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INTRODUCTION 
 

Every simple motor or cognitive task is the result of the integration 
among different cortical regions, which are mutually linked and send one 
another reciprocal connections. Information from different sensory 
modalities, coming from the external world, are processed by different parts 
in the brain and are finally integrated to create a single behaviour: this is how 
the brain works. Mathematical models can be very useful to understand the 
nature of interaction among cortical regions and examine the integration of 
all information which merges into the brain.  

This thesis work is focused on the study and use of mathematical models 
to reproduce the activity of cortical regions reciprocally connected. In 
particular, we deepen the problem of integration in the brain at two different 
levels: one is about functional connectivity and the other about multisensory 
integration. These two sides of the same coin have been studied in 
collaboration with two different research groups respectively: the one of 
Professor Fabio Babiloni (‘’La Sapienza’’ University and Fondazione Santa 
Lucia, in Rome) and the one of Professor Elisabetta Ladavas (Psychology 
Department, University of Bologna, and Cognitive Neurosciences Study and 
Research Centre, in Cesena). It is important to clarify that these two research 
studies have been achieved separately during my PhD period; for this reason 
my thesis has been subdivided in two well distinct parts: Part 1 
(connectivity) and Part 2 (multisensory integration). In particular Part 1 
includes Chapter 1, 2, 3 and 4, while Part 2 Chapter 5 and 6. 

Part 1. The problem of deriving connectivity is assuming increasing 
importance in recent neurophysiological and neurocognitive research. 
However, the concept of connectivity is still elusive. In several recent 
studies, connectivity has been evaluated both starting from neuroimaging 
data (such as PET or fMRI) and from high-resolution scalp 
electroencephalograms (EEG) or magnetoencephalograms (MEG). A large 
number of methods has been proposed for the estimation of functional 
connectivity on EEG signals, such as the directed coherence (DC), the partial 
directed coherence (PDC), the directed transfer function (DTF) and the 
direct DTF (dDTF). Recently, the use of neurophysiological models (i.e., 
models based on biology) to derive effective connectivity from real data has 
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been assuming increasing importance. They include Wilson-Cowan 
oscillators and neural mass-models of cortical columns, developed by Lopes 
da Silva and Freeman in the late seventies, and subsequently improved and 
extended by Jansen and Rit and Wendling. These models have been 
successfully used to simulate specific aspects of electrical brain activity 
(alpha rhythms, oscillations in the γ-band, epileptic patterns) but they have 
not been used to study and analyze the overall frequency content of EEG  in 
a cortical region of interest.  

In this context, mathematical models and computer simulation 
techniques may be very useful. Part 1 is focused on estimation of functional 
connectivity by means of neural mass models; we used a neural mass model 
to investigate the effect of connectivity, to simulate relationships among 
brain regions during cognitive/motor tasks and to gain a deeper insight into 
the origin of different EEG/MEG rhythms. The main objectives of the 
present study are to create a neural mass model able to simulate realistic 
EEG rhythms, investigate the effect of different patterns of connectivity 
among regions of interest (ROIs), each described by the model, and, the 
most ambitious one, to derive connectivity from real data. 

In detail, in the study described in Chapter 1, we used the parallel 
arrangement of three neural populations, with different synaptic kinetics, to 
simulate the simultaneous presence of alpha, beta and gamma rhythms in a 
region of interest (ROI). We showed that real cortical EEGs, measured 
during cognitive or motor tasks, can be reproduced quite well with that 
model, by modifying the exogenous input noise and synaptic parameters.   

In Chapter 2, a subsequent extension of the same model was used to 
simulate real EEG power spectral densities by replacing the external noise 
with excitation coming from other interconnected regions of interest, thus 
providing some preliminary indications on how connectivity could be 
estimated from EEG data.  

In Chapter 3 we investigated the meaning of information extracted from 
cortical EEGs, using a different neural mass model of a single ROI; we 
introduced a substantial novelty compared to Chapter 1 and 2: although a 
single population can produce just a single peak due to its intrinsic resonance 
frequency, the same population can also exhibit additional rhythms (i.e., 
other peaks in the spectrum) if they are furnished by an external source. In 
this case, one (intrinsic) rhythm is produced inside the population, while the 
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others are derived from external forcing inputs represented by other 
populations, oscillating at different frequencies, which cause partial 
synchronization. Therefore, in this model a single neural population becomes 
representative of a ROI, while, by contrast, in the previous model (see 
Chapter 1 and 2), we used the parallel arrangement of three neural 
populations. The new model of a ROI has been validated with reference to 
cortical EEG power spectral densities evaluated in the controlateral 
cingulated cortex of human volunteers.  

Finally, in Chapter 4, we used an extension of the model described in 
Chapter 3 to simulate the EEG power spectral densities of a network of 
interconnected ROIs, and propose it for the estimation of connectivity 
among regions from high-resolution EEG data taken on the scalp.  

The results described in Part 1 may be of value for a deeper 
comprehension of mechanism causing EEG rhythms and of 
neurophysiological information contained in the signal; furthermore with the 
model we can deepen the problem of estimation of brain connectivity, by 
testing different neurophysiological hypotheses. Finally, the results obtained 
in this work con be used in the perspective of an integration with different 
neuroimaging techniques containing different connectivity information (such 
as PET or fMRI) into a definite theoretical framework.  

Part 2. Part 2 is focused on the problem of multisensory integration in 
peripersonal space. In order to guide body movement through the space and 
allow interaction with the immediate surroundings, the brain must 
continuously monitor the location of the body parts across different postures 
and analyze the spatial relations between body parts and nearby objects. This 
process requires the integration of proprioceptive, tactile, visual and even 
auditory information regarding limb position. Much research has focused on 
how these various sensory cues may be combined and integrated to achieve 
perception of limb location and representation of the ‘peripersonal’ space 
immediately around the body. Many studies on this topic have been 
achieved, involving different methodologies: single-cell recordings in 
animals (Hyvarinen, Rizzolatti, Graziano & Gross, Fogassi); 
neuropsychological studies in brain-damaged patients (Ladavas, Mattingley), 
psychophysical and neuroimaging investigation in both healthy and 
pathological subjects (Holmes & Spence, Ladavas, Macaluso, Taylor-
Clarke).  
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Despite the large collection of data on the subject, a clear comprehension 
of the mechanisms underlying peripersonal space representation is still 
lacking.  

The work presented in Part 2 describes an original neural network to 
simulate representation of the peripersonal space around the hands. Three are 
the main objectives of the present study. The first objective is to develop an 
original mathematical model of multisensory visual-tactile integration able to 
summarize the data coming from neurophysiological and clinical 
experiments into a theoretical scenario and to simulate neuron behaviour in a 
realistic way. The second objective is to provide a preliminary instrument for 
analysis and planning of clinical studies. The perception of the peripersonal 
space, and the link between visual and tactile body information, in fact, may 
be altered in pathological conditions (as in brain-damaged patients or in 
patients with arm-amputation). The third objective is to simulate the 
dynamic and plastic proprieties of peripersonal space representation. Recent 
data demonstrated that our perception of the peripersonal space is not a static 
one, but can be modified by experience and training (Farnè, Berti, Maravita). 
These modifications may reflect changes in the connections among the 
neurons (Hihara), hence their full understanding requires a network able to 
summarize the main processing steps from the unimodal sensory areas to the 
bimodal specialized cortex, and their adapting changes.  

In detail, in the study presented in Chapter 5, we described an original 
model which simulates the two portions of brain hemispheres involved in the 
peripersonal space representation, each composed of three areas of neurons. 
The two upstream areas are unimodal and respond to visual and tactile 
stimuli, respectively. The third downstream area is multimodal and is 
devoted to multisensory integration. The connections between unimodal and 
multimodal neurons within the same hemisphere include both feedback and 
feedforward synapses. The two hemispheres are interconnected via 
inhibitory synapses. With the model we simulated the multisensory coding 
of the space around a hand and the competitive interaction between the right 
and left hand representations in normal subjects. Moreover, the network has 
been used to simulate the responses characterizing RBD (Right Brain 
Damage) patients by assuming plausible modifications in some model 
parameters. 
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Finally, in Chapter 6, the previous model was used to simulate the 
expansion of the peripersonal space after the training with a tool used to 
reach the far space, both in normal and in RBD subjects. The model assumes 
that synapses linking unimodal to bimodal neurons can be reinforced by a 
Hebbian rule during training. Results show that the peripersonal space, 
which includes just a small visual space around the hand in normal 
conditions, becomes elongated in the direction of the tool after training. This 
expansion of the peripersonal space depends on an expansion of the visual 
receptive field of bimodal neurons, due to a reinforcement of visual 
synapses, which were just latent before training.  

The original network model presented in Part 2 may be of value to 
analyze the neural mechanisms responsible for representing and plastically 
shaping peripersonal space, and in perspective, for interpretation of 
psychophysical data on patients with brain damage.  

 
 
 
The contents of Chapter 1 have been published in Journal of  

Neuroscience Methods (Zavaglia et al. 2006). 
The contents of Chapter 2 have been published in Biological Cybernetics 

(Ursino et al. 2007). 
The contents of Chapter 3 have been published in Journal of Integrative 

Neuroscience and IEEE Transactions on Biomedical Engineering (Ursino 
and Zavaglia 2007;Zavaglia et al. 2008b). 

The contents of Chapter 4 have been published in Journal of  
Bioelectromagnetism (Zavaglia et al. 2008a). 

The contents of Chapter 5 have been submitted to Neural Computation 
(Magosso et al. 2008). 
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CHAPTER 1  
 

A NEURAL MASS MODEL FOR THE SIMULATION OF 
CORTICAL ACTIVITY ESTIMATED FROM HIGH 
RESOLUTION EEG DURING COGNITIVE OR MOTOR 
TASKS 

 

1.1 Introduction 
Electrical activity in the cerebral cortex contains important information 

to characterize brain function and to study the role of individual regions 
during cognitive or motor tasks. Electroencephalography (EEG) or 
magnetoencephalography (MEG) are the usual methods adopted in clinics 
and physiology to extract this information and, in combination with 
functional magnetic resonance (fMRI), positron emission tomography 
(PET), and intraneural recording in animals, are universally used today to 
reach a deeper understanding of large scale brain organisation (David et al. 
2005;Rowe et al. 2005;Erickson et al. 2005). EEG/MEG signals are a 
measure of the collective activity in restricted regions of the cortex. This 
electrical activity ensues from the interaction of excitatory and inhibitory 
sub-populations, whose kinetics may vary depending on the particular task, 
on the particular region involved in the task, and on the instant during the 
task. Indeed, the EEG/MEG signals are intrinsically very complex, including 
different rhythms and a large frequency spectrum, which may vary rapidly in 
time, reflecting the non-stationarity of the underlying phenomena and the 
changes in the kinetics of the neural mechanisms.  

In order to improve our understanding of EEG/MEG signals, and to gain 
a deeper comprehension of the neurophysiological information contained, 
various mathematical models have been proposed in past years. These 
models can be subdivided into two major classes: “detailed models” and 
“neural mass models”. In the first group, the description of network 
dynamics is performed at the level of the individual cells, in general using 
spiking neurons and including the kinetics of the synaptic channels 
(Makarov et al. 2005). By contrast, in the second group the dynamics of 
entire neural populations is summarized at a macroscopic level. This 
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dynamics is generally represented with a few state variables, which mimic 
the interaction among excitatory and inhibitory sub-populations, arranged in 
a feedback loop. These models include Wilson-Cowan oscillators (Schillen 
and Konig 1994) or relaxation oscillators (Wang and Terman 1997) which 
have been frequently employed to analyze synchronization among neural 
groups. More sophisticate neural mass-models of cortical columns, 
particularly useful to simulate some aspects of EEG signals, were developed 
by Lopes da Silva et al. (Lopes da Silva et al. 1976) and by Freeman 
(Freeman 1978) in the late seventies, and subsequently improved and 
extended by Jansen and Rit (Jansen and Rit 1995) and Wendling et al. 
(Wendling et al. 2002). Although neural mass models have been successfully 
used to simulate specific aspects of electrical brain activity, such as alpha 
rhythms (Jansen and Rit 1995), oscillations and synchronisation in the γ-
band (Schillen and Konig 1994), dynamics in the olfactory cortex (Freeman 
1987), or epileptic patterns (Wendling et al. 2000;Wendling et al. 2002), 
they have not been exploited to analyze the overall frequency content of 
EEG in a cortical region of interest. 

As pointed out by David et al. (David and Friston 2003), a neural mass 
model consisting of a single population (such as the model by Jansen et al. 
(Jansen and Rit 1995), or the extended model by Wendling et al. (Wendling 
et al. 2002)) produces just a unimodal spectrum, which may represent 
individual rhythms in the EEG quite well, but it is unable to characterize the 
entire complexity of the EEG, and to capture the diversity of neural 
dynamics within a cortical area. For this reason, David et al. (David and 
Friston 2003) proposed a model composed of N populations deployed in 
parallel, each characterized by a different kinetics. In their work, the authors 
simulated a two-population model (dual-kinetics model).  

We guess that an N–population model, with N large enough, should be 
able to mimic an entire cortical area in terms of cortical EEG activity, with 
its various rhythms and diversity of mechanisms. Nevertheless, we are not 
aware of any attempt to use this model to mimic real cortical EEG during 
cognitive/motor tasks. 

In the work presented in this chapter we wish to progress on the same 
route as in the paper by David et al. (David and Friston 2003). Our intention 
is to analyze whether a neural mass model, consisting of several populations 
with different kinetics, is able to mimic the complexity of electrical activity 
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in some cortical region of interests (ROIs). In order to be of practical value, 
this model should be able to reproduce the power spectral density (PSD) of 
cortical EEG in real ROIs, by accounting for both spatial and temporal 
variations (i.e., variations in EEG from one region to another, and temporal 
variations within the same region) by acting on a few parameters only, with a 
clear neurophysiological meaning. Here, we assume that these EEG 
variations can be ascribed to changes in the noise input (mean value and 
variance) to each region and/or to synaptic alteration in the 
excitatory/inhibitory balance within the region, since we presumed these are 
main aspects which can vary considerably during a cognitive/motor task. 
Changes in input may reflect changes in stimuli from the external world 
and/or in the connectivity inputs from other regions. Changes in 
excitatory/inhibitory synapses may reflect short-time adjustments within the 
cortical regions themselves.  

To reach the objective delineated above, two fundamental steps have 
been followed in this work:  

i) cortical EEG in some ROIs has been obtained starting from non-
invasive scalp EEG measurement during a motor or cognitive task. This 
aspect required the use of high-resolution EEG measurement on the scalp, 
and a model for propagating electrical activity from the scalp to the cortex 
(Babiloni et al. 2005); 

ii) once a reliable cortical EEG has been obtained following step i, we 
looked for a simple population model able to account for changes in cortical 
EEG, both in different ROIs and in different instants in the same ROI during 
the task. With this model, we also investigated how the input and internal 
parameters of the ROI should vary to report for the observed changes in 
cortical electrical activity. 

The present results may constitute a further step in the use of neural mass 
models for the interpretation and analysis of EEG data and, in perspective, 
may contribute to the use of neurophysiological models for the study of 
effective connectivity in the brain (see Chapter 2). In fact, although the 
problem of brain connectivity is not explicitly addressed in this work, the 
present results may open new possibilities for its quantitative analysis. 
Interpretation of brain connectivity using neurophysiological models has 
been advocated by various authors recently (Tagamets and Horwitz 
1998;Horwitz et al. 1999;Tagamets and Horwitz 2000;David and Friston 
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2003;David et al. 2004), but this issue benefits from the preliminary 
formulation of a model able to fit the overall complexity of neural dynamics 
in real ROIs, and to follow their temporal changes by acting on input and 
synaptic parameters only. 

 

1.2 Method 

1.2.1 Mathematical model 

Model of a single population 
The model of a single population was obtained by modifying equations 

proposed by Wendling et al. (Wendling et al. 2002). The model consists of a 
population of neurons which are lumped together and which are assumed to 
share the same membrane potential. There are no dendrites and no intrinsic 
conductances. Rather, one lumped circuit communicates with another 
through the average firing rate corresponding to what that given population 
of cells is doing, on average. In this model, four lumped neural groups 
communicate: pyramidal cells, excitatory interneurons, inhibitory 
interneurons with slow synaptic kinetics, and inhibitory interneurons with 
faster synaptic kinetics (see Fig. 1.1a).  
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Each neural group receives an average postsynaptic membrane potential 
from the other groups, and converts the average membrane potential into an 
average density of spikes fired by the neurons. This conversion is simulated 
via a static sigmoidal relationship. The effect of the synapses is described via 
second order linear transfer functions, which convert the presynaptic spike 
density into the postsynaptic membrane potential. Three different kinds of 
synapses, with impulse response he, hi and hg, (see Fig. 1.1a), are used to 
describe the synaptic effect of excitatory neurons (both pyramidal cells and 
excitatory interneurons), of slow inhibitory interneurons and of fast 
inhibitory interneurons, respectively. 

According to Fig. 1.1a, model equations can be written as follows: 
 
Pyramidal neurons 
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Excitatory interneurons 
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Slow inhibitory interneurons 
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Fast inhibitory interneurons 
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In these equations, the symbols vi represent the average membrane 

potentials (i = 0, 1, 2, 3 for the four groups). These are the input for the 
sigmoid function which converts them into the average density of spikes (zi, 
i = 0, 1, 2, 3) fired by the neurons. Then, these outputs enter into the 
synapses (excitatory, slow inhibitory or fast inhibitory), represented via the 
second order linear functions. Each synapse is described by an average gain 
(A, B and G for the excitatory, slow inhibitory and fast inhibitory synapses, 
respectively) and a time constant (the reciprocal of a1, b1 and g1, 
respectively). The outputs of these equations, which can be excitatory, slow 
inhibitory or fast inhibitory, represent the postsynaptic membrane potentials 
(yi, i = 0, 1, 2, 3). Interactions among neurons are represented via seven 
connectivity constants (Ci). Finally, p(t) represents a Gaussian white noise 
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with assigned mean value, m, and variance, σ2. This noise summarizes all 
exogenous contributions, both excitation coming from external sources and 
the density of action potentials coming from other connected regions.  

 
Model of a region of interest (ROI) 
The previous model was used to simulate a single population, the 

dynamic of which ensues from the interactions of the four neural subgroups. 
As shown in David et al. (David and Friston 2003), however, and confirmed 
by our simulations, a single population can produce just a unimodal 
spectrum (i.e., a spectrum with a single peak), whose position and bandwidth 
can be finely adjusted, but cannot mimic the overall complexity of EEG in 
an entire cortical area. For this reason, the model of an overall ROI can be 
composed by N populations deployed in parallel. We assumed that these 
populations are connected in a simple feedforward schema (see Fig.1.1b), 
with the same weight for all populations. This is a very simple choice, 
adopted to avoid inclusion of additional parameters describing the direction 
and degree of internal coupling in the model. A different role for each 
population has been assigned, in the best fitting procedure, by changing the 
variance of the noise stimulating each population. The limitations of this 
approach, and the possibility to adopt more physiological internal 
connections within a ROI in future work are discussed in the last section of 
this chapter.  

Each population is characterized by different values of time constants 
(i.e., of parameters a1, b1, g1) and so can produce a different rhythm. The 
number, N, depends on the complexity of the EEG, i.e., on the number of 
different peaks in its spectrum. Analysis of data obtained using a motor or 
cognitive task (see section 1.2.2) suggests that the use of just three 
populations is sufficient to simulate cortical activity. In the following, these 
populations will be indicated with the superscript L, M and H, to represent 
rhythms at low, medium and high frequency. The cortical EEG of a ROI (say 
vout(t)) is obtained as the mean value of the membrane potentials of 
pyramidal neurons in the three populations (i.e., averaging quantity v0 ). We 
have 
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1.2.2 Acquisition of experimental data 

Experimental data were acquired from two different tasks: one related to 
a self-paced finger movement of the right hand, and the second one related to 
the execution of a working memory task. In the following the two 
acquisition procedures are briefly presented. 

 
Subject and Experimental Design 
Finger tapping task:  
Two normal subjects participated in the experiment, which took place in 

the laboratories of the Santa Lucia Foundation, Rome, after the informed 
consent was obtained. Subjects were comfortably seated in an armchair with 
both arms relaxed, in an electrically shielded, dimly lit room. They were 
requested to perform repetitive right finger movements. The task was 
repeated every 2 seconds, in a self-paced manner. A 96-channel EEG system 
(BrainAmp, Brainproducts GmbH, Germany) was used to record electrical 
potentials by means of an electrode cap, accordingly to an extension of the 
10-20 international system. Structural MRIs of the subject’s head were taken 
with a Siemens 1.5T Vision Magnetom MR system (Germany). During 
motor task, subject was instructed to avoid eye blinks, swallowing, or any 
movement other than the required finger movements.  

Event related potential (ERP) data were recorded with 96 electrodes; data 
were recorded with a left ear reference and submitted to the artifact removal 
processing. About 500 single trials were recorded for each subject and 
averaged for the linear inverse estimation described below.  A/D sampling 
rate was 250 Hz. The surface electromyographic (EMG) activity of the 
muscle was also collected. The onset of the EMG response served as zero 
time. After the EEG recording, the electrode positions were digitized using a 
stereophotogrammetric procedure. The analysis period for the potentials, 
time-locked to the movement execution, was set from 300 ms before to 300 
ms after the EMG trigger (0 time). 

 
Working memory task:  
A subject was seated in a comfortable reclining armchair placed in a 

dimly lit, sound-damped, and electrically shielded room. They kept their 
forearms resting on armchairs, with right index finger resting between two 
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buttons spaced 6 cm apart. A computer monitor was placed in front of the 
subjects (100 cm). The working memory task comprised a sequence of 
baseline stimulus (0.7 degrees cross at the center of the monitor for 1 s), 
visual warning stimulus, visual cue stimulus (two vertical bars large 2 
degrees and height 2.5–7 degrees for 2 s), delay period (blank screen for 3.5–
5.5 s), go stimulus (a green circle appeared for 1 s), and right finger 
movement to press the proper button of a custom made device. This device 
had two large buttons approximately 10 cm distant from one another, which 
were electronically connected to the mouse of the computer giving the visual 
stimuli. Subjects had to click the left button if the taller bar (cue stimulus) 
was at the left monitor side, whereas they had to click the right button if the 
taller bar was at the right  monitor side. In the no working memory condition 
(not used here) the visual cue stimulus was delivered up to the go stimulus. 
The zero time was the onset of the cue stimulus. Two trial blocks for each 
condition were pseudorandomly intermingled (block; 50 single trials; 2 min 
pause). In this task the EEG data were recorded (0.1 – 60 Hz bandpass; 256 
Hz sampling frequency) with a 46-tin electrode cap referenced to linked ears. 
The electrodes were disposed according to an augmented 10-20 system and 
electrode impedance was kept lower than 5 kV. The positions of the 
electrodes and landmarks were digitized. The EEG data analyzed was those 
obtained from the period in which the subject has to hold in memory the 
pattern of the bars, lasting half a second before the overt muscular responses. 
Also in this case trials were averaged. 

 
The Head Models and the Cortical Source Estimation 
A 3-shell Boundary Element Model (BEM) of the head was used to 

estimate the cortical current density (CCD) distribution. The scalp surface, 
the external and internal surfaces of the skull were used to separate the four 
compartments of the model (brain, skull, scalp and air). A triangle 
tessellation made up of about 1000 triangles was fitted to match the 
geometric shape of the surface, as determined from the MRIs of each 
subject.  

The cortical sources were described by using a distributed source model 
with realistic cortical shape (Grave de Peralta and Gonzalez Andino 
1999;Dale et al. 2000). With this approach, once the cortical surface is 
tessellated with a procedure similar to the one described for the BEM 



 29

surfaces, a current dipole is placed at each vertex of the tessellation, yielding 
about 3000 source locations. The orientation of each dipole is constrained to 
be perpendicular to the surface, to model the alignment of the pyramidal 
neurons with respect to the cortical mantle. The adopted source model allow 
to estimate the cortical activation with a lower number of unknowns with 
respect to tomographic 3D source models, yielding a better numeric stability. 
This hypothesis is assumed not to produce mixing errors, since we do not 
expect relevant sources to be located outside the cortical mantle (i.e. 
subcortically). BEM and source model tessellations were obtained with the 
help of the Curry 4.6 software (Compumedics Neuroscan Ltd., El Paso, 
Texas). 

The actual strength of these sources is then estimated by using a linear 
inverse procedure (Uutela et al. 1999;Babiloni et al. 2005). 

Several Regions of Interest (ROIs) were selected for the estimation of 
cortical activity from high resolution EEG measurements on the basis of 
Talairach coordinates and anatomical landmarks available. In Fig. 1.2, some 
of the ROIs are shown, on a realistic reconstruction of the cortex and head of 
an experimental subject. Different ROIs are represented in different colours. 
The ROIs employed in this study were the left (L) and right (R ) Brodmann 
areas 5, 3-1-2 (primary somato-sensory area), 6 anterior (6A) coincident with 
the supplementary motor area proper and the Brodmann area 46.  

 

 

Figure 1.2 – Disposition of the six regions of interest (ROIs) used to fit EEG power 
spectral densities during a finger motor task. The ROIs are represented in different 
colours, on a realistic reconstruction of the subject’s head. Cortical EEG in each region 
was computed, from high-resolution scalp EEG, using the inverse propagation model 
described in (Babiloni et al. 2005). 
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The degree of involvement of the ROI in the experimental task is 
measured by the average estimated cortical activity in the region. To 
measure this quantity, those dipoles of the source model (introduced in the 
previous section) that are geometrically included in a ROI are grouped in a 
subset of the source space, one subset for each ROI. By averaging the 
estimated dipole moment within each subset, the time course of the activity 
on the ROI can be computed. 

These ROI waveforms, related to the event-related changes of the 
cortical current density, were successively subjected to the spectral analysis 
in order to produce the spectra used for the estimation of the model 
parameters. 

 

1.2.3 Best fitting procedure 

A best fitting between model simulated EEG of a ROI (vout(t)) and real 
data has been achieved in the frequency domain, by minimizing a least 
square criterion function of the difference between the power spectral 
densities in the range 3-50 Hz. As explained in “Results, section 1.3”, 
parameters estimated by the minimization algorithm are the mean values 
(mL, mM and mH) and standard deviations (σL, σM and σH) of exogenous 
noise, and the fast inhibitory average gains of synapses (GL, GM and GH), see 
Eq. 1.14, in the three populations. In order to eliminate possible differences 
in amplification all power spectra have been preliminary normalized to have 
unitary area in the same frequency range (3-50 Hz). Power spectra have been 
computed by using the Welch’s average modified periodogram method 
(Welch 1967). In particular, when computing model power spectra, we 
produced a 30 s output, and averaged 50% overlapping sections each with 
duration 1 s. The use of a 30 s simulated signal is justified by the necessity to 
reduce the variance of the estimated spectrum to an acceptable level. We 
verified, using a random repetition of the same simulation by changing the 
input noise, that these spectra are only scarcely affected by the single noise 
realization. By contrast, just eight overlapping sections have been used to 
compute spectra from real data, since these signals were previously mediated 
over different trials to reduce noise variance (see section 1.2.2).  Sections 
have been zero-padded to 1 s to have the same resolution (1 Hz) in the 
experimental and model spectra.  
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1.3 Results 

1.3.1 Analysis of a single population 

A single population produces a signal with a unimodal spectrum. By 
contrast, analysis of cortical EEGs obtained during the motor or cognitive 
task revealed the presence of one, two or three peaks in the frequency 
spectrum, located in different positions within the range 3-50 Hz. Moreover, 
the frequency position of these peaks is not constant, but may vary from one 
region to another, or during the task. In our model, as in David et al. (David 
and Friston 2003), we assume that these peaks derive from individual 
populations, each with a different synaptic kinetics. According to this idea, 
the first stage of our study intends to analyze the behaviour of a single 
population and, in particular, to determine the parameters which affect the 
position of the individual rhythm generated by the population . The main 
questions are: how is it possible to generate different peaks in the low, 
medium or high frequency range? How is it possible to tune the position of 
these peaks subtly, acting on physiological parameters? In order to answer 
these questions, we assumed that the position of the peak primarily depends 
on the synaptic kinetics (i.e., on parameters a1, b1 and g1 in Eqs. 1.2, 1.6, 
1.10 and 1.14). However, this position can also be finely tuned, acting on the 
balance between excitatory and inhibitory synapses within the population. 
We also presuppose that the parameters describing synaptic kinetics (a1, b1 
and g1) are fixed for each population, i.e., cannot change during the task or 
from one region to another.  By contrast, we assume that the average gain of 
the synapses (i.e., parameters A, B and G in Eqs. 1.2, 1.6, 1.10 and 1.14)  
can vary, either spatially or temporally, due to plasticity of the synaptic 
strength. In the following, however, only parameter G will be changed, to 
avoid fitting an excessive number of parameters.  

A basal value for the parameters in the three populations have been given 
to have peaks which approximately lie in the theta and alpha band (4-12 Hz), 
in the beta band (12-30 Hz) and in the gamma band (greater than 30 Hz). 
These values are reported in Table 1.1. As illustrated in Fig. 1.3, with these 
parameters, and using a random input noise (mean value = 60, variance = 
100), each population can produce a well-defined peak within its typical 
frequency-band. 
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Table 1.1 
Model basal parameters in common for the three populations. 

 

Model basal parameters different for the three populations. 
 (Parameters 111 ,, gba  are in s-1) 

 
 

 
 
 
 
 
 
 
 
 

As specified above, subtle adjustments in the position of the peaks can be 
obtained by modifying the average gain of excitatory vs. inhibitory synapses 
in the model. In particular, we found that the position of the peak finely 
depends on the average gain of fast inhibitory synapses (parameter G in Eq. 
1.14). For this reason, throughout the present work we will act on this 
synaptic parameter only. Such a choice is justified by the necessity to reduce 
the number of free parameters in the model. By changing this parameter we 
can control the position of the peak in a subtle way within the corresponding 
frequency band, as illustrated in Fig. 1.4. 

 

C1 C2 C3 C4 C5 C6 C7 s0 e0 r 
135 108 33.75 33.75 40.5 13.5 108 6 2.5 0.56 

 AL BL GL a1
L b1

L g1
L (σL)2 mL 

POP LF 2.7 3.2 39 40 20 300 60 100 

 AM BM GM a1
M b1

M g1
M (σM)2 mM 

POP MF 5.2 4.5 43 85 30 350 60 100 

 AH BH GH a1
H b1

H g1
H (σH)2 mH 

POP HF 5.6 3.8 75 110 40 790 60 100 
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Figure 1.3 – Normalized power spectral density obtained with the three individual 
population models, using the parameter values reported in Tab. 1.1. A single 
population produces a signal with a narrow frequency band. The first population 
mimics a rhythm in the theta-alpha band (4-12 Hz), the second a rhythm in the beta 
band (12-30 Hz) and the third in the gamma band (greater than 30 Hz). The power 
spectral densities have been normalized, to have an area equal to one in the range 3-50 
Hz. 
 

 

Figure 1.4 – Examples of how the position of the peak generated by each population 
can be finely tuned, by acting on the average gain of the fast inhibitory synapses (i.e., 
on parameter G in Eq. 1.14). All panels represent power spectral densities normalized 
in the range 3-50 Hz. The left panel describes changes in the first population peak, 
obtained by giving parameter GL the values 22.3, 39.0 and 62.5. The middle panel 
describes changes in the second population peak, obtained by giving parameter GM the 
values 28.6, 43.0 and 65.9. Finally, the right panel describes changes in the third 
population peak, obtained by giving parameter GH the values 62.5, 75.0 and 93.8.  
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1.3.2 Fitting of EEG spectra in different regions 

The previous analysis demonstrated that peaks within the three frequency 
bands can be quite finely adjusted by considering three populations and 
modifying a single parameter, G, in each population. The subsequent step is 
to build a three-population model (or three-kinetic model) and to check 
whether its output (vout(t) in Eq. 1.17) can be fitted to cortical EEG in 
different regions. Our idea is that the position of the peaks can be determined 
by acting on parameter G in each population, whereas the amplitude of the 
peaks depends on the excitation received by the population (i.e., on the mean 
value, m, and standard deviation, σ2, of the noise term p(t) in Eq. 1.6). We 
are aware that exogenous input may above all reflect connectivity among 
regions. However, the problem of connectivity is voluntarily neglected in 
this chapter. As commented in the final section, analysis of connectivity will 
represent a pivotal application of the present model in other studies 
described in Chapter 2. 

Accordingly, in order to fit real EEGs in different regions, we acted on 9 
parameters: they are the mean values (mL, mM and mH) and standard 
deviations (σL, σM and σH) of exogenous noise, and the fast inhibitory 
average gains (GL, GM and GH) in the three populations. These parameters 
have been fitted on real data, as described in section 1.2.3. All other 
parameters are fixed at the value reported in Tab. 1.1.  

A first example of the results obtained by the minimization algorithm is 
presented in Fig. 1.5, with reference to the six different regions depicted in 
Fig. 1.2. For each ROI, cortical EEG was computed, starting from EEG 
measurements performed on the scalp during a finger movement task, as 
described in section 1.2.2. Each cortical signal has a duration of 0.6 s and 
was sampled at 250 Hz.  The values of estimated parameters are reported in 
Table 1.2 (see I subject). As it is clear form Fig. 1.5, cortical EEG in 
different ROIs exhibits a different frequency content: while some ROIs (ROI 
5R) exhibit a well defined peak in the beta range, others exhibit a single peak 
in the alpha band (ROI 5L) or in the gamma band (ROI 6AR and ROI 46R). 
ROI 6AL does not exhibit any specific peak, with most of its power 
spectrum at very low frequencies. Finally, ROI 46L exhibits two peaks in the 
beta and gamma ranges, together with a significant low-frequency content. 
The model is able to mimic this variety of spectra very well, by acting on the 
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9 estimated parameters. In particular a peak can be suppressed by reducing 
the mean value of the input noise, while the use of a larger or smaller 
variance further modulates the amplitude of the peak.  

A second example is shown in Fig. 1.6, while the corresponding 
estimated parameter values are reported in Table 1.2 (see II subject). In this 
case too the model is able to fit spectra quite well. We can just observe that 
the peak in ROI 46L is narrower in the model than in the real data. This 
difference, however, might be due to the short duration of the real EEG used 
to compute PSD (0.6 s) which might cause a broadening of the frequency 
band. 

 

Figure 1.5 - Fitting of experimental EEG power spectral densities from the six regions 
of interest (ROIs) shown in Fig. 1.2, during a finger movement task (I subject). The 
model used for the automatic fitting procedure was obtained by arranging three single 
population models in parallel. Dashed line represents power spectral denisity 
simulated by the model of a ROI. Continuous line represents experimental PSDs, 
evaluated on a signal with 0.6 s in length, averaged over more than five hundred of 
artefact-free trials. All PSDs are normalized to have unitary area in the range 3-50 Hz. 
Parameters used during the minimization are the mean values (mL, mM and mH) and 
standard deviations (σL, σM and σH) of exogenous noise, and the fast inhibitory average 
gains (GL, GM and GH) in the three populations (see Table 1.2, I subject). Hence, the 
three populations in each ROI have the same time constants and differ as to the value 
of fast inhibitory synapses and gaussian white noise. 
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Table 1.2 
Estimated parameters for six regions of interest (ROIs), during the right finger 

movement in two subjects. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 GL GM GH (σL)2    (σM)2 (σH)2 mL mM mH 

I Subject          

ROI 46L 14.9 47.6 75.0 28.7 45.8 33.1 43.6 154.8 117.5 

ROI 46R 14.9 57.1 56.3 42.0 19.0 84.5 59.6 -20 88.2 

ROI 5L 39.1 33.0 51.1 10.0 5.2 6.6 85.8 -43.7 -59.6 

ROI 5R 14.2 37.3 75.0 72.7 38.8 9.9 105.1 87.1 -43.3 

ROI 6AL 17.4 31.8 56.3 59.4 9.7 9.0 112.5 -50.1 -45.0 

ROI 6AR 17.4 45.1 66.2 0.5 16.9 10.4 102.5 -57.1 121.3 

          

II  Subject          

ROI 46L 4.8 25.1 66.2 5.01 2.7 25.5 56.3 -3.6 103.2 

ROI 46R 14.2 29.6 59.2 75.5 23.2 63.6 67.8 -21.4 91.2 

ROI 5L 24.0 57.1 56.3 61.0 30.5 69.0 60.1 -20.6 115.9 

ROI 5R 20.8 35.7 66.2 61.0 19.7 47.7 100.8 100.8 103.0 

ROI 6AL 18.4 33.0 75.0 58.3 9.6 9.7 111.2 -47.4 -47.1 

ROI 6AR 18.4 31.8 160.7 49.6 10.8 9.6 79.9 -55.0   0.0 
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Figure 1.6 - Fitting of experimental EEG power spectral densities from the six regions 
of interest (ROIs) shown in Fig. 1.2, during a finger movement task (II subject). The 
significance of the panels is the same as in Fig. 1.5. Estimated parameter values can be 
found in Table 1.2 (see II subject). 

 

1.3.3 Fitting of temporal changes in EEG spectra  

A further important point is the capacity of the model to simulate the 
temporal changes in EEG power spectral density in one region, during 
prosecution of a task. To this end, we used a long EEG tracing in the same 
region (overall duration 12 s) during a working memory task (see section 
1.2.2) and subdivided it into consecutive segments of 1 s duration each. For 
each segment, model parameters were fitted to individual spectra. An 
example of the obtained results, concerning the last four consecutive seconds 
from region a312L, is reported in Fig. 1.7, while estimated parameters are 
reported in Table 1.3. In this case too, the model is able to fit spectra 
reasonably well, by describing the multiplicity of peaks and the alterations in 
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their position. Changes in the estimated parameters provide information on 
the variations in the exogenous input and on internal synapses occurring in 
the temporal period examined. Analysis of this information may open new 
possibilities to characterize the behaviour of individual regions during the 
task, which may represent future model application (see ‘’Discussion, 
section 1.4’’).  

Table 1.3 
Estimated parameters for one region of interest (ROI a312L), during a working 

memory task in one subject (from IX to XII second). 

 

 

Figure 1.7 - Fitting of experimental EEG power spectral densities in the region of 
interest a312L at different seconds during a working memory movement task. Each 
panel represents EEG power spectral density evaluated during a 1 second window. 
The model used for the automatic fitting procedure was obtained by arranging three 
single population models in parallel. Dashed line represents power spectral density 
simulated by the model of a ROI. Continuous line represents experimental PSD, 
evaluated during a 1 second window. All PSDs are normalized to have unitary area in 
the range 3-50 Hz. The estimated parameter values can be found in Table 1.3.  

 GL GM GH (σL)2 (σM)2 (σH)2 mL mM mH 
IX Second 5.9 53.6 40.2 53.1 12.8 23.4 117.5 7.4 3.3 
X  Second 9.8 37.3 75.0 46.9 27.8 9.8 139.3 90.1 -28.0 
XI  Second 44.6 40.8 62.5 68.2 9.3 16.9 127.4 0.0 140.4 
XII  Second 34.7 42.9 75.0 14.1  0.2 2.8 87.0 92.5 150.0 
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1.4 Discussion 
The use of mathematical models for the interpretation of functional 

neuroimaging data has been advocated by several authors in the last years. In 
particular, information contained in the EEGs risks to be insufficiently 
understood without a neuro-physiological interpretation of the underlying 
physiological mechanisms. This interpretation mainly comprehends 
understanding synaptic changes in different regions, different kinetics of the 
neuronal populations involved, the input coming from the external world and 
from other regions in the brain (effective connectivity) during specific tasks. 
On the other hand, detailed models, which simulate individual neuron 
dynamics, are often too complex, and contain too many variables and 
parameters, for being of a practical value in the interpretation of macroscopic 
events. 

A class of models, frequently used starting from the mid-seventies, are 
neural mass models, which can mimic electrical activity of large neural 
populations by using a reduced number of state variables. In perspective, 
these models may be very useful to simulate brain electrical activity in 
regions of interest, and to assess the effect of changes in brain connectivity 
during cognitive or motor tasks. Although these models have been largely 
used to simulate EEG rhythms (Jansen and Rit 1995;Rodriguez et al. 
1999;Wendling et al. 2002), and have been  recently modified to analyse the 
effect of connectivity among regions (Jansen and Rit 1995;Wendling et al. 
2002;David et al. 2004;David et al. 2005), we are not aware of their use until 
now to reproduce real patterns of electrical activity in the cortical surface, 
via a best fitting procedure (see Chapter 2).  

The objective of the study presented in this chapter was to analyze 
whether a neural mass model, consisting of several populations arranged in 
parallel, can actually be used to interpret and mimic real cortical EEG 
spectra, by accounting for differences among brain regions involved in the 
same task, and for temporal differences within the same region. Furthermore, 
we wished to investigate whether differences in the observed EEG spectra 
could be ascribed to alterations in the average gain of synapses within the 
region and in the excitation of populations by external input. These are 
essential requisite to use these models within the framework of brain 
neuroimaging, with future emphasis on effective connectivity. 
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The model for a single population used in our work was originally 
proposed by Wendling et al. (Wendling et al. 2002) to represent the electrical 
activity recorded in the hippocampus. Indeed, inhibitory gabaergic 
interneurons with fast kinetics are well documented in hyppocampal slices of 
the rat (Bartos et al. 2001;Bartos et al. 2002). Nevertheless, several studies 
mention that fast inhibitory synapses are also common in the neocortex 
(Traub et al. 1999). Recently, Traub et al. (Traub et al. 2005) published a 
complete thalamocortical model, including fast inhibitory synapses from 
basket cells to cortical interneurons. On the basis of these works, we can 
assume that the model by Wendling et al. is relevant not only for the 
hippocampus, but also to represent a single population in the neocortex. 

In order to realize a model of a ROI, we arranged three populations in 
parallel. This is basically the same approach used by David et al. in a recent 
paper on Neuroimage (David and Friston 2003), although the authors used a 
different parallel arrangement. We are aware that this choice does not reflect 
physiology, and that the real arrangement of internal synapses in a region is 
more complex and a-symmetric (including also feedback connections) than 
that used here. The possibility to build a more physiological model, 
reflecting the internal arrangement of synapses among a variety of neural 
populations may certainly be of the greatest value, but it is at present 
extremely difficult and beyond the aim of the present study. Data contained 
in a recent paper by Traub et al. (Traub et al. 2005) may be used to this aim, 
but such a more physiological model would probably include too many free 
parameters, and too many internal synaptic gains. Our idea was to 
concentrate on the input-output relationship of a ROI, (i.e., what input 
should be given to ROI to produce a given output) since this relationship is 
fundamental to infer connectivity. We are aware that the present model 
cannot be used to improve our physiological knowledge on the internal 
structure of a ROI, but it may be helpful in improving our knowledge about 
the connectivity patterns among different ROIs. The model has been 
designed with this purpose, and will be used with this purpose in future 
works. 

There is also another empirical consideration which justifies the use of a 
parallel arrangement of populations. EEG rhythms are considered a measure 
of the synchronism among neural populations and representative of the 
existence of non-linear phase coupling among different oscillators (Ebersole 
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and Milton 2002). Synchronism generally depends on the presence of strong 
coupling terms between inhibitory and excitatory populations which are 
engaged in the same oscillatory activity (Ursino et al. 2003). Hence, 
according to a parallel arrangement, it is reasonable to assume that 
populations which participate to the same rhythm are more strongly 
reciprocally interconnected than population engaged in different rhythms. 

The present simulation results suggest a few new considerations that 
should be taken in mind in order to use these models in conjunction with 
cortical EEG data, at least during the considered tasks: 

i) three populations arranged in parallel (i.e., a three kinetics model) are 
sufficient to account for the complexity of the observed EEG spectra in the 
range 3-50 Hz sufficiently well. Although the use of a greater number of 
populations might be useful to improve some aspects of the EEG spectra in 
the most difficult conditions (for instance, to simulate the spectrum depicted 
in the bottom panels of Fig. 1.7), we deemed the introduction of a fourth 
population unnecessarily cumbersome.  

ii) The three populations may produce different rhythms in the EEG, 
which correspond to peaks in the power spectral density. The amplitude of 
these peaks mainly depends on the level of activity in each population. In 
particular, a population may be silent or strongly active depending on the 
mean value and variance of the input noise. This aspect may become 
important in future applications of the model, devoted to the investigation of 
brain connectivity among different regions. In fact, in real conditions the 
different regions do not receive external noise only, but part of their input 
may derive from other regions participating to the same task. Hence, changes 
in connectivity may result in well-detectable changes in population activity 
and in the consequent EEG spectrum.  

iii) The position of the individual peaks may be finely tuned acting on 
the average gain of the excitatory and inhibitory synapses within a region, 
without modifying the synaptic kinetics. Of course, a complete analysis 
might consider a change in the average gains of both excitatory and slow 
inhibitory as well in fast inhibitory ones (i.e., in parameters A, B and G 
simultaneously in Eqs. 1.2, 1.6, 1.10 and 1.14). However, we do not think 
that all these parameters can be individually estimated looking at EEG only. 
Our preliminary simulations (not reported here for brevity) suggested that it 
is especially the ratio of fast inhibitory vs. slow excitatory-inhibitory 
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synapses which modulates the position of the peaks. In order to reduce the 
number of free parameters, in the present work we modified only the average 
gain of fast inhibitory synapses. As suggested by Horwitz et al. (Horwitz et 
al. 1999), more complete information on synaptic changes might be obtained 
by coupling EEG signals (which are a measure of excitatory activity in 
pyramidal neurons) with data obtained with other neuroimaging techniques 
(such as fMRI or PET) which measure metabolic changes, more closely 
related with the overall (inhibitory + excitatory) synaptic activity. In this 
regard, the use of physiological models may have an important function to 
link data obtained with different techniques into a single theoretical 
framework. 

Among the estimated parameters, we included the mean value and 
variance of input random noise. This choice and the values of estimated 
parameters deserve some considerations. During a real cognitive task the 
input to a population is a time-varying dynamical process. In the present 
work we tried to capture the time varying properties of the changing input by 
subdividing the task into different epochs (of 1 second each, see Tab. 1.3), 
and by estimating the mean value and variance of the input noise in each 
epoch. It would be possible to reduce the duration of the epochs (to better 
capture the time varying properties of the input noise) but this would worsen 
the resolution of the computer power density spectra. Our objective in future 
works (see Chapter 2) is to replace the random noise with a signal coming 
from other ROIs, according to a connectivity circuit. A time-varying input 
noise will be used just to mimic the excitation to the ROIs initiating the 
target (such as the ROI 5L in the motor task), whereas inputs to the 
remaining ROIs will be derived from the connectivity circuit.  

It is worth noting that that the estimated mean value for the input noise, 
reported in Tab. 1.2 and 1.3, may assume negative values. This may be 
surprising since this noise represents an average density of afferent action 
potentials. A negative mean value for the input noise was necessary to 
maintain some populations in the ROI silent (that is, almost completely 
inhibited). There are two possible explanations for this finding. a) the 
population receives inhibition from other populations or from the thalamus, 
and a negative mean value for the noise can be interpreted as a prevalence of 
inhibition over excitation. This might be explicitly included in the model by 
adding a further noise term as input to inhibitory neurons, but this would 
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increase the number of estimated parameters. b) the position of the sigmoidal 
relationship may be translated to the right, so that a population would be in a 
silent state (i.e., in the lower plateau of the sigmoid) by using a noise with 
zero mean value. We prefer the first solution, since we think that a 
population may be maintained silent by inhibition exceeding excitation. 

An interesting aspect, which deserves some comments, is the value of 
time constants (inversely related to parameters 111 ,, gba ) used for the three 
populations. Such values changed according to the frequency bands 
considered (theta-alpha, beta and gamma). Although the relationship 
between time constants and frequency-band can be in part argued “a priori”, 
there are several non-linear factors which complicate the final result and 
keep away from a purely analytical solution. The position of the peak is 
dramatically affected not only by the time constant, but also by the average 
gain of the fast inhibitory synapses. By increasing the average gain of fast 
inhibitory synapses, the peak moves to the right (see Fig. 1.4). This 
phenomenon interferes with the choice of the synaptic time constants. 
Moreover, in order to have appropriate frequency bands, we must modify not 
only the time constants of fast inhibitory synapses, but also those of slow 
inhibitory interneurons and of the excitatory cells. 

For excitatory time constants we obtained from 25 ms in the theta and 
alpha frequency ranges up to 9 ms in the gamma band. Such values for the 
time constant are usually found for glutamatergic synaptic transmission 
mediated by NMDA (N-methyl-D-aspartate) receptors, found in the cerebral 
cortex as well as in the cerebellar nuclei. For the slow inhibitory we got from 
50 ms in the theta band up to 25 ms in the gamma band. The values obtained 
in the theta band for such inhibitory time constants are consistent with those 
obtained experimentally from in vivo studies of brain of mice related to the 
GABA neurotransmitter  (Molyneaux and Hasselmo 2002). The interest in 
this lyies in the fact that other independent computational modeling suggests 
that  phasic changes in strength of synaptic transmission could allow 
separate phases of encoding and retrieval in the hippocampal formation 
(Hasselmo et al. 1996;Wallenstein and Hasselmo 1997a;Wallenstein and 
Hasselmo 1997b;Hasselmo et al. 2002). The value of fast inhibitory synapses 
of the third population appears very small (down to 1.2 ms). However, there 
are some arguments which justify this choice. First, with the use of higher 
time constants it is very difficult to obtain a peak of EEG activity in the 
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gamma-band; consequently, fitting of the high frequency portion of the 
spectra significantly worsens. Second, inhibitory post-synaptic currents with 
very fast time constants have been observed by Bartos et al. (Bartos et al. 
2001;Bartos et al. 2002) in the rat hippocampal slices. The time constants 
were 1.2 and 1.8 ms in CA3 and CA1, respectively. Although these data 
refer to the hippocampus (see also the comment above) they demonstrate 
that fast time constants may actually characterize inhibitory synapses. 
Furthermore, in a recent model Traub et al. (Traub et al. 2005), used a time 
course for GABA conductances of the kind 

τ/tec −⋅ with τ = 3 ms for basket 
cell to cortical interneuron connections. It is worth noting that the previous 
equation assumes an instantaneous rising time, and a slower decay time. Our 
equations for synaptic dynamics lead to an impulse response of the type 

τ/tetc −⋅⋅ , with a peak at t = τ and a subsequent decay with time constant τ. 
The equation by Traub et al. can be simulated quite well with our synaptic 
kinetics if the time constant in settled in the range 1.0-1.5 ms. Furthermore, 
Treves (Treves 1993) demonstrated that the time constant of synaptic 
integration in a mean-field model (i.e., a model without an explicit 
description of spikes) can be chosen much smaller than the membrane time 
constant, in conditions where a neuron receives much input.  

 Taken together, the results obtained for the time constants of the 
modeled populations are compatible with the class of the neurotrasmitters 
usually found at the cortical level, in the Brodmann regions considered. 

The results summarized above may open some new perspective in the 
use of neural mass models in conjunction with EEG measurements. First, 
activity in different regions can be summarized using a few parameters for 
each region, describing the activity level of populations with a different 
kinetic, and (although partially) the modulation in their internal excitatory-
inhibitory synaptic loops. Even more important, our results indicate that the 
present model of a single ROI may become the brick for building more 
sophisticated networks of interconnected brain regions. A subsequent 
improvement in that direction will be to replace the exogenous noise into the 
different ROIs, used in the present study, with a more complex input term, 
which accounts for possible connections among the different regions 
involved in the simulated task (see Chapter 2). This will be a  fundamental 
advance, for funding the analysis of effective connectivity on physiological 
models, rather than on empirical algorithms. A first step in that direction was 
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presented by David et al. (David and Friston 2003) recently. In their work, 
the authors investigated how connectivity among two ROIs may affect peaks 
in the spectrum and the coherence between signals. The authors, however, 
did not use their model to fit real EEGs. A fitting to real EEG signals was 
achieved by Rowe et al. (Rowe et al. 2004), using a biophysical model of 
brain activity. Their model, however, aspires to simulate the effect of overall 
brain activity on scalp EEG. By contrast, our study was mainly concerned 
with electrical activity in individual restricted regions in the cortex. In our 
work, scalp EEG was propagated to the brain surface using an inverse 
propagation model, and attention was focused on an internal representation 
of brain regions. Hence, our study aspires to evolve toward brain 
connectivity analysis in individual ROIs. By contrast, the model of Rowe et 
al. aspires to simulate the effect of the overall brain activity on EEG at a 
particular site in the scalp (in particular, the authors used the central site Cz 
in their study). 

Finally, it may be interesting to analyze lines for future works and 
possible applications of the present model.  

A first important point is that, in the present study, we did not try to 
provide a physiological explanation of the obtained results, but just to 
demonstrate that the model is able to fit real cortical EEG power spectral 
densities in a variety of spatial and temporal conditions. The values of 
synaptic weights and of the excitatory input in selected ROIs may be 
exploited in future works to reach a deeper understanding of electrical 
activity changes occurring during a task. This description may represent a 
simple way to summarize the distribution of EEG power spectral density  in 
a quantitative fashion, based on a few parameters only, and a simple way to 
follow its temporal and spatial changes.  

A second point may concerns the relations of the present model not only 
with cortical EEGs, but also with data obtained by other techniques, more 
related with metabolic activity (such as fMRI and PET). For instance, 
Horvitz et al. (Tagamets and Horwitz 1998) developed a multi-layer neural 
mass model to simulate a delayed match-to-sample task, and used this model 
to mimic PET data obtained in the prefrontal cortex. Metabolic data can be 
obtained, with our model, by computing a quantity related with the sum of 
all synaptic activities. 
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Perhaps the most interesting evolution of this study may consist in 
building network of functionally connected ROIs, by replacing the external 
noise with terms reproducing effective connectivity (see Chapter 2).  The 
final purpose of this network may be to realize new methods to assess 
connectivity from EEG data, based on non-linear models and neuro-
physiological relationships among quantities.  
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CHAPTER 2 
 

USE OF A NEURAL MASS MODEL FOR THE ANALYSIS 
OF EFFECTIVE CONNECTIVITY AMONG CORTICAL 
REGIONS BASED ON HIGH RESOLUTION EEG 
RECORDINGS 
 

2.1 Introduction 
Brain processing, even during simple cognitive tasks, is the result of the 

interaction among several cortical regions, which are reciprocally 
interconnected and functionally integrated. In this context, a crucial role in 
the neurophysiology is played by the concept of brain connectivity. 
Knowledge of connectivity is considered essential today to understand how 
the brain works, and to assess the role of different regions in the achievement 
of specific cognitive functions. However, connectivity can be defined in 
several alternative ways (Wendling et al. 2002;Lee et al. 2003a;Lee et al. 
2003b), which have a different theoretical and practical impact: anatomical, 
functional and effective connectivity. In particular, while functional 
connectivity has been defined as “the temporal correlation between spatially 
remote neurophysiological events” (Friston et al. 1993), effective 
connectivity is concerned with “the influence that one neural system exerts 
on another one” (Friston et al. 1993). An improved definition, provided 
recently, considers effective connectivity as “the simplest brain circuit that 
would produce the same temporal relationship as observed experimentally 
between cortical sites” (Horwitz 2003). Although both functional and 
effective connectivity are of physiological relevance, they have a different 
meaning and subtend different theoretical ideas. The definition of functional 
connectivity is “model free”, whereas effective connectivity requires the 
formulation of a causal model connecting several brain regions of interest 
(ROIs). Connectivity has been evaluated, in several recent studies, both 
starting from neuroimaging data (such as PET or fMRI) (Rowe et al. 
2005;Erickson et al. 2005) and from high-resolution scalp 
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electroencephalograms (EEG) or magnetoencephalograms (MEG) (David et 
al. 2005).  

A considerable number of approaches has been proposed for the 
estimation of functional connectivity on EEG signals: among these, one of 
the first to exploit the concept of directed functional connectivity was the 
directed coherence (DC), introduced by Saito and Harashima (Saito and 
Harashima 1981) and generalized by Baccalà and Sameshima (Baccalà and 
Sameshima 1998). Later, multivariate methods were developed, like the 
partial directed coherence (PDC), the directed transfer function (DTF) and 
the direct DTF (dDTF) (Kaminski and Blinowska 1991;Kaminski et al. 
1995;Kaminski et al. 1997; Kaminski et al. 2001; Baccala and Sameshima 
2001; Korzeniewska et al. 2003; Astolfi, Cincotti et al., 2004; Astolfi et al. 
2005). The most diffuse method to estimate effective connectivity in 
neuroscience is the structural equation modelling (SEM) (McIntosh and 
Gonzalez-Lima 1994). 

Despite the large number of studies appeared in last years for assessment 
of connectivity from EEG/MEG data, there is no definite consensus today on 
the method that provides optimal results, nor on the significance of the 
results obtained, and on the possible causes of error.  

An interesting new opportunity, still at the pioneering stage, consists in 
the use of neurophysiological models (i.e., models based on biology) to 
derive effective connectivity from real data. These models may be useful to 
establish causal relationships among remote cortical regions, to gain a deeper 
insight into the underlying neural processes, and to establish some basic 
mechanisms for signal generation (including non-linearities).  

As we discussed in Chapter 1, section 1.1, two main classes of models 
are used in neurophysiological simulation: detailed models and mascroscopic 
models; in our study we considered only the latter. 

 A neural mass model was used by Tagamets, Horwitz et al. (Tagamets 
and Horwitz 1998;Horwitz et al. 1999;Tagamets and Horwitz 2000) to 
simulate a delayed match-to-sample task. To this end, the authors defined a 
simple local circuit that reflects the role of local connectivity in producing 
neuroimaging data, and in accomplishing the proposed task, while 
connections among regions were based on primate neuroanatomical data. 
Hence, in these studies connectivity is not derived from data, but the model 
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presupposes a given connectivity to simulate a functional neuroimaging 
study. 

As we briefly discussed in Chapter 1, David et al. (David and Friston 
2003) used the Jansen model to simulate how the MEG/EEG spectrum can 
be modified by changing a few parameters which describe population 
kinetics, and investigated how these spectra are altered by a simple 
connection between two coupled cortical areas, or including different 
hierarchical arrangements (David et al. 2005). The authors reached the 
conclusion that both the coupling strength and propagation delay have a 
critical impact of MEG/EEG spectra. Then, the authors used signals 
generated by the same model to test the validity of different measures of 
functional connectivity (David et al. 2004). Although these studies have a 
great importance to show how connectivity may affect spectra, and what 
kind of information can be extracted, they did not attempt estimation of 
model parameters based on real data, i.e., the models are not used to explain 
real waveforms, nor to infer effective connectivity from data. 

Also Robinson, Rowe et al. recently proposed a model to generate scalp 
EEG signals (Robinson et al. 2003), and used this model to estimate 
neurophysiological parameters from EEG (Rowe et al. 2004) in a broad 
range of frequency (0.25-50 Hz). These works represent a significant 
advancement in EEG modelling, and provide an understanding of EEG 
spectra in terms of cortical and thalamo-cortical mechanisms. However, they 
are not explicitly devoted to the problem of effective connectivity 
assessment among ROIs. 

The study presented in this chapter continues on the same route, with the 
aim of using a neural mass model (Wendling et al. 2002) to infer 
connectivity from data.  

In the study described in Chapter 1 we modified the model proposed by 
(Wendling et al. 2002) to simulate cortical EEGs in some regions of interest 
(ROIs) during simple tasks (finger movement or working memory tasks). In 
particular, we showed that a single neural mass model is able to produce a 
unimodal spectrum, and that different EEG rhythms (in the alpha, beta or 
gamma frequency range) can be mimicked by the same model acting on the 
time constants of the synapses. More complex EEG patterns in the range 3-
50 Hz, similar to those experimentally observed (containing up to three 
simultaneous rhythms), could be simulated quite well using the parallel 
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arrangement of three neural mass models with different synaptic kinetics, 
each excited with white noise with proper mean value and variance.  

While the previous work demonstrated the capacity of simple neural 
mass models to simulate real cortical EEGs, it was not concerned with the 
problem of brain connectivity. In particular, in the previous work the input to 
each ROI was an exogenous input quantity, simulated as a white noise term. 
By contrast, in a real situation the input to ROIs derives largely from the 
other interconnected regions, i.e., a realistic model should consider several 
ROIs which simultaneously excite each others.  

The aim of work presented in this chapter is to substantially advance our 
previous study, by considering the problem of connectivity among several 
ROIs within the framework of neural mass models. A possible model of 
connectivity, which accounts for several simultaneous rhythms, and 
distinguish among different frequency bands, is first presented. Then, 
examples of the effect of connectivity on EEG power spectral density are 
shown. Finally, an algorithm is proposed, to infer possible patterns of 
connectivity from data during finger motor tasks. 

Two main objectives are pursued. First, we wish to investigate the effect 
of different patterns of connectivity among ROIs (each described via the 
previous model), by using a sensitivity analysis on the parameters specifying 
this connectivity. The target is to reach a deeper understanding of how EEG 
spectra are affected by connections among ROIs. Second, we investigate 
which patterns of connectivity among ROIs can be derived, by using a best 
fitting procedure between model and data. To this end, high-resolution EEG 
activity measured on the scalp is propagated to the cortex with a realistic 
back-propagation model (Babiloni et al. 2005), in order to generate reliable 
cortical EEGs during the task. The best fitting procedure tries to minimize 
the square difference between model spectra and real ones, using the 
strengths of connectivity as estimated parameters.  

Results show that the proposed neural mass model can be used to infer a 
connectivity circuit from high-resolution scalp EEGs. Of course, reliability 
of the circuit obtained requires further validation studies and comparison 
with other techniques, as well as a comparison with neuroanatomical and 
neurophysiological data. Limitations, possible causes of errors of the method 
and lines for future studies are thus discussed at the end.  
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To our knowledge, this is the first attempt to estimate connectivity, using 
a neurophysiological model fitted to real data. Although the results obtained 
are clearly preliminary, and still require further validation, they may open a 
promising route in the problem of effective connectivity estimation via 
physiological models.  
 

2.2 Method 

2.2.1 Mathematical model 

The description of the model of a single population and of a region of 
interest, as well as model equations, can be found in Chapter 1, section 
1.2.1.; for this reason they are not reported here. 

 
Model of connectivity among ROIs 
A critical problem in this study concerns the choice of the model for 

connectivity among different ROIs. In fact effective connectivity is model-
dependent, and different choices may lead to different results. David et al., in 
a recent paper (David et al. 2005), simulated various types of connectivity 
among two cortical areas: “bottom-up”, top-down” and “lateral”. In all these 
patterns the output is the spike density of pyramidal cells, but the targets 
depend on the type of connection.  

In this chapter we assumed that all connections among ROIs are 
“bottom-up” in type. This choice is justified by the fact that in this study we 
will apply our model to a motor task, without entering into a hierarchical 
organization of the different zones involved. Of course, different types of 
connections can be included in future works (see also “Discussion, section 
2.4”) depending on the neuroanatomical and neurophysiological knowledge 
of the problem under examination.  

As described and justified in Chapter 1 the model of an overall ROI has 
been constructed by using three populations arranged in parallel. In order to 
simulate connectivity among different ROIs, we computed the average spike 
density of all pyramidal cells in the three populations (say zout(t)). We have: 

∑
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1)(                                                               (2.1) 
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where z0 is spike density of pyramidal neurons (see Eq. 1.3 in Chapter 1, 
section 1.2.1). Parameters in the three populations have been chosen to 
obtain peaks in the theta and alpha band (4-12 Hz), in the beta band (12-30 
Hz) and in the gamma band (greater than 30 Hz), respectively. These values 
are reported in Table 2.1. To simulate connectivity, we assumed that the 
average spike density of pyramidal neurons (i.e., the quantity zout(t) in Eq. 
2.1) affects excitatory interneurons in the target region via a weight factor, 
W, and a time delay, T. This is achieved by modifying the input quantity p(t) 
in Eq. 1.6 of Chapter 1, section 1.2.1. In the following, in order to deal with 
several ROIs simultaneously, we will use the subscripts i (or j) to denote a 
quantity which belongs to the ith (or jth) ROI, while the superscript k will be 
used to denote the kth population in the same ROI.  Hence, the input pi

k(t) to 
the kth population in the ith ROI can be computed as follows 

H M, L,k       )()()( , =−+= ∑ TtzWtntp joutj
k

ij
k
i

k
i                         (2.2) 

where Wij
k is the weight of the synaptic link from the jth (pre-synaptic) 

ROI to the kth population of the ith (post-synaptic) ROI, T is the time delay 
(assumed equal for all synapses), ni

k(t) represents a gaussian white noise 
with mean value mi

k and standard deviation σi
k, and the sum in the right hand 

member of Eq. 2.2 is extended to all ROIs, j, which target into the ROI i.  
An example of connectivity among two ROIs is illustrated in Fig. 2.1. In 

the present study, all time delays among  ROIs have been taken equal to 10 
ms. The weights have been assigned different values, in order to simulate 
various patterns of connectivity and analyze their influence on the EEG of 
the downstream region.  
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Figure 2.1 - Example of connectivity from one ROI to another one, according to the 

present model. 
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Table 2.1 
Model basal parameters in common for the three populations. 

 (see Chapter 1 for the meaning of symbols) 
 

Model basal parameters different for the three populations. 
(Parameters 111 ,, gba  are in s-1) 

 

 AL BL GL a1
L b1

L g1
L 

POP LF 3.3 3.9 25 40 20 300
 

 AM BM GM a1
M b1

M g1
M 

POP MF 7.4 6.36 60 85 30 350 
 

 AH BH GH a1
H b1

H g1
H 

POP HF 6.9 4.7 90 110 40 790
 

2.2.2 Acquisition of experimental data 

In this study we considered the finger tapping task described in Chapter 
1, section 1.2.2; for this reason the section ‘’acquisition of experimental 
data’’ is not reported here.   

 

2.2.3 Best fitting procedure 

The best fitting between model simulated EEG of the ith ROI (vout,i(t)) 
and real data has been achieved in the frequency domain, by minimizing the 
square difference between the power spectral densities in the range 3-50 Hz. 
Parameters estimated by the minimization algorithm are the connectivity 
weights, (Wij

k in Eq. 2.2) as shown in section “Results, section 2.3”. The best 
fitting procedure is the same described in Chapter 1, section 1.2.3; for this 
reason it is not reported here.  
 

C1 C2 C3 C4 C5 C6 C7 s0 e0 r 
135 108 33.75 33.75 40.5 13.5 108 6 2.5 0.56 
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2.3 Results 
Effect of connectivity on power spectral density  
In the study presented in Chapter 1, the populations in a ROI were 

stimulated by different levels of external input noise. In the reality, this input 
noise reflects not only external stimuli, but above all activity coming from 
other regions participating to the same task and functionally integrated. To 
account for this aspect, in a first set of simulations we considered a network 
of three ROIs, and studied how their power spectral densities can be 
modified by the pattern of connectivity among them. The use of only three 
ROIs is justified by the necessity to maintain a moderate level of complexity 
in this initial study, and by the observation that these ROIs may represent the 
regions of the left hemisphere mainly concerned with the right finger 
movement task described in Chapter 1, section 1.2.2. In particular, we will 
assume that the first ROI (subscript i = 1) receives significant input noise but 
does not receive connections from the other regions. Parameters of the input 
noise (mean values and variances) has been chosen to mimic the power 
spectral density in the region ROI 5L of  Fig. 1.2, Chapter 1. The results are 
presented in Fig. 2.2 , where parameters used for the noise are reported in the 
legend. By contrast, we assumed that the other two ROIs (i = 2, 3) receive 
negligible excitation (mL=mM=mH=-50; (σL)2=(σM)2=(σH)2=20) and are 
activated mainly as a consequence of connections from the other regions. In 
the rest of this chapter, these two regions are considered representative of 
regions ROI 6AL and ROI 46L in Fig. 1.2. The previous choice is the same 
as to assume that region ROI 5L receives most of the external stimulus 
which triggers the motor task, and drives the other two regions. The latter 
may further modulate their activity by recurrent connections. This 
assumption is justified by the observation that, during the performed motor 
task there is also an anticipatory function that is usually promoted by the 
superior parietal cortex in humans, here represented by the ROI 5L. 
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Figure 2.2 - Example of fitting of an experimental ROI (continuous line). The power 
spectral density of the model output (dashed line) has been obtained using the 
following values for the mean and variance of the noise in the three populations: 
mL=10, mM=200, mH=-50,  (σL)2=(σM)2=(σH)2=20. 

 
Four simple examples of how feedforward connectivity can modify the 

EEG power spectral density in ROIs 2 and 3 are displayed in Fig. 2.3. This 
figure illustrates that the pattern of connectivity is reflected into evident and 
well-detectable changes in the EEG spectrum. 

The real situation, however, is more complex than the feedforward 
examples delineated in Fig. 2.3, due to the presence of reentrant connections 
among ROIs. Hence, a more complex example is shown in Fig. 2.4. This 
example differs from the previous for the presence of a feedback between the 
ROI 2 and the ROI 3. Here we assume that the ROI 3 receives significant 
connections from the second regions in the medium frequency and high 
frequency populations, and sends a connection to the low frequency 
population of the ROI 2. Moreover, ROI 3 is also directly activated by the 
first ROI. 
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Figure 2.3  – Four examples of hypothetical feed forward connectivity among three 

regions, simulated by the model of a ROI described before. The values of connectivity 

used in these examples are: First example: WM
21=10. Second example: WM

21=10, 

WH
21=10. Third example: WM

21=10, WM
32=50. Fourth example: WM

21=10, WM
32=50, 

WH
32=50. Connectivity causes evident peaks in the power spectral density of the ROIs. 

ROI1 ROI2 ROI3



 57

In order to clarify the situation, Fig. 2.4 shows the power spectral density 
of the three ROIs and the temporal activity of all populations involved. As it 
is evident from Fig. 2.4, the ROI 1 exhibits significant activity only in the 
low frequency and medium frequency populations, while the high frequency 
population is almost silent. ROI 2 exhibits significant activity only in the low 
frequency population. This activity reflects incoming connections from the 
ROI 1 and ROI 3. Finally, the third ROI exhibits significant activity in the 
medium frequency and high frequency populations, whereas the low 
frequency population is silent.  

Looking at Fig. 2.4, we can underline an aspect of ROI 3 which deserves 
particular attention: while the activity of the third population exhibits a large 
variance, which is reflected in a large peak in the power spectral density, 
activity in the second population exhibits only a mild variance. This is 
reflected in a moderate peak in the power spectral density at mid 
frequencies. The reason is that neurons in the second population of ROI 3 
work almost completely in saturation, as a consequence of the strong 
activation coming simultaneously from ROI 1 and ROI 2. Indeed, power 
density in neural mass models does not reflect the average level of activation 
of a population, but rather the variations in activity. In order to better 
illustrate this point, we repeated the same simulation using a network 
identical to that in Fig. 2.4, but decreasing the strength of the two 
connections arriving to the medium frequency population of ROI 3. Results 
are shown in Fig. 2.5. In this case, neurons in the medium frequency 
population of ROI 3 are not in saturation, and their activity exhibits a large 
variance, which is reflected in a large peak of power spectral density at 
medium frequencies. This example illustrates the apparently paradoxical 
case in which a decrease in connectivity strength induce an increase in power 
density, by allowing neurons to exit from a saturation state. This is a direct 
consequence of the non-linear sigmoidal relationship used in these models to 
describe the spiking activity of neurons. 
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Figure 2.4 – Example of a hypothetical feedback connectivity among three regions, 
simulated by the model of a ROI described before. The panels show the presynaptic 
spike density of the three populations (L, M and H respectively) which build the ROIs 
and the normalized power spectral density of each ROI. The values of connectivity 
used in these examples are: W21

L=20; W31
M=50; W31

H=10; W32
M=50; W32

H=50; 
W23

L=20. This example is more complex than the previous ones and the connections 
cause evident peaks in the ROIs and some saturations in spike activities. The 
saturation obscures the peaks (see the second population in ROI 3). 
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Figure 2.5– Example of a hypothetical feedback connectivity among three regions, 
simulated by the model of a ROI described before. This example differs from the one 
shown in Fig. 2.4 since we decreased the connection strength to the medium frequency 
population of the third ROI, i.e., we have: W31

M=20; W32
M=20. The effect of this 

reduction in connection strength is that the peak in the beta frequency range of the 
power spectral density in ROI 3 is more evident than in the previous example, since the 
medium-frequency population of ROI 3 is no longer in a saturation state. The panels 
show the normalized power spectral density of each ROI and the presynaptic spike 
density of the three populations (L, M and H respectively) which build the third ROI. 
The presynaptic spike densities of the other ROIs are not shown, since their activity is 
similar to that in Fig. 2.4. 
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Estimation of connectivity strength on real data  
The last step in this study concerns estimation of parameters Wij

k in Eq. 
2.2, starting from real data. As described in Chapter 1, section 1.2.2, these 
data concern cortical EEG in several ROIs obtained from measurement on 
the scalp with the inverse propagation algorithm, during a finger movement 
task. As described in “Method, section  2.2”, best fitting has been achieved 
by minimizing a least square criterion function of the difference between 
model and experimental power spectral density, in the range 3-50 Hz with a 
resolution of 1 Hz. In performing the minimization algorithm we assumed, 
as in the previous subsection, that ROI 1 does not receive any connection 
from the other regions, but receives a significant input noise, whereas the 
ROI 2 and ROI 3 receive negligible input noise but may receive all possible 
connections from the other ROIs, including self  connections. Thus unknown 
parameters for the algorithm are all connectivity weights Wij

k, with i = 2, 3, j 
= 1,2, 3, and k = L, M, H. The total number of estimate parameters is 18. 
However, as shown below, most of these parameters will be given a value 
close to zero by the algorithm, i.e., only a small number of connections is 
sufficient to mimic the observed power spectral density.  

Results obtained by the minimization algorithm are presented in Fig. 2.6, 
where a block diagram of the estimated connections is also shown. The 
numerical values of parameters Wij

k are given in Table 2.2 (see I subject). It 
is noticeable that just 6 connections weights are significantly different from 
zero at the termination of the algorithm. All other connections, including all 
self connections, assume negligible values. The algorithm suggests the 
presence of a feedforward connection from ROI 1 to ROI 2 at low 
frequencies, and from ROI 1 to ROI 3 at high frequencies. Moreover, the 
algorithm puts in evidence the presence of significant recurrent connections 
between ROI 2 and ROI 3: from ROI 2 to ROI 3 at medium and high 
frequencies, and from ROI 3 to ROI2 at low and high frequencies. Although 
the present results are just preliminary, they show that power spectral density 
can be mimicked using a simple circuit simulating effective connectivity. 
The same algorithm has been applied to the second subject performing the 
same task, obtaining quite similar values of estimated parameters (see Tab. 
2.2, II subject). We can just observe the presence of a new (weak) 
connection from ROI 1 to ROI 3 at medium frequencies, and the absence of 
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the (weak) connection from ROI 2 to ROI 3 at high frequencies. All other 
connections remain quite similar, suggesting a quite repetitive result.  
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Figure 2.6 – Example of model fitting to three real power spectral densities, belonging 
to regions ROI 5L, ROI 6AL and ROI 46L of Fig. 1.2, Chapter 1. Fitting has been 
achieved by estimating the connection strengths among populations (see text for 
details). Continuous lines represent experimental Power Spectral Densities, while 
dashed lines are model ones. All spectra have been normalized, to have unitary area in 
the range 3-50 Hz. Estimated parameters are shown in Table 2.2.  

 
Table 2.2 

Estimated connection strengths parameters  for three ROIs (5L, 6AL, 46L) connected  
during the right finger movement in two subjects. 

 

 W21
L W23

L W31
M W32

M W31
H W32

H W23
H 

I Subject 0.35 1364.50 0.00 110.13 53.12 2.17 6.96 
II Subject 0.37 1268.60 5.17 3.65 35.19 0.00 7.40 
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2.4 Discussion 
The study of brain connectivity represents a fundamental aspect of 

neurophysiology today. In fact, an integrate understanding of human brain 
function requires not only knowledge of the different areas involved in a 
given task, but also of their reciprocal connections and functional links. 
Various authors in past years suggested that neural mass models may 
represent a promising tool for the analysis of this problem, in association 
with data obtained with functional neuroimaging techniques (fMRI or PET) 
and/or high resolution EEG or MEG (Horwitz et al. 1999;David et al. 
2005;Rowe et al. 2005;Erickson et al. 2005). In this chapter we aspire at 
analyzing the possible use of an update neural mass model, for the study of 
brain connectivity. The study was developed in different phases, which 
represent necessary steps toward a deeper understanding of the potential 
benefits and limitations of the proposed model.  

The first simple step was accomplished in the previous chapter; it 
consisted in the realization of a model for a ROI which represents a good 
compromise between computational simplicity and completeness. More 
specifically, our purpose was to arrive at a model able to simulate the main 
characteristics of cortical EEG power density in the range 3-50 Hz, by 
simply acting on its input.  To this end, we adopted a model composed of 
three subpopulations arranged in parallel, each population simulated as in 
Wendling et al. (Wendling et al. 2002), but with different values of 
parameters (in particular, with different synaptic kinetics). In the previous 
chapter we verified that the proposed model for a ROI is able to simulate 
different EEG PSDs, by simply assuming a different input noise. This was a 
necessary requisite to use the model as an instrument to generate reliable 
signals and/or to infer connectivity from data.  

The work presented in this chapter significantly advances the previous 
one concerning two main aspects. First, we proposed a new model of 
connectivity, and tested how connectivity may modify EEG power density. 
The following questions were analyzed. Does connectivity result in a clear 
change in EEG PSD? Does this change reflect the imposed connectivity in a 
simple and straightforward way, at least in case of feedforward connections? 
Can the model be used as a simulation tool to show how different patterns of 
connectivity result in different PSD spectra? (that is a direct use of the model 
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as a data generator). Although in the present chapter we displayed just a few 
exemplary simulations (but many others can be performed) these clearly 
show that connectivity induces evident changes in spectral content. 

The example of feedforward connectivity among ROIs, depicted in Fig. 
2.3, resemble those shown in David et al. (David and Friston 2003). 
However, there are significant differences between our model of 
connectivity and that used by these authors. These differences may be 
reflected in different circuits for the interpretation of data.  First, in David et 
al. connectivity from one ROI to another is described only by means of a 
constant gain factor and a time delay. By contrast, we used three gain 
factors, assuming that the connection strength may vary depending on the 
sub-population involved (i.e., with slow, medium or fast kinetics). The main 
consequence of this choice is that, in our model, a presynaptic ROI may 
induce a rhythm in a different frequency-band of the target ROI, i.e., it is not 
necessary that the pre-synaptic ROI contains the same rhythm that it induces 
downstream.  This is evident, for instance, in Fig. 2.3, where a rhythm at 
medium frequencies appears in the ROI 2, although this was not evident in 
ROI 1. We judge that this possibility is important to arrive at a proper 
understanding of connectivity. In fact, looking at the PSD in the six ROIs 
during finger movement, we observed the presence of some peaks in the 
frontal region (46L) which were not present in the other ones. A further 
advantage of our approach, is that connectivity may be described in the 
frequency domain: it is not a simple scalar number, but a more complex 
entity which depends on the particular rhythm (or frequency band) 
considered.  

A second major difference between our model of connectivity and that 
by David et al. is that these authors maintained a constant average input to 
each ROI, i.e., they preserved mean value and standard deviation of 
presynaptic input independent of the connection strength (in their work 
coupling among two ROIs just modifies the ratio of the input attributable to 
the source area vs. the extrinsic noise). In other words, coupling does not 
modify the equilibrium activity of each population. By contrast, in our 
approach a strong connection may significantly modify the average activity. 
This has strong consequences, which are underlined in Fig. 2.4. In certain 
cases, increasing connectivity may lead to a saturation of the post-synaptic 
population. This saturation may be reflected in a decreased variance of all 
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quantities in the population and so in a reduced power density in the given 
frequency band. Hence, in our study non-linear effects become much more 
evident than in former ones.  

The previous steps confirmed that the model can be used as a simulation 
tool, able to produce reliable signals with different patterns of EEG power 
spectral density, and to mimic the effect of different imposed patterns of 
connectivity. The use of the model as a simulation tool can be useful, for 
instance, to provide artificial signals to test methods actually adopted to infer 
connectivity from data. The cortical signals generated with the model, 
assuming a given connectivity, may be propagated to the scalp (using 
realistic anatomical models of the skull and interposed tissue) and corrupted 
with noise. These artificial scalp signals can then be used to test algorithms 
commonly adopted to infer connectivity from scalp EEG (for instance the 
PDC, see Astolfi et al. (Astolfi et al. 2004)). This use of the model will be 
exploited in future works.  

The last, and more ambitious step of the work described in this chapter, 
was to check whether the present model, trained with a minimization 
algorithm, can “discover” a simple pattern of connectivity, starting from real 
data, under a few basic hypotheses. Is it possible, using a model of 
interconnected ROIs, to infer a simple pattern of connectivity with an 
automatic algorithm, so that each ROI produces the same cortical EEG 
spectrum as data obtained from in vivo measurement? 

Results obtained with the minimization algorithm are encouraging. The 
algorithm found a simple pattern of connectivity, which explains EEG power 
spectral density carefully, and seemed quite repetitive in the second subject. 
Moreover, several connections (including all self-connections) assume a 
negligible strength. Although the estimation algorithm used 18 parameters, 
just 6 of them was given a value significantly different from zero. Hence, a 
model with 6 connectivity parameters is able to mimic PSD in the three 
ROIs of the left hemisphere, during the finger movement task. 

Although the results are of value, and may open new possibilities in the 
study of brain connectivity, they should be considered with caution. First, the 
obtained results depend on the the “a priori” assumptions introduced. In this 
work, our main assumption was that the region named ROI 5L receives a 
significant exogenous noise (which may represent the input signal which 
triggers the task) and drives the other two regions in the left hemisphere 
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(named ROI 6AL and ROI 46L). The latter two ROIs are reciprocally 
connected, and receive small exogenous noise (this exogenous noise may 
represent input from other regions). Of course, a different “a priori” choice 
for the connectivity circuit may lead to alterative results (for instance, if one 
includes connections with ROIs in the right hemisphere, or assumes a 
feedback connection to the ROI 5L too). The possibility to simulate a larger 
number of interconnected ROIs, and limitations on the number of free 
parameters, will be discussed more extensively below. 

A second important point is that, even using a priori assumptions, 
multiple equivalent solutions may exist, and the algorithm discovers just one 
of them. This is a clear limitation of all minimization algorithms for non-
linear problems, i.e., the solution is not unique, and alternative solutions may 
be found depending on the initial guess. In our problem, this means that 
other values for the connection strengths among the three ROIs might exist, 
able to produce similar EEG power spectral density.  

Finally, we must consider that, in the present work, we used a constant 
time delay for all connections among ROIs. Of course, time delays might 
represent additional parameters for the fitting procedure. As shown in David 
et al. (David and Friston 2003), time delays may modify the position of the 
peak in the power spectral density. This problem may be the subject of 
additional studies with the model. However, we think that additional 
information (such as cross-correlation) should be required to estimate time 
delays from data (see below). 

According to the previous considerations, we wish to stress that, in this 
work, we did not aspire to find “true” connectivity from data (indeed, the 
connectivity concept is strongly model dependent) but to show how the 
proposed model, trained with real signals, can discover “one possible” 
solution which describes data quite well.  

In the present work we assumed just three interconnected ROIs. Of 
course, a limitation of the proposed approach consists in the number of 
parameters, which should be simultaneously estimated, in case of a greater 
number of interconnected ROIs. Assuming that all self connections can be 
given a value zero (as confirmed by the present results) and considering N 
totally interconnected ROIs, the number of free connectivity strengths would 
be 3 N (N-1) (i.e., each ROI may receive three connections from the other 
ones). The number would further increase considering time delays. 
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In order to overcome the typical limitations delineated above (i.e., the 
dependence of the solution on the “a priori” hypothesis, the uniqueness of 
solution and the excessive number of parameters) we think that the proposed 
algorithm should be enriched with additional information.  This may 
comprehend: i) anatomical and neurophysiological “a priori” knowledge. 
Such information may provide additional constraints on which connections 
should be included in the model, and which connections should be forced to 
zero. ii) The minimization algorithm might exploit not only information on 
power spectral density, but also additional information extracted from data 
(such as cross-correlation and cross-spectra). This information may be useful 
to limit the number of possible alternative solutions for the algorithm, and to 
allow estimation of time delays. iii) As suggested by Horwitz et al. (Horwitz 
et al. 1999), models may be valuable to integrate data obtained with  
different techniques (not only EEG or MEG, but also data more related with 
metabolism, such as those obtained with fMRI or PET, which are especially 
expression of synaptic activity). Fitting synaptic activity to metabolic data 
may provide additional constraints for the model.  Viceversa, the model may 
be used as a simulation tool, to interpret fMRI/PET data during cognitive 
tasks involving different ROIs (but see Horwitz (Horwitz et al. 1999;Horwitz 
et al. 2000;Horwitz 2003) for excellent examples of this model use). 

The problem of multiple solutions might also be overcome, in future 
works, with the use of more sophisticate optimization methods (such as 
Monte Carlo techniques, or simulated annealing), that involve a search from 
a population of solutions, not from a single point. Among these methods,  
evolutionary algorithms (EAs) (Goldberg 1989) are particularly promising. 
EAs are search methods that are inspired by Darwinian evolution, i.e., 
natural selection and survival of the best in the biological world. The 
solutions with high fitness are recombined with other solutions and mutated 
by making a small change to them. Recombination and mutation are used to 
generate new solutions that are biased towards regions of the space for which 
good solutions have already been obtained. Of course, the counterpart of this 
technique is the high computational time required to run the minimization 
algorithm several times, with different values of the initial guess.  

In conclusion, the present chapter was focused on the possibility to use 
neural mass models to analyzing data on brain function, in the same 
direction as that previously investigated by other groups (Horwitz et al. 
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1999;Horwitz 2003;Rowe et al. 2004;David et al. 2005). The emphasis of 
this chapter is on the possibility to use these models to infer information on 
connectivity, either using the model as a simulator, to generate signals and/or 
to gain a deeper insight into to possible effect of connectivity on measured 
data, or as a part of an algorithm, to derive connectivity from data. Although 
the last step is still at a preliminary stage, the present work represents a first 
promising attempt in that direction. 
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CHAPTER 3 
 
THE EFFECT OF CONNECTIVITY ON EEG RHYTHMS, 
POWER SPECTRAL DENSITY AND COHERENCE 
AMONG COUPLED NEURAL POPULATIONS: 
ANALYSIS WITH A NEURAL MASS MODEL 
 

3.1 Introduction   
Analysis of neural signals (such as electroencephalography (EEG), 

magnetoencephalography (MEG), functional magnetic resonance imaging 
(fMRI) or positron emission tomography (PET)), is playing a fundamental 
role in Neuroscience today, to monitor brain function in humans and to gain 
a deeper understanding on how the brain works. However, interpretation of 
these signals in terms of neural activity is difficult and not completely 
understood yet, for several concomitant reasons.  

First, fMRI and PET provide a measurement of metabolic activity in the 
brain, with high spatial resolution and only poor temporal resolution. As we 
discussed in Chapters 1 and 2, it is generally assumed (Kadekaro et al. 
1985;Nudo and Masterton 1986;Jueptner and Weiller 1995) that this 
measurement is mainly related with synaptic activity (both excitatory and 
inhibitory) in the detected zone. Unfortunately, synaptic activity is not 
linearly correlated with the spike rate of pyramidal neurons, which 
represents the essential information used in brain processing. By way of 
example, an increase in synaptic activity (hence in metabolism) may induce 
only modest changes in spike rate, if both excitatory and inhibitory synapses 
are simultaneously involved (Almeida and Stetter 2002).  

Second, EEG power spectral density is used to infer information on brain 
activity in different cortical areas, and to study functional links among brain 
regions. As well known, EEG exhibits several rhythms (in the alpha, beta, 
gamma or delta ranges): alterations in power density of these rhythms is 
associated with modification in behavior (such as attentional effects, sleep, 
cognitive processes, etc.. (Singer 1999;Kubota et al. 2001;Jiang 
2005;Strelets et al. 2006)) and may be exploited in the brain-computer 
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interface (Pfurtscheller and Lopes da Silva 1999;Wolpaw et al. 
2002;Pfurtscheller et al. 2004). However, the mechanism which causes 
changes in EEG rhythms is not fully understood. 

As we discussed in previous chapters, a further central problem in 
modern Neuroscience is integration among the different methods to monitor 
brain function. EEG/MEG have a higher temporal resolution but less spatial 
resolution compared with fMRI or PET.  

All the problems delineated above may benefit from the use of 
mathematical models based on a physiological description of neural activity 
in brain regions. As we clarified in the previous two chapters, mathematical 
models may help to elucidate the relationship between neural activity, 
synaptic activity (FMRI, PET) and brain electric potentials (EEG/MEG), and 
may allow a quantitative analysis of the effect of connections among distal 
regions. Among the various models proposed in the literature, the so called 
“neural mass models” or “mean-field models” (Wilson and Cowan 
1972;Freeman 1978;Jansen and Rit 1995;Horwitz et al. 1999;Wendling et al. 
2002) are particularly suitable to describe activity in large brain areas, since 
they exhibit an adequate compromise between simplicity and physiological 
reliability.  

Although there are many works in literature which deal with the problem 
of connectivity and represent significant steps in the use of neural mass 
models to deepen our understanding of brain activity and clarify neural 
signal generation mechanisms, there are some major issues which are not 
addressed. As we discussed in Chapter 1 and 2, cortical EEG spectra, 
measured during motor and/or cognitive tasks, often exhibit a multimodal 
pattern, in which different rhythms coexist: in some cortical regions, both 
peaks in the alpha and beta, as well as in the gamma range are 
simultaneously present. By contrast, classical neural mass models based on 
the feedback interaction of excitatory and inhibitory populations reveal a 
single rhythm at the resonance frequency of the circuit: the corresponding 
power spectral density (PSD) exhibits a unimodal pattern. Hence, a 
fundamental problem arises: which model should be used to generate 
multimodal spectra, as those observed in real scenarios? And which are the 
mechanisms responsible for the appearance, disappearance or modification 
of a given rhythm in a cortical region? How can a model account for a 
change in PSD in different frequency bands? A single neural mass model, 



 71

with assigned synaptic kinetics, seems intrinsically unable to deal with these 
problems. As suggested by David and Friston (David and Friston 2003), 
models including multiple synaptic kinetics should be used. 

We think that addressing these major questions is essential for 
developing models of neural activity in entire brain areas, which may be 
exploited to link EEG and functional imaging data, and to found the problem 
of connectivity on more physiological bases. 

Some of the questions raised above have been investigated in recent 
papers by David et al. (David and Friston 2003;David et al. 2004;David et al. 
2005), and in Chapter 1 and 2.  

In Chapter 1, we used the parallel arrangement of three neural 
populations, with different synaptic kinetics, to simulate the simultaneous 
presence of alpha, beta and gamma rhythms in the same region. We showed 
that real cortical EEGs, measured during cognitive or motor tasks, can be 
reproduced quite well with that model, by modifying the exogenous input 
noise and the intrinsic excitation/inhibition ratio. In a subsequent extension 
of the same model (see Chapter 2), real EEG power spectral densities were 
simulated by replacing the external noise with an excitatory input coming 
from other interconnected regions, thus providing some preliminary 
indications on how connectivity could be estimated from EEG data.  

In the model presented in Chapter 1, as well as in the model by David 
and Friston (David and Friston 2003), the presence of different rhythms was 
caused by different populations, which oscillate at their specific resonance 
frequency. Although this hypothesis is plausible, it has the disadvantage to 
engender a great number of parameters and equations if one wishes to 
simulate multiple interconnected areas. Any cortical region encopasses 
multiple neural populations, each with its own parameters and connection 
strength. In the present chapter we wish to test an alternative more 
parsimonious hypothesis: we assume that a single region is composed of 
only a single population with assigned synaptic kinetics (instead of the 
parallel arrangement of N populations). As a consequence, if stimulated with 
exogenous white noise, it oscillates at its own resonance frequency and 
cannot produce a multimodal spectrum. However, if this population receives 
excitatory input from another connected region, which oscillates at a 
different frequency, it may exhibit both its intrinsic rhythm, and the 
exogenous one. In this manner, spectra with multiple rhythms might 
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originate inside a single population, avoiding the presence of several 
synaptic kinetics in the same region.  

These conditions are investigated in the present chapter, by considering 
two or three connected regions, each with its own dynamics. With this 
model, we show that a single population can exhibit two or three peaks, and 
that the characteristics of these peaks depend on the internal parameters of 
the population (such as its synaptic kinetics) and on connectivity with other 
populations. The model is validated with reference to cortical EEGs 
evaluated in the controlateral cingulated cortex of 4 human volunteers during 
a right foot movement task.  

 

3.2 Method 

3.2.1 Mathematical model 

The description of the model of a single population as well as model 
equations can be found in Chapter 1, section 1.2.1.; for this reason they are 
not reported here. 

 
Model of connectivity among populations  
In order to study how the populations interact, we then considered a 

model composed of N populations (in the following examples, N = 2 or N = 
3) which are interconnected through long-range excitatory connections. As in 
the example shown in Fig. 3.1, connections can include both feed forward 
and feedback links among populations, with different weights. To simulate 
the connectivity among populations, we assumed that the average spike 
density of pyramidal neurons (z0) acts on the target population via a weight 
factor, W, and a time delay, T. This is achieved by modifying the quantity p(t) 
in Eq. 1.6, Chapter 1. In the following, in order to deal with several 
populations simultaneously, we will use the subscripts i (or j) to denote a 
quantity which belongs to the ith (or jth) population.  

Hence, the input  pi(t) in the ith population can be computed as follows 
 

0,( ) ( ) ( )       i i ij jj
p t n t W z t T= + −∑

                                               (3.1) 
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where Wij is the weight of the synaptic link from the jth (pre-synaptic) 
population to ith (post-synaptic) population, T is the time delay (assumed 
equal for all synapses), ni(t) represents a gaussain white noise with mean 
value mi and standard deviation σi, and the sum in the right hand member of 
Eq. 3.1 is extended to all populations, j, which target into the population i.  

In the present study, the time delay and weights among  populations have 
been assigned different values, in order to simulate various patterns of 
connectivity and analyze their influence on the EEG of the downstream 
population. 
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Figure 3.1 – Example of connectivity among three populations, according to the present 
model. The populations are indicated with LF, MF and HF, to represent rhythms at 
low, medium and high frequency. 

 

3.2.2 Acquisition of experimental data 

Four normal subjects participated in the experiment, which took place in 
the laboratories of the Santa Lucia Foundation, Rome, after the informed 
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consent was obtained. Subjects were comfortably seated in an armchair with 
both arms relaxed, in an electrically shielded, dimly lit room. They were 
asked to perform a brisk protrusion of their lips (lip pursing) while they were 
performing a right foot movement. A 58-channel EEG system (BrainAmp, 
Brainproducts GmbH, Germany) was used to record electrical potentials by 
means of an electrode cap, accordingly to an extension of the 10-20 
international system. A/D sampling rate was 200 Hz. During motor task, 
subject was instructed to avoid eye blinks, swallowing or any movement 
other than the required foot movements. Structural MRIs of the subject’s 
head were taken with a Siemens 1.5T Vision Magnetom MR system 
(Germany). The surface electromyographic (EMG) activity of the muscle 
was also collected. The onset of the EMG response served as zero time. All 
data were visually inspected, and trials containing artifacts were rejected. 
After the EEG recording, the electrode positions were digitized using a 3D 
localization device with respect to the anatomic landmarks of the head 
(nasion and two preauricular points). The analysis period for the potentials, 
time-locked to the movement execution, was set from 1500 ms before to the 
EMG trigger (0 time). 

Finally, A 3-shell Boundary Element Model (BEM) of the head was used 
to estimate the cortical current density (CCD) distribution in a region of the 
cortex (the cingulated cortex) starting from activity measured on the scalp. 
The procedure used is described in (Babiloni 2005) and in Chapter 1, section 
1.2.2. From the CCD, the average estimated cortical activity in the region 
has then been evaluated. The latter has been successively subjected to 
spectral analysis in order to produce the spectra used for the estimation of 
the model parameters.  

 

3.2.3 Data analysis 

In order to investigate the behaviour of the model both in time and 
frequency domain, and compare it with real data, the average membrane 
potentials of pyramidal neurons (considered representative of EEG) were 
used to calculate the power spectral density (PSD), the cross-correlation 
functions, the cross-spectra and the coherence. In all the simulations we used 
a model sample rate of 1 kHz. 

Model validation has been performed in the frequency domain, by 
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comparing the EEG power spectral densities of simulated and real data. In 
order to eliminate possible differences in amplification all power spectra 
have been preliminary normalized to have unitary area in the frequency 
range (6–50 Hz). Parameters individually modified to achieve a good fitting 
are  the connectivity strengths, Wij, and the reciprocal of the time constants 
of excitatory synapses in the three populations, a1. This fitting was 
performed with a manual procedure to show that the model can simulate real 
spectra with only moderate parameter changes. An automatic minimisation 
procedure would produce a better fitting, but with larger changes in 
parameters.  

The signal processing procedure is the same described in Chapter 1, 
section 1.2.3; for this reason it is not reported here.  

The cross-spectra among different populations in the model have been 
computed using the discrete Fourier transform (DFT) of the cross-correlation 
function (cross-covariance) which is calculated normalizing the sequence so 
that the covariances at zero lag were identically 1.0. Finally, the magnitude 
squared coherence between two signals (say x and y) is given by 

2Pxy
Cxy

Pxx Pyy
=

⋅                                                                                     (3.2) 

where Pxx and Pyy are the PSD of x and y respectively, and Pxy is the 
cross spectral density estimate of x  and y. All terms in (3.2) were estimated 
using Welch's averaged, modified periodogram method. Coherence is a 
function of frequency with values between 0 and 1 that indicates how well 
the input x corresponds to the output y at each frequency. 

 

3.3 Results 

3.3.1 Analysis of a single population model  

We considered the three populations modelled as described in Chapters 1 
and 2; they have peaks which approximately lie in the theta and alpha band 
(4-12 Hz), in the beta band (12-30 Hz) and in the gamma band (greater than 
30 Hz). In the following, these populations will be indicated as POP LF, POP 
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MF and POP HF, to represent rhythms at low, medium and high frequency. 
The corresponding values of parameters are reported in Table 3.1. 

 
Table 3.1 

Model basal parameters in common for the three populations. 
 (See Chapter 1 for the meaning of symbols) 

 
 
 

 
Model basal parameters different for the three populations. 

(Parameters 111 ,, gba  are in s-1) 
 

 
 
 
 
 
 
 
 
 
 
The example shown in Fig. 3.2 illustrates that more subtle adjustments in 

the position of the peaks can be obtained by acting on a single parameter, in 
particular on the time constant of excitatory synapses. By changing this 
parameter we can have a fine control of the position within the corresponding 
frequency band. 

 
 
 
 

 

C1 C2 C3 C4 C5 C6 C7 s0 e0 r 
135 108 33.75 33.75 40.5 13.5 108 6 2.5 0.56 

 AL BL GL a1
L b1

L g1
L 

POP LF 2.7 3.2 22.3 20 20 300 

 AM BM GM a1
M b1

M g1
M 

POP MF 5.2 4.5 57.1 85 30 350 

 AH BH GH a1
H b1

H g1
H 

POP HF 5.6 3.8 173.1 110 40 790 
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Figure 3.2 – Examples of how the position of the peak generated by each population can 
be finely tuned, by acting on the inverse of time constant of excitatory cells (i.e., on 
parameter a1 in Eqs. 1.2 and 1.6, Chapter 1). All panels represent power spectral 
densities normalized in the range 3-50 Hz. The left panel describes changes in the first 
population peak, obtained by giving parameter a1

L the values 20, 30 and 40. The middle 
panel describes changes in the second population peak, obtained by giving parameter 
a1

M the values 40, 85 and 100. Finally, the right panel describes changes in the third 
population peak, obtained by giving parameter a1

H the values 50, 80 and 110. 

 

3.3.2 Analysis of the connectivity model: two populations 

Although a single population can produce just a single peak due to its 
intrinsic resonance frequency, is it possible that it produces a multimodal 
spectrum if it receives a connection from other populations which have a 
different frequency. 

Hence, we considered the effect of a simple connectivity among two 
populations, the first at medium (MF), the second at high (HF) frequency.  
We first investigated the role of the connection strength and then we 
examined time delay. 

 
Connection strength 
Figures 3.3 and 3.4 show the temporal patterns of spikes density and 

membrane potential (considered representative of cortical EEGs) of 
pyramidal neurons in each population, the PSDs of the membrane potentials, 
the cross-correlation function, the cross-spectra and the coherence between 
the two populations.  
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Figure 3.3 – Example of hypothetical feed forward connectivity between two 
populations (POP MF and POP HF) simulated with the model. The values for mean and 
variance of the noise and for the connectivity are: mM =50, mH=-50, (σM)2=(σH)2=20, 
WHM =170. The panels in the first and second line show the spike density, the membrane 
potential and the power spectral density of POP MF and POP HF respectively. The 
panels in the last line show the cross-correlation function, the cross-spectra and the 
coherence between the two populations. The power spectral densities have been 
normalized, to have an area equal to one in the range 3-50 Hz. Connectivity causes 
evident changes in the power spectral density of the target population. 

 

In Fig. 3.3, POP MF does not receive any connectivity but a strong 
Gaussian white noise. Hence,  it shows its peak at medium frequency due to 
its internal dynamics. By contrast, POP HF receives a negligible Gaussian 
white noise but is activated by the other population. As a consequence of this 
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connection, POP HF shows both its own typical peak at high frequency and a 
peak at medium frequency caused by POP MF.  Accordingly, the coherence 
function shows a high value (almost 1) in correspondence of the medium 
frequency band. The cross-correlation function shows a maximum in 
correspondence of the time delay of connection (10 ms), suggesting that there 
is a population (POP MF) which anticipates and activates the other one (POP 
HF).  

The previous result confirms that a multimodal spectrum can actually be 
obtained, even by a single population model, provided that this model is not 
activated by white noise, but it receives an input signal with a well defined-
rhythm different from its intrinsic rhythm. 

Figure 3.4a considers a different pattern of connectivity between POP MF 
and POP HF, in which both populations receive a connectivity from the other 
one. In particular POP MF receives a strong Gaussian white noise and 
activates POP HF (WHM = 100). The latter receives a negligible Gaussian 
white noise and sends back a weaker input to POP MF (WMH = 40), causing a 
peak at high frequency in its PSD. As well expected, the coherence function 
and cross-spectrum demonstrate a strong correspondence between the two 
populations at high frequencies. In this case, however, due to the presence of 
a feedback connection, it is much more difficult to understand which 
population anticipates the other by analysis of the cross correlation function. 

It is interesting to observe that, with this particular value of parameters, 
the population HF does not oscillate at medium frequency, i.e., the rhythm 
received from the first population (about 30 Hz) just triggers the activity of 
the second at its resonant frequency (≅ 45 Hz) but does not induce a 
synchronisation. By contrast, oscillation of the second population causes a 
synchronisation of the activity of the first, which exhibits both rhythms 
(endogenous and exogenous). 

A dual situation can be observed if the strength of the connection which 
goes from the first population to the second is increased (WHM = 170, Fig. 
3.4b). With this value, the second population now exhibits both rhythms, 
while the first exhibits only its intrinsic rhythm at medium frequency. Hence, 
we can speculate that, depending on the strength of the re-entrant 
connections, one population can impose its rhythm to the other. 
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Figure 3.4 – Example of hypothetical feedback connectivity between two populations 
(POP MF and POP HF) simulated with the model. The values of connectivity used are: 
Fig. 3.4a:  WHM =100 and WMH = 40. Fig. 3.4b: WHM=170 and WMH=40. Mean and 
variance of the noise  in both examples are: mM=50, mH=-50, (σM)2=(σH)2=20. The 
panels show the same quantities as in Fig. 3.3. 

 

In order to investigate this problem more systematically, we performed a 
sensitivity analysis on parameters representing the connection strengths. The 
results are summarized in Figs. 3.5 and 3.6. These figures show the values of 
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the PSD of the two populations, and the value of the coherence function, 
computed at the two frequencies (about 25 Hz and about 45 Hz) of the two 
rhythms. 
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Figure 3.5 – Results of the sensitivity analysis on the parameter WMH, representing the 
connectivity weight from POP HF to POP MF. The figures have been obtained by 
giving the parameter WMH  the values from 10 to 60; the parameter WHM is the same as 
in Fig. 3.4a (WHM = 100). The panels represent the value of the peak at medium 
frequency (continuous line) and high frequency (dashed line) in the power spectral 
density of POP MF (left panel), of POP HF (middle panel), and in coherence function 
(right panel). In these simulations mean and variance of the noise in the two 
populations are: mM =50, mH =-50, (σM)2=(σH)2=20. 
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Figure 3.6 – Results of the sensitivity analysis on the parameter WHM, representing the 
connectivity weight from POP MF to POP HF. The figures have been obtained by 
giving the parameter WHM  the values from 20 to 200; the parameter WMH  is the same 
as in Fig. 3.4 (WMH = 40). The panels represent the same quantities as in Fig. 3.5. In 
these simulations mean and variance of the noise in the two populations are:  mM=50, 
mH=-50, (σM)2=(σH)2=20. 

 
In Fig. 3.5 parameter WMH is varied between 10 and 60, with WHM = 100. 

Results show that, increasing parameter WMH (which represents the 
connection strength from the second population (POP HF) to the first (POP 
MF)) causes the appearance of a high-frequency rhythm in the first 
population. This rhythm increases in amplitude until, at high values of WMH, 
the first population exhibits two rhythms of comparable amplitude. The 
second population does not change its behaviour: it shows only its intrinsic 
rhythm, which does not appreciable change in amplitude. The coherences 
vary with the parameter change: coherence is higher at medium frequencies if 
WMH is low. Increasing WMH causes a decrease in medium frequency 
coherence and an increase in high frequency coherence, which tends to 1. 
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Hence, the ratio of coherences seems to contain information on relative 
weight of the two connections in the feedback loop. 

The behaviour is more complex in Fig. 3.6, where WHM (i.e., the 
connection strength from the first population to the second) is varied in the 
range 20-200, by maintaining WMH = 40. Results show that, when parameter 
WHM is lower than 20, the first population exhibits its individual rhythm, 
whereas the second population is not activated, and so it does not exhibit any 
evident rhythm. When parameter WHM is in the range 40−120, POP MF 
shows a second rhythm at high frequency, besides its intrinsic rhythm. This is 
the condition shown in Fig. 3.4a. This is a particular result: an increase in the 
connection from the first to the second population causes appearance of a new 
rhythm in the first population. The reason is that this higher connection 
strength causes an increased activity in the second population (which was 
only marginally activated by external noise). The increased activity of the 
second population, in turn, is able to communicate its rhythm to the first via 
the feedback connection. At higher values of WHM (above 120), the first 
population loses the high frequency rhythm, while the second population 
exhibits a particular behaviour: the amplitude of its high-frequency rhythm 
significantly decreases, and a second small rhythm (at medium frequency) 
appears. At values of WHM around 180 the second population exhibits two 
rhythms of small amplitude (this is the situation depicted in Fig. 3.4b). 
Looking at the coherence, we can say that at lower values of WHM (40-120) 
coherence is greater at high frequency, and smaller at medium frequency. 
Increasing the synaptic strength from the first to second population causes a 
fall in the high-frequency coherence, and an increase in medium-frequency 
coherence which tends to 1. Once again, the ratio of coherences seems to 
reflect the relative importance of the two synaptic weights in the feedback 
loop, coherence is higher in the connection which induces a rhythm in the 
target population. 

 
Time delay 
We repeated several of the previous simulations by changing the 

connection time delay between 5 and 80 ms. Since the anatomical distance 
between the two populations is the same, we assumed that the time delay is 
the same in the two connections of the feedback loop. The case of two 
different time delays was not investigated. Contrarily to the results by David 
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et al. (David and Friston 2003), in our simulations time delay has only minor 
effects on the PSDs. We noticed just a moderate and not systemic increase in 
coherence with time delay. 

 

3.3.3 Analysis of the connectivity model: three populations 

The subsequent set of simulations considers a model with three 
populations. In this case we assumed that POP LF receives a significant 
white noise and activates the other two populations, but does not receive any 
connectivity from them. On the contrary, POP MF and POP HF receive a 
negligible Gaussian white noise but can be activated by connections from all 
other populations. This choice has been adopted to simulate a possible 
simple task (such as the finger motor task examined in Chapter 1 and 2 and 
the simultaneous lips-foot movement task used in the present validation) in 
which a starting command initiates from a centro-parietal region, and then is 
transmitted to mid-frontal regions, which are involved also in memory task 
as well as motor or behavioural planning. Of course, this is just an 
exemplary situation, and different arrangements might be simulated, with 
different connectivity patterns.   

In particular in Fig. 3.7 we can see the effect of a simple feed forward 
connection: POP LF activates POP MF which, in turn, activates POP HF. As 
a consequence, POP MF exhibits significant power at low frequency, while 
POP HF shows two peaks at medium and high frequency. The existence of 
these connections among populations can be seen in the coherence functions 
(we have a coherence approximately as high as 0.4 between the first two 
populations in the low frequency range, and a coherence greater than  0.5 at 
medium frequency between the second and the third population). Negligible 
coherence appears between the first and the third population. 
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Figure 3.7 – Example of hypothetical feed forward connectivity among three 
populations (POP LF, POP MF and POP HF) simulated with the model. The values for 
mean and variance of the noise and for the connectivity are: mL=0, mM=-50, mH=-50, 
(σL)2=(σM)2=(σH)2=20,  WML=60, WHM =170. The panels in the first line show the power 
spectral densities of the three populations respectively. The power spectral densities 
have been normalized, to have an area equal to one in the range 3-50 Hz. The panels in 
the second and third line respectively show the cross-spectra and the coherence 
functions between POP LF and POP MF, between POP LF and POP HF, between POP 
MF and POP HF. Connectivity causes evident changes in the power spectral density of 
the target populations. 

 
In Fig. 3.8 and Fig 3.9 POP LF activates POP MF, which, in turn, is 

connected by a feedback loop with POP HF. Hence, POP MF receives two 
inputs from two different populations. As a consequence of this connection, 
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its PSDs shows three well defined peaks, at low, medium and high 
frequencies (see Fig 3.9) and also a less evident peak at low-medium 
frequency (Fig. 3.8). Coherence functions reflect the connectivity pattern very 
well. In particular, the coherence between POP LF and POP HF is low, 
suggesting that there is no direct relation between the spectra of these 
populations. Coherence between POP LF and POP MF is greater than 0.5 at 
low frequency, reflecting the fact that the low-frequency population 
stimulates the second one in this frequency range. Coherence between POP 
MF and POP HF is about 0.3 at medium frequency (in fact the second 
population does not impose its rhythm to the third) and almost 1.0 at high 
frequency, where the third population induces its rhythm on the second one. 
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Figure 3.8 – Example of hypothetical feed forward connectivity among three 
populations (POP LF, POP MF and POP HF) simulated with the model. The values for 
mean and variance of the noise and for the connectivity are: mL=0, mM=-50, mH=-50, 
(σL)2=(σM)2=(σH)2=20,  WML=60, WHM =50 and WMH =20. The panels represent the same 
quantities as in Fig. 3.7. 
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Figure 3.9 - Example of hypothetical feed forward and feedback connectivity among 
three populations (POP LF, POP MF and POP HF) simulated with the model. The 
values for mean and variance of the noise and for the connectivity are: mL=0, mM =-50, 
mH =-50, (σL)2=(σM)2=(σH)2=20, WML =60, WMH =30 and WHM=80. The panels represent 
the same quantities as in Fig. 3.7.  

 

In Fig. 3.10 POP LF activates both POP MF and POP HF, which are 
connected to each other by a feedback loop. This situation differs from that in 
Figs. 3.8 and 3.9, since both POP MF and HF receive two inputs, the one 
coming from POP LF and the other from the target population. As a 
consequence of these connections PSD of POP HF shows a complex 
spectrum, with a low frequency content, a low-amplitude band which covers 
a wide frequency range around medium frequency and a well defined peak at 
high frequency. PSD of POP MF shows its well defined peak at medium 
frequency and a broad band at low-medium frequencies. The peak at high 
frequency is very low because the connectivity from POP HF is not strong 
enough. Coherence between POP LF and POP MF and between POP LF and 
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POP HF is greater than 0.5 at low frequency, this underlines the relationship 
between the populations, in which the first (POP LF) triggers the other ones 
(POP MF or POP HF). Coherence between POP MF and POP HF is more 
complex and shows peaks of medium amplitude (about 0.3-0.4) at low, 
medium and high frequencies, confirming the minor importance of this 
feedback loop. 
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Figure 3.10 – Example of hypothetical feed forward connectivity among three 
populations (POP LF, POP MF and POP HF) simulated with the model. The values for 
mean and variance of the noise and for the connectivity are: mL=0, mM=-50, mH=-50, 
(σL)2=(σM)2=(σH)2=20,  WML=60, WHL=100, WMH=10,WHM =100. The panels represent 
the same quantities as in Fig. 3.7. 
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In Fig. 3.11 POP LF activates POP HF, which is connected by a 
feedback loop with POP MF. This situation differs from that in Fig. 3.10, 
since POP MF receives only an input (from POP HF). As a consequence of 
these connections PSD of POP HF shows three peaks. Coherence between 
POP MF and POP HF shows significant values at medium and high 
frequencies, confirming the importance of the feedback loop; but we have a 
significant value also in coherence between POP LF and POP HF at low 
frequency; this underlines the relationship between the two populations, in 
which the first triggers the other. 
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Figure 3.11 - Example of hypothetical feed forward and feedback connectivity among 
three populations (POP LF, POP MF and POP HF) simulated with the model. The 
values for mean and variance of the noise and for the connectivity are: mL=0, mM=-50, 
mH=-50, (σL)2=(σM)2=(σH)2=20, WHL =100, WMH =40 and WHM =100. The panels 
represent the same quantities as in Fig. 3.7.   
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In Fig. 3.12 we simulated the same connectivity pattern as in Fig. 3.11 
but using different weights in the feedback loop. This choice leads up to 
different PSDs; in this case in fact POP MF shows three peaks. The strong 
input sent by POP HF to POP MF is confirmed in the coherence function, 
which grows up to 1 at high frequency. 
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Figure 3.12 - Example of hypothetical feed forward and feedback connectivity among 
three populations (POP LF, POP MF and POP HF) simulated with the model. The 
values for mean and variance of the noise and for the connectivity are: mL=0, mM=-50, 
mH=-50, (σL)2=(σM)2=(σH)2=20, WHL =100, WMH =80 and WHM =40. The panels 
represent the same quantities as in Fig. 3.7.   

 

3.3.4 Fitting of model spectra with cortical activity in the cingulated 
cortex 

To simulate real spectra computed in the cingulated cortex, we adopted 
the connectivity pattern illustrated in Figs. 3.8 and 3.9. In particular, we 
assumed that the cingulated cortex corresponds to POP MF in that figure, 
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and receives external input from two other populations (POP LF and POP 
HF). Parameters used for the fitting are the connection strengths among 
populations (WML, WMH, WHM) and the time constant of excitatory synapses 
in the three populations (inversely related to a1

L, a1
M and a1

H). We noticed 
that a change in these time constants is sufficient to position the 
corresponding peak in the spectrum quite finely, without the necessity to 
modify the time constants of inhibitory synapses.  

The comparison between model and real PSDs, obtained on 12 trials (4 
subjects, 3 trials per subject) is shown in Fig. 3.13. The corresponding values 
of the parameters are reported in Table 3.2. 

 
Table 3.2 

Estimated parameters for the cingulated cortex, during a right foot movement task in 
four normal subjects (three trials per subject). 

(Parameters a1
L , a1

M , a1
H are in s-1) 

 WML WHM WMH a1
L a1

M a1
H 

SUBJECT 1       
TRIAL 1 125.0 86.0 15.0 21.0 66.5 50.0 
TRIAL 2 84.0 86.0 15.0 20.5 75.0 63.5 
TRIAL 3 100.0 86.0 15.0 23.5 85.0 70.0 
       
SUBJECT 2       
TRIAL 1 85.0 86.0 20.0 20.5 85.0 80.0 
TRIAL 2 90.0 86.0 20.0 20.5 75.0 50.0 
TRIAL 3 120.0 86.0 15.0 20.5 70.0 50.0 
       
SUBJECT 3       
TRIAL 1 125.0 80.0 30.0 20.0 65.0 45.0 
TRIAL 2 125.0 80.0 35.0 20.0 65.0 45.0 
TRIAL 3 90.0 85.0 20.0 20.0 85.0 43.0 
       
SUBJECT 4       
TRIAL 1 100.0 86.0 25.0 20.5 75.0 55.0 
TRIAL 2 130.0 86.0 35.0 20.5 62.0 39.8 
TRIAL 3 97.0 86.0 25.0 20.5 78.0 60.0 
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Results show that the model is able to simulate real PSDs quite well in 
all examined cases. Furthermore, the parameter values are quite repetitive 
within the same subject. One can just observe that, in some trials (see for 
instance trial 2 of subject 2, trials 2 and 3 of subject 4 and all the trials of 
subject 3) real PSD is greater in the range 30-40 Hz compared with model 
one. In other words, the real spectra exhibit a broader frequency content in 
the medium-high frequencies, whereas our spectra falls to zero more rapidly 
above 30 Hz. Inclusion of a fourth external population, with a peak at about 
35-40 Hz may improve fitting, but making the model more complex. 

It is worth noting that the values of time constants of excitatory synapses  
for the population POP HF (1/a1

H) used during the fitting procedure are 
significantly higher than those adopted in the exemplary simulations of Figs. 
3.7-3.12 (we chose a1

H = 110 s-1 in Table 3.1, whereas the values reported in 
Table 3.2 lie in the range 40-80 s-1). The reason is that the third peak in real 
PSDs normally occur between 25 and 35 Hz, while, in our previous 
examples, this peak was positioned above 40 Hz. 
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Figure 3.13 - Example of model fitting to 12 real power spectral densities, belonging to 
cingulated cortex in 4 subjects (3 trials per subject). Fitting has been achieved by 
estimating the connection strengths among populations and the time constant of 
excitatory synapses in the three populations. The values for mean and variance of the 
noise are: mL=0, mM=-50, mH=-50, (σL)2=(σM)2=(σH)2=20. Continuous lines represent 
experimental Power Spectral Densities, while dashed lines are model ones. All spectra 
have been normalized, to have unitary area in the range 6-50 Hz. Estimated 
parameters are shown in Table 3.2.  
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3.4 Discussion  
The purpose of the work presented in this chapter was to investigate the 

meaning of information extracted from cortical EEGs, using a neural mass 
model of interconnected populations.  In particular, we focused attention on 
two strictly related problems: Which are the mechanisms causing different 
rhythms in EEG spectra? How are these rhythms modified by connectivity 
among populations? 

Although these questions have been already dealt with in previous papers 
by David et al. (David and Friston 2003;David et al. 2004), and in previous 
chapters, the present study introduces a substantial novelty: different 
rhythms (up to three in our figures) can be obtained within the same 
population model without the need to use different synaptic kinetics. 
Conversely, in  Chapter 1, as well as in the model by David and Friston 
(David and Friston 2003), PSD was produced by using the output of a 
multiple population model, in which different kinetics arranged in parallel 
contribute to signal generation. 

As a general rule, we can state that a single population model, composed 
of four interacting sub-units (pyramidal neurons, excitatory interneurons, 
slow inhibitory interneurons, and fast inhibitory interneurons) stimulated 
with white noise, can generate a unimodal spectrum (i.e., a central rhythm, 
with a narrower or larger frequency band depending on parameter values and 
on the variance of the noise). Moreover, the position of this rhythm can be 
quite finely tuned acting on synaptic kinetics. The rhythm is induced by the 
internal feedbacks of the population, and by non-linearities represented by 
sigmoidal relationships. However, the same population can also exhibit 
additional rhythms (i.e., other peaks in the spectrum) if they are furnished by 
an external source. In this case, one (intrinsic) rhythm is produced inside the 
model, while the others are derived from external forcing inputs which cause 
partial synchronization. By contrast, in our previous model (see Chapter 1 
and 2) all rhythms were generated internally by a unique multiple population 
system. 

Of course, since EEG considers a large portion of the cortex (i.e., it has 
poor spatial resolution) it is very difficult at present to discriminate between 
a single-kinetic population model, as the one proposed here, and a multiple-
kinetic model (as in previous works) on the basis of EEG data only. It is 
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equally possible that several populations with different kinetics contribute in 
parallel to the detected EEG signal in a single region, or that this signal 
reflects the behaviour of a single population only, stimulated by external 
rhythms coming from more distal regions. A measurement method with 
higher spatial resolution is necessary to isolate a single population and verify 
its behaviour. However, in the case of EEG technique, it is clear that the 
detectable neural populations are generally located at the cortical level, since 
such cortical assemblies are close to the recording sensors, and the 
morphology of the cortical layers allows the generation of open (rather than 
closed) electromagnetic fields. The importance of the presented modelling 
lies in the fact that with the EEG we are dealing only with the synchronized 
neural activity. In fact it is often poorly understood that the EEG cannot 
detect appropriately those cortical assemblies that do not fire synchronously 
together. In fact, in a dipole layer composed by M coherent sources and N 
incoherent ones, the potentials due to individual coherent sources are 
combined by linear superposition, while the combination of the incoherent 
sources is only due to statistical fluctuations. The ratio between the 
contributions of coherent to incoherent source can be expressed by M N-0,5 
(Nunez 1995). Hence, if N is very large, say about 10 million of incoherent 
neurons that fire continuously, and M is a small percentage of such neurons 
(say 1%; about 100,000 neurons) that instead fire synchronously, we obtain 
that the potential measured at the scalp level will be determined by 105 10-7/2, 
with a net result of about 30. Hence, only 1% of the active sources produce a 
potential larger than the other 99% by a factor of 30 just because of the 
synchronicity property. 

In the present chapter, all simulations have been performed to reproduce 
spectra in normal subjects, performing a motor task. It is worth noting, 
however, that the same model might also be used to simulate epileptic 
patterns, either characterized by isolated spikes or seizures. Simulation of 
these patterns is beyond the aim of the present chapter, but a detailed 
analysis can be found in the pivotal papers by Wendling et al. (Wendling et 
al. 2002). In particular, these authors showed that epileptic-like signals can 
be obtained in a single population by reducing the gain of inhibitory 
synapses. In perspective, the present model, including connectivity among 
different populations, may also be used to analyze how epileptic patterns can 
propagate from one region to another, and to study the possible effect of 
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connectivity on observed EEG signals during epilepsy.  
In the present study we verified the possibility to generate (or to suppress) 

multiple rhythms within the same population and we performed an extensive 
analysis on the role of connection weights. Although the wealth of factors and 
parameters which may affect the results makes it difficult to infer quantitative 
indices of connectivity from EEG signals, there are some encouraging aspects 
which emerge from our study. First, in most cases coherence between two 
signals reflects the existence of some direct connection among the relative 
populations. This result, previously documented in David and Friston (David 
and Friston 2003), is confirmed by our results. Second, although the 
simultaneous analysis of peaks in PSDs and of coherence cannot furnish 
unique values for connectivity weights (since spectra are affected by many 
other factors) this analysis may help understanding which population 
dominates in a feedback loop, and which may be the relative weights of the 
two re-entrant connections. For instance, looking at the sensitivity analyses 
reported in Figs. 3.5 and 3.6, we can understand whether a weight in a 
feedback loop is increasing compared with the other: for instance, if the 
weight WHM increases, or the weight WMH decreases, POP MF forces its 
rhythm to POP HF and the coherence increases in the medium frequency 
range. The opposite is true if WHM decreases and/or WMH increases. In this 
case, the population HF is forcing its rhythm into the MF population, with an 
increase in high frequency coherence. Hence, relative changes in the synaptic 
gains may be discovered, particularly if spectra and coherences are compared 
with a previous situation, assumed as basal.  

The patterns of coherence, illustrated in Figs. 3.7-3.12, also deserve 
some comments. A high coherence is generally indicative of a strong 
connection between two populations, as predicted by traditional linear 
models. However, in linear models coherence always occurs between signals 
in the same frequency band. Conversely, in the present model one can 
observe that the resonance power in one population can be modulated as a 
function of the input from another population, which oscillates at a different 
frequency. This effect is a consequence of the strong non-linearities in the 
model, induced by sigmoidal relationships. In fact, an input signal at a given 
frequency, passing through a sigmoidal relationship, can modify the average 
activity (i.e., the working point) of the downstream population. A change in 
the working point, in turn, can be reflected in significant changes in the 
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resonant loop. Hence, we can remark that, due to the presence of non-
linearities, classical linear methods to derive connectivity from data may 
sometimes lead to erroneous conclusions when applied to neural problems. 

Perhaps, the most impressive result of this chapter is that the model of 
Fig. 3.1 is able to mimic spectra calculated in a region involved in motor 
planning (i.e., the cingulated cortex) during a simple motor task. These 
spectra exhibit three peaks, which can be mimicked quite well by the present 
model within a single population. Furthermore, parameters of the model are 
quite repetitive, and exhibit only moderate changes within the same subject. 

Parameters which exhibit the greater changes in Table 3.2 are the 
connectivity strength WML from the low-frequency to the medium-frequency 
population, the connectivity strength WMH from the high frequency to the 
medium-frequency population, and the time constant of the excitatory 
synapses in the HF population. The first two parameters establish the 
strength of the inputs which activate POP MF (i.e., the cingulated cortex in 
our model); the second is related with the position of the last peak in the 
spectrum. The greater changes in these parameters are necessary to fit some 
spectra (like that in the second trial in subject 4) which are significantly 
different from the others. In perspective a quantitative analysis of these 
parameters may be of value to gain a deeper insight into the changes in the 
inputs to cortical areas which characterize the motor task. For instance, a 
potential important application of the model may be to compare spectra (and 
quantitative parameter values) between normal subjects performing the task, 
and paraplegic subjects who just imagine the task, or to compare spectral 
(and parameter) changes before and during movement imagination. These 
results might be exploited in the brain-computer interface problem, in which 
the use of relevant features of the recorded or modelled EEG signals is of 
paramount importance in order to raise the level of correct recognition of 
brain activity by using linear or non linear classifiers (Wolpaw et al. 2002). 

Given the possibilities to simulate real EEG spectra pointed out by the 
previous analysis, it is now important to critically consider which may be the 
potential use of neural mass models at the present status of the 
neurophysiological research. 

We claim that neural mass models, including connectivity among 
different populations, may have interesting potential applications. They may 
help to understand which are the putative mechanisms (internal to a 
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population, such as synaptic kinetics, or external, such as long range 
connectivity) which may cause a modification in EEG spectra. Since 
rhythms appear and disappear within the same region, depending on the 
specific task, attentional status, etc… this quantitative analysis may help 
neurophysiologists in the critical analysis of data. Furthermore, neural mass 
models can be exploited to help validation or rejection of existing 
hypotheses and to suggest new experiments. Finally, these models can be 
used to test the reliability of methods (such as the partial directed coherence 
(PDC), the directed transfer function (DTF) and the direct DTF (dDTF) 
(Kaminski et al. 2001;Korzeniewska et al. 2003;Astolfi et al. 2004) currently 
used to extract effective connectivity from data, and to link data obtained 
with different techniques. In the present chapter we focused attention or 
membrane potential of pyramidal neurons to mimic cortical EEG. Synaptic 
activity can be also included in the analysis, to have a signal more closely 
related to fMRI or PET (Tagamets and Horwitz 2001;Almeida and Stetter 
2002), while spike activity can be used to mimic measurement performed on 
individual neurons (as in animal experiments).  

In conclusion, the work presented in this chapter analyzes the possible 
mechanisms that generate multiple rhythms in cortical EEGs. An important 
new result, compared with previous studies (see Chapters 1-2), is that a 
single population with a given synaptic kinetics can oscillate with different 
rhythms, provided that some of these rhythms come from external sources 
(for instance, from remote regions). Analysis of coherence, and of the 
position of peaks in PSDs, reveals important information on the possible 
long-range connections among populations, especially useful to follow 
temporal changes in connectivity. Comparison with real data reveals that 
output of a single population is able to simulate cortical EEG in the 
cingulated cortex quite well, with only moderate parameter changes. In 
perspective, the results may be of value for a deeper comprehension of 
mechanism causing EEG rhythms, for the study of brain connectivity and for 
the test of neurophysiological hypotheses, and for integration of results 
obtained with different neuroimaging techniques into a definite theoretical 
framework.  
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CHAPTER 4 
 

A MODEL OF RHYTHM GENERATION AND 
FUNCTIONAL CONNECTIVITY DURING A SIMPLE 
MOTOR TASK: PRELIMINARY VALIDATION WITH 
REAL SCALP EEG DATA 
 

4.1 Introduction  
Analysis of functional connectivity between different brain areas during 

the execution of motor or cognitive tasks has become a fundamental problem 
in computational neuroscience, which may have important theoretical and 
practical consequences. The problem is of the greatest value to deepen the 
present basic neurophysiological knowledge, while practical outcomes may 
be concerned with rehabilitation of patients with brain lesions, brain-
computer interface and the design of innovative prostheses for driving 
voluntary movements. 

Actually execution of a motor task and the consequent changes in 
cortical electrical activity and EEG are thought to be realized by the 
interaction among different regions of the brain, which are mutually 
connected and interact in complex non-linear ways. Functional connectivity 
is usually analyzed from electromagnetic measurement (such as scalp EEG 
or MEG) and using sophisticate processing algorithms (Astolfi et al. 
2005;Astolfi et al. 2006;Astolfi et al. 2007). These techniques, however, are 
generally based on linear assumptions, whereas neural processing is 
intrinsically non-linear. Furthermore, data are generally corrupted by noise, 
which may affect algorithms for brain connectivity estimation in a complex 
and often unpredictable way. As discussed in previous chapters, the use of 
mathematical models and computer simulation techniques has been 
advocated to help the analysis of this information, to favor the 
conceptualization of knowledge, and the formulation of coherent and 
comprehensive theories (Horwitz et al. 1999;Horwitz et al. 2000). 
Furthermore, computer models can provide artificial data, which may be 
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used as input to test the accuracy and reliability of information processing 
algorithms. 

Various mathematical models have been proposed during the past 
decades to simulate neural signals (see previous chapters). In recent years, 
we developed original neural mass models to simulate realistic EEG power 
spectral densities in some regions of the cortex during simple motor tasks, by 
acting just on a few model parameters which describe synaptic kinetics in the 
main regions and the connectivity among them (see Chapters 1 and 2). 
Furthermore, the model was used to identify simple connectivity circuits 
able to explain the EEG tracings in the scalp (see Chapter 2). Aim of the 
work presented here is to extend and improve the model described in 
Chapter 3, for simulating EEGs power spectral densities of a network of 
ROIs, and to propose its use for the estimation of connectivity relationships 
among ROIs from high-resolution EEG data taken on the scalp. Two main 
improvements are gained compared with Chapters 1-2: i) we use a simpler 
model of a single ROI, which allows simulation of EEGs power spectral 
densities with a smaller number of parameters and hypotheses; ii) parameters 
of brain connectivity are estimated, in a few exemplary cases, by accounting 
not only for the rhythms generated in the different ROIs and their relative 
power density, but also for some aspects of cross-power spectral density and 
coherence among regions.  

The method is first presented in a synthetic form. Subsequently, some 
results, concerning a simple motor task (right foot movement) are shown. 
The discussion underlines the main virtues and limitations of the proposed 
method and points out the main aspects for future research.  

 

4.2 Method 

4.2.1 Mathematical model 

Model of a single population 
The description of the model of a single population as well as model 

equations can be found in Chapter 1, section 1.2.1.; for this reason they are 
not reported here. 
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Model of connectivity among populations  
The description of the model of connectivity among populations as well 

as the model equations can be found in Chapter 3, section 3.2.1.; for this 
reason they are not reported here. However, in this study we considered a 
model composed of five populations. 

 

4.2.2 Acquisition of experimental data 

The description of the acquisition of experimental data and of data 
analysis is the same as in Chapter 3, section 3.2.2 and 3.2.3 respectively; for 
this reason it is not reported here. The only difference is that in this study we 
considered three regions of interest (ROI) of the cortex: the cingulated cortex 
(CMA_L), the primary motor area (M1F_L), and the supplementary motor 
area (SMAp_L).  

 

4.2.3 The model of the motor task 

Simulations described in Chapter 3 demonstrate that a single population 
model, stimulated with input white noise, produces just a unimodal spectrum 
(i.e., a spectrum with a single well defined peak). The position of the peak 
primarily depends on the synaptic kinetics (i.e., on parameters a1, b1 and g1).  
However, a single population can oscillate with different simultaneous 
rhythms, provided that some of these rhythms come from external sources 
(for instance, from remote regions).  

According to these results, we assumed that the main populations which 
participate to the motor task (i.e., the cingulated cortex, the primary motor 
area and the supplementary motor area) exhibits an internal kinetics, 
corresponding to a rhythms in the medium frequency range (beta band, 12-
30 Hz) but they also receive a low-frequency rhythm (in the alpha band (4-
12 Hz)). The latter may come from subcortical region (like the thalamus) or 
from other regions in the cortex (like occipital lobes) not directly 
investigated here. Furthermore, we assumed that the cingulated cortex may 
also receive a high-frequency rhythm (greater than 30 Hz, gamma range) 
and, in turn, can affect this rhythm. In fact, a gamma rhythm is considered 
essential for binding information among different regions, and for high-level 
information processing.  
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The model is thus implemented through the connectivity pattern shown 
in Fig. 4.1, which is composed of five interconnected populations with 
different synaptic kinetics. The populations POP LF and POP HF exhibit an 
intrinsic rhythm at low and high frequency respectively. The other three 
populations (POP 1, POP 2 and POP 3) exhibit an intrinsic rhythm at 
medium frequency and simulate the cingulated cortex (ROI1), the primary 
motor area (ROI2) and the supplementary motor area (ROI3), respectively. 
The corresponding values of parameters are described in detail in Chapter 1 
and Chapter 3, hence are not reported here for the sake of brevity.  

In the present model, we assumed that POP LF receives a significant 
white noise and activates the other populations, but does not receive any 
connectivity from them. On the contrary, POP HF, POP1, POP2 and POP3 
receive a negligible Gaussian white noise but can be activated by 
connections from all other populations as in Fig. 4.1. Hence, the motor 
command originates form region LF, and spreads toward the cingulated 
cortex. The latter, in turn, recruits a high-frequency rhythm, and drive the 
primary and supplementary motor areas. The latter are linked via a feedback 
loop.  

 

4.2.4 Fitting procedure 

In order to verify the ability of the model to mimic experimental data, the 
model has been fitted to real spectra computed in the cingulated cortex 
(ROI1), the primary motor area (ROI2) and the supplementary motor area 
(ROI3) during a right foot movement task in one normal subjects (three 
trials, see Chapter 3, section 3.2.2). The fitting was performed with an 
automatic procedure, by minimizing a least square criterion function of the 
difference between model and real data. Parameters estimated for the 
minimization are the connection strengths among populations (W1L, W1H, 
WH1, W23, W32, W2L, W3L, W21, W31) and the time constant of excitatory 
synapses in the five populations inversely related to a1

L, a1
H, a1

1, a1
2 and a1

3). 
The information used for building the criterion function includes the PSD in 
the range 4-50 Hz (evaluated with a frequency step = 1Hz) and the 
coherence among the population, ROI1-ROI2, ROI1-ROI3 and ROI2-ROI3 
evaluated at the frequencies of peaks in the PSD of ROI1. In fact, according 
to the model (Fig. 4.1) the cingulated cortex drives the supplementary and 
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primary motor areas. 
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Figure 4.1 - Example of connectivity among five populations, according to the 
present model. The populations POP LF and POP HF exhibit intrinsic rhythms at 
low and high frequency respectively; POP1, POP 2 and POP 3 exhibit intrinsic 
rhythms at medium frequency. 

 

4.3 Results 
The results on the comparison between model and real PSDs, and 

between model and real coherence, obtained in three trials of one healthy 
subject are shown in Figs. 4.2, 4.3 and 4.4. The corresponding values of the 
parameters are reported in Table 4.1. Results show that the model is able to 
simulate real PSDs quite well in both examined cases and that the parameter 
values are quite repetitive within the subject. The results obtained with the 
coherence are encouraging and could be useful to establish causal 
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relationships among remote cortical regions connected during a task. 
However, it should be noted that in Figs. 4.2 and 4.3, the model 
overestimates the coherence between RO1 and ROI2, while it underestimates 
coherences between ROI3 and the other two regions. 
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Figure 4.2 - Example of model fitting to three real power spectral densities (upper 
panels), belonging to cingulated cortex (ROI1), primary motor cortex (ROI2) and 
supplementary motor cortex (ROI3) in one subject (trial1). The fitting has been 
achieved by estimating the connection strengths among populations and the time 
constant of excitatory synapses in the five populations of Fig. 4.1. The values for 
mean and variance of the noise are: mL=0, mH=-50, m1=-50, m2=-50, m3=-50 and 
(σL)2=(σH)2=(σ1)2 (σ2)2=(σ3)2=20. Continuous lines represent experimental Power 
Spectral Densities, while dashed lines are model ones. Estimated parameters are 
shown in Table 4.1. The three lower panels represent the comparison between model 
and real coherence computed at the frequency of the peaks of ROI1. 
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Figure 4.3 - Example of model fitting to three real power spectral densities (upper 
panels), belonging to cingulated cortex (ROI1), primary motor cortex (ROI2) and 
supplementary motor cortex (ROI3) in one subject (trial2). The fitting has been 
achieved by estimating the connection strengths among populations and the time 
constant of excitatory synapses in the five populations of Fig. 4.1. The values for 
mean and variance of the noise are: mL=0, mH=-50, m1=-50, m2=-50, m3=-50 and 
(σL)2=(σH)2=(σ1)2 (σ2)2=(σ3)2=20. Continuous lines represent experimental Power 
Spectral Densities, while dashed lines are model ones. Estimated parameters are 
shown in Table 4.1. The three lower panels represent the comparison between model 
and real coherence computed at the frequency of the peaks of ROI1. 

 

 

 

 

 

0 50
0

0.05

0.1

0.15

0.2

frequency (Hz)

PSD ROI1

0 50
0

0.05

0.1

0.15

0.2

frequency (Hz)

PSD ROI2

0 50
0

0.05

0.1

0.15

0.2

frequency (Hz)

PSD ROI3

0 50
0

0.05

0.1

0.15

0.2

frequency (Hz)

PSD ROI1

0 50
0

0.05

0.1

0.15

0.2

frequency (Hz)

PSD ROI2

0 50
0

0.05

0.1

0.15

0.2

frequency (Hz)

PSD ROI3 



 106

 

 

 

 

 

 

 

 

Coherence ROI1-ROI2

7 21 30
0.00

0.25

0.50

0.75

1.00

frequency (Hz)

Coherence ROI1-ROI3

7 21 30
0.00

0.25

0.50

0.75

1.00

frequency (Hz)

Coherence ROI2-ROI3

7 21 30
0.00

0.25

0.50

0.75

1.00
Model
Real

freqeuncy (Hz)
 

 
Figure 4.4 - Example of model fitting to three real power spectral densities (upper 
panels), belonging to cingulated cortex (ROI1), primary motor cortex (ROI2) and 
supplementary motor cortex (ROI3) in one subject (trial3). The fitting has been 
achieved by estimating the connection strengths among populations and the time 
constant of excitatory synapses in the five populations of Fig. 4.1. The values for 
mean and variance of the noise are: mL=0, mH=-50, m1=-50, m2=-50, m3=-50 and 
(σL)2=(σH)2=(σ1)2 (σ2)2=(σ3)2=20. Continuous lines represent experimental Power 
Spectral Densities, while dashed lines are model ones. Estimated parameters are 
shown in Table 4.1. The three lower panels represent the comparison between model 
and real coherence computed at the frequency of the peaks of ROI1. 
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Table 4.1 

Estimated parameters for the cingulated cortex, primary motor cortex and 
supplementary motor cortex  in one subject (three trials) during a right foot movement 

task. 
(Parameter a1 is in s-1) 

 
 

 

 

4.4 Discussion 
In the present chapter, a simple original model of five interconnected 

neural populations has been used to investigate the origin of EEG rhythms in 
the cerebral cortex during a simple motor task, and to point out the possible 
connectivity patterns linking the cingulated cortex, the primary motor area 
and the supplementary motor area. The main basic idea of our model is that 
each region receives a low-frequency rhythm from a common remote region 
(maybe the thalamus, and/or an occipital region). Moreover, the cingulated 
cortex drives the other two regions and is also involved in the 
synchronisation of a gamma rhythm with other areas in the brain. Indeed, the 
gamma rhythm is frequently involved in high mental activity. Then, we 
tested the possibility that the simple proposed schema is able to simulate real 
power spectra in the cortex, and to account for some aspects of the observed 
coherence among EEGs, by acting just on a few parameters which represent 
the strength of inter-area connections and the kinetics of excitatory synapses 
inside the regions.  

 W1L WH1 W1H a1
L a1

1 a1
H 

TRIAL1 100.0 86.0 25.0 20.5 70.0 42.0 
TRIAL2 84.0 86.0 15.0 20.5 75.0 63.5 
TRIAL3 125.0 86.0 15.0 21.0 66.5 50.0 

W21 W31 W23 W32 W2L W3L a1
2

 a1
3 

TRIAL1 1.0 10.0 18.0 5.0 91.7 80.0 75.0 80.0 
TRIAL2 1.0 47.0 11.0 0.0 96.0 47.0 78.0 83.4 
TRIAL3 1.0 10.0 40.0 12.0 90.0 90.0 44.0 130.0 
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The results are encouraging, both for what concerns the presence of 
multiple rhythms in the same region, the repeatability of parameter values in 
the same subject, and the coherence among EEG signals. However, some 
differences can be observed among model and real coherences. In particular, 
looking at Figs. 4.2, 4.3 and 4.4, one can observe that the model generally 
overestimates the coherence between ROI1 (the cingulated cortex) and ROI 
2 (the primary motor cortex), while it underestimates the coherences of the 
cingulated cortex and primary motor cortex with the supplementary motor 
cortex (ROI3), with exception for the coherence between the cingulated 
cortex and the supplementary motor cortex in Fig. 4.4. The significance of 
these differences deserves further analysis. 

The model may have several possible applications. First, it may be useful 
in neurophysiology to help understanding the functional links among the 
regions involved in a task and, in perspective, to analyze the changes in 
connectivity occurring during the temporal prosecution of a task, or as a 
consequence of an input change or a pharmacological treatment. 
Furthermore, the model may also be useful to investigate differences in 
functional connectivity and EEG rhythms generation between control 
subjects and paraplegic patients. These differences may be exploited in the 
computer-interface problem. The model may also be valuable to generate 
artificial cortical EEG data, with a pre-assigned pattern of connectivity. 
These data, propagated to the scalp according to anatomical knowledge, and 
corrupted with noise, may be used to test the accuracy and performances of 
the algorithms (such as the directed coherence or the partial directed 
coherence) commonly employed to derive connectivity from scalp EEG. 

The present results, however, are just preliminary, and several additional 
steps should be performed to expand model applicability for the study of 
neural integration during motor tasks. A first important step is to perform a 
sensitivity analysis on model parameters, to discover which among the 
estimated parameters can be detected with sufficient accuracy based on 
available data, and which parameters should be considered with caution. A 
further important point is to improve the analysis of coherence and perhaps, 
replace the use of this index with other indices more suitable for the 
interpretation of non-linear systems. Indeed, power spectral density and 
coherence (i.e., cross spectra) are commonly used to estimate transfer 
functions in linear systems. Other indices (such as bi-spectra), explicitly 
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conceived to investigate interactions between non-linear systems, may be 
utilized in future works within the present automatic estimation procedure. 
Finally, it might be interesting in future works to encompass more detailed 
anatomical and/or physiological knowledge into the present model. This 
knowledge may be essential to account for a greater number of ROIs in the 
description of brain integration during the motor task, at the same time 
establishing some constraints on parameter values and on model structure, 
which may drive the estimation procedure. Indeed, one of the main problems 
in the present estimation procedure is the large number of parameters 
simultaneously involved, which precludes the possibility to incorporate a 
greater number of regions without enforcing some limitations in the 
parameter space.  
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CHAPTER 5 
 
VISUOTACTILE REPRESENTATION OF 
PERIPERSONAL SPACE: A NEURAL NETWORK STUDY 
 

5.1 Introduction 
In order to guide body movement through the space and allow interaction 

with the immediate surroundings, the brain must continuously monitor the 
location of the body parts across different postures and analyze the spatial 
relations between body parts and nearby objects. This process requires the 
integration of proprioceptive, tactile, visual and even auditory information 
regarding limb position. In the last few decades, much research has focused 
on how these various sensory cues may be combined and integrated to 
achieve perception of limb location and representation of the ‘peripersonal’ 
space immediately around the body. Research on this topic has accumulated 
a great amount of findings from a number of works involving different 
methodologies: single-cell recordings in animals (Hyvarinen 1981;Rizzolatti 
et al. 1981;Graziano and Gross 1995;Graziano et al. 1997;Duhamel et al. 
1998;Avillac et al. 2007), neuropsychological studies in brain-damaged 
patients (Rizzolatti et al. 1981;Ladavas 2002;Holmes and Spence 2004), 
psychophysical and neuroimaging investigation in both healthy and 
pathological subjects (Tipper et al. 1998;Macaluso et al. 2000;Marzi et al. 
2001;Kennett et al. 2001;Eimer et al. 2002;Taylor-Clarke et al. 2002;Sarri et 
al. 2006).  

Neurons that respond both to tactile and visual stimuli have been found 
in several brain areas of macaque monkeys, both cortical (ventral premotor 
cortex (Rizzolatti et al. 1981;Graziano and Gross 1995;Fogassi et al. 
1996;Graziano et al. 1997), ventral intraparietal area (Duhamel et al. 1998), 
parietal area 7b (Hyvarinen 1981)) and subcortical (putamen) (Graziano and 
Gross 1995). They respond to tactile stimuli located on specific body parts 
(such as hand, arm, face, shoulder) and to visual stimuli presented 
proximally to the body part. In particular, the following properties 
characterize these bimodal cells: i) The visual and tactile receptive fields 
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(RFs) are spatially aligned; ii) The response to a visual stimulus declines as 
the stimulus is moved away from the body; iii) The visual RF remains 
anchored to the body part, i.e. it moves as the body part is moved. On the 
contrary, when the eyes are moved, the visual RF remains fixed in space, 
near the corresponding tactile RF.  

The previous findings suggest the existence of a distributed, visual-tactile 
system that codes the peripersonal space in a body part-centered frame of 
reference, and that may be involved in the representation and control of body 
position and movement.  

The most influential evidence of a cross-modal spatial interaction 
between vision and touch in humans comes from studies in unilateral brain 
damaged patients suffering from extinction. Extinction patients can detect a 
single stimulus presented either in the ipsi- or contralesional side, but they 
miss a contralesional stimulus when presented concurrently with an 
ipsilesional stimulus. The presence of extinction only during bilateral 
stimulation is suggestive of an attentive competition mechanism between 
two neural representations (Duncan 1996;Mattingley et al. 1997;Marzi et al. 
2001): unilateral lesion would chronically bias competition in favor of the 
ipsilesional event. Extinction can occur within each sensory modality 
(unimodal extinction), and has been recently observed crossmodally in right-
brain damaged (RBD) patients with left tactile extinction (Di Pellegrino et al. 
1997;Mattingley et al. 1997;Ladavas et al. 1998). In these studies, a visual 
stimulus presented near the ipsilesional (right) hand extinguished awareness 
of a tactile stimulus applied on the contralesional (left) hand (crossmodal 
visual-tactile extinction); the detection of the left touch improved 
significantly when the right visual stimulus was applied far from the hand. 
These results can be conceivably interpreted in terms of an integrated visual-
tactile coding of the peripersonal space by bimodal neurons similar to those 
revealed by single-cell recordings in monkeys (Ladavas 2002;Holmes and 
Spence 2004). According to this interpretation, the activation of the bimodal 
neurons by a visual stimulus near a body-part boosts the corresponding 
somatosensory representation of that body part. The latter, however, may 
conflict with a simultaneous representation of the opposite body part. 
Conversely, a visual stimulus delivered far from the ipsilesional hand 
(outside the peripersonal space) does not boost the representation of the 
hand, and no competition occurs.  
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Besides cross-modal extinction, also cross-modal visual-tactile 
facilitation has been documented in RBD patients with left tactile extinction: 
under bilateral stimulation, patients were more accurate in detecting the left 
tactile stimulus when a visual stimulus was presented near the left hand 
(Ladavas et al. 1998;Ladavas et al. 2000). In other words, the combination of 
a tactile stimulus with a visual stimulus ameliorated the tactile perceptual 
deficit. A similar effect was observed by Halligan et al. (Halligan et al. 
1996;Halligan et al. 1997) in patients with hemisensory loss of the upper 
limb: some of the examined patients felt the tactile sensation on the affected 
arm only if they were allowed to see the hand being touched.  

Further evidence of crossmodal influences on unimodal sensory 
processing has been provided by recent studies in normal subjects (Tipper et 
al. 1998;Kennett et al. 2001;Taylor-Clarke et al. 2002): viewing the 
stimulated body site improves performances in tactile detection tasks (Tipper 
et al. 1998) and enhances tactile acuity (Kennett et al. 2001;Taylor-Clarke et 
al. 2002). A recent hypothesis (Driver and Spence 1998) suggests that the 
facilitatory crossmodal influences on unisensory processes may occur via 
feedback connections from multimodal areas to more specialized unimodal 
areas. Empirical support for such feedback is provided by recent event-
related potential measures and functional imaging data showing that tactile 
events can alter activity in unimodal visual areas of the brain (Macaluso et 
al. 2000;Kennett et al. 2001) and viceversa (Taylor-Clarke et al. 
2002;Macaluso and Driver 2005). However, this process appears to depend 
crucially on whether the tactile and visual stimuli are in spatial proximity 
(Macaluso et al. 2000).  

Despite the multitude of data collected on the subject, a clear 
comprehension of the mechanisms underlying peripersonal space 
representation is still lacking. Enough information is presently available to 
attempt a theoretical description of these mechanisms and of the involved 
neural network by means of mathematical models. This effort is necessary to 
formulate plausible scenarios in quantitative terms, and to synthesize the 
knowledge obtained with different approaches into a unique, coherent 
structure. In particular, models can help interpretation of behavioral and 
psychophysical responses in terms of the reciprocal interconnections among 
neural mechanisms.  
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In the present work we propose a neural network model which mimics 
the visual-tactile representation of the peripersonal space around the right 
hand and around the left hand. The model considers the two hemispheres, 
each composed of three areas of neurons. The two upstream areas are 
unimodal and respond to visual and tactile stimuli, respectively. The third 
downstream area is multimodal and is devoted to multisensory integration. 
The connections between unimodal and multimodal neurons within the same 
hemisphere include both feedback and feedforward synapses. The two 
hemispheres are interconnected via inhibitory synapses. Neuronal activity is 
described by a sigmoidal function and a first order dynamics. By adopting 
the previous structure and by using a single set of parameters, the model is 
able to reproduce: i) the multisensory coding of the space around a hand; ii) 
the facilitatory influences of crossmodal stimuli on unisensory perception; 
iii) the competitive interaction between the right and left hand 
representations in normal subjects. Moreover, the network has been used to 
simulate the responses characterizing RBD patients (cross-modal visual-
tactile extinction, cross-modal visual-tactile facilitation) by assuming 
plausible modifications in some model parameters.  

 

5.2 Method  

5.2.1 Model description 

In this section, we will first provide a general qualitative description of 
the model. Then, all model equations will be presented and justified. Finally, 
criteria for parameter assignment will be reported.  

 
General model structure 
 The model is composed of two networks, one for each hemisphere, 

reciprocally interconnected (Fig. 5.1). The two networks share the same 
structure: each consists of three regions of neurons which communicate 
through synaptic connections.  
 The two upstream regions are unimodal and respond to tactile and 

visual stimuli, respectively. They are organized in matrices of neurons. 
Both the tactile and visual areas are defined with reference to the hand of 
a hypothetical subject: in particular, neurons in the tactile area respond to 
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tactile stimuli applied on the hand, while neurons in the visual area 
respond to visual stimuli on the hand and around it.  
 Each element of the unisensory areas has its own receptive field (RF) 

through which receives stimulation by an external input. Neurons in each 
unimodal area are arranged according to a topological organization, so 
that their RFs map the external space in an orderly manner. Accordingly, 
proximal neurons within each area respond to stimuli coming from 
proximal positions of the space. Moreover, the neurons in the same 
unimodal area interact via lateral synapses arranged according to a 
Mexican hat disposition (i.e., a circular excitatory region surrounded by a 
inhibitory annulus).  
 The third downstream region is multimodal, devoted to visual-tactile 

integration. It consists of: 
i) A matrix of multimodal excitatory neurons arranged according to a 
topological organization. They receive inputs from unisensory neurons in 
both areas via feedforward synapses and send back excitatory inputs to 
the unimodal neurons through feedback synapses. Thus, within the same 
hemisphere, detection of a multimodal stimulus may reinforce the 
perception of unimodal stimuli in the upstream areas. Moreover, these 
multimodal neurons send long-range projections towards the other 
hemisphere.  
ii) Multimodal inhibitory interneurons. These neurons realize inter-
hemispheric interaction. They receive visual-tactile information from the 
multimodal excitatory neurons in the other hemisphere and send 
inhibitory synapses locally to the unisensory neurons within the same 
hemisphere. Inclusion of these connections realizes a competition in case 
of the simultaneous activation of the right and left hand representations. 
 All neurons in the network are normally in a silent state (or exhibit 

only a weak basal activity) and can be activated if stimulated by a 
sufficiently high input. The activity of each neuron is described through a 
sigmoidal relationship (with a lower threshold and an upper saturation) 
and a first order dynamics. 
 A single neuron, in the model, should not be considered as 

representative of an individual cell only, but rather as a pool of cells 
which share the same spatial properties (i.e., approximately the same RF) 
and the same sensory modality. Similarly, synaptic weights should not be 
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considered as the strength of individual synapses, but rather summarize 
the overall effect of the synaptic strength multiplied per the number of 
cells involved.    
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 5.1 – Model structure. Schematic representation of the networks which 
compose the hemispheres and of synaptic connections among regions of neurons within 
the hemispheres and between them. Meaning of the symbols: superscript L, R=left and 
right hemisphere; superscript t, v, m=tactile, visual and multimodal area; I=inhibitory 
interneuron; Λ=lateral synapses within the unimodal areas; W=feedforward synapses 
from unimodal to multimodal neurons; B=feedback synapses from multimodal to 
unimodal neurons; Γ=inhibitory synapses from the inhibitory interneuron to unimodal 
areas; X=cross-connections between the hemispheres, linking the multimodal neurons 
within one hemisphere to the inhibitory interneuron in the other hemisphere. See text 
for details.  
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Mathematical description 
Since the overall network has a symmetrical structure, only the equations 

for one hemisphere (the left one) will be presented. In the following, we will 
use: the superscripts t, v, and m to denote quantities referring to tactile, 
visual and multimodal excitatory neurons, respectively; the superscript g 
indicates quantities referring to inhibitory (GABAergic) interneurons; the 
superscripts L and R to distinguish the left and right hemisphere; the 
subscritps ij or hk  to represent the spatial position of individual neurons.  

 
i) Organization of the unimodal and multimodal regions  
The unimodal areas are composed by NsxMs neurons (s = t, v), with Nt = 

20, Mt = 40; Nv = 30, Mv = 140. In both areas, the RFs of neurons are 
arranged at a distance of 0.5 cm one from the other along both the x and y 
directions. Hence, the tactile area covers a space of 10 cm x 20 cm, 
representing the surface of one hand in an extremely simplified form, while 
the visual area covers a space of 15 cm x 70 cm, representing the visual 
space on the hand and around the hand (extending by 2.5 cm on each side 
and 50 cm ahead).  

In the following, we will denote with xi and yj the centre of the RF of a 
generic neuron ij. By considering a reference frame rigidly connected with 
the hand (see Fig. 5.1), we can write: 

50.ixt
i ⋅=  cm         (i = 1,2,…,Nt)  50.jy t

j ⋅=  cm   (j = 1,2,…,Mt)  
for the tactile neurons, and  

50.ixv
i ⋅= -2.5 cm  (i = 1,2,…,Nv)  50.jyv

j ⋅=  cm   (j = 1,2,…,Mv)  
for the visual neurons.  

As to the multimodal region, we assumed that the overall visual-tactile 
space of the hand is covered by just 8 multimodal excitatory neurons (Nm= 
2; Mm=4) whose RFs have a wider spatial extension compared with 
unimodal neurons. In particular, the centres of their RFs have a distance of 5 
cm along the x axis and 4 cm along the y axis. Accordingly, for the 
multimodal neurons the following equations hold: 

525 .ixm
i −⋅=  cm         (i = 1,2)  4⋅= jym

j  cm   (j = 1,2,3,4)  
Finally, for the sake of simplicity, a single inhibitory interneuron is 

considered in each hemisphere. The use of a smaller number of multimodal 
neurons compared with unimodal neurons is justified by their larger RF. 
Hence, just a few neurons are able to cover the entire space of the hand 
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(Rizzolatti et al. 1981;Iriki et al. 2001). The ratio of inhibitory interneurons 
vs. excitatory neurons (1/8) agrees with values commonly found in the 
cortex (inhibitory neurons are approximately 15-25 % of excitatory neurons) 
(Trappenberg 2002).  

 
ii) The receptive fields of unisensory neurons 
In the following, the RF will be denoted with the symbol Φ (Receptive 

Field). The RF of unisensory neurons is described with a Gaussian function. 
Hence, for a neuron ij in the unisensory area s (s = t, v) - within the left 
hemisphere - the following equation holds:  

( )
( ) ( )
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⎟
⎟

⎠

⎞

⎜
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⎝
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⋅

−+−
−⋅= 2
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iL,sL,s
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Φσ

ΦΦ ,      s = t, v         (5.1) 

where xi, yj is the center of the RF, x and y are the spatial coordinates, 
and L,s

0Φ  and L,s
Φσ  represent the amplitude and standard deviation of the 

Gaussian function (three standard deviations approximately cover the overall 
RF).  

According to Eq. 5.1, an external stimulus applied at the position x, y 
excites not only the neuron centred in that point, but also the proximal 
neurons whose receptive fields cover that position.  

 

iii) The activity of the unisensory neurons 
The total input received by a generic neuron ij in the unisensory areas is 

the sum of four different contributions: 
a) the contribution due to the external stimulus (say φij(t), since it 

depends on the RF Φij);  
b) the contribution due to the lateral synapses linking the neuron with 

the other elements in the same area (say λij(t), lateral); 
c) the contribution due to the feedback excitatory projections from the 

multimodal neurons  (say βij(t), feedback); 
d) the contribution due to the synapses from the inhibitory interneuron 

(say γij(t), GABAergic interneurons). 
In the following, each single contribution will be described. 
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The input L,s
ijϕ  that reaches the neuron ij in presence of an external 

stimulus is computed as the inner product of the stimulus and the receptive 
field, according to the following equation:  

( ) ( ) ( ) ( ) ( )∫ ∫ ∑∑ ⋅≅⋅=
x y x y

L,sL,s
ij

L,sL,s
ij

L,s
ij yxt,y,xIy,xdxdyt,y,xIy,xt ΔΔΦΦϕ  

s = t, v                                                                                                        (5.2) 

where ( )t,y,xI L,s  is the external stimulus (tactile or visual) applied on 
the right side of the body (hence, processed by the left hemisphere) at the 
coordinates x, y and at time t. The right hand member of Eq. (5.2) means that 
the integral is computed with the histogram rule (with Δx = Δy = 0.2 cm).  

In the present work, the external stimulus is reproduced by a two-
dimensional gaussian function: 
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where t0 is the instant of stimulus application, x0, y0 is the central point 
of the stimulus, and L,sI0 and L,s

Iσ  represent the amplitude and the standard 
deviation. We used a small standard deviation (see Table 5.1) to mimic quite 
a punctual external stimulus.  

The input that a unisensory neuron receives from other neurons in the 
same area via the lateral synapses is defined as: 

( ) ( )∑∑
= =

⋅=
s sN

h

M

k

L,s
hk

L,s
hk,ij

L,s
ij tzt

1 1
Λλ ,    s = t, v                                               (5.4) 

( )tz L,s
hk  represents the activity of the hk neuron in the area s (s = t, v) of 

the left hemisphere (computed below). L,s
hk,ijΛ  indicates the strength of the 

synaptic connection from the pre-synaptic neuron at the position hk to the 
post-synaptic neuron at the position ij. These synapses are symmetrical and 
are arranged according to a “Mexican hat” function: 



 122

( ) ( )
( )

( ) ( )
( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

≠
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⋅

−+−
−⋅−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⋅

−+−
−⋅=

hkij,

hk,    ij
σ

kjhiexpΛ
σ

kjhiexpΛ
s,L
in

s,L
in

s,L
ex

s,L
exL,s

hk,ij

                                                                                                           0
22

2

22

2

22

Λ

 s = t, v                                                                                                       (5.5) 

Parameters L,s
exΛ and L,s

exσ  define the excitatory Gaussian function, 
parameters L,s

inΛ and L,s
inσ  the inhibitory one: they establish the strength and 

extension of these synapses. To have a Mexican hat disposition, the 
following conditions must be satisfied: L,s

exΛ > L,s
inΛ  and L,s

exσ < L,s
inσ . The null 

term in Eq 5.5 avoids autoexcitation.  

A further input to unisensory neurons is induced by the feedback 
synapses from the multimodal excitatory neurons: 
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1 1
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( )tz L,m
hk  represents the activity of the hk neuron in the multimodal area 

(computed below). L,s
hk,ijB  indicates the strength of the synaptic connection 

from the pre-synaptic multimodal neuron at the position hk to the post-
synaptic unimodal neuron at the position ij. We assume that the synaptic 
connections between unimodal and multimodal neurons have a Gaussian 
distribution; that is the synaptic strengths decrease with the distance between 
the centres of the receptive fields of the pre-synaptic and post-synaptic 
neurons. Accordingly, we have: 
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where L,m
hx , L,m

ky  represent the centre of the RF of the multimodal hk 
neuron, while L,s

ix , L,s
jy  the centre of the RF of the unimodal neuron ij in 

the unisensory area s. Parameters L,sB0  and L,s
Bσ  set the amplitude and 

extension of the synapses.  

Finally, unimodal neurons receive input from the inhibitory interneuron: 
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( ) ( )tzt L,gL,s
ij

L,s
ij ⋅= Γγ , s = t,v                                                            (5.8) 

where ( )tz L,g  represents the activity of the inhibitory interneuron. This 
activity depends on the visual-tactile information at the other hemisphere 
(see below). L,s

ijΓ  is the strength of the synaptic connection from the 
interneuron to neuron ij in the unisensory area s (tactile or visual). We 
assume that this inhibition affects all neurons in the hand (both tactile and 
visual) and is independent on the position of neurons in the unisensory areas. 
Accordingly:  
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ij M,,..., j N,...,, i  , 21      21           0 =∀=∀= ΓΓ                    (5.9) 
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The total input (say ( )tu s
ij ) received by a unisensory neuron is the sum of 

the four contributions: 

( ) ( ) ( ) ( ) ( )tttttu L,s
ij

L,s
ij

L,s
ij

L,s
ij

L,s
ij γβλϕ +++=   = t, v                           (5.11) 

Finally, neuron activity is computed from its input through a static 
sigmoidal relationship and a first order dynamics: 
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Parameters s
minf  and s

maxf  set the lower and upper saturation of the 
sigmoid, sq~  is the value of the input at the central point, and sr establishes 
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the slope at the central point. Since parameter s
minf  has a negative value (see 

Table 5.1), the Heaviside function H( ) has been introduced to avoid that 
neuron activity becomes negative. Hence, the activity of unimodal neurons is 
equal to zero until a given threshold of the sensory input is overcome. 
Parameter τ in Eq. 5.13 is the time constant of the differential equation.  

 

iv) The activity of the multimodal excitatory neurons 
These neurons receive inputs from neurons in the two unisensory areas 

via feedforward synapses with a Gaussian distribution. Hence, the overall 
input to a generic neuron ij in the multimodal area is computed as:  
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( )tz L,s
hk  (s = t, v) represents the activity of the neuron hk in the unimodal 

(tactile or visual) area, computed through Eq. 5.12. L,s
hk,ijW  denotes the 

synapses (feedforward) from the unisensory neuron hk to the multimodal 
neuron in position ij. These synapses can be written as follows: 
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L,m
ix , L,m

jy  represent the centre of the RF of the multimodal ij neuron, 
while L,s

hx , L,s
ky  the centre of the RF of the unimodal neuron hk in area s 

(tactile or visual). Parameters L,sW0  and L,s
Wσ  (s= t,v) set the amplitude and 

extension of the synapses.  
The activity of a multisensory neuron is computed from its input by 

using equation similar to Eqs. 5.12, 5.13 and 5.14:  
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The meaning of the symbols is the same as in Eq. 5.12, 5.13 and 5.14.  
 

v) The activity of the inhibitory interneuron 

The inhibitory interneuron in one hemisphere receives synapses from all 
the multimodal excitatory neurons in the other hemisphere. Hence, the input 
to the interneuron in the left hemisphere is: 

( ) ( )∑ ∑
= =

−⋅=
m mN

h

M

k

R,m
hk

R
hk

L,g DtzXtu
1 1

                                                     (5.20) 

where ( )tz R,m
hk  is the activity of the multimodal hk neuron in the right 

hemisphere and D is a pure delay. The latter simulates the time necessary for 
competition mechanisms to become effective (i.e., we assumed that 
competition does not occur instantaneously, see section 5.4 for this aspect). 

R
hkX  represents the strength of the cross-connection linking the multimodal 

hk neuron in the right hemisphere to inhibitory interneuron in the left 
hemisphere. We assume that all these connections have the same value:  

m m RR
hk M,,...  k    N,,...  h ,XX 11             0 =∀=∀=                     (5.21) 

Then, equations similar to Eq.12 and 13 are used to compute the activity 
of the interneuron:  
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The meaning of the symbols is the same as in Eqs. 5.12, 5.13 and 5.14.  
 

5.2.2 Parameter assignement 

The values of all model parameters are listed in Table 5.1. We assume 
that parameters of the left and right hemisphere have the same value in basal 
conditions. Criteria for parameter assignment are reported below.  

 
Receptive fields of the unimodal neurons  
Parameters t

0Φ  and v
0Φ  have been set to 1 to establish a scale for the 

inputs generated by the external stimuli. Standard deviations t
0σ  and v

0σ  
have been assigned so that unimodal RFs are about 2-2.5 cm in diameter. 
This value is within the range of spatial resolution on the hand and arm (10 
mm on the palm and 40 mm on the forearm) (Kandel et al. 2000). 

 
Lateral synapses in unimodal areas  
Parameters characterizing the Mexican hat arrangement of lateral 

synapses ( exΛ , exσ , inΛ , inσ ), in both tactile and visual area, have been 
given to reach a trade-off between excitation and inhibition, in order to 
satisfy the following criteria: i) an external stimulus produces an activation 
bubble of unimodal neurons with approximately the same dimension of the 
RF; ii) excitation must be maintained confined to avoid instability, that is 
uncontrolled excitation which propagates to the overall area.  

 
Synaptic connections among the areas  
The parameters of the feedforward connections from unimodal areas to 

the multimodal area ( tW0 , vW0 , t
Wσ , v

Wσ ) have been assigned to satisfy the 
following requirements: i) multimodal neurons have large RFs, with several 
centimetres in diameter, that may even encompass the entire surface of the 
hand (Rizzolatti et al. 1981;Graziano et al. 1997;Iriki et al. 2001;Maravita 
and Iriki 2004); ii) a single unimodal stimulus may significantly excites 
multimodal neurons (whose RFs cover that position). Indeed, data on 
monkeys indicate that even a light touch of the skin or a spot of light on/near 
the body produce a considerable response in these bimodal neurons 
(Rizzolatti et al. 1981;Graziano et al. 1997;Duhamel et al. 1998).  
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The extension of the feedback synapses from multimodal to unimodal 
neurons (parameters t

Bσ , v
Bσ ) have been set equal to the extension of the 

feedforward synapses. In this way, cross-modal facilitation (i.e., the 
reinforcement that a unimodal stimulus exerts on a stimulus with different 
modality in the same hand, see sections 5.3 and 5.4) occurs only in case of a 
spatial coherence between the stimuli. The strength of the feedback synapses 
( tB0 , vB0 ) has been maintained smaller than the feedforward synapses to 
avoid that activation of multimodal neurons consequent to a one-modality 
stimulus (e.g. tactile) produces a phantom activation bubble in the other 
modality area (e.g. visual).  

The weight of the cross-connections between the two hemispheres 
(parameter 0X ) has been chosen so that even the activation of a single 
multimodal neuron in one hemisphere (signalling the involvement of the 
contralateral perihand space) significantly excites the inhibitory interneuron 
in the other hemisphere; accordingly the model realizes a rivalry between the 
two hemispheres for peripersonal attention (Driver and Spence 
1998;Graziano and Cooke 2006).  

Finally, the strength of the inhibitory synapses (parameter 0Γ ) has been 
set small enough to consent the perception of a right hand stimulus and a left 
hand stimulus, applied simultaneously, as it occurs in normal subjects (Hillis 
et al. 2006).  

 
Parameters of the individual neurons  
Parameters characterizing the static sigmoidal relationship of unimodal 

neurons have been assigned to have a high lower threshold (below which the 
neurons are completely silent) and a smooth transition from silence to 
saturation. These characteristics help to maintain stability of the unisensory 
areas.  

The sigmoidal relationship of multimodal excitatory neurons has been set 
so that neuron response gradually decreases with a reduction in its input (for 
instance, when a visual stimulus is progressively moved away from one 
hand) (Colby et al. 1993;Graziano et al. 1997;Duhamel et al. 1998).  

In the model, the inhibitory interneuron in one hemisphere signals the 
activation of the multimodal area in the other hemisphere; hence, the 
corresponding sigmoidal function has been set to mimic an on/off behaviour, 
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that is a negligible neuron activity at low input values and a rapid transition 
from silence to saturation.  

For the sake of simplicity, we used the same time constant for the three 
types of neurons; its value (20 ms) is within the range of membrane time 
constants reported in the literature (Dayan and Abbott 2001). Finally, the 
pure delay in the connection between the two hemispheres reflects the time 
necessary for attention competitive mechanisms to become effective. Its 
value (80 ms) has been assigned according to ERP studies (Luck et al. 
2000;Natale et al. 2006).  
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Table 5.1 
 Values of model parameters in basal conditions. Parameter values are the same for the 

right and left hemispheres. 

Receptive fields of unimodal neurons 
t
0Φ  = 1                             t

Φσ = 0.5 cm                   v
0Φ = 1          v

Φσ = 0.5 cm 

Lateral synapses in unimodal areas 
t
exΛ  = 2.7                         t

inΛ  = 2                          t
exσ  = 4                t

inσ  = 9  
v
exΛ  = 2.7                         v

inΛ  = 2                          v
exσ  = 4                v

inσ  = 9  

Feedforward synapses  
tW0  = 2                            t

Wσ  = 3 cm                   vW0  = 1.8         v
Wσ  = 3 cm 

Feedback synapses  
tB0  = 1                             t

Bσ  = 3 cm            vB0  = 1                     v
Bσ  = 3 cm 

Cross-connections and inhibitory synapses 
0X  = 1                             t

0Γ  = 1.8            v
0Γ  = 1.8 

Sigmoidal characteristic of unimodal neurons 
t

minf  = -0.6                       t
maxf  = 5          tq~ = 19.43                        tr = 0.34 

v
minf  = -0.6                       v

maxf  = 5          vq~ = 19.43                       vr = 0.34 

Sigmoidal characteristic of multimodal neurons 
m

minf  = 0                           m
maxf  = 5           mq~ = 6                            mr = 0.8 

Sigmoidal characteristic of inhibitory interneurons 
g

minf  = 0                          g
maxf  = 5          gq~ = 2.95                         gr = 1.32 

Time constant and pure delay 
τ  = 20 ms          D  =80 ms 

External stimuli (see also the legends to figures) 
tI0  = 2.6                          t

Iσ = 0.3 cm      vI0  = 2.6                       v
Iσ = 0.3 cm 

 

5.3 Results 
In this section, we first present results of model simulations by using 

basal values for all parameters (Table 5.1), which mimic a normal healthy 
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subject. Then, responses of RBD patients suffering from extinction are 
reproduced by assuming plausible modifications of some model parameters 
in the right hemisphere. Finally, results of sensitivity analyses on some key 
network parameters are reported.  

 
Visual-tactile coding of the perihand space  
Figure 5.2 shows the neural activity in the unimodal areas and the 

response of the 8 multimodal neurons within the right hemisphere, in four 
different conditions of left hand stimulation: application of a tactile stimulus 
(panel A); application of a visual stimulus on the hand (panel B); application 
of a visual stimulus near the hand (panel C); application of a visual stimulus 
far from the hand (panel D). In all four cases, the stimulus produces 
activation of a bubble of neurons in the corresponding unimodal area. 
Multisensory neurons are activated in three out of the four examined 
conditions: they respond to the tactile stimulus and to the visual stimulus 
placed on the hand or in the space immediately surrounding it. On the 
contrary, a visual stimulus distal from the hand does not induce any 
significant response. Accordingly, multisensory neurons signal the 
involvement (either visual or tactile) of the perihand space, while a far visual 
stimulus is not perceived as belonging to the peripersonal space. It is worth-
noting that activity of the eight multimodal neurons is not the same during 
activation of the peri-hand space, but it varies depending on whether the 
initial or terminal portion of the hand is involved.  

 
Cross-modal influences on unisensory perception  
Figure 5.3 shows an example of modulation of unisensory perception by 

crossmodal stimulation obtained with the model. In panel A, the network is 
stimulated by a tactile input of low intensity applied on the left hand (only 
the right hemisphere network is displayed). The stimulus produces a weak 
activation of a single neuron in the tactile area; this unimodal activity is not 
sufficient to evoke a response in the multimodal neurons, which remain 
silent. In panel B, the tactile stimulus is coupled with a weak visual stimulus 
deliverd at the same location on the hand. The concomitant presence of the 
two stimuli induces a strong activation in the multisensory neurons and a 
remarkable reinforcement of unimodal activity, which now shows a wide 
activation bubble. The crossmodal influence of vision on touch and vice-
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versa occurs via the feedback projections from the multisensory neurons to 
the unisensory areas.  
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Figure 5.2 – Visual-tactile coding of perihand space. Network activity in response to 
tactile and visual stimuli of intensity tI0 = vI0 =2.6 on the left hand. Each panel shows 
the neuronal activity in unimodal areas and the response of the 8 multimodal neurons. 
The activity in unimodal area is represented by a gray scale, in multimodal area by a 
3D visualization. Panel A: tactile stimulus located at x=7.5 cm and y=4 cm. Panel B: 
visual stimulus located at x=2.5 cm and y=12 cm. Panel C: visual stimulus near the 
hand located at x=2.5 cm and y=22 cm. Panel D: visual stimulus far from the hand 
located at x=2.5 cm and y=50 cm. 
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Figure 5.3 – Cross-modal influences on unisensory perception. Network activity in 
response to a tactile stimulus of low intensity tI0 =1.68, located at x=7.5 cm and y=4 cm 
on the left hand (panel A) and to a tactile and a visual stimulus, both of low intensity 

tI0 = vI0 =1.68, located at the same position on the left hand, x=7.5 cm and y=4 cm 
(panel B). The panels show the same quantities of Fig. 5.2. The concomitant presence 
of the two weak stimuli induces a strong activation in the multisensory neurons and a 
remarkable reinforcement of unimodal activity. 
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Right and left hand interaction 
The interaction between right and left hand representation is depicted in 

Fig. 5.4, in case of a healthy subject (i.e., by maintaining all parameters at 
their basal values). In panel A, a tactile stimulus is applied on the left hand 
(right hemisphere) and a simultaneous visual stimulus is presented on the 
right hand (left hemisphere). Each stimulus boosts the multisensory 
representation of the corresponding hand (via activation of the multimodal 
neurons), leading to a competition between the two representations (via 
activation of the inhibitory interneurons). In this normal subject, the 
competition is unbiased and the outcome is the coexistence of both right and 
left hand representations.  

The panel B elucidates the effects of the competition. The two plots 
present a magnified image of the activation bubble in the right-hemisphere 
tactile area in the two different conditions: left-hand tactile stimulus 
presented alone (left plot, as in Fig. 5.2A); left-hand tactile stimulus coupled 
with a right-hand visual stimulus (right plot, as in Fig. 5.4A). In the latter 
condition, the activation bubble is reduced because of the inhibitory 
influence from the multisensory neurons in the left hemisphere.  

 
RBD patients: unilateral stimulation 
In order to simulate RBD patients suffering from left tactile extinction, 

we decreased the strength of all synapses originating from tactile unimodal 
neurons. Of course, this change may not really reflect synaptic depression, 
but rather a decrease in the number of effective neurons which contribute to 
the activity in right tactile area (see Discussion for more details). To this end, 
we reduced the strength of the lateral excitation in the tactile unimodal area 
( Rt

ex
,Λ ) and the weight of the feedforward synapses from the unimodal tactile 

area to the bimodal area ( RtW ,
0 ). The modified values for these parameters 

are reported in Table 5.2. As a consequence of these parameter changes, a 
tactile stimulus on the left hand activates a weak neural representation of the 
hand. This result is presented in Figure 5.5, which simulates the application 
of an isolated left tactile stimulus in a RBD patient. The activation bubble in 
the tactile area is significantly reduced with respect to a normal subject 
(compare Fig. 5.2 panel A), involving only 9 neurons; this degraded tactile 
activity evokes the response of a few multimodal neurons (three versus five 
in a healthy subject).  
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Table 5.2 
Modified parameters for simulation of Right Brain Damaged patients with left tactile 
extinction 

R,t
exΛ  = 2.3 R,tW0  = 0.8   
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Figure 5.4 – Right and left hand  interaction. Panel A: network activity in response to a 
tactile stimulus applied on the left hand at the position x=7.5 cm and y=4cm and of a 
simultaneous visual stimulus applied on the right hand at the position x=7.5 cm and 
y=12 cm. Both stimuli have the intensity tI0 = vI0 =2.6. The panel represents the same 
quantities of Fig. 5.2 for both hands (hemispheres). Panel B: representation of the 
activation bubble in the right-hemisphere tactile area in response to a tactile stimulus 
presented alone on the left hand (see plot of Fig. 5.2A) and in response to a left-hand 
tactile stimulus coupled with a right-hand visual stimulus (see Fig. 5.4A). 
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Figure 5.5 – RBD patients, unilateral stimulation. Network activity in response to a 
tactile stimulus of intensity tI0 =2.6 applied on the left hand of a RBD subject, at the 
position x=7.5 cm and y=4cm. The plots represent the same quantities of Fig. 5.2 for 
both hemispheres. 
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RBD patients: bilateral stimulation (cross-modal extinction) 
Figure 5.6A shows the same stimulation conditions as Fig. 5.4A (left 

hand tactile stimulus and right hand visual stimulus) applied to a RBD 
patient. The activation of the multimodal neurons in the left hemisphere 
(evoked by the visual stimulus) competes with that in the right hemishpere 
through the inhibitory interneurons. In this case the competition is uneven: 
because of the weaker right hemisphere activation, the ipsilesional stimulus 
has a higher competitive strength than the contralesional stimulus. The final 
outcome of the network is the extinction of the activity in the tactile area of 
the right hemisphere (only the central neuron remains slightly activated), and 
the consequent deactivation of multimodal neurons. Hence, only the right 
hand representation survives.  

For the sake of clarity, panel B of Figure 5.6 compares the activity in the 
right hemisphere tactile area in case of unilateral stimulation (left plot, as in 
Fig. 5.5) and in case of bilateral stimulation (right plot, as in Fig. 5.6A). 

 
RBD patients: bilateral stimulation (cross-modal facilitation) 
Behavioural studies in RBD patients indicate that under conditions of 

bilateral stimulation, left tactile stimulus detection is improved by a 
simultaneous left visual stimulus. This situation is simulated in Fig. 5.7, 
where a visual stimulus is applied on the right hand and a double stimulation 
(tactile and visual) is delivered to the left hand. In these conditions, the left 
tactile stimulus is not extinguished thanks to the presence of the left visual 
stimulus which sustains the activation of the multisensory neurons; the latter, 
in turn, reinforce the tactile area activity via the feedback projections. 
Consequently, an activation bubble survives in the tactile area and right and 
left hand representations coexist.  

 
 
 
 
 
 
 
 
 



 138

 

 

4
8

12
162.5

7.5

0

0.5

1

cm

multimodal area

cm

0

0.5

1

cm

cm

visual area

0 20 40 60

0

5

10

0

0.5

1

cm
cm

tactile area

0 10 20

0

5

10

left
hemisphere

 
 

4
8

12
167.5

2.5

0

0.5

1

cm

multimodal area

cm

0

0.5

1

cm

cm

tactile area

0 10 20

10

5

0

0

0.5

1

cm

cm

visual area

0 20 40 60

10

5

0

right
hemisphere

 
 

 
unilateral stimulation bilateral stimulation

cm

cm

tactile area

2 4 6

10

7.5

5 0

0.5

1

cm

cm

tactile area

2 4 6

10

7.5

5 0

0.5

1

 
 

Figure 5.6 – RBD patients: bilateral stimulation (cross-modal extinction). The panels 
show the results of the same simulations of Fig. 5.4, applied to a RBD subject.  
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Figure 5.7 – RBD patients: bilateral stimulation (cross-modal facilitation). Network 
activity in response to a double stimulation on the left hand (tactile stimulus and visual 
stimulus located at the same position x=7.5 cm and y=4 cm) and to a visual stimulus on 
the right hand located at x=7.5 cm and y=12 cm. All  the stimuli have the same 
intensity sI0 =2.6. The panels show the same quantities of Fig. 5.2 for both 
hemispheres.  

 
Sensitivity analyses 
As described above, two parameters in the right hemisphere ( Rt

ex
,Λ , RtW ,

0 , 
representing lateral and feedforward synaptic strength from tactile unimodal 
neurons), have been reduced to simulate RBD patients with left tactile 
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extinction. In order to elucidate the role of these two parameters, we 
performed a sensitivity analysis on each of them (Figure 5.8). In panel A, we 
simulated the condition of a left hand tactile stimulation with a simultaneous 
right hand visual stimulation by using different values of parameter Rt

ex
,Λ , 

while maintaining parameter RtW ,
0  at its reduced pathological value. 

Parameter Rt
ex
,Λ  has been progressively reduced from the basal value 2.7 to 

the value 2 (at which Rt
in

Rt
ex

,, Λ=Λ  and so the effect of lateral excitatory 
synapses is cancelled by lateral inhibition). The two plots display only the 
activities of the unimodal and multimodal neurons on which the two stimuli 
are centred. In order to obtain left tactile extinction, reduction in parameter 

RtW ,
0  has to be associated with a decrease of parameter Rt

ex
,Λ  below 2.35. In 

these conditions, only the central tactile neuron is slightly activated in the 
right hemisphere, while multimodal neurons remain silent (see Fig. 5.5). On 
the contrary, for values above 2.5 a balanced coexistence of the two stimuli 
(with an unimodal activation bubble in both hemispheres) occurs.  

In panel B, the same simulation has been repeated by progressively 
reducing parameter RtW ,

0  from its basal value 2 to the value 0.2, while 
maintaining parameter Rt

ex
,Λ  at the pathological value (2.3). Reducing only 

parameter Rt
ex
,Λ  is not sufficient to produce left tactile extinction: only for 

values of RtW ,
0  below 1.4, the left stimulus produces a response weaker than 

that of the right stimulus, showing extinction as RtW ,
0  is reduced under 1.  

Finally, in order to gain a deeper understanding on how the competition 
occurs between the two peri-hand representations in the model, we 
performed a sensitivity analysis on the parameters representing the weight of 
inhibitory synapses (from the inhibitory interneuron to the tactile unimodal 
areas: Rt,

0Γ , Lt,
0Γ ). In Fig. 5.9 panel A, we simulated a bilateral tactile 

stimulation in a healthy subject, with the left stimulus slightly weaker then 
the right stimulus, using different values of the inhibitory weights. With the 
basal value of these parameters (1.8) the two stimuli coexist even if they are 
of different intensity. Conversely, at higher values (above 2.7), extinction 
occurs even assuming normal values for all the excitatory synapses in the 
right hemisphere: the weaker stimulus is extinguished and only the stronger 
one (on the right hand) survives.  

Panel B simulates a bilateral tactile stimulation of equal intensity 
delivered to a pathological subject ( Rt

ex
,Λ =2.3; RtW ,

0  = 0.8), by using 
different values of the inhibitory weights. Extinction does not occur for 
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values of inhibitory synapses below 1.5, despite the reduction in the other 
two parameters. 
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Figure 5.8 – Sensitivity analysis. Panel A: network activity in response to a tactile 
stimulus on the left hand, located at x=7.5 cm and y=4 cm and of a visual stimulus on 
the right hand, located at x=7.5 cm and y=12 cm. Both stimuli have the intensity 

tI0 = vI0 =2.6. The plots show the neuronal activity of the unimodal (left plot) and 
multimodal (right plot) neurons on which the stimuli are centred. The simulations 
have been performed by progressively reducing the lateral excitation in tactile area 
(

R,t
exΛ ) from the basal value 2.7 to 2, while maintaining  the strength of the tactile 

feedforward synapses at the pathological value 
R,tW0 =0.8. Panel B: the simulations 

are the same of Panel A, but they have been performed by progressively reducing the 
strength of the tactile feedforward synapses (

R,tW0 ) from the basal value 2 to 0.2, 
while maintaining the lateral excitation in tactile area at the pathological 
value

R,t
exΛ =2.3. In both panels the marked points show the values used to simulate the 

RBD pathological conditions (see Table 5.2). 
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Figure 5.9 – Sensitivity analysis. Panel A: healthy subject. Network activity in response 
to a tactile stimulus of intensity tI0 =2 on the left hand (x=7.5 cm and y=4 cm) and of a 
tactile stimulus of intensity tI0 =2.6 on the right hand (x=2.5 cm and y=4 cm), in a 
healthy subject. The simulations have been performed by using different values (from 
0 to 3) of the strength of inhibitory synapses ( s

0Γ ). Panel B: RBD patient. Network 
activity in response the a tactile stimulus on the left hand (x=7.5 cm and y=4 cm) and 
of a tactile stimulus on the right hand (x=2.5 cm and y=4 cm), in a RBD patient. Both 
stimuli have the same intensity tI0 =2.6.  The simulations have been performed by 
using different values (from 0 to 2.4) of the strength of inhibitory synapses ( s

0Γ ). Both 
panels show the neuronal activity of the unimodal (left plot) and multimodal (right 
plot) neurons on which the stimuli are centred; marked points show the values chosen 
as basal values (see Table 5.1). 

 

5.4 Discussion 
Investigation of the neural mechanisms underlying the representation of 

the external space has been assuming an increasing relevance in the last 
years. The brain appears to construct multiple and functionally segregated 
representations of space; these representations include personal, peripersonal 
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and extrapersonal space (Graziano and Gross 1995;Rizzolatti et al. 1997). 
Recent results from different approaches, involving electrophysiology, 
psychology and neurophsycology, converge in indicating that representation 
of peripersonal space is constructed in a multisensory fashion, plausibly 
related to multisensory neuronal populations which respond both to tactile 
stimuli on a particular body part and to visual stimuli in the surrounding 
external space (Rizzolatti et al. 1981;Graziano et al. 1997;Duhamel et al. 
1998). Intrinsically linked with the mechanisms of internal representation of 
space, is the process of spatial attention (Driver and Spence 1998); it has 
been proven that attention to the space near the body operates crossmodally 
and not merely within single sensory modalities. The crossmodal links in 
spatial attention have been related to the activation of multimodal neural 
structures (Driver and Spence 1998;Bremmer et al. 2001;Macaluso and 
Driver 2005). 

Despite the recent advances in the comprehension of peripersonal space 
representation, several questions still remain open, that may have important 
implications both for physiological and clinical knowledge. Among them: 
What is the organization of the neural circuitry underlying peripersonal 
space representation? How does it relate with the multimodal neurons 
identified electrophysiologically? How can information from unimodal areas 
convey toward multisensory neurons? May multimodal structures influence 
unimodal activity, e.g. via feedback projections? How can two simultaneous 
spatial representations interact? Which are the alterations in the neural 
circuitry that may explain extinction in brain damaged patients?  

Neural network models and computer simulation techniques may provide 
important contributions to solve the previous questions and gain a deeper 
insight into the neural mechanisms at the basis of peripersonal space 
representation. This rationale has inspired the present work: by using the 
mathematical model, hypotheses on the involved neural networks have been 
formulated in rigorous quantitative terms, their reliability assessed vs. 
existing psycophysical data, the role of the included neural mechanisms 
elucidated by sensitivity analyses, and the multiple available knowledge 
summarized into a unique common framework. At present, we are not aware 
of any other neural network model focused on visual-tactile representation of 
peripersonal space, including competitive mechanisms among simultaneous 
representations.  
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The present model is concerned with the visual-tactile representation of 
the peripersonal space around both hands and their reciprocal influences, on 
which several electrophysiological and behavioural/neuropsychological data 
have been collected. It is worth noting that the proposed model does not 
aspire to reflect the neurophysiological and neuroanatomical knowledge in 
detail, but rather to identify a plausible structure of the network and the 
functional links between its different parts, to account for psychophysical 
and behavioural results. In the following, the organization of the network 
and the involved neural mechanisms are critically discussed on the basis of 
the obtained results and available in-vivo data.  

The basic idea of the model is that the involvement of the perihand space 
by an event or object is signalled by the activation of multimodal visual-
tactile neurons, that receive their inputs from two upstream unimodal areas: 
one is devoted to the somatotopic representation of the hand, the other is 
devoted to the coding of the visual space in hand-centred coordinates. 
Populations of neurons that respond to both visual and somatic stimuli in 
body-part centred coordinates have been found in several areas of macaque 
brain (especially in the frontal and parietal lobe, such as ventral intraparietal 
area, area 7b, area F4) and are believed to contribute to spatial 
representations (Hyvarinen 1981;Rizzolatti et al. 1981;Graziano and Gross 
1995;Fogassi et al. 1996;Graziano et al. 1997;Duhamel et al. 1998). 
Anatomical data indicate that these multimodal neurons receive converging 
visual and somatosensory inputs from modality-specific areas, both primary 
and extraprimary (Rizzolatti et al. 1981;Graziano et al. 1997;Duhamel et al. 
1998;Hihara et al. 2006). However, in the model, we did not establish any 
exact anatomical location for the multimodal and unimodal areas, that is the 
model does no reflect any definite anatomical structure.  

Two sets of multimodal neurons (with the corresponding unimodal areas) 
have been considered in the model, in order to account for both hemispheres 
(i.e., both hands). Then, several different synaptic connections have been 
introduced within this structure, each with a distinct role and with specific 
implications on model outcomes.  

Lateral synapses − Elements within the unimodal topological areas are 
linked via lateral synapses, modelled according to a “Mexican hat” 
disposition (a central excitatory area surrounded by an inhibitory annulus). 
This choice is justified by the fact that short-range excitation and long-range 
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inhibition among neurons - with a spatial function similar to that of a 
Mexican hat - is a pattern of connectivity that recurs frequently throughout 
the brain (Rolls and Deco 2002;Thivierge and Marcus 2007). Moreover, it is 
believed that this kind of connectivity plays a central role in the formation of 
topographically organized maps that can be found at different processing 
stages in the cortex (Thivierge and Marcus 2007). In the model, these 
connections are fundamental to sustain activation in the unisensory areas in 
response to a stimulus and to produce a sufficiently extended activation 
bubble.  

Feedforward synapses − The feedforward synapses connecting unimodal 
to multimodal neurons affect the behaviour and properties of multimodal 
neurons. Thanks to the Gaussian arrangement of these synapses, multimodal 
neurons integrate information across homologous spatial locations in the two 
unisensory maps and create a multimodal map where visual and tactile 
receptive fields are aligned. By appropriately setting the standard deviation 
of the synapses, broad RFs - largely wider than unisensory neurons RFs - can 
be obtained for the multimodal neurons (see Fig.5.2 panels A and B). As a 
direct consequence of this disposition, multimodal area still responds to 
visual stimuli near the hand (provided they are applied approximately within 
three standard deviations from the hand) while remains silent in case of more 
distant stimuli (Fig. 5.2 panels C and D). All these characteristics (RFs 
alignment in different modalities, wide dimension of RFs, visually related 
activity degrading with the distance from the body) have been extensively 
documented by electrophysiological studies on multimodal neurons in the 
parietal and frontal lobes of the macaque brain (Rizzolatti et al. 1981;Colby 
et al. 1993;Graziano et al. 1997;Duhamel et al. 1998;Iriki et al. 2001).  

Feedback synapses − Within the model, unimodal and multimodal areas 
interact not only via feedforward synapses, but also via feedback 
connections. Modulation of unisensory activity via back projections from 
multimodal areas is supported by a recent fMRI study by Macaluso et al. on 
healthy subjects (Macaluso and Driver 2005). They found that a visual 
stimulation near the right hand produced a cluster of activation in the left 
lingual gyrus (in the occipital lobe) that was significantly amplified by a 
concurrent tactile stimulation on the right hand. Amplification did not occur 
in case of a spatially incongruent bimodal stimulation (that is when the 
visual stimulus was applied far from the hand). Analysing changes in 
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effective connectivity, a circumscribed area in inferior parietal lobe 
(homolog to area 7b in the macaque brain) showed a higher coupling with 
the left lingual gyrus, during bimodal spatially congruent stimulation. The 
authors concluded that the tactile input to the somatosensory cortex may 
influence the visual cortex via back projections from multimodal populations 
in the parietal lobe, similar to that documented in area 7b of the macaque 
monkey. The model provides a theoretical sketch of this hypothesis: 
feedback synapses from multimodal to unimodal neurons produce an 
amplification of unimodal activity via crossmodal spatially-congruent 
stimulation (see Fig. 5.3). Thanks to the Gaussian distribution assigned to 
these synapses, the crossmodal amplification is spatially specific, occurring 
for visual and tactile stimuli applied approximately in the same position of 
the hand, and not in case of a visual stimulus delivered far from the hand.  

Moreover, the presence of the feedback synapses is able to mimic 
behavioural results on pathological subjects. Halligan and colleagues 
(Halligan et al. 1997) reported that brain damaged patients with hemisensory 
loss of the upper limb felt a tactile sensation on the affected hand only when 
they were allowed to see the hand being touched. The authors proposed that 
this performance was determined by bimodal visual-somatosensory cells: 
“when limited tactile information is available, correlated visual input may 
boosts sub-threshold tactile stimulation into conscious awareness”. Such 
situation corresponds to simulation results reported in Fig. 5.3: in that 
simulation a sub-threshold tactile stimulus, not perceived at the level of 
multisensory area, is impressively amplified by a concomitant visual 
stimulation in the homologous spatial location. Moreover, the model 
provides suggestions on neural correlates of perceptual awareness. 
According to the model, the absence of the tactile conscious percept in case 
of unimodal stimulation is due to the lack of activation of the multimodal 
neurons, despite the residual activity in the unisensory area. Conscious 
awareness of the tactile stimulus in case of bimodal stimulation is related to 
the activation of the multisensory neurons and to the consequent 
reinforcement of the unimodal tactile response thanks to the feedback 
synapses. That multimodal regions in the frontal-parietal area may be 
implicated in perceptual awareness has been suggested by recent studies on 
extinction patients (see discussion below).  
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Competitive inhibitory synapses − In the model, the two hemispheres are 
interconnected via inhibitory synapses realized through inhibitory 
interneurons. Accordingly, these connections realize a competitive 
mechanism between the two hemispheres when two events are 
simultaneously presented at the two sides of the peripersonal space. The 
existence of a competitive mechanism in attending two simultaneous 
bilateral events is strongly suggested by the observation that unilateral brain 
damaged patients show extinction only during bilateral stimulation. It has 
been recently proposed that extinction is a pathological, laterilazed 
exaggeration of an attentional limit that already exists for concurrent events 
in normals (Duncan 1996;Mattingley et al. 1997;Marzi et al. 2001). 
Furthermore, extinction has been found not only unimodally, but also 
crossmodally (e.g. visual-tactile extinction), suggesting that competition 
between two simultaneous events occurs also when they arise in separate 
modalities (as we assumed in the model). This is consistent with the 
“integrated competition” hypothesis of attention proposed by Duncan, 
according to which attention competition is played out across widespread 
neural networks, involving many sensory modalities (Duncan 1996).  

The value assigned to the inhibitory interconnections play a critical role 
in the model. To allow the coexistence of two bilateral stimuli of similar 
intensity (as observed psychophysically in normals, (Hillis et al. 2006) (see 
Fig. 5.4), the strength of the competition has to be maintained limited. On 
the contrary, an excessively high competition produces a phenomenon 
analogous to extinction even by maintaining normal values of parameters in 
the right hemisphere: a subtle difference in stimulus intensity is sufficient to 
cause the extinction of the weaker stimulus (Fig. 5.9 panel A).  

By assuming the previous structure, we used the model to shed light on 
the neural mechanisms underlying extinction in unilateral brain damaged 
patients. In particular, we focused on left tactile extinction. Nowadays, 
extinction is attributed to a pathological imbalance in attentional competition 
consequent to the lesion, which may lead the ipsilesional stimulus to 
extinguish the contralesional stimulus from awareness when both compete 
for attention. The fact that extinction patients are able to report isolated 
contralesional stimuli induced some authors to exclude any complete 
peripheral sensory loss (Mattingley et al. 1997). Despite this general 
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consensus, the neural correlates of extinction and perceptual awareness are 
still controversial.  

Recent fMRI and ERP studies were designed to investigate the neural 
basis of extinction (Marzi et al. 2001;Eimer et al. 2002;Sarri et al. 2006). 
The main results are reported here. i) Sarri et colleagues (Sarri et al. 2006) 
performed an fMRI study on a right hemisphere stroke patient; they 
observed that unilateral tactile stimulation of the left hand produced a near-
threshold activation in the right primary somatosensory cortex. However, the 
stimulus was consciously perceived. Eimer et al (Eimer et al. 2002), using 
ERP measures on a different patient, found that the P60 component (a 
sensory specific somatosensory component) was significantly reduced over 
the right hemisphere in response to unilateral left tactile stimulation, 
compared with the left hemisphere component in response to unilateral right 
tactile stimulation. Similar findings were observed in ERP studies on 
patients with left visual extinction (Marzi et al. 2001). The reduced 
activation in the sensory cortex suggests that an underlying deficit in 
extinction patients exists also for unilateral stimulation, but it is 
behaviourally unmasked only during bilateral stimulation. ii) Besides 
sensory cortex, also surviving right parietal and frontal cortices were 
activated by consciously perceived left touches (Sarri et al. 2006). iii) 
Extinguished left touch in the presence of a competing right event was still 
accompanied by some residual activation of the right somatosensory cortex 
(Sarri et al. 2006), and could still trigger some P60 and N110 components 
over right somatosensory cortex (Eimer et al. 2002). iv) However, no 
activation in the right parietal and frontal region was observed in case of left 
tactile extinction. The previous data suggest that activation of the sensory 
cortex alone is not sufficient to produce conscious percept; rather, higher-
level multisensory regions in the frontal-parietal area could be implicated in 
perceptual awareness.  

Consistent reproduction of these experimental findings has been obtained 
with the model by assuming only the reduction of two parameters in the right 
hemisphere, representing synapses from unimodal tactile neurons: the lateral 
excitation in the right tactile area, and the strength of the feedforward 
connections from the tactile neurons to the multimodal neurons. The first 
parameter influences the intensity and extension of the activation bubble in 
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the right tactile area in response to a left tactile stimulus; the second affects 
the responsiveness of multimodal neurons to a left tactile stimulus.  

An important point is that, in the present model, a single neural unit 
should not be considered as an individual cell, but rather as a representation 
of a pool of cells, with the RF approximately located in the same position. 
Hence, the hypothesized reduction in synaptic strength should be interpreted 
not as a real synaptic depression, but rather as the effect of a reduction in the 
number of effective excitatory units which contribute to activity in that 
region. Of course, the smaller the number of effective excitatory cells, the 
smaller the overall excitatory input arriving to the other connected areas.  

With these modifications the following results have been obtained. i) An 
unilateral left-hand tactile stimulus produces a significantly smaller cluster 
of activation in the tactile area compared with the normal subject (see Fig. 
5.5). Hence, in the model a certain impairment exists also for unilateral 
stimulation (as observed in vivo). ii) However, the reduced unimodal activity 
is still able to evoke a response in the multimodal area (Fig. 5.5). This 
reflects the activation of right parietal and frontal region observed 
experimentally. iii) When the left tactile stimulus is coupled with a right 
hand stimulation, a large part of activation in the right tactile area is 
abolished but a weak activity still survives (fig. 5.6A). iv) The residual 
unimodal activity is not sufficient to excite multimodal neurons (fig. 5.6A). 
This corresponds to the lack of activation of right parietal-frontal cortex, 
despite activation of sensory cortex, reported by fMRI studies in 
extinguished left touches.  

According to the previous description, the model identifies potential 
functional alterations in the neural circuitry able to explain extinction and 
relating cortical phenomena. It is worth noting that the achievement of the 
previous results crucially depends on two factors. First, both parameters have 
to be changed to reproduce left tactile extinction; reduction of only one 
parameter, while maintaining the other at its basal value, is not sufficient 
(Fig. 5.8). Furthermore, even the simultaneous reduction of the two 
parameters in the right hemisphere does not produce extinction of the left 
tactile stimulus in presence of a mild competition between the two 
hemispheres (Fig 5.9 panel B). Hence, several neural mechanisms are 
concurrently involved in extinction, and only certain combinations of 
parameters seem to be consistent with this perceptual impairment.  
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The scenario provided by the model is also able to reproduce the 
phenomenon of cross-modal visual-tactile facilitation (see Fig 5.7): model 
ascribes this phenomenon to activation of multisensory neurons by a 
simultaneous visual stimulus, with the consequent reinforcement of tactile 
activity in the same spatial position (and in the same hand) via feedback 
projections.  

Finally, we wish to stress some possible limitations of the present model, 
that can be the subject of future extensions. First, in our model, the visual 
information reaching the multisensory layer is coded in a hand-centred frame 
of reference rather than in retinal (or eye-centred) coordinates. How the brain 
performs coordinate transformation and remapping of receptive fields in 
different frames of reference is an extremely complex problem for which 
different theories have recently been developed (Pouget et al. 2002). This 
problem is behind the aim of the present work; here, we just assumed that an 
upstream process converts the visual input from eye-centred to hand-centred 
coordinates.  

Second, spatial attention mechanisms included in the model refer only to 
“exogenous” attention, that is captured reflexively and involuntarily. A 
different, more active form of attention, called “endogenous” attention, is 
directed in a voluntary manner on the basis of current spatial expectancies. 
Some studies indicate qualitative differences between the two forms of 
attention and distinct neural substrates (Driver and Spence 1998). The model 
simulates only exogenous spatial attention mechanisms, and does not 
account for possible top-down mechanisms of endogenous spatial attention. 

Although the structure of the network and the set of parameter values 
provide a plausible scenario, other mechanisms not included in the network 
could play a role. For example, the two unimodal areas might be linked also 
via direct synapses (Schroeder and Foxe 2005); at present, neurons in the 
visual area and in the tactile area communicate only indirectly, via the 
feedback projections from the multimodal neurons. This choice has been 
adopted according to the criterion of parsimony, i.e. to reduce the number of 
mechanisms included in the model, and to find a good compromise between 
completeness and computational simplicity. However, a direct 
communication between unimodal neurons is possible and its role may be 
investigated in future studies.  
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Recent studies, performed both in animals and human subjects, have 
shown that peripersonal space representation is not fixed but exhibit 
plasticity properties (Iriki et al. 1996;Farne and Ladavas 2000;Ladavas 
2002;Maravita and Iriki 2004). Data on peri-hand space show that the use of 
tools, the viewing of the hand in mirrors or in vide-screens may modulate the 
visuotactile representation of the peripersonal space. The issue of plastic 
modification of peripersonal space representation has not been faced in the 
present study. However, the model, with the addition of learning rules on 
synapses, may be used to simulate the dynamic properties of peripersonal 
space representation and to provide explanation for the neural basis of tool-
use behaviours, testing the different and competing hypotheses suggested in 
literature (see Chapter 6).  
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CHAPTER 6 
 
A NEURAL NETWORK MODEL OF MULTISENSORY 
REPRESENTATION OF PERIPERSONAL SPACE: 
EFFECT OF TOOL USE 
 

6.1 Introduction 
As discussed in Chapter 5, peripersonal space is defined as the space 

immediately surrounding the body (Rizzolatti et al. 1997). Representation of 
peripersonal space is crucial for a variety of actions, such as planning 
purposeful movements of reaching and grasping, avoiding obstacles during 
locomotion, protecting the body from attack and collision (Rizzolatti et al. 
1997;Graziano and Cooke 2006). Neural maps receiving convergent inputs 
from different sensory modalities (such as somatosensory and visual 
information) are believed to be essential for the analysis of the spatial 
relations between body’s parts and immediate surrounding and for the 
construction of a coherent and continuously updated representation of the 
peripersonal space. As described in Chapter 5, such neural maps have been 
documented in several areas of the macaque’s brain. The existence of a 
similar multisensory representation of  the peripersonal space in humans has 
been provided by neuropsychological studies on right-brain damaged 
patients affected by left tactile extinction. 

Recent studies (Iriki et al. 1996;Farne and Ladavas 2000;Ishibashi et al. 
2000;Berti and Frassinetti 2000;Maravita et al. 2002b) performed both on 
animals and human subjects have shown that the effective use of a tool to 
interact with distant objects may induce a plastic modification of the 
peripersonal space representation. In monkeys, visual RFs of bimodal 
neurons in intraparietal area were elongated to include the entire length of 
the tool after the animal was trained to use a handheld rake to reach distant 
food, whereas before training the visual RFs were limited near the hand 
(Iriki et al. 1996;Ishibashi et al. 2000). Expansion of visual RF followed only 
an active, intentional use of the tool, not its mere holding by the hand. A 
similar remapping of far space as near space emerge in behavioral studies on 
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human subjects (both patients and healthy subjects) (Farne and Ladavas 
2000;Berti and Frassinetti 2000;Maravita et al. 2002b). For example, cross-
modal extinction by presenting a visual stimulus far from the ipsilesional 
hand and near the tip of a handheld rake was more severe after the patient 
used the tool to reach distant objects with respect to conditions in which the 
rake was not used (Farne and Ladavas 2000).  

Although plasticity of the peripersonal space induced by tool use has 
been extensively documented in the literature, the underlying neural 
mechanisms are still largely unknown. Few neurophysiological studies in 
recent years suggest that concrete morphological changes (including growth 
and sprouting of new synapses) could be induced by tool-use training 
(Ishibashi et al. 2002;Hihara et al. 2006)  

Neural network models and computer simulation techniques represent a 
fundamental tool to gain a deeper insight into the mechanisms responsible 
for the plasticity of peripersonal space representation and to investigate the 
spatial properties of peripersonal space extension. Indeed, mathematical 
models allow the formulation of hypotheses in rigorous quantitative terms, 
the validation/rejection of these hypotheses on the basis of available data, 
and integration of the multiplicity of neurophysiological and neuro-
psychological results into a coherent structure.  

Aim of this work is to use the neural network model described in Chapter 
5 to simulate peripersonal space representation after a tool-use training, both 
in healthy and RBD subjects. Plastic modification induced by tool-use 
training is reproduced by means of a Hebbian rule, according to which 
synaptic connections are reinforced in presence of simultaneous activation of 
the pre-synaptic and post-synaptic neurons.  

 

6.2 Method 

6.2.1 Mathematical description 

The description of the model, as well as model equations, can be found 
in Chapter 5, section 5.2.1.; for this reason they are not reported here. 
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6.2.2 Model Plasticity 

In this chapter, the model was used to simulate the results of learning 
experiments, in which the subject uses a long tool to connect his right hand 
with a visual stimulus located in distant space (Iriki et al. 1996;Ishibashi et 
al. 2000;Maravita et al. 2002b). To this end, we assumed that the synapses 
linking the unimodal to the multimodal areas in left hemisphere ( L,s

hk,ijW ) are 
subject to Hebbian plasticity.  

Figure 6.1 illustrates the inputs to the model used during the learning 
phase. We assumed that the subject uses an elongated tool extending from 
the centre of the hand to the horizontal direction. The upper panel shows the 
tactile input, corresponding to the portion of the hand stimulated when 
holding the tool. The lower panel shows the visual stimulus, which matches 
the overall tool, after the enhancement of the contrast performed by the 
retina cells. The portion of the visual response after the enhancement of the 
contrast is emphasized in red; the mechanism performed by retina cells acts 
along the length of the tool (along the y direction) selecting the handle and 
the tip (portions of the visual stimulus where the tool is functionally used). 
Figure 6.2 illustrates the network activity in response to the inputs described 
in Fig. 6.1; as we can see in the figure, all multimodal neurons are 
completely activated while, in the visual unimodal area, only the handle, the 
tip and the contour are emphasized. 

After application of the previous inputs, synapses are modified with the 
following rule (for the meaning of symbols refers to Chapter 5): 

)()()()( ,,,
,

,
, tztztWTtW Lm

ij
Ls

hk
Ls
hkijs

Ls
hkij ⋅⋅+=+ γ                                         (6.1) 

where L,s
hk,ijW  (s = t,v) represents the strength of the synaptic connection 

linking neuron hk in the tactile or visual area to neuron ij in the bimodal 
area, Ts is the sampling time, γ is the learning rate with assigned value 0.06.  
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Figure 6.1 – Tactile and visual stimuli used during the learning phase. The upper panel 
shows the tactile input, corresponding to the portion of the right hand stimulated when 
holding the tool. The lower panel shows the visual stimulus, which matches the overall 
tool, after the enhancement of the contrast performed by the retina cells. The tool has 
dimensions 55 x 4 cm. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 6.2 – Network activity in response to the tactile and visual stimuli used during 
the learning phase. The plot shows the neuronal activity in unimodal areas and the 
response of the 8 multimodal neurons. The activity in unimodal area is represented by 
a colormap scale, in multimodal area by a 3D visualization.  
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6.3 Results  
In this work we first simulated the synapses plasticity. During the 

learning experiment the synapses linking unimodal to multimodal neurons 
are subject to plastic modifications (Hebbian learning rule). In Fig. 6.3 we 
represented, as an example of the plastic modification, one of the synapses 
linking unimodal areas to multimodal neurons; as we can see in the plots, 
after the training with the tool, the synapses expand to include the spatial 
regions where the tool was functionally used.  
 

 
 
 
 
 
 
 
 
Figure 6.3 – Example of synapses plasticity. Representation of the synapses linking 
tactile and visual neurons to the multimodal neuron located in x=2.5 cm and y=4 cm. 
The plot shows by a colormap scale the synapses before and after training with the 
tool.  

 
Subsequently we simulated the right and left hand interaction after a 

tool-use training in healthy and pathological subjects. As we described in 
Chapter 5, in basal conditions, a tactile or a visual stimulus placed on the 
hand is able to evoke a significant activation in multisensory neurons, while 
a visual stimulus distal from the hand does not induce any response (see 
Chapter 5, Fig. 5.2). In Fig. 6.4 we simulated the interaction between a 
tactile stimulus applied on the left hand and a visual stimulus applied far 
from the right hand in a healthy subject. As we can see, after the training, a 
visual stimulus located far from the right hand activates multimodal neurons 
provided it is applied in a position of space where the tool operated during 
training. After the synapses expansion in fact, the far visual stimuls is 
perceived as belonging to the right hand and it boosts the multisensory 
representation. Therefore, as we discussed in Chapter 5, the two stimuli lead 
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to the competition between the two multisensory representations of the 
corresponding hands. The competition is unbiased and the outcome is the 
coexistence of both right and left hand representations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.4 – Expansion of peripersonal space (Healthy subjects). Network activity in 
response to a tactile stimulus on the left hand (x=2.5 cm, y=4 cm) and a visual stimulus 
far from the right hand (x=5 cm, y=59.5 cm) after the training with the tool. The plots 
show the same quantities of Fig. 6.2 for both hemispheres.  
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discussed in Chapter 5 (see Fig. 5.6) in these patients, a tactile stimulus 
applied on the left hand is extinguished by a visual stimulus applied near the 
right hand. In the simulation performed in this chapter, we demonstrated 
that, after the right hand has been trained to use a long tool, left tactile 
extinction occurs also when a visual stimulus is applied far from the right 
hand; in fact, as we explained for healthy subjects, a visual stimulus located 
far from the right hand, in a position of space where the tool operated during 
training, activates multimodal neurons and also the corresponding 
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representation of the hand. As we discussed in Chapter 5, in pathological 
subjects the competition between the representations of the two hands is 
uneven and the final outcome of the network is the extinction of the activity 
in the tactile area of the right hemisphere (only the central neuron remains 
slightly activated), and the consequent deactivation of multimodal neurons. 
Hence, only the right hand representation survives. This result is represented 
in Fig. 6.5.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 6.5 – Expansion of peripersonal space (RBD subjects). Network activity in 
response to a tactile stimulus on the left hand and (x=2.5 cm, y=4 cm) and a visual 
stimulus far from the right hand (x=5 cm, y=59.5 cm) after the training with the tool. 
The plots show the same quantities of Fig. 6.2 for both hemispheres.  

 

6.4 Discussion 
The main purpose of this chapter was to provide a preliminary 

instrument for analysis and planning of clinical studies. The perception of 
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the peripersonal space, and the link between visual and tactile body 
information, in fact, may be altered in pathological conditions (as in brain-
damaged patients or in patients with arm-amputation). Furthermore, recent 
data demonstrate that our perception of the peripersonal space is not a static 
one, but can be modified by experience and training (Farne and Ladavas 
2000;Berti and Frassinetti 2000;Maravita et al. 2002b). These modifications 
may reflect changes in the connections among the neurons (Ishibashi et al. 
2002;Hihara et al. 2006), hence their full understanding requires a network 
able to summarize the main processing steps from the unimodal sensory 
areas to the bimodal specialized cortex, and their adapting changes.  

In this work we used the model described in Chapter 5 to simulate the 
plastic expansion of peripersonal space by means of an Hebbian 
reinforcement of synapses converging into bimodal neurons. The exempla 
shown suggest that this model can explain the expansion of the peri-hand 
space occurring after the use of a tool, both in healthy and pathological 
subjects. The model ascribes such an expansion to the enlargement of the 
visual receptive field of bimodal neurons, induced by the reinforcement of 
synapses that were just latent before the experiment. Moreover, the model 
emphasizes the importance of retina cells, which permorm the enhancement 
of the contrast of the visual information, emphasizing only the portions of 
functional relevance to induce the reinforcement of synapses and produce the 
enlargement of bimodal neurons visual RF. Indeed, neurophysiological data 
on monkeys (Iriki et al. 1996;Ishibashi et al. 2000), show that the expansion 
of the peripersonal space occurs only if the tool is effectively used to reach 
objects, and not if the tool is simply hold in hand. This suggests that 
concurrent visuo-tactile information from the tool is not sufficient to 
elongate peri-hand space, without an attentive mechanism focused on the 
effective and functional use of the tool.  

Finally, we wish to stress some possible limitations of the present model, 
that can be the subject of future extensions. In our model only the 
feedforward synapses linking the unimodal to multimodal neurons are 
subject to the Hebbian reinforcement; in future studies we could simulate the 
expansion also of the feedback synapses linking the multimodal to unimodal 
neurons. Furthermore, as we know from the experiments performed on 
monkeys and humans described in literature (Farne and Ladavas 
2000;Ishibashi et al. 2002;Hihara et al. 2006), the effect of the expansion of 
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synapses due to the training with the tool is not permanent and it decreases 
with the time. In our model we didn’t consider this behaviour but in future 
implementations we could include a mechanism which takes into account the 
decrease of the after training effect.  

In addition to the potential benefits described in Chapter 5, we wish to 
discuss about another important  potentiality of the model. The importance 
of the simulations performed in this Chapter and in Chapter 5 resides also in 
clinical application and rehabilitation of subjects with neurological deficits 
(for instance, brain-damaged subjects with a dense hemisensory loss of the 
upper limb). In these patients, cross-modal (visual-tactile) stimulation 
paradigms are frequently used during clinical tests, and interpretation of 
these trials with the model may be of potential interest. Therefore, the 
inclusion in our model of feedback projections from multimodal neurons to 
unisensory areas (see Chapter 5, Fig. 5.7), whose existence has been 
demonstrated by recent neurophysiological studies, may allow the simulation 
of experiments, in which activation of the bimodal visuo-tactile system 
improves sensory detection in the unimodal areas (Macaluso et al. 
2000;Serino et al. 2007). In particular, with the model, we could also 
simulate the cross-modal facilitation effect in RBD subjects after the training 
with a tool used with the controlesional hand (Maravita et al. 2002a). 

In general, the model may have potential benefits in suggesting a large 
number of clinical experiments for rehabilitation or treatment of neurological 
patients. 
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CONCLUSION 
 

In this work we described mathematical models to simulate the 
integration among cortical regions in the brain. The problem has been 
deepened at two different levels: functional connectivity and multisensory 
integration.  

Part 1. The first part of the thesis is focused on the use of neural mass 
models to infer information on integration among the activities of different 
cortical regions connected during a cognitive or a motor task, both using the 
model as a simulator to generate signals and gain a deeper insight into to 
possible effect of connectivity on measured data, and as a part of an 
algorithm, to derive connectivity from data. Modelling the relationship 
between connectivity and EEG power spectral density may be of the greatest 
value in neurophysiology. In Part 1 we described two different mathematical 
models. The main difference between the first model (Chapter 1-2) and the 
second model (Chapter 3-4) is that in the latter, multiple rhythms can be 
generated within a single population, which becomes representative of a ROI 
(Region Of Interest), while in the first model a ROI is built as the parallel 
arrangement of three populations. With both models we performed an 
analysis of coherence, and of the position of peaks in PSDs; this study 
revealed important information on the possible long-range connections 
among populations, especially useful to follow temporal changes in 
connectivity. But the most ambitious step of the research described in Part 1 
was to check whether the models described in Chapters 1-4, trained with a 
minimization algorithm, could “discover” a simple pattern of connectivity, 
starting from real data, under a few basic hypotheses.  

We focused attention on several related problems: which are possible 
mechanisms causing different rhythms in EEG spectra? Can these rhythms 
coexist within the same population of neurons? How are these rhythms 
modified by connectivity among populations? How these populations can 
integrate their activity during a task? Is it possible, using a model of 
interconnected ROIs, to infer a simple pattern of connectivity with an 
automatic algorithm, so that each ROI produces the same cortical EEG 
spectrum as data obtained from in vivo measurement?  
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Results obtained with the minimization algorithm are encouraging. Both 
with the model described in Chapters 1-2 and the model described in Chapter 
3-4, the algorithm found simple patterns of connectivity, which explain EEG 
power spectral density carefully, and seemed quite repetitive in the subjects.  

The results described in Part 1 show the potential benefits coming from 
the use of neural mass model in the study of functional connectivity. On the 
basis of the results, we claim that these models may have interesting 
potential applications: 

i) to help validation or rejection of existing hypotheses. For instance, a 
model may be used to implement a hypothesized pattern of connectivity 
among neural populations (as suggested by neuphysiological theories, neuro-
anatomical knowledge, or as obtained from empirical existing algorithms, 
such as the partial directed coherence). Model results can then be compared 
with existing data, to understand whether this scenario is compatible with 
data or not; 

ii) the model may help to investigate the possible origin of temporal 
changes in data. As observed in Chapter 1, PSDs in brain regions change 
during the temporal evolution of a task, reflecting a change in connectivity 
and/or in the internal structure of a region. Starting from a given initial 
model, which simulates PSDs, cross-spectra and coherences in basal 
conditions, the model may reveal which possible changes in parameters are 
able to explain temporal variations in the data. This is for instance, the 
approach used by Wendling et al. to analyze epileptic phenomena; 

iii) the model may suggest new experiments (for instance, concerning 
activation or de-activation of regions with Transcranial Magnetic 
Stimulation), able to discriminate among different possible hypotheses. The 
effect of alternative stimuli can be simulated with the model, using different 
sets of connectivity and/or different parameter values, and the stimuli which 
are more discriminative among the alternative scenarios suggested as 
physiological tests; 

iv) the model can be used to link data obtained with different techniques. 
In Chapter 3 we focused attention or membrane potential of pyramidal 
neurons, as the best signal to mimic cortical EEG. Synaptic activity can be 
also included in the analysis to have a signal more closely related to fMRI or 
PET. Spike activity can be used to mimic measurement performed on 
individual neurons (as in animal experiments). All these signals can then be 
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simulated with the same model, to integrate results obtained with different 
measurement techniques into a coherent scenario; 

v) the model can be used to test the reliability of methods (such as the 
partial directed coherence (PDC), the directed transfer function (DTF) and 
the direct DTF (dDTF) currently used to extract effective connectivity from 
data. To this end, simulated cortical EEGs can be produced by the model, 
using different patterns of connectivity and/or of different values of internal 
parameters. These data can then be propagated to the cortex with the 
addition of some noise, to simulated scalp EEGs. The results obtained on 
these scalp EEGs with current techniques for connectivity estimation can 
then be compared with the “true” connectivity values used in the model, to 
reveal in which cases the current methods can extract the original 
connectivity, and in which cases they fail. A similar approach has been 
proposed by David et al. . 

Finally, the emphasis of this entire Part 1 is on the possibility to 
understand how the brain integrate the information coming from the activity 
of different cortical regions and to infer information on connectivity during 
cognitive or motor task. The results in fact may be of value for a deeper 
comprehension of mechanism causing EEG rhythms, for the study of brain 
connectivity, for the test of neurophysiological hypotheses, and for 
integration of results obtained with different neuroimaging techniques into a 
definite theoretical framework. Although this research is still at a 
preliminary stage, the present work represents a first promising attempt in 
that direction. 

Part 2. The second part of the thesis is focused on the visual-tactile 
representation of the peripersonal space around both hands and their 
reciprocal influences, by means of an original mathematical model. 
Investigation of the neural mechanisms underlying the representation of the 
external space has been assuming an increasing relevance in the last years. 
Recent results from different approaches, involving electrophysiology, 
psychology and neuropsychology, converge in indicating that representation 
of peripersonal space is constructed in a multisensory fashion, plausibly 
related to multisensory neuronal populations which respond both to tactile 
stimuli on a particular body part and to visual stimuli in the surrounding 
external space, and integrate the information coming from different 
unimodal areas to create a multisensory representation of the peripersonal 
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space. In this context, neural network models and computer simulation 
techniques may represent a guide in solving the previous problems. 

In Part 2 we described an original neural network model to simulate the 
organization of the neural circuitry underlying peripersonal space 
representation, and investigate the neural mechanisms involved in the 
integration among unimodal and multimodal information. With the model 
we summarized data coming from neuropsychological and clinical 
experiments and simulated different physiological conditions in healthy 
subjects: the visual-tactile coding of the perihand space, the cross-modal 
influences on unisensory perception, the right and left hand interaction. 
Furthermore we studied the alterations in the neural circuitry which explain 
extinction in right brain damaged (RBD) patients and we simulated some 
clinical experiments: unilateral stimulation, cross-modal extinction and 
cross-modal facilitation (see Chapter 5). We used the model also to 
reproduce the plastic modification of the peripersonal space after the training 
with a tool, both in healthy and RBD subjects (see Chapter 6). 

At present, we are not aware of any other neural network model focused 
on visual-tactile representation of peripersonal space, including competitive 
mechanisms among simultaneous representations. However, it is worth 
noting that the proposed model does not aspire to reflect the 
neurophysiological and neuroanatomical knowledge in detail, but identify a 
possible structure of the network to take into account for psychophysical and 
behavioural results. 

It is also important to discuss some possible limitations of the present 
model. In our model, the visual information reaching the multisensory layer 
is coded in a hand-centred frame of reference rather than in retinal (or eye-
centred) coordinates. The problem of how the brain performs coordinate 
transformation and remapping of receptive fields in different frames of 
reference is extremely complex; in this work we didn’t examine this 
problem, we just assumed that an upstream process converts the visual input 
from eye-centred to hand-centred coordinates. Furthermore, although with 
the model we reproduced a plausible scenario, we didn’t include some 
mechanisms which could play an important role. At present, neurons in the 
visual area and in the tactile area communicate only indirectly, via the 
feedback projections from the multimodal neurons; this choice has been 
adopted according to reduce the number of mechanisms included in the 
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model, and to find a good compromise between completeness and 
computational simplicity. However, a direct communication between 
unimodal neurons is possible and its role may be investigated in future 
studies.   

On the basis of the results obtained in Chapters 5 and 6, we state the 
importance of modelling in electrophysiology, psychology and 
neuropsychology fields. With the model we have the possibility to simulate 
different psychological and neurophysiological experiments, and to test 
different pathological conditions. Potential benefits of the studies described 
in Part 2 reside in clinical application and rehabilitation of subjects with 
neurological deficits (for instance, brain-damaged subjects with a dense 
hemisensory loss of the upper limb). In these patients, cross-modal (visual-
tactile) stimulation paradigms are frequently used during clinical tests, and 
interpretation of these trials with the model may be of potential interest. In 
this context, the feedback projections from multimodal neurons to 
unisensory areas described in our model, may allow the simulation of 
experiments, in which activation of the bimodal visuo-tactile system 
improves sensory detection in the unimodal areas.  

Finally, models may be used to test the reliability of alternative 
hypotheses on the neural networks involved in the perihand representation 
and gain a deeper insight into the neural mechanisms implicated in the 
process of integration in the brain. 
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