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Thesis outline

This thesis addresses and investigates different astrophysical problems regarding the
family of early-type galaxies (ETGs), particularly exploiting information about the
stellar dynamical properties of these objects. This is made possible through the con-
struction of advanced dynamical models, that reproduce to a good level of accuracy
the observed properties and light profiles of ETGs, and hence are representative of
real galaxies.

The thesis is organized as follows. Chapter 1 introduces the concept of dy-
namical model, which is recurring throughout the thesis since it is at the basis of
the methods used in all the works here presented. It contains a discussion about
the use and the usefulness of dynamical models in astronomy, intended to give a
brief overview of their potentialities in several research fields. There are also illus-
trated three kinds of galaxy models, based on different approaches, so as to scan
the various possibilities allowed. Chapter 2 describes the main steps and capabil-
ities of the pluri-tested numerical code, developed during this PhD project, that
builds advanced and flexible dynamical models by solving the Jeans equations, and
which has been exploited in several works. Chapter 3 presents a family of flexible
and purely analytical dynamical models obtained from the analytical solution of
the Jeans equations for the Miyamoto-Nagai disc embedded in the Binney logarith-
mic potential. Besides its potential applications, the solution is valuable as a test
for the numerical code described in Chapter 2. Chapter 4 concerns the hot X-ray
emitting coronae that surround ETGs. It addresses the long-standing issue of the
X-ray coolness and under-luminosity of flat and rotating galaxies with respect to
their rounder and dynamically hot counterparts. It provides explanations for the
recently observed trends of the X-ray temperature and luminosity decrease with
galaxy shape and rotation. This investigation is performed in a twofold manner,
first recurring to energetic arguments based on realistic galaxy models, and then
comparing the predictions with the results of 2D hydrodynamical simulations run
for the same models. Chapter 5 is about the stellar initial mass function (IMF) of
ETGs. Making use of high-quality photometric (HST/ACS/F814W images) and
spectroscopic data (SDSS optical spectra), it investigates the mass normalization of
the IMF for 55 galaxies of the SLACS sample by means of an analysis which simul-
taneously exploits information derived from gravitational lensing, stellar dynamics
and stellar population synthesis models. Finally, Chapter 6 summarises the results
and discuss possible future improvements of the works presented. Appendix A il-
lustrates the Jeans equations, which constitute the basis of the models used in the
works here presented. Appendix B reports the fluid equations in the presence of
source terms, necessary to understand the relation between the stellar dynamical
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VI Thesis outline

configuration of a galaxy and the energy provided to its interstellar medium (ISM)
by its evolving stellar population. Appendix C introduces the Multi-Gaussian Ex-
pansion (MGE) technique, and collects images and parameters of the MGE models
built in Chapter 5.



Chapter 1

Introduction

Dynamical models provide a description of the motion of bodies under the action
of a system of forces. In astronomy, the motion of a stellar system is governed
by Newton’s laws of motion and Newton’s law of gravity, and the study of this
behaviour is the branch of theoretical physics called stellar dynamics.

Galaxy dynamical models are widely exploited in astronomy, both to elucidate
issues related to stellar dynamics, and to obtain estimates of dynamical quantities,
useful for applications in many different research fields. Dynamical models are indeed
very powerful, since they provide insights in the main dynamical properties and
behaviours of real galaxies, even if they are generally an idealised and simplified
version of these last. In fact, sometimes reality is so complex to interpret that the
construction of a simple model can reveal itself to be the best approach to adopt to
understand a dynamical problem, since it is able to explain the basic behaviours of
the modelled object, and clarify what are the main driving agents.

Dynamical models have been extensively and successfully used to study several
problems related to ETGs, which are the subject of the present thesis. For example,
most of a galaxy mass is thought to reside in dark matter (DM) that can only be
traced by its gravitational field, and this field can be mapped through the kinemat-
ics of stars. Constraining the shape and mass fraction of galaxy DM haloes is a
long-standing problem that has been studied for decades, and is still a debated issue
since a definite answer has not yet been achieved. N-body cosmological simulations
converge towards an NFW (Navarro et al. 1997) density profile for the DM, but
accurately probing this prediction is hard since it requires many observational con-
straints to account for all the free parameters at play. For example, a fundamental
degeneracy, that always lies at the base of this kind of investigations, concerns the
difficult disentanglement between the dark and luminous mass components by means
of the (uncertain) stellar mass-to-light ratio. Other minor degeneracies are given by
the stellar orbital anisotropy, or by the presence of a central massive black hole.
However, degeneracies can be reduced or soothed in fortunate (rare) cases, when
complementary constraints (e.g., from stellar spectra and gravitational lensing) are
available, and can be placed within a consistent picture by means of dynamical
models. Then, evidences are found that point towards a small DM fraction in the
central light-dominated regions of galaxies, almost independently of the DM halo
profile adopted for the modelling (e.g., Gerhard et al. 2001; Treu & Koopmans 2004;
Thomas et al. 2005; Cappellari et al. 2006, 2012).
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2 Introduction

In addition to the study of DM haloes, dynamical models have been used also to
search for and weigh super massive black holes at the centres of luminous spheroids,
leading to the discovery of the well-known MBH − σ∗ relation between black-hole
mass and spheroid velocity dispersion (Ferrarese & Merritt 2000; Gebhardt et al.
2000; Merritt & Ferrarese 2001).

Another important application concerns the study of the large-scale dynamics
of ETGs, aimed at constraining again their mass and orbital distributions. In par-
ticular, the advent of integral-field spectrographs has rejuvenated the study of the
internal dynamics of these galaxies, providing data that probe with unprecedented
detail the stellar kinematics over a large part of the central galactic regions, typi-
cally extending to one effective radius or more (Bacon et al. 2001; Emsellem et al.
2007; Cappellari et al. 2011b). The quality of these data has revealed particular in-
ternal structures, such as kinematically decoupled or counter-rotating cores, central
discs and velocity twists, and has discovered the existence of two broad classes of
observed stellar velocity fields, with ETGs in one class exhibiting a clear large-scale
rotation pattern, and those in the other showing no significant rotation. Such data
can be interpreted and fitted essentially only with the aid of advanced dynamical
models, which can help to understand the origin of these diverse configurations in
the context of galaxy formation scenarios.

Thus, dynamical models have a fundamental role in achieving an elucidation of
these open issues, and, more generally, in the study of ETGs.

The dynamical models mostly used in literature belong to three main kinds,
based on three different approaches, but all of them rely on the assumption that
galaxies are in states of dynamical equilibrium. Regarding ETGs, this assumption
is good since they are collisionless stellar systems in virial equilibrium.

The first kind of models relies on the construction of the phase space distri-
bution function (DF), which contains all the information about the physics of a
collisionless stellar system. Using a descriptive approach, the DF can be derived
from the galaxy density distribution, which is the quantity that is best constrained
by the observations, under the assumption of a constant mass-to-light ratio and of a
three-dimensional geometry of the system. This method assures that the projected
density profile is reproduced, but there is no guarantee that the retrieved DF is pos-
itive definite or unique. A more rigorous approach, instead, consists in a physically
based choice of the DF, which is able to predict detailed information about both the
density distribution and the kinematical profiles of the system, starting from some
physical arguments.

The second kind of models follows a more phenomenological approach based
on the Schwarzschild’s orbit-superposition technique (Schwarzschild 1979). Given a
comprehensive orbit library for an assumed gravitational potential, this technique
finds the linear sum of those orbits that best reproduces the available observations.
This method is very general and free from most assumptions: even the required
assumption of a given geometry for the gravitational potential is practically removed
by the iterative nature of the technique, since it constructs Schwarzschild models for
an entire grid of potentials, and finds out the one that best fits the data.

Finally, the third kind of models relies on the Jeans equations (Jeans 1919), which
give the possibility to infer the velocity moments of the DF starting from stellar
density profiles, but without recovering the DF itself. Thus, also in this case there
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is no guarantee that the models built through this method admit a positive definite
and physically plausible DF. However, the Jeans equations are valuable since they
relate observationally accessible quantities, such as the stellar density distribution,
streaming velocity and velocity dispersion. They are an incomplete set of equations,
that can be closed in special circumstances, by making some assumptions on the
velocity dispersion anisotropy and on the streaming motions.

In the present thesis we will focus on this last kind of dynamical models, ex-
ploiting them in different astrophysical contexts concerning ETGs. Thus, particular
importance must be recognised to the numerical code developed during this PhD
project, dedicated to the solution of the Jeans equations and to the building of
state-of-the-art galaxy dynamical models.

The present thesis addresses two main current astrophysical problems in the
research field of ETGs. The first one is the study of their X-ray emitting haloes:
ETGs are indeed embedded in hot gaseous coronae with temperatures of the order
of 106−107 K. Observational evidences show that the properties of these haloes, like
the X-ray luminosity and temperature, are very sensitive to major galaxy properties
as the shape of the mass distribution, and the mean rotation velocity of the stel-
lar component (Pellegrini 2012a). In particular, flat and rotating ETGs are X-ray
fainter and cooler with respect to rounder and dynamically hot systems. The mass
of the haloes is produced mainly by stellar winds, while its energy budget comes
from Type Ia supernovae (SNIa) explosions and by the thermalization of stellar mo-
tions. In this scenario, the study of the dependence of this thermalization energy on
the galaxy stellar structure and dynamics is mandatory to understand the observed
trends. This can be attained with a general, systematic investigation that encom-
passes the construction and the analysis of wide families of state-of-the-art galaxy
models, which explore the whole range of the observed ETGs’ properties, as done
in Chapter 4.

The second astrophysical problem addressed here concerns the stellar IMF of
ETGs. Nowadays, this is a very controversial issue due to a growing number of
works on ETGs, based on different and independent techniques, that show evidences
of a systematic variation of the IMF normalization as a function of galaxy velocity
dispersion or mass (e.g., Treu et al. 2010; Conroy & van Dokkum 2012; Cappellari
et al. 2013a). The IMF of ETGs was instead previously thought to be the same
as that of spiral galaxies, and hence universal throughout the whole large family of
galaxies. A method, widely used in literature, to discriminate between different IMF
normalisations is based on galaxy stellar mass estimates. However, as mentioned
above, many degeneracies undermine a fair estimate of the stellar mass, so that
this can be achieved only with the aid of either a good quantity of or good quality
observational constraints. In this context, in Chapter 5 a sample of 55 gravitational
lens galaxies is analysed by combining three independent diagnostics of mass, i.e.
stellar populations synthesis models, gravitational lensing, and stellar dynamics. In
particular, the constraints derived from these last two diagnostics are consistently
taken into account by building advanced dynamical models, that also reproduce the
observed galaxy surface brightness profiles in great detail.

Of course, dynamical models can be used in many other active fields of research.
For example, current studies of the structure of the Milky Way are dominated by
a series of major observational programs that collect tremendous amounts of as-
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trometric, photometric, and spectroscopic data, e.g., the ESA’s Hipparcos mission
(Perryman et al. 1997), the Sloan Digital Sky Survey (SDSS; Abazajian et al. 2009),
the RAVE survey (Steinmetz et al. 2006), and the Gaia-ESO survey (Perryman et al.
2001). Extracting science from these huge and diverse data-sets, and turning them
into a consistent picture that maps the Galaxy’s DM content, and unravels how the
Galaxy was assembled are a difficult and ambitious goal. Dynamical models play a
vital role in this achievement since they can combine constraints on the properties of
the Galaxy from different surveys simultaneously, taking into account their selection
effects, observational biases and measurement errors.

We note that the dynamical models present in this thesis are not suitable exclu-
sively for ETGs, since they allow for ample generality, so that they can be applied
(after proper modifications) also to this kind of investigations, and hence to spiral
galaxies.



Chapter 2

The Jeans solver code

In this Chapter we present the main features of the numerical code (Posacki et al.
2013a,b), developed during this PhD project, which constructs advanced and flexible
galaxy models, based on the solution of the Jeans equations.
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6 The Jeans solver code

2.1 Physical purpose

Starting from a given axisymmetric density distribution the code computes in terms
of elliptic integrals the associated gravitational potential and vertical and radial
forces. Then the Jeans equations in cylindrical coordinates (R, z, ϕ) are solved. For
an axisymmetric density distribution ρ∗(R, z) supported by a two-integral phase-
space DF, the Jeans equations are

∂ρ∗σ
2

∂z
= −ρ∗

∂Φtot

∂z
, (2.1)

and
∂ρ∗σ

2

∂R
+ ρ∗

σ2 − v2
ϕ

R
= −ρ∗

∂Φtot

∂R
(2.2)

(see Appendix A), where Φtot is the sum of the gravitational potentials of all the
components (e.g. stars, DM halo, black hole). As well known, for a two-integral
DF (1) the velocity dispersion tensor is diagonal and aligned with the coordinate
system; (2) the radial and vertical velocity dispersions are equal, i.e. σR = σz ≡ σ;
(3) the only non-zero streaming motion is in the azimuthal direction.

In order to control the amount of ordered azimuthal velocity vϕ, we adopted the
k-decomposition introduced by Satoh (1980)

v2
ϕ = k2(v2

ϕ − σ2), (2.3)

and then it follows

σ2
ϕ ≡ v2

ϕ − v2
ϕ = σ2 + (1− k2)(v2

ϕ − σ2), (2.4)

where 0 6 k 6 1. The case k = 1 corresponds to the isotropic rotator, while for
k = 0 no net rotation is present and all the flattening is due to the azimuthal velocity
dispersion σϕ. In principle, k can be a function of (R, z), and so more complicated
(realistic) velocity fields can be realised (see also Ciotti & Pellegrini 1996; Negri
et al. 2013).

The code then projects all the relevant kinematical fields, together with the
stellar density. The projections along a general line of sight (l.o.s.) of the stellar
density ρ∗, streaming velocity v and velocity dispersion tensor σ2 are

Σ∗ =

∫ +∞

−∞
ρ∗ dl, (2.5)

Σ∗vlos =

∫ +∞

−∞
ρ∗〈v,n〉dl, (2.6)

Σ∗σ
2
P =

∫ +∞

−∞
ρ∗〈σ2n,n〉 dl, (2.7)

respectively, where 〈,〉 is the scalar product, n is the l.o.s. direction and l is the
integration path along n. Note that if a rotational support is present, then σ2

P is
not the l.o.s. (i.e. the observed) velocity dispersion σ2

los, given by

σ2
los = σ2

P + V 2
P − v2

los, (2.8)
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where V 2
P is the projection of 〈n,v〉2 (Ciotti & Pellegrini 1996). In particular, the

face-on projections are

Σ∗ = 2

∫ ∞
0

ρ∗ dz, (2.9)

Σ∗σ
2
P = 2

∫ ∞
0

ρ∗σ
2 dz, (2.10)

with σ2
los = σ2

P. The edge-on projections are instead

Σ∗ = 2

∫ ∞
R

ρ∗R̃ dR̃√
R̃2 −R2

, (2.11)

Σ∗vlos = 2R

∫ ∞
R

ρ∗vϕ dR̃√
R̃2 −R2

, (2.12)

Σ∗σ
2
P = 2

∫ ∞
R

[
(R̃2 −R2)σ2 +R2σ2

ϕ

] ρ∗ dR̃

R̃
√
R̃2 −R2

, (2.13)

Σ∗V
2

P = 2R2

∫ ∞
R

ρ∗v
2
ϕ dR̃

R̃
√
R̃2 −R2

, (2.14)

where all the integrations are performed at fixed z.
After the projections, the code calculates the corresponding circularized effective

radius Re. In practice, the stellar projected density is integrated on the isodensity
curves, and R2

e = qlosa
2
e , where ae and qlos are the semi-major axis and the l.o.s.

axial ratio of the ellipse of half projected luminosity, respectively. In general, qlos is
a function of the l.o.s. inclination (Lanzoni & Ciotti 2003): for a face-on projection
qlos = 1, while for the edge-on case qlos = q. Then, the corresponding luminosity
averaged aperture velocity dispersion

σ2
e8 ≡

∫ Re/8
0 Σ∗σ

2
losR dR∫ Re/8

0 Σ∗R dR
, (2.15)

is computed within a circular aperture of Re/8.
For comparison with other works, we followed also the approach of the ATLAS3D

project (Cappellari et al. 2011a, 2013b), calculating the quantity

V 2
rms = σ2

P + V 2
P = σ2

los + v2
los, (2.16)

and its corresponding luminosity averaged mean within Re/8, according to a defini-
tion analogous to Eq. (2.15). Finally, for a given model, the code evaluates a series
of volume integrals related to the stellar kinetic energy and to the gravitational
potential energy of the galaxy, by using a standard finite-difference scheme (these
integrals will be introduced and used in Chapter 4, Sect. 4.3).

The code was developed with the aim of creating a generator of flexible galaxy
models, which can be customised according to one’s need. It is indeed possible to
choose within several density profiles, both for the stellar component and the DM
halo, and the implementation of new ones is straightforward. The possible presence
of a supermassive black hole (SMBH) is also implemented. All output data are
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divided between the different mass components (e.g. stars, DM halo, black hole),
and are properly normalized to the total respective masses, so that, if needed, the
model can be customised by any possible user in terms of mass normalisations. Also
the kinematical configuration can be modified a posteriori, without the need to rerun
the model.

2.2 Technical details

The code is written in Fortran 90 and has been parallelized with MPI procedures.
It uses a principal grid on which all input and output quantities are computed, and
other two secondary grids, staggered in R and z respectively, that serve to make the
calculations since the code uses a centred finite-difference method to approximate
the derivatives. All grids are slightly logarithmic to better resolve the central regions
of the galaxy. Numerical integration is performed through the standard trapezoidal
rule. Output data are stored in HDF5 files that allow portability between different
operating systems, and quite low file sizes thanks to the binary format.

The boundary conditions for the solution of the vertical Jeans equation can be
chosen between two options. If the system had infinite extent, then the natural
boundary condition would be ρσ2 → 0 for |r| → ∞, thus one option is to adopt a
suitable large grid with respect to the galaxy size and use this boundary condition.
The other option instead is to use the following expression

ρ∗σ
2(R, zmax) =

∫ ∞
zmax

ρ∗
∂Φ0

∂z
dz, (2.17)

where Φ0 is the monopole term of the total gravitational potential.

2.3 Code testing

The code has been accurately tested multiple times both in spherical and cylindrical
symmetry, by means of analytical formulae, and comparing its results with those
of similar codes. For example, the code has been tested against the analytical
formulae presented in Chapter 3, that give the exact solution of the Jeans equations
for two-component axisymmetric galaxy models, made of the Miyamoto-Nagai (MN)
disc embedded in the Binney logarithmic potential. The comparison between our
analytical (left panel) and numerical (right panel) results for a given model is shown
in Fig. 2.1, where the vertical velocity dispersion σz is shown in the inner 50 kpc of
the numerical grid. The relative errors are of the order of ∼ 10−3 in the inner ∼ 60
kpc of the computational domain for all the explored combinations of the model
parameters, and they slightly increase for higher z values. It can be noticed in
Fig. 2.1, that the upper numerical iso-velocity curve is less steep than the analytical
one, and this is due to the adopted boundary condition ρσ2

z → 0 for |r| → ∞.
Another test has been performed against the JAM code of Cappellari (2008), that

we exploit also in Chapter 5 to build axisymmetric galaxy models for the SLACS
sample. The JAM (Jeans Anisotropic Multi gaussian expansion) method allows
for a more generalised modelling, since it applies to axisymmetric stellar distribu-
tions described by a three-integral DF. This method assumes a velocity ellipsoid
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aligned with the cylindrical coordinates (R, z, ϕ), and a constant vertical anisotropy
parametrized by βz = 1 − σ2

z/σ
2
R. Thus, while the dynamical models built with

our Jeans solver code are always semi-isotropic models (i.e., σ2
z = σ2

R, because they
are based on a two-integral DF), and they become isotropic (σ2

z = σ2
R = σ2

ϕ) for
a particular choice of the Satoh parameter (k = 1), the JAM models can be also
completely anisotropic. However, for βz = 0 the JAM method is equivalent to ours,
so that we can compare the results. Note that the implementation of the vertical
anisotropy in our code would be straightforward.

Figure 2.2 shows the projected velocity field Vrms (Eq. 2.16) for a one-component
axisymmetric galaxy models, whose stellar distribution is described by the de Vau-
couleurs (1948) law, by using the deprojection of Mellier & Mathez (1987), gener-
alized for ellipsoidal axisymmetric distributions (see Chapter 4, Eqs. 4.1 and 4.2).
The comparison between the JAM (left panel) and our (right panel) solution shows
that the agreement between the two codes is very good: the relative errors in the
inner 60 kpc of the numerical grid span from 0.1 per cent up to 4 per cent.

Further tests have been successfully carried out also against the analytical solu-
tions for a two-component MN+MN model (Ciotti & Pellegrini 1996), and for the
Ferrers ellipsoids (Lanzoni & Ciotti 2003).

2.4 Code applications

The code has been used to create several families of galaxy models, which have been
extensively used for theoretical and numerical analyses in a series of works, which
investigate the effects of galaxy shape and kinematical configuration on the hot ISM
temperature and content of the X-ray haloes of ETGs (see Chapter 4; Posacki et al.
2013a,b; Negri et al. 2013, 2014a,b). These models allow for a full generality in the
choice of the axisymmetric galaxy shape and of the stellar and DM profiles, that
can be tailored to reproduce observational constraints. Furthermore, they can have
different dynamical structures by properly using the Satoh (1980) decomposition.
Indeed, as already mentioned in Section 2.1, it is possible to realise velocity fields
that are more complicated than a velocity dispersion supported system (VD, k = 0)
or an isotropic rotator (IS, k = 1). This can be accomplished by adopting a Satoh
parameter k that is a function of (R, z) (in principle it can be any function).

For example, in Negri et al. (2014a) the code was exploited to build S0 galaxy
models, tailored on the Sombrero galaxy, four different stellar kinematical config-
urations were explored, allowing also for counter-rotation. These models have two
mass components: a spherical DM halo described by the Einasto (1965) density-
potential pair, and a stellar distribution described by the Miyamoto & Nagai (1975)
density-potential pair

ρ∗(R, z) =
M∗b

2

4π

aR2 + (a+ 3ζ)(a+ ζ)2

ζ3[R2 + (a+ ζ)2]5/2
, (2.18)

Φ∗(R, z) = − GM∗√
R2 + (a+ ζ)2

, (2.19)

where a and b are scale-lengths, ζ ≡
√
z2 + b2, and a = b = 1.6 kpc. Besides the

IS and VD configurations, shown in Fig. 2.3, the counter-rotating disc (CR) and
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Figure 2.1: Vertical velocity dispersion σz field, in the inner 50 kpc, for a MN disc embedded in a Binney logarithmic potential.
Left panel: exact analytic solution obtained with the formulae presented in Chapter 3 evaluated on a numerical grid, for the model
parameters M∗ = 1011M�, vh = 200 km s−1, b = 2 kpc, Rc = 2b, q = 0.7 and s = 1. Right panel: numerical solution obtained with our
Jeans solver code for the same model.
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Figure 2.2: Vrms field (see Eq. 2.16), in the inner 50 kpc, for a one-component galaxy model, whose stellar distribution is described by the
de Vaucouleurs (1948) law, by using the deprojection of Mellier & Mathez (1987), generalized for ellipsoidal axisymmetric distributions
(see Chapter 4, Eqs. 4.1 and 4.2). Left panel: solution obtained with the JAM code of Cappellari (2008), for the model parameters
M∗ = 3.35× 1011M�, Re 0 = 7.38 kpc, and q = 0.6. Right panel: numerical solution obtained with our Jeans solver code for the same
model.
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a velocity dispersion supported system with an inner rotating disc were explored.
These last models are built adopting the following functional form for the Satoh
parameter

k(R, z) = kext +
ρ∗(R, z)

ρ∗(0, 0)
(kint − kext), (2.20)

where ρ∗ is given by Eq. 2.18 with a = 18 kpc and b = 4 kpc. This choice leads
to a very flattened rotating structure in the central regions of the galaxy, with
k(0, 0) = kint, and k = kext at large radii. In particular, the CR model is obtained
for kint = −1 and kext = 1, while the RD model has kint = 1 and kext = 0. In
this way, at large radii the CR and RD models become similar to the IS and VD
models, respectively. This can be easily seen comparing Figs. 2.3 and 2.4, where
meridional sections of the galaxy rotational field vϕ and of the stellar azimuthal
velocity dispersion σϕ are illustrated for the four kinds of models.
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Figure 2.3: Meridional sections of the galaxy rotational field vϕ (top) and of the
stellar azimuthal velocity dispersion σϕ (bottom) for the IS (left) and VD (right)
models. Note that, by construction, the velocity dispersion components σR = σz =
σ of the two models coincides with σϕ of IS. The stellar isodensity contours are
superimposed in black. Taken from Negri et al. (2014a).
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Figure 2.4: Analogue of Fig. 2.3 for the CR (left) and RD (right) models. Taken
from Negri et al. (2014a).



Chapter 3

The solution of the Jeans
equations for the Miyamoto-Nagai
disc embedded in the Binney
potential

Smet C. O., Posacki S., Ciotti L., 2014, MNRAS, submitted

In this Chapter we analytically solve the two-integrals Jeans equations for a new
family of two-component galaxy models, given by a Miyamoto-Nagai stellar disc
embedded in a DM Binney logarithmic halo, a cored generalisation of the singular
isothermal sphere. This is done for all parameter values, thus providing a large
flexibility of the models, e.g. from a disc galaxy to a spherical one. The obtained
formulae have been tested against their asymptotic expansions, and, most impor-
tantly they have been used to test the numerical solutions obtained with our Jeans
solver code (see Chapter 2).

15
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3.1 Introduction

Spherical galaxy models are widely used in astrophysical applications and to eluci-
date concepts in stellar dynamics (e.g., see Binney & Tremaine 1987; Bertin 2000)
due to their simplicity. The list of galaxy models for which the Jeans equations have
been solved analytically is quite long, both for one and two-component systems
(without attempting at completeness, see, e.g., Plummer 1911; Binney & Mamon
1982; Jaffe 1983; Dejonghe 1984, 1986; Sarazin & White 1987; Hernquist 1990; Ren-
zini & Ciotti 1993; Dehnen 1993; Tremaine et al. 1994; Carollo et al. 1995; Ciotti
et al. 1996; Zhao 1996; Ciotti 1996, 1999; Łokas & Mamon 2001; Ciotti et al. 2009;
Van Hese et al. 2009). Even if a deeper understanding of the model properties
can be obtained only by using a phase-space based approach (see e.g., Michie 1963;
King 1966; Wilson 1975; Bertin & Stiavelli 1984; Trenti & Bertin 2005; Binney
2014; Williams et al. 2014), the moment approach (i.e., the solution of the Jeans
equations) is still preferred in applications, due to the relatively simple method of
solution. However, in the Jeans approach there is no guarantee that the underlying
distribution function of the model is positive, and often an educated guess is needed
to impose the closure relation (for example a prescribed anisotropy). Fortunately, in
some cases it is possible to recover the underlying phase-space DF and check for its
positivity (see, e.g., Eddington 1916; Osipkov 1979; Merritt 1985; Cuddeford 1991;
Gerhard 1991; Ciotti & Pellegrini 1992; An & Evans 2006; Ciotti & Morganti 2009,
2010a,b).

The class of axisymmetric analytical galaxy models for which the Jeans equa-
tions can be explicitly solved is instead far less populated, and only a handful of
two-component axisymmetric galaxy models are presently known. Some examples
of one-component systems are the MN model (Miyamoto & Nagai 1975; Nagai &
Miyamoto 1976), the Satoh (1980) disc, the family of Toomre (1982) tori, the flat-
tened Isochrone (Evans et al. 1990), the Binney logarithmic halo (de Zeeuw et al.
1996), the homeoidally expanded systems (Ciotti & Bertin 2005), the Ferrers models
(e.g., Lanzoni & Ciotti 2003), the systems obtained with the complex-shift method
(Ciotti & Giampieri 2007), and the power-law systems (Evans 1994; Evans & de
Zeeuw 1994). More recently, two new disc models have been presented (Evans &
Bowden 2014; Evans & Williams 2014), obtained by a particular variation of the MN
coordinate transformation. The situation is even worse for two-component systems:
we recall here the two-component MN models (Ciotti & Pellegrini 1996, where the
virial quantities can be expressed analytically), and the Evans (1993) phase-space
decomposition of the Binney (1981) logarithmic halo.

In this Chapter we show that, quite surprisingly, the Jeans equations for the MN
model embedded in the Binney logarithmic potential can be solved analytically for
general choices of the parameters.

These models are very useful to test numerical codes dedicated to the solution of
the Jeans equations, and indeed we used them to test our Jeans solver code, obtaining
excellent agreement (see Chapter 2). Among other applications that can benefit from
the models, we recall the hydrodynamical simulations of gas flows in ETGs, where
the stellar velocity fields are a major ingredient of the energy and momentum budget
of the ISM, injected by the evolving stellar populations (see, e.g., Chapter 4; Posacki
et al. 2013b; Negri et al. 2014b; see also Pellegrini 2012b and references therein).



3.2 The models 17

Another possible application of the present models is to quantify the effects of the
relative shape of the stellar and DM distribution in disc galaxies on the vertical
kinematics of stars, a quantity that can be used for DM measurements near the
galactic plane (see, e.g., King et al. 1990). Further applications can also concern
the study of the circular velocity of gas in the equatorial plane, and the building
of hydrostatic, barotropic and baroclynic models for hot rotating models Barnabè
et al. (2006). Finally, a curious application, that, at the best of our knowledge, has
not been considered in the past, is proposed in Smet et al. (2014). In this paper,
by means of the functions obtained in this Chapter, we study the asymmetric drift
as a function of the models’ parameters, and we propose a new mechanism for the
formation of radial inflows of the ISM. In practice, at each radius, the gas injected
by the stars has a lower specific angular momentum than the cold gas rotating with
the local circular velocity, and this is able to produce a radial inflow of the ISM;
using our models we get quantitative estimates of this effect which show that the
mechanism is plausible.

The Chapter is organized as follows. The models are presented in Section 3.2.
Sections 3.3 and 3.4 give the solution of the Jeans equations for the stellar disc
alone and coupled with the DM halo, respectively. Section 3.5 shows the formulae
for special cases, for which the solution can be simplified. Section 3.6 illustrates the
main properties of the solutions, with particular attention to the behaviour of the
velocity dispersion near the equatorial plane as a function of the stellar and DM
halo parameters. Finally we mention some applications of our models, that are fully
described in the paper of Smet et al. (2014)

3.2 The models

The models consist of two density components: a stellar MN disc and a DM halo
characterized by the Binney logarithmic potential (Binney & Tremaine 1987). In
particular, the MN potential-density pair is

Φ∗(R, z) = − GM∗√
R2 + (a+ ζ)2

, (3.1)

ρ∗(R, z) =
M∗b

2

4π

aR2 + (a+ 3ζ)(a+ ζ)2

ζ3[R2 + (a+ ζ)2]5/2
, (3.2)

where ζ =
√
z2 + b2 and (R,ϕ, z) are the standard cylindrical coordinates.

The Binney logarithmic family is defined by

Φh(R, z) =
v2

h

2
ln

(
R2

h +R2 +
z2

q2

)
, (3.3)

where q is the axis ratio of the equipotential surfaces, and vh and Rh are constants
related to the halo circular velocity in the equatorial plane as

vcirc(R) =
vhR√
R2

h +R2
. (3.4)
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Note that vcirc is independent of q, and that if q < 1/
√

2, the halo density is no
longer everywhere positive, independently of the value of Rh (Binney & Tremaine
1987). Moreover, for zero flattening (q = 1) and Rh = 0 we have the special case of
the Singular Isothermal Sphere (SIS) 1

Φh(r) = v2
h ln r, (3.5)

where r =
√
R2 + z2 is the spherical radius, and vcirc(R) = vh.

Note that this new two-component model allows a few interesting limiting cases:
for example, one can consider a stellar component with spherical symmetry (a = 0)
within a Binney logarithmic halo which has no spherical symmetry (q 6= 1), or
alternatively a non-spherical stellar component (a > 0) within a spherical halo
(q = 1). We can finally introduce the spherical symmetry in both components,
by choosing a = 0 in the MN model and q = 1 in the Binney logarithmic halo.

In particular, the choice a = 0 gives the Plummer (1911) sphere, while for b = 0
we have the razor-thin Kuzmin (1956) disc. Since we do not consider the case of
the Kuzmin disc2, in the following treatment all the lengths will be normalized to
b, and we will use the parameter s = a/b to quantify the flattening of the MN disc.

3.3 The solution for the MN disc

We recall that, for an axisymmetric distribution ρ∗(R, z) supported by a two-integrals
phase-space DF f(E, Jz), the Jeans equations are given by Eqs. (2.1) and (2.2), and
the following properties hold: (1) the velocity dispersion tensor is diagonal and
aligned with the coordinate system; (2) the radial and vertical velocity dispersions
are equal, i.e., σR = σz ≡ σ; (3) the only non-zero streaming motion is in the
azimuthal direction. These equations have been solved analytically both for the
one-component MN model (Miyamoto & Nagai 1975), and for the family of two-
components MN models with different flattening values s, but the same scale-length
b (see Ciotti & Pellegrini 1996, where analytical expressions for the virial quantities
are also derived). Easy algebra shows that

ρ∗σ
2
∗∗ =

GM2
∗

8πb4
(s+ ζ)2

ζ2[R2 + (s+ ζ)2]3
, (3.6)

and

ρ∗(v2
ϕ − σ2)∗∗ =

GM2
∗

4πb4
sR2

ζ3[R2 + (s+ ζ)2]3
. (3.7)

We note that, since all the lengths are normalized to b, ζ =
√

1 + z2. The subscript
“∗∗” indicates a quantity originated by the self-interaction of the stellar component,
while “∗h” will indicate the terms (to be computed in the next Section) due to the
effect of the DM halo on the stellar component.

1Without loss of generality, in Eqs. (3.3) and (3.5) the argument of the logarithm is implicitly
assumed normalized to some scale length.

2Formally, a razor-thin disc supported by a two-integrals phase-space DF can have only circular
orbits.
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3.4 The solution for the Binney logarithmic halo

3.4.1 The vertical Jeans equation

In the case of a Binney logarithmic halo, the halo contribution to the vertical and
radial velocity dispersion is given by

ρ∗σ
2
∗h =

∫ ∞
z

ρ∗
∂Φh

∂z′
dz′ =

∫ ∞
z

v2
h ρ∗z

′ dz′

A+ 1 + z′2
=
M∗v

2
h

4πb3
I, (3.8)

where A ≡ q2(R2 +R2
h)− 1, I is dimensionless, and, to avoid cumbersome notation,

from now on R, Rh and z are intended normalized to b. Note that, given q and Rh,
the minimum value for A is q2R2

h − 1 and it is reached on the z-axis; for a core-less
halo instead, A ≥ −1. As we will see, the sign of A plays an important role in the
treatment of Eq. (3.8). In fact, for qRh > 1, A is positive independently of R, while
for qRh < 1 a radius Rc =

√
1/q2 −R2

h exists so that for R < Rc the parameter
A is negative. We call Rc the critical radius, and the region R < Rc the critical
cylinder. In the special case of the SIS halo, Rc = 1. The integral in Eq. (3.8) is
quite complicated, especially considering the fact that ρ∗ in Eq. (3.2) contains two
nested irrationalities. However, in the following we show that this integral can be
computed in terms of elementary functions. We stress that there are some special
choices of the parameters for which the general treatment described below cannot
be used (or can be significantly simplified), and the corresponding formulae can be
obtained as limits of the general solution. Even if this procedure does not present
conceptual difficulties, we prefer to list these special cases in Table 3.1, referring to
the specific parts of Section 3.5, where the explicit formulae are provided.

In order to integrate Eq. (3.8) we begin by removing the inner irrationality with
the substitution ζ =

√
1 + z2, so that

I ≡
∫ ∞
ζ

sR2 + (s+ 3ζ ′)(s+ ζ ′)2

ζ ′2[R2 + (s+ ζ ′)2]5/2(A+ ζ ′2)
dζ ′. (3.9)

Note that ζ ≥ 1, so that A + ζ2 ≥ 0 everywhere: the equality holds at the origin
only for a core-less halo, i.e., for Rh = 0 (and so in particular for the SIS). In order
to proceed with the integration, we remove the second irrationality with the change
of variable sh x = (s + ζ)/R. This substitution is not valid on the z-axis, but in
this case the integrand in Eq. (3.9) is a rational function of ζ ′ and its integration is
elementary (see Table 3.1, first case). For R 6= 0 we obtain

I =
1

R2

∫ ∞
arcsh λ

[
s+ (3R sh x− 2s)sh 2x

]
dx

(R sh x− s)2[A+ (R sh x− s)2](1 + sh 2x)2
, (3.10)

where arcsh x = ln
(
x+
√

1 + x2
)
and

λ ≡ s+ ζ

R
=
s+
√

1 + z2

R
. (3.11)

Equation (3.10) is our starting point: a partial fraction decomposition, in terms of
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Table 3.1: Special cases
Name Condition Section

z-axis R = 0 3.5.1
critical cylinder R = Rc 3.5.2
spherical stellar density s = 0 3.5.3

Notes: list of the special cases for which the treatment in Section 3.4 is no longer
valid or can be greatly simplified. The corresponding formulae are given in
Section 3.5.

sh x, of its integrand proves the following identities

I =
1

R2

∫ ∞
arcsh λ

α0 + α1sh x+ α2sh 2x+ α3sh 3x

(1 + sh 2x)2
dx

+
1

R2

∫ ∞
arcsh λ

β0 + β1sh x
(Rsh x− s)2

dx

+
1

R2

∫ ∞
arcsh λ

γ0 + γ1sh x
A+ (Rsh x− s)2

dx

=
Iα + Iβ + Iγ

R2
,

(3.12)

where λ is defined in Eq. (3.11), and the meaning of Iα, Iβ and Iγ is obvious.

Note that if A = 0 (i.e., for R = Rc), two of the denominator factors in Eq. (3.10)
coincide, and a different partial fraction decomposition is needed (Table 3.1, second
case). Moreover, in the case of a spherical stellar distribution, we have s = 0 and the
integrand in Eq. (3.9) simplifies (Table 3.1, third case). Leaving the special cases
apart, we now focus on the evaluation of Eq. (3.10) in the case R 6= 0, A 6= 0, s 6= 0.

The integral Iα

The first integral in Eq. (3.12) is of trivial evaluation and the result is

Iα =
2α0 + α2

3
+

α3√
1 + λ2

− α0λ

(1 + λ2)3/2
− α3 − α1

3(1 + λ2)3/2
− (α2 + 2α0)λ3

3(1 + λ2)3/2
. (3.13)
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The partial fraction decomposition coefficients of Iα in Eq. (3.13) for R 6= 0, A 6= 0,
and s 6= 0 are given by

α0αd
s

=− 17R8 − 2R6(11s2 − 12A) +R4(8s4 + 19s2A− 9A2) (3.14)

+ 2R2(s2 +A)(7s4 +A2) + s2(s2 +A)3,

α1αd
R

=− 6R8 +R6(14s2 + 15A) + 2R4(25s4 − 4s2A− 6A2) (3.15)

+R2(34s6 + 3s4A+ 4s2A2 + 3A3)

+ 2s2(2s6 + 5s4A+ 4s2A2 +A3),

α2αd
s

=− 8R8 +R6(2s2 + 3A) + 2R4(13s4 + 8s2A+ 3A2) (3.16)

+R2(s2 +A)(14s4 + 9s2A−A2)− 2s2(s2 +A)3,

α3αd
R

=− 3R8 + 2R6(7s2 + 3A) +R4(32s4 + s2A− 3A2) (3.17)

+ 2s2R2(5s4 −A2)− s2(5s2 +A)(s2 +A)2,

where
αd = (R2 + s2)2[(A+ s2 −R2)2 + 4R2s2]2. (3.18)

The integral Iβ

The partial fraction decomposition coefficients of Iβ in Eq. (3.12) for R 6= 0, A 6= 0,
and s 6= 0 are given by

β0βd = R4s, β1βd = R3s2, (3.19)

where
βd = A(R2 + s2)2. (3.20)

For the computation of Iβ we then use the standard substitution y = th (x/2) to
obtain

Iβ = −2β0

s2

∫ 1

µ

y2 − 2sy/R− 1

(y2 + 2Ry/s− 1)2
dy, (3.21)

where the upper limit of integration in Eq. (3.12) has now become 1, while the lower
limit of integration is

µ ≡ tanh

(
arcsh λ

2

)
=

√
1 +

1

λ2
− 1

λ
. (3.22)

It can be easily proved that the two real zeros of the denominator in Eq. (3.21) lie
outside the integration domain. The rational integrand in Eq. (3.21) can be solved
again by partial fraction decomposition, and elementary integration leads to the
surprisingly simple expression

Iβ =
β0

R

(√
1 + λ2

ζ
− 1

R

)
. (3.23)
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The integral Iγ

The partial fraction decomposition coefficients of Iγ in Eq. (3.12) for R 6= 0, A 6= 0,
and s 6= 0 are given by

γ0γd
R2s

=−R6 − 2R4(s2 − 3A)−R2(s4 − 18s2A− 3A2)− 8A(s2 +A)2, (3.24)

γ1γd
R3

=−R4(s2 − 3A)− 2R2(s4 + 8s2A+ 3A2)− (s2 − 3A)(s2 +A)2, (3.25)

where
γd = A[(A+ s2 −R2)2 + 4R2s2]2. (3.26)

At variance with Iα and Iβ , Iγ is the most complicated integral, since the integration
procedure now depends on the sign of A. Inspection of Eq. (3.12) suggests that an
easy factorisation of the denominator of Iγ could be obtained in the case A < 0.
However, as the same procedure cannot be applied to the case A > 0 without using
complex numbers, we prefer to follow another approach that maximises the similarity
of the treatment in the two cases.

We use the exponential substitution y = ex, which leads to the following rational
integrand

Iγ =
2γ1

R2

∫ ∞
ν

y2 +Hy − 1

∆(y)
dy, (3.27)

where
H = 2

γ0

γ1
, (3.28)

and

∆(y) = y4 − 4s

R
y3 +

(
4A

R2
+

4s2

R2
− 2

)
y2 +

4s

R
y + 1. (3.29)

With this substitution the upper limit of integration in Eq. (3.12) becomes ∞ in
Eq. (3.27), while the lower limit is

ν ≡ earcsh λ = λ+
√

1 + λ2. (3.30)

In principle, we could use the antisymmetry of ∆(y)/y2 (after noticing that y = 0
is not a zero) to factorise it: it is readily seen that if y1 is a zero of ∆, then so is
−1/y1. This implies that ∆(y)/y2 can be written as a quadratic polynomial in
t = y − 1/y, from which the factorisation is immediate. However, if A > 0 the two
roots of the quadratic polynomial in t are complex conjugates.

In practice this computation is not needed since any quartic polynomial with real
coefficients can be factorised into two quadratic polynomials with real coefficients.
Without loss of generality, we found it useful to adopt the factorisation

∆(y) =
[
(y −∆+)2 + δ+

] [
(y −∆−)2 + δ−

]
. (3.31)

Expansion of Eq. (3.31) and comparison with Eq. (3.29) shows that

∆± =
s

R
±
√
s2

R2
+ δ, δ± =

1− δ
δ

∆2
±, (3.32)
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where

δ =

√
(A+ s2 −R2)2 + 4R2s2 − (A+ s2 −R2)

2R2
. (3.33)

Note that δ > 0,∆+ > 0 and ∆− < 0. If A > 0, then 0 < δ < 1 and hence δ± > 0,
making the two quadratic polynomials in Eq. (3.31) irreducible over the reals. If
A < 0, then δ > 1 and hence δ± < 0, consistent with the fact that in this case ∆
can be factorised into four linear factors over the reals.

Now we can proceed in the usual way, by a partial fraction decomposition. The
coefficients in

y2 +Hy − 1

∆(y)
=

η+y + θ+

(y −∆+)2 + δ+
+

η−y + θ−
(y −∆−)2 + δ−

(3.34)

are given, after some simplification, by

η±σd =± 2δ

(
2δ − Hs

R

)
, (3.35)

θ±σd =2∆±

[ s
R

(∆+ −∆−)± δ∆±(H + 2∆∓)
]
, (3.36)

where

σd = 4(∆+ −∆−)

(
δ2 +

s2

R2

)
. (3.37)

Finally, the constants above are linked by the following simple algebraic relations

∆2
+δ− = δ+∆2

− ,
η+∆+ + θ+

∆+
=
η−∆− + θ−

∆−
, (3.38)

which are useful to simplify the final expression of Iγ 3

Iγ =
γ1η+

R2
ln

(ν −∆−)2 + δ−
(ν −∆+)2 + δ+

+
2γ1

R2

θ+ + η+∆+√
|δ+|

×


arctan

√
δ+(ν −∆−)−

√
δ−(ν −∆+)

(ν −∆+)(ν −∆−) +
√
δ+δ−

if A > 0;

arctanh
√
|δ+|(ν −∆−)−

√
|δ−|(ν −∆+)

(ν −∆+)(ν −∆−)−
√
δ+δ−

if A < 0.

(3.39)

We stress again that all the formulae reported in this Section cannot be used in
their present form to describe the velocity dispersion on the z-axis (R = 0), on the
critical cylinder (A = 0, i.e., R = Rc), or in the case of a spherical stellar density
(s = 0). As listed in Table 3.1, all these cases are treated in Section 3.5.

In Smet et al. (2014) we provide also asymptotic expansions of the above formu-
lae, computed at selected places in the model (i.e., near the origin, along the z-axis,
and in the equatorial plane for R → ∞), in order to better illustrate the effects of

3The addition formulae used in Eq. (3.39) are arctanh u − arctanh v = arctanh
u− v
1− uv and

arctan u− arctan v = arctan
u− v
1 + uv

, where for |x| < 1, arctanh x = 1
2
ln

1 + x

1− x .
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the model parameters on the dynamical properties of the stellar population. We
note that the asymptotic formulae have been verified numerically, thus giving an
independent check of the analytical integration.

We conclude this Section by noticing that, quite remarkably, the integral in
Eq. (3.10) can also be performed in closed form by using the Residue Theorem of
Complex Analysis (see Smet et al. 2014 for further details). However, despite the
elegance of this method, the number of poles, their multiplicity, and their complex
nature do not reduce the amount of work needed to obtain the final (real) result
when compared with the standard method in this Section 3.4.1.

3.4.2 The radial Jeans equation

In the previous Section we solved the vertical Jeans Eq. (2.1). For the radial Jeans
Eq. (2.2), no further integration is needed, as only the radial derivative of I is
required. Notice that from Eq. (3.9) it follows that I is an even function of R,
hence dI/dR = 0 at R = 0. For R > 0 one can obtain an explicit expression for
dI/dR performing explicit differentiation on Eq. (3.12). However, the easiest way
to obtain dI/dR is to differentiate Eq. (3.10) with respect to R, and to perform the
partial fraction decomposition on the resulting integrand. The resulting integrals
are formally similar to the ones already computed, and they can be solved with the
same techniques. In any case, we chose not to include these explicit expressions
here, since any computer algebra system can easily perform the differentiation.

3.5 Special cases

In the following we give the explicit solution of Eq. (3.10) in the special cases R = 0,
A = 0, s = 0, when the formulae in Section 3.4 cannot be used. We recall that
A = q2(R2 +R2

h)− 1.

3.5.1 Velocity dispersion on the z-axis

For R = 0 (i.e., along the z-axis), Eq. (3.9) simplifies considerably, and its integration
is elementary:

I =
1

As2ζ
+

4s

(A+ s2)3
ln

(ζ + s)2

ζ2 +A
− A+ 5s2

s2(A+ s2)2(ζ + s)
− 1

s(A+ s2)(ζ + s)2

+
3A2 − 6As2 − s4

A
√
|A|(A+ s2)3


arctan

√
A

ζ
if A > 0;

arctanh
√
|A|
ζ

if − 1 ≤ A < 0.

(3.40)

The cases A = 0 and A = −s2 should be treated separately. For A = 0, i.e.,
when the critical cylinder coincides with the z-axis (Rh = 1/q), then

I =
8

s5
ln
ζ + s

ζ
+
s4 + 2s3ζ − 8s2ζ2 − 36sζ3 − 24ζ4

3s4ζ3(ζ + s)2
. (3.41)
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The case A = −s2 is possible only for s < 1, so that ζ > s, and

I =
1

4s5
ln
ζ + s

ζ − s
− 6s3 + 10s2ζ + 9sζ2 + 3ζ3

6s4ζ(ζ + s)3
. (3.42)

Note that this solution is always finite, except at the origin (z = 0, i.e., ζ = 1) for
s = 1, so that A = −1 on the z-axis, which in turn implies Rh = 0, i.e., when the
DM potential is not cored.

3.5.2 Velocity dispersion on the critical cylinder

On the critical cylinder R2 = R2
c ≡ q−2 − R2

h, the parameter A vanishes, and two
denominator factors in Eq. (3.10) coincide. Note that, if qRh > 1, there is no critical
cylinder since A > 0 for every R. If qRh < 1, then Rc exists, and in particular Rc = 1
for the SIS model. If qRh = 1, then the critical cylinder coincides with the z-axis,
and the solution for I is given by Eq. (3.41).

On the critical cylinder the partial fraction decomposition in Eq. (3.12) is no
longer valid, and instead we have that

I =
Iα + Ic
R2

c

, (3.43)

where Iα is as before and Ic can be written, without loss of generality, as

Ic =
4∑
i=1

∫ ∞
arcsh λ

θi
(Rcsh x− s)i

dx. (3.44)

Here no singularities are contained in the integration domain, and the coefficients θi
can be found by the usual partial fraction decomposition technique. The substitution
y = ex transforms the integrals in rational ones, and in particular∫

dx

Rcsh x− s
=

2

Rc

∫
dy

y2 − 2
s

Rc
y − 1

= − 2√
R2

c + s2
arctanh

√
R2

c + s2

Rc − s
. (3.45)

The other integrals for i = 2, 3, and 4 are more easily obtained by differentiating
Eq. (3.45) with respect to s. The limits of integration for y are νc given by Eq. (3.30)
evaluated at R = Rc, and ∞. The final result for Ic is

Ic =
2R2

c(3R4
c − 24R2

cs
2 + 8s4)

(R2
c + s2)9/2

arctanh
√
R2

c + s2

Rcνc − s

+
2R2

cs

3(R2
c + s2)4

P5(νc, Rc)

(Rcν2
c − 2sνc −Rc)3

,

(3.46)

where

P5(ν,R) = 3R2s(4R2 − 3s2)ν5 +R(15R4 − 54R2s2 + 36s4)ν4

+ s(−78R4 + 100R2s2 − 32s4)ν3 + 6R(−4R4 + 21R2s2 − 10s4)ν2

+ 3R2s(22R2 − 13s2)ν +R3(13R2 − 8s2).

(3.47)

A careful treatment shows that in the special case where the critical cylinder co-
incides with the z-axis (i.e., qRh = 1 and A = R = 0), Eq. (3.43) coincides with
Eq. (3.41).
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3.5.3 Spherical stellar density

In the case of a spherical stellar density, i.e., when the MN model reduces to the
Plummer sphere, Eq. (3.9) simplifies to

I = 3

∫ ∞
ζ

ζ ′

(R2 + ζ ′2)5/2(A+ ζ ′2)
dζ ′. (3.48)

The substitution u =
√
ζ2 +R2 gives a rational integrand, and

I =
1

(A−R2)(R2 + ζ2)3/2
− 3

(A−R2)2
√
R2 + ζ2

+
3

|A−R2|5/2


arctan

√
A−R2

R2 + ζ2
if A > R2;

arctanh

√
R2 −A
R2 + ζ2

if A < R2;

(3.49)

while for A = R2

I =
3

5(R2 + ζ2)5/2
. (3.50)

3.6 General properties of the solution

The formulae reported in the Section 3.4 (and in Section 3.5 for special cases) are
fully general and they can be easily implemented in numerical codes and in computer
algebra systems to explore the behaviour of the kinematical fields of the models in
all cases of interest. In particular, as the Jeans equations of the one component
MN model has been already solved (see Eqs. 3.6 and 3.7), we now have a two-
component, axisymmetric galaxy model, admitting a fully analytical solution for
the Jeans equations relative to the stellar component. However, the obtained for-
mulae are sufficiently cumbersome to avoid an immediate reading of their physical
contents.

For this reason, a first qualitative illustration of the behaviour of the solutions in
the meridional (R, z) plane is given in Fig. 3.1, for a moderately flattened MN stellar
distribution (s = 10) of total mass M∗ = 1011M�, and scale-length b = 2 kpc, em-
bedded in a quite flattened DM logarithmic halo with Rh = 10 kpc, vh = 250 km s−1

and q = 0.7. Here we show the following velocity fields: σ∗ (left panel), vϕ (central
panel) and σϕ (right panel). For reference, the solid lines shows the isodensities of
the stellar distribution. As expected, the vertical velocity dispersion (independent
of the specific decomposition of the azimuthal fields) near the equatorial plane de-
clines for increasing R, due to fact that the MN stellar distribution becomes more
and more flat. Of course, in the isotropic case the same behaviour is reflected by
σϕ, while the flattening of the stellar distribution is supported by ordered motions
(central panel). Finally, in the fully velocity dispersion supported model, while σ∗
remains unchanged, σϕ takes the place of vϕ, as can be seen by considering the right
panel. Figure 3.1 can be compared with the analogous plots in Fig. 2.3, relative to a
rounder stellar MN model (with s = 1), embedded in a Einasto DM halo (with ex-
ponent n = 4). The overall structure of the kinematical fields, both in the isotropic
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Figure 3.1: Two-dimensional maps of σ∗, vϕ (isotropic model, k = 1) and σϕ (velocity dispersion supported model, k = 0) for the
parameter values M∗ = 1011M�, b = 2 kpc, s = 10, vh = 250 km s−1, Rh = 5b, q = 0.7. Solid lines represents isodensity contours of the
stellar distribution.
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(k = 1) and fully velocity dispersion supported (k = 0) cases are very similar, with
the exception of the central “hourglass” structure in the vertical and radial velocity
dispersion that can be observed in Fig. 2.3. The hourglass shaped distribution of σ∗∗
is a characteristic of the one-component MN model, and in the models in Fig. 3.1 is
absent because of the contribution of the massive Binney halo adopted (at variance
with the lighter Einasto halo in Fig. 2.3): for decreasing values of vh, this feature
appears again, as soon as σ∗∗ dominates over σ∗h.

Additional information on the behaviour of the velocity dispersion field as a
function of the various parameters of the models can be obtained from Fig. 3.2,
where we plot σ∗ in the equatorial plane for a selection of models. For reference, the
black lines represent the velocity dispersion for the one-component MN model, σ∗∗.
In particular, the plots show how the flattening of the stellar distribution, and the
DM halo shape and concentration affect the vertical velocity dispersion of the stellar
component, an observationally relevant quantity. As is well known, this is important
for studies of DM densities in the solar neighbourhood, see e.g. King et al. (1990),
Binney & Tremaine (1987). We can notice a few, obvious features. First, the velocity
dispersion of the model without halo is - for each model - lower than the velocity
dispersion in presence of the halo. Second, while the velocity dispersion declines at
large radii for the MN model, it flattens to a constant value for models embedded
in the logarithmic halo, as expected from the dominance of its quasi-isothermal
profile at large radii. The effects of the halo and stellar flattenings are instead more
interesting. In particular, it should be noted how, for a fixed stellar distribution,
an increase of the halo flattening (at fixed Rh and vh) increases the stellar velocity
dispersion at each radius (compare the red and blue lines in each panel). The velocity
dispersion increase is a consequence of the increase of the vertical gravitational
field of the halo, that is more and more equatorially concentrated for decreasing
q. However, for a fixed halo, a more flattened stellar distribution (at fixed total
stellar mass) leads to a decrease of the stellar velocity dispersion. This may appear
a curious behaviour, as the same argument above about the strength of the vertical
gravitational field applies, but it is not. In fact, the vertical gravitational field of
the stellar distribution increases for increasing s, but the stellar population now
has - by construction - a shorter vertical scale-length, so that its “temperature”
decreases accordingly, and the two effects more than compensate, with a net effect
of decreasing σ∗. This behaviour is by no means a peculiarity of the present models,
and it can be easily cast in algebraic form by using the simpler family of oblate
Ferrers ellipsoids (Ciotti & Lanzoni 1997). Finally, note how a decrease of Rh at
fixed halo geometry and vh leads to an increase of the velocity dispersion, due to
the stronger concentration of the halo.

For the sake of completeness, we note that other dynamical quantities related
to the rotational properties of the (isotropic) models in the equatorial plane, are
illustrated in Smet et al. (2014) (Fig. 4), where particular attention is paid to the
description of the effects of the models parameters (especially the stellar and halo
flattenings) on the asymmetric drift AD ≡ vcirc− vϕ (Binney & Tremaine 1987). In
particular, in the paper we consider the coupling between stellar mass losses and
AD, and we propose it as a possible mechanism for the development of gaseous
radial flows in disc galaxies. We also qualitatively estimate the magnitude of this
effect obtaining an infall velocity of vinfall ' 1 km s−1, consistent with the estimates
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required by chemical evolution models (see Smet et al. 2014 for further details).
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Figure 3.2: Radial trend of the vertical velocity dispersion σ∗ in the equatorial plane for a model with M∗ = 1011M�, b = 2 kpc,
vh = 250 km s−1, and different values of s, q, and Rh. In particular, solid lines refer to a spherical stellar distribution, while the dashed
lines to a flattened MN disk. Red and blue lines correspond to spherical and flat equipotentials for the DM halo. The black curves
represent the stellar contribution σ∗∗.



Chapter 4

The hot X-ray emitting coronae of
ETGs: energetic and
hydrodynamical analyses

Posacki S., Pellegrini S., Ciotti L., 2013, MNRAS, 433, 2259

Negri A., Posacki S., Pellegrini S., Ciotti L., 2014, MNRAS, 445, 1351

In this Chapter we address the problem of the X-ray under-luminosity and coolness
of flat and rotating ETGs, following two different and complementary approaches,
based on energetic estimates and hydrodynamical simulations respectively. Both
methods rely on the construction of advanced galaxy models, built with the Jeans
solver code illustrated in Chapter 2. The work here presented has been published
in Posacki et al. (2013b) and Negri et al. (2014b).
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4.1 Introduction

Before the late 1970s it was generally believed that ETGs were gas-poor systems,
as observed in optical and radio wavebands. This was however at odd with our
knowledge from stellar evolution: during their lives stars shed large amounts of mass
that joins the ISM, so it is expected a certain amount of material to be ejected from
an evolving stellar population. This apparent absence was justified speculating that
this gas was heated and expelled in a supernova-driven galactic wind, thus several
galactic winds models were developed in order to explain why most of these galaxies
showed virtually no evidence of interstellar matter (e.g., Mathews & Baker 1971, for
a full discussion see Mathews & Brighenti 2003).

Subsequently, with the advent of the Einstein Observatory, the first fully imag-
ing X-ray telescope put into space, ETGs were discovered to be associated with a
soft thermal X-ray emission. Since then, this emission has been extensively studied,
especially with the aid of improving quality observations obtained with the subse-
quent X-ray satellites ROSAT, ASCA, Chandra and XMM - Newton, leading to the
collection of numerous precious information.

The emission raises from both the presence of hot interstellar gas, especially in
X-ray bright elliptical galaxies, and point sources, most of which appear to be Low
Mass X-ray Binaries. From X-ray spectra and surface brightness profiles we can
deduce that the emission from discrete sources dominates the total observed X-ray
flux only in optically faint ETGs, while in the more luminous galaxies the bulk of
the emission originates from the hot phase (kBT ∼ 0.3 − 0.8 keV) of the ISM that
emits via thermal bremsstrahlung.

Einstein observations found that ETGs have X-ray luminosities which range over
LX ∼ 1040−1043 erg s−1 and correlate with their blue luminosity LB (LX ∝ L1.5−2

B ),
though with a significant dispersion; taking the optical luminosity fixed, LX can vary
by more than two orders of magnitude. The total mass of the emitting gas is in the
range Mgas ∼ 109 − 1011M�, which is an amount comparable to the mass lost by
stars over the past several billion years and, at the same time, it is a large enough
range of mass to produce consistent scatter in LX.

This variation is related to the ISM evolution over cosmological time-scales,
during which stellar mass losses and SNIa explosions provide gas and gas heating,
respectively, to the hot haloes (possibly in conjunction with feedback from accretion
on to the central SMBH). Modulo environmental effects like galaxy interactions or
tidal stripping, the hot gas content and temperature fundamentally depend on the
energy budget of the hot ISM, that in turn depends on the particular host galaxy
structure and internal kinematics (e.g., Ciotti et al. 1991; Pellegrini 2011). For
example, the luminous and DM content and distribution determine the potential
well shape and depth, and so the binding energy of the gas and its dynamical state
(e.g., Ciotti & Pellegrini 1996). Indeed, one of the discoveries that followed the
analysis of first X-ray data of ETGs was the sensitivity of the hot gas content to
major galaxy properties as the shape of the mass distribution, and the mean rotation
velocity of the stars (see Pellegrini 2012a for a review). The investigation of the origin
of this sensitivity is the goal of the present chapter.

A relation between the hot gas retention capability and the intrinsic galactic
shape became apparent already in the X-ray sample of ETGs built from Einstein
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observations: on average, at any fixed LB, rounder systems had larger total LX and
LX/LB, a measure of the galactic hot gas content, than flatter ETGs and S0 galaxies
(Eskridge et al. 1995). Moreover, galaxies with axial ratio close to unity spanned
the full range of LX, while flat systems had LX . 1041erg s−1. This result was not
produced by flat galaxies having a lower LB, with respect to round ETGs, since it
held even in the range of LB where the two shapes coexist (Pellegrini 1999). The
relationship between LX and shape was reconsidered, confirming the above trends,
for the ROSAT PSPC sample (Pellegrini 2012a), and for the Chandra sample (Li
et al. 2011a). Therefore, there seems to be an empirical dependence of the hot gas
content on the galactic shape, and it was suggested that a flatter shape by itself may
be linked to a less negative binding energy for the gas (Ciotti & Pellegrini 1996).
However, since flatter systems also possess a higher rotational support on average
(e.g., Binney & Tremaine 1987), also the influence of galactic rotation on the hot gas
was called into question. For example, in rotationally supported ETGs the gas may
be less bound, compared to the ISM in non-rotating ETGs, leading rotating ETGs
to be more prone to host outflowing regions. For these reasons, the effects on LX of
both galactic shape and rotation were studied for a sample of 52 ETGs with known
maximum rotational velocity of the stars Vmax, and so with a measure of Vmax/σc,
an indicator of the importance of rotation (Pellegrini et al. 1997). It was found
that LX/LB can be high only for Vmax/σc < 0.4, and is limited to low values for
Vmax/σc > 0.4. This trend was not produced by being the ETGs with high Vmax/σc

confined to low LB. Sarzi et al. (2010) investigated again the relationship between
X-ray emission (from Einstein and ROSAT data) and rotational properties for the
ETGs of the SAURON sample, confirming that slowly rotating galaxies can exhibit
much larger luminosities than fast-rotating ones.

Recently, renewed interest in the study of the hot gas haloes of ETGs has come
from high-quality X-ray observations performed with the Chandra X-ray Observa-
tory, which have produced a large body of data of unprecedented detail. In particu-
lar, the nuclear and the stellar (resolved and unresolved) contributions to the total
X-ray emission could be subtracted, obtaining more accurate properties of the hot
ISM than ever before. From a homogeneous and thorough X-ray analysis for the
pure gaseous component, samples of ETGs have been built with an improved mea-
surement of the X-ray average temperature TX and luminosity LX for the gas only
(e.g., Boroson et al. 2011). This X-ray information allowed to revisit the LX − LK

correlation, and the previously known large variation of up to two orders of magni-
tude in LX at the same LK has been even extended, due to the inclusion of hot-gas
poor ETGs in a larger fraction than previously possible (with LX extending down
to ∼ 1038 erg s−1; Boroson et al. 2011).

In an investigation using Chandra and ROSAT data for the ATLAS3D sample,
Sarzi et al. (2013) found that slow rotators generally have the largest LX and LX/LK

values, and TX values consistent just with the thermalisation of the stellar kinetic
energy, estimated from σe (the stellar velocity dispersion averaged within the optical
effective radius Re). Fast rotators, instead, have generally lower LX and LX/LK

values, and the more so the larger their degree of rotational support. The TX values
of fast rotators keep below 0.4 keV and do not scale with σe (see also Boroson et al.
2011). Considering that fast rotators are likely to be intrinsically flatter than slow
rotators, and that the few slow rotators with low LX are also relatively flat, Sarzi
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et al. (2013) supported the hypothesis whereby flatter galaxies have a harder time
in retaining their hot gas (Ciotti & Pellegrini 1996). To explain why fast rotators
seem confined to lower TX than slow rotators, they suggest that the kinetic energy
associated with the stellar ordered motions may be thermalised less efficiently (see
Appendix B).

In order to help clarify what is the expected variation of the hot gas content
and temperature, originating in a variation of shape and internal kinematics (and
in its degree of thermalisation) of the host galaxy, we study the problem under two
points of view, both based on the numerical construction of realistic, state-of-the-art
(axisymmetric) galaxy models, built with the Jeans solver code described in Chap-
ter 2. In order to derive robust conclusions, we perform a large-scale exploration
of the parameter space, considering galaxy models characterized by different stellar
mass, intrinsic flattening, distribution of DM, and internal kinematics. In particu-
lar, the galaxy flattening is supported by ordered rotation (isotropic rotators) or by
tangential anisotropy, and all galaxy models are tailored to reproduce the observed
properties and scaling laws of ETGs.

The first part the investigation is based on estimates of the temperature and
energy budget for the gas, that can be associated with a galaxy model since they
are derived from the given galaxy structure and kinematical configuration.

The second part of the investigation, instead, studies the evolution of the hot
gas by means of high-resolution 2D hydrodynamical simulations, where the gas is
subjected mainly to supernova heating, stellar winds and radiative cooling. These
simulations are the outcome of a joint research collaboration, and are performed for
a subset of galaxy models built with the Jeans solver code described in Chapter 2.
In this way, in addition to the study of the gas flows, we are also allowed to test
how much simple energetic estimates, such those of Ciotti & Pellegrini 1996 and
especially the ones here computed (Posacki et al. 2013b), can be trustworthy in
interpreting the global properties of the hot gaseous X-ray coronae.

The Chapter is organized as follows. In Section 4.2 we describe the different
profiles adopted for the mass components of the galaxy models, the scaling laws
considered to constrain the models to resemble real galaxies, the observable prop-
erties of the models in the optical band, and the procedure to obtain flat models.
In Section 4.3 we define a set of mean temperatures for the models, some of which
already introduced in Pellegrini (2011). Our main results obtained from the en-
ergetic analysis are presented in Section 4.4, together with a comparison with the
observed X-ray properties of ETGs. Then in Section 4.5 the simulations are pre-
sented together with their main ingredients, such as the selected galaxy models and
the output data necessary to make a comparison with the previous energetic analy-
sis. The main results of the hydrodynamical analysis are described in Section 4.6.
Finally Section 4.7 presents our main conclusions.

4.2 The galaxy models

The galaxy models used for the energetic estimates include three mass components:
a stellar distribution, a DM halo, and a central SMBH. The stellar component is
axisymmetric and can have different degrees of flattening, while for simplicity the
DM halo is spherical. The SMBH is a central mass concentration with mass MBH =
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10−3M∗, following the Magorrian et al. (1998) relation. Its effects are minor, but
it is considered for completeness. For these models, the Jeans equations are solved
under the standard assumption of a two-integral phase space DF (see Chapter 2 and
Appendix A), so that, besides random motions, stars can have ordered motions only
in the azimuthal direction. The decomposition of the azimuthal motions in velocity
dispersion and streaming velocity is performed via the k-decomposition introduced
by Satoh (1980); thus, the amount of rotational support is varied simply through
the parameter k. With the adoption of the mass profiles detailed below for the stars
and the DM, we built galaxy models that reproduce with a good level of accuracy
the typical properties of the majority of ETGs. The models are then projected along
two extreme lines of sight (corresponding to the face and edge-on views) and forced
to resemble real galaxies as described in Section 4.2.3.

4.2.1 Stellar distribution

The stellar distribution is described by the de Vaucouleurs (1948) law, by using the
deprojection of Mellier & Mathez (1987) generalized for ellipsoidal axisymmetric
distributions

ρ∗(R, z) = ρ0ξ
−0.855 exp(−ξ1/4), (4.1)

with

ρ0 =
M∗b

12

16πqR3
e 0Γ(8.58)

, ξ =
b4

Re 0

√
R2 +

z2

q2
, (4.2)

where (R,ϕ, z) are the cylindrical coordinates and b ' 7.67. The flattening is
controlled by the parameter q 6 1, so that the minor axis is aligned with the z
axis. Re 0 is the projected half mass radius (effective radius) when the galaxy is seen
face-on; for an edge-on view, the circularized effective radius is Re = Re 0

√
q (see

Section 4.2.4 and Chapter 2). We assume a constant stellar mass-to-light ratio Υ∗
all over the galaxy, so that M∗ is directly proportional to the luminosity L. Note
that Eq. (4.2) guarantees that the total stellar mass (luminosity) of the model is
independent of the choice of q and Re 0.

4.2.2 Dark matter halo

Given the uncertainties affecting our knowledge of the density profile of DM haloes,
we explored four families of DM profiles. The first one is the scale-free SIS

ρh(r) =
v2

c

4πGr2
, Φh(r) = v2

c ln r, (4.3)

where vc is the halo circular velocity. The gravitational potential of this profile
diverges at small and large radii, thus it is truncated at a distance of 15 Re to
obtain a finite T−g (see Section 4.3.2).

A number of recent works are reconsidering the Einasto (1965) profile as ap-
propriate to model DM haloes (e.g. Navarro et al. 2004; Merritt et al. 2006; Gao
et al. 2008; Navarro et al. 2010). The density distribution of this profile is the three-
dimensional analogue of the Sérsic law, widely used to fit the surface brightness
profiles of ETGs. The density is described by

ρh(r) = ρc exp(dn − x), (4.4)
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where ρc is the density at the volume half-mass radius rh, x ≡ dn(r/rh)1/n, n is a
free parameter, and dn is well approximated by the relation

dn ' 3n− 1

3
+

8

1215 n
, (4.5)

(Retana-Montenegro et al. 2012). Finally the gravitational potential is

Φh(x) = −GMh

r

[
1− Γ(3n, x)

Γ(3n)
+
xnΓ(2n, x)

Γ(3n)

]
. (4.6)

The third family is based on the Hernquist (1990) profile

ρh(r) =
Mhrh

2πr(r + rh)3
, Φh(r) = − GMh

r + rh
, (4.7)

where Mh and rh are the halo total mass and scale radius, respectively.
Lastly, we used also the NFW profile (Navarro et al. 1997)

ρh(r) =
ρcrit δcrh

r (1 + r/rh)2 , (4.8)

where ρcrit = 3H2/8πG is the critical density for closure. The total mass diverges,
so it is common use to identify the characteristic mass of the model Mh with the
mass enclosed within r200, defined as the radius of a sphere of mean interior density
200 ρcrit. Then, from the definition of r200, the concentration c ≡ r200/rh and the
coefficient δc are linked as

δc =
200

3

c3

ln(1 + c)− c/(1 + c)
. (4.9)

The gravitational potential of the NFW profile is

Φh(r) = −4πGρcrit δcr
3
h

ln(1 + r/rh)

r
. (4.10)

4.2.3 Linking the models to real ETGs

One of the most delicate steps of the present study is to have a sample of galaxy
models, characterised by various degrees of flattening and rotational support, that
closely resemble real ETGs, at least in a statistical sense. This is accomplished by
flattening spherical models, that we call “progenitors”.

In fact, the process of flattening a galaxy model is not trivial, and it is highly
degenerate, as illustrated by the exploratory work of Ciotti & Pellegrini (1996),
where the full parameter space of two-component MN models was explored. Here,
we begin with a generic spherical galaxy model, and we impose that its effective
radius Re and aperture luminosity-weighted velocity dispersion within Re/8, σe8,
satisfy the most important observed scaling laws (SLs) of ETGs, the Faber–Jackson
and the Size–Luminosity relations. In particular, we use the Faber–Jackson and the
Size–Luminosity relations derived in the r band for ≈ 80 000 ETGs drawn from Data
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Release 4 (DR4) of the SDSS (Desroches et al. 2007). These relations are quadratic
best-fitting curves, with a slope varying with luminosity Lr:

log σe8 = −1.79 + 0.674 logLr − 0.0234 log2 Lr, (4.11)

logRe = 1.50− 0.802 logLr + 0.0805 log2 Lr, (4.12)

where σe8 and Re are in units of km s−1 and kpc respectively, and Lr is calibrated
to the AB system (Desroches et al. 2007).

In practice, we fix a value for σe8 in the range 150 km s−1 . σe8 . 300 km s−1,
and then we derive Lr and Re from Eqs. (4.11) and (4.12). After conversion of
Lr to the V -band1 (LV), we derive M∗ adopting a (luminosity dependent) V -band
mass-to-light ratio Υ∗ appropriate for a 12 Gyr old stellar population with a Kroupa
IMF (Maraston 2005). Following empirical evidences (Bender et al. 1992; Cappellari
et al. 2006), we assume that Υ∗ ∝ L0.26

V , obtaining 3.3 . Υ∗ . 4.7. With this choice,
the models need a DM halo to reproduce the assigned σe8. We consider the four
different families of (spherical) DM haloes in Section 4.2.2, whose parameters are
fixed to reproduce the assigned σe8. The simplest family is that with the SIS halo
in Eq. (4.3), where we fix vc so that the progenitor has the given σe8. For the
Einasto DM haloes, we fix n = 6 and rh ' 7Re in Eq. (4.4), in order to obtain rh

values in the accepted range for ETGs (see, e.g., Merritt et al. 2006; Navarro et al.
2010), and to keep low the DM fraction fDM in the central regions of the model (see
below). Mh, the only remaining free parameter, is then determined by the chosen
σe8. This procedure gives Mh values that are ' 20 percent larger than in the SIS
case, due to the shallower density slope of the Einasto DM halo at small radii, which
translates into a weaker effect on the stellar random motions, and then into a larger
DM amount required to raise the central stellar velocity dispersion profile up to the
chosen σe8. Also for the Hernquist and NFW families we choose rh ' 7Re, and
Mh is fixed to reproduce the assigned σe8. For the Hernquist family, this request
results in 1.8 × 1012M� . Mh . 4 × 1012M�, while for the NFW haloes we find
12 . c . 25 (Binney & Tremaine 1987; Napolitano et al. 2009), corresponding to
1014M� & Mh & 7.2 × 1012M�. For all models, the resulting Mh/M∗ ratios agree
with those given by cosmological simulations and galaxy mass functions (Narayanan
& Davé 2013). A summary of the properties of some spherical progenitors, for SIS
and Einasto DM haloes, is given in Table 4.1. An important quantity characterizing
the models is the effective DM fraction, defined as the ratio of the DM mass to
the total mass contained within a sphere of radius Re, fDM = Mh(Re)/Mtot(Re).
We compute fDM a posteriori, to check that it agrees with the values found for
well studied ETGs from stellar dynamics and gravitational lensing studies (that is,
fDM ∼ 0.3; Cappellari et al. 2006, Gerhard et al. 2001, Thomas et al. 2005, Treu
& Koopmans 2004). In particular, for the NFW families we found quite high fDM

values (of the order of ∼ 0.66 for the progenitor) due to the larger Mh values.

1The V -band luminosity LV is computed using the standard trans-
formation equations between SDSS magnitudes and other systems
(http://www.sdss3.org/dr9/algorithms/sdssUBVRITransform.php), also assuming B− V = 0.9 as
appropriate for ETGs (Donas et al. 2007).
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Table 4.1: Fundamental galaxy parameters for the progenitors.
σe8 LV LK Re M∗ Υ∗ vc Mh(15Re) fDM Mh fDM

(km s−1) (1011LV�) (1011LK�) (kpc) (1011M�) (M�L
−1
V�) (km s−1) (1011M�) (1011M�)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

300 1.66 6.64 11.79 7.80 4.7 237.3 26.57 0.32 31.53 0.49
250 0.78 3.12 7.04 3.35 4.3 189.4 10.10 0.30 11.99 0.46
200 0.33 1.32 4.09 1.25 3.8 151.9 3.78 0.30 4.48 0.46
150 0.12 0.47 2.29 0.39 3.3 113.0 1.17 0.29 1.39 0.45

Notes: (1) Stellar velocity dispersion, as the luminosity-weighted average within an aperture of radius Re/8. (2) and (3): luminosities
in the V band (derived as described in Section 4.2.3) and K band, from LK = 4LV as appropriate for a 12 Gyr old stellar population
with a Kroupa IMF and solar metallicity (Maraston 2005). (4) Effective radius. (5) Stellar mass. (6) V band stellar mass-to-light
ratio. (7)− (9) Circular velocity, DM mass within a sphere of radius 15 Re, and DM fraction within Re, for the SIS halo. (10)− (11)
DM mass and DM fraction within Re for the Einasto halo.
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4.2.4 From spherical to flat ETGs

In principle, realistic flat and rotating galaxy models could be constructed with a
Monte-Carlo approach, where all the model parameters are randomly extracted from
large ranges, the resulting models are projected and observed at random orientations,
and then checked against the observed SLs, retaining only those in accordance with
observations (Lanzoni & Ciotti 2003). This approach is unfeasible here, because the
model construction is based on numerical integration (while Lanzoni & Ciotti 2003
used the fully analytical but quite unrealistic Ferrers models), and the computational
time of a Monte Carlo exploration of the parameter space would be prohibitively
large. So we solved the problem as follows.

We flatten each spherical progenitor, acting on the axial ratio q and on the scale-
length Re 0 of the stellar density in Eq. (4.2), while keeping Lr, Υ∗ (and thenM∗ and
MBH), and the DM halo the same. For given q and Re 0, the circularized effective
radius Re depends on the line-of-sight (l.o.s.) direction, ranging from Re 0 (when
the model is observed face-on, hereafter FO) to √qRe 0 (in the edge-on case, EO).
Thus, a request for a realistic model is that Lr and Re remain consistent with the
observed Size–Luminosity relation, independently of the l.o.s. direction. In turn,
also σe8 will change due to the flattening, both as a consequence of the choice of q
and Re 0, and of the l.o.s. inclination.

To include all possible inclination effects, from each spherical progenitor, we
build two sub-families of flat descendants, the FO-built ones and the EO-built ones.
In the first sub-family, Re is the same of the spherical progenitor when the flat
model is seen FO; in the other, Re is the same of the spherical progenitor when
the flat model is seen EO. This implies that Re 0 may vary: with the decrease of q,
Re 0 remains equal to Re of the spherical progenitor in the FO-built case, while Re 0

increases as Re/
√
q in the EO-built case. Therefore, in this latter case, there is a

consequent expansion (or size increase) of the galaxy, and a decrease of the galaxy
scale density ρ0 ∝

√
q in Eq. (4.2). On the contrary, in the FO-built sub-family,

there is a density increase as ρ0 ∝ q−1, as the galaxy is compressed along the z-axis.
Then, we compute σe8 according to the procedure described in Chapter 2,

Eq. 2.15, for the range spanned by the Satoh parameter 0 6 k 6 1. Since the FO and
EO-built models are characterised by different structural and dynamical properties,
we must check that, once observed along arbitrary inclinations, the models are still
consistent with the observed SLs. For example, a FO-built model, when observed
EO, will have an Re smaller than the progenitor, while an EO-built model will have
a larger Re when observed FO. Therefore, only galaxy models that, observed along
the two extreme l.o.s. directions (FO and EO), lie within the observed scatter of
Re and σe8 at fixed Lr should be retained in our study. Remarkably, all the models
constructed with our procedure have been found acceptable.

The effects of flattening on σe8 deserve some comments. For the EO view, σe8

of the EO-built models decreases for increasing flattening, due to the associated
model expansion; σe8 further decreases at increasing k, as more galaxy flattening
is supported by ordered rotation. Also for the FO view, σe8 of EO-built systems
decreases, but independently of k (affecting only σϕ, while σR = σz). In the FO-built
models, one would naively expect an increase of σe8 due to the density increase (and
so to the gravitational potential deepening), but this is not the case: even though
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less severely than for EO-built models, σe8 still decreases (both for the FO and EO
views). The simplest way to explain this behaviour is to consider the FO flattening
of the fully analytical Ferrers ellipsoids (Binney & Tremaine 1987). As the flattening
increases, the density raises, the gravitational potential well deepens, and the vertical
force increases, but again the velocity dispersion drops. The physical reason, behind
the mathematics (e.g., see eqs. C4-C11 in Lanzoni & Ciotti (2003)), is that stars
need less vertical velocity dispersion in order to support the decreased z-axis scale-
length, and so the FO view σe8 decreases. σe8 decreases less when observed EO,
because of the decrease of Re, that causes σe8 to be computed within a smaller area
around the galactic centre. Of course, if the galaxy is not fully velocity dispersion
supported, the decrease of σe8 for an EO view can be even larger than for the FO
one, since part of the stellar kinetic energy is stored in ordered motions that do not
contribute to σe8.

These general results, obtained for realistic models, about the variation of σe8

in flat and rotating galaxies of fixed stellar mass, show that some caution should
be exercised when using simple dynamical mass estimators based on the velocity
dispersion measured in the central regions of galaxies. This point is particularly
relevant for studies of the hot haloes properties, that notoriously mainly depend on
the galaxy mass (Ciotti et al. 1991; Sarzi et al. 2013).

As a further test of the models, we also calculated the parameter λR, introduced
by Emsellem et al. (2007) and related to the mean amount of stellar rotational
support. Our λR radial profiles, even for the k = 1 case, are in good agreement with
the profiles in the ATLAS3D sample of ETGs (fig. 5 in Emsellem et al. 2011), for
each galaxy ellipticity. Finally, our method of definition of the DM halo implies a
constant Mh/M∗ ratio within each family, but not a constant fDM, that depends on
q (through the variation that q imposes to ρ∗), as one can see in Fig. 4.1 for the SIS
and the Einasto families. Note that fDM can decrease or increase with q depending
on the construction mode: the increase of the stellar density in the FO-built models
results in lower fDM, since the DM halo is fixed; the reverse is true for the EO-
built models. Moreover, the Einasto models have always higher DM fractions than
the corresponding SIS ones, due to the steepness of the SIS profile at small radii,
requiring less DM to reproduce the chosen value of σe8.

4.3 The temperatures

Here we introduce a set of gas mass-weighted temperatures, equivalent to the in-
jection and binding energies of the hot gas in ETGs. These temperatures will then
serve as a tool to study the effects of galaxy flattening and rotation on the properties
of the X-ray coronae.

4.3.1 The injection temperature

In the typically evolved stellar population of ETGs, the main processes responsible
for the injection of gas mass, momentum and energy in the ISM are stellar winds from
red/asymptotic giant branch stars, and SNIa explosions, the only ones observed in
an old stellar population (e.g. Cappellaro et al. 1999). The wind material outflowing
from stars leaves the stellar surface with low temperatures and low average velocities
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Figure 4.1: Dark matter fraction fDM as a function of the shape parameter q for
the SIS (lower symbols) and the Einasto (upper symbols) DM halo models, for two
families with σe8 = 150 and 300 km s−1 for the spherical progenitors: the FO-built
sub-families are in the top panel, while the EO-built ones are in bottom panel. The
yellow, red, and black colours refer to the E0, E4, E7 model galaxies, respectively;
symbols are filled for k = 0, and empty for k = 1. The shape of the symbols (round
or elliptical) indicates the FO or the EO view of a given model. See Sections 4.2.3
and 4.2.4 for more details. The arrows indicate the trends of change of fDM for
increasing flattening, and separate the symbols of the two DM profiles.
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(∼ few 10 km s−1; Parriott & Bregman 2008), so that all its energy essentially comes
from the stellar motion inside the galaxy. SNIa explosions, instead, provide mass
to the ISM through their very high velocity ejecta (∼ few 104 km s−1). Thus, this
material provides mass and heat to the hot haloes, via thermalisation of its energy
through shocks with the ambient medium or with other ejecta, heating up to X-ray
emitting temperatures.

The injection energy per unit mass due to both heating processes is einj ≡
3kBTinj/(2µmP), where kB is the Boltzmann constant, µ = 0.62 is the mean molec-
ular weight for solar abundance, mP is the proton mass, and Tinj is defined as

Tinj ≡
Ṁ∗T∗ + ṀSNTSN

Ṁ
. (4.13)

Here T∗ and TSN are the injecta temperatures resulting from the thermalisation of
their interactions with the ISM through stellar winds and SNIa respectively (see
below). Ṁ is the total mass-loss rate for the entire galaxy, given by the sum of
the stellar mass-loss rate Ṁ∗ and of the rate of mass loss via SNIa events ṀSN

(Ṁ = Ṁ∗ + ṀSN). The time evolution of the stellar mass-loss rate Ṁ∗ can be
calculated using single-burst stellar population synthesis models for different initial
mass functions and metallicities (e.g., Maraston 2005). For example, at an age of
12 Gyr, Ṁ∗(M� yr−1) ≈ 2× 10−11 LB(LB�) for the Salpeter or Kroupa IMF (e.g.,
Pellegrini 2012a). ṀSN is instead given by ṀSN = MSNRSN, where MSN = 1.4M�
is the mass ejected by one Type Ia supernova event and RSN is the explosion rate.
For local ETGs it is RSN = 0.16(H0/70)2 × 10−12 LB(LB�) yr−1, where H0 is the
Hubble constant in units of km s−1Mpc−1 (Cappellaro et al. 1999). More recent
measurements of the observed rates of supernovae in the local universe (Li et al.
2011b) give a SNIa rate in ETGs consistent with that of Cappellaro et al. (1999).
For this rate, and H0 =70 km s−1Mpc−1, one obtains ṀSN = 2.2× 10−13 LB(LB�)
M� yr−1, which is ∼ 80 times smaller than the Ṁ∗ above for an age of 12 Gyr. Thus
the main source of mass is provided by Ṁ∗, and approximating Ṁ ' Ṁ∗, we have
Tinj ' T∗ + (ṀSN/Ṁ∗)TSN.

Neglecting the internal energy and the stellar wind velocity relative to the star,
T∗ is the sum of two contributions, deriving from the random and the ordered stellar
motions. In axisymmetric model galaxies as built here, the stellar component of the
galaxy is allowed to have a rotational support, and the latter can be converted into
heating of the injected gas in a variable amount. The extent of the contribution of
rotational motions is not known a priori, since it depends on both the importance of
the stellar ordered motions and the dynamical status of the surrounding gas already
in situ (see Appendix B; see also D’Ercole et al. 2000; Negri et al. 2013). Given
the complexity of the problem, hydrodynamical simulations are needed to properly
calculate this heating term (as it will be done in Sections 4.5 and 4.6), but we can
still obtain a simple estimate of it by making reasonable assumptions. We define
the equivalent temperature of stellar motions T∗ as

T∗ = Tσ + γthTrot (4.14)

where
Tσ =

µmP

3kBM∗

∫
ρ∗Tr(σ2) dV (4.15)
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is the contribution of stellar random motions,

Trot =
µmP

3kBM∗

∫
ρ∗ ‖v‖2 dV (4.16)

is the one due to the stellar streaming motions, and γth is a parameter that regulates
the degree of thermalisation of the ordered stellar motions. M∗ is the stellar mass of
the galaxy, σ2 is the velocity dispersion tensor, and v = vϕeϕ is the the streaming
velocity, whose only non-zero component is the azimuthal one, vϕ (see Chapter 2
and Appendix A). In Eqs. (4.15) and (4.16), as in the remainder of the Chapter,
we assume that the gas is shed by stars with a spatial dependence that follows that
of the stellar distribution ρ∗, so that the density profile of the gas injected per unit
time is proportional to ρ∗ (i.e. it is ρ̇ = Ṁρ∗/M∗ in Eqs. B.1 − B.3 of Appendix B).

The parameter γth is defined as

γth =
µmP

Trot3kBM∗

∫
ρ∗‖u− v‖2 dV, (4.17)

where u is the velocity of the pre-existing gas (see Appendix B). A simple estimate
for γth is obtained when the gas velocity is proportional to v, i.e., u = αv, where
α is some constant. In this special case, from Eqs. (4.16) and (4.17) it follows that
γth = (α − 1)2. When α = 1, gas and stars rotate with the same velocity and no
ordered stellar kinetic energy is thermalised, whereas for α = 0 the gas is at rest and
all the kinetic energy of the stars, including the whole of the rotational motions, is
thermalised. Clearly both cases are quite extreme and unlikely, and plausibly the
pre-existing gas will have a rotational velocity ranging from zero to the streaming
velocity of stars, i.e., 0 6 α 6 1 and then 1 > γth > 0 (the case of a constant α > 1,
where the pre-existing gas is everywhere rotating faster than the newly injected gas
is not considered). Note that, contrary to γthTrot, Tσ is in principle exact, and can
be computed a priori.

The internal plus kinetic energy of the ejecta, released during a Type Ia super-
nova event, is of the order of ESN ' 1051 erg. Depending on the conditions of the
environment in which the explosion occurs, the radiative losses from the expanding
supernova remnant may be important, and so the amount of energy transferred to
the ISM through shock heating is a fraction η of ESN. Realistic values of η for the
hot and diluted ISM of ETGs are around 0.85 (e.g., Tang & Wang 2005, Thornton
et al. 1998), thus

TSN =
2µmP

3kB

ηESN

MSN
, (4.18)

and, substituting the above expressions for ṀSN and Ṁ∗, we obtain the average
injection temperature

Tinj = T∗ + 1.7
η

0.85
× 107 K. (4.19)

A possible additional source of heating for the gas could be provided by a central
SMBH. Through its gravitational influence, it is responsible for the increase of the
stellar motions within its radius of influence (of the order of a few tens of parsecs;
e.g., Pellegrini (2012a)). We consider this effect here, while we neglect possible
effects as radiative or mechanical feedback.
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4.3.2 The temperatures related to the potential well

The gas ejected by stars can be also heated “gravitationally” by falling into the
galactic potential well to the detriment of its potential energy, and by the associated
adiabatic compression. When stellar mass losses accumulate, the gas density can
reach high values and the cooling time can become smaller than the galactic age;
if the radiative losses increase considerably, the gravitational force overwhelms the
pressure gradient and eventually the gas starts inflowing toward the centre of the
galaxy. Thus we can define a temperature

T+
g =

2µmPE
+
g

3kB
=

2µmP

3kBM∗

∫
ρ∗ (Φ− Φ0) dV (4.20)

where E+
g is the average change in gravitational energy per unit mass of the gas

flowing in through the galactic potential Φ(x) down to the galactic centre, and
Φ0 = Φ(0). Note that E+

g > 0, having assumed as usual that Φ(x) < 0. However,
as discussed in Pellegrini (2011), most of E+

g may be radiated away, and there are
conditions under which Eq. (4.20) does not apply (like the development of thermal
instabilities that produce dropouts from the flow at large radii from the galactic
centre). Therefore, given these uncertainties, we consider T+

g just as a reference
value, and keep in mind that the temperature achievable from infall can be much
lower than that given by Eq. (4.20).

By analogy with T+
g , we can define a temperature

T−g =
2µmPE

−
g

3kB
= − 2µmP

3kBM∗

∫
ρ∗Φ dV, (4.21)

where E−g is the average energy necessary to extract a unit of gas mass from the
galaxy, with the assumption that Φ(∞) = 0. If the gas rotates, Eq. (4.21) must be
modified since, thanks to the centrifugal support, the gas is less bound. Assuming
again that u = αv, then

E−g (α) = − 1

M∗

∫
ρ∗

(
Φ +

α2

2
v2
ϕ

)
dV, (4.22)

so that T−g (α) = T−g − α2Trot. Note that, for a given Trot, the smallest is γth (the
largest is α), the smallest is T∗ (the gas is less heated), but also the lower is T−g (the
gas is less bound).

When the galaxy mass distribution has a potential that diverges at small and/or
large radii, as for the SIS, we assume the gas has been extracted from the galaxy
when it has reached a distance of 15 Re from the galactic centre, so that E−g and
E+

g do not correspond exactly to Eqs. (4.22) and (4.20). Finally, if energy losses
due to cooling are present, the gas would need more than E−g to escape, but these
losses are negligible for outflows that typically have a low density.

In case of gas escape, we can introduce another mass-weighted temperature by
considering the enthalpy per unit mass of a perfect gas h = γkBT/[µmP(γ − 1)] =
c2
s/(γ−1), where γ is the ratio of the specific heats and cs is the sound speed. Build-
ing on the Bernoulli theorem, we can derive a fiducial upper limit to the temperature
of outflowing gas. For a fixed galactic potential, the energy of the escaping gas can



4.3 The temperatures 45

be divided between kinetic and thermal energy with different combinations. In the
extreme case in which the gas reaches infinity with a null velocity and enthalpy,
and it is injected with a (subsonic) velocity u = αv, from the Bernoulli equation
h(x) + v2(x)/2 + Φ(x) = 0, we derive a characteristic gas-mass averaged escape
temperature

T sub
esc = − 2µmP

5kBM∗

∫
ρ∗

(
Φ +

α2

2
v2
ϕ

)
dV =

3

5
T−g (α), (4.23)

for a monoatomic gas (see Pellegrini 2011 for more details). In the opposite case
of an important kinetic energy of the flow, the gas temperature will be lower than
T sub

esc .
In summary, T−g is a temperature equivalent to the energy required to extract

the gas, while T sub
esc is close to the temperature we expect to observe for outflowing

gas. For inflowing gas, we expect to observe a temperature much lower than T+
g ,

since more than ∼ 0.5E+
g is radiated away or goes into kinetic energy of the gas,

or because of condensations in the gas (e.g., Sarazin & Ashe 1989). For reference,
for realistic spherical models, E+

g ∼ 2E−g , thus the temperature of the inflowing gas
should be lower than T−g (Pellegrini 2011).

Finally, we mention about the relation between observed temperatures TX and
the average mass-weighted temperatures of this Section. The latter are derived
under the assumption that the gas density ρgas follows that of the stars, which is
appropriate for the continuously injected gas (e.g., for T∗ and Tinj), while the bulk
of the hot ISM may have a different distribution; thus, mass-weighted T−g and T sub

esc

referring to the whole hot gas content of an ETG may be different from those given
by Eqs. (4.21) and (4.23). In general, the ρgas profile is shallower than that of ρ∗ (e.g.,
Sarazin & White 1988; Fabbiano 1989), and then the gas mass-weighted T+

g would
be larger than derived with Eq. (4.20), and the mass-weighted T−g or T sub

esc would be
lower than derived using Eqs. (4.21) and (4.23). For steady winds, instead, when
the gas is continuously injected by stars and expelled from the galaxy, the ρgas ∝ ρ∗
assumption is a good approximation.

Another point is that the TX values are emission-weighted averages, and will
coincide with mass-weighted averages only if the entire ISM has one temperature
value (e.g., Ciotti & Pellegrini 2008; Kim 2012). A single TX value measured from
the spectrum of the integrated emission will tend to be closer to the temperature
of the densest region, in general the central one, thus it will be closer to the central
temperature than the mass-weighted one. The temperature profiles observed with
Chandra tend to be quite flat, except for cases where they increase outside of ∼
0.5Re (generally in ETGs with the largest TX), and for cases of negative temperature
gradients (in ETGs with the lowest TX; Diehl & Statler 2008; Nagino & Matsushita
2009). Therefore, the largest TX may be lower than mass-weighted averages, and the
lowest TX may be larger than them. In conclusion, the comparison of TX and the gas
content with the gas temperature and binding energy introduced in this Section (as
T∗ and E−g ) represents the easiest approach for a general, systematic investigation
involving a wide set of galaxy models, but the warnings above should be kept in
mind. Note, however, that the conclusions below remain valid when taking into
account the above considerations.
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Table 4.2: Summary of all parameters and temperatures.
Symbol Meaning

q Intrinsic axial ratio of the stellar distribution: 0.3 6 q 6 1
k Satoh parameter, controls the amount of galaxy rotation: 0 6 k 6 1
γth Degree of thermalisation of the ordered stellar motions v (Eq. 4.17)
α Scaling factor between the ISM velocity and the stellar streaming

motions (u = αv), with 0 6 α 6 1 ; γth = (α− 1)2

Tinj Temperature equivalent of the thermalisation of the stellar motions
and of the kinetic energy of SNe Ia events, for the unit mass of
injected gas (Eq. 4.19)

TSN Contribution to Tinj due to SNIa events (Eq. 4.18); it is regulated
by a factor η < 1 (η = 0.85 is generally adopted)

T∗ Contribution to Tinj due to stellar motions, defined by Eq. (4.14):
T∗ = Tσ + γthTrot

Tσ Contribution to T∗ due to stellar random motions, defined by Eq. (4.15)
Trot Contribution to T∗ due to stellar ordered motions defined by Eq. (4.16)
T+

g Temperature equivalent of the change in gravitational energy of the
injected gas, when flowing to the galactic centre (Eq. 4.20)

T−g Temperature equivalent of the energy required to extract the unit
mass of injected gas from the galaxy (Eq. 4.21). If the injected gas
rotates, then T−g (α) = T−g − α2Trot

T sub
esc Mass averaged, subsonic escape temperature for the injected gas

(Eq. 4.23). It represents a fiducial upper limit to the observed
temperature of outflows; T sub

esc = 3/5T−g

4.4 Results

Having built a large set of realistic galaxy models, consistent with the observed SLs
and with DM haloes in agreement with current expectations, we can now study
the effects of flattening and rotational support on the temperatures of the mod-
els, defined in Section 4.3 and summarized in Table 4.2, together with the main
parameters characterizing the models. We next compare these temperatures with
the observed X-ray properties of a sample of ETGs, extending to flat and rotating
models the analysis carried out by Pellegrini (2011). In this Section, we take into
account also the effect of α, that parametrizes the degree of thermalisation of the
ordered motions.

4.4.1 The effects of shape and stellar streaming motions on the
model temperatures

We explore here how T∗, Tinj and T−g depend on (q, k, α), i.e., galaxy flattening,
rotational support, and degree of thermalisation of ordered rotation. Three values of
q = (1, 0.6, 0.3) are considered, that cover ETG morphologies from the spherical (E0)
to the flattest ones (E7). The choice of the intermediate value q = 0.6 (corresponding
to an E4) is motivated by the majority of ETGs having 0.55 . q 6 1 (see Fig. 4.2).
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Figure 4.2: Central stellar velocity dispersion as a function of the shape parameter
q for a sample of ≈ 1400 nearby (z < 0.05) ETGs drawn from the SDSS DR4 (data
taken form Nair & Abraham 2010).

Thus, the E7 models correspond to rare objects and represent quite an extreme
behaviour, whereas the most common ETGs correspond to models with q between
1 and 0.6. We also consider the two extreme values of k: fully velocity dispersion
supported systems (k = 0), and isotropic rotators (k = 1); and three values of α =
(0, 0.5, 1), in which respectively the pre-existing ISM has a null rotational velocity
(all the stellar kinetic energy, including that of rotational motions, is thermalised,
γth = 1), or rotates with half the velocity of the stars (then γth = 0.25), or has
the same velocity as the stars (then no ordered stellar kinetic energy is thermalised,
γth = 0, see Section 4.3).

Figure 4.3 shows T∗ for various descendants of spherical progenitors with σe8 =
150 and 300 km s−1 (yellow circles), for two different DM haloes (SIS and Einasto
in the left and right panels, respectively). As anticipated in Section 4.2.4, a major
effect of flattening is the decrease of σe8 of the descendants (with respect to the
progenitor), that are then displaced on the left of their respective progenitor, in a
way proportional to the flattening level 2 (arrows in Fig. 4.1, see also Figs. 4.3 and
4.4).

The trend of T∗ with a pure change of shape in fully velocity dispersion supported
models (k = 0), is due to the specific flattening procedure (see Section 4.2.4). In the
FO-built sub-families (Fig. 4.3, top panels), flatter models are more concentrated
than rounder ones, while in the EO-built sub-families (bottom panels), they are
more extended and diluted. Thus pure flattening produces a different effect on T∗:
in the FO-built cases T∗ increases (as T−g ; see below), whereas in the EO-built cases
T∗ decreases. Therefore, we conclude that real flat galaxies can be either more

2In some works, instead of σe8, the observations are used to measure the quantity Vrms =√
σ2
P + V 2

P , averaged within a central aperture (i.e., Re/8) by weighting with the surface brightness
(see Chapter 2). For a chosen shape of the stellar distribution, Vrms = σP if k = 0, and whenever
the galaxy is seen face-on. For any view, it can be shown that, for axisymmetric stellar distributions
where the Satoh k-decomposition is adopted, Vrms is independent of k; thus Vrms, e8 has a different
behaviour than σe8, that is slightly lower for k = 1 than for k = 0, for the edge-on view.
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Figure 4.3: Distribution of T∗ for models derived from two spherical progenitors (yellow circles) of σe8 = 150 or 300 km s−1, with SIS
(left panel) or Einasto DM halo (right panel). Colours refer to the intrinsic flattening of the descendants: E4 (red) and E7 (black). At
given intrinsic flattening (i.e., at fixed colour), the shape of the symbols indicates the l.o.s. inclination: FO (circle) or EO view (ellipse).
Filled symbols refer to k = 0, empty symbols to k = 1. Three values of α are considered (α = 0, 0.5, 1), as indicated for the FO-built
sub-families of the σe8=300 km s−1 progenitor. When k = 1, the increase of α decreases T∗ at any σe8, from the value coincident with
the non-rotating case (k = 0) when α = 0, down to values that are lower for larger flattenings, when α = 0.5 and 1. In each sub-family,
models with same intrinsic shape have the same T∗, independent of the FO or EO view, for fixed (k, α).
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Table 4.3: Observed Properties of the ETG Sample with X-ray properties for the hot gas from Chandra observations.

Name d log(LK) kBTX LX Vmax σe8 Vmax/σe8 Ref. Type q
(Mpc) (LK�) (keV) (1040erg s−1) (km s−1) (km s−1) RC3 2MASS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

NGC 720 27.6 11.31 0.54 5.06 100 241 0.41 Binney et al. 1990 E5 0.55
NGC 821 24.1 10.94 0.15 2.13×10−3 120 200 0.60 Coccato et al. 2009 E6? 0.62
NGC1023 11.4 10.95 0.32 6.25×10−2 250 204 1.23 Noordermeer et al. 2008 SB0 0.38
NGC1052 19.4 10.93 0.34 4.37×10−1 120 215 0.56 Milone et al. 2007 E4 0.70
NGC1316 21.4 11.76 0.60 5.35 150 230 0.65 Bedregal et al. 2006 SAB0 0.72
NGC1427 23.5 10.82 0.38 5.94×10−2 45 171 0.26 D’Onofrio et al. 1995 cD –
NGC1549 19.6 11.20 0.35 3.08×10−1 40 210 0.19 Longo et al. 1994 E0-1 0.90
NGC2434 21.5 10.84 0.52 7.56×10−1 20 205 0.10 Carollo & Danziger 1994 E0-1 0.98
NGC2768 22.3 11.23 0.34 1.26 195 205 0.95 Proctor et al. 2009 E6 0.46
NGC3115 9.6 10.94 0.44 2.51×10−2 260 239 1.09 Fisher 1997 S0 0.39
NGC3377 11.2 10.45 0.22 1.17×10−2 97 144 0.67 Simien & Prugniel 2002 E5-6 0.58
NGC3379 10.5 10.87 0.25 4.69×10−2 60 216 0.28 Weijmans et al. 2009 E1 0.85
NGC3384 11.5 10.75 0.25 3.50×10−2 150 161 0.93 Fisher 1997 SB0 0.51
NGC3585 20.0 11.25 0.36 1.47×10−1 200 198 1.01 Fisher 1997 E6 0.63
NGC3923 22.9 11.45 0.45 4.41 31 250 0.12 Norris et al. 2008 E4-5 0.64
NGC4125 23.8 11.35 0.41 3.18 150 227 0.66 Pu et al. 2010 E6 pec 0.63
NGC4261 31.6 11.43 0.66 7.02 50 300 0.17 Bender et al. 1994 E2-3 0.86
NGC4278 16.0 10.87 0.32 2.63×10−1 60 252 0.24 Bender et al. 1994 E1-2 0.93
NGC4365 20.4 11.30 0.44 5.12×10−1 80 245 0.33 Surma & Bender 1995 E3 0.74
NGC4374 18.3 11.37 0.63 5.95 60 292 0.21 Coccato et al. 2009 E1 0.92
NGC4382 18.4 11.41 0.40 1.19 70 187 0.37 Fisher 1997 SA0 0.67
NGC4472 16.2 11.60 0.80 18.9 73 294 0.25 Fisher et al. 1995 E2 0.81
NGC4473 15.7 10.86 0.35 1.85×10−1 70 192 0.36 Emsellem et al. 2004 E5 0.54
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Table 4.3 – continued

Name d log(LK) kBTX LX Vmax σe8 Vmax/σe8 Ref. Type q
(Mpc) (LK�) (keV) (1040erg s−1) (km s−1) (km s−1) RC3 2MASS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

NGC4526 16.9 11.20 0.33 3.28×10−1 246 232 1.06 Pellegrini et al. 1997 SAB0 0.43
NGC4552 15.3 11.01 0.52 2.31 17 268 0.06 Krajnović et al. 2008 E0-1 0.94
NGC4621 18.2 11.16 0.27 6.08×10−1 140 225 0.62 Bender et al. 1994 E5 0.65
NGC4649 16.8 11.49 0.77 11.7 120 315 0.38 Pinkney et al. 2003 E2 0.81
NGC4697 11.7 10.92 0.33 1.91×10−1 115 174 0.66 de Lorenzi et al. 2008 E6 0.63
NGC5866 15.3 10.95 0.35 2.42×10−1 210 159 1.32 Neistein et al. 1999 SA0 0.42
Notes: (1) Galaxy name. (2) Distances from Boroson et al. (2011) (Tonry et al. 2001). (3) Logarithm of the K band luminosity,
assuming K� = 3.33 mag, taken from Boroson et al. (2011). (4)− (5) Hot gas temperature and the 0.3− 8 keV gas luminosity, from
Boroson et al. (2011). (6)− (8): maximum velocity of rotation, stellar velocity dispersion, as the luminosity-weighted average within
an aperture of radius Re/8 (from Pellegrini 2011), and their ratio. (9) References for Vmax in column (6). (10) Morphological type
from RC3. (11) Axial ratio in the Ks band, from 2MASS.



52 The hot X-ray emitting coronae of ETGs

or less bound than spherical galaxies of the same mass, depending on their mass
concentration. Overall, however, the variation in T∗ for both sub-families is not
large: the maximum variation, from the progenitor to the E7 model, is an increase
of ∼ 19 percent for the FO-built cases, and a decrease of ∼ 18 percent for the
EO-built ones.

A larger effect on T∗ can instead be due to the presence of significant rotational
support (empty symbols in Fig. 4.3), if not thermalised. In fact, when k = 1, but
α = 0 (γth = 1), the whole stellar kinetic energy, including the streaming one, is
thermalised, and the T∗ values are coincident with those of the non-rotating case
(full symbols), for the same galaxy shape. In the other cases of α 6= 0, the rotational
support always acts in the sense of reducing T∗, and the flatter the shape, the larger
can be the reduction. The strongest reduction of T∗ is obtained for an isotropic
rotator (k = 1) E7 model, if the gas ejected from stars retains the same stellar
streaming motion (α = 1, γth = 0): for the FO-built case, T∗ drops by ∼ 50 percent
with respect to the E0 model, and by∼ 60 percent with respect to the same E7 model
with the ordered streaming motions fully thermalised (α = 0). For the EO-built
case, T∗ drops by ∼ 70 percent with respect to the E0 model, and by ∼ 60 percent
with respect to the same E7 model with α = 0. These percentages are obviously
extreme values; the T∗ reduction is lower for milder flattenings, and for k and α
values smaller than 1. For a fixed galaxy shape, all possible (k, α) combinations fill
a sort of triangular area on the (σe8, T∗) plane, identifiable by linking the symbols of
a given q (colour). Clearly, the rounder the galaxies, the weaker the effect of k and,
consequently, of α variations. All the above effects are independent of the galaxy
luminosity (mass), and both the σe8 = 300 and 150 km s−1 families show the same
(rescaled) behaviour in the (σe8, T∗) plane.

The trends described above are independent of the specific DM halo profile:
models with an Einasto DM halo (right panel) show the same pattern as those with
a SIS DM halo (left panel), just with a different normalisation due to the larger total
DM content (see Table 4.1). Similar results hold also for the Hernquist and NFW
DM haloes.

In Fig. 4.4 we plot T−g for the same families in Fig. 4.3. Similarly to what
happens for T∗, for fully velocity dispersion supported models, T−g gets larger with
flattening for the FO-built sub-family (∼ 21 percent), while it decreases for the more
diluted EO-built models (∼ 12 percent). Stellar streaming, when α > 0, acts in the
sense of making the gas less bound, due to the centrifugal support of the injected
gas, and then T−g decreases with increasing α, at any fixed flat shape. This effect
is maximum when α = 1 and the gas rotates as the stars. However, the decrease in
T−g due to galaxy rotation is lower than obtained for T∗: for both sub-families, T−g
drops at most by ∼ 13 percent (for the E7 models), between the two extreme cases
of α = 0 and α = 1. This produces that, in the FO-built case, T−g keeps always
larger than for the progenitor when q decreases, even for k = α = 1, while T∗ of
rotating galaxies could become significantly lower than for the progenitor. Note that
there are two compensating effects from stellar streaming when α 6= 0: the stellar
heating is lower than for k = 0, but the gas is also less bound. Also these results
are independent of the DM halo profile, as can be judged from the right panel of
Fig. 4.4, that refers to the same models of the right panel of Fig. 4.3.

Since the flatter is the galaxy, the more it can be rotationally supported (and
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the more is rotationally supported, the larger is the effect of a co-rotating ISM), the
effect of rotation is dependent on the degree of flattening, and thus it may prove
difficult to disentangle observationally the two distinct effects due to shape and
kinematics. On the theory side, we recall that a simplifying assumption made here
is that u = αv, and γth = (α−1)2, while in reality the kinematical difference between
stars and pre-existing gas may be more complex, as the extent of thermalisation;
only numerical simulations are able to establish what are the net effects on the gas
evolution of stellar streaming motions (see Section 4.5 Negri et al. 2013, 2014a,b).

Figure 4.4 finally shows the well known fact that the contribution from SNIa
dominates the gas injection energy, since Tinj >> T∗. This contribution (i.e., TSN)
is independent of galaxy mass, which results into lower-mass models having T−g far
lower than Tinj, and T−g reaching Tinj for 200 km s−1 . σe8 . 250 km s−1, depending
on the DM profile. Galaxies with σe8 . 200 km s−1 consequently are more prone
to an outflow, and then to have a low hot gas content, as already suggested in
the past by numerical simulations and by observations (Ciotti et al. 1991; Sarazin
et al. 2001; David et al. 2006; Pellegrini et al. 2007; Trinchieri et al. 2008). These
findings are based on the assumption of a high thermalisation efficiency for SNIa
(η = 0.85), and the quoted σe8 critical values become lower for lower η values (as
indicated by, e.g., Thornton et al. 1998), that decrease Tinj. Variations in the DM
may alter the T−g values, but small changes in T−g are found here for differences in
the DM profile, and possible variations in the total DM amount cannot be very large,
given the constraints from dynamical modellings within Re, and from cosmological
simulations (taken into account here, Section 4.2.3). Indeed, the results for the
Hernquist families are essentially identical to what we have shown for the Einasto
halo, whereas for the NFW profile the trends are the same, but all the temperatures
are shifted to higher values, due to their larger amounts of DM.

Finally we comment on the preliminary investigation about the role of flatten-
ing and rotation on the global energetics of the ISM in Ciotti & Pellegrini (1996).
They built fully analytical axisymmetric two-component galaxy models, where the
stellar and DM mass distributions were described by the MN potential-density pair.
They varied the shape of both the stellar component and the DM halo from flat
to spherical, and the amount of azimuthal ordered motions through the Satoh k-
decomposition. Their conclusion was that, for quite round systems, flattening can
have a substantial effect in reducing the binding energy of the hot gas, contrary
to galaxy rotation that seemed to have a negligible role. The opposite was sug-
gested for very flat systems. These results were confirmed by 2D hydrodynamical
simulations (D’Ercole & Ciotti 1998). We stress here that the models in Ciotti &
Pellegrini (1996), while capturing the main effects of flattening and rotation on the
global energetics of the hot haloes of ETGs, were not tailored to reproduce in detail
the observed properties of real ETGs. Our current findings, based on more realistic
galaxy models, reveal a more complicated situation, where the flattening importance
on the ISM status is mediated by the amount of rotation and its specific thermali-
sation history. Remarkably enough, however, when flattening a two-component MN
model following the same procedure here adopted (constant M∗, Re and Mh), its
T−g remains close to that of its spherical progenitor (i.e., the model moves almost
parallel to the solid lines in fig. 2 in Ciotti & Pellegrini 1996).
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4.4.2 Comparison with observed ETGs properties in the X-rays

Now we compare our estimates for T∗ and T−g with observed temperatures TX and
gas content, respectively, for the Boroson et al. (2011) sample. Observed X-ray and
K-band luminosities, central stellar velocity dispersions, rotation velocities, and
galaxy shape are given in Tab. 4.3. Figure 4.5 shows observed (points) and model
temperatures (lines) versus LK, with TX plotted with a different colour reflecting
the ETG shape and rotational support. In order to make the comparison between
models and observations more consistent, the LK of the models have been calculated
using the mean LK/LV = 3.4 of the ETGs in this sample. When comparing observed
and model temperature values at fixed LK, the mass is the same for all the models,
and it should be roughly so also for the observed ETGs. At fixed LK, then, the T∗
variation due to shape and stellar streaming is obtained from all the T∗ values of the
descendants of a progenitor (we consider the Einasto models of Fig. 4.3), regardless
of the FO or EO view. When comparing observed and model temperatures as a
function of σe8 instead, at any σe8 the mass could be different. Figure 4.5 shows
again how the effect of rotation can be potentially stronger than that of shape (as
already indicated by Fig. 4.3): moderately larger or smaller T∗ can be produced
by flattening, depending on the way it is realised, while T∗ can be much lowered
by galactic rotation. Thus, at fixed LK, the largest variation in T∗ with respect to
the spherical case (yellow line) does not come from a variation of shape, but is a
decrease of T∗ due to rotation with α = 1 (no thermalisation).

In Fig. 4.5 all TX are larger than T∗, yet much closer to T∗ than to Tinj ∼ 1.5− 2
keV (see Fig. 4.4). This may be evidence of two facts: either the SNIa thermalisation
η is low, or the gas flows establish themselves at a temperature close to the virial
temperature3 of the galaxy, and most of the SNIa input is spent in cooling (in gas-
rich ETGs), or in lifting the gas from the potential well, and imparting bulk velocity
to the outflowing gas (in gas-poorer ETGs; see Pellegrini (2011) for a quantification
of these effects, and Tang et al. 2009 and Li et al. 2011a for addressing also other
solutions to this problem). A combination of the two explanations may also be at
place, of course. In any case, the proximity of the observed TX values to T∗ provides
an empirical evidence of the importance of the study of T∗ and its variations; it
would not have been so, if we had found TX to be closer to Tinj.

Going now into the question of whether possible effects from shape and stellar
streaming are apparent on TX, Fig. 4.5 shows a mild indication that flatter shapes
and more rotationally supported ETGs tend to show a lower TX, with respect to
rounder, less rotating ETGs. This is similar to the recent result by Sarzi et al. (2013),
that fast rotators seem to be confined to lower temperatures than slow rotators. Sarzi
et al. (2013) suggested that in ETGs with a larger degree of rotational support, the
kinetic energy associated with the stellar ordered motions may be thermalised less
efficiently. As we will see in Section 4.6.2, results of hydrodynamical simulations
indicate that this is the case (Negri et al. 2013, 2014a,b), but it is not the main
reason for the lower observed temperatures.

We now move to consider possible effects of shape and rotation on the gas con-

3The integrals in the definitions of Tσ and Trot (Eqs. 3 and 4) are also used to compute the total
kinetic energy of the stellar motions that enters the virial theorem for the stellar component; thus
the mass weighted temperature T∗, with γth = 1, is often referred to as the gas virial temperature.
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Figure 4.5: T∗ (lines) for all the progenitors in Tab. 4.1 with the Einasto halo, and their descendants (with α = 0 or α = 1), and the
observed TX (circles), for the ETGs in the Boroson et al. (2011) sample, as a function of LK. The yellow line refers to the progenitor
ETGs, the red lines to the E4 shape, the black ones to the E7 shape; lines are solid for k = 0, and dashed for k = 1 and α = 1. For
each colour, lines representing the case of k = 1 and α = 0 are coincident with the solid lines. Thick and thin lines refer to the FO and
EO-built models, respectively. Left panel: the colour-coding for the observed ETGs indicates their ellipticity ε = 1 − q, as measured
in the Ks-band, from 2MASS (see Tab. 4.3), and is calibrated as for the previous figures [i.e., to be yellow for the E0 (q = 1, ε = 0),
red for the E4 (q = 0.6, ε = 0.4), and black for the E7 (q = 0.3, ε = 0.7); see the colour bar on the right for the ε of the other colours].
Right panel: the colour-coding indicates the rotational support Vmax/σe8. Note that, for an EO view, the models of the dashed lines
would have Vmax/σe8 = 0.90− 0.95 for the E4 case, and Vmax/σe8 = 1.5− 1.6 for the E7 case.
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Figure 4.6: Comparison between the run of various luminosities vs. LK, for all the progenitors in Tab. 4.1 (Einasto halo case) and a
selection of their descendants (only cases of α = 0, 1), and for the observed LX for the ETGs in the Boroson et al. (2011) sample; all
quantities are normalised to LK. The lower group of lines gives L∗/LK, the upper one gives L−g /LK, the horizontal line is LSN/LK for
η = 0.85. The yellow line refers to the progenitor ETGs, the red lines to the E4 shape, the black ones to the E7 shape; lines are solid
for k = 0, and dashed for k = 1 and α = 1, respectively. Thick and thin lines refer to the FO and EO-built models, respectively. The
colour-coding for the observed ETGs indicates their ellipticity ε = 1− q (left panel) and the rotational support Vmax/σe8 (right panel),
and is calibrated as for the previous Fig. 4.5.
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tent, starting from the hypothesis that it is linked to the relative size of T−g and Tinj.
Figure 4.6 shows the observed LX values, together with the energies (referring to
the mass of gas injected in the unit time) describing the stellar heating L∗, the SNIa
heating LSN, and the requirement for escape L−g . All quantities are normalised to
LK, and are computed using the expression for the stellar mass loss rate Ṁ∗ and the
temperatures defined in Section 4.3, such that L−g = Ṁ∗E

−
g = 3kBṀ∗T

−
g /(2µmP),

L∗ = 3kBṀ∗T∗/(2µmP), and LSN = ηESNRSN. Figure 4.6 clearly shows that flatter
and more rotationally supported ETGs tend to have a lower LX/LK, as already
known (see Section 4.1). As shown in Section 4.4.1, however, the effect of shape or
rotation on L−g is small, so we cannot claim an important direct role for these two
major galactic properties on determining a lower gas content and then LX. It has
been suggested that a possible indirect effect could come from galactic rotation if
it is effective in creating a gas disc, where gas cooling is triggered, the temperature
is lowered, and then LX is reduced (Brighenti & Mathews 1997). Other possibili-
ties may be related to global instabilities of rotating flows, perhaps associated with
inefficient thermalisation (Negri et al. 2014a). Note that the X-ray emissivity is
also dependent on the gas temperature, and one could think that the lower LX of
flat/rotating ETGs could be due to having these preferentially a lower TX (Fig. 4.5).
This cannot be the explanation, though, because the emissivity in the 0.3-8 keV
band decreases very mildly with decreasing temperature, for temperatures below a
value of ∼ 1 keV. Another explanation for a lower LX/LK could be a lower stellar
age in fast rotators: indeed, Sarzi et al. (2013) found that molecular gas and young
stellar populations are detected only in fast rotators across the entire ATLAS3D

sample, and a younger age is known to be linked to a lower LX (Boroson et al.
2011, O’Sullivan et al. 2001). However, as we will see in detail in Section 4.6.4, the
main reason for the X-ray under-luminosity of flat and rotating galaxies is related
to galaxy rotation and angular momentum conservation, which make the hot gas
settle in a particular configuration, and eventually lead to a lower value of LX with
respect to non-rotating galaxies.

Also, note in Fig. 4.6 how there are many ETGs with LX lower than L∗: they
do not even radiate L∗. For them, the outflow must be very important, and must
have employed almost all of LSN. Numerical simulations (Ciotti et al. 1991) have
already shown that LX can be even lower than L∗ during winds/outflows. Finally,
as L−g increases and becomes closer to LSN, the ETGs below L∗ disappear.

4.5 The simulations

We now move the second part of our investigation, based on hydrodynamical simula-
tions. The theoretical analysis presented so far, indeed, can take into account neither
the hydrodynamical effects due to the temporal evolution of the mass, momentum
and energy sources (e.g., stellar winds and SNIa explosions), nor the ISM radiative
cooling, so that hydrodynamical simulations are needed. The simulations presented
in this Chapter are the result of a joint research collaboration (Negri 2014). Whilst
the accurate description of the technical aspects of the numerical code ZEUS-MP2
(Stone & Norman 1992), used to run the simulations, and the specific results of the
simulations are presented in Negri (2014), here we focus on the results, obtained
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in the joint paper Negri et al. (2014b), that are relevant for the present study. In
particular, these hydrodynamical simulations have been realised thanks to the de-
velopment of our Jeans solver code (Posacki et al. 2013b), by means of which we
have built the galaxy models, and all the dynamical fields necessary for the hydro-
dynamical equations (see Chapter 2 and Appendix B for further details). In this
way, the results obtained from the simulations performed in these galaxy models are
the exact numerical counterpart of the theoretical study presented in the previous
Sections.

4.5.1 The galaxy models

For the simulations we built axisymmetric two-component galaxy models analogous
to the ones previously analysed and described in Section 4.2. Thus, the stellar
component is described by the deprojection (Mellier & Mathez 1987) of the de Vau-
couleurs (1948) law, generalized for ellipsoidal axisymmetric distributions (Eqs. 4.1
and 4.2), and we restrict to the same q values of (1, 0.6, 0.3), corresponding to
E0, E4 and E7 galaxies when seen edge-on. For the DM halo we adopt the NFW
(Navarro et al. 1997) or the Einasto (1965) profiles.

All models belong to two different sets, defined by the specific profile of the
DM halo. The first set is characterized by the untruncated NFW profile (Eqs. 4.8
- 4.10), while the models in the second set are embedded in the Einasto profile
(Eqs. 4.4 - 4.6). In each of the two sets, we consider different families of models,
built following the procedure described in Sections 4.2.3 and 4.2.4. Here we just
recall the main steps. Each family is associated with a spherical galaxy, that we call
the “progenitor”. The progenitor structural parameters are determined by assigning
σe8 (the aperture luminosity-weighted velocity dispersion within Re/8), and then
deriving the luminosity and effective radius Re of the galaxy from the scaling laws
cited above. Then, from a chosen stellar mass-to-light ratio, the stellar mass M∗ is
derived. Finally, the parameters of the DM halo are determined in order to reproduce
the assumed σe8 and fixing Mh/M∗ ' 20 (Behroozi et al. 2013). In the NFW set,
these constraints produce rh ' 2Re, 22 . c . 37, and a DM fraction fDM within a
sphere of radius Re of ' 0.6 for the spherical progenitors. For the Einasto set we fix
n = 6, and we find that rh ' 20Re, and fDM ' 0.56 for the spherical progenitor.

In each of the two sets we considered three values of σe8 for the spherical pro-
genitors, i.e., 200, 250 and 300 km s−1. Therefore, each of the two sets is made of 3
families of models, for a total of 6 spherical progenitors. Table 4.4 lists all the rele-
vant parameters characterizing the progenitors galaxy models for both sets. The flat-
tened descendants of each progenitor with intrinsic flattening of E4 (q = 0.6) and E7
(q = 0.3), are derived as follows. We produce two flattened models for each value of
q. The first flattened model is called “face-on built” (FO-built), since, when observed
face-on, its Re is the same as that of the spherical progenitor; this requires FO-built
flattened models to be more and more concentrated as q decreases (ρ∗ ∝ q−1). The
second flattened model instead, when seen edge-on, has the same circularized Re

of the spherical progenitor, thus we call it “edge-on built” (EO-built); this prop-
erty makes the EO-built models expand with decreasing q (ρ∗ ∝

√
q). Therefore, a

spherical progenitor with a given value of σe8 produces four flat galaxies: two E4
models (FO and EO built), and two E7 models (FO and EO built). As a further
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Table 4.4: Fundamental galaxy parameters for the NFW and Einasto sets of models.

Name LB Re M∗ Mh σNFW
e8 σEIN

e8 fNFW
DM fEIN

DM c

(1011LB�) (kpc) (1011M�) (1011M�) (km s−1) (km s−1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

E0200 0.27 4.09 1.25 25 200 200 0.61 0.57 37

EO4200
IS 0.27 4.09 1.25 25 166 166 0.63 0.59 37

EO4200
VD 0.27 4.09 1.25 25 179 179 0.63 0.59 37

EO7200
IS 0.27 4.09 1.25 25 124 124 0.66 0.62 37

EO7200
VD 0.27 4.09 1.25 25 148 149 0.66 0.62 37

FO4200
IS 0.27 4.09 1.25 25 178 179 0.59 0.55 37

FO4200
VD 0.27 4.09 1.25 25 191 192 0.59 0.55 37

FO7200
IS 0.27 4.09 1.25 25 150 151 0.57 0.53 37

FO7200
VD 0.27 4.09 1.25 25 178 179 0.57 0.53 37

E0250 0.65 7.04 3.35 67 250 250 0.59 0.55 28

EO4250
IS 0.65 7.04 3.35 67 207 208 0.62 0.57 28

EO4250
VD 0.65 7.04 3.35 67 223 224 0.62 0.57 28

EO7250
IS 0.65 7.04 3.35 67 154 155 0.66 0.61 28

EO7250
VD 0.65 7.04 3.35 67 184 185 0.66 0.61 28

FO4250
IS 0.65 7.04 3.35 67 223 224 0.57 0.53 28

FO4250
VD 0.65 7.04 3.35 67 240 241 0.57 0.53 28

FO7250
IS 0.65 7.04 3.35 67 189 190 0.56 0.51 28
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Table 4.4 – continued

Name LB Re M∗ Mh σNFW
e8 σEIN

e8 fNFW
DM fEIN

DM c

(1011LB�) (kpc) (1011M�) (1011M�) (km s−1) (km s−1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

FO7250
VD 0.65 7.04 3.35 67 223 224 0.56 0.51 28

E0300 1.38 11.79 7.80 160 300 300 0.62 0.57 22

EO4300
IS 1.38 11.79 7.80 160 248 249 0.64 0.60 22

EO4300
VD 1.38 11.79 7.80 160 267 269 0.64 0.60 22

EO7300
IS 1.38 11.79 7.80 160 185 185 0.68 0.64 22

EO7300
VD 1.38 11.79 7.80 160 221 223 0.68 0.64 22

FO4300
IS 1.38 11.79 7.80 160 266 268 0.60 0.55 22

FO4300
VD 1.38 11.79 7.80 160 286 288 0.60 0.55 22

FO7300
IS 1.38 11.79 7.80 160 224 225 0.59 0.54 22

FO7300
VD 1.38 11.79 7.80 160 265 267 0.59 0.54 22

Notes: (1) Model name: E0 identifies the spherical progenitor, and the superscript is the value of σe8.
For the other models, the nomenclature is as follows: for example, FO4200

IS means a face-on flattened E4
galaxy, obtained from the E0200 progenitor, with isotropic rotation. (2) Luminosities in the B band.
(3) Effective radius (for a FO view for FO-built models, and an EO view for EO-built models). For
FO-built models, the edge-on effective radius is reduced by a factor √q (Section 4.5.1). (4) Total stellar
mass. (5) Total DM mass. (6) − (7) Stellar velocity dispersion, as the luminosity-weighted average
within a circular aperture of radius Re/8, for the NFW and Einasto sets, respectively; for non-spherical
models, σe8 is the edge-on viewed value. (8) − (9) DM fraction enclosed within a sphere of radius Re

for the NFW and Einasto sets, respectively. (10) Concentration parameter for the NFW set.
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step, in order to study the effects of galaxy rotation, we assume two kinematical
supports for each flattened system: one corresponding to a velocity dispersion sup-
ported galaxy (VD models), and the other one to an isotropic rotator (IS models).
These two configurations are obtained by setting the Satoh parameter k equal to 0
and 1, respectively (see Eqs. 2.3 and 2.4). In the flattening procedure the DM halo
is maintained fixed to that of the progenitor. Note that our flattened models are
representative of ETGs since they are consistent with their observed properties. We
indeed checked for models lying outside the observed scatter of the scaling laws, but
our adopted flattening procedure is quite robust in producing acceptable models, so
that we retained all of them.

Summarizing, from each spherical progenitor of given σe8, eight flattened models
are obtained (see Tab. 4.4), and we refer to this group of nine galaxy models as to
a family. All models belonging to a family can be identified either by the σe8 value
of the spherical progenitor, or by their stellar mass M∗ (or B luminosity), or DM
halo mass; note however that while these last three quantities are kept constant
within a family, the σe8 of the descendants varies. Indeed, the modification of stellar
structure involves a change in the stellar kinematics, and so in the value of σe8; in
particular, for our models σe8 decreases for increasing flattening (see Section 4.2.4
for a comprehensive discussion). Note that σe8 depends on the line-of-sight direction
for non-spherical models; when quoting σe8 for the latter models, in the following,
we refer to the edge-on projection.

4.5.2 The contribution of stellar kinematics to the ISM energetics

When studying the effect of flattening and ordered rotation on the hot ISM temper-
ature and content, analytical studies based on global energetics arguments, such as
the one presented in the first part of this Chapter (see also Ciotti & Pellegrini 1996,
Pellegrini 2011, Posacki et al. 2013b), showed that different and competitive effects
should be taken into account. Some of the expectations have been confirmed by
past numerical studies, even though the galaxy models adopted were not tailored on
realistic elliptical galaxies, but more on S0/Sa (D’Ercole & Ciotti 1998; Negri et al.
2014a). In any case, such studies showed that different physical phenomena can be
important as a function of the galaxy mass and potential well depth (i.e., whether
the ISM is outflowing or inflowing).

In order to compare the results of the numerical simulations with the global en-
ergetic estimates, the following quantities are also computed by the hydrodynamical
code. The first is the thermalisation of stellar random motions, providing an energy
input per unit time to the ISM of

Lσ ≡
1

2

∫
ρ̇Tr(σ2) dV. (4.24)

Note that while the contribution from stellar random motions is fully independent
of the ISM velocity field (see Eq. (B.3)), the thermalisation of the stellar ordered
(streaming) motion depends on the relative motion between stars (v) and ISM (u)

Lv ≡
1

2

∫
ρ̇ ‖v − u‖2 dV

=
1

2

∫
ρ̇(u2

R + u2
z) dV +

1

2

∫
ρ̇(vϕ − uϕ)2 dV = Lm + Lϕ,

(4.25)
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so that, at variance with Lσ, it cannot be predicted a priori from the knowledge of
the galaxy structure and kinematics. We recall that in our galaxy models v = vϕeϕ,
and Lm and Lϕ are respectively the energy input rate due to the ISM velocity in
the meridional plane (R, z), and to the relative velocity of stars and the ISM in the
azimuthal direction.

As in Section 4.3.1, we parametrize the thermalised fraction of the available
kinetic energy due to stellar streaming with

γth ≡
Lv

Lrot
, (4.26)

where
Lrot ≡

1

2

∫
ρ̇ ‖v‖2 dV (4.27)

is the energy input per unit time that would be injected in a galaxy with an ISM
at rest (i.e., u = 0), due to thermalisation stellar streaming motions. Note that
Eq. (4.26) is equivalent to Eq. (4.17). Note also that γth is undefined (formally, it
diverges) for VD supported models, and can be very large for slow rotators and/or
for gas flows with large velocities in the meridional plane (as in the case of galactic
winds). Using these definitions, the total energy supplied to the ISM due to stellar
motions can be written as

L∗ ≡ Lσ + Lv = Lσ + γthLrot. (4.28)

All the luminosities defined above can be converted into the equivalent tem-
peratures Tσ and Trot, already defined in Section 4.3 (see Eqs. 4.15 and 4.16) and
computable a priori, with the addition of two new temperatures, Tm and Tϕ, which
can be computed only from the output of the simulations. These temperatures are
related by the following relations

T∗ = Tσ + γthTrot; γthTrot = Tm + Tϕ. (4.29)

Finally and most importantly, from the simulations output we calculate the X-
ray emission in the 0.3–8 keV Chandra band

LX =

∫
εXdV, (4.30)

and the X-ray emission weighted temperature as

TX =

∫
TεXdV

LX
, (4.31)

where εX is the thermal emissivity in the energy range 0.3–8 keV of a hot, collisionally
ionized plasma, obtained by the spectral fitting package xspec4 (spectral model
apec, Smith et al. 2001), and the volume integrals are performed over the whole
computational mesh. We recall that εX scales proportionally to the second power
of the ISM density and is almost independent of the ISM temperature in the 0.3–8
keV energy range.

4http://heasarc.nasa.gov/xanadu/xspec/.
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4.6 Results

While the hydrodynamical evolution of the simulations does not concern the scope
of the present thesis and is accurately described in Negri et al. (2014b), here we
just present the main differences between the hydrodynamical evolutions of repre-
sentative VD and IS models, which are necessary for the understanding and the
explanation of the results we found about the thermalisation parameter γth, and
the global properties TX and LX of the models. The final properties of all models,
obtained at t = 13 Gyr, are given in Tables 4.5 and 4.6.

4.6.1 Hydrodynamics

The hydrodynamical evolution of the majority of the models can be summarized by
describing three representative models. Here, without loss of generality, we choose
three models of the EO-built sub-family with σe8 = 250 km s−1 of the NFW set: the
spherical progenitor (E0250), and its two more flattened descendants, i.e. the velocity
dispersion supported E7 model (EO7250

VD), and the corresponding E7 isotropic rotator
(EO7250

IS ). For a detailed description of the hydrodynamical evolution of all models
see Negri et al. (2014b); Negri (2014).

All the ISM physical quantities of the E0250 model evolve while being stratified
on a spherical shape, as a consequence of the galaxy spherical symmetry. Shortly
after the beginning of the simulation, a decoupled flow is established (t ' 2.4 Gyr),
with an inflow in a round central region surrounded by an outflowing atmosphere.
In the inflow region cold gas accumulates, due to the lack of rotational support,
and form a cold core at the very centre. As time increases both the inflow and the
outflow regions decrease, leading to the formation of a hot atmosphere approximately
isothermal (T ' 9 × 106 K) in nearly hydrostatic equilibrium. As a consequence,
TX steadily increases in pace with the time evolution of mass sources and specific
heating (Fig. 4.7, solid green line) and reaches the maximum value for the whole
sub-family.

The ISM evolution of the velocity dispersion supported EO7250
VD model presents

important similarities with the spherical progenitor. This is due to the absence of
angular momentum, and to the fact that the weight of the spherical DM halo makes
the total gravitational potential much rounder than the associated stellar density
distribution. Therefore, the major differences between the E0250 progenitor and the
EO7250

VD model are the different spatial regions where the gas is injected, and the
different velocity dispersion field of the stars. In particular, the edge-on flattening
makes the stellar gravitational potential to become shallower, so that the stellar
motions (and the relative heating) are lower with respect to the progenitor. Even
in this case, at early times the flow is kinematically decoupled, with an equatorial
outflow due to the concentrated heating on the equatorial plane, and a polar accre-
tion along the z-axis. As in the spherical progenitor, a dense, cold core forms in the
galaxy centre, surrounded by a hot atmosphere (T ' 5 × 106 K). However, due to
the weaker gravitational field, the EO7250

VD model loses more gas and retains a less
dense hot atmosphere with respect to the spherical progenitor (Fig. 4.8, black solid
line), resulting in a lower TX (Fig. 4.7, black solid line). Note that the lower heating
due to the lower stellar motions partially contributes to the lowering of TX, so that
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Figure 4.7: Time evolution of the X-ray luminosity LX and X-ray emission weighted
temperature TX for the sub-family derived from the E0250 model with the NFW
halo. The red and black lines report the evolution of the VD models (solid), and
of the IS models (dashed). The colours map the flattening: green, red and black
correspond to the E0, E4 and E7 galaxies, respectively.
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Figure 4.8: Angle-averaged profile of the hot ISM density at t = 13 Gyr for the
same models as in Fig. 4.7. Solid lines refer to VD models, dashed lines refer to IS
models.

it is a consequence of both hydrodynamical and energetic effects (see Sections 4.6.2
and 4.6.3 for a detailed discussion).

The main characteristic of the isotropic rotator EO7250
IS model is the formation,

due to angular momentum conservation, of a rotationally supported, thin and dense
cold disc, which grows in size during galaxy evolution, reaching a final size of '
10 kpc. The disc increases its mass due to the cooling ISM in the central regions
that collapses onto it. In this way a hot and low-density region forms above and
below the disc that cannot be replenished by the inflowing gas, which is supported
by angular momentum. This hot and rarefied zone secularly increases in size along
with the cold disc, due to the combination of the centrifugal barrier, that keeps
the centre at low density, and the secular increase of the specific heating, which
produces the growth of the heating region, roughly extending as the cold thin disc.
As a consequence, TX is the lowest of the three models E0250, EO7250

VD and EO7250
IS

(Fig. 4.7, black dashed line), since the galaxy regions which more contribute to
computation of TX (see Eq. 4.31) are the external ones, where the ISM is denser
but at a lower temperature. A further marginal contribution to the lowering of TX

comes from the lower heating associated with stellar motions (see Sections 4.6.2 and
4.6.3). Besides the formation of the cold disc, another important difference between
EO7250

IS and EO7250
VD concerns the ISM kinematics outside the equatorial plane. In

the case of the EO7250
IS galaxy model, starting from t ' 8 Gyr the meridional velocity

field develops a very complex pattern of vortexes above and below the equatorial
plane. These vortexes contribute to the ISM heating in a way proportional to Tm
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(see Table 4.5). The cold mass accreted at the centre is now much smaller than in
the previous two models, but a similar amount is distributed in the cold disc.

As mentioned above, the evolutions of the three models described so far are
representative of the majority of the models, so that, for example, the less flattened
EO4250

VD and EO4250
IS models behave analogously, even if less prominently due to the

milder flattening.
The main features of the family with the spherical progenitor of σe8 = 250 km s−1

are maintained in the σe8 = 300 km s−1 family. In particular, independently of
the DM halo profile, increasing σe8, TX increases. This is expected because more
massive models can retain more and hotter gas independently of the flattening and
kinematical support. In more massive models TX is less fluctuating with time, the
outflow velocities of the galaxy outskirts are lower, and the complicated meridional
circulation in the rotating models is reduced.

The situation is quite different for the families with low mass progenitors (σe8 =
200 km s−1). These are the only cases where a transition to a global wind can
be induced by a change of shape or by rotation, in accordance with the energetic
analysis of Section 4.4 (see also Ciotti & Pellegrini 1996; Posacki et al. 2013b). This
is especially true for the less concentrated Einasto models. In these global wind
cases, TX keeps larger than expected from the trend defined by non-wind models
due to the reduced cooling, and to the thermalisation of the meridional motions (see
Section 4.6.3 for a detailed discussion).

The sensitivity of the flow phase for low-mass models near the transition to the
outflow is shown for example by the EO7200

VD model with the NFW halo, that ex-
periences two quite distinct evolutionary phases. At the beginning, a significant
equatorial degassing is apparent, coincident with the strong heating in that region.
As time increases, the velocity field in the outflow region decreases and gas cooling
becomes more and more important. However, after ' 9 Gyr, the secular increase of
the specific heating, coupled with the shallow potential well, induces again higher
and higher velocities and the gas temperature increases again. Its associated coun-
terpart, the EO7200

IS model, is instead in a permanent wind phase from the beginning,
thus showing the additional effect of rotation in flattened, low-mass galaxies.

4.6.2 The thermalisation parameter

Thanks to the hydrodynamical simulations it is possible to compute the thermal-
isation parameter γth, defined in Sections 4.3 and 4.5.2 (Posacki et al. 2013b), for
which only reasonably assumed values have been possible to adopt in the theoretical
analysis of Section 4.4. This is a global parameter that helps to quantify the heating
of the ISM due to stellar ordered motions (see Appendix B). From Eqs. (4.25)-(4.27)
it is easy to see that, in principle, γth can attain large values, even larger than unity,
if the gas meridional motions are important, since the stellar streaming motions
are only in the azimuthal direction. Thus, in this case, it is useful to define the
azimuthal thermalisation parameter as γϕth ≡ Lϕ/Lrot, which is able to properly
quantify the net effect of heating due to stellar streaming. Note that, in the analysis
of Section 4.4, the possible presence of ISM meridional motions could not be taken
into account without arbitrary assumptions, so that γth = γϕth 6 1.

For all galaxy models we find that γϕth is small (γϕth ' 0.05 − 0.28, except for
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one case with γϕth = 0.37, see Tables 4.5 and 4.6), with a mild trend for lower
values of γϕth in high-σe8 galaxies, implying that the ISM almost co-rotates with the
stellar population everywhere. This supports the adequacy of the low γth values
(γth = 0; 0.25) adopted in the theoretical analysis of Section 4.4. We also find
that γth ' γϕth for medium-high mass galaxy models (i.e., with progenitors of σe =
250 − 300 km s−1), reflecting the fact that there are not significant ISM velocities
in the meridional plane (i.e., Tm is very low). In low-rotation, low-mass systems,
instead, γth is fully dominated by high velocity galactic winds and exceeds unity, Tm

becomes important, and so γth � γϕth.
One could be tempted to interpret the lack of thermalisation of a significant

fraction of ordered motions in all the IS models as the reason for the lower TX of
the IS models with respect to their VD counterparts (Fig. 4.7, black and red dashed
lines vs. the solid lines). However, even if this effect certainly contributes, it is
not the main reason for the lower TX in rotating models. Indeed, we found that
artificially adding the “missing” thermalisation to the equations of hydrodynamics
in dedicated test simulations of rotating models leads only to a negligible increase
in TX, showing that also other effects contribute to the low TX (see Section 4.6.3).

4.6.3 The X-ray emission weighted temperature TX

We now move to describe the properties of the 0.3–8 keV luminosity weighted ISM
temperature TX for the whole set of galaxy models, as they would be observed at an
age of 13 Gyr. The distribution of the TX values for all models is given in Fig. 4.9,
as a function of σe8, Mhot and LB.

In general TX increases with σe8, a natural consequence of the deeper potential
well associated with larger σe8. This leads to faster stellar (random and ordered)
velocities, with the consequent larger energy input from thermalisation of the stellar
motions. In addition, in a deeper potential the hot gas is retained at a larger TX.
The temperature range spanned by the models agrees well with that of real ETGs,
and the observed trend of TX with σe8 is reproduced (e.g., see Fig. 6 in Boroson
et al. 2011, who measured TX of the pure gaseous component for a sample of 30
ETGs). At high σe8, the observed TX values span a narrower range than in our
models, likely because the models include very flat and highly rotating ETGs that
are missing in the observed sample. Interestingly, instead, the low-σe8 end of the
observed TX − σe8 relation shows an increase of dispersion in the TX values, and a
hint for a flattening of the relation with respect to the trend shown at larger σe8.
These features are shown also by our models: at low σe8 the trend of TX flattens
for NFW models, and the scatter around it increases considerably for the Einasto
models.

This is explained by the transition to global winds in flattened and rotating low-
mass galaxies (as discussed at the end of Section 4.6.1), which leads to a reduction
in LX and an increase of TX with respect to the trend defined by more massive
ETGs, or ETGs of similar mass but not in wind. The change in the relationship is
due to the thermalisation of the resulting meridional flows (while the thermalisation
of galaxy rotation remains negligible, see Section 4.6.2), and to the lower cooling.
For example, the EO4200

VD and EO4200
IS models in the Einasto set, have high TX as a

consequence of the transition to the wind phase.
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Figure 4.9: ISM emission weighted temperature TX in the 0.3–8 keV band at 13
Gyr for all the models in the NFW (top panels) and in the Einasto (bottom panels)
sets as a function of σe8, of the hot (T > 106 K) ISM mass, and of the galaxy blue
optical luminosity. Spherical progenitors (green circles) with σe8 = (200, 250, 300)
have been considered. The green, red and black colours refer to the E0, E4 and E7
models respectively. Filled and empty symbols indicate the fully velocity dispersion
supported VD models, and the isotropic rotators IS models, respectively.
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Table 4.5: Simulations results for the NFW set at t = 13 Gyr.

Name Mesc Mgas Mhot LX TX T∗ Tσ Tv Tm γth γϕth

(109M�) (109M�) (109M�) (1040 erg s−1) (keV) (keV) (keV) (keV) (keV)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

E0200 3.2 8.9 2.91 2.06 0.48 0.26 0.26 1.7E-3 1.7E-3 – –

EO4200
IS 9.8 2.4 0.15 8.29E-4 0.50 0.40 0.17 0.24 0.21 2.62 0.25

EO4200
VD 4.5 7.5 2.84 1.99 0.46 0.26 0.26 1.5E-3 1.5E-3 – –

EO7200
IS 10.3 1.8 0.24 1.95E-3 0.49 0.29 0.08 0.22 0.18 1.24 0.22

EO7200
VD 9.4 2.8 0.66 1.89E-2 0.50 0.33 0.25 7.8E-2 7.8E-2 – –

FO4200
IS 3.3 8.8 1.73 0.45 0.37 0.21 0.18 2.9E-2 9.0E-3 0.31 0.21

FO4200
VD 2.9 9.2 2.46 2.21 0.48 0.27 0.27 3.7E-3 3.7E-3 – –

FO7200
IS 3.4 8.7 1.36 0.25 0.32 0.12 0.09 2.9E-2 1.1E-2 0.15 0.10

FO7200
VD 4.0 8.1 1.51 1.82 0.49 0.28 0.28 2.0E-3 2.0E-3 – –

E0250 5.1 27.5 6.43 11.1 0.69 0.42 0.42 1.2E-3 1.2E-3 – –

EO4250
IS 8.3 23.8 4.02 0.76 0.55 0.29 0.27 1.8E-2 3.1E-3 0.13 0.10

EO4250
VD 6.9 25.2 6.17 9.50 0.67 0.42 0.41 1.5E-3 1.5E-3 – –

EO7250
IS 11.4 19.7 3.42 0.33 0.55 0.18 0.13 5.5E-2 4.9E-3 0.20 0.18

EO7250
VD 12.5 18.7 3.83 4.87 0.62 0.41 0.40 1.8E-3 1.8E-3 – –

FO4250
IS 6.5 26.2 3.80 0.87 0.56 0.30 0.29 1.9E-2 3.9E-3 0.13 0.10

FO4250
VD 5.2 27.4 5.62 11.1 0.72 0.43 0.43 1.6E-3 1.6E-3 – –

FO7250
IS 6.4 26.0 2.91 0.43 0.50 0.19 0.15 3.7E-2 7.9E-3 0.13 0.10
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Table 4.5 – continued

Name Mesc Mgas Mhot LX TX T∗ Tσ Tv Tm γth γϕth

(109M�) (109M�) (109M�) (1040 erg s−1) (keV) (keV) (keV) (keV) (keV)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

FO7250
VD 7.4 25.3 3.82 10.3 0.72 0.45 0.45 1.7E-3 1.7E-3 – –

E0300 7.6 64.7 14.70 43.3 0.94 0.65 0.65 1.0E-3 1.0E-3 – –

EO4300
IS 14.1 56.0 6.52 1.34 0.68 0.43 0.42 1.5E-2 1.9E-3 0.07 0.06

EO4300
VD 10.5 59.9 13.61 37.7 0.90 0.63 0.63 1.2E-3 1.2E-3 – –

EO7300
IS 15.9 50.2 6.13 1.04 0.56 0.23 0.20 2.3E-2 1.5E-3 0.06 0.05

EO7300
VD 17.8 48.8 9.92 25.0 0.83 0.62 0.62 1.2E-3 1.2E-3 – –

FO4300
IS 11.9 60.9 6.11 1.35 0.68 0.45 0.43 1.7E-2 4.0E-3 0.08 0.06

FO4300
VD 8.5 64.3 12.91 41.7 0.99 0.65 0.65 1.5E-3 1.5E-3 – –

FO7300
IS 11.1 61.8 5.07 0.90 0.59 0.25 0.23 2.7E-2 4.0E-3 0.06 0.05

FO7300
VD 12.7 60.4 9.19 36.7 1.02 0.67 0.67 1.6E-3 1.6E-3 – –

Notes: (1) Name of the model. (2) − (3) Total ISM mass escaped from and retained within the numerical grid at
t = 13 Gyr, respectively. (4) − (6) ISM mass with T > 106 K, ISM X-ray luminosity in the 0.3–8 keV band, and
ISM X-ray emission weighted temperature in the same band, at t = 13 Gyr. (7)− (10) Thermalization temperatures
of stellar motions at t = 13 Gyr, defined accordingly to Eqs. (4.29) and (4.15). By construction, T∗ = Tσ + Tv; for
rotating models Tv = γthTrot and Tϕ = Tv − Tm = γϕthTrot, while for velocity dispersion supported models Tv = Tm

(see Section 4.5.2). (11) − (12) Thermalization parameter as defined in Eq. (4.26), and its azimuthal component
γϕth = Lϕ/Lrot (see Eq. 4.25), at t = 13 Gyr.
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Table 4.6: Simulations results for the Einasto set at t = 13 Gyr.

Name Mesc Mgas Mhot LX TX T∗ Tσ Tv Tm γth γϕth

(109M�) (109M�) (109M�) (1040 erg s−1) (keV) (keV) (keV) (keV) (keV)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

E0200 3.9 8.2 2.67 1.89 0.41 0.24 0.24 3.7E-3 3.7E-3 – –

EO4200
IS 12.1 0.1 0.09 5.25E-4 0.74 0.49 0.15 0.34 0.31 4.34 0.28

EO4200
VD 12.1 0.1 0.09 5.51-4 0.73 0.54 0.23 0.31 0.31 – –

EO7200
IS 12.0 0.2 0.19 1.25E-3 0.45 0.34 0.07 0.27 0.24 1.79 0.14

EO7200
VD 11.3 0.9 0.20 1.56E-3 0.45 0.42 0.22 0.20 0.20 – –

FO4200
IS 6.0 5.7 1.52 0.97 0.21 0.21 0.16 5.2E-2 2.1E-2 0.63 0.37

FO4200
VD 3.6 8.5 2.31 1.94 0.45 0.25 0.25 2.1E-3 2.1E-3 – –

FO7200
IS 3.9 8.2 1.69 0.16 0.25 0.14 0.09 4.8E-2 3.0E-2 0.28 0.11

FO7200
VD 4.9 7.3 1.60 2.10 0.44 0.26 0.26 2.8E-3 2.8E-3 – –

E0250 6.6 26.0 6.47 10.1 0.63 0.37 0.37 1.4E-3 1.4E-3 – –

EO4250
IS 10.3 21.8 4.03 1.01 0.49 0.26 0.24 1.8E-2 3.4E-3 0.15 0.12

EO4250
VD 9.2 22.9 5.81 7.90 0.59 0.36 0.36 1.9E-3 1.9E-3 – –

EO7250
IS 14.2 16.9 2.77 0.25 0.48 0.18 0.11 6.2E-2 9.4E-3 0.27 0.26

EO7250
VD 16.0 15.2 3.29 2.86 0.57 0.35 0.34 3.2E-3 3.2E-3 – –

FO4250
IS 8.1 24.5 3.93 1.46 0.43 0.27 0.26 1.7E-2 3.8E-3 0.13 0.10

FO4250
VD 6.9 25.8 5.38 9.79 0.66 0.38 0.38 2.0E-3 2.0E-3 – –

FO7250
IS 8.0 24.4 4.99 4.64 0.26 0.17 0.14 2.9E-2 1.1E-2 0.11 0.07
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Table 4.6 – continued

Name Mesc Mgas Mhot LX TX T∗ Tσ Tv Tm γth γϕth

(109M�) (109M�) (109M�) (1040 erg s−1) (keV) (keV) (keV) (keV) (keV)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

FO7250
VD 9.5 23.3 3.45 7.95 0.65 0.40 0.40 2.0E-3 2.0E-3 – –

E0300 9.6 62.7 13.97 39.9 0.85 0.56 0.56 1.0E-3 1.0E-3 – –

EO4300
IS 17.2 53.2 7.10 1.57 0.63 0.38 0.36 1.5E-2 1.6E-3 0.09 0.08

EO4300
VD 13.0 57.5 12.71 33.2 0.81 0.54 0.54 1.4E-3 1.4E-3 – –

EO7300
IS 20.3 45.6 6.47 1.27 0.51 0.20 0.18 2.6E-2 2.2E-3 0.08 0.07

EO7300
VD 23.5 43.2 7.58 18.3 0.73 0.52 0.52 1.8E-3 1.8E-3 – –

FO4300
IS 14.5 58.0 6.50 1.45 0.63 0.40 0.38 1.8E-2 3.6E-3 0.10 0.08

FO4300
VD 11.1 61.8 11.70 37.8 0.90 0.57 0.57 1.7E-3 1.7E-3 – –

FO7300
IS 14.1 56.6 5.79 1.35 0.48 0.23 0.21 2.5E-2 3.5E-3 0.07 0.06

FO7300
VD 16.9 56.3 7.43 31.1 0.95 0.60 0.59 1.8E-3 1.8E-3 – –

Notes: all quantities are as in Table 4.5
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The middle panels of Fig. 4.9 show the TX distribution as a function of Mhot. In
the NFW set, there is a sequence of TX values clearly visible at Mhot > 2× 109M�,
with VDmodels hotter than the corresponding IS models. However, the three models
with the smallest amount of hot ISM (Mhot < 109M�) have higher temperatures
than one would expect extrapolating the TX sequence to very low values ofMhot, as a
consequence of the transition to the wind phase. A change in the trend is even more
visible in the low mass Einasto models, where the stronger tendency to establish a
global wind leads to an increase of TX at very low Mhot, reaching values even higher
than in VD models with large X-ray haloes. In conclusion, at medium-high σe8, TX

of VD models tends to remain above that of rotating models; at low σe8, in addition
to the cooler branch of rotating models, another hotter branch of IS and VD models
appears, made by models in wind.

Finally, the right panels of Fig. 4.9 show again how TX of IS models is systemat-
ically lower with respect to that of VD ones of same LB, with the exception of those
in the wind phase. As for LX, TX of VD models is dominated by the dense central
luminous regions. In IS models, instead, the central region is hotter than in VD
models, but it is also at a lower density, so that its contribution to TX is marginal,
and TX is more affected by colder (T ' 2 × 106 K) and denser gas located in the
outer regions. Thus, the main reason of the lower TX in IS models of medium-high
mass is not galaxy shape, but the importance of galaxy rotation, that drives the
hydrodynamical evolution (Section 4.6.1). From the Jeans equations, the more a
galaxy is flat, the more it can be rotating; thus the E7 IS models are cooler than
their VD counterparts, and by a larger amount than for the analogous E4 pair, due
to the stronger rotation in the E7 models.

A “zoom” on the specific effects of flattening and rotation is given in Fig. 4.10,
where we plot, separately for each σe, and for FO- and EO-built families, the LX

values of all the models in Fig. 4.9. The additional symbols (crosses) represent Tσ
(see Eq. 4.15), thus they give the temperatures associated with the thermalisation
of all stellar velocities for VD models (solid crosses), and only to the random part of
the stellar velocities for IS models (empty crosses). We recall that the values of Tσ
depend only on the galaxy structure (and are calculated without the need of running
simulations, as in the analysis of Section 4.4), and do not contain contributions
from gas cooling and SNIa heating. The simulations show that the values of T∗
(Eq. 4.29) are almost coincident with those of Tσ in the medium-high σe8 models
(i.e., models in a slow inflow where γth is very small, see Tables 4.5 and 4.6). The
low-σe8 wind models, instead, have T∗ > Tσ, and the temperature difference is due to
thermalisation of the strong meridional motions developed in the wind phase (T∗ '
Tσ + Tm, while Tϕ remains very small). In Fig. 4.10 it is even more apparent than
in Fig. 4.9 how VD models are in general hotter than their rotating counterparts,
due to the above discussed hydrodynamical effects. In addition, the TX difference
between VD and IS models increases with galaxy flattening, and it is larger for
the more massive and FO-built models, and decreases for smaller and EO-built
models. Exceptions are found in the low-σe8 EO-built models, as a consequence of
the transition to global wind induced by flattening and rotation.

Two interesting considerations can be made by comparing TX resulting from the
simulations with the temperatures T∗ and Tσ associated with the thermalisation of
stellar motions. The first is that TX of all models is higher than T∗ and Tσ, as some-
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Figure 11. The emission weighted ISM temperature TX in the 0.3–8 keV band at 13 Gyr for the models in the NFW (top six panels) and in the Einasto
(bottom six panels) sets as a function of the edge-on σe8. Different columns show the results for the families obtained from the spherical progenitors with
σe8 = (200, 250, 300) km/s, and refer to model flattened according to the edge-on or face-on procedure. The green, red and black colours refer to the E0, E4 and
E7 models respectively (progenitors are in green). Filled symbols indicate the fully velocity dispersion supported VD models (k = 0), while empty symbols
indicate the isotropic rotators IS models (k = 1). Crosses show the theoretical expectations for Tσ, calculated according to Eq. (18). For the relation of Tσ with
Tkin and TX, see the Sect. 2.3.
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Figure 4.10: The emission weighted ISM temperature TX in the 0.3–8 keV band at
13 Gyr for the models in the NFW (top six panels) and in the Einasto (bottom six
panels) sets as a function of σe8. Different columns show the results for the families
obtained from the spherical progenitors with σe8 = (200, 250, 300) km s−1, and refer
to model flattened according to the edge-on or face-on procedure. The notation for
the symbols is the same as in Fig. 4.9. Crosses show the values of Tσ calculated
according to Eq. (4.15). For the relation of Tσ with T∗ and TX, see the Sections 4.3
and 4.5.2.
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what expected due to the additional heating contributions (e.g., from SNIa) to the
gas, and to the relatively small radiative losses (we recall that TX is computed from
the hot, low-density gas only). The second consideration is that, notwithstanding
the missing SNIa heating and cooling terms in Tσ, the trend of TX with galaxy flat-
tening and rotation is remarkably the same as that of Tσ for all models, with the
exception of the global wind, low-σe8 models. Thus Tσ, except for wind cases, is a
good proxy for T∗, and a robust indicator of the trend of TX with galaxy properties
(shape and internal kinematics), supporting the importance of theoretical analyses
as the one in Section 4.4. As a final comment, we note that, in general, at fixed σe8,
Einasto models tend to be slightly colder than the NFW models, both in TX and
Tσ, due to the different DM profile.

4.6.4 The X-ray ISM luminosity LX

The second important diagnostic explored is the 0.3–8 keV luminosity LX. Here
we just summarize the main properties of the models, commenting the results of
Section 4.4 about the gravitational temperature estimates in light of the hydrody-
namical results; for a detailed description of these last see Negri (2014); Negri et al.
(2014b).

In medium to large σe8 models, LX on average increases with σe8 (similarly to
the T−g trend in Fig. 4.4 of Section 4.4), however presenting at each σe8 a significant
spread in LX, consistent with observations (Boroson et al. 2011). At fixed stellar
mass M∗, round progenitors are found at high LX, while the dispersion is associated
with a mix of flattening and rotation effects. In particular, LX of the VD models is
higher than that of IS ones by up to a factor of ' 40. The largest difference occurs
for the more massive and flatter models, and it is much larger than the LX variation
between a spherical progenitor and its most flattened VD version. Indeed, LX of VD
models of identical M∗ with different flattening lies in a narrow range, analogously
to the T−g values found in Section 4.4. The same behaviour occurs also among
IS models with the same M∗. This indicates that, at fixed M∗ and fixed internal
kinematics, LX is only marginally sensitive to even large variations of the flattening
degree of the stellar component, as already suggested by Fig. 4.4. However, Fig. 4.4
was not able to explain the observed LX difference between roundish galaxies and
their flatter and rotating counterparts.

Conversely, the most interesting feature of the models that emerges from the
simulation is a clear LX difference between VD and flattened IS models of similar σe8,
with rotating models characterised by a strong X-ray under-luminosity. As described
in the previous Sections, this is an hydrodynamical effect driven by the presence of
angular momentum, which causes rotating galaxies with medium to large σe8 to
develop a different flow evolution, where the gas is prevented from accumulating in
the central regions by the centrifugal barrier, leading to the creation of a very hot,
low density atmosphere in the centre, and eventually resulting in a lower total LX.
Furthermore, IS models have also a lower Mhot than VD models. This is due to the
presence of recurrent cooling episodes driven by rotation (that further contribute
to the lowering of LX), and not to escaping ISM (except for the models with the
lowest σe8). All these hydrodynamical effects were obviously not possible to predict
and take into account in the theoretical energetic analysis of Section 4.4. In VD
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models, instead, the ISM flows directly toward the central galactic regions, where a
steep density profile is created. This difference in the hot gas density distribution,
already showed in Fig. 4.8, is a major reason for the systematic difference of LX,
and it nicely explains the lower LX observed for fast rotators than for slow rotators
in the ATLAS sample (Sarzi et al. 2013).

The models with the σe8 = 200 km s−1 progenitor, instead, behave differently
from the rest of the models. This is especially true for the EO flattening, when
the galaxy potential well becomes shallower, and thus energetic effects of flattening
and rotation are larger than for the FO flattening. For example, the EO7200

VD model
drops to low LX, at variance with the FO7200

VD model; this drop happens also for the
Einasto EO4200

VD model. In the NFW case, a further reduction in LX is attained when
introducing rotation in the EO7200

IS model, in accordance with Ciotti & Pellegrini
(1996) and Posacki et al. (2013b), where thermalisation of ordered motions does not
take place. A transition to a very low LX value is also obtained for the NFW EO4200

IS

model: here the only addition of rotation causes the degassing of the galaxy and a
very lower value of LX with respect to the VD counterpart. These findings point
out the high sensitivity of the flow phase to (even small) changes in the mass profile
(e.g., flattening or mass concentration) and in the stellar kinematics (e.g., rotation)
at low galactic masses, for which then it is difficult to predict systematic trends in
LX. We stress that the VD and IS models are characterized, by construction, by
the same gravitational potential, so that the difference in LX is only due to galactic
rotation.

Thus, it seems that, for low σe8 galaxies, energetic effects might be more im-
portant in determining the X-ray properties of ETGs, while hydrodynamical ones
prevail in medium-high σe8 galaxies.

4.7 Summary and conclusions

In this Chapter we investigated the relationship between the temperature and con-
tent of the hot X-ray emitting haloes of ETGs and their galactic shape and rotational
support. The main focus of this work is the explanation of long-standing and more
recently observed trends of LX and TX with galaxy shape and rotation (as well as,
of course, with fundamental galaxy properties as stellar velocity dispersion and op-
tical luminosity). This work is an extension of previous similar studies (Ciotti &
Pellegrini 1996; Pellegrini et al. 1997; D’Ercole & Ciotti 1998; Pellegrini 2011), and
is based on a twofold approach consisting of a theoretical and a numerical analysis.

In the first theoretical part (Posacki et al. 2013b), by means of our Jeans solver
code (Chapter 2), we built a large set of axisymmetric three-component (stars, DM
halo, SMBH) galaxy models, representative of observed ETGs. We varied the degree
of flattening and rotational support of the stellar component, in order to establish
what is the dependence of the temperature and binding energy of the injected gas
on the observed galaxy shape and internal kinematics. For the injected gas, we
defined the equivalent temperature of stellar motions as T∗ = Tσ + γthTrot, where
the parameter γth takes into account how much of the ordered rotation of the galaxy
is eventually thermalised by the stellar mass losses. We considered the simplified
case in which the pre-existing gas velocity is proportional to the stellar streaming
velocity. When pre-existing gas and stars rotate with the same velocity, no ordered
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stellar kinetic energy is thermalised (γth = 0); when the gas is at rest, all the
kinetic energy due to stellar streaming is thermalised (γth = 1). We also defined the
temperature T−g equivalent to the binding energy for the injected gas. Our main
results are as follows:

• Flatter models can be either more or less concentrated than rounder ones of
the same mass and same circularized Re, depending on how they are built.
If Re is kept constant for a FO view, flatter models are more concentrated
and bounded than the round counterpart; the opposite is true if Re is kept
constant for an EO view. As a consequence, the effect of a pure change of
shape is an increase of T∗ and T−g in the first way of flattening, and a decrease
in the second one. Overall, however, the variation in T∗ for both cases is mild,
within ∼ 20 percent even for the maximum degree of flattening (the E7 model).
Similarly, T−g gets larger by at most ∼ 20 percent, and decreases by at most
∼ 12 percent.

• A more significant effect on T∗ can be due to the amount of rotational support.
The isotropic rotator case is investigated here (k = 1). If γth = 1, the whole
stellar kinetic energy, including the streaming one, is thermalised, and T∗
coincides with that of the non-rotating case, for the same galaxy shape. If
γth < 1, T∗ is instead always reduced, and the larger so the flatter is the
shape. The strongest reduction is obtained for the E7 models when γth = 0,
and then T∗ can drop by 50 − 70 percent with respect to the E0 models.
Thus, the presence of stellar streaming, when not thermalised, acts always in
the sense of decreasing T∗, and the size of this decrease depends on the relative
motion between pre-existing gas and stars. Clearly, the flatter the galaxies, the
stronger can be the rotational support, and, consequently its potential effect
on T∗. Thus the effect of rotation is dependent on the degree of flattening,
and, as a minimum, it requires a flat shape as a premise.

• Since stellar streaming acts in the sense of making the gas less bound due to
the centrifugal support, at any fixed galaxy shape and rotational support T−g
decreases in proportion to how the velocity field of the ISM is close to that
of the stars. However, this decrease is lower than that produced on T∗: T−g
drops at most by ∼ 13 percent (for the E7 models), between the two extreme
cases of ISM at rest and gas rotating as the stars. Note then two compensating
effects from stellar streaming when γth < 1: T∗ is lower than for a non-rotating
galaxy, but the gas is also less bound.

• All the above trends and effects are independent of the galaxy luminosity
(mass), and DM halo shape. Only the normalization of T∗ and T−g changes,
if the DM halo mass changes (e.g., it increases from the SIS to the Einasto to
the Hernquist to the NFW halo models).

The comparison of the above results with observed TX and LX for the ETGs in
the Chandra sample of Boroson et al. (2011) shows that:

• All observed TX are larger than T∗, but much closer to T∗ than to TSN. T∗
ranges between 0.1 and 0.4 keV, for 150 km s−1 . σe8 . 300 km s−1 (the
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lower end being possibly even lower, depending on the effects of rotation),
while TSN ≈ 1.5 keV (for a thermalisation parameter η = 0.85), so that the
contribution from SNIa dominates the gas injection energy (Tinj ∼ 1.5−2 keV),
that is then practically insensitive to changes in T∗ due to the galaxy shape
or kinematics. The proximity of the observed TX values to T∗ indicates that
η may be lower, and/or that the gas tends to establish itself at a temperature
close to the virial temperature, in all flow phases. In any case, this proximity
provides an empirical confirmation of the relevance of a study of T∗ and its
variations.

• For 200 km s−1 . σe8 . 250 km s−1, T−g becomes larger than Tinj, and inflows
in these galaxies can become important. These σe8 values could be lower if η <
0.85, and if the DM amount is larger than assumed here. Galaxies with σe8 .
200 km s−1 (LK . 2 × 1011LK�), instead have a high probability of hosting
an outflow, and then a low hot gas content, as confirmed by observations of
LX/LK vs. LK. The ratio LX/LK seems to be lower also for a flatter shape
and larger rotation. However, the effect of shape or rotation on T−g is small,
thus, from the energetic point of view, these two major galactic properties are
not expected to play a major role in determining the gas content.

• We find a mild indication that, at fixed LK, flatter shapes and more rotation-
ally supported ETGs show a lower TX, with respect to rounder, less rotating
ETGs (similarly to what found by Sarzi et al. 2013). This tendency can be
explained by the effects predicted here on T∗ due to flattening and rotation.
Since, for a fixed galaxy mass, a decrease of T∗ due to rotation is predicted
to be potentially stronger than produced by shape without rotation, not ther-
malised stellar streaming might be a more efficient cause of the lower TX.

In the second numerical part of the investigation, outcome of a joint research
collaboration (Negri et al. 2014b), we performed a large suite of high-resolution
2D hydrodynamical simulations, to study the effects of galaxy shape and stellar
kinematics on the evolution of the X-ray emitting gaseous haloes of ETGs. Realistic
galaxy models are built with our Jeans solver code, that allows for a full generality
in the choice of axisymmetric galaxy shape and of the stellar and DM profiles,
which can be tailored to reproduce observational constraints. Stellar motions in
the azimuthal direction are split among velocity dispersion and ordered rotation
by using the Satoh (1980) decomposition. In particular, we explored two extreme
kinematical configurations, the fully velocity dispersion supported system and the
isotropic rotator, in order to encompass all the possible behaviours occurring in
nature. Of course, the VD configuration applies only to a minor fraction of the
flat galaxy population (e.g., Emsellem et al. 2011). On the other hand, IS models
approximate only to some extent the dynamical structure of flat and fast rotating
galaxies, since the latter are more generally characterized by a varying degree of
anisotropy in the meridional plane with intrinsic flattening (Cappellari et al. 2007).
The source of gas is provided by secular evolution of the stellar population (stellar
winds from ageing stars and SNIa ejecta). Heating terms account for SNIa events
and thermalisation of stellar motions.

Evidences from our theoretical analysis (Posacki et al. 2013b), and from previous
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exploratory theoretical (Ciotti & Pellegrini 1996) and numerical works (D’Ercole &
Ciotti 1998; Negri et al. 2014a,b), seem to point toward a cooperation of flattening
and rotation in establishing the final X-ray temperature and luminosity of the ISM.
However which of the two is the driving parameter, and what is the involved physical
mechanism, had not been clarified yet. From the present numerical investigation,
we conclude that more than one physical effect is at play, and that the relative
importance of flattening and rotation changes as a function of galaxy mass. Sum-
marizing our findings, we discuss separately first the results about the ISM X-ray
emission-weighted temperature TX and then the X-ray luminosity LX.

• The variation of TX due to a change of shape and internal kinematics is dif-
ferent for low and high mass galaxies. TX does not change appreciably adding
flattening and rotation to low mass progenitors that are in the global wind
phase. Due to their low density and high meridional velocities, global winds
are generally hotter than what expected by extrapolation of the TX of more
massive systems. Adding flattening and rotation to ETGs energetically near to
host a global wind leads to a transition to a wind phase, with the consequent
increase of TX.

• In the medium-high mass galaxies a change of shape produces small changes
in TX. Adding rotation, instead, results in a much lower TX. This is because
angular momentum conservation leads to the formation of a massive centrifu-
gally supported cold disc and to a lower density of the hot ISM in the central
regions above and below the equatorial plane, with respect to VD models.
Then, the external, and colder, regions weight more in the computation of TX.

• Overall, for medium-high mass galaxies, TX increases with galaxy mass, inde-
pendently of the specific DM halo profile. In general, in the Einasto haloes
the hot gas is systematically cooler and with a larger scatter in TX, than in
the NFW DM haloes of comparable mass.

• In rotating models the ISM almost co-rotates with the stars (i.e., γϕth . 0.25
as adopted in Posacki et al. 2013b), and so there is a corresponding reduction
of the thermalisation of the galaxy streaming velocity. At the same time the
rotating ISM is less bound, due to the centrifugal support.

• With the exception of low mass galaxies in the wind phase, Tσ (the temperature
associated with the thermalisation of the stellar velocity dispersion, Eq. 4.15) is
a good proxy for T∗, the true thermalisation temperature of stellar motions, as
computed from the simulations; for wind models instead T∗ > Tσ. In general
TX > T∗, but the dependence of TX on galaxy mass and shape in no wind
galaxies is outstandingly reproduced by that of Tσ (see Fig. 4.10), a quantity
that can be computed without resorting to numerical simulations.

The main results concerning LX can be summarized as follows:

• In case of galaxies energetically near to the onset of a galactic wind (i.e., for
ETGs with σe8 ≈ 200 km s−1), flattening and rotation contribute significantly
to induce a wind, in agreement with the energetic expectations discussed in
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Ciotti & Pellegrini (1996) and Posacki et al. (2013b), with the consequent
sharp decrease of LX. The transition to a global wind is favoured respectively
by the facts that flattening can reduce the depth of the potential well, and
that in rotating systems the ISM and the stellar component almost corotate;
this reduces (in absolute value) the effective potential experienced by the ISM.

• In models with σe8 > 200 km s−1, galaxy shape variations, in absence of ro-
tation, have only a minor impact on the values of LX. Indeed, fully velocity
dispersion supported flattened models have LX similar to or just lower than
that of their spherical progenitors, in agreement with the energetic expecta-
tions of our theoretical analysis (Posacki et al. 2013b).

• In flat galaxies with σe8 > 200 km s−1, rotation reduces significantly LX.
Not only the thermalisation parameter is low and part of the heating due
to stellar motions is missing with respect to the corresponding VD model,
but rotation acts also on the hydrodynamics of the gas flow: conservation
of angular momentum of the ISM injected at large radii favours gas cooling
through the formation of rotating discs of cold gas, reducing the amount of
hot gas in the central regions and then LX. In conclusion, galaxy flattening
has an important, though indirect effect for medium-to-high mass galaxies, in
the sense that only flattened systems can host significant rotation of the stellar
component.



Chapter 5

The stellar initial mass function of
ETGs

Posacki S., Cappellari M., Treu T., Pellegrini S., Ciotti L., 2014, MNRAS, in
press (arXiv:1407.5633)

In this Chapter we present an investigation about the shape of the IMF of ETGs,
based on a joint lensing and dynamical analysis, and on stellar population synthesis
models, for a sample of 55 lens ETGs identified by the Sloan Lens ACS (SLACS)
Survey. The work here presented has been published in Posacki et al. (2014).
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5.1 Introduction

The stellar IMF describes the mass distribution of the stellar population originated
in a single star formation burst, at the time of birth. It gives us information about
the relative importance of low and high mass stars, hence its form directly affects
the amount of stellar ejecta and their chemical composition, the mass distribution
of stellar remnants, and the stellar mass-to-light ratio of the population. The study
of the shape of the IMF also gives us direct insights into the physics of star for-
mation, and it is crucial for the estimate of galaxy stellar masses starting from the
observed luminosity. Thus the knowledge of the IMF is fundamental in many fields
of astrophysics that study the formation and evolution of stellar systems.

Several direct measurements of star counts of resolved stellar populations in the
solar neighbourhood have shown that the IMF can be parametrized by a power law
mass distribution dN/dM ∝M−s, characterized by a Salpeter (1955) slope s ' 2.35
for M & 0.5M�, and by a change toward flatter slopes for M . 0.5M� (Kroupa
2001; Chabrier 2003). This holds in different environments throughout the Milky
Way (Kroupa 2002; Bastian et al. 2010), but whether this is true for all galaxies
is still ongoing debate. Stellar counts down to very low stellar masses (i.e., in the
mass range of major uncertainty given the intrinsic difficulty of measurements) is
not feasible in distant external galaxies, so that, in order to study the extragalactic
IMF, people use alternative methods based, for example, on ionized gas emission,
redshift evolution of the tilt and normalization of the Fundamental Plane, strength
of IMF-sensitive spectral features, gas kinematics, gravitational lensing and stellar
dynamics (see Cappellari et al. 2013a for a more detailed review). Among these
indirect methods, it is widely used to constrain the IMF shape by estimating galaxy
stellar masses from dynamical models and comparing them with the predictions of
stellar population synthesis models, that rely on an assumed IMF shape. Note that
this method does not directly measure the shape of the IMF, but its overall mass
normalization: each IMF shape results in a different M∗/L, that is converted in a
different stellar mass, once the luminosity is measured. In the last decade a number
of works based on this method have agreed that spiral galaxies are inconsistent with
a Salpeter normalization over the whole mass range, and that they need a lighter
overall normalization similar to Kroupa or Chabrier, like the Milky Way (Bell &
de Jong 2001; Kassin et al. 2006; Bershady et al. 2011; Brewer et al. 2012). The
same result also appears to be valid for at least some ETGs (Cappellari et al. 2006;
Ferreras et al. 2008; Dutton et al. 2011; Thomas et al. 2011; Brewer et al. 2014; Zepf
et al. 2014), thus showing no evidence of a departure from a universal stellar IMF.

In contrast, however, there are numerous works carried out on ETG samples that
point out evidences of a dynamical mass excess over the predictions of stellar popu-
lation models with fixed IMF. This excess increases with galaxy mass and it can be
explained either (i) by an IMF normalization that increases from a Kroupa/Chabrier
one at low masses, up to a Salpeter normalization for the more massive galaxies,
implying a systematic variation of the IMF (e.g., Renzini & Ciotti 1993), or (ii) by
an increase of the DM fraction as function of galaxy mass due to a non-universal
DM halo profile (Padmanabhan et al. 2004; Cappellari et al. 2006; Grillo et al. 2009;
Thomas et al. 2009; Tortora et al. 2009; Auger et al. 2010; Graves & Faber 2010;
Schulz et al. 2010; Treu et al. 2010; Barnabè et al. 2011; Dutton et al. 2012; Tortora
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et al. 2013). This method, based on the comparison between galaxy stellar masses
computed from dynamical and stellar population synthesis models, is indeed subject
to degeneracies in the dynamical modelling, which are related to the assumptions
for the luminous and DM density profiles, and for the velocity dispersion anisotropy.
For example, given the uncertainties related to the knowledge of DM halo distribu-
tions in galaxies, general forms for the DM profile can be adopted for the dynamical
modelling, like the generalized NFW profile, where the inner slope is allowed to be a
free parameter. Allowing this results in a degeneracy between stellar mass and inner
slope, in the sense that steeper inner slopes require less stellar mass to reproduce the
same observed stellar velocity dispersion. However, the degeneracies can be reduced
by additional constraints derived, for example, from gravitational lensing analysis
or integral field spectroscopy observations.

An example is given by the results of the SLACS group: Treu et al. (2010) anal-
ysed 56 lens ETGs belonging to the SLACS sample by building dynamical models
tuned to reproduce the SDSS-measured velocity dispersion σ∗ and the total projected
mass within the Einstein radius. They adopted two-component spherical isotropic
dynamical models with self-similar Hernquist (1990) profiles to describe the stel-
lar density, and a NFW (Navarro et al. 1997) DM density distribution with fixed
slope and scale radius. Treu et al. (2010) found that bottom-heavy IMFs such as
Salpeter are strongly preferred over light-weight IMFs such as Kroupa/Chabrier for
the most massive ETGs, assuming standard NFW DM density profiles. This result
was then strengthened by Auger et al. (2010) who included adiabatic contraction
and weak-lensing constraints in the modelling, and found that only Salpeter-like IMF
are consistent with the observed properties of their ETG sample. Note the SLACS
sample is an effectively velocity dispersion selected sample, so that it is composed
of high σ galaxies (see Section 5.2 and references therein).

Another remarkable example is the work of Cappellari et al. (2012, 2013b,a) on
the volume-limited, nearly mass selected ATLAS3Dsample of 260 ETGs. They con-
structed detailed axisymmetric dynamical models, which allow for orbital anisotropy
and reproduce in detail both the galaxy images and the high-quality integral-field
stellar kinematics out to about one effective radius Re. Given the tighter constraints
with respect to previous analogous studies, their models were well-suited to explore
different DM density profiles, and they find that a non-universal IMF is always re-
quired under all halo assumptions, due to the low DM mass contribution within
Re. Their study, based on an unprecedented large sample of ETGs spanning a wide
range in galaxy mass, found a systematic trend in IMF normalization varying from
Kroupa/Chabrier up to Salpeter or heavier for increasing velocity dispersion.

Finally other works, based on IMF-sensitive spectral features, that are com-
pletely independent of dynamical modelling assumptions, find a steepening IMF with
increasing velocity dispersion and [Mg/Fe], with massive ETGs requiring bottom-
heavy, dwarf-rich IMF (van Dokkum & Conroy 2010, 2011; Conroy & van Dokkum
2012; Spiniello et al. 2012, 2014; Ferreras et al. 2013). Thus, there seems to be
a systematic dependence of the IMF on galaxy properties, indicating that high
mass ETGs prefer on average a Salpeter normalization, while low mass galaxies are
consistent with a lighter normalization, similar to Kroupa or Chabrier. However,
quantitative consistency between the dynamical and spectral synthesis approach has
not been achieved yet (e.g., Smith 2014; McDermid et al. 2014).
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In this Chapter we revisit the analysis of Treu et al. (2010) in order to investigate
the effects of a more detailed modelling of the stellar component. The spherical
models of Treu et al. (2010) indeed provide only a crude approximation to the
observed galaxy surface brightness, which shows evidence for disks and it is known
to vary systematically with galaxy mass (Caon et al. 1993). To address this potential
bias, here we construct models which allow for axisymmetry and can reproduce
the observed galaxy surface brightness in detail, in an essentially non-parametric
way. Moreover, differently from Treu et al. (2010), our stellar population synthesis
models are built via full spectrum fitting of SDSS spectra, and not by means of
multicolour photometry. An approach closely related to the one illustrated in this
work, was employed also by Barnabè et al. (2013) in their analysis of two SLACS
ETGs, where they also exploited X-Shooter spatially-resolved kinematic data in
order to put constraints on these systems’ IMFs.

Finally, our analysis is similar to that performed by Cappellari et al. (2013b),
therefore this allows us also to combine the SLACS and the ATLAS3Dsamples, ob-
taining a larger and homogeneously analysed sample of ETGs. Remarkably, due to
their selection criteria the two samples are complementary, so that the combined
sample is fairly representative of ETGs, extending from low to very high velocity
dispersions (or stellar masses). Another attempt to compare similar previous works
was made by Dutton et al. (2013a), even though it is not as homogeneous as this.

The Chapter is organized as follows. In Section 5.2 we briefly summarize the
sample and data we used, while in Section 5.3 we describe our dynamical and stellar
population synthesis models. The main results are presented in Section 5.4, and
Section 5.5 summarizes the conclusions. All magnitudes are in the AB photometric
system, and a standard concordance cosmology is assumed, i.e. h = 0.7, Ωm = 0.3
and ΩΛ = 0.7.

5.2 Sample and data

The subsample of galaxies analysed in this work is extracted from the SLACS sample
studied in Treu et al. (2010). The SLACS sample is composed of massive ETGs,
that were spectroscopically selected from the SDSS database for being gravitational
lenses (Bolton et al. 2006). In particular, the SLACS sample consists of galaxies with
very high σ for two main reasons: (i) the lensing cross section scales approximately
with σ4, and (ii) the SDSS is a flux-limited sample, so that high-luminosity, and
therefore high σ, galaxies are overrepresented because they are visible over a larger
volume (Hyde & Bernardi 2009). Thus, the SLACS sample is effectively σ-selected
(Auger et al. 2010; Ruff et al. 2011). Several studies have shown that the SLACS
sample is indistinguishable from a σ-selected sample of non-lens ETGs (Bolton et al.
2006; Treu et al. 2006, 2009).

We selected our SLACS subsample by requiring the availability of HST photom-
etry in the I -band, since it is expected to better trace the luminous mass, being
less affected by the presence of dust. In this way, we obtained a subsample of
55 galaxies that span a redshift range of 0.06 . z . 0.36. Our data consist of
HST/ACS/F814W images (Auger et al. 2009), and SDSS optical spectra taken
from data release ten (DR10, Ahn et al. 2014). SDSS spectra cover the wavelength
range 3800 − 9200 Å, with a spectral resolution of ∼ 2.76 Å FWHM, which corre-
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sponds to an intrinsic dispersion σint ∼ 85 km s−1 at 3800 Å and σint ∼ 50 km s−1

at 9000 Å.

5.3 The galaxy models

In order to study the mass normalization of the IMF for our sample of 55 ETGs,
we compare the stellar mass-to-light ratiosM∗/L determined from two different and
independent diagnostics of galaxy stellar mass. The first method relies on grav-
itational lensing and stellar kinematics, it involves the construction of dynamical
models, and so it is sensitive to galaxy mass structure and stellar dynamics assump-
tions (Section 5.3.1). Here we try to reduce the unavoidable degeneracies generating
from the assumption of a particular stellar profile, by using a parametrization which
allows for a large number of free parameters. This approach is able to reproduce
the galaxy surface brightness images in detail, adding new parameters until the dif-
ference between the model and the image becomes negligible. The second approach
is instead based on stellar population synthesis models, it assumes an IMF, and re-
turns an estimate ofM∗/L by means of spectral fitting; the reliability of this method
depends mostly on the goodness of the stellar templates (Section 5.3.2).

5.3.1 The dynamical modelling

5.3.1.1 The mass structure

The mass structure of our galaxy models consists of three components: an axisym-
metric stellar distribution, a spherical DM halo, and a central SMBH. The stellar
component is accurately modelled with the aid of I -band HST images on which we
performed a Multi-Gaussian Expansion axisymmetric parametrization (Emsellem
et al. 1994, see also Bendinelli 1991; Bendinelli et al. 1993) that fits the galaxy sur-
face brightness distribution. In particular, we used the mge_fit_sectors software
package of Cappellari (2002)1, where the MGE formalism and the fitting algorithm
are fully described (a brief description of the properties of the MGE method is
present in Appendix C). Given the nature of our sample, the galaxy images are
characterized by the presence of several gravitational arches or rings that we prop-
erly mask in order to obtain a better fit. We impose the surface brightness profile
of the MGE model to decrease as R−4 at large radii, so as to limit the inclusion
of spurious light from nearby galaxies. All the model gaussians are convolved with
a gaussian point spread function with a dispersion of 0.04 arcsec, as befitting for
ACS. We also use some prescriptions for the gaussians’ axial ratio: in the limits of
obtaining a good fit of the surface brightness, we force 1) the flattest gaussian to
have the highest axial ratio, and 2) the gaussians’ axial ratio range to be the smallest
possible. In this way, we both avoid an artificial restriction of the range of the possi-
ble inclination angles for which the model can be deprojected (see Cappellari 2002,
Section 2.2.2), and we ’regularize’ the model, preventing significant variations of the
axial ratio, as physically plausible. These assumptions are needed because the depro-
jection, to obtain the intrinsic stellar luminosity density from the observed surface
brightness, is mathematically non-unique (Rybicki 1987; Gerhard & Binney 1996).

1Available at http://purl.org/cappellari/software

http://purl.org/cappellari/software
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Moreover, some of the galaxies have been observed only once so that we remove
the presence of cosmic rays using the la_cosmic software of van Dokkum (2001)2.
The model flux is corrected for foreground galactic extinction following Schlafly &
Finkbeiner (2011), as given by the NASA/IPAC Extragalactic Database (NED), and
the apparent I-band magnitude mI is computed, assuming M� I = 4.573. Then, by
means of SDSS spectra, we perform a k-correction following Hogg et al. (2002), and
we transform all observed magnitudes to consistent V and r-band rest-frame magni-
tudes, MV and Mr respectively, assuming the redshift values reported in Table 5.1.
This correction was necessary due to the non-negligible redshift range spanned by
the galaxies, and the choice of the photometric bands is motivated by the possibility
to compare our results with the SLACS and ATLAS3Dones, that have been obtained
in these bands. Then, assuming M� r = 4.64 (Blanton & Roweis 2007), we normal-
ized the model gaussians in units of L� r pc−2, so that now the MGE model has the
right units and format to be used for the dynamical modelling (see Section 5.3.1.2).
The central regions of the MGE models for all the 55 galaxies are shown in Fig. 5.1
and Table 5.1 reports their magnitudes. Images covering a wider spatial range of
the MGE models, together with all their parameters, are illustrated in Appendix C.

As a sanity check, we compared our mI with the ones reported by Bolton et al.
(2008): their magnitudes were calculated, starting from the same data, by fitting
two-dimensional ellipsoidal de Vaucouleurs (1948) luminosity profiles, and are the
result of the full (not truncated) analytic integral of the best fitting de Vaucouleurs
model. We find that the two sets of magnitudes agree with an rms scatter of 0.08
mag, but our mI are systematically higher by 0.18 mag, implying fluxes underes-
timated by 18 per cent. This is likely due to the fact that SLACS magnitudes are
extrapolated to infinite radii, while ours are limited to the observed photons. Fi-
nally, in Fig. 5.2 we compared our MV with the magnitudes calculated by Auger
et al. (2009) in the same band, and found they are consistent with an rms scatter
of 0.07 mag, which implies an error of 5 per cent in the luminosity; we assume the
same error also for Mr.

For what concerns the DM halo density distribution, we adopt the NFW (Navarro
et al. 1997) profile for two main reasons. The first is imposed by the few observational
constraints at our disposal (see Section 5.3.1.3), which prevent us from exploring a
more flexible DM halo profile, since the addition of further parameters to the models
would make the problem completely undetermined. Thus, our results are valid under
the assumption that the NFW profile is reliable in providing fair estimates for the
DM fraction. The second reason is that one of the motivations of this study is to
investigate the possible bias introduced by Treu et al. (2010) with the use of spherical
isotropic Hernquist models to describe the stellar components of the SLACS sample,
that is apparently composed of non spherical galaxies (see Fig.5.1). Thus, in order
to disentangle the effects produced by this approximation, we make use of the same
DM density profile adopted by Treu et al. (2010), that is the untruncated NFW
profile

ρh(r) =
ρcrit δcrh

r (1 + r/rh)2 , (5.1)

2Available at http://www.astro.yale.edu/dokkum/lacosmic/
3Taken from http://mips.as.arizona.edu/~cnaw/sun.html

http://www.astro.yale.edu/dokkum/lacosmic/
http://mips.as.arizona.edu/~cnaw/sun.html
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J0029 − 0055 J0037 − 0942 J0044 + 0113 J0216 − 0813 J0252 + 0039

J0330 − 0020 J0728 + 3835 J0737 + 3216 J0822 + 2652 J0841 + 3824

J0912 + 0029 J0935 − 0003 J0936 + 0913 J0946 + 1006 J0955 + 0101

J0956 + 5100 J0959 + 4416 J0959 + 0410 J1020 + 1122 J1023 + 4230

J1029 + 0420 J1032 + 5322 J1103 + 5322 J1106 + 5228 J1112 + 0826

J1134 + 6027 J1142 + 1001 J1143 − 0144 J1153 + 4612 J1204 + 0358

1

Figure 5.1: Contour maps of the central regions (∼ 0.5Re) of the WFC/F814W (I -
band) images of the 55 galaxies (black). The contours of the MGE surface brightness,
convolved with the proper PSF, are superimposed in red.
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J1205 + 4910 J1213 + 6708 J1218 + 0830 J1250 + 0523 J1402 + 6321

J1403 + 0006 J1416 + 5136 J1420 + 6019 J1430 + 4105 J1432 + 6317

J1436 − 0000 J1443 + 0304 J1451 − 0239 J1525 + 3327 J1531 − 0105

J1538 + 5817 J1621 + 3931 J1627 − 0053 J1630 + 4520 J1636 + 4707

J2238 − 0754 J2300 + 0022 J2303 + 1422 J2321 − 0939 J2341 + 0000

1

Figure 5.1: – continued
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Figure 5.2: V -band absolute magnitudes for the SLACS sample, computed here and
in Auger et al. (2009).
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Table 5.1: Properties and JAM models parameters of the 55 galaxy SLACS subsample.

Name z σ∗ REIN logMEIN mI MV Mr logRmaj
e logRe

[km s−1] [kpc] [M�] [mag] [mag] [mag] [arcsec] [arcsec]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

J0029–0055 0.2270 229 ± 18 3.48 11.08 17.16 -22.67 -22.79 2.017 1.830
J0037–0942 0.1955 279 ± 14 4.95 11.47 16.35 -23.09 -23.20 2.016 1.763
J0044+0113 0.1196 266 ± 13 1.72 10.96 15.83 -22.38 -22.48 2.216 1.923
J0216–0813 0.3317 333 ± 23 5.53 11.69 17.12 -23.70 -23.85 2.050 1.831
J0252+0039 0.2803 164 ± 12 4.40 11.25 18.15 -22.24 -22.35 0.950 0.878
J0330–0020 0.3507 212 ± 21 5.45 11.40 18.21 -22.75 -22.93 1.076 0.941
J0728+3835 0.2058 214 ± 11 4.21 11.30 16.83 -22.73 -22.84 1.567 1.348
J0737+3216 0.3223 338 ± 17 4.66 11.46 17.25 -23.49 -23.64 1.829 1.738
J0822+2652 0.2414 259 ± 15 4.45 11.38 17.10 -22.89 -23.00 1.644 1.458
J0841+3824 0.1159 225 ± 11 2.96 11.12 15.23 -22.86 -22.99 6.743 4.672
J0912+0029 0.1642 326 ± 16 4.58 11.60 15.77 -23.22 -23.34 3.034 2.452
J0935–0003 0.3475 396 ± 35 4.26 11.60 17.05 -23.89 -24.05 2.744 2.551
J0936+0913 0.1897 243 ± 12 3.45 11.17 16.62 -22.74 -22.86 1.876 1.691
J0946+1006 0.2219 263 ± 21 4.95 11.46 17.18 -22.58 -22.70 1.760 1.722
J0955+0101 0.1109 192 ± 13 1.83 10.83 17.04 -20.89 -21.02 1.549 0.840
J0956+5100 0.2405 334 ± 17 5.05 11.57 16.82 -23.18 -23.28 1.756 1.572
J0959+4416 0.2369 244 ± 19 3.61 11.23 17.12 -22.82 -22.93 1.500 1.381
J0959+0410 0.1260 197 ± 13 2.24 10.88 17.05 -21.24 -21.37 1.249 1.009
J1020+1122 0.2822 282 ± 18 5.12 11.54 17.47 -22.94 -23.05 1.156 1.037
J1023+4230 0.1912 242 ± 15 4.50 11.37 16.89 -22.48 -22.60 1.480 1.383
J1029+0420 0.1045 210 ± 11 1.92 10.78 16.24 -21.66 -21.77 1.771 1.193
J1032+5322 0.1334 296 ± 15 2.44 11.05 17.12 -21.36 -21.47 1.004 0.659
J1103+5322 0.1582 196 ± 12 2.78 10.98 16.63 -22.27 -22.39 1.927 1.217



5.3
T

h
e

g
a
la

x
y

m
o
d
els

91

Table 5.1 – continued

Name z σ∗ REIN logMEIN mI MV Mr logRmaj
e logRe

[km s−1] [kpc] [M�] [mag] [mag] [mag] [arcsec] [arcsec]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

J1106+5228 0.0955 262 ± 13 2.17 10.96 15.55 -22.12 -22.23 2.036 1.609
J1112+0826 0.2730 320 ± 20 6.19 11.65 17.41 -22.90 -23.02 1.160 1.010
J1134+6027 0.1528 239 ± 12 2.93 11.10 16.43 -22.38 -22.50 2.147 1.935
J1142+1001 0.2218 221 ± 22 3.52 11.22 17.13 -22.65 -22.76 1.779 1.640
J1143-0144 0.1060 269 ± 13 3.27 11.29 15.15 -22.72 -22.84 3.493 3.133
J1153+4612 0.1797 226 ± 15 3.18 11.05 17.25 -21.97 -22.08 1.037 1.029
J1204+0358 0.1644 267 ± 17 3.68 11.24 16.94 -22.04 -22.16 1.241 1.229
J1205+4910 0.2150 281 ± 14 4.27 11.40 16.81 -22.88 -23.00 1.977 1.706
J1213+6708 0.1229 292 ± 15 3.13 11.16 15.70 -22.57 -22.69 2.969 2.604
J1218+0830 0.1350 219 ± 11 3.47 11.21 15.89 -22.61 -22.72 2.739 2.414
J1250+0523 0.2318 252 ± 14 4.18 11.26 16.88 -23.01 -23.11 1.297 1.290
J1402+6321 0.2046 267 ± 17 4.53 11.46 16.52 -23.02 -23.14 2.251 1.997
J1403+0006 0.1888 213 ± 17 2.62 10.98 17.19 -22.14 -22.26 1.131 1.041
J1416+5136 0.2987 240 ± 25 6.08 11.56 17.71 -22.85 -22.97 1.227 1.082
J1420+6019 0.0629 205 ± 10 1.26 10.59 15.19 -21.54 -21.65 2.048 1.575
J1430+4105 0.2850 322 ± 32 6.53 11.73 16.96 -23.49 -23.58 1.728 1.668
J1432+6317 0.1230 199 ± 10 2.78 11.05 15.44 -22.80 -22.93 3.751 3.724
J1436–0000 0.2852 224 ± 17 4.80 11.36 17.41 -23.03 -23.13 1.776 1.587
J1443+0304 0.1338 209 ± 11 1.93 10.78 17.02 -21.45 -21.57 1.230 0.984
J1451–0239 0.1254 223 ± 14 2.33 10.92 16.08 -22.21 -22.33 2.167 2.010
J1525+3327 0.3583 264 ± 26 6.55 11.68 17.39 -23.63 -23.79 2.180 1.773
J1531–0105 0.1596 279 ± 14 4.71 11.43 15.95 -22.92 -23.04 2.573 2.201
J1538+5817 0.1428 189 ± 12 2.50 10.95 16.78 -21.87 -21.98 1.384 1.270
J1621+3931 0.2449 236 ± 20 4.97 11.47 16.95 -23.09 -23.22 1.908 1.698
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Table 5.1 – continued

Name z σ∗ REIN logMEIN mI MV Mr logRmaj
e logRe

[km s−1] [kpc] [M�] [mag] [mag] [mag] [arcsec] [arcsec]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

J1627–0053 0.2076 290 ± 15 4.18 11.36 16.92 -22.66 -22.78 1.660 1.514
J1630+4520 0.2479 276 ± 16 6.91 11.69 17.00 -23.06 -23.18 1.537 1.394
J1636+4707 0.2282 231 ± 15 3.96 11.25 17.17 -22.67 -22.78 1.402 1.272
J2238–0754 0.1371 198 ± 11 3.08 11.11 16.33 -22.18 -22.30 1.963 1.748
J2300+0022 0.2285 279 ± 17 4.51 11.47 17.22 -22.61 -22.73 1.410 1.298
J2303+1422 0.1553 255 ± 16 4.35 11.42 16.07 -22.69 -22.83 2.591 2.108
J2321–0939 0.0819 249 ± 12 2.47 11.08 14.82 -22.44 -22.56 3.316 2.963
J2341+0000 0.1860 207 ± 13 4.50 11.35 16.48 -22.81 -22.94 2.661 2.078

Notes: (1) Galaxy name. (2)− (3) Galaxy redshift and SDSS-measured stellar velocity dispersion
within the spectroscopic aperture of diameter 3 arcsec, both taken from Treu et al. (2010) their
Table 1. (4) − (5) Einstein radius and total projected mass within a cylinder of radius equal to
REIN, taken from Auger et al. (2009), their Table 4. (6) I -band apparent magnitude (F814W )
derived from the MGE model (1σ random error of 0.06 mag). (7) − (8) V and r -band absolute
magnitudes (1σ random error of 0.05 mag). (9) Major axis of the isophote containing half of the
analytic total light of the MGE models (1σ error of 10 per cent or 0.041 dex). (10) Circularized
effective radius Re =

√
Ae/π where Ae is the area of the effective isophote containing half of the

analytic total light of the MGE models (same error as Rmaj
e .
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with fixed rh = 30 kpc. We then perform a one-dimensional MGE fit to Eq. (5.1)
in order to recover the DM surface density in units of M� pc−2, and add the DM
halo to the dynamical modelling (Section5.3.1.2).

Finally, we apply a similar procedure for the SMBH, parametrizing it with a
single gaussian with a dispersion of 0.01 arcsec. The SMBH mass is chosen adopting
the MBH − σe relation of Gültekin et al. (2009) for elliptical galaxies, where, for
each galaxy, σe (i.e., the luminosity averaged stellar velocity dispersion within Re)
is computed starting from σ∗ (the SDSS-measured velocity dispersion, luminosity-
averaged within a circular aperture of radius 1.5 arcsec) and using the conversion
formula in eq. (1) of Cappellari et al. (2006), thus accounting for aperture correction.

5.3.1.2 The stellar kinematics

The model velocity fields are computed using the Jeans anisotropic MGE (JAM)
modelling method of Cappellari (2008), which can be applied to an axisymmetric
stellar distribution, described by a three-integral DF. This method assumes a veloc-
ity ellipsoid aligned with the cylindrical coordinates (R, z, ϕ), and a constant vertical
anisotropy parametrized by βz = 1− σ2

z/σ
2
R.

Indeed, Cappellari et al. (2007) modelled integral-field observations for a sample
of 25 ETGs, using orbit-based three-integral axisymmetric models, and measured the
shape and orientation of the velocity ellipsoid at every position within the meridional
plane (within Re). They found that for the fast-rotator galaxies the axial ratio of
the ellipsoids varies gradually as a function of the polar angle, in such a way that
the ellipsoid has nearly the same oblate shape on both the equatorial plane and
the symmetry axis. Thus, to first order the global anisotropy of the galaxies can be
described as a simple flattening of the velocity ellipsoid in the z-direction (σ2

z < σ2
R).

Conversely, note that the dynamical models used in Chapter 4, built with our Jeans
solver code (Chapter 2), are always semi-isotropic models (i.e., σ2

z = σ2
R) since they

are based on a two-integral DF, and they become isotropic (σ2
z = σ2

R = σ2
ϕ) for a

particular choice of the Satoh parameter (k = 1). However, the implementation of
the vertical anisotropy in our code would be straightforward.

For our models we fix βz = 0.2, which has been found to be representative
of local ETGs (Cappellari et al. 2007). However, relaxing this assumption, and
considering isotropic models (βz = 0) as done in Treu et al. (2010), negligibly affects
our results. Moreover, for simplicity we assume a spatially constant M∗/L, even if
recent studies found evidences for a IMF dependence on galactocentric distance (e.g.,
Martín-Navarro et al. 2014; Pastorello et al. 2014). These evidences do not make
our results invalid, since this assumption simply implies that our measured M∗/L
represents a mean value in the observed region (which typically has size r . Re),
as already done by Cappellari et al. (2013b). This does not exclude, for example,
that the IMF might be universal in the outer disc components and vary only within
bulges or spheroids (see e.g., Dutton et al. 2013b).

The main ingredients of the dynamical modelling are the galaxy surface bright-
ness in units of L� pc−2, and the galaxy surface density of the total mass distribution
in units of M� pc−2. This last is the sum of the three components (stars, DM and
SMBH) obtained as described in Section 5.3.1.1, where the stellar one is multiplied
by a stellar mass-to-light ratio (M∗/L)dyn that is the quantity we want to retrieve (as
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will be explained in Section 5.3.1.3). Then the only free parameters left are βz and
the inclination angle i, whose values have to be provided or assumed. Indeed, once
the MGE parametrization of the surface brightness profile is obtained, the MGE
parametrization of the intrinsic light profile can be easily and analytically recovered
for a choice of the inclination angle i. Here we adopt i = 60°, i.e., the average
inclination for random orientations, and, whenever the axial ratio of the gaussians
does not allow deprojection for this inclination, we adopt the minimum inclination
permitted. Note that a significant error in the adopted value of i would produce
errors smaller that 10 per cent on the retrieved mass-to-light ratio, if the observed
axial ratio is q < 0.7 (see Cappellari et al. 2006 Fig. 4 for a detailed discussion).
Given these inputs, with the JAM1 method we are able to directly compute the
projected second velocity moment along the line-of-sight (LOS) Vrms, with a single
numerical quadrature. Finally, in order to compare Vrms with σ∗, we convolve it
with a gaussian PSF with a FWHM of 1.5 arcsec, as typical for SDSS observations,
and then we compute a luminosity-weighted average inside the 3 arcsec diameter
SDSS fiber.

5.3.1.3 Inferring the parameters of the dynamical models

For each galaxy in the sample we built a set of galaxy models, whose mass structure
and kinematical configuration have been already described in Sections 5.3.1.1 and
5.3.1.2, respectively. We then use two observationally derived quantities to constrain
the best model: the SDSS-measured aperture stellar velocity dispersion σ∗, provided
by the SDSS database, and the total projected mass MEIN enclosed within the
Einstein ring of radius REIN, calculated by Auger et al. (2009). These quantities are
reproduced in Table 5.1 with their errors; for MEIN we adopt an error of 5 per cent.

Within a set, the models have the same values for (MBH, i, βz), and they differ
only in the mass normalization of the two main components: the stellar population
and the DM halo. In practice, we choose a sufficiently wide range within which the
r-band stellar mass-to-light ratio (M∗/L)dyn is allowed to vary, and we multiply the
MGE model surface density by (M∗/L)dyn; in this way we convert the MGE model
into a mass density. Analogously, we choose a range for the DM mass normalization
by using the parameter fDM, i.e., the DM fraction within a sphere of radius equal
to one effective radius Re; obviously 0 ≤ fDM ≤ 1. We then build a model for each
couple of values ((M∗/L)dyn, fDM), and we choose the best-fitting model by means of
chi-squared minimization on the two observables (σ∗, MEIN). The chi-square maps
for the whole sample (Fig. 5.3) show some degeneracy between fDM and (M∗/L)dyn.
In general, the DM fraction is very low (fDM . 0.4) and for nearly half of the sample
it tends to zero, probably due to systematics. Few galaxies are indeed scarcely
reproduced by the NFW profile here adopted, probably due to systematic errors
associated with σ∗, or to difficulties in the retrieval of the MGE parametrization
because of strong lens disturbances, or to the lensing analysis. Table 5.2 shows the
best-fitting (M∗/L)dyn and fDM, and reports the associated typical errors. These are
the median values of the 1σ errors, computed projecting the white areas in Fig. 5.3
in the allowed region of the parameters.

Isotropic models (not shown here) result overall in lower fDM and higher (M∗/L)dyn,
which do not affect any of our results. The dynamical contribution of the SMBH
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Table 5.2: Mass-to-light ratios and fDM of the models for the 55 galaxy SLACS
subsample

Name log(M/L)MFL log(M∗/L)dyn log(M∗/L)Salp fDM

[M�/L� r] [M�/L� r] [M�/L� r]
(1) (2) (3) (4) (5)

J0029–0055 0.693 0.609 0.610 < 0.207
J0037–0942 0.665 0.648 0.615 0.036
J0044+0113 0.771 0.708 0.642 < 0.174
J0216–0813 0.747 0.737 0.635 < 0.401
J0252+0039 0.439 -0.178 0.646 0.804
J0330–0020 0.487 0.279 0.557 0.350
J0728+3835 0.491 0.331 0.598 0.416
J0737+3216 0.819 0.662 0.572 < 0.061
J0822+2652 0.681 0.665 0.531 0.041
J0841+3824 0.688 0.672 0.724 0.079
J0912+0029 0.872 0.848 0.728 < 0.174
J0935–0003 0.923 0.784 0.545 < 0.511
J0936+0913 0.640 0.611 0.600 < 0.123
J0946+1006 0.871 0.824 0.632 0.137
J0955+0101 0.858 0.846 0.640 < 0.246
J0956+5100 0.826 0.765 0.646 < 0.070
J0959+4416 0.631 0.609 0.524 0.003
J0959+0410 0.777 0.763 0.661 0.024
J1020+1122 0.662 0.595 0.634 0.194
J1023+4230 0.674 0.578 0.662 0.256
J1029+0420 0.672 0.581 0.637 < 0.044
J1032+5322 1.004 0.804 0.670 < 0.009
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Table 5.2 – continued

Name log(M/L)MFL log(M∗/L)dyn log(M∗/L)Salp fDM

[M�/L� r] [M�/L� r] [M�/L� r]
(1) (2) (3) (4) (5)

J1103+5322 0.599 0.539 0.690 < 0.246
J1106+5228 0.668 0.593 0.680 < 0.027
J1112+0826 0.793 0.783 0.625 0.001
J1134+6027 0.714 0.698 0.677 0.001
J1142+1001 0.624 0.437 0.665 0.338
J1143-0144 0.754 0.734 0.713 0.060
J1153+4612 0.678 0.656 0.658 0.001
J1204+0358 0.835 0.805 0.677 < 0.065
J1205+4910 0.785 0.751 0.667 < 0.086
J1213+6708 0.817 0.717 0.684 < 0.022
J1218+0830 0.640 0.555 0.667 0.294
J1250+0523 0.548 0.509 0.522 < 0.078
J1402+6321 0.706 0.620 0.661 0.256
J1403+0006 0.656 0.607 0.468 < 0.180
J1416+5136 0.612 0.458 0.575 0.265
J1420+6019 0.596 0.513 0.649 < 0.055
J1430+4105 0.774 0.755 0.640 0.044
J1432+6317 0.569 -0.112 0.658 0.862
J1436–0000 0.588 0.440 0.652 0.338
J1443+0304 0.686 0.647 0.594 < 0.040
J1451–0239 0.679 0.635 0.579 < 0.146
J1525+3327 0.622 0.433 0.612 0.478
J1531–0105 0.728 0.720 0.706 < 0.103
J1538+5817 0.577 0.429 0.671 0.256
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Table 5.2 – continued

Name log(M/L)MFL log(M∗/L)dyn log(M∗/L)Salp fDM

[M�/L� r] [M�/L� r] [M�/L� r]
(1) (2) (3) (4) (5)

J1621+3931 0.571 0.365 0.629 0.431
J1627–0053 0.830 0.766 0.653 < 0.065
J1630+4520 0.671 0.555 0.685 0.275
J1636+4707 0.620 0.608 0.639 0.030
J2238–0754 0.621 0.461 0.631 0.375
J2300+0022 0.804 0.754 0.661 0.115
J2303+1422 0.779 0.744 0.691 0.147
J2321–0939 0.709 0.700 0.657 0.001
J2341+0000 0.616 0.219 0.470 0.676

Notes: (1) Galaxy name. (2) Total mass-to-light ratio of the mass-follows-light
dynamical models (Section 5.3.1) in the r -band (1σ error of 14 per cent or 0.056
dex). (3) − (4) r -band stellar mass-to light ratios derived from the dynamical and
the stellar population synthesis models, respectively (Sections 5.3.1 and 5.3.2). The
1σ error in (M∗/L)dyn is 28 per cent (0.106 dex), and 7 per cent (0.03 dex) for
(M∗/L)Salp. (5) DM fraction enclosed within a sphere of radius Re, derived from
the dynamical models (1σ error of 0.16).
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is irrelevant, since removing it from the modelling results in a negligible increase of
(M∗/L)dyn: the percentage variation has a median value of 1 per cent for the whole
sample, and is always smaller than 7 per cent.

Finally, we also built another set of dynamical models where the total mass
distribution follows that of the light (mass-follows-light models). These are less
sophisticated dynamical models that are constrained only using σ∗, and whose best-
fitting mass-to-light ratios are reported in Table 5.2 as (M/L)MFL. The associated
typical error is reported in Table 5.2. It is computed propagating the errors in σ∗
and in the JAM modelling (6 per cent, as evaluated in Cappellari et al. 2006 from
a wider exploration of dynamical modelling approaches), and adopting the median
value for all the galaxies.

5.3.2 The stellar population synthesis modelling

Our stellar population synthesis models are performed applying a full-spectrum fit-
ting approach to SDSS spectra, and using a selection of the simple stellar pop-
ulation (SSP) models of Vazdekis et al. (2010)4, which are based on the MILES
stellar spectral library (Sánchez-Blázquez et al. 2006), and cover the wavelength
range 3540 − 7410 Å at 2.50 Å (FWHM) spectral resolution. In particular, we
adopt the Salpeter (1955) IMF as reference, and we select the MILES SSP mod-
els with age t > 1 Gyr and metallicity −1.71 6 [M/H] 6 0.22: this leads to
a total of 156 SSPs with 26 logarithmically-spaced ages, and metallicity values
[M/H] = [−1.71,−1.31,−0.71,−0.40, 0.00, 0.22]. For each galaxy then, the spectral
fitting is allowed to use only SSPs with age not greater than the age of the Uni-
verse at the galaxy redshift, reducing the number of SSP templates to N < 156.
The full-spectrum fitting is performed with the ppxf software1, which implements
the Penalized Pixel-Fitting method of Cappellari & Emsellem (2004), and, for each
galaxy, returns the best fitting matrix of weights w (to be multiplied by the SSP
templates). Then, the stellar mass-to-light ratio in the r -band associated with the
population model is

(M∗/L)Salp =

∑N
j=1wjM

nogas
j∑N

j=1wj Lj, r
, (5.2)

whereMnogas
j and Lj, r are the stellar mass (including neutron stars and black holes,

but excluding the gas lost by the stars during stellar evolution) and the r-band
luminosity of the j-th SSP, respectively. In general, for these unregularized fits, we
find that N 6 5, and in most of the cases N = 2 with the older and more metal rich
SSP having w ' 1.

The spectral fitting has been performed also using the ppxf keyword REGUL: in
this way the fitting procedure is forced to apply a linear regularization to the weights
(see equation 18.5.10 of Press et al. 1992), obtaining a smoother solution than the
unregularized fit. The regularized solution is as statistically good as the unregu-
larized one, being still consistent with the observations, but it is more physically
plausible and representative of the galaxy population since it reduces the scatter
in the retrieved population parameters (i.e., age and metallicity) of the solution.
The regularized (M∗/L)Salp slightly underestimate the unregularized ones by 0.02

4Available at http://miles.iac.es/

http://miles.iac.es/
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1

Figure 5.3: ∆χ2 contour maps obtained from the dynamical models, as a function of
the DM fraction fDM (vertical axis) and r-band stellar mass-to light ratio (M∗/L)dyn

(horizontal axis). The red cross locates the minimum chi-square value. The 1, 2, 3σ
confidence levels for 1 degree of freedom (∆χ2 = 1, 4, 9) are shown in white, dark
blue and light blue, respectively.
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1

Figure 5.3: – continued
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Figure 5.4: r -band mass-to-light ratios of the mass-follows-light dynamical models
for the SLACS sample, as a function of σe, and their best-fitting relation (black
line). The magenta line is the best-fitting relation for the ATLAS3Dsample (Cap-
pellari et al. 2013b). The values of σe are computed as described at the end of Sec-
tion 5.3.1.1. Our best-fitting relation is obtained with lts_linefit, and the dotted
lines mark the 3σ bands (enclosing 99.7% of the values for a Gaussian distribution).
Outliers deviating more than 3σ from the best-fitting relation were automatically
excluded from the fit (i.e., points beyond the dotted lines).

dex, with an rms scatter of 0.014 dex; this would imply errors of 7 per cent in the
individual (M∗/L)Salp. Finally we find that our results are robust against plausible
variations of the REGUL parameter, so that here we present the results obtained
with the regularized solutions. In both fits we make use of a 10-th degree multi-
plicative Legendre polynomial to correct the continuum shape for calibration effects
and to account for possible intrinsic dust absorption. The best-fitting (M∗/L)Salp

are reported in Table 5.2 for each galaxy.

5.4 Results

Here we present our main results regarding the mass-to-light ratios we derived and
their correlation with the stellar velocity dispersion (M/L − σ relation), and we
focus mostly on the implications concerning the IMF normalization.
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5.4.1 Mass-follows-light models

We recall that these models have a total mass profile that follows that of the light,
and are tuned to reproduce only the galaxy surface brightness and the SDSS-
measured aperture velocity dispersion. Figure 5.4 shows the mass-to-light ratios
(M/L)MFL we derived for these dynamical models as a function of σe, and the black
line is the M/L− σe relation we obtained for the SLACS sample. The relation is of
the form

log(M/L)r = (1.24± 0.14)× log

(
σe

200 km s−1

)
+ (0.58± 0.02), (5.3)

and has an rms scatter of 0.08 dex. The best-fitting relation has been obtained
using the lts_linefit routine1 of Cappellari et al. (2013b), which allows and fits for
intrinsic scatter, and robustly manages the presence of outliers. In the fit we consider
a typical error of 6 per cent for σe, and we quadratically co-added JAM modelling
errors of 14 per cent, plus distance errors, plus 5 per cent errors for our photometry.
When compared with previous similar estimates for different samples of ETGs, local
and not (e.g., Cappellari et al. 2006; van der Marel & van Dokkum 2007; Cappellari
et al. 2013b), our relation is slightly steeper. For example, analogous mass-follows-
light models have been built also for the ATLAS3D(Cappellari et al. 2013b) and
SAURON samples (Cappellari et al. 2006), leading to M/L− σe relations shallower
than our, and with higher zero-points (e.g., see the magenta line in Fig. 5.4). The
ATLAS3Dsample consists of local galaxies, while the SLACS galaxies reside at higher
redshifts (the median redshift for the SLACS sample is z ' 0.2), so that their stellar
populations are younger on average, resulting in lower stellar mass-to-light ratios.
Indeed the offset between the two samples can be accounted just by considering
passive evolution. For reference, a solar metallicity ([Z/H] = 0) passively evolving
stellar population varies its M/Lr by ∼ 0.10 dex from an age of 11 Gyr to 14 Gyr
(z ∼ 0.2 to z = 0, assuming it formed at zform = ∞), according to the models of
Maraston (2005). This value provides a lower limit to the expected passive M/Lr
variation we should observe.

A possible explanation for the steeper slope, instead, could be provided by indi-
cations that the M/L−σe relation might steepen at the high σe end (Zaritsky et al.
2006). In fact, the SLACS sample consists mostly of high velocity dispersion galax-
ies (200 km s−1 . σe . 400 km s−1) due to its selection criteria, while for example
the volume limited ATLAS3Dsample extends from high-intermediate σe galaxies to
very low σe systems (50 km s−1 . σe . 250 km s−1). Thus the two relations shown
in Fig. 5.4 have been obtained sampling different ranges in velocity dispersion, that
barely intersect each other.

5.4.2 Dependency of the IMF normalization on velocity dispersion

Figure 5.5 shows the two sets of stellar mass-to-light ratios obtained from our dy-
namical and stellar population synthesis models, one against the other. Note that,
at variance with (M/L)MFL, the dynamical mass-to-light ratios (M∗/L)dyn here
shown are purely stellar, since a NFW DM halo has been included in the mod-
elling, so that they can be directly compared with (M∗/L)Salp. Thus, if for example
the IMF of ETGs is universal and Salpeter-like, (M∗/L)dyn should be very similar
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Figure 5.5: The stellar mass-to-light ratios (M∗/L)Salp for a Salpeter IMF (Sec-
tion 5.3.2) are shown as a function of the dynamical stellar mass-to-light ratios
(M∗/L)dyn (Section 5.3.1), both derived in the r -band. The colours of the symbols
code the galaxy velocity dispersion: in place of the individual σe values, here we
show the two-dimensional LOESS smoothed σe values (see the top colour bar). A
representative error bar is shown at the top-left. Two galaxies resulting in too high
and unrealistic DM fractions (J0252+0039 and J1432+6317) have been excluded
from the plot. The diagonal lines are computed from the Vazdekis et al. (2010)
models for a population with solar metallicity.
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to (M∗/L)Salp, which has been calculated under this assumption (i.e., all galaxies
should lie close to the magenta line, with some scatter). If otherwise ETGs have
a lighter IMF, like Chabrier or Kroupa, one would expect to find that (M∗/L)Salp

systematically overestimates (M∗/L)dyn by the same percentage, for the whole sam-
ple. The situation apparent in Fig. 5.5 is somewhat different: galaxies do not lie
near one of the lines representing different IMFs, but are distributed across all of
them. The scatter is significant compared to the typical error, and reveals that
some galaxies are actually more properly represented by a lighter or a heavier IMF
normalization. This suggests a variation of the IMF for ETGs, that seems also to
correlate with the galaxy velocity dispersion, with low-σe galaxies being consistent
with a Chabrier or Kroupa-like IMF, while medium and high-σe galaxies agree with
a Salpeter or heavier IMF. Note that our results are equally consistent with both
a bottom heavy and top heavy IMF trend (as considered by Weidner et al. 2013),
since the approach we use does not constrain the shape of the IMF directly, but
only the overall mass normalization. In Fig. 5.5 each galaxy is coloured according
to its LOESS-smoothed value of σe, as done in Cappellari et al. (2013a) (their fig.
11). Applying the LOESS1 method (Cleveland 1979), we evaluated mean values of
σe that are the result of an average over the neighbouring galaxies, weighted with
the relative distances. In this way, one aims to reconstruct the average values char-
acterizing the underlying galaxy population, i.e., the values one should expect to
obtain when disposing of much larger galaxy samples.

Another way of seeing this variation is by looking at the IMF mismatch param-
eter α ≡ (M∗/L)dyn/(M∗/L)Salp. Figure 5.6 shows the logarithm of α as a function
of σ∗, as already done in Treu et al. (2010) (see their fig. 4, central panel). Here,
the red points refer to the values obtained by Treu et al. (2010), while our results
are shown in black, and the solid lines are the respective best-fitting relations. Note
that the dynamical models of Treu et al. (2010) consist of spherical isotropic models,
with a stellar component following a Hernquist (1990) profile. Moreover their stellar
population synthesis models were built using multicolour HST photometry, while
ours are based on full-spectrum fitting. Regardless of the very different approaches
adopted, we find that the two works produce essentially the same result pointing
toward an IMF variation, with high-σ∗ galaxies being consistent on average with a
Salpeter normalization. Our relation is

logα = (1.3± 0.23)× log

(
σ∗

200 km s−1

)
− (0.14± 0.03), (5.4)

with an rms scatter of 0.1 dex; in the fit we consider a median error of 6 per cent for
σ∗, and we quadratically co-added the dynamical modelling errors of 28 per cent, plus
distance errors, plus population models errors of 7 per cent, plus 5 per cent errors for
our photometry. Our relation is very similar to that reported in Treu et al. (2010).
However, inspecting Fig. 5.6 a difference must be noted: our dynamical modelling
produces a weaker correlation, in the sense that our points are more scattered in the
(logα, σ∗) plane with respect to the points of Treu et al. (2010). This is reasonably
due to the use of a more flexible parametrization of the light profiles. Indeed, given
its nature, the SLACS sample is likely to include also compact galaxies, and using
a density profile with a fixed internal slope (like the Hernquist profile) to fit all the
galaxies might artificially produce some correlation, by overestimating the stellar
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Figure 5.6: IMF mismatch parameter α as a function of σ∗ for the SLACS sample.
Red points are taken from Treu et al. (2010), as well as their best-fitting relation
represented by the red line. Black points refer to the values computed in this work.
The black line is our best-fitting relation obtained with lts_linefit, and the dotted
lines mark the 3σ bands (enclosing 99.7% of the values for a Gaussian distribution).
Outliers deviating more than 3σ from the best-fitting relation were automatically
excluded from the fit (i.e., points beyond the dotted lines). The value of the linear
correlation coefficient r is also reported. Representative error bars are shown at the
top-right: for the data of Treu et al. (2010) we compute the median error.
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Figure 5.7: Rmaj
e , the major axis of the isophotes containing half of the analytic

total light of the MGE models, is shown as function of MJAM, the total mass of the
mass-follows-light models (i.e. MJAM = (M/L)MFL × Lr), for the SLACS (stars)
and ATLAS3Dsamples (circles). The colours of the symbols code the ratio α =
(M∗/L)dyn/(M∗/L)Salp: in place of the individual α values, here we show the two-
dimensional LOESS smoothed α values (see the top colour bar). The red line shows
the zone of exclusion relation given by equation (4) of Cappellari et al. (2013a), for
the ATLAS3Dsample.

mass in the high-σe compact galaxies. Figure 5.7 illustrates the type of galaxies
that are in the σ-selected SLACS sample (stars), compared to the volume-selected
ATLAS3Dsample (circles): it can be noticed that they are quite massive and dense,
since they fill the lower envelope of the galaxy distribution in the (Rmaj

e ,MJAM) at
the high mass end (i.e., with the smaller Rmaj

e for MJAM > 1011M�).
Finally, the analysis we conducted on the SLACS sample is analogous to the

one performed on the ATLAS3Dsample, both in terms of the dynamical and stellar
population approach. This allows us to directly compare the respective results, and
merge the two samples homogeneously analysed to infer some global insights on the
IMF of ETGs. Fig. 5.8 shows the IMF mismatch parameter as a function of σe for the
two samples (i.e., SLACS in black and ATLAS3Din magenta). Here, notwithstanding
the heterogeneity of the samples in terms of selection criteria, galaxy redshift and
mass range, one can immediately appreciate how the black points seem to follow the
same relation of the magenta points, but extending to higher σe values. Indeed, the
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Figure 5.8: The IMF mismatch parameter α is shown as a function of σe for the
SLACS (black) and the ATLAS3Dsample (magenta). The magenta solid line is the
best-fitting relation for the subset of the whole ATLAS3Dsample made of 223 galaxies
with the stellar absorption line-strength index Hβ < 2.3 Å, taken from Cappellari
et al. (2013a). The blue solid line is the best-fitting relation for the two samples put
together, obtained with lts_linefit, and the blue dotted lines mark the 3σ bands
(enclosing 99.7% of the values for a Gaussian distribution). Outliers deviating more
than 3σ from the best-fitting relation were automatically excluded from the fit (i.e.,
points beyond the dotted lines). The blue dot-dashed line is a parabolic fit to both
samples together, performed with the mpfitfun routine. Representative error bars
are shown at the top-right: for the data of Cappellari et al. (2013a) we compute the
median error.
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magenta solid line, representing the best-fitting relation for the ATLAS3Dsample,
is only slightly shallower that the blue solid line, obtained by fitting both samples
together; in particular, we find for the whole sample SLACS+ATLAS3D

logα = (0.38± 0.04)× log

(
σe

200 km s−1

)
+ (−0.06± 0.01), (5.5)

with an rms scatter of 0.12 dex. The similarity of the two best-fitting relations is
even more remarkable when comparing them with the steeper relation we find for
the SLACS sample alone (Eq. 5.4). Note that the steepness of the slope in Eq. 5.4
is not due to the fact that α is fitted as a function of σ∗ instead of σe, since we find
a very similar result also for σe (slightly steeper). This shows that the slope of the
α − σe relation is very sensitive to the σe range, with a considerable increase for
σe & 250 km s−1, and suggests that the relation is not a simple single power law.
In this scenario, the steepness of the α− σe correlation, found by Treu et al. (2010)
and confirmed here, for the ETGs of the SLACS sample is a natural consequence of
the velocity dispersion selection nature of the SLACS sample. We then try to fit a
parabola to the whole sample SLACS+ATLAS3D, obtaining

logα =(0.40± 0.15)× log

(
σe

200 km s−1

)2

+

(0.49± 0.05)× log

(
σe

200 km s−1

)
+ (−0.07± 0.01),

(5.6)

with an rms scatter of 0.12 dex.
Thus, by homogeneously studying ETGs collected over a very wide and unprece-

dented range of σe and M∗, we have provided a comprehensive insight about the
IMF normalizaton for this morphological type of galaxies, showing that the IMF
gets heavier for increasing σe, and becomes Salpeter-like at σe ' 250 km s−1. The
issue of the IMF variability for the ATLAS3Dsample has also been studied by Tor-
tora et al. (2014) within the MOND framework, obtaining results consistent with
the ones from Newtonian dynamics plus DM.

5.5 Discussion and Conclusions

In this work we studied the mass normalization of the IMF of ETGs, exploiting
information derived from gravitational lensing, stellar dynamics and stellar popu-
lation synthesis models, and making use of high-quality photometric and spectro-
scopic data. We selected 55 ETGs belonging to the SLACS sample and constructed
dynamical and stellar population synthesis models for each galaxy. Our dynamical
models are built solving the Jeans axisymmetric anisotropic equations with the JAM
method of Cappellari (2008); they reproduce in detail the HST galaxy images and
are constrained using the SDSS-measured velocity dispersion and the mass within
the Einstein radius. Our stellar population synthesis models are computed with the
full-spectrum fitting technique and are based on the SSP models of Vazdekis et al.
(2010). We derived accurate estimates of stellar mass-to-light ratios from the two
sets of models, (M∗/L)dyn and (M∗/L)Salp respectively.
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From the comparison of the two estimates of stellar mass-to-light ratios, we find
a trend of IMF with velocity dispersion, where, on average, the IMF normalization
smoothly varies from Kroupa/Chabrier for galaxies with σe ∼ 90 km s−1, up to a
bottom-heavy Salpeter-like IMF for galaxies with σe ∼ 270 km s−1 (Fig. 5.5). This
change of IMF normalization as a function of σe is significant beyond the extent
of the error estimates in the stellar the mass-to-light ratios, and thus suggests an
intrinsic systematic variation of the stellar IMF for ETGs.

With our accurate and realistic modelling of the stellar profiles, our analysis
provides an improvement over the study of Treu et al. (2010), conducted on the same
ETG sample. Notwithstanding the different and independent approaches adopted,
we confirm their finding of a steep correlation between the IMF mismatch parameter
α = (M∗/L)dyn/(M∗/L)Salp and the galaxy velocity dispersion (Fig. 5.6); however
our relation has a slightly lower correlation coefficient, presumably due to relaxing
the restrictive assumption of a fixed stellar density profile to fit the whole galaxy
sample.

We also built mass-follows-light dynamical models and computed total mass-to-
light ratios (M/L)MFL for them. We find a (M/L)MFL−σe correlation steeper than
previous analogous estimates for different local ETG samples (e.g., the (M/L)MFL−
σe relation for the 260 ETGs ATLAS3Dsample), and with a lower zero-point (Fig. 5.4).
The SLACS sample resides at higher redshift and is likely to include galaxies with
younger stellar populations; indeed the offset in the zero-points can be accounted
for by passive evolution between z ∼ 0.2 and z = 0. The different slope instead
could be an effect of the different σe range spanned by the samples, in accordance
with Zaritsky et al. (2006) that suggests a steepening this relation as a function of
σe. Note that the slope of the (M/L)MFL − σe relation gives an upper limit to any
systematic increase of the IMF mass normalization with σe.

Finally, as an important outcome of analysing the SLACS galaxies with a proce-
dure that is homogeneous with that adopted for the ATLAS3Dgalaxies (Cappellari
et al. 2013a), we could merge the two samples. In this way, we explored the be-
haviour of ETGs in the α−σe plane with the largest sample ever, where ETGs of all
σe values from 50 km s−1 to ∼ 350 km s−1 are well represented. We found that the
volume-limited ATLAS3Dsample and the velocity dispersion selected SLACS galax-
ies smoothly merge in a unique shallower relation in the (α, σe) plane (Fig. 5.8).
From this comprehensive analysis, we find that the α−σe relation might not be lin-
ear, and that the slope inferred depends on the range of σe covered by the galaxies.
This is significantly different for the ATLAS3D(volume selected) and SLACS sample
(velocity dispersion selected).





Chapter 6

Conclusions

Dynamical models of galaxies are a powerful tool to study and understand several
astrophysical problems related to galaxy formation and evolution. In this thesis
we concentrated on a particular type of dynamical models, that are widely used in
literature, and are based on the solution of the Jeans equations. We developed a nu-
merical Jeans solver code able to build state-of-the-art axisymmetric galaxy models,
which allow for a full generality in the choice of galaxy shape and of the stellar and
DM profiles, multiple mass components, different kinematical configurations, and
can be tailored to reproduce observational constraints.

In particular, we focused our attention on the family of ETGs, and we exploited
these models to address two of the main issues in the field of research of ETGs,
which are currently matter of great interest for the astronomical community.

The first topic concerns the hot and X-ray emitting gaseous coronae that sur-
round ETGs. The main goal is to explain why flat and rotating galaxies generally
exhibit haloes with lower gas temperatures TX and luminosities LX with respect to
rounder and velocity dispersion supported systems. The bulk of the mass of these
haloes is produced by stellar winds, and is heated up to X-ray temperatures by SNIa
explosions and by the thermalisation of stellar motions, so that a tight relation links
stellar motions and the energetics of the hot gas. Thus, in this thesis, we studied the
effects that galaxy shape and rotation can produce on the gas energy budget and
content by means of a twofold analysis, based both on theoretical energy estimates
and on hydrodynamical simulations. In order to perform a general and systematic
investigation able to explore the wide ranges of the involved driving parameters, we
built a large set of axisymmetric galaxy models, which are representative of observed
ETGs, and have variable degrees of flattening and rotational support of the stellar
component, and different DM density profiles.

For these models we computed the equivalent temperature of stellar motions
T∗ = Tσ + γthTrot, where the parameter γth takes into account how much of the
ordered rotation of the galaxy is eventually thermalised by the stellar mass losses,
and the temperature equivalent of the energy required for the gas escape T−g . In
particular, different degrees of thermalisation of the ordered rotational field of the
galaxy (γth) are considered. We find that T∗ and T−g can vary only mildly due to a
pure change of shape. Galaxy rotation instead, when not thermalised, can lead to a
large decrease of T∗, and this effect can be larger in flatter galaxies that can be more
rotationally supported. In light of these results, the observed trend of a lower TX in
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flatter and more rotating galaxies could be explained by the lack of thermalisation
of the whole stellar kinetic energy.

Then, as a natural extension of the theoretical analysis, in order to take into
account the hydrodynamical effects due to the temporal evolution of the mass, mo-
mentum and energy sources (e.g., stellar winds and SNIa explosions), and the ISM
radiative cooling, we performed high-resolution 2D hydrodynamical simulations, out-
come of a joint research collaboration (Negri et al. 2014b). The simulations have
been carried out for a large set of ETGs models, built with our Jeans solver code
that provides all the dynamical fields necessary for the hydrodynamical equations.
The models span the same wide parameter spaces previously explored, so that the
results obtained from the simulations are the exact numerical counterpart of the
theoretical analysis described above.

We find that, in general, the heating contribution from thermalization of the
ordered motions is negligible (i.e., γth � 1 and so T∗ ' Tσ) because the rotation
field of the ISM in rotating galaxies is very similar to that of the stars. This implies
that, in rotating galaxies, the heating provided to the gas by stellar motions is
lower than in dynamically hot systems. In general, the final X-ray temperature
TX are larger than the corresponding T∗ values, but the qualitative dependence
of TX on galaxy mass and shape is very well reproduced by that of T∗, and hence
Tσ, which can be computed without resorting to numerical simulations. The relative
importance of flattening and rotation in determining the final TX is a function of the
galactic mass. Flattening and rotation in low mass galaxies favour the establishment
of global winds: this almost depletes the galaxy of gas, leaving it with a small
amount of very hot gas, heated to high values of TX due to the thermalisation of the
established strong meridional motions. In medium-to-high mass galaxies, flattening
and rotation are not sufficient to induce global winds. In these cases, in accordance
with observations and the predictions of our theoretical analysis, rotating models
have lower TX values than velocity dispersion supported objects. However, the
difference in TX is only partially due to the lower T∗ of rotating models, since the
main agent is the conservation of angular momentum, which deeply affects the nature
of the gas flows in rotating models. This causes the creation of a hot gas atmosphere
that has both a shallower density profile and a lower total gas mass, that eventually
results in a reduction of TX. Thus, we conclude that the X-ray coolness and under-
luminosity of flat and rotating galaxies are major effects of galaxy rotation. However,
they cannot be definitively disentangled from galaxy flattening effects, since highly
rotating galaxies are generally quite flattened.

A future development of the present work, that could add precious information
to this scenario, would consist in the construction of galaxy models that are specif-
ically tailored to reproduce particular observed ETGs (e.g., NGC4649), for which
constraints are available in the optical and in the X-rays. This could allow to run
more targeted simulations.

The second addressed topic concerns the stellar IMF of ETGs. In this thesis we
studied the IMF mass normalization for 55 lens ETGs belonging to the SLACS
sample, by means of an analysis which combines three independent diagnostics
of mass: stellar dynamics, gravitational lensing, and stellar populations synthe-
sis models. In particular, we constructed two-component axisymmetric dynamical
models based on the Jeans equations, which allow for orbital anisotropy, and re-
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produce in detail the observed HST photometry. The galaxy models are further
constrained by the total projected mass within the Einstein radius and the stel-
lar velocity dispersion (σ) within the SDSS fibers. Assuming a DM halo slope
ρh ∝ r−1, we computed the best-fitting dynamically-derived stellar mass-to-light
ratios (M∗/L)dyn. We then built stellar population synthesis models via full spec-
trum fitting of SDSS spectra, and derived the best fitting stellar mass-to-light ratios
(M∗/L)Salp for an assumed Salpeter IMF. From the comparison of (M∗/L)dyn and
(M∗/L)Salp, derived in independent manners, we infer the mass normalization of
the IMF. Our results confirm the previous analysis by the SLACS team that the
mass normalization of the IMF of high σ galaxies is consistent on average with a
Salpeter slope. Most importantly, our study allows for a fully consistent and homo-
geneously carried out study of the trend between IMF and σ for both the SLACS and
ATLAS3Dsamples. The two samples explore quite different σ ranges, and are highly
complementary, the first being essentially σ selected, and the latter volume-limited
and nearly mass selected. We find that the two samples merge smoothly into a single
trend of the form logα = (0.38±0.04)× log(σe/200 km s−1)+(−0.06±0.01), where
α = (M∗/L)dyn/(M∗/L)Salp and σe is the luminosity averaged σ within one effective
radius Re. This is consistent with a systematic variation of the IMF normalization
from Kroupa to Salpeter in the interval σe ≈ 90− 270 km s−1.

Future improvements of this study would be possible adding further observational
constraints, like integral-field spectroscopic observations, which are already available
for 14 of the 55 galaxies here analysed. This could allow to add the DM halo density
slope as a free parameter in the dynamical modelling and constrain it, thus deriving
more general conclusions on the IMF mass normalization of these galaxies.





Appendix A

The Jeans equations

In this Appendix we introduce the phase space distribution function and we show the
derivation of the Jeans equations starting from the Collisionless Boltzmann equation.
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A.1 The phase-space distribution function

Consider a system made up of N stars. If N is a large number and if the system is
collisionless (i.e. we follow the system evolution to times smaller than the two-body
relaxation time t2b) we are allowed to describe it in a continuous way instead of a
discrete one, as the system intrinsically is.

So we can introduce the phase-space distribution function f(x,v, t) that de-
scribes at any time the dynamical state of the N-body system. Its domain is the
extended one-particle phase-space γ × <, i.e. the Cartesian product between the
one-particle phase-space γ = <3 ×<3 and the time interval.

The DF is a real-valued non-negative function defined by

f : γ ×< 7→ <+ ∪ 0∫
<3

f(x,v, t) d3v = n(x, t), (A.1)

where n(x, t) is the (continuous) number density distribution of the discrete N-body
system. Given this definition, it follows that the number of stars that, at time t,
have positions in the volume d3x centred on x and velocities included in the range
d3v centred on v is

dN = f(x,v, t) d3v d3x. (A.2)

Now it can be easily deduced that the total number of stars N of the system is the
integral of dN over the whole phase-space γ

N =

∫
<3

n(x, t) d3x =

∫
γ

f(x,v, t) d3v d3x. (A.3)

Thus f is also called phase-space density and it gives, at any time t, a full description
of the state of any collisionless system specifying the number of stars in each point
of the phase-space. Therefore the DF is somehow related to a continuous probability
density function; more precisely the quantity f(x,v, t) d3v d3x represents the prob-
ability of finding any star, at time t, in the volume d3v d3x around the phase-space
point (x,v).

The DF of a collisionless system satisfies the Collisionless Boltzmann equation
(CBE) that can be written as

∂f

∂t
+ v · ∂f

∂x
− ∂ΦT

∂x
· ∂f
∂v

= 0, (A.4)

where ΦT is the total gravitational potential of the system, comprehensive of the
stellar system self-gravity and of its interaction with a possible DM halo. The CBE
describes the evolution of the DF in the collisionless regime.

From the DF we can derive macroscopic functions that describe the continuous
system and are related to observable quantities: they are f -weighted means over the
velocity space of the corresponding microscopic functions. From a physical point
of view, the most interesting macroscopic functions are the first and second-order
velocity moments and they are defined as

vi(x, t) ≡
1

n(x, t)

∫
<3

vif d3v, (A.5)
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vivj(x, t) ≡
1

n(x, t)

∫
<3

vivjf d3v, (A.6)

σ2
ij(x, t) ≡

1

n(x, t)

∫
<3

(vi − vi)(vj − vj)f d3v, (A.7)

for i, j = 1, 2, 3 denoting two generic coordinates in the configuration space. The line
over the expressions means that we are calculating a mean weighted with the phase-
space distribution function. The first function is the i-component of the mean stellar
velocity and it is called streaming velocity; the third function is the ij-component
of the symmetric velocity dispersion tensor and represents the random velocities of
stars about their mean velocity.

From the three definitions above we have that

σ2
ii = (vi − vi)2, (A.8)

and it’s easy to prove that
σ2
ij = vivj − vivj . (A.9)

Due to its symmetry, it is possible to choose an orthogonal matrix in which the
tensor σ2 is diagonal and, in this way, we obtain the velocity ellipsoid, i.e. an
ellipsoid whose semi-axes are directed along the basis vectors and have lengths σ2

ii,
for i = 1, 2, 3. Due to the spectral theorem, since σ2(x, t) is symmetric, it can be
diagonalised through an orthogonal matrix A(x, t) that changes the reference system
in which the tensor is described.

Thus, in this new reference system σ2(x, t) is diagonal and, due to equation (A.8),
its three eigenvalues are positive so that they can be geometrically interpreted as
the semi-axis lengths of an ellipsoid, the velocity dispersion ellipsoid that is defined
in each point of the stellar system. In particular, inside the stellar system, the
velocity dispersion ellipsoid will in principle have a different diagonalising matrix A
and different semi-axis lengths from place to place and in time.

If the velocity dispersion ellipsoid is everywhere a sphere (i.e. ∀x the three
eigenvalues coincide) the velocity dispersion tensor is said to be isotropic and we
can write it as

σ2
ij(x, t) = σ2(x, t)δij , (A.10)

else it is called anisotropic.

A.2 The Jeans equations

In order to derive the Jeans equations here we follow the same procedure as in Binney
& Tremaine (2008). Eq. (A.4) can be integrated in the velocity space obtaining∫

∂f

∂t
d3v +

∫
vi
∂f

∂xi
d3v − ∂ΦT

∂xi

∫
∂f

∂vi
d3v = 0, (A.11)

where we have used the Einstein summation convention. Since the velocity range of
the integration domain does not depend on time, the temporal derivative in the first
term can be taken out of the integral. The same holds for the spatial derivative in
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the second term because vi is independent of xi. Moreover, applying the divergence
theorem on the third term makes it vanish, given that f(x,v, t) = 0 for sufficiently
large |v|, i.e., there are no stars that move infinitely fast. Thus, using Eqs. (A.1)
and (A.5) we have that

∂n

∂t
+
∂(nvi)

∂xi
= 0, (A.12)

that is the equation of continuity for n. We now multiply eq. (A.4) by vj and
integrate over all velocities, obtaining

∂

∂t

∫
fvj d3v +

∫
vivj

∂f

∂xi
d3v − ∂ΦT

∂xi

∫
vj
∂f

∂vi
d3v = 0. (A.13)

Assuming again that f vanishes for large |v|, and applying the divergence theorem
to the third term, this becomes∫

vj
∂f

∂vi
d3v = −

∫
f
∂vj
∂vi

d3v = −
∫
δijf d3v = −δijn. (A.14)

Thus Eq. (A.13) may be rewritten

∂(nvj)

∂t
+
∂(nvivj)

∂xi
+ n

∂ΦT

∂xj
= 0. (A.15)

Subtracting Eq. (A.12) multiplied by vj from the above equation transforms it in

n
∂vj
∂t
− vj

∂(nvi)

∂xi
+
∂(nvivj)

∂xi
= −n∂ΦT

∂xj
. (A.16)

Then, substituting Eq. (A.9) in the third term, we have

n
∂vj
∂t

+ nvi
∂vj
∂xi

= −n∂ΦT

∂xj
−
∂(nσ2

ij)

∂xi
, (A.17)

that is an analog of Euler’s equation for fluids, where in place of the mass density
there is the number density, and the fluid velocity is replaced by the mean stellar
velocity. The second term on the right hand side of Eq. (A.17) is similar to the
pressure force but, more exactly, it is a stress tensor that describes an anisotropic
pressure. Since Eqs. (A.12) and (A.17) were first applied to stellar dynamics by
Jeans (1919), we call them the Jeans equations, even if they were originally derived
by Maxwell (but he already has a set of equations named after him).

The Jeans equations are very useful since they provide us a theoretical tool to
interpret directly observable quantities, such as the streaming velocity and velocity
dispersion, relating them to other interesting but directly inaccessible quantities,
like the potential and the density field of a given galaxy. However, they are four
equations in nine unknowns so they constitute an infinite set of equations, that can
be closed by making some more or less arbitrary assumptions.

For example, if we consider a spherical and time-independent system with a
DF of the form f = f(H,L), where H is the Hamiltonian and L is the angular
momentum vector, the Jeans equations are simplified and become

d(nσ2
r )

dr
+ n

(
2σ2

r − σ2
θ − σ2

ϕ

r

)
= −ndΦT

dr
, (A.18)
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where (r, θ, ϕ) are the spherical coordinates.
Another example is given for an axisymmetric system in a steady state with a

DF of the form f = f(H,Lz), where Lz is the vertical component of the angular
momentum and (R, z, ϕ) are the cylindrical coordinates. In this case we have that
σz = σR ≡ σ, and the Jeans equations are

∂(nσ2)

∂z
= −n∂ΦT

∂z
(A.19)

and
∂(nσ2)

∂R
− n

v2
ϕ − σ2

R
= −n∂ΦT

∂R
. (A.20)





Appendix B

The equations of fluid dynamics

Here we report the fluid equations in the presence of source terms, necessary to
understand the relation between the stellar dynamical configuration of a galaxy and
the energy provided to its ISM by its evolving stellar population. The stellar velocity
fields are indeed a major ingredient of the energy budget of the hot X-ray haloes of
ETGs, thoroughly studied in Chapter 4.
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B.1 The fluid equations in the presence of source terms

The equations of fluid dynamics in the presence of different sources of mass, momen-
tum and energy, under the simplifying assumption of isotropy of the mass losses,
can be written in Lagrangian formalism (D’Ercole et al. 2000; Posacki 2011) as

Dρ

Dt
+ ρ(∇ · u) = ρ̇, (B.1)

ρ
Du

Dt
= −∇p− ρ∇Φtot + ρ̇(v − u), (B.2)

DE

Dt
+ (E + p)∇ · u =

∑
i

ρ̇i

[
ei +

u2
s, i

2

]
+
ρ̇

2

[
‖u− v‖2 + Tr(σ2)

]
−L , (B.3)

where ρ, u, E, p are respectively the ISM mass density, velocity, internal energy
density and pressure. Φtot is the total gravitational potential (comprehensive of
all possible mass components, e.g., gas, stars, DM, black hole). ρ̇(x, t) =

∑
i ρ̇i

is the total mass return per unit time and volume, due to different sources (e.g.,
stellar winds and SNIa events) associated with the stellar population with streaming
velocity v(x, t) and velocity dispersion tensor σ2(x, t). ei(x, t) is the internal energy
return per unit mass and time of the i-th source field, and us, i(x, t) is the modulus
of the relative velocity of the material injected by the i-th source field with respect
to the source star. Finally, L are the bolometric radiative losses per unit time and
volume.

For example, in applications as the one in Chapter 4, ρ̇ is represented by the sum
of stellar winds and SNIa explosions ejecta, so that ρ̇ ≡ ρ̇∗ + ρ̇SN. In Chapter 4 the
σ2(x, t) and v(x, t) velocity fields are computed for realistic ETGs galaxy models
by means of the Jeans solver code described in Chapter 2. As often done in similar
works, in Chapter 4 we neglect e∗ and us,∗, being them significantly smaller than the
contribution of Tr(σ2). In general, the opposite holds instead for SNIa events, where
ρ̇SNTr(σ2) is negligible with respect to the energy injection due to the SNIa explo-
sions. However, in Chapter 4, we take into account also the contribution ρ̇SNTr(σ2)
and we adopt a velocity of the SNIa ejecta us ' 8.5× 103 km s−1, corresponding to
1051 erg associated with an ejecta of 1.4 M�.



Appendix C

The Multi-Gaussian Expansion
models

In this Appendix we briefly introduce the Multi-Gaussian Expansion technique, that
has been applied to I -band HST images of the SLACS galaxies to fit their surface
brightness distributions and model their stellar components (see Chapter 5). We
then present the images and the structural parameters of the axisymmetric MGE
models we built.
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C.1 The MGE method

The MGE method (Emsellem et al. 1994) consists of a series expansion of galaxy
images using two-dimensional Gaussian functions. The use of Gaussians has im-
portant advantages since, for example, both convolutions and de-projections can be
performed analytically in a simple and efficient way. This allows, e.g., to take seeing
or PSF effects into account, and to derive the intrinsic stellar luminosity density
from the observed galaxy photometry for a given choice of the inclination angle.
Furthermore, expressing the density in MGE form allows many other dynamical
and photometric quantities to be evaluated easily and accurately (Emsellem et al.
1994). For example, the MGE potential can be computed with a single integration,
as opposed to the two that are required when the intrinsic density is stratified on
similar triaxial ellipsoids, and three in the general case. In the case of axisymmetric
MGE dynamical models based on a two-integral phase space distribution function,
the velocity moments predicted from the Jeans equations, already projected onto
the sky, can be expressed with only a double integration. The even part of the dis-
tribution function can also be easily retrieved from an MGE density distribution via
the Hunter & Qian (1993) formalism (Cappellari 2002). Finally, the possibility to
add as many gaussians as needed without adding complexity gives a high versatility
to the MGE parametrization, making it one of the few simple parametrizations that
are general enough to reproduce the surface brightness of realistic multi-component
objects (e.g., spirals with multiple disks).

The MGE parametrization has been used for the modelling of a number of galax-
ies (Emsellem et al. 1994; Emsellem 1995; Emsellem et al. 1996, 1999; van den Bosch
et al. 1998; van den Bosch & Emsellem 1998; Cretton & van den Bosch 1999), and,
in particular, it has been extensively used for the modelling of the ATLAS3D sample
of ETGs (Cappellari et al. 2013b). For a detailed description of the MGE formal-
ism, and of the fitting algorithm of the mge_fit_sectors software package used
in Chapter 5, we cross-refer to Cappellari (2002) and references therein.

C.2 The MGE models

Figure C.1 shows in black the contour maps of the WFC/F814W (I -band) images of
the SLACS sample over a region extending out to ∼ 6Re, where Re is the half-light
radius in the V -band. The red contours superimposed to the image are the MGE
surface brightness fits, convolved with the proper PSF. For each galaxy, the param-
eters of the best-fitting MGE parametrizations of the projected light are presented
in Table C.1.
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J0029− 0055 J0037− 0942

J0044 + 0113 J0216− 0813

J0252 + 0039 J0330− 0020

1

Figure C.1: Contour maps of the WFC/F814W (I -band) images for the 55 SLACS
galaxies (black). The contours of the MGE surface brightness, convolved with the
proper PSF, are superimposed in red.
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J0728 + 3835 J0737 + 3216

J0822 + 2652 J0841 + 3824

J0912 + 0029 J0935− 0003

1

Figure C.1: – continued
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J0936 + 0913 J0946 + 1006

J0955 + 0101 J0956 + 5100

J0959 + 4416 J0959 + 0410

1

Figure C.1: – continued
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J1020 + 1122 J1023 + 4230

J1029 + 0420 J1032 + 5322

J1103 + 5322 J1106 + 5228

1

Figure C.1: – continued
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J1112 + 0826 J1134 + 6027

J1142 + 1001 J1143− 0144

J1153 + 4612 J1204 + 0358

1

Figure C.1: – continued
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J1205 + 4910 J1213 + 6708

J1218 + 0830 J1250 + 0523

J1402 + 6321 J1403 + 0006

1

Figure C.1: – continued
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J1416 + 5136 J1420 + 6019

J1430 + 4105 J1432 + 6317

J1436− 0000 J1443 + 0304

1

Figure C.1: – continued
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J1451− 0239 J1525 + 3327

J1531− 0105 J1538 + 5817

J1621 + 3931 J1627− 0053

1

Figure C.1: – continued
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J1630 + 4520 J1636 + 4707

J2238− 0754 J2300 + 0022

J2303 + 1422 J2321− 0939

1

Figure C.1: – continued
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J2341 + 0000

1

Figure C.1: – continued
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Table C.1: MGE parameters for the de-convolved r-band surface brightness.
log Ii log σi qi log Ii log σi qi log Ii log σi qi

[L� r pc−2] [arcsec] [L� r pc−2] [arcsec] [L� r pc−2] [arcsec]

J0029–0055 J0037–0942 J0044+0113

3.895 –1.532 0.922 3.124 –1.323 0.891 3.552 –1.264 0.693
3.700 –1.050 0.941 3.442 –0.924 0.693 3.735 –0.786 0.567
3.372 –0.684 0.903 3.494 –0.773 0.693 3.507 –0.565 0.820
2.714 –0.183 0.792 3.355 –0.496 0.693 2.549 –0.209 0.554
1.902 –0.076 0.941 3.068 –0.212 0.693 2.871 –0.113 0.842
2.081 0.174 0.792 2.225 0.127 0.891 2.422 0.193 0.842
1.677 0.570 0.838 2.356 0.152 0.693 1.521 0.304 0.297

1.833 0.593 0.891 1.018 0.658 0.297
1.820 0.658 0.758

J0216–0813 J0252+0039 J0330–0020

3.392 –1.532 0.842 4.005 –1.532 0.941 4.247 –1.532 0.787
3.536 –1.006 0.842 3.462 –1.078 0.941 3.215 –1.094 0.745
3.454 –0.762 0.842 3.240 –0.724 0.941 3.670 –0.925 0.829
3.183 –0.450 0.794 2.199 –0.143 0.652 3.028 –0.601 0.842
2.718 –0.126 0.792 2.684 –0.136 0.941 2.679 –0.406 0.743
2.377 0.171 0.792 1.834 0.212 0.941 2.529 –0.111 0.743
1.935 0.531 0.842 1.976 –0.055 0.842

1.949 0.300 0.835

J0728+3835 J0737+3216 J0822+2652

4.156 –1.532 0.845 3.631 –1.532 0.941 3.935 –1.532 0.792
3.811 –1.069 0.852 3.778 –1.119 0.982 3.676 –1.074 0.792
3.583 –0.790 0.838 3.474 –0.700 0.900 3.536 –0.796 0.792
3.125 –0.521 0.941 2.880 –0.188 0.990 3.173 –0.470 0.743
2.670 –0.303 0.512 2.317 0.142 0.842 2.713 –0.118 0.792
2.698 –0.044 0.746 1.815 0.552 0.842 2.186 0.177 0.759
2.089 0.183 0.792 1.791 0.528 0.743
1.484 0.541 0.495
1.568 0.541 0.804

J0841+3824 J0912+0029 J0935–0003

4.318 –1.532 0.760 3.349 –1.433 0.801 3.459 –1.162 0.862
3.810 –0.996 0.990 3.464 –0.917 0.870 3.499 –0.848 0.822
3.056 –0.551 0.531 3.097 –0.629 0.732 3.276 –0.570 0.823
3.296 –0.423 0.792 3.172 –0.410 0.727 2.819 –0.247 0.862
2.878 –0.142 0.848 2.520 –0.092 0.565 2.371 0.058 0.862
2.202 0.278 0.446 2.680 0.029 0.597 2.129 0.532 0.862
2.249 0.493 0.446 2.329 0.047 0.941
1.598 0.937 0.798 2.120 0.392 0.841

2.053 0.427 0.443
1.584 0.826 0.657

J0936+0913 J0946+1006 J0955+0101

4.075 –1.532 0.822 3.338 –1.532 0.990 4.135 –1.532 0.720
3.780 –1.019 0.818 3.374 –0.940 0.990 3.634 –1.064 0.599
3.437 –0.800 0.826 3.250 –0.568 0.990 3.286 –0.772 0.842
3.233 –0.506 0.828 2.587 –0.023 0.990 2.841 –0.520 0.842
2.574 –0.270 0.842 1.475 0.287 0.743 2.878 –0.036 0.248
2.467 –0.060 0.792 1.642 0.585 0.743 2.459 0.116 0.411
2.342 0.198 0.817 1.324 0.396 0.842
1.706 0.584 0.833 1.630 0.396 0.442
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Table C.1: – continued
log Ii log σi qi log Ii log σi qi log Ii log σi qi

[L� r pc−2] [arcsec] [L� r pc−2] [arcsec] [L� r pc−2] [arcsec]

J0956+5100 J0959+4416 J0959+0410

3.818 –1.532 0.743 3.272 –1.253 0.941 4.098 –1.532 0.801
3.827 –1.025 0.743 3.593 –1.018 0.941 3.523 –1.123 0.857
3.496 –0.751 0.743 3.429 –0.748 0.877 3.466 –0.866 0.746
3.236 –0.504 0.743 3.079 –0.492 0.892 3.062 –0.525 0.847
2.679 –0.024 0.743 2.726 –0.185 0.941 2.582 –0.025 0.891
2.353 0.040 0.941 1.756 0.178 0.492 2.273 0.142 0.383
1.760 0.268 0.743 2.136 0.184 0.879 1.852 0.299 0.714
1.791 0.579 0.743 1.676 0.507 0.865

J1020+1122 J1023+4230 J1029+0420

3.731 –1.413 0.792 4.322 –1.532 0.866 4.279 –1.532 0.736
3.811 –0.967 0.792 3.781 –1.026 0.891 3.788 –0.998 0.758
3.444 –0.656 0.792 3.230 –0.754 0.842 3.493 –0.715 0.714
2.989 –0.374 0.792 3.149 –0.517 0.842 3.125 –0.454 0.821
2.656 –0.033 0.803 2.668 –0.179 0.842 2.962 –0.195 0.396
1.930 0.348 0.990 2.446 0.074 0.891 2.065 0.075 0.891

1.766 0.490 0.883 2.622 0.094 0.396
2.198 0.299 0.504
1.411 0.517 0.513
1.502 0.517 0.891

J1032+5322 J1103+5322 J1106+5228

4.256 –1.532 0.827 3.779 –1.532 0.744 4.608 –1.532 0.644
3.805 –0.991 0.842 3.501 –1.012 0.812 3.928 –0.975 0.743
3.450 –0.660 0.812 3.369 –0.622 0.677 3.734 –0.961 0.545
2.745 –0.298 0.813 3.057 –0.083 0.347 3.710 –0.741 0.743
2.789 –0.038 0.297 2.228 0.020 0.842 2.948 –0.580 0.545
2.327 0.188 0.348 2.441 0.234 0.347 3.459 –0.482 0.743
1.288 0.390 0.842 1.918 0.312 0.574 2.785 –0.240 0.545
1.577 0.390 0.297 1.369 0.555 0.447 2.941 –0.020 0.626

1.314 0.555 0.842 1.996 0.279 0.743
2.211 0.350 0.545
1.787 0.678 0.723

J1112+0826 J1134+6027 J1142+1001

3.734 –1.240 0.792 4.047 –1.532 0.743 3.710 –1.532 0.990
3.535 –0.763 0.743 3.784 –0.920 0.743 3.692 –1.059 0.990
3.070 –0.630 0.743 3.346 –0.597 0.743 3.403 –0.771 0.990
3.099 –0.368 0.743 3.045 –0.348 0.820 2.928 –0.495 0.990
2.689 –0.072 0.755 2.387 0.012 0.743 2.690 –0.221 0.990
2.142 0.325 0.792 2.218 0.226 0.879 2.105 0.176 0.771

1.522 0.674 0.891 1.812 0.527 0.743

J1143–0144 J1153+4612 J1204+0358

3.350 –0.792 0.832 4.166 –1.532 0.842 4.089 –1.532 0.891
3.507 –0.515 0.743 3.857 –1.027 0.842 3.766 –0.950 0.891
3.213 –0.228 0.743 3.353 –0.742 0.842 3.275 –0.614 0.891
2.732 0.156 0.753 2.869 –0.527 0.842 2.778 –0.347 0.936
2.095 0.436 0.891 2.637 –0.381 0.990 2.533 –0.038 0.990
1.507 0.919 0.813 2.588 –0.112 0.990 1.992 0.345 0.990

1.852 0.391 0.842
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Table C.1: – continued
log Ii log σi qi log Ii log σi qi log Ii log σi qi

[L� r pc−2] [arcsec] [L� r pc−2] [arcsec] [L� r pc−2] [arcsec]

J1205+4910 J1213+6708 J1218+0830

3.819 –1.532 0.842 4.345 –1.532 0.857 3.347 –1.532 0.792
3.386 –1.139 0.842 4.110 –1.052 0.822 3.260 –1.031 0.792
3.678 –0.921 0.842 3.635 –0.729 0.891 3.383 –0.805 0.792
3.134 –0.628 0.842 3.170 –0.424 0.880 3.267 –0.542 0.693
2.923 –0.433 0.693 2.744 –0.007 0.779 3.024 –0.317 0.728
2.732 –0.157 0.842 2.147 0.301 0.799 2.668 –0.075 0.693
2.371 0.195 0.693 1.702 0.417 0.693 2.453 0.175 0.792
1.732 0.589 0.693 1.647 0.805 0.693 1.807 0.475 0.720
0.827 0.589 0.842 1.530 0.801 0.707

J1250+0523 J1402+6321 J1403+0006

4.417 –1.532 0.990 3.875 –1.532 0.792 4.177 –1.532 0.891
3.871 –0.994 0.990 3.316 –1.058 0.842 3.638 –1.054 0.891
3.400 –0.591 0.990 3.537 –0.858 0.743 3.283 –0.680 0.891
2.818 –0.157 0.990 3.267 –0.603 0.743 1.979 –0.250 0.693
2.416 0.154 0.990 3.013 –0.368 0.743 2.899 –0.197 0.891
1.675 0.503 0.772 2.707 –0.059 0.796 2.197 0.174 0.709

2.193 0.263 0.766 1.790 0.384 0.693
1.751 0.619 0.842

J1416+5136 J1420+6019 J1430+4105

3.661 –1.531 0.973 4.194 –1.532 0.743 3.902 –1.532 0.936
3.656 –1.039 0.990 3.936 –0.983 0.743 3.709 –0.998 0.941
3.296 –0.732 0.956 3.486 –0.671 0.743 3.404 –0.595 0.932
3.111 –0.352 0.794 3.384 –0.501 0.396 2.820 0.071 0.941
2.389 0.070 0.743 3.471 –0.219 0.396 1.707 0.652 0.594
1.664 0.427 0.743 3.024 –0.050 0.743
1.090 0.427 0.990 2.435 0.172 0.396

2.176 0.299 0.743
2.031 0.452 0.436
1.851 0.683 0.716

J1432+6317 J1436–0000 J1443+0304

3.914 –1.532 0.976 3.317 –1.532 0.792 4.369 –1.532 0.792
3.634 –0.994 0.974 3.227 –1.094 0.812 3.773 –1.045 0.990
3.350 –0.678 0.978 3.502 –0.783 0.772 3.462 –1.037 0.594
2.912 –0.358 0.907 3.125 –0.446 0.772 3.298 –0.774 0.594
2.732 –0.003 0.953 2.136 –0.054 0.772 3.194 –0.556 0.638
2.182 0.503 0.990 2.434 –0.028 0.812 2.738 –0.299 0.594
0.158 0.811 0.396 1.991 0.458 0.772 2.064 –0.039 0.990
1.435 0.811 0.990 2.453 –0.022 0.594

1.748 0.449 0.594
1.009 0.449 0.990

J1451–0239 J1525+3327 J1531–0105

4.236 –1.532 0.952 3.969 –1.532 0.770 3.782 –1.532 0.718
3.756 –1.024 0.984 3.635 –1.030 0.792 3.753 –0.949 0.743
3.378 –0.645 0.921 3.279 –0.703 0.747 3.444 –0.699 0.693
2.936 –0.349 0.951 2.854 –0.469 0.594 3.216 –0.480 0.693
2.613 –0.074 0.990 2.801 –0.186 0.594 2.997 –0.280 0.693
1.716 0.186 0.297 2.559 0.130 0.671 2.605 –0.033 0.693
2.202 0.213 0.990 1.944 0.574 0.606 2.473 0.201 0.743
1.690 0.621 0.990 1.836 0.709 0.693
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Table C.1: – continued
log Ii log σi qi log Ii log σi qi log Ii log σi qi

[L� r pc−2] [arcsec] [L� r pc−2] [arcsec] [L� r pc−2] [arcsec]

J1538+5817 J1621+3931 J1627–0053

4.324 –1.532 0.862 3.815 –1.443 0.767 3.864 –1.532 0.817
3.785 –0.991 0.862 3.546 –1.101 0.792 3.417 –1.144 0.792
3.393 –0.620 0.862 3.537 –0.910 0.743 3.627 –0.937 0.843
2.765 –0.212 0.822 3.339 –0.591 0.743 3.381 –0.572 0.827
2.432 0.070 0.852 2.884 –0.364 0.743 2.724 –0.085 0.792
1.751 0.475 0.853 2.712 0.003 0.792 2.172 0.125 0.941

1.993 0.519 0.755 1.730 0.517 0.926

J1630+4520 J1636+4707 J2238–0754

3.925 –1.532 0.831 3.922 –1.532 0.896 3.998 –1.532 0.733
3.796 –1.044 0.832 3.595 –0.991 0.941 3.668 –0.925 0.823
3.443 –0.648 0.831 3.334 –0.680 0.852 2.853 –0.668 0.644
2.917 –0.309 0.842 2.954 –0.422 0.941 3.234 –0.524 0.891
2.185 –0.164 0.684 2.365 –0.274 0.743 2.431 –0.279 0.644
2.441 0.019 0.842 2.358 –0.129 0.941 2.713 –0.072 0.891
2.104 0.152 0.842 2.280 0.030 0.743 2.145 0.257 0.644
1.865 0.478 0.842 1.965 0.447 0.743 1.797 0.627 0.644

J2300+0022 J2303+1422 J2321–0939

2.876 –1.364 0.773 3.356 –1.202 0.743 3.920 –1.532 0.842
3.405 –0.982 0.843 3.555 –0.816 0.743 3.682 –0.950 0.842
3.280 –0.710 0.703 3.276 –0.440 0.698 3.656 –0.632 0.842
3.227 –0.513 0.833 2.804 –0.023 0.685 3.199 –0.289 0.743
2.342 –0.218 0.702 2.328 0.309 0.644 2.920 0.030 0.800
2.456 –0.067 0.990 1.774 0.693 0.646 1.896 0.254 0.743
2.036 0.031 0.693 2.434 0.422 0.805
1.567 0.424 0.990 1.724 0.846 0.776
1.692 0.424 0.693

J2341+0000

3.973 –1.523 0.754
3.427 –0.766 0.716
3.365 –0.652 0.792
2.432 –0.128 0.495
2.458 0.036 0.792
2.311 0.325 0.495
1.548 0.369 0.792
1.525 0.697 0.792

Notes: Column 1: Logarithm of the Gaussian amplitude. Column 2: Logarithm of the Gaussian width.
Column 3: Axial ratio of the Gaussian.
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