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Abstract

Redshift Space Distortions (RSD) are an apparent anisotropy in the distribution of galaxies

due to their peculiar motion at large scales. The peculiar velocities add to the Hubble flow

and make these objects to appear squashed along the line of sight, leading to an increase of

the clustering signal. On smaller scales, the non-linear motion of galaxies leads to what is

called Fingers Of God, an elongation of the galaxy distribution which point to the observer.

These features are clearly imprinted in the correlation function of galaxies, a function

which describes how these structures distribute around each other. RSD can be represented

by a distortions parameter β, which is strictly related to the growth of cosmic structures. For

this reason, measurements of RSD can be exploited to give constraints on the cosmological

parameters, such us for example the neutrino mass.

Neutrinos are electrically neutral subatomic particles created by radioactive dacay or

nuclear reaction such those that take palace in the Sun or when cosmic rays hit atoms. Ac-

cording to the standard model of particles, neutrinos are massless particles. There are three

neutrino flavours, the electron, the muon and the tau neutrino, that only interact through

the weak force, that is why they are so hard to detect. However, as theorised by Bruno

Pontecorvo in 1957, neutrinos have been proven to undergo the mechanism of oscillations

between flavour states. The discover has been made for the first time in late 1990’s by the

Super-Kamiokande experiment and implies that neutrino cannot be massless.

Neutrino oscillation experiments are sensitive the mass differences between the three

eigenstates, but due to the very small cross-section of these particles, they can not measure

directly their mass. Cosmology can assist the particle physics in the quest for neutrino

masses. Indeed neutrinos leave a characteristic imprint on the large scale structure of the

universe and different cosmological probes can be exploited to measure this parameter.

One of the most powerful tool to estimate neutrino mass is represented by RSD. Indeed,

neutrino mass affects the growth of structure by reducing the matter power spectrum ampli-
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ABSTRACT

tude below the free-streaming scale, introducing a scale dependence in the growth rate of

density perturbations, a modification that reflects on the distortion parameters.

The aim of this thesis is to provide constraints on the accuracy with which neutrino mass

can be estimated when expoiting measurements of RSD. In particular we want to describe

how the error on the neutrino mass estimate depends on three fundamental parameters of a

galaxy redshift survey: the density of the catalogue, the bias of the sample considered and

the volume observed.

In doing this we make use of the BASICC Simulation, a simulation specifically designed

to study the clustering properties of the universe. From this simulation we extract a series

of dark matter halo catalogues, characterized by different value of bias, density and volume,

and measure for each of them the correlation function. This mock data are analysed via a

Markov Chain Monte Carlo procedure, in order to estimate the neutrino mass fraction, using

the software package CosmoMC, which has been conveniently modified. Once we analysed

all the catalogues, we are able to extract a fitting formula describing our measurements,

which can be used to forecast the precision reachable in future surveys like Euclid, using

this kind of observations.

The thesis is structured as follows:

• In Chapter 1 we review the basic concepts of the standard cosmological model, fo-

cusing out attention in particular on the growth of cosmic structures and the statistical

tools used to describe their distribution in the universe.

• In Chapter 2 an overview of the RSD is presented. We show in detail the features

imprinted by this effect in the correlation function of galaxies, describing how they

can be modelled. We also show the link between theory and observations, reviewing

some results from the recent literature.

• In Chapter 3 we describe the BASICC Simulation from which we extract the mock

data, explaining how the correlation function is measured. Then we briefly present

some technicalities related to the Markov Chain Monte Carlo likelihood analysis.

• In Chapter 4 we present the results on parameter estimation, with a detailed descrip-

tion of the methodology used. We also discuss all the issues related to the covariance

matrix, which is used to assess the errors on the correlation function.
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• In Chapter 5 we investigate how an incorrect use of the covariance matrix can affect

parameter estimation, showing that the use of the full matrix can lead sometimes

to the underestimation of the error, and that the smoothing procedure is not able to

correct this issue.

• In Chapter 6 we show the measurements on neutrino mass fraction and present a new

fitting function that describes the error dependence on bias, density and volume

In the Conclusion we finally summarize the results and discuss the open issues.
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Chapter 1

The standard cosmological model

The accepted model that describes the Universe is the so called Hot Big Bang model, ac-

cording to which the universe started to expand from an initial singularity, called indeed

Big Bang, which implies infinite density and temperature. That’s why this model has been

called Hot. The existence of the cosmic microwave background radiation (CMB) with a

black body spectrum, produced by freely moving photons after the decoupling between

matter and radiation, which happened at redshift z ' 103, represents one of the most rele-

vant evidences favouring the Hot Big Bang model.

This model is based on the cosmological principle, which states that, at least on large

scale, the universe is homogeneous and isotropic, as confirmed by observations of CMB,

whose photons coming from all the directions in the sky have the same temperature. On

smaller scales instead we observe stars, galaxies and clusters, and this means that small

deviations from homogeneity were present at early epochs and that they have grown through

cosmic time under the effect of gravitational instability, giving rise to the structures we

observe today.

Today the energy density of the universe is made up for ∼ 70% by dark energy, for

∼ 25% by dark matter and for ∼ 5% by baryons, while radiation is almost negligible

[57]. Dark energy and dark matter have never been observed directly. The presence of

dark matter has been hypotesized at first to account for discrepancies between the mass

of galaxies inferred from their gravitational effects and the mass of the luminous matter.

Subsequently, many other observations have indicated the presence of dark matter in the

universe, including gravitational lensing of background objects by galaxy clusters. The

reasons which have led to the assumption of dark energy are the evidence of a spatially

flat universe as derived from CMB anisotropy spectrum and the evidence of an accelerated
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1.1. EINSTEIN EQUATIONS AND THE FRIEDMANN-ROBERTSON-WALKER
METRIC

expansion of the universe, started in the recent past, as is evident from Type Ia Supernovae

observations [56, 61, 62].

1.1 Einstein equations and the Friedmann-Robertson-Walker met-
ric

The dynamics of the universe is described by the Einstein equations, which are in general

complicated non-linear equations. However, they exhibit simple analytical solutions under

the assumptions of homogeneity and isotropy.

Einstein equations take the form (hereafter we assume for simplicity c = 1):

Gµν = 8πGTµν , (1.1)

where

Gµν ≡ Rµν −
1

2
gµνR (1.2)

is the Einstein tensor, and Rµν is the Ricci tensor, which describes the curvature of the

space-time geometry and depends on the metric δµν and its derivatives, and R = gµνR
µν is

the Ricci scalar. Tµν is the energy-momentum tensor, which represents the source term of

the Einstein equations and takes the form

Tµν = (ρ+ P )uµuν + Pgµν , (1.3)

where ρ and P are the energy density and the pressure of the fluid, respectively, and

uµ is the fluid four-velocity. If we consider an ideal perfect fluid, Tµν takes the form

T ν
µ = Diag(−ρ, P, P, P ). The equation (1.1) tells us that the distribution of matter in

the Universe, represented by the energy tensor Tµν , is strictly related to the space-time

geometry, described by the Einstein tensor Gµν .

The Friedmann-Robertson-Walker (FRW) metric describes a 4-dimensional homoge-

neous and isotropic spacetime and is given by

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.4)

where a(t) is a scale factor (depending on cosmic time t) and K is the curvature, so that

K = +1,−1, 0 correspond to closed, open and flat geometries. Under the assumptions of

homogeneity and isotropy, which are valid at least on large scales, and in the presence of
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CHAPTER 1. THE STANDARD COSMOLOGICAL MODEL

a perfect fluid, the Einstein equations (1.1) reduce to two independent equations, known as

Friedmann equations, which fully describe the evolution of the scale factor a(t):

H2 ≡
(
ȧ

a

)2

=
8πGρ

3
− K

a2
(1.5)

Ḣ = −4πG(ρ+ P ) +
K

a2
, (1.6)

where ρ and P denote the total energy density and pressure of all the species present in the

universe at a given epoch. H is the Hubble parameter which describes the expansion rate of

the universe. Its value at present epoch, H0, is called the Hubble constant. It is commonly

expressed as

H0 = 100h km/sMpc−1 (1.7)

and it is constrained to be H0 = 67.3± 1.2 km/s Mpc−1 according to latest Planck results

[57].

Combining equations (1.5) and (1.6) we obtain

ä

a
= −4πG

3
(ρ+ 3P ) . (1.8)

Hence, for a perfect ordinary fluid, for which ρ+3P ≥ 0, the model described by Friedmann

equations presents ä < 0 and therefore describes a universe in decelerated expansion. An

accelerated expansion occurs for ρ + 3P < 0. In any case the Friedmann equations imply

ä 6= 0 which means that the universe is expanding or contracting, but cannot be static.

If we define the critical density ρcr(t) ≡ 3H2(t)
8πG as the density needed to obtain a spa-

tially flat geometry, then the equation (1.5) can be rewritten in the form:∑
i

Ωi(t)− 1 =
K

(aH)2
, (1.9)

where Ωi(t) ≡ ρi(t)/ρcr(t) is the dimensionless density parameter for each component of

the universe. This equation stresses again the fact that the total energy distribution deter-

mines the spatial geometry, as stated by Einstein when he formulated the theory of General

Relativity. In particular we can distinguish three cases:∑
i

Ωi > 1 or
∑
i

ρi > ρc → K = +1 closed , (1.10)∑
i

Ωi = 1 or
∑
i

ρi = ρc → K = 0 flat , (1.11)∑
i

Ωi < 1 or
∑
i

ρi < ρc → K = −1 open . (1.12)
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1.2. DARK ENERGY

These three different models, following back in time the evolution of the scale factor,

predict an initial singularity in which a(0) = 0, the Big Bang. For relativistic particles,

non-relativistic matter, dark energy and curvature, we have:

Ω0r =
8πGρ0r
3H0

, Ω0m =
8πGρ0m
3H0

,Ω0DE =
8πGρ0DE

3H0
, Ω0K = − K

(a0H0)2
, (1.13)

where the subscript 0 denotes the values at present epoch. With these parameters, eq (1.9)

can be rewritten as:

H2(t) = H2
0

[
(1 + z)4Ω0r + (1 + z)3Ω0m + (1 + z)2Ω0K +Ω0DE

]
, (1.14)

which allows to obtain the Hubble parameter at a given time, or redshift, starting from the

present value of parameters.

1.2 Dark Energy

Let us consider the case in which the universe is dominated by a single component with an

equation of state defined by

w ≡ P

ρ
. (1.15)

If w is a constant, one can analitically find the evolution of ρ and a for the flat universe.

Solving the Friedmann equations, in this case we obtain the following solutions:

ρ ∝ a−3(1+w), a ∝ (t− ti)
2/(3(1+w)) , (1.16)

where ti is a constant. Since from statistical mechanics we know that radiation has the equa-

tion of state w = 1/3, it follows that the cosmic evolution during the radiation-dominated

epoch is given by ρ ∝ a−4 and a ∝ (t − ti)
1/2. Non-relativistic matter corresponds to the

case with a negligible pressure, i.e. w ' 0. Then the evolution during the matter-dominated

era is given by ρ ∝ a−3 and a ∝ (t− ti)
2/3.

These two kinds of fluid, according to equation (1.6), produce a decelerated expansion.

However, the observations accumulated since 1998, coming from Supernovae Ia, CMB

anisotropy and large scale structure, report that the universe is actually in a phase of ac-

celerated expansion, which cannot be driven by ordinary or dark matter, neither radiation.

Moreover these observations tell us that the universe is spatially flat. The sum of density

parameters of baryonic matter, dark matter and radiation is smaller than unity and hence it

is not sufficient to explain the flatness of the universe.
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CHAPTER 1. THE STANDARD COSMOLOGICAL MODEL

These two facts can be explained if we introduce an extra component, called dark en-

ergy, which is able to give an important contribution to the total energy density of the uni-

verse and so to justify its flat geometry. What we know about this component is that it

causes the accelerated expansion and hence it needs to have a strong negative pressure in

order to break the condition ρ + 3P ≥ 0. This gives us a first clue on the nature of dark

energy since its equation of state parameter needs to satisfy the condition w < −1/3.

The first description for this component is represented by the cosmological constant,

originally introduced by Einstein in 1917 in order to obtain a static solution for his equa-

tions and then discarded after the discovery of the universe expansion by Hubble. While

Einstein introduced his cosmological term as a modification to the curvature side of the field

equation, it is now common to interpret Λ as a new energy component, constant in space

and time. For a component whose energy density remains constant as the universe expands,

the first law of thermodynamics implies negative pressure since −PdV = dU = ρdV and

then P = −ρ. Hence the cosmological constant correspond to a fluid with a constant equa-

tion of state w = −1. From the particle physics point of view the cosmological constant is

supposed to be the energy density of the vacuum. However the ratio between the theoretical

and observed values of this energy density gives a discrepancy of 120 orders of magnitude,

which is known as the Cosmological Constant Problem. The other basic puzzle concerning

a cosmological constant is the so called coincidence problem, which can be expressed in

this way: matter density scales as a(t)3 while the vacuum energy density is constant, so

why does it happen that the two components have the same order of magnitude just today?

Current observations can say relatively little about the possibility of a time evolution

of w and so we can broaden our horizons and consider a situation in which the equation

of state of dark energy can change with time. Such models are known as dynamical dark

energy models and, contrary to the cosmological constant, can be characterized by a time

varying and spatially inhomogeneous dark energy component, which can develop fluctua-

tions relevant in the growth of perturbations and can leave a characteristic signature in the

cosmic microwave background.

In this framework, a straightforward alternative to a cosmological constant is repre-

sented by models that introduce a new scalar field with negative pressure whose energy den-

sity changes with time. Many of these models are know as Quintessence models [10, 79, 1].
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1.3. COSMIC INFLATION

A canonical scalar field φ with potential V (φ) has energy density and pressure

ρφ =
1

2
φ̇2 + V (φ) (1.17)

Pφ =
1

2
φ̇2 − V (φ) , (1.18)

so, if the kinetic term is subdominant, then Pφ ≈ −ρφ. In general the equation of state

for the field φ ranges in the region −1 ≤ wφ ≤ 1. Some forms of V (φ) allow ”tracker”

solutions in which late-time evolution of φ is insensitive to the initial conditions [71], and a

subset of these allows ρφ to mimic the behaviour of the dominant component until it starts

to dominate at present epoch, alleviating the coincidence problem.

Scalar-tensor theories [24, 26] represent a framework to interpret the additional scalar

field as the one which determines the Newton gravitational constant. This class of theories

aims at modifying General Relativity itself rather than to add a new energy component. The

prototype of these theories has been introduced by Brans and Dicke [8] in order to explain

long range forces, such as gravity, in term of a scalar field. In general, the Ricci scalar is

replaced in the gravitational action with some higher order function f(R) which represents

a non-minimal coupling term between the scalar field and the Ricci scalar. This function

introduces new terms in the perturbed Einstein equations, which can leave a prominent sign

in observations of the integrated Sachs-Wolfe effect or the lensing potential. Moreover,

modification to General Relativity can alter the relation between the expansion history and

the growth of matter clustering, and searching for mismatches between observational probes

of expansion and observational probes of structure growth is one generic approach to seek

signatures of modified gravity.

These are just few examples of the models proposed in the last years to describe dark

energy and the challenge for theoretical physicists is still open, especially in view of the

upcoming ESA space mission Euclid [46, 3], which will measure shapes and redshifts of

galaxies and clusters of galaxies out to redshift ∼ 2, covering the entire period in which

dark energy plays an important role in accelerating expansion.

1.3 Cosmic Inflation

Despite al the successes of the Hot Big Bang model, there remain some unsatisfactory

aspects, that can be explained introducing a phase of accelerated expansion in the early
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CHAPTER 1. THE STANDARD COSMOLOGICAL MODEL

stage of the universe, named inflation.

The horizon problem is one of the most important problems of the Hot Big Bang model

and is related to the connection between different regions of the universe. The cosmological

horizon is defined as the distance that the light can travel starting from the initial time (the

Big Bang) and represents the scale for two events being causally connected at a given time

t:

RH(t) =

∫ t

0

dt′

a(t′)
. (1.19)

The crucial ingredient is that the universe has only a finite age and so even light can only

have travelled a finite distance by any given time.

One of the most relevant properties of the microwave background is that it is almost

isotropic, that is, light seen from all directions in the sky possesses almost the same tem-

perature of 2.725 K. This observation is naturally explained if different regions of the sky

have been able to interact and move towards thermal equilibrium. Unfortunately, the light

we see from the opposite side of the sky has been travelling toward us since decoupling,

therefore there has not been enough time for these two regions to interact in any way and

so it is not possible for them to have the same temperature. The final twist in the tail, which

elevates this to a problem of extreme relevance, is that actually the microwave background

is not perfectly isotropic but instead exhibits small fluctuations, of the order of one part in

105. For the same reason that one cannot thermalize separate regions, one can not create

irregularities like the ones seen in the CMB.

Another important problem is the so called flatness problem. From equation (1.9) it is

possible to see that if the universe is flat, then it remains flat for all the time. Otherwise the

density parameter can evolve. This is due to the fact that the quantity aH is a decreasing

function of time, and then |1 − Ω| ∝ t2/3 in a matter dominated universe ,and |1 − Ω| ∝ t

in a radiation dominated universe. We know observationally that, at present, Ω0 is not far

from unity, which implies that at much earlier times, it must have been very close to 1, for

example |1− Ω| ≤ 10−60 when the universe was 1 second old. The flatness problem states

that such fine tuned initial conditions seem extremely unlikely. Almost all initial conditions

lead either to a closed universe that recollapses almost immediately, or to an open universe

that very quickly enters the curvature dominated regime.
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1.4. COSMOLOGICAL PERTURBATIONS

These are only two of the theoretical problems which afflict the Hot Big Bang model.

Another one is, for example, the one related to the magnetic monopoles. Magnetic monopoles

are predicted by unification theory such as GUT, during the primordial phases of the ex-

pansion of the universe. These monopoles would have a density parameter of the order

Ωmonopole
0 ' 1016. Therefore, together with the problem of having never been observed,

they are strongly incompatible with the observed value of Ω0.

All these problems find their solution if we hypothesize the existence of a primordial

phase of accelerated expansion of the universe. During this phase, the horizon grows more

slowly with respect to the scale factor, implying the exit from the horizon of regions which

were causally connected. So it is possible to explain the isotropy of the cosmic radiation,

since regions which appear non-connected at the time of last scattering, could have been

causally connected during the phase before inflation.

At the same time, the accelerated expansion can explain the flatness problem, because

it dilutes the curvature density reducing the difference between the density parameter and

unity.

1.4 Cosmological perturbations

The true merit of inflation, however, is that it provides a theory of inhomogeneities in the

universe, which may explain the observed structures. These inhomogeneities arise from

quantum fluctuations in the inflation field about its vacuum state. The theory of structure

formation, based on gravitational instability, describes how primordially generated fluctua-

tions in matter and radiation grow into galaxies and clusters of galaxies due to self gravity.

CMB observations indicate that the anisotropies at the epoch of decoupling were rather

small (one part in 105), implying that their amplitudes were even smaller at earlier epochs.

This suggests that the generation and the evolution of the perturbations (until structures

begin to form, late in the matter dominated epoch), can be studied using linear perturbation

theory.

Gravitational fluctuations can be described through the metric

gµν = g(0)µν + g(1)µν , (1.20)

where g(0)µν can be identified with the usual Friedmann-Robertson-Walker metric, while g(1)µν

12



CHAPTER 1. THE STANDARD COSMOLOGICAL MODEL

is its small perturbation. So the perturbed FRW metric can be written in this general form:

ds2 = −(1 + 2Ψ)dt2 + a2(t)widtdx
i + a2(t)[(1− 2Φ)δij + χij ]dx

idxj , (1.21)

where the functions Φ e Ψ, wi and χij represent scalar, vector and tensor modes of metric

perturbations about FRW spacetime, respectively, and are assumed to be small compared to

unity.

The perturbed Einstein equations in Newtonian gauge are [51]:

δGµν = δRµν −
1

2
δgµνR− 1

2
gµνδR = 8πGδTµν . (1.22)

Making all the terms explicit in Fourier space we obtain:

3H
(
HΨ+ Φ̇

)
+

k2

a2
Φ = −4πG

∑
α

δρα , (1.23)

k2
(
HΨ+ Φ̇

)
= 4πGa

∑
α

(ρα + Pα) θ , (1.24)

Φ̈ + 3HΦ̇ + 2ḢΨ+ 3H2Ψ+HΨ̇ +
k2

3a2
(Φ−Ψ) = 4πG

∑
α

δPα , (1.25)

k2 (Ψ− Φ) = 12πG
∑
α

(ρα + Pα)σα . (1.26)

Here the sums are taken all over the fluid components α, and θ is the divergence of the fluid

velocity.

The perturbed part of the energy-momentum conservation equations instead can be writ-

ten as:

˙̃
δ = −(1 + w)

(
θ

α
− 3Φ̇

)
− 3H

(
δP

δρ
− w

)
δ̃ , (1.27)

θ̇ = −H(1− 3w)θ − ẇ

1 + w
θ +

δP/δρ

1 + w

k2

a
δ̃ − k2

a
σ +

k2

a
Ψ , (1.28)

where w ≡ P/ρ describes the fluid equation of state, δ̃ is the density contrast defined as

δ̃ ≡ δρ/ρ and σ is the anisotropic stress.

We can define a gauge invariant density perturbation in this way:

δ ≡ δ̃ + 3H(1 + w)
aθ

k2
= δ̃ + 3H(1 + w)v , (1.29)

where aθ/k2 = v. So we can rewrite the equation (1.23) with the new definition of comov-

ing velocity:

HΨ+ Φ̇ = 4πG
∑
α

(ρα + Pα)vα , (1.30)
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1.4. COSMOLOGICAL PERTURBATIONS

while the perturbed conservation equations become:

δ̇ = −(1 + w)
k2

a2
v + 3(1 + w)(Φ +Hv). − 3H

(
δP

δρ
− w

)
δ , (1.31)

v̇ = 3Hwv − ẇ

1 + w
v +

δP

ρ(1 + w)
− σ +Ψ . (1.32)

Combining the latter equations we obtain a general evolution equation for the comoving

matter density contrast:

δ̈ + 2Hδ̇ +
k2

a2
Φ = 3B̈ + 6HḂ , (1.33)

where B ≡ Φ +Hv. From this equation it is possible to derive the evolution equations for

matter perturbations in different cases, for example for different kinds of fluid or in presence

of dark energy.

Let us consider a fluid which is pressureless (w = 0) in absence of perturbations, but

with a small sound speed c2s = δP
δρ . In this case, and in sub-horizon approximation, the

evolution equation takes this simple form:

δ̈ + 2Hδ̇ +

(
k2

a2
c2s −

3

2
H2

)
δ = 0. (1.34)

This equation tells us that perturbations can grow if k2

a2
c2s − 3

2H
2 > 0. This is verified if the

physical wavelength of perturbations λp =
2πa
k is smaller than the Jeans length:

λJ = c2s

√
π

Gρ
. (1.35)

For scales smaller than λJ the perturbations undergo damped oscillations. For cold dark

matter cs represents the velocity dispersion, since cold dark matter is non-collisional, hence

pressure is negligible and so it is the sound speed. This velocity opposes to gravity and the

motion of the different elements of the fluid cancels out the perturbations. For the photons

we have cs = c/
√
3, so that λJ ' H−1. Hence the growth of perturbations is prevented on

all scales smaller that the Hubble radius H−1. For baryons, the sound speed is comparable

to the photon velocity before the decoupling epoch, so their perturbations are damped out.

When csk << H the perturbations grow freely because gravity overcomes the pressure:

this is the regime of gravitational instability. The equation becomes:

δ̈ + 2Hδ̇ − 3

2
H2δ = 0 , (1.36)

which has a growing and a decaying mode solution: δ(x, t) = A(x)D+(t) + B(x)D−(t),

where the factors A(x) and B(x) are fixed by the initial conditions. The decaying solutions

become soon negligible with respect to the growing ones and therefore can be neglected.
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The solution can be written as a function of the growing mode only as:

δ(x, t) = δ(x, ti) ·
D(t)

D(ti)
, (1.37)

where ti is an arbitrarily chosen initial time and D(t) ∝ a(t) ∝ t2/3 (for sake of simplicity

we omit hereafter the subscript +). The linear growth function D(t) obeys the differential

equation

D̈(t) + 2H(z)Ḋ(t)− 3

2
ΩmH2

0 (1 + z)3D(t) = 0. (1.38)

The solution to this equation can only be written in integral form as a function of H(z)

and thus for a specific dark energy models. However, to a very good approximation the

logarithmic growth rate of linear perturbation in General Relativity, defined as

f(z) ≡ d lnD

d ln a
, (1.39)

is an analytic function of Ωm approximated as a power law f(Ωm) ≈ Ωm(z)γ , where γ is

the linear growth factor. Integrating this equation yields

D(z)

D(z = 0)
≈ exp

[
−
∫ z

0

dz′

1 + z′
Ωm(z′)γ

]
. (1.40)

Linder [50] shows that this equation is accurate to better than 0.5% for a wide variety of

dark energy models if one adopts

γ = 0.55 + 0.05[1 + w(z = 1)]. (1.41)

Note that for a dark energy model with an evolving density parameter, Ωm(z) is lower with

respect to a cosmological constant case, therefore the ratio D(z)/D(z = 0) is higher, which

means that there has been less growth of structure between redshift z and the present day

because matter has a smaller contribution to the total density over that time. Thus it is clear

that investigating the behaviour of the growth rate with redshift can help us to shed light

upon the nature of dark energy.

1.5 Properties of the density perturbation field

The linear perturbation theory is a powerful tool that can be used to make predictions about

large scale structure. Even though the evolution of perturbations in the linear regime is

known, the non-linear evolution leading to the formation of small scale structures is not
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so well understood. That is why computer simulations are usually used: given an initial

density perturbation δ(x, t0) at some time t0, we can compute in principle the final mass

distribution, including the distribution of structures like galaxies.

With theoretical results in our hands, we have to compare them with observations. Of

course it is meaningless to hope that theory will be able to produce the properties of a

particular galaxy located at a particular coordinate x; or in general we do not expect the

theory to predict the density contrast at any specified location, since this prediction requires

the knowledge of the fine-tuned initial conditions δ(x, ti). Thus, instead of predicting the

exact mass distribution of our universe, we shall predict the average, statistical properties

of the mass distribution. In doing this it is necessary to invoke the mathematical concept of

random fields and their properties.

A density perturbation, evaluated at some instant in a certain coordinate in space, is

defined as

δ(x) ≡ ρ(x)− ρ̄

ρ̄
, (1.42)

where ρ̄ is the mean density of the universe. We can say that δ(x) is associated to what is

called a random field, that is, for each point in space a set of functions δn(x) exists, each

coming with a probability Pn. The set of function δn(x) is referred to as the ensamble, and

each individual function is called a realization of the ensamble. This means that the density

field that we observe is one of the possible realizations of the field.

Even though our present universe is not stricly homogeneous it does appear to be sta-

tistically homogeneous, in the sense that we can recover similar properties at any position.

Hence it is possible to make a fundamental assumption about the density fluctuations field,

saying that the field δ(x) consitutes a homogeneous and isotropic random field, which is

just an extension of the Cosmological Principle. In other words, we can assume that the

probability of each realization is supposed to be invariant under translations and rotations.

Translation invariance (homogeneity) means that the probability attached to a realization

δn(x) is the same as the one of the realization δn(x + X), for each fixed X. Rotational

invariance (isotropy) means that the probability of a realization δn(x) is the same as the

probability of the realization δn(x̃) where x̃ are rotated coordinates.

The Fourier expansion is a powerful tool for analysing stochastic properties, so we want

to introduce some definition in the Fourier formalism. A generic perturbation, evaluated at

16



CHAPTER 1. THE STANDARD COSMOLOGICAL MODEL

some particular time, in a certain coordinate in space can be written as:

δ(x) =
1

(2π)3

∫
δ(k) expik·x d3k , (1.43)

while its inverse is

δ(k) =

∫
δ(x) exp−ik·x d3x. (1.44)

Notice that δ(x) is an adimensional quantity, while δ(k) has the dimension of a volume.

According to the theory of structure formation, the density fluctuations on scale k form a

Gaussian scalar field. A Gaussian random field may be defined as one whose Fourier modes

have no correlation except for the reality condition g(−k) = g∗(k). Gaussianity means

that drawing these modes randomly from the ensemble, each of them has an independent

probability distribution. But the central limit theorem states, under very general conditions,

that the sum of uncorrelated quantities has gaussian probability distribution independently

of the probability distribution of the original quantities. We conclude that, for a Gaussian

random field, the probability distribution of δ(x) at a given point is Gaussian. A Gaussian

distribution is univocally described by its mean and its variance. Hence, since δ(x) has zero

mean, we just need its variance in order to completely describe it.

1.6 Correlation function and power spectrum

The most basic statistic that can be constructed from the overdensity field is the correlation

function:

ξ(r) ≡ 〈δ(x)δ(x+ r)〉 , (1.45)

where angular brackets indicate an average over a normalization volume. The correlation

function ξ(r) is the mean overdensity of neighbour around a random position. The assump-

tion that the density field is statistically homogeneous and isotropic makes ξ(r) a function

only of the scalar separation r of two points, and not of their overall location or orientation.

Using the Fourier expansion of δ(x) in the equation (1.45), the correlation function can

be expressed as:

ξ(r) =
1

(2π)3

∫
〈|δ(k)|2〉 exp−ik·x d3k . (1.46)

By definition 〈|δ(k)|2〉 is the power spectrum of modes of wavenumber k, then this equation

tells us that the correlation function is the Fourier transform of the power spectrum, which
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is usually denoted as P (k) and is mathematically defined as

〈δ(k)δ(k′)〉 ≡ (2π)3P (k)δD(k− k′) , (1.47)

where δD(k − k′) is the Dirac delta function. Again, thanks to the isotropy of the density

perturbation field, the power spectrum depends only on the module of the wavenumber k.

Hence the angular part of the integral (1.46) can be performed immediately, obtaining:

ξ(r) =
1

2π2

∫
k2P (k)

sin kr

kr
dk . (1.48)

The physical meaning of the power spectrum is the following: P (k) is a measure of the

power of fluctuations on scale k, that is, it tells us how much a perturbation with wavenum-

ber k contributes in forming a perturbation δ(x) in configuration space. To clarify this

concept we can consider the simple example in which δ(x) is made up by a single plane

wave of wavenumber k. Recalling equation (1.47) we can see that its Fourier transform is

zero everywhere except in k and P (k) will be a Dirac delta function. Then in the generic

case P (k) will have a higher value for those wavenumber k which contribute the most to

δ(x).

Although the mean value of the perturbation δ(x) across the statistical ensamble is zero

by definition, its variance σ2 is not. From the definition introduced before we can define the

variance as

σ2 ≡ 〈δ2(x)〉 = 1

2π2

∫ ∞

0
P (k)k2dk . (1.49)

The variance does not depend on spatial position but on time, because the perturbation am-

plitudes δ(k) evolve. The quantity σ2 therefore tells us about the amplitude of perturbations,

but it does not carry information about their spatial structure.

Simple inflationary theories predict that just after inflation the matter power spectrum

would have been a simple power law P (k) ∝ kn, where the exponent n is usually called

spectral index. This exponent needs not to be constant over the entire range of wavenum-

bers: the convergence of the integral (1.49) requires that n > −3 for k → ∞ and n < −3

for k → 0. The power spectrum has then evolved in shape as the Universe has gone through

various phases in its evolution, and at the present day shows a peak whose position corre-

sponds to the Jeans length at matter-radiation equality.
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1.7 Bias

The variance of the field characterizes the mean amplitude of perturbations in a specific

point in space. Of course what we observe is not the fluctuation field but the distribution of

galaxies. In order to compare observations with theory we need to make some assumptions

about how galaxies are distributed with respect to the underlying matter distribution. To

do this we can introduce the concept of bias. If galaxies were unbiased tracers of matter,

then they would satisfy the relation δg = δm, by definition. That some bias exists, at least

in some galaxy population, follows from the fact that galaxies selected in different ways

have correlation function with different amplitudes. The simplest model of bias postulates

that the galaxy overdensity δg is linearly biased by a constant factor, the linear bias factor b,

relative to matter overdensity, so that:

δg = bδm . (1.50)

Of course it does not make sense to define the galaxy overdensity in a certain point, as

we do with matter overdensity. Instead we usually ask how many galaxies we can find in

a certain volume in space. Then, the next step in comparing theory and observations is to

average the matter overdensity over a volume and to compare it with the number of galaxies

in the same volume. From this point of view, the bias can be rewritten in a more statistical

way as:

b =
σg
σm

, (1.51)

where σg and σm are the variances of galaxy distribution and matter, respectively, integrated

over a sphere of radius 8h−1Mpc, basically smoothing out all the non-linear effects below

this scale.
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Chapter 2

Redshift space distortions

Redshift Space Distortions (hereafter RSD) are, as the name says, distortions in the distribu-

tion of galaxies due to their peculiar velocities. The distribution of galaxies that we observe

in a sky survey is not the real picture. In redshift space we observe a clustering pattern which

is different from the one in real space because galaxy redshifts are altered from Hubble flow

prediction by their peculiar velocities. So, when we compute galaxy distances from their

redshift assuming that the total velocity relative to us comes only from the Hubble flow we

obtain a distorted, redshift space, density field. This effect can be quantified helping us to

constrain some cosmological parameters.

2.1 How RSD look like

In the 1920s Hubble discovered that the observed wavelength λ0 of absorption lines of

distant galaxies is larger than the wavelength in the rest frame. This is due to the fact that

the wavelength is stretched in proportion to the scale factor in an expanding universe. This

effect can be quantified introducing a new quantity called redshift:

z ≡ λ0

λ
− 1 =

a0
a

− 1 (2.1)

where subscript 0 indicates the quantity at the present epoch. In particular a0 = 1 and

then z0 = 0, and as we go back to the past, z becomes larger and larger. As long as

the recessional velocity v of an object is much smaller than the speed of light c we have

λ0 ' (1 + v/c)λ according to the Doppler effect, which gives

z ' v/c. (2.2)
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2.1. HOW RSD LOOK LIKE

Figure 2.1: A spherical overdensity appears distorted by peculiar velocities when observed
in redshift space. On the left, the overdensity is far from the observer and the distortions are
effectively plane-parallel. On the right, the overdensity is near the observer (large dot), and
the large scale distortions appear kidney-shaped while the finger-of-god is sharpened on the
end pointing at the observer. [30]

Hubble’s law states that the recession velocity of a galaxy is proportional to its distance

d:

cz = H0d. (2.3)

This velocity can be measured accurately from the redshift z of the galaxy spectrum, more

easily and accurately than its true distance d. Hubble’s law however is not accurate. Galax-

ies have peculiar velocities v relative to the Hubble’s flow, so it is necessary to distinguish

between a galaxy’s redshift distance s ≡ cz and its true distance r ≡ H0d, both expressed

in velocity units. Then the redshift distance s of a galaxy differs from the true distance r by

its peculiar velocity v along the line of sight:

s = r + v. (2.4)

The peculiar velocities of galaxies thus cause them to appear displaced along the line

of sight in redshift space. These displacement lead to RSD in the pattern of clustering of

galaxies in redshift space.

To explain how the distribution of galaxies is modified, let us consider a spherical over-

density region. It is initially filled with galaxies along concentric circles (represented re-

spectively by dots and lines in figure 2.1).

This overdensity collapses towards its centre with galaxies on the same shell collapsing
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Figure 2.2: Detail of how peculiar velocities lead to the redshift distortions illustrated in
Figure (2.1) [30].

with the same infall velocity. For an observer, galaxies with peculiar velocities perpendic-

ular to the line of sight do not change their redshift, which is then given just by the normal

expansion. On the contrary, galaxies with peculiar velocities along the line of sight will

appear displaced.

Figure 2.2 shows in detail how the pattern in figure 2.1 is created. On large scales, when

peculiar velocities are small, collapsing shells appear squashed along the line of sight. The

squashing increases towards smaller scales since peculiar velocities tend to be bigger. At

the turnaround point the peculiar velocities exactly equal the general Hubble expansion, so

that the near and far parts of the shell appear collapsed to a single velocity in redshift space.

At smaller scales, shells that have turned around and are collapsing appear turned “inside

out” in redshift space, giving rise to an effect called Fingers of God.

Of course this distortion effect cannot be seen simply by eye in the distribution of galax-

ies, indeed recovering it it is a matter of statistic through the measure of the correlation

function or the power spectrum. It is then necessary to construct a model for these two

statistics that allows us to quantify this effect.
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2.2 Modelling the RSD feature

Recall now the perturbed equations (1.27) and (1.28). In comoving coordinates and in the

case of a collisionless fluid, the Newtonian approximation of this equation can be rewritten

as:

δ′m + θm = 0 (2.5)

θ′m +Hθm = −k2Φ , (2.6)

where H is the Hubble parameter expressed in comoving coordinates and the prime repre-

sents the derivative with respect to the conformal time τ defined by dτ ≡ H0a0dt/a. Φ is

the gravitational potential that satisfies the Poisson equation. Combining these equations we

can obtain the second order linear differential equation for the overdensity δm, that leads to

growing and decaying solutions δm(r, τ) ∝ D(τ), which evolve in time without change of

shape. The interesting solution is the unstable growing solution. The linearized continuity

equation (2.5) can then be written as:

Haf

H0a0
δm + θ = 0 , (2.7)

where f is the linear growth rate that we described in the first chapter (equation 1.39).

The linearized continuity equation (2.5) for the matter, evaluated at the present time, to-

gether with the linear bias model (1.50), yield the linearized continuity equation for galaxies

βδ + θ = 0 , (2.8)

where the dimensionless quantity β is the distortion parameter and it is related to the present

day value f0 of the linear growth rate and the bias factor b by

β =
f0
b
. (2.9)

In the linear regime, the overdensity δS in redshift space is related to the overdensity δ

in real space by a linear redshift distortion operators S:

δS = Sδ , (2.10)

where the superscript S identifies the quantities in redshift space. The starting point in the

derivation of this operator is the conservation equation for galaxies, which expresses the fact
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that the peculiar velocities displace along the line of sight, but they do not make galaxies

appear or disappear

ns(s)d3s = n(r)d3r. (2.11)

If we define the overdensity in redshift space as δs(s) ≡ (ns(s)− n̄(s))/n̄(s), this equation

can be rewritten as

n̄(s)[1 + δs(s)]s2ds = n̄(r)[1 + δ(r)]r2dr . (2.12)

With the relation between redshift position and real position (equation (2.4)), this equation

rearranges to

1 + δs(s) =
r2n̄(r)

(r + v)2n̄(r+ vr̂)

(
1 +

∂v

∂r

)−1

[1 + δ(r)] . (2.13)

The next step is to linearize this equation. We can assume |δ(r)| � 1, which also implies

|∂v/∂r| � 1 and that peculiar velocities of galaxies are small compared to their distances

from the observer, |v| � r. With these approximations and recalling that θ = ∇ · v, which

implies (thanks to the continuity equation (2.8)) that v = −β ∂
∂r∇

−2δ, we can obtain the

distortion equation δS = Sδ with the distortion operator given by:

S = 1 + β

(
∂2

∂r2
+

α(r)∂

r∂r

)
∇−2 , (2.14)

where α(r) is the logarithmic derivative of r2 times the real space selection function n̄(r).

In the plane-parallel, or distant observer, limit, the linear distortion operator (2.14) re-

duces to

Sp = 1 + β
∂2

∂z2
∇−2 , (2.15)

where z is the distance along the line of sight. In Fourier space ( ∂
∂z )

2∇−2 = k2z/k
2 = µ2

k,

where µ2
k ≡ ẑ · k̂ is the cosine of the angle between the wavevector k and the line of sight z.

Thus in Fourier space the plane-parallel distortion operator reduces to a diagonal operator

Sp = 1 + βµ2
k , (2.16)

so that a Fourier mode δs(k) in redshift space is amplified with respect to the real space

mode by a factor 1 + βµ2
k according to the relation

δs(k) = (1 + βµ2
k)δ(k) . (2.17)
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It follows from this equation that, in the plane-parallel approximation, the redshift space

power spectrum P s(k) is amplified by (1 + βµ2
k)

2 over its unredshifted counterpart P (k)

according to the equation

P s(k) = (1 + βµ2
k)

2P (k) , (2.18)

firstly pointed out by Kaiser [41].

This formula has been translated into real space by Hamilton [30]

ξ(s) =

(
1 + β

∂2

∂z2
∇−2

)2

ξ(r) , (2.19)

who argued that this equation can be conveniently solved in the linear regime as a sum of

spherical harmonics:

ξ∗S(rp, π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ) , (2.20)

where we have decomposed the correlation function in the direction perpendicular and par-

allel to the line of sight, rp and π respectively. The subscript S denotes the quantity in

redshift-space. Here Pl are the Legendre polynomials and ξl are the multipoles of the cor-

relation function, which can be expressed as

ξ0(s) =

(
1 +

2

3
β +

1

5
β2

)
ξ(r) (2.21)

ξ2(s) =

(
4

3
β +

4

7
β2

)
[ξ(r)− ξ̄(r)] (2.22)

ξ4(s) =
8

35
β2

[
ξ(r) +

5

2
ξ̄(r)− 7

2
¯̄ξ(r)

]
, (2.23)

and the barred quantities are defined as

ξ̄(r) =
3

r3

∫ r

0
ξ(r′)r′2dr′ (2.24)

¯̄ξ(r) =
5

r5

∫ r

0
ξ(r′)r′4dr′ . (2.25)

In order to take into account the non-linear motions on small scales due to peculiar

velocities, which cause the Fingers of God effect, it is necessary to convolve the correlation

function ξ∗S with the distribution function f(v) of random pairwise velocities along the line

of sight:

ξ(rp, π) =

∫ +∞

−∞
ξ
(L)
S

[
rp, π − v(1 + z)

H(z)

]
f(v)dv. (2.26)
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The distribution f(v) can be represented by an exponential form

f(v) =
1

σ12
√
2
exp

(
−
√
2|v|
σ12

)
, (2.27)

or by a Gaussian form

f(v) =
1

σ12
√
π
exp

(
− v2

σ2
12

)
. (2.28)

In both expressions σ12 is a quantity independent of pair separation and is generally inter-

preted as the dispersion in the pariwise random peculiar velocities.

This model for the two-point correlation function depends on few quantities: β, σ12, a

reference cosmology used to convert angles and redshifts into distances and the true corre-

lation function in real space. ξ(r) can be obtained from theory or estimated from the galaxy

catalogue itself. For example, a theoretical expression can be obtained from the galaxy

luminosity function in the framework of the Halo Occupation Distribution assuming a the-

oretical prescription for the halo correlation function, as done e.g. by Yang et al. [78]. It is

also possible to obtain ξ(r) by Fourier transforming the theoretical matter power spectrum,

computed assuming a fiducial cosmology, and then multiplying it by a bias function as it is

done, for example, by Chuang & Wang ([13], [14]). As an alternative, it is possible to esti-

mate ξ(r) through a deprojection procedure of the measured ξS(rp, π). At first the observed

redshift-space correlation function is projected along π:

Ξ(rp) = 2

∫ πmax

0
ξS(rp, π

′)dπ′ , (2.29)

and then ξ(r) is obtained via an Abel integral:

ξ(r) =
1

π

∫ ∞

r

dΞ(r′p)/drp√
r′2p − r2

dr′p , (2.30)

where r =
√

r2p + π2.

2.3 Measurements of β from linear redshift distortions

RSD give us the possibility to recover some important information about the dynamics of

galaxies and the amount of matter in the universe. In this section we want to briefly review

some recent works about RSD giving an idea on how theory and observations are linked to

each other.
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Figure 2.3: The ratio of ξ(s) to ξ(r) for the 2dFGRS from Hawkins et al. (2003) [33]

Figure 2.4: The Q factor (from equation (2.31)) for the 2dFGRS data from Hawkins et al.
(2003) [33]. The solid lines represents a model with β = 0.49 and σ12 = 506 km s−1.

Hawkins et al. in 2003 [33] presented a detailed analysis of the 2-point correlation

function ξ(rp, π) from the 2dF Galaxy Redshift Survey. The large size of the catalogue, of

≈ 220000 galaxies, allowed them to make accurate measurements of various properties of

the galaxy clustering. They estimated ξ(s) by averaging ξ(rp, π) at constant s, from which

they measured the redshift-space clustering length s0 = 6.82 ± 0.28h−1Mpc and slope

γ = 1.57 ± 0.07h−1Mpc, in the range 3 ≤ s ≤ 20h−1Mpc. The projection of ξ(rp, π)

along the π axis gives an estimate of the real-space correlation function ξ(r), which can

be fitted by a power-law with r0 = 5.05 ± 0.25h−1Mpc and γ = 1.67 ± 0.03, with the

slope increasing at separation larger than 20h−1Mpc. The authors gave a first estimate of
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Figure 2.5: Measurements of the growth rate f(z) from Guzzo et al. (2008) [29] compared
to other works and theoretical predictions.

the distortion parameter through the ratio of real and redshift-space correlation functions

on scale of 8 − 30h−1Mpc finding β = 0.45 ± 0.14 (Figure 2.3). They also used the

normalized quadrupole

Q(s) =
4
3β + 4

7β
2

1 + 2
3β + 1

5β
2
, (2.31)

since on large scales this quantity has an asymptotic behaviour which allowed to measure

the distortion parameter. They found β = 0.47+0.19
−0.16 (Figure 2.4). They also found an esti-

mate of the distribution of random peculiar velocities comparing the projection of ξ(rp, π)

along π and rp. The result is that f(v) is well approximated by an exponential with a ve-

locity dispersion of σ12 = 570 ± 25 km/s. Then they performed a maximum likelihood

procedure to simultaneously fit the shape and the amplitude of ξ(r) and the two redshift-

space distortion effects parametrized by β and the velocity dispersion σ12. They obtained

β = 0.49± 0.09 and σ12 = 506± 52 km/s, finding also a strong correlation between these

two values. Finally, using a constraint on bias from Verde et al. (2002) [75], they obtained

β(z = 0) = 0.47± 0.08 and Ωm ≈ 0.3 for the present day matter density.

Guzzo et al. [29] measured the parameter β using the spectroscopic data from the
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Figure 2.6: Contours for σ12 and β from Cabré & Gaztañaga (2009) [9] obtained using the
quadrupole Q(s) in the slice z = 0.15 − 0.47 at a distance between 5 and 60 Mpc h−1.
Solid lines are 1, 2 and 3σ levels.

Wide part of the VIMOS-VLT Deep Survey. The redshift space correlation function was

estimated from a subset of 5, 895 faint galaxies, covering an area of 4 square degrees. With

a maximum likelihood procedure, they found β = 0.70 ± 0.26 and σ12 = 412 km/s,

where the error on β was obtained marginalizing over the pairwise velocity dispersion. To

estimate the linear bias they used the relation bL = σgal
8 (z = 0.77)/σmass

8 (z = 0.77),

where σgal
8 (z = 0.77) was measured directly from the sample by counting the number of

galaxies in randomly placed spheres. The corresponding mass value was instead obtained

by scaling the WMAP value to z = 0.77 using linear theory. In this way they found

bL = 1.3± 0.1 correspoding to a growth rate of f(z = 0.77) = βbL = 0.91± 0.36 (Figure

2.5). They also proposed an empirical law which describes the dependency of the error of

the β parameter on the mean density of objects n and on the volume V :

δβ

β
=

50

n0.44V 0.5
. (2.32)

Cabré & Gaztañaga in 2009 [9] studied the clustering of luminous red galaxies from the

catalogue DR6 of the Sloan Digital Sky Survey (SDSS). In particular they wanted to obtain

cosmological parameters exploiting redshift space distortions on large scale. They used

the normalized quadrupole Q(s) on large scale to calculate the distortion parameter β =
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Figure 2.7: Contours for Ωm and bσ8 from Cabré & Gaztañaga (2009) [9] obtained using
the full shape of the two-dimensional correlation function, for the slice z = 0.15 − 0.34.
Solid lines are 1, 2 and 3σ levels (one degree of freedom) and dotted lines 1 and 2σ (two
degrees of freedom).

0.34± 0.05 in the range 40− 80Mpc. On small scales Q(s) depends also on the pairwise

velocity dispersion σ12, so through a fit procedure in different slices of redshift the authors

estimated both parameters finding best fit values for β in the range [0.310 − 0.375] and

for σ12 in the range [365 − 415]km/s (Figure 2.6). The great advantage of the normalized

quadrupole introduced by Hamilton is that it does not depend on the overall amplitude or

shape of the 2-point correlation function, that is, on cosmological parameters. They also

checked that this value of β gives the correct ratio ξ(s)/ξ(r) on large scale. From the shape

of the redshift-space correlation function in the plane rp − π they obtained constraints on

ΩM and the amplitude Amp = b(z)σ8, where b(z) is the bias at redshift z and σ8 is the

mass variance. They found Ωm = [0.225 − 265] and bσ8 = [1.47 − 1.65] (Figure 2.7).

The high degeneracy between b and σ8 can be broken thanks to redshift-space distortions

through the parameter β, using the fact that β = Ωm(z)γ/b. So it is possible to obtain σ8

via the relation:

σ8 =
β Amp

Ωm(z)γ
. (2.33)

The authors found σ8 = [0.79 − 0.91] and thereby b = [1.73 − 1.94] for the bias and

f(Ωm) = [0.54− 0.73] for the growth rate.
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Their next step was to study the growth history in order to investigate any possible

modification to the gravity theory through the parameter γ. They found consistence with

standard gravity for 0.8 ≤ σ8 ≤ 0.92 at 1− σ. DGP model is inconsistent with their results

if σ8 < 0.84.

Chuang & Wang in 2013 [14] presented measurements of H(z), DA(z) and β(z) at

z = 0.35 using the multipoles of the correlation function measured from the SDSS DR7

LRGs in a MCMC likelihood analysis. The model they used incorporates the non-linear

effects via the use of the “dewiggled” power spectrum including also the damping effect

along the line of sight, to fully describe the BAO feature. They validated the method using

160 mock catalogues from the Las Damas simulations. They performed the likelihood

analysis using at first the monopole ξ0 and quadrupole ξ2 and then adding the contribution

of the hexadecapole ξ4. These results are compared with the ones obtained using the full

two-dimensional correlation function in their previous work [13], finding a good agreement

between the two.

Contreras et al. [16] in 2013 studied the growth rate of cosmic structures to redshift z =

0.9 using more than 162, 000 galaxy redshifts from the WiggleZ Dark Energy Survey. They

divided the data into four redshift slices with effective redshifts z = [0.2, 0.4, 0.6, 0.76] and

in each of the samples they measured the 2-point galaxy correlation function in parallel and

transverse directions to the line of sight. Using a MCMC process the authors fitted a series

of different models obtaining a convergence for the growth rate when excluding the small

scale non-linear part of the data (transverse direction rp ≤ 6h−1Mpc, see Figure 2.8 ).

They also tested the sensitivity of their results to the fiducial cosmological model adopted

(Alcock-Paczynski effect [2]). They repeated the measurements assuming different fiducial

values of Ωm, finding a measured growth rate consistent with the predictions of standard

gravity only in the range 0.2 < Ωm < 0.3.

De la Torre et al. [22] analysed the first data release of the VIPERS survey, a catalogue

of about 54, 000 galaxies at 0.5 < z < 1.2, using the multipoles of the correlation func-

tion. Assuming a fixed shape of the mass power spectrum, consistent with the cosmologi-

cal parameters obtained from WMAP9 [36], the authors performed a maximum likelihood

analysis on the data to measure the growth rate at redshift z = 0.8. The measured value is
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Figure 2.8: Fitted values for the growth rate from three different models obtained by [16] in
four redshift slices for different data cuts σ > σmin. The red line in each panel represents
the prediction of a fiducial ΛCDM model with Ωm = 0.27 and σ8 = 0.8.

f(z)σ8(z) = 0.47±0.08 which is consistent with the General Relativity prediction in a flat

ΛCDM universe with cosmological parameters given by WMAP9, for which the expected

value is f(z)σ8(z) = 0.45 (see Figure 2.9). The authors also found that their result is not

significantly altered if they assume a Planck cosmology [57], showing that it is insensitive

to the Alcock-Paczynski distortions of the correlation function.

Howlett et al. [37] measured RSD in the 2-point correlation function of a sample of

63, 163 spectroscopically identified galaxies with z < 0.2 from the SDSS DR7 Main Galaxy

Sample (MGS). They modeled the monopole and the quadrupole of the correlation function

and fitted to the MGS data measuring fσ8 = 0.53 ± 0.19 when using the full shape of the

correlation function, whereas fσ8 = 0.44+0.16
−0.12 when assuming a fiducial cosmology based

on the recent Planck results [57], showing that the Alcock-Paczynski effect contributes to

the uncertainties of the growth rate and should not be neglected (see Figure 2.10). The

method has been validated using 1000 mock catalogues which allow also to estimate the
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Figure 2.9: A plot of fσ8 versus redshift from [22], showing the VIPERS result (red circle)
compared to other measurements. The thick solid (dashed) curve corresponds to the pre-
diction for General Relativity in a ΛCDM model with WMAP9 (Planck) parameters, while
the dotted, dot-dashed, and dot-dot-dashed curves are respectively Dvali-Gabadaze-Porrati
[21], coupled dark energy, and f(R) model expectations.

covariance matrix for the correlation function. Given the measurements of the growth factor,

the authors measured the growth index γ finding γ = 0.58+0.50
−0.30 when including Planck data

and γ = 0.67+0.18
−0.15 when also including BOSS-DR11 CMASS measurements of the growth

rate. They improved these constraints including the BAO from the full fit of the shape of the

correlation function, finding γ = 0.54+0.25
−0.24 and γ = 0.64 ± 0.09 respectively. All of these

results are consistent with the prediction of General Relativity γ ' 0.55 and the constraints

from other measurements at different redshifts.
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Figure 2.10: Comparison of measurements of the growth rate from [37] (red star) and a
variety of galaxy surveys below z = 0.8 using the two-point clustering statistics. The
results are split in two groups: those that perform a full shape fit and hence include the
Alcock-Paczynski degeneracy and those that just fit the growth rate for a fixed cosmology,
neglecting this degeneracy.
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Chapter 3

From theory to practice

In order to perform a parameter estimation one needs a dataset, a model which describes

the data, and a likelihood function, that is a function of the parameters that tells us how

good is a model in describing the data. In our case the dataset is given by the correlation

function of galaxies which is measured from a cosmological simulation. The model is the

one described in the previous chapter, whose parameters are the cosmological parameters

embedded in the theoretical correlation function, the redshift distortion parameter β and the

pairwise velocity dispersion of galaxies σ12. The likelihood is performed through a Markov

Chain Monte Carlo (MCMC) analysis. In this chapter we will briefly describe all these

technical aspects of our work.

3.1 How to measure correlation function

Studying the clustering properties of the universe is a matter of statistics and the two-point

correlation function represents a powerful tool in this sense. It can be interpreted as the

function that tells us how galaxies distribute around each other, describing the probability

of finding a galaxy in a certain position in space given the presence of another galaxy at a

comoving distance r from it.

Let us consider N objects in a volume V and focus our attention on a small volume

dV chosen randomly inside V. Then dN = ρ0dV is the average number of objects in

the infinitesimal volume, with ρ0 = N/V the mean density in the entire volume V . The

quantity dN represents also the probability to find an object in the volume dV . In the same

way we can define the number of pairs made up by the objects of for two infinitesimal

volumes dVa and dVb at a distance rab, dNab = 〈nanb〉 = ρ20dVadVb, which represents the
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dr

r

Figure 3.1: An example of shell structure to measure the correlation function. The shells,
drawn for simplicity in 2 dimension, are centered on a given object. One has to count the
number of objects in each shell and repeat again the procedure centering the shell structure
on each object. The correlation function at a given radius is obtained averaging the values
obtained and comparing them with the corresponding values for a uniform distribution.

probability to find an object in dVb given an object in dVa. This relation holds in the case of

a uniform random distribution. In presence of a clustered distribution we can rewrite it as

dNab = 〈nanb〉 = ρ20dVadVb[1 + ξ(rab)] , (3.1)

where ξ(rab) describes the excess or defect of probability, with respect to a uniform distri-

bution, of finding an object at a distance rab from another one.

Equation (3.1) follows from the definition of density constrast (equation (1.42)) written

as a function of the number of objects δ(xa) = dNa/ρ0dVa − 1, which leads to:

〈δ(xa)δ(xb)〉 =
dNab

ρ20dVadVb
− 1 = ξ(rab) . (3.2)

Given a distribution of objects, the most direct method to estimate the correlation func-

tion is to count how many objects fall inside a shell of radius r centered on a given object

(see Figure 3.1). Then the value of the correlation function is obtained by comparing the

mean value of objects per shell and the expected value for a uniform distribution.
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However for a practical point of view, this is not the best method, since a survey has

often irregular contours. The shell centered in galaxies nearby the edges will be partially

empty and the correlation function will be underestimated. To avoid this problem the ap-

proach adopted is the following: a random catalogue is constructed with the same geometry

and the same selection function of the real catalogue; the value of the correlation function

is then estimated by comparing the number of pairs of real galaxies at a given distance

and the pairs of random galaxies. So given a generic galaxy centered in a volume dV ,

n(r) = (ND/V )[1 + ξ(r)]dV is the number of real galaxies that we expect to find in that

volume, with ND the total number of galaxies in the volume V . Then, inverting the relation

we obtain

1 + ξ(r) =
V

N2
D

ND∑
i=1

ni(r)

dVi
=

V

N2
D

2nD(r)

〈dV 〉
, (3.3)

where nD(r) is mean value of ni(r) over all the particles. The same relation holds for the

random particles, so we have:

〈dV 〉 = 2nR(r)V

N2
R

, (3.4)

since in this case ξ(r) = 0. Then combining these two relations we obtain the natural

estimator

ξ̂N (r) =
DD(r)

RR(r)
− 1 , (3.5)

where DD(r) = nD/N
2
D and DD(r) = nR/N

2
R. This estimator clearly goes to zero when

the number of pairs in the real catalogue is equal to the number of pairs in the random

catalogue. This is the most natural way to estimate the correlation function.

Other estimators has been proposed throughout the years, considering also pairs made

by a random and a real object, in order to minimize the variance:

• Davis and Peebles [19]:

ξ̂DP (r) =
DD(r)

DR(r)
− 1 , (3.6)

• Hewett [34]:

ξ̂He(r) =
DD(r)DR(r)

RR(r)
, (3.7)

• Hamilton [31]:

ξ̂Ha(r) =
DD(r)RR(r)

DR2(r)
− 1 , (3.8)
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• Landy-Szalay [45]:

ξLS(r) =
DD(r)− 2DR(r) +RR(r)

RR(r)
. (3.9)

Generally, the estimation of the correlation function for current galaxy surveys makes

use of the Landy-Szalay estimator since it has been shown that it is characterized by minimal

variance and is stable with respect to variations in density of the random catalogue ([58,

42]). Indeed this is the estimator that we use in our analysis.

3.2 The BASICC simulation

One of the building blocks of our work is the BASICC simulation, the Barionic Acoustic

oscillation Simulation at the Institute for Computational Cosmology, by Angulo et al. [4].

One of the advantages of using numerical simulations is that we know a priori the value of

the parameters we want to measure. Moreover simulations solve the problem of having only

one universe available for observations. Indeed it is possible to construct many simulations,

with the same cosmological parameters, and repeat the measurement for each of them. In

particular, comparing the theoretical values of the parameters we want to measure with the

mean measured estimates, we can assess the systematic errors due to the method, while the

scatter between measurements can give us an idea of the expected statistical errors.

The BASICC simulation has been explicitly designed to study Baryon Acoustic Oscil-

lations (BAO) features in the clustering pattern, so its volume is large enough to follow the

growth of fluctuations in a wide range of scales up to those of BAO. At the same time the

resolution is high enough that it is possible to split the whole box in sub-cubes whose vol-

umes match that of the typical ongoing surveys, still preserving a good statistic on scales

which are central in our analysis. This simulation is made up by 14483 dark matter par-

ticles of mass Mpart = 5.49 × 1010 h−1M�, in a periodic box of side 1340h−1Mpc.

The cosmological model adopted is a ΛCDM model with ΩM = 0.25, ΩΛ = 0.75,

σ8 = 0.9 and h = H0/(100 km s−1 Mpc−1) = 0.73. Dark matter haloes are identified

using a Friends-of-Friends (FOF) algorithm [18] with a linking length of 0.2 times the

mean particle separation. This means that a group of particles can be considered a halo if

for each particle another one can be found at a distance smaller than the linking length. The

minimum number of particles per halo is Npart = 20, so that the minimum mass halo is

Mhalo = 20 ·Mpart ' 1.10× 1012 h−1 M�.
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Since we want to exploit RSD features, we need to simulate this effect artificially. This

means that we need to “observe” the simulation assuming that the only information about

the distances of the objects comes from their redshift, as it happens in real surveys. For this

purpose let us consider a snapshot of the simulation at a given redshift z and place its center

at the corresponding comoving distance

rc(z) = c

∫ z

0

dz′

H(z)
=

∫ z

0

c

H0

√
ΩM +ΩΛ(1 + z′)3

dz′ , (3.10)

where the last equality holds for a flat cosmology. In other words we transform the positions

(Xi, Yi, Zi) of each object in a cube of side L into new comoving coordinates

−L

2
≤ X ≤ L

2
, rc −

L

2
≤ Y ≤ rc +

L

2
, −L

2
≤ Z ≤ L

2
, (3.11)

where we arbitrarily chose the direction of the Y axis for the translation. In this way each

object is assigned with a comoving distance rc,i =
√

X2
i + Y 2

i + Z2
i and hence with a

real undistorted redshift zi obtained inverting equation (3.10). We then add the Doppler

contribution to obtain the observed distorted redshift, as

ẑi = zi +
vr
c
(1 + zi) , (3.12)

where vr is the line of sight peculiar velocity. With this procedure we obtain a mock cata-

logue from which it is possible to compute the redshift space position of the objects through

equation (3.10), using ẑi instead of zi, which is exactly what we were searching for.

3.3 Markov Chain Monte Carlo technique

Our analysis is performed using the Markov Chain Monte Carlo (MCMC) technique, which

is largely diffuse in cosmology. Here we want to give a brief review of this technique since

it is another fundamental building block of our work.

Let us suppose that we want to measure some set of cosmological parameters atrue.

Of course the real parameter values are unknown. When we observe the universe we are

actually observing a statistical realization, a0, of this parameter set. If we could have infinite

other realizations we could measure different sets of parameters ai for each hypotetical

dataset Di, and this would lead to the knowledge of the distribution atrue − ai, which is

what we would need to know to estimate uncertainties in our measurement a0. The usual

procedure is then to assume that a0 is not so far from atrue so that it would not be such a
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big mistake to replace atrue − ai with a0 − ai. Then we can “simulate” many synthetic

realizations of a universe where a0 is the true underlying model, that is compute different

models of the universe varying all the parameters. In this way we could be able to estimate

a0 − ai and map our desired multi-dimensional probability distribution.

The problem here is that this procedure can be computationally very expensive when

the parameter set is big. For example, for CMB studies the considered models considered

have from 6 to more than 11 parameters, and a grid-based likelihood analysis would require

a prohibitive amount of time. For this reason Christensen and Meyer [11] proposed to use

MCMC to investigate the likelihood space. In brief this approach has become the standard

tool for CMB analysis and cosmology in general.

MCMC is a method to sample the posterior distribution P(a|x) of the parameters,

which is the probability of having a given the event x. This procedure exploits the Bayes’

Theorem:

P(a|x) = P(x|a)P(a)∫
P(x|a)P(a)da

, (3.13)

where P(x|a) is the likelihood and P(a) is the prior. The likelihood is the probability of

the data given the model and in many cases can be approximated by a Gaussian. The prior

expresses our knowledge about parameters. This may be the results of previous experiments

or may be a theoretical prior in absence of any data. In such cases, it is common to assume

that all values of the parameters are equally likely and take P(a) = const. This is referred

to as flat prior.

The MCMC generates random draws from the posterior distribution that are fair samples

of the likelihood, essentially doing a random walk in the parameter space such that the

probability of being at any position in this space is proportional to the posterior probability.

Here it is a list of the necessary steps to run a MCMC:

1. start with a set of cosmological parameters a1 and compute your model and your

likelihood, L1;

2. take a random step in parameter space to obtain a new set of cosmological parameters

a2;

3. compute your model for the new set of parameters and the new likelihood L2;

4. if the ratio L2/L1 ≥ 1 take the new step: save the parameter set a2 in a chain and go

back to step 2 generating a new parameter set.
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If L2/L1 < 1 draw a random number x from a uniform distribution from 0 to 1. If

x ≥ L2/L1 don’t take the step: reject the parameter set a2, save again the parameter

set a1 and go back to step 2 generating a new parameter set; If L2/L1 ≥ 1 take the

step and go back to step 2;

5. Repeat the procedure until a convergence criterion is satisfied and the chains have

enough points to provide a resonable sampling of the posterior distribution.

Two key points in the implementation of MCMC are the convergence of the chains and

the mixing, which is strictly related to the steps used to span the parameter space.

After an initial period called burn-in, all the further samples in the chain can be thought

of as coming from a stationary distribution, that is the chain has no dependence on the

starting location. After the stationarity has been reached we need to determine when the

chain has converged. One of the most used methods is the one proposed by Gelman and

Rubin [27]. This method compares several chains drawn from different starting point (the

initial parameter set is different for each chain) checking when they are indistinguishable.

The chains are monitored by recording the quantity

R̂ =
N−1
N W + B

N

(
1 + 1

M

)
W

, (3.14)

where M is the number of chains and N is half the number of the chains element. W

represents the variance within a chain and B is the variance between chains. Then the

quantity R̂ is the ratio of two estimates of the variance in the target distribution, and it is

recorded for each parameter. When the convergence is achieved, as N becomes bigger and

bigger, this ratio should approach to unity. How much this value should be close to unity

is still a matter of debate. It is usual to stop the chains when R̂ < 1.1 for all parameters.

However one should check that this value does not increase once it has reached a value close

to unity, otherwise the convergence can be prematurely declared [28].

Another fundamental problem is to check if there are areas of the target distribution

that are not been covered by a chain. If the MCMC could run for a very long time the

chain would cover the whole distribution, but in the short term it cannot happen. It is thus

crucial that the chain achieves a good mixing, that means that the chain needs to move

rapidly throughout the parameter space. A good mixing can be obtained with a step size

optimization. The choice of the step size in the Markov Chain is crucial to improve the chain
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Figure 3.2: An example of well mixed and converged chain: after the burn-in period the
chain reaches stationarity: each position in space depends only from the previous one and
not from the starting point
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Figure 3.3: An example of bad mixed and unconverged chain: after the burn-in phase the
chain does not reach the stationarity and does not converge.
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efficiency and speed up the convergence. If the step size is too big, the acceptance rate will

be very small, but the mixing will be good; if the step size is too small, the acceptance

rate will be high but the chain will exhibit poor mixing. In both cases the convergence

will require a conspicuous amount of time. Examples of good mixed and bad mixed chains

are shown in Figures 3.2 and 3.3 respectively. Figure 3.2 shows a chain that makes its

way to the targeting distribution. This chain can be used for parameter estimation after

having discarded the burn-in period of 500 chain steps. Figure 3.3 instead shows a chain

that offers no evidence of convergence and is entirely unsuitable for making parameter

estimation. Using chains that have not fully explored the likelihood surface for determining

cosmological parameters will yield wrong results.

Once the chains have converged we can quote the best fit values and errors for each

parameter. However, of all the model parameters ai, some of them may be uninteresting,

but also it may be that we are interested on constraining only one parameter at a time, rather

than to jointly constrain two or more parameters simultaneously. One then marginalises

over the uninteresting parameters, by integrating the posterior distribution:

P(a1|D) =

∫
da2...danP(a|x) . (3.15)

Often one sees marginal distribution of all parameters in pairs, as a way to present some

complex results. In this case two variables are left out of the integrations.
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Chapter 4

Parameters estimation and the
covariance matrix issue

In this chapter we are going to explain in detail the method we use to estimate the cosmolog-

ical parameters, focusing on how the likelihood analysis has been performed and illustrating

the issues related to the covariance matrix. We also show the preliminary tests that helped

us to assess the validity of the method.

4.1 Measuring the correlation function

We focus our attention on the output of the BASICC simulation at z = 1, which is a central

value in the range of redshifts that will be explored in future redshift surveys, like Euclid.

We split the whole box simulation in N3 sub-boxes, with N = 3, obtaining 27 sub-

boxes. This is a good compromise between having a good statistic and having a large

sample volume of ≈ 4473 Mpc3 h−3. The correlation function is measured from the mock

catalogues extracted from these sub-cubes, using the Landy & Szalay estimator [45]:

ξLS(rp, π) =
HH(rp, π)− 2HR(rp, π) +RR(rp, π)

RR(rp, π)
, (4.1)

where rp and π are respectively the separation perpendicular and parallel to the line of sight

(LOS), which is defined as the direction from the observer to the center of the pair. HH ,

RH and RR represent the normalized halo-halo, halo-random and random-random pair

counts in a certain distance range respectively. The random catalogues have NR = 50 times

the number of objects of the mock catalogues. We chose to fix NR = 50 in order to reduce

the shot noise that affects in particular less dense catalogues, as it can be seen in Figure 4.1,

which shows that increasing the number of objects in the random catalogue gives a better
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Figure 4.1: Correlation function in redshift space for the less dense catalogue having a mass
threshold Mcut = 1.1.0× 1012 h−1 M�. In blue the correlation function is measured using
a random catalogue with as many objects as the mock catalogue, whereas in green we show
the one measured using 50 times the number of objects of the mock catalogue. The error
bars represent the square root of the diagonal elements of the covariance matrix.

estimate of the correlation function, allowing us to reach a good signal on all scales.

In Figure 4.2 we show the two-dimensional correlation function from the 27 mocks for

the catalogue of haloes with minimum mass equal to Mcut = 1.10 × 1012M�, which is

the catalogue that we are going to use in the tests illustrated in this chapter. The squashing

effect along the line of sight due to the RSD is clearly visible, whereas the Fingers of

God, the elongation on small scales caused by non-linear motions, are almost absent due

to the lack of substructures in the DM FOF haloes. The bin used to compute the two-

dimensional correlation function is 1Mpch−1 × 1Mpch−1, and the maximum radius at

which we evaluate it is s =
√

r2p + π2 = 50Mpch−1.

Once we have measured the correlation function in two dimensions using eq. (4.1) we

compute the multipoles of the correlation function, defined as follows:

ξl =
2l + 1

2

∫ 1

−1
ξ(rp, π)Pl(µ)dµ

=
2l + 1

2

∫ π

0

√
1− µ2ξ(rp, π)Pl(µ)dθ ,

(4.2)
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Figure 4.2: Correlation function in two dimensions. The grey lines represent the correlation
function measured from the 27 mock catalogues. The green lines represent the mean best
fit model. The isocorrelation contours are set arbitrarily to {0.05, 0.1, 0.2, 0.5, 1}.

where Pl(µ) are the Legendre polynomials and µ is the cosine of the angle between the

separation vector and the line of sight: µ ≡ cos θ = π/rp. The first four multipoles are

shown in Figure 4.3.

4.2 Modelling the correlation function

In order to model the correlation function we need at first to compute the non-linear power

spectrum Pnl(k) at z = 1 using CAMB [48] plus the HALOFIT [70] correction that ac-

counts for non-linearities. The theoretical DM real space correlation function ξDM (r) is

then obtained by Fourier transforming the non-linear power spectrum, according to equa-

tion (1.48) from Chapter 1. To obtain the halo correlation function we multiply it by a bias

factor: ξhalo = b2ξDM . The two-dimensional correlation function in redshift space is now
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Figure 4.3: Multipoles of the correlation function: monopole ξ0 (top left panel), quadrupole
ξ2 (top right panel), hexadecapole ξ4 (bottom left panel), hexacontatetrapole ξ6 (bottom
right panel). The grey lines represent the correlation function measured from the 27 mocks.
The magenta lines represent the mean multipoles over the 27 mocks, the error bars being
the square root of the diagonal elements of the covariance matrix. The best fit mean model
is represented by the green lines.

computed using the model described in Chapter 2. We compute at first the multipoles:

ξ0(s) =

(
1 +

2

3
β +

1

5
β2

)
ξhalo(r) (4.3)

ξ2(s) =

(
4

3
β +

4

7
β2

)
[ξhalo(r)− ξ̄halo(r)] (4.4)

ξ4(s) =
8

35
β2

[
ξ(r) +

5

2
ξ̄halo(r)−

7

2
¯̄ξhalo(r)

]
, (4.5)

where the barred quantities are defined as

ξ̄halo(r) ≡ 3

r3

∫ r

0
ξhalo(r

′)r′2dr′ (4.6)

¯̄ξhalo(r) ≡ 5

r5

∫ r

0
ξhalo(r

′)r′4dr′ . (4.7)

Then, we obtain the two-dimensional correlation function via the formula:

ξ∗S(rp, π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ) . (4.8)
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In order to take into account the non-linear motions on small scales due to peculiar veloci-

ties, we convolve the correlation function ξ∗S with the distribution function f(v) of random

pairwise velocities along the line of sight:

ξ(rp, π) =

∫ +∞

−∞
ξ∗S

[
rp, π − v(1 + z)

H(z)

]
f(v)dv , (4.9)

where f(v) can be represented by an exponential form

f(v) =
1

σ12
√
2
exp

(
−
√
2|v|
σ12

)
. (4.10)

The non linear model of eq. (4.9) can be now integrated to obtain the multipoles models

according to equation (4.2).

4.3 Likelihood analysis and covariance matrix

We use the 27 mock catalogues extracted from the BASICC simulation to estimate the co-

variance matrix, which is constructed as follows:

Cij =
1

N − 1

N∑
k=1

(X̄i −Xk
i )(X̄j −Xk

j ) , (4.11)

where the sum is over the number of mocks N and X is the data vector containing the

measured correlation function; X̄i is the mean value over the N mocks of the ith element

of the data vector, while Xk
i is the value of the ith component of the vector corresponding

to the kth mock catalogue. The likelihood is taken to be proportional to exp(−χ2/2) [59],

where χ2 is defined as:

χ2 =

Nbins∑
i,j=1

(Xth,i −Xobs,i)C
−1
ij (Xth,j −Xobs,j) , (4.12)

where Nbins is the length of the vector X, Xth is the theoretical vector and Xobs is the data

vector.

When using the multipoles in the likelihood analysis the data vector is made up by the

components of the multipoles vectors as follows:

X = {ξ(1)0 , ξ
(2)
0 , ..., ξ

(M)
0 , ξ

(1)
2 , ξ

(2)
2 , ..., ξ

(M)
2 , ξ

(1)
4 , ..., ξ

(M)
4 , ξ

(1)
6 , ..., ξ

(M)
6 , ...} , (4.13)

where M is the dimension of each vector. The covariance is now a sort of block matrix in

which the contribution of the covariance between multipoles is present. In this thesis we
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Figure 4.4: Reduced covariance matrix constructed for the monopole (top left panel) and
quadrupole (top right panel) and the cross covariance between the two (bottom panel) in
bins of 5 Mpc h−1.

will considered only the monopole and the quadrupole, where the most relevant information

is contained, and ignore the contribution of the noisier subsequent orders. Figure 4.4 shows

the reduced covariance matrix defined as C̃i,j = Ci,j/
√

Ci,iCj,j . We can see that there is

significant off-diagonal covariance and non negligible covariance between monopole and

quadrupole.

The mock data are analysed with a MCMC procedure, using the software package Cos-

moMC [49], which has been modified adding all the functions and parameters needed for

our analysis. In particular we add a new module in which we implemented the model of the

correlation function and we add parameters that were not already included in the code such

as the distortions parameter β, the pairwise velocity dispersion σ12 and the bias factor b.

As we are going to see in the next sections we perform the likelihood analysis using

both two-dimensional correlation function and its multipoles. In the recent literature we

can find many works that exploit RSD to give constraints on the cosmological parameter

using two-dimensional correlation function or its multipoles. For example, Contreras et al.
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(2013) [16], Chuang & Wang (2012) [13] used the two-dimensional correlation function to

estimate the growth rate and H(z) and DA(z) respectively. de la Torre et al (2013) [22],

Chuang et al. (2013) [12], Samushia et al. (2014) [64], Howlett et al. (2014) [37] instead

made use of the multipoles to estimate the growth rate and other cosmological parameters.

The use of the multipoles has its pros and cons. They carry less information because

they are constructed by integrating the two-dimensional correlation function. Moreover,

with the two-dimensional correlation function it is possible to exclude the small scales from

the analysis, which can cause problems due to the incorrect model of the non-linear motions.

This is not fisible with the multipoles, because excluding the small scales in the integral

(4.2) will give quantities that, by definition do not correspond to the multipoles anymore.

However sometimes they are preferred because in this way it is possible to work with one

dimensional quantities and this helps to reduce the noise in the covariance matrix. Indeed,

as shown for instance by Hartlap et al (2007) [32], the numbers of bins used to measure

the covariance matrix should be smaller than the number of mock catalogues, otherwise the

covariance matrix turns out to be very noisy and this could lead to the underestimation of

the parameter errors. In the worst case it could also give catastrophic problems such as very

huge or negative values of the χ2, which do not allow the convergence of the likelihood

analysis procedure.

This is what happens in our case with the covariance matrix obtained from the two-

dimensional correlation function, and for this reason we prefer to use the multipoles. Nev-

ertheless we are going to show also some results obtained with the two-dimensional cor-

relation function, which allowed us to check the mothod. Reducing to one dimensional

quantities is not enough to ensure the convergence, and that is why we need to choose a

suitable number of bins through the choice of the binning, which is set to 5 Mpc h−1. We

refer to the Appendix A for further details.

However, even reducing the number of bins, in some cases numerical problems can

still affect the parameter estimation. For this reason, following the approach of [13] we try

to smooth the covariance matrix and use the smoothed version in our likelihood analysis.

The smoothing algorithm exploits the fact that the diagonal elements of the matrix should

be larger than the first off-diagonal elements, which in turn should be larger than all other

elements. Therefore we consider the vector made up by the diagonal elements only and
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average each of them using the two nearby elements according to the formula:

C̃(i, i) = (1 − p)C(i, i) + p [C(i+ 1, i+ 1) + C(i− 1, i− 1)] /m, (4.14)

where p is a weight and m is the number of nearby elements considered in the averaging

procedure, which is 2 in this case. If one of the two nearby elements is not present (i.e.

when we considered the first and the last element of the vector) then C̃(i, i) = C(i, i). The

same algorithm is applied to the first off-diagonal elements, while the “generic” elements

of the covariance matrix is averaged using all the nearby elements:

C̃(i, j) = (1 − p)C(i, j) +
p

m
·


C(i+ 1, j) + C(i− 1, j)+
C(i, j + 1) + C(i, j − 1)+

C(i+ 1, j + 1) + C(i− 1, j − 1)+
C(i+ 1, j − 1) + C(i+ 1, j − 1)

 , (4.15)

provided that both elements of each “couple” are present, otherwise only m = {2, 4, 6}

nearby elements can be used in the averaging procedure.

As we will see this smoothing procedure helps in alleviating some of the numerical

problems related to the matrix noise, even if it does not work properly for all cases.

4.4 Reference value for the distortion parameter

Before measuring the amplitude of the redshift space distortions, we need to establish a

reference value to which our measurements will be compared. The correct value of β for

each sample can be obtained from the relation [55] [76]:

β(z) =
Ω0.55
m (z)

b(z)
, (4.16)

where Ω0.55
m (z) is the growth rate of fluctuations and b(z) is the linear bias of the sample.

The value of Ωm(z) is computed via the relation:

Ωm(z) =
(1 + z)3Ωm0

(1 + z)3Ωm0 + (1− Ωm0)
. (4.17)

The linear bias is estimated as b2 = ξhalo(r)/ξDM (r). The values found are in agreement

with the ones computed from two popular models: Sheth, Mo & Tormen (2001) [69] and

Tinker et al. (2012) [73] (see [7, 52]).

For the BASICC simulation the present-day matter density is Ωm(0) = 0.25 and then,

according to this equation, at redshift z = 1 we have Ωm(1) = 0.73. Therefore, for the

catalogue we are going to use in the following tests, the bias factor is bt = 1.44 and the

corresponding value of the distortions parameter is βt = 0.58.
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4.5 Parameter estimation using the two-dimensional correlation
function

The first test we perform aims at estimating the distortion parameter β using the two-

dimensional correlation function, in order also to test the modules we add to CosmoMC.

We apply the method to the 27 mock catalogues, using for simplicity the diagonal co-

variance matrix. We run the MCMC analysis keeping all the parameter fixed to the input

value of the simulation, with β and σ12 as the only free parameters, keeping the other

parameters fixed to the input value of the simulation. We find β̄ = 0.54 ± 0.03 and

σ̄12 = 226.0 ± 38.6 km/s in the range of scales 3 Mpc h−1 ≤ r ≤ 35 Mpc h−1. The

value of β is underestimated with respect to the theoretical value of about 10%, in agree-

ment with the results obtained by other works (see for instance [7]). This underestimation

is due to fact that the model for the two-dimensional correlation function does not describe

properly the non linear motions and improvements are needed (see [40, 54, 66, 74]). The

values quoted here are obtained averaging the best fit values from the 27 mocks and the

error is the scatter betweeen these values, which is one order of magnitude bigger than the

error found by the MCMC for each mock. The best fit values for the 27 mocks are shown in

Figure 4.5 together with the contour for one mock. The contours represent the 1σ and 2σ er-

rors obtained with the MCMC procedure, which are clearly smaller than the scatter between

the best fit points. This tells us that the covariance between bins can not be neglected in this

case and that using only the diagonal matrix leads to an underestimation of the errors. This

result will be confirmed in the following tests that make use of the multipoles. Moreover

the contours can not reproduce the correlation between β and σ12, which is expected from

a theoretical point of view, since both parameter depend on the growth rate.

As next step we use the full covariance matrix obtained from the two-dimensional corre-

lation function. In the range of scales analysed we use 33 bins for each direction to measure

the correlation function, so that the covariance matrix dimension is 1089 × 1089. How-

ever, having only 27 sub-boxes makes the covariance matrix too noisy, indeed using the full

covariance matrix leads to unconverging results. Even the smoothing procedure does not

solve the problem, leading to biased results for each mock catalogue.
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Figure 4.5: Contour plot for one of the mock catalogues (cyan ellipses) and the best fit
values from the 27 mocks (blue diamonds) obtained with the two-dimensional correlation
function and its diagonal covariance matrix. The ellipses represent 1 and 2σ contours.

4.6 Estimation of β using correlation function multipoles

We apply the MCMC procedure using now the multipoles of the correlation function, mea-

sured in bins of 5 Mpc h−1, using both the diagonal and the full covariance matrix. At

first we measure only the distortion parameter β, keeping σ12 fixed to a suitable value. This

choice is made for sake of simplicity and to speed up the computation, since we are more

insterested in testing the method and the covariance matrix rather than in the estimate of β.

We obtain β̄ = 0.48 ± 0.01 with the full matrix and β̄ = 0.52 ± 0.01 with the diagonal

matrix. We can see that the best fit value for β are different with respect to the ones found

in the previous case, and this result is quite obvious, since σ12 is fixed to the same value

for all the mock catalogues. Indeed, due to the correlation between these two parameters,

fixing σ12 to a given value, which can not be the best fit value for a certain mock, can bias

the estimate of the β parameter. However, choosing a different value of σ12 will change the

best fit values but not the amplitude of their errors, as verified.

Once also the multipole method has been tested, we can run our code to estimate si-

multaneously β and σ12. What we find is β̄ = 0.54 ± 0.02 and σ̄12 = 235.7 ± 7 km/s
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Figure 4.6: Contour plot for one mock catalogue (cyan and black ellipses) and the best fit
for the 27 mocks (blue and green diamonds) obtained using the multipoles of the correlation
function with the diagonal matrix (left panel) and the full matrix (right panel) with β and
σ12 as free parameters. The ellipses represent 1 and 2σ contours.

using the full matrix and β̄ = 0.55± 0.02 and σ̄12 = 233.0± 17.8 km/s with the diagonal

matrix. These results are summarized in Figure 4.6, which shows the contours for one mock

catalogue and the best fit points for each mock catalogue, for both diagonal and full matrix.

We can notice again that the error obtained with the diagonal matrix is underestimated with

respect to the scatter between the 27 best fit values, and that this does not happen when we

use the full matrix. The discrepancy between scatter and mean error is now around 50%,

smaller than the one obtained with the two-dimensional correlation function. This result

lets us think that the amplitude of the discrepancy can be related to the dimension of the

covariance matrix, in particular to the ratio between the number of bins and the number of

mock catalogues. Indeed it seems that the smaller the ratio is, the smaller the discrepancy

is.

4.7 Estimation of β and bias factor b

In all these tests we always kept the bias factor fixed to the theoretical value obtained via

equation (4.16). However, in a real survey it is not possible to estimate the bias factor b

through equation (4.16) since the real observable is the correlation function of galaxies,

whereas ξDM can not be directly observed. A possible solution is to assume a model for

the dependence of the bias on the mass of groups or clusters, which can be estimated for
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Figure 4.7: Contour plot for one mock catalogue (cyan and black ellipses) and the best fit
for the 27 mocks (blue and green diamonds) obtained using the multipoles of the correlation
function with the diagonal matrix (left panel) and the full matrix (right panel) with β and b
as free parameters. The ellipses represent 1 and 2σ contours.

instance from the X-ray emission temperature or luminosity. Due to these uncertainties on

the bias factor we prefer to consider it a free parameter. This is the convenient choice when

we want to estimate other cosmological parameters, such neutrino mass fraction, that affect

the amplitude of the correlation function.

The results obtained from the MCMC procedure with β and b as free parameters are

β̄ = 0.43 ± 0.01 and b̄ = 1.49 ± 0.01 using the full matrix and β̄ = 0.49 ± 0.02 and

b̄ = 1.46 ± 0.02 with the diagonal matrix only. They are shown in Figure 4.7, where we

can observe the comparison between the single mock error represented by the contour plot,

and the scatter of the best fit values obtained from the 27 mocks.

The discrepancy between the values of β is due to having fixed the value of σ12 and

can be removed letting this parameter free to vary. Indeed repeting the analysis adding

σ12 as a free parameter, we obtain (for one single mock catalogue) β = 0.58 ± 0.04 and

b = 1.38 ± 0.02 with the full matrix and β = 0.53 ± 0.03 and b = 1.40 ± 0.02 with the

diagonal matrix. The best fit now are in agreement within 2σ, and, as expected to happen

with one more free parameter in the MCMC, the error of the two parameter is bigger than

the previous case.

The results of all these tests ensure the validity of the method and the accuracy of the

changes made on CosmoMC. They are the starting point for a broader analysis which will
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lead to the main results of this thesis.
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Chapter 5

Statistical and sistematic errors in
RSD measurements

The aim of this thesis is to exploit RSD plus power spectrum shape to constrain cosmo-

logical parameters through a MCMC procedure, and to make forecasts of the statistical

precision reachable in future projects, aimed at measuring these parameters. Some attempts

have been recently made to produce forecasts based on RSD using numerical simulations.

For example, as explained in Chapter 2, Guzzo et al. [29] used mock surveys extracted from

the Millennium simulation to estimate the errors affecting their measurements of the growth

rate. They found a scaling relation for the relative error on the β parameter as a function of

survey volume and mean density (see eq. (2.32)).

This formula has been refined by Bianchi et al. [7] in 2012. The authors analysed the

same catalogues of dark matter haloes used in this thesis, extracted from a snapshot of the

BASICC simulation [4] at z = 1, finding that the parameter β is underestimated by up

to 10%, depending on the minimum mass of the considered haloes. They proposed a new

fitting formula, that aims at separating the dependence of the error on bias and density:

δβ

β
≈ Cb0.7V −0.5 exp

( n0

b2n

)
(5.1)

where n0 = 1.7 · 10−4 h3Mpc−3 and C = 4.9 · 102 h−1.5Mpc1.5.

Here we want to follow the same approach to study the error dependence for some

different parameters, focusing our attention on the neutrino mass fraction. The differences

with respect to the work made in [7] mainly reside on the fact that we use a theoretical

real space correlation function obtained from the dark matter power spectrum instead of

the deprojected one, in the use of the multipoles of the correlation function rather than the

full two-dimensional correlation function, and in the procedure used to estimate parameters,
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Npart Mcut [h
−1 M�] Ntot n [h3 Mpc−3]

20 1.10× 1012 7483318 3.11× 10−3

63 3.46× 1012 2164960 9.00× 10−4

136 7.47× 1012 866034 3.60× 10−4

236 1.30× 1013 423511 1.76× 10−4

364 2.00× 1013 230401 9.58× 10−5

Table 5.1: Properties of the halo catalogues used in the analysis. Npart is the minimum
number of particles per halo; Mcut is the corresponding threshold mass; Ntot is the number
of haloes with Mhalo ≥ Mcut; n is the number density, computed as Ntot/V where V =
13403h−3Mpc3 is the simulation volume.

which in our case is an MCMC likelihood analysis. In this way we can provide constraints

on cosmological parameters using the shape of the power spectrum and also map their

probability distributions.

In a companion paper of [7], Marulli et al. (2012) [52] investigated other effects that

could impact the measurement of RSD. In particular they studied how redshift measure-

ments errors and geometrical distortions affect RSD. They found that large redshift errors

introduce a systematic bias in the estimate of β which can be alleviated using a Gaussian

model for the velocity distribution function f(v), rather than the exponential one. They

also found that the measure of β can be affected by the geometric distortions induced by

the incorrect choice of the background cosmology, when converting redshifts into distances.

However this effect is very small and the correct value of β can be recovered even assum-

ing a wrong cosmological model, that is assuming a different value for the matter density

parameter Ωm.

5.1 Halo catalogues from the BASICC simulation

To reach our goal we are going to apply the method described in Chapter 4 to a series of

halo catalogues characterized by different values of bias, density and volume extracted from

the BASICC simulation.

We consider the snapshot of the BASICC simulation at z = 1 and select halo catalogues

with different mass thresholds (i.e minimum numbers of particles per halo). The properties

of these catalogues are summarized in Table 5.1. This selection allows us to study the

dependence of the error on the sample bias. However, samples with high bias are also less

dense. Therefore, in order to separate the dependence of the errors on bias and density, the
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Mcut × 10−12 [h−1 M�]
1.10 3.46 7.47 13.0 20.0

6.87 ∗ ∗ ∗ ∗ ∗
9.68 ∗ ∗ ∗ ∗ ∗
12.1 ∗ ∗ ∗ ∗
17.6 ∗ ∗ ∗ ∗
24.8 ◦ ◦ ◦

n× 105 36.0 ∗ ∗ ∗
[h3 Mpc−3] 58.7 ∗ ∗

90.0 ◦ ∗
131 ∗
204 ∗
311 ◦

1.44 1.80 2.15 2.49 2.89
bias

Table 5.2: Sub-samples used in our analysis to explore the dependence of the errors on mean
density, bias and volume. Each sample is characterized by given values of mean density and
bias (or mass threshold). The full, non-diluted, samples coincide with the bottom entry of
each column. The entries in the table identified by circles represent the sample used to
test the dependence of the errors on volume. For these samples the simulation box has
been splitted in N3 sub-boxes with N = {3, 4, 5, 6}, whereas for the other sub-samples
(asterisks) we only consider N = 3.

samples have been diluted to create a series of catalogues with decreasing density, down to

a value of 6.87 × 10−5h3 Mpc−3 for which shot noise starts to dominate [7]. For each of

these samples with varying bias and density, we split the simulation box in N3 sub-boxes,

with N = 3, obtaining 27 sub-boxes. For some samples we also split the box in N3 parts

with N = {4, 5, 6} in order to explore the error dependence on volume, as shown in Table

5.2.

Then we extract the mock catalogues and measure the correlation function using the

Landy&Szalay estimator [45]. The covariance matrix is computed for each sub-samples

according to the procedure described in Section §4.3.

In this Chapter we are going to show some preliminary results obtained analysing all

the 11 sub-samples from the catalogue with Mcut = 1.10× 1012 h−1M�, corresponding to

the first column of Table 5.2.
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Figure 5.1: Contour plot for β and σ12 obtained using the monopole only (blue contours),
the quadrupole only (green contours) and both monopole and quadrupole (magenta con-
tours). The ellipses represent 1σ and 2σ contours.

5.2 Results on the error dependence

In order to study the dependence on density of the relative β error, we perform the MCMC

analysis on the sub-samples obtained diluting the original catalogue with Mcut = 1.10 ×

1012 h−1 M�, considering β and σ12 as free parameters, and keeping all the other parame-

ters fixed to the input value of the simulation.

In Figure 5.1 we plot, for a single mock catalogue, the contours obtained using the

monopole and the quadrupole separately in the MCMC likelihood analysis, plus the contour

obtained using monopole and quadrupole. We can see that when using the monopole only

we are not able to estimate the σ12 value, since the non-linear effects are mostly embedded

in the quadupole. The contours obtained using both multipole moments lie, as expected, on

the intersection of the contours from monopole and quadrupole. In Figure 5.2 we show the

1σ and 2σ contours obtained using both monopole and quadrupole, for the same mock cat-

alogues, considering this time different density values, with larger contours corresponding

lower densities.

64



CHAPTER 5. STATISTICAL AND SISTEMATIC ERRORS IN RSD
MEASUREMENTS

Figure 5.2: Contour plot for β and σ12 from catalogues with increasing density, larger
contours correspond to lower densities. The ellipses represent 1σ and 2σ contours.

This result is summarized in Figure 5.3, where it is shown the relative error on β as a

function of density. The dots represent the mean error over the 27 mock catalogues, for

each density value, and the error bars represent the scatter between the 27 errors.

The dot-dashed line represents a fitting function having the same functional form adopted

by Bianchi et al. (2012) [7]:
δβ

β
∝ exp

(
n0

An

)
, (5.2)

with A ' 1.6. The parameter n0 is fixed to 1.7 × 10−4 h3 Mpc−3 which is roughly the

density at which cosmic variance starts to dominate. We want to stress that we are not

interested in performing such a detailed study on σ12 since the model does not properly

describe the non-linear motion, thus it is just treated as a fitting parameter.

The same analysis has been performed considering β and b as free parameters. In Fig-

ure 5.4 we present the results obtained using separately the monopole and the quadrupole

compared to the ones obtained with both vectors. As in the previous case we can notice that

the two parameters can not be constrained accurately using only one multipole at a time.

The results obtained using monopole and quadrupole together, considering mock cata-
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Figure 5.3: Mean relative error on β over the 27 mocks (blue dots connected by solid line)
as a function of density, obtained with the diagonal matrix analysing the mocks with β and
σ12 as free parameters. The dot-dashed line represents the fitting function described by
equation (5.2). The error bars represent the scatter between the 27 errors.

logues with different density values, are shown in Figure 5.5 in the form of contour plot. In

Figure 5.6 we plot the errors for β and b as a function of density. The conclusions we can

draw from this analysis are very similar to the ones reached in the previous case. Indeed,

both error trends can be represented analytically with the fitting function of equation (5.2).

This basically confirms the trend observed by [7], even if the fitting parameters are dif-

ferent. This is not fully expected since the results have been obtained with different meth-

ods, using also different parameters in some cases, and small differences can be present.

5.3 Assessing the validity of the matrices

We repeat the analysis using also the full matrix and the smoothed one obtained through

the algorithm described in section §4.3, in order to establish whether we can trust the full

matrix and whether the smoothing is a necessary step or not.

As in the previous section, we consider at first the case with β and σ12 as free param-

eters. The results are shown in Figure 5.7. What we expect is that the error computed

using the smoothed matrix lies between the ones obtained with the diagonal and the full

matrix, since the algorithm aims at smoothing out the numerical fluctuations reducing the
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Figure 5.4: Contour plot for β and b obtained using the monopole only (blue contours), the
quadrupole only (green contours) and both monopole and quadrupole (magenta contours).
The ellipses represent 1σ and 2σ contours.

off-diagonal elements.

The results of the analysis with β and b as free parameters are illustrated in Figure 5.8

for the relative error on β and b. As regards β, the smoothed matrix gives an error which

is smaller than both the full and the diagonal matrices, for almost all the density bins. The

opposite trend is observed for the relative error on b, that is with the smoothed matrix we

can infer an error which is bigger than the ones obtained with the diagonal and the full

matrices.

Due to the tension of the resuts obtained with the smoothed matrix, we can conclude

that the smoothing procedure is not reliable. We can also draw the conclusion that even the

error obtained with the full matrix is not trustworthy. Indeed, as it can be noticed from the

Figures 5.7 and 5.8, the full matrix sometimes gives an error which is smaller than the one

obtained with the diagonal matrix. This is exactly the problem pointed out by Hartlap et

al. (2007) [32], which is related to the relation between the number of bins and the number

of mock catalogues, as already explained in section §4.3 of Chapter 4. These reasonings,

together with the fact that the diagonal matrix allows to obtain a less scattered trend for the
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Figure 5.5: Contour plot for β and b from catalogues with increasing density, larger contours
correspond to lower densities. The ellipses represent 1σ and 2σ contours.

error in all the cases analysed, lead us to exclude from our subsequent analyses the full and

the smoothed matrices, so we are going to make use of the diagonal matrix only.
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Figure 5.6: Mean relative error on β (upper panel) and b (lower panel) over the 27 mocks
(blue dots connected by solid line) as a function of density, obtained with the diagonal
matrix analysing the mocks with β and b as free parameters. The dot-dashed line represent
the fitting function of equation (5.2). The error bars represent the scatter between the 27
errors.
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Figure 5.7: Relative error on β as a function of density obtained analysing the mock data
with β and σ12 as free parameters. The dots represent the mean MCMC error over the 27
mocks, for the diagonal (blue dots connected by the dashed line), the full matrix (green
dots connected by the dotted line) and the smoothed matrix (red dots connected by the
dot-dashed line). The error bars represent the scatter between the 27 errors.
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Figure 5.8: Relative error on β (upper panel) and b (lower panel) as a function of density
obtained analysing the mock data with β and b as free parameter. The dots represent the
mean MCMC error over the 27 mocks, for the diagonal (blue dots connected by the dashed
line), the full matrix (green dots connected by the dotted line) and the smoothed matrix (red
dots connected by the dot-dashed line). The error bars represent the scatter between the 27
errors.
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Chapter 6

Constraining the neutrino mass
fraction

Estimating the neutrino mass is one of the main challenge for cosmology today. Accord-

ing to the standard model of particles, neutrinos are massless, weakly interacting, particles.

However the experiments on the oscillations of solar and atmospheric neutrinos started some

years ago tell us that neutrinos cannot be massless. Neutrino oscillations experiments are

sensitive to the mass differences between neutrino eigenstates, and the current data imply

|∆m2
31| ' 2.4 × 10−3eV2 and ∆m2

21 ' 27.6 × 10−5eV2 ([5]). From these mass differ-

ences it is possible to construct two mass hierarchies for neutrinos: the so-called “normal”

hierarchy, m1 < m2 � m3, with two light neutrinos and a heavy one and the “inverted”

hierarchy, m3 � m1 < m2, with only one light neutrino and two heavy ones. These mea-

surements provide a lower limit for the sum of neutrino masses of ≈ 0.06eV (see [47] for a

review).

However oscillation experiments can only measure the differences in the squared masses

of the neutrinos and not the absolute mass scale. Now that cosmology has entered in the

precision era and the cosmological parameters can be constrained at percent level, obser-

vations of the universe can assist in the quest for neutrino mass, since neutrinos affect the

evolution of the universe in several observable ways.

6.1 Effects of neutrinos on large scale structure

After thermal decoupling, relic neutrinos constitute a collisionless fluid, where the individ-

ual particles free-stream with a characteristic velocity which is the thermal velocity. As long

as neutrinos are relativistic, the free-streaming scale is simply the Hubble radius. When they
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become non-relativistic, their thermal velocity decays and the free-streaming scale is equal

to [47]:

kFS = 0.82
H(z)

(1 + z)2
mν

1eV
h Mpc−1 . (6.1)

The physical effect of free-streaming is to damp neutrino density fluctuations on scale k >

kFS , where neutrinos can not cluster due to their large thermal velocity. This affects the

matter power spectrum since neutrinos do not contribute to the gravitational potential wells

produced by dark matter and baryons. Hence the power spectrum is reduced by a factor

(1− fν)
2, where

fν ≡ Ων

Ωm
(6.2)

is the neutrino mass fraction. For the same reason, the growth rate of dark matter perturba-

tions is suppressed and acquires a scale dependence as demonstrated by [43].

Neutrino mass has non-trivial effects also on features of the CMB temperature anisotropies.

Indeed neutrino mass can alter the redshift of matter-radiation equality if Ωmh2 is fixed, and

viceversa. The first case translates in an overall modification of the amplitude and the loca-

tion of the acoustic peaks. A change in the matter density would instead affect the angular

diameter distance to the last scattering surface DA(zdec), and the slope of the CMB spec-

trum at low multipoles due to the Integrated Sachs-Wolfe effect.1

Many works attempted to measure neutrino mass combining different cosmological

probes: [67], [35], [36], [20], [60], [65], [72], [39], [44], [63], [77]. One of the latest con-

straints come from [6]: combining measurements from the Baryon Oscillation Spectrscopic

Survey (BOSS) CMASS DR11 with WMAP9 they found
∑

mν = 0.36 ± 0.14eV which

excludes massless neutrinos at 2.6σ. The significance of this measurement is increased to

3.3σ including weak lensing and BAO measurements.

Among large scale structure probes, RSD are one of the most promising ways to mea-

sure the neutrino mass. Indeed, in presence of massive neutrinos, the parameter β depends

not only on redshift, but also on the wavenumber, because of the scale dependence acquired

by the growth rate f(k, z). The suppression of the growth rate affects also the rms of galaxy

peculiar velocity, since both the growth rate f(k, z) and the matter power spectrum enter in

the bulk flow predicted by linear theory ([43], [23]).

Massive neutrinos strongly affect also the spatial clustering of cosmic structures: as

1The Integrated Sachs-Wolfe effect describes the energy change of the CMB photons as they pass through a
gravitational potential well.
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shown by [53], the average number density of massive structures is suppressed with an en-

hanching of the halo bias in a ΛCDM plus neutrinos with respect to a ΛCDM model without

neutrinos. This implies a rise in the halo correlation function due to the smaller value of the

distortion parameter and the bulk flow in presence of massive neutrinos. Therefore the best

fit value of β and σ12 are reduced by an amount that increases with
∑

mν and z.

However, all these effects are degenerate with the amplitude of the matter power spec-

trum, described by σ8. Indeed, the differences between the best fit values of β in a ΛCDM

and a ΛCDM + ν models is significantly reduced if the two cosmologies are normalized

to the same value of σ8. Nonetheless, the relative difference between the theoretical values

of β in these two models, at z = 1, is δβ/β ' 3% which corresponds to the precision

reachable by future redshift surveys in measuring the redshift space distortion parameter at

z ≤ 1.

This means that RSD can contribute to estimate the total neutrino mass, helping to

disentagle degeneracies with the other cosmological parameters.

6.2 Estimate of the neutrino mass fraction

We analyse the mock data with the MCMC procedure. Here the parameter space that we

explore is made up by three parameters: the neutrino mass fraction fν = Ων/Ωm, the bias

parameter b and the pairwise velocity dispersion σ12. The neutrino mass fraction enters the

model through the shape of the theoretical undistorted correlation function. The bias instead

enters in the model twice: first when converting the real space DM correlation function into

the halo correlation function through the usual procedure ξhalo(r) = b2ξDM (r) and then

in the multipole expansion through the parameter β, which in our analysis is expressed as

Ωγ
m(z)/b(z), with γ = 0.55 according to [50]. Ωm(z) is the input value of the simulation

computed at redshift z = 1 via the equation (4.17).

Once the theoretical correlation function is computed from a certain set of cosmological

parameters, it must be rescaled to the fiducial cosmology used to measure the correlation

function, which in our case is the input cosmology of the simulation, according to the rela-

tion (see [68]):

ξfidth (rp, π) = ξth

(
DA(z)

Dfid
A (z)

rp,
Hfid(z)

H(z)
π

)
. (6.3)

Indeed geometrical distortions can be introduced due to the incorrect choice of the back-
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Figure 6.1: Contour plot for b and fν for the catalogue with Mcut = 1.20× 1012 M� h−1.
Larger contours correspond to lower density samples. The input value of simulation are
recovered within 1σ.

ground cosmology when converting redshifts into distances. However, in our case this

procedure is not necessary since the only varying cosmological parameter is fν whereas the

total amount of matter Ωm is held fixed to the input value of the simulation, so that H(z)

and DA(z) do not change and there are no geometric distortions to be accounted for.

The joint constraints on the neutrino mass fraction fν and bias b obtained from the

catalogues with Mcut = 1.20× 1012 M� h−1 are shown in Figure 6.1. We can see that the

correct values of both parameters are recovered for each catalogue.

We obtained these results using the monopole and the quadrupole of the correlation

function, neglecting the first two bins of the quadrupole moment. Indeed, using the monopole

together with the whole quadrupole, we found a sistematic underestimation of the bias fac-

tor for the samples characterized by high bias values. This is probably due to the fact that

the model does not properly describe small scales and this makes impossible to recover the

correct values of the parameters.
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Figure 6.2: Bias relative errors as a function of bias for different mass and density samples,
obtained from a single mock catalogue. The dots represent the errors measured from the
simulated samples, the dashed lines show the scaling formula obtained by fitting our results
(equation 6.8).

6.3 Error dependence on the survey parameters

Having analysed all the samples from Table 5.2 we can now present our results about the

dependence of the b and fν errors on the three survey parameters: bias, density and volume.

We illustrate at first the dependence on one parameter at a time, and then we summarize

these dependencies presenting a fitting formula able to describe the overall behaviour of the

errors.

6.3.1 Error dependence on bias

In Figures 6.2 and 6.3 we plot the relative errors on b and fν , respectively, as a function of

bias, in different density bins. For all the sample considered the volume is held fixed. The er-

ror dependence on bias is basically constant in the range of density 1.7×10−4 (h/Mpc)3 <
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Figure 6.3: Errors on neutrino mass fraction as a function of bias for different mass and
density samples, obtained from a single mock catalogue. The dots represent the errors
measured from the simulated samples, the dashed lines show the scaling formula obtained
by fitting our results (equation 6.8).

n < 3.1 × 10−3 (h/Mpc)3. For density smaller than 1.7 × 10−4 (h/Mpc)3 instead, the

error tends to decrease as the bias increases. In the high density regime, the trend of the

error can be described by a power law of the form [7]:

δx ∝ bα1 , (6.4)

where the exponent α1 will have a very small value. In the low density regime, that is

below 1.7×10−4 (h/Mpc)3, the dependence seems to be better described by an exponential

decrease [7]:

δx ∝ exp(1/bα2) . (6.5)

These results suggest that at high density the samples give similar errors. At low den-

sities, the gain due to a high distortion signal of the low-bias samples is cancelled out by

the dilution of the catalogues. The high-bias samples instead, which are characterized by a
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Figure 6.4: Bias relative errors as a function of density for different mass (i.e. bias) samples,
obtained from a single mock catalogue. The dots represent the errors measured from the
simulated samples. The coloured dashed lines represent the fitting function of equation (6.8)
for each mass sample. The black dashed lines instead show the scaling formula obtained
by fitting all the catalogues simultaneously. The colour code is the same of the previous
Figures.

stronger clustering signal and are intrinsically less dense, give a smaller error and then are

more suitable when estimating these parameters using RSD.

6.3.2 Error dependence on density

The dependence of the errors on density is represented in Figures 6.4 and 6.5 for b and fν

respectively. We plot the errors for samples of different values of bias and density, having

fixed the volume. Both errors clearly decrease in an exponential way, becoming constant for

high values of the density. Indeed decreasing the density leads to a larger error, because of

the shot noise, whereas going at higher densities there is a dominance of the cosmic variance

and the error remains almost constant. This behaviour can be described by an esponential
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Figure 6.5: Errors on neutrino mass fraction as a function of density for different mass (i.e.
bias) samples, obtained from a single mock catalogue. The dots represent the errors mea-
sured from the simulated samples. The coloured dashed lines represent the fitting function
of equation (6.8) for each mass sample. The black dashed lines instead show the scaling
formula obtained by fitting all the catalogues simultaneously. The colour code is the same
of the previous Figures.

function of the form:

δx ∝ exp(n0/n) , (6.6)

where n0 is the density value that separates the shot noise regime from the cosmic variance

one. We can notice that this exponential decrease depends also on bias, with a flattening

of the exponential function for the high-bias samples, reflecting what already seen in the

previous section. Therefore it is more appropriate to describe these errors with a function

which is a combination of the function (6.5) and (6.6) [7]:

δx ∝ exp(n0/nb
α2) . (6.7)
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Figure 6.6: Bias relative errors (upper panel) and errors on neutrino mass fraction (lower
panel) as a function of volume, obtained from a single mock catalogue. As in the previous
figures the dots represent our measurements and the dashed lines show the fitting formula
(6.8).

6.3.3 Error dependence on volume

Finally we illustrate the dependence on volume. We consider 5 sub-samples of different

bias and density and for each of them we split the cube of the simulation in N3 cubes with

N = {4, 5, 6} in order to reduce the volume of the catalogues. We applied the same method

as before and computed the mean errors for each sub-samples. We find that the errors scale

as the inverse of the square root of the volume, irrespective of bias and density, confirming

the dependence found by [29] and [7]. The results are shown in Figure 6.6, where we plot

the measurements from catalogues with different volume and bias, for a fixed density value.
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6.3.4 Fitting formula for the overall error dependence

According to these considerations, we try to fit the errors with the functional form [7]:

δx ≈ Cbα1V −0.5 exp

(
n0

bα2n

)
, (6.8)

finding a good agreement with our measurements. The best-fit parameters are C = 311 h−1.5

Mpc1.5, α1 = 0.1 and α2 = 1.9 for the relative error on b, whereas for the error on fν we

find C = 72 h−1.5 Mpc1.5, α1 = 0.2 and α2 = 2. In both cases n0 = 1.7×10−4 h3 Mpc−3

which is roughly the density at which cosmic variance starts to dominate. We want to stress

the fact that the error that we fit is the relative error for b and the absolute error on fν , there-

fore in the fitting formula (6.8) δx should be replaced with δb/b and δfν respectively. The

overall behaviour of the error as a function of bias and density at a fixed volume is sum-

marized in Figure 6.7, while Figure 6.8 shows the comparison between data and function.

We have found a fitting function able to describe the amplitude of the errors on bias and

neutrino mass fraction as a function of density, bias and volume, which are three typical pa-

rameters of a redshift survey. As explained in Chapter 4, the use of the diagonal covariance

matrix leads to slightly underestimate the error so one can think that these results could

be biased. However we expect that the effect of the full covariance matrix can be simply

absorbed by the normalization constant C, because the covariance elements of the matrix

should affect in the same way all the samples, shifting the errors above or below the values

found with the diagonal matrix.

The predictive power of this formula makes possible to forecast the precision reachable

in measuring these two parameters: given the volume of a survey, together with the density

and the bias of its target, it is possible to estimate the error that can be obtained when

analysing the data using the same approach described in this thesis. For example, a Euclid-

like survey should be able to measure the neutrino mass fraction with a precision of ≈

2×10−4 in a volume of ≈ 4.2×109 centered at redshift z = 1 with ∆z = 0.2, considering

a galaxy sample with bias ≈ 1.13 and density ≈ 17× 10−3. This value is of the same order

of magnitude of the one quoted for the sum of neutrino masses in the Euclid Red Book [46],

obtained with the Fisher Matrix method for BAO measurements, which is δMµ ≈ 0.03eV.

According to the relation Ων = Mν/(h
293.8eV), it translates in an accuracy on the neutrino

mass fraction of the order of ≈ 10−4.
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Figure 6.7: Errors on bias (upper panel) and on neutrino mass fraction (lower panel) as a
function of density and bias overplotted on the surface described by the fitting formula of
equation (6.8)
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Figure 6.8: Errors on bias (upper panel) and on neutrino mass fraction (lower panel) as a
function of density and bias. The plots are the same as the ones in Figure 6.7 except for the
fact that the plots are oriented in order to show the agreement between our measurements
and the fitting function.
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Conclusions

In this thesis we have presented a powerful method to estimate cosmological parameters

based on measurements of RSD, analysed with a MCMC likelihood analysis. We have

measured the multipoles of the correlation function in bins of 5Mpc h−1, up to a scale of

35Mpc h−1, from mock data extracted from the halo catalogues of the BASICC Simulation

at z = 1. The halo catalogues have been selected in order to have different values of bias,

density and volume, which are three fundamental parameters used to describe a redshift

survey. This selection has allowed us to perform a broad analysis of the statistical errors

that occur in measuring cosmological parameters, studying how these errors depend on the

survey parameters.

A crucial point in this method is represented by the covariance matrix, which assesses

the errors of the correlation function. We have performed a detailed study of the matrix

estimated from the mock catalogues, performing the MCMC analysis using the diagonal,

the full and the smoothed matrix. According to the results obtained from catalogues of

varying density, we have established that the diagonal matrix is the more trustworthy, even

if the errors on the parameters, that come as a results of the MCMC procedure, turn out

to be a little underestimated. Indeed the number mock catalogues at our disposal were not

sufficient to construct a reliable full covariance matrix which is affected by numerical issues

that a smoothing procedure is not able to fully remove.

The method has been applied to measure the neutrino mass fraction fν and the bias pa-

rameter b, but it is quite general and can be applied to estimate other cosmological param-

eters. We have found that the estimates of fν and b are in agreement with the input values

of the simulation within 1σ. For what concerns the error trend as a function of density,

volume and bias, we have found that our measurements are fitted to a good approximation

by the scaling formula given in equation (6.8) for both b and fν , with just small differences

in the fitting parameters. This formula allows us to to assess the precision reachable on
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measurements of fν and b, based on RSD, quoting an error of ≈ 2× 10−4 for the neutrino

mass fraction and ≈ 2 × 10−3 for the bias factor for a Euclid-like survey. We think that

these results are not biased by the use of the diagonal matrix, since the contribution of the

full matrix can be described by a simple renormalization of the fitting function. We stress

that the fitting formula is valid at redshift z = 1, and further studies must be carried out in

order to generalize it, even if there is no obvious reason that the dependence on parameters

should change with redshift.
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Optimizing the choice of the bin size

We measured the multipoles of the correlation function in bins of 5 Mpc h−1, since this

binning helps us to reduce the noise in the covariance matrix. Here we briefly review the

reasons that bring us to this choice.

We are interested in studying the behaviour of the parameter errors as a function of the

typical survey parameters such as density, bias and volume. Therefore, in order to choose a

suitable binning for the multipoles we analyse 11 subsamples of different densities obtained

diluting the catalogue from the BASICC simulation with Mcut = 1.1.0×1012 h−1 M�, with

β as the only free parameter.

A binning of 1 Mpc h−1 has been immediately excluded since in this case we have 33

bins for each multipoles and then a covariance matrix dimension of 66 × 66, which still

leads to unconverging results when using the full matrix.

Then the analysis has been performed using bins of 3 and 5 Mpc h−1 using both the

diagonal and the full covariance matrices.

The results obtained with a 3 Mpc h−1 binning are summarized in Figure A.1, which

shows the relative error of β as a function of density obtained with the diagonal and the

full matrices. Each dot represents the mean error over the 27 mocks. From the figure it is

clear that even if the MCMC converges to a certain best fit value, the full matrix still carries

some numerical problems. Indeed the error obtained with the full matrix appears to be very

scattered with respect to the one obtained with the diagonal matrix and there is no physical

reason that justifies this behaviour. So this leads us to think that the results obtained with

the full matrix are driven by numerical issues.

This hypotesis is confirmed by the result obtained using bins of 5 Mpc h−1. They are

shown in Figure A.2, together with the error obtained with 3 Mpc h−1 binning, both with
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 0.01

 0.1

 0.0001  0.001

δβ
/β

n[(h/Mpc)3]

binning = 3 Mpc/h, diagonal matrix
binning = 3 Mpc/h, full matrix

Figure A.1: Relative error on β as a function of density obtained using the diagonal matrix
(empty squares) and the full matrix (full squares). The dots represent the mean value of the
error over the 27 mocks of each samples.

 0.01

 0.1

 0.0001  0.001

δβ
/β

n[(h/Mpc)3]

binning = 3 Mpc/h, full matrix
binning = 5 Mpc/h, full matrix

Figure A.2: Relative error on β as a function of density obtained using the full covariance
matrix with bin size 3 Mpc h−1 (squares) and 5 Mpc h−1 (dots). It is evident the improve-
ments in the results when using a larger bin size.
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 0.01

 0.1

 0.0001  0.001

δβ
/β

n[(h/Mpc)3]

binning = 5 Mpc/h, diag matrix
binning = 5 Mpc/h, full matrix

Figure A.3: Relative error on β as a function of density obtained using the diagonal matrix
(empty dots) and the full matrix (full dots). The bin size is 5 Mpc h−1 and β and σ12 are
considered as free parameters.

the respective full matrix. It is evident that increasing the bin size alleviates the numerical

problems since the error turns out to be less scattered.

To confirm these results we performed the same analysis letting also σ12 free to vary.

The Figure A.3 shows the comparison between the errors obtained with the diagonal and

the full matrix and highlights again that the numerical issues can be kept under control with

a suitable choice of the bin size.

Larger bin size will cause loosing to much information on the correlation function, so

5 Mpc h−1 will be our definitive choice.
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