) of the

point process X is

λ(s) = lim
|ds|→0

E(N(ds))

|ds|

i.e. the expected number of points in an extremely small region. The in-

tensity may be constant, and the process is called uniform/homogeneous, or

inconstant, and the process is non-uniform/inhomogeneous.

The intensity is homogeneous when the number of points in a region is

N(W ) ∼ Poi(λ|W |)

therefore

P (N(W ) = n) = exp(−λ|W |)(λ|W |)n

n!
.
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This implies λ(s) = λ, i.e. the mean number of events per unit area does

not depend on the location s.

The intensity of the process is inhomogeneous if

N(W ) ∼ Poi(Λ(W ))

where

Λ(W ) = E(N(W )) =

∫
W

λ(s)ds

and λ(s) is the first order intensity at location s.

Point process models

Depending on the type of inhomogeneity and its cause, different processes

can be defined. A general inhomogeneous Poisson process is characterized by

independence of the process X for non-overlapping sets, but allows the inten-

sity λ(s) to vary over the window W (Cressie and Wikle, 2011). The class of

Poisson cluster processes was introduced by Neyman and Scott with the idea

that aggregated spatial point patterns can be generated by the clustering of

groups of related events, as the case of parents producing offsprings. Gibbs

processes are an extension of Poisson processes where interpoint interaction

is considered, under the assumption that this is the direct cause of the pat-

tern distribution and any clustering or repulsive behaviour (Baddeley et al.,

2013): an example can be the competition for soil of food. Another broad

class of point processes is given by Cox processes, that are of special interest

for our work. One special case of Cox processes which is often used in point

process analysis is the Thomas process, that also belongs to the class of Pois-

son cluster processes and that we briefly introduce as it is one of the models

that will be fitted to our data in Chapter 5. First of all, a Poisson process of

parent points takes place, then at each parent location clusters are generated,

where each cluster consists of a Poisson number of random points with an

isotropic Gaussian dispersion around its parent (Møller and Waagepetersen,

2004). The intensity of a stationary Thomas process is λ = kµ where k is the

intensity of the homogeneous Poisson process for the parent points, and µ is

the mean of the Poisson random variable ’number of offspring per parent’.
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A wider and more flexible class of Cox processes consists of Log-Gaussian

Cox Processes, that will be presented in detail in Section 2.1.4.

2.1.2 Preliminary tests on point processes

When dealing with spatial point processes, usually preliminary questions

are performed that aim at understanding the general behaviour of the pro-

cess. In particular, it is of interest to know if the pattern can be considered

as randomly scattered, clustered or regular. The answer to this question

gives hints on what class of models is most suitable for the data. The tests

presented in this Section answer this question and are therefore part of a

preliminary analysis to understand the kind of process under study. We now

present them briefly as we will use these tests as an exploratory step on our

real data (see Section 5.2). All tests are meant for checking the null hypoth-

esis of Complete Spatial Randomness (CSR). CSR is defined as the absence

of any type of interaction among points, i.e. the absence of any clustering or

repulsive behaviour; the points occur in the observation area in a completely

random fashion. The homogeneous spatial Poisson process is a model of

CSR, i.e. it implies that the number of events follows a Poisson distribution

with constant intensity λ and that the number of events in disjoint regions

are independent. In a more formal definition, CSR occurs when

• the process is characterized by a single intensity parameter λ

• P (N(W ) = n) = exp(−λ|W |) (λ|W |)
n

n!

• the numbers of occurrences counted in disjoint sub-areas are indepen-

dent of each other

• the probability distribution of the number of occurrences counted in

any sub-area only depends on the area size.

Distance-based methods

One class of methods for testing CSR is based on measuring interpoint

distances; these methods have the advantage of being independent from the

window shape. They look for interpoint interaction (Baddeley, 2010), the
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conventional term for stochastic dependence between points in a point pat-

tern. These methods are Monte Carlo Markov Chain (MCMC) methods as

they are based on simulations under the null hypothesis of CSR and compar-

ison with the observed data: a summary characteristic is estimated for the

data and is compared to the one estimated from simulated point patterns.

We now introduce some well known distance-based methods.

• Pairwise distance (or interevent distance): it is defined as

dij =‖ xi − xj ‖ and it has to be computed between all distinct pairs

of points xi and xj (i 6= j) in the pattern.

If the number of events is n, there are 1
2
n(n − 1) pairwise distances;

the distribution function of the distances depends on the region shape

and size (even if the test result does not). A simple visual test for CSR

is given by the empirical distribution function of interevent distances:

the function represents the observed proportion of distances which are

at most equal to d:

H̄1(d) = (
1

2
n(n− 1))

∑
I(dij ≤ d)− 1.

If the true H is known and plotted against the empirical distribution

function, the plot should be linear under CSR. To assess the significance

of departures from CSR the following steps are needed:

1. estimate H̄1(d)

2. calculate ν − 1 empirical distributions from ν − 1 independent

simulations on n events independently and uniformly distributed

over the region: H̄2(d), H̄3(d), . . . , H̄ν(d) (e.g.: ν − 1 = 99)

3. define the upper and lower ’simulation envelopes’

U(d) = maxu{H̄u(d)} and L(d) = minu{H̄u(d)}, with u = 2, . . . , ν

4. plot the envelopes together with the estimated H̄1(d)

5. if H̄1(d) lies between the envelopes all over its range, the null

hypothesis of CSR is not rejected, otherwise:

– if H̄1(d) > U(d) in small values, there is tendency to clustering

(many small distances);
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– if H̄1(d) < L(d) in small values, there is tendency to a regular

pattern.

• Nearest neighbour distance: the nearest neighbour distance be-

tween two events G(d) is defined as the probability that the nearest

event is within distance d from another event, and di is the distance

from event xi to the nearest event of the pattern (duplicate measure-

ments occur between reciprocal nearest neighbours pairs). This dis-

tance measure is useful because often interaction between events only

exists if the distance is ’small’.

The empirical distribution function is

Ḡ(d) = (n− 1)
∑

I(di ≤ d).

A MCMC test for CSR proceeds analogously as for interevent distances,

with similar conclusions.

• Empty space distance (or point to nearest event distance): it is

measured as d(s) = min ‖ s− xi ‖ and represents the distance from a

reference location s in the window (not necessarily belonging to the

pattern) to the nearest data event. The F function is defined as the

nearest neighbour distance between an arbitrary point and an event,

and F (d) is the probability that the nearest event is within distance d

from a point in the window.

After choosing m arbitrary sample points in the window, we can define

the empirical distribution function:

F̄ (d) = (m− 1)
∑

I(di ≤ d).

Again, a MCMC test for CSR proceeds analogously as for interevent

and nearest neighbour distances, with similar conclusions.

If the process is only observed inside a window, the observed empty

space distance between a location near the border could be larger than

the actual one, because the nearest event lies outside the window and

is not considered (Baddeley and Turner, 2006). In this situation, the

empirical F̄ is negatively biased, and an edge correction giving weights
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to the observations is necessary.

For a homogeneous Poisson process, both the true empty space function and

the true nearest neighbour functions are known (Diggle, 2014):

F (d) = G(d) = 1− exp(−λπd2)

where λ is the mean intensity per unit area and πd2 is the circle area of radius

d. Thus, λπd2 is the number of expected events within distance d from an

arbitrary origin (and this number is constant all over the pattern because of

CSR). This is a reference value to which we compare the estimated functions:

higher values suggest that empty space distances in the point pattern are

shorter than for a Poisson process and hint for a regularly spaced pattern,

while smaller values suggest a clustered pattern. Analogously, if the empirical

Ḡ is negatively biased, a weight correction is needed.

The estimated curves can be compared with the true ones with a theoretical

QQ plot (Duan et al., 2010), where shorter tails give a hint for clustering,

and longer tails for repulsion.

Other non parametric tests against CSR

Other tests exist that are not based on distances and depend on the

window size and shape.

1. Pearson chi-square test

The window W is divided into p sub-regions of equal area (usually, but

not necessarily, quadrats), and the events in each region are counted.

Then, the usual Pearson chi-square test is used (its distribution under

CSR is χ2
(p−1)). The null hypothesis may be rejected either because

the distribution of events in W is not uniform or because there are

dependencies (interactions) among the events. Significantly large val-

ues indicate aggregation, while small values indicate regularity. The

main critique to the quadrat test approach is the lack of information

(Baddeley and Turner, 2006). This is a goodness-of-fit test in which

the alternative hypothesis H1 is simply the negation of H0, i.e. the
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alternative is that ’the process is not a homogeneous Poisson process’,

but there are many types of departure from H0.

2. Variance-to-mean ratio

This is a well known index of dispersion. It can be computed for each

quadrat and then for further aggregations of k × k adjacent quadrats

(blocks); afterwards, the index is plotted against block size. If peaks or

troughs in the graph are found, there is evidence of scales of patterns

(aggregation or regularity, respectively). This is only a visual test.

3. Kolmogorov-Smirnov test

This is a more powerful test than the Pearson chi-square test (Baddeley

and Turner, 2006) in which the observed and expected distributions of

the values of some real-valued function T (s), defined at every location s

in the window, are compared. This function is evaluated at each of the

data points; then, the empirical distribution of T is compared with the

predicted distribution of T under CSR, using the classical Kolmogorov-

Smirnov test.

The Kolmogorov-Smirnov test is usually preferred if a covariate Z is

available, with continuously varying numerical values (Baddeley, 2010).

If the covariate is a factor or discrete variable, then the Kolmogorov-

Smirnov test is ineffective because of tied values, and the χ2 test based

on quadrat counts would be used.

If the preliminary tests reject the null hypothesis of CSR and give hint for

clustering, one of the most general and suitable class of models to fit to many

data is given by Cox processes.

2.1.3 Spatial Cox Processes

A spatial point pattern can have aggregation for various reasons; one of

them is spatial heterogeneity (Møller et al., 1998). Cox processes model

aggregation as due to stochastic environmental heterogeneity represented

by an underlying latent field. They are a generalization of inhomogeneous

Poisson processes where λ(s) is random (Illian et al., 2008), indeed they are
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also called doubly stochastic Poisson processes, as they are built by a 2 stage

random mechanism:

1. generation of an intensity function λ(s) from a distribution

2. conditioning on λ(s) (i.e. knowing the value it takes at each location),

construction of an inhomogeneous Poisson process with intensity λ(s).

Given λ(s), the distribution of points is random and there is no direct inter-

action among points. For a general introduction to Cox processes, we refer

to Møller and Waagepetersen (2004).

Cox processes are particularly suitable for phenomena where it is plausible

to consider an environmental driver as the main cause for clustering or re-

pulsion; for this reason, they are widely used in environmental and ecological

statistics. However, Cox processes often encounter the issue of having an an-

alytically intractable likelihood; this traditionally leads to computationally

expensive MCMC-type approaches, but complex Cox processes can also be

fitted with Integrated Nested Laplace Approximation (INLA, see Section 2.2)

by exploiting the latent random field.

2.1.4 Spatial Log-Gaussian Cox Processes

Log-Gaussian Cox Processes (LGCPs) are Cox point processes where the

logarithm of the intensity surface is assumed to be Gaussian. They are an

extremely flexible class of point process models, and provide excellent mod-

els, e.g., for what is usually referred to in ecological studies as ’presence only’

data, i.e. data where the presence is always recorded, but the absence can

mean a true absence or a lack of recording. Inference for these models is

historically very hard, but INLA (see Section 2.2) opens new possibilities.

Let {η(s)}s∈W be a random field; this is a Gaussian field if and only if,

given s1, . . . , sn a finite set of locations and b1, . . . , bn a set of real numbers,

b1η(s1) + · · · + bnη(sn) is normally distributed; in other words, the vectors

η(s1), . . . , η(sn) follow a multivariate normal distribution for any location s.

As a normal variable, η(s) can take negative values, so the easiest transfor-
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mation in order to define a non-negative intensity for a Cox process is

Λ(s) =

∫
W

λ(s)ds = exp(η(s));

by construction {Λ(s)}s∈W is also a random field.

The distribution of a LGCP X is defined through the distribution of the

Gaussian field {η(s)}s∈W , which is specified by its mean, variance and cor-

relation structure (positive semi-definite). If the process is stationary and

isotropic, the joint distribution of (X, η) is invariant under rigid motions.

Stationary LGCPs are particularly friendly to deal with (Møller et al., 1998)

as their distribution is completely characterised by the intensity and the

pair correlation function (1st and 2nd order quantities), so both interpreta-

tion and estimation are easy; moreover, there are no edge effect problems

(Diggle, 2014), and they are flexible and easy to simulate. Under station-

arity, µ = E(Λ(0)) = λ is the mean of the intensity field (the origin is

chosen as a reference point here, but because of stationarity it could be

any point). Let σ2 be the variance and C(r) the covariance function of the

latent field at distance r (being stationary, it only depends on distance),

i.e. C(r) = σ2k(r) = Cov{η(s), η(s− r)}. Then, for the moment properties

of the log-Normal distribution (Diggle et al., 2013), the first order intensity

of a LGCP is

λ = E(Λ(0)) = E(exp(η(0))) = exp(µ+
1

2
σ2)

and the covariance density is

g(r) = λ2[exp(σ2k(r))− 1].

It is natural to extend the definition of LGCPs to multivariate LGCPs, by re-

placing the scalar-valued η(s) with a vector-valued multivariate Gaussian pro-

cess (Diggle et al., 2013), and to spatio-temporal processes (see Section 2.1.6)

(Møller and Waagepetersen, 2004).

2.1.5 Estimation issues

Despite their flexibility and their suitability for many real situations,

LGCPs have not been much used until very recent years. The problem with
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LGCPs is that, except for very special cases, the density of X is analytically

intractable (Waagepetersen, 2008), and has to be approximated. The general

form of the Cox process likelihood involves integration over the distribution

of Λ which has infinite dimensions (Diggle et al., 2013). The traditional ap-

proach for estimating LGCPs (Møller and Waagepetersen, 2004) consists in

approximating its likelihood with a Poisson likelihood, by superimposing a

grid over the window and counting the number of points Ni in each cell Ci.

As this is a Cox process, Ni ∼ Poi(Λi), where Λi =
∫
Ci
λ(s)ds, but usually

the integral in Λi is impossible to compute and approximation is needed:

approximately, Ni ∼ Poi(|Ci| exp(ηi)), where ηi is a representative value of

the (continuous) Gaussian random field inside the cell Ci. Under suitable

regularity conditions and when the cell size |Ci| tends to zero, the composite

likelihood coincides with the likelihood function in the case of a Poisson pro-

cess. The corresponding estimating function is given by the derivative of the

likelihood, and by Campbell’s theorem (Baddeley et al., 2013) an unbiased

estimating equation is obtained, for which the estimate coincides with the

MLE under a Poisson process with the same intensity function. The prob-

lem is that the vector η = (ηi) has a dense covariance matrix. In conclusion,

the grid should be made of few cells to make computations easier, but this

way a higher approximation error is obtained. It is then intuitive to under-

stand that, even if an advantage of Cox processes is that they can potentially

reach high levels of complexity, this method is not suitable for complex mod-

els (Illian, 2012): high dimensionality can become a huge obstacle. That is

why recent developments have proposed INLA as an approximate estimation

approach (see Section 2.2.4).

2.1.6 Extension to the spatio-temporal case

Much of the theory of spatio-temporal point processes comes from that of

spatial point processes. However, the temporal aspect enables an ordering of

the points, or of some of them, that does not generally exist for spatial pro-

cesses. Generic methods for the analysis of spatio-temporal point processes

are not well established yet (Cressie and Wikle, 2011).

A temporal point process is defined as {X(t) : t ∈ T} where t is a time index
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and T ⊂ R can be continuous or discrete and is a random set of randomly

occurring points (Cressie and Wikle, 2011); a spatio temporal point process

(in two dimensions) is defined in a subset W (s, t) ⊂ Rd×R and has first or-

der intensity λ(s, t) (Cressie and Wikle, 2011). This means we take repeated

’pictures’ of a spatial phenomenon at different time points.

A spatio-temporal LGCP can be defined as a spatio-temporal inhomogeneous

Poisson process conditional on a stochastic intensity function that varies both

in space and time:

Λ(s, t) = exp(η(s, t))

where η(s, t) is a Gaussian process. The spatio-temporal LGCP is extremely

flexible as it enables the presence of both fixed and random effects (Taylor

et al., 2013).

In a spatio-temporal LGCP, as given in Diggle et al. (2013) for disease map-

ping data, the number of cases occurring at a certain time X(s, t), or at a

certain time interval X(s, [t1, t2]), is then inhomogeneous Poisson with inten-

sity parameter

X(s, [t1, t2]) ∼ Poi(

∫
W

∫ t2

t1

λ(s, t)dtds).

The intensity, in separable models, is decomposable as

λ(s, t) = λ0(s, t)R(s, t) = λ0(s)µ0(t)exp(η(s, t))

where λ0(s, t) = λ0(s)µ0(t) is the predictable deterministic baseline part,

often a product of a purely spatial and a purely temporal component. The

spatial baseline λ0(s) can be estimated via adaptive kernel smoothing, using

for example the first available data of the series and integrates to 1 over

the window W ; the temporal baseline µ0(t) is found fitting a Poisson log-

linear regression to the point counts over time. The second term R(s, t) =

exp(η(s, t)) is the stochastic part, describing the spatio-temporal variation,

where η(s, t) is a Gaussian process continuous over both space and time; the

available data have to be used to build the predictive distribution of this ’risk’

surface R using the LGCP and moment-based methods (Brix and Diggle,

2001) with a separable correlation structure: the spatio-temporal correlation

k(r, v) = ks(r)kt(v) can be divided into two components, one simply spatial

and one simply temporal.
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2.2 Integrated Nested Laplace Approximation

In a nutshell, INLA (Integrated Nested Laplace Approximation) (Rue

et al., 2009) is an alternative approach to MCMC methods for estimating

Bayesian hierarchical models; it is a method not based on sampling (which is

the key to its fastness), and it is only valid for latent Gaussian models with

a small number of hyperparameters.

The INLA approach is mathematically intense; Section 2.2.1 and 2.2.2 aim

at giving an intuitive idea of how INLA works.

2.2.1 Latent Gaussian Models

Latent Gaussian models are a very general class of hierarchical Bayesian

models where the response variable is assumed to belong to an exponential

family and to be conditionally independent given a latent field (normally

distributed) and some hyperparameters.

The hierarchical model can be written as:

1. observation level

y|η, θ ∼ π(y|η, θ) =
∏
i

π(yi|ηi,θ)

2. latent field level

η|θ ∼ N(µθ,Q
−1
θ )

3. hyperparameter level:

θ ∼ π(θ).

The marginal distribution of each parameter is:

(ηi|η−i,θ) ∼ N(µi −
1

Qii

∑
j 6=i

Qij(ηj − µj), Q−1ii ).

Combining the three levels the joint posterior gives (Illian et al., 2013):

π(η, θ|y) ∝ π(θ)N(µθ,Q
−1
θ )
∏
i

π(yi|ηi,θ)
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and the analysis is aimed at finding the marginal posteriors for all the ele-

ments of the latent field, to make inference on the relationship between the

response variable and all the covariates and spatial structures (Simpson et al.,

2012).

Sparse dependence

In Gaussian Random Fields (GRFs), observations are jointly normally

distributed with covariance matrix Σ. This matrix is generally dense, but

the matrices for the analysis have to be sparse, as this solves computational

efficiency and storage memory problems. A solution is to build a sparse pre-

cision matrix Q = Σ−1, which implies sparse conditional dependence; sparse

conditional dependence intuitively means an event depends on a close neigh-

bourhood in such a way that, given that neighbourhood, it is independent of

all other events. Defining the idea of neighbourhood on continuous space is

not trivial; an approximation can be given by a discrete grid structure as the

one we will use in our work. When working with spatial data on a grid, neigh-

bour cells are defined as the ones within a fixed distance from a reference cell:

this way, first order neighbours are defined as the adjacent ones in the cardi-

nal directions, second order neighbours as the adjacent ones on the diagonals,

third order neighbours as the further four ones in the cardinal directions and

so on. Working with discrete space allows to choose a neighbourhood struc-

ture and build as sparse a precision matrix as it is needed. That is why GRFs

are often approximated by their discrete version, Gaussian Markov Random

Fields (GMRFs), and marginal distributions are substituted by conditional

distributions. A Markov Random Field can be defined as a set of random

variables having the Markov property (Rue and Held, 2005), and when all

variables are normally distributed, we have a GMRF. GMRFs are defined

on a discrete space (often, a grid) where the single cell value is chosen as

a representative value of the continuous GRF inside the cell. Building the

precision matrix Q = Σ−1 as a sparse matrix implies full conditional inde-

pendence (but not marginal independence) between variables belonging to

the latent field: ηi ⊥ ηj|η−{ij} ⇔ Qij = 0. We can build processes such that

Σ is dense but Q is sparse. If Q is sparse, calculations can be made very
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efficient.

As we are interested in the conditional distributions, we can define a GMRF

by its conditional mean and precision; the conditional mean is a weighted

sum of the neighbours, with weights corresponding to the values in Q

E[ηi|η−i] = µi −
1

Qii

∑
j∼i

Qij(ηj − µj)

where j ∼ i means that ηj belongs to the neighbourhood of ηi.

The precision is

Prec[ηi|η−i] = Qii.

Intrinsic GMRFs

Different types of random fields may be used to model the spatial effect

on a lattice; one of them is the intrinsic GMRF (IGMRF) (Illian, 2012).

IGMRFs are often called intrinsic CAR models, or Random Walks in two di-

mensions (RW2d), and are characterized by a precision matrix which is not of

full rank (has at least one zero eigenvalue), i.e. they are improper ; the Besag

model belongs to this class. Following an IGMRF, the conditional expected

value in a cell E[ηi|η−i] is a weighted average of its 12 neighbours ηj, j ∼ i,

with higher weights for closer neighbours: the four nearest neighbours have

weight Qij = 8, the 4 second order neighbours in the cardinal directions have

weight Qij = −1 and the 4 nearest neighbours on the diagonal are weighted

Qij = −2 (Illian, 2012).

As for the precision hyperparameter, values have to be carefully chosen as

a high variance might produce a function too smooth to explain spatial cor-

relation, while too high a precision might lead to overfitting and miss the

spatial trend.

A sum-to-zero constraint is needed for all IGMRFs to ensure identifiability

of the model.

2.2.2 Obtaining posterior estimates with INLA

The Laplace approximation (Rue and Held, 2005) is a method for using

a Gaussian distribution to represent a given probability density function (in
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Bayesian analysis, the posterior distribution). This is obviously more effec-

tive for a single-mode distribution, as many popular distributions could be

roughly represented with a Gaussian shape. The idea is that often the actual

distribution p(η|y,θ) cannot be easily sampled, and an alternative way to

draw samples from p(η|y,θ) is needed; one solution is to draw samples from

another, ’nicer’ distribution. It is preferable to use something simple and

computable because, as the dimension of the problem increases, the required

computational memory increases very quickly. This is why approximations

are used.

The Laplace approximation exploits the Gaussian distribution and Taylor’s

series expansion to obtain a tractable and computationally fast approxima-

tion of the original distribution (Blangiardo et al., 2013). The aim of INLA

is to provide accurate and fast deterministic approximations to all, or at

least some of, the k posterior marginals for ηis, the components of the latent

Gaussian vector η, plus possibly the posterior marginals for θ (or some of

its components θjs). For this purpose, INLA exploits two approximations:

• the latent Gaussian field is approximated by a discrete GMRF, i.e. the

space is discretized and it is assumed that each value in the grid only

depends on some neighbourhood structure, so that the precision matrix

is sparse. The neighbourhood structure can be different for the different

components of the field

• the latent field is Gaussian, so a Laplace approximation can be used

for its posterior distribution.

The approximation applied by INLA is aimed at finding the marginal poste-

rior distribution, i.e. the conditional distribution of the latent field η given

the data π(ηi|y) and of θ, π(θi|y) without integrating over η: the problem

is that usually these integrals are extremely high dimensional (they could

involve billions of values). Here follow the main steps:

1. Laplace approximation π̃ of the joint posterior of the hyperparameters:

π(θ|y) =
π(η,θ,y)

π(η|θ,y)π(y)
=
π(η,θ|y)

π(η|θ,y)
∝ π(η,θ|y)

πG(η|θ,y)
|η=η∗θ = π̃(θ|y)



26 2. Literature Review

where πG is a Gaussian (Laplace) approximation of π(η|θ,y) with the

characteristic of matching the true posterior at the mode: in fact, the

full conditional of a GMRF can often be well approximated by a Gaus-

sian distribution by matching the value and the curvature at the mode.

This means the true full conditional of the latent field is approximated

by a Gaussian distribution evaluated at the mode η∗θ .

This approximation is very accurate in most cases (Rue et al., 2009) as

π(η|θ,y) looks almost Gaussian, due to the assumption that the prior

π(η|θ) is Gaussian (Illian, 2012);

2. numerical integration to find the (approximate) posterior marginals

π̃(θi|y), which is possible because we assume θ is made of few hyper-

parameters;

3. Laplace approximation of the posterior marginals (that can be many):

π̃(ηi|θ,y). The most efficient (fast) algorithm is the ’Simplified Laplace

approximation’, which is based on a Taylor’s series expansion of the

Laplace approximation. This is usually corrected by including a mixing

term (e.g. splines), to increase the fit to the required distribution;

4. integration out of θ to find the posterior marginals π(ηi|y). In numerical

integration, the Laplace approximation of π(θ|y) (already obtained) is

explored numerically in order to find support points θp for the numerical

integration. These points are given area weights ∆p that are plugged

into the sum that approximates the integral:

π̃(ηi|y) =

∫
π̃(ηi|θ,y)π̃(θ|y)dθ ≈

∑
p

πG(ηi|θp,y)π̃(θp|y)∆p.

INLA first explores the marginal joint posterior of the hyperparameters θ in

order to locate the mode, which will become the mean of the approximate

Gaussian posterior (Blangiardo et al., 2013). A grid search is then performed

and produces a set of ’relevant’ points θ∗ = {θp, p = 1, . . . , P} together

with a corresponding set of weights ∆∗ = {∆p, p = 1, . . . , P} to give the

approximation to this distribution. Each marginal posterior for the relevant

points π(θp|y) can be obtained using interpolation based on the computed
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values and correcting for (probable) skewness, e.g. by using log-splines. For

each θp, the conditional posteriors π(ηi|θp,y) are then evaluated on a grid of

selected values for ηi and the marginal posteriors π(ηi|y) are obtained out

by numerical integration.

2.2.3 Estimating models with INLA

As already said, the objectives of Bayesian inference are the marginal

posterior distributions for each element of η and θ. Typically, the interest

lies in estimating the effect of a set of relevant covariates on some function

(usually the mean) of the observed data, while accounting for the spatial or

spatio-temporal correlation implied in the model.

Latent Gaussian models are a subclass of structured additive regression mod-

els, i.e. a subset of all Bayesian additive models with a structured additive

predictor.

A structured additive model can be written as

yi = µi + εi

with

g(µi) = β0 +
∑

βkzki +
∑

wjifj(zji) + ui

where the latent field is η = {β0, βk(k = 1...K), fj(j = 1...J), ui(i = 1...N)},
i.e. a collection of all random parameters, and specifically

• β0 is a common intercept; it can be fixed, i-varying or have both com-

ponents

• βk are linear fixed effects of covariates

• fj(zji) are smooth (large or small scale) spatial effects

• ui is an unstructured error term that might be included.

With the INLA approach for latent Gaussian models:

• η ∼ N(0,Q−1), i.e. all effects are assumed normal with zero mean
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• the latent field can have any size, but Q must be ruled by ≤ 7 different

hyperparameters

• β ∼ N(0, τ−1β I) i.e. all linear effects are assumed independent and

depending on the same hyperparameter

• neighbourhood structures must be fixed for the fjs, in order to define

the non-zero values in Q; by fixing different neighbourhood structures,

both small and large scale variation can be taken into account. Non-

linear effects can also be unstructured, like error terms, and in this

case they are uncorrelated. This way, the general precision matrix Q

has non-zero off-diagonal values only corresponding to the non-linear

structured effects

• u ∼ N(0, τ−1u I), i.e. the linear error terms ui are i.i.d. and

τu ∼ Ga(α, β). Note that E(τu) = α
β

and σ2
u = 1

τu
∼ InvGa(α, β).

This means that E(σ2
u) = β

α−1 and V (σ2
u) = β2

(α−1)2(α−2) , which gives

indications on how to choose the hyperparameters and is valid in all

cases where the precision is modelled as a Gamma: V (σ2) <∞⇔ α >

2; if α ≤ 2 the prior is vague (infinite variance).

Note that a zero-mean for all latent field components is not a loss of gen-

erality, as this can be obtained by shifting data (under stationarity) or by

considering residuals.

2.2.4 Estimating LGCPs with INLA

In the particular case of LGCPs, the log-intensity of the Poisson process

can be described by a linear predictor (Illian et al., 2012) as

yi = λi + εi ∼ Poi(λi)

where yi = N(Ci). The approximation of the point process X by a discrete

Poisson process Y is good when cells are small enough, with

log(λi) = β0 + βt +
K∑
k=1

βkzki +
J∑
j=1

wjifj(zji)
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where β0 is a common intercept and βt are time-specific intercepts and ac-

count for variation in the intensity across time/space. The Gaussian latent

field is η = {β0, βk(k = 1...K), fj(j = 1...J)} and the distribution of all

the parameters of the field is approximated by a GMRF; a neighbourhood

structure for all the parameters is fixed, which can be different (e.g. small-

scale effects have first-order neighbours, large scale effects account for a wider

neighbourhood, . . . ): practically, only neighbourhood structures for f func-

tions must be set, while the linear effects are assumed independent.

With the INLA discretization to cell counts, the response variable is Poisson

distributed; data usually look like zero-inflated Poisson data, as most cells

(especially with a fine grid) have zero values; however, it would be wrong to

model them as zero-inflated, as what they actually are is spatially correlated

Poisson data.

2.2.5 Discussion on INLA performance

Experience (Rue et al., 2009) says practically exact results are obtained

over a wide range of commonly used latent Gaussian models. Moreover, tools

for assessing the approximation error are provided. The approach produces

precise estimates in seconds and minutes, even for models involving thou-

sands of variables, in situations where any MCMC computation typically

takes hours or even days (Rue et al., 2009). This also means different models

can be run and compared, usually by Deviance Information Criterion (DIC),

within reasonable time, which is of great help.

Some disadvantages are encountered when using INLA:

• ts computational cost is exponential with respect to the number of

hyperparameters m (but in most applications m is small)

• it requires some analytic computation or/and some black box numerical

differentiation, being based on a standard second-order Taylor approx-

imation to the log-density

• it misses a clean evaluation of the associated error
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• the calibration of the Laplace approximations seems to require a high

level of expertise.

In a few words, INLA has two main disadvantages with regard to MCMC:

it does not work for all possible models, and it has a harder mathematical

background. As for the first aspect, INLA authors argue that in order to

find a better performing method than MCMC they had to restrict the class

of models that can be solved by a single method. Nevertheless, the class

of Latent Gaussian Models is still very broad and flexible and provides a

good solution in many real situations. As for the mathematical complexity,

this mainly implies that using INLA can be prohibitive for non-statisticians

or mathematicians. Despite this, when it is possible to use it results are

extremely accurate, and the fastness of INLA in providing a solution is cer-

tainly its greatest advantage. Obtaining fast results is a key point in many

analyses, especially when prediction is concerned; as for our work, it allows

many models to be fitted and different methods to be tested in a very rea-

sonable time despite the complexity of the dataset, as we show in Chapters

4 and 5. In addition, the R package R-INLA (see Section 2.2.6) now allows

an easy implementation of the approach.

As for the choice of the grid size, this is in general an issue in practical work.

As usual, the finer the grid, the more accurate the results, but the longer

the computational time. However, there are a few nice aspects to point out.

First, the grid need not be so fine as to contain maximum one point per

cell, as is desirable in other situations (e.g. Waagepetersen (2008)): INLA

models the resulting counts as a Poisson, therefore values higher than 1 are

considered for what they are, there is no approximation to binary values.

Moreover, the use of a GMRF keeps a small neighbourhood structure, so the

covariance matrix will still be very sparse even if the grid is very fine, which

will keep computations feasible. Furthermore, the computational efficiency

of INLA allows the statistician to try different grid sizes in an acceptable time

before choosing the best trade off between being accurate and being fast for

the specific analysis. In most cases the conclusion will be that the grid can

be as fine as the statistician wishes, and we found that after a certain fine

resolution results are not substantially affected by the cell size.
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If being as fast as it is possible is the main concern of an analysis, there

are other approaches than the grid that further increase the computational

efficiency. They are discussed in Chapter 6.

2.2.6 Notes on INLA software

The reference software for working with INLA is R (Rue et al., 2009):

the R-INLA package can be used for many GMRF hierarchical models and

aims at being user friendly and fairly easy to approach. The package is

constantly under construction, and can be downloaded from the website

www.r-inla.org, where examples and tutorials are also displayed, or by typ-

ing source(’’http://www.math.ntnu.no/inla/givemeINLA.R’’) in R.

The package implements many exponential models, and dependence, which

is the main interest in our work, can be modelled using many random effects

models, such as first order auto-regressive models, random walks of first and

second order and in two dimensions. It is also possible to build user-defined

dependence structures.

The R-INLA package is used for all the computations in this work.

2.3 Bayesian changepoint analysis

In this Section, we give a brief overview of what is meant by a temporal

changepoint and give some examples of changepoint analysis questions. We

show some likelihood based methods, as they have been widely used for

detecting changepoints in time series up to recent years, and we highlight the

issues that cannot be answered with these methods (i.e. dependence between

data). We then introduce some recent Bayesian techniques for overcoming

the problem and widen the range of real situations that can be dealt with.

2.3.1 Introduction to changepoint analysis

A changepoint is defined as a place or time point τ in a data series Y such

that the observations follow one distribution, say F0, up to that point and an-

other one, say F1, after that point (Chen and Gupta, 2012). The assumption
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is that data are ordered from 1 to T (it usually is time order, but it may be

some other natural order) and that the model describing them presents some

abrupt changes; data are then split into segments, which generally follow

the same model but under different parameter specifications (Wyse et al.,

2011). Note that we only consider abrupt changes here; for a discussion on

the differences with regard to gradual change we remind to Section 3.5.

The usual assumption in standard changepoint analysis is that observations

are i.i.d. between every pair of changepoints, therefore the distribution of

the sequence can be written as:

Yi ∼ F0 for i ≤ τ1

Yi ∼ F1 for τ1 < i ≤ τ2

Yi ∼ F2 for τ2 < i ≤ τ3

. . .

where τ1, τ2, . . . are the changepoint locations, defined in our work as the last

time point of every segment.

Changepoint problems can be developed on different complexity levels, a list

of which follows.

1. One changepoint, known location in τ0;

the underlying assumptions are:

• data follow a distribution Yi ∼ Fi with one potential change in

the parameters after τ0

• H0: F1 = · · · = FT

H1: F1 = · · · = Fτ0 6= Gτ0+1 = · · · = GT

• rejection of H0 means that there is a changepoint at location τ0,

otherwise there is no distributional change.

2. One changepoint, unknown location in τ , τ ∈ {1, . . . , T};
the underlying assumptions are:

• data follow a distribution Yi ∼ Fi with one potential change in

the parameters which can occur at any time point

• H0: F1 = · · · = FT

H1: F1 = · · · = Fτ 6= Gτ+1 = · · · = GT , τ ∈ {1, . . . , T}
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• rejection of H0 means that there is a changepoint at an unknown

location τ that needs to be detected.

3. Known number of changepoints M , unknown locations τ1, . . . , τM ;

the underlying assumptions are:

• data follow a distribution Yi ∼ Fi with M potential changes in

the parameters which can occur at any time point

• H0: F1 = · · · = FT

H1: F1 = · · · = Fτ1 6= Gτ1+1 = · · · = Gτ2 6= · · · 6= HτM+1 = · · · =

HT

• rejection of H0 means that there are M changepoints that need

to be detected.

It is not possible to test all the possible combinations, as computa-

tions quickly become infeasible as M increases. There is a need for

some dynamic algorithm. Note that in general the rejection of H0 only

means that there is at least one change at some location, and does not

imply a specific number of changepoints. In this special case, thanks

to some prior knowledge we know that, if H0 is rejected, there are M

changepoints.

4. Unknown number of changepoints m = 1, . . . ,M , unknown lo-

cations τ1, . . . , τm;

the underlying assumptions are:

• data follow a distribution Yi ∼ Fi with m potential changes in the

parameters, m unknown, which can occur at any time point

• H0: F1 = · · · = FT

H1: F1 = · · · = Fτ1 6= · · · 6= Hτm+1 = · · · = HT , m = 1, . . . ,M

• rejection of H0 means that there is at least one changepoint. Num-

ber and locations need to be detected.

The approach to concurrent estimation becomes infeasible with the

currently available tools, therefore sequential methods such as binary
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segmentation (or bisection) methods and model selection procedures

are used. In Chapter 3, further details on sequential algorithms are

given.

All the previous cases assume i.i.d. observations, therefore analyses get even

more complex if we want to introduce any type of dependence between points.

In the usual case of temporal series, temporal dependence within each time

segment may be considered; in the unusual case of a changepoint analysis on

spatio-temporal data, dependence can be over both space and time.

The most common methods for changepoint detection include parametric

techniques (likelihood ratio), non parametric tests, Bayesian tests, stochas-

tic processes. Most parametric works cover the case of a single changepoint

in i.i.d. continuous variables (Chen and Gupta, 2012). Bayesian methods

can be useful for our analysis, as they potentially allow for the presence and

estimation of multiple changepoints at unknown locations in a wide range

of models. The Bayesian approach offers an alternative to likelihood-based

methods: frequentist procedures for changepoint analysis estimate specific

locations of changepoints, while a Bayesian changepoint search produces a

probability distribution, i.e. the probability of a changepoint at each loca-

tion in a sequence of data (Erdman and Emerson, 2007). When running a

Bayesian analysis, what has to be specified in addition to the likelihood is a

prior distribution on the number of changepoints, on their positions and on

the segment parameters.

We now briefly review the most important likelihood-based methods for

changepoint analysis, and then illustrate the most recent developments in

Bayesian changepoint analysis.

2.3.2 A partial solution: likelihood-based methods

Let y1:T = (y1, . . . , yT ) be the time series data, indexed by t = 1, . . . , T .

Let M be the (unknown) number of changepoints, whose positions are listed

in τ = (τ1, . . . , τm, . . . , τM) (we focus on the fourth and last case in the above

list of changepoint scenarios); by definition, τ0 = 0, τM+1 = T and we assume

the changepoints are ordered, i.e. τi < τj ⇐⇒ i < j. The sequence of data

with a constant value for the (vector of) parameter(s) θ is called a segment
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or block ; segments can be identified as ya:b, where a identifies the first obser-

vation of the block and b the last one. A number M of changepoints splits

data into M + 1 segments, and we indicate segment j = 1, . . . , (M + 1) with

yτj−1+1:τj where every τm marks the last point of a segment.

For a parametric family of distributions and under the assumption of i.i.d. data

within segments, the null hypothesis coincides with H0 : θ1 = · · · = θT . To

assess the hypothesis, the likelihood ratio between the overall likelihood L0

(a product of T equal functions) and the likelihood under H1, L1 (a product

of M + 1 blocks of equal functions), is used.

For a single changepoint detection,

H0 : M = 0

H1 : M = 1.

Under H0, the maximum log-likelihood is

l0 = log p(y1:T |θ̂)

where θ̂ is the Maximum Likelihood Estimate for the whole dataset.

Under H1, the maximum log-likelihood for a given changepoint in τ0 is

l1(τ0) = log p(y1:τ0 |θ̂1) + log p(yτ0+1:T |θ̂2).

In the case of discrete changepoints, the maximum is taken over all possible

locations, so the maximum log-likelihood under H1 is

l1 = maxτ l1(τ).

A suitable test statistic is:

γ = 2[l1 − l0].

The statistician has to choose a threshold c and reject the null hypothesis

if γ > c; once H0 is rejected, the chosen changepoint position is the value τ̂

that maximises l1(τ). The appropriate value for the threshold is still an open

research question; in most cases, it is based on p-values and Information Cri-

teria. Remember all this holds under the assumption of i.i.d. observations.

The problem of multiple changepoints is not often considered, being compu-

tationally much more challenging: as datasets increase in length, the number
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of possible solutions to the multiple changepoint problem increases combina-

torially with M (Killick and Eckley, 2011); typically, it is tested how many

segments are needed to represent the data, i.e. how many changepoints are

present, and then the values of the parameters associated with each segment

are estimated.

In the general case of M points, the most common approach is to minimise

M+1∑
j=1

C(yτj−1+1:τj) + βf(M)

where

• C is a cost function for each segment (e.g. C = −logLik)

• βf(M) is a penalty against over fitting. As for the choice of f(), usually

f(M) = M , while the choice of β is different for different Information

Criteria, for instance

– AIC: β = 2p

– BIC/SIC: β = p log T

where p is the number of additional parameters to estimate when adding

a changepoint.

AIC is a popular choice, but it is proved to asymptotically overestimate the

number of changepoints (Killick et al., 2012); BIC asymptotically estimates

the correct M .

For an overview of the most common sequential algorithms for multiple

changepoint detection we refer to Eckley et al. (2011).

Likelihood-based methods have been widely used for detecting changepoints.

Their common limit is that they heavily rely on the assumption of i.i.d. data

within segments, as this makes all computations easier because segment like-

lihoods are simply products of data likelihoods. When dependence needs to

be included, no solution has been provided with likelihood-based methods so

far, as the segment likelihoods often become intractable. Some progress has

been recently done using Bayesian methods, as we illustrate in Section 2.3.3.
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2.3.3 The issue of dependence within segments

From now on, unless differently specified we will deal with the most gen-

eral changepoint scenario of multiple changes at unknown locations.

As previously introduced, an usual assumption is that each observation yt in

the sequence y1, . . . , yT is independent, with a density parameter θt whose

changes are of interest. The other usual assumption is that yt ∼ N(µt, σ
2),

i.e. observations are normally distributed.

With a Bayesian approach, both assumptions can be weakened: normality

can be replaced by any other parametric family, and as for independence it is

enough that observations in different blocks are mutually independent (Barry

and Hartigan, 1993). The difficulty in performing Bayesian changepoint anal-

ysis is that the segment marginal likelihood is required to be computable in

order to find the posterior; this is not always possible, especially when in-

dependence assumptions are relaxed, and this is why approximate methods

have to be employed.

The most complicated step in a changepoint analysis concerns situations

where the number and locations of changepoints is not known. Further is-

sues arise when any kind of dependence within data is included.

An important step toward the detection of multiple unknown changepoints in

a temporal series is introduced by Fearnhead (2006). A Bayesian method is

developed using recursive techniques for a number M of changepoints. Fearn-

head aims at showing that, under some conditions, calculating the Bayes

Factor for models with many changepoints is feasible. The use of the recur-

sions is introduced to calculate posterior probabilities of different numbers

of changepoints and posterior means of the segment parameters; besides, in-

ference conditional on a number of changepoints is allowed.

The limit of this method is that it requires the segment marginal likelihoods

to be analytically or numerically computable. This implies, again, that ob-

servations within a segment have to be independent, given the parameters,

or that the number of parameters must be very small. In the case of in-

dependence the segment marginal likelihood is simply the product of each

time point’s likelihood; when dependence is allowed, segment likelihoods usu-

ally become intractable. This is the case in many real situations, where some
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type of dependence must be included. Wyse et al. (2011) extend Fearnhead’s

method to the case of dependence within segments by substituting analytical

computation of the segment likelihoods with a fast and (under some condi-

tions) accurate approximation given by INLA (introduced in Section 2.2).

Dependence within, but not between, segments implies that the data general

likelihood conditional on the M changepoints and on the latent field can be

still written as a product of M + 1 segment marginal likelihoods; thus, the

approximation is only needed within time segments.

In this Section, we introduce the idea of recursions under the setting of the

works by Fearnhead and Wyse et al..

2.3.4 Prior distributions

As Fearnhead (2006) illustrates, there are two possible classes of prior

settings.

The first one is structured into two levels: firstly, a prior π(m), m = 0, . . . ,M

on the number of changepoints is defined and then, conditional on m, a set of

priors for the changepoint positions is built, where every changepoint’s prior

depends on the following changepoint position

1) π(m)

2) πm(τ1, . . . , τm) = πm(τm)πm(τm−1|τm) . . . πm(τ1|τ2).
(2.3.1)

By definition, we have τ0 = 0 and τm+1 = T .

The second prior setting consists of a joint prior on number and position

of the changepoints, built by modelling the occurrence of changepoints by a

discrete point process in Z∩ [1, T −1]. This might be particularly interesting

in the context of our work, as we would have a point process on two levels: a

temporal process at the prior level and a spatio-temporal process at the data

level. The point process prior is built by looking at the mass density function

g(v) of the time v between two successive changepoints. Since the distribution

is discrete, its cumulative distribution function (CDF) G(v) =
∑v

u=1 g(u) will

be stepwise.

πm(τ1, . . . , τm) = g0(τ1)(
m∏
j=2

g(τj − τj−1))(1−G(τm+1 − τm)).
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where g0(τ1) is the mass function at the first changepoint, as initial value for

the series of products.

A natural choice for the distribution of v is the Negative Binomial distribu-

tion:

v ∼ NB(k, p)

g0(v) =
∑k

i=1

(
v−i
i−1

)pi(1−p)v−i
k

g(v) =
(
v−k
k−1

)
pk(1− p)v−k

where k is the number of changepoints until the sequence is stopped, and p

is the probability of each i.i.d. Bernoulli trial.

2.3.5 Likelihood: recursive methods

We now show how to derive the filtering recursions under either prior

setting. A changepoint τj is the last point of segment j, therefore if a segment

begins at time t it means the last changepoint occurred at t − 1: a general

segment j defines the interval [τj−1 + 1, τj]. Then, given ya:b as the set of

data from time point a to time point b, we define the quantity

P (a, b) = Pr(ya:b| a, b are in the same segment).

This is the likelihood of a set of data within a segment, and, if a and b are

the extreme values of a segment, this defines a segment’s marginal likelihood.

This is the quantity that becomes intractable in complex models and needs

to be approximated using INLA.

Point process prior setting

Fearnhead’s approach derives recursions under the point process prior,

and assumes data are independent given the parameters. This would require

conjugate priors on the parameters, or a small parameter vector to allow for

numerical solutions.

Let

Q(a) = Pr(ya:T |there is a changepoint in a-1 )
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be the probability of a segment or a union of segments; there are two differ-

ences with respect to P (a, b): first, a must now be the start of a new segment,

and second, a and T need not be within the same segment. As a consequence

Q(1) = Pr(y1:T )

is the likelihood of the whole dataset, which coincides with P (1, T ) iff there

are no changepoints.

Fearnhead writes Q(a) recursively as

Q(a) =
T−1∑
b=a

P (a, b)Q(b+ 1)g(b+ 1− a) + P (a, T )(1−G(T − a)). (2.3.2)

This can be intuitively proved: since Q(a) = Pr(ya:T |changepoint in a-1 ),

where a further changepoint can occur at any time, this is a sum of many

different cases

Q(a) =
T−1∑
b=a

Pr(a, T , next changepoint is in b)

+ Pr(a, T , no further changepoints).

(2.3.3)

The first term on the right hand side is a product of

• a prior probability that, given the changepoint in a−1, the next change-

point will be in b: g(b− (a− 1)) = g(b+ 1− a)

• a conditional probability Pr(ya:T |next changepoint is in b) where b is

somewhere between a and T . This, in turn, can be split into

– a single segment from a to the following changepoint b:

Pr(ya:b|a, b are in the same segment) = P (a, b)

– the union of segments from b+ 1 to T :

Pr(yb+1:T |there is a changepoint in b) = Q(b+ 1)

Therefore, as for the first term we obtain

T−1∑
b=a

Pr(a, T , next changepoint is in b) =
T−1∑
b=a

P (a, b)Q(b+ 1)g(b+ 1− a).

As for the second term on the right hand side of Formula(2.3.3), it is a

product of
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• a prior probability on the last time interval, given that the last change-

point is in a− 1: g(T − a) = 1−G(T − a)

• a segment likelihood, as there are no further changepoints

Pr(ya:T |a, T are in the same segment) = P (a, T )

and we obtain

Pr(a, T , no further changepoints) = P (a, T )(1−G(T − a)).

The sum of the two terms returns Formula(2.3.2).

Recursive equations are computed backwards from a = T − 1 to a = 1.

Q(1) is the likelihood of the data under the model with changepoints, and

gives evidence for the model. It can be compared to the likelihood under the

null model P (1, T ); if Q(1) > P (1, T ) then changepoints occur in the series.

The joint posterior distribution of number and positions of changepoints

will depend on the prior mass probability function and the results of the

recursions.

Two level prior setting

The novelty of Wyse et al. (2011) is to relax the assumption of exchange-

ability of data within segments. The focus of the work is on inferring the

changepoint positions after estimating the most likely number of change-

points a posteriori; this method is shown for a prior on two levels as in

(2.3.1): a prior distribution on the number of changepoints and then, condi-

tional on that, a prior distribution on their positions. However, the method

also applies when there is a joint prior on the number and position of change-

points. If a two level prior is used, first of all the posterior distribution for

each number of changepoints m = 0, . . . ,M can be found, using the usual

Bayesian formula

π(m|y) ∝ π(y|m)π(m)

where the likelihood is recursively computed. By doing this for many ms it is

possible to compare the posterior distributions and estimate the most likely

number of changepoints a posteriori. Once the best number of changepoints

is found, their positions are inferred.
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Having a different prior setting, recursions are built in a different way to

Fearnhead’s approach: the point process prior does not fix a number of

changepoints, while, if we work on a two level prior, recursions are computed

conditional on a number of changepoints. This means, for example, that if

we look at Q(a) where a−1 is the jth changepoint, then there must be m−j
changepoints from a to T . Thus, we do not have both right hand side terms

as in Formula(2.3.3): we only have either the first one if a − 1 is the jth

changepoint, j < m, or the second one if a− 1 is the mth changepoint.

Since recursions are not built the same way as in Fearnhead (2006), instead

of labelling them with Q we use L, that depends on both m and j:

L
(m)
j (a) = Pr(ya:T |the j th changepoint is in a-1, there are m changepoints)

and, using the corresponding prior setting

L
(m)
j (a) =

T−m+j∑
b=a

P (a, b)L
(m)
j+1(b+ 1)πm(τj = a− 1|τj+1 = b) (2.3.4)

where j = (m− 1), . . . , 0 and, for every j, a = (T −m+ j − 1), . . . , (j + 1).

Formula(2.3.4) can be proved analogously to (2.3.3) for j = 0, . . . ,m; in

particular it is easy to derive that for j = m

L(m)
m (a) = P (a, T )

since there are no further changepoints after a− 1.

The data marginal likelihood under m changepoints becomes

L(Y |m) = L
(m)
0 (1) =

T−m∑
b=1

P (1, b)L
(m)
1 (b+ 1)πm(τ0 = 0|τ1 = b)

where Y = y1:T .

Case m = 1: relation to the Bayes Factor

If we assume there is a single changepoint, we have two segments j = 0, 1

and a = (T − 1), . . . , 1. Then

L
(1)
0 (a) =

T−1∑
b=a

P (a, b)L
(1)
1 (b+ 1)π1(τ0 = a− 1|τ1 = b).
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Note that, since by definition τ0 = 0, π1(τ0 = a− 1|τ1 = b) 6= 0 ⇐⇒ a = 1,

therefore

L
(1)
0 (1) =

T−1∑
b=1

P (1, b)L
(1)
1 (b+ 1)π1(τ0 = 0|τ1 = b).

If we have a single changepoint in b, for every b L
(1)
1 (b+ 1) = P (b+ 1, T ), as

what follows b is a single segment. We then find an important equality:

L
(1)
0 (1) =

T−1∑
b=1

P (1, b)P (b+ 1, T )π1(τ0 = 0|τ1 = b) = Bayes Factor× P (1, T ).

(2.3.5)

Indeed, we have the segment likelihood before the changepoint P (1, τ1), the

segment likelihood after the changepoint P (τ1 + 1, T ) and the prior on the

changepoint position τ1; being a discrete distribution, we sum over all possi-

ble values for τ1, and this is exactly how the numerator of the Bayes Factor is

built. The denominator of the Bayes Factor is the likelihood under the null

model P (1, T ). Note that this relationship only holds for a single change-

point. See Section 3.2.4 for further details.

Case m = 2

In order to see a slightly more complex example where we can effectively

check how the recursions work, we now derive the case for two changepoints;

j = 0, 1, 2 and, for every j, a = (T − 3 + j), . . . , (j + 1).

As the equations are built backwards, we start from

L
(2)
1 (a) =

T−1∑
b=a

P (a, b)P (b+ 1, T )π2(τ1 = a− 1|τ2 = b). (2.3.6)

This equation only concerns the part of the data series after the first change-

point τ1: the union of segments yτ1:T is split in correspondence of different

possible positions for τ2. Note that this means that for every a we have T −a
terms to compute.

The following step concerns the whole dataset

L
(2)
0 (1) =

T−2∑
b=1

P (1, b)L
(2)
1 (b+ 1)π2(τ0 = 0|τ1 = b). (2.3.7)
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The result of Formula(2.3.6) for every possible value of b + 1 is plugged in

Formula(2.3.7). In Formula(2.3.7) there are T − 2 terms to compute.

INLA and filtering recursions

When working with models as hierarchical GMRFs, which can include

dependence within segments, the segment marginal likelihoods will never be

available in close form. The INLA methodology provides computationally

efficient approximations to GMRFs posterior distributions; an important ad-

vantage for this work is that approximations can be used to estimate the

marginal likelihoods of the data under a model, and overcome the issue of

intractability. Indeed, with INLA we can replace the (often) intractable

terms P (t, s) with good approximations, given that the segment model is a

GMRF; moreover, accurate approximations for the posterior distribution of

both number of changepoints and their positions can be quickly obtained.

Problems may arise if every segment has a very small amount of data, i.e. if

we expect the changepoints to be very close to each other, or if the total

amount of data is very large, because computing all the possible segment

likelihoods for the recursions can be computationally demanding. To over-

come both problems, Reduced Filtering Recursion (RFR) is proposed (see

Section 3.3.4), which consists in looking for changepoints in an adequately

sampled subset of the whole data series (see Wyse et al., 2011 and Chapter

6 for details).

Choice of the prior and computational cost

Running all the computations required by the filtering recursion approach

can become computationally demanding. They require computational effort

in O(T 2M2). As far as the prior on two levels is concerned, the computa-

tional cost can be reduced by choosing appropriate priors on the changepoint

positions that are built in such a way as to simplify the recursive equation.

Both Fearnhead and Wyse et al. choose the same prior that gives a reduction

by a factor M in computational effort. There are no notes in either work on

how much results are affected by the choice of this prior.
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2.3.6 Posterior distribution

The example with m = 2 in Section 2.3.5 shows how the recursions work

in a very simple case; in the end we do not consider the intermediate steps,

which are iteratively plugged into the following equations, and only look

at the final equation which returns the data marginal likelihoods under m

changepoints

L(Y |m) = L
(m)
0 (1) = Pr(y1:T |m).

When we compute the likelihood for many different ms, in general the value

m = 0 must also be included; for this value recursive equations simply reduce

to

L
(0)
0 (1) = P (1, T ),

a single segment marginal likelihood approximated in one single step by

INLA.

The segment marginal likelihoods incorporate a prior term for that partic-

ular segment’s parameters. Parameters have been marginalized out, to give

the evidence for a segment. This is a model with quite high structure, and

the incorporation of the prior in the P (a, b) terms introduces a natural pe-

nalization for overfitting. This is similar to the way in which Bayes Factors

naturally incorporate penalization for model complexity, so there is no need

for an extra penalization term as in Information Criteria. This means higher

values for m will not necessarily be preferred.

In order to make inference on m, recursions must be computed for many dif-

ferent ms, i.e. for all the ms that have a non zero prior π(m). For every m

we then obtain a posterior distribution following the Bayes Rule and, using

the approximate likelihood given a number m of changepoints L
(m)
0 (1), we

obtain

π(m|Y ) ∝ π(Y |m)π(m) ≈ L
(m)
0 (1)π(m).

The posterior distribution of m allows the best number of changepoints given

the data, say M̂ , to be chosen. If M̂ ≥ 1 the following step is to choose the

best changepoint positions a posteriori. The most likely positions are found

using the (already computed) recursions for m = M̂ via the conditional

distribution. Indeed, this method also allows the conditional posterior dis-

tribution for each changepoint to be obtained, which makes simulation of
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changepoints under the chosen model possible. For any m, in general the

distribution can be written as

Pr(τj|τj−1, y1:T ,m) ∝
P (τj−1 + 1, τj)L

(m)
j (τj + 1)πm(τj−1|τj)

L
(m)
j−1(τj−1 + 1)

(2.3.8)

where the numerator is a single term out of the ones inside the recursive

equations.

Let us see a simple example with M̂ = 1:

P (τ1 = t|τ0, y1:T , M̂ = 1) ∝ P (1, t)P (t+ 1, T )π1(τ0|τ1 = t)

L
(1)
0 (1)

∝ P (1, t)P (t+ 1, T )π1(τ0|τ1 = t)∑T−1
b=1 P (1, b)P (b+ 1, T )π1(τ0|τ1 = b)

.

It is easy to see that this equation is a ratio between a specific case τ1 = t

and all possible cases τ1 = b, b = 1, . . . , T − 1. Therefore, in the case of a

single changepoint, irrespective of the value of t the denominator is constant,

and in order to know the most likely changepoint position it is sufficient to

compare the numerators. In conclusion, for a single changepoint search the

best changepoint position a posteriori τ ∗ will be

τ ∗ = arg max
t
{P (1, t)P (t+ 1, T )π1(τ0|τ1 = t)}. (2.3.9)

This idea holds for any m: the most likely position for τ1, . . . , τm can be

chosen a posteriori by comparing, for every changepoint, the numerators of

the posterior probabilities corresponding to different potential positions.

2.4 Discussion

In this Chapter, we presented the main fields of our analysis: spatio-

temporal statistics, in particular spatio-temporal point processes, and change-

point analysis, which is mainly run on temporal data. In addition to these

two fields, INLA, an innovative tool for fitting complex spatio-temporal mod-

els, is introduced.

These are the main topics that will be connected to carry out our work: we
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run a changepoint analysis for multiple unknown changepoints on spatio-

temporal point process data, and use INLA for computations. With respect

to the recent literature presented here, our work adds some new contribu-

tions: first, we look for changepoints on spatio-temporal, instead of simply

temporal, point process data. Moreover, we use a very broad, flexible and

complex class of Cox process models, covering many more cases than the

commonly used Poisson processes; LGCPs are not widely used yet because

of the estimation issues that have only recently been overcome by INLA.

Therefore, we use INLA for fitting the models, which is computationally

much more competitive than MCMC methods and allows the fitting of a

much wider class of models than other analytical or numerical solutions. In

conclusion, we believe our work can open new ways of answering interesting

questions in many applied fields.

The next three Chapters will show how the three components of our work

that have been presented are pulled together and how results are produced.

Indeed, in Chapter 3 we present some increasingly complex Log-Gaussian Cox

Processes that can be fitted to the data time segments in order to describe

the spatial and temporal behaviour of the data points. We also present some

algorithms for running single and multiple changepoint analyses on point

process data, and propose a few Bayesian methods for detecting changes in

the point process intensity. When presenting the developments in method-

ology in Chapter 3, we assume the reader has knowledge of what has been

presented in the current Chapter, where a strong theoretical support is given

to the choice of both models and methods for detecting changepoints on

spatio-temporal point process data. In Chapter 4, we carry out a simulation

study using the models and methods provided. All the segment likelihoods

are approximated using INLA, which also provides estimates for the segment

parameters. In Chapter 5, after the performance of our methods has been

evaluated by the simulation results, we run the same analysis on the motivat-

ing dataset and add some extensions to the models. After the work is fully

presented, a final and more detailed discussion on the novelty of our study

can be found in Chapter 6.





Chapter 3

Developments in Methodology

In this Chapter, we illustrate the models and the new methods that will

be evaluated with a simulation study in Chapter 4 and then applied to real

data in Chapter 5.

Recently, different Bayesian techniques have been developed to determine

whether a change (or more) occurs in a time series; as stated in Section 2.3,

Bayesian methods have the advantage of allowing the probability of change at

each data point within the series to be calculated. Once the posterior proba-

bilities are obtained, different techniques can be used for taking decisions on

the presence and number of changepoints. As we use a Bayesian approach,

prior distributions, likelihood functions and posterior distributions have to

be defined; in this work, we use non informative prior distributions on both

number and position of changepoints, but our methods are not linked to a

specific prior setting and may therefore be combined with any prior distri-

bution.

We first show the methodology for a single changepoint detection at an

unknown location; we then propose a few options for decision making on

the presence of a changepoint. Afterwards, we move on to the detection

of changepoints at unknown locations, the most general framework for a

changepoint analysis that can answer any question regarding changepoints.

The cases of a known number of changepoints or even of known position(s)

to test can be derived as special cases of what we propose here.

49
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3.1 Framework and notation

In general, we look for significant changepoints over time in an intensity

function describing the behaviour of the point process realizations, where

each realization is a point pattern over an observation window at a specific

time point, and time points are equispaced. We build methods for data in

continuous space and discrete time and we aim at covering a wide range of

point process scenarios.

We now present four increasingly complex Log-Gaussian Cox Process mod-

els. As for the intensity function structure, in the first two models (Section

3.2.2) we assume the intensity function to be constant over space, i.e. we

have a spatially homogeneous process; this means the intensity function at

each time point can be represented by a single value. In the third and fourth

model, the function is allowed to vary over space as well as over time. In all

inhomogeneous processes, at each time segment the intensity function is a

2-dimensional image to estimate.

As for the number of changepoints, in Section 3.2 we deal with a single

changepoint; in Section 3.3 we face the more general multiple changepoint

analysis.

As in Chapter 2, we define T as the time series length, labelled by t =

1, . . . , T ; let M be the number of changepoints, so that data are split into

M + 1 time segments; the changepoint positions are τ1, . . . , τM , indexed by

m = 1, . . . ,M . As for the spatial component, the observation window is

discretized into S cells indexed by s = 1, . . . , S. Note that in Chapter 2 s is

the general space index; here, as we discretize the space into cells, the cell

itself becomes the basic space unit, since the intensity value inside the cell is

assumed constant.

The response variable Y is the number of points observed in each grid cell,

and the notation for a general value at time t in cell s is yts. For every

time point t, the datum is a S × 1 vector Yt = (yt1, . . . , ytS)′ counting the

observations for each cell at that specific time point; there are T different

data points, and the overall vector Y is of length (T × S) × 1, made of

blocks: Y = (Y1, . . . , YT )′. Being counts, the general distribution of the data

is yts ∼ Poi(|C|λ(t, s)) where |C| is the cell area and, again, the intensity is
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assumed constant inside the cell: we use a discretized version of the continu-

ous latent field in order to make estimation feasible with the INLA approach,

as explained in Section 2.2.4. For the special case of a spatially homogeneous

process, the distribution parameter reduces to yt ∼ Poi(|C|λ(t)). Having

Poisson distributed data, we focus on discrete models that are less developed

than continuous models in the context of changepoint analysis. Given the

nature of the algorithm used, though, it is straightforward to extend the

method to different distributions.

3.2 Single changepoint detection

In this framework, in the general case of an unknown position, our hy-

potheses are

H0: no changepoint

H1: one changepoint.

The hypotheses only concern the number of changepoints, not their position.

If H0 is rejected, the position τ ∗ of the changepoint has to be detected within

the set 1, . . . , T as the ’best’ one for the data, according to some criterion

that will be explained in detail in Section 3.2.4. The alternative hypothesis

is therefore complex and can be divided into T sub-hypotheses, each one

specifying a different position for τ ∗.

3.2.1 Prior distribution

We choose a prior setting on two levels, therefore a prior distribution must

be set on both number (0 or 1) of changepoints and, given the alternative

hypothesis, on their position; for details on this prior setting see Section

2.3.4. In absence of prior knowledge, the same probability mass is given to

both values:
π(M) = 0.5 M = 0, 1

π(M) = 0 M > 1.

Note that a uniform prior implies that the prior ratio π(1)
π(0)

is 1, therefore

any computation involving the posterior ratio, which is product of prior and

(weighted) likelihood ratios, can be simplified.
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As for the best position of the changepoint τ ∗ under H1, we exclude the

endpoints of the range, assuming each segment must have a minimum number

of time points; this is aimed at avoiding ’wasting’ computational time on

options that are not of interest, moreover the INLA changepoint detection

algorithms are shown to perform better when segments are not too short

(Wyse et al., 2011); this assumption can be easily relaxed if needed.

Let t1 and t2 be the extremes of the considered range. Conditional on M = 1,

we take a non-informative prior distribution over the considered subset of

points between t1 and t2, assumed to have length T1:2 = t2 − t1 + 1:

π(τ ∗) = 1
T1:2

τ ∗ ∈ {t1, t1 + 1, . . . , t2 − 1, t2}
π(τ ∗) = 0 τ ∗ < t1 ∨ τ ∗ > t2.

Being non informative also means that all the conditional priors of a specific

changepoints given the following (or previous) one are uniform on the con-

sidered interval.

3.2.2 Segment likelihood

The model likelihood becomes gradually more complicated as we switch

from one model to the following one; for each model, we include different

effects to describe the behaviour of the logarithm of the intensity function.

Note that in this work we do not include the effect of any covariate, but the

models we show can be extended to a more general case by adding covariates

as fixed or smooth effects in the equations (an example is given in Section

5.5).

All the models presented here are fitted using the INLA approach with the

R-INLA package (www.r-inla.org) as explained in Section 2.2.3. If there are

no changepoints in a data series, the model equation is fitted to the whole

dataset; if there are changepoints, for every occurring change data are split

into two time segments and the chosen model is fitted separately to each

segment.
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Model 1: model with fixed effect

We initially consider a model which assumes a spatially homogeneous

intensity function and i.i.d. data (where we remind that every single datum

is a point pattern): λ(t, s) = λ(t). The general model equation is

log λ = µ+ ε

where µ is an offset term taking different values under either hypothesis and

ε is an unstructured error term as in Section 2.2.3.

H0 : log λ(t) = µ+ εt for t = 1, . . . , T

H1 : log λ(t) = µ1 + εt for t ≤ τ ∗

log λ(t) = µ2 + εt for t > τ ∗.

(3.2.1)

Under H0 all values over both space and time depend on a single value for

µ that must be estimated and is a common intercept, while under H1 µt is

a time-specific intercept, constant over space but allowed to vary over time,

where its variation occurs in correspondence of the changepoint, in a position

in the interval {t1, . . . , t2}. For M = 1 we have two time segments, i.e. two

values of µt to estimate.

Model 2: model with temporal effect

In this second scenario, we keep the spatial homogeneity assumption, but

relax the i.i.d. assumption: data can show temporal dependence on the point

pattern of the previous time point. Dependence is only allowed within time

segments, not across segments; the temporal effect is called φ. The model

equation changes as

log λ = µ+ φ+ ε

and specifically

H0 : log λ(t) = µ+ φ+ εt for t = 1, . . . , T

H1 : log λ(t) = µ1 + φ1 + εt for t ≤ τ ∗

log λ(t) = µ2 + φ2 + εt for t > τ ∗.

(3.2.2)

Within each time segment, φ is a random effect modelled as an autoregressive

model of order 1 (AR(1)), i.e. the logarithm of the intensity function at every
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time point is supposed to depend on its own value at the previous time:

φt = ρφt−1 + ut

where as usual |ρ| < 1. Hyperparameters are needed for the precision νφ ∼
Gamma(αφ, βφ). Note that in a homogeneous process AR(1) dependence

means that the whole pattern at a specific time point depends on the whole

pattern at the previous time point.

Model 3: model with spatial effect

In this model, we assume point patterns are i.i.d. replicates over time,

but we substitute the offset term with a smooth random effect allowing for

spatial inhomogeneity and dependence named ψ.

log λ = α + ψ + ε

and specifically

H0 : log λ(t, s) = δ + ψs + εts for t = 1, . . . , T and s = 1, . . . , S

H1 : log λ(t, s) = δ + ψ1s + εts for t ≤ τ ∗ and s = 1, . . . , S

log λ(t, s) = δ + ψ2s + εts for t > τ ∗ and s = 1, . . . , S

(3.2.3)

where δ is a common intercept and ψs describes spatial dependence; it is

indexed by s as it may take different values for every grid cell. Under H1, a

single value defines the intensity for each cell over all the first time segment,

and after the changepoint the value for each cell changes. The spatial effect

is modelled as an intrinsic CAR, i.e. as a Random Walk in two dimensions

on a lattice; the model is easily specified with INLA, with a neighbourhood

structure that gives non-zero weights to the first 12 neighbours in the lattice

(see Section 2.2.1). This produces a very smooth spatial structure which is

suitable for LGCPs, where the hypothesis is that there is a smooth underlying

driver determining the behaviour of the intensity function. Here too, the

precision hyperparameter can be modelled as νψ ∼ Gamma(αψ, βψ).

Model 4: general model

In the most complicated scenario we include both effects, so the assump-

tions are very weak: we allow for spatial inhomogeneity, for temporal depen-
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dence within segments and for spatial dependence at every time point. The

model can be written as

log λ = α + φ+ ψ + ε

and for each hypothesis

H0 : log λ(t, s) = δ + φ+ ψs + εts for t = 1, . . . , T and s = 1, . . . , S

H1 : log λ(t, s) = δ + φ1 + ψ1s + εts for t ≤ τ ∗ and s = 1, . . . , S

log λ(t, s) = δ + φ2 + ψ2s + εts for t > τ ∗ and s = 1, . . . , S.

.

(3.2.4)

Again, in these models temporal dependence is only assumed to be within,

not across, segments. In a inhomogeneous process, AR(1) dependence con-

cerns cells: for every time t and cell s, λ(t, s) depends on λ(t−1, s), i.e. each

cell’s intensity depends on its previous value. The final estimated value for

φ is a synthesis of the cell values over space. The precision parameter for

both temporal and spatial effects has a Gamma prior that is by default set

as non-informative but can be tuned according to a specific context.

When looking for a single changepoint, each model is run one time for

every possible changepoint position, i.e. for every time point with a non-zero

prior probability of being a changepoint. By fitting every model with INLA,

a series of approximate likelihood values is then produced and normalised

(in absence of prior knowledge) to obtain the posterior distribution of the

changepoints. Once we have the posterior distribution, methods for identify-

ing significant changepoints are proposed in Section 3.2.4. Since each model

is run many times assuming different changepoint positions, there is a need

for efficient computational tools in order to obtain results in a reasonable

time, and that is one of the reasons why we fit the models using INLA.

3.2.3 Posterior distribution

In a single changepoint search, we do not obtain a posterior distribution

for the number of changepoints and their position separately: the algorithm

produces a posterior distribution assigning a probability to every potential

changepoint position.
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In the case of the prior distribution proposed at Section 3.2.1 on the change-

point position, for each model scenario we run the model T1:2 times under

the alternative hypothesis; at each run, we condition on the changepoint oc-

curring at a different specific location τ ∈ {t1, . . . , t2} and return the model

log-likelihood given the changepoint location. This means at each run we

have the same overall dataset, but the series is split in two time segments at

a different point. Every time we choose a τ in the set and fit one of the mod-

els, we obtain two approximate log-likelihoods, q1(τ) for the first segment and

q2(τ) for the second one, and we sum them to obtain the log-likelihood value

l1(τ) given the alternative hypothesis and the specific potential changepoint

position. The T -dimensional vector l1 = {l1(τ), τ ∈ {t1, . . . , t2}} is then

transformed following the usual Bayes Rule to obtain the posterior distribu-

tion: the curve resulting from the combination of all these likelihood values,

and rescaled in order to integrate to one, is the posterior distribution of in-

terest. It might show peaks in correspondence of the candidate changepoint

positions.

For every model scenario in the context of a single changepoint analysis, we

take as the most likely changepoint position a posteriori τ ∗ the one producing

the maximum value for the likelihood from the T1:2 runs:

l∗1 = l1(τ
∗) = maxτ{l1(τ), τ ∈ {t1, . . . , t2}}.

The decision on the significance of the detected potential changepoint with

respect to the null hypothesis can be taken with different methods that we

now examine in more details.

The computational efficiency of INLA and the ability to return the (approxi-

mate) likelihood value for any model makes this changepoint search algorithm

feasible, even for complex dataset such as the one we work with.

3.2.4 Methods for changepoint detection

In this Section, we present some different Bayesian techniques for assess-

ing the presence of a single changepoint. In next Chapter, we implement all

methods on our simulated data and we evaluate their performance, before

applying them to real data.

Again, it is to note that the alternative hypothesis here is simply H1: one
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changepoint. It is not tied to any specific changepoint position. This is

important when assessing the probability of committing errors of decision-

making techniques: they only refer to the rejection of H0, irrespective of how

many changepoints are found and where they are. This is particularly worth

noting when applied to the context of unknown changepoints. In the special

case of a potential changepoint in a known position, thanks to a ad hoc prior

setting the changepoint detection only evaluates that specific position, and

the alternative hypothesis can be modified in order to include the position.

Method 1: Bayes Factor method

As presented in Eckley et al. (2011), when running a Bayesian changepoint

detection in absence of prior knowledge the likelihood ratio is used to decide

if there is a changepoint or not:

γ =
L1

L0

=

∑
τ π(τ)Q1(τ)Q2(τ)

L0

(3.2.5)

where Q1(τ) and Q2(τ) are the segment maximum likelihood values, i.e. the

maximum likelihoods for the two segments resulting from a changepoint po-

sition in τ ∈ {1, . . . , T}. Specifically, Q1(τ) is the log-likelihood value for

segment y1:τ and Q2(τ) is the log-likelihood value for segment yτ+1:T . It is

immediately seen that this method requires the likelihood value under the

null model to be computed as well. This means we also explore the possi-

bility of M = 0, i.e. we run each model once under H0 assuming data are

made of a single segment and obtain a likelihood value L0.

This ratio is commonly known as the Bayes Factor (BF), expressing the ev-

idence showed by data in support of the alternative model with regard to

the null model. Since independence across segments is assumed, for every

changepoint position the maximum likelihood value under the alternative

hypothesis is L1(τ) = Q1(τ)Q2(τ).

For the model with no changepoints, the maximum log-likelihood value under

H0 is greater than the maximum log-likelihood value under H1: differently

from the frequentist likelihood ratio, when using the Bayes Factor we find

that models with more parameters do not necessarily produce higher likeli-

hood values (Section 3.2.4). Therefore, higher values for m will not always
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necessarily be preferred, and we show in Chapter 4 that the BF method

performs very similarly, though not identically, to the Schwartz Information

Criterion (SIC) model selection (presented in Section 3.2.4).

Formula (3.2.5) can be extended to the case of a non-vague prior distribution

by taking the posterior ratio, i.e. the product of likelihood and prior ratios:

γ =
π(1)

π(0)

∑
τ π(τ)Q1(τ)Q2(τ)

L0

.

As we explain in Section 2.3.5, for the case of a single changepoint there is

a relationship between the Bayes Factor and the filtering recursions: from

Formula (2.3.5) we have

L
(1)
0 (1) =

T−1∑
b=1

P (1, b)P (b+ 1, T )π1(τ0 = 0|τ1 = b) = Bayes Factor× P (1, T ).

where, in the usual notation, L
(1)
0 (1) = L1 =

∑
τ L1(τ)π(τ) is the numerator

of the Bayes Factor, i.e. the evidence for the model with one changepoint.

The denominator is P (1, T ) = L0, and for every value b taken by τ we have

P (1, b) = Q1(b) and P (b+ 1, T ) = Q2(b). Therefore Formula (2.3.5) becomes

L1 =
T−1∑
τ=1

Q1(τ)Q2(τ)π(τ) = Bayes Factor× L0. (3.2.6)

In order to choose the correct changepoint position, if there is a significant

changepoint, we start from the posterior distribution of every changepoint in

the general case, as in Formula (2.3.8):

P (τj|τj−1, y1:T ,m) ∝
P (τj−1 + 1, τj)L

(m)
j (τj + 1)πm(τj−1|τj)

L
(m)
j−1(τj−1 + 1)

which, in the case of m = 1, becomes

P (τ = t|y1:T ,m = 1) ∝ Q1(t)Q2(t)π(t)

L1

.

The denominator L1, as in Formula (3.2.6), is a sum over all possible τs,

i.e. the denominator is the same irrespective of the value t taken by τ . There-

fore, in the case of a single changepoint, the most likely changepoint position

a posteriori τ ∗ will be chosen by comparing the numerators

τ ∗ = arg max
τ
{Q1(τ)Q2(τ)π(τ)}.
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The prior weight π(τ) in the nominator sum in Formula (3.2.5) shrinks each

alternative likelihood value, still every element in the sum will be positive,

and the greater the nominator is, the more likely it is to reject H0. We choose

a more conservative condition:

γτ∗ =
π(τ ∗)Q1(τ

∗)Q2(τ
∗)

L0

(3.2.7)

where τ ∗ is the best changepoint position a posteriori.

Equivalently, we can use log-likelihood values:

γ
′

τ∗ = log(π(τ ∗)) + q∗1 + q∗2 − l0 = log(π(τ ∗)) + l∗1 − l0 (3.2.8)

where q∗1 = log(Q1(τ
∗)) and q∗2 = log(Q1(τ

∗)). For Formula (3.2.8) the value

0 is a threshold for rejecting the null model of no changepoint and, at the

same time, find the changepoint position: if γ
′
τ∗ > 0, the null hypothesis is

rejected and the changepoint occurs at τ ∗.

This conservative version of a Bayes Factor is particularly suitable for testing

known potential changepoints. In the special case of a known changepoint

position, computations can be reduced: the model is run only once under

each hypothesis, the position tested can be called τ ∗ and the Bayes Factor

automatically reduces to the more conservative version we have chosen, as in

Formula (3.2.8) or its equivalent (3.2.7).

Method 2: Schwartz Information Criterion method

Another option for taking decisions about the presence of changepoints

in a temporal series is to use the Schwartz Information Criterion (SIC), also

known as Bayesian Information Criterion (BIC).

Under H0

SICH0 = −2l0 + log T

while under H1

SIC∗H1 = −2l∗1 + 2 log T

where again l∗1 = q∗1 + q∗2 and SIC∗H1 is the value corresponding to the most

likely changepoint position (i.e. producing the smallest SIC value under the

alternative hypothesis). This criterion incorporates a penalty for the num-

ber of parameters included in the model and is therefore expected to behave
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analogously to the BF method.

As for all information criteria, smaller values are preferred, hence the condi-

tion for rejecting the null hypothesis of no changepoint is

SICH0 > SIC∗H1.

As we show in Chapter 4, results for this method are indeed very similar to

results produced by the BF method.

Method 3: Posterior Threshold method

An alternative option we explored is another typical Bayesian way of

taking decisions, i.e. by looking at the posterior distribution and fixing a

posterior probability threshold for significant values.

In the changepoint analysis context, the posterior distribution concerns the

potential changepoint position: once data are observed, every time point of

the series is assigned a probability of being a changepoint. Once the resulting

curve is plotted, a threshold needs to be fixed in order to take decisions on

what time points are to be considered changepoints.

As for the threshold choice, it is to bear in mind that greater values (closer

to 1) will lead to more conservative conclusions, and smaller values (closer to

0) will detect changepoints more easily. The choice of the threshold can be

knowledge-driven, if information is available on the diffusion of changepoints

in the data series. Note that useful knowledge can also be incorporated in the

posterior probability via the prior distribution. Another important notion is

that the height of peaks in the posterior distribution depends on the length

of the time series: since the curve must integrate to 1, longer T s will flatten

its peaks. For example, Park et al. (2012) use a threshold of 0.1 for a data

series of T = 1000; the same value would certainly lead to the acceptance of

too many changepoints in a shorter series.

In order to find a sensible and not too arbitrary threshold h, we propose to

use simulated data under the null hypothesis for assessing the probability

of committing type I errors based on different values of h. Once we find a

value for h such that the significance level α does not exceed a certain limit

(usually α ≤ α0, α0 ∈ {0.01, 0.05, 0.1}), we use h on data generated under
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the alternative hypothesis in order to evaluate the Posterior Threshold (PT)

method’s power level, the ability to detect the correct changepoints and the

accuracy of the produced estimates.

In the special case of a known changepoint position to test, the method does

not change: a posterior probability curve will be estimated all the same, and

the threshold will be only used to evaluate the significance of the candidate

changepoint position.

3.3 Multiple changepoint detection

We now extend the method to an unknown number of changepoints, the

most complicated type of changepoint analysis. The hypotheses become:

H0: no changepoints

H1: ≥ 1 changepoint.

As for the single changepoint detection, note that H1 is not tied to a spe-

cific changepoint position, nor to a number of changepoints; the alternative

hypothesis is very complex because it considers the presence of changepoints

first, but then the precise number and positions also have to be estimated. If

H0 is rejected, the final result is τ ∗ = (τ ∗1 , . . . , τ
∗
M), a M×1 vector containing

the estimated changepoint positions, a subset of (1, . . . , T ).

Multiple changepoints can be searched with two approaches: an iterative

search aims at finding one changepoint at every step, while a simultaneous

search aims at finding all the significant changepoints in one step.

Iterative changepoint search via binary segmentation algorithms

The simplest and more straightforward way of running an iterative mul-

tiple changepoint analysis is to use a binary segmentation method. For a

general introduction to these methods we refer to Eckley et al. (2011), and

in particular for point processes to Park et al. (2012). The idea of a binary

segmentation procedure, and the key to its simplicity, is to split the multiple

search into a series of subsequent single changepoint searches. In general,

the algorithm can be explained as:
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1. Run a changepoint analysis on the whole data series Y , testing the

simple hypotheses

H0: no changepoints

H1: one changepoint.

2. a) If no changepoint is found, stop the algorithm.

b) If one changepoint is found, let its position be τ ∗0 , and split data

in correspondence of τ ∗0 into two segments, YA ([S × τ ∗0 ] × 1) and YB

([S × (T − τ ∗0 )]× 1). Note that the changepoint position τ ∗0 marks the

end of segment YA. For each of the two resulting segments, go back to

step 1.

3. a) If no more changepoints are found, the dataset has a single change-

point in τ ∗0 .

b) If changepoints τ ∗A and/or τ ∗B are detected, go back to step 2b and

repeat the procedure for each segment containing a changepoint.

4. Repeat until some criterion is met:

• no more changepoints are detected in any segment

• a pre-fixed number of changepoints is reached

• a minimum segment length is reached.

Many binary segmentation methods can be built, according to the criterion

for detecting a changepoint (e.g. the BF or PT method); what they have

in common is that at each step the algorithm carries out a single change-

point search for every segment. When running such an algorithm, number

and positions of changepoints are estimated sequentially at the same time:

at every step, if a changepoint is found, its position is immediately chosen

before moving on to the next step, as we need to know where to split data

into further segments.

Intuitively, the analysis can become computationally very demanding as T

and M become large (Killick et al., 2012), and methods are available for re-

ducing time and memory storage requirements. The computational efficiency

of INLA makes this algorithm feasible even for complex spatio-temporal data.
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Simultaneous changepoint search

The alternative option is to run a simultaneous changepoint search. A

non näıf algorithm must be effectively able to identify all changes even if

they have different magnitudes.

The procedure we build follows the two level prior in Section 2.3.4: first of all,

we estimate the number of changepoints, and then, conditional on that num-

ber, we identify the most likely positions. We then follow Wyse et al. (2011)

as introduced from Section 2.3.5 on, with an extension to spatio-temporal

models. The method consists of two steps, irrespective of the number of

changepoints found:

1. first of all, the number of changepoints is estimated by comparing data

marginal likelihoods under a given number m of changepoints, for dif-

ferent values of m = 0, . . . ,M . We then obtain M + 1 conditional

likelihoods, which are computed using recursive equations, and give

evidence for the model with m changepoints. The highest likelihood

value corresponds to the chosen number of changepoints, say M̂ ;

2. conditional on M̂ , the positions for the changepoints are then esti-

mated, by computing the conditional posterior probabilities for each

changepoint given the previous one, the data and M̂ as shown in Sec-

tion 2.3.6.

With this technique, the criterion for the detection of changepoints is incor-

porated in the method itself, therefore there are no alternative choices (such

as the BF or PT method). Different results can be compared by fitting dif-

ferent models to the data segments, and model selection and choice can be

carried out.

3.3.1 Prior distribution

A prior distribution is first set on the number of changepoints. In practi-

cal changepoint analyses, a maximum number of changepoints M is usually

fixed; if not, then potentially M = T , which could lead to nonsensical con-

clusions, as all time points could be changepoints. To avoid this, usually
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M = bT
d
c where d is a minimum set segment length, and b.c denotes the

integer part of the ratio. Other reasons due to the specific context or to prior

knowledge can lead to different choices for M .

Again, given M we use non informative priors, by assigning the same prob-

ability mass to all values:

π(m) = 1
M+1

m = 0, . . . ,M

π(m) = 0 m > M.
(3.3.1)

The prior for the position of the changepoint(s) depends on the technique

used for the changepoint search. If an iterative binary segmentation algo-

rithm is used, the prior distribution can be built analogously to what shown

in Sec 3.2.1, as the analysis concerns a single changepoint at each step. Again,

we set a minimum segment length d and at each step

π(τ ∗) = 1
T1:2

τ ∗ ∈ {t1, t1 + 1, . . . , t2 − 1, t2}
π(τ ∗) = 0 τ ∗ < t1 ∨ τ ∗ > t2.

where t1 and t2 are the extremes of the considered range given d, of length

T1:2 = t2 − t1 + 1. If during the iterative procedure a segment is found to be

shorter than 2d, it means it cannot be further split into sub segments of an

acceptable length, therefore the analysis is stopped on that segment.

If a simultaneous search is performed, the prior distribution for changepoint

number and positions follows what explained in Section 2.3.4. In particu-

lar, for the changepoint number it can be the same as in Formula (3.3.1).

As for the positions, for every possible m conditional probabilities on the

changepoint positions given the following changepoint are built:

πm(τ1, . . . , τm) = πm(τm)× πm(τm−1|τm)× πm(τm−2|τm−1)× · · · × πm(τ1|τ2).

Note that this implies the assumption that the changepoints follow a Markov

process.

A discussion regarding the choice of priors is left to Chapter 6.

3.3.2 Segment likelihood

For each data segment, the same four models listed in Sec 3.2.2 are fitted.

The general formulation for the four models is a more complicated version
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of what presented for the single changepoint search.

Let us assume we have a maximum M = bT
d
c fixed, and that the chosen num-

ber of detected changepoints is M̂ ≤ M . Under the alternative hypothesis,

every model is fitted separately to each of the M̂ + 1 data segments.

Model 1: model with fixed effect

The model equation is

log λ = µ+ ε

and under each hypothesis

H0 : log λ(t) = µ+ εt for t = 1, . . . , T

H1 : log λ(t) = µ1 + εt for t ≤ τ ∗1
log λ(t) = µ2 + εt for τ ∗1 < t ≤ τ ∗2
. . . . . .

log λ(t) = µM̂ + εt for τ ∗
M̂−1 < t ≤ τ ∗

M̂

log λ(t) = µM̂+1 + εt for t > τ ∗
M̂

.

where µ is an offset term and the detected changepoints are reordered so that

τ ∗1 < τ ∗2 < · · · < τ ∗
M̂

. We have M̂ + 1 time segments, i.e. M̂ + 1 values of µt

to estimate.

Model 2: model with temporal effect

The model equation changes, including a temporal effect called φ, as

log λ = µ+ φ+ ε

and specifically

H0 : log λ(t) = µ+ φ+ εt for t = 1, . . . , T

H1 : log λ(t) = µ1 + φ1 + εt for t ≤ τ ∗1
log λ(t) = µ2 + φ2 + εt for τ ∗1 < t ≤ τ ∗2
. . . . . .

log λ(t) = µM̂ + φM̂ + εt for τ ∗
M̂−1 < t ≤ τ ∗

M̂

log λ(t) = µM̂+1 + φM̂+1 + εt for t > τ ∗
M̂
.
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Within each time segment, φ is a random effect modelled as an AR(1) as

for the single changepoint detection, and again under H1 there are M̂ + 1

values of φ to estimate.

Model 3: model with spatial effect

In this model the spatial effect is called ψ:

log λ = α + ψ + ε

and specifically, for s = 1, . . . , S

H0 : log λ(t, s) = δ + ψs + εt,s for t = 1, . . . , T

H1 : log λ(t, s) = δ + ψ1s + εt,s for t ≤ τ ∗1
log λ(t, s) = δ + ψ2s + εt,s for τ ∗1 < t ≤ τ ∗2
. . . . . .

log λ(t, s) = δ + ψM̂s + εt,s for τ ∗
(M̂−1) < t ≤ τ ∗

M̂

log λ(t, s) = δ + ψ(M̂+1)s + εt,s for t > τ ∗
M̂
.

Here, δ is a time invariant intercept, and ψ is again modelled as a Random

Walk in two dimensions, as for the single changepoint model.

Model 4: general model

We here include both effects, and the model can be written as

log λ = α + φ+ ψ + ε

and for each hypothesis

H0 : log λ(t, s) = δ + φ+ ψs + εt,s for t = 1, . . . , T

H1 : log λ(t, s) = δ + φ1 + ψ1s + εt,s for t ≤ τ ∗1
log λ(t, s) = δ + φ2 + ψ2s + εt,s for τ ∗1 < t ≤ τ ∗2
. . . . . .

log λ(t, s) = δ + φM̂ + ψM̂s + εt,s for τ ∗
(M̂−1) < t ≤ τ ∗

M̂

log λ(t, s) = δ + φM̂+1 + ψ(M̂+1)s + εt,s for t > τ ∗
M̂
.

The total number of parameters to estimate (hyperparameters excluded) is

2(M̂ + 1) + 4: all the φs and ψs, plus the three precisions and δ.
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3.3.3 Posterior distribution

In multiple changepoint analysis, the generation of likelihood values and,

eventually, of the posterior distribution, depends on whether the search is

simultaneous or iterative.

As for the binary segmentation algorithm, a criterion for decision making

must be chosen first in order to proceed with the iterations. Any of the

methods proposed in 3.2.4 can be used. Once chosen, the posterior distribu-

tion for each potential changepoint position is obtained for every step and for

every time segment the same way as in Sec 3.2.3, as we have a single change-

point search at every step. As time is discrete, a final posterior distribution

for the whole time series can be obtained by averaging values pointwise, and

then rescaling in order to integrate to 1 and deal with a proper distribution.

If a simultaneous search is carried out, the method follows what presented

in Section 2.3.5. First of all M + 1 data likelihoods are obtained conditional

on different values for m = 0, . . . ,M : we obtain L(Y |m = 0), L(Y |m = 1),

L(Y |m = 2), . . . , L(Y |m = M), where Y = y1:T is the whole dataset. Fol-

lowing the Bayes Rule we have

P (m|Y ) ∝ L(Y |m)π(m)

therefore, if the prior is uniform then the likelihood values are proportional

to the posterior probability values for m. This means that, under a non

informative prior, the highest conditional likelihood determines the chosen

M̂ a posteriori

M̂ = arg max
m
{L(Y |m), m = 1, . . . ,M}.

Conditional on M̂ , the posterior positions for the M̂ changepoints need to

be found. Assuming the changepoint process is a Markov process

P (τ1, . . . , τM̂ |Y, M̂) = P (τ1|Y, M̂)×P (τ2|τ1, Y, M̂)× · · · ×P (τM̂ |τM̂−1, Y, M̂)

and we find one changepoint position at a time, following Formula 2.3.8:

Pr(τj|τj−1, Y, M̂) ∝
P (τj−1 + 1, τj)L

(M̂)
j (τj + 1)πM̂(τj−1|τj)

L
(M̂)
j−1(τj−1 + 1)

.
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3.3.4 Methods for changepoint detection

In a multiple changepoint analysis, the choice of the search technique (si-

multaneous or iterative), the choice of the methods for detecting significant

changepoints if an iterative technique is used and the generation of the pos-

terior distribution are tightly linked.

As explained in Section 3.3.3, for a binary segmentation algorithm the detec-

tion method is chosen before the analysis starts, as the algorithm only goes

on if a changepoint is detected. Any of the methods can be used (BF, SIC

or PT) but once the choice is made it cannot be changed in further steps for

consistency reasons. After a proper posterior distribution is obtained, using

the same criterion chosen for the algorithm steps decisions are made on the

presence/absence, number and positions of changepoints in the data series.

If a simultaneous search following Wyse et al. (2011) is carried out, as pre-

viously said the detection method is incorporated in the analysis. As the

algorithm is quite computationally intensive, despite INLA’s efficiency, when

a dataset is too long or complex techniques for increasing the computational

speed, such as the Reduced Filtering Recursion method, can be used.

Reduced Filtering Recursion

The simultaneous changepoint detection algorithm in Wyse et al. (2011)

consists in combining recursive techniques with INLA, in order to produce

estimates for the segment marginal likelihoods and approximations for the

posterior of both number of changepoints and their positions. Issues that

may arise if every segment has a very small amount of data or if the total

amount of data is very large, can be overcome by Reduced Filtering Recur-

sions (RFR). In a nutshell, the idea of RFR is to take a subset of points from

the data and to look for changepoints inside that small series; if the subset

is well chosen, the detected changepoints should be close to the true ones.

The main principle is to reduce computations by running the recursive equa-

tions on a small number of time points; the assumption is that data segments

have a ’reasonable’ length, therefore even if a subset of points is chosen,

changepoints should be found close to where they have occurred. A number

N < T is chosen and ordered time points {t1, . . . , tN} extracted (where we
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define t0 = 0 and tN+1 = T ). Then, the recursive equation method is imple-

mented as if this were the complete data series.

Intuitively, the spacing between chosen time points is an issue. As in all our

work, we assume there is no prior knowledge on the number or length of

the data segments. Therefore, a natural choice is ti = id, i.e. equal spacing,

where d must be fixed in order to reach the desired trade off between compu-

tational speed and precision. If points are well chosen, each true changepoint

should lie in the interval ]ti − d
2
; ti + d

2
[. The greater d is, the faster the al-

gorithm, but the greater error will be allowed for the detected changepoint

location, with a risk of totally missing some points. Details on the compu-

tational cost saving and techniques for refining the detected changepoints’

estimated locations are available in Wyse et al. (2011).

3.4 Intensity estimates

Obtaining a good summary of the posterior distribution of the param-

eter whose changes are under analysis (in our case, λ) in order to produce

estimates for each time segment is often a secondary, non required step in a

changepoint analysis. In many situations, the interest only lies in detecting

the positions of the changepoints; sometimes there is a focus on understand-

ing what type of change occurs (an increase or a decrease in the parameters)

but without special attention to the accuracy of the estimated values. Never-

theless, in a complete changepoint analysis not only the location but also the

magnitude of the change has to be detected, therefore parameter estimates

for every time segment are needed.

The INLA algorithm produces estimates for all model effects and for each

potential changepoint location, thus once the changepoints are detected the

corresponding means of the parameters of the identified segments are chosen

as estimates, since we are working on a Gaussian field. In the simulation

study presented in Chapter 4, a comparison of the INLA estimates to the

true values is carried out, showing that the estimates are satisfactorily accu-

rate for our data under all scenarios.

For the spatially homogeneous models (Model 1 and 2) the estimated value
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for the intensity will result in a stepwise linear function, as a single inten-

sity value over space is representative of the point pattern at every time

point. For the inhomogeneous models (model 3 and 4), the intensity is as-

sumed constant inside each cell, due to the discretization necessary for the

approximation, therefore at every time point the resulting estimate will be a

(two-dimensional) pixel image. As the intensity strength is constant within

each time segment, for m changepoints m+1 images will be produced, where

each image contains values averaged/synthesized over the corresponding seg-

ment.

If desired, any synthetic measure (mean, median, . . . ) can be chosen for the

estimate as the INLA approximation provides the whole posterior distribu-

tion for all (both fixed and random) effects. Estimates are also provided for

the precision hyperparameters.

As recent literature about INLA proves (Rue et al., 2009), if the assumptions

hold then the produced estimates are very accurate and outperform MCMC

estimates for any given computational time.

3.5 Discussion

In this Chapter, we presented all the models we fit to the data segments

and we showed how to obtain the posterior distribution and detect change-

points with different algorithms and methods. In Chapter 4, all the proposed

methods will be tested and evaluated in a complex simulation study. We now

give some hints for discussion and further work concerning the methodolog-

ical choices.

3.5.1 Time dependent data

A note is necessary about data with strong time dependence. A sub-

stantial advantage of our method is that it works even when data are space

and time dependent, irrespective of the dependence strength; nevertheless, it

must not be forgotten that time dependence inevitably affects the detection

of changepoints.

When data are i.i.d. or show a weak time dependence, changepoints usually
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correspond to effective changes in the intensity strength, e.g. due to external

factors or changes in environmental conditions. When dependence is strong,

though, the data series can drift far away from the initial values, and changes

might be detected that are not due to a real change of time segment, but to

the time dependence itself. In general, a higher number of changepoints will

be detected in a time dependent temporal series with regard to an i.i.d. time

series with the same initial conditions.

The risk is an overestimation of the number of changepoints, and on real

data where changepoints are unknown and not set a priori, it is not certain

if the two resulting time segments be effectively independent of each other.

Therefore, to protect results against overestimation, conservative versions of

the above illustrated methods (e.g. higher thresholds) should be adopted.

Anyway, abrupt changes due to external/environmental changes should still

be detectable in the series. We show results for strong time dependent data

as well as i.i.d. data in our simulation study in Chapter 4, we highlight the

difference in the results and propose a method for choosing thresholds when

dealing with strong time dependent data.

3.5.2 Abrupt vs gradual change

All the work done here concerns abrupt changes in the intensity function

of a process. Abrupt changes are often of interest in many changepoint stud-

ies and in a simple homogeneous case or in the case of a standard time series

they generate a stepwise function representing the behaviour of the process

parameter. Other studies consider gradual changes, producing a smoother

function and covering a wider range of problems, up to what is referred to as

trend analysis. We choose to focus on abrupt changes as the issue of where

to locate the changepoint and of the linked uncertainty is simpler to deal

with; this work brings many novelties to the fields of changepoint analysis

and spatio-temporal point processes, and these new techniques need to be

assessed on a process with well defined changes first. Further work might

extend the methods to gradual changes.
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3.5.3 Model definition

The four models proposed in this Chapter include few effects, therefore

they appear rather simple. It is to remember that in this work the aim is

not to build a complex model, but to be able to fit this class of models to

complex data, which is currently an open challenge. Despite looking sim-

ple, these models contain the key elements for the analysis, that is to say

spatial heterogeneity, spatial dependence and temporal dependence within

segments. Once our methodology has proved itself well performing on time

and space dependent spatio-temporal point processes, it is straightforward to

add fixed and random effects up to very complicated models, thanks to the

additive structure of Log-Gaussian Cox models and to INLA. The addition

of effects has to respect the INLA assumptions: a latent Gaussian field and

a small number of hyperparameters. For example, further extensions to this

work can include covariates; in particular, constructed covariates based on

the distance between points can be used in order to account for interpoint

interaction and small scale variation which is in general not considered in

LGCPs (see Illian (2012)). The key point of this study remains the ability to

obtain results for such models fitted on spatio-temporal point process data.

In our work, spatial dependence is modelled as a Random Walk in two dimen-

sions and temporal dependence as an autoregressive of order 1. This choice

is due to prior knowledge on the motivating dataset and to the availability of

these models in the R-INLA package; they define a smooth spatial structure

and a strong short-time dependence. Other dependence structures can be

tried among the ones provided by the R package or by defining new ones; as

long as the assumptions underlying the use of INLA hold, accurate results

will be obtained under any model specification.

3.5.4 Model selection

Our primary interest lies in testing the models on our data, in order to

understand if it is possible to obtain results by progressively adding effects.

The main goal is to be able to fit models allowing for spatial and temporal

dependence. In this work, we do not focus on the issue of selecting the best

model for the data. When this is of interest, the usual Bayesian tool for model
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comparison and selection can be used, which is the Deviance Information

Criterion (DIC). If specified when running the code, INLA computes and

returns DIC values for every model. It will be of interest to compare models

as a further step, once the ability of fitting such models is successfully tested,

and realistically good models for the data can be built, that include not only

dependence but also covariates, marks and extra information. Some further

work towards model selection is given in Section 5.5.

3.5.5 Methodological discussion

Single changepoint detection techniques

When running a single search (and within binary segmentation tech-

niques) in Chapter 4 we highlight the difference between BF, SIC and PT

method. Note that irrespective of its performance, the PT method has some

advantages: it is visually immediate and easy to explain to non-statisticians,

besides it is very flexible as the threshold choice can be adapted to the model

fitting the data and to the analysis context. The threshold choice is undoubt-

edly an issue as it strongly affects the results. If there is prior knowledge, it

can be used when fixing the threshold. A method for reducing the arbitrari-

ness in absence of external knowledge is proposed in Chapter 4. If the PT

method is selected in a multiple changepoint search, a further note on the

choice of the threshold is needed: if the whole data series is not very long, as

in our simulated data presented in Chapter 4, the threshold value can be kept

constant throughout the detection algorithm with negligible consequences. If

the series is very long, say T = 1000, then the time segments can become

much shorter than the original data length, and keeping a constant thresh-

old can lead to overestimation of the number of changepoints, as posterior

distribution peaks, once rescaled for short segments, will more easily raise

quite high in order to integrate to 1. In conclusion, it can be considered to

weight the initial threshold by a value inversely proportional to the segment

length. This is left to further studies.



74 3. Developments in Methodology

Multiple changepoint detection techniques

As we introduce in Section 3.3, two possible classes of algorithms can be

used when carrying out a multiple analysis: binary segmentation iterative

algorithms, or a simultaneous changepoint search. We decided to try both

techniques as comments in the literature concerning the performance of the

two methods are contradictory. In many studies, the simultaneous change-

point search is discarded as it proved to perform poorly, showing tendency

to underestimate the number of changepoints. This can be intuitively ex-

plained: different changepoints will refer to changes of different magnitudes

in the intensity function; when the posterior probability curve is normalised

to integrate to 1, posterior peaks will tend to flatten and changepoint posi-

tions corresponding to smaller, but not negligible, changes may be considered

non-significant. A binary segmentation algorithm allows local maxima to be

found and has proved itself better performing in many analyses. On the other

hand, Wyse et al. (2011) state that when running multiple changepoint anal-

ysis on data with dependence within segments, some binary segmentation

methods can perform poorly with regard to the recursive techniques. In

Chapter 4 and 5, we show results and performance of the above methods on

both simulated and real data for both techniques.

A further note on binary segmentation algorithms is needed. Since the

method is iterative, at every step a single changepoint is found; on data

with multiple changepoints this implies that in the first steps some change-

points will be ’hidden’. What is temporarily treated as a single segment

actually contains changepoints that have not yet been detected; this means

that an error is included, as the ’segment’ likelihood should actually be a

product of segment likelihoods. The likelihood we are using at that step

is therefore not strictly correct. This should not prevent people from using

such techniques, as what is done at each step is a comparison among different

likelihoods conditional on different changepoint positions, in order to choose

the best one before moving on with the search. Indeed, if a changepoint is

found, a finer analysis will be carried out on each segment. The ’correct’

segment likelihoods will only be found at the last step of the algorithm, still

every step is meant to bring the greatest possible improvement given a sin-
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gle changepoint search. In other words, the meaning of a single step is not

’we just computed the correct segment likelihood’; it is ’splitting data at

a specific location returns the best possible marginal likelihood, given the

hypotheses H0 (no changepoint) versus H1 (a single changepoint)’.





Chapter 4

Methods Assessment via

Simulation Study

Our simulation study is designed to explore the validity and properties

of the changepoint detection methods proposed in Section 3.2.4 and the be-

haviour of the INLA algorithms in this context; once the performance is

evaluated through a number of simulation replicates and under different sce-

narios, it will be possible to apply them to real data and answer to research

questions.

In this Chapter, we first show how we plan our complex simulation study,

highlighting what aspects and characteristics we change over the scenarios.

Secondly, we present in detail all the simulation results for every single model

and scenario. We then propose an extension of the simulation study for a

restricted scenario, where we allow the intensity function to change in a more

general way. A final discussion with comments and remarks is in Section 4.4.

All the analyses in this Chapter are carried out with the statistical software

R (R Development Core Team, 2008); the main packages used are spatstat

(Baddeley and Turner, 2005) for defining point processes and R-INLA for

computations (www.r-inla.org). There is no use of the currently avail-

able packages for changepoint analysis in this work, as they do not support

spatio-temporal data.

77
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4.1 Simulation design

Our simulation study is quite complex as it aims at covering a wide range

of point process scenarios.

We fix a time series of T = 50 time points, and a grid of S = 20× 20 = 400

cells. Both shorter and longer time series lengths have been tested and mainly

differ in computational time; the chosen value for T is a good trade off be-

tween reliability of the results and computational speed; moreover, the series

length is enough to cover many real datasets.

The observation window W is a square of area 100; choosing a regularly

shaped window makes code writing simpler, and many software functions for

point processes only work on this type of windows. In our case, though, a

more complicated version allowing for irregular polygonal windows is avail-

able, which does not lead to substantially different conclusions and is there-

fore not presented here.

As for the choice of the scenarios to cover, we first present a synthetic sum-

mary of the simulation structure in Section 4.1.1; then, we explain each

aspect in more details in Section 4.1.2.

4.1.1 Summary of the simulation plan

We build data for both single and multiple changepoint detection.

For a single changepoint search we have

• i.i.d. and strong time dependent (AR(1)) data (see Section 4.1.3 for

details on the data generation) with

– no changepoint (λ = 1)

– one big change (from λ1 = 1 to λ2 = 2)

– one small change (from λ1 = 1 to λ2 = 1.2)

100 replicates generated for each case
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• four model scenarios (Section 3.2.2):

1. Model 1 - fixed effect (homogeneous process)

2. Model 2 - fixed and temporal effect (homogeneous process)

3. Model 3 - spatial effect, with intercept (inhomogeneous process)

4. Model 4 - spatial and temporal effect, with intercept (inhomoge-

neous process)

• three detection methods (Section 3.2.4)

1. BF - Bayes Factor method

2. SIC - SIC criterion

3. PT - Posterior Threshold method.

For a multiple changepoint search we have

• i.i.d. and strong time dependent (AR(1)) data (see Section 4.1.4 for

details on the data generation) with

– no changepoint

– three changepoints of different magnitude (λ1 = 1, λ2 = 1.4, λ3 =

2.3, λ4 = 2)

100 replicates generated for each case

• four model scenarios (Section 3.2.2):

1. Model 1 - fixed effect (homogeneous process)

2. Model 2 - fixed and temporal effect (homogeneous process)

3. Model 3 - spatial effect, with intercept (inhomogeneous process)

4. Model 4 - spatial and temporal effect - with intercept (inhomoge-

neous process)

• two detection algorithms (Section 3.3)

1. simultaneous changepoint search
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2. binary segmentation algorithms, with

(a) BF method

(b) SIC criterion

(c) PT method.

A summary of the simulation design is in Table 4.1; the SIC results are not

reported as they replicate the BF results in nearly all cases. Comments can

be found in Section 4.2.2. In Section 4.1.2 we present in further detail how

the simulation structure has been designed and planned.

Table 4.1: Structure of the simulation study

Homogeneous data Inhomogeneous data

Model 1 Model 2 Model 3 Model 4

BF PT BF PT BF PT BF PT

IID

H0 λ = 1 100r 100r 100r 100r 100r 100r 100r 100r

H1

λ2 = 2 100r 100r 100r 100r 100r 100r 100r 100r

λ2 = 1.2 100r 100r 100r 100r 100r 100r 100r 100r

multiple 100r 100r 100r 100r 100r 100r 100r 100r

AR(1)

H0 λ = 1 100r 100r 100r 100r 100r 100r 100r 100r

H1

λ2 = 2 100r 100r 100r 100r 100r 100r 100r 100r

λ2 = 1.2 100r 100r 100r 100r 100r 100r 100r 100r

multiple 100r 100r 100r 100r 100r 100r 100r 100r

4.1.2 Details of the simulation design

In this Section, we present all the aspects we choose to tune and test

in the simulation study. First of all, the spatial and temporal structure of

the intensity function is introduced. Then, we show how to build the data

series and choose different dependence structures; technical details on how

the data series are generated are in Sections 4.1.3 and 4.1.4. Lastly, number

and magnitude of changepoints for both a single and a multiple search are

set. Details on the models and detection methods can be found in Sections

3.2.2 and 3.2.4.
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Choice of the intensity function

As for the intensity function structure, in the simplest case we assume

the intensity function to be constant over space, i.e. we have a spatially

homogeneous process; this means the intensity function at each time point

can be represented by a single value. Therefore, point pattern series are

generated with a spatially homogeneous intensity structure (a single value

for λ over the window) and a inhomogeneous spatial structure. As for the

inhomogeneous case, the overall value for Λ =
∑

s∈W λ(s) gives the average

number of points at each time point, but the spatial structure changes over

the window and is indexed by s. More precisely, we build a smooth spatial

trend which is more intense in the top-right corner of the square window

and then progressively decreases toward the bottom-left corner. Figure 4.1

shows an example before and after the changepoint for both homogeneous

and inhomogeneous patterns, with both a small and a big change.

(a) Homogeneous pattern, three different intensity levels

(b) Inhomogeneous pattern, three different intensity levels

Figure 4.1: Simulated patterns - examples
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We build the inhomogeneous series assuming that the spatial structure is

the same over time up to a scale parameter whose change defines the change-

point in the series, thus the changepoint detection identifies the time point

that corresponds to the change of scale in our data. We are here focusing

on changes in the intensity strength, not on changes in its spatial structure.

This scenario fits many real situations where the point distribution is mainly

due to an underlying driver whose structure remains constant over time, but

whose strength may vary. As a further step, we also study the performance

of the detection methods when a change in the spatial distribution of points

occurs (see Section 4.3).

Dependence structure of the data series

As for the type of time series, we generated data with no temporal de-

pendence and data with a strong temporal dependence to the previous time

point, in order to check the method performance over both situations. We

generate both i.i.d. and autoregressive (AR(1)) data series. I.i.d. data keep

the same parameter value for the intensity over each segment, while for time

dependent data the set values are initial values for each time segment, and the

following values inside the same segment are generated using the number of

points in the previous time instant (divided by the window area) as intensity

parameter. The same thing has been done for time dependent inhomogeneous

data, keeping the same spatial structure over time and using the number of

generated points as intensity strength for the following pattern. We choose

to generate both i.i.d. and time dependent data as their behaviour is very

different as regards changepoint detection. Figure 4.2 shows some time series

built by counting the number of points for each time point.

As can be seen, i.i.d. data keep very close to the initial set value over the se-

ries, and the changepoints are easily recognizable, while AR(1) data tend to

drift far away from the initial value, and are far more variable. On one hand,

this can result in the detection of spurious changepoints, i.e. changepoints

that are due to the variability of the series and not to external factors; on

the other hand, changes set in the simulation may not be easy to identify. It

is therefore of interest to test the methods on both types of data.
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(a) Iid time series with no change, small change, big change

(b) AR(1) time series with no change, small change, big change

(c) Multiple changepoints, iid and AR(1) time series

Figure 4.2: Simulated time series with zero, one and three changepoints



84 4. Methods Assessment via Simulation Study

Number and magnitude of changepoints

As for the number of changepoints, we start with a single changepoint

with a large magnitude change, the easiest case to detect; we then check

the performance of our methods on a small magnitude change. Besides, we

generate data with three changepoints of varying size and quality (increas-

ing/decreasing intensity strength).

Let λ(j) be the parameter for segment j, where for m changepoints we have

j = 1, . . . ,m + 1. For the single changepoint series, we tried two different

change magnitudes: a big one, from λ(1) = 1 to λ(2) = 2, and a small one,

from λ(1) = 1 to λ(2) = 1.2. Given the window area, λ = 1 produces pat-

terns with an expected number of points equal to 100, λ = 1.2 generates 120

points and λ = 2 generates 200 points on average. Bigger changes have been

tested and lead to analogous conclusions as λ(2) = 2. As for the multiple

changepoint series, we set two positive changes and a negative one, all with

different magnitudes: the segment intensity values are λ(1) = 1, λ(2) = 1.4,

λ(3) = 2.3 and λ(4) = 2. Figure 4.3 shows data with multiple changes.

(a) Homogeneous pattern, 3 changepoints, 4 data segments

(b) Inhomogeneous pattern, 3 changepoints, 4 data segments

Figure 4.3: Examples of data segments patterns for series with multiple

changepoints
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The last change is extremely small, to further test the performance of the

detection methods. Each one of these time series was replicated 100 times.

For the inhomogeneous models, the same values are used for Λ. Once all the

time series are generated, we fit the four models described in Section 3.2.2

on all of them and try to detect changepoints with both methods described

in Section 3.2.4. All model fitting is done using INLA.

4.1.3 Single changepoint data generation

As for the homogeneous models (Models 3.2.1 and 3.2.2), data are gen-

erated from a stationary Poisson process, with an initial intensity value of

λ = 1. Data generated under H0 keep the same value for λ all throughout

the series; data generated under H1 have a change in the intensity value in

t = 24, the fixed changepoint. Since the intensity function is constant within

segments, in a homogeneous process λ(j) is the single parameter value for

the intensity at time segment j; for 1 changepoint we have j = 1, 2. In all

replicates λ(1) = 1, while in one scenario λ(2) = 2 and in the other one

λ(2) = 1.2.

As for the non uniform case, data were generated from a spatially inhomo-

geneous function, whose structure is constant over time up to a scale factor,

using an inhomogeneous Poisson process (this is analogous to generating

from a LGCP, but fixing the latent field). Let now λ(j, s) be the value for

the intensity of time segment j at location s, and Λ(j) =
∑

s λ(j, s) be the

overall value for the observation window in segment j. Here too, the initial

setting for the intensity function Λ(1) = 1 produced patterns with 100 points

on average over the window, and for alternative data from t = 24 on there

have been again two change magnitude possibilities: λ(2, s) = 2λ(1, s) or

λ(2, s) = 1.2λ(1, s), resulting in Λ(2) = 2 and an expected number of points

equal to 200, or Λ(2) = 1.2 and an expected number of points equal to 120.

Under these conditions, both i.i.d. and AR(1) data were generated.
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Therefore, for i.i.d. homogeneous patterns

H0

{
Yt ∼ Poi(1) for t = 1, . . . , 50

H1

{
Yt ∼ Poi(1) for t ≤ 24

Yt ∼ Poi(λ(2)) for t > 24

where λ(2) ∈ {1.2, 2}.

For AR(1) homogeneous patterns, let λ̂(t) = N(Xt)
|W | be the maximum

likelihood (ML) estimate for the intensity of the process at time t, where

N(Xt) is the number of points of the pattern, and |W | = 100 is the window

area.

H0

{
Yt ∼ Poi(1) for t = 1

Yt ∼ Poi(λ̂(t− 1)) for t = 2, . . . , 50

H1


Yt ∼ Poi(1) for t = 1

Yt ∼ Poi(λ̂(t− 1)) for t = 2, . . . , 24

Yt ∼ Poi(λ(2)) for t = 25

Yt ∼ Poi(λ̂(t− 1)) for t = 26, . . . , 50

For i.i.d. inhomogeneous patterns

H0

{
Yts ∼ Poi(λ(1, s)) for t = 1, . . . , 50, s = 1, . . . , 400

H1

{
Yts ∼ Poi(λ(1, s)) for t ≤ 24, s = 1, . . . , 400

Yts ∼ Poi(λ(2, s)) for t > 24, s = 1, . . . , 400

where λ(2, s) ∈ {1.2λ(1, s), 2λ(1, s)}.

For AR(1) inhomogeneous patterns, now let λ̂(t, s) = N(Xts)
|C| be the

ML estimate for the intensity of the process at time t in cell s, where N(Xts)

is the number of points at time t inside cell s, and |C| = |W |
S

is the (time
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invariant) cell area.

H0

{
Yts ∼ Poi(λ(1, s)) for t = 1, s = 1, . . . , 400

Yts ∼ Poi(λ̂(t− 1, s)) for t = 2, . . . , 50, s = 1, . . . , 400

H1


Yts ∼ Poi(λ(1, s)) for t = 1, s = 1, . . . , 400

Yts ∼ Poi(λ̂(t− 1, s)) for t = 2, . . . , 24, s = 1, . . . , 400

Yts ∼ Poi(λ(2, s)) for t = 25, s = 1, . . . , 400

Yts ∼ Poi(λ̂(t− 1, s)) for t = 26, . . . , 50, s = 1, . . . , 400

An example of homogeneous and inhomogeneous data can be again found in

Figure 4.1 and Figure 4.2.

4.1.4 Multiple changepoint data generation

For the multiple changepoint analysis, data are generated using the same

methods as the single changepoint data: homogeneous and inhomogeneous

process, i.i.d. and AR(1) time series. There is no difference with regard to a

single changepoint search in H0 data, while H1 data have three changepoints

instead of one. For both homogeneous and inhomogeneous data, change-

points are set at t = 15, 30, 40. In a general inhomogeneous process, with

M = 3 changepoints λ(j, s) is now defined for j = 1, . . . , 4. Following the

fixed values, the expected number of points at every time point is 100 for

segment 1 (Λ(1) = 1), 140 for segment 2 (Λ(2) = 1.4), 230 for segment 3

(Λ(3) = 2.3) and 200 for segment 4 (Λ(4) = 2); they are randomly scattered

in a homogeneous dataset, and randomly distributed given the intensity at

each location for a inhomogeneous dataset. The same technique as in Section

4.1.3 is used for generating time dependent data.

For i.i.d. homogeneous patterns

H0

{
Yt ∼ Poi(1) for t = 1, . . . , 50

H1


Yt ∼ Poi(1) for t ≤ 15

Yt ∼ Poi(1.4) for 15 < t ≤ 30

Yt ∼ Poi(2.3) for 30 < t ≤ 40

Yt ∼ Poi(2) for 40 < t ≤ 50

′
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For AR(1) homogeneous patterns

H0

{
Yt ∼ Poi(1) for t = 1

Yt ∼ Poi(λ̂(t− 1)) for t = 2, . . . , 50

H1



Yt ∼ Poi(1) for t = 1

Yt ∼ Poi(λ̂(t− 1)) for t = 2, . . . , 15

Yt ∼ Poi(1.4) for t = 16

Yt ∼ Poi(λ̂(t− 1)) for t = 17, . . . , 30

Yt ∼ Poi(2.3) for t = 31

Yt ∼ Poi(λ̂(t− 1)) for t = 32, . . . , 40

Yt ∼ Poi(2) for t = 41

Yt ∼ Poi(λ̂(t− 1)) for t = 42, . . . , 50

.

For i.i.d. inhomogeneous patterns

H0

{
Yts ∼ Poi(λ(1, s)) for t = 1, . . . , 50, s = 1, . . . , 400

H1


Yts ∼ Poi(λ(1, s)) for t ≤ 15, s = 1, . . . , 400

Yts ∼ Poi(1.4λ(1, s)) for 15 < t ≤ 30, s = 1, . . . , 400

Yts ∼ Poi(2.3λ(1, s)) for 30 < t ≤ 40, s = 1, . . . , 400

Yts ∼ Poi(2λ(1, s)) for 40 < t ≤ 50, s = 1, . . . , 400

.

For AR(1) inhomogeneous patterns

H0

{
Yts ∼ Poi(λ(1, s)) for t = 1, s = 1, . . . , 400

Yts ∼ Poi(λ̂(t− 1, s)) for t = 2, . . . , 50, s = 1, . . . , 400
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H1



Yts ∼ Poi(λ(1, s)) for t = 1, s = 1, . . . , 400

Yts ∼ Poi(λ̂(t− 1, s)) for t = 2, . . . , 15, s = 1, . . . , 400

Yts ∼ Poi(1.4λ(1, s)) for t = 16, s = 1, . . . , 400

Yts ∼ Poi(λ̂(t− 1, s)) for t = 17, . . . , 30, s = 1, . . . , 400

Yts ∼ Poi(2.3λ(1, s)) for t = 31, s = 1, . . . , 400

Yts ∼ Poi(λ̂(t− 1, s)) for t = 32, . . . , 40, s = 1, . . . , 400

Yts ∼ Poi(2λ(1, s)) for t = 41, s = 1, . . . , 400

Yts ∼ Poi(λ̂(t− 1, s)) for t = 42, . . . , 50, s = 1, . . . , 400

An example of both homogeneous and inhomogeneous data series with mul-

tiple changes is in Figure 4.3.

4.1.5 Simulation models and methods

We use the simulated data to run all four model scenarios described in

Section 3.2.2: a simple one assuming a spatially homogeneous process and

introducing a fixed effect to describe the intensity level over time (Model 1,

Formula 3.2.1), a model adding a temporal random effect (Model 2, Formula

3.2.2), a model including an intercept, spatial dependence and heterogeneity

(Model 3, Formula 3.2.3), and finally a more complex model for spatially

inhomogeneous intensity with two smooth effects allowing for both spatial

and temporal dependence within segments (Model 4, Formula 3.2.4).

Since the window is discretized into 400 cells and we have 50 time points,

for each scenario and under each hypothesis the response vector is Y (50 ×
400)× 1 = 20, 000× 1.

Models are fitted separately to different parts of the data, according to the

hypotheses. Under the null hypothesis, each model is fitted to the whole

data vector to obtain the marginal data log-likelihood. Under the alternative

hypothesis, for a single changepoint search we

1. choose a minimum segment length of d = 4 to make the changepoint

search more effective and improve the INLA algorithm performance

(see Section 3.2.3)

2. run each model T − 2d + 1 times for each simulation replicate; in

each run, we condition on the changepoint occurring at a location
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τ ∈ {4, 6, . . . , 44, 46} (remember that τ marks the end of a segment)

and fit the considered model to every data segment using INLA; for ev-

ery τ , we obtain two log-likelihood values q1(τ) and q2(τ) (see Section

3.2.4)

3. sum q1(τ) and q2(τ) to obtain the marginal data log-likelihood under

a specific changepoint l1(τ)

4. since we do the same for every possible τ , for every single replicate we

obtain T − 2d+ 1 marginal log-likelihood values under the alternative

hypothesis of one changepoint; they all refer to the whole data series

Y , but they are conditional on different positions for the potential

changepoint

5. use the log-likelihood vector to build the posterior distribution of the

potential changepoint positions for a specific replicate as explained in

Chapter 3

6. for every model, we do the same over 100 data series replicates, thus

we have 100 posterior curves

7. for every curve, we use one of the methods described in Section 3.2.4

to take decisions on the occurrence of a changepoint

8. evaluate the performance of each detection method, for each scenario,

by summarising the results over 100 posterior curves.

For a multiple changepoint search, we can follow either an iterative or a

simultaneous technique, as introduced in Section 3.3. If we use a binary

segmentation algorithm, the same procedure is repeated at every step for

the multiple changepoint detection; we set the algorithm to find maximum

4 changepoints, but different maxima can easily be fixed. When we run

a simultaneous changepoint search, we follow what explained in Chapter

3: we first obtain a few data likelihoods conditional on different numbers of

changepoints and choose the number of changepoints that corresponds to the

highest likelihood; then, we infer the position of every single changepoint via

conditional posterior distributions of every changepoint given the previous
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one, the data and the chosen number of changepoints.

We use all detection methods proposed in Chapter 3 in order to assess their

performance and choose the most suitable one(s) for the analysis on real data

presented in Chapter 5.

4.2 Simulation results

After running all the analyses, we obtain results for each of the cases

listed in Section 4.1.1, and we show a few graphs:

• a histogram showing the probability of committing type I errors for H0

data and type II errors for H1 data

• a histogram of the number of changepoints found, where the mode is

chosen as the correct number of changepoints

• a posterior probability plot: conditioning on the chosen number of

changepoints, we obtain the averaged (over 100 replicates) pointwise

posterior probability for each time point to be a changepoint

• an estimate for the intensity function for each time segment produced

by the INLA algorithm, together with a few synthetic measures and a

comparison with the true values.

As for Section 4.1, a summarised overview of the results with general com-

ments is given first in Section 4.2.1; detailed comments can be found in the

following Sections. A few representative results are displayed in figures along

the Chapter. For all the remaining results, we refer to figures in the Ap-

pendix. As a note, data without changepoints are labelled as H0, single

big change data as H1b and single small change data as H1s in all graphs;

multiple changepoint data are simply labelled as H1.

4.2.1 Summary of the simulation results

The BF (and SIC) and PT methods’ performance was evaluated according

to type I and type II errors, number and position of detected changepoints

and values of the intensity estimates.
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Type I and II errors

A summary of the methods performance is in Table 4.2.

Table 4.2: Significance levels (H0 data) and power levels (H1 data)

Homogeneous data Inhomogeneous data

Model 1 Model 2 Model 3 Model 4

BF PT BF PT BF PT BF PT

IID

H0 λ = 1 0 ≤ 0.05 0 ≤ 0.05 0 ≤ 0.1 0 ≤ 0.01

H1

λ2 = 2 1 1 1 1 1 1 0 1

λ2 = 1.2 1 1 1 0.98 0 0.34 0 0.3

mult BinSeg 1 1 0.99 1 0 0.93 0 0.26

mult Simult 1 1 0 0

AR(1)

H0 λ = 1 0.96 0.66 0.38 0.24 0.15 0.26 0 0.18

H1

λ2 = 2 1 0.97 0.81 0.75 0.53 0.81 0 0.52

λ2 = 1.2 1 0.73 0.43 0.36 0.19 0.54 0 0.37

mult BinSeg 1 0.98 0.94 0.91 0.55 0.84 0 0.67

mult Simult 1 1 0 0

In general, the Bayes Factor method (and, analogously, the simultaneous

approach) performs very well as regards the first two models: in most cases

type I errors are very small (with the exception of one case with time depen-

dent data, but we expect poorer performance on these data, for the reasons

introduced in Section 3.1) and type II errors are negligible in all cases. When

we fit more complicated models including a spatial effect, though, the per-

formance is very poor: the method is too conservative and does not detect

changepoints, irrespective of their magnitude.

The Posterior Threshold method gives a better performance over all models;

this is sensible, as the threshold value can be tuned according to the model.

A few ’grey’ zones are produced, but the overall conclusions are correct in

most cases, and there is at least some ability to detect changes in all situa-

tions (unlike the Bayes Factor method).

A further summary of this performance can be found in Table 4.3: the first

row in each table concerns data generated under H0 and the second row con-

cerns data generated under H1, therefore numbers have to sum to 100 by row.

It is very plain that the PT method has a better overall performance: as re-

gards null data (first row), the behaviour of the two methods is very similar,
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but the PT method is 20 percentage points better in finding changepoints in

H1 data (second row).

Table 4.3: Summary of type I and type II errors

H0 correct result False positive

False negative H1 correct result

BF method ( %) PT method ( %)

81.38 18.63 79.75 20.25

43.79 56.21 23.92 76.08

Number and location of changepoints

As for the number of detected changepoints, results are linked, but not

necessarily identical, to the previous ones: committing or not a type II error

only concerns the rejection of H0 and tells nothing on the number and posi-

tions of the detected changepoints, which is of special interest in a multiple

changepoint search. Table 4.4 shows a summary of the results.

We can see that as far as H0 data are concerned, results are correct in all

cases: even in situation where some changepoints were found, as in AR(1)

data, all the positions were different, and this indicates they are spurious

changepoints and not ’true’ ones. As regards the detection in H1 data, the

BF method suffers from the above mentioned issue: it is very precise in

detecting the true change(s) in the first two models, but too conservative

when spatial dependence and inhomogeneity is introduced. The PT method

performs much better: when changepoints are not detected in the majority

of replicates, it is due to the small magnitude of the change, which means the

method is not too sensible; despite the small size, a percentage of replicates

still had a change detected. The only wrong conclusion concerns the multiple

changepoint i.i.d. data series under the most complicated model; in all other

cases, conclusions are very sensitive and the detected positions are correct

or as close as it makes no difference. It is interesting to note that spurious

changes in time dependent data do not affect conclusions.
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Table 4.4: Position of the detected changepoints

Homogeneous data Inhomogeneous data

Model 1 Model 2 Model 3 Model 4

True BF PT BF PT BF PT BF PT

IID

H0 No chp – – – – – – – –

H1

24 24 24 24 24 24 24 – 24

24 24 24 24 24 – – – –

15 30 40 BinSeg 15

30

40

15

30

40

15

30

40

15

30

40

– 15

30

– –

15 30 40 Simult 28 28 16 – –

AR(1)

H0 No chp – – – – – – – –

H1

24 24 24 24 24 24 24 – 24

24 24 24 – – – 24 – –

15 30 40 BinSeg 15

30

41

15

30

41

15

30

40

15

30

40

15

30

15

30

41

– 15

30

40

15 30 40 Simult 28 13 28 13 40 – –

Intensity estimates

Lastly, a few comments about the intensity estimates, which again depend

on the above presented results. A summary of the estimated values is given

in Table 4.5. Note that the intensity is a inhomogeneous function which takes

different values over space. In this table, for brevity reasons, only the mean

value is reported, but the mean range (over the replicates) and credibility

bands are also available as in every Bayesian inference output. Given the

detected changepoints, estimates are very accurate over all the simulated

scenarios: when a changepoint is not detected, values are an average between

the two segments’ true values, and when a changepoint is only detected

in part of the replicates (as it happens with very small changes), the true

magnitude of the change is shrunk. In all cases the correct (increasing or

decreasing) trend is captured.
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Table 4.5: Estimates for the segment intensity

Homogeneous data Inhomogeneous data

Model 1 Model 2 Model 3 Model 4

True intensity BF PT BF PT BF PT BF PT

IID

H0 1.00 1.00 1.01 1.00 1.01 0.99 1.00 1.00 1.00

H1

1.00 2.00 0.99

2.00

1.04

2.00

1.00

2.00

1.04

2.00

0.99

2.00

1.00

2.00

1.50 1.00

2.00

1.00 1.20 1.00

1.20

1.01

1.20

1.00

1.20

1.01

1.20

1.09 1.10 1.10 1.10

1.00 1.40 2.30 2.00 1.00

1.40

2.17

2.07

1.00

1.38

2.22

2.05

1.01

1.40

2.12

2.10

1.00

1.38

2.15

2.08

1.58 1.20

1.50

2.20

1.51 1.60

AR(1)

H0 1.00 0.99 1.01 0.96 0.99 0.92 0.98 0.87 0.98

H1

1.00 2.00 1.05

2.04

1.05

2.03

1.09

2.10

1.11

2.05

1.18

1.90

1.08

1.99

1.41 1.20

1.78

1.00 1.20 1.01

1.14

1.01

1.14

1.06 1.06 1.10 1.01

1.18

1.07 1.09

1.00 1.40 2.30 2.00 1.02

1.40

2.21

1.08

1.02

1.40

2.22

2.07

1.05

1.39

2.15

2.02

1.07

1.38

2.14

2.04

1.12

1.40

2.13

1.10

1.42

2.18

2.08

– 1.15

1.41

2.03

1.97

In the next Sections, detailed comments about the simulation results

are presented, along with some representative graphs; a complete list of the

figures is in Appendix A.

4.2.2 Single changepoint detection with Bayes Factor

method

In this Section, we summarise results for a single changepoint search on

both i.i.d. and time dependent data. Bayes Factor (BF) and SIC method

(SIC) perform extremely similarly; the SIC method tends to be ever so

slightly less conservative, but the difference is negligible in most cases, and

never substantial. We will therefore not explicitly report results for the SIC
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method.

As we say in Section 3.2.4, the Formula (3.2.8) we apply to simulated data

is a conservative version of the commonly used Bayes Factor. This is for two

main reasons: first of all, a positive but small value for the Bayes Factor is

usually interpreted as ’small evidence’, and we would like to protect results

against type I errors. Secondly, as log-likelihoods are returned by the INLA

algorithm, when computing the sum in the numerator of the Bayes Factor

exponents have to be taken and issues due to software numerical rounding

raise, as number easily go to infinity or 0. The version in Equation 3.2.8 is

instead perfectly computable with no need to convert logarithms.

On both i.i.d. and time dependent data, the BF method performs very well

over three of the four model scenarios as regards detection and location of

the change.

Homogeneous models

In the fixed and temporal effect models the statistic correctly rejects H0

in all i.i.d. replicates, even when a very small change occurs; moreover, the

detected changepoint position is correct in all replicates with a big change,

and in most with a small change (very close in the remaining ones). The

estimated values produced by INLA are compactly distributed around the

true value, and both their mean and median are a good choice for the in-

tensity parameter posterior estimate, being always less than 0.05 away from

the correct values. An example of the simulation output is in Figure 4.4.

Predictably, results are not so neat on time dependent data, and the main

cause is data variability that will lead to the detection of changepoints that

have not been set a priori in H0 data; nevertheless, introducing the temporal

effect in the model has a high positive effect on the statistic performance on

null data, as the mode of the detected number of changepoints is correctly

set to 0. For both models, the performance is very good for data generated

under the alternative hypothesis as regards both power and location. As

for the estimated values, the variability among the replicates is much higher

than the i.i.d. data one, still both mean and median are very close enough

to the initial intensity values. Some results for AR(1) data are in Figure 4.5.
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Figure 4.4: Single changepoint search on iid data, with the fixed effect model

and the BF method
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Figure 4.5: Single changepoint search on AR(1) data, with the temporal

effect model and the BF method
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Inhomogeneous models

The third and fourth models allow for spatially inhomogeneous intensity

functions and a spatial random effect, and are therefore applied to data

generated following an inhomogeneous process. An example of the resulting

graphs is in Figure 4.6.

Figure 4.6: Single changepoint search on iid data, with the spatio-temporal

effect model and the BF method - Power level and location of the changepoint
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The significance level is correctly set to 0 over all replicates for both

models, but a conservatism issue raises here, as the big change is the only

one detected (in the correct location) with the spatial model, while with the

spatio-temporal model no change is detected over all the data series, despite

high peaks corresponding to t = 24 in all posterior distributions. The most

interesting novelty with inhomogeneous models is the intensity estimate: we

obtain a value for every grid cell, hence the estimate is shown as a pixel

image where for every cell values are averaged over the corresponding time

segment (we choose the mean as synthetic value, and the median would

lead to extremely similar results in all cases). In all cases (both spatial and

spatio-temporal model, and both i.i.d. and AR(1) data) the estimates are

very accurate given the detected changepoints: they not only capture the true

range of values very well, but also produce a smooth image that correctly

estimates the spatial trend. When changepoints are not detected, the range

of the estimated values is correctly set in between the two segment’s values

(see e.g. Figure 4.7). In AR(1) data, some small drifts with respect to the

set values occur, due to the strong time dependency and variability in the

data.
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Figure 4.7: Single changepoint search on iid data, with the spatio-temporal

effect model and the BF method - Estimated intensities
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4.2.3 Single changepoint detection with Posterior

Threshold method

The method consisting in fixing a threshold for posterior probability val-

ues can be adapted to the model, in order to be able to recognise changepoints

even when spatial and/or temporal dependence are considered and lead to

higher data variability, e.g. by raising the threshold with respect to a simpler

model. Having simulated data, we bound the choice of the threshold to a

certain significance level, giving an objective threshold value that will still

depend on the model applied to our data.

We use a threshold corresponding to α ≤ 0.05 for the fixed and temporal

effect models, and one corresponding to α ≤ 0.1 for the spatial and spatio-

temporal inhomogeneous models. The different choice for α is due to the

fitted model: for the inhomogeneous models, fixing a lower α would result in

a threshold equal to 1, which is not a sensible choice. For dependent data,

fixing a threshold based on the significance level obtained on such variable

data is tricky. We decide to fix the threshold referring to i.i.d. data, keeping,

where possible, a stricter criterion: this results in a choice of α ≤ 0.01 for

the two homogeneous models and in α ≤ 0.1 for the inhomogeneous ones for

the same reasons explained above.

The performance of this method on a single changepoint search is, in general,

preferable to the BF method on alternative data.

Homogeneous models

The threshold for these two models for i.i.d. data is 0.2 with the fixed

effect model and 0.25 for the temporal model; for time dependent data, it

is 0.55 with the fixed effect model and 0.65 for the temporal model. A

significance level not greater than 0.05 is set on i.i.d. data; on AR(1) data,

it is higher and, as for the BF method, leads to an overall wrong conclusion

with a fixed model but a correct conclusion when the temporal effect is

introduced; the significance level is anyway much better on time dependent

data than the one obtained by the BF method.

As for i.i.d. data, the changepoint is correctly detected and the right location

is identified as with the BF method, since the choice of the method only
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concerns the number of changepoints, while the correct location is given by

the posterior probability distributions, irrespective of the method used. The

same conclusions concern the intensity estimate. A summary of the results

is in Figure 4.8.

As far as time dependent data are concerned, no evidence for a specific change

is shown by the H0 data posterior distribution, while conclusions regarding

both number and location of changepoints are correct in most H1b data and

not significant in H1s data. As said in the BF method results, single replicate

estimates are extremely variable, still both mean and median perform well as

estimates for λ. In H1s data, there is a small underestimation of the second

segment value, due to the difficulty in detecting the small change. Results

for the fixed effect model are in Figure 4.9.
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Figure 4.8: Single changepoint search on iid data, with the fixed effect model

and the PT method
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Figure 4.9: Single changepoint search on AR(1) data, with the fixed effect

model and the PT method
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Inhomogeneous models

The threshold for the inhomogeneous models is 0.95 for all data, corre-

sponding to a significance level not greater than 0.1 on i.i.d. data and low

enough to reach the overall correct conclusion on AR(1) data.

Figure 4.10: Single changepoint search on AR(1) data, with the spatial effect

model and the PT method - Power level and location of the changepoint
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The most important comparison to the BF method conclusions con-

cern data with a changepoint; with the spatial model results are similar

on i.i.d. data: one changepoint in H1b data, no changepoint in H1s data.

On time dependent data, though, a changepoint is correctly detected even

when it has a small magnitude with the spatial model. The spatio-temporal

model also leads to better conclusion as the big change is detected on both

i.i.d. and time dependent data. See Figure 4.10 for a summary of the re-

sults.

Again, location estimates are correct and the intensity estimates are very

accurate given the changepoint locations and the variability in the data, as

shown in Figure 4.11. When the changepoint is not detected in a consistent

part of the replicates, its actual size will be shrunk in the estimates.
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Figure 4.11: Single changepoint search on AR(1) data, with the spatial effect

model and the PT method - Estimated intensities
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4.2.4 Iterative multiple changepoint detection

with Bayes Factor method

When applied to a multiple changepoint search, the BF method performs

more poorly than in the single changepoint case: its results are good for the

first two homogeneous models, but not for the inhomogeneous ones. The

greater difficulty in detecting changepoints in more complex models in this

analysis can also be imputed to the very small change magnitudes that have

been set over these datasets. It is interesting to notice that the range of γ

values is in all cases very consistent: either nearly all values are negative or

they are positive, the power level is 1 or 0, there is no grey zone. Perhaps,

as the posterior threshold is tuned according to the fitted model, the γ
′
τ∗

statistic (Formula 3.2.8) decision threshold should also be changed according

to the model. There is anyway no reference we are aware of about giving

a different threshold than zero to the logarithm of the Bayes Factor. As

the method does not perform well on time dependent data, we only use the

Posterior Threshold method on those ones.

The significance level is of course very similar to the single changepoint results

over all data, as it only concerns the rejection of H0. Moreover we already

know the INLA estimates are very good given the detected changepoints.

What is of interest here is then the actual number of detected changepoints

and their location. for every model. Remember that with multiple changes

we only have one type of data generated under H1.

As for the fixed effect model, 3 changepoints were correctly found in 15,

30 and 40. The peak in 40 is smaller as this changepoint has the lowest

change magnitude along with the highest data variability (from λ = 2.3 to

λ = 2). Consistently, the INLA estimate are very accurate in the first two

segments, and then a bit lower than 2.3 on the third and a bit higher than

2 in the fourth, shrinking the actual magnitude for the last changepoint.

Nevertheless, the general behaviour of the intensity function is very well

captured.

Introducing a temporal effect on i.i.d. generated data does not substantially

modify the results with respect to the first model, except it flattens the

third peak in 40 even more, even if this time point will still be detected.
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In the INLA estimates it is of interest to see that the abruptness of all

steps is softened, giving more gradual changes, and that best suits real data

situations.

When moving on to inhomogeneous processes, problems in the BF method

begin, as no changepoints are identified in any data series. Since the first

potential changepoint found (the one returning the maximum log-likelihood

value) is considered non significant, the binary segmentation algorithm stops

running; nevertheless, the posterior distribution curve shows a very high peak

at position t = 30, where the change with the largest magnitude is set. Due

to the lack of changepoint detections, the estimate images are very precise

for H0 data, but the range of values for H1 data has a mean of 1.7, which is

a good average across all segments.

All figures can be found in Appendix A.

4.2.5 Iterative multiple changepoint detection

with Posterior Threshold method

We finally fit the four models on both i.i.d. and AR(1) data, looking

for multiple changepoints in the series and making decisions based on the

posterior probability distribution and a fixed threshold. On i.i.d. data, we

detect different possibilities for the threshold corresponding to a probability

of committing the type I error equal to 0.01, 0.05, 0.1, when possible. Then,

for i.i.d. data when homogeneous models are fitted, we choose the threshold

corresponding to α = 0.05. In the two inhomogeneous models, the only

sensible threshold corresponds to α = 0.1 as lower values for α would result

in a threshold equal to 1. For the same reason, the threshold is maintained at

the same value for AR(1) data, while in the homogeneous models we choose

a stricter threshold, corresponding to α = 0.01 on i.i.d. data, as it is much

more likely to detect changepoints even in H0 data series when data are time

dependent.
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Homogeneous models

The threshold for the first model is 0.25 for i.i.d. data and 0.45 for AR(1)

data; for the second model, it is the same for i.i.d. data and 0.4 for AR(1)

series.

Conclusions concerning the detection of multiple changes are very good: the

two greatest changes in t = 15 and t = 30 are detected over all cases, and

the small one in t = 40 is still detected on all data series, except for the

AR(1) data with the temporal model, where most likely the data variability

together with the inclusion of a time dependence hides the small change. As

for the location, the only conclusion that is slightly wrong concerns the last

small change that is sometimes detected in t = 41 instead, but in the greatest

majority of practical studies, this result will be considered precise enough to

make correct description and inference on the phenomenon under study.

The estimated stepwise function for the intensity is a little smoothed at

the step angles, but very close to the true one. Even on time dependent

data, despite the variability of the estimates, a stepwise process is identifiable

through the series, across all replicates, and the synthetic measure chosen for

estimation are both performing well.

An output example is in Figure 4.12.
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Figure 4.12: Multiple changepoint search on AR(1) data, with the temporal

effect model and the PT method
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Inhomogeneous models

As for the single search, the threshold is 0.95 for all data and the spatial

model, and 0.9 for the spatio-temporal model.

As for the spatial model, on i.i.d. data the number of changepoints is un-

derestimated, as the mode is 2; a third non significant peak corresponds to

t = 40. In AR(1) H0 data, correct overall conclusions are drawn; on H1 data

the mode for the number of changes is 3, and all three peaks in the poste-

rior distribution correspond to the correct locations. As for the estimated

images, the spatial trend is correct over all segments, the range is a little

overestimated over the first two segments and then, as usual, the estimated

distance between third and fourth segment is smaller than the true one.

When fitting the last model on i.i.d. data the power, is much lower, there-

fore the main decision is not to reject H0. The second option would be to

have 2 changepoints, correctly identified in the posterior distribution by two

peaks at 15 and 30, nevertheless they are not considered significant in the

majority of cases. The estimate is therefore a single image, with the correct

spatial trend and a mean value close to 1.6, a good average of the four time

segments. Time dependent data show sensibly better results, as the model

suits them better: a correct conclusion of no changepoints is drawn in H0

data, and the mode of the number of changepoint is now correctly situated

at 3 for H1 data, where the three peaks in the posterior correspond to the

true changes in 15, 30, 40. Therefore the conclusion is overall correct despite

the strong time dependence, when using a high strict threshold and account-

ing for both spatial and temporal dependence within segments. Again, the

estimated images produce a good imitation of the set values. An example

figure is in Figure 4.13 and 4.14.
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Figure 4.13: Multiple changepoint search on AR(1) data, with the spatio-

temporal effect model and the PT method - Power level and location of the

changepoint
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Figure 4.14: Multiple changepoint search on AR(1) data, with the spatio-

temporal effect model and the PT method - Estimated intensities
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4.2.6 Simultaneous multiple changepoint detection

Results have been presented so far that concern both a single and a mul-

tiple unknown changepoint search; therefore, they cover a wide range of

changepoint questions. Additional information on our methods’ performance

would derive from a comparison of the iterative algorithms to a simultaneous

detection approach.

In this study, we are particularly interested in understanding the ability of

the methods to detect changepoints. Therefore, we focus on the results of

the simultaneous search method on H1 data with multiple changes, and we

present a summary of the results regarding the number and locations of de-

tected changes. We do not focus on the estimated values, since, as we pointed

out already, they depend on the INLA algorithm and not on the detection

method, and are always very accurate given the changepoints.

As for the changepoint location, with this method it will be only approxi-

mately detected. Indeed, as introduced in Section 3.3.4, computations be-

come relatively intense when all the possible segment likelihoods have to be

computed, therefore we used Reduced Filtering Recursions (RFR). In partic-

ular, we drew a subset of the 50 time points by choosing equispaced points

with an interpoint distance equal to 3. This generated a sample of 17 time

points, namely 1, 4, 7, . . . . Changepoints will be looked for within the sub-

set, therefore their location will not be exact; if the method performs well,

though, it should be very close to some, or all, the set changepoints τ1 = 15,

τ2 = 30, τ3 = 40.

A summary of the detected changes is in Table 4.6 for i.i.d. data and Table

4.7 for AR(1) data.

Table 4.6: Simultaneous search - detected changepoints on iid data

Model No of changepoints Location (no of repl.)

Fixed 1 28 (96/100)

Temporal 1 28 (63/100), 16 (33/100)

Spatial 0 —

Sp-temp 0 —
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Table 4.7: Simultaneous search - detected changepoints on AR(1) data

Model No of changepoints Location (no of repl.)

Fixed 1 28 (58/100), 13 (30/100)

Temporal 1 28 (43/100), 13 (33/100), 40 (10/100)

Spatial 0 —

Sp-temp 0 —

As regards i.i.d. data, first of all, we immediately see that the method

shows to be more conservative than the binary segmentation algorithms, as

it detects at most one change over data that actually have three changes. Its

performance is extremely similar to the BF method: one changepoint for the

homogeneous models, no changepoints for the inhomogeneous ones. Indeed,

we have pointed out the relationship with the Bayes Factor in Section 2.3.5.

As for the detected location, results are very sensible. In the fixed model,

the changepoint is identified as very close to t = 30, which is the location

of the change with the largest magnitude (from λ2 = 1.4 to λ3 = 2.3). As

soon as the temporal effect is included, a second possible location is high-

lighted (though only by a minority of replicates) that is the closest point to

the true changepoint location τ1 = 15. The small changepoint in 40 is never

detected. As happened more than once over the simulation study, the spatial

effect and spatio-temporal effect model lead to the detection of no significant

changepoints when combined with the simultaneous approach.

When time dependent data are analysed, there is no change in the conclu-

sions as regards the inhomogeneous models: again, as happens with all the

analyses carried out using the BF method, no changepoint is considered sig-

nificant. Nevertheless, results improve when working with the homogeneous

models. The number of detected changepoints is still 1, but the locations are

more evenly distributed close to the three true changes. The majority of the

locations are close to the change with the largest magnitude, i.e. τ2 = 30,

but there is a consistent percentage of replicates where the second largest

change, τ1 = 15, is (approximately) detected instead, and with the temporal

effect some of the replicates show a changepoint correspondent to the third

one, τ3 = 40. Further comments can be found in Section 4.4.
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4.3 Changes in the spatial structure

We now briefly check the performance of the proposed methods with a

more general inhomogeneous intensity function. As explained in Chapter 1,

we still look for changepoints over time, not over space, but we now aim at

detecting changes not only in the scale of the intensity function, but also in

its spatial structure.

4.3.1 General framework

So far, all the simulated data series are generated by choosing a constant

spatial structure for the intensity function and allowing for a change in scale,

i.e. a changepoint corresponds to a greater or smaller number of points,

which follow the same spatial distribution. We generate such data for two

main reasons: first of all, the real dataset that motivated the work presents a

spatial structure that is roughly constant over time, therefore changes mainly

concern the number of points. Secondly, this scenario represents a step to-

wards the analysis of inhomogeneous processes, without being too general,

and we consider it a good starting point for evaluating the performance of

the proposed methods.

Nevertheless, we would ideally like a methodology that is able to detect any

type of change over time in the intensity function of a inhomogeneous pro-

cess. Hence, we are now interested in relaxing the spatial assumption and

allowing the intensity function to change in space as well as in time, as hap-

pens in many real situations. This might lead to two more different types

of change: a change in structure, when the overall number of points remains

approximately the same but the spatial distribution changes, and a change

in both scale and structure.

We believe our methods to hold over this general situation as well: when

looking for a change with the proposed algorithms, we never specify that we

are looking for a different number of points; we try and split the data at all

different time points and look for the single equation (no changepoint) or

the product of M + 1 equations (M changepoints) that describe the dataset

best, irrespective of the type of change that occurred. Therefore, if we use a
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model that includes a spatial effect, we expect our methodology to be able

to identify changepoints in both space and time.

4.3.2 Design

We do not replicate the whole complex simulation study we carried out

and reported in this Chapter so far. We only want to test the performance

of our methods in detecting changes in the spatial structure as well as scale

on a restricted scenario. Indeed, for studying this situation we only work on

inhomogeneous i.i.d. data generated under the alternative hypothesis of one

changepoint. The spatially homogeneous case is of no interest here, and if the

method works for a single changepoint search it is straightforward to extend

it to multiple changes with the tools we provide. We use the same values for

T = 50, S = 400 and the same window W , and the changepoint is again set

in the centre of the time series, at t = 24. We cover both the case of only

spatial change and the case of spatial plus scale change. For data presenting

a change in both scale and spatial structure, we use the large magnitude

change, therefore we have 100 data series with Λ(1) = 1 for segment y1:24

and Λ(2) = 2 for segment y25:50. In conclusion, we have

1. Data with only a spatial change

• 100 replicates of data series with T = 50 time points

• 1 changepoint in t = 24

• same overall intensity strength across segments:

Λ(1) =
∑

s λ(1, s) = Λ(2) =
∑

s λ(2, s) = 1

• different spatial structure

– segment 1: higher values for top-right cells, lower values for

bottom-left cells

– segment 2: higher values for bottom-left cells, lower values for

top-right cells

2. Data with both spatial and scale change

• 100 replicates of data series with T = 50 time points
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• 1 changepoint in t = 24

• different overall intensity strength across segments:

– segment 1: Λ(1) =
∑

s λ(1, s) = 1

– segment 2: Λ(2) =
∑

s λ(2, s) = 2

• different spatial structure

– segment 1: higher values for top-right cells, lower values for

bottom-left cells

– segment 2: higher values for bottom-left cells, lower values for

top-right cells

An example of generated data can be seen in Figure 4.15.

Figure 4.15: Examples of generated data with a change in the spatial struc-

ture and in both spatial structure and scale

4.3.3 Results

Results for this extended simulation study are very good and show that

the proposed methods are able to detect all types of change, making them

even more valuable. A summary of the performance of the methods in terms

of power is displayed in Table 4.8.
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Table 4.8: Results summary for data with a change in spatial structure

Homogeneous data Inhomogeneous data

Model 1 Model 2 Model 3 Model 4

BF PT BF PT BF PT BF PT

Spatial

Power 0.38 0.44 0.42 0.26 1.00 1.00 1.00 1.00

Location – – – – 24 24 24 24

Estimate 0.95 0.95 0.97 0.97 1.05

1.00

1.03

1.01

1.06

1.02

1.04

1.00

Spatial and scale

Power 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Location 24 24 24 24 24 24 24 24

Estimate 1.00

1.95

1.00

1.95

0.99

1.96

0.99

1.97

1.06

2.00

1.01

2.00

1.03

2.01

1.02

2.00

Results for the first two models, with fixed and temporal effect, are very

similar for the BF and PT method. An example of the simulation output is

in Figure 4.16 concerning both data with only a change in spatial structure

(labelled as H1sp data) and data with change in scale and structure (labelled

as H1ss) for the fixed model with the PT method; for more (similar) results,

see Appendix A.

As regards data with only a change in the spatial structure, as expected

the first two models do not perform very well in detecting the change, since

the spatial effect is not included and they ignore the inhomogeneity in the

intensity function, i.e. they assume that the intensity function is constant

over space. It is nevertheless interesting to point out that, in the minority of

cases where the changepoint is detected, it is in the correct location t = 24.

For what concerns data with a change in both spatial structure and scale,

the change is correctly detected in all replicates even in the homogeneous

models, as a change in the number of points is recognized as changepoint

over all models.

As soon as spatial inhomogeneity and dependence are included (Models 3

and 4), results show that a changepoint is correctly detected in all replicates

(Figure 4.17 for a representative graph, and the Appendix for more graphs).

The power level is 1, and the location is correctly estimated in all datasets.
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Figure 4.16: Results for a changepoint search on data with a change in the

spatial structure, with the fixed effect model and the PT method
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Figure 4.17: Changepoint search on data with a change in the spatial struc-

ture, with the spatio-temporal model and the PT method - Power level and

location of the changepoint

As for the intensity estimates (e.g. Figure 4.18), since only a spatial

change takes place, the values for Λ(1) and Λ(2) are extremely similar.
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Figure 4.18: Changepoint search on data with a change in the spatial struc-

ture, with the spatio-temporal model and the PT method - Estimated inten-

sities
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We can appreciate a slight decrease in the estimated values from segment

1 to segment 2; this happens in all results as the original dataset is the same

(100 replicates of a inhomogeneous process under H1) and must be imputed

to the uncertainty linked to the single process realizations. However, all es-

timates are very close to 1, the initial set value. Over all cases the power is

1, the location is in 24 and the estimated values are close around 1 for the

first time segment and around 2 for the second segment. In particular, the

estimate for the second segment is very precise for the two inhomogeneous

models, while it is slightly underestimated in the first two models, due to the

lack of spatial effects.

There are no substantial differences in the performance of the BF and PT

method; the BF method performs even better than in the only-scale change

situation (previous simulation study), as it does not suffer from too much

conservatism and gives sensibly good results over all models, therefore gen-

eralising the type of change improves the BF method results.

4.4 Discussion

Our simulation study consisted in fitting four different model scenarios

over both i.i.d. and time dependent data, generated with single or multiple

changepoints and with a homogeneous or inhomogeneous intensity function;

100 replicates were produced for each case, over a square observation win-

dow. Once the models were fitted, Bayes Factor, SIC and Posterior Threshold

methods were applied to detect a single changepoint in the process intensity;

as for multiple changes, both some iterative techniques and a simultane-

ous search have been carried out. The first model, including only a fixed

effect, was more suitable for homogeneous i.i.d. series; the temporal effect

model for time dependent homogeneous data; the spatial effect model for

i.i.d. inhomogeneous data; finally, the spatio-temporal model fits the AR(1)

inhomogeneous time series best.
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4.4.1 Methodological discussion

Both the BF and the PT method results coincide with likelihood-based

results if we choose non informative priors in all cases; the likelihood for each

potential changepoint position is then rescaled so that the final distribution

integrates to one and is a proper posterior distribution. However, they show

two advantages with respect to likelihood-based methods: first of all, they

can be extended to any prior setting and exploit external knowledge; sec-

ondly, with this approach (approximate) results can be obtained even for

complex models including spatial and temporal dependence, which is not

currently the case with likelihood-based approaches.

The difference between the two methods is that the BF focuses on comparing

values under both hypotheses and has an absolute threshold, while the PT

looks at the posterior distribution of the potential changepoint positions and

has a tunable threshold.

The BF method is essentially the Bayesian likelihood ratio test: the values

under H0 and H1 are compared, in order to look for substantial evidence

in favour of the alternative model and detect the presence of changepoints.

Given that small positive values for the BF test are considered non substan-

tial, and given some computational issues linked to taking the exponent of

log-likelihood values, a more conservative version of the BF has been chosen,

and the value 0 considered an absolute threshold for rejecting (positive val-

ues) or non rejecting (negative values) H0. This conservative version has also

the advantage of easily reducing to the case of known potential changepoint

positions.

The PT method does not require the computation of the likelihood value

under H0: once the posterior distribution is produced, peaks raising above a

certain threshold are considered significant changepoints. This lack of com-

parison between null and alternative model can be unacceptable under a fre-

quentist approach, but is often used in Bayesian statistics. However, doubts

can be raised about the arbitrariness of the method. When available, prior

knowledge on the presence, possible number or locations of changepoints can

be incorporated in the threshold choice. As an alternative option, in order to

reduce the arbitrariness in choosing the threshold, this has been fixed as the
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lowest possible value allowing the probability of committing the type I error

to be kept below the usual limits (0.01, 0.05 and 0.1). This technique returns

a different threshold according to the model, which is a sensible choice con-

sidering that models including dependence allow for higher data variability,

and this must be kept in mind when fitting models to real data.

As a note on the PT method, the reader might notice that some of the pos-

terior distribution peaks do not raise above the threshold. This is due to

normalisation of the posterior curve: the threshold value is applied to every

single data segment throughout the algorithm implementation, as a proper

posterior distribution is obtained for every single segment. Once the change-

points are detected, the final posterior distribution is obtained by averaging

over the values for every segment pointwise, and rescaling in order to inte-

grate to one. This might flatten some peaks, that do not appear to raise

above the threshold in the final posterior, but are significant when the seg-

ments are analysed separately. This is how a binary segmentation algorithm

works, and is one of the reasons why these iterative approaches are often able

to detect more changes than simultaneous techniques.

The BF method proves to perform very well in simpler models, up to the

spatial one for the single changepoint detection and up to the temporal one

for the multiple changepoint detection. Results are in general very precise

and neat, with significance levels very close to zero and power levels very

close to one. When moving on to more complex models, though, the method

proves unable to detect changepoints, despite the high peaks shown in the

posterior distribution; again results are very neat as the power level abruptly

decreases from 1 to 0. It could be improved by substituting the segment

likelihood with more complex recursive methods for computing the overall

likelihood, as shown in Fearnhead (2006) and Wyse et al. (2011). The PT

method is more flexible, therefore its results, given the threshold choice, pro-

duce more grey zones but also more sensible conclusions, and hold over all

models. Different choices for the threshold can be made due to ad hoc ne-

cessities/knowledge, and our figures show the significance and power levels

corresponding to any threshold choice between 0 and 1. A summary of all

results for comparison purposes can be found in Table 4.2, 4.3, 4.4 and 4.5.

In the extension of our simulation study to changes in the intensity spatial
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structure (Section 4.3), though, both methods have a really good perfor-

mance (Table 4.8), therefore either can be used when a spatial change is

hypothesised.

4.4.2 Time dependent data

It is interesting to observe the difference between data generated as in-

dependent replicates within time segments and data showing a very strong

time dependence. The values taken by the latter are much less under control

once the series develops further away from the initial set values, therefore

the time dependent data variability is much higher and estimated values are

sometimes different from the initial ones. Moreover, changepoints other than

the fixed ones can be detected in the series. Indeed, in many cases they

are detected in H0 data and the locations are evenly distributed along the

series: on simulated data it is then easy to conclude that there is no specific

changepoint. Nevertheless, if there is no prior knowledge on the number or

nature of changepoints, and if only a single data series is available, this will

lead to the detection of a changepoint along the series. Note that this is

not necessarily a wrong conclusion, as a shift in the intensity value actually

takes place, but this changepoint is driven by the time dependence itself and

not by some external factor, therefore, depending on the analysis context,

the statistician must be careful in interpreting the phenomenon under study.

When more than one data series is available, though, little doubt remains as

the changepoints due to time dependence will change from one replicate to

the other, while the other ones will keep the same position. A positive result

given by the PT method is that when changepoints fixed a priori are present,

they are still detected above the other ones in most data series. This means

that changes due to external conditions are more recognisable than changes

due to the series variability, and if it is known that such changepoints are

present in a series, then our method will be able to identify them.

As for data generated under the alternative hypothesis, sometimes the poste-

rior distribution shows a peak in the correct location which is considered non

significant, but is still much higher than all other values. In such cases, if the

analysis focuses on locating a changepoint when it is expected or known that



4.4 Discussion 129

one is present in the series, despite the time dependence conclusions will still

be correct. In addition, an informative prior over the expected changepoint

will probably raise the peak above the threshold.

4.4.3 Multiple detection algorithms

For the multiple changepoint detection, for performance comparison pur-

poses, firstly a binary segmentation algorithm was implemented, then two

simultaneous changepoint searches were carried out.

For what concerns the iterative multiple changepoint search, we fix the max-

imum number of detectable changepoints to 4 for computational reasons, but

the method works for any number of changepoints. It is advisable to fix a

minimum segment length, though, as the INLA performance becomes unreli-

able if segments have very few data, besides in most studies it is not sensible

to detect changepoints too close to each other. As a further note, choosing a

binary segmentation algorithm means that at each step we carry out a single

changepoint search. This way, the BF method performance suffers from the

same problems as the single search: no detection of changepoints in models

with spatial dependence, when only a change in scale is considered. Indeed,

Wyse et al. state that if testing for more than one changepoint then binary

segmentation procedures can perform poorly.

As regards the simultaneous approaches, two have been implemented but

one of them has not been mentioned so far as it brought no methodological

novelty and was simply meant to check the performance of the PT method

further; indeed, we simply used the PT method to detect more than one

changepoint (i.e. more than one significant peak in the posterior distribu-

tion) in one single step. This simultaneous search method performs poorly:

if one change magnitude is higher than the others, the posterior mass will

concentrate at that position, and other peaks will not be detected. In the

simplest model one changepoint was detected in all replicates, and its posi-

tion located at an intermediate time point between 15 and 30, the two greater

changes; for the second model, the mode for the number of detected changes

is 1, and the highest peak is located in 30, though a few replicates also found

a second changepoint in 15; in the spatial model only the changepoint in 30
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was detected; even if the final model posterior distributions shows two peaks,

these have not been considered significant so no changepoints are detected.

The binary segmentation algorithm allows a deeper search which includes

minor but still interesting changes. This first simultaneous search method

has therefore been discarded.

The more complex simultaneous changepoint detection algorithm we imple-

mented exploits recursive equations following the idea of Wyse et al. (2011).

The authors argue that for data with temporal dependence within segments,

the approach performs better than a binary segmentation algorithm, though

they do not bring proof of that. As regards our spatio-temporal data series,

the simultaneous approach performs poorly with respect to iterative proce-

dures, since it only detects one change when combined with the homogeneous

models and no changes with the inhomogeneous ones. The (approximate) de-

tected location is close to the true changes, with a preference for the one with

the largest magnitude. The best performing model in finding the right lo-

cations is the temporal one, and is the type of model Wyse et al. work on:

on i.i.d. data, 30 and 15 are both identified, and on AR(1) data even the

small change in 40 is found in a few replicates. The concentration of the

resulting values around a few points over the replicates is a hint for multiple

changes. Possibly, better results (namely more than one significant change

per replicate) can be found when imposing informative priors.

As a final note on the multiple changepoint detection techniques, we would

like to highlight that these methods work similarly to the Information Cri-

teria used with likelihood-based approaches, i.e. they incorporate a penalty

for the number of parameters so that models with more changepoints are

not necessarily chosen. Indeed, as an example, in the binary segmentation

algorithm up to 4 changepoints were detectable, but a fourth one was hardly

ever found; moreover, in many scenarios less than three changes (i.e. two,

or even zero) were detected, meaning that a model allowing for more data

segments does not always describe data better. The same happens with the

simultaneous approach, that proves to be even too conservative on our data.
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4.4.4 INLA performance

The use of the INLA algorithm means all results are approximate, but

since the latent field is Gaussian the approximation is in general very accu-

rate; all estimated values computed with INLA are very precise and accurate,

given the detected changepoints. In all scenarios and cases the spatial struc-

ture of the intensity function and its smoothness have been perfectly cap-

tured; as for the estimated value (homogeneous process) or range of values

(inhomogeneous process) for the intensity, this is extremely close to the true

one in most cases, with departures from the initial values due to the lack of

detection of a changepoints, or to the time dependence within a segment. We

are therefore very satisfied with the INLA performance, for both computa-

tional time and produced results. A comparison to non parametric estimates

has been run for all scenarios, and in all inhomogeneous processes INLA per-

forms sensibly better as for reproducing the smooth spatial trend: the non

parametric estimates are generally reasonably good as far as the range of

values is concerned, but much more noisy as for the spatial structure. In ad-

dition, it is to keep in mind that when producing a non paramteric estimate

only a single value for each cell is available, while INLA returns the whole

posterior probability and we may choose any synthesis for the parameters (in

our work, mean and median). An example of the difference between INLA

and non parametric estimates is in Figure 4.19.

Figure 4.19: Comparison between a non parametric and a INLA estimate for

the segment intensity function

One of the issues that is commonly raised when working with INLA con-

cerns the resolution of the grid and the computational speed. The two aspects
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are closely connected, as in general a finer grid will lead to more accurate

but slower results. One of the INLA advantages, though, is that it assumes a

sparse covariance matrix; therefore, computational issues that are normally

linked to a dense matrix are not a problem here. This means that in many

situations a grid can be as fine as the statistician wishes, with a feasible

increase in computational effort. If computations are not prohibitive, it is

sufficient to choose a grid resolution that allows response data (counts) to

be ’sufficiently sparse’, meaning that a finer resolution will not affect the

conclusions substantially. In our work, we tried different grid sizes, and a

grid of 20x20 proved to be a good trade off between accuracy and time.

If an application needs an extremely fine grid and this leads to a prohibitive

computational time, there are other tools that allow the algorithm’s fastness

to be increased while keeping the information about the exact location of the

points. This is commonly referred to as the Stochastic Partial Differential

Equation (SPDE) approach ((Lindgren et al., 2011)).

A further issue concerns the validity of the Gaussian assumption. Ques-

tions can be raised about how accurate/wrong estimates would be with a

non-Gaussian field. This is currently under study by the INLA team, that

would like to extend the range of models that can be fitted with INLA. At

the moment, though, assuming a Gaussian Field is the only way to obtain

a fast solution for data with dependence. The advantage is that a Gaussian

distribution is a reasonable approximation in many applications.

4.4.5 Choice of the priors

In our work, prior distributions need to be set on many different pa-

rameters. First of all, they can concern both number of changepoints and

location conditional on the number. This depends on prior knowledge on

the occurrence of changes in a specific dataset. Moreover, prior distributions

concern the model hyperparameters, in particular for the temporal effect φ

and the spatial effect ψ. Since our present goal is not to test the sensitiv-

ity of results to changes in priors, we keep the default setting given by the

R-INLA package: for both effects, the only hyperparameter is the precision ν

which follows, as usual, a Gamma distribution ν ∼ Gamma(α, β). For both
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φ and ψ, the default values are set in order to give a non informative prior:

ν ∼ Gamma(1, 5e−5). This standard setting gives a good performance for

both the temporal and the spatial effect: in particular, the smoothness of the

spatial trend is well reproduced over time. We tried different options for the

hyperparameters; none of them were informative as this was not our point,

and we found no substantial change in the results, apart from the occurrence

of some spatial noise when the smoothness was not enough.

The choice of the smoothness is not always trivial: if a spatial random effect

is too smooth, it becomes flat and changes in the spatial structure can be

missed, while the opposite might lead to an overdetection of the changes.

Different settings should be tried when working with real data, that should

also incorporate knowledge on the phenomenon under study; thanks to the

computational efficiency of INLA, it is feasible to fit a model more than once

in a reasonable time, and this allows a proper sensitivity analysis to be car-

ried out for every specific situation.

It needs to be pointed out that the spatial smoothness also depends on the

grid resolution, and if this changes, in general the smoothness will change

as well. A very recent option has been added to the inla function, that

rescales the priors according to a change in the grid size, in order to keep a

constant spatial structure. For further information on this topic, we refer to

Sørbye (2013).





Chapter 5

Radioactive Particle Data

Analysis

After all the methodology is developed and a simulation study carried

out to assess the validity of the proposed methods, it is time to go back to

the original research questions.

In this Chapter, we present the real problem that is our motivating exam-

ple for the need of a changepoint analysis on the behaviour of the intensity

function and of a detection technique for point processes. Questions concern

both a multiple known changepoint and a multiple unknown changepoint

detection problem, as presented in Chapter 1.

The Chapter starts with a general introduction to the environmental prob-

lem and an historical review of the decommissioning process. Afterwards,

a standard preliminary analysis on the point pattern is carried out, in or-

der to detect clustering or repulsing behaviour and choose the most suitable

class of models. Then, the changepoint analysis results are shown; the Sec-

tion is quite brief as all models and methods are presented and discussed in

Chapter 3, and their practical implementation and the assessment of their

performance is in Chapter 4. Sections 5.5 and 5.6 present some extensions

of our work that might be of interest on real data application, such as the

introduction of covariates and of informative prior distributions on number

and location of the changepoints. Finally, some concluding remarks are pre-

sented.

135
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Please note that in this Chapter the time point (i.e. the year) labelled as the

changepoint is the first year of a new segment, as experience told this was

more intuitive when presenting a real application. For instance, if we mark

a change in 2003 this means the previous segment ends in 2002 and 2003

corresponds to the beginning of a new segment.

5.1 Introduction to particle data

The data we are working with are a collection of radioactive particles

that have been retrieved from Sandside beach, around Dounreay site, North

of Scotland. They present a hazard to the environment and individuals who

come in contact with them. From the early 1980s a retrieval process started

but is not finished yet. An analysis of the behaviour of particles over time

will help our understanding of the environmental processes whereby particles

arrive on the beach, and the longevity of the problem.

Our temporal data series is made of yearly point pattern realizations that

show the particles’ locations over the years on a single beach; additional

information about the retrieval location and time and radioactivity level also

labels each particle once it has been collected and examined.

Birth of Dounreay nuclear reactor

Dounreay is on the north coast of Caithness, in the Highland area of

Scotland, and was originally the site of a castle. Since the 1950s, it has been

the site of several nuclear research establishments, including a prototype fast

breeder reactor and a test for submarine reactors (www.dounreay.com). The

site was used by the United Kingdom Atomic Energy Authority (UKAEA,

Dounreay Nuclear Power Development Establishment) and the Ministry of

Defence (Vulcan Naval Reactor Test Establishment), and is well known for

its five nuclear reactors, three owned and operated by the UKAEA and two

by the Ministry of Defence. Dounreay was chosen as the reactor location

because of its isolation for safety reasons, in case of an explosion.

In 1994, the last reactor ceased operation. Dounreay Site Restoration Ltd

(DSRL) is the Site Licence Company (SLC) that manages and operates on
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Dounreay site in order to restore its previous conditions.

A map of the former nuclear area can be seen in Figure 5.1.

On April 1st 2005, the Nuclear Decommissioning Authority (NDA) became

the owner of the site, with the UKAEA remaining as operator. Decom-

missioning of Dounreay is planned to bring the site to an interim care and

surveillance state by 2036, and as a brownfield site by 2336, at a total cost

of £2.9 billions (Dounreay Particle Advisory Group, 2006).

Figure 5.1: Dounreay nuclear area (UK)

Source: www.dounreay.com

Decommissioning and particle clean up

Approximately 180 fuel processing facilities were built at the site. Some

are very straightforward to dismantle, while others require great care because

of chemical or radiological hazards. About 50 facilities have a presence of

radioactive materials, and special controls are needed to contain radiation.

Areas of ground have been polluted by radioactive materials and chemicals,

and need to be remediated. Apart from decommissioning reactors, repro-

cessing plant, and associated facilities, one of the main environmental issues

to be dealt with are radioactive particles on the seabed near the plant, esti-

mated (in terms of the potential number retrieved) about several hundreds
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of thousands in number (Dounreay Particle Advisory Group, 2006).

Radioactive particles are fragments of irradiated nuclear fuel discharged into

the sea during the 1960s and 1970s by a nuclear discharge outlet, located ap-

proximately 600 metres offshore on the seabed: through this undersea pipe,

old fuel rod fragments were released into the sea. The belief is that the

significant (> 106 bequerels of Caesium-137) particles are physically larger,

that they may be buried on the seabed and then brought to the surface by

storms; these larger particles might then physically fragment to give smaller

particles, less radioactive and more likely to be moved by tides and waves,

hence there is a winnowing. The further from the outlet point, the more

likely small and less radioactive particles are believed to be.

The firstly investigated areas, from the early 1980s, are the foreshore area

directly in front of the site, and the closest beach on the West, Sandside

beach, as tides and currents are likely to bring particles there: the very first

particle was retrieved in Sandside beach in 1984 (Tyler et al., 2010). The

particle population density is at its highest at Dounreay foreshore and Sand-

side beach. Other surrounding areas have been monitored, but the number

of particles recovered was extremely small (1 or 2). The Sandside beach has

been closed to public access since 1983 due to this danger. In 1999, vehicular

based beach monitoring was introduced (Tyler et al., 2010); prior to this,

the beach was monitored using hand held devices. The introduction of this

monitoring provided a time series of data which helped understanding the

distribution and movement of the particles. From 2008, a clean-up project

using Geiger counter-fitted robot submarines searches out and retrieves each

particle offshore individually, a process that will take years.

Presently, not all offshore areas have been surveyed yet. The most hazardous

particles are located within an area shaped as a ’plume’; the overall clean-up

is targeted at an area of seabed measuring 60 hectares with depth of water up

to 30 metres. By the end of 2012, all 60 hectares should have been covered

by the underwater detection and retrieval system, with some areas repeated.

The total coverage is 90 hectares. The last datasets used for the analysis

were updated in February 2013.

We focus on the Sandside beach area. Here are a few highlights in the clean-

ing process history.
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• 1984: starting of recovery of particles on Sandside beach with hand-

held Geiger counters

• 1999: starting of vehicular-based beach monitoring

• 2002, November: major change in equipment for Sandside beach

• 2007, January: change in equipment for Sandside beach

The changes in equipment appear to be followed by an increase in the number

of retrievals, with a higher number of detected particles with lower activities.

The observed Sandside area is (approximately) 526,400 m2. Particles recov-

ered from the seabed are returned to Dounreay and analysed, thus no particle

remains in the seabed or beach after being detected; particles are extremely

small, typically less than 2 mm in size (Figure 5.2 shows a particularly large

one).

Figure 5.2: One of the largest retrieved particles

Source: www.dounreay.com

The dataset consisting of all up to date particle retrievals is publicly

available, together with notes and reports, at www.dounreay.com. For each

particle, the Sandside beach dataset reports

• ID number

• Date of finding

• Easting coordinate (in metres)

• Northing coordinate (in metres)

• Depth in the sediment in centimetres (this could be considered as a

third dimension in the point pattern)
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• The Caesium-137 concentration (measured in bequerels, which is a con-

tinuous mark)

• Radioactivity category (depending on Cs-137 activity): Minor/ Rele-

vant/ Significant (categorical mark)

• Further comments

Coordinates are provided in UK national grid. We have also converted

them in decimal degrees (Latitude-Longitude) to plot them on GIS software

(www.arcgis.com).

The underlying intensity function behaviour of the Sandside beach dataset

is of interest, with particular focus on potential changes in its scale and/or

structure. The point patterns are given by the particles’ locations over the

years (we have used the annual cumulative cover).

The dataset presents some difficulties when a changepoint analysis is carried

out: the time series is not long (T = 15) and some annual patterns present

very few points, since in certain years the monitoring was limited. Still, the

questions presented in Chapter 1 are of interest, and the methods’ perfor-

mance has already been tested over simulated data, therefore we are ready

to try to give them an answer.

5.2 Exploratory analysis

All analyses in this Section are run using the R package spatstat(Baddeley

and Turner, 2005).

The observation window has been plotted around the particle data, account-

ing for the retrieval criteria: the Sandside beach area covers beach and low

water area (up to a depth of 300 mm).

The polygonal boundary has then been used in R to create the point pattern

and the (irregularly shaped) observation window. Both the selected area and

the point pattern plot in R can be see in Figure 5.3.

As an exploratory tool, we have produced a kernel intensity estimate of the

area. The single estimated value for λ does not look very representative, as
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we can see from the kernel plot in Figure 5.4 that the intensity is spatially

variable, i.e. inhomogeneous.

A plot of the data series is shown in Figure 5.5: every single datum is a

point pattern and they range from 1999 to 2013. Previous years have been

discarded as they contain an insufficient number of particles (< 5).

Figure 5.3: Selected observation window, Sandside beach

Source: www.dounreay.com

Figure 5.4: Kernel density estimate, Sandside beach
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Figure 5.5: Sandside beach data, yearly patterns

The following usual step in the analysis of a point pattern consists in

checking complete spatial randomness (CSR), regularity or clustering. The

results give hints about what kind of process we are facing and what kind of

models can, or can not, fit our data. The most common tests for CSR are

MCMC based and look for repulsive or clustering behaviour by measuring

the distance between points (see Section 2.1.2). The credibility intervals are

called envelopes and are created by repeated MCMC simulations from a ho-

mogeneous Poisson model with the same intensity value as the dataset. There

are three different tests, one based on the empty-space distance (i.e. the dis-

tance between an arbitrary location in the region and the nearest point of the

pattern), one on the pairwise distance (i.e. the distance between all possible

pairs of points of the pattern) and one on the nearest neighbour distance
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(i.e. the distance between each point and its nearest neighbour). All plots

are shown in Figure 5.6.

Figure 5.6: MCMC tests for Complete Spatial Randomness

All tests are run on the overall dataset, i.e. on the spatial point pattern

containing all the points of the data series. From the plots it is possible to

see that in all tests the empirical curve lies well outside the bands: this says

the overall Sandside pattern is not randomly scattered in the area and gives

hints for clustering.

Other non parametric, not simulation-based tests are presented in Section

2.1.2 for checking CSR. Some examples are Pearson’s Chi square test and

the Kolmogorov-Smirnov test, usually more powerful than the Chi square

test, which compares the distribution of a spatial covariate (as the spatial

coordinates themselves, or another available covariate) under the null hy-

pothesis of CSR with its empirical curve. All tests led to the same result:

rejection of the null hypothesis in favour of clustering. Plots are shown in

Figure 5.7.

In conclusion, the exploratory analysis shows some clustering which may be

mainly due to environmental reasons (discharge outlet, water stream etc.)

and possibly to particle interaction (e.g. the generation of sub-particles).

This suggests a Cox process should be particularly suitable for the data.
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Figure 5.7: Kolmogorov-Smirnov tests for Complete Spatial Randomness

5.3 Fitting Cox models

We fit a few different models mentioned in Section 2.1.1 (inhomogeneous

Poisson processes, Poisson cluster processes, area interaction processes; re-

sults not reported here) and then choose the more flexible and general class

of Cox processes, particularly suitable for modelling data with clustering due

to an underlying environmental driver.

We first fit a stationary Thomas process to the data, as it is a very common

Cox model, it is quite simple and it seems sensible to fit this model to the

particles (see an introduction to this process in Section 2.1.1). Indeed, the

model seems to fit the data very well, according to an MCMC goodness of

fit test based on 39 simulations (significance level α = 0.025). The goodness-

of-fit plot is shown in Figure 5.8.

A more flexible type of Cox models is the Log-Gaussian Cox Process (LGCP,

see Section 2.1.4). A stationary LGCP model with no effects fitted to our

data has a very similar performance to the Thomas model, with even better

results when the distance between points becomes really huge: see Figure 5.8

for a comparison. This similarity suggests that, as the Thomas process fits

the data so well, the LGCP is also very good for them.
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Figure 5.8: Thomas process and Log-Gaussian Cox process: a comparison

It is worth using LGCPs rather than Thomas processes because

• it is very straightforward to complicate these models by adding fixed or

random/smooth effects to the structured predictor (see Section 2.2.4);

• they can be estimated with INLA so the estimation is very fast (and

precise) even for complex models and this allows many different models

to be fitted without high computational effort;

• they look well-fitting the data and also realistically suitable for the

problem as the distribution of particles could be due to an underlying

driver.

The use of LGCPs is then motivated, and in the next Section we proceed

with the changepoint analysis using the methods presented in Chapter 3.

5.4 Changepoint analysis on particle data

In Section 2.2, we showed how INLA works in general and how to fit

LGCPs with this approach. In this Section, we fit all the LGCP models with

INLA and apply all the detection techniques presented in Chapter 3 to the

real dataset. We use the same practical procedures and functions presented
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in Chapter 4 for the simulated data. Where further notes are needed on how

to implement the methods, they are presented in this Section.

5.4.1 Preparing the data

The first task when dealing with a practical spatial problem and INLA is

to adapt the window to the INLA functions: having an irregular polygonal

window is an issue that we have not faced during the simulation study in

Chapter 4. Most of the R functions and commands for point process analysis

are created for a rectangular window, therefore a few preliminary steps are

needed for adapting the code. The procedure consists in

1. creating a rectangular box bounding the polygonal window (Figure 5.9,

panel 1);

2. building a regularly distributed dummy process that discretizes the

rectangular window into a cell grid: every point of the dummy process

is the centroid of a cell (Figure 5.9, panel 2);

3. counting the number of true process points in each cell; a vector of

counts Y is produced with the same dimension as the number of cells,

and this becomes the dataset of interest, as explained in detail in Sec-

tion 3.1 (Figure 5.9, panel 3);

4. selecting the polygonal window area out of the bounding box (Figure

5.9, panel 4).

In conclusion, we have

• W , an irregular shaped observation window;

• T = 15 yearly time points from 1999 to 2013, renumbered 1 to 15;

• S = 698 cells: the rectangular box was cut into 30 × 40 = 1200 cells

and all the cells with a centroid outside W were discarded;

• Y , a 15× 698 = 10470-dimensional response vector.
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Figure 5.9: Building the response variable with an irregular window

In this picture, the resolution of the grid is very rough in order to make it

readable. The actual resolution is much finer.

After adapting the functions to an irregular window, all the models used in

the simulation study can be fitted to real data; we run both a single and a

multiple changepoint analysis, keeping the maximum number of changepoints

to look for set to 3 as more than 3 would be too many for such a short time

series. We used both the Bayes Factor method and the Posterior Threshold

method presented in Section 3.2.4 for detecting single changepoints, and both

the binary segmentation and the recursive equations approach as in Section

3.3 for multiple changes. As in Chapter 4, at the beginning non informative

prior distributions are taken on number and position for the changepoints

and on all hyperparameters. An extension using different prior distributions

is given in Section 5.6.



148 5. Radioactive Particle Data Analysis

5.4.2 Single changepoint search results

For a single changepoint analysis, results are available for the four models

introduced in Section 3.2.2, using both the BF and the PT detection methods.

We recall here that Model 1 assumes a spatially homogeneous process and

only includes a fixed effect, Model 2 adds a random temporal effect modelled

as an AR(1), Model 3 allows for spatial heterogeneity and dependence thanks

to a random spatial effect modelled as a Random Walk in two dimensions,

and Model 4 includes both smooth effects. In general, two major peaks are

detected, both leading to an increase in the intensity function, and they are

very close to the changes in the equipment used to find and retrieve the

particles.

Bayes Factor method

When moving from one model to the following one and using the BF

method, results change, as it can be seen in the summary in Figure 5.10.

Models 1 and 3, which do not include a temporal effect, detect a change in

2006, while Models 2 and 4, with a temporal effect, show a higher peak in

2003. In particular, with the fixed effect model, a changepoint in 2006 is

detected, with an increase in the particle intensity. We know there has been

a change in equipment at the beginning of 2007, so this might give a hint

for an effective improvement in the ability of detecting particles. The time

points in the data series are quite different as for number of points, there-

fore the changepoint might be detected a year earlier because of a random

positive oscillation, after which the increase in the intensity level is due to

the equipment improvement. As can be seen from the changepoint posterior

distribution, though, there is another high peak corresponding to 2003, only

slightly lower than the 2006 one. This peak becomes significant when fitting

the second model, introducing temporal dependence, which leads to a detec-

tion of a changepoint in 2003, and perfectly coincides with the first change

in equipment at the end of 2002.
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Figure 5.10: BF performance, single changepoint search
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As happens when using the BF method with simulated data, there are

no changepoints detected in the two inhomogeneous models, despite the fact

that the spatial model posterior shows a very high peak, above 0.8, in 2006

and a second one in 2003, while the spatio-temporal model posterior has a

peak around 0.5 between 2002 and 2003. They are considered non-significant

using the BF method, therefore changepoints are present in the data series

only if fitting the two homogeneous models.

Posterior Threshold method

As for the PT method, threshold values are chosen based on the simula-

tion results: a low threshold of 0.2 for the first model, an only slightly greater

one, 0.25, for the second model, and much higher values, 0.85, for the third

and fourth model. In general, results are consistent with the simulation re-

sults: coherent conclusions with respect to the BF method results for the two

homogeneous models, but more changepoints detected when moving to the

inhomogeneous models. Results are all shown in Figure 5.11. Indeed, a sig-

nificant changepoint in 2006 is detected when fitting the fixed effect model,

with a peak raising high above the threshold; the second peak in 2003 is

also above the threshold, so, even if discarded at the moment because we

are looking for a single changepoint, it suggests the usefulness of a multiple

changepoint search. Coherent results with regard to the BF method are also

achieved with the second model: a major changepoint in 2003, determin-

ing an increase in the particle intensity. Results change with respect to the

BF method conclusions when fitting the spatial inhomogeneous model: the

peak in 2006 is considered significant, therefore the INLA estimates are split

into two images for the two segments, with a similar spatial structure and

a different scale. Here too, a visible second peak in 2003 hints at the need

to look for further changes. The posterior distribution of the fourth model,

showing a peak that reaches 0.5, does not raise above the threshold, therefore

no changepoints are detected when allowing for both spatial and temporal

dependence.
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Figure 5.11: PT performance, single changepoint search
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Results for the single changepoint search are summarised in Table 5.1.

Table 5.1: Single search - detected changepoints

Model Changepoint (BF) Changepoint (PT)

Fixed 2006 2006

Temporal 2003 2003

Spatial — 2006

Sp-temp — —

When looking at the data behaviour, models assuming a homogeneous in-

tensity do not seem very suitable for our data: the kernel intensity estimates

(Figure 5.5) show an inhomogeneous behaviour, whose structure is substan-

tially constant over time up to a scale parameter, with a main hot spot in

the bottom-right area and a second one in the bottom-left part, and lower

density in the top half of the window. This visual approach suggests data

are better described with the third or fourth model, and show a similar be-

haviour to the simulated data presented in Chapter 4, which kept a constant

spatial structure and only showed a change in scale. If further investigation

is of interest about the best model for the data, the Deviance Information

Criterion can be used as introduced in Section 3.5.

5.4.3 Multiple changepoint search results

Again, we follow the same procedure used for the simulation study, i.e. we

implement a binary segmentation algorithm combined with both BF and PT

methods, and then we try a simultaneous multiple changepoint search with

the recursive equation approach.

A summary of the resulting changepoints is given in Table 5.2.
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Table 5.2: Multiple search - detected changepoints

Model Binseg-BF Binseg-PT Simultaneous

Fixed 2003, 2006, 2012 2003, 2006, 2012 2006

Temporal 2003 2003, 2006, 2012 2003

Spatial — 2006, 2012 —

Sp-temp — — —

Binary segmentation algorithm and BF method

All results for a multiple search with the BF method are in Figure 5.12.

The most interesting result obtained by the BF method is found when fitting

the fixed effect model: three changepoints are considered significant, corre-

sponding to 2003, 2006 and 2012. The first two of them correspond to (or are

close to) the equipment changes and mark an increase in the point intensity;

this means the change in equipment has significantly improved the ability

of detecting particles. The third changepoint is very close to the end of the

series, therefore conclusions must be drawn carefully; it gives a hint for a de-

creasing intensity, and might be a sign that the offshore retrieval campaign

has recently efficiently reduced the arrival of particles in the Sandside area.

When adding a temporal effect, the analysis produces the same results as for

a single changepoint search, with the only changepoint detected in 2003; the

second step of the algorithm identifies a potential change in 2006 but it is

discarded by the method as non significant. As for the two inhomogeneous

models, the single changepoint search had not produced any significant de-

tection, so there is no change in the conclusion when running the multiple

changepoint detection algorithm, and no changepoints are identified.



154 5. Radioactive Particle Data Analysis

Figure 5.12: BF performance, multiple changepoint search
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Binary segmentation algorithm and PT method

The fixed effect model fitting again leads to the same conclusions as the

BF method: three changepoints detected in 2003, 2006, 2012, the first two

marking an increasing intensity, and the last one corresponding to a decrease.

This time, the same conclusions are drawn when adding a temporal effect: 3

changepoints, two increasing and one decreasing, in 2003, 2006, 2012. Fitting

the spatial model and plotting the posterior curve with a threshold of 0.85

leads to the detection of two changepoints in 2006 and 2012; there is a third

peak between 2002 and 2003 but it remains below the threshold. As in the

single search, when fitting the last model with a threshold of 0.85 there are no

changepoints. Given the similarity between fixed and temporal model, and

the absence of novelty brought by the spatio-temporal model, graphs are only

displayed for the temporal and the spatial model in Figure 5.13; in order to

distinguish them from non significant peaks, all the detected changepoints

are identified by a dashed vertical red line.

Simultaneous changepoint search

As we have seen for the simulation results in Chapter 4, here too the

simultaneous changepoint detection approach (Wyse et al., 2011 and Sec-

tion 2.3.5) suffers from too much conservatism. Again, this is probably due

to the connection with the BF method. Results are nonetheless consistent

with what detected with the other methods. Indeed, a changepoint in 2006

is detected with the fixed effect model and one in 2003 when including the

temporal effect. The other two models do not lead to the detection of sig-

nificant changepoints, even if year 2006 is a borderline value with the spatial

effect.

Since all computations here are based on the INLA approach, given the de-

tection of the changepoint there are no differences as regards the estimated

intensity functions. We therefore do not report results for the estimates.
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Figure 5.13: PT performance, multiple changepoint search
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5.5 Inclusion of covariates

When introducing the dataset (Section 5.1), we listed the available infor-

mation including data on the radioactivity level and depth in the sediment of

the retrieved particles. This is part of the response and is usually referred to

in point process analysis as marks. Additional information is also available,

though, that is contextual and does not depend on the particles themselves;

it can be exploited to improve the models and further check the methods’

performance.

5.5.1 Introducing covariates

Two covariates in particular may be useful for analysing the particle dis-

tribution over Sandside beach: the distance from the nuclear discharge outlet,

that is considered the main source for particle dispersion, and the distance

from the ’low water level’, i.e. the northern boundary of the observation win-

dow, since the particle arrival from the offshore area must depend on tides

and currents.

Figure 5.14 shows both distances; as can be seen, the range of values is very

different as the low water level is part of the window border, while the nu-

clear discharge outlet is far away from the beach in the North-East direction.

We are inclined to believe that the nuclear discharge does not have a sig-

nificant effect on the distribution of particles, because the distance is high

and there are several intervening environmental processes; for instance, the

U-shaped coast around the beach (Figure 5.1) is likely to nullify potential

long-distance effects. Nevertheless, we test both covariates separately on our

data in order to check their ability to add useful information for describing

the phenomenon under study.
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Figure 5.14: Covariates (distance in metres)

5.5.2 Extensions of the models

We introduce the two covariates in our models, one at a time, as fixed

effects. The models become:

• Model 1: fixed effect and covariate

log λ(t) = µt + βtz + εt for t = 1, . . . , T

• Model 2: fixed effect, covariate and temporal effect

log λ(t) = µt + βtz + φt + εt for t = 1, . . . , T

• Model 3: intercept, covariate and spatial effect

log λ(t, s) = δ + βtz + ψts + εts for t = 1, . . . , T and s = 1, . . . , S

• Model 4: intercept, covariate, temporal effect and spatial effect

log λ(t, s) = δ + βtz + φt + ψts + εts for t = 1, . . . , T and s = 1, . . . , S.

We refer to Section 3.2.2 for details on the notation; here, z indicates the

single covariate. As usual, under H0 each effect takes a single value over

time, while under H1 it takes m + 1 values where m ≥ 1 is the unknown

number of changepoints. We apply all our detection methods considering

each covariate separately.

5.5.3 Results and discussion

A summary of the obtained results is in Tables 5.3 for a single changepoint

search and 5.5 for a multiple changepoint search.
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Single search: comparison and comments

Table 5.3: Single search - detected changepoints with either covariate

Nuclear discharge Low water level

Model BF PT BF PT

Fixed 2003 2003 2006 2006

Temporal — 2003 — 2003

Spatial — 2006 — 2006

Sp-temp — — — —

When comparing Table 5.3 to Table 5.1, the first thing to note is that

with Model 1 (fixed) results depend on the covariate. Using the distance

from the low water level leads to the same results as the analysis without

covariates, while including the distance from the nuclear discharge outlet has

a similar effect to including a temporal component: year 2003 is chosen as

the changepoint. Besides, including a covariate in Model 2 (temporal) has a

negative effect on the BF method, since it is now unable to detect any change-

point. Results remain the same as regards Model 2 with the PT method and

Model 3 (spatial) and 4 (spatio-temporal) with either method and covariate.

In conclusion, when covariates are included in a single changepoint search

no increase in the ability to find changepoints takes place: the PT method

seems unaffected by covariates, and the BF method tends to be even more

conservative.

It would be of interest to carry out a model comparison and see if a model

with one of the covariates is preferred to the corresponding one with no co-

variate. The Deviance Information Criterion (DIC) may be used as it is

frequently used in Bayesian analysis for model selection. Since this is not

the main focus of our work, we only show an example of the DIC for a single

search and leave a deeper analysis for further studies; values are in Table 5.4.

In this Table, we can see that when using Model 1 the addition of the dis-

tance from the nuclear discharge improves the DIC, while the distance from

the low water level has no effect. As for Model 2, no improvements take

place: when using the BF method, no changepoints are found, so the DIC
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Table 5.4: Single search - DIC values

No covariate Nuclear discharge Low water level

Model BF PT BF PT BF PT

Fixed 599 599 234 234 598 598

Temporal 239 239 2080 243 2077 243

Spatial 1949 1864 1951 1081 1951 648

Sp-temp 1853 1853 1855 1855 1855 1855

under H0 is far higher than the other ones; when using the PT method, there

are no substantial changes. The DIC for Model 2 shows a consistent improve-

ment with respect to Model 1 when no covariate is used (the temporal model

would be chosen as the best model among the four of them), but the best

performance is given by the fixed model with the inclusion of the distance

from the nuclear discharge outlet. As regards Model 3, the inclusion of the

covariates has a strong positive effect, especially with the distance from the

low water level, if combined with the PT method: the model performs much

better than the one without covariates. No changepoints are detected with

Model 4 irrespective of the method and of the inclusion of covariates; H0 is

never rejected and all DICs are very high.

Multiple search: comparison and comments

The detected changepoint location for a binary segmentation procedure

with either the BF or the PT method and for a simultaneous approach are

reported in Table 5.5.

Table 5.5: Multiple search - detected changepoints with either covariate

Nuclear discharge Low water level

Model Binseg-BF Binseg-PT Simult Binseg-BF Binseg-PT Simult

Fixed 2003 2003 2006 2012 2003 2006 2003 2006 2012 2006

Temporal — 2003 2006 2012 — — 2003 2006 2012 —

Spatial — 2006 2012 — — 2006 2012 —

Sp-temp — — — — — —
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The binary segmentation combined with the PT method is unaffected by

either covariate: results are exactly the same as in Table 5.2 for all models.

The binary segmentation with the BF method and the simultaneous search

lead to the same results, which are roughly the same as for the single search in

Table 5.3: in Model 1, the inclusion of the distance from the nuclear discharge

outlet shifts the changepoint from 2006 to 2003, while in Model 2 considering

any of the two covariates leads to the detection of no changepoint. No other

change occurs with respect to Table 5.2, and conclusions are extremely similar

to the simple single search ones.

Concluding remarks

This Section is only a first step towards the inclusion of covariates and

the search for a good model for the data. Different options for including

covariates can be tested: for instance, they can be modelled as smooth effects

or can be included jointly. In this work, we do not aim at a complete analysis

on the covariates; the scope of our work has already been clarified and focuses

on spatial and temporal dependence. Since the available information is of

interest on real data, though, we choose to give a hint of what can be done to

improve our models and to show that our methods still produce good results.

Indeed, linear dependence on a covariate does not substantially affect results

on these data. We are in general still able to detect changes and the only

relevant differences concern BF-based detection techniques: a changepoint is

detected in 2003 instead of 2006 when fitting Model 1 with the distance from

the nuclear discharge outlet, and no changepoint is detected in Model 2. A

comparison of the DIC values for the single search highlights a preference for

the first model combined with the distance from the nuclear discharge outlet,

or (with very close values) for the second model.

5.6 Informative prior settings

In the simulation study presented in Chapter 4, all prior distributions are

non informative, as the scope of the study is to test the ability of the meth-

ods to detect changepoints irrespective of the prior setting. When working
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with real data, though, prior knowledge can be of help in obtaining sensi-

ble results. In particular, one of the research questions presented in Section

1.1.2 concerns two known potential changepoints corresponding to equipment

changes. So far, we focused on the more general case of unknown locations,

but it is of interest to check the performance of our methods in the presence

of informative priors. Non vague prior distribution may, in this context, re-

gard the number of changepoints and/or their positions. We try both cases

separately.

5.6.1 Number of changepoints

Firstly, we focus on prior knowledge concerning the number of change-

points. Since we believe that there are two main changepoints, we focus on

multiple changepoint detection techniques, in particular on the simultaneous

search for two main reasons. First of all, the approach presented in Section

2.3.4 allows separate prior distributions on number and locations to be set;

secondly, the simultaneous approach produced conservative results on our

data (Section 5.4.3), so we are interested in improving the method by in-

cluding extra information. Moreover, the binary segmentation algorithms do

not need diffenrent prior distributions, as they have already detected the two

changepoints of interest in most cases with no addition of extra knowledge.

We compare results with four different prior settings: a non informative one

(presented in Section 5.4.3) and three different belief strengths:

1. Prior 1 - vague

π(m) = 0.25 for m = 0, 1, 2, 3

2. Prior 2 - weak

π(2) = 0.4

π(m) = 0.2 for m = 0, 1, 3

3. Prior 3 - medium

π(2) = 0.6

π(m) = 0.13 for m = 0, 1, 3

4. Prior 4 - strong
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π(2) = 0.8

π(m) = 0.07 for m = 0, 1, 3

The four prior distributions are shown in Figure 5.15.

Figure 5.15: Prior settings on the number of changepoints

After choosing the priors, the same simultaneous changepoint search is

run; then, the conditional likelihoods L(Y |m), m = 0, . . . , 3 are multiplied by

the corresponding prior probability before choosing the highest one. Results

are displayed in Table 5.6. Note that the column referring to Prior 1 is the

same as the results displayed in Table 5.2, since the prior is non informative.

Table 5.6: Simultaneous search with different prior settings

Model Prior 1 Prior 2 Prior 3 Prior 4

Fixed 2006 2003,2006 2003,2006 2003,2006

Temporal 2003 2003,2006 2003,2006 2003,2006

Spatial — — 2003,2006 2003,2006

Sp-temp — — 2000,2003 2000,2003

With the first two models, a weak belief that there are two changepoints

is sufficient for detecting the changes in the equipment, while Model 3 and

4 allow for more data variability, therefore they need a strongly informative

prior setting in order to detect any change. When fitting Model 3, conclu-

sions are consistent with the rest of the results, while Model 4 leads to the

detection of a different changepoint in 2000, which had never been found

before. In conclusion, the use of an informative prior setting allows the first
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research question to be fully answered by detecting positive changes in the

intensity of the process corresponding, in most cases, to the improvements

in the equipment. The simultaneous approach is substantially improved by

the addition of extra knowledge via informative prior distributions, as its

conservatism is overcome.

5.6.2 Changepoint positions

Another option is to use information about the changepoint positions (in a

changepoint search with an unknown number of changepoints the two options

can be combined). Since the two equipment changes took place at the end

of 2002 and at the beginning of 2007, we fix peaks in the prior distributions

corresponding to 2003 and 2007, firstly one at a time (for a single search),

then jointly (for a multiple search). Three prior distributions with different

peak heights are set for each case, where the first one is non informative and

coincides with the previous analysis. For a single search with a prior peak in

2003

1. Prior 1 - vague

π(τ) = 0.083 for τ = 2000, . . . , 2011

π(τ) = 0 for τ = 1999, 2012, 2013

2. Prior 2 - weak

π(τ) = 0.2 for τ = 2003

π(τ) = 0.073 for τ = 2000, 2001, 2002, 2004, . . . , 2011

π(τ) = 0 for τ = 1999, 2012, 2013

3. Prior 3 - strong

π(τ) = 0.5 for τ = 2003

π(τ) = 0.045 for τ = 2000, 2001, 2002, 2004, . . . , 2011

π(τ) = 0 for τ = 1999, 2012, 2013

The same setting is replicated for a changepoint in 2007. Extreme values

have a null prior probability as we set a minimum segment length of 2 time

points.

For a multiple search
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1. Prior 1 - vague

π(τ) = 0.083 for τ = 2000, . . . , 2011

π(τ) = 0 for τ = 1999, 2012, 2013

2. Prior 2 - weak

π(τ) = 0.2 for τ = 2003, 2007

π(τ) = 0.06 for τ = 2000, 2001, 2002, 2004, 2005, 2006, 2008, 2009, 2010, 2011

π(τ) = 0 for τ = 1999, 2012, 2013

3. Prior 3 - strong

π(τ) = 0.4 for τ = 2003, 2007

π(τ) = 0.02 for τ = 2000, 2001, 2002, 2004, 2005, 2006, 2008, 2009, 2010, 2011

π(τ) = 0 for τ = 1999, 2012, 2013

All prior distributions are displayed in Figure 5.16 (single peak) and 5.18

(multiple peaks).

Single changepoint detection

We fit Model 1 to 4 with six different prior settings, three for 2003 and

three for 2007, as shown in Figure 5.16. Then, we look for a changepoint

with both the BF and the PT method.

Figure 5.16: Prior settings on the changepoint position
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Results for the BF method are summarized in Table 5.7, while results for

the PT method are in Table 5.8.

In both Tables, it is immediate to see that the inclusion of an informative

Table 5.7: Single search with different prior settings and the BF method

Model Vague Prior on 2003 Prior on 2007

prior Prior 2 Prior 3 Prior 2 Prior 3

Fixed 2006 2006 2006 2006 2006

Temporal 2003 2003 2003 2003 2003

Spatial — — — — —

Sp-temp — — — — —

Table 5.8: Single search with different prior settings and the PT method

Model Vague Prior on 2003 Prior on 2007

prior Prior 2 Prior 3 Prior 2 Prior 3

Fixed 2006 2006 2006 2006 2006

Temporal 2003 2003 2003 2003 2003

Spatial 2006 — — 2006 —

Sp-temp — — 2003 — —

prior with a single peak does not affect the result in most cases. When

using the BF method, no difference in the results occurs. With the PT

method, changes in Model 3 results decrease the ability to find changes, as

the changepoint in 2006 is not detectable when imposing a prior peak on 2003

(or a very strong one on 2007); indeed, showing a preference for 2003 flattens

the other peaks so that 2006 becomes non significant, still the preference

is not powerful enough to raise the posterior probability in 2003 above the

threshold. The only new changepoint occurs when fitting Model 4 with a

strong prior on 2003: the posterior distribution raises above the threshold

thus, for the first time with respect to results deriving from non informative

priors, we have a significant changepoint with the spatio-temporal model.

We can see how posterior distributions change as we take different prior

distributions in Figure 5.17; the threshold for the PT method is also reported.
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Figure 5.17: Posterior distributions resulting from different priors
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Multiple changepoint detection

We again fit Model 1 to 4 with different prior settings for two changepoints

corresponding to the equipment changes (Figure 5.18). We use both the

binary segmentation algorithm and the simultaneous approach to look for

changepoints.

Figure 5.18: Prior settings for two changepoints

Results for the binary segmentation method are in Tables 5.9 and 5.10,

while changepoints detected with the simultaneous approach are summarised

in Table 5.11.

Table 5.9: Multiple changepoint search with different prior settings, the bi-

nary segmentation algorithm and the BF method

Model Vague Prior on 2003 and 2007

prior Prior 2 Prior 3

Fixed 2003 2006 2012 2003 2006 2012 2003 2006 2012

Temporal 2003 2003 2003

Spatial — — —

Sp-temp — — —

As for the single search with the BF method, a multiple changepoint

analysis with the binary segmentation and the BF method (Table 5.9) does

not depend on the prior distributions on the changepoint locations: results

are identical to what obtained with a vague prior (see also Table 5.2). Again,

there is an analogy to the single search when using the PT method; fitting
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Table 5.10: Multiple changepoint search with different prior settings, the

binary segmentation algorithm and the PT method

Model Vague Prior on 2003 and 2007

prior Prior 2 Prior 3

Fixed 2003 2006 2012 2003 2006 2012 2003 2006 2012

Temporal 2003 2006 2012 2003 2006 2012 2003 2006 2012

Spatial 2006 2012 — —

Sp-temp — — 2003

Table 5.11: Simultaneous multiple changepoint search with different prior

settings

Model Vague Prior on 2003 and 2007

prior Prior 2 Prior 3

Fixed 2006 2003 2003

Temporal 2003 2003 2003

Spatial — — —

Sp-temp — — —

Model 3 with an informative prior on 2003 and 2007 decreases the ability to

detect changes, which become non significant. The improvement in Model 4

also occurs with a multiple search: when imposing strong peaks, the change-

point in 2003 raises above the threshold.

With a simultaneous approach, there is no improvement in the ability to de-

tect changepoints; it is to remark that a non vague prior leads to preferring

a changepoint in 2003 rather than in 2006 even with the fixed model.

5.7 Discussion

In this Chapter, we go back to the original research questions that mo-

tivated the whole study, after providing all the needed methodology and

method assessment: since the performance of the methods has already been

evaluated with simulated data, we know when to rely on the results and when
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they can be, e.g., too conservative.

We first follow the usual preliminary steps in a point process analysis. We test

Complete Spatial Randomness with MCMC distance based tests and reject

it in favour of a clustering behaviour. We motivate the use of Log-Gaussian

Cox processes via goodness of fit tests and privilege this class of models over

others for reasons such as flexibility and compatibility with INLA, which pro-

vides fast estimates even for complex models. After choosing the right class

of models, we can apply our new changepoint methods and draw conclusions

on the data behaviour. As a last step, we add some external information such

as including covariates and trying informative prior settings on the number

or locations of the changepoints.

According to the overall results, both the improvements in the equipment

and the offshore retrieval process have had positive effects in the intensity

of the process. The constance in the spatial structure of the intensity sug-

gests that future search of radioactive particles should emphasise the bottom

part of the Sandside beach, where the greater number of particles tends to

concentrate.

5.7.1 Remarks on standard changepoint analysis

Firstly, we carried out the same changepoint analysis as in Chapter 4,

with no addition/change in the models.

Results must be interpreted carefully since the time series is very short, but

they are sensible given the context, and there is a general, comforting con-

sistency over all the results: two major changes are detected, corresponding

to two peaks in the posterior probability of the changepoint position. They

correspond to 2003 and 2006, and they both mark an increase in the inten-

sity function. The spatial structure of the function remains approximately

the same, with higher values in the bottom half of the observation window

and lower values in the top half; its strength, or scale, increases after the

two changes. We know from the data history that two major changes in the

equipment used to detect the particles have taken place, one at the end of

2002 and the following at the beginning of 2007. We then hoped to find two

positive significant changes in 2003 and 2007; results are very close to what
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expected, with a shift of one year in the second change that might be due to

natural random oscillation in the data. When running a single changepoint

analysis, there are no different changepoints found. For both BF and PT

methods, we note that the peak in 2003 is favoured when including temporal

dependence in the model, while the change in 2006 is detected for the fixed

and spatial models. This supports the thesis of a positive random increase

in the data just before the second change: if we do not consider time depen-

dence in the data series, the peak in 2006 is detected first, probably because

it is the greatest in terms of scale shift. When including time dependence,

though, this peak becomes smaller than the one in 2003, thus the temporal

model results suggest that part of the change in 2006 is imputable to time

dependence. Despite this, the second peak is still visible in all models and

must not be discarded. Therefore, there is good support for stating that the

changes in the equipment have been effective in improving the ability to find

nuclear particles in the area.

As for the multiple changepoint search, the two peaks in 2003 and 2006 are

still among the detected ones, with, again, a preference for the first one in

the temporal model and for the second one in the fixed effect and spatial

model. In addition, a further change in 2012 is detected when a binary seg-

mentation algorithm is implemented. The third change point is very close

to the end of the series, therefore conclusions must be drawn with a special

care; it gives a hint of a decreasing intensity, which could be related to the

offshore retrieval campaign, suggesting a reduction of the arrival of particles

on Sandside beach.

5.7.2 Inclusion of extra information

In this Chapter, we also bring some novelty with regard to what has been

done so far, as we take a first step towards the inclusion of external knowl-

edge to potentially improve the models in order to explain the phenomenon

under study better.

First of all, we add two possible covariates, the distance to the nuclear dis-

charge outlet that is presumably responsible for the particle spreading off-

shore, and the distance from the low water level; we refit all the models and
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apply all our methods including one covariate at a time. In general, we can

say the distance from the low water level has a scarce effect on the change-

point detection, while the distance from the nuclear discharge outlet leads

to a preference for the changepoint in 2003. Apart from this effect, the PT

method (both in a single and multiple detection context) shows no changes

when either covariate is included. The effect on the BF based search and on

the simultaneous approach is negative as results become even more conser-

vative. A comparison of the DIC values (that depend on the number and

location of the detected changepoints) shows the preferred options are the

temporal model with no covariate or with the distance from the low water

level, or the fixed model with the distance from the nuclear discharge outlet.

Model 3 and 4 have higher DICs because of the inability to detect significant

changes.

Then, we exploit knowledge concerning the two changes in the equipment to

set informative prior distributions on the number or locations of the change-

points. As for their number, different peak heights on m = 2 are tested

with the simultaneous approach. This leads to a substantial increase in the

method performance, as regards the number of changes: the conservatism

is overcome, two changepoints are detected, results are consistent about the

changepoint locations and, above all, when imposing a stronger prior the

changes in the equipment become significant even with more complex mod-

els. For the first time, we detect changepoints with the spatio-temporal

model. Fixing an informative prior on the number of changepoints has a

more positive effect than a prior on the changepoint locations. When setting

peaks corresponding to 2003 and 2007, the only remarkable modification in

the results concerns the PT method: with a strong prior, a changepoint in

2003 is detected with Model 4. No other substantial changes or improve-

ments take place; in general, the changepoint in 2003 is preferred to the one

in 2006/2007. This is probably also due to the fact that the change in the

equipment that took place at the end of 2002 is more radical than the second

one (see Section 5.1).

Further steps in the analysis of the process should extend the inclusion of

available information to marks, such as the depth in the sediment or the

radioactivity level, and focus on finding the best model for the data.



Chapter 6

Conclusions and Final

Discussion

Detailed concluding remarks regarding specific aspects of our work can be

found at the end of each Chapter. In this final Chapter, we firstly summarise

the project and the main findings. Afterwards, we highlight the novelty and

contribution of our work to the fields of changepoint analysis and of point

process analysis and we motivate the choice of a Bayesian approach. Lastly,

a few hints at possible further directions for the study and the most recent

developments are outlined.

6.1 Work review

Our work aims at developing new methods for a changepoint analysis

on the inhomogeneous intensity function of a spatio-temporal point process.

We consider the most general case of multiple unknown changes, and are

interested in both detecting the change locations and estimating the change

type and its magnitude. Dealing with spatio-temporal data, the estimated

intensity for each time segment is a two dimensional pixel image. Estimates

of the segment parameters are not always the first goal of a changepoint anal-

ysis, as sometimes the interest only lies in detecting where the changepoint

lies, however our method also provides accurate estimates for a wide range

of problems.
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6.1.1 Assumptions

The assumptions and restrictions that need to be made when using our

methods are not strong. The process can be inhomogeneous and the intensity

function is only constrained to be smooth. Any type of change over time can

be detected: in scale, in spatial distribution or in both. Any prior setting

is acceptable and only influences the total computational time, which is still

feasible and can be further improved thanks to recent developments in the

INLA methodology, if needed. Data are Poisson distributed in our work but

may follow any distribution. There is no independence assumption except

between time segments. Dependence can be both spatial and temporal, either

small scale dependence or wide and smooth, either strong or weak, as long as

all the parameters can be assumed to belong to a Gaussian Field. There is no

limitation on the number of changepoints and reasonably weak assumptions

on their locations (they have to be ’not too close’ to each other). Therefore,

this method covers a very wide range of real situations.

6.1.2 Work summary

We start by presenting the motivating issues which include both theoret-

ical and practical questions.

As for the theory, we want to know what happens if a changepoint analysis

is run on a spatio-temporal point process instead of traditional time series:

first of all we have three dimensions, two spatial and one temporal, and

we want our method to be able to keep the information about all of them;

secondly, we can have different types of change over time and our method

should be able to detect any of them and, ideally, to distinguish between

them; besides, the dataset is quite complex and a long computational time

may be required to obtain results. The other theoretical assumption that

is usually made in changepoint analysis is that data are i.i.d.. If they are

not, spatio-temporal data can show many types of dependence, both in space

(between events at a specific time point) and in time (within time segments);

in particular, when temporal dependence is allowed, traditional changepoint

detection techniques do not offer a solution as, except for trivial situations,

the segment marginal likelihood is not tractable. This generates a need for
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fast and accurate approximate computational methods.

As for the practical aspect, we have an interesting dataset concerning the

collection of radioactive particles on a beach, and the objective consists in

understanding the behaviour of the underlying process over time, with par-

ticular focus on two changes in the particle detection equipment that have

desirably marked an increased ability to find the particles, and on an offshore

retrieval campaign that should have recently reduced the arrival of particles

onshore.

As a second step in our work, we briefly present the three main topics our

study is built on: point processes, INLA and changepoint analysis. We give a

general introduction to all of them and present the most recent works in those

fields, then we focus on the aspects that are most useful for our project. As

for point processes, we introduce the class of spatio-temporal Log-Gaussian

Cox Processes, a broad and flexible class of models particularly suitable for

environmental applications. As for INLA, after a general introduction we

explain in detail how the fitting of a LGCP works and how it is possible to

overcome the intractability issue. As regards changepoint analysis, the most

recent challenge is of particular interest for us, concerning how to include

temporal dependence in time series data.

From Chapter 3 on, the contribution of our work is presented. We first give a

few options for setting the prior distributions on number and locations of the

changepoints; we introduce four increasingly complex LGCPs for both a sin-

gle and a multiple changepoint detection; then, after obtaining the posterior

distribution of the changepoint locations we propose some different methods

for taking decisions on which changepoints are significant and which are not.

Lastly, we present two methods, an iterative and a simultaneous one, to carry

out a multiple changepoint search.

A complex simulation study follows, where the performance of our models

and methods, the accuracy and the computational time of the INLA method-

ology are evaluated. We cover a wide range of real situations by generating

both i.i.d. and time dependent data, both from a homogeneous and an inho-

mogeneous process, with zero, one or multiple changes; we also try all types

of temporal change, in scale, in spatial structure and in both. In general, our

method proves to work; it suffers from too much conservatism when using
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some of the methods, still it is overall satisfactory; whenever changepoints

are detected, the methods are very accurate in estimating the changepoint

location(s) and producing good estimates for the process intensity at every

time segment.

As a last stage, all the proposed models and methods are applied to the moti-

vating dataset in order to answer the motivating practical questions. Firstly,

we reproduce the study carried out on simulated data, then we extend it by

adding covariates and introducing informative prior distributions on num-

ber and locations of the changes. In general, we find sensible results, as the

equipment changes correspond to a significant increase in the intensity func-

tion of the process, while a decrease toward the end of the series gives a hint

for effectiveness in reducing the quantity of particles that arrive onshore.

6.1.3 Meeting the research questions

We have positively answered all our research questions, both theoreti-

cal and practical. Our approach is effectively able to detect any type of

changepoint over time in the intensity of a spatio-temporal point process,

even when spatial heterogeneity, spatial dependence and temporal depen-

dence within segments are allowed. The computational time is satisfactory,

as results only take a few minutes for every dataset, and this is very useful

because it allows many different models to be fit and model comparison and

selection to be run in a feasible time despite the complexity of the data. Re-

sults are in general good (improvements in some of the methods are left to

further studies) and the application to real data leads to sensible interpreta-

tion of the phenomenon under study.

One of our motivating questions is to look for potential changepoints at

known locations (equipment changes). We firstly address the question using

the general technique for unknown locations for two main reasons. First of

all, the other practical question concerns unknown changes and needs to be

addressed this way; secondly, the case of known changepoints can easily be

derived as a special case of our method by imposing informative priors (see

Section 6.3 for a discussion), thus we prefer to propose a method that is able

to cover a wider range of issues. We also showed an example of what happens
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in the special case of an informative prior on 2 changepoints and of a high

prior probability of having a changepoint corresponding to the equipment

changes. In general, results have not been affected by the priors as they

were already very good; it is worth mentioning that an informative prior

on the number of changepoints has substantially increased the ability of the

simultaneous approach to detect changes.

6.2 Contribution of the work

Spatial statistic and changepoint analysis are two well established ar-

eas of statistical research, but they do not meet often. A combination of

changepoint analysis and point processes is even rarer, and we have very

few examples of this in recent literature. These examples all deal with a

temporal process, and it usually is a simple Poisson process; nevertheless,

analyses are complex. The extension of changepoint analysis to spatial stud-

ies is uncommon, therefore it is even rarer to find works focused on looking

for changepoints in the parameters of a spatio-temporal model, irrespective

of the type of available data. In particular, as far as changepoints in spatio-

temporal point processes are concerned the subject is totally unexplored.

Nevertheless, questions and issues are raised, as is the case of our motivating

dataset, that need to be answered by developing new methods and extending

the existing ones.

A changepoint analysis on spatio-temporal point processes, therefore, would

be a novelty itself in statistical studies. It would extend the currently used

methods even if it were dealing with a very simple case, like a homogeneous

Poisson process with i.i.d. point patterns within segments. Our work aims

at doing more than providing an extension of simple models: it aims at de-

veloping methods able to cover a wide range of real situations.

The second novelty is the inclusion of dependence within time segments; as

we deal with spatio-temporal data, we include both spatial and temporal de-

pendence between data points. In the simulation study presented in Chapter

4, we show results for models allowing for temporal dependence between

point patterns, for spatial dependence between the points of a single point
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pattern, and for both.

The third novelty is the class of models we use, Log-Gaussian Cox Processes,

thanks to which we cover the case of inhomogeneous processes, and the pos-

sibility of spatial clustering and/or repulsion.

Moreover, we study changes in the scale of the intensity function (i.e. a

change in the expected number of points per pattern), in its spatial structure

(i.e. a change in the spatial distribution of points, with the same expected

number of events) and in both. This means our methods are able to cover

an extremely wide variety of real situation, and in particular many datasets

with a complex behaviour that are not easy to model and describe.

In addition to all this, our work provides a useful new case study of the INLA

performance. INLA is a young methodology and it is still unknown to a wide

part of the global statistical community. The number of case studies is in-

creasing but currently limited. In particular, there is a very small number of

published papers on point process models fitted with INLA and hardly any

work on changepoint analysis using INLA. Therefore, our work shows a new

way of exploiting the power and potential of the INLA approach.

As mentioned in Chapter 1, in the special case of a spatially homogeneous

spatio-temporal point process, the same results can be obtained in a simpler

way by running a changepoint analysis on the time series made by the num-

ber of points at every instant. This is hardly ever the case in real situations,

though, and our method is much more general as it not only considers how

many changepoints are present, but also where they occur. Therefore, if a

process is inhomogeneous or if we are not sure about what kind of process

we are facing, the use of our method avoids the risk of missing changes in the

spatial distribution of the points and brings more information by maintaining

the spatial dimension of the dataset.

Lastly, we add a few details that are often avoided in Bayesian inference:

despite our methods should theoretically work with any prior distribution,

we show it by running some sensitivity analysis on our real dataset and com-

paring posterior distributions deriving from different prior settings.

A further topic might be to face the issue of dependence across segments.

This is scarcely of interest in the situation of an abrupt change, where it is

sensible to assume independence after a changepoint occurs, but can open up
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to other possibilities such as gradual changes. Still, our study is a consistent

step forward and a big challenge even without covering the case of depen-

dence across segments; moreover, as we use Log-Gaussian Cox Processes and

assume changes to be due to an external factor such as a change in the equip-

ment, the assumption of dependence within segments only fits the situation

well.

6.3 Discussion on the Bayesian approach

We build a Bayesian approach to face this complex changepoint issue. The

main reason is that we want to be able to incorporate external prior knowl-

edge in the model. In many real applications, experts of the phenomenon

under study have ideas of where, or approximately where, a changepoint

might be. Frequentist approaches, though, are very rigid, since only two

possibilities are considered. In an unknown changepoint search, all time

points have exactly the same probability of being a changepoint; in known

changepoint testing, only one (or a small number of) changepoint location(s)

is tested, and if there is an extra, unexpected changepoint it will be missed.

With a Bayesian approach, prior belief on the changepoint location(s) can

be included and the strength of this belief specified, as we do in our real data

application; in an extreme case, the prior mass may be concentrated on very

few points, but if knowledge is not that strong, a higher prior probability

can be assigned to a set of specific points, without excluding the other time

points from the analysis. This avoids the risk to miss significant unexpected

changes. A Bayesian setting substantially enriches the crude information

given by the data and allows for more flexibility.

Secondly, the issue of including dependence is recent and challenging, and

very few techniques are currently available; we have no knowledge of a fully

likelihood-based approach able to produce accurate results in such situations.

A Bayesian approach, combined with reliable approximate methods such as

INLA, returns posterior distributions and estimates for any kind of model

as long as the underlying assumptions hold. This way, we provide a method

that is able to give results that, in the worst case (i.e. total absence of prior
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knowledge) will equal the frequentist results that are currently unachievable

in this context; in any case where even weak prior knowledge is available,

likelihood-based conclusions will be improved by a Bayesian approach.

6.4 Hints for further studies

Our work combines recent literature from many different fields of statis-

tics, therefore it can be faced from different perspectives; this is very stimu-

lating, as each perspective gives suggestions for future directions and further

developments.

First of all, our work consists in a Bayesian approach. Doubtless, the most

important aspect of Bayesian statistics is the role of the prior distributions;

still, in most works this is hidden under the carpet. In our study, the main

goal that has been fulfilled is to be able to fit models with spatial and tem-

poral dependence, and a sensitivity analysis has been hinted at in Chapter

5. One of the next natural steps is therefore to carry out a complete work on

the priors that can concern the number of changepoints, their locations and

all the effects hyperparameters; it would certainly be of interest to test differ-

ent, more informative prior settings and check how strongly conclusions are

affected by them. As for the priors on number and positions of changepoints,

an alternative option is given in Fearnhead (2006) and Wyse et al. (2011); no

motivation is given for that specific setting, though, apart from its property

to reduce computation and increase the algorithm speed. Consequences on

the ability to detect changes should be further investigated. Another, more

informative setting can be given when there is knowledge about a possible

location for the change: one value, or a small set of adjacent values, can be

given a high a priori probability of being a changepoint.

A second filter for looking at our work is INLA. This approximate approach

is proving so effective in many situations that is now often used even for non

fully Bayesian analyses. People interested in cases studies where INLA is

employed will find an original contribution here, as there is very little done

in recent literature on point processes and even less on spatio-temporal ex-

tensions or changepoint detection. As for further work in this field, improve-
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ments in the INLA settings can be made; in particular, it may be possible to

use the recent Stochastic Partial Differential Equation (SPDE) approach to

increase computational efficiency and precision of the approximations, and

also to keep the information about the exact locations of the pattern points,

that is only approximated with the grid approach. Work can be done about

improving the Laplace approximation or trying different ways to approximate

the integrals. In a broader perspective, alternative approaches to INLA can

be tried, that allow more flexibility in the choice of the models for the effect

(e.g. exploiting techniques from the field of regime-switching models).

Moreover, this work is of interest for all statisticians dealing with point pro-

cess analysis. Spatio-temporal point processes are not widely used yet, and

we provide a case study here. Note that in our work we assume the spatio-

temporal process to have a separable structure; an extension to non separable

models would certainly be of interest. When the perspective regards point

process models, the interest often lies in finding good models for real data.

As for the model effects, once the ability to include dependence is assessed

it is possible to add any other effect easily, thanks to the additive structure

of the chosen class of models. For instance, it can be of interest to add co-

variates, when available, and other fixed effects. Moreover, if the process is

marked the mark can be included in the model as part of the response, and

further studies can be carried out on the distribution of the mark(s) and its

potential changes over time. Trying different models and adding effects also

gives the opportunity to run model comparison and selection, where tradi-

tional (DIC) or new Bayesian tools can be proposed.

A wider perspective can also be taken, including our work in the general field

of spatial statistics. It would then be interesting to consider the boundary

issue. Spatial point process analysis already has tools for considering the

so-called ’edge effect’, when for example observations lack neighbours be-

cause of the limit of the observation window; they should be extended to the

spatio-temporal case. Other border issues should be analysed, such as the

presence of physical boundaries (e.g. in the particle dataset the presence of

a cliff) that actually prevent the points from spreading in the corresponding

direction and that may cause e.g. an involuntary accumulation of points.

Furthermore, this piece of work is of interest for temporal studies in gen-
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eral, and changepoint analysis in particular. This is a specific field in time

series analysis that does not often meet with other traditional approaches,

for instance what is called trend analysis. It would be interesting to further

extend the analysis to gradual changes in the intensity function, and compare

its performance with a study of the spatio-temporal trend of the series.

Lastly, as the work is motivated by practical questions on a real dataset, it is

possible to face this study from an applied perspective. This work can find

applications in many fields: ecology, forestry, epidemiology, crime, . . . . Since

the methodology has been well developed but the application only concerns

a short time series with few points, we suggest the production of another

case study with a larger spatio-temporal point process dataset.
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Simulation - all figures
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Figure A.1: Single changepoint search on AR(1) data, with the fixed effect

model and the BF method
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Figure A.2: Single changepoint search on iid data, with the temporal effect

model and the BF method
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Figure A.3: Single changepoint search on iid data, with the spatial effect

model and the BF method - Power level and location of the changepoint
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Figure A.4: Single changepoint search on iid data, with the spatial effect

model and the BF method - Estimated intensities
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Figure A.5: Single changepoint search on AR(1) data, with the spatial effect

model and the BF method - Power level and location of the changepoint
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Figure A.6: Single changepoint search on AR(1) data, with the spatial effect

model and the BF method - Estimated intensities
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Figure A.7: Single changepoint search on AR(1) data, with the spatio-

temporal effect model and the BF method - Power level and location of

the changepoint
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Figure A.8: Single changepoint search on AR(1) data, with the spatio-

temporal effect model and the BF method - Estimated intensities



192 A. Simulation - all figures

Figure A.9: Single changepoint search on iid data, with the temporal effect

model and the PT method
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Figure A.10: Single changepoint search on AR(1) data, with the temporal

effect model and the PT method
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Figure A.11: Single changepoint search on iid data, with the spatial effect

model and the PT method - Power level and location of the changepoint
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Figure A.12: Single changepoint search on iid data, with the spatial effect

model and the PT method - Estimated intensities
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Figure A.13: Single changepoint search on iid data, with the spatio-temporal

effect model and the PT method - Power level and location of the changepoint
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Figure A.14: Single changepoint search on iid data, with the spatio-temporal

effect model and the PT method - Estimated intensities
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Figure A.15: Single changepoint search on AR(1) data, with the spatio-

temporal effect model and the PT method - Power level and location of the

changepoint
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Figure A.16: Single changepoint search on AR(1) data, with the spatio-

temporal effect model and the PT method - Estimated intensities
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Figure A.17: Multiple changepoint search on iid data, with the fixed effect

model and the BF method
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Figure A.18: Multiple changepoint search on iid data, with the temporal

effect model and the BF method



202 A. Simulation - all figures

Figure A.19: Multiple changepoint search on iid data, with the spatial effect

model and the BF method - Power level and location of the changepoint
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Figure A.20: Multiple changepoint search on iid data, with the spatial effect

model and the BF method - Estimated intensities
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Figure A.21: Multiple changepoint search on iid data, with the spatio-

temporal effect model and the BF method - Power level and location of

the changepoint
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Figure A.22: Multiple changepoint search on iid data, with the spatio-

temporal effect model and the BF method - Estimated intensities
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Figure A.23: Multiple changepoint search on iid data, with the fixed effect

model and the PT method
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Figure A.24: Multiple changepoint search on AR(1) data, with the fixed

effect model and the PT method
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Figure A.25: Multiple changepoint search on iid data, with the temporal

effect model and the PT method
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Figure A.26: Multiple changepoint search on iid data, with the spatial effect

model and the PT method - Power level and location of the changepoint
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Figure A.27: Multiple changepoint search on iid data, with the spatial effect

model and the PT method - Estimated intensities
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Figure A.28: Multiple changepoint search on iid data, with the spatio-

temporal effect model and the PT method - Power level and location of

the changepoint
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Figure A.29: Multiple changepoint search on iid data, with the spatio-

temporal effect model and the PT method - Estimated intensities
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Figure A.30: Multiple changepoint search on AR(1) data, with the spatio-

temporal effect model and the PT method - Power level and location of the

changepoint
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Figure A.31: Multiple changepoint search on AR(1) data, with the spatio-

temporal effect model and the PT method - Estimated intensities
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Figure A.32: Changepoint search on data with a change in the spatial struc-

ture, with the fixed effect model and the BF method
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Figure A.33: Changepoint search on data with a change in the spatial struc-

ture, with the temporal effect model and the BF method



217

Figure A.34: Changepoint search on data with a change in the spatial struc-

ture, with the temporal effect model and the PT method
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Figure A.35: Changepoint search on data with a change in the spatial struc-

ture, with the spatial model and the BF method - Power level and location

of the changepoint
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Figure A.36: Changepoint search on data with a change in the spatial struc-

ture, with the spatial model and the BF method - Estimated intensities
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Figure A.37: Changepoint search on data with a change in the spatial struc-

ture, with the spatial model and the PT method - Power level and location

of the changepoint
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Figure A.38: Changepoint search on data with a change in the spatial struc-

ture, with the spatial model and the PT method - Estimated intensities
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Figure A.39: Changepoint search on data with a change in the spatial struc-

ture, with the spatio-temporal model and the BF method - Power level and

location of the changepoint
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Figure A.40: Changepoint search on data with a change in the spatial struc-

ture, with the spatio-temporal model and the BF method - Estimated inten-

sities
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