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Innovative techniques for sport turf managing: agronomic and 

physiological implications 

 

by  

Mattia Accorsi 

 

ABSTRACT 

 

The turfgrass-industry is a sector of great economical and scientific interest. Nowadays the sport turf and in 

particular the golf courses are considered the highest engineered grass ecosystems. An esthetic assessment and a 

perfect playability require preparation procedures and maintaining techniques that determine a substantial 

departure from a natural soil.  

The growing substrate of the putting greens is considered a key factor for a healthy turf ecosystem. For this 

reason on the market there is a wide range of products based on natural stimulants aimed to increase the growth 

of roots, to promote the interaction in the rhizosphere and finally to raise quality and performance of the 

turfgrass. Actually detailed study on the effects of growth promoting bacteria and biostimulants on a professional 

sport turf are very limited.  

This thesis aims to study the effectiveness of different microorganisms and biostimulants in order to improve the 

knowledge relative to the relationship between the beneficial microflora and root apparatus of sport turfs.  

The research project was divided in three principal steps: 

1) Initially, different commercial products based on biostimulants and microorganisms mixes were tested on a 

Lolium perenne L. essence grown in a controlled environment. Effective microorganisms (EM), plant 

growth promoting rhyzobacteria (PGPR) and phytormones solution were inoculated within a close 

hydroponic system utilizing sterilized sand as growing medium. The principal evaluated parameters were 

the habitus and the color of the plants, the biomass production and the length of leaves and roots. In 

addition were studied the capacity of colonization of microorganisms within root tissues and rhizosphere. 

2) In the second step, on the basis of acquired knowledges, were developed two different biostimulant 

solutions based on effective microorganisms, mycorrhizae and humic acids. This test was conducted both 

on an Agrostis stolonifera putting green at the Modena Golf Club and within a growth chamber on a Lolium 

perenne L. essence. In this second trial the effects of the different treatments were evaluated analyzing 

morphological, physiological and agronomical parameters. In addition were studied the variation of the soil 

layers stratigraphy and the capacity of inoculants to colonize soil and root tissues. For the whole durate of 
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the trial all chemicals applications, usually utilized on a golf course’s putting green during the spring and 

summer seasons, were suspended in order to assess the effectiveness of the inoculants for nutrition and 

control of pests. 

3) In the last step of this experimental thesis, different microorganism mixes and biostimulants were tested on 

an experimental putting green in the Turf Research Center (TRC) (Virginia Tech, United States) in a real 

managing situation. The effects of different treatments were studied maintaining all chemicals and 

mechanicals managements scheduled during a sport season. 

The growth chamber results showed how EM, PGPR and biostimulants may enhance the health of the turfgrass 

and promote the growth of the root apparatus. In addition the EM microorganisms that colonized the root 

tissues and the rhizosphere were efficiently isolated and characterized. PGPR confirmed their attitude to 

improve the elongation of leaves and roots while EM reduced the growth of both the apparatus. Physiologic 

characteristics such as leaves’ colorations and dry/fresh ratio were positively influenced by microorganism’s 

mixes. 

The putting green trial conducted at the Modena Golf Club showed a high attitude of the mix composed by 

microorganisms and biostimulants to determine a general improvement of the physiological condition. In 

particular evapotranspiration, chlorophyll content and coloration of the turf surface were positively influenced. 

In addition the thatch was partially degraded by the microbial metabolism and the mineralized substances 

determined an indirect fertilization shown by an increased leaves production. No beneficial effects on the 

pests’ preventions were detected. 

The putting green trial conducted at TRC confirmed some results obtained in the previously research. As in the 

previous study, roots were stimulated by microorganisms and biostimulants. In addition were confirmed the 

positive effects on the color and quality of the turf surface utilizing both visual assessment and instrumental 

NDVI evaluation. Physiological determination such as proline content, transpiration and photosynthetic 

efficiency have further confirmed the positive effect determined by biostimulants and microorganisms mixes. 
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1.  PREFACE 

 

The turf represents an essential element for the constitution of the green spaces such as urban landscaping, 

recreational areas and as surface of sport facilities. Frequently the essences that constitute the turfgrass are posed 

in sub-optimal or in unnatural conditions without considering their real physiological necessity (McCoy, 1998). 

The main purpose of a sport turf is to ensure a range of features and aesthetics in order to optimize the 

playability of the game. Indeed, a sport turf has to guarantee aspects correlated at the sporting fruition such as 

the safety of the athletes, a correct rebounding and rolling of the ball but also different aspects regarding the 

visual appearance such as the greenness, uniformity, density and everything related a good quality of the green 

surface (Beard, 1973). 

The sport turf is a poor biotic system composed by different mixes of grass posed on a relatively simple growing 

substrate. The soil is principally constituted by sand and coarse layers to ensure a properly drainage for each 

weather condition and a correct response to mechanical solicitations. This unnatural top-soil composition, 

associated to periodical chemical treatments is the principal cause of the deviation from an optimal natural 

situation for the grass essences.  

In order to improve the growing conditions of the turfgrass there are a wide selection of biostimulants that are 

specific for the maintaining and recovering of the sport turfs (Karnok, 2000). These products are principally 

composed by organic substances such as sea weed extracts (SWE), humic acids (HA) or aminoacids. In addition 

others biostimulants based on plant growth promoting rhyzobacteria (PGPR) aim to promote an in-situ 

production of phytohormone, antioxidants and an increased nutrient up-take.  

The effective microorganisms (EM) belong to a heterogenic group of bacteria with several beneficial 

characteristics, similar but not traceable to PGPR (Javaid, 2009). This group includes bacteria able to promote 

the solubilize mineral nutrient otherwise inaccessible for the plants (De Werra et al., 2009), to promote the 

production of different phytohormone such as IAA, ethylene, cytokines and gibberellins (Lee et al., 2004), to 

parasite soil’s pathogens and to accelerate the decomposition of lignin in the soil (Javaid et al., 2008; 

Raajimakers et al., 2009). Whereas effects of biostimulants were studied since the last decades making them 

convincing products in the turfgrass industry, the effective microorganisms for sport turf solution are not 

explored and their effectiveness is still largely unknown. 

The main objective of this thesis was to improve the physiological condition of a sport turf, throughout the 

inoculum of effective microorganisms and biostimulants. In particular were tested different solutions in order to 

improve the growing of roots, the quality of the turf surface and the in-situ production of antioxidants and 

phytohormons. In addition were evaluated the effectiveness of the treatments considering different agronomical 

and physiological parameters such as evapotranspiration, content of photosynthetic pigments, variation in the 

rhizosphere composition and re-circulating of the nutrients.   
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An expected result of this research is to develop new microbial solutions specific for sport turf on the basis of the 

knowledge acquired and integrate these mixes in a management program. 
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2. INTRODUCTION 

2.1 THE SPORT TURF 

A sort turf is a high engineered grassy surface whose purpose is to allow the performance of the agonistic 

activities. The construction of a turf following the normative standards is a fundamental requisite for the 

enjoyment, the safety and playability at every level in which sport can be practiced. For these reasons, in recent 

decades research and scientific experimentation on this field of study has detached the sport turf from the 

concept of natural lawn in order to accommodate playing needs, functional and aesthetic requirements of the 

various outdoor sports. Nowadays the research on the sport turf sector receives high scientific and economic 

interest because constitutes the playing surface of the most spread outdoor sports and, as completing part of a 

large sector of entertainment, includes innovation of agronomic practices, studies of substrates, varietal 

selection, maintenance technologies, fertilizer and all the sciences related to interaction-athletes grassland. The 

list of sports played on a turf surface is long and variegated and includes disciplines with a great audience such 

as soccer, football, baseball and golf. A distinction between the various sports that use sport turf can be made in 

terms of wear and tear, depending the activities that take place above and the type quality, color and mowing-

height that has to be maintained during the sport season. Another distinction can be made on the base of the use. 

Indeed some sports need a short-season playability and others need almost the entire year. A consequence of the 

durate of the sport-season will imply the choice of the essences utilized such as annual or perennial.  

All athletic fields are subjected to intense traffic, represented by trampling of athletes, crossing of vehicles for 

maintenance and a multitude of environmental factor affect continuously on the condition of the turf as weather 

events, soil moisture (Beard, 1973). The sport turf, regardless the discipline, are widely different from a natural 

lawn and as consequence managing techniques are necessary to maintain stable this condition that is not stable 

and not self-sustaining in a natural condition. 

 

 

Figure 1: Auburn hills golf club (Virginia) 
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2.1.1 THE GOLF COURSE 

The golf belongs to a minority of sports that have not a standardized playing field. Any field in the world is 

different in its characteristics even if some elements can be found everywhere. The only constraint in a golf 

course is relative at the number of holes that has to be 9 or 18 and the total length that has to oscillate between a 

maximum of 6400 m and a minimum of 3700 m. An 18-hole golf course in the United States is generally 

constituted by a 0,8 – 1,2 hectares of putting green surface, 0,6 – 1,2 hectares of teeing area and 10 – 20 hectares 

of fairway surface (Table 1). 

Table 1: Comparative turf use by area for representative 18-holes golf course 

Turf Use Area (hectares) Area (%) 

Rough-water-woodland 52,6 72,2 

Fairways 16,2 22,2 

Building-parking lots 2,1 2,9 

Putting greens 1,01 1,4 

Tees 0,93 1,3 

Total area 72,9 100,0 

 

Golf course paths must be designed in function of the landscape in order to ensure a degree of heterogeneity and 

showmanship during the course of the game. The golf clubs are usually divided into several areas: the playing 

field, the club house, which typically offers on-site dining, services and area of practice (practice or driving 

range).  

The area of the golf course is divided into different elements (Figure 2), which will be briefly described below: 

 Tees or starting area is the area in which is played the first stroke of each hole, said tee shot. Iit is a flat 

area of several hundred square meters carefully shaved (1 to 1.5 cm) and dry, to have maximum stability 

and on which the golfer prepares the shot resting the ball on a tack, about 5 cm in wood or plastic, called 

tee. In the longer exist tees, generally four tee maker marked with different colors, according to the 

status (amateur or professional) and gender (male or female) to which they are dedicated. 

 

 Fairway or paths is the course between the tees and the greens. It has cross-mown grass (1.5 - 2.5 cm) 

which shall have good density, uniformity and flexibility so as to facilitate the ball game. These areas 

have an extension that can go from 90 to 550 meters, while the width varies between 25 and 55 meters. 
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 Rough or uncultivated area is formed by tall grass, almost uncultivated, located outside of the fairways. 

This area constitutes a penalty for scoring incorrectly the previous shot. 

 

 Bunker or sand trap is pits of varying sizes, filled with sand, with the function of making the game more 

difficult and challenging. 

 

 Water hazard is a made up streams, river, pool, 

pond, lake and sea. It can be natural or artificial 

and it is built to make more difficult the approach 

to the hole. 

 

 Green or putting green or pitch of arrival is the 

area of arrival of the game (Figure 3). This 

surface of the putting green is finely shaved (20 

to 48 mm height) to allow a perfect rolling. This 

surface must achieve the maximum uniformity, 

homogeneity, strength and elasticity.  

The size of this area is proportional to the length 

of the approach shot and on average remains 

around 600 m
2
. The green have slopes more or 

less pronounced, both to drain the most of the 

water (since the drainage must be perfect), both 

to make the putt of greatest difficulty. The 

position of the hole (Ø 11 cm) is not fixed, but is 

continuously moved (1 per month) for two 

principal reasons: to make the playability putting 

green always different and in order to prevent 

excessive damage from foot traffic in the same 

area .  

 

Figure 2: design project for a new hole at Modena Golf 
and Country Club (Maranello). 
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Figure 3: Putting green at the end of the hole n° 3 of the Modena Golf & Country Club 

 

2.1.2 GRASS ESSENCES OF A GOLF COURSE 

Grass essences of a tee 

Tees are principally sown with Agrostis stolonifera, Cynodon spp., Zoysia spp., or by a mix of L.perenne, F. 

rubra and P. pratensis (Panella, 2000). The choice of seed depends by the latitude, the composition of the soil 

and by the intensity of playing. Generally tees are mowed 3-4 time per week and may be occasionally replaced 

with over-seeding or deposition of sods due to frequent shots that remove portion of grass. 

 

Grass essences of a tee 

Fairway’s grass essences are represented Cynodon spp., Agrostis spp., L. perenne, Zoysis spp., Paspalum 

vaginatum or by a mix of L.perenne, F. rubra and P. pratensis (Panella 2000). Due to the high managing cost of 

a Agrostis only fairway, it is preferred the choice of a mix composed by Poa pratensis,, Festuca rubra and 

Agrostis spp. Generally the fairways are mowed 3-4 time per week. 

 

Grass essences of a putting green 

The grassy essence used in most of putting greens is the Agrostis stolonifera (Figure 4). It is a perennial cool-

season C3 turfgrass belonging to the family of Poaceae and Genus Agrostis, a large genus of plant that counts 

more than 100 species. Agrostis stolonifera is characterized by a typical prostrate habitus, with a strongly and 

vigorous stolons which developing on the surface of the soil, allowing the initiation of new roots and new culms 

at each node. These characteristics give the possibility to obtain a low mowing height, between 2 – 4 mm, and a 

dense mat to cover uniformly the whole surface of the putting greens. In the sport fields this variety is the 

principal grass specie of the golf putting in Europe and United States, although in the south climate during 
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summer with high daytime temperature and warm nighttime temperatures could bring to adverse conditions. For 

this reason in the south regions putting green is principally utilized a warm –season C4 turfgrass the hybrid of 

Bermuda grass [Cynodon dactylon L. Pers. X Cynodon transvaalensis Burtt Davy]. 

 

Figure 4: Agrostis stolonifera L. grown for a  growth chamber trial at Virginia Tech (Virginia) and in nature. 

In nature, the chorological element of Agrostis stolonifera is circumboreal and can be found in on edges of ponds 

and marshes, banks and uncultivated wet from a height of 0 m to more than 2000 meters over the sea level. 

Agrostis stolonifera L. has a height that can teach 20 – 50 cm, creeping culms with rooted nodes and epigeal 

stolons. The leaves have blade wide 4-6 mm and with 10-12 nerves. 

Table 2: Agronomical characteristics of Agrostis stolonifera 

PARAMETERS CHARACTERISTICS 

Texture On average - fine 

Density Excellent 

Propagation Seed, stolon, sod 

Color Light green – slightly gray 

Leaf shape 2-3 mm width, tip spired, pronunced ribbing on the upper page 

Soil Highly fertile, irrigated, fine texture, well-fertilized, pH 5,5/6,5 

Settlement Low 

Potential recovery  Moderate 

Tolerance to wear / traffic Low 

Tolerance to hot Moderate 

Tolerance to cold High 

Tolerance to drought Low 

Tolerance to shade Low-Moderate 
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Tolerance to drowing Moderate  

Tolerance to sality Moderate  

Tolerance to pathogens Very low 

Management required Very low 

Mow height 3-15 mm 

Nitrogen necessity 0,35 / 0,65 kg – 100 m² each 30 gg 

Water needs Very high 

 

2.1.3 THE SOIL OF A SPORT TURF  

The soil is a complex mixture of gasses, liquids, minerals, organic matter and a myriad of micro- and macro-

organisms. In the turf science the soil is essential for the development of the turf, because it is subjected to 

intense constraints dictated by the technical requirements. It’s primarily functions are to stock nutritive 

substances, maintain a certain porosity and air fraction, allowing a proper water drainage  for a physiological 

growth of the turf and  an ideal sport fruition. The air fraction has a fundamental role in the supplying oxygen to 

the roots and accelerates the microbial degradation of organic residues which tend to accumulate, causing the 

thickening of the thatch. The microbial component in the soil plays a central role in improving the physical and 

chemical properties in the rhizosphere such as the density and structure of the soil, the degradation of the organic 

substance and the availability of nutrients (Huhta, 2007). 

The percentage of sand, silt and clay constituting the growing medium influence the characteristics of the 

mechanical and physiological response of the turf, directing towards to one or another one specificity of 

utilization. An important feature in sports fields, that must ensure a proper rebound of the game items such as 

balls and in some contact sports the fall down of the athletes, is the response to mechanical compression. The 

ground must be able to withstand intense actions of exploitation without losing its mechanical characteristics.  

 

2.1.4 THE SOIL OF A PUTTING GREEN 

USGA, in the past 30 years has evolved the guide lines about the composition of putting green soils, in order to 

bring to a surface always playable, according to the highest aesthetic standards and discern the response to the 

mechanical stresses of the game (USGA Green Section Staff, 1993). 

The USGA guide lines for the construction of putting green growing medium, in the past 30 years has evolved 

into artificially constructed soils, built from a predetermined mixture of 80 – 90 % sand and 10 – 20 % organic 

matter (Figure 5). The USGA specifications indicate a soil stratigraphy composed by a topsoil mixture with a 

minimum thickness of 30 cm, lying over a 2.5 – 5 cm of a coarse sand layer, which is above a 10 cm layer of 
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washed pea gravel with a particle size of 0.5 – 0. 75 cm, which covers other 10 cm tile drain imbedded in the 

subgrade of native soil.  

 

 

Figure 5: Recommended standard granulometric curve for growth medium of a golf’s putting green. USGA 

 

The sand component should be contained at least 92%, with particles size suggested by USGA standard 

comprised between 1.0 to 0.10 mm, and the remaining fraction composed by less than 5% silt, and less than 3% 

clay. Clay content is always maintained in a minimum percentage, above all because clay is higly implicated in 

the reducing of cation exchange capacity (CEC) and in the increasing of water retention (Bigelow et al., 2004). 

Currently the putting greens of golf courses, including those present at the Modena Golf & Country Club, are 

basically constructed according to the USGA directives, which in most cases provide sufficient water retention 

of the substrate and a good penetration of the roots grass, reducing problems due to compaction.  

 

The organic matter 

The organic matter content in putting green topsoil should be around 10 – 20%. The organic matter, even if 

present in small percentage, has a great importance both for chemical and for physical characteristics of the soil. 

Indeed it promotes the growth and development of turf essences, is a reserve and propagation of soil 

microorganisms, and has a significant importance in water retentions and movements in the soils and the 

availability of nutrients. Regarding the chemical properties, the organic matter acts as a reserve of nitrogen, 

sulfur and a part of phosphorus and promotes the absorption of other nutrients for the increase of the cation 

exchange capacity (CEC). In regard as physical characteristics it improves the soil structure, increasing the 

cohesion soil particles and increasing the water absorption capacity. In a sports field, the addition of organic 

matter can occur naturally by the deposition of foliar residues mown and the replacement of the roots, or by 
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artificial application with seasonal treatments in the topsoil mixture utilizing peat moss, reed sedge peat or other 

well-degraded organic matter (USGGA Green Section Staff, 1993) 

 

The C:N ratio 

The Carbon Nitrogen ratio (C/N ratio) provides useful information about the kind of organic matter present in 

the soil and the degree of mineralization of the nitrogen. It is directly correlated with the activity of 

microorganisms that feed by N and expel CO2. If the ratio is less than 20 there is an excess of nitrogen compared 

to the necessity of a good humification. This excess is released during demolition of organic matter by 

microorganisms and will become part of the mineral component of the soil. If the ratio is high (more than 30-35) 

the soil contains a little amount of nitrogen, which will be fully utilized and as consequence immobilized by the 

metabolisms of the microorganisms. For values between 20 and 30-35, there is a situation of equilibrium and the 

nitrogen present in the residues is totally used in the process of humification. Therefore, there is no release or 

immobilization. When C:N ratio arrives at values around 10, it means that the process of humification is 

finished. 

 

 

2.1.5 ROOTS AND THATCH OF A SPORT TURF 

Roots 

The ability of the plants to absorb water and nutrients from the growing medium is related to their ability to 

develop a root system. Roots are the primary apparatus for the absorption of all mineral elements necessary for 

the plant growth and their development and extension in the soil is strongly influenced by the patches of 

nutrients as nitrogen and phosphorus in the soil (Glinski and Lipiec, 1990; Durieux et al., 1994).  

The importance of the construction of a efficient root apparatus is supported by the 33% of global annual net 

primary production, used for finer root production. In addition, more than 50% of daily photosynthetic 

production may be utilized in the growth and maintenance of a root apparatus (Lambers, 1987). 

High mowing frequency at 2-3mm height of creeping bentgrass (Agrostis palustris H.) is one of the principal 

reasons of the low growth of the root system in the golf course putting greens (Jordan et al. 2003; Shepard, 

2000). A deeper root system with extensive root branching is considered an important characteristic improve 

resistance at drought stress favoring the absorption of water (Russel, 1977) and a lower attitude to resists at 

environmental stress induced by a shallow rooted turf is largely reported (Jordan et al. 2003).  

This roots concentration in the upper portions of soil profile does not allow a prolonged capacity to supply water 

and as consequence frequent precipitation or irrigation are necessary to avoid drought stress. 
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Studies concerning roots in the sport turf industry 

In turfgrass industry the root development and as consequence the plant health is a primary topic. Each year new 

growth promoters are formulated to ensure a more efficient radical development, and this concerns especially the 

varieties used in the putting green areas. The possibility to develop and use plant varieties with an improved root 

growth and a higher drought-resistance has gradually reduced the water consumption but the argument remains 

still of great interest. Nowadays the sport turf industry is developing some fertilizers containing precursors to 

natural phytohormons, and biostimulants such as microorganisms, sea weed extracts and humic acids. Many 

researches describe the Bacillus strains capacity to produce phytormone (e.g. indole-3-ethanol) in a non-toxic 

form. This kind of interaction between plant-microorganisms responds more effectively to the metabolic needs 

and development of the plant in different growth phase, being metabolites synthesized directly in the 

rhizosphere. 

 

Thatch 

The term thatch is referred to a layer of plant material, dead or alive, not decomposed that positioned between 

the aerial parts of the plant, immediately below the turf surface and resting on the layer of growing medium 

underneath (Figure 6).  

 

Figure 6: Thatch layer highlighted between two yellow lines. Picture taken at Modena Golf & Country Club. 

 

This layer adversely affects the health and metabolism of the turf, because it goes to alter the gas-water exchange 

between the atmosphere and soil. Additionally, it facilitates the spread of fungal diseases (eg. Sclerotinia 

homoeocarpa and Rhizoctonia spp.) and parasites due to the formation of an optimum microclimate for the 

development of pathogens; being the felt layer practically hermetic, is also reduced the effectiveness of 

fungicides and plant protection products administered for the control of these diseases. Another feature of the 

felt, is that favors the loss of anchorage of the turf, as, retaining water inside it facilitates a surface development 
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of the radical, thus leading to a carpet less stable and more prone to deterioration. Finally, the formation of 

shallow root system makes the turf more susceptible to damage from extreme temperatures and/or drought.  

The main causes of formation of thatch are:  

 

 the excessive levels of nitrogen fertilization that determine a greater vigor of the epigeal part which, 

once cut, will go to increase the layer of thatch; 

 Reducing condition and acid pH are condition that may reduce the activity of soil microorganisms and, 

therefore, the decomposition of the undecomposed organic matter; 

 Infrequent cuts and excessive cutting heights, together with abandonment in the field of grass clippings 

after cutting.  

 

 

Figure 7: Scheme of a mechanical aerification and an aerification performed at TRC (Turf Research Center, Virginia Tech). 

 

To contain / decrease the felt layer, can be made different operational choices. With the preventive method, 

pretty common, you take all those agronomic practices that promote the decomposition of organic matter, such 

as topdressing, pH correction by liming, unpack the soil, the containment of carbon / nitrogen ratio of 25-30: 1. 

For curative method, however, means the mechanical removal of the felt through the practice of aeration (Figure 

7) (or verticutting), or, alternatively, may be used another technique such as coring. 
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2.1.6 QUALITY OF GOLF COURSE’S TURF 

The quality of turf is essential to optimize the playability and to allow at the player to use the lowest amount of 

shots during the competition. A correct maintenance plays a key role to eliminate as much as possible the 

negative factors that interfere with the success of the match. The essential qualities of a good golf turfgrass are: 

• Uniformity - the playing field should be as uniform as possible, especially on the green’s surface in order to 

have a proper sliding of the ball, but just as important on the tees to provide a stable base to the player during 

the swing. 

• Density - it is expressed as the number of plants per unit area. The density of the mat provides a perfect 

support during rolling. This characteristic is achieved by regular maintenance, such as a higher frequency of 

cutting heights with the use of optimal grassy essences used and proper management of fertilizer and 

irrigation. 

• Weaving - it is dependent on the width of the leaf blade. This feature influences the rolling of the ball, 

which is optimal when the texture of a green is medium-fine. This quality can be obtained by the choice of 

adequate turf essence, the height of the mow and from the practice of topdressing. 

• Smoothness - this parameter is a quality index for a field that does not have damage, obstructions or 

depressions which may affect the run of the ball. This is a characteristic has to be preserved by weed, pests 

diseases and other fungal or pathongens. 

 

Quality and color of the turfgrass 

The aesthetic parameters such as the quality and the color of the green surface are the most important in the 

maintaining of a golf course, especially for the evaluation of a golf course’s putting green. 

The color parameter considers the mean coloration of the green surface and acquire a high value when leave 

have greener/darker coloration. The quality takes in consideration a range of factors affecting the visual 

appearance of the grassy surface.  

Turf quality of a putting green often decline during summer when golf putting greens are subjected to an high 

human traffic and seasonal stresses such as high temperatures and intense solar radiation (Lucas, 1995; Carrow, 

1996). 

 

Visual assessment 

The evaluation of visual parameters such as quality and color is routinely used to assess aesthetic characteristic 

of turfgrass cultivars. Quality and color rating is based on a relative evaluation between the same turfgrass specie 

within the same season. Indeed quality and color rating may change significantly depending on the seasons or 

agronomic practices that are carried out. The visual assessment of the turf surface, as most as aesthetic rating 
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collected on turf grass, is based on a 1-9 rating scale as reported in the guide lines of National Turfgrass 

Evaluation Program (NTEP), an approach that is accepted and used since many years. The NTEP guide line is a 

necessary support for researchers and practitioners to evaluate turfgrass health and to take management 

decisions.  

The visual evaluation traditionally has always been a subjective method that requires good personal practices 

and sometime may happen that data can be quite variable and difficult to reproduce due to different evaluation 

techniques and personal interpretation (Trenholm et al. 1999). This kind of valuation is very useful for golf 

course superintendents, sports turf managers, sod growers, lawn care service operators and ground managers  in 

order to study which adjustments, or seed varieties utilize in the different seasons. 

Rating systems are commonly employed to evaluate phenotypic variation in colors, density and uniformity of 

turfgrass stands in year. Therefore, quality and color are key components for water and nutrient status often 

utilized also in growth chamber or greenhouse trials (Xu and Huang, 2000). 

The rating of turfgrass quality is evaluated 9 for the perfect and ideal turf surface and 1 for the poorest quality 

aspect. A rating of 6 is generally considered acceptable but for putting greens quality standard would be better 

do not fall below of 7. Quality ratings are not based on color alone, but on a combination of color, density, 

uniformity, texture, and disease or environmental stress. The rating of the color represents a relative evaluation 

of the greenness of the turfgrass surface and is inherent to the genotype color variation affected by different 

treatments and soil or environmental conditions that act on the experimental plots. 

This kind of measure, subjected to criticism for time consuming and subjective characteristics. In the past several 

techniques were used to measure objectively the color such as reflectance measurements (Birth and McVey, 

1968), Chlorophyll and amino acid analysis (Nelson and Sosulski, 1984) and comparison with standardized 

colors (Beard, 1973) but all these method have the advantage to be relatively expensive and to be time 

consuming.  

 

Instrumental assessment 

Nowadays specialized instruments for the turfgrass color analysis allow to slide out from a subjective rating and 

lead to an objective approach to make color and health evaluation and make management decisions. 

New instruments that utilize the spectral proprieties of the plants, give the possibility to analyze the color 

proprieties of the turf surface with a no time consuming method.  

Remote sensing technologies that utilize the visible infrared (VIS) and near infrared (NIR) light, measure with 

optical sensors the irradiance reflected from turfgrass over which they travel (Bell et al., 2002). 
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.  

 

Figure 8: Vehicle-mounted optical sensing utilized at 

Virginia Tech. Crop Circle ACS-470. 
 

 

Figure 9: relationship between the NDVI raveled with a 

vehicle-mounted optical sensing and 1-9 rating by visual 

assessment (Bell et al. 2002) in Agrostis stolonifera. 
 

 

The Crop Circle ACS-470 (Figure 8) is an active crop canopy sensor that provides NDVI vegetation index. The 

Crop Circle is not limited by ambient lighting conditions because this instrument remove the effect given by the 

differences of light by time of the day and weather condition removing the effects of ambient radiation, 

processing only the radiance emitted by the integrated source. 

Optical sensors detect the returning irradiance emitted by the instrument and reflected by turf surface at red 

radiation (600-700 nm wavelength) and at the near infrared radiation (700-800 nm wl). VIS reflected by plants is 

very low if compared with a soil surface because efficiently absorbed by photosynthetic tissues of leaves 

(Knipling, 1970, Tucker, 1979).  NIR radiation is poorly absorbed by photosynthetic tissues and more highly 

reflected (Daughtry et al., 1992). The relationship established between these two different wavelengths, collected 

by the surface of leave plant aterial, is the basis for a relatively simple calculation necessary to obtain the 

normalized difference vegetation index (NDVI). The NDVI algorithm is measured as follows: 

NDVI = (NIR – VIS) / (NIR + VIS) 

 Normalized difference vegetation index was widely utilized to determine chlorophyll content (Howell, 1999; 

Zhao et al., 2003), turf injury and quality (Trenholm et al., 1999; Bell et at., 2000). In addition NDVI parameters 

was studied for predictive models relating to plant biomass, plant nitrogen content, stress severity, drought stress 

and nitrogen deficiency. Bell et al. (2001) with a vehicle-mounted optical sensing, reported a strong correlation 

between the visual color assessment and the NDVI instrumental approach (Figure 9). That study was conducted 

on tall fescue and creeping bentgrass that shown respectively a coefficient of determination of 0.8 and 0.5 

respectively, a good result considering the heterogeneity of the visual prediction model on which the comparison 

was based on. 
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2.1.7 PATHOLOGIES AFFECTING A GOLF COURSE 

Creeping bentgrass (Agrostis stolonifera) has gained the endorsement of superintends and athletes for its 

characteristic of density and quality of the turf surface. The interest for this specie is specie was increased in 

United States and Europe in the last two decades (White, 1996). However this specie is a cool season grass and 

suffers warm and drought condition that may occur in the hot and dry summer in the south of United States and 

Europe. Summer conditions often reduce the quality of color and quality of the grassy surface and in addiction 

these are the precursor of diseases onset (e.g. fungal pathologies) and common physiological stresses (Lawlor, 

1995). Environmental stressful condition such as water deficit, high irradiation and high temperature increase the 

oxidative stress that can cause loss of vigor to the plant tissue, cellular damage and a reduction of shoot growth. 

Less tolerance of summer condition in creeping bentgrass is strongly correlated with a shallow root system and 

an excess of shoot growth determined by a fertilizer and irrigation over applying to reduce the loss of aesthetic 

quality (Hull, 1992). An interruption of electron transport along the photosynthetic process, determined by an 

increase of the stress induced on the plant as solar irradiation and high temperature, causes an increase in 

reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, hydroxyl anions and singlet oxygen 

(Scandalios, 1997; Smirnoff, 1995). The removal of ROS can be implemented by superoxide dismutase, an 

efficient enzyme for the removal of superoxide anions (Bowler et al., 1992). Has been shown that seaweed 

extract (Ascophyllum nodosum) abbreviated as SWE and humic acids (HA) have an radical scavenging activity 

(Zhang,1997). 

 

Dollar spot  

Dollar sport is a serious creeping bentgrass disease of golf course caused by Sclerotinia homoeocarpa, a fungal 

pathogen member of Sclerotiniaceae family. To measure its global spread, in 1992, the golf course industry in 

the United States spent around $ 56.5 million on fungicides trying to control the dollar spot fungus (Smile et al, 

1993). The fungus incites foliar blight leaf tissues with the mycelium forming round yellow-light brow patches 

with a 1-5 diameter size (Figure 10). 

 

Figure 2: dollar spot pathology affecting a putting green at the TRC (Virginia Tech). 
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The grass species mainly affected are Agrostis stolonifera, Poa annua, Poa pratensis, Lolium perenne and 

Cynodon dactilon (Couch, 1985; Smile et al., 2007). Dollar spot proliferation occurs in a period between spring 

and autumn, when temperature range from 18 and 33°C during and nights are humid and around 10°C. The 

difference of temperature from night and day and the dew formation on leaves determine the propagation of the 

disease (Smile et al., 2007).Control of dollar spot can be performed with agronomic practices, through a less 

frequent irrigation, avoiding irrigating at night and removing the dew from the leaves in the early hours of the 

day. Being the occurrence of dollar spot strongly correlated with moisture in the in the soil, removal of felt or 

other treatments implement to increase evapotranspiration can guarantee a lower potential for occurrence of the 

disease. The golf courses and especially the putting greens always require an aesthetic quality close to 

excellence, so at the first manifestations of this disease is necessary to act with chemicals to eradicate the 

presence of dollar spot. Many kind of fungicide are labeled to control dollar spot such as including 

benzimidazoles, carboxamides, nitriles, dicarboxamides, and demethylation inhibitors. During the last decade 

certain strains of dollar spot showed the earliest forms of tolerance against chemical compounds, it is good 

practice to rotate them frequently to prevent this from happening (Smile et al., 2007). Alternative method to 

prevent the occurrence of the dollar spot, have been studied in 90s with poor results. The utilization of effective 

microorganisms as antagonistic microorganisms for a biological control of soil disease was reported in many 

works by Lin (1991) and Higa (1994). Kremer in 1999 reported a 4% inhibition of the S. homoeocarpa growth in 

plots pre-treated with effective microorganisms. 

 

Brown patch 

Brown patch is a common pathology affecting the golf courses caused by the fungal parasite Rhizoctonia solani. 

It is a fungal disease that occurs during early summer and autumn, indeed its propagation rises for temperature 

between 22-28°C and high air humidity. With temperatures over 30°C its propagations it suffers a drastic 

downturn. This disease can occurs in the sports fields maintained with a low mow height that have a high 

concentration of nitrogen in the soil and show case of waterlogging (Figure 11). R. solani rises throughout round 

or irregular patches (2 cm – 2 m diameter), and grass affected by this disease presents a light brown coloration. 
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Figure 3: On the left, Rhizoctonia solani affecting a fairway. On the right, R. solani hyphae (Wikimedia Commons). 

Control of R. solani can be performed with agronomic practices, through balanced fertilizations of nitrogen, 

good levels of phosphates and potassium in order to increase the plant’s defenses, decrease the humidity present 

in the top-soil and on the leaves especially in the shadow areas and a correct managing of the thatch. The active 

substances utilized for the chemical control are the Tolclofosmethyl, iprodione and the pyraclostrobin.  

Some previously works showed an effectiveness of some microorganisms in the control of this pathology. For 

expample R. solani inhibitions was showed with bacteria of the rhizosphere such as B. subtilis and B. 

lentimorbus. These bacteria resulted effective for the in vitro control of growth of R. solani isolate (Montealegre 

et al., 2003) 

 

Pythium blight 

Pythium is a fungal pathology that rises in golf courses during summer and early autumn (Figure 12). The 

infection occurs between 29 – 35 °C. All microterms and some macroterm (especially Cynodon sp.) are the 

essences affected by this pathology in the sport turfs. Badly ventilated sport field that have soil with a high 

humidity are more subjected. At first stages the disease presents with circular spots that may vary from 2-3 to 

about 15 cm diameter. The plants affected appear dark, brown, and greasy and may be covered by a mass of 

white cottony mycelium. The insurgence of pythium can be reduced by a properly agronomical maintenance 

such as balanced ferti-irrigation, a reduction of the waterlogging, the removal of thatch in excess and increasing 

the air exposition. Some previously research demonstrated the effectiveness of bio-control in reduction of 

pythium insurgence. Indeed as Loper (1988) showed the capacity of Pseudmonas fluorescens to reduce the 

colonization and the pre-emergence caused by Pythium sp. 
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Figure 4: Pythium disease at the Auburn hills golf club (Virginia) 

 

2.2 MICROORGANISMS OF THE SOIL 

The soil microorganisms play a central role in many edaphic processes and establish complex interactions 

between them, other organisms and plants (Figure 13).  

Although the study of the micro fauna in agriculture is a topic of great interest since many years, in the sport 

fields it is finding interest in commercial and scientific area only recently. Indeed the micro-fauna stants out as a 

determinant for carrying out biotic soil interaction; which explains why the quality of the soil depends primarily 

on its microbiological activity (De Luca, Picione, 2009). It also represent the most abundant biotic component in 

soil and is estimated that in a gram of soil there are hundreds of millions of fungi and bacteria, of which only the 

5% in know (Uphoff et al., 2006). 

Bacteria and fungi have a key role principally in the rhizosphere where they are primarily related to the 

maintenance of soil functions. These microorganisms are in fact involved in many processes such as the 

formation of soil structure, decomposition of organic matter, removal of toxic substances and recycling of the 

elements. They are also involved in the control of diseases by impoverishment of the soil due to high 

management practices and changes in vegetation (Garbeva et al., 2004). 

The main groups of organisms constituent rhizosphere are bacteria and archaea, fungi, actinomycetes and algae. 

Bacteria and archaea are most abundant (up to 109 UFC – Unit Forming Colony per gram of soil), actinomycetes 

and fungi count respectively 106-107 UFC/g soil, while algae count 105 UFC/g soil (Paul and Clark, 1996). 
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Figure 13: On the left are represented bacteria on a root (www.indiana.edu). On the right , phungal 

iphae in the soil (www.soils.usda.gov). 

 

 

2.2.1 MICROORGANISMS IN SPORT TURF INDUSTRY 

In the management of sports fields, the use of microorganisms is still a not totally explored area of study but of 

growing worldwide interest. Natural and undisturbed soil contains high micro-organism population but USGA 

based sand soil, the commonly utilized standard for the construction of golf turfgrass, do not allow a rich 

population of microorganisms (Nunan, 2003). In order to obviate this deficiency managers and green keeper 

utilize a variety of artificial method and commercial products as biostimulants and ammendands. 

Several published works has confirmed the positive effects given by microbial inoculation associated with turf 

grasses, especially in golf industry where there is the concern that these kind of turf system are not sustainable, 

due to intensive management (kind of soil, fumigation, pesticide,) that reduce significantly the microbial 

population.  

Depending on the mode of action and effects, these products can be used as bio-fertilizers plant strengtheners, 

phytostimulators and biopesticides (Berg, 2009). The principal positive aspects given by bio-fertilzers are the 

improved acquisition of nutrients and in-situ hormonal stimulation.  

Golf courses’ putting greens need a management similar to cropping systems for intensive applications of 

pesticides, fertilizer and irrigation. Newly putting greens undergo a soil pretreatment that consist in fumigation 

with methyl bromide before sowing. This application allows destructing weed seeds, parasitic nematodes and 

common Bermuda grass (Cynodon dactylon) but reduces tragically the microbial population (Elliot and Des 

Jardin, 2001). Although, successive studies demonstrated how after fumigation the population of 

microorganisms is able to rebound (Elliot et al. 2004) 

A new concept of turfgrass is required not only to avoid chemical treatment abuses and all correlated 

problematic, but also to ensure an healthy turf surface more resistant to abiotic stress as drought and biotic as 
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fungal pathologies to reduce the cost management that that nowadays are a crucial step in the management of 

sports fields. 

 

2.2.2 PLANT GROWTH PROMOTING RHYZOBACTERIA (PGPR) 

The term PRPG (Plant growth promoting rhyzobacteria) was coined in 1978 by Koepller and Schroth to indicate 

a group of rhyzobacteria able to promote significantly the growth of plants. Podile and Kashore in 2007 defined 

rhyzobacteria able to colonize aggressively the rhizosphere of plants but only a part of them (2-5%) is also able 

to promote the plant growth (Antoun and Koeppler, 2001).  

Different kinds of bacteria belong to PGPR, in particular Bacillus and Pseudomonas genre are the predominant 

(Podile and Kishore, 2007; Singh et al., 2011). 

These microorganisms are able to promote directly the growth of plants establishing symbiotic associations with 

the root system, and releasing growth regulators or plant hormones such as auxins, cytokinins, gibberellins, 

ascorbic acid and ethylene (Arshad and Frankenberger, 1998). 

PGPR exert their action on the main growth parameters, on the health and on the productivity of the plants in 

general as a result of multiple mechanisms, closely dependent on the species of rhyzobacteria involved (Singh et 

al., 2011). PGPR main functions may be devided in six groups: 

 Phytohormone stimulations; 

 Solubilization of inorganic phosphates; 

 production of siderophores that chelate iron making it unavailable to pathogens (Glick et al., 1995) 

 Volatility of the compounds that affect the regulation signals; 

 Control of the harmful microorganisms; 

 Competition for space, nutrients and induction of systemic resistance against a broad spectrum of 

pathogens.  

 

2.2.3 EFFECTIVE MICROORGANISMS 

EM (Effective Microorganisms) is another microorganism’s group with several beneficial characteristics, similar 

but not traceable to PGRP (Javaid, 2009). The effects of effective microorganisms have been shown for the first 

time in the 60s by Professor Teruo Higa (University of the Ryukyus, Okinawa, Japan). Higa discovered the 

capacity to grow in the same solution aerobic and facultative anaerobic microorganisms, without compromising 

the mutual growth or induce degenerative processes. EMs are able to improve growing conditions of plants 

(Gaggìa et al., 2013) stimulating the photosynthetic process, producing bioactive substances such as 
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phytohormone and vitamins (Desoky I.M. et al., 2001;). controlling soil disease and accelerating the 

decomposition of lignin in soil (Javaid et al., 2008). 

 

EM – growth promotion in plants 

Many studies report the capacity of bacteria to produce phytohormone precursor or stimulate the production 

through metabolic crass-talk in the plant (Lee et at., 2004). Plant hormones are naturally synthesized by the 

plants but the interaction with different kinds of soil bacteria stimulates the production that may take place also 

directly in microorganisms as exudates. The phytohormone of which has been reported the production upon 

interaction with microorganisms are indole-3-acetic acid (IAA) (Lee et al., 2004), ethylene (Pierik et al., 2006), 

cytokinins and gibberellins. Some bacteria appertaining at Azospirillum and Pseudomonas sp. showed the ability 

to acidify the growing medium and as consequence to solubilize mineral nutrient such as organic phosphate 

otherwise inaccessible to the plant (De Werra et al., 2009).  

 

EM – Beneficial effects 

Effective microorganisms’ effect may derive both from a direct interaction host plant and also indirectly due to 

their antagonistic activity against plant pathogens (Berg, 2009). Has been reported that EMs’ allopathic effects 

derives from secondary metabolites as antibiotics, antifungal, antiviral, insecticidal and immune-suppressant 

agents (Ryan et al., 2008). In addition, inoculated EMs may parasite bacterial pathogens through production of 

extracellular cell wall-degrading enxymes such as chitinases and B-1,2-glucanase (Raajimakers et al., 2009). 

EMs applied with a pre-treatment in creeping bentgrass plots, shown a 4% inhibition effect of the occurrence of 

the dollar spot (Kremer, 1999). Other turfgrass disturbs that may result from fungal, bacterial, and viral attack 

has been demonstrated as can be reduced through inoculation with bacterial / fungal entophytes (Sturz et al., 

1996; Kerry et al., 2000; Berg et al., 2006).   

 

EM – Main microbial groups 

Effective microorganisms include more than 80 microbial species but the main microbial groups are 

photosynthetic bacteria (Rhodopseudomonas and Rhodobacter spp.), lactobacilli (Lactobacilllus spp. and 

Streptococcus spp.) yeast (Saccharomyces spp.) and actimoycetes (Streptomyces spp.). 
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Photosynthetic bacteria 

 

 

Figure 14: Two photosynthetic bacteria belonging to EMs’ group: Rhodopseudomonas palustris (1), Rhodobacter sp(2). 

 

The photosynthetic bacteria (also known as phototrophic bacteria) utilize solar energy to metabolize the organic 

and inorganic substances (Figure 14). This phototrophic potential is useful particularly in the environmental 

field, because they are able to effectively decompose the organic materials. Photosynthetic bacteria incudes 

microorganisms belonging to different phyla constitute a very diversified group: some of these proteobacteria 

belonging to the class of α-proteobacteria. Due to the heterogeneity within proteobacteria, these are divided into 

5 classes: alpha (α), beta (β), gamma (γ), delta (δ) and epsilon (ε). Within alpha proteobacteria belong 

phototrophic bacteria, capable to fix atmospheric nitrogen in symbiosis with plants. 

In addition the phototrophic bacteria are involved in various metabolic systems, and play an important role in the 

nitrogen cycle and the carbon cycle, allowing a coexistence with others microorganisms. 

 

Lactic acid bacteria 

Lactobacilli (Figure 15) are a large and heterogeneous group of microorganisms that are characterized by their 

fermentative metabolism: lactobacilli by the fermentation of the carbohydrates produce lactic acid (Hussain et 

al., 2002). Lactic acid bacteria are heterotrophic and chemiorganotrophic microorganisms adapted to live in 

complex substrates, and require important growth factors such as amino acids, nucreotides and vitamins and 

carbohydrates as source of energy.  
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Figure 15: Three lactobacilli belonging EMs’: Lactobacillus plantarum (1), Lactococcus lactis (2) and Lactobacillus casei 

(3). 

 

Lactic acid bacteria improve mineral availability for plants in the rhizosphere through the production of enzymes 

and organic acids (Lopez et al., 2001; Kinjio and Higa 1991) and control the diffusion of different pathogens by 

the productions of several compounds. Indeed some in vitro studies showed inhibition effects against pathogenic 

fungi (Wang et al., 2011; Wang et al., 2012). Their effectiveness in improving the stability of silage with the 

production of metabolites that inhibited moulds and fungi propagation has been documented for different species 

of Lactobacillus, including some sp. identified in this study such as L. buchneri, L. parafarraginis and L. 

diolivorans. Moreover was verified their ability to promote the decomposition of the organic substance 

promoting the fermentation and the decomposition of recalcitrant compounds such as lignin and cellulose, 

thereby limiting undesirable effects related to the presence in the soil of undecomposed material (Gao et al., 

2008; Valerio et al., 2008). 

 

Yeasts 

Yeasts (Figure 16) are eukaryotic microorganisms, unicellular, 

belonging to the group of the Fungi. Yeasts are devoid of mycelial 

apparatus, although some species can form a pseudo-mycelium that 

makes them look like micro-molds. Yeasts are known as promoters of 

fermentation processes and produce many biologically active agents 

such as amino acids and polysaccharides. Many studies conducted on 

the effects of yeasts on plant have shown increase in the growth of 

vegetation and roots, resistance to drought, in containing the spread of 

fungal diseases such as Sclerotinia homeocarpa, and in reducing stress 

caused by the strong maintenance of lawns intensive (Kremer et al. , 

2000). 

Figure 16: Sacharomyces cerevisiae cells 

under DIC microscopy (Wikimedia 

Commons) 
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Regarding the rhizosphere, the main species studied for their effectiveness are Sporobolomyces roseus (Perondi 

et al., 1996), Rhodotorula spp. (Abd El - Hafez and Shehata, 2001), valid Candida, Rhodotorula glutinis and 

Trichosporon asahii (El - Tarabily, 2004). These studies have attested yeasts’ ability to promote plant growth, 

and for this reason they were defined growth plant - promoting yeasts, PGPY. The studies of Abo-Elyousr and 

Mohamed (2009) demonstrated the possibility of using the species Saccharomyces cerevisiae, Candida sake and 

Pichia membranifaciens for the biological control agent of Fusarium in maize. 

 

 

2.2.4 NATURAL AMMENDANDS FOR SPORT FIELDS 

In the last decades the sport turf industry introduced a wide range of natural treatments which, over the years, 

have gained a considerable importance especially in the high quality sport field such as golf courses. In addition 

to the PGPR, in most evaluable turfgrass products could be content substances such as humic compounds, 

mycorrhizae, and sea weed extract which are described below. 

 

 

Humic acids 

Humic acids are natural acidic polymers component of humic substance of the soil humus (Figure 17). Humic 

substances can be divided in humin, fulvic acid, and humic acid in function of the degree of solubility depending 

by the pH (Stevenson, 1994). Humic acid consist of a hydrophobic framework of aromatic rings linked by 

flexible carbon chains, with alchol, amide, amine, carboxylic, carbonyl phenol and quinone functional groups 

(Davies and Ghabbour, 1998).  

 

Figure 175: Example of a typical humic acid, having a variety of components including quinone, phenol, catechol and 

sugar moieties (Stevenson, 1994) 
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Organic structure of humic acid is naturally oxidized giving it a negative charge (Figure 18). Positive ions 

(cations), attracted to broken bonds at the site of the oxidation, create sites for micronutrients and microflora. 

The actions relatively at the cations allow to the plant to absorb more nutrients holds by HA, improving the 

transference of these absorbed elements at the plant’s circulation system. The capacity of the roots to absorb 

nutrients would be maintained until the root’s negative charged remains greater of the humic acid’s negative 

charge. It is hypothesized that the mechanism of transport from soil to plant’s tissues is given by the capacity of 

the micronutrients carried (Humic Acids) to move into close proximity of the root system, while the capacity of 

the plants to absorb water will complete the final gap. 

 

 

Figure 18: scheme of the action of humic acids to bring micro-nutrients to plant’s root 

 

In order to study the effects of humic acids, several studies have been carried out on crop species. In the last 

decade a fervent interest grew around a possible application in the sport turf sector. Studies conducted in 

controlled environment have given excellent result regarding the effects of humic acids, such as the increasing of 

the root biomass and length (Zhang et al., 2003; Liu, 1998; Cooper, 1998). Studies conducted in growth chamber 

on Agrostis stolonifera L., showed positive effects on the photosynthesis rate in plants treated with humic acid 

(Liu, 1998; Zhang, 2004). In contrast with these good responses, experiments conducted in the open field 

condition have not yet confirmed the same positive effects (Kaminski, 2004). Humic acids present in many 

commercial turf products claims to improve turfgrass performance under environmental stress when used in 

conjunction with a standard fertilization program (Sachs, 1996). 

The reasons for results that have been previously obtained in controlled environment trials compared at the field 

condition experiments could be attribute to a multitude of causes. First of all field trials are not enough accurate 

to show small effect determined by single component due to the heterogeneity of the field condition. In addiction 

commercial products based on humic acids may contain other substances which could compromise the result 

both in grow chamber and in field trial. 
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Mycorrhizae 

Mycorrhizal fungi are obligate biotrophs soil organisms that develop a symbiotic association with root systems 

called mycorrhiza (Figure 19), a mutualistic relationship that establishes a network which allows plant to utilize 

mineral nutrients from the soil that the root system would not be able to access otherwise (Marschner et al., 

1994).  

Mycorrhizal fungi are represented by two principal groups: ectomycorrhizal and endomycorrizal. 

Ectomycorrhizae mainly colonize woody Angiosperms and Gymnosperms, in which Basiodimycetes 

Ascomycetes and Zygomycetes develop intercellular hyphae from a mycelian sheath covering the surface of 

short lateral roots. Endomycorrhizas colonize plant with an intraradical growth and an intracellular proliferation 

which are formed by Basidiomycetes in the Orchidaceae, Ascomycetes in the Ericales and Zygomycetes 

(arbuscular mycorrhiza) in most other terrestrial plant taxa (Brundrett, 1991; Harley and Smith, 1983). The most 

important group of endomycorrhiza is represented by Arbuscular mycorrhizal fungi (AM-fungi or AMF), that is 

compatible with more than 80% of extant plant families. AM-fungi are fundamental for many ecological aspects 

as the capacity to transfer nutrients from plants exchanging with photosynthetically fixed carbon. The 

abundantly nutriments uptake and supply resulting from the mutualistic association between mycorrhiza and 

plants has been widely documented for many ions as P, NH4
+
, K, Ca, SO4

2-
, Cu and Zn (Johansen et at., 1992; 

Tobar et al., 1994). Some studies demonstrated that arbuscular mycorrhizal fungi, associated with host plants in 

agricultural or natural soil in different climate condition, increase the capacity to uptake amino acid (Näsholm et 

al., 1998; Hawkins H.J., et al. 2000) and transfer complex organic nitrogen, otherwise unavailable for uptake by 

the majority of plants (Swift et al., 1979). 

 

 

Figure 69: Arbuscular mycorrhiza seen under microscope. MS Turnel, Unversity of Manitoba, Plant Science Department. 
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In addition has been reported an improved photosynthesis and an higher plant growth, probably as consequence 

of an enhanced phytormone cytokinin level (Drüge and Schonbeck, 1993). Some beneficial bioprotective roles 

against adverse environmental condition were evaluated as an increased resistance by heavy metal pollutants and 

a certain number of common soilborne pathogens (Benthlenfalvay and Linderman, 1992; Fernando W.G.D and 

Linderman R.G. 1996). 

The results of studies on the application of mycorrhizae in sport turf have shown a marked effect on the 

limitations of the growth of weeds such as Poa annua ( Ganges A. , L. Whitfield , 2004) , and in a larger area for 

the exchange of nutrients for both symbiotic organisms (Amaranthus M. 2001) . 

 

Sea weed extract 

Seaweed (Ascophyllum nodosum Jol.) extracts (SWE) is novel variety of organic material that is utilized in 

various products that promise protecting turfgrass against oxidative stresses. SWE derives from Ascophyllum 

nodosum, a common brown algae belonging to the Fucaceae family, which can be found in the northern Atlantic 

Ocean. 

The first researches on the effects of SWE are dating back to the early 90s, when Schmidt and his collaborators 

studied the effects that A. nodosum has on leaf growth rate and senescence, nutrient uptake, root mass and 

photochemical activity (Goatley and Schimidt, 1990; Zhang 1997).  

SWE contains different compounds such as amino acids and micronutrients (Fike et al., 2001). In addition was 

reported that SWE has a hormonal activity equivalent to 50 mg/L kinetin. Furthermore, Crouch and Van Staden 

(1993) utilizing GC-MS techniques have quantified auxin and cytokinins in SWE. Also some betaine forms were 

found in SWE by Blunden et al (1986). 

Nowadays SWE are widely used in various biostimulant product formulations. This compound has been reported 

to contain phytohormones and osmoprotectants such as cytokinins, auxins, polyamines and betaines. In addition, 

some researches shown that SWEs have the capacity to improve the resistance to environmental stresses such as 

drought (Zhang, 1997) and salinity (Nabati et al., 1994). Successive researches  have demonstrated that the 

capacity to resist at the environmental factors could be attributed at an increasing of the anti-oxidant contents 

(Zhang and Schmidt, 1997; Zhang and Schmidt 1999). 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0176161711808497
http://www.sciencedirect.com/science/article/pii/S0176161711808497
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2.3 ENVIRONMENTAL IMPACT OF A GOLF COURSE 

A well designed golf course, that respects the principles of environmental sustainability, has a potentially 

significant role in environmental reconstruction/protection and become an integral part of the land use planning. 

For these reasons, the European Golf Association in 1994, has instituted a label unit, the European Golf 

Association - Ecology, aims to bring at the public understanding the role that golf can play in the environmental 

preservation. 

There are several legislations that regulate the construction and management of a golf course. In the case that the 

golf course was built on a industrial or agricultural land there was a change in land destination use. Otherwise 

urban zones such as green areas for sport and recreational activity include the possibility to build a golf course. 

Furthermore, regulations for environmental protection in a territory on may include other constraints as 

environmental, forestry, hydro-geological and faunal limitations. 

Green keepers, stakeholders and athletes have the interest to work and play golf in a healthy and self-sustaining 

as possible area. A significant amount of research has been done to quantify the potential leaching and run-off of 

nutrients and pesticides from golf courses (Kenna and Snow, 2000). Innovations in the last years regard 

reduction of water consumption with more efficiently agronomical practices and drought resistant grass varieties, 

utilization of new generation fertilizer, fuel consumption and noise implicated with machineries utilization that 

may interfere with the wildlife, and less use of plant protection products with the introduction of Integrated Pest 

Management.  

These practices are all related with an undirected well maintenance of the territory and a good relationship with 

local community. The benefits that a golf course leads to the environment can be summarized as follows: 

 Conservation of biodiversity. Maintenance of native flora and fauna thanks to the ban on hunting and 

habitat conservation within the property of the golf club may have the function of " protected area", 

defending the species from the pressure human activities (Hammond and Hudson, 2007; Beard, 1994); 

 Preservation of the environment and cultural heritage. Within the golf courses, especially in the 

oldest, can be preserved pieces of agro-ecosystems, monuments and historical artifacts. 

 Environmental education. Managers and green keepers have as their objective to hold high the 

standard of knowledge of correct principles of environmental management and the willingness to apply 

them in this way can become a new kind of professionals for the environmentally sound management of 

the populated areas. 

 Decrease of the damage threshold in the noise. The grass is able to absorb and refract the sound waves 

by reducing the noise of 20-30% (Rasmussen, 1981). This characteristic could bring range benefits to 

human health in case of recreational area or golf courses close to large city or very busy streets. 

http://www.sciencedirect.com/science/article/pii/S0169204607000734
http://www.sciencedirect.com/science/article/pii/S0169204607000734
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 Daily temperature mitigation. Turf is able to reduce thermal peaks thanks to the absorption of heat 

during the day and a slow release of the heat, previously absorbed, during the night (Beard, 1994). It has 

been studied that a grassy moderates about 40% of heat from solar radiation, there was a differential of 

10-15 °C between the surface of the golf course and a sidewalk. 

 Absorption of air pollutants and reduction of atmospheric dust. Turf surface and trees are able to 

absorb pollutants such as nitrogen oxide, sulfur dioxide and carbon monoxide, ozone and particulate 

matter, produced by the gaseous emissions in residential or manufacturing areas (Nowak et al., 2004). 

Turfs are also able to capture the atmospheric dust that settles on the plate as condensation and 

precipitation. 

 Production of oxygen. Through the process of photosynthesis, trees and grass essences present in the 

golf course release into the atmosphere a considerable amount of oxygen. 1 m
2 

of turf surface produces 

about 5.4 kg of oxygen per day. In addition the production of oxygen relative to a tree, is around 0.31 kg 

of oxygen per day.  

 Erosion control. Recently the soil erosion is a common occurrence in hilly and mountain areas, and it is 

amplified by the increasing of heavy rainfall. An area such as a golf course that has a high density 

vegetation cover, offer a greater degree of protection respect to the erosion. 

 Environmental regeneration. A golf course represent an environmental revaluation if built in an area 

previously occupied by industries for exemple the Modena Golf & Country Club. 

Environmental concerns regarding the use of land for golf courses have grown over the past decades. The issues 

include the amount of water needed for irrigation, use of pesticides and chemical fertilizers for maintenance, as 

well as the dismantling of wetlands and other important areas of environmental protection during the 

construction of the golf club. Following are summarized some environmental adverse impacts derived by the 

presence of a golf course: 

 Impact on water resources. Water consumption is the most significant environmental impact in the 

management of a golf course. Nowadays this is a topic of great interest especially for the water 

emergency almost all regions of the world. The United Nations estimates that, worldwide, golf courses 

consume about 9.5 billion liters of water per day. On the basis of estimates compiled by the European 

Golf Association, the average water consumption for a 18-hole course, is about 1,500-2,000 cubic 

meters of water per day; this corresponds at the consumption of a 8,000 people village or at the water 

needed for the production of 2 tons of wheat.  

“During drought period and in the cases of scarcity of resources water [...] must be ensured, after human 

consumption, the priority of the agricultural use" (art.28 Italian national Law n° 36 of 5 January 1994). 

A recreational use contradicts the principle of sustainable use of natural resources advocated by Agenda 
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21 (Rio De Janeiro in 1992), is even less tolerated by the community. To minimize this inconvenience 

many golf courses are irrigated with non-potable water and rainwater collected in reservoirs constructed 

on the site. 

 Impact on soil and groundwater: The negative impact that a golf course has on soil and groundwater 

can be attributed at the fact that the turf, has to guarantee impeccable condition of uniformity and 

smoothness especially in the areas of greens and tees. In order to obtain this quality, the green surface is 

treated with chemicals such as fungicides, pesticides and herbicides, with quantity and frequency higher 

than those used in a normal agricultural cultivation. The Journal of Pesticides Reform estimates that in 

the United States in a standard golf course will employ 750 pounds per year. 
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Influence of microorganisms and bio-regulators on a Lolium perenne L. essence 

grown in a controlled environmental system 

 

 

3.1 SECTION OBJECTIVES 

The main purpose of the first experiment was to study the effects that, various growth promoter utilized in 

different agronomical contexts, have on perennial ryegrass (Lolium perenne L.). During this experiment different 

products were chosen among the commercial solutions, including the original mixture of effective bacteria EM-

RO®. These products were tested with a hydroponic system inside a growth chamber where light, temperature 

and photoperiod were controlled, utilizing a growth medium composed by a stratigraphy of sand, pumice and 

vermiculite 8:1:1.  

The effects that the microbial mixes induced on the ryegrass plants were studied considering different 

physiological and morphological parameters. Furthermore microbiological analysis where conducted in order to 

evaluate endophytic colonization of roots by EM-1 (EM-RO®) bacterial mix. 
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3.2 MATERIALS AND METHODS 

3.2.1 SEED AND PLANT GROWTH CONDITION 

The plant used in this preliminary study was Perennial ryegrass (Lolium perenne L.) provided by Fratelli 

Ingegnoli (Milan, Italy). Lolium perenne is a pilot specie commonly utilized for the preliminary cases of growth 

chamber studies (Schweinsberg-Mickan and Müller, 2009; Ervin, 2007). Inside the growth chamber was 

assembled a close hydroponic system composed by four separate lines of irrigation (Figure 20). Each irrigation 

line was assembled with a 40 L water tank, a submersible electro pump (TOP 2 – LA) to flow solution up to drip 

irrigation stick placed in each pot. The water regime was controlled by a timer that supplies irrigation solution 

for 5 minutes twice per hour at 0,1 L/min per pot. 

Pots utilized for the sowing were 10 cm diameter and 12 cm height. Pots were partially closed on the bottom 

with a plastic filter 1 mm thick, and then filled with 2 cm pumice layer and 12cm of sand, and lastly 0,5 cm of 

vermiculite (Figure 21). The growing medium was sterilized in autoclave before the preparation of the pots. 

Lolium seeds were sowed with a density of 0,7 g/pot (50 Kg/ha) and placed at depth of 1 cm.  

 

 
Figure 20: Growth chamber and close hydroponic system. . 

Trays and water tank are wrapped with aluminum in order to 

prevent the entry of light. 

 

Table 3: Ingredients of Hoagland solutions. 

Hoagland components g/L of solution 

2M KNO3 202g/L 

2M Ca(NO3)2 x 4H2O 236g/0.5L 

Ferro chelato 15g/L 

2M MgSO4 x 7H2O 493g/L 

1M NH4NO3 80g/L 

H3BO3 2.86g/L 

MnCl2 x 4H2O 1.81g/L 

ZnSO4 x 7H2O 0.22g/L 

CuSO4 0.051g/L 

H3MoO4 x H2O 0.09g/L 

1M KH2PO4 136g/L 
 

To prevent arising and propagation of algae that may inadvertently be found in some water tank and pots, all 

areas exposed to light of hydroponic circles, were wrapped with aluminum. This precaution has prevented the 

application of growth inhibitors for algae that could interfere with the microbial metabolism in the hydroponic 

solution. 
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The nutrient solution was prepared according to Hoagland and Arnon method(Hoagland,1950) and diluted 1:1 

(v/v) with distilled water (Table 3). To prevent an ionic accumulation in this close hydroponic solution, 

especially on the bottom of the tank, electro conductivity was checked every week. 

Plant water / nutrients uptake was weekly compensated with fresh nutrient solution refilled directly in the tanks.  

Growth chamber settings were set up 24°C and 70% relative humidity (RH) during the day, and 20°C and 50% 

RH in night conditions. Light was supplemented with an artificial illumination at 550 µmol photons m
-2

s
-1

. 

Photoperiod was set at 16 hours of light and 8 hour of dark condition in accord with Dudeck (1986). 

During the experiment, plants were mow 4 cm above the soil level once a week, for 60 days. The experiment 

plan was a completely randomized design, consisting of eight pots for each treatment placed in a random 

position on a shelf in the growth chamber.  

 

Figure 21: Perennial ryegrass 6 days after the germination. 
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3.2.2 TREATMENTS 

Different commercial products, composed by microorganisms, phytormones solution and nutrients were tested in 

this preliminary study (Table 4).   

Table 4: Table with the different treatments 

N° THESIS TREATMENT PRODUCER 

1° Control (Only Water) + Hoagland - 

2° Embio Bacteria’s / Green Gold (F/NF) Embio 

3° Embio Filtered Bacteria’s + Hoagland (F/NF) Embio 

4° Agrisystem Phytormones + Hoagland Fast-Speed Top, Agrisystem 

7° EM-1 (1:500) F/NF EM-RO 

8° EM-1 (1:500) + Hoagland (F/NF) EM-RO 

 

 

Green Gold (EMbio, Brunico, Bolzano, Italy) is a base microbial commercial solution marked to integrate in 

different contexts, including a lack of effective microorganisms 

in the soil.  

 

Agrisystem’s phytormone solution (HRM treatment) (Fast-

Speed Top, Agrisytem, Lamezia Terme, Italy) is a commercial 

product containing gibberellic acid (GA3) (1.65 g/l) and 

naphthalene acetic acid (NAA) (3.30 g/l). Before use, the stock 

solution was diluted 1:2000 (v/v) in distilled water.  

 

EM-1 (EM-RO
®
, Okinawa, Japan) is a commercial product 

containing many effective microorganisms in particular lactic 

acid bacteria, yeast and phototrophic bacteria.  

Before using the microbial products (Green Gold and EM-1) an 

activation step was required and it consisted in the addition of 

5% (v/v) microbial products and 5% (v/v) molasses in water. 

Activation was carried out inside a plastic container with a 

specific resistance that maintaine a fixed temperature of 35° ± 

1°C for five days (Figure 22). 

 

Figure 22: EM-1 activation. 
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Pre-Sowing treatments All treatments, including the control, were tested with and without a pre-sowing 

imbibition of the seed (priming). For each thesis, imbibition was performed dipping seeds in treatment solution 

at the same concentration used for the following 5 weeks experiment. Priming condition was set at 20°C, an 

optimum temperature for Lolium sp. (Copeland, 1978) and in a in dark condition for 6 hours. After hydration, 

seeds were washed with distilled water to remove the solution from the surface and then dried in hoven at 22°C 

for 6 hours (T.K Danneberg et al. 1992). Seeds with and without a pre-sowing imbibition were sowed in pots 

simultaneously.  

 

Filtered and Not-Fitlered treatments 

In order to study the effect of microbial solutions without microbial metabolites, each microbial treatments 

(Green Gold and EM-1) were filtered through a 0.20 µm nylon filter (Millipore). Filtered solutions were diluted 

at the same concentration of not filtered treatments (1:500 v/v) in distilled water. 

 

3.2.3 DETERMINATIONS DURING THE EXPERIMENT 

The first mowing was done 10 days after germination, when all plants reached a height of 8 cm. For the whole 

experiment duration, plants were mowed weekly at 4 cm height.  

 Before the weekly mowing, the parametric analyzes focused on the shoots heights (steam and leaves together), 

colors of the leaves (RGB and HIS scale), tear resistance, electro conductivity and pH of the water solution 

inside the tanks. After the weekly mowing, leaves were collected to measure the fresh and dry weight. Other 

parameter as total shoot length, total shoot fresh and dry weight were determined as sum of all measurements. 

 

Leaves growth and biomass 

The analysis of leaves growth in height was conducted 

before the weekly mowing. A picture for each pot were 

taken with a Canon Reflex EOS 350D placed on a tripod 

with an adjustable height in horizontal position relative to 

the plane of the leaves. With an image analysis process 

(Figure 23), the heights of the leaves were determined in 

10 points transversally along the diameter of the pot. The 

height of leaves for each pot was measured as average of 

the 10 transversally points.  After the mowing, clipped 

leaves were collected in paper bags to be weighed in 

 

   Figure 23: Lolium perenne within ligh-box. 
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laboratory. Fresh weight was measured immediately after the mowing, instead dry weight was determined  

 

Tear resistance  

Before each weekly mowing, tear shoot resistance was tested utilizing a mechanical dynamometer (PCE 

Instrument, Lucca, Italy). The method used consists in measuring the force required to tearing out of the aerial 

apparatus. The clamp placed at the base of the dynamometer, composed by small not sharp teeth, was attached to 

the base of the stem of the ryegrass plant. A red marker, placed inside the dynamometer, pointed out the 

maximum force utilized at the moment of the tear out of the stem from the soil.16 repetition were sampled for 

each plot. 

 

Image analysis 

 

Figure 24: Perennial ryegrass within the light-box during the color evaluation process. 

The image analysis was carried out considering both the RGB color space. The pictures necessary to the color 

analysis were taken previously at each mow. Pictures were taken in RAW quality by a Canon Reflex EOS 350D 

and then elaborated with APS ASSESS 2.0 image software. The iris opening and the exposure of the camera 

were set respectively to f/6,3 and 1/100 seconds.  

Plants were placed inside a light-box, assembled specifically for this experiment, in order to take pictures in 

homogeneous lighting conditions throughout all the duration of the trial. Light-box was equipped with a red 
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background (mean values R-200, G-105, B-115) to maximize the contrast with the green of the leaves (Figure 

24). Two different groups of cool-white LED provided lighting inside the lightbox: the front LED-string 

provided to a frontal lighting and the lateral illumination deleted the shadows from the background to 

homogenize the image.  

 

 

3.2.4 FINAL DETERMINATIONS 

Root growth and biomass 

60 days after sowing, plants were removed from pots and with a camera Canon EOS 350D were taken pictures 

from each plant within the lightbox. 

After this picture sampling, 50 grams of soil, cointaining rhizosphere and roots from each pot, were collected for 

future analysis of microbial flora. After that, roots were washed lightly in a tray with distilled water. Washed 

plants were extended on a flat surface and then measured in length. 

Leaves and washed roots were separated cutting the Lolium at the base of the stem. Roots and leaves were dried 

completely utilizing an absorbent paper and then measured the fresh weights were determined. After 5 days at 

50°C in a hoven respective dry weight were measured.   

 

Mycorrhizal analysis 

Mycorrhizal presence within root tissues was analyzed from 2 grams of 

roots for each sample. According with techniques utilized by Brundrett et 

al. (1984), roots of Lolium were washed lightly but accurately in distilled 

water and then transferred in a solution 10% (w/v) KOH in a 50 ml in an 

autoclave-resistant jar for tissues discoloration. Roots were completely 

submerged by KOH solution to remove cell contents and cell wall 

pigments, a widely used protocol for viewing internal features in plant 

tissues (Gardner, 1988). Different root thickness may affect the success 

of this discoloration process but in order use a standardized method, it 

was always utilized one hour heating at 90°C in a hoven. Samples were 

removed from the hoven and lightly washed again with deionized water. 

Roots were moved in a staining solution of 0.03% (w/v) CBE (Chlorazol 

Black E, Sigma-Aldrich) in lactoglycerol (1:1:1: lactic acid, glycerol and 

water) and soaked within an autoclave-resistant jars. Samples were 
Figure 25: MEIJI microscope utilized 

for the acquisition of the mycorrhizal 

pictures. 
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stained 1 hour at 90° in CBE. Roots were washed lightly and abundantly with deionized water in order to 

remove all the CBE solution from the surface of the root tissues. Before to observe VA mycorrhizal 

colonization, roots were plunged in a 50% glycerol solution and were randomly arranged in a petri plastic dish 

(90mm diameter, Sterlin
®
) marked on the bottom with a grid line (split 1cm squarest) that act as a device for the 

observation of the mycorrhizal hyphae inside the roots (Giovannetti & Mosse 1980; Brundret et al., 1996). 

Samples were observed with microscope in dark field phase contrast (MEIJI, Japan) with a 400X zoom (Figure 

25). Images were successively elaborated with the software ImageJ 1.31 (open source Java-written) in order to 

increase the image contrast and improve the analyzing of the samples. The presence of fungal hyphae within the 

root tissues was expressed as the percentage of squares with hyphae / total square of the petri plastic dish. 

 

3.2.5 MICROBIAL ANALYSIS 

Microbial analysis of the EM-1® mix 

Microbial quantification 

The original mix of bacteria known as effective microorganisms, EM-1
®
, was used to determine the bacteria 

concentration before and after the activation step. Thereby 10 mL of both EM’s solutions (activated and not-

activated) were suspended in 90 mL of sterile water. Throughout successive dilutions, and after incubation, the 

number of colony forming units/ml (cfu/ml) of Lactobacilli, aerobic mesophilic bacteria and yeasts were 

counted. This analysis was replicated three times to have a more accurate response. Specific growth medium 

were used for each genera of bacteria. Lactobacilli were inoculated in de Man, Rogosa and Sharpe Broth (MRS, 

Merck, Darmstadt, Germany) containing 0.2% (w/v) sorbic acid (Sigma–Aldrich, Milan, Italy) and 0.1% (w/v) 

cycloheximide (Sigma–Aldrich) to inhibit growth of yeasts, and incubated anaerobically for 2 – 3 days at 30°C. 

Aerobic mesophilic bacteria were inoculated in Nutrient Agar (NA, Merck) containing 0.1% (w/v) 

cycloheximide and incubated for 3 days at 30°C. Yeasts were enumerated by inoculation on Sabouraud Dextrose 

Agar (SDA, Merck) containing 0.1% (w/v) chloramphenicol (Sigma– Aldrich) after 3–5 day incubation at 25°C.  

20-30 colonies from each growing medium were selected, purified and stored at -80°C for successive phenotypic 

identification. 
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Phenotypic identification 

The colonies of microorganisms were examined by the stereomicroscope in order to identify the morphological 

characteristics and then group them by different isolates. These isolates were characterized phenotypically by 

Gram stain’s test, catalase test, oxidase test and by the profile of carbohydrate fermentation (API
®
 Test). 

 

API® Test 

 

The performance of carbohydrate metabolism was tested with API 50 CH kit (Biomérieux) for Lactobacillus 

identification in 48 hours. API 20C-AUX kit was used for yeast identification after 48-72 hour growth of cells in 

Sabouraud Dextrose Broth (SDB, Merck).  

  

PCR – genre identification 

The isolates of EM solution were analyzed for genotypic characterization, after a previous extraction of genomic 

DNA. The extraction was performed utilizing a commercial kit, the Wizard
®
 Genomic DNA Purification Kit 

(Promega, Madison, USA), which allows the extraction from a pure culture. The bacterial solution were initially 

grown overnight. Subsequently the bacterial cells were extracted from 2 mL of culture by centrifugation at 6000 

rpm for 10 minutes, and subjected to a pre-treatment to promote cell lysis by the addition of 120 μL of lysozyme 

(20 mg/mL) and 5 μL of mutanolisina (50 U/ μL). The pellet, consisting of bacterial cells, was suspended, 

transferred to 1,5 mL eppendorf and incubated for two hours at 37°C ± 1 ° C. Then samples were centrifuged 2 

minutes at 18000 rpm and the supernatant was removed.   

The bacterial cells were resuspended in 600 μL of Nuclei Lysis Solution, then they were incubated at 80°C ± 1  

°C for 5 minutes and cool down to room temperature. Successively, 3 μl of RNase Solution and the samples 

were agitated and then incubated at 37 ° C ± 1 ° C for 40 minutes and then the samples were cool down to room 

temperature. Subsequently 200 μl of Protein Precipitation Solution were added. Samples were incubated on ice 

for 5 minutes, and then centrifuged for 4 minutes at 18000 rpm to recover the supernatant containing the 

extracted DNA. To carried out the precipitation of DNA, the supernatant was transferred into new eppendorf, in 

which was previously dispensed 600 μl of isopropanol and stirred reversing, by centrifugation for 2 minutes at 

18000 rpm and removal of the supernatant was recovered DNA. Then proceed to the washing with the addition 

of 600 μl of 70% ethanol at room temperature, and the final precipitation by centrifugation 2 minutes at 18000 

rpm. The supernatant was removed and DNA was dried overnight in a sterile hood. Subsequently DNA was 

suspended in 100 μl of DNA Rehydratation Solution and incubated at 4 ° C overnight. The storage takes place at 

-20 °C.  
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The quantification and the purity of DNA were determined with a TECAN Infinite 200, at the laboratories of 

Agricultural Chemisty of DiSTA. An acceptable purity level of DNA was 1.8 – 2.0. Genus-specific PCR was 

performed according to Walter et al. (2001) to confirm the affiliation to the genus Lactobacillus.  

Molecular biology-based grouping of lactobacilli and aerobic isolates was performed by ERIC-PCR. The 

amplification reaction was performed utilizing the primers ERIC-I (enterobacterial repetitive intergenic 

consensus) and ERI-II (Ventura and Zink, 2002): 

 ERIC I: 5’ – ATG TAA GCT CCT GGG GAT TCA C – 3’ 

 ERIC II: 5’ – AAG TAAG TGA C TG GGG TGA GCG – 3’ 

 

The amplification was performed in a 20 µL solution composed by 2 µL DNA (previously diluted at 12ng/µL 

concentration) and Master Mix composed by 10 µL Hot Start Taq Plus Master Mix, 1,5 µL MgCl2,  1 µL ERIC-

I, 1 µL ERIC-II, 4,6 µL H2O and 2 µL DNA. The samples were separated by electrophoresis with a 2% w/v of 

agarose gel at 50 V for a durate of 4 hours (Figure 26). Samples were stained with ethidium bromide and 

visualized with visualized with the gel documentation system Gel DocTM XR (Bio-Rad, Hercules, CA, USA).  

 

 

Figure 26: samples stained with ethidium bromide within the electrophoresis chamber 

An Image Lab software (Bio-Rad) was used to elaborate the images taken from the extraction and a binary 

matrix has been constructed. In order to obtain the phylogenetic trees, based on neighbor-joining method 

(Tamura et al., 2011), was utilized softer Mega 5.1.  
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Microbial analysis of the samples of roots and soil 

DNA extraction 

At the end of the experiment the bacterial DNA for PCR-DGGE analysis, was extracted from the growing 

medium (sand), from the roots and from the activated EM-1. For the DNA extraction from the soil and roots was 

utilized the PowerSoil DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA). 

After being surface sterilized with consecutive washes in ethanol 70%, deionized water, NaOCl (2%) and 

deionized water for three times (Hardoin et al., 2011), root samples were frozen in liquid nitrogen and then 

minutely grinded in a mortar.  

0,250 grams of growing medium and 0,100 grams of roots were utilized for the extraction of metagenomic DNA, 

following the manufacturer’s protocol with some adjustments: 5 µL of mutanolysin (100 U/mL) and 195 µL of 

lysozyme (50mg/mL) were added to the growing medium and roots powder samples. Subsequently the samples 

were incubated at 37 ± 1°C on a rotary shaker for 120 minutes before before chemical (SDS-containing solution) 

and mechanical (bead beating on vortex at maximum speed for 10 min) cell lysis. 

The elution of DNA was performed in 100 µl of TE buffer pH 8.0 and, according to Iacumin et al. (2009).  

bacterial DNA was obtained from the activated product (Iacumin., 2009). In order to determine the concentration 

of the extracted DNA, the ratio of the absorbace at 260 and 280 nm (nfinite1 200 PRO NanoQuant) was 

measured.  

 

Characterization of bacterial communities by PCR-DGGE 

The PCR - DGGE analysis was carried out on all the samples of soil and roots. A negative control to confirm the 

absence of contamination amplifying 16S (rDNA) was used. The forward primer GC – 357 and the revers primer 

907 R universal primers 357f (Sass et al., 2001) was used: 

 GC-357 clamp: 50CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCCCTACGGGAGGCAGCAG-30 

 907 R 50-CCGTCAATTCCTTTGAGTTT-30 

A further PCR-DGGE targeting LAB (Lactic Acid Bacteria) was performed on metagenomic DNA extracted 

roots, activated EM and lactobacilli isolates, following a specific protocol (Walter et al., 2001) and using 

primers: 

 Lac1f 50-AGCAGTAGGGAATCTTCCA-30) 

 Lac2r with GC clamp 50- CGCCCGGGGCGCGCCCCGGGCGGCCCGGGGGCACCGG-30 

Using these primers a PCR fragment of about 600 and 340 bp respectively were obtained; these two primers 

were appropriate for a following DGGE analysis.  
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Figure 27: The DCode system for DGGE analysis (BIO-RAD). 

 

All the analysis in PCR-DGGE were carried out in 50 µl volume containing 1.5 U AmpliTaq Gold DNA 

polymerase (Applied Biosystem), 5 µl of 10xPCR Gold Buffer (Applied Biosystem), 200 µM of each 

deoxynucleotide triphosphate (Fermentas GmbH, St. Leon-Rot, Germany), 1.50 mM MgCl2 (Fermentas), 0.45 

µM of each primer (MWG), 2.5% (w/v) bovine serum albumin (Fermentas), 4 µl DNA templateand sterile 

MilliQ water.  

The PCR with universal primers was performed under the following thermo-cycling program: 5 min initial 

denaturation at 95°C; 35 cycles of 95°C for 30 s, 55°C for 60 s, 72°C for 40 , and by a final elongation step of 

72°C for 7 min. In according to Walter et al. (2001), the PCR with the primers Lac1f and Lac2r-GC followed the 

manufacturer’s instructions. 2 mL of samples were utilized to estimate the size and the amount of the PCR 

product by 1,5% agarose gel (w/v) electrophoresis and ethidium bromide staining. 

The DGGE analysis was basically performed as first described by Muyzer et al. (1993), using a DCode System 

apparatus (Bio-Rad). Polyacrylamide gels [7% (w/v) acrylamide:bisacrylamide (37.5:1) (Bio-Rad)] in 1 x Tris-

Acetate-EDTA (TAE) buffer were prepared using a Bio-Rad Gradient Delivery System (Model 475, Bio-Rad), 

using solutions containing 35–55% denaturant [100% denaturant corresponds to 7 M urea (Sigma–Aldrich) and 

40% (v/v) formamide (Sigma–Aldrich)]. The electrophoresis was run at 55 V for 16 hours at 60°C. Gels were 

stained in a solution of 1x SYBR-Green (Sigma-Aldrich) in 1x TAE for 20 min and their images captured in UV 

transillumination with Gel DocTM XR apparatus (Bio-Rad). 
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Selected dominant bands were cut from the gel with a sterile scalpel and DNA was eluted by incubating the gel 

fragments for 16 hours in 50 µl of sterile deionized water at 4°C. 2 µl of the solution were then used as template 

to re-amplify the band fragments using the same primers without the GC-clamp and the same PCR conditions. 

 

Sequence analysis of 16S rDNA of pure cultures and DGGE bands 

On the basis of phenotypic and genotypic investigations, representative isolates (lactobacilli and aerobic 

bacteria) were selected and the 16S rDNA amplification performed with universal primers 27f and 1492r (Lane 

D.J., 1991). The amplified 16S rDNA were then purified (PCR clean-up; Macherey-Nagel GmbH & Co. KG, 

Germany) and sequenced (Eurofins MWG Operon, Ebersberg, Germany). Concerning PCR-DGGE bands, the 

obtained amplicons were sequenced with primer 907r and Lac1f. Sequence chromatograms were edited and 

analyzed using the software programs Finch TV version 1.4.0 (Geospiza Inc., Seattle, WA, USA) and obtained 

sequences were subjected to taxon classification using RDP classifier, an available tool at the RDP-II website 

(http://rdp.cme. msu.edu/classifier/classifier.jsp). Moreover, SeqMatch search was used to find the closest match 

for each 16S rRNA fragment (http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp) (Cole et al., 2009). 
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3.3 RESULTS 

3.3.1 MORPHOLOGICAL AND PHYSIOLOGICAL DETERMINATIONS 

Growth of the leaves 

Perennial ryegrass (Lolium perenne L.) clods were extracted from respective pots at the end of the 60 days 

experimental period (Figure 28). Preliminary observation of the perennial ryegrass plants showed visual 

differences determined by microbial treatments (Embio and EM-1) and phytormones solution. Plants treated 

with Embio and phytohormonic solution appeared more vigorous if compared to the control. EM-1 mixes 

determined an habitus more compact with leaves and roots shorter than the control and other treatments.  

 

 

Figure 28: Lolium perenne L. habitus after the60 days experimental period. From left to right are shown Lolium clods 

thesis: 1-Control, 2-Embio NF (Embio not filtered), 3-Embio F (Embio filtered), 4-EM-1 NF (EM-1 not filtered), 5-EM-1 F 

(EM-1 filtered), 6-HRM (Green Gold hormone solution). 
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Table 5:   

Effects of different treatments on leaf apparatus. Leaf analysis on Leaf length at 60 DAT (LL), Leaf Fresh Weight at 

60DAT (LFW), Leaf Dry Weight/Leaf Fresh Weight percentage ratio (LDW/LFW) and Lead Dry Weight/ Leaf Length 

(LDW/LL). 

Leaf analysis Control Embio NF Embio F EM-1 NF EM-1 F HRM 

LL (cm) 7,04 ± 0,58 b 6,32 ± 0,82 c 7,95 ± 0,61 a 4,68 ± 0,24 d 4,43 ± 0,64 d 7,94 ± 0,66 a 

LFW (g) 4,05 ± 0,54 c 6,33 ± 1,28 b 6,11 ± 1,10 b 3,35 ± 0,20 c 3,69 ± 0,67 c 9,86 ± 1,62 a 

LDW/LFW (%) 18,84 ± 1,92 a 13,47 ± 0,73 b 13,82 ± 0,69 b 20,54 ± 1,45 a 20,62 ± 4,13 a 12,64 ± 1,78 b 

LDW/LL 

(mg/cm) 
1,08 ± 0,19 c 1,39 ± 0,27 ab 1,07 ± 0,18 c 1,48 ± 0,16 ab 1,70 ± 0,28 a 1,56 ± 0,17 ab 

 

Not filtered and filtered Embio determined opposed effects on the LL values, inducing respectively a reduction 

of 10% and a growth of 12% respect to the control. The EM-1 microbial mix determined similar effects for filter 

and not filtered conditions inducing a reduction of foliar length of 37% and 34% compared to the control. Green 

Golf hormone solution promoted the length of the leaves similarly to filtered Embio, showing significant 

difference respect to the control. Leaf fresh weight (LWF) was increased by microbial mixes without statistical 

differences between filtered and not filtered conditions within the same product. Hormones solution determined 

the higher foliar biomass production at the end of the experimental period, increasing the foliar yield of 143% 

compared to the control. The dry-fresh weight ratio (LDW/LFW) showed a significant and similar effect of 

Embio NF, Embio F and HRM solution in the diminution of the dry biomass content with a reduction of 28%, 

27% and 31% respectively compared to the control. The leaf dry biomass per unit of foliar height (LDW/LL) 

showed similar effects for EM-1 microbial mixes and HRM solution, whereas Embio microbial mixes had 

different results. EM-1 preparation determined a 56% improving of LDW/LFW ratio compared to the control. 

However, Embio and EM-1 not filtered and Hormone solution increased the biomass yield per cm leaf if 

compared to the control.  

 

Tear resistance 

The tear test was conducted on the Lolium plants at the end of the experimental period. The graph below (Graph 

1) shows the values obtained by tearing the leaves at the base of the collar with a mechanical dynamometer. 

Embio NF and EM-1 NF determined the higher values, with values improved by 59% and 53% respectively if 

compared to the control. Embio filtered mix and phytormone solution showed similar significant differences 

respect to the control improving the tear resistance by 37% - 38% compared to the control. EM-1 filtered mix did 

not determined tear off effects. 
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Graph 1: Tear off resistance of Lolium perenne L. Analysis were conducted at the end of the experimental trial (60 DAT) 

in a growth chamber at DiSTA.  

 

Image analysis 

The image analysis was conducted measuring individually the values of the three color channels in RGB space. 

The pictures were captured within a light-box in order to homogenize the lighting conditions of the environment 

(Figure 29) and were afterward analyzed with Assess software (for a complete description of the picturing 

process and analysis refer to the relative Materials and Method section).  

 

Figure 29: Leaves of a Lolium perenne L. pot. Pictures were isolated from the red screen in the background and analyzed 

only from the 4 cm mowing height. Leaves section utilized for the color analysis were processed in Assess image analysis 

software. 
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The leaves’ color analysis shows an intensification of the color due to the tested product. Ryegrass treated with 

Control thesis (water and Hoagland solution) is placed at higher values for Red, Green and Blue, therefore the 

grassy surface showed the brightest coloration. Between the different tested products the phytohormone thesis 

seemed to have darkened the color of the leaves.  

To assess the statistical significance of the differences highlighted in graph 2, a MANOVA test has been 

conducted: The red, green and blue color values measured from different pots (130 sampling points for each pot) 

have been used as dependent variables, while the treatments / control as fixed factors. The test reported a 

significant difference between the factors (F (15, 2131) = 64,043, p<0,005), and it was therefore followed by a 

Tukey’s post-hoc analysis. The post-hoc test showed that the Control was significantly different from all the 

treatments in the whole color space, while EMBIOF and Phytohormone, instead, resulted not significantly 

different from each other in the whole color space. EM1F and EM1NF showed non-significant difference in both 

red and green, but a significant difference in the blue. For a detailed report of the test results refer to Table X in 

the Appendix. 

 

 

 

Graph 2: 3D scatter plot of the color space in RGB mode. Three axes indicate different color variables X:Green, Y: Red, Z: 

Blue 

 

A cluster analysis (squared distance, signle linkage) has been conducted in order to obtain a graphic 

representation of the differences suggested by MANOVA test. The following plot (Fig X) shows a dendrogram 

of growth chamber trial where the different treatments / control were clustered on the basis of the RGB 

variables. 
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Graph 3: Dendrogram representing the differences by mean color obtained for different treatments within growth chamber.  

 

The treatments Embio NF, Embio F and EM-1 NF form a well distinct cluster, while the Control is a clearly 

separate entity with a much longer clustering distance. EM-1 and Phytohormone treatments are clustered 

independently and separated comparing to the control. 

 

Growth of roots 

 

Graph 4: Root growth values at 60 DAT.  

The roots of the perennial ryegrass showed the highest growth with the application of phytohormone treatment, 

with an increasing of 73% if compared to the control. Embio bacterial mix induced a growth of 35% - 38% (not 

filtered and filtered respectively) comparing to the control. A statistical difference was not detected between the 
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two Embio treatments. EM-1 showed a root development less pronounced then Embio theses but higher 

comparing to the control. A significant statistical difference was found between the two EM-1 treatments 

examined. 

 

Biomass of roots 

 

Graph 5: Dry biomass of roots/Fresh biomass of roots percentage ratio (DWR/FWR %) at 60 DAT. 

 

The dry / fresh biomass ratio showed different effects determined by theses tested (Graph 5). Embio treatments 

determined a 18% - 21% decreasing compared to the control and did not show statistical differences between not 

filter and filtered solution. Not filtered EM-1 mix showed an increasing of 19,3% comparing to the control 

otherwise filtered EM-1 did not determined a significant difference respect to the control. Phytohormone 

solutions, similarly to Embio solutions decreased the dry / fresh ratio by 27,4% comparing to the control. 

 

Graph 6: Dry weight of roots / length of roots ratio graph. The DWR / LR ratio indicated the mg of root per cm of roots. 
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DWR / LR ratio showed a similar effect of both Embio solutions to determine a decreasing of dry biomass for 

length of root. Not filtered EM-1 bacterial solution determined an increasing  by 15,5% of the DWR/LR ration if 

compared to the control. Filtered EM-1 solution decreased the DWR/LR ratio by 29,4% with significant 

difference with the control thesis. Phytormones solution showed a similar effect compared to Embio theses. 

 

Mycorrhizal analysis 

The presence of entophytic mycorrhizal within the root tissues was conduct utilizing Chlorazol Black E (CBE), a 

specific stain for fungal hyphae, as described in the concerning paragraph (M&M 1). The analysis of 

mycorrhizal presence in the root tissues did not reveal the presence of mycorrhizal hyphae for all treatments 

applied. Some death spores were found but were presumably a remnant of the sand used as growth medium 

before to be autoclaved. As shown in the picture below (Fig 30), following the root pigments removal through 

KOH treatment, root tissues was devoid of blue-stained hyphae characteristic of arbuscular mycorrhizae 

presence focused by CBE. 

 

Figure 30: microscope captured picture of Lolium perenne roots.  
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3.3.2 MICROBIAL ANALYSES 

Microbial analysis of the EM-1® mix 

Microbial quantification 

Lactobacilli, total aerobic bacteria and yeasts were counted on MRS agar, SDA and NA respectively. The 

bacteria counts evidenced that activation step revitalized the inoculum but did not increase the bacterial number 

(Graph 7). Lactobacilli were the most represented group of microorganisms, being at levels of 10
6
 cfu/ml, while 

total aerobic bacteria and yeast were counted at 10
5
 sfu/ml and 10

5
 cfu/ml respectively.  

 

Graph 7: total yeast, aerobic bacteria and lactobacilli content (UFC/mL) in the Not-Activated EM-1 and Activated EM-1. 

 

Phenotypic identification 

The isolated colonies were observed at the stereomicroscope and have been identified the main morphological 

characteristics. The morphological analysis of the isolated colonies conducted with the optical microscope 

allowed to certify, for all strains isolated, presumptively lactic acid bacteria, the presence of stick morphology. 

The bacteria isolated in TSA showed a rod-shaped and could form groups of two, three, or more individuals. The 

morphological observation of the isolates in Sabouraud DA confirmed their belonging to the group of yeasts. 

 

Figure 31: View with a optical microscope by immersion (1000X) of a group of lactobacilli (gram stained). 
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API® Test 

The phenotypic identification conducted on lactobacilli and yeast by the analysis of the fermentation profiles and 

assimilation of different carbon sources, has allowed a preliminary identification to species level of microbial 

isolates. The metabolic profiles of lactobacilli and yeasts were analyzed with APIWEB® software, utilizing two 

different kit: API50 CHL® and API20 C AUX® for lactobacilli and yeasts respectively (Figure 32). Utilizing 

the API50 CHL® test, strains LA2, LA3, LA6, LA8, LA9, LA10, LA11 and LA12 were attributed to the specie 

Lactobacillus brevis, while strain LA7 was instead identified as Lactobacillus buchneri (Table 7). 

 

Figure 32: Fermentation profile of 50 galleries API 50 CHL® obtained after 72hours of fermentation. On the left: LA6 

strain, identified as Lactobacillus brevis 2; on the right LA7, identified as Lactobacillus buchneri. 

The identification of yeasts isolated was performed with the API20 C AUX® test. Yeasts identified strains were 

L1, L2 and L3 to L4 species as Candida utilis and the species as Candida krusei / inconspicua (Table 8). 

 

STRAIN Identification % 

LA 1 nd 

LA 2 Lactobacillus brevis 3 (94,0%) 

LA 3 Lactobacillus brevis 2 (95,1%) 

LA 4 nd 

LA 5 nd 

LA 6 Lactobacillus brevis 2 (99.9%) 

LA 7 Lactobacillus buchneri (94,9%) 

LA 8 Lactobacillus brevis 3 (99,7%) 

LA 9 Lactobacillus brevis 2 (99.9%) 

LA 10 Lactobacillus brevis 3  ( 99.8%) 

LA 11 Lactobacillus brevis 3 (78,9%) 

LA 12 Lactobacillus brevis 3 (97,3%) 

L. brevis ATCC 

14869 
Lactobacillus brevis 3 (99,7%) 

L. buchneri 4005 Lactobacillus buchneri (95.4%) 
 

STRAIN Identification % 

L 1 Candida utilis (99.8%) 

L 2 Candida utilis (94.8%) 

L 3 Candida utilis (97.3%) 

L 4 
Candida krusei/inconspicua 

(84.5%) 

Table 8: specie of yeasts identified with the metabolic 

profile elaborated by APIWEB software 

Table 7: specie of lactobacilli identified with the analysis 

of metabolic profile and elaborated by APIWEB software. 
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Most of the Lactobacillus fermented L-arabinose, ribose, D-xylose, galactose, glucose, fructose, mannose, 

melibiose, gluconate and 5-cheto-gluconate. Six of the isolates (LA1, LA4, LA5, LA13, LA14 and LA20) 

fermented only galatcose, glucose, fructose after five days incubation. Six strains (LA6, LA9, LA15, LA17, 

LA22, LA25) could also grow on mannitol , maltose, melezitose, raffinose and D-arabitol. In addition LA6 and 

LA25 ferment melibose and sucrose. A group of six isolates was positive to arabinose, ribose, D-xylose, 

galactose, glucose, fructose and gluconate. The remaining seven strains ferment L-arabinose, ribose, galactose, 

glucose, fructose, gluconate and 5-ketogluconate and hydrolyze esculin; five of them were also positive to a-

methyl-D-glucoside, cellobiose, maltose, melibiose and raffinose, while the other two to sucrose and xylitol.  

 

PCR – genre identification 

The identification of lactobacilli and aerobic bacteria was performed with a method of molecular identification, 

based on a PCR clustering aggregation. Previously the extraction of genomic DNA was necessary. DNA 

extracted from isolated strains was quantified and reported in the following table:  

Table 9: Concentration of Lactobacilli. 
 

Lactobacilli DNA  

Strain 
Concentration 

ng/l 
RATIO 

LA 1 41.8 2.15 

LA 2 66.8 1.89 

LA 3 32.7 2.16 

LA 4 414.3 2.11 

LA 5 152.4 1.90 

LA 6 246.9 2.17 

LA 7 - - 

LA 8 97.3 1.97 

LA 9 57.8 2.06 

LA 10 62.8 2.01 

LA 11 49.9 1.89 

LA 12 673.7 1.95 

Table 10: Concentration of aerobic bacteria. 
 

 Aerobic bacteria DNA 

Strain Concentration 

ng/l 

RATIO 

A 1 243.7 2.06 

A 2 92.9 2.01 

A 3 666.7 1.48 

A 4 374.5 2.06 

A 5 116.2 2.06 

 

The DNA extraction conducted allowed obtains a high purity degree of genomic material, with main values 

between 1.89 and 2.17. Only the strain A3 had a value significantly lower (1.48), which has indicated a 

contamination by protein and the subsequent exclusion from future tests.  

The identification of lactobacilli by API® test has decreed the belonging to the Lactobacillus genus from many 

strains. The confirmation was obtained running a PCR-genre specific (specific for Lactobacillus) performed on 
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all isolated strains and the positive control L. brevis ATCC 14869 (L. br). The amplification confirmed the 

presence of a single band and then the belonging to the genus Lactobacillus for all the strains (Figure 33). 

 

Figure 33: PCR-genre specific: fingerprints of lactobacilli strains. 

 

The isolated of lactobacilli and aerobic bacteria were genetically grouped using ERIC-I and ERIC-II.  

The amplification of the DNA extracted from lactobacilli was shown by electrophoresis (Figure 34.a). The 

analysis of fingerprinting allowed to group 12 strains from the EM-1 solution in 6 groups. On the basis of the 

fermentation patterns and genotypic results a representative isolate from each group (LA1, LA3, LA6, LA7, LA9 

and LA12) was selected for sequencing of the 16S rRNA gene. 

The amplification of the DNA extracted from aerobic bacteria was shown by electrophoresis (Figure 34.b). The 

genotypic grouping and the sequencing results allowed the selection of five groups. As for lactobacilli a 

representative isolate from each group (A1-A5) was selected for sequencing of the 16S rRNA gene. 

 

 

Figure 34: ERIC-fingerprinting. 34.a lactobacilli electrophoresis. 34.b Aerobic bacteria electrophoresis. 
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Strains belonged to Stenotrophomonas maltophilia (ten isolates, three different strains), Microbacterium 

trichotecenolyticum (seven isolates) and Escherichia coli (eight isolates) (Table 11). Twenty-five yeasts isolated 

from SDA were identified by API20C AUX1 as Candida utilis (15 isolates) and Saccharomyces cerevisiae (ten 

isolates).  

Table 11: Strains isolated from EM-1 product. 

Isolated strain bp Accession Closest match Accession S_ab DGGE
a
 

DGGE 

profile 

La1 1371  Uncultured compost bactium FN667288 0.972 8 F-EM, EM 

La3 809 JX426086 Lactobacillus buchneri HM162413 0.995 p7 EM•1® 

La6 1439 JX426087 Lactobacillus parafarraginis AB262734 1.000   

La7 808 JX426088 Lactobacillus buchneri AB425940 1.000   

La9 1390 JX426089 Lactobacillus parafarraginis AB262734 1.000 p5, 3 EM, EM•1® 

La12 1441 JX426090 Lactobacillus diolivorans HM218272 0.996   

A1 1382 JX426091 Stenotrophomonas maltophilia HM355743 0.999   

A2 1386 JX426092 Stenotrophomonas maltophilia HM355743 1.000   

A3 1395 JX426093 Stenotrophomonas maltophilia HM355615 0.999   

A4 1385 JX426094 Escherichia coli CU928161 0.996   

A5 1370 JX426095 
Microbacterium 

trichothecenolyticum 
HM032796 0.994   

 

 

Microbial analysis from the samples of roots and soil 

Utilizing the Power Soil DNA Isolation Kit (MO – BIO) the microbial DNA was extracted from the roots and 

the growing medium. With this isolation kit was obtained a good level of purity of genomic DNA as shown in 

the following table:  

Table 12: Concentration of the DNA extracted from roots (left) and from soil (right), with purity ratio. 

 

Roots Concentration (ng/l) RATIO 

CTR r 54.0 1.86 

NFI r 71.0 1.86 

NFNI r 45.6 1.83 

FI r 57.9 1.82 

FNI r 51.1 1.82 

GG2 r 32.6 1.88 

 

Soil Concentration (ng/l) RATIO 

CTR s 5.20 1.37 

NFI s 3.20 1.68 

NFNI s 3.00 2.50 

FI s 3.50 1.40 

FNI s 2.80 3.50 

GG s 2.40 2.00 



  

67 
 

The DNA extracted from the roots shown a good quality level, with a ratio between 1.81 and 1.88. The DNA 

extracted from the sand had a very low concentration and shown a low quality with ratio values diverging from 

the optimal range values. 

 

Characterization of bacterial communities by PCR-DGGE 

Genomic DNA from sand and surface-sterilized root was used to evaluate the impact of the different thesis on 

their microbial profile using a PCR-DGE. Sixteen PCR-DGGE bands have been identified by sequencing (Table 

13).  

The PCR-DGGE analysis revealed the presence of a complex variety of microorganisms in the roots (Fig X.B) 

and sand (Fig. 35.A). The roots’ profiles revealed a consistent bacterial presence with EM-1 and F-EM-1 thesis 

(Fig 35.B).  The band n°16 was the biggest band in roots’ profile PCR-DGGE, corresponding to the chloroplast 

DNA and the preferential amplification of have reduced the yield of amplification of microbial DNA, which 

clearly has given rise to fainter bands, difficult to be excised. Band n°13 was present in all root profiles, and 

subsequent sequencing revealed a clos similarity to Ohtaekwangia kribbensins.  

Sand and root profile showed high similarity of band n° 14 and 15 (root DGGE) and n°2 and 3 (sand DGGE). 

Exclusively in Filtered-EM-1 were presence bands n° 8, 9 and 10, corresponding to Flavobacterium sp. 

Leptospira spp. and Cytophaga sp., microorganisms generally present in the water. 

EM-1 treatment showed the presence the bands n°12 and n°14, respectively close related to Bacteroidetes 

bacterium (bacteria of water) and Hydrogenophaga spp.(root endophyte). 
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Table 13: PCR-DGGE bands from soil 

treated microorganisms and phytohormons.   

DGGE 

band 

Phylogenetic group 

1 Lewinella (28%) 

2 Hydrogenophaga (100%) 

3 Fibrobacter (55%) 

4 Vogesella (100%) 

5 Polaromonas (97%) 

6 Lactobacillus (99%) 

7 Acidovorax (50%) 

8 Flavobacterium (100%) 

9 Leptospira (100%) 

10 Cytophaga sp. (55%) 

11 Niastella (100%) 

12 Ohtaekwangia (90%) 

13 Ohtaekwangia (100%) 

14 Hydrogenophaga (100%) 

15 Fibrobacteres (44%) 

16 Chloroplast 
 

Figure 35: DGGE bands obtained by amplifying metagenomic DNA with universal primers from sand (A) and roots (B). 

Treatments was: CTR (control), HRM (hormone), F-EM (Filtered EM-1 solution), EM (EM-1 solution) 

 

A further PCR-DGGE was performed, utilizing specific primers targeting LAB (Lactic Acid Bacteria) to better 

investigate the presence of lactobacilli within root tissues. The colonization of lactobacilli obtained by CTR, 

HRM, F-EM and EM-1 treatments and Lactobacillus isolates (Lactobacillus sp. LA1, L.buchneri LA3, 

L.parafarraginis LA9 and L. diolivorans LA12) were shown in the PRC-DGGE profiles (Fig X), and in the 

alongside table are reported the best-match identified bands. L. parafarraginis (LA 9) was found in the root 

tissues of plants treated with EM (bands 3 and 5). Lactobacillus spp. (LA 1) was observed in the roots treated 

with EM and F-EM (bands n°8). Bands 2, 5, 6 and 7, found in roots treated with EM, were closely related to L. 

sanfranciscensis. Band n°1 was found in roots treated with EM and revealed a closely match to L. pentosus. 

Differently by plants treated with EM, the EM-1® activated product did not show the presence of LA1, L. 
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sanfranciscensis and L. pentosus. Control and HRM treatment did not revealed the presence of microbial profile, 

due to the absence of lactobacilli in the distilled water and in the phytohormone solution respectively. 

 

 

Table 14: Lactobacilli identified from the root tissues of 

Lolium perenne L. 

DGGE 

band 

Phylogenetic group Closest match 

1 Lactobacillus (100%) Lactobacillus pentosus 

2 Lactobacillus (100%) Lactobacillus sanfranciscensis 

3 Lactobacillus (100%) Lactobacillus parafarraginis 

4 Exiguobacterium 

(100%) 

Exiguobacterium sp 

5 Lactobacillus (100%) Lactobacillus sanfranciscensis  

6 Lactobacillus (100%) Lactobacillus sanfranciscensis 

7 Lactobacillus (100%) Lactobacillus sanfranciscensis 

8 Lactobacillus (100%) Uncultured compost bacterium 

p1 Lactobacillus (100%) Lactobacillus diolivorans  

Lactobacillus farraginis  

p2 Lactobacillus (99%) Lactobacillus parafarraginis 

p3 Lactobacillus (100%) Lactobacillus diolivorans 

Lactobacillus farraginis 

p4 Lactobacillus (100%) Lactobacillus parafarraginis 

p5 Lactobacillus (100%) Lactobacillus parafarraginis 

p6 Lactobacillus (100%) Lactobacillus parafarraginis 

p7 Lactobacillus (100%) Lactobacillus buchneri 

p8 Lactobacillus (100%) Lactobacillus diolivorans 

Lactobacillus farraginis  

p9 Lactobacillus (98%) Lactobacillus zeae 

Lactobacillus casei 

Lactobacillus paracasei 
 

Figure 35: DGGE bands obtained amplifying DNA with Lactobacillus spp. specific primers from root samples, activated 

EM_1W and pure cultures (LA1, LA3, LA9, LA12). CTR, control; HRM, treatment with hormone rich solution; F-EM, 

treatment with filtered/activated product; EM, treatment with activated product; EM_1W, the activated product. 
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3.4 DISCUSSION 

 

In the first step of the experimental thesis has been studied the effects that different commercial products based 

on microbial-mixes or bio-stimulants have on the grass essence Lolium perenne L. (perennial ryegrass). The 

plants were sown in a sterilized growing medium and irrigated with a hydroponic system within a climatic 

chamber in order to simulate the growing condition of a professional sport turf.  

The primarily characterization of the EM-1 mix showed the presence of a high number of lactobacilli and yeast 

in the microbial solution. No significant differences between “activated” and “not activated” microbial solutions 

were detected. The taxonomic identification of the isolates allow to ascribe the lactobacilli to the species L. 

brevis and L.buchneri; while yeasts were principally identified as C. utilis and C. krusei. These lactobacilli and 

yeasts species are known for them activity in the bio-control against phytopathogens and pathogens of food 

(Gaggia et al., 2011). In addition these species were described as bio-degraders of organic substances, and 

therefore potentially valuable in soils with accumulations of undecomposed organic substances (Lopez et al., 

2011; Gao et al., 2008; Valerio et al., 2008). 

The morphological and physiological results allowed to determine the main effects of the different microbial 

treatments on the perennial ryegrass. The commercial microbial mix Embio determined the most vigorous 

habitus, and shown the highest elongation of roots and leaves if compared with the other microbial treatments. 

However this pronounced growth determined a substantial lowering of the dry/fresh biomass. On the other hand 

EM-1 microbial mixes determined a reduction of the growth of roots and leaves, while dry/fresh biomass ratio 

and DW/L (dry weight biomass/length) were both significantly increased. These results can be related with a 

protective role against oxidative stresses by effective microorganisms (Higa T. and Parr JF, 1994) and an indirect 

stimulation of bio-regulators such as the plant hormone’s ABA (Arshad and Frankenberger, 1998) that has 

important role in plant response to abiotic stress (Zhang et al., 2006). 

The different growth of the roots treated with the two microbial mixes (EM-1 and Embio) is an interesting result 

that could be interpreted as a different microbial composition within the two products. Indeed PGPB mainly 

content in the Embio solution have the attitude to promote the growth of roots with a phytohormone-like activity 

(Arshad and Frankenberger, 1998), while EM effectiveness would derive by the synthesis of compounds which 

protect the plants by a stress reduction (Gerhardt et al. 2009), such as the degradation of contaminants, 

protection from pathogens, provision of essential nutrients. 

The tear-off test showed the highest values for the Embio-NF and EM-1 treatments. Phytohormone solution 

determined lower values for tear-off although it showed highest values of elongation and biomass for both roots 

and leaves. This result can be related with a general influence of rhizosphere microorganisms on the root growth 

and morphology, because some of them not stimulate root elongation but also lateral root (Schönwitz and 

Ziegler, 1989) and root hair formation (Martin et al., 1989). 
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The color analysis of the leaves, showed a significant effect given by microbial treatments if compared with 

phytohormone and control: Embio-NF, Embio-f and EM-1 NF determined the darker coloration and therefore a 

better visual performance respect to the control, while the phytohormone and the control were definitely two 

separated entity. This data is a further confirmation that microorganisms, inoculated in a soil lack of microbial 

biodiversity and with a simple composition can improve the physiological conditions of the turfgrass. 

At the end of the two months experimental period, the clods of perennial ryegrass were collected in order to 

analyze the bacterial colonization within root tissues and in the rhizosphere. Before to proceed with the 

identification of the bacteria that colonized the root tissues, has been conducted a microbiological 

characterization of the products containing effective microorganisms. This solution shoed a high presence of 

lactobacilli and yeasts. The preliminary taxonomic identification of the isolates allowed to ascribe at the 

lactobacilli group mainly the species L. buchneri and L. brevis; while yeasts were principally identified as C. 

utilis and C. krusei. All these species are known for their bio-control activity against food pathogens (Gaggìa et 

al, 2011) and in addition to producing useful metabolites and degrading the organic substance (Gao et al., 2008). 

The genomic DNA extraction performed for the root tissues showed a good bacterial colonization; while in the 

rhizosphere the genomic DNA concentration resulted significantly lower. This difference may be attributed at 

the initial sterilized condition of the growing medium that determines a higher difficulty for the bacteria to 

colonize this kind of substrate (Elliot and Des Jardin, 2001). 

The real-time PCR analysis showed significant increasing of the concentration of lactobacilli within the root 

tissues for all theses if compared to the control, indicating good colonization propriety of this group of bacteria. 

The high concentration of bacteria founded in the plants treated with the phytormone solution may be 

determined by the rhizodeposition that stimulate as carbon source the macrobiotic proliferation (Mueller and 

Kussow, 2005). In addition the low concentration of bacteria detected in the control thesis is probably 

determined by the initial condition of the seeds that were not sterilized before the sowing. 

Lactobacilli are not widespread as plant growth promoting bacteria in the sport turf market but these positive 

results could lead to a possible use as beneficial bacteria and recycling of the organic matter that represent a 

objective problem in many golf courses. In addition, considering some in vitro studies on their strong activity 

against plant pathogens may have a contrast function on the onset of common turf disease (Berg et al, 2006; 

Kerry, 2000). 

The profile of microbial communities performed with the DGGE showed a higher complexity in terms of 

number of species present in the root treated with EM-1 respect all other treatments. Species isolated in this 

study (L. buchneri, L. parafarraginis and L. diolivorans) and those identified with PCR-DGGE (L. pentosus and 

L. sanfranciscensis) are commonly utilized to improve the stability of silages, thanks to the production of a wide 

range of metabolites inhibiting moulds and fungi (Holzer et al, 2003; Zhang et al, 2010). The yeasts identified 

within root tissues are common residents of soil and rhizosphere, with role of growth promotes and soil-borne 

fungal antagonists. 
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Concerning the aerobic bacteria isolated in EM-1 solution, some strain belonging to Stenotrophomonas sp., and 

Microbacterium sp., were found in strict association with plant host. S. maltophilia found in ryegrass’ roots has 

growth promotion properties previously described for some commercial crop: it promotes the production of 

antifungal metabolites and phytohormons (IAA, GA and ABA).  
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Effects of original biostimulants containing effective microorganisms and growth 

promoters on an Agrostis stolonifera putting green in a semi-field condition 

 

 

4. 1 SECTION OBJECTIVES 

In the second step of this thesis thanks to the knowledge acquired during the previous experiments, were 

developed two different original mixes composed by biostimulants and effective microorganisms. These 

solutions were tested with a water only control and a commercial product on an Agrostis stolonifera putting 

green in a semi-field condition. 

The main experiment was performed on a professional golf course putting green within the Modena Golf & 

Country Club near Maranello (MO, Italy). Furthermore the experimental trial was repeated within a growth 

chamber adopting the same protocol utilized in previous tests in order to compare the data of the two original 

microbial stimulants with the first section’s results. 

The experimental trials were performed during July and August 2012. This two months period was chosen 

because temperature and intensity of solar radiation typical of the summer period are limiting factors for the 

quality of a putting green surface. In addition the top soil temperatures of the summer were supposed to allow a 

range of optimum development for the inoculated bacteria’s.  
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4.2 MATERIALS AND METHODS 

4.2.1 LOCATION 

The second step of this experimental thesis was performed testing different treatments principally based on 

biostimulants and effective bacteria, both within a growth chamber and on a professional creeping bentgrass 

(Agrostis stolonifera) putting green. The putting green is located inside the Modena Golf & Country Club 

(Modena, Italy), a sport facility spread across an area of over one hundred hectares, that  includes two types of 

trails, an 18-hole “Beanhard Langer” championship Course, par 72, 6423 meters long, inaugurated in 1990 and a 

9-hole Executive Course, par 27, 976 meters long. 

 

Figure 36: A section of the Modena Golf & Country Club. 

The golf club was designed in the early ’80 and the construction began in 1987. It is constituted by wide greens 

and tees, smoothly winding fairways and numerous bunkers and five large water hazard (Figure 36). Actually the 

Modena Golf hosts high level competitions such as the International Open, the National Championship and other 

competitions throughout the sport season. 

 

Weather conditions 

Maranello is located in the North-East of Italy, a temperate sub-continental region, with hot - humid summers 

and cold - rigid winters. The regime of precipitations is characterized by two peaks, spring and autumn, which 

do not differ much by them for quantity, while the summer is the dry season. 

In the last two decades in Emilia Romagna was measured a wide change of the local climate if compared to the 

reference period 1961 – 1990, with significant increase of the mean temperatures (+1,1°C) during the whole 

durate of the year and of the summer peaks (+ 2°C) (Arpa Emilia-Romagna – Weather).  
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Meteorological data utilized for this thesis were collected with reference to the ARPA weather station of 

Maranello (MO, Italy), placed 14 Km from the Golf Club of Modena. The temperatures measured during the 

experimental trial showed values within the means of the period. The precipitations, has been near zero for the 

whole duration of the test, with a heavy downpour at the end of August as shown by the graph below (Graph 8). 

 

Graph 8: Observed temperatures (°C) and precipitations (mm) measured by the meteorological service of the Aeronautica 

Militare, from the weather station of Modena. 
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4.2.2 TREATMENTS 

In this experimental trial were examined two original microbial designed and formulated by the Department of 

Agricultural Sciences, University of Bologna and identified with the initials DiSTA and DiSTA plus. In order to 

compare the results a negative and a positive control were tested too (Table 15). The four thesis tested were a 

negative control (distilled water),  a positive control (commercial bacteria solution EM-1, EM-RO
®
, Japan), the 

DiSTA solution (bacteria only) and DiSTA PLUS solution (bacteria with mycorrhiza and humic acid). 

 

Table 15: Treatments examined and dilution applied for the experiment 

 

 

 

 

 

 

 

As negative control (Thesis n° 1) was used distilled water with the addition of Hoagland nutrient solution only in 

the growth chamber trial; indeed no additional nutrients were administered in the field trial in respect of the 

fertilization schedule of the current season. As positive control (Thesis n° 2) was used the commercial product 

EM-1 (EM-RO
®
, Japan), containing effective microorganisms lactic acid bacteria, yeasts and photosynthetic 

bacteria plus Hoagland solution. The "activation" of the product EM-1® was performed according to the 

procedure reported by the manufacturer, which plans to dissolve in distilled water a quantity of product equal to 

5% (v / v), together with 5% (v / v ) of molasses. The solution thus prepared was left in an incubator at 35 ° for 5 

days. Before treatment, the product was further diluted in water to a final dilution of 1:500. The choice of this 

product has been made on the basis of previous experiments conducted by the research group coordinated by 

Prof. Dinelli and the Group of Microbiology, coordinated by Dr. Diana Joy (Gaggia et al., 2013).  

On the basis of the results obtained in previous growth chamber trials, were formulated two original microbial 

based mixes, DiSTA (thesis n°3) and D-PLUS (thesis n°4). The mixtures of microorganisms were prepared 

weekly starting from pure strains reared separately according to their respective needs and growth times and then 

mixed just before the field/growth chamber inoculation. DiSTA and DiSTA PLUS were composed by the same 

bacteria matrix but differed by the following addition of furthermore biostimulants. These solutions were 

prepared weekly, using as the growth medium, respectively, the MRS agar (Merck, Darmstadt, Germany) and 

the ground Sabouraud Dextrose Agar (Merck, Darmstadt, Germany ). The bacteria were incubated for 4 days at 

N° THESIS TREATMENTS DILUITION PRODUCER 

1° Distilled water  - 

2° EM-1 (1:500) 1:500 EM-RO 

3° DiSTA 1:500 DiSTA 

4° D-PLUS 1:500 DiSTA 

*No additional fertilizers utilized in the putting trial 

** Nutrient solution (Hoagland) added in the growth chamber trial 
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37 ° under anaerobic conditions, while the yeast for 48 hours at 25 ° aerobically. The different genera of bacteria 

after the incubation period reached an average concentration of 10
8
 ufc. The concentration of bacteria in the 

microbial mixtures was checked by plate counts. 

The colonies were removed and re-suspended in saline (NaCl 0.8%) and then were diluted 1:500 in distilled 

water. The product DiSTA plus were added 3 g of spores of mycorrhiza and 3 mL of humic acid. Within a few 

hours after preparation of the products, they were transported to the experimental field for the application. 

The bacterial mix of DiSTA and DiSTA PLUS (Table 16) were composed by the following ingredients: 

 

Table 16: DiSTA (Blue) and D-PLUS (Red) content. 

D

i

S

T

A 

D

-

P

L

U

S 

Strain’s code Identification Origin Probable action  

Bacteria    

LB2 L. buchneri Corn silage Antagonistic-protective action (competitor 

against pathogens such as fungal and 

bacteria) 

LB6 L. parafarraginis Corn silage Antagonistic-protective action (competitor 

against pathogens such as fungal and 

bacteria) 

LB8 L. diolivorans Corn silage Antagonistic-protective action (competitor 

against pathogens such as fungal and 

bacteria) 

LB9 L. plantarum Corn silage Antagonistic-protective action (competitor 

against pathogens such as fungal and 

bacteria) 

TS1 Stenotrophomona

s maltophilia 

Forest soil Degrading-destructive action (reduction of 

the thatch) 

TS12 Bacillus subtilis Forest soil Degrading-destructive action (reduction of 

the thatch); 

Anti-bacterial and anti-fungal action against 

pathogenic species 

SB1 Candida sp. Forest soil Antagonistic-protective action (competitor 

against pathogens such as fungal and 

bacteria) 

 Mycorrhizae    

  Glomus 

intraradices 
Forest soil Protective function, reduction of biotic and 

abiotic stresses. Increasing of the nutrient 

up-take and translocation of mineral 

elements through internal arbuscular 

structures. 

 Humic acid    

  Leonardinte Biodegradation 

of lignite 

Improving of the electronic cation exchange 

and physical and chemicals soil’s 

proprieties, promotion of the plant’s growth. 
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Application of the products in growth chamber and on the putting green 

The treatments were applied weekly for a period of two months, between July 10 and September 11 2012. For 

the growth chamber trial, the different treatments were spilled in relative water tank and brought in circulation 

from the pumps of the close hydroponic system.  

In the golf course’s trial the treatments (Figure 36) were applied during the closing day to avoid any leakage or 

contamination given by the trampling of athletes. Two shoulder-pump were used to spray the different solutions: 

one pump was first used for spraying of the water only control and then of the EM-1 microbial solution, while 

the other pump was used for spraying the DiSTA microbial solution and then D-PLUS microbial and 

biostimulants solution. Within a few minutes from the application of the treatments the irrigation system around 

the experimental area was turn on for two minutes to promote washing of the products from the leaves and the 

absorption in deeper layers of the turf. 

 

Figure 37: pictures featuring two subsequent steps of the treatment’s application on the putting green. Spring the products 

on the left and the successive washing by the irrigation system on the right. 

 

Growth chamber trial 

For the entire durate of the growth chamber trial (Figure 38) was followed the same protocol utilized in the 

previous experiment in order to grow up the plants in the same condition and to compare the new data with those 

collected in the first step. The perennial ryegrass was sown in 12 cm of autoclaved sand growing medium, with 2 

cm pumice on the bottom and 0,5 cm of vermiculite as upper layer. Water and nutrient solution (Hoagland 

diluted 1:1 with distilled water) were supplied with four separated closed hydroponic system, in order to 

maintain constantly separated the different microbial treatments.  

Light was supplemented with an artificial illumination at 550 µmol photons m
-2

s
-1

. Photoperiod was set at 16 

hours of light and 8 hour of dark condition. Growth chamber settings were set up 24°C and 70% relative 

humidity (RH) during the day, and 20°C and 50% RH in night conditions. 
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Figure 38: Perennial ryegrass plants in the early stages of growth inside the growth chamber. In the picture are shown the 

pots with drip irrigation system and the aluminum which closes the space of light infiltration. 

 

 

The Hoagland nutrient solution (Table 17) added to each thesis to ensure a balance micro and macro nutrient 

supply had the following mineral composition: 

Table 17: Hoagland solution components 

Hoagland components g/L  

2M KNO3 202g/L 

2M Ca(NO3)2 x 4H2O 236g/0.5L 

Iron chelate 15g/L 

2M MgSO4 x 7H2O 493g/L 

1M NH4NO3 80g/L 

H3BO3 2.86g/L 

MnCl2 x 4H2O 1.81g/L 

ZnSO4 x 7H2O 0.22g/L 

CuSO4 0.051g/L 

H3MoO4 x H2O 0.09g/L 

1M KH2PO4 136g/L 
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Putting green trial 

The experimental green on which was held the field trial was located in the Modena Golf & Country Club 

(Modena, Italy). The putting green was built and managed in according with the USGA guideline (USGA, 

1994). It was placed at the end of the hole n°6 and consisted in a total surface of 250 m
2 
(Figure 39). 

As well as all other putting green of the Modena Golf club, the only grassy essence contained within was the 

Agrostis stolonifera, variety Penncross, the most common specie utilized for this kind of sports turf surface in 

the northern Italian distribution area. The growing medium of the putting green was composed by an artificially 

constructed soil. This was textured with a 30 cm layer composed by a mixture of 80% sand and 20% peat, 10 cm 

of gravel and then the drainage system. 

During the two months of the experimental period, the mowing of the grass was reduced from a frequency of 

five times per week to one time per week. This management changing was decided in order to study the effects 

of the different thesis on leaves. In addition, even some extraordinary maintenances were interrupted from June 

until September such as the aerification. 

During the test run, all chemical treatments, such fungicides and pesticides were interrupted in order not to 

interfere with the metabolism of the microbial component present in the applied treatments. Furthermore this 

interruption has also allowed to verify the effectiveness of the thesis tested against some common diseases of the 

putting green such as dollar spot (Sclerotinia homoeocarpa). 

 

Figure 39: The putting green n°6 at the Modena Golf , before the beginning of the treatments (May 2012). 
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Fertilization schedule 

In agreement with the program scheduled by the green keeper of the Golf Club, the 27
th
 March 2012, was made 

the first treatment of the season using a granular fertilizer starter Lebanon (Herbatech, Italy), based Meth-Ex 40 

methylene urea. The nitrogen present in the product was released in times ranging between 8 and 12 weeks after 

application. Subsequently, a second treatment of fertilizer was applied to the completion of the test, in date 29
th
 

August 2012. This second treatment was carried out with Nitrophoska® Start 18-24-05 (Compo, Italy) to ensure 

proper nutrient balance of the turf surface at the end of the summer season. The characteristics of both the 

fertilizers used are shown in Table 18 below: 

 

Table 18: Specs and dosages of treatments. 

LEBANON (HERBATECH, ITALY) NITROPHOSKA
®

 START (COMPO, ITALY) 

Title: 16 – 25 – 12 Title: 18 – 24 – 05 

Total Nitrogen (N) …..………...……….16% Total Nitrogen (N)………………………..18% 

11.8% Ammoniacal Nitrogen 1.6% N Nitric Nitrogen 

1.2%  Water Insoluble Nitrogen 4.8% N Ammoniacal Nitrogen 

0.9% Urea Nitrogen 5.0% Urea Nitrogen 

2.1% Other Water Soluble Nitrogen 6.6% N isobutilidendiurea 

Available Phosphate (P2O5)…………. 25.0% Available Phosphate (P2O5)……….……...24% 

Soluble Potash (K2O) ….…………….12.0% Soluble Potash (K2O)………………………5% 

Solfur (S) ………………………….......2.2% Iron (Fe)…………………………………....1% 

Chlorine (Cl) not more than……...……8.0% Zinc (Zn)…………………………………...1% 

 Manganese (Mn)…………………………0,5% 

Dosage: 20 g/m
2
 Dosage: 25 g/m

2
 

Date of application: 27/03/2012 Date of application: 29/08/2012 
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The test was structured according to a randomized block design with three replications. The parcels had 

dimensions of 1 m wide and 1 m in length, with a total area of one square meter. Each experimental plot resulted 

spatially isolated from the other, with distances between the various parcels of 2 meters in order to lower the risk 

of interference between the different microbial treatments (Figure 40). 

 

 

Figure 40: Scheme of the putting green experiment: randomized block design with three replications. Colors white 

(Control), Blue (EM-1), Yellow (DiSTA) and Red (D-Plus) represent the different treatments. 

 

4.2.3 GROWTH CHAMBER ANALYSIS 

Growth of leaves and biomass production 

Every week the growth of leaves and the biomass production were determined. To measure the height of leaves a 

picture of the plots was taken inside a light-box with cool led lighting and red background to maximize the 

contrast of the leaves. 

A picture for each pot were taken with a Canon Reflex EOS 350D placed on a tripod with an adjustable height in 

horizontal position relative to the plane of the leaves. With an image analysis process, the heights of the leaves 

were determined in 10 points transversally along the diameter of the pot. The height of leaves for each pot was 

measured as average of the 10 transversally points.  After the mowing, clipped leaves were collected in paper 
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bags to be weighed in laboratory. Fresh weight was measured immediately after the mowing, instead dry weight 

was determined weighting dry biomass after five days at 50°C in a hoven. 

 

Color of leaves in RGB space 

The color of leaves was assessed with a digital analysis process utilizing Assess 2.0 (American 

Phytopathological Society, APS press), an image analysis software for plant disease quantification. The pictures 

were taken in a light-box (Figure 41). The background of the light box had the average color values Red (R) = 

195 ± 9, Green (G) = 72 ± 7 and Blue (B) = 194 ± 8. The shape of the leaves was extrapolated from the 

background thresholding with red parameters of 105 – 190. The leaves were evaluated over the 4 cm mowing 

height. The values considered for the image assessment were the RGB (red, green and blue) color space.  

 

Figure 41: Acquisition of the RGB values from the leaves of perennial ryegrass. On the left the light-box with red screen on 

the background and illumination supplied from cool white led. On the right the pot of perennial ryegrass placed within the 

light-box. 

 

Chlorophylls and Carotenoids content 

The analysis for the determination of the content in leaf pigments (clofofilla a, chlorophyll b, carotenoids) into 

the plant tissues, was performed as described by Strckland and Parsons (1972). The leaves were mowed from the 

pots, weighed (50 mg for sample) and frozen in liquid nitrogen. Afterwards frozen samples were crushed in a 
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mortar adding 10 mg of magnesium carbonate (MgCO3) to neutralize the acidity of the solutes and prevent the 

conversion of chlorophyll a in Phaeophytin. At the material crushed were added 10 mL of acetone. The solution 

thus obtained was placed in dark condition for 12 hours. After the extraction period, the sample were vortex and 

then centrifuged at 10 ° C for 10 minutes at 1000 ppm. An aliquot of the supernatant was collected and added to 

cuvettes with optical path lengths of 1 cm for reading spectrophotometer. The reading was performed at 

wavelengths of 661.6 nm (which is the maximum absorption peak of chlorophyll a), 644.8 nm (which is the 

maximum absorption peak of chlorophyll b) and 470 nm (which represents the maximum absorption peak of 

carotenoids). To calculate the concentration of the leaf pigments have been used the formulas described by 

Lichtenthaler et al., (2001): 

-  ca (µg/mL) = 11,24 * A661,6 – 2,04 * A644,8 

-  cb (µg/mL) = 20,13 * A644,8 – 4,19 * A661,6 

-  c(c+x) (µg/mL) = (1000 * A470 – 1,90 * ca – 63,14 * cb) / 214. 

 

Tearing 

Tear shoot resistance was tested by dynamometer (PCE Instrument, Lucca, Italy) at the end of the experimental 

period. The method used consists in measuring the force required to tearing out of the aerial apparatus with the 

dynamometer (Figure 42). The clamp placed at the base of the dynamometer, composed by small not sharp teeth, 

was attached to the base of the stem of Lolium. A red marker, placed inside the dynamometer, pointed out the 

maximum force utilized at the moment of the tear out of the stem from the soil. 4 measures were sampled for 

each plot. 

 

Figure 42: measuring sequence of the needed force to tear out a plant of ryegrass 
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Growth of roots and biomass production 

The determination of the root biomass was performed at the end of the experimental period. The sandy clod was 

removed from the pot and washed gently dipping the sand and roots within in a tank filled with water. Shaking 

gently the plant the sand was removed. The residues of sand remained adherent to the roots were removed 

brushing lightly with hands the surface of the roots. The roots were the dried on an absorbent sheet and then 

fresh weight was measured with a precision balance. Roots were successively placed in an hoven at 50°C for 5 

days and therefore the dry biomass was detected. 

 

Mycorrhizal analysis 

Mycorrhizal colonization within root tissues was analyzed at the end of the experimental trial on the plant of 

Lolium perenne L. following the same protocol described in the Material and Method, section 1. 

 

4.2.4 PUTTING GREEN’S ANALYSIS 

EC and pH of soil 

Analysis on the electroconductivity and pH of soil were conducted on sample of putting green topsoil. A portion 

of soil 5x2,5x2 cm volume was extracted from the putting green to be analyzed in laboratory. The volume of soil 

were weighted and adjusted at XX grams removing vertical slices.  

Sample of soil was placed in a 500 mL beaker and 100 mL of deionized water were added. The sample was 

mixed for 15 minutes with a magnetic stir bar. Values of EC and pH were analyzed with INSTRUMENT 1 AND 

2 rispectively. 

 

Chemical analysis (C/N) of soil 

Soil portion of 2.5x2.5cm section and 8cm depth was collected from the putting green’s topsoil. From all the 

samples was discarded the first 5 mm layer constituted principally by stolons. The remaining portions of topsoil 

w utilized for the analysis of the Carbon and Nitrogen content. The samples were completely dried in a hoven at 

50°C for one week. The samples were finely crushed in a ceramic mortar grinding until obtaining a 

homogeneous powder. The samples were stored until further analysis, inside a glass bell reduce the moisture 

content. The elemental analysis of the content of carbon and nitrogen was conducted with a ECS 4010 CHNSO 

analyzer, according to the method Dumas (1831). The carrier gas (helium) circulates inside the analytical circuit 
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which consists in a combustion reactor for CHNS. The carrier gas carries the combustion gas to a separation 

column gas chromatography (GC) and a thermal conductivity detector (TCD) for the CHNS analysis. 35mg (+/- 

1mg) of sample were placed in a tin capsule and at intervals fell automatically by gravity in the combustion 

reactor. The gas flow was 100 ml / min for a time of 50 seconds. The sample and tin capsule reacted with a 

volume of oxygen and burned at a 1700-1800°C. The gas separated from the GC column is detected sequentially 

by TCD. The TCD generates a signal proportional to the amount of each element in the sample. The software 

compares the ECS elemental peak with a peak of a compound standard and generates a report of analysis for 

each element expressed as a percentage by weight. 

 

Moisture of soil 

In order to detect the soil moisture determination was a collected a sample of soil of 2.5x2.5 cm section and 8 cm 

of depth from each plot. Samples were immediately weighted, coarsely fragmented and then placed in semi-

closed aluminum containers. Samples were dried in a hoven for approximately one week until the completely 

desiccation. Finally, the value of soil moisture was calculated as the difference in initial weight – final weight of 

the soil sample. 

 

Profile of soil 

The thickness of the principal layers of the putting 

green’s soil was measured weekly for the whole 

durate of the experimental trial. The effect of the 

different treatments on the thatch and on the humus 

layers was determined measuring the respective 

depth from the stolons layer, 5mm below the leaf 

surface (Figure 43).  

From each plot was extracted a vertical section of the 

soil utilizing an extractor tool with a section of 

Width 2.5cm x Length 10cm x Depth 10cm.  

The thickness of thatch and humus was calculated as 

mean value of 10 points along the horizontal section 

of the respective layer. 
 

Figure 43: Soil profile analysis. Thatch (yellow) and humus (red) thickness was measured sampling 10 points along the 

horizontal axis. 
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Biomass of thatch and roots 

The fresh and dry biomass of roots and thatch was measured from sods collected in the experimental putting 

green. Thatch and roots biomass were measured in a single value. Samples were cut at 0.5 mm from the surface 

in order to remove leaves and stolons. Samples of sods were washed on a lab sieve (Retsch®, sieve mesh 0.5 

mm). Portions of roots and thatch were collected to measure the fresh weight. Samples were dry for 5 days at 

50°C to determine the dry biomass. 

 

Organic component 

The method applied for the determination of the organic component in the soil was described in Milne et al. 

1992, with some adjustment. The soil organic matter was analyzed by portions of soil extracted from a depth 

ranging between 1 and 2 cm from the grassy surface. From each plot were collected three replicates in random 

position. In order to remove the humidity contained in the soil, the extracted portions were weighed and then 

dried at 50°C for 4 days, until complete desiccation. At the end of this phase, the sample was weighed again and 

then incinerated in a muffle furnace at 550°C for 3 hours. Once removed from the muffle, the samples were 

cooled in a bell in absence of moisture and then weighed to determine the amount of organic carbon incinerated. 

 

Evapotranspiration 

Evapotranspiration was evaluated utilizing subparts of sods removed from the different experimental plots 

(Figure 44). These portions of soils had a surface area of 2.5 x 2.5 cm and a depth of 5 cm. Each sample was 

immersed for 15 minutes to a depth of 4.5 cm in water, avoiding to soak the parts constituted by leaves and 

stolons. Subsequently samples were drain off for a few seconds and then wrapped with parafilm. A further 

insulating tape was placed on in order to keep the parafilm adherent to the portion of soil. The samples were 

weighted with a precision scale and placed in a growth chamber artificially lighted with a photoperiod of 16h 

light and 8 h dark and a temperature of 28 ° C / 20 ° C day/night.  

The weight loss of each plate was measured every 24 hours, up to total desiccation of the soil. 
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Figure 44: Clods of soil processed for determination of evapotranspiration 

 

Production of leaf biomass 

The analysis of the leaf biomass was conducted taking into consideration both the fresh and the dry biomass of 

the leaves. Once a week a patch of lawn was sampled and, at the return in the laboratory, leaves were cut and 

weighed to obtain the weight of fresh biomass. Subsequently the leaves were placed in a hoven  at 50 °C for 4 

days for drying. When all the moisture contained in the leaf tissues was evaporated, the leaves have been re-

weighted to determine the dry biomass. 

 

Tearing 

Ever on the green, was performed to determine the resistance to tearing of the leaf using a dynamometer for 

measuring mechanical (PCE Instruments, Lucca, Italy). The end of the dynamometer, equipped with a pair of 

tweezers, was attached to the base of the stem of a plant of Agrostis stolonifera for each plot, 16 by performing 

sampling and replicating the test in three sessions (beginning, middle and end of trial). The method used consists 

in measuring the force required to tear seedling from the soil. 
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Color analysis 

 

Figure 45: Analysis of the putting green’s color. 

The color of the grass surface was measured taking pictures with a camera Canon EOS 350D in RAW image 

format. The pictures had a pixel dimension X: 2304 and Y: 3456. The homogeneity of captured picture was 

obtained by maintaining the same settings of exposure and aperture: 1/800 sec, aperture f/16, focal length 18,0 

mm and ISO 1600.   With software Adobe Photoshop Lightroom 4, each picture relative at field plot was divided 

in 10x10 squares (Figure 45). Each square was analyzed singularly for the values of the color in RGB scale and 

mean for each plot was calculated as mean of 100 sub-squares. To analyze the digital pictures was used the 

software APS ASSESS 2.0. 

 

Chlorophylls and Carotenoids content 

The clods removed from the field were transported to the laboratory within a frozen container. In laboratory the 

leaves were mowed and immediately frozen with liquid nitrogen. Thereafter the extraction and the analysis of 

the photosynthetic pigments were performed following the same protocol utilized for the growth chamber test 

(as reported in “growth chamber analysis - leaves pigment content”). 
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Inoculation of Schlerotinia homeocarpa  

At the end of the experimental trial (1
st
 September 2012) Sclerotinia homoeocarpa fungus (Sclerotinia 

homoeocarpa F.t. Benn., Annals of Applied Biology: 24: 236, 1937) was inoculated in each plot of the putting 

green (Figure 46). Sand carriers infected with S. homeocarpa were placed in 2.5 x 2.5 holes in each plot. 

The emergence of dollar spot on the green’s surface was checked during the months of September and October 

2012 and every month from April until October 2013. Each patch of dollar spot was marked with white pickets 

as shown in Fig 46. The density of dollar spot was calculated as percentage value of n° of patches / m
2
. 

 

Figure 46: Inoculation of the Sclerotinia homoeocarpa within the thatch layer of the experimental putting green.  

 

4.2.5 MYCORRHIZAL ANALYSIS 

Mycorrhizal colonization within the root tissues of the Creeping bentgrass was analyzed at the end of the 

experimental trial. A portion of the putting green’s topsoil was extracted from each plot and stored in a portable 

cooler in order to preserve the samples for the subsequent laboratory analysis. The protocol utilized for the 

identification and the quantification of the mycorrhiza within root tissues was previously described in the 

Material and Method, section 1. 
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4.3 RESULTS 

4.3.1 GROWTH CHAMBER RESULTS 

Perennial ryegrass (Lolium perenne L.) clods were extracted from pots 60 days after the first treatment. Before to 

proceed with morphological and physiological analyzes, perennial ryegrass habitus was observed and following 

reported (Figure 47).  

 

 

Figure 47: Lolium perenne L. plants after the 60 days experimental period within growth chamber. Left to right are shown 

plants treated with Control (distilled water and Hoagland solution), EM-1, DiSTA and D-PLUS.  

 

Preliminary observation of Perennial ryegrass plants showed an effectiveness of microbial treatments in 

determine observable changes in the habitus of the whole plants. Different biological products tested on plants 

resulted a lengthening of the roots if compared with the control. Also growth and color changes of leaves 

demarcate a different effectiveness of microbial treatments. In this particular case EM-1 shown a greenness leaf 

apparatus with a slight difference in height if compared to the control whereas microbial mixes developed in the 

Faculty of Agronomy of Bologna, DiSTA and D-PLUS, shown leaves with a brighter color and higher if 
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compared with Control and EM-1. Observing leaves of plants treated with DiSTA and D-PLUS seems that the 

only microorganisms product (DiSTA) led to a increased growth if compared to the full treatment (D-PLUS). 

 

Growth of leaves and biomass production 

Table 19: 

Effects of different treatments (Control = distilled water; EM-1 = activated EM•1®; DiSTA = Department of Science and 

Agronomical Tech original bacterial mix; D-PLUS = DiSTA + Mycorrhiza + Humic Acid. Leaf analysis on Leaf Length 

(LL), Leaf Fresh Weight (LFW), Leaf Dry Weight/Leaf Fresh Weight percentage ratio (LDW/LFW), Leaf Dry Weight/Leaf 

Length (LDW/LL). 

LEAF 

ANALYSIS 
Control EM-1 DiSTA D-PLUS 

LL (cm) 4,82 ± 0,87 (c) 5,43 ± 0,76 (b) 8,42 ± 0,87 (a) 8,05 ± 0,87 (a) 

LFW (g) 3,76 ± 0,61 (c) 3,44 ± 0,59 (c) 5,34 ± 1,16 (a) 4,65 ± 1,02 (b) 

LDW/LFW (%) 12,95 ± 1,77 (b) 18,53 ± 5,66 (a) 21,46 ± 6,60 (a) 20,28 ± 6,37 (a) 

LDW/LL (mg/cm) 2,04 ± 0,63 (b) 2,31 ± 0,61 (a) 2,60 ± 0,49 (a) 2,25 ± 0,50 (a) 

 

The effects of inoculation of the microbial based products in controlled environment showed significant 

statistically differences within different microbial preparations and compared to the control too. Leaf length was 

increased with DiSTA and D-PLUS treatments. In agreement with data reported in the first trial, EM-1 led to a 

growth similar to the control. Leaf weight fresh biomass was greater in microbial only DiSTA, with a weekly 

production 2 grams higher that control. The microbial treatments EM-1, DiSTA and D-PUS had an homogenous 

effect on the dry/fresh biomass ratio, increasing the ratio respectively 43%, 65% and 56% compared to the 

control. Dry biomass produced per length leaf unit (LDW/LFW) was in accord with precedent values showing 

homogenous values between three microbial treatments. 

 

Growth of roots and biomass production 

Table 20: 

Root parameters in perennial ryegrass pots treated with different ammendands.  

ROOT 

ANALYSIS 
Control EM-1 DiSTA D-PLUS 
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RL (cm) 10,29 ± 2,29 (b) 13,55 ± 2,44 (a) 10,72 ± 1,96 (b) 14,07 ± 1,68 (a) 

RFW (g) 5,62 ± 1,35 (c) 8,19 ± 1,52 (a) 7,70 ± 1,55 (b) 7,81 ± 0,99 (ab) 

RDW/RFW (%) 17,43 ± 5,43 (a) 19,84 ± 3,91 (a) 16,71 ± 5,34 (a) 18,05 ± 5,11 (a) 

RDW/LR (mg/cm) 0,94 ± 0,30 (a) 1,23 ± 0,38 (a) 1,23 ± 0,55 (a) 1,01 ± 0,30 (a) 

Morphological and physiological parameters of the roots were acquired at the end of the experimental, after 60 

days from the first application. The root apparatus elongation was principally stimulated from D-PLUS and EM-

1 that had respectively determined an increasing of 37% (a) and 32% (a) compared to the control. Microbial only 

DiSTA didn’t show a significant elongation respect to the control.  Root fresh biomass production were higher in 

the samples inoculated with EM-1 (+45% to the control), while DiSTA and D-PLUS have increased the fresh 

weight from 37% (b) to 39% (ab) respect to the control. No statistical difference was detected between four 

treatments for dry/fresh weight ratio. Dry biomass produced per length unit of leaf (LDW/LFW) didn’t result in 

statistical significant difference between the four treatments tested, although EM-1 and DiSTA had increased the 

LDW/LFW ratio by 31,5 to 31,1% respectively compared to the control. 

 

Color of leaves in RGB space 

The image analysis was conducted measuring individually the values of the three color channels in RGB space. 

The pictures were captured within a light-box in order to homogenize the lighting conditions of the acquisition 

environment and were afterward analyzed with Assess software (for a complete description of the picturing 

process and analysis refer to the relative Materials and Method section 3.2).  

The analysis of the color of he leaves (Graph 9) showed an intensification of the color due to the tested product: 

all three color channes (R,G abd B) have indeed shown a decrease of the values respect to the plants treated with 

Control (water and Hoagland solution) thesis.   
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Graph 9: 3D scatter plot pf RGB color space. The axes correspond to the R, G and B color channel. The points are the 

average color values for each plot at 60 DAT.  

In order to assess the statistical differences between RGB colors showed in Graph 9, a MANOVA test has been 

conducted:  

The red, green and blue color values measured from different pots (130 sampling points for each pot) have been 

used as dependent variables, while the treatments / control as fixed factors. The test reported a significant 

difference between the factors (F (9, 180) = 54,78, p<0,0005), and it was therefore followed by a Tukey’s post-

hoc analysis. The post-hoc test confirmed that the Control was significantly different from all the treatments in 

the whole color space. D-PLUS resulted not significantly different to EM-1 for all three color channels. DiSTA 

showed a statistical difference only for Red channel but not for Green and Blue. 
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A cluster analysis (squared distance, signle linkage) has been conducted in order to obtain a graphic 

representation of the differences suggested by MANOVA test. The following plot (Graph 10) shows a 

dendrogram of growh chamber trial where the different treatments / control were clustered on the basis of the 

RGB variables. 

 

Graph 10: Dendrogram representing the differences between mean colors obtained for different treatments within growth 

chamber. 

The treatments EM-1, D-PLUS and DiSTA form a well distinct cluster if compared to the Control, well separate 

with a high Euclidean distance separating by the treatments’ grup. 
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Chlorophylls and Carotenoids content 

Results of chlorophyll and carotenoids extraction of L. 

perenne leaves are showed in Graph 11. The total 

chlorophyll content (mg of photopigment Chl a and 

Chl b per grams of leaf dry biomass) indicate an 

increasing with time with all microbial treatments. 

Instead only Hoagland solution treatment determined 

an increase of total chlorophyll at 30 DAT and a final 

diminution of 18% if compared at time 0. Total 

chlorophyll increase determined by microbial 

treatments given significant values between EM-1, 

DiSTA and D-PLUS with difference with the control 

of +63%, +55%, + 21% respectively. 

The ratio between Chlorophyll a and Chlorophyll b 

content showed a similar effect of the microbiological 

treatments comparing with control effect. D-PLUS 

determined a significant decreasing of Chl a/b ration 

of 75% (0-60 DAT). Only bacteria solution EM-1 and 

DiSTA determined a similar diminution of Chl a/b 

ration around 38-44% respectively (0-60 DAT). The 

ratio of Chls a and b to total carotenoids (a+b)/(x+c) 

utilized as indicator of the greenness of the leaf 

tissues, indicated higher values for D-PLUS and EM-1 

treatments with, both statistically different compared 

to control and DiSTA that determined a ratio reduction 

of 7 and 31% respectively from time 0. 

 

 

 

Graph 11: The graphs summarize the parameters related to leaf pigments content in the leaves of Agrostis stolonifera. 

Chlorophyll content is the sum of mg of Chlorophyll a and Chlorophyll b per gram of dry biomass of leaf. (a+b)/(x+c) 

represent the ratio between total chlorophyll content and xanthophyll and carotenoids content. 
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Tearing 

Tear off analysis was conducted with a mechanical dynamometer at the end of the experimental period of 60 

days. In the following graph (Graph 11) was reported the values expressed as means of the single treatment. 

Results between treatments are compared with an analysis of variance (Duncan’s means test, Significance Level 

0,05). The treatments based on microbiological mixtures determined an increase in tear resistence compared to 

the control constituted by distilled water. No statistically significant differences were detected between the three 

different biological treatments applied. 

 

Graph 12: Tear out values for Lolium perenne L. plants. Tear out was tested with a mechanical dynamometer at 60 DAT. 

Plants were were treated with four different products: Control (Water + Hoagland solution), EM-1 (EM-RO® commercial 

microorganisms + Hoagland solution), DiSTA (only microorganisms formulate + Hoagland solution) and  D-PLUS 

(microorganisms formulate + Glomus intraradices + Hoagland solution). 

 

 

Mycorrhizal analysis 

Perennial ryegrass roots were analyzed for quantify the inoculum occurred after the different thesis treatments. 

At the end of the experimental trial, perennial ryegrass roots were washed gently and then treated with CBE, a 

specific colorant for endomycorrhiza as specified in the concerning paragraph. The presence of fungal hyphae 

was expressed as percentage of units in which hyphae were present on the total of the squares of the petri dish. 

As is shown in Figure 48, plants treated with water only (Control), EM-1 and DiSTA did not show mycorrhizal 

within root tissue. In pots treated with EM-1 were found a very low percentage of mycorrhizal spores but 

probably as a remnant of the sand, which was sterilized before sowing of perennial ryegrass. D-Plus treatment 

determined the emergence of fungal hyphae within root tissues, showing a 32,5% presence on the petri dish grid.  
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Percentage of 

AM in roots 

Control EM-1 DiSTA D-PLUS 

0,0% 3,0% 0,0% 12,5% 
 

 

Figure 48: Portions of Lolium perenne roots bleached with KOH and treated with Chlorazil Black E to evidence the AM 

(Arbusculus Mycorrhizae) within the root tissues. In order are shown roots of Control (a), EM-1 (b), DiSTA (c) and D-

PLUS (d). 
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4.3.2 PUTTING GREEN RESULTS 

EC and pH of soil 

Table 21: 

pH and Electrical Conductivity (EC) values from putting green topsoil. Electrical conductivity was expressed as 

instrumental scale milliSiemens per cm (mS/cm). Treatments effects were compared with ANOVA, Duncan’s test p: 0,05. 

Soil Anlaysis Control EM-1 DiSTA D-PLUS 

pH 

0 DAT 7,1 ± 0,7 (a) 7,5 ± 0,9 (a) 7,2 ± 0,9 (a) 7,0 ± 0,4 (a) 

30 DAT 7,2 ± 0,9 (a) 7,6 ± 0,9 (a) 7,3 ± 0,8 (a) 7,3 ± 0,5 (a) 

60 DAT 6,9 ± 0,6 (a) 6,8 ± 0,4 (a) 7,1 ± 6,1 (a) 7,1 ± 0,7 (a) 

ECe 
(mS/cm) 

0 DAT 1,86 ± 0,44 (a) 1,77 ± 0,24 (a) 1,71 ± 0,16 (a) 1,58 ± 0,21 (a) 

30 DAT 1,71 ± 0,25 (a) 1,69 ± 0,27 (a) 1,73 ± 0,15 (a) 1,89 ± 0,27 (a) 

60 DAT 1,74 ± 0,24 (a) 1,86 ± 0,31 (a) 1,71 ± 0,17 (a) 1,74 ± 0,17 (a) 

pH analysis indicate that the putting green top soil had a neutral – slightly alkaline characteristics. Around 30 

DAT pH values were slightly higher 0 and 60 DAT in all treatment but no statistical differences were found. 

Furthermore none of the treatments applied had statistical significant effect on the soil pH during after the 60 

days experimental period. Electrical conductivity indicated that the four different thesis didn’t result changes in 

soil salinity. Soil ECe measured showed tipical values for putting green soils, comprised between 1,58 and 1,89 

mS/cm. ANOVA test didn’t found significant difference both between treatments and date.  

 

Chemical analysis (C/N) of soil 

Table 22: 

Total Carbon (N) and total Nitrogen (N) content in putting green soil. Thesis tested was Control (distilled water and 

Hoagland solution),EM-1 = activated EM•1®; DiSTA = Department of Science and Agronomical Tech original bacterial 

mix; D-PLUS = DiSTA + Mycorrhiza + Humic Acid). 

SOIL C/N ANALYSIS Control EM-1 DiSTA D-PLUS 

C 

0 DAT 5,76 ± 0,56 (a) 4,96 ± 0,91 (a) 5,81 ± 0,47 (a) 4,83 ± 0,51 (a) 

30 DAT 5,81 ± 0,73 (a) 4,89 ± 0,73 (a) 4,43 ± 0,46 (a) 6,01 ± 0,69 (a) 

60 DAT 6,85 ± 0,51 (a) 7,07 ± 0,55 (a) 6,0 ± 0,47 (a) 7,65 ± 0,76 (a) 

N 

0 DAT 0,45 ± 0,09 (a) 0,38 ± 0,07 (a) 0,44 ± 0,08 (a) 0,40 ± 0,07 (a) 

30 DAT 0,43 ± 0,08 (a) 0,35 ± 0,08 (a) 0,32 ± 0,07 (a) 0,46 ± 0,09 (a) 

60 DAT 0,53 ± 0,07 (a) 0,55 ± 0,07 (a) 0,45 ± 0,08 (a) 0,62 ± 0,08 (a) 

C/N (%) 

0 DAT 13,1 ± 2,66 (a) 13,30 ± 1,53 (a) 13,53 ± 2,35 (a) 12,40 ± 2,36 (a) 

30 DAT 13,7 ± 1,94 (a) 14,11 ± 2,63(a) 14,24 ± 3,29 (a) 13,24± 1,70 (a) 

60 DAT 12,93 ± 1,69 (a) 12,85 ± 1,58 (a) 13,54 ± 2,16 (a) 12,40 ± 1,08 (a) 
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The total soil nitrogen and carbon of the soil samples were analyzed with ECS 4010 CHNSO system. Total 

nitrogen and carbon were analyzed at the date 0, 30 and 60 day after treatments (DAT). The values obtained 

were represented as percentage on the control (Table 22). During the entire durate of the experimental trial was 

no revealed significant differences between different thesis and the variation of the values during the two month 

period were probably determined by seasonal conditions.  

 

Moisture of soil 

The moisture content of soil was analyzed weekly for the entire period of the experimental trial.  The hydric 

content of each plot was calculated as the percentage difference between the fresh and dry weight of a putting 

green clod.  

 

Graph 12: Moisture content in a 10 cm section of top soil during the 60 days period of the experimental trial. Values are 

expressed as percentage of hydric content relative to the control. 

Analyzing the data of moisture that were collected from the experimental trial was possible to denote a similar 

behavior of the plots treated with the EM-1 and DiSTA. The D-PLUS treatment begun to determine different 

moisture content since 45 DAT. The inoculum with DiSTA and EM-1 determined a progressive increasing of the 

hydric content in the first month, reaching a significant difference compared to control between +18,2 and 

+15,4% respectively. These values were maintained constant within the following 30 days until the end of the 

test, when DiSTA and EM-1 reached values 10,4 and 9,9% respectively.  Although three microbial treatments 

showing a different trend respect to the control, were not detected significant differences between the four 

theses, for the entire duration of the test. 
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Profile of soil 

The stratigraphy of the soil was detected weekly by the extraction of a section of soil and taking pictures with a 

metric reference system. Thicknesses of the layers that compose soil profile were measured with a digital image 

analysis (Figure 49). These values have allowed to study changes in soil profile caused by inoculation of 

microorganisms and biological substances in a soil that is generally deficient in microbial flora. 

 

Figure 49: Effects of different treatments on the soil layers. Thatch and the underlying decomposing layers were evidenced 

with two red lines.  
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The soil profile showed a significant trend in soils where inoculum occurred. As is shown in Graph 13 the 

inoculum of D-PLUS determined a thickening of the humic layer by 41,4% at 60 DAT if compared with related 

0 DAT value. DiSTA and EM-1 applications determined an increasing of the humic layer by 20,4% and 23,5% 

compared to the respective 0 DAT values. In control plots the humic layer thickness remained essentially 

unchanged (-1,24 to 0 DAT). The effects offered by the microbial inoculants on the thickness of humic layer was 

found statistically significant only for D-PLUS treatment by an ANOVA test (Duncan’s means test, significant 

level: 0,05). 

 

Graph 13:  Effects of the four thesis inoculum on the thickness of the “humus layer.  

 

Regarding the changing of the thickness of the thatch layer, the inoculation of microbial product showed 

statistical significant differences for all treatments if compared with the control. In the plots treated with water 

only (Control), thatch layer had an increasing of 18,4 % during the two month experimental period. Only 

bacteria solution EM-1 determined a reduction of 6,1 %, while DiSTA had an effect statistically different 

compared to control bringing the thinning of the thatch at 15,9 %. The greater result was obtained from the 

application of D-PLUS that determine a thatch reduction of 26,74 % in two month of weekly treatments. 
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Graph 14: Effects of different treatments on the reduction of the thickness of the thatch. 

 

Biomass of thatch and roots 

Table 23: Thatch values of Fresh Weigh (FW), Dry Weight/Fresh Weight-ratio (DW/FW) and Density. 

Thatch resutls Control EM-1 DiSTA D-PLUS 

FW (g/cm
2
) 

 

0 DAT 0,59 ± 0,05 0,58 ± 0,07 0,53 ± 0,12 0,61 ± 0,02 

30 DAT 0,64 ± 0,12 0,60 ± 0,12 0,54 ± 0,11 0,55 ± 0,08 

60 DAT 0,68 ± 0,14 0,55 ± 0,14 0,52 ± 0,08 0,49 ± 0,12 

DW/FW  (%) 

0 DAT 20,3 ± 1,0 20,7 ± 3,6 19,4 ± 8,1 21,3 ± 3,6 

30 DAT 19,9 ± 4,8 18,9 ± 4,7 18,6 ± 4,6 19,0 ± 3,3 

60 DAT 19,2 ± 1,9 20,3 ± 3,2 16,9 ± 3,5 15,8 ± 2,3 

Density (mg/cm
3
) 

0 DAT 0,63 ± 0,15 0,57 ± 0,08 0,52 ± 0,20 0,62 ± 0,12 

30 DAT 0,60 ± 0,10 0,51 ± 0,07 0,48 ± 0,10 0,53 ± 0,14 

60 DAT 0,63 ± 0,14 0,63 ± 0,25 0,55 ± 0,12 0,49 ± 0,11 

 

Microbial treatments determined different responses on thatch during the experimental trial. EM-1 and DiSTA 

decreased the fresh biomass of 3,9% and 1,2% respectively comparing at the control but significant differences 

were not detected. D-PLUS treatments determined a significant thatch fresh biomass diminution of 19,2% 

compared to control. Dry/Fresh-Ratio was not modified by only water treatments (Control) and EM-1 but was 

gradually decreased by DiSTA and D-PLUS with percentage values of 12,9% and 25,9% respectively. The 

density of thatch layer, expressed as dry biomass (mg) per unit of volume (cm
3
) didn’t show significant 

differences from 0 to 60 DAT intra-treatments. Anyway, although a significant difference was not verified, D-

PLUS determined a trend diminution of the density of 15,1% if compared to the control (Graph 15). 
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Graph 15: Effects of different treatments on thatch density (g/cm
3
) parameter during the 60 days trial period. 

 

Organic content 

Organic content in the top soil of the experimental putting green was evaluated weekly. A 12,5 cm
3 

portion of 

soil from 0,5mm of the surface was extracted for quantification of the organic component. Graph 16 shows the 

trend of top soil organic component during the 60 days of experimental period, expressed as percentage on the 

biomass of soil. 

 

Graph 16: Trend of organic matter content in the top soil of the experimental putting green during the 60 days experimental 

period.  

 

In the plots treated with water only (Control) the soil organic matter did not significantly changed during the test. 
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PLUS determined the highest reduction of organic content in the soil of putting green with a statistically 

significant reduction of 26,2% comparing at the control and reduction from 0 DAT of 19,21%. 

 

Evapotranspiration 

Initially all clods were brought at field capacity and then sealed with parafilm on the bottom and on the side 

faces. Real Evapotranspiration was determined from each sample measuring the daily loss of water from the 

initial time. 

 

Graph 17: Graph of evapotranspiration expressed as mm of water lost daily from time 0. 

Plots treated with D-PLUS showed an evapotranspiration capacity greater than control and other microbial 

treatments. With D-PLUS plots loss half of the water content in 10 days whereas in control plots needed 15 days. 

Even microbial only product brought a slight increased evapotranspiration relatively to the control but significant 

differences were not determined. 

 

Production of leaf biomass 

Table 24: Effects of different treatments (Control, EM-1, DiSTA and D-PLUS) on leaf biomass parameters. ANOVA test 

was conducted comparing the four thesis at the same date. 

LEAF ANALYSIS Control EM-1 DiSTA D-PLUS 

Fresh Weight (Kg) 

0 DAT 813 ± 153 (a) 768 ± 170 (a) 810 ± 101 (a) 752 ± 141 (a) 

30 DAT 850 ± 120 (ab) 815 ± 101 (c) 836 ± 191 (b) 867 ± 118 (a) 

60 DAT 822 ± 153 (a) 630 ± 113 (b) 833 ± 99 (a) 948 ± 99 (a) 

Dry Weight (Kg) 0 DAT 207 ± 70 (a) 219 ± 46 (a) 127 ± 48 (a) 227 ± 69 (a) 
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30 DAT 236 ± 35 (b) 260 ± 72 (b) 288 ± 155 (b) 257 ± 104 (a) 

60 DAT 223 ± 66 (b) 210 ± 45 (b) 255 ± 29 (ab) 305 ± 33 (a) 

Dry/Fresh Weight (%) 

0 DAT 27,0 ± 12,5 (a) 29,0 ± 5,8 (a) 27,1 ± 6,6 (a) 30,7 ± 9,2 (a) 

30 DAT 28,4 ± 6,0 (a) 31,5 ± 5,5 (a) 32,9 ± 11,4 (a) 31,0 ± 15,3 (a) 

60 DAT 27,3 ± 6,9 (b) 32,2 ± 2,8 (a) 30,1 ± 1,7 (ab) 32,4 ± 4,0 (ab) 

 

At the end of 60 days experimental period, EM-1 application determined a decreasing of leaf fresh biomass 

production of 18% from date zero and a significant diminution of 23,3% comparing at the control. DiSTA 

treatments did detect any changing on fresh biomass from 0-60 DAT and comparing with control. D-PLUS 

increased the leaf fresh biomass production but no significant differences were detected. Dry biomass content 

was not significantly influenced by EM-1 and DiSTA treatments but D-PLUS determined a significant 

increasing of 36,9% comparing to the control. EM-1 determined a significant increasing of Dry/Fresh Weight-

ratio of 21,5% at 60 DAT in respect to the control while DiSTA and D-PLUS didn’t had significant effects. 

 

Tearing 

 

Graph 18: Tearing out values at 60 DAT.  

Tearing analysis showed an increasing effect of microbial inoculum on improving to a mechanical resistance at 

tear out parameter. At 30 DAT all microbial treatments determined an increasing between 38% and 58% in 

respect to the control. At 60 DAT DiSTA and D-PLUS redoubled tear values comparing to the control with a 

significant increasing of 109% and 102% respectively. At 60 DAT, EM-1 measured significant differences 

between both DiSTA and D-PLUS and to the control. 
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Color analysis 

Aesthetic values are the first parameters taken in consideration to evaluate the quality of putting green. Aesthetic 

assessment was conducted measuring the color changing of the grassy surface during the 60 days experimental 

trial.  During this period color parameters were measured in RGB color space acquiring pictures with a digital 

camera EOS 350D. Observing the Figure 51, the surface of the putting green has visibly changed color in D-

PLUS treated plots. EM-1 and DiSTA did not induce appreciable aesthetic changes but with software measure of 

RGB data were conducted more accurate determinations. 

 

Figure 51: Picture of the putting green at 60 DAT. Foreground is shows a plot treated with D-PLUS. 

 

D-PLUS microbial product determined significative changes of the surface color during the experimental period. 

Other microbial treatments EM-1 and DiSTA determined less pronounced responses. A visual assessment of 

EM-1 effect did not determine aesthetic variation compared to the control. DiSTA determined a partial change in 

the color that has veered towards darker shades, an important aspect in the sport field area. First color differences 

compared to the control were determined by D-PLUS from 14-21 days after treatments. A visual difference 

between D-PLUS and Control was maintained until the end of the test (Figure 52).  

Pictures taken from each plot were digitally analyzed with the software APS ASSESS 2.0. Colors parameters in 

RGB color space were evaluated between different treatments within the same date in order to minimize the 

lighting differences given by different weather conditions across the two months experimental period (for a 

complete description of the picturing process and analysis refer to the relative Materials and Method section). 
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Figure 52: Plots color changing during the 60 days experimental test.  

 

The digital color analysis confirmed the visual assessment conducted on the field: D-PLUS determined a 

substantial separation of the mean points in the scatter plot graph, while EM-1 and DiSTA appear more 

aggregate position relatively to the control (Graph 18). D.PLUS treatment intensification of the color at 60 DAT 

was 50%, 21% and 42% for R,G and B respectively if compared to the control. 

In order to assess the statistical differences between RGB colors showed in Fig X, a MANOVA test has been 

conducted.  

The red, green and blue color values measured from different pots (130 sampling points for each pot) have been 

used as dependent variables, while the treatments / control as fixed factors. The test reported a significant 

difference between the factors (F (9, 180) = 49,83, p<0,0005), and it was therefore followed by a Tukey’s post-

hoc analysis.  

The post-hoc test confirmed that the D-PLUS was significantly different from all the treatments in the whole 

color space. DiSTA resulted not statistically different for Green channel to Control and EM-1 and for Blue 

Channel to the Control. EM-1 showed a significant difference from other treatments in the Blue channel, but 

resulted not statistical different for Red and Green respect the other treatments. For a detailed report of the test 

results refer to Table X in the Appendix. 

 



  

109 
 

 

Graph 18: 3d scatterplot where the axes correspond to the R, G and B colour channel and the points are the averaged color 

values for each parcel at the end of the treatment  

A cluster analysis (squared distance, signle linkage) has been conducted in order to obtain a graphic 

representation of the differences suggested by MANOVA test. The following plot (Graph 19) shows a 

dendrogram of growh chamber trial where the different treatments / control were clustered on the basis of the 

RGB variables. 

 

Graph 19: Dendrogram representing the differences between mean color obtained for different treatments within growth 

chamber. 
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The treatment EM-1 and Control form a well close cluster with a secondary proximity also with DiSTA. Control 

is a clearly separate entity with a much longer clustering distance if compared with the treatments applied. 

Chlorophylls and carotenoids content 

Total chlorophyll content, calculated as sum of Chl 

a and Chl b, did not reported statistical differences 

between different treatments and control. Anyway, 

al microbial treatments showed an increasing of the 

total chlorophyll content from 0 DAT to 60 DAT if 

compared to respectively time 0. Indeed EM-1, 

DiSTA and D-PLUS increased the Chl content in 

foliar tissues of 95%, 71% and 50% respect to 0 

DAT, while control thesis showed an increase of 

6% compared at time 0. Differences of chlorophyll 

content determined by EM-1, DiSTA and D-PLUS 

from 0DAT to 60 DAT resulted statistically 

significant both at 30 and 60 days after treatment, 

while control did not determined differences in 

different sampling dates.  

Chl a/Chl b ratio showed a decreasing effect 

determined by EM-1 microbial mix of 31% respect 

to time 0, similarly to only water treatment that 

showed a reduction of 24% during the experimental 

period. Plots treated with DiSTA and D-PLUS the 

Chl a/Chl b ratio was maintained constant. The 

weight ratio of Chls a and b to total carotenoids 

(a+b)/(x+c) indicated a large base ratio on this 

experimental field. Chls/carotenoids showed no 

significant differences in any sampling date. 

 

 

 

 

Graph 20: Pigment content in leaves of perennial ryegrass. 
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Mycorrhizal inoculation 

The analysis of the mycorrhizal presence within the root tissues were conducted at the end of the experimental 

trial. The portion of thatch was removed because was impossible to separate death material (roots and leaves) 

from alive roots. The portion of root tissues analyzed was below the thatch layer. The density of fungal hyphae 

evidenced in roots was expressed as percentage of units in which hyphae were present on the total of the squares 

of the petri dish. 

Plants treated with water only (Control) shown the lower presence of hyphae, while EM-1 and DiSTA treatments 

determined a significant increasing if compared to the control. D-PLUS (Figure 53), shown an high percentage 

of hyphae within the root tissues, statistically higher if compared with the other treatments. 

Percentage of AM in 

roots 

Control EM-1 DiSTA D-PLUS 

5,5 ± 1,6 % 6,2 ± 1,4 % 4,3 ± 3,7 % 28,7 ± 5,1 % 
 

 

Figure 53: 1mm
2
 pictures of a portion of Agrostis stolonifera root. The mycorrhizae within root tissues was evidenced by 

the dark-blue coloration 
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4.4 DISCUSSION 

 

On the basis of the previously results, in the second step of this thesis two original microbial mixes (DiSTA and 

D-PLUS) were formulated and then tested in a golf course putting green. A further trial was conducted within a 

growth chamber in order to compare these data with the result obtained in the first step’s experiment. The 

application in a semi-field condition aimed to verify the effectiveness of the two different microbial solutions. 

DiSTA and D-PLUS were formulated specifically to be inoculated in a putting green that represents the highest 

technical level in the world of sport turf. The EM-1 commercial biostimulant and water only were respectively 

used as positive and negative controls. The complex microbial content of DiSTA and D-PLUS composed by 

lactobacilli, yeasts, aerobic bacteria, humic acids and mycorrhizae aimed to promote the growing of root tissues, 

to prevent the occurrence of diseases and pathologies, and to enhance the healthiness of the putting green 

turfgrass. In order to assess the effectively action of the inoculations, all output such as chemicals and fertilizers 

were suspended since two months previously the experimental trial (July and August).  

The growth chamber trial has shown a set of values comparable to the first trial: Control and EM-1 determined 

similar effects on the Lolium perenne L. essence without showing significant differences between the two 

experiments. DiSTA and D-PLUS determined an increasing of the ryegrass leaves tissues for both dry and fresh 

biomass, while the ratio between dry/fresh biomass was similar to EM-1 treatment. Root growth shown similar 

values between EM-1 and D-PLUS while DiSTA did not determined positive results determining effects of root 

length and biomass production comparable to the control. Remaining in the growth chamber’s results, the 

analysis of the color of the leaves showed intensification by three microbial treatments, whereas the only control 

treatment determined a brighter coloration and as consequence a lower quality leaves. 

The distinct group given by the darker coloration in microbial theses seems to be correlated at the chlorophyll 

content in perennial ryegrass leaves, confirming the trend shown in previous researches where brighter color was 

due to an increasing of total chlorophyll. 

The field trial was conducted on an Agrostis stolonifera putting green during July and August 2012, two month 

that generally determine stress condition for cool-season grass (Beard, 1973). The soil parameters of pH, 

electro-conductivity, and total carbon-nitrogen content were bi-weekly monitored in order to verify eventually 

changing in the soil given by applied treatments, but no significant effects were detected. 

The analysis of the layer of the putting green substrate shown important modification of the profiles between 

different theses, especially for the thickness of the thatch. Indeed, due to the inoculum of the different microbial 

mixes based on beneficial bacterial, the thatch layer has been progressively degraded. The EM-1 and DiSTA 

(both based on only bacterial components) determined a reduction of the thatch by 6,1% and 15,9% comparing 

to the control, while D-PLUS given a significative reduction of 26,7%. The underlying humus layer showed a 

thickening trend, opposite at the thatch reduction probably determined by the microbial degradation of thatch 
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and the subsequent downward leaching. The growth of the humus layer for each treatment was effectively 

inversely proportional at the relative thatch degradation: plots treated with EM-1 and DiSTA solutions shown an 

increasing of the humus layer of 23,5% and 20,4% respectively, while plots treated with D-PLUS had a humus 

increasing of 41,4% compared at 0 DAT value.  

These results confirmed positive effects of the inoculation microorganisms in the soil, that had increased the 

decomposition of the soil organic matter making nutrients more available for the mineral assimilation by plants 

(Muller and Kussow, 2005).  

A further confirm of the positive effect due to the application of the full treatment D-PLUS on the thatch layer 

was the reduction of the fresh biomass and the dry/fresh biomass ratio.  

In order to assess if the diminution of the thickness of thatch and of the biomass was given by a metabolic 

degradation of effective microorganisms, the test of the organic content in the putting green top soil has shown 

interesting results. Indeed, plots treated with D-PLUS shown a progressively diminution of the of the percentage 

organic content while the total carbon in the soil was maintained constant. This was a positive proof that 

microbial degradation led to a partial mineralization of the organic carbon content in lignin or cellulose of 

leaves and roots. 

The effective microorganisms applied on the creeping bentgrass surface have determined positive effects also on 

the physiological wellness of the turfgrass. The dry/fresh ratio of leaves biomass increased similarly in all the 

treatments and this data, as was seen in previously finding in growth chamber trial, corresponded in an increased 

tear off resistance.  

The quality of the putting green surface was evaluated with the color analysis in RGB mode. The data shown a 

pronounced effect of D-PLUS to determine a darker color comparing with other treatments, while EM-1 and 

DiSTA shown only a partial significant difference comparing to the control. 
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Effect of commercial biostimulants containing Bacillus spp. plus growth promoters 

on an Agrostis stolonifera putting green in a field condition 

 

 

5.1 SECTION OBJECTIVES 

 

The third part of the study was carried out at the Turfgrass Research Center (TRC) of Virginia Polytechnic 

Institute and State University (Virginia Tech, United States). Different microbial treatments and biostimulants 

were tested on a creeping bentgrass putting green in a real field condition. Indeed, in this last trial the managing 

schedule such as fertilization and chemicals applications was maintained for the entire durate of the trial.  

The effects of the different treatments were evaluated analyzing physiological, agronomical and morphological 

parameters. In addition was studied the microbial flora colonization in the roots and rhizosphere throughout 

molecular techniques.  
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5.2 MATERIALS AND METHODS 

5.2.1 LOCATION 

The last experimental trial conducted in the TRC (Virginia Tech) had a total duration of four months. Previously 

reliefs of chemicals and physical composition of the soil were conducted between March and April, two months 

before the starting of the trial. In addition during the period that proceeded the treatments applications were 

monitored the presence of weeds such as Kentucky bluegrass (Poa pratensis L.) and turf’s pathologies 

insurgences such as dollar spot (S. homoeocarpa).  

 

Figure 54: Experimental putting green in Turf Research Center of Virginia Tech. 

Weather conditions 

Virginia Tech is located in the South West Virginia in the upper transition zone, also termed as “transitional” 

because placed between the warm climates of the South and the cooler climates of the North. The climate is 

classified as mild mid-latitude in the subcategory of humid subtropical. Principal characteristic of this area are 

no dry seasons and hot summers. This is a climate very demanding for growing and quality of plants, influencing 

turfgrass species selection, culture and pest management.  

Weather data were collected with reference to the National Weather Service Climate Forecast Office, 

Blacksburg, Virginia (Graph 21). Between 1
st
 March and 31 May the total rainfall was 324 mm, a value that was 

11% above the period mean. In the same period the temperature showed an average value of 9°C in 

correspondence with season’s values, with minimum and maximum respectively 3°C and 15°C. 

During the experimental period (1
st
 of June until the end of July) the precipitations showed values close to the 

highest values recorder, with a total precipitation of 449 mm, 49% higher than the season’s values.   
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For the whole experimental period the temperature remained within the season’s values, showing an average 

temperature of 21°C, with a minimum and a maximum that were respectively 15,72°C and 32,17°C. 

 

Graph 21: Observed temperatures (°C) and observed precipitations (mm) measured by the National Oceanic and 

Atmospheric Administration (NOAA), (Blacksburg, Virginia, United States). Mean temperatures for the summer season are 

included within the green band; highest and lowest temperatures are included in the red and blue band respectively. 

 

Experimental putting green 

The trial was conducted in an experimental putting green inside the TRC, built following the USGA 

recommendations (2004): the growing medium had a topsoil layer of 450 mm composed by 95% sand, 3% silt 

and 2% clay. The portion of sand was represented by 55% of medium coarse sand (0,5-0,25 mm diameter), 20% 

coarse sand (1-0,5 mm diameter) and 25% very coarse sand (2-1 mm diameter). As most of Virginia’s Golf 

Courses, at TRC the irrigation during the summer was settable in function of the daily precipitations. Generally, 

Virginia’s golf courses need 25 – 40 mm of water from rainfall or artificial irrigation per week during the 

summer’s period.  
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5.2.2 AGRONOMICAL MAINTENANCE 

This final experiment was carried out following all the managements such as mechanical operations and 

chemicals applications scheduled for a creeping bentgrass’ putting green, in order to operate in a real sport turf 

situation. The first mechanical management carry out was an aerification, that was performed with a ProCore® 

TORO, on April 15
th
. The core drilling of the putting green was adjusted to 5 cm deeper, with a density of 400 

holes for square meter. A subsequent top dressing closed holes resulting from the mechanical removal of thatch.  

 

Figure 55: The experimental putting green during the prepartion stages in May.  

 

The mowing of the creeping bentgrass’ leaves was set at a 3,2 mm height with a frequency of 5 days per week.  

Mowing was processed with a Greenmaster® ride-on putting green mower (Figure 56).  

 

Figure 56: mowing Agrostis stolonifera in Turf Research Center with the Greenmaster® mower for putting green 
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In order to collect leaves’ samples for successive analysis of laboratory, was utilized a Jacobsen pedestrian 

mower (Figure 57). The mower had to be manually accompanied on the putting green’s surface and every plot 

was mowed singularly. Leaves were collected in the plastic box ahead the mower and were immediately frozen 

with liquid nitrogen. 

 

Figure 57: Jacobsen 500a pedestrian green mower for putting green. 

Fertilizer and chemicals 

During the summer 2013, fertilizers and fungicides applications have followed a pre-established schedule but 

some changes were subsequently brought on the basis of weekly needs of the turf. Fertilizers were applied on a 

bicycle sprayer that was utilized manually (Figure 58.2) whereas chemicals were applied with a Toro multi-pro 

sprayer and fungicides were applied with a CHEM PRO prayer (Figure 58.1). 

 

Figure 58: On the left the CHEM PRO sprayer. On the right the bicycle sprayer utilized for the applications of fertilizers 

and microbial solutions tested in the experimental trial.  
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Fertilizer applications 

Fertilizer was applied with foliar spraying throughout the summer on an N rates of 0,024 g per m
2
. They 

consisted of a Bent Special (28-8-18) applied via foliar spraying the 20
th
 of June, a Green Grade granular (16-4-

8) applied the 5
th
 of June and finally an urea treatment (46-0-0) the 26

th
 of July. 

 

Fungicide applications 

To suppress the dollar spot presence was utilized Daconil ULTREX® (Chlorothalonil 0,2ml/m
2
), a broad 

spectrum non-system fungicide. Daconil ULTREX® was applied in date 10 June and 26 July. In date 20 June 

and 21 August Daconil ULTREX® was administered with the addition of Compass™ (Trifloxystrobin, 

0,02ml/m
2
) mixed with Emerald® fungicide (principal active ingredient Boscalid 70%, 0,015 mL/m

2
).  

Due to very wet condition of the summer 2013, an application of Banner MAXX® (principal active ingredient 

Propiconazole 14,3%, 0,05 ml/m
2
) on 15 June and 28 July was done. Branner MAXX® is a broad spectrum ad 

system disease control specific for turf. 

 

Insecticide applications 

In order to control worm proliferation on the creeping bentgrass surface, in date 4 June was applied the synthetic 

pyrethroid Allectus®. This granular insecticide combine two active ingredients Imidacloprid (Merit®) and 

Bifenthrin. Allectus® was applied with a concentration of 100 kilograms/hectare. In according with the optimal 

efficiency was applied before egg hatch of the insects, followed by sufficient irrigation or rainfall to move the 

ingredient through the thatch. 
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5.2.3 TREATMENTS 

The experimental trial was conducted applying different microbial mixtures and growth promoters on a creeping 

bentgrass putting green. Fertilized used were chosen on the basis of increasing complexity and composition of 

growth promoters and soil bacteria. The applying concentration of different treatments was set in order to 

balance the nitrogen supply at 0,024 g per m
2
. Nitrogen is the main element influencing the quality, color, leaves 

growth and several other physiological parameters in sport turf. The five treatments tested in this study were applied 

bi-weekly from 27 May until 15 July 2013 for a total of 4 applying dates. 

As control fertilizer was chosen the Nutriculture hi-K (13-0-44) a common fertilizer for a basic maintenance of 

the high quality sport turf during the summer season. The second thesis was composed by the Nutriculture hi-K 

with the addition of maltodextrin, a water-soluble complex carbohydrate. A treatment composed by sea weed 

extracts (SWE) and fulvic acid was the Emerald Isle TF K (2-0-16). A treatment composed only of bacteria was 

Roots 1-2-3 Premix. A complete treatment constituted by microorganisms and biostimulants was Roots Flex 3-0-

20. 

 

Table 25: List of the treatments and concentration utilized in the field trial.  

TREATMENTS SUBSTANCE RATE per plot (30 sq ft) / 14 d RATE per 1m
2
 / 14 d 

a Nutriculture hi-K (13-0-44) 0,51 g 0,183 g (0,024 g N) 

b Nutriculture hi-K (13-0-44) + Maltodextrin 0,51 g + 17 g (=0,068  lb N) 0,183 g (0,024 g N) 

c Emerald Isle K (2-0-16) 3,39 g (=0,068  lb N) 1,190 g (0,024 g N) 

d Roots (1-2-3) Premix 6,78  g (=0,068  lb N) 0,793 g (0,024 g N) 

e Roots Flex® (3-0-20) 2,25 g (= 0,068 lb N) 0,807 g (0,024 g N) 

 

a) Nutriculture hi-K 

The thesis chosen as control was the Nutriculture hi-K (13-0-44). This is a common fertilizer utilized in high 

quality turfgrass and its application was necessary in order to balance the minerals supplied in other thesis.   

 

b) Nutriculture hi-K + Maltodextrin 

Maltodextrin is a complex hydro-soluble carbohydrate commonly used to provide energy to the microorganisms 

in the soil inoculant products. 
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c) TrueFoliar-K® Nutri-Rational 

TrueFoliar-K® is an Emerald Isle Solution™ mix of mineral and 

growth promoter. This product in this experimental trial represents 

a thesis with mineral nutrient, seaweed extracts and fulvic acid.  

 

 

 

 

 

 

Table 26:  Label of Nutri-Rational® TrueFoliar-K® 

 

 

 

d) Roots® 1-2-3 PreMix Plus® 

Roots 1-2-3 Premix Plus represents the bacteria only 

thesis tested in this experimental trial. It provides 

chelated micronutrients in addition with a blend of 

microbial cultures. The producer declares a deeper roots 

mass, green color without rapid growth, improved turf 

health and greener color. This product is particularly 

indicated for putting greens, tees and other high quality 

sport turfs. The period of applications can occur between 

spring, summer and pre-autumn, during installing sod, 

turf renovation, during fertigation and for injection. 

Roots 1-2-3 Premix contains 1,0% urea nitrogen, 2,0% 

phosphate and 3,0% potash. Other minor elements are 

represent by 2,7% chelated iron and 0,3 manganese. 

Microbial blend of Roots 1-2-3 is represented by B. 

licheniformis and B. subtilis both of the genera 

Baciullus. Microbial nutrients are supplied by the presence of 9,2% of yucca extracts. 

 

 

 

 

Table 27: Label of Roots® 1-2-3 PreMix Plus® 
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e) Roots Flexx® LebanonTurf® 

Roots Flexx® was the water –soluble full commercial 

product containing a blend of beneficial rhizosphere 

bacteria with organic amendments, yucca plant extracts 

and chelated micronutrients.   Lebanon Turf’s specifics 

indicate a use for grow-in’s as well as during 

renovation and maintenance with all types of warm and 

cool season grasses. 

Mineral content is composed by 3% content of total 

nitrogen (N) a 20% content of potash (K2O), 4% of 

sulfur (S) and other minor nutrients as manganese and 

magnesium. 

In addition at the mineral content, Roots Flexx® 

contains a microbial population of 22 million colony 

forming unit for gram (cfu/g) composed almost entirely 

by Bacillus genera. Paenibacillus was classified in 

genus Bacillus since 1993 and now is reclassified as a 

separate genus (Paenibacillus genus). 

Root Flexx contains also a 3% humic acid derived from 

Leonardite, the most commonly applied organic 

amendment in sport turf management. HA shown 

several positive actions toward sport turfs such as 

simile-phytohormone activity for promotion of root 

growth and increase of the cation exchange capacity. 

Other bio-stimulants content in Root Flexx are 7,2 % 

of Maltodextrin that is a hydrosoluble carbohydrate for promoting of bacteria metabolism, 1,8% of Yucca plant 

extract and seaweed extract that are plant growth promoter. Cytokine-containing seaweed and humic acid 

extracts are tested on creeping bentgrass (Agrostis palustris Huds. A.) in previous works by Zhang and Ervin 

(2003), where shown an enhanced root mass (21-68%) and foliar α-tocopherol (110%) and zeatin ribose (ZR) 

contents (38%). Other works demonstrated the capacity of SW extracts and HA to improve cool-season grass 

drought resistance possibility by hormonal up-regulation of plant defense system against oxidative stress. 

 

 

Table 28: Root® FLEXX® label. 
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5.2.4 SCHEME DESIGN AND STATISTICAL ANALYSIS 

A randomized bocks design with four replication’s blocks was used. 

 

Figure 59: Scheme design of the experimental putting green at TRC. 

The statistical analyses were conducted with the software IBM® SPSS® Statistic 20 (IBM, United States). 

Comparisons between the means were conducted ising the Student-Newman-Keuls test. Significant differences 

(p<0,05) among treatments were marked with different letters. 
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5.2.5 AGRONOMICAL AND MORPHOLOGICAL ANALYSIS 

Leaf production 

Every 15 days leaf samples were collected from experimental plots in order to determine the production of dry 

biomass led by the different treatments. The leaves were mowed with the Jacobsen pedestrian mower with 

mowing eight set at 3.2 mm from the ground. Each plot was mowed singularly and leaves were catched stopping 

the mower on the edge of the plot. Leaves were gathered within the box of the mower and then closed in a paper 

bag 15 cm x 10 cm. Sample were dried in a hoven at 50°C for one week and then dry biomass of leaves were 

weighed. The value was expressed as grams production of dry leaf biomass per square meter in a day. 

 

Root biomass and length 

The analyses on the root apparatus were evaluated every two weeks, previously the leaf treatment day. Utilizing 

a 2cm section coring was extracted one sample from each plot. The samples of soil were collected to a 15 cm 

depth. Soil was carefully removed with a spatula beginning from the bottom of the sod. Roots were completely 

uncovered and cleaned from sand and plant residues. Roots apparatus was stretched out on a surface and the 

length was measured from the base of the leaf collar. In this same point plants were clipped to separate the roots. 

Roots were weighed and placed in a hoven to determine the dry biomass.  

 

Figure 60: Clod extraction and roots after the cleaning from the growing medium 
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Turf quality and color (1-9) evaluation 

The visual assessment of the turf surface, was based on the 1-9 rating scale as reported in the guide lines of 

NTEP (National Turfgrass Evaluation Program). This kind of evaluation has the peculiarity to be a subjective 

assessment based on the relative comparison between the different plots that constitute the putting green. This 

parameter has been successively compared to an optical sensing reading (NDVI) for an objective turf quality and 

color evaluation. 

 

 

Figure 61: Two steps of the color and quality assessment. On the left the preparation of the turfgrass surface. On the right 

the relative comparation betweeen plots for the visual assessment. 

 

Visual evaluations were conducted only during cloud-covered days, when shadows and reflection due to sun 

exposition were minimal. Furthermore, before starting the assessment was necessary to clean the green surface 

with a brush, always along the same direction, in order to eliminate dew to the leaves and homogenize the 

surface.  

Visual assessment of the color and quality were evaluated as two different parameters. Color rating was 

measured overall plot color with 1 as worst value being straw brown and 9 as highest being dark green. Quality 

rating also based on 1-9 scale, considered all aesthetic and functional aspects of the turf such as color in 

combination with density, uniformity, texture and presence of diseases. 
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NDVI color evaluation 

Every two weeks was measured NDVI value 

(Normalized Difference Vegetative Index) that provides 

an indication of spectral vegetation of the putting green 

surface. NDVI data was obtained with a specific 

instrument for the green surface reading: Holland 

Scientific Crop Circle™, Model ACS-210. The Crop-

Circle™ is a commercially available sensor-based 

system being used for site-specific analysis of plant 

covered surfaces and indirectly of the chlorophyll 

content by calculation the NDVI from the Visible Red  

(VIR) and Near Infrared (NIR) crop reflectance. Using 

reflectance sensor that was vehicle mounted, a reading 

was taken every given interval time and depending on 

vehicle speed (0,15 m/s) at least 90 readings was 

sampled. Normally NDVI values range from -1 to +1 

with negative values for bare soil. 

 

5.2.6 PHYSIOLOGICAL ANALYSIS 

Chlorophylls and Carotenoids 

The determination of the leaf pigments content (Chlorphyll a, chlorophyll b, carotenoids and xanthophylls) into 

the plant tissues was performed as described by Strickland and Parsons (1972). After the grass mowing with 

500a mower, around 50 grams of fresh tisasues were collected in a paper bag and immediately frozen with a 

little amount of liquid nitrogen.  

Before proceeding with the chlorophyll extraction, the leaves were crushed in a ceramic mortar adding 10 mg of 

magnesium carbonate (MgCO3) to neutralize the acidity of the solutes and prevent the conversion of chlorophyll 

a in Phaeophytin. The material crushed in a mortar, were added 10 mL of acetone. The solution thus obtained 

was placed in the dark for 24 hours. Subsequently, the samples were shaked for 30 secondos with a vortex and 

then centrifuged at 10 ° C for 10 minutes at 1000 ppm. An aliquot of the supernatant was collected and added to 

cuvettes with optical path lengths of 1 cm for reading spectrophotometer. The reading was performed at 

wavelengths of 661.6 nm (which is the maximum absorption peak of chlorophyll a), 644.8 nm (which is the 

Figure 62: Crop Circle, reading the NDVI on the field 
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maximum absorption peak of chlorophyll b) and 470 nm (which represents the maximum bsorption peak of 

carotenoids). To calculate the concentration of the leaf pigments have been used the formulas described by 

Lichtenthaler et al., (2001): 

-  ca (µg/mL) = 11,24 * A661,6 – 2,04 * A644,8 

-  cb (µg/mL) = 20,13 * A644,8 – 4,19 * A661,6 

-  c(c+x) (µg/mL) = (1000 * A470 – 1,90 * ca – 63,14 * cb) / 214. 

 

Proline content 

The proline content of the foliar tissues was analyzed avery two weeks. The protocol utilized was based on the 

work of Claussen (2005) and Bates (1973) with some adjustments. For the quantification of the antioxidant were 

collected about 10 grams of leaf tissues from each plot. The different samples were immediately frozen with 

liquid nitrogen and then stored at -80°C. 50 mg samples were successively pulverized with liquid nitrogen within 

a mortar. 1.2 mL of 3% solution of 5-sulfosalicylic acid – hydrate. The samples were well vortexed for 30 

seconds and then centrifuged at 1400 g for 15 minutes at 22°C. After the centrifugation 1 mL of supernatant was 

collected and to this was added 1 mL of reagent with ninhydrin. In parallel were prepared the standard of proline 

at different concentration in order to construct the relative calibration curve: 1, 5, 10, 20 and 30 µL of 10 mM 

proline. These standards of proline were brought to 1 mL volume with 3 % of 5-sulfosalicylic acid – hydrate, 

and then were added 1 mL glacial acetic acid and 1 mL of reagent of ninhydrin. Being the ninhydrin light 

sensitive to prolonged exposure to light, from this step all the procedure were conducted in semi-dark conditions. 

All the samples, including the standards, were incubated for 1 hour at 90°C and subsequently the samples were 

cooled in ice for 5 minutes. 2 mL of toluene were added to all samples in order to separate the chromosphere. 

The samples were then vortexed for 10 seconds. In 30 second the upper phase was stabilized. The upper phase 

that contained the chromosphere was utilized for the reading in a spectrophotometer at a wavelength of 525 nm. 

 

Superoxide dismutase (SOD) 

Superoxide dismutase (SOD) activity was measured from samples of leaves collected bi-weekly by the creeping 

bentgrass putting green. Leaves were mowed with the pedestrian mower Jacobsen 500A, immediately frozen 

with liquid nitrogen and stored at -20°C for the successive analysis. 0.2 g of frozen were weight and then grinded 

in a mortar. Sample was homogenized in 10 mL of 0.05 M Na2PO4 / NaH2PO4 pH 7 buffer and grinded in the 

mortar accurately. The resulting homogenate was filtered through four layers of cheesecloth and then centrifuged 
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at 4°C for 20 min at 15,000 g. The supernatant was collected to determine SOD activity photochemically using 

the assay system describer by Giannopolitis and Ries (1977) with some adjustments. 

Working in a semi-dark condition, in a glass tube was added the supernatant and a reaction mixture composed by 

10 mM EDTA (Sigma-Aldrich), 130 mM L-Methionine (Sigma-Aldrich), 6.3 mM nitroblue tetrazolium (NBT – 

Sigma-Aldrich), 130 uM Riboflavin. Two more tubes blank composed by reaction mixture and extraction buffer 

without leaf homogenate were prepared too.  

The samples were poured in a glass test tube 150mm x 18mm. Tubes were closed in a lighting apparatus 

composed by a rotating surface on the bottom where the glass tubes were placed on, and closed with a lid 

equipped with a circular fluorescent lamp (Sylvania Circular Fluorescent Lamp). The lighting apparatus was 

lined with an aluminum foil. Samples were subjected to lighting time of 30 min, with the rotating bottom 

activated. One blank was conserved in a dark condition meanwhile the other one was subjected at the 

illuminating treatment. After the 30 min samples and two blanks were read in a spectrophotometer at 560 nm 

wavelength. SOD activity was defined as the amount of enzyme required to cause 50% inhibition of NTB.  

 

IAA and ABA 

Phytormones IAA and IBA were extracted from the leaves tissues using the procedure described by Zhang et al. 

(2009) with some adjustments and quantified using a LC-MS/MS linear ion trap quadrupole liquid 

chromatography-tandem mass spectroscopy (2300 Q Trap model; Applied Biosystem, Foster City, CA). 50 mg 

of fresh tissues of leaves were grinded in a ceramic mortar with liquid nitrogen. The frozen and grinded tissue 

was transferred in a 2 mL eppendorf and then added 1.6 mL Na-Phosphate buffer (50 mM pH 7.0) containing 

0.02% sodium diethyldithicarbamate as an antioxidant. Eppendorf were closed and enveloped with aluminum to 

be maintained in dark condition and slurried  for 1h at 4°C. Within eppendorf was added 5 µL of an internal 

standard (
13

C6-IAA,50 ng), 96 µL of HCl 1M and 150 mg f Amberlite XAD-7HP (Sigma, St sample Louis , 

MO). Eppendorf was closed again, enveloped with aluminum and slurried 30 minutes at 4°C. The solution was 

completely collected with a pipette, paying attention to not pick up beads of amberlite. Amberlite on the bottom 

of the eppendorf was washed twice with 1% acetic acid, shaking gently with hands and washing water was 

removed paying attention to don’t pick up amberlite that had to remain on the bottom of eppendorf. After 

washing, in the eppendorf was added 1 mL of Methylene Chloride and amberlite was shaked in this reagent for 

30 at 4°C in dark condition. The solution was retained in a glass vial, without picking up amberlite from the 

falcon. This last step was replicate twice in order to be sure to extract with Methyl Chloride all the Phytormones. 

The methylene chloride was evaporated with nitrogen (Fig X) to dryness. The samples were dissolved in 150 uL 

methonal with 0.1% formic acid and diluted to 1 mL with  300 mL d.i. water with 0.1% formic acid. The 

samples were filtered using 17 MM Teflon syringe filters (0.2 um) prior the reading in LC-MS/MS.  
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The analysis in LC-MS/MS was performed with a Prodigi 5 µm OD83 100 to 150 mm by 1 mm (Phenomenex, 

Torrance, California) column. For each sample was injected 25 µL of solution. The mobile phase consisted by 1 

min of sample loading at 10/90 (vol/vol) methanol-ammonium oxaloacetate (MeOH-NH4OAc; 0,01 M; pH7), 

from 1 to 5 minutes a linear gradient from 10/90 to 95/5 (vol/vol) MeOH-NH4OAc (0,01 M; pH 7); from 5 to 7,5 

min icocratic at 95/5 MeOH-NH4OAc (0,01 M) and from 7,5 to 11 min isocratic equilibration at start conditions 

at 10/90 (vol/vol) MeOH-NH4OAc (0,01 M; pH 7). A Kontron BIO-TEK P522 (Kontron Instrument, Milan, 

Italy) was used to obtain a constant flow rate of 60 µL/min for gradient pump. The effluent was introduced at a 

rate of 60 µL/min inside the MS source.  

The LC system was linked to a Quattro II mass spectrometer (Micromass, Ltd., Manchester, United Kingdom) 

equipped with an electrospray (ES) interface and Z-spray (Micromass). The source temperature was 80°C, the 

nebulizing gas flow was 20 liters/h, the drying gas flow was 400 liters/h, and the capillary voltage was 3.5 kV. 

The cone voltage depended on the appropriate compound (45, 46). Collision activated dissociation of the 

protonated molecular ion ([MH
+
]) was obtained by using argon as a collision gas at the appropriate compound-

specific collision energy, which ranged between 10 and 20 eV (46), and a PAR of 4.10 to 3 mbar. Quantification 

was done by multiple reactant monitoring of the [MH+] ion (dwell time, 0.05 s; interchannel delay, 0.01 s; span, 

0 atomic mass unit) and the appropriate product ion. All indole compounds present in one sample were analyzed 

simultaneously during a single LC-MS/MS run. All mass 

spectra were background subtracted and smoothed once. All 

data were processed by using Masslynx 3.5 software. 

 

Gas exchange analysis – Licor 6400 XT 

Photosynthetic carbon assimilation (Photo), stomatal 

conductance (Cond), leaf transpiration (Trmmol) and 

intracellular CO
2
 concentration (Ci) were measured 

simultaneously utilizing the portable photosynthesis system 

Licor-6400XT (LiCor Inc. Lincoln, NE, USA) equipped 

with a leaf chamber fluorometer 6400-40. Within the leaf 

chamber photosynthetically active radiation (PARi) allows 

to compare the gas exchange in leaves under the effect of 

different treatments applied. 

In order to obtain long enough leaves to be read within the 

foliar chamber, putting green sods were extracted from the 

experimental field with a metallic cylinder at 0 day after 
Figure 62: Sods of creeping bentgrass during the 

growing within the hydroponic system 
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treatments (0 DAT), 30 DAT and 60 DAT, and grown for two weeks within a growth chamber. Sods had a 

diameter of 4 cm and a depth of 4 cm. Sods were placed inside plastic cones and then vertically tiled in a suitable 

support inside the hydroponic bath. From each plot were extracted three sods. 12 sods of the each treatment were 

placed in separated tanks in order to keep separate the hydroponic solutions. The different groups of sods were 

kept separately within the tank by insulating sidewalls. Growth chamber were set at 30°C with 16 hours of light 

and 20°C with 8 hours of dark as described by Xu and air humidity was set at 75% as described by Xu (2000). 

LI-6400 was initially connected to the IRGA (Infra Red Gas Analyzer), taking care to uncoiling the cable to 

prevent cable wing. Batteries were put within the Licor console. CO2 cartridge was attached in the specific 

position and a new check-O-ring was positioned to ensure the connection. Desiccant and CO2 external source 

was positioned in bypass position. The console was turned on with on/off switch. In main menu, parameters of 

leaf chamber was set at initial calibration: CO2 flow inside the leaf chamber was set up at 400 µmol mol
-1

, leaf 

temperature was controlled by the integrated Peltier coolers and was set at 23°C, lighting intensity of the 

Red/Ble LED light sourse was set at 800 µmol m
-2

s
-1

 PAR.  

Leaf area subjected to analysis was set at 10 mm (4 leaves x 2,5 mm width). In this way there was not necessary 

to fill the entire area of the leaf chamber and the software calculated values adjusted accordingly. Utilizing four 

leaves instead one, the accuracy of the detection increased because detection precision it is directly proportional 

to the leaf area. Humidity value within the leaf chamber was maintained constant with through the use of 

specific desiccant flow input. 

Gas exchange analysis were analyzed at 12:00 – 13:00 at 0, 30 and 60 DAT, in order to respect the diurnal plant 

response changing in function of temporal and environmental conditions (Bernacchi et al., 2006). 

From each sample were cut four leaves to be placed within the Li-6400XT chamber system. Leaves were placed 

with the superior page facing upward, parallel with each other and non-overlapping. The leaves used for the gas 

exchange reading should have similar shape and length, in order to cover a similar section within and across 

completely the leaf chamber (3 cm length). 

The exactly leaf surface analyzed in the 

chamber was successively detected scanning 

leaves on a graph paper and measure, 

obtained with the software image J. The total 

foliar surface analyzed for each sample was 

utilized to adjust relative data. Measurements 

for each plot were taken in three replicates. 

Each measurement was taken with four leaves 

placed simultaneously within the leaf 

chamber. 

Figure 63: Leaf in the Licor’s chamber during gas change’s analysis 
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5.2.6 MICROBIAL ANALYSIS 

Samples of the putting green top soil were extracted in three dates (0 DAT, 30 DAT, 60 DAT) and shipped at the 

Department of Agricultural Science of Bologna (Italy) in order to analyze the microbial composition. The clods 

of the experimental green were extracted with a clod-sampler, sealed with parafilm in a plastic container and 

then placed in a polystyrene container, submerged in dry-ice and lastly shipped after a couple of hours from the 

extraction. In Italy all sample were frozen at -80°C for the successive analysis. 

 

DNA extraction from soil  

Metagenomic DNA from approximately 250 mg soil was extracted using the PowerSoil DNA kit (Mo Bio 

Laboratories, Carlsbad, CA, USA) according to the manufacturer's instructions with some adjustments. In 

particular, 5 μl of mutanolysin (100 U/ml, Sigma-Aldrich) and 195 μl of lysozyme (50 mg/ml, Sigma-Aldrich) 

were added to the soil in the bead solution supplied with the kit. The suspension was then incubated at 37 °C on 

a rotary shaker for two hours, prior to chemical (with SDS-containing solution supplied with the kit) and 

mechanical (bead beating on vortex at maximum speed for 10 min) cell lysis. DNA was eluted in 100 μl of TE 

buffer pH 8.0. DNA extraction was performed in duplicate. The purity and quantification were determined by 

measuring the ratio of the absorbance at 260 and 280 nm (Infinite® 200 PRONanoQuant, Tecan Switzerland). 

Extracted DNA was stored at -20°. 

 

16S rRNA gene amplification  

For Bacterial DGGE analysis performed on soil samples, PCR amplification of 16S rDNA was performed with 

universal primers HDA1 with GC clamp (5'-

CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGGACTCCTACGGGAGGCAGCAGT-3')  

and HDA2 (5'-GTATTACCGCGGCTGCTGGCAC-3') (Walter et al., 2000). The use of these primers generates 

a PCR fragment of about 200 bp and suitable for a subsequent DGGE analysis. All reactions for PCR-DGGE 

were carried out in a 50 µl volume containing 1.5U AmpliTaq Gold DNA polymerase (Applied Biosystem), 5 µl 

of 10X PCR Gold Buffer (Applied Biosystem), 200 µM of each deoxynucleotide triphosphate (Fermentas 

GmbH, Germany), 1.50 mM MgCl2 (Amersham Biosciences), 0.45 µM of each primer (MWG Technologies, 

Germany), 2.5% (w/v) bovine serum albumin (BSA; Fermentas), 4 µl DNA template, and sterile MilliQ water 

for adjustment of the volume to 50 µl.  

The PCR reaction was performed on a Biometra Trio-Thermoblock (Biotron, Gottingen, Germany) under the 

following thermocycling program: 5 min initial denaturation at 95 ◦C; 35 cycles of 95 °C for 30 s, 54 °C for 60 s, 
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72 °C for 40 s; followed by a final elongation step of 72 ◦C for 7 min. The expected size (~200pb) and amount of 

the PCR products were estimated by analyzing 2 µl samples by agarose gel (1.5% w/v) electrophoresis and 

ethidium bromide staining. 

 

PCR-DGGE analysis 

The DGGE analysis was basically performed as first described by Muyzer et al. (1993), using a DCode System 

apparatus (Bio-Rad). Polyacrylamide gels [7% (w/v) acrylamide:bisacrylamide (37.5 : 1) (Bio-Rad)] in 1X Tris-

Acetate-Edta (TAE) buffer were prepared using a Bio-Rad Gradient Delivery System (Model 475, Bio-Rad), 

using solutions containing 35–60% denaturant [100% denaturant corresponds to 7 M urea (Sigma-Aldrich) and 

40% (v/v) formamide (Sigma-Aldrich)]. The electrophoresis was run at 55 V for 16 h at 60 °C. The gels were 

stained in a solution of 1× SYBR-Green (Sigma–Aldrich, Milwaukee, WI) in 1× TAE for 20 min and its image 

captured in UV transillumination with a digital camera supported by a Gel DocTM XR apparatus (Bio-Rad).  

By inclusion of the same reference pattern, previously described, twice on each DGGE gel, resulting band 

profiles could be digitally normalized by comparison with a standard reference, using the Gel Compare, version 

6.1 software package (Applied Maths, Kortrijk, Belgium). Similarity matrix and dendrogram of the DGGE 

profiles were generated on the base of Pearson correlation coefficient and unweighted pair-group method 

average (UPGMA), respectively. 

Selected dominant bands were cut from the gel with a sterile scalpel and DNA was eluted by incubating the gel 

fragments for 16 h in 50 μL of sterile deionized water at 4 °C. 2 μL of the solution were then used as template to 

re-amplify the band fragment using the same primers without the GC-clamp and the same PCR conditions 

described above except for primer concentration of 200 nM and PCR cycle annealing at 55 °C for 30 sec. The 

obtained bacterial amplicons were then sequenced with primer HDA2 as described below. 

Sequencing was performed after amplicon purification with PCR clean-up (Macherey-Nagel GmbH & Co. KG, 

Germany) according to the manufacturer's instructions. Sequencing reactions and runs were performed by 

Eurofins MWG Operon (Ebersberg, Germany). The sequences obtained were subjected to taxon classification 

using RDP classifier, an available tool at the RDP-II website (http://rdp.cme.msu.edu/classifier/classifier.jsp). 

Moreover, seqmatch search was used to find the closet match for each 16S rRNA fragment 

(http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp). 
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5.3 RESULTS 

5.3.1 AGRONOMICAL AND MORPHOLOGICAL RESULTS 

Leaf production 

Table 29: Leaves biomass production. Fresh weight, dry weight and dry /fresh weight ratio (DW/FW %) at 0, 30 and 60 

days after treatments (DAT). 

Leaf 

production 
DAT Control Control + MD SWE Bacteria only Full 

Fresh Weight 0 15,21 ± 2,38 a 14,20 ± 3,02 a 13,31 ± 4,29 a 15,26 ± 1,01 a 14,86 ± 1,96 a 

 
30 11,90 ± 5,37 a 13,41 ± 1,00 a 12,19 ± 3,36 a 11,81 ± 1,34 a 12,14 ± 1,76 a 

 
60 13,85 ± 3,04 a 13,00 ± 4,63 a 11,79 ± 2,04 a 11,50 ± 2,45 a 12,67 ± 2,60 a 

Dry Weight 0 1,99 ± 0,25 a 1,81 ± 0,28 a 1,81 ± 0,73 a 1,89 ± 0,29 a 1,95 ± 0,30  a 

 
30 1,46 ± 0,66 a 1,70 ± 0,15 a 1,47 ± 0,49 a 1,37 ± 0,25 a 1,47 ± 0,31 a 

 
60 1,70 ± 0,47 a 1,55 ± 0,55 a 1,39 ± 0,48 a 1,23 ± 0,46 a 1,69 ± 0,62 a 

DW/FW (%) 0 13, 12 ± 0,66 a 12,90 ± 1,12 a 13,34 ± 1,26 a 12,31 ± 1,25 a 13,13 ± 0,95 a 

 
30 12,25 ± 0,77 a 12,65 ± 0,15 a 11,95 ± 0,72 a 11,56 ± 0,89 a 12,05 ± 1,08 a 

 
60 12,23 ± 0,90 a 12,20 ± 2,98 a 11,52 ± 2,78 a 10,93 ± 4,18 a 13,26 ± 3,98 a 

 

The leaf biomass was not significantly affected by the different product tested on the experimental putting green 

during the two month period. Fresh weight and dry weight leaves production diminished homogeneously during 

the experimental period, in line with the seasonal trend due of the solar radiation and summer temperatures. Any 

tested thesis, compared with the control within the same DAT, achieved a statistical difference for both dry and 

fresh biomass production. Furthermore, DW/FW ratios did not showed changings due different treatments but it 

maintained constant values without showing statistical differences.  

 

Root biomass production 

Table 30: Thatch and total biomass (thatch + roots) at 0,30 and 60 DAT.  

Dry Weight Control 
Control + 

MD 
SWE Bacteria only Full 

Thatch 

0 DAT 0,10 ± 0,03 a 0,11 ± 0,03 a 0,12 ± 0,02 a 0,13 ± 0,02 a 0,10 ± 0,01 a 

30 DAT 0,11 ± 0,01 a 0,10 ± 0,01 a 0,12 ± 0,02 a 0,12 ± 0,04 a 0,10 ± 0,02 a 

60 DAT 0,08 ± 0,02 a 0,10 ± 0,02 a 0,11 ± 0,01 a 0,11 ± 0,02 a 0,11 ± 0,01 a 

Thatch  

+  

Roots 

0 DAT 0,24 ± 0,05 ab 0,29 ± 0,04 ab 0,31 ± 0,06 a 0,30 ± 0,05 ab 0,23 ± 0,04 b 

30 DAT 0,29 ± 0,05 a 0,29 ± 0,05 a 0,33 ± 0,07 a 0,30 ± 0,09 a 0,30 ± 0,04 a 

60 DAT 0,28 ± 0,02 b 0,36 ± 0,05 a 0,36 ± 0,04 a 0,32 ± 0,06 ab 0,38 ± 0,06 a 
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As summarized in the related table, the different treatments did not determined significant effects on the dry 

biomass of thatch if during the two month experimental period. However considering also the roots biomass 

under the thatch’s layer is possible to appreciate a significant growth given by MD, SWE and Full treatments. 

The graphs below represent the percentages variations of dry biomass of thatch and total weight comparing to 

the control.  

  

 

Graph 22: Thatch and thatch + roots dry biomass percentage compared to the control during at 0, 30 and 60 DAT.  

 

Root length  

Root 

depth 

(cm)  

DAT Control MD SWE Bact only Full 

0 8,50 ± 1,22 a 9,75 ± 2,25 a 9,25 ± 1,19 a 9,50 ± 2,65 a 9,38 ± 2,17 a 

30 9,38 ± 2,95 a 9,88 ± 1,70 a 10,50 ± 0,71 a 9,00 ± 2,35 a 10,00 ± 3,19 a 

60 6,50 ± 1,58 b 7,75 ± 1,94 ab 9,00 ± 1,58 a 7,13 ± 2,17 ab 9,00 ± 1,29 a 
 

 

Graph 23: Root length (% respect to the control). 

Sea weed extract and the Full products determined significant differences respect to the control at the end of the 
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differences yet. At 60 DAT SWE and Full treatments determined a significant increasing of the root elongation if 

compared to control and to the Bact only applications.  

 

Quality and color (1-9) assessment 

The quality and color ratings were conducted bi-weekly utilizing the 1-9 evaluation scale as reported in the 

relative material and method section. Color and quality ratings were performed measuring the overall plot values 

as relative comparison between parcels, as explained in NTEP (National Turfgrass Evaluation Program) 

guideline. 

  

 

Graph 24: Color and Quality results. Data were collected bi-weekly for a period of 60 days. Treatments applied was 

Control (fertilizer), MD (Fertilizer and Maltodextrine), SWE (Nutriculture hi-K), Bacterial only (Roots 1-2-3 Premix) and 

Full application (Root®Flexx®). 

Full product determined a gradual increase of the color score during the two month experimental period, and 

showed statistical significant effect on the influencing the color rating from 45 DAT. At 60 DAT Full product 

determined the highest value of color rating with a mean value of 8,13. Bacteria only solution and SWE 

determined a color ratings of 7,37  and 7,00 respectively at 60 DAT. Maltodextrin based on treatment did not 

showed significant differences from the control during all the experimental period.  

Quality ratings that is not based on a color evaluation alone, but on a combination of color, density, uniformity 

and texture, has partially met the color values. Also for the quality rating, the Full product determined the 

highest values with a score of 8,00 at 60 DAT. The same value was obtained by Bact only product, indeed 

between two microbial based solutions there was not statistical difference at 60 DAT. SWE showed significant 
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differences comparing to the control and MD thesis at 60 DAT, achieving an evaluation of 7,25 at 60 DAT. Also 

in this case, there was not statistical difference between MD and fertilizer only theses. 

 

NDVI color evaluation 

Normalized difference vegetation index (NDVI) was evaluated bi-weekly on the experimental putting green with 

a Crop Circle to evaluate the aesthetic variations of the putting green surface with an objective assessment. In the 

table below are shown the values obtained from each treatment during the two month experimental period. 

DAT Control MD SWE Bact Only Full 

0 0,660 ± 0,027 b 0,659 ± 0,024 b 0,670 ± 0,024 a 0,662 ± 0,027 b 0,655 ± 0,019 c 

15 0,676 ± 0,012 b 0,664 ± 0,016 d 0,672 ± 0,021 c 0,676 ± 0,006 b 0,680 ± 0,008 a 

30 0,681 ± 0,012 ab 0,669 ± 0,016 c 0,683 ± 0,021 a 0,681 ± 0,012 ab 0,680 ± 0,014 b 

45 0,624 ± 0,025 c 0,627 ± 0,018 c 0,636 ± 0,029 b 0,641 ±0,028 a 0,644 ± 0,012 a 

60 0,635 ± 0,030 c 0,640 ± 0,017 b 0,639 ± 0,043 bc 0,646 ± 0,034 a 0,646  ± 0,026 a 
 

 

Graph 25: Normalized difference vegetation index (NDVI) in an Agrostis stolonifera putting green. In the graph are 

compared percentage values obtained for different thesis respect to the control. 

 

Due to the high instrumental sensitivity, the values were founded to be statistically different early at the 

beginning of the experimental evidence. At the end of the experimental period Full treatment and Bacterial only 

solution determined a significant increasing of the NDVI parameter, with a percentage difference to the control 

of 1,6% and 1,7% respectively. 
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5.3.2 PHYSIOLOGICAL RESULTS 

 

Chlorophylls and Carotenoids content 

Foliar pigment content showed that all the treatments 

applied on the Agrostis stolonifera determined similar 

effects without changing statistical differences during the 

two month experimental period. The total chlorophylls 

content in foliar tissues (mg of Chlorophyll a + 

Chlorophyll b on grams foliar fresh biomass) grown in a 

range between 81% and 130% from 0 until 60 DAT 

without showing statistical difference for different 

treatments. The decline in the growth of the 

photosynthetic pigments content occurred between 30 and 

45 DAT, correspond to a sharp rise of temperatures that 

reached 35°C at 38 DAT. 

Chlorophyll a/b ratio was utilized as indicator of stress by 

sun exposing condition. a/b ratio was stabilized at an 

average of 2,59 after one month of treatments and 

remained constant until the end of the experimental trial, 

without showing statistical differences between different 

treatments.  

The weight ratio of Chls a and Chls b to total carotenoids 

(a+b)/(x+c) was utilized as indicator of the greenness of 

the grassy surface. The Chls/carotenoids ratio decreased 

from 15 and 30 DAT by 16% - 31%, and successively 

maintained the same values from 30 and 60 DAT, without 

showing statistical differences between different 

treatments. From 45 DAT to 60 DAT Chls/carotenoids 

ratio increase lightly by 3,5% to 6,5%. 

 

 

 
Graph 26: Leaves pigment content in the leaf tissues of 

creeping bentgrass. 
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Proline 

 

Proline 
(µg/mg) 

 

DAT Control MD SWE Bact only Full 

0 11,4 ± 1,3 a 11,6 ± 1,6 a 10,8 ± 1,5 a 9,2 ± 2,7 a 10,2 ± 2,1 a 

15 10,5 ± 1,2 a 10,2 ± 2,4 a 10,9 ± 2,0 a 13,4 ± 3,7 a 10,7 ± 3,0 a 

30 11,1 ± 1,6 b 12,1 ± 1,4 ab 11,9 ± 2,3 ab 13,1 ± 2,1 ab 14,2 ± 2,7 a 

45 13,0 ± 0,9 b 11,6 ± 2,9 b 13,4 ± 2,9 b 17,8 ± 3,4 a 21,0 ± 2,1 a 

60 12,5 ± 3,7 c 12,8 ± 4,0 c 14,1 ± 2,1 bc 19,9 ± 3,8 ab 21,9 ± 4,9 a 
 

 

Graph 27: Proline contents in leaf tissues of creeping bentgrass. 

 

Full treatment and Bacterial only solution determined a gradual increasing of the proline content in the putting 

green creeping bentgrass (Graph 27). Full treatment showed a statisticl difference comparing to the control from 

30 DAT. Bacteria only applications brought increased the content of proline similarly to Full treatmen, leading 

to a percentace increase by 60% comparing to the control. Sea weed extract treatment show a partial statistical 

comparing to the control improving the proline contet by 13% at 60 DAT.   

 

SOD activity 

The study of the superoxide dismutase activity was performed analyzing the leaves of Agrostis stolonifera 

putting green.  The activity on the SOD activity was quantified as the amount of enzyme required to inhibit 50% 

nitroblue tetrrazolium (NTB), as explained in relative material and method section. 
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SOD 

(x103 U·g-1 DW) 

DAT Control MD SWE Bact only Full 

0 9,14 ± 1,32 a 9,95 ± 0,91 a 9,50 ± 1,49 a 8,79 ± 1,38 a 10,10 ± 1,17 a 

30 7,65 ± 2,73 a 9,16 ± 2,94 a 8,25 ± 2,91 a 9,27± 2,21 a 9,09 ± 2,27 a 

60 8,23 ± 2,93 a 8,66 ± 1,62 a 7,68 ± 1,29 a 9,14 ± 0,79 a 8,10 ± 3,48 a 
 

 

Graph 28: Content of superoxide dismutase in the foliar tissues of the creeping bentgrass. 

Determination of the SOD activity in leaf tissues did not show significant statistical differences between applied 

treatments. At 30 days after treatments bacterial based treatments and maltodextrin determined an increased 

SOD activity by 19%, 21% and 20% respectively if compared to the control (Graph 28). At 30 DAT, bacteria 

only treatment determined the highest increasing of the SOD, with an increment of 25% if compared with 

respective 0 DAT values. At the end of the experimental period, Bacteria only thesis shown an SOD activity 

11% higher comparing to the control, with a percentage diminution from 30DAT to 60DAT by 10%. SWE, Full 

treatment and MD shown a decreasing of the SOD activity by 14%, 20% and 14% respectively from 30 to 60 

DAT. 

 

Indole-3-acetic acid and abscisic acid content 

 
 

 

Graph 29:  ABA and IAA content per grams of leaves tissues in Agrostis stolonifera. 
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The analysis of the abscisic acid (ABA) content in the leaves of Agrostis stolonifera did not shown significant 

effects between the different theses. The ABA content was maintained in a range of 3,5 ± 0,5 ng of 

phytohormone per gram of leaf tissues during the two month experimental period, without showing predominant 

effects of one or more treatments at any sampling date.  

Indole-3-acetic acid (IAA) did not shown significant differences between the different treatments applied and 

control. Unlike the contents of ABA, the levels of IAA decreased steadily over the two month experimental 

period; at 0 DAT IAA contents in leaves tissues were between 2,1 - 2,5 ng per gram of leaf tissue and decreased 

until a range by 0,8 - 1,3 ng/g. 

 

Gas exchange analysis - LiCor 6400 XT 

The CO2 and water flux were measured with the Li-Cor 6400 XT. Determinations were conducted every two 

weeks on Creeping bentgrass plants, transplanted from the field after each treatment and grown within a grow 

chamber until the leaf reached 4 cm length. Gases exchanges were measured simultaneously, over the same leaf 

area. Parameters included: photosynthetic carbon assimilation (A), stomatal conductance (gs), intracellular CO2 

(Ci), leaf transpiration (E). 

Photosynthetic carbon assimilation (Graph 30) appeared uniform across different plots before to start the 

applications at 0 DAT. After two months experimental period the Bacterial only and the Full treatments 

determined the highest and significant increasing by 54% and 35% comparing to the control respectively. Also 

SWE induced significant difference comparing to the control increasing the photosynthetic carbon assimilation 

by 18%, but still lower than Bact only and Full treatments. 

 

  

Graph 30: Photosynthetic carbon assimilation (A) results at 0 DAT and 60 DAT for applied treatments. 

 

a 
a a a a 

0

5

10

15

20

Control MD SWE Bact only Full

µ
m

o
l C

O
2
·m

-2
·s

-1
) 

Photosynthetic carbon assimilation 0 DAT

d cd 

c 

a 
a 

0

5

10

15

20

25

30

Control MD SWE Bact only Full

µ
m

o
l C

O
2·

m
-2

·s
-1

 

Photosinthetic carbon assimilation 60 DAT



  

141 
 

The transpiration of the leaves tissues  (Graph 31) shown similar and not statistically different values at 0 DAT. 

After the two month experimental applications the values of leaf transpiration appeared intensified in Control, 

bacterial only and Full treatments. Full treatment showed the highest and significant value of leaf transpiration 

with a difference of 34% if compared to the control. At 60 DAT maltodextrin based treatment shown a 

decreasing by 12% of the foliar transpiration if compared at the corresponding 0 DAT value.  

  

Graph 31: Leaf transpiration rate (E) results at 0 DAT and 60 DAT for applied treatments. 

 

The stomatal conductance of the Agrostis stolonifera leaves shown similar values at 60 DAT, and no significant 

differences were found between the different plots before to start the applications. After the two months 

applications period the Full treatment determined the highest value for the stomatal conductance, with an 

increasing by 44% respect to the control and by 92% comparing at the relative 0 DAT value. SWE showed an 

increasing by 66% if compared at the corresponding 0 DAT value a significant difference respect to the control 

at 60 DAT. Bacterial only based solution showed no significant difference comparing to the control. 

Maltodextrin determined a decreasind of the stomatal conductance by 12% comparing to the control. 

  

Graph 32: stomatal conductance (gs) results at 0 DAT and 60 DAT for applied treatments. 
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The intracellular CO2 concentration (Ci) content in the leaves tissues measured before the first treatments 

resulted not statistically different. At the end of the experimental trial the mean values of CO2 concentration 

within leaf tissues decreased for all theses except for the Full treatment. The full treatment maintained the CO2 

content around 200 µmol CO2/mol showing a significant difference by 44% comparing to the control. The other 

treatments brought the CO2 concentration under the control values showing all a significant difference if 

compared with the control thesis.  

  

Graph 33: intracellular CO2 concentration (Ci)at 0 DAT and 60 DAT for applied treatments. 
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5.3.3 SOIL MICROBIAL ANALYSIS 

PCR-DGGE analysis was used to examine the effect of different amendments on the soil microbial communities, 

taking into account that the detection limit of the technique is 1% of the total DNA (Marzorati et al., 2008). 

Profiles of the bacterial communities are shown in Figure 64 and Figure 65.  

 

Figure 64: PCR-DGGE analysis. Comparison of DGGE patterns of 16S rDNA fragments amplified from BULK SOIL 

DNA 1 at three different sampling time (0 DAT, 30 DAT and 60 DAT). Treatment: 1 (Control), 2 (Full), 3 (Bact only), 4 

(SWE), 5 (MTD). 

 

 

Figure 65: PCR-DGGE analysis. Comparison of DGGE patterns of 16S rDNA fragments amplified from BULK SOIL 

DNA 2 at three different sampling time. Lanes 1 and 17: ladder; lanes 2 to 6: TRT 1, 2, 3, 4, 5 -05; lanes 7 to 11: TRT 1, 2, 

3, 4, 5 -06; lanes 12 to 16: TRT 1, 2, 3, 4, 5 -07. 
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Overall, DGGE of 16S rDNA fragments from soil DNA revealed high similarity of the DGGE patterns obtained 

from each of the two replicates per treatment and time sampling (similarity value more than 80%), suggesting a 

low degree of variability caused by the sampling, DNA extraction, PCR amplification, and DGGE analysis. At 

all sampling times, the bulk soil patterns consisted of some stronger bands detectable, particularly, in 0 DAT and 

30 DAT samples and a large number of less intense bands, indicating that in bulk soil samples the 16S rDNA 

fragments of only one or two populations dominated, while many populations which were less prevalent seemed 

to be equally abundant. At 60 DAT, in all treatments most of the abundant bands detected at 0 DAT and 30 DAT 

lose their intensity. In the dendrogram, two main groups could be observed related to June and July samples with 

a similarity value around 79.8% for soil sampled in June and over 90% in July. Full treatment at 60 DAT (both 

replicates) has a unique behavior and is separated in the dendrogram (Graph 34) with a similarity of 87.8%.  

 

Graph 34: Dendrogram of similarity between bands obtained from the different treatments. 
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On the other hand, different theses collected before the beginning of the experiments (0 DAT) don’t cluster 

always together, although each duplicate, except for MTD (Maltodextrine) that has a high similarity value. This 

probably indicates a more heterogeneity of the samples considering that they all refer to virgin soil which has 

still not received any treatment. Interestingly, in Full thesis the presence of three strong bands, two of them 

peculiar to this treatment.  

 

Sequence analysis 

Prominent bands were excised from both gels and sequenced to get further information about the dominating 

bacterial populations in the different treatments from the DGGE gel of the three sampling time (Figure 66).  

 

 

Figure 66: PCR-DGGE analysis from BULK 1. Arrows indicated the most relevant bands excised (Band number in Table 

X). Treatment: 1 (Control), 2 (Full), 3 (Bact only), 4 (SWE), 5 (MTD). 

 

The results of the partial sequence analysis of these bands and their tentative phylogenetic affiliation are shown 

in Graph 34. Sequencing results obtained from bands excised in Bulk 1 were similar to those obtained from Bulk 

2. The sequence of the majority of bands (band 2,3,5,6) could be assigned to Arthrobacter spp. with a similarity 

score from 1.00 to 0.828. These bands are very strong in all treatments referred to 0 DAT and 30 DAT, whereas 
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in 60 DAT they substantially disappeared. The sequence of the strong band 1, clearly detectable in 0 DAT and 

30 DAT, showed 0.979 similarity score to Pseudomonas spp., while in 60 DAT any detection is possible. 

Arthrobacter and Pseudomonas are common bacterial genera frequently associated with soil and their absence in 

60 DAT samples could be due to seasonal changing.  

Band 4, which is present in all samples and in all sampling time showed an high similarity score (0.989) with 

Bradyrhizobium spp. which are slow-growing bacteria capable of nitrogen fixation and nodule formation on 

leguminous plants (Jordan, 1982). 

Bands 10, 11 and 12 are all assigned to Bacillus spp. (high similarity score with B. thuringiensis and B. cereus) 

(Table 31) and are visible only in Full thesis which correspond to the parcel treated with bacteria and other 

biostimulants. As already mentioned, these bands appear after two months inoculation of the related soil parcels 

with a microorganisms-based product where presence of species of Bacillus spp. is certified. These bacteria 

remain probably into the soil producing the desired positive effects. 

 

Table 11: Assignment of band sequences from PCR-DGGE profiles. ND: non determined. 

Band number Closest Identity Similarity Score 

1 Pseudomonas spp. 0.979 

2 Arthrobacter spp. 0.828 

3 Arthrobacter spp. 1.00 

4 Bradyrhizobium spp. 0.989 

5 
Uncultured soil bacterium 

Arthrobacter sp. 
1.00 

6 
Uncultured soil bacterium 

Arthrobacter spp. 
1.00 

7 ND  

8 ND  

9 ND  

10 Bacillus spp. 0.992 

11 Bacillus spp. 0.993 

12 Bacillus spp. 0.993 

13 ND  
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5.4 DISCUSSION 

 

In the third and final step of this experimental thesis the microbial biostimulants were once again applied on an 

Agrostis stolonifera putting green. Differently at the experimental trial conducted in the Modena Golf, the 

scheduled managing (chemical applications and agronomical maintenances) where maintained for the entire 

durate of the trial. Therefore this conclusive trial aimed to test the effectiveness of the treatments based on 

microbial mixes in a real managing context during the summer period. Unfortunately during this trial was not 

possible to repeat the test with DiSTA and D-PLUS microbial solutions because a patent procedure was initiated 

in order to protect the intellectual property rights. For this reason similar products commercialized on the U.S. 

market were utilized. 

Concerning the morphological parameters, leaves, thatch and roots growth were analyzed. The production of 

leaves did not shown significant differences for all the treatments applied. This data was in accordance with the 

balanced mineral input across the different thesis. Therefore biostimulants and PGPR (principally Bacillus spp.) 

did not determine a further stimulus to the foliar growth in according with a preponderant incentive to rooting. 

This not significant effect on the biomass production was a positive data because an eventual increment of the 

leaf growth determines higher costs of mowing (Johnson, 1994) and management operations due to an higher 

thatch accumulation. The dry/fresh ratio of leaves biomass did not showed significant effects in plots treated 

with microorganisms, differently by the Modena’s trial where this kind of treatments resulted effective.  

The thatch biomass did not show a reduction for all the treatments applied, including the bacterial only and Full 

theses. This result was attributable to the microbial mixes utilized in this last experiment, that were principally 

composed by Bacillus spp., which had PGPR properties largely described by Podile and Kishore (2007) and 

Singh et al. (2011), unlike the DiSTA and D-PLUS microbial solution that were composed by bacteria able to 

metabolize lignin and cellulose of thatch, as previously described. 

The growth of roots showed the highest values (comparing to the control) for Full and SWE treatments, which 

both contain the Ascophyllum nodosum extract, which cytokines-like activity has been proved on creeping 

bentgrass in several works (Zhang et al., 2003; Crouch and Van Staden, 1993; Senn, 1987). Even though the 

Full treatment included different Bacillus spp. and leonardinte (HA) these did not determined an further 

deepening of the root apparatus in comparison to the other treatments.  

The visual assessment of the green surface was based on the 1-9 ratings scale considering the color and quality 

parameters. The analysis of the surface showed a better color rating for the Full treatment while SWE and Bact 

only have led to lower values but still significantly higher than the control. These data confirmed the positive 

effects obtained with bio-stimulants on the color quality of the leaves as previously demonstrated in the 

Modena’s trial. In the other hand the quality of the turf surface (a combination of color, density, uniformity, 
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texture and diseases) was not significantly affected by the different applications probably due to the high 

standard quality of the turf surface of the experimental plots.  

The 1-9 visual color rating was confirmed by the measure of the normalized difference vegetative indices 

(NDVI) obtained with a vehicle-mounted optical sensor. The subjective 1-9 rating and the instrumental NDVI 

evaluations were highly correlated as reported by Bell (2002) and both confirmed a positive effect given by Full 

and Bact only treatments. SWE and MD were not significant different by the control plots. 

In contrast with the Modena’s trial an improved color quality was not correlated with an increasing of total 

chlorophyll. Indeed the highest color rating obtained with Full treatment, was not followed by an higher 

Chla+Chlb content if compared with the other treatments. The content of the photosynthetic pigments seemed to 

be not influenced by different theses, but given the homogeneity of the response the environmental effects were 

predominant. The total chlorophyll (a+b)/carotenoids (x+c) ratio is an indicator of the greenness of plants. The 

ratio (a+b)/(x+c) showed a diminution from an average value of 4,2 at 0 DAT (common value for sun exposed 

leaves) to 3,3 at 60 DAT indicating a principle of yellowing/senescence and status of stress due to the 

environmental condition that normally stress the putting greens during the summer seasons (Lichtenthaler, 2001; 

Carrow, 1996). 

Superoxide dismutase (SOD) activity did not shown significant effect due to different thesis and also the content 

of two phytohormons abcisic acid (ABA) and indole-3-acetic acid (IAA) was not affected despite the PGPB and 

bio-stimulants (HA) possess  phytohormone’s stimulation and precursor characteristics(Arshad and 

Frankenberger, 1998; Calapp et al., 1998). 

The analysis of the proline revealed a significant increased content of this metabolite in plots treated with 

microbial treatments (Full and Bact only). The higher concentration of proline as result of the inoculums showed 

positive effects of bacteria to enhance the production of this osmoregulator commonly necessary in stress 

condition. This result may be associated to an improved turfgrass quality and resistance to environmental 

stresses such as drought  (Zhang, 1997) and salinity (Nabati et al., 1994). 

Photosynthetic carbon assimilation was positively influenced from all bio-stimulant treatments, in particular by 

those containing PGPB. No significant differences in photosynthetic rate (A), stomatal conductance (gs), 

intracellular CO2 (Ci) and leaf transpiration (E) were found at anthesis stage. After 60 days of treatments the 

mean values of the photosynthetic rate were much higher, in contrast with expected values. Generally water 

deficit and high temperature may determine stress condition through a combination of stomatal and metabolic 

limitations (Lawlor, 2002; Flexas, 2006). However, it should be considered that creeping bentgrass’ plants were 

grown for two weeks within a growth chamber before to proceed with the gas exchange detection, so the data 

would be considered in relation to the control because the environmental parameters can be misleading. Indeed, 

treatments based on microorganisms and biostimulants have led to a further increasing of the photosynthetic rate 

respect to the control. 
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In accord with the Modena’s trial the combinations of microorganisms and biostimulants determined the higher 

and significative increasing of the transpiration from the leaves tissues, while bacteria and biostimulants applied 

separately determined a lower increment but still significantly above to the control. 

Concerning the microbial analysis, the first half of the experiment showed a substantial heterogeneity of the 

results between 0 and 30 DAT and within the different theses. On the contrary all the plots at 60 DAT revealed a 

similar DGGE profile which differentiates them from the samples of 0 and 30 DAT. In particular the Full thesis 

at 60 DAT showed a unique behavior and is separated in the dendrogram with the stronger similarity. 

The most interesting result obtained from the microbial analysis was obtained for the Full thesis (bacteria and 

other biostimulants) at 60 DAT, which has evidenced the presence of three strong bands. The subsequent 

sequence analysis revealed the belonging to Bacillus spp. with a high similarity score to B. thuringiensis and B. 

cereus. In the Full treatment could be hypothesized that the bi-weekly inoculum would be lead to an increase of 

such microorganisms in the soil bacteria consortium detectable by PCR-DGGE. 

The second interesting result was the strong diminution of the intensity and some case the loss of DNA bands 

from 30 DAT and 60 DAT. The significant diminution of the microbial component in the putting green top-soil 

may have been determined by the application of some chemicals utilized to control the turf diseases during the 

summer period. Indeed, in previously studies some chemicals such as chlorothalonil, a broad spectrum non-

system fungicide commonly utilized to suppress the dollar spot on putting green, have shown a significantly 

reducing effect on the population of soil microorganisms (Yun long Yu et al., 2006). Chlorothalonil, has been 

applied in three different dates (20, 30, 40 DAT) during the term of the field trial in order to suppress the 

propagation of dollar spot disease. The diminution of a large portion of the microorganism detected with the 

DGGE analysis then could be a direct consequence of the chemicals applications. 
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6. CONCLUSIONS 

 

During this experimental thesis were previously studied the principal morpho-physiological effects that different 

microbial solutions determine on L. perenne L. in a controlled environment condition. The results showed that 

the inoculation of commercial microorganisms, mainly containing PGPR, promoted the growth of shoots and 

roots, while effective microorganisms (EM-1) determined principally an increasing of the dry/fresh biomass ratio 

and a higher resistance to tearing out that is a particularly favorable feature for any essence of sport turfgrass. 

The PCR-DGGE analysis showed the colonization ability of four species belong to the effective microorganisms 

that, as evidenced in the literature, have a great potential for the maintenance and recovering of a sport turf for 

some of their properties such as bio-control against phytopathogens, bio-degraders of organic substances and for 

the recirculation of nutrients. From the growth chamber analysis was possible to conclude that both effective and 

commercial microorganisms have a general effectiveness to improving the habitus of the plant in particular the 

coloration of leaves that were significantly enhance respect to the plants treated with the fertilizer only control. 

The tear resistance improved by microbial treatments was confirmed in the test on the golf putting green. This 

result could be of marginal interest in the golf sector where the damage of the turfgrass is principally determined 

by the compression impact resulting from the fall of the ball and by the removal of clod portions by strokes. 

Instead this characteristic may be interesting for future experiments on soccer and football fields where 

resistance to tearing is a fundamental criterion of judgment.  

The two original microbial mixes, DiSTA and D-PLUS were ideated and formulated on the base of the 

experience gained during the test on L. perenne L. in order to meet the needs of an Agrostis stolonifera putting 

green, that is the highest engineered turfgrass system in the sport turf industry. D-PLUS mix, composed by 

different groups of effective microorganisms, humic acid and arbuscule mycorrhizae determined the highest 

visual evaluation of the grass surface and a significant reduction of the thatch. The microbial degradation of 

thatch leads to a parallel diminution of the moisture content and an increased evapotranspiration from the 

canopy. The decreasing of moisture content and the thinning of the thatch determined an increased oxygenation 

of the rhizosphere that is a key factor to reduce the insurgence of ROS and to ensure a lower susceptibility of the 

turfgrass to fungal diseases such as Dollar sport, due to the lack of the optimal humid-substrate for the 

propagation of this genre of pathogens. Creeping bentgrass treated with D-PLUS confirmed the capacity of 

VAM to establish endophytic symbiosis by glomus intraradices, with the possibility to exploit the positive 

interaction properties such as the increased resistance to abiotic stresses and wide range of assimilable nutrients. 

These interesting results, obtained in a semi-field condition where chemical and mechanical treatments were 

suspended, could bring to reschedule the agronomic management of the sport turfgrass by the addition of D-

PLUS or similar solutions in order to reduce the chemical treatments and the applications of fertilizers because 
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as demonstrate in this thesis these formulates allow the degradation and recirculation of nutrients and therefore 

reduce the management costs of the whole golf club. 

In the other hand, in a real field condition where chemical and mechanical treatment were applied as scheduled 

for a sport turf, the treatments based on bacteria and biostimulants showed reduced positive effects. 

Anyway, Bacillus genre belonging to the plant growth-promoting rhyzobacteria tested in association with humic 

acid and sea weed extracts confirmed the positive effect on quality and color of the turfgrass and a significant 

increasing on root’s elongation and proline content as general response of an improved physiologic condition if 

compared to the fertilizer only application. 

In conclusion is possible to confirm that the addition of microorganisms and organic biostimulants on a sport turf 

grass system, especially on a golf putting green, can improve the physiological conditions of the grass essences 

and the agronomical aspects of the whole area of playing. 
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