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Abstract 
Sweet sorghum, a C4 crop of tropical origin, is gaining momentum as a multipurpose 

feedstock to tackle the growing environmental, food and energy security demands. Under 

temperate climates sweet sorghum is considered as a potential bioethanol feedstock, however, 

being a relatively new crop in such areas its physiological and metabolic adaptability has to be 

evaluated; especially to the more frequent and severe drought spells occurring throughout the 

growing season and to the cold temperatures during the establishment period of the crop. 

The objective of this thesis was to evaluate some adaptive photosynthetic traits of sweet 

sorghum to drought and cold stress, both under field and controlled conditions. To meet such 

goal, a series of experiments were carried out. A new cold-tolerant sweet sorghum genotype was 

sown in rhizotrons of 1 m3 in order to evaluate its tolerance to progressive drought until plant 

death at young and mature stages. Young plants were able to retain high photosynthetic rate for 

10 days longer than mature plants. Such response was associated to the efficient PSII down-

regulation capacity mediated by light energy dissipation, closure of reaction centers (JIP-test 

parameters), and accumulation of glucose and sucrose. On the other hand, when sweet sorghum 

plants went into blooming stage, neither energy dissipation nor sugar accumulation counteracted 

the negative effect of drought. Two hybrids with contrastable cold tolerance, selected from an 

early sowing field trial were subjected to chilling temperatures under controlled growth 

conditions to evaluate in deep their physiological and metabolic cold adaptation mechanisms. 

The hybrid which poorly performed under field conditions (ICSSH31), showed earlier metabolic 

changes (Chl a + b, xanthophyll cycle) and greater inhibition of enzymatic activity (Rubisco and 

PEPcase activity) than the cold tolerant hybrid (Bulldozer). Important insights on the potential 

adaptability of sweet sorghum to temperate climates are given.  

. 
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General Introduction 

Sweet sorghum [Sorghum bicolor (L.) Moench], a C4 crop of tropical origin, is 

considered as a multi-purpose crop with a high potential as bioenergy feedstock, because it is a 

source of either fermentable free sugars from the extracted stem's juice or lignocellulosic 

material from the whole plant biomass. It has also the potential to produce food and feed in 

various combinations. Moreover, compared to other bioenergy crops such as sugarcane and 

maize, sweet sorghum has several advantages for example  high water, nitrogen and radiation 

use efficiency; broad agro-ecological adaptation; adaptability to most soil types; rich genetic 

diversity for breeding improvements, low input requirements, excellent forage quality, and high 

productivity. 

Recently the interest in cultivating sweet sorghum has been renewed across the world 

mainly because the need to meet the targeted Renewal Energy Policies and comply with 

environmental issues and climate change international agreements. That is also true in temperate 

climates such as those of Europe. Therefore, the expansion of sweet sorghum into such areas not 

only will require to fulfill with the stated regulations, but also will require to cope with the 

prevailing environmental stresses. Frequent and severe drought stress periods is one the 

consequences of climate change leading to reduced plant productivity (Farooq el al. 2009). 

Moreover, in temperate climates, characterized by cold rainy winters and dry summer, drought 

spells have been intensified lately (IPCC, 2007). Another important environmental stress that 

sweet sorghum will face in temperate climates is the cold temperatures at the establishment 

period. Therefore the cultivation of sweet sorghum in temperate climates would need to put in 

place several actions to tackle the effects of climate change and concomitantly meet the 

requirements to produce energy from renewable sources. One example of such kind of actions is 

the SweetFuel project (FP7-KBBE-2008-2B), that aimed to develop bioethanol production in 

temperate and semiarid regions from sweet sorghum through genetic enhancement, identification 
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some stress related physiological traits, and improvement of cultural and harvesting practices. 

The present thesis was carried out within the framework of the aforementioned project. 

Sweet sorghum in its natural habitat is well adapted to drought conditions. Such 

adaptability is mainly expressed by the activation of several anatomical, morphological and 

physiological mechanisms. A primary mechanisms of sweet sorghum adaptability to drought is 

to reduce canopy transpiration while maintaining a certain photosynthetic level even at very low 

soil water potential and/or leaf water potential (Tari et al 2013). Such improved water use 

efficiency has been related to the presence of leaf epicuticular wax that increasing the leaf 

reflectance and reduce transpiration and water pressure (Surwenshi et al. 2012). Moreover, the 

stomatal regulation capacity of sweet sorghum further contributes to avoid excessive water loss 

by transpiration (Massacci et al. 2006) but at the same time this has a direct effect on the 

diffusion of CO2 to the chloroplasts, on the ability of leaves to dissipate the excess energy as 

latent heat, or increase mesophyll resistance, resulting in modifications in the photosynthetic 

apparatus functioning. Although the effects of drought stress on the photosynthetic processes 

have been widely reviewed in other species such as maize (Zea mays), studies regarding to the 

photosynthetic response to progressive soil drying out at different growth stages specifically at 

the photosystem II (PSII) electron transport activity are practically inexistent in sweet sorghum. 

Very few information exists on how long sweet sorghum can resist to progressive drought stress 

or what physiological defense mechanisms are used by young and aged plants. The analysis of 

PSII and electron transport chain may provide complementary and reliable information on 

drought-related mechanisms of sweet sorghum. 

 Another important environmental stress that sweet sorghum will have to cope with in 

temperate climates is the low temperatures at the crop establishment period. In general, sweet 

sorghum under cold temperatures (usually below 15 °C of soil temperature) shows poor stand 

establishment capacity and seedling vigor (Yu and Tuinstra 2001). Besides that low temperatures 

are thought to induce several physiological and metabolic alterations in the emerging seedlings. 
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Photosynthetic rates, leaf chlorophyll content, Rubisco function, ion uptake for example are 

some of the main physiological alteration due to cold. Then, it is presumable to assume that cold 

stress may predispose plant seedlings to a greater sensitivity at the photosynthetic level and thus 

poor plant survival. Hence, this may represent a limiting factor for sweet sorghum establishment 

at extreme northern latitudes. However the performance of different origin or genetic 

background sweet sorghum cultivars under sub-optimal temperatures has not yet been evaluated. 

A better understanding of the physiological mechanism by which sweet sorghum cope with 

harmful drought and low temperatures conditions, is essential for further breeding, agronomic or 

production programs in temperate climates.  

 

The general objective of this study was to reveal some adaptive photosynthetic traits of sweet 

sorghum to cope with drought and cold conditions both under field and drought conditions.   

 

In order to meet this objective, three related experiment were carried out: 

 

 In the first study, it was analyzed the effect of progressive drought (suspension of 

irrigation until the physiological inactivity) on the PSII electron transport activity and the 

accumulation of leaf soluble sugars (glucose, fructose and sucrose) at different 

developmental stages. For such purpose a new sweet sorghum genotype was sown in 

twenty rhizotrons of 1 m3 located at Cadriano experimental farm of Bologna University. 

Photosynthesis analysis was performed using infrared gas analyzer and direct chlorophyll 

a fluorescence emission (JIP-Test). It was found that at early developmental stages sweet 

sorghum, plants were able to efficiency down-regulate their photosynthetic apparatus by 

dissipative energy mechanism, in which soluble sugars accumulation (glucose, sucrose 

and fructose) played an active role. 
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 In an open field experiment, carried out at Cadriano experimental farm during the 

growing season 2012, the adaptability to cold of seven sweet sorghum hybrids 

(Bulldozer, Zerberus, Tarzan, Monster, ICSSH19, ICSSH31 and ICSSH58) was 

evaluated at four sowing dates (from end of March to middle of May). The objective of 

this experiment was to preliminary identify some physiological and growth traits which 

can be used as indicators of sweet sorghum resistance to cold. The results indicated that 

early spring sowing strongly affected the plant vigor (mean emergence time), which in 

turn provoked chlorophyll degradation (leaf nitrogen and carbon content in leaf) and 

reduction of photosynthetic capacity (PIABS) at the plant establishment. Although such 

metabolic and physiological impairment was observed in all the hybrids, Bulldozer 

showed the best performance at early sowing dates demonstrating its suitability for 

temperate zones.   

 Based on the results of the previous study, the photosynthetic and biochemical adaptation 

mechanisms of the most contrasting hybrids was analyzed in detail under controlled 

environmental conditions. The trial was carried out in a growth chamber where the 

hybrids were subjected to a period of four days of chilling temperatures. The chilling 

treatment consisted in lowering the ambient temperature from 20°C/14°C to 9°C/5°C 

day/night respectively when the seedlings reached the 5th leaf stage. Photosynthetic 

parameters (leaf gas exchange and both direct and modulated chlorophyll a 

fluorescence), along with changes in pigment compositions (xanthophyll cycle, Chl. a 

and b, luteine etc.) were measured. The hybrid which poorly performed under field 

conditions (ICSSH31), showed earlier changes at biochemical levels (Chl a + b, 

xanthophyll cycle) and greater inhibitions of enzymatic activity (Rubisco and PEPcase 

activity) than Bulldozer. However, after 48 hours of re-warming enhancement of 

photosynthetic activity in ICSSH31 was observed. 
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Chapter 1 

Acclimation of photosynthesis by leaf soluble sugar 
accumulation of a sweet sorghum genotype under water 

deficit 

 

Abstract 

Drought is the major factor limiting photosynthesis of plants. If prolonged, it leads to 

oxidative stress by overproduction of reactive oxygen species (ROS). Among the plant 

physiological strategies to cope with drought, the accumulation of soluble sugar in leaves, 

especially in sugary crops, may play a crucial role against oxidative processes. Sweet sorghum 

[(Sorghum bicolor L.) Moench] is a widely recognized drought tolerant species; nonetheless, its 

physiological mechanisms to cope with drought during critical stages pre- and post-flowering) 

for sugar accumulation are still very uncertain.. The objective of this study was to evaluate the 

photosynthetic efficiency of a new sweet sorghum genotype selected for cold tolerance  to 

progressive soil drying up at vegetative and reproductive developmental stages. The trial was 

setup in a total of 20 rhizotrons (1 m3 each). Treatments were imposed at two vegetative and two 

reproductive stages. The leaf relative water content (RWC) was assumed as indicator of plant 

water stress status. Soil water potential (SWP),chlorophyll a fluorescence , leaf gas exchange, 

and leaf soluble sugars (glucose, sucrose and fructose) were analyzed at different ranges of 

relative water content (RWC) were measured. Under moderate drought stress (RWC between 70-

89%), glucose and sucrose in vegetative plants increased significantly by 40 and 30%, 

respectively. Such increments were maintained up to severe drought condition was reached 

(RWC between 50-69%). At reproductive stage, significant accumulation of fructose (by 100%) 

was found at booting stage and under severe drought conditions only. A close relationship was 

found among glucose, sucrose, thermal energy dissipation (DIo/CSm), and density of active 
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reaction centres (RCo/CSm) at vegetative stages. Analogously fructose only was related to 

DIo/CSm and RCo/CSm at booting stages, suggesting an age-specific-compound sugar role on the 

photoprotection of the photosynthetic electron transport chain. In addition, the JIP-test analysis 

revealed that the acceptor side of PSI was more sensitive than the donor side of PSII, with 

exception of half bloom stage. In conclusion, the capacity of a new cold tolerant genotype to 

effectively down-regulate the PSII electron transport was enhanced by the accumulation of 

glucose and sucrose in leaves at vegetative stages. Whereas fructose, apparently plays such 

equivalent role when plants reach the blooming stage. 

1.1.  Introduction 

As a result of global warming many areas of the world are expected to face severe drought 

with prolonged and recurring dry periods (Sheffield and Wood 2008, Dai 2013). Drought 

tolerant species, such as sweet sorghum [(Sorghum bicolor L.) Moench] can therefore be 

expected to play a strategic role to contrast the abandonment of agricultural lands due to adverse 

climatic conditions. Moreover, taking into account the short-term remarkable expansion of 

biofuel crops encouraged by aggressive biofuel policies, the expansion of sorghum cultivation 

areas to temperate climates and/or marginal lands can mitigate the land competition between 

food and non-food crops. 

Because of its low input requirements (Zegada-Lizarazu and Monti 2012a), sweet sorghum is 

widely recognized as a well-adapted crop to arid and saline areas of sub-tropical and temperate 

regions (Almodares et al. 2011). Given the intrinsic high tolerance to drought of sweet sorghum, 

if properly selected cold resistant lines will be also available, sorghum could become a great 

opportunity for temperate environments. Sorghum has the ability to adopt several mechanisms to 

effectively contrast drought stress going into a sort of dormancy until rains return (Bennett et al. 

1990). However, little is known on the ability of new breeds of sweet sorghum adapted to cool 
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temperate areas to maintain its drought tolerance capacity. Moreover, their photosynthetic 

response to progressive soil drying out is practically unknown. Furthermore, drought adaptation 

mechanisms may differ in new genotypes that are currently being developed for cool temperate 

climates such as those of northern or central Europe. Significant advancements in breeding sweet 

sorghum cultivars/hybrids adapted to cool temperate climates have been achieved in the 

framework of the SweetFuel project (www.sweetfuel-project.eu); nonetheless, such new breed 

lines are being developed to stand cold stress only, therefore, before introducing them to the 

market, their capacity to endure the increasingly frequent dry spells that occur along the growing 

season (e.g. young and/or mature stages) should be better understood. 

The way in which drought stress influences the primary process of CO2 fixation in C4 plants is a 

complex matter (Ghannoum 2009). In general, non-stomatal (biochemical) factors become more 

important than stomatal limitation under severe (RWC below 70%) or prolonged drought 

conditions (Lawlor 2002), as well as when other stresses such as heat or high light are 

superimposed (Cornic 2000, Ripley et al. 2007, Takahashi and Murata 2008). The prevailing 

stomatal or biochemical limitations depend also on plant age, intensity and velocity at which the 

drying up process occurs (Saccardy et al. 1996) due to, for example, break down of chlorophyll 

content (Bennett et al. 1990, Younis 2000). Young grain sorghum plants showed a quicker 

stomatal closure than mature plants after drought stress imposition (Garrity et al. 1983, Al-

Hamdanil et al. 1991). In turn, such limitations reduced the effectiveness of the chloroplasts to 

utilize the absorbed energy, which ultimately may inhibit the electron transport (Ott et al. 1999) 

within the thylakoid membranes. At the same time, the decreased CO2 diffusion to the 

chloroplast may lower the ability of leaves to dissipate the excess energy as latent heat 

(Srivastava and Strasser 1997). This energy unbalance force the plants to activate several defense 

mechanisms such as, among others, the adjustment of light-harvesting antenna size (Govindjee 

2000), thermal dissipation by xanthophylls cycle (Choudury and Behera 2001, Xiong et al. 
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2012), and cycling electrons transport around PSI (Heber and Walker 1992). Moreover, although 

it is generally accepted the adaptive role that carbohydrate accumulation plays on the osmotic 

adjustment to maintain cell turgor under drought conditions (Hare and Staden 1998), there is 

some evidence that soluble sugars, especially sucrose and glucose, play an antagonistic role with 

ROS as protective solutes against photodamage of PSI and PSII (Hare and Staden 1998, Coueé 

2006, Ende and Valludru 2008, Keunen et al. 2013). Studies on antioxidant activity of soluble 

sugars are rapidly evolving. For example, Peshev and Van den Ende (2013) and Keunen et al. 

(2013) reported that soluble sugars, especially those interacting with membranes, can act as true 

ROS scavengers in plants; Rajagopal and Carpentier (2003) found that  co-solutes such as 

glicinebetaine and sucrose protect the chlorophyll-protein complexes against photodamage of 

PSI submembrane particles .  

In sweet sorghum, down regulation of photosynthesis has been found to play a major role as a 

protective mechanism at young stages under either short or long drought stress periods (Zegada-

Lizarazu and Monti 2012b). It has been speculated that non structural sugars accumulation in the 

stems could contribute to prevent permanent photo-oxidative destruction of the PSII reaction 

centers. However, we are far from being certain on the relationship of soluble sugars 

accumulation in the leaves and the capacity of young or mature sweet sorghum plants to endure 

PSI and PSII activity upon soil drying up till prohibitive conditions for the growth. In general, 

PSII is considered as one of the most drought-sensitive components of the photosynthetic 

apparatus (Havaux and Strasser 1992), so it may be a valuable early indicator of plant stress 

status. A recent study on tree species showed that at severe drought conditions (e.g. terminal 

drought stages) PSI could show even earlier signs of damage (Huang et al. 2013). It is not 

known, however, whether the same mechanism occurs in sweet sorghum subjected to a rapidly 

developing drought stress. In sweet sorghum PSI was found to be more tolerant to heat than PSII 

(Yan et al. 2013). Moreover, the variable velocity of water stress evolution, due to large morpho-
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physiological differences along specific growth stages and the age dependent sugar 

accumulation, especially in sugary crops such as sweet sorghum, may result in different 

photosynthetic responses. Therefore, the analysis of PSII, PSI, electron transport chain and 

soluble sugar accumulation may provide complementary and reliable information on drought-

related mechanisms of sweet sorghum. 

A valuable strategy for assessing the photochemical changes induced by a progressive drying up 

is through monitoring the chlorophyll-a (Chl. a) fluorescence. Direct Chl. a fluorescence and the 

JIP-test (Strasser et al. 1995, Stirbet and Govindjee 2011) have been used for many years to 

estimate the PSII activity trough the analysis of the O-J-I-P Kautsky curve (Misra et al. 2001, 

Mehta et al. 2010, Redillas et al. 2011), but only recently to evaluate the PSI content (Ceppi et al. 

2012). Several studies (Schansker et al. 2003, Oukarroum et al. 2009, Ceppi et al. 2012) 

demonstrated that the initial O-J and the final I-P phases of the Kautsky curve, which indicate, 

respectively, the reduction of the acceptor side of the PSII and the re-reduction of plastocyanin 

and P700+ in the PSI, can be used to indirectly evaluate the damages of progressive drought 

stress at PSII and PSI levels. Then such information may be used as an indicator of the relative 

changes caused by prolonged drying out periods on sweet sorghum photosynthetic efficiency. 

Improving the knowledge of the physiological and metabolic traits of sweet sorghum under 

progressive drought stress conditions, through easily measurable parameters, and the sequence in 

which they develop up to lethal or inactivating levels, could provide insights or serve as 

supporting parameters in breeding and crop managements programs for improving drought 

resistance and productivity of new sweet sorghum cultivars developed for colder temperate 

climates. Therefore, the objective of this study was to characterize the photosynthetic response of 

an early season cold adapted sweet sorghum genotype to progressively increasing drought stress 

at young and mature stages. Moreover, being sweet sorghum a sugary crop we speculate that the 

developmental-specific increment of soluble sugar components, as a response of drought, may 
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act as a photoprotective mechanism against marked alterations in the flow of electrons towards 

PSI and PSII. 

1.2.  Materials and Methods  

1.2.1. Experimental set up 

The experiment was carried out at the experimental farm of Bologna University (44°33’N, 

11°21’E, 33 m a.s.l) from May 16 to September 7, 2012. The trial set up was similar to that used 

by Zegada-Lizarazu et al. (2012b). In brief, twenty 1-m3 rhizotrons where arranged in two 

parallel lines under a prefabricated structure sheltered by a transparent polyethylene film 

(thickness 0.075 mm; 90% of maximum transmission of PAR). The rhizotrons were filled with 

sandy loam soil (pH of 7.9) with 1.9 ‰ of total N (Dumas), 9 mg kg-1 of assimilable P (Olsen), 

108 mg kg-1 of exch. K (M.13.5 DM 13-9-99), and 1.27% of soil organic matter (Walkley-

Black). Before sowing, 46 and 22 kg ha-1 of N and P, respectively, were applied in each 

rhizotron. During the experimental period, max and min air temperatures were 32 ± 5 and 17 ± 

3.5 °C, respectively, while RH was 60 ± 13% (iMeteos, Pessl Instrument).  

1.2.2. Plant material and drought treatments 

Sweet sorghum (cv. ZN8M-50003/002) was seeded at a plant density of 12 plants/rhizotron on 

16th May 2012. Each  rhizotron was equipped with a drip irrigation system having self-regulated 

emitters (1.1 l h-1) 0.2 m spaced. Water stress (interruption of irrigation until plant death) was 

imposed at 4 specific developmental stages: D1, 3rd visible leaf (leaf collar completely 

developed); D2, growing point of differentiation (7th leaf collar visible); D3, booting (head 

extended into flag leaf sheath); and D4, half-bloom. Stressed plants were compared with 

unstressed (field capacity of 25% v/v; Ψ= −36 KPa) control plants (C). The experimental layout 

was a complete randomized design with four replications (20 rhizotrons in total). Before 
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stopping irrigation, plants were irrigated every 2-3 days to field capacity. Soil water status was 

kept monitored (readings every 6 h) through soil moisture probes (EC-5 Decagon Devices, USA) 

and automatic data loggers (Em5b, Decagon Devices, USA) placed at 0.2, 0.4 and 0.6 m soil 

depth in each rhizotron, coupled .    

1.2.3. Leaf gas exchange, RWC, and leaf soluble sugars 

Net CO2 assimilation rate (Pn), stomatal conductance (gs) was measured through a portable gas 

analyzer (CIRAS-2, PP Systems) on four plants per treatment every other day starting from the 

suspension of irrigation until plant physiological inactivity. We considered a plant as died when 

Pn was approximately zero for three consecutive measurements. Plants were thereafter irrigated 

and inspected (e.g. production of new leaves, tillers etc.) to confirm their death. During 

measurements, the environmental conditions inside the cuvette were 25 ± 1 °C, 1500 μmolm-2 s-1 

PPFD, and 380 μmol mol-1 of CO2. Leaf gas exchange was always taken at the same time 

(between 10 to 11 am) on the youngest fully expanded leaf, near the middle part of the leaf blade 

on its adaxial face. 

The relative water content (RWC) was determined as given by Smart and Binghman (1974) on 4 

leaf discs per treatment (1.8 cm ø) in the youngest fully expanded leaves. Leaf discs were 

collected weekly from the beginning of treatment. RWC was assumed as indicator of water stress 

level: unstressed plants, 90-100% RWC (RWC90-100); mild stress, 70-89% RWC (RWC70-89); 

severe stress, 50-69% RWC (RWC50-69).  

It must be noted that, in this study all the parameters were normalized to the C plants and care 

was taken by controlling that gs were always above 150 mol m-2 s-1 as recommended by Flexas 

and Medrano (2003) for control plants.  

The leaf soluble sugars (glucose, sucrose and fructose) content was also determined at weekly 

intervals by high-performance liquid chromatography (HPLC, Rezex RPM-Monosacaride (300 x 

78 mm), and Pb in ionic form, thermostated at 75ºC). Sugars were quantified prior calibration 
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curve obtained by commercial standard solutions (D(+)Glucose anhydrous, fructose pure and 

sucrose. 

Chlorophyll a fluorescence emission (Chl a) was measured with a high time resolution 

fluorimeter (Handy PEA, Hansatech) on dark-adapted leaves (about 30 min). A total of 24 

samples per treatment were taken between 10 to 11 am on the youngest fully expanded leaves, 

near the middle of the leaf blade on its adaxial face. The JIP-test as given by Strasser et al. 

(2000; 2010) was used to calculate indicative photosynthetic traits from fluorescence data (Table 

1). The time marks were: Fo at 50 µs (O-step), FJ at 2ms (J-step), FI at 30 ms (I-step) and 

maximum fluorescence at 300 ms (Fm or P-step).  

Data were subjected to the analysis of variance (ANOVA). When ANOVA revealed significant 

differences among means, the post-hoc LSD Fisher’s test was applied for separating the means 

into statistically different groups. For the amplitude analysis of O-J and I-P phase (JIP-test), the 

area beneath each fluorescence curve was calculated and statistically compared. 

1.3.  Results  

1.3.1. Tolerance of young and mature plants to progressive water stress   

The effects of increasing water stress on photosynthetic activity is shown in Figure 1.1. In 

general, the degree at which drought affected the photosynthetic capacity significantly varied 

between young and mature plants. After the suspension of water supply, the young plants (D1 

and D2) continued to photosynthesize for 20 days, while mature plants for 15 (D3) and 10 (D4) 

days. Photosynthetic rates of young plants approximated zero at higher soil water potentials (-3.1 

and -4.4 MPa in D1 and D2, respectively) than those of mature plants (-2.0 for both D3 and D4). 

In young plants, Pn and stomatal conductance (gs) did not significantly change until six days 

from stress imposition (SWP of -0.09 MPa), while it dramatically and abruptly dropped 

thereafter (by about 50%) (Fig. 1.1). PSII activity traits (both PIABS and φPo) were ineffective to 
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predict Pn loss. Likewise, at D3 and D4 developmental stages, PSII efficiency remained 

unaltered when gs and Pn shortly decreased 3 days from stress imposition (SWP of - 1 MPa)   

1.3.2 Effect of water stress on energy flux  

We used the pipeline leaf model (Strasser 2000) to represent the drought-induced changes in the 

phenomenological fluxes of fluorescence kinetic or apparent activities per cross section (CS) 

which is shown in figure 1.2. Energy flow changed through leaf cross section mainly with plant 

age and stress level. In young plants (D1 and D2), only a severe water stress affected energy flux 

(Fig. 1.2). The reduction of the electron transport per cross section (ETo/CSm; dark gray arrows) 

and the number of silent RCs (closed circles) was noticeable, while thermal energy dissipation 

(DIo/CSm; black arrows) progressively increased. In D3, DIo/CSm increased up to -1.3 MPa of 

(SWP) to dramatically decrease thereafter. The linear electron transport component (ETo/CSm ) 

and the quantity of closed RCs were considerably affected already at mild water stress (Fig. 1.2). 

Under severe water stress the most of the components were drastically such as ABS/CSm, 

TRo/CSm ETo/CSm and number of silence or closed, in some cases more than 70% of those of 

(C) plants. Initially, Reduction in pigment concentration (leaf greenness) and the light energy 

absortion, noted as ABS/CSm (white arrows) were also observed in D3 at severe stress levels, 

when RWC was less than 60%. At D4, all derived indicators by the JIP analysis, with only 

exception of energy dissipation (DIo/CSm) that regularly decreased during the treatment, shortly 

declined immediately after the suspension of irrigation. 

1.3.3 Effect of water stress on electron donor/acceptor sides of PSII and PSI 

In the last years, the slowest phase (IP) of Chl. a fluorescence kinetic has been used as reliable 

indicator of the re-reduction of plastocyanin (PC)+ and P700+ in PSI (Schansker et al. 2003, 

Oukarroum et al. 2009), while the OJ rise is agreed to represent the reduction of QA to QA- 

(Strasser et al. 1995). In order to gain insight on the degree of inhibition of drought both at donor 
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side of PSII and the acceptor side of PSI in young and mature sweet sorghum plants we 

proceeded to calculated the areas below the double normalized OJ and IP curves (Fig. 1.4 and 

1.5).    

The amplitude of the O-J curve varied depending on the developmental stage and drought stress 

degree: young plants were inhibited (+7% curve amplitude) in the electron donor side of PSII 

only at severe water stress (RWC50-69), whereas in D3 and D4 plants the PSII donor side was 

inhibited (significant reduction of QA to QA
-) at mild drought stress (RWC70-89). With the 

increase of drought RWC fell below 70% and the proportion of reduced QA
- doubled.   

I-P curve amplitude was taken for estimating the degree of electron acceptor side (PSI) inhibition 

that showed twice the values than those observed on the donor side of PSII in D1, D2 and D3 

(Fig. 1.6). D3 showed the highest reduction of curve amplitude both at mild and severe drought. 

The ratio of the normalized variable fluorescence (ΔVOJ/ΔVIP) between O-J and I-P steps (Fig. 

1.7) also showed that a greater reduction occurred in PSI electron acceptor side than in PSII 

electron donor side. Such reduction was greater in mature plants. The ΔVOJ/ΔVIP ratio declined 

soon after starting treatment in D3 and D4, whereas in D1 and D2 a small initial increment was 

observed. Afterwards, when SWP was lower than -2 MPa, the ΔVOJ/ΔVIP ratio slightly declined. 

1.3.4 Effect of water stress on soluble sugars accumulation 

In a previous work (Zegada-Lizarazu and Monti 2013) it was hypothesized the possible role of 

leaf sugar accumulation as photoprotective compounds of PSII. Here, we analyzed the increment 

of soluble sugar and their relationship with the capacity of down-regulation of PSII by energy 

dissipation (DIo/CSm) and reduction of active RCs (RCo/CSm). 

The increment of leaf soluble sugar concentration (glucose, sucrose and fructose) at different 

developmental stages and leaf water status (RWC) is shown in figure 1.7. Glucose and sucrose 

concentrations increased in leaves of D1 and D2 plants by about 40% and 30%. as drought 

significantly increased when RWC fell below 80% (Fig. 1.7). Whereas no significant changes on 
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glucose and sucrose were observed at more mature stages. On the contrary, fructose 

accumulation occurred at severe drought stress (RWC< 70%) however, there were no significant 

increments of sugars at D4. 

The relationship between leaf soluble sugar and the PSII down-regulation capacity of young and 

mature plants to the increasing drought was analysis by scatter plots (Fig. 1.8). Significant linear 

regression was found at young stages among sucrose, glucose, energy dissipation flux (DIo/CSm) 

and active reaction centers (RCo/CSm). While at mature stages, both JIP test parameter were 

linearly related to fructose at D3 stage. At D4 there was no relationship between sugar content 

and JIP test parameters. 

1.4. Discussion 

1.4.1 Effect of drought on net CO2 assimilation rate and PSII activity 

As expected, the degree at which the photosynthetic apparatus tolerated the progressive increase 

of drought stress considerably changed with plant age. Young plants (D1 and D2) were able to 

maintain elevated assimilation rates and a high PSII electron transport efficiency under 

progressively increasing  drought stress for about 10-15 days longer than mature plants, and until 

very severe water shortage conditions (up to SWP of -4.4 MPa). The ability of young plants to 

keep the photosynthetic apparatus functioning longer than mature plants is even more evident 

considering the faster soil drying rate of young plants compared to mature ones (0.19 and 0.12 

MPa d-1, respectively).  

Interestingly, the four developmental stages (D1 to D4) showed peculiar responses to drought 

stress in term of energy absorption, electron transport, RC closure, and energy dissipation thus to 

presume a different impact on assimilation capacity of sweet sorghum depending on whether 

drought affects young or more mature plants.  
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As a typical initial response in C4 plants, stomatal closure counteracted the advancement of 

drought in all the developmental stages (Cornic, 1994; Fig.1.1). Unlike the more mature sweet 

sorghum plants, considerable early decrease of stomatal conductance (about 50%) and the 

consequent reduction of intercellular CO2  by mild drought stress neither induced significant 

effect on the PSII electron transport efficiency (φPo, Fig.1.1), nor altered the energy flux 

component of the leaf cross section at D1 and D2 (Fig. 1.3). It suggests that at young sweet 

sorghum plants, mainly at three leaf stage, moderated drought is likely not to alter the balance 

between photo-induced inactivation of PSII complex and the repair mechanism such as 

degradation and re-synthesis of D1 protein (Prasad and Pardha Saradhi 2004). At very severe 

drought stress, however, young plants apparently enhance the PSII down-regulation capacity 

though dissipative mechanism (DIo/CSm and closing RCs) in which xhantophylls cycle are 

thought to be involved as consequence of trans-thilacoid lumen acidification (Demming-Adams 

and Adams 1996, Fig, 1.2 and 1.3). On the contrary, when the plants shifted from vegetative to 

reproductive stages (from D3 to D4), apparently such self-alleviation capacity against the 

deleterious oxidative stress in response to drought was inhibited, as evidenced by the 

continuative recuetion of DIo/CSm (Fig. 1.2 and 1.3). Such failure of energy dissipation capacity 

via no photochemical quenching (NPQ) was also observed by Dai et al. (2004) in wheat plants of 

45 days after anthesis as consequences of natural senescence process. As consequence of such 

low efficiency to dissipate the energy as latent heat (Fig. 1.3), we speculate that in flowering 

sweet sorghum plants (final part of D3 and D4) the high oxidative condition induced by drought 

may have accelerated the leaf senescence (Rosenow and Clark 1995, Noodén et al. 1997, 

Buchanan-Wollaston 1997) as was noted by chlorophyll bleaching (not shown), high reduction 

of linear electron transport ETo/CSm, and antenna size (ABS/CSm, Govindjee 2002; Munné-

Boshc and Alegre 2000) as well as high proportion of closed RCs. (Fig. 1.2, Humbeck et al. 

1996).  
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On the other hand, the scarce tolerance to drought of mature stages both at the donor side of PSII 

and the electron side of PSI was supported by the analysis of the double normalization of Chl a 

fluorescence from Fo (50s) to FJ (2ms), namely the OJ phase, and from FI (30ms) to FM 

(300ms), the IP phase (Fig. 1.5 and 1.6). The greater amplitude of the IP than OJ curves suggests 

that the reduction of the Calvin-Benson cycle (Fig. 1.1) due to the soil desiccation had more 

marked effect on the efficiency of electron transport towards the PS I. This support the statement 

of Redillas et al. (2011), of that PS II is more drought tolerant in comparison to the photosystem 

I (PSI). Nowadays there is a mounting body of evidences that the inactivation of ferredoxin-

NADP+-reductase is the responsible for a transient block on the acceptor side of PSI (Schansker 

et al 2006). Indeed, changes of the IP phase as consequence take place due to the loss of PSI 

proteins complex (Oukarroum et al. 2009, Ceppi et al 2012).). In fact, it is known that PSI 

subunits turnover is not as high as of that of D1, which renders the PSI more prone to 

photoinhibition under specific environmental condition (Sonoike 2011). Moreover, the 

differential response on the donor/acceptor side of PSII and PSI among developmental stages is 

clearly evidenced by the ratio ΔVOJ/ΔVIP in figure 1.7. It may explained by the fact that drought-

induced senescent leaves characterized by biochemical and molecular changes such as loss of the 

cyt b6/f complex, followed first by a decrease in PSI and PSII activity, then by a loss of ATP 

synthase (Guiamét et al. 2002, Rivero et al. 2007). 

Although sucrose and hexose accumulation (mainly glucose and fructose) in sorghum leaves, 

have been associated with osmoregulation capacity, their complex metabolism has led to 

contradictory results. For example, it has been shown that glucose and sucrose accumulation in 

sorghum leaves, at moderated drought stress levels, accounted for 50% of the observed osmotic 

adjustment (Turner 1982). On the other hand, Fecade and Krieg (1992) indicated that the 

osmoprotectant capacity of non-structural carbohydrates was minimal, due to the prevalence of 

insoluble polymers such as starch. Our results, indicate that soluble sugars either at young and/or 
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mature stages, played an important role in delaying marked alterations of the flow of electrons in 

PSI and PSII, thereby in the production of exacerbated harmful levels of ROS (Couée et al. 

2006; Fig. 1.4 and 1.8). Such findings support our previous hypothesis that the accumulation of 

soluble sugars in the stems of sweet sorghum can contribute to maintain an effective 

photosynthetic system, especially in aged plants (Zegada-Lizarazu and Monti 2012b). The 

present results show that under severe drought stress fructose is the major sugar involved in the 

photoprotection mechanisms, while at younger stages sucrose and glucose are the most important 

sugars for maintaining homeostasis via down-regulation of photosynthetic electron transport 

(Fig. 1.8).  

A recent review presented an enlarged view of the traditional role of sugars under stress 

conditions introducing that sugars are directly involved in ROS quenching (Keunen et al. 2013). 

Moreover, in Arabidopsis thaliana, acclimation of photosynthesis was observed under moderate 

drought conditions along with a simultaneous increment of soluble carbohydrates, proline, and 

anthocyanin (Sperdouli and Moustakas 2012). Even though the relationship between sugars 

accumulation and ROS production cannot be explicitly derived from our results, the 

photosynthetic acclimation via glucose, sucrose, and fructose accumulation in the leaves, 

evidenced by the decrease in RCo/CSm and the increase of DIo/CSm (Fig. 1.8), supports the 

hypothesis that sugars play a crucial role as true ROS scavengers.  It is well known that the 

inactivation of some RCs can help to protect the remaining active RCs (Jiang et al. 2008) 

through an increased DIo/CSm. The release of energy as heat is considered to occur at the time 

when maximum fluorescence is reached (tFmax), therefore heat dissipation is highly conditioned 

by Fm. The quenching of Fm is generally ascribed to photoinhibitory quenching (qI) (Force et al. 

2003) rather than to xantophyll cycle-dependent thermal energy dissipation (Demmig-Adams 

and Adams 1992). Then, the long term down-regulation of PSII, which involve a mix of 

photoprotection and photodamage mechanisms may include leaf soluble sugars as important 
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players of PSII photoprotection. In our study was found that the retardation of the photoinhibion 

at OJ phase (up to RWC 70%) was closely related to glucose and sucrose accumulation at D1 

and D2 stages, and to fructose at D3 only (Figs. 1.4, 1.5 and 1.8). Then, it is likely that sucrose 

accumulation may help to stabilize oxygen evolution and primary electron transport reaction 

centres as shown to occur in PSII sub-membrane particles under heat stress (Allakhverdiev et al. 

1996). In contrast, glucose accumulation might have enhanced the NADPH production, which is 

a major cofactor of ROS scavenging pathways such as ascorbate-glutatione cycle (May 1998). 

Despite the proved antioxidative properties of fructose under low temperatures (Bogdanović et 

al. 2008), the seemingly preponderant protective role in the redox metabolism of mature plants 

observed in the present study needs to be further investigated. 

1.5. Conclusion 

In conclusion, the adaptation of photosynthesis to progressive soil drying up of a cold 

resistant sweet sorghum genotype was highly dependent on the developmental stage, and 

associated to specific soluble sugars. Young sorghum plants were able to keep functional its 

photosynthetic apparatus up to lower water potentials than mature plants. Such capacity to down-

regulate its photosynthetic electron transport was endured by the glucose and sucrose 

accumulation in leaves, while fructose, which seems to play an analogous role, becomes 

preponderant only upon blooming. Moreover, at young stages PSI acceptor side was found to be 

more sensitive to drought than the PSII donor side thus revealing a likely change in the I-P phase 

according to JIP-test. It derives that PSI acceptor side can be used as prompt indicator to identify 

even moderate changes in leaf water status. 
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Table 1.1.  List of the JIP-Test parameters and their descriptions used in the present study 

Fluorescence parameters Description 
 

Extracted parameter from (OJIP) 
transient 
Ft 
Fo = F50s = (O-Step) 
 
Fm= F300ms = (P-step) 
 
FJ and FI 
 
tFm 
 
Derived Parameters, flux ratios or 
quantum yield 
ΔVO-J = (FJ - Fo) / (FP / Fo) 
ΔVI-P = (FP - FI) / (FP / Fo) 
WO-J = (Ft - Fo) / (FJ - Fo) 
WI-P = (Ft - FI) / (FP / FI) 
Po = (Fm - Fo) / (Fm) = Fv/Fm 
 
 
ETo = ETo/TRo = (1 - VJ) 
 
Mo = 4(FI - Fo) / (Fm - Fo) 
 
Performance index 
PIABS = (RC/ABS) (Fv/Fo) [(Fm - FJ) / 
(FJ -Fo)] 
 
Phenomenological fluxes or activities 
per excited cross section  
ABS/CSm ≈ Fm  
TRo/CSm = (ABS/CSm) Po  
ETo/CSm  = (ABS/CSm) ETo   
DIo/CSm = (ABS/CSm) – TRo/CSm 

 
Density of reaction centers 
RCo/CSm = Po (ABS/CSm) (VJ/Mo) 
 

 
 
Fluorescence emission from a dark-adapted leaf at the time t 
Minimum fluorescence, when all PSII reaction centers (RCs) are open or 
fluorescence intensity at 50µs 
Maximum fluorescence, when all PSII RCs are closed or fluorescence intensity 
at 300 ms 
Fluorescence intensities at the J-step (2 ms) and at the I-step (30 ms), 
respectively. 
Time (in ms) to reach Fm  
 
 
 
Relative variable fluorescence at the J-step (2ms) 
Relative variable fluorescence at the I-step (30 ms) 
Relative variable fluorescence at time t between Fo and FJ 
Relative variable fluorescence at time t between FI and Fm 
Maximum quantum yield of the primary photochemistry of a dark adapted leaf. 
Expresses the probability that an absorbed photon will be trapped by the PSII 
reaction center. 
Efficiency/probability with which a PSII trapped electron is transferred from QA 
to QB 
Approximated initial slope (in ms-1) of the fluorescence transient V = f(t) 
 
 
Performance index (potential) for energy conservation from photons absorbed by 
PSII to the reduction of the intersystem electron acceptor.  
 
 
 
Absorption flux per cross section (CS) at tFm 
Trapped energy flux per CS at tFm 
Electron transport flux per CS at tFm 
Dissipated energy flux per CS at tFm 
 
 
Amount of active PSII RCs per CS at t = 0 
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Fig. 1.1 Time-course of stomatal conductance (gs), relative net photosynthesis (Pn), performance 
index (PIABS), and maximum quantum yield (φPo) at different developmental stages. Panel (D1) 
represents the three leaf stage, (D2) growing point differentiation, (D3) boot stage and (D4) half 
bloom stage. The different diagonal lines over the curves indicate the gradient of relative water 
content (RWC). Dashed bars above each point represent minimum difference among the means 
of gs, Pn, PIABS, and φPo needed for significance (LSD test, P≤ 0.05).  
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Fig. 1.2 Pipeline model of phenomenological energy fluxes per cross-section (CS) at third leaf 

stage (D1), growing point differentiation (D2), blooming stage (D3), and half bloom stage (D4) 

throughout different ranges of relative water content (RWC) as the soil dried up. The effect of 

progressive drought on each parameter can be seen as the relative change in the width of each 

arrow. The calculation of the energy fluxes are given in Table 1. Such parameters represent the 

stepwise flow of energy through PSII at the cross section for maximum fluorescence (CSm) level. 

White arrows (ABS/CSm) expresses the number of photons absorbed by the antenna molecules 

of active and inactive PSII reaction centres (RCs) over the excited CSm of the sample. Light gray 

arrows (TRo/CSm) indicate the trapped energy flux per CS. Dark gray arrows (ETo/CSm) indicate 

the re-oxidation of reduced electron acceptors via electron transport over a CSm of active and 

inactive RCs. Black arrows (DIo/CSm) describes the total energy dissipation measured over the 

sample CSm. Active RCs are indicated by the open circles and inactive RCs (silent RCs) by 

the closed circles. The gray tone of the leaves indicates the pigment concentration per CS. In D4 

measurements were possible only until RWC was between 70-89%. 
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Fig. 1.3 Changes in dissipated energy flux per CS (DIo/CSm) relative to control versus soil water 

potential (SWP) at the four developmental stages as affected by decreasing soil water potentials. 

The trends of each developmental stage were described by different regression models. In D1, y 

= a + bxc R2 = 0.87; D2, y= a + bxc R2 = 0.86; D3, y = ((x-vrev)gmax)/ 1+e(x-vhaf)/dx) R2= 0.69; 

D4, y = (a+bx)(-1/c) R2 = 1.      
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Fig. 1.4 Ratio between relative variable fluorescence at the J-step 2 ms (VO-J) and relative 

variable fluorescence at the I-step 30 ms (ΔVI-P) during the time-course of drought stress 

imposition. The ratio represents the PSII/PSI inhibition. The values are relative to the control. 

The curves were fitted by different regression models. Where, D1, y = ((x-vrev)gmax)/ 1 + e(x-

vhaf)/dx) R2 =0.51; D2, y = a + b + cx2 dx3 R2 = 0.8; D3, y = (A1-A2) / 1 + e(x-x0)/dx R2 = 0.92; D4, y 

= y0 + A(abs(x-xc)P R2 = 0.97. 
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Fig. 1.5 Variable florescence from O to J step (WO-J) of the chlorophyll fluorescence transient, 

plotted on logarithmic time scale of the four developmental stages (D1, D2, D3 and D4) at 

different ranges of relative water content (RWC). Control (100-90% of RWC), mild drought 

stress (70-89% of RWC) and severe drought stress (69-50% of RWC). The integral area below 

the curve was calculated to compare the amplitude of the curves which represents the 

accumulation QA reduced due to the blockage in the electron donor side of the PSII. 
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Fig. 1.6 Variable florescence from I to P step (WI-P) of the chlorophyll fluorescence transient, 

plotted on logarithmic time scale of the four developmental stages (D1, D2, D3 and D4) at 

different ranges of relative water content (RWC). Control (100-90% of RWC), mild drought 

stress (70-89% of RWC) and severe drought stress (69-50% of RWC). The integral area below 

the curve was calculated to compare the amplitude of the curves which represents the block at 

the acceptor side of PSI and a traffic jam of electron transient formed in the electron transport 

chain. 
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Fig. 1.7 Effect of progressive drought on glucose (Panel A), fructose (Panel B), and sucrose 

(Panel C) concentrations in sweet sorghum leaves at different ranges of relative water content 

(RWC). Different letters within each RWC range indicate significant differences (LSD test, P≤ 

0.05).   
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Fig. 1.8 Relationship between soluble sugars (glucose, panels A and C; sucrose, panels B and D) 

concentration in leaves and dissipated energy flux per CS and number of active PSII reaction 

centers per CS (RCo/CSm) at young and mature developmental stages. D1, represents the three 

leaf stage; D2, growing point differentiation; D3, boot stage; and D4, half bloom stage. The inset 

E and F show the relationship among fructose (DIo/CSm) and (RCo/CSm) at D3 (for clarity D1, 

D2 and D4 were not included).    
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Chapter 2 

Evaluation of cold tolerance of seven sweet sorghum hybrids 
[Sorghum bicolor (L.) Moench)] under temperate climates 

 

Abstract 

Sweet sorghum [Sorghum bicolor (L.) Moench)], is a cold sensitive C4 specie. Low 

growth temperatures, characteristic of early spring in temperate climates, is traduced in poor 

germination and seedling establishment of sweet sorghum. Moreover, in cold-sensitive species, 

low temperatures during early developmental stages is thought to induce several biochemical and 

physiological dysfunctions such as photosynthesis and chlorophyll biosynthesis. In this study 

seven sweet sorghum hybrid (Bulldozer, Tarzan, Zerberus, Moster, ICSSH31, ICSSH19 and 

ICSSH58) were sown in the Po Valley (Northern Italy), at four sowing dates (from March to 

May) in order to evaluate their tolerance to early sowing both at seedling and final biomass and 

sugar yield (Brix degree).  

Sweet sorghum establishment was evaluated by measuring mean emergence time (MET), 

percentage of emergence, total nitrogen and carbon leaf content, performance index (PIABS) and 

dry aboveground biomass and SPAD readings. 

Early sowing (March 26th and April 19th) induced reduction of plant vigor and stand of plant, 

however no significant differences were found among hybrids. In addition, (PIABS) declined in 

plants sown early as consequence of low nitrogen and chlorophyll content in leaves (SPAD). 

Despite the strong effect at physiological and biochemical level in all the hybrid evaluated, the 

hybrid Bulldozer showed a significant higher productivity suggesting a better physiological 

adaptation for temperate zones. 
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2.1. Introduction 

Sweet sorghum [Sorghum bicolor (L.) Moench] is a tropical fast-growing crop (Doggett, 

1988) considered as a suitable  bioenergy feedstock (Zegada-Lizarazu and Monti 2012). 

Moreover, due to its good adaptability to unfavorable environmental conditions and marginal 

lands, it is expected to indirectly help to minimize the land use change impacts that the 

production of new energy crops could cause (Carillo et al 2014). In addition to that its cultivation 

under temperate climate conditions could further extend its production into areas where 

conventional bioethanol crops such as sugarcane cannot be produced. (Smith et al 1987, Smith 

and Buxton 1993). Nonetheless, low temperatures, characteristic of early spring in temperate 

climates could be restrictive for the germination and establishment of sweet sorghum (Maulana 

and Tesso 2013). In fact, for the successful establishment of sweet sorghum, uniform seedling 

emergence and vigorous initial seedling growth is required. Under adverse conditions, such as 

those of temperate climates, this becomes a challenging task (Wortmann and Regassa 2011). For 

instance, temperatures, as low as 15°C can be traduced  in low germination and emergence rates, 

as well as in reduced growth rates after emergence (Pinthus and Rosenblum 1961, Singh 1985, 

Brar and Stewart 1994, Burow et al. 2011).  While on the other hand, late sowing dates may 

reduce the length of the growing season, thus yield and carbohydrate content (Almodares et al. 

1994, Almodares and Mostafafi, 2006). Therefore, in general sweet sorghum sowing is 

recommended when the air temperature is above 12°C (Almodares et al. 2008). Such 

temperature threshold is reached from mid to late spring in temperate climates, and therefore the 

sowing time of sweet sorghum is usually restricted the end of spring. However, there is a great 

potential to significantly improve quantitatively and qualitatively the productivity of sweet 

sorghum in temperate climates if cold tolerant cultivars are identified/selected.   

Besides the reduced germination and initial growth rates low temperatures are thought to induce 

several physiological and metabolic alterations in the emerging seedlings (Wortmann and 
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Regassa 2011). Such disruptions will depend on, to mention a few, sensitivity of the species, 

nutrition level, growth stage, and intensity and duration of the cold spell (Ercoli et al 2004). In 

sorghum, exposure to cold nights (5°C) or ranges of 5-15°C is expected to lower the rate and 

extent of stomatal opening and hence net photosynthesis on the following day (Pasternak and 

Wilson 1972). Moreover, early cold-seasons stress was found to reduce leaf chlorophyll content 

(Maulana and Tesso 2013) and therefore this may inhibit the chlorophyll biosynthesis (Tewari 

and Tripathy 1998) and depress nitrogen (N) uptake (Ercoli et al. 2004). In addition to that, it 

was found that low temperature (below 5°C) reduces the carrying capacity of the phloem 

(Wardlaw and Bagnall 1981). Other study showed that even when the root seedling temperature 

is around 15°C the ion fluxes, particularly K+ and N03
- to the xylem sap were significantly 

reduced. Similarly, in other species such as Secale cereale (L.) and Brassica napus (L.) lowering 

the soil temperature from 20 to 7°C severely constrained nitrate uptake and subsequent N 

translocation (Laine et al. 1994). 

Therefore reduced N uptake and chlorophyll degradation induced by early season cold 

temperatures, may result in failure/downregulation of some physiological process such 

photosynthesis. Rubisco being the most abundant photosynthetic protein and in a lesser extent 

the light harvesting complex proteins, represent a large proportion of total N in the leaves (Evans 

1983, 1989a, Field and Mooney, 1986). Then it is presumable to assume that, especially in C4 

plants such reduction  in N and thus in Rubisco content in mesophyll chloroplasts  may 

predispose the plant seedlings to greater cold sensitivity at the photosynthetic level and thus in 

poor plant survival (Kubien et al. 2003). An in deep research of such traits across different 

hybrids will improve our knowledge of low-temperature stress related mechanisms in 

physiological adaptation of sorghum to cold conditions and also will be useful for the 

individuation of cold tolerant cultivars and expanding the geographical growing areas of sweet 

sorghum. Rapid and nondestructive techniques to evaluate the photosynthetic vitality, derived 
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from chlorophyll a fluorescence (Chl. a fluor.) measurements, together with more traditional 

techniques such as the mean emergence time (MET) could be indicative of seedling performance 

under cold conditions and aid in the identification of the most adapted cultivars.  

The objective of this study was to identify some indicative physiological and growth traits of the 

adaptability of seven sweet sorghum hybrids to cold (early sowing) under field conditions in a 

temperate climate. 

2.2. Material and Methods  

2.2.1. Experimental site and treatments 

The trial was carried out at Cadriano experimental farm of Bologna University (44◦33, 24◦E, 

33m a.s.l.) during the growing season 2012. The site is characterized by continental climate with 

a mean annual rainfall of 740 mm (Ventura et al. 2012). The soil characteristics are described in 

Table 2. During the growing season 2012 (from March to September) the average of daily 

minimum, mean and maximum temperatures were 13 °C, 20°C and 26,6 °C respectively. 

Three commercial hybrids from KWS (Bulldozer, Tarzan and Zerberus), three from ICRISAT 

(ICSSH19, ICSSH31 and ICSSH58) and one Spanish hybrid (Monster) were sown at four 

sowing dates (March 26th, April 19th, April 5th and May 15th). Each sowing date was laid out in 

three time replicated randomized blocks with seven plots (hybrids) each of 2,6 m x 6 m of size. 

The distance between seeding rows was set at 0.45 m and 5 cm of distance between seeds along 

the rows. Fertilization was applied before sowing, with 100 kg N ha−1 in the form of urea, and 

100 kg P2O5 ha−1in the form of superphosphate. Thinning after the counting of germination was 

performed to obtain a final density of 12 plants m-2. Final harvest was carried out when all the 

cultivars were at physiological maturity. During the whole productive cycle no supplemental 

irrigation was provided. 
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2.2.2. Vigor and plant seedling establishment 

The vigor of the plants was evaluated through the calculation of the mean emergence time 

(MET), which is the reciprocal of the germination. Such calculation was done according to 

(Matthews and Khajeh- Hosseini 2006) as: 

ܶܧܯ  =   
∑(݊ (ܵܣܦ×

∑݊  

Where:  

n = number of plants emerged (considering emergence when the cotyledon was unfolded above 

the soil surface). Such counting was performed always on the morning (9:00 – 10:00 am), 

starting after the first seedling coleoptile was visible. Counts were taken every other day until the 

end of the emergence. 

DAS= days after sowing.  

Σ n = final emergence 

The plant establishment was evaluated by the percentage of plant emerged along the row (6 m). 

The 100% of plant emerged was taken as 120 emerged plants. 

The Growing Degree Days (GDD) were calculated according to McMaster and Wilhelm (1997) 

as: GDD =  ቀ
்ಾೌೣశ೅ಾ೔೙

ଶ
ቁ −  ஻ܶ௔௦௘       

were: TMax is the daily maximum air temperature, TMin is the daily minimum air temperature and 

TBase is the temperature below which the process of interest does not progress. We used as base 

temperature 13 °C (Ferraris & Charles-Edwards 1986, Barbanti et al. 2006)    
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2.2.3. Above ground dry biomass and leaf area at seedling establishment  

The sampling for above dry biomass and leaf area were taken by manual cutting over an are of 1 

m-2 when the 50% of the plants reached the 5th full expanded leaf (moment in which sweet 

sorghum starts to be vigorous an competitive, Wortmann and Regassa 2011). Dry biomass was 

determined by oven drying to a constant mass at 105°C. Leaf area was measured with a leaf area 

meter (LI-3000; LI-COR, Nebraska, USA).   

2.2.4. Chlorophyll a fluorescence measurement 

The chlorophyll a fluorescence transient was measured by Plant Efficiency Analyzer (PEA, 

Hansatech, UK) when the plants were at 5th leaf growth stage. A total of 12 measurements per 

hybrid were taken from 9:00 to 11:00 am to avoid photoinhibition by high light intensity on the 

youngest fully developed leaf. The leaves were previously dark adapted for at least 30 min by 

using specific leaf clips. Among the large number of JIP-test parameters that can be derived from 

the fluorescence measurements, we  only used the absolute performance index (PIABS) and an 

indication of the photosynthetic vitality of the seedlings, since integrates the density of fully 

active reaction centers (RCs), the efficiency of electron transport by trapped exciton into the 

electron transport chain beyond the QA, and the probability that an absorbed photon will be 

trapped by RCs (Oukarroum et al. 2007, Živčák et al 2008). 

Absolute performance index is calculated as follow: 

PIABS  = 
ଵି(ி೚ ிಾൗ )
ெ೚

௏಻ൗ
 × ிಾି ிబ  

ிబ
 ×  ଵି ௏಻

௏಻
    

Where: F0 is the minimum fluorescence intensity at time (T) = 50 �s, FJ is fluorescence intensity 

at the J step (T = 2ms), FM is the maximum fluorescence intensity (T ≈ 30 ms), VJ represents the 

relative fluorescence at (T = 2ms) which is get by VJ = (FJ – F=) / (FM-F=), M0 represents initial 



41 
 

slope of fluorescence kinetics, which is derived from the equation Mo = 4* (F300�s – F0) / (FM – 

F0). 

2.2.5. Chlorophyll content 

The level of chlorophyll content in leaves was evaluated through SPAD-meter readings, 

following Yamamoto et al. (2002) who demonstrated that SPAD readings are closely related to 

the chlorophyll concentration in sorghum leaves. 

2.2.6. Total Nitrogen and Carbon in plants at establishment 

Leave samples were taken when the plants were at 5th leaf stage, then they were dried at 60° C 

and finely ground with a ball mill. Total N and C were determined by micro Dumas combustion 

with a Costech ECS 4010 elemental analyzer (Costech Analytical Technologies). Due to 

experimental limitations these analysis were carried out only in the first tree sowing dates.  

Statistical analysis 

Data were statistically compared by two-way analysis of variance (ANOVA). Means of 

establishment parameters among different SDs were separated by the Fisher test (P ≤ 0,05).    

2.3. Results and discussions 

2.3.1. Effect of the sowing date on vigor and seedling establishment  

The effect of the sowing dates on the vigor and seedling establishment (Fig. 2.2) shows that all 

hybrids followed a similar pattern with the highest percentage of emergence when the 

environmental conditions were close to the optimum. In fact the mean emergence time decrease 

as the season progressed from close to 16 days at the earliest sowing time (end of March) to 

about only 10 days at the latest sowing time. The lower emergence percentage at early sowing 

dates, especially that of ICSSH31 (56%), could be related to the low nighttime temperatures 
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(below 5°C) that usually occur during early spring in the experimental site (Fig. 2.1). Besides 

that, the low precipitation registered during March and beginning of April may have contributed 

to such low percentage of emergence. These results are in contrast to the ones obtained by Patanè 

et al. (2012) in a Mediterranean climate. They found that at early spring sowing times, the 

average MET was 16 days and the percentage of emergence was 79.2%. Besides the different 

cultivars used in both studies, one of the reasons for the contrasting results with those of Patanè 

et al. could be that the nighttime temperatures in their study never decreased below 10oC as it 

happened in the present one.  

2.3.2. Effects of sowing times on some biochemical and physiological characteristics of 

seedling (5th leaf stage) establishment   

Early sowing dates had significant effects on the metabolic and physiological functions of all 

hybrids (Fig. 2.3). The several episodes of temperature below 5°C, negatively influenced the 

chlorophyll content of the leaves, however, no significant differences were observed among 

hybrids. 

 The loss of chlorophyll pigments and/or the inhibition of its re-synthesis evidenced from our 

data are in agreement with those of Maulana and Tesso (2013). They found chlorophyll 

deficiency in sorghum seedlings due to sub optimal growing temperatures. In addition, in our 

study it was demonstrated that the loss of leaf greenness was linked to lower total nitrogen 

content as the mean emergence time increased (Figs. 2.3 and 2.5). Such N deficiency could be 

related, besides the harmful effect of nocturnal low temperatures, to the fact that root hydraulic 

properties and water ion transport are strongly controlled by temperature (Knennedy and 

Gonsalves 1988, BassiriRad el al. 1991, Sabala and Sabala 2002). For instance, , it was 

demonstrated that the hydraulic conductivity of sorghum root seedlings  was two times lower at 

15°C than at 35°C. Moreover, the ion flux (NO3
- and K+) released into the xylem sap was 

significantly decreased (BassiriRad et al. 1991). Furthermore, considering the large number of 
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nights when the temperature fell below 5°C (Fig. 2.1) it could be speculated that solutes 

translocation was constrained, with the concomitant reduction of N allocation to the leaves 

(Wardlaw and Bagnall 1981, Ercoli 2004). Consequently, such impairment possibility 

contributed to the low aboveground dry biomass produced by the seedlings at early sowing times 

(Fig. 2.8). Such lower biomass production could be the result of an extended duration of the 

meristematic cycle and hence arrested the leaf growth (Rymen et al. 2007) and therefore 

decreased CO2 assimilation rates. Moreover, it should be highlight that besides the lesser amount 

of radiation during the seedling establishment (Table 2.3) at early sowing times, there were 

almost no precipitations for about 20 days before and 10 days after the sowing. Therefore this 

may have further contributed to the low biomass accumulation registered. 

Although leaf gas exchange was not evaluated in this study, the sowing dates had noticeable 

effects on the photosynthetic efficiency at the PSII level. The PSII electron transport activity, 

showed a positive linear response to the N concentration in leaves (R2=0.53) in all the hybrids 

(Fig. 2.7), indicating that N deficient seedlings as those sown early in the season, had lower CO2 

assimilation capacity and inhibited primary photosynthetic activity. These results are in 

agreement with those of Sage (1987), Terashima and Evans (1988), and Lu et al. (2001). It 

remains, however, to elucidate how these photosynthetic acclimation processes to early sowing 

(cold) are beneficial for some hybrids to resume growth and arrive to higher productivity than 

when sown under optimum sowing temperatures. 

2.3.3. Effect of sowing dates on the total dry biomass 

Even though the accumulation of dry biomass, chlorophyll contentment (Fig 2.8) and other 

physiological processes were increased as the sowing date was delayed, all the activated defense 

mechanisms and acclimation constrains due to cold during the early sowing dates were reverted 

towards the end of the growing season. Only in the case of ICSSH31 and ICSSH19 such 

constrains were linearly maintained till the plants matured (Fig. 2.8). So these results indicate 
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that the reduced physiological and metabolic activity due to cold is reversible depending on the 

cultivars. For example in contrast to ICSSH31, Bulldozer seedlings, that had very low biomass, 

chlorophyll content, and PSII electron transport activity at the first sowing date, were able to 

produce the highest biomass at the end of the growing season. These contrasting physiological 

and metabolic adaptation mechanisms should be further studied for establishing adequate 

breeding programs and/or the introduction of cultivars with the highest cold adaptability and 

therefore productivity potential in temperate climates. 

2.4. Conclusion 

Seedling cold acclimation resulted in the loss of chlorophyll pigments and/or the inhibition of its 

re-synthesis, which was linked to low total nitrogen content. Moreover, the low N content in the 

leaves reduced significantly the PSII electron transport activity thus the CO2 assimilation 

capacity as indicated by the reduced biomass accumulation up to the 5th leave stage. Despite that, 

most of the hybrids tested here were able to revert such situation reaching at the end of the 

growing season higher productivity levels than when sown late in the season. The exception to 

that were ICSSH31 and ICSSH19 hybrids. These contrasting physiological and metabolic 

adaptation mechanisms should be further studied for establishing adequate breeding programs 

and/or the selection of cultivars with adequate cold adaptability traits that would improve 

survival and productivity potential. 

Bulldozer demonstrated the highest capacity to revert the cold effects of early sowing and reach 

the highest biomass productivity at the end of the season, therefore could be considered one the 

best fitted hybrids to temperate climates. Multi-location trials would confirm such capacity. 
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Table 2.1 Soil characteristics of the experimental site in the top layer (0-50 cm) 

Soil Characteristics Unit Value 

Sand 

Silt 

Clay 

pH in water solution 

Total calcareous 

Organic matter 

Total N 

P2O5 availability 

K2O availability 

Bulk density 

% 

% 

% 

 

% 

% 

% 

mg kg-1 

mg kg-1 

g cm-3 

24 

47 

29 

7.95 

1 

1.06 

0.93 

113 

174 

1.2 

 

 

Table 2.2 Meteorological data during the sweet sorghum growing season 2012 

 

Months 

 

T. min 

(°C) 

 

T. med 

(°C) 

 

T. max 

(°C) 

Accumulated 

precipitations 

(mm) 

Net 

Radiation 

(W m-2) 

PAR 

(�mol m-2 

s-1) 

March 

April 

May 

Jun 

July 

August 

September 

Mean 

Total 

3,26 

7,61 

11,22 

16,91 

18,58 

18,49 

14,94 

13,00 

11,4 

12,87 

17,64 

24,01 

26,54 

26,89 

20,03 

19,91 

19,8 

18,34 

23,73 

30,66 

33,67 

34,49 

25,52 

26,6 

0.2 

92 

89,6 

16,8 

0 

6,4 

117,8 

 

322,8 

67,16 

73,47 

114,03 

147,43 

118,77 

98,7 

62,46 

97,43 

448,2 

456,63 

403,87 

369,4 

281,32 

277,58 

326,9 

366,27 
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Table 2.3 Two-way ANOVA of the productive components harvested at physiological maturity. 

Source of variation Total biomass Stem Biomass Leaf biomass Brix 

SD * *** ns * 

Hybrid *** *** *** *** 

SD x Hybrid P=0.055 ** ns ns 

ANOVA Significance level:  ***<0.001, **<0.01 *<0.05 ns= not significant 
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Fig. 2.1 Mean daily temperatures (minimum, mean and maximum) during the establishment 

period. Arrows indicate the date of sowing.  
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Fig. 2.2 Mean emergence time (MET; Panel A) and percentage of emergence (Panel B) of the 

seven hybrids in the four SDs.  
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Fig. 2.3 Relationship between total leaf N content and SPAD readings, at the end of 

establishment (5th leaf stage). 

  



50 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 Total leaf N content (Panel A) and total leaf C content (Panel B) 
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Fig. 2.5 Relationship between mean emergence time (MET) and total leaf N content. 
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Fig. 2.6 Relationship between mean emergence time (MET) and total leaf N content. 
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Fig. 2.7 Relationship between absolute performance index (PIABS) and total leaf N content. 
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Fig. 2.8 Relationship establishment above ground biomass and total dry biomass at harvest 

(Panel A). Relationship between SPAD readings and total dry biomass at harvest (Panel B) 
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Chapter 3 

Photosynthetic and biochemical adaptability to chilling 
stress of two contrasting sweet sorghum hybrids 

 

Abstract 

Chilling is a major constraining factor determining the geographical distribution of many 

thermophilic plants, especially in chilling-sensitive C4 species. In temperate regions sweet 

sorghum, is often exposed to chilling during early developmental stages resulting in poor growth 

and low photosynthetic performance. In cold-sensitive species such as maize, chilling 

temperatures induce reduction of photosynthetic capacity due to inactivation of Rubisco and 

PEPcase. On the other hand, chilling predispose the plants to oxidative stress triggering several 

strategies to self-detoxify through several strategies such as heat energy dissipation, xantophylls 

cycle pool, antioxidants scavengers like -carotene and tocopherols etc.  Such mechanisms to 

cope with long chilling events are rather scant in sweet sorghum.    

The objective of this work was to analyze the sensitivity of the photosynthetic apparatus of two 

sweet sorghum hybrids during four day to chilling temperatures and the recover after two days 

re-warming. The experiment was carried out under growth chamber conditions. The growth 

temperature were set at 20°C/14°C, when the plants reached the 5th leaf stages the temperature 

was lowered to 9°C/5°C for 4 days and then reestablished to the initial one. Direct and 

modulated Chl. a fluorescence, A/Ci response, xantophylls cycle, Chl. a+b content, luteine and -

carotene were measured/quatified before, during and after chilling period. 

Chilling temperatures provoked engagement of zeaxanthin after 48 hours of chilling in 

ICSSH31, and Chl. a+b degradation. Our results indeed, revealed that Rubisco activity was 

significantly inhibited by chilling that PEPcase in both hybrids.  Finally, less Rubisco activity 
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was observed in ICSSH31 before the treatment in relation to Bulldozer. In conclusion, despite 

both varieties were able to  self-regulate the electron transport components and enzymatic 

activity, greater metabolic dysfunction (chlorophyll a+b degradation and re-synethesis, 

xanthophyllscycle de-epoxidation) may justify the low performance of ICSSH31 field 

conditions.  

3.1. Introduction 

Recently, sweet sorghum [Sorghum bicolor (L.) Moench] has gained particular interest 

due to its outstanding characteristics of rusticity and capacity to store large amounts of 

fermentable carbohydrates in the stems for bioethanol production. Nonetheless, being a native 

tropical crop, it is particularly sensitive to cold and chilling temperatures during germination and 

early plant growth stages. Therefore its expansion into nontraditional growing areas such as 

those of central northern Europe is severely limited. Chilling stress is one of the main 

environmental factors affecting cold-sensitive crops (Theocharis et al. 2012). .  

The photosynthetic system of sweet sorghum, as the majority of other C4 plants, is particularly 

sensitive to cold temperatures (Tari et al. 2013). In fact, several C4-photosynthetic functions 

were found to fail even when chilling temperatures lasted only few days (Leipner et al. 2000), 

and the regain of functionality depends on several factors, such as, the duration and growth stage 

of its occurrence (Ercoli et al. 2003) as well as the cultivar genetic background. Yet information 

on the way sweet sorghum cultivars react to short-duration chilling temperatures at biochemical 

and photosynthetic levels and at which degree such metabolic disturbance could be reversible is 

still missing. 

It is thought that short-duration chilling temperatures affect the enzymatic activation state which 

plays a fundamental role in the photosynthetic compensation (Holaday et al 1992). Therefore the 

scarce photosynthetic performance of C4 plants in cold areas is related to the high activation 

energy of their principal enzymes involved in CO2 fixation such as phosphoenolpyruvate 
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carboxylase (PEPcase) and pyruvate orthophosphate dikinase (PPDK) which can hardly work at 

temperatures below 12° C (Edwars et al. 1985, Du and Wasano 1999, Wang et al. 2008). The 

reason lies in the fact that low temperature can dissociate PPDK and PEPcase and hence 

compromise the CO2 pump capacity (Leegood and Edwars. 1996). In sorghum a chilling 

temperature of 10°C induced the loss of two fundamental C4-pathway enzymes: NADP-malate 

dehydrogenase and pyruvate PPDK rather than an incomplete enzymatic activation (Taylor et al. 

1974). While in maize (Zea mays) and miscanthus (Miscantus x giganteous), two closely related 

species to sorghum with the same NADP-malic enzyme (NADP-ME) pathway, showed that cold 

sensitivity differences between these species  were mainly due to contrasting Rubisco properties 

and/or PPDK activities. Moreover, miscanthus showed reduced susceptibility to photoinhibition 

than maize. Photosynthetic rates were also significantly reduced (about 90% at 14 oC) while 

those of miscnathus were only slightly reduced at 10°C (Naidu and Long 2004) 

 Other studies showed that low photosynthetic rates under cold conditions were closely 

correlated with transgenic reduction of Rubisco activity (Kubien et al. 2003). Up to now, 

however, the main process limiting C4 photosynthesis under low temperature conditions remains 

unclear, especially for sweet sorghum cultivars of diverse genetic origin. Nonetheless, the 

capacity of Rubisco to maintain its activation energy, PEP regeneration by PPDK and PEP 

carboxylase activity continue to be the most generally accepted mechanisms controlling the 

photosynthetic activity under chilling temperatures (Kingston-Smith el al. 1997, Du et al. 1999, 

Pittermann and Sage 2000, 2001, Chintapalli et al. 2003, Kubien and Sage 2003, Sage et al. 

2011). 

Reduction of photosynthetic activity by stomatal limitation could also take place under 

circumstances of chilling stress, as was observed by Aguilera et al. (1999) in maize, 

demonstrating that it is governed by a genetic component. Contrarily, Mustárdy et al. (1982) 

stated for the same species that low temperature increased stomatal conductance, being more 

markedly in the sensitive maize varieties. In sorghum low night temperature of 5°C under filed 
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conditions reduced stomatal aperture and as consequence its photosynthetic activity the next day 

(Pasternak and Wilson 1972). 

A poor adaptation to chilling temperatures may cause the formation of reactive oxygen species 

(ROS) as consequence of the excessive energy pressure, resulting in photoinhibition and, if 

persisting for long time, in photodamage (Williams et al. 2013). Nonetheless, depending on the 

chilling stress conditions e.g. duration and growth stage at which occurs, the efficiency of PSII 

electron trasport can be a reversible process regulated from min to hours via xanthophylls cycle 

pool and the associated dissipation of energy light by non-photochemical process (Adams and 

Demming-Adams 1995, Streb et al. 2003b). Adjustment of photosynthesis involves, besides 

energy dissipation, changes in the level of proteins (and RNA coding these proteins) related to 

the biochemistry of photosynthesis, electron transport, and chlorophyll bindings proteins and 

thus leaf chlorophyll content (Krapp and Stitt 1995, Smeekens 2000, Paul and Foyer 2001). On 

the other hand, the capacity of the plants to efficiently down-regulate their photosynthetic 

apparatus under a sudden drop of temperature will depend on, in some cases, the previous 

acclimation. Thus, the acclimated plants to chilling will show a faster recovering of their 

photosynthetic functionality by a greater antioxidant defense such as scavenging enzymes and 

de-epoxidated xanthophyll pool (Leipner et al 2000).  

The objective of this work will be analyze the response of the photosynthetic apparatus of two 

sweet sorghum hybrids which were which revealed comparatives cold sensitivity under field 

conditions. From the field experiment results, we hypothesize a more efficient down-regulation 

capacity in hybrid Bulldozer with respect to ICSSH31 under chilling conditions, as well as 

greater recovering capacity after re--warming.      
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3.2. Material and Methods 

3.2.1. Growth conditions and treatments 

Two sweet sorghum hybrids (Bulldozer and ICSSH31) were subjected to chilling temperatures 

under controlled environmental conditions in a growth chamber. Based on biomass productivity, 

these hybrids were identified as cold tolerant (Bulldozer) and cold sensitive (ICSSH31) in a 

previous field trial. Three seeds were planted in 28 pots of 700 cm3 volume each. Pots were filled 

with sandy soil. Throughout the experimental period the plants were watered as required every 2 

days. Fertilization was applied as 100 Kg ha-1 of total nitrogen, 100 Kg ha-1 of P2O2 and 100 Kg 

ha-1 K2O through a soluble solution (20-20-20) with microelements (Bo, Fe, Mg and Zn) 

distributed in three times through the whole experimental cycle. The growing temperature was 

kept at 20°C and 14°C day/night respectively during the growing cycle. When the plants reached 

the 5th- 6th leaf stage chilling treatments  started . The plants were subjected to a 96 h-period of 

chilling temperatures (9°C and 5°C day/night respectively, which are the mean chilling periods 

occurring in Po Valley). After the chilling period was completed, normal growing temperatures 

(20°C/14°C) were reestablished (re-warming) for about 48 hours. Relative humidity and 

irradiance was set up at 60% and 300 mol m-2 s-1 of PAR, respectively. The photoperiod for the 

day/night cycles was established as 13 and 11 h, respectively.  

3.2.2. Chlorophyll a fluorescence transient measurements 

Direct chlorophyll a fluorescence transients were measured with a Plant Efficiency Analyzer 

(Handy PEA, Hansatech, UK). Measurements were taken at 24 h before chilling stress 

imposition (T0); at (48 and 96 h after chilling stress imposition (T48 and T96, respectively); and at 

48 h after terminated the chilling treatment (T48RW). Eight measurements per hybrid and per 

stress period were taken on the 5th and 6th fully expanded leaves. Before taken the measurements, 

leaves were dark adapted with leaf-clips for 30 minutes in order to allow the complete oxidation 
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of quinone pool in the electron transport system. The dark adapted leaves were illuminated with 

1 s pulse of continuous red light (650 nm peak wavelength, 3000 mol photons m-2 s-1 maximum 

light intensity), given by an array of three light-emitting diodes. The OJIP test parameters 

(Strasser et al., 2000; 2004) were calculated from the recorded original data: (i) minimal 

fluorescence intensity at 50s (Fo, when all reaction centers of PSII are open); (ii) the maximum 

fluorescence intensity (Fm, when all reaction centres of PSII are closed); and (iii) fluorescence 

intensities at 300 ms (K-step) and 2 ms (J-step).  

3.2.3. Modulated chlorophyll fluorescence measurements 

For the quenching analysis, Chlorophyll a fluorescence emission from the adaxial surface of the 

5th and 6th leaf was measured , immediately after direct Chl a fluor was done with a modulated 

Fluorescence Monitoring System (FMS 2; Hansatech Instruments Ltd., Norfolk, UK). A 

PAR/temperature leaf-clip was used which was designed for measurements carried out under 

ambient light conditions. In order to completely oxidize all QA molecules (for F0 measurement), 

5 s duration of ca. 6 mol (photons) m-2 s-1 of far-red radiation (with peak emission at 732 nm) 

was applied. The maximum fluorescence (Fm) was induced by applying a short pulse (0.8 s) of 

saturating radiation (5000 µmol m-2 s-1; Rosenqvist and Van Kooten, 2003). To determine the 

maximum fluorescence under actinic illumination (F’m), various pulses of saturating light (5,000 

µmol m-2 s-1, 0,8 s duration) were applied until reaching the steady-state (Fs). The minimum 

fluorescence (F’0) was determined by turning off the actinic light and immediately applying a 2 s 

far-red pulse. From the recorded data the following parameters were calculated following the 

protocol and nomenclature used by Dewez and Perreault (2013): The operational quantum yield 

determined as the ratio Φ’MII = (F’m – Fs) / F’m (Genty et al. 1989); the photochemical quenching 

value, which represent the photochemical energy conversion at PSII (Schreiber et al. 1986) is 

indicated as qP = (F’m/ Fs) / (Fm/F0); the yield of non-photochemical energy conversion via PSII 

(non-regulated pathway) was indicated by Φ’NO = 1 / (((Fm – F’m) / F’m) + 1 + (qP(F’0/F)) / 
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(Fm/F0 – 1));  the yield of  PSII non-photochemical energy dissipation (via regulated pathway) is 

noted as Φ’NPQ = 1 -  Φ’MII - Φ’NO (Kramer et al. 2004). The total energy dissipation via PSII is 

represented by the sum of   Φ’MII - Φ’NO + Φ’NPQ = 1.   

3.2.4. Gas exchange measurements 

The photosynthetic responses to increasing intercellular CO2 concentration (A/Ci) were evaluated 

with a portable infrared gas analyzer (CIRAS-2, PPSystems, UK) in the same leaves used for 

chlorophyll a fluorescence analysis measurement. The A/Ci curves were measured using a light 

intensity of 2000 mol m-2 s-1 quanta. The intercellular CO2 concentration (Ca) was set at 

different CO2 levels (0, 100, 200, 400, 900, 1400, 1700, 2000 mol m-2 s-1). The values of 

photosynthesis were recorded after the steady state was reached (CV < 0.5%). Air temperature 

and VPD were not controlled in order to measure the leaf gas exchange with the same 

experimental conditions. The biochemical parameters derived from A/Ci curves were: stomatal 

limitation of photosynthesis (Ls; Long and Bernacchi, 2003) as Ls = [(A’ – A)/A’] * 100 where 

A’ indicates the net CO2 assimilation at Ci = 370 μmol mol-1; A is the net CO2 assimilation 

under regular Ci when Ca = 370 µmol mol-1 obtained by linear regression between Ci vs Ca. The 

carboxylation efficiency (CE) of the enzyme phosphoenolpyruvate carboxylase (PEPc) was 

calculated as the initial slope of every A/Ci curve (Ci< 100 mol m-2 s-1) of all individual curves. 

The photosynthesis at CO2-saturated rate noted as Vpr was calculated as the asymptote of each 

dataset of A/Ci curve fitted as non-rectangular hyperbola 

3.2.5. Leaf pigment analysis   

After chlorophyll a fluorescence and leaf gas exchange were measured on the chosen sampling 

times (T0, T48, T96, and T48RW), the whole 5th leaves were cut and immediately immersed in liquid 

nitrogen and stored at -80° C until subsequent analyses.  



62 
 

Chlorophyll and carotenoids were extracted and analyzed by high-performance liquid 

chromatography (HPLC; model LC-10AS with a detector SPD-10AV, Shimadzu, Kyoto, Japan) 

as described by Baraldi et al. (2008). To refer the Xantophyll de-epoxidation (conversion of 

violaxanthin (V) to zeaxanthin (Z) via antheraxanthin (A)), was calculated as the ratio (Z + 

A)/(V + A + Z) according to Müller et al. (2006).  

  3.2.6. Analysis of Data 

ANOVA General Linear Model (GLM) was performed for statistical comparison between 

hybrids at every measuring time. Dunnett’s test was used to compare the treatment against the 

control (P ≤ 0,05). While for the mean comparison between verities of all the set of data, the 

Tukey’s test (P≤ 0,05)  was used for each point of the cycle.   

A nonlinear regression model of the A/Ci curves was used to determine Vpr (asymptote) and a 

linear regression model to calculate the CE of PEPc (initial slope; Ci< 100 ml l-1) of the same 

curves,  

3.3. Results 

3.3.1. JIP-test analysis 

The photosynthetic behavior at the electron transport chain was evaluated by the JIP-test analysis 

through selected biophysical parameters (Fig. 3.1). In general, the normalized values to the 

control (T0) varied depending on time of exposure to chilling temperatures with the largest 

effects at 96 hours after initiated the treatment. For most of the parameters evaluated, ICSSH31 

showed significantly greater inhibition than Bulldozer. After 48 hours of chilling, the PIABS in 

ICSSH31 and Bulldozer decreased by 41% and 23%, respectively, while the maximum quantum 

yield (φPo) by about 6.4% and 3.1%. In both crops the energy dissipation (DIo/CS) increased, but 

in the case of ICSSH31 it was almost double than in Bulldozer. The total electron carriers per 
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RC (Sm) increased by more than 20% in both cultivars. The efficiency of the electron transfer 

from the reduced intersystem until PSI electron acceptors (REo, RE1o and φRE1o) increase by 

25,9%, 16%, 8,65 in ICSSH31 and by 27.12%, 16.9%, 4.9% in Bulldozer. Although no 

significant differences between cultivars were found, PIABS and φPo after 96 hours of chilling 

were 74% and 19.8% lower than in the control situation in ICSSH31, such decrements in 

bulldozer were in the range of 45% and 10%. On the contrary, significant differences between 

cultivars on the light energy dissipation (DIo/CSm) were found (p < 0.05). DIo/CSm in ICSSH31 

increased by 124%, while in Bulldozer the increment was only 60.9%. A significant difference 

was also found between both hybrids in the reduction of quantum yield of the electron transport 

from QA to QB (φET2o). The maximum quantum yield (φPo) was also greatly reduced after 96 

hours of chilling (ICSSH31 by 20.8% and Bulldozer by 10.3%). The functionality of the electron 

transport chain was ameliorated after 48 hours of re-warming in both hybrids, as is clearly 

evidenced by most of the biophysical parameters evaluated, as for example the light energy 

dissipation parameters (DIo/CS and Do). 

Figure 3.2 shows the changes in the initial and last phase of the JIP-test (O-J phase), denoted as 

WO-J and (I-P phase) denoted as WI-P, induced by the different periods of exposition to chilling 

and rewarming temperatures (T48, T96 and T48RW).  In general, the curve amplitudes become more 

negative as the exposure time to chilling temperatures increased. However, it is worth to point 

out that only ICSSH31 showed a significant electron transport recovering at T48RW as it 

evidenced by the positive amplitude of WO-J in Figure 3.2, Panel B).           

3.3.2. Quenching analysis  

Either 48 or 96 hours of exposure to chilling temperatures provoked significant changes (p < 

0.05) in the efficiency of light energy capture by PSII (Fig. 3.3). However, the responses were 

not significantly different between both hybrids. Photochemical quenching (qp) was already 
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reduced by 70% and 80% in Bulldozer and ICSSH31 after 48 hours of chilling and such level of 

inhibition was maintained even after 96 hours of chilling (Fig. 3.3, panel A). The operational 

quantum yield (Φ’MII) resembled the response of qp (Fig. 3.3 panel C). There were only 

significant changes in F0 and Fm after 96 hour of treatment in relation to the control (T0). In the 

case of non-photochemical energy conversion of PSII via non-regulated pathway (Φ’NO) and 

photochemical energy dissipation of PSII via regulated pathway (Φ’NPQ), both parameters 

increased in both cultivars and reached their maximum values at 96 and 48 hours after chilling, 

respectively. Such increments were higher, though not significantly different, in ICSSH31 than 

in bulldozer. After 48 hours of re-warming all parameters showed variable degrees of recovered 

functionality. 

3.3.3. Changes in pigment concentration  

After 96 hours of exposition to chilling temperatures a peak in the maximal de-epoxidation state 

of the xanthophyll pool (A+Z/V+A+Z) was reached in both cultivars (Fig. 3.4; panel A). 

However, significant differences between bulldozer and ICSSH31 were found only at 48 hours 

of chilling. As for ICSSH31 the ratio (A+Z/V+A+Z) increased 4,6 folds in comparison to T0, 

whereas in Bulldozer the value of the ratio increased only 2,5 folds with respect to T0 after 48 

hours of chilling stress. Significant differences were also found between Bulldozer and ICSSH31 

(p < 0.05) at T48. After 48 hours of re warming the de-epoxidation state of the xhantophyll pool 

turned back to pre-chilling values in both hybrids. Luteine concentration was similar in both 

cultivars and remained almost constant through the chilling treatment period (Fig 3.4; panel B). 

A significant reduction of chlorophyll a+b after 96 hour of chilling and almost complete recover 

after 48 of re-warming was observed in ICSSH31. On the other hand chlorophyll a+b 

concentration remained unchanged in Bulldozer during the whole chilling cycle. Beta carotene 

concentrations in both cultivars decreased up to 96 hours of chilling. Afterwards, normal beta 

carotene concentrations were observed at 48 hours of re-warming.  



65 
 

The operational quantum yield (Φ’MII) was related in a negative exponentially mode to the 

conversion state of the xanthophyll cycle [(Z+A)/(V+A+Z)] along the whole chilling cycle (Fig. 

3.5). In addition, the maximum chlorophyll fluorescence emission measured by modulated 

chlorophyll fluorescence showed a negative linear response to the changes in the xanthophyll 

state as shown in the inlet of figure 3.5.        

3.3.4. A/Ci response to chilling temperature    

The responses of net CO2 assimilation (A) to the variation of the internal CO2 partial pressure 

(Ci) are shown in Figure 3.6. The degree at which net photosynthesis varied to the increasing of 

internal CO2 depended on the time of chilling exposure as well as depending on the hybrid. The 

fundamental differences between hybrids were found at the beginning of the treatment (T0), 

where ICSSH31 showed lesser Rubisco activity (Vpr) that Bulldozer. Besides, after 48 hour of 

chilling treatment, both CE and Vpr fell slightly more in ICSSH31 that in Bulldozer.    

The reduction of the efficiency of PEPc assessed by the analysis of the A/Ci curves is shown in 

Figure 3.7, panel A. After 48 hours of chilling the CO2 saturated photosynthetic rate (Vpr), 

representing the Rubisco activity, dropped in both cultivars. The Vpr decreased in both cultivars 

by about 45% with respect to T0, nonetheless, the lowest value was observed in ICSSH31 (6.4 

mol m-2 s-1). At T96, the Vpr remained unchanged in ICSSH31. In contrast, Bulldozer continued 

to decrease  up to 4.9 mol m-2 s-1 After 48 hours of re-warming, Vpr in Bulldozer turned back to 

pre-chilling values (about 20 mol m-2 s-1) while in ICSSH31 the recovered Vpr overpassed the 

pre-chilling value by about 7 mol m-2 s-1. 

As in Vpr, the PEPc efficiency (CE) was strongly reduced by the exposure time to chilling 

temperatures (Figure 3.7; panel B). After 48 hours of chilling, CE decrements were significantly 

higher in ICSSH31 than in Bulldozer (p< 0.05). At T96 CE values continued to decrease but no 
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longer significant differences between cultivars were evident. At TRW48 CE values turned back 

close to pre-chilling values. 

The relationship between some JIP- test parameters and Vpr are shown in figure 3.8. The 

reduction of Vpr caused by the chilling treatment provoked an enhancement on the efficiency of 

the reduced intersystem electron acceptor to the PSI electron acceptors (RE1o). Even though 

both cultivars followed the same pattern, increment rates of RE1o per decrease in Vpr were 

higher in bulldozer than in ICSSH31 (Fig 3.8, Panel A). On the contrary, the quantum yield of 

the electron transport flux from QA to QB (φET2o) and Vpr were positively correlated, but with a 

more pronounced  slope in the case of ICSSH31 (slope of -0.012) than in the case of Bulldozer 

(slope of -0.005). 

The quantum yield for energy dissipation (DIo) and Vpr were also significantly correlated. The 

rates of energy dissipation increments where faster in ICSSH31 (slope of - 0,0135) than in 

Bulldozer (slope of -0.0047). The photochemical quenching (qP) was also significantly and 

linearly correlated with Vpr. In the case of ICCSH31 such relationship seems to be more sensitive 

(slope of -0.046) than in Bulldozer (slope of -0.012).  

The efficiency of PEPcase was also linearly related to RE1o, φET2o, DIo, and qP. Such 

relationships followed the same patterns as in the case of Vpr. However, significant differences 

between cultivars were found only in the RE1o and CE PEP correlation. 

3.4. Discussion 

3.4.1. Effect of chilling on PSII electron transport and pigment composition 

The photosynthetic performance, in terms of quantum efficiency, was strongly constrained in 

both sweet sorghum hybrids by chilling temperatures (Fig. 3.1, 3.2 and 3.3). Nevertheless, the 
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degree at which they responded was variable depending on their genetic background and time of 

exposure. In the case of ICSSH31, the hybrid that poorly performed under field conditions, 

showed an earlier sensitivity to cold stress, evidenced by a higher accumulation of zeaxhantin 

induced by 48 hours of chilling exposition (T48; Fig. 3.4, Panel A). Such response is thought to 

be a common and effective mechanism to self-alleviate the excessive incoming energy pressure 

which takes place under high light or under environmental stress condition known as 

photoinhibition (Adams et al. 1995). Yet, it is not well understood whether such response is an 

intrinsic protective mechanism against photodamage or it is an acclimation response to cold 

stress. For instance, it was shown, that in annual crops of different chilling sensitivity such as 

barley [Hordeum vulgare L.], wheat [Triticum aestivum L.], maize [Zea mays L.], sorghum 

[Sorghum bicolor L.] etc. photoinhibition (assessed by φPo or what is the same Fv/Fm) induced by 

low light and temperature conditions, was up to 166-fold grater in sensitive species in relation to 

the tolerant ones. Nonetheless, while the photoinhibition during chilling generally occurred more 

rapidly in chilling-sensitive plants, this was not related directly to chilling sensitivity 

(Hetherington et al. 1989). In contrast, other study in maize plants which were grown at 

suboptimal (15°C) temperature conditions, exhibited a greater de-epoxidized xanthophyll and a 

faster recovering capacity of those growth at 25°C when were subjected to chilling temperatures 

of 6°C for 4 days (Leipner et al. 2000), supporting the fact that photoprotection represent an 

acclimation response rather than an intrinsic characteristic of the variety.  

Besides the photoinhibition at electron acceptor of PSII (Fig. 3.1), the JIP-test analysis revealed 

other significant difference between the hybrids. It was observed that the efficiency of the 

electron transport acceptor around PSI was enhanced in ICSSH31 by short-term low temperature 

(T48; Fig. 3.1). The fact that the increment in the electron flux to oxygen in circumstances where 

CO2 assimilation is restricted, is seen as necessary condition to allow the PSII electron acceptors 

to be maintained in a partially oxidized state in order to minimizing the possibility of 
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photoinactivation and damage of PSII (Farage et al. 2006). Nonetheless, such strategy could only 

be achieved in condition that the reactive oxygen species generated by the reduction of oxygen 

were quickly scavenged, if not they could damage the thylakoid membrane and other cellular 

components (Asada 1999a,1999b, Baker 2002,  Farage et al. 2006). Our results seems to be  in 

agreement whit those observed in maize growing at low temperatures in field which showed a 

rise in the ratio of quantum efficiencies of the electron transport and CO2 fixation in contrast to 

leaves grown at optimal temperatures (Fryer et al. 1998). Therefore, Bulldozer and in a greater 

degree ICSSH31, could have amplified the rate of oxygen reduction by PSI with the aim of 

maintaining the electron transport and help to prevent the complete reduction of PSII electron 

acceptors and  hence limit further injuries of PSII reaction centers (Fig 3.1; Ort and Baker 2002). 

The cold treatment provoked the degradation of chlorophyll a and b in ICSSH31, which was 

more evident after 96 hours of chilling exposure. However such effect was not observed in 

Bulldozer. This characteristic of losing prematurely and in greater degree chlorophyll pigments, 

mainly Chl. a and b was attributed to sensitive genotypes of Zea maize in response to chilling 

stress  with respect to tolerant ones (Haldimann 1998). Beside pigment bleaching, low growing 

temperature in maize was found to induce modifications on the thylakoid composition in the 

mesophyll and bundle sheath cells, since low temperature could cause failure in the 

accumulation of in a number of polypeptides encoded by chloroplasts genome (Nie and Baker 

1991; Nie et al. 1995). 

The ending of the chilling period (T48RW) was followed by a partial the recovering of the 

photochemical efficiency of the electron transport in both varieties. Even though this process has 

been stated to be accompanied by an increment in the thylakoid plastoquinone A content as well 

as an apparent size in the intersystem electron donor pool to PSI (Gray et al. 1997), our results 

showed that in ICSSH31 the donor side of PSII electron transport chain capacity was enhanced 

(evaluated by the variable fluoresncen WO-J in relation to T0; Fig 3.2), exceeding the initial 
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condition. This feature could have took place due to ROS scavenging system is increased under 

cold conditions as well as dissipation via non-photochemical quenching (Fig. 3.3, Panel B and D; 

Streb and Feirabend, 1999; Streb et al. 1999; 2003 a,b). Consequently, it could be said that, at 

PSII electron transport level, in both verities of sweet sorghum the mayor defense against 

photoinhibition processes was the dissipative non-photochemical quenching mediated by the de-

epoxidation of xanthophyll pigments.    

3.4.2. Effect of chilling on stomatal conductance, PEPc and Rubisco activity and (A/Ci 

curves) 

The CO2 assimilation rate in both sweet sorghum verities strongly fell by the effect of low 

temperatures (Fig. 3.6 and 3.7). Such depletion was even more pronounced than that  of the PSII 

electron transport (Fig. 3.1, 3.2 and 3.3). It is widely accepted that the main restriction to cold 

temperatures on the photochemical events in C4 species is the enzymatic activity of the C4 and 

Benson-Calvin cycles as well as from a decrease in metabolite transport (Leegood & Edwards 

1996). However the degree at which enzymatic activity is reduced by low temperature may differ 

among sensitive/tolerant genotypes being still a matter of study. In this study the short-duration 

of chilling exposure (T48; Fig. 3.7 Panel A and B) significantly reduced the PEPc efficieny (CE) 

and Rubisco activity (Vpr), calculated from the initial slope and the asymptote of the A in 

function of CO2 internal partial pressure (Ci), respectively according to von Caemmerer and 

Farquar (2000). These results are in accordance with previous studies on photosynthetic response 

to low-temperature tolerance in maize and Miscanthus x giganteus, two species which share the 

same enzymatic pathway with sweet sorghum (C4 NADP-ME type). The last revealed that 

ribulose biophosphate carboxylase/oxygenase (Rubisco) and/or pyruvate orthophosphate 

dikinase (PPDK) played a more preponderant role which determines the low temperature 

tolerance to that of PEPcase effiency (Naidu and Long 2004). Here, in relation to the no stressed 

situation Rubisco activity was significantly more impaired than PEPcase by chilling in both 
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verities, supported by fact that C4 plants are inherently more prone to undergo Rubisco 

limitation as declines the temperature (Wang et al. 2008). However, after 48 hours of chilling 

stress, ICSSH31 suffered a greater reduction of enzymatic activity (Rubisco and PEPc) than 

Bulldozer.  It is worthy to note, however, that ICCSH31 showed minor Rubisco activity than 

Bulldozer before the commencement of the chilling treatment (Fig. 3.7 Panel A), so in  

biochemical terms, this could indicate a lesser intrinsic Rubisco content which explain the poorer 

photosynthetic performance of ICSSH31 in contrast to Bulldozer (Kubien et al. 2003).  

The reduction on the enzymatic activity was followed by an increment in stomatal aperture (Fig. 

3.7; Panel C). Such phenomenon was previously observed by Mústardy et al. (1982) in of Zea 

mays genotypes of different chilling sensitivity, such that chilling reduce the stomatal limitation, 

apparently as consequence of water uptake limitation (Sowinski and Krόlikowski 1995), as well 

as increased leakage of electrolytes (Janowiak and Markowski 1994), but care should be taken 

since we did not determined water relation in this study.           

Despite to the fact that, ICSSH31 showed a less photosynthetic activity before the 

commencement of the chilling cycle in comparison to Bulldozer, we should note that after 96 

hours of chilling temperatures ICSSH31 apparently underwent a stimulant effect on its 

photosynthetic machinery (Fig. 3.7 Panel A). It is likely that temperature compensation may 

have been achieved by ICSSH31, since short-duration of chilling exposure in some cases, may 

induce an increment in amounts of enzyme involved in CO2 fixation. As a result of this 

mechanism of enzymatic modulation, which is metabolically expensive and inefficient, is likely 

to be one of the reason that explain its poor performance at final harvest time (Somero 1978).  
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3.5. Conclusions 

 

Despite of having showed a differential response to the chilling treatment, both sweet sorghum 

varieties were able to successfully adapt their photosynthetic apparatus through coordinated 

mechanism involving either enzymatic compensation, energy dissipation via non-photochemical 

quenching mediated by xanthophyll cycle pool, and possibly reducing stomatal limitation. The 

lower performance of the variety ICSSH31 observed under field conditions could be a result of 

the greater metabolic expense to self-regulate its photosynthetic machinery by re-synthesis 

pigments (chlorophyll a, b, lutein and beta-carotene), increment of Rubisco content and 

anticipated engagement of zeaxanthin in thermal energy dissipation.  
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Fig 3.1 Radar plots showing the changes in the constellation of JIP-test parameters to the onset 

of chilling treatment (before, during and after chilling exposure) in Bulldozer and ICSSH31 

hybrids. 
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Fig. 3.2 Relative changes in O-J and I-P phase of the JIP-test at different time-exposure of 

chilling.  
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Fig. 3.3 Changes in modulated Chl. a fluorescence parameters to at different time-exposures of 

chilling in Bulldozer and ICSSH31 hybrids. In panel A qP values indicate the photochemical 

quenching (qP = (F’0/ F) / (Fm/F0)). In panel B, the yield of non-photochemical energy conversion 

via PSII (non-regulated pathway) is represented by Φ’NO = 1 / (((Fm – F’m) / F’m) + 1 + (qP 

(F’0/F)) / (Fm/F0 – 1)); in panel C, the operational quantum yield expressed by Φ’MII = (F’m – 

Fs) / F’m. Panel D, the non-photochemical energy dissipation of PSII (via regulated pathway) is 

denoted by Φ’NPQ = 1 -  Φ’MII - Φ’NO. In panel E the minimum chlorophyll fluorescence when all 

the reaction centers are open noted as F0 (chlorophyll fluorescence emission at time = 50s) and 

panel F, Fm represents the maximum chlorophyll fluorescence emission when all the reaction 

centres are closed (chlorophyll fluorescence emission at time ≈ 300 ms).  
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Fig. 3.4 Changes in de-epoxidised form of antheraxanthin and zeaxanthin (A+Z) and leaf 

pigment concentration (Chlorophyll a+b, Luteine and -carotene) under different time-exposures 

of chilling in Buldozer and ICSSH31 hybrids. 
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Fig. 3.5 Relationship between the operational quantum yield (Φ’MII = (F’m – Fs) / F’m) and 

changes in de-epoxidised form of antheraxanthin zeaxanthin and violanzanthine (A+Z)/ 

(V+A+Z) before, during and after chilling treatment. Inset shows the changes in xhantophyll 

cycle and maximum fluorescence emission Fm. 
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Fig 3.6 Net photosynthetic CO2 assimilation (A), as function of intercellular CO2 parcial 

pressure (Ci) in two sweet sorghum hybrid (Bulldozer, Panel A) and ICSSH31 (Panel B). The 

irradiance was set up at 2000 mol quanta. Each points represent the average of 4 measurements 

(n=4) ± SE were taken on the 5th full expanded leaf of different plants. The reference CO2 

concentration were increased to 0, 100, 200, 400, 900, 1400, 1700 and 2000 mol mol-1.     
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Fig 3.7 Parameters derived from A/Ci curves showing the changes in enzymatic efficiency to the 

time exposure to chill temperature. In panel A the CO2 saturated photosynthetic rate (Vpr) 

expressing the PEP regeneration capacity which is proportional to the Rubisco activity. In panel 

B changes  in PEPc efficiency, calculated by the initial slope of A/Ci with Ci < 100 mol m-2 s-1. 

Panel C shows the percent of the stomatal limitation (Ls). 
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Fig. 3.8 Relationship among PEP regeneration capacity (Vpr) and: the efficiency of the reduced 

intersystem electron acceptor to the PSI end acceptor (δRE1o; panel A), the quantum yield of the 

electron transport flux from QA to QB (φET2o; panel B), the quantum yield for energy dissipation 

(DIo; panel C) and the no photochemical quenching (qP).   
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Fig. 3.9 Relationship among phosphoenolpyruvate carboxilase effieicny (CE PEPc) and: the 

efficiency of the reduced intersystem electron acceptor to the PSI end acceptor (δRE1o; panel A), 

the quantum yield of the electron transport flux from QA to QB (φET2o; panel B), the quantum 

yield for energy dissipation (DIo; panel C) and the no photochemical quenching (qP).   
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Concluding remarks 
 

Photosynthetic response to progressive drought stress 

Young sweet sorghum plants showed a higher capacity to maintain the PSII electron transport 

functional activity under progressive drought than mature plants. Such capacity was attributed to 

the efficient down-regulation mechanism ofPSII electron trasport, mainly by increased light 

energy dissipation (DIo/CSm) and the closure of active reaction centers (RC/CS).   

Even though at young developmental stages the earliest indication of drought was given by the 

stomatal conductance (gs) it did not provoke any symptoms of photoinhibition. It was speculated 

that the premature chlorophyll degradation induced by drought at mature  stageswas a decisive 

factor reducing their drought tolerance. Besides that, the capacity to release the excessive energy 

(DIo/CSm) seems to become ineffective when plants enters to the blooming stage.      

 Some evidence of a possible role of soluble sugars as photo-protective compounds 

against the oxidative effects of drought indicated that at young stages the predominant sugars 

playing such a role were glucose and sucrose, while at booting stage  only fructose seems to act 

as a photo-protective compound. Moreover, it is suggested that the soluble sugars beside their 

well-known functions such as osmoregulation, they could participate in the complex system that 

controls ROS production/reduction. Since this statement was based on the linear relationship 

found between sugars accumulation and the energy light dissipation  and closure of active 

reaction centers, caution should be taken as further photochemical and biophysical analysis 

would be needed. 

In addition to that it was found that the acceptor side of PSI was more sensitive to drought than 

the donor side of PSII. What is more, such sensitivity was closely related also to the plant age, 

suggesting that in booting plants the blockage of transfer of electrons to PSI is the main cause for 

photoinhibition. 
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Photosynthetic and biochemical response of sweet sorghum hybrids to cold stress 

Under field conditions the cold effects of early sowing induced biochemical and physiological 

disruptions in all the hybrids studied. Seedling cold acclimation resulted in the loss of 

chlorophyll pigments and/or the inhibition of its re-synthesis, which was linked to low total 

nitrogen content. Moreover, the low N content in the leaves reduced significantly the PSII 

electron transport activity thus the CO2 assimilation capacity as indicated by the reduced biomass 

accumulation up to the 5th leave stage. Even though all the hybrid seedlings showed a similar 

degree of such metabolic limitations, Bulldozer was able to revert more efficiently the early 

season cold effects. Taking as reference this results we should highlight the high end of season 

performance of Bulldozer when sown under cold conditions. So the high biomass production 

potential of Bulldozer makes it valid candidate to extend sweet sorghum production areas to 

temperate zones. On the other hand, ICSSH31 hybrids was one of the hybrids that could not 

significantly increase its end of season biomass production when sown early in the season, 

suggesting that could not effectively revert cold effects at the seedling stage. 

 The photosynthetic and biochemical adaptation mechanisms of the most contrasting 

hybrids found in the field study (Bulldozer and ICSSH31) were analyzed in detail under 

controlled environmental conditions. Even though neither direct nor modulated chlorophyll a 

fluorescence revealed significant differences between hybrids, it was confirm that the hybrid 

ICSSH31 was more sensitive to cold than Bulldozer. Such sensitivity was evidenced by an 

anticipated accumulation of zeaxanthin, larger lutein loss, and an over expression of Rubisco 

during the re-warming period. Furthermore, after 48 hours of exposure to chilling temperatures 

ICSSH31 underwent a degradation of chlorophyll a and b, while in Bulldozer did not show signs 

of chlorophyll loss. Therefore the poor performance of the ICSSH31 after four days of chilling 

could be related to the great metabolic cost to acclimate its photosynthetic apparatus by re-
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synthesis pigments (chlorophyll a, b, lutein and beta-carotene), increment of Rubisco content, 

and anticipated engagement of zeaxanthin in the thermal energy dissipation mechanisms. Even 

though the results obtained from this study (controlled environmental conations) cannot be 

extrapolated to field situations, our study may contribute to improve the understanding of the 

physiological processes that govern the tolerance/sensitivity of different origin/genetic 

background sweet sorghum hybrids under sub optimal growing conditions.  
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