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“Venite amici, che non è tardi per scoprire un nuovo mondo.  

Io vi propongo di andare più in là dell’orizzonte,  

e se anche non abbiamo l’energia che in giorni lontani mosse la terra e il cielo, 

siamo ancora gli stessi.  

Unica, eguale tempra di eroici cuori, indeboliti forse dal fato,  

ma con ancora la voglia di combattere, di cercare, di trovare...e di non cedere.”  

(A.L. Tennyson) 

...a me stessa. 
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GENERAL ABSTRACT 

Soil is considered the second major biologically active pool of carbon after the 

oceans. Its capacity to act as a carbon sink depends on a variety of factors such 

as existing soil carbon, soil type, climate, crop types and management practices. 

Loss of organic carbon from soil has been estimated at about 42-78 Gt of carbon 

over the last century, due to anthropic influences. Moreover, since the 1960’s, 

there has been a decline of grassland and forests in Europe, with an increase of 

cropland and arable areas. In this scenario, practical measures are primary to 

enhance soil organic carbon sequestration in agricultural soil. 

A promising solution pursued in North European countries is the use of 

perennial crops, such as Miscanthus and giant reed, to restore soil carbon stocks 

and fertility, while concurrently producing a valuable bioenergy feedstock. 

Indeed, recent research has shown a high carbon sequestration potential across 

Europe. These studies are available under Atlantic and Continental 

environments of North-Central Europe, while there is a substantial lack of 

information for Southern Europe. 

Therefore, this research was conducted in the South-Eastern Po Valley 

(Northern Italy), in a Mediterranean-temperate climatic zone. This agro-

ecosystem is characterised by low average soil organic carbon levels (<10 g C 

kg-1 up to 0.30 m), largely due to anthropic practices. 

The aim was to assess the factors influencing soil carbon sequestration and its 

distribution through soil layers and within soil fractions, after a 9-year old 

conversion from two annual crop systems, continuous wheat and maize/wheat 

rotation, to Miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax), 

respectively. 

The 13C natural abundance, in three layers up to 0.60 m, was used to evaluate 

the total amount of soil organic carbon in annual and perennial species, and 

determine the portion of carbon derived from perennial crops. Soil organic 

carbon was significantly higher under perennial (average, 91 Mg C ha-1) than 
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annual species (average, 56 Mg C ha-1), with a stronger accumulation in the 

topsoil (0-0.15 m). After 9 years of Miscanthus plantation, the amount of C4-

derived carbon was 18.7 Mg ha-1, mostly stored at 0-0.15 m, whereas the 

amount of C3-derived carbon, under giant reed, was 34.7 Mg ha-1, more evenly 

distributed through soil depths. 

To better investigate the fate of newly sequestered carbon, physical soil 

fractionation was combined with 13C natural abundance analysis. The newly 

derived-carbon from perennial crops was mainly found as particulate organic 

matter (68% and 71% in Miscanthus and giant reed, respectively), i.e. it was in a 

labile state with short turnover rate. Under giant reed, organic matter 

associated with the microaggregates and the mineral fraction explains the main 

difference in soil organic carbon, with respect to Miscanthus. Indeed, under 

giant reed, microaggregates and mineral fraction played a relevant role, storing 

much more newly derived-carbon than under Miscanthus. Conversely, this latter 

appeared to preserve more old derived carbon. 

A molecular approach based on denaturing gradient gel electrophoresis (PCR-

DGGE) was used to evaluate changes occurred on microbial community 

structure, after the land conversion to perennial energy crops. Functional 

aspects were investigated through the determination of three soil enzymes 

involved in nutrient cycles (β-glucosidase, urease and alkaline phosphatase). 

Introduction of perennial energy crops positively stimulated the three soil 

enzymes, especially in the topsoil (0-0.15 m), where accumulation of carbon and 

nitrogen was stronger. The DGGE profiles revealed some differences between 

land use system and soil microbial communities. Community richness was 

higher in perennial than in annual crops, but no effect of soil depth was 

observed. In contrast, Shannon index of diversity was not influenced by land use 

system, but only by soil depth, being enhanced in the topsoil (+32%). 

In conclusion, this research shows a remarkable potential of Miscanthus and 

giant reed to enhance soil organic carbon sequestration, also in Mediterranean 

conditions. It is perceived that reduced soil disturbance, that characterises 
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perennial crops management, contributes to maintain more carbon in the stable 

soil fractions, positively reflecting on microbial communities. 
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LIST OF ACRONYMS 

ANOVA  Analysis of variance 

ARPA   Agenzia Regionale per la Protezione dell’ Ambiente 

a.s.l.   Above sea level 

Cmic   Microbial biomass carbon 

DGGE   Denaturing Gradient Gel Electrophoresis 

FAO   Food and Agriculture Organization of the United Nations 

GHG   Greenhouse gas 

GLU   β-glucosidase 

H’   Shannon’s diversity index 

IALF   Intraggregate light fraction 

IPCC   Intergovernmental Panel on Climate Change 

LSD   Least significant difference 

LUC   Land use change 

MF   Mineral fraction 

PAL   Alkaline phosphatase 

PAVAIL   Available phosphorus (Olsen method) 

PCR   Polymerase chain reaction 

PDB   Pee Dee formation belemnite carbonate standard 

POM   Particulate organic matter 



 

 
5 

 

r   Pearson’s product moment correlation coefficient 

R   Community richness 

RDW   Root dry weight 

SNK   Student - Newman-Keuls test 

SOC   Soil organic carbon 

SOM   Soil organic matter 

TN   Soil total nitrogen 

UR   Urease 

WRR   Water Resources Research 

 



 

 
6 

 

GENERAL INTRODUCTION 

Since the beginning of the industrial revolution, greenhouse gas (GHG) 

emissions have significantly increased and the burning of fossil fuels and 

cement manufacturing have been the major contributors (Dumanski, 2004). 

However, nowadays agriculture and land use changes (LUCs) for agricultural, 

forestry, residential and industrial purposes, appear to have important effects 

on GHG emissions and carbon stocks in soil (Feddema et al., 2005) with a 

contribution of about 20% of the anthropic emissions. Carbon sequestration has 

been recognised in the Kyoto Protocol (Article 3.4) as one of the two major 

strategies in the agricultural context to reduce direct emissions of CO2 from soil, 

along with the use of biomass for energy production to mitigate carbon 

emissions from fossil fuels. These strategies are strongly interlinked (Anderson-

Teixeira et al., 2009) and this complexity cannot be overlooked in the 

development of GHG mitigation policies. 

In general, soil carbon sequestration is defined as the long-term incorporation 

of atmospheric CO2 into the soil, in the form of stable organic compounds 

(Zimmermann, 2012). The rate of this process depends on the input of the net 

primary production and on its fraction being recycled into the soil. Loss of 

carbon is determined by organic matter mineralisation and loss of topsoil by 

erosion (Freibauer et al., 2004). When the input of carbon is larger than the 

output, soil carbon sequestration occurs. 

Whether agricultural soils act as sink or source of carbon depends on 

management practices used (IPCC, 2000). For example, burning of crop 

residues, grassland degradation, low water use efficiencies, soil organic matter 

(SOM) and fertility loss, excessive tillage, etc. are practices that promote net 

carbon emissions. Instead, well-managed lands under good conservation and 

nutrient management, conservation or zero tillage, well managed fallows, 

preservation of wetlands, etc. enhance carbon sink activity (Dumanski, 2004). 

Increasing the level of soil organic carbon (SOC) and SOM can provide 
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considerable environmental and agricultural co-benefits (Wood et al., 2000). 

Increased SOM normally improves soil aggregation, which, in turn, improves 

soil aeration, infiltration, surface and groundwater quality and reduces soil 

erosion. Moreover, the increased SOM enhances soil water storage capacity, 

providing some degree of mitigation against crop failure in dry years (Hudson. 

1994). 

The increase of SOM, through carbon sequestration, also increases nutrient 

cycling by stimulating soil biology and biodiversity. Thereby, soil decomposition 

rate and nutrient supply are stimulated and soil fertility improves because less 

chemical fertilisers are required (Dumanski, 2004). 

Since soil is an heterogeneous and dynamic ecosystem, especially in the 

agricultural context, where it is continuously subjected to land management and 

use change, soil carbon sequestered in arable soils is non-permanent as it is lost 

more rapidly than it accumulates (Smith et al., 1996). As affirmed by Lal (2004), 

land use and soil management play an important role in the global carbon 

budget, leading to a depletion of up to two thirds of the original SOC contents in 

agricultural soils, equivalent to a loss of 30 to 40 Mg C ha-1. The phenomenon is 

ever-increasing, with an expectation of important land use changes in Europe in 

the coming decades (WRR, 1992; Rounsevell et al., 2005). Land use types differ 

in the content of carbon stored in soil and vegetation (Arrouays et al., 2001; 

Rodriguez-Murillo, 2001; Lettens et al., 2004; Bellamy et al., 2005): SOC stocks 

under cropland are lower than under pasture, perennial crops or forest. 

Thereby, conversion of forest or pasture to cropland is found to decrease SOC 

stocks; Lal (2004) assumed that the conversion of natural to agricultural 

ecosystems led to a SOC depletion of 60% in temperate regions, and up to 75% 

in tropical ones. On the contrary, conversions to forestry, grassland or natural 

regeneration usually lead to an increase SOC stocks (Guo & Gifford, 2002; 

Lettens et al., 2005; Falloon et al., 2006). 

Variation in SOC stocks and decomposition rates are also due to environmental 

factors, such as soil texture, climate conditions, vegetation type and root 

architecture. As demonstrated by Christensen (1996), clay soils accumulate 
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carbon relatively quickly, while sandy soils may accumulate practically no 

carbon even after 100 years of high carbon inputs. Similarly, soils in colder 

climates, where decomposition is slower, may accumulate carbon more rapidly 

than soils in warmer regions. 

Calculating the global carbon mitigation potential is difficult: apart from 

assessing the full potential of measures increasing soil carbon sequestration, 

restraints regarding land use change as well as socio-economic variables, need 

to be taken into consideration (Smith, 2004). Tans et al. (1990), Ciais et al. 

(1995) and Fan et al. (1998) have assessed that, over the past decades, soils 

have stored between 1 and 2 Pg yr-1 in the Northern hemisphere. On the 

contrary, little estimate of agricultural soil carbon sequestration potential for 

Europe is available (Freibauer et al., 2004). Smith (2004) calculated the 

biological potential for carbon storage in European (EU-15) cropland around 

the order of 90-120 Mg C yr-1, with a range of options available, including 

reduced and zero tillage, perennial energy crops and deep rooting crops, more 

efficient use of organic amendments (animal manure, sewage sludge, 

compost...), improved rotations and conversion of arable land to grassland or 

woodland. Considering only constraints on land use and amounts of available 

land, the estimate of the sequestration potential is up to 45 Mg C yr-1. Because of 

several interacting variables and constraints of different nature, it is right to 

assume that the realistic potential of agricultural soils in Europe may be 

considerably lower than the biological potential, with a realistically feasible 

potential estimated to be about 20% of the biological potential. 

PERENNIAL ENERGY CROPS 

Energy crops are produced with the express purpose of using their biomass 

energetically (Lewandowski et al., 2003). The replacement of fossil fuels by 

renewable bioenergy fuel sources and energy crops is one of the main strategies 

to achieve the aims of the Kyoto Protocol (Clifton-Brown et al., 2007). As 

proposed by Smith et al. (2000), energy crops are identified as the agricultural 

land use change with the greatest potential for carbon mitigation across Europe, 
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although, within the scientific community, there is controversial discussion 

about this proposal. Recent research suggests that, under certain conditions, 

bioenergy production can lead an increase in food prices, due to direct and 

indirect competition. To avoid conflict with food production, energy crops need 

to be planted on lower grade land or marginal land, unsuitable for arable crops 

such as wheat (Fargione et al., 2008). Also, the conversion of native, semi-

natural or generally more diverse ecosystems to large monocultures can lead to 

a loss of biodiversity (Cook et al., 1991; Koh, 2007; Koh and Wilcove, 2008). 

Therefore, if the development of energy crops is not properly regulated with 

regard to land allocation and use of the most suitable crop species, the 

environmental and social benefits of biofuels may be substantially diminished 

(Zatta et al., 2013). Inappropriate choice of land types and crop types may even 

increase GHG emissions from soil such that the environmental benefits of 

growing energy crops are negated (Fargione et al., 2008; Hillier et al., 2009; 

Frische et al., 2010; Powlson et al., 2011). Belowground biomass is the primary 

vehicle for soil carbon storage (Kuzyakov, 2002; Nguyen, 2003; Kell, 2011); 

therefore, energy grasses, especially perennial species, are expected to increase 

SOC and to slow down mineralisation processes thanks to minimal soil tillage 

and deeper root system (Ma et al., 2000a; Monti and Zatta, 2009). There are 

many ecological benefits expected from the production and use of perennial 

grasses, that make them more suitable than annual grasses. Unlike annual crops, 

the need for soil tillage in perennial grasses is limited to the year in which the 

crops are established. The reduced disturbance by tillage leads to decreased risk 

of soil erosion, less aeration, lower plant residues-decomposition rates and 

better carbon stabilisation for longer periods (Schneckenberger et al., 2007). 

Furthermore, due to the recycling of nutrients by their rhizome systems and to a 

slower decomposition of plant residues (stubbles, leaves and roots), that 

increases C:N ratio, perennial grasses have a low demand for nutrient inputs 

(Christian et al., 1997). Since they have few natural pests, they may also be 

produced with little or no pesticide use (Lewandowski et al., 2000). Studies of 

fauna show that, due to long-term lack of soil disturbance, the late harvest of 
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perennial grasses in winter to early spring and the insecticide-free production, 

an increase of abundance and activity of different species, especially birds, 

mammals and insects occurs (Jodl et al., 1998; Hoffman et al., 1995). Perennial 

crops can therefore contribute to ecological values in agricultural production: 

they can function as elements in landscape management and as habitat for 

different animals (Lewandowski et al., 2003). The increase in stored carbon in 

soil results also from the relatively large quantities of rootstocks belowground, 

as well as enhanced SOM content. As assumed by Monti and Zatta (2009), the 

root apparatus is likely the most responsible source of soil carbon and therefore 

root growth determination ought to be a reliable indicator of the potential 

carbon accumulation. 

European research on perennial grasses for bioenergy production began with 

the interest shown in the hybrid Miscanthus × giganteus (Greef and Deuter), 

which was introduced as ornamental plant about 50 years ago (Lewandowski et 

al., 2003). The first field trials of Miscanthus were established in the late 1980’s 

in different countries of Northern Europe, as Denmark, Germany, Ireland and 

the UK. In 1993, a large project was set up under the European AIR program, to 

extend the distribution of field trials into Southern Europe, including Greece, 

Italy and Spain (Walsh, 1997). Nationally funded projects in Denmark, 

Netherlands, Germany, Austria and Switzerland supported research on 

propagation and establishment, management practices, harvest and handling of 

Miscanthus. Results showed a very vigorous growth of this crop, and the 

advantage of concentrating the biomass harvest in one cut in a delayed harvest 

system, allowing it to dry out. By this, major limitations were identified, as the 

narrow genetic base (only the hybrid Miscanthus × giganteus is suitable for 

bioenergy production), the poor overwintering in Northern Europe and the 

need to propagate it vegetative because of its high establishment costs 

(Lewandowski et al., 2003). For these reasons, it seemed to be worth identifying 

other perennial grasses which could be established by seeding at lower costs 

and that were more adapted to climatic conditions at different sites in Europe. 

Many indigenous grasses have been evaluated at various Southern and 
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Northern European sites (Mediavilla et al., 1997; Wellie-Stephan, 1998). Among 

these, giant reed (Arundo donax L.) and reed canarygrass (Phalaris arundinacea 

L.) were found to offer good bioenergy characteristics. There is another 

perennial grass, firstly used in the US as promising bioenergy crop, that has 

been recently introduced into Central and Southern Europe for the same 

purpose and it is switchgrass (Panicum virgatum L.). 

PERENNIAL ENERGY CROPS AND CLIMATIC CONDITIONS 

The main reason for developing different perennial energy grasses as bioenergy 

crops is the need to establish appropriate crop types for different 

ecological/climatic zones, because climatic conditions influence biomass 

production and, therefore, SOM input. The main climatic limitations to be 

overcome in Europe are the low winter temperatures in Northern Europe and 

the dry summer periods in Southern Europe (Lewandowski et al., 2003). These 

meteorological factors can be an advantage/disadvantage for different 

perennial crops depending on their photosynthetic pathway (C3 and C4 plants). 

Low winter temperatures and short vegetation periods are major limitations to 

the growth of C4 grasses, like Miscanthus or switchgrass, in Northern Europe, 

making C3 plants, like reed canarygrass, the best choice for countries like 

Sweden or Finland. With increasing temperatures, towards Central and 

Southern Europe, the productivity of C4 grasses and therefore their biomass 

yields and competitiveness increase (Lewandowski et al., 2003). 

Many surveys about the establishment and the use of perennial crops for 

bioenergy production or SOC storage increasing are available but they largely 

refer to different climatic sites of Northern Europe. These field experiments 

have confirmed high carbon sequestration rates, especially under Miscanthus, 

showing high potential to increase SOC stocks under former arable lands. The 

potential zone for Miscanthus production has been extended in Northern 

European areas by the screening and breeding of more frost-tolerant genotypes. 

In Table 1, the main studies on Miscanthus to which this research refers, are 

classified in accordance to the environmental stratification of Europe, suggested 
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by Metzger et al. (2005). This classification assumes similar environmental 

parameters where agricultural land could be suitable for non-food crops 

cultivation. Considering also Fig. 1, it appears that these experimental studies 

have been conducted in different bioclimatic areas, with well distinct 

meteorological parameters. They extend from the Atlantic Central zone, quite 

good for agriculture in spring/summer time but not during winter because of 

low temperatures, to Continental climate, less favourable for the relatively low 

annual rainfall. 

Table 1 Location, meteorological parameters and environmental classification 

(Metzger et al., 2005) of the above mentioned studies on Miscanthus and of this thesis. 

Description of geographic allocation of environmental zones from EBONE (European 

Biodiversity Observation Network).  

Authors 
Experimental 

Site 

Mean 
Temperature 

(°C) 

Annual 
Rainfall 

(mm) 

Months 
Temp  
< 0°C 

Environmental 
zone 

Clifton-Brown et al. 
(2007) 

Southern 
Ireland 

10 912.9 0.2 Atlantic Central 

Dondini et al. (2009) 
Souht-East of 

Ireland 
10 912.9 0.2 Atlantic Central 

Zatta et al. (2013) West Wales 10 912.9 0.2 Atlantic Central 

Schneckenberger et 
al. (2007) 

Southern 
Germany 

8.6 774.3 4.1 Continental 

Hansen et al. (2004) 
Denmark 

(North Jutland) 
8.6 774.3 4.1 Continental 

this research (2014) Po Valley 13.2 695.9 0.4 
Mediterranean-

North 

 

In contrast, the present research was located in the South-East of the Po Valley 

(Northern Italy), included in the Mediterranean-North zone, that, with its warm 

temperatures coupled with sufficient precipitations, may be considered better 

suited for growing a wide array of energy crops. The area of the Po Valley is 

characterised by average low SOC levels (<10 g C kg-1 up to 0.30 m; ARPA, 

2009), largely due to anthropic practices as intensive tillage, a strong 

specialisation of cropping systems and a concurrent decline of the livestock 

farm activity. Perennial biomass crops are being introduced here, besides 

bioenergy aims, to foster C sequestration. In this light, we investigated a 9-year 
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old conversion from two annual crop systems, continuous wheat and a 

maize/wheat rotation, to Miscanthus and giant reed, assessing their 

contribution to SOC storage and possible benefits on biological aspects of soil, in 

less favourable conditions than in Northern Europe. 
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Figure 1 Environmental stratification of Europe, suggested by Metzger et al. (2005).  
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GENERAL AIMS 

This research is carried out in the frame of the multidisciplinary BIOSEA Project 

(“Ottimizzazione delle filiere bioenergetiche esistenti per una sostenibilità 

economica e ambientale”; http://www.biosea.dista.unibo.it), funded by MIPAAF 

(Italian Ministry of Agricultural Policy). The aim of the project is to improve the 

bioenergy sector in a sustainable agricultural context, through the interaction of 

genetic, economic, agricultural and environmental analysis. 

As shown in the General Introduction, perennial energy grasses exhibit different 

levels of adaptation and tolerance to a large range of climatic conditions, from 

Northern to Southern Europe. Results of long-term field experiments in 

Northern Europe, about the evaluation of SOC storage potential of perennial 

grasses, represent a promising starting point to estimate it under warm-

temperate conditions, with increased temperatures, of Southern Europe. 

Comparing the literature mentioned above and considering the environmental 

characteristics of the experimental sites, the main objectives of this thesis are: 

1) To assess the impact of 9 years of Miscanthus and giant reed on SOC 

stock. In particular, changes in overall SOC storage, after 9 years of 

perennial energy crops were measured, comparing Miscanthus plots with 

continuous wheat and giant reed plots with maize/wheat rotation. 

Through the 13C natural abundance analysis, the amount of SOC 

sequestered by the two perennial crops, down to 0.60 m depth, was 

estimated. 

2) To evaluate the impact of the conversion to perennial energy crops on 

soil aggregates and different carbon pools. To measure the stability of 

the newly sequestered carbon, derived from Miscanthus and giant reed, 

into SOM pools, a physical soil fractionation, combined with the 13C 

natural abundance method, was carried out. 
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3) To investigate the changes occurred on soil enzyme activities and on 

microbial communities, after the land use change to perennial energy 

crops. The functional aspects of soil were investigated through the 

determination of three enzyme activities, involved in soil carbon, 

nitrogen and phosphorous cycles (-glucosidase, urease and alkaline 

phosphatase, respectively). The structure of the microbial community 

under annual and perennial crops was studied by using the biomolecular 

approach of PCR-DGGE (Denaturing Gradient Gel Electrophoresis). 
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SECTION ONE 

Soil carbon sequestration potential of 

Miscanthus  and giant reed estimated by 

natural 13C abundance 

 

 

 

 

 

 

 

 

 

 

Based on: Cattaneo, F., Barbanti, L., Gioacchini, P., Ciavatta, C., Marzadori, C., 2014. 13C 

abundance shows effective soil carbon sequestration in Miscanthus and giant reed compared to 

arable crops under Mediterranean climate. Biology and Fertility of Soils (submitted) 
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ABSTRACT 

Many studies on soil organic carbon (SOC) sequestration in perennial biomass 

crops are available under Atlantic and Continental environments of North-

Central Europe, while there is insufficient information for Southern Europe. 

Therefore, we assessed SOC turnover under Mediterranean-temperate climate, 

after a 9-year old conversion from two annual crop systems, continuous wheat 

and maize/wheat rotation, to Miscanthus (Miscanthus × giganteus Greef and 

Deuter) and giant reed (Arundo donax L.), respectively. The 13C natural 

abundance analysis, down to 0.60 m, was used to evaluate the total amount of 

SOC in annual vs perennial species, and determine the portion of SOC derived 

from perennial species. 

SOC was significantly higher under perennial (average, 91 Mg C ha-1) than 

annual species (average, 56 Mg C ha-1), with a stronger accumulation in the 

topsoil (0-0.15 m). This difference was consistent with the reduced soil 

disturbance associated with perennial crop management. After 9 years of 

Miscanthus plantation, the amount of C4-derived carbon was 18.7 Mg ha-1, 

mostly stored at 0-0.15 m, whereas the amount of C3-derived carbon under 

giant reed was 34.7 Mg ha-1, more evenly distributed through soil depths. This 

difference is echoed in the deeper root apparatus evidenced for giant reed in 

literature, providing a stronger contribution to SOC in deeper layers. 

Comparing our results with the available studies, only for Miscanthus, in North-

Central Europe, we conclude that Miscanthus and giant reed own a remarkable 

potential for SOC sequestration also in Mediterranean conditions, exerting 

effective belowground carbon sink potential while supporting the growing 

bioenergy sector with aboveground biomass supply. 
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INTRODUCTION 

Soil organic carbon (SOC) is the major C stock in terrestrial ecosystems (Batjies, 

1996; Amundson, 2001) with the slowest turnover rate. SOC plays an important 

role in global C cycling exerting positive effects on soil quality as concerns 

nutrient availability, soil moisture and health (Sarkhot et al., 2012). Soil has a 

great potential of C sink, but intensive land management and land use change 

from (semi-) natural ecosystems to agriculture, as well as changes from 

grasslands to croplands, can cause a loss of SOC accumulated at a more rapid 

rate than it is stored. On a long-term scale, it has been estimated that, at a world 

level, these anthropic disturbances have added about 124 Pg of C to the 

atmosphere (Houghton, 1999; Smith, 2008). In Europe C loss has been 

evaluated in 300 Tg C per year (Janssens et al., 2003). 

To promote C sequestration, agricultural management systems should provide 

increased organic C input into soils, as plant litter and root material, while, 

concurrently, reducing soil disturbance and preserving or increasing soil 

quality, structurally as well as biologically (Post and Kwon, 2000). Traditional 

practices to enhance SOC stocks include: afforestation, reducing tillage and land 

use change to permanent pasture or perennial energy crops. As identified by 

Smith et al. (2000), perennial grasses for energy uses have attracted significant 

research attention across Europe, because of their great potential for C 

mitigation. The increase in stored C pools in soil results from the relatively large 

quantities of root deposition belowground, as well as enhanced SOM content 

(Clifton-Brown, 2007). The low fertiliser and pesticide inputs and the reduction 

of soil disturbance, associated with these crops’ low input management, 

contribute to their high C sequestration potential (Kahle et al., 2001; Freibauer 

et al., 2004). In Continental and Oceanic regions of Northern Europe, the 

perennial rhizomatous grass Miscanthus (Miscanthus × giganteus, Greef and 

Deuter) has been especially focused. In South European areas, another 
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perennial grass, giant reed (Arundo donax L.) has been identified as promising 

biomass crop for energy uses (Lewandowski et al., 2000). 

Miscanthus is a perennial rhizomatous C4 grass, endemic of South-East Asia, 

with a considerable biomass production potential even under cool-temperate 

conditions (Lewandowski et al., 2000). The genotype widely used in Europe for 

bioenergy production is Miscanthus × giganteus, introduced from Japan to 

Denmark in 1930 (Lewandowski et al., 2003). Yields above 30 t dry matter ha-1, 

only with irrigation, are reported for locations in Southern Europe (e.g. 

Southern Portugal), with high annual incident global radiation and high average 

temperatures. In Central and Northern Europe (from Austria to Denmark), 

where global radiation and average temperatures are lower, yields without 

irrigation are more typically 10-25 t dry matter ha-1 (Lewandowski et al., 2000). 

Moreover, Qin et al. (2011) reported that Miscanthus cultivation can be feasible 

in marginal lands or recently abandoned cropland, reducing possible 

competition with food crops as well as possible C emissions due to land use 

change (Clifton-Brown et al., 2007; Heaton et al., 2008; Qin et al., 2011). 

The perennial rhizomatous C3 plant giant reed (Arundo donax L.), native from 

East-Asia, has been diffused in riparian habitats of Mediterranean environment. 

Giant reed is a warm-temperate or subtropical species, but it is able to survive 

frost. Serious damage can occur in case of late season frosts after sprouting 

(Perdue, 1958). Recently, in Europe, this species has been indicated like the one 

of the most promising for energy production for the Southern European areas. 

Yields reported in Spain showed 45.9 t dry matter ha-1 on average, ranging from 

29.6 to 63.1 t (Hidalgo et al., 2001). A high biomass productivity has been 

observed also reducing crop inputs, such as fertiliser and plant density (Angelini 

et al., 2009). 

Many studies on SOC sequestration potential of Miscanthus have been carried 

out in areas featuring Atlantic (Clifton-Brown et al., 2007; Dondini et al., 2009; 

Zimmermann et al., 2012; Schneckenberger et al., 2007), as well as Continental 

climate (Hansen et al., 2004), according to a recent classification of European 

environments (Metzger et al., 2005). In contrast, no study to our knowledge has 
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so far addressed SOC sequestration in perennial rhizomatous grasses under 

Mediterranean climate, where higher temperatures favour SOC mineralisation, 

hampering C storage. 

A cost efficient technique, used to study how land use change can act on SOC 

sequestration and to understand the fate of SOM within and between 

ecosystems, is the analysis of stable isotopes (13C isotope) (Balabane and 

Balesdent, 1992; Balesdent and Balabane, 1992; Flessa et al., 2000; Garten and 

Wullschleger, 2000; Foereid et al., 2004; Pelz et al., 2005). The stable carbon 

isotope signature is described using the δ notation. During the photosynthesis, 

plants generally discriminate against the heavier carbon isotope 13C (Farquhar 

et al., 1989), leading to a depletion of 13C levels in plant organic material and 

therefore a lower δ13C value compared to the atmosphere. This depletion is due 

to the fact that the heavier 13C forms slightly more stable chemical bonds and 

diffuses more slowly, through stomata (O’Leary, 1988). The level of 

discrimination depends on the different photosynthetic pathways (C3- and C4 

plants) and, for this reason, the analysis of stable isotopes is appreciable in the 

case of a land use change, involving a vegetation change. 

As plants with different photosynthetic pathways (C3- and C4-plants) have 

different 13C-signature, when the dominant vegetation, at a particular location, 

is converted from C3- to C4-plants, or viceversa, there is a shift in the isotopic 

signature of the C sequestered to the soil, which can be used to determine the 

proportion of SOC derived from the new vegetative sources (Balesdent et al., 

1987). 

With these premises, the present research was carried out in the South-East of 

the Po Valley (Northern Italy), identified as part of the Mediterranean North 

environmental zone (Metzger et al., 2005). This agro-ecosystem is characterised 

by low average SOC levels (<10 g C kg-1 up to 0.30 m; ARPA, 2009), largely due 

to anthropic practices as intensive tillage, a strong specialization of cropping 

systems and a concurrent decline of the livestock farm activity. 

Perennial crops have been introduced here, besides bioenergy aims, to restore 

soil fertility and productivity, by enhancing SOC levels. 
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In this light, we investigated a 9-year old conversion from two annual crop 

systems, continuous wheat and a maize/wheat rotation, to Miscanthus and giant 

reed, assessing their belowground biomass contribution (as roots) in SOC 

storage, changing climatic and environmental conditions. 

Through the analysis of stable 13C isotope of soil, down to a 0.60 m depth, we 

compared the C4 (Miscanthus) and C3 (giant reed) perennial species with their 

respective C3 (wheat) and the C4/C3 (maize/wheat rotation) annual references. 

This allowed us to precisely determine the portion of SOC derived from the two 

perennial species in 9 years of cropping, as well as to compare the total amount 

of SOC between annual and perennial species at the end of this period (Hansen 

et al. 2004). 
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MATERIALS AND METHODS 

EXPERIMENTAL SITE 

The field experiment was located at the experimental farm of the University of 

Bologna (Italy), in Cadriano (44° 33’ N, 11° 21’ E, 32 m a.s.l.), with mean annual 

precipitation and temperature of 700 mm and 13.3 °C, respectively. With these 

data, the area precisely falls in the Mediterranean North environmental zone, 

implying mild winter and long growing season, in exchange for precipitation 

mostly concentrated in the cold semester (Metzger et al., 2005). A chemical and 

physical characterisation of the studied soils under the two perennial 

(Miscanthus and giant reed) and annual crops (continuous wheat and 

maize/wheat rotation) was carried out, according to the current Italian methods 

of soil analysis (D.M. 13/09, 1999), as shown in Table 2. 

Table 2 Physical and chemical characterisation of the studied soils, under perennial 

(Miscanthus and giant reed) and annual crop (wheat and maize/wheat rotation) 

systems. Soil analysis according to the Italian method D.M. 13/09, 1999.  

 

 Site (soil) 
  

 Miscanthus Giant reed Wheat Maize/Wheat 

pHH2O 7.6 7.5 6.1 6.1 

Texture (%) 
    

Sand 25 27 24 25 

Silt 45 46 49 45 

Clay 30 27 27 26 

Limestone (%) 
    

total 1.7 1.7 < 0.5 < 0.5 

active 1.6 1.6 < 0.1 < 0.1 

Vegetation type C4 C3 C3 C4/C3 

CORG (g kg-1) 16 11.5 7.4 6.3 

NTOT (g kg-1) 1.5 1.5 0.9 0.8 

C:N 10.7 7.7 7.4 7.9 

Available P (mg kg-1) 32.7 12.4 31.9 20.9 
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CROP MANAGEMENT AND EXPERIMENTAL LAYOUT 

Continuous wheat (Triticum aestivum L.) and maize/wheat rotation (Zea mays 

L./Triticum aestivum L.) are the two annual systems that were established in 

experimental plots in the late 1960’s. Miscanthus and giant reed plots were 

established in 2002 in soils previously cultivated with annual C3 and C4/C3 

species, respectively. 

In this thesis, the expression land use system will be used to indicate perennial 

vs annual crops, while the term plant group will distinguish between Miscanthus 

vs continuous wheat and giant reed vs maize/wheat rotation. 

In both annual and perennial crops 0 (N0) and 120 (N120) kg ha-1 of mineral N, 

supplied as urea, were applied annually during the spring time. Moreover, 50 kg 

P2O5 ha-1, as triple superphosphate, were applied every year in annual crops. In 

Miscanthus and giant reed, 200 kg P2O5 ha-1 were added prior to planting in 

spring 2002. No K fertiliser was applied, given the sufficient level of this 

nutrient in the soil. 

Tillage at 0.30 m was carried out every year in annual crops; only prior to 

planting (autumn 2001) in perennial ones. In both annual and perennial species, 

the rest of crop husbandry reflected the normal practice followed in the 

experimental area. In particular, perennial crops were always harvested every 

year in the early autumn (September 25 – October 15); annual crops were 

harvested at maturity (wheat, early summer; maize, late summer) and the 

recoverable fraction of their residues (wheat straw and maize stover) was 

always removed from the field. 

Soil sampling took place in March 2011, at the beginning of the 10th growing 

season, using a 85 mm diameter soil corer up to a depth of 0.60 m, divided in 

three soil layers (0-0.15, 0.15-0.30, 0.30-0.60 m). For each crop, three replicates 

were taken according to a completely randomised experimental design. Each 

replicate was composed of three subsamples, which were put together and 

transported to the laboratory on the same day. Then soil samples were sieved (2 
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mm), plant organic material as leaves, stubbles and litter were removed and 

then soils were air-dried. 

An aliquot was used for total C, total N and δ13C signature analysis and another 

aliquot was stored for further analysis. In the same date, separate samples (50 

mm diameter) of undisturbed soil were monitored for bulk soil. 

TOTAL C, TOTAL N AND 13C ANALYSIS 

Total soil organic carbon (SOC) and nitrogen (TN) contents were directly 

measured in soil samples with an elemental analyser (CHNS - O mod. EA 1110, 

Thermo Scientific GmbH, Dreieich, Germany), using acetanilide as a standard for 

C and N concentration. As traces of carbonates were detected in the studied 

soils, samples were pre-treated with acid. An aliquot of soil (10 - 13 mg) was 

weighed into silver capsules and, after adding a few drops of 6 M HCl, was 

heated to 80 °C on a heating plate until dry. Then the capsules were closed and 

analysed in the elemental analyser. The isotopic composition (δ13C signature) of 

soil was measured by Continuous Flow - Isotope Ratio Mass Spectrometry (CF - 

IRMS), by introducing the combustion gas (CO2) from the elemental analyser 

into the Isotope Ratio Mass Spectrometer (IRMS, Delta Plus, Thermo Scientific, 

Germany). 

DATA ANALYSIS 

The natural abundance δ13C was measured to determine the proportion of C 

derived from the C4 Miscanthus and how much C remained from wheat (C3), in 

all soil samples (Lisboa et al., 2009). 

Generally, photosynthesis leads to a discrimination against the heavier 13C 

isotope in the plant organic matter compared to atmospheric CO2. The degree of 

the discrimination is dependent on the photosynthetic pathway: C4-plants show 

distinctly higher 13C abundance than C3-plants. In an environment with only one 

source of C4-derived SOC (i.e. Miscanthus), the isotopic signal can be used to 

quantify the amount of carbon derived by that given source (Balabane and 

Balesdent, 1992; Balesdent and Balabane, 1992) using the isotope mass balance. 
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The 13C abundance was expressed in delta - units (δ13C ‰) and calculated 

according to the equation: 

δ13C ‰ = [(Rsample/R standard) - 1] × 1000 

where Rsample is the isotope ratio 13C/12C of the sample and Rstandard is the 13C/12C 

ratio of the international Pee Dee formation belemnite carbonate standard 

(PDB). 

The proportion of C derived from Miscanthus (FM) was calculated by using the 

isotope mass balance equation (Balesdent et al., 1987): 

FM = [(δ13Cnew - δ13Cold)/(δ13Cnew crop - δ13Cold crop)] × 100  [1] 

where δ13Cnew is the δ 13C of the soil under Miscanthus, δ 13Cold is the δ 13C of the 

soil under wheat, δ13Cnew crop is the δ13C of Miscanthus material entering the soil 

(-12.66 ‰) and δ13Cold crop is the δ13C of wheat (-27 ‰) (Dondini et al., 2009). 

The proportion of C derived from wheat (Cold %) was obtained by the equation: 

Cold= 100 - FM 

The amount of C derived from giant reed (FG), a C3 species, was calculated 

according to the following equation, proposed by Hansen et al. (2004): 

FG = [(δ13Cnew - δ13Cold)/(δ13Cnew crop - δ13Cold)] × 100  [2] 

where the δ 13C of soil under maize/wheat was used as δ 13Cold, since it was not 

known the δ 13C of the rotation before the introduction of giant reed. Soil 

organic C was expressed as the amount of C per unit crop surface (Mg C ha-1) 

considering the bulk density of the three soil layers. 

STATISTICAL ANALYSIS 

Normal distribution and equal variance of data were controlled through the 

Kolmogorov-Smirnov and Bartlett test, respectively. Data were then submitted 

to the analysis of variance (ANOVA) through the CoStat 6.3 software (CoHort 

Software, Monterey, California, USA), according to a completely randomised 
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factorial scheme: in each trait the significance of the investigated sources (crop, 

N fertilisation, soil depth and their interactions) was determined. The Student - 

Newman-Keuls (SNK) test at P ≤ 0.05 was adopted to separate means of 

statistically significant sources. 
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RESULTS 

SOIL C AND N CONTENT 

Mineral N fertilisation did not significantly influence SOC and TN contents under 

perennial and annual crops (Table 3.a, b), except for a modest (6%; P = 0.043*) 

TN increase under fertilisation, in the combination of giant reed and 

maize/wheat (Table 3.b). No significant interaction was observed between 

nitrogen, on one side, and the other two investigated factors (crop and soil 

depth), on the other side (Table 3.a, b). 

Table 3 Soil organic carbon (SOC) and nitrogen (TN) in Miscanthus vs  continuous 

wheat (A) and in giant reed vs maize/wheat rotation (B), depending on crop, N 

fertilisation, soil depth and their interactions.  

A B

Sources SOC (g kg-1) TN (g kg-1) Sources SOC (g kg-1) TN (g kg-1)

Crop (C) Crop (C)

Miscanthus 12.2 a 1.3 a Giant reed 10.0 a 1.3 a

Wheat 7.4 b 0.9 b Maize/Wheat 6.2 b 0.7 b

P < 0.001*** < 0.001*** P < 0.001*** < 0.001***

Fertilization (N; kg ha-1) Fertilization (N; kg ha-1)

0 10.0 1.1 0 8.0 1.0 b

1 9.6 1.1 1 8.3 1.1 a

P 0.290 ns 0.7 ns P 0.116 ns 0.043*

Depth (D; m) Depth (D; m)

0-0.15 11.7 a 1.2 a 0-0.15 8.9 a 1.1 

0.15-0.30 9.2 b 1.0 b 0.15-0.30 7.8 b 1.0 

0.30-0.60 8.5 b 1.0 b 0.30-0.60 7.8 b 1.0 

P < 0.001*** < 0.001*** P < 0.001*** 0.056 ns

P  (C x D) < 0.001*** < 0.001*** P  (C x D) < 0.001*** 0.011*
P  (C x N) 0.867 ns 0.640 ns P  (C x N) 0.631 ns 0.185 ns
P  (D x N) 0.685 ns 0.238 ns P  (D x N) 0.277 ns 0.239 ns
P  (C x D x N) 0.879 ns 0.915 ns P  (C x D x N) 0.60 ns 0.065 ns  

ns, *, ** and *** mean non-significant and significant at  P ≤ 0.05, ≤ 0.01 and ≤ 0.001, respectively.  

Different letters indicate significantly different means (SNK test; P ≤ 0.05). 

Integrated through the soil profile, SOC under perennial energy crops was 

remarkably higher than under annual arable crops (ca. +60%) (Table 3). Within 

the same land use system, small differences can be observed between the two 

perennial crops (12.2 vs 10.0 g C kg-1 in Miscanthus and giant reed, respectively), 

as well as the two annual references (7.4 and 6.2 g C kg-1 in continuous wheat 
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and the maize/wheat rotation, respectively). In soil profile, the top layer (0-0.15 

m) showed higher SOC content than the two deeper ones (0.15-0.30 and 0.30-

0.60 m). However, the significant crop × depth interaction indicates a different 

behaviour between the two land use systems (Fig. 2.a and b): the topsoil under 

Miscanthus and giant reed contained significantly more C (16.0 and 11.5 g C kg-1 

in the two respective crops) than the two lower soil layers (on average, 10.3 and 

9.4 g C kg-1 in the same two crops), while continuous wheat and maize/wheat 

rotation showed a consistent SOC distribution along depth. 
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Figure 2 Crop × depth (C × D) interaction of soil total organic carbon (SOC) in 

Miscanthus vs continuous wheat (A) and in giant reed vs maize/wheat rotation (B). 

Different letters indicate significantly different means (SNK test; P≤ 0.05). Horizontal 

bars represent ± standard errors (n= 6). 
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Overall, the total quantity of C per unit crop surface amounted to 98.6 Mg C ha-1 

under Miscanthus and to 84.3 Mg C ha-1 under giant reed. 

A similar trend can be observed for TN content, which was significantly higher 

under perennial crops than annual ones (1.3 vs 0.8 g N kg-1) (Table 2). Likewise, 

under Miscanthus and giant reed, the topsoil (0-0.15 m) contained significantly 

more N (1.48 and 1.47 g N kg-1, respectively) than the two deeper layers (on 

average, 1.22 and 1.30 g N kg-1 in the two respective species), while, under 

wheat and the maize/wheat rotation, TN was consistent among soil depths (Fig. 

3.a and b). 
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Figure 3 Crop × depth (C × D) interaction of soil total nitrogen (TN) in Miscanthus vs 

continuous wheat (A) and giant reed vs maize/wheat rotation (B). Different letters 

indicate significantly different means (SNK test; P≤ 0.05). Horizontal bars represent ± 

standard errors (n= 6).  
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ISOTOPE MASS BALANCE AND CONTRIBUTION OF PERENNIAL SPECIES TO SOC 

δ13C values and distribution in perennial and annual crops appear to be strongly 

influenced by their C3 or C4 photosynthetic pathways (Fig. 4). 

While in annual crops δ13C values of SOM remained consistent through soil 

depths, a major difference appears when comparing the two perennial crops: 

giant reed showed a δ13C value that kept consistently lower (i.e., more negative) 

than maize/wheat through soil profile (Fig. 4.a), whereas Miscanthus exhibited 

quite higher (i.e., less negative) 13C values in the shallow layer, then converged 

towards δ13C values of continuous wheat in the two deeper layers (Fig. 4.b). 
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Figure 4 δ13C values at three soil depths, in Miscanthus vs continuous wheat (A) and 

giant reed vs maize/wheat rotation (B). Horizontal bars represent ± standard errors 

(n= 6). 



 

 
32 

 

The effects of the substitution of arable crops with perennial grasses, in terms of 

SOC storage and relative share of C3- and C4-derived C, indicate a different 

behaviour between Miscanthus and giant reed. 

The input of C4-derived C from Miscanthus was principally found in the 0-0.15 m 

soil layer, with a contribution of 35.8% to the total C pool in that layer (Fig. 5). 

This value declined to 13.8% at 0.15-0.30 m and to only 7.7% in the 0.30-0.60 m 

soil depth (Fig. 5). Based on these data, after 9 years of Miscanthus plantation 

the amount of C4-derived C in the whole profile was 18.7 Mg C ha-1, with a 

variable distribution among the three layers: 65% was stored in the top 0-0.15 

m, 17% was accumulated at 0.15-0.30 m and another 17% in the 0.30-0.60 m 

depth. 

In contrast to this, the input of C3-derived C from giant reed was more evenly 

distributed among the three soil layers (Fig. 6): 42.5% of the total C pool was C3-

derived in the 0-0.15 m soil layer, 48.6% at 0.15-0.30 m and 36.8% in the 0.30-

0.60 m layer. Based on this, after 9 years of giant reed plantation the amount of 

C3-derived C in the whole profile was 34.7 Mg C ha-1, distributed in the following 

way: 30% was stored in the shallow layer (0-0.15 m), 28% at 0.15-0.30 m and 

42% in the deep layer (0.30-0.60 m). Thereby, based on δ13C data, giant reed 

fostered a much higher accumulation of newly derived-C in the whole profile 

(+86%), and this difference was mainly due to a stronger contribution from the 

two deeper layers. 
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Figure 5 C3 and C4-derived carbon content at three soil depths in continuous wheat and Miscanthus . The total amounts of C (0-0.60 m) are 

also indicated as means ± standard errors. Vertical bars represent ± standard errors (n= 6).  
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Figure 6 C3 and C4-derived carbon content at three soil depths in the maize/wheat rotation and giant reed. The total amounts of C (0-0.60 m) are also 

indicated as means ± standard errors. Vertical bars represent ± standard errors (n= 6). 
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DISCUSSION 

SOIL C AND N CONTENT 

Nitrogen fertilisation did not enhance the SOC pool in both land use systems. 

Moreover, the supply of mineral fertiliser did not influence the other two 

investigated factors (crop and soil depth) in any trait, apart from TN in giant 

reed-maize/wheat (Table 3). This preliminary and unexpected finding ruled out 

N fertilisation from the effects on SOC, that is the principal focus of our study. 

In exchange for that, the combination of N0 and N120 data in the factorial ANOVA, 

addressing the effects of crops, depths and their interaction, contributed to 

higher experimental precision. 

The effects of N fertilisation were more noticeable in terms of aboveground 

biomass, at least in giant reed (data not shown), although this falls beyond the 

scope of this thesis. It is therefore evinced that N fertilisation in perennial 

energy crops may contribute to biomass production but does not benefit C 

sequestration. In agreement with this point, Lewandowski et al. (2003) affirmed 

that, since Miscanthus did not respond to N fertilisation in several sites across 

Europe, N fertilisation may be necessary only on soils with low N status. 

As assumed by Dondini et al. (2009) and Hansen et al. (2004), we supposed that 

initial SOC levels were the same under annual and perennial species. Based on 

this, after 9 years of perennial energy crops, the amount of SOC (Mg ha-1), stored 

in the whole profile, was increased to a similar extent in the two perennial 

species: +61% in Miscanthus and +63% in giant reed over their respective 

references (Figs. 4 and 5, respectively). This strong increase is consistent with 

the crop management: unlike annual crops, perennial grasses only need tillage 

in the year of establishment. The ecological advantages of the long period 

without tillage are reduced risk of soil erosion and a foreseeable increase in soil 

carbon content (Kahle 2001; Ma et al. 1999), thanks to reduced mineralisation 

under conditions of lower aeration (King et al. 2004). 
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ISOTOPE MASS BALANCE AND CONTRIBUTION OF PERENNIAL SPECIES TO SOC 

Carbon distribution observed in the three soil layers is consistent with the root 

dry weight (RDW) of Miscanthus and giant reed, analysed by Monti and Zatta 

(2009) in the same experimental site: the shallow layer (0-0.15 m) accounted 

for 63% and 54% of the total RDW amount over the 0-0.60 m soil profile in the 

two respective species. It appears therefore that a greater root biomass in the 

shallow layer provided a stronger contribution to SOC than in deeper layers 

(below 0.15 m). In these layers, a major difference in root biomass between the 

two perennial crops was observed (Monti and Zatta 2009), reflecting in the δ13C 

trend evidenced in this research (Fig. 3): under the top 0.15 m, Miscanthus root 

biomass rapidly decreased, in contrast to giant reed. Compared to this, soil C 

distribution under the two annual reference systems (continuous wheat and 

maize/wheat rotation) did not show any particular trend along soil profile (Fig. 

3). 

The different δ13C trend in soil profile between Miscanthus and giant reed 

indicates that other sources of C accumulation, as the burrowing activity of 

earthworms or the leaching of dissolved organic C, play a minor role in C 

turnover below the top layer (0- 0.15 m). 

The shallow C deposition, shown by Miscanthus in this experiment, is consistent 

with other sources. Dondini et al. (2009), comparing a 14-year Miscanthus 

substituting an arable cropping system in the Atlantic Central environmental 

zone, according to the proposed classification (Metzger et al. 2005), observed 

significant differences along soil depths, with 82% of the total C stock stored in 

the upper 0.30 m under Miscanthus, compared to 62% in the arable soil. In 

another study in the Continental zone, Schneckenberger et al. (2007) compared 

a loamy and a sandy soil with similar cultivation periods of Miscanthus. They 

noticed that more SOC was found in the upper 0.30 m of the sandy than the 

loamy soil (4.6 kg C m-2 vs 4 kg C m-2). This is explained by slower 

decomposition of plant residues in the loamy soil, due to less aeration, 

associated with higher protection of SOC by clay particles. These two studies 

and ours suggest that the potential of soil C storage under perennial energy 
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crops depends on several factors as the past land management and the amount 

of aboveground biomass remaining after harvest and being recycled to the soil. 

As supposed by Ceotto et al. (2011), we should also consider that the prolonged 

canopy cover of Miscanthus and giant reed could determine suitable micro-

climatic conditions to increase SOC storage. In fact, as stated by Grigal and 

Berguson (1998), SOC tends to increase with a decrease in mean temperature 

and with an increase in precipitation. 

The conversion from a C3 to a C4 perennial plant rapidly increased δ13C 

signature in 0-0.15 m (Fig. 3.b), making soil organic matter under Miscanthus 

more 13C-enriched in the shallow layer but depleted in the deeper ones, in 

contrast to giant reed and the two annual reference systems, maintaining steady 

isotopic values with soil depth. Nevertheless, 13C abundance derived from giant 

reed and Miscanthus is consistent with their root biomass distribution, as 

previously discussed (Monti and Zatta 2009). 

Since these results are based on changes in 13C abundance, it may be stated, in 

agreement with Hansen et al. (2004), that the fraction of topsoil SOC (0-0.15 m) 

involved in short- to medium-term turnover is substantial. In our experiment 

the annual SOC gain, originated by Miscanthus (2.07 Mg C ha-1 y-1), ranks at 

intermediate level between that observed by Dondini et al. (2009) (3.2 Mg C ha-1 

y-1) and those evidenced by Hansen et al. (2004) (approximately 0.6 and 0.9 Mg 

C ha-1 y-1 after 9 and 16 years of Miscanthus plantation, respectively) and 

Schneckenberger (2007) (ca. 0.6 and 0.7 Mg C ha-1 y-1 after 9 and 12 years of 

Miscanthus plantation, respectively). The variety in these data is coupled with a 

large range of climates, soil types, sampling depths and, especially, initial SOC 

levels (from 7.4 g SOC kg-1 in our experiment to ca. 23 g SOC kg-1 in Dondini et al. 

2009). Therefore, it appears that no simple explanation can be provided for the 

gain in SOC level recorded after a period varying from 9 to 16 years of 

Miscanthus plantation. 

As concerns giant reed, to our knowledge, no data on 13C abundance is available 

so far in the literature; hence our results represent a new source of information 

about the role of this species in improving SOC levels, while being a promising 
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plant for biomass production in Southern Europe (Angelini et al. 2009; 

Lewandoski et al. 2003). 
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CONCLUSION 

After 9 years of Miscanthus and giant reed cropping, soil organic carbon content 

was increased along soil profile, compared to the respective soils under annual 

crops. 

Through the 13C abundance assessment, Miscanthus appears to have a greater 

potential of carbon accumulation in soil but giant reed can store more carbon to 

deeper soil layers (0.15-0.60 m), thanks to its deeper rooting. 

Based on our data, the first registered in a Mediterranean-temperate climate, 

these two perennial energy crops can actually contribute to carbon 

sequestration potential of soils depleted by intensive agricultural management. 

Since both Miscanthus and giant reed are suited to environmental conditions of 

warm-temperate areas of Southern Europe, cultivations with these two plants 

can represent a promising and sustainable solution, not only for energy 

production, but also for the restoration of soil fertility and the enhancement of 

carbon sink potential. 
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SECTION TWO 

Physical fractionation and natural 13C 

abundance: Combined analysis to trace soil 

organic carbon distribution in soil 

aggregates under Miscanthus and giant reed 
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ABSTRACT 

The introduction of perennial energy crops as feedstock for bioenergy 

production has been a focus in recent research. Their use may be also extended 

to other purposes, as, for instance, a viable alternative to overcome some of the 

negative aspects of annual crops, such as maize or wheat. Indeed, perennial 

energy crops can recover the loss of soil organic carbon due to ongoing soil 

disturbance in annual cropping systems, thanks to their high carbon 

sequestration potential. 

In this thesis, we studied a 9-year old conversion from two annual crop systems, 

continuous wheat and maize/wheat rotation, to the perennial species, 

Miscanthus (Miscanthus × giganteus Greef and Deuter) and giant reed (Arundo 

donax L.), respectively, under Mediterranean-temperate climate. 

Considering the significant differences in carbon sequestration, we investigated 

more in detail the impact of land use change from annual crops to Miscanthus 

and giant reed, on different soil fractions, as well as newly derived-carbon 

stocks. 

Combining the 13C natural abundance analysis with physical fractionation, we 

observed that the sequestered carbon, derived from the two perennial crops, 

was mainly found as particulate organic matter (68.1% and 71% in Miscanthus 

and giant reed, respectively) and therefore it is in labile state with short 

turnover rates. Considering the newly sequestered carbon, derived from 

perennial crops, it was observed that, under giant reed, microaggregates and 

mineral fraction played a relevant role, storing more newly derived carbon than 

in Miscanthus. This latter appears to be a preservative system of old derived 

carbon, because of the amount of C3-derived carbon relative to continuous 

wheat observed in all fractions, at all soil depths. 

In conclusion, after 9 years of perennial energy crops, the resulting increase in 

soil organic carbon storage contributes to recover the previous loss of organic 

carbon and the limited soil tillage, as management practice of these crops, 
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causes a relevant carbon storage also in physically protected fractions, where 

carbon turnover is slower. 
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INTRODUCTION 

In the previous Section, it was shown that perennial energy crops, in particular 

Miscanthus and giant reed, have a high soil carbon sequestration potential, 

compared to annual crops or grassland systems (Hansen et al., 2004). Our 

results evidenced that, after 9 years, SOC content was significantly enhanced 

under the two perennial crops, with a different distribution of stored C in soil 

profile. However, it is important to measure the stability of perennial crops-

derived C and how its distribution may change, to better understand the impact 

of Miscanthus and giant reed plantations. In fact, elucidating and accurately 

quantifying the capacity and longevity of C pools in agricultural lands is 

essential, given that soil has a great potential of C sink and that approximately 

10% of the earth’s total SOC (1500 Pg) (Post et al., 1990; Eswaran et al., 1993) is 

stored within agricultural soils (Schlesinger, 1984; Paustian et al., 1997a). 

Agricultural systems relying on sustainable management practices (reduced or 

no-tillage, crop residue retention at soil surface, etc.) support soil C 

sequestration, also reducing negative environmental impacts and attenuating 

anthropic CO2 emissions (Kong et al., 2005). Moreover, as different studies 

suggest, conservation practices as those cited can also protect SOM from 

decomposition (Tisdall and Oades, 1982; Jastrow and Miller, 1998), in contrast 

to intensive tillage (Paustian et al., 2000; West and Post, 2002; Lal, 2004; Six et 

al., 2004). This latter has been identified to be a major driver of SOC loss 

(Paustian et al., 2000), due to increased aeration and a reduction in the physical 

protection of SOM, leading to increased decomposition rates (Oades, 1984; 

Roberts and Chan, 1990). 

Preserving the organic matter content in agricultural soils is of great 

importance, because of SOM central role in determining soil properties that 

strongly affect crop production and the environmental quality in a wider 

perspective (Lal, 2009; Powlson et al., 2012). SOM stabilisation depends on 

biochemical processes, including formation and preservation of molecules, 
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structural rearrangements and molecular associations more resistant to 

decomposition (Piccolo, 2001; Six et al., 2002a; Schnitzer and Monreal, 2011). 

However, its persistence in soil is also linked to the combined action of physical 

and chemical protection mechanisms (Six et al., 2002a; Von Lützow et al., 2006; 

Schmidt et al., 2011). Physical protection mechanisms refer to the occlusion of 

SOM within aggregates, which form a physical barrier limiting O2 diffusion and 

the accessibility of decomposers and enzymes to the organic substrates (Plaza 

et al., 2013). Physical protection depends on the level of aggregation and has 

been shown to be much greater within microaggregates than within 

macroaggregates (Pulleman and Marinissen, 2004). 

Chemical stabilisation mechanisms refer to the intimate association of organic 

matter with mineral particles, which reduce the degrading capacity of 

decomposers and enzymes (Six et al., 2002a). As Golchin et al. (1994) described 

in their study, fresh plant material entering the soil is colonised by 

microorganisms and encrusted by primary particles through the binding action 

of microbial agents (e.g., mucilage and polysaccharides), thus forming stable 

macroaggregates. With time, the fresh plant material within macroaggregates is 

selectively decomposed, leaving more chemically recalcitrant plant structural 

materials, which are coated with microbial metabolites and mineral particles to 

form stable microaggregates (Plaza et al., 2013). According to the model 

developed by Six et al. (1998, 1999, 2000), soil tillage increases 

macroaggregates turnover and thereby inhibits the formation of 

microaggregates within macroaggregates in which particulate organic matter is 

stabilised in the long term (Plaza et al., 2013). 

Because of the strong influence of agricultural management practices on SOM 

stabilisation, physical fractionation (by density, size or aggregation) proves one 

of the most used techniques supplying relevant information on the location and 

dynamics of SOM, after a land use change. As shown by Tisdall and Oades 

(1982), three different physical soil fractions are obtained through physical 

fractionation, in association with three classes of organic matter (persistent, 
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transient and temporary): macroaggregates (>250 µm), microaggregates (53-

250 µm), silt and clay (<53 µm). 

In this frame, the cultivation of perennial energy crops may be considered a 

viable option to improve SOC storage and enhance SOM concentration and 

stabilisation, because of these crops’ low need for soil tillage. This typical crop 

management, together with a high biomass production and deep rooting 

systems, supports their high C sequestration potential (Lewandowski et al., 

2003). 

In this research, we investigated a 9-year old conversion from two annual crop 

systems, continuous wheat and a maize/wheat rotation, to the perennial energy 

crops, Miscanthus and giant reed. Focusing the results in the portion of SOC 

derived from the two perennial species in 9 years of cropping (see Section One), 

we analysed the C distribution within soil aggregates to (i) understand if C 

distribution changed, depending on the different agricultural management of 

annual and perennial crops; (ii) ascertain if the amount of stored SOC, in soil 

fractions and increasing layers, diverged in the two land use systems; (iii) 

quantify the proportion of newly derived, as well as old, C associated with the 

three soil fractions. 
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MATERIALS AND METHODS 

EXPERIMENTAL SITE 

The study site was located at the experimental farm of the University of Bologna 

(Italy), in the South-East of the Po Valley (44° 33’ N, 11° 21’ E, 32 m a.s.l.). Mean 

annual precipitation and temperature are of 700 mm and 13.3 °C, respectively. 

Thus, the area is included in the Mediterranean North environmental zone, 

implying mild winter and long growing season, in exchange for precipitation 

mostly concentrated in the cold semester (Metzger et al. 2005). 

A chemical and physical characterisation of the studied soils, under the two 

perennial (Miscanthus and giant reed) and annual crops (continuous wheat and 

maize/wheat crop rotation), was carried out according to the current Italian 

methods of soil analysis (D.M. 13/09, 1999), as shown in Table 4. 

Table 4 Physical and chemical characterisation of the studied soils under perennial 

(Miscanthus and giant reed) and annual crop (continuous wheat and maize/wheat 

rotation) systems. Soil analysis according to the Italian method D.M. 13/09, 1999.  

 

 Site (soil) 
  

 Miscanthus Giant reed Wheat Maize/Wheat 

pHH2O 7.6 7.5 6.1 6.1 

Texture (%) 
    

Sand 25 27 24 25 

Silt 45 46 49 45 

Clay 30 27 27 26 

Limestone (%) 
    

total 1.7 1.7 < 0.5 < 0.5 

active 1.6 1.6 < 0.1 < 0.1 

Vegetation type C4 C3 C3 C4/C3 

CORG (g kg-1) 16 11.5 7.4 6.3 

NTOT (g kg-1) 1.5 1.5 0.9 0.8 

C:N 10.7 7.7 7.4 7.9 

Available P (mg kg-1) 32.7 12.4 31.9 20.9 
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CROP MANAGEMENT AND EXPERIMENTAL LAYOUT 

Continuous wheat (Triticum aestivum L.) and maize/wheat rotation (Zea mays 

L./Triticum aestivum L.) are the two annual systems that were established in 

experimental plots in the late 1960’s. Miscanthus and giant reed plots were 

established in 2002 in soils previously cultivated with annual C3 and C4/C3 

species, respectively. 

Each plot of both annual and perennial crops was split to receive 0 (N0) and 120 

(N120) kg ha-1 of mineral N, supplied as urea, were applied annually during the 

spring time. Moreover, 50 kg P2O5 ha-1, as triple superphosphate, were applied 

every year in annual crops. In Miscanthus and giant reed, 200 kg P2O5 ha-1 were 

added prior to planting in spring 2002. No K fertiliser was applied, given the 

sufficient level of this nutrient in the soil. 

Tillage at 0.30 m was carried out every year in annual crops; only prior to 

planting (autumn 2001) in perennial ones. In both annual and perennial species, 

the rest of crop husbandry reflected the normal practice followed in the 

experimental area. In particular, perennial crops were always harvested every 

year in the early autumn (September 25 – October 15); annual crops were 

harvested at maturity (wheat, early summer; maize, late summer) and the 

recoverable fraction of their residues (wheat straw and maize stover) was 

always removed from the field. 

Soil sampling took place in March 2011 at the beginning of the 10th growing 

season, using a 85 mm diameter soil corer up to a depth of 0.60 m, divided in 

three layers (0-0.15, 0.15-0.30, 0.30-0.60 m). For each crop three replicates 

were taken according to a completely randomised experimental design. Each 

replicate was composed of three subsamples, which were put together and 

transported to the laboratory on the same day. Soil samples were subsequently 

sieved (2 mm); visible plant debris were removed and then soils were air-dried. 

While an aliquot was used for the analysis described in Section One, the other 

aliquot was subjected to physical fractionation and then to total C and δ13C 
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signature analysis of soil aggregates. In the same date, separate samples (50 mm 

diameter) of undisturbed soil were monitored for bulk soil. 

SOIL PHYSICAL FRACTIONATION 

Soil fractions were mechanically isolated from the whole soil using the method 

developed by Elliott (1986), partially modified (Fig. 7). An aliquot of 5 g of soil 

samples was used to separate aggregates by wet sieving on two sieves, with a 

slacking time of 10 min and a further “up and down” movement of sieves of 20 

min. The fraction retained on the 250 µm mesh consisted of particulate organic 

matter (POM, >250 µm) and 250-2000 µm sand, setting up the 

macroaggregates. Materials passing the 250 µm sieve were flushed into the 

underlying sieve (53 µm mesh sieve) by a continuous water flow. These 

materials retained on the 53 µm sieve 

constituted the microaggregate fraction, 

called intraggregate light fraction (IALF, 53-

250 µm). The suspension passing the 53 µm 

sieve was flocculated using 0.5 mM CaCl2  

and let to stand all day long to settle. The 

supernatant was composed by silt and clay, 

representing the mineral fraction (MF, <53 

µm). Consequently, three aggregate size 

fractions were separated: (i) small 

macroaggregates (>250 µm), (ii) 

microaggregates (53-250 µm), (iii) silt and  

clay (>53 µm) fractions. Once dried at 60 °C, 

all the soil fractions were weighed and 

analysed for total C and δ13C signature by 

CF - IRMS (Delta Plus, Thermo Scientific). 

Figure 7 Scheme of physical fractionation of soil adopted in this research, modified after Elliott 

(1986). 
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TOTAL C AND 13C ANALYSIS OF SOIL AGGREGATES 

Total soil organic C (SOC), N (TN) and δ13C values were determined for each soil 

fraction by using an elemental analyser (CHNS - O mod. EA 1110, Thermo 

Scientific GmbH, Dreieich - Germany), with acetanilide as a standard for C 

concentration. As traces of carbonates were detected in the studied soils, 

samples were pre-treated with acid. An aliquot of soil (10 - 13 mg) was weighed 

into silver capsules, and, after adding a few drops of 6 M HCl, was heated to 80 

°C on a heating plate until dry. Then the capsules were closed and analysed in 

the elemental analyser. The isotopic composition (δ13C signature) of soil 

aggregates was measured by Continuous Flow - Isotope Ratio Mass 

Spectrometry (CF - IRMS), by introducing the combustion gas (CO2) from the 

elemental analyser into the Isotope Ratio Mass Spectrometer (IRMS, Delta Plus, 

Thermo Scientific). 

DATA ANALYSIS 

The natural abundance δ13C was measured to determine the proportion of C 

derived from the C4 Miscanthus and how much C remained from wheat (C3), in 

soil fractions (Lisboa et al., 2009). 

Generally, photosynthesis leads to a discrimination against the heavier 13C 

isotope in the plant organic matter compared to atmospheric CO2. The degree of 

the discrimination is dependent on the photosynthetic pathway: C4-plants show 

distinctly higher 13C abundance than C3-plants. In an environment with only one 

source of C4-derived SOC (i.e. Miscanthus), the isotopic signal can be used to 

quantify the amount of carbon derived by that given source (Balabane and 

Balesdent, 1992; Balesdent and Balabane, 1992) using the isotope mass balance. 

The 13C abundance was expressed in delta - units (δ13C ‰) and calculated 

according to the equation: 

δ13C ‰ = [(Rsample/R standard) - 1] × 1000 
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where Rsample is the isotope ratio 13C/12C of the sample and Rstandard is the 13C/12C 

ratio of the international Pee Dee formation belemnite carbonate standard 

(PDB). 

The percentage of C derived from Miscanthus (FM) and stored in soil aggregates 

was calculated by using the isotope mass balance equation (Balesdent et al., 

1987): 

FM = [(δ13Cnew - δ13Cold)/(δ13Cnew crop - δ13Cold crop)] × 100  [1] 

where δ13Cnew is the δ 13C of the soil under Miscanthus, δ 13Cold is the δ 13C of the 

soil under wheat, δ13Cnew crop is the δ13C of Miscanthus material entering the soil 

(-12.66 ‰) and δ13Cold crop is the δ13C of wheat (-27 ‰) (Dondini et al., 2009). 

The proportion of C derived from wheat (Cold %) was obtained by the equation: 

Cold= 100 - FM 

The amount of C derived from giant reed (FG), a C3 species, and stored in soil 

aggregates, was calculated according to the following equation, proposed by 

Hansen et al. (2004): 

FG = [(δ13Cnew - δ13Cold)/(δ13Cnew crop - δ13Cold)] × 100  [2] 

where the δ 13C of soil under maize/wheat was used as δ 13Cold, since it was not 

known the δ 13C of the rotation before the introduction of giant reed. 

SOC was also expressed as the amount of C per unit crop surface (Mg C ha-1) 

considering the bulk density of the three soil layers. 

STATISTICAL ANALYSIS 

Normal distribution and equal variance of data were controlled through the 

Kolmogorov-Smirnov and Bartlett test, respectively. Data were then submitted 

to the analysis of variance (ANOVA) through the CoStat 6.3 software (CoHort 

Software, Monterey, California, USA), according to a completely randomised 

factorial scheme: the four-way ANOVA involved 4 sources (crop and N 

fertilisation, at two levels; soil depth and soil fractions, at three levels) and their 
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resulting interactions (six interactions of 1st order, four of 2nd and one of 3rd 

order). In this complex dataset, special attention will be paid to ANOVA sources 

involving the effects of soil depth. 

The Student - Newman-Keuls (SNK) test at P ≤ 0.05 was adopted to separate 

means of statistically significant sources. The LSD test at P= 0.05 has been used 

to graphically separate data of significant traits (SOC, TN, SOC distribution in 

aggregate size fractions, distribution of soil aggregates). 
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RESULTS 

ANOVA RESULTS 

The four-way ANOVA involved 4 simple sources (crop, C; N fertilisation, N; soil 

depth, D; soil fraction, F) and the numerous 1st, 2nd and 3rd order interactions, in 

relation with 4 main traits (SOC, TN, SOC distribution in aggregate size fractions 

and distribution of soil aggregates) (Table 5). 

For each investigated trait, every single source and the derived interactions 

exerted a variable influence, as shown by ANOVA statistical significance. 

Through the simple sources, a special attention must be paid to N fertilisation, 

always resulting statistically insignificant in Miscanthus vs continuous wheat, 

apart from two 2nd order interactions (C × D × N; C × N × F) referring to TN, SOC 

distribution in fractions and distribution of soil aggregates (Tab. 5.a). On the 

other hand, N fertilisation was often significant in giant reed vs maize/wheat 

rotation from both 1st and 2nd order interactions (Tab. 5.b). Focusing on the two 

perennial species, giant reed also showed a larger responsiveness to added N 

than Miscanthus in aboveground biomass during the 9 years of cultivation (data 

not shown). These results are in accordance with those observed in Section One 

for the two plant groups, as only a modest TN increase under fertilisation was 

shown under giant reed vs maize/wheat rotation, compared to none under 

Miscanthus vs continuous wheat. 

Considering the complex dataset, in the following paragraphs of Results, a 

particular focus will be assigned to the interactions involving the soil depth 

factor. 
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Table 5 ANOVA sources (simple factors, 1st, 2nd and 3rd order interactions) and 

statistical significance on soil organic carbon (SOC), total nitrogen (TN), soil organic 

carbon distribution in fractions (SOC in fractions) and distribution of soil aggregates , in 

Miscanthus vs  continuous wheat (A) and giant reed vs maize/wheat rotation (B). 

ANOVA sources PSOC PTN PSOC in fractions Pdistribution 

A 
    

Crop (C) < 0.001*** < 0.001*** < 0.001*** 0.329 ns 

Fertilisation (N) 0.463 ns 0.833 ns 0.589 ns 0.658 ns 

Depth (D) < 0.001*** < 0.001*** < 0.001*** 0.618 ns 

Soil fraction (F) < 0.001*** < 0.001*** < 0.001*** < 0.001*** 

C × D < 0.001*** 0.001** 0.010* 0.863 ns 

C × N 0.918 ns 0.199 ns 0.981 ns 0.372 ns 

D × N 0.226 ns 0.381 ns 0.883 ns 0.846 ns 

C × F < 0.001*** 0.022* < 0.001*** < 0.001*** 

D × F < 0.001*** 0.357 ns 0.001** 0.101 ns 

F × N 0.598 ns 0.474 ns 0.983 ns 0.639 ns 

C × D × N 0.208 ns 0.032* 0.763 ns 0.681 ns 

C × D × F 0.005** 0.307 ns < 0.001*** 0.002** 

C × N × F 0.556 ns 0.245 ns 0.002** < 0.001*** 

D × N × F 0.724 ns 0.397 ns 0.309 ns 0.350 ns 

C × D × N × F 0.660 ns 0.839 ns 0.252 ns 0.164 ns 

Mean trait value 9.543 g kg-1 1.274 g kg-1 3.107 g fraction-1 0.333 kg kg-1soil 

B 

Crop (C) < 0.001*** < 0.001*** < 0.001*** 0.003** 

Fertilisation (N) 0.006** 0.090 ns 0.096 ns 0.392 ns 

Depth (D) < 0.001*** 0.145 ns 0.001** 0.214 ns 

Soil fraction (F) < 0.001*** < 0.001*** < 0.001*** < 0.001*** 

C × D < 0.001*** < 0.001*** 0.126 ns 0.612 ns 

C × N 0.384 ns 0.684 ns 0.934 ns 0.541 ns 

D × N 0.007** 0.133 ns 0.111 ns 0.608 ns 

C × F < 0.001*** < 0.001*** < 0.001*** < 0.001*** 

D× F 0.127 ns 0.233 ns 0.005** < 0.001*** 

F× N 0.911 ns 0.587 ns 0.580 ns 0.034* 

C × D × N 0.017* < 0.001*** 0.418 ns 0.631 ns 

C × D × F 0.858 ns 0.660 ns 0.065 ns < 0.001*** 

C × N × F 0.955 ns 0.872 ns 0.041* < 0.001*** 

D × N × F 0.632 ns 0.604 ns 0.066 ns < 0.001*** 

C × D × N × F 0.720 ns 0.866 ns 0.046* 0.014* 

Mean trait value 8.215 g kg-1 1.091 g kg-1 2.598 g fraction-1 0.333 kg kg-1soil 

ns, *, ** and *** mean non-significant and significant at P ≤ 0.05, ≤ 0.01 and ≤ 0.001, respectively. 
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AGGREGATE SIZE FRACTIONS 

The three classes of weight distribution of aggregate size (macro-, micro-

aggregates, silt and clay) followed different patterns across both land use 

systems (perennial and annual) and through soil layers (0-0.15, 0.15-0.30, 0.30-

0.60 m). In general, the most significant differences were observed within the 

soil aggregate class than among crop types. 

Particulate organic matter (POM) significantly contained the highest proportion 

of soil, compared to microaggregates (IALF) and mineral fraction (MF), but 

some differences were observed between Miscanthus and giant reed. 

Comparing Miscanthus and continuous wheat, about the same C content was 

observed at 0-0.15 m (19.2% and 18.9% in Miscanthus and continuous wheat, 

respectively), although this difference was not statistically significant (Fig. 8.a). 

On the contrary, soil distribution in microaggregates (IALF) and mineral 

fraction (MF) increased under the perennial crop, compared to continuous 

wheat, through soil depth. 

In giant reed, 22.4% of POM was incorporated in the topsoil (0-0.15 m), 

compared to 20.8% under maize/wheat rotation (Fig. 8.b). Integrated through 

the whole profile, giant reed soil had a higher percentage of POM fraction 

compared to the crop rotation (67.2% vs 61.3% in giant reed and maize/wheat 

rotation, respectively), whereas soil distribution slightly decreased in the IALF 

and MF fractions, with respect to maize/wheat rotation. Differences in these soil 

fractions were not significant, apart from soil contained in MF at 0.15-0.30 m 

(1.3% and 3.2% under giant reed and maize/wheat rotation, respectively) (Fig. 

8.b). 
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Figure 8 Soil weight distribution among aggregate size classes (POM -IALF-MF), at 

three soil depths, in Miscanthus vs continuous wheat (A) and in giant reed vs 

maize/wheat rotation (B). Horizontal bars represent ± standard errors  (n= 6). LSD0.05, 

least significant difference at P ≤ 0.05. 
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DISTRIBUTION OF TOTAL SOC STOCKS WITHIN SOIL FRACTIONS 

Both Miscanthus as well as giant reed soils contained significantly higher total 

SOC than the annual systems, continuous wheat and the maize/wheat rotation 

(97.8 Mg C ha-1 and 77.9 Mg C ha-1 vs 59.6 Mg C ha-1 and 58.1 Mg C ha-1, 

respectively). SOC distribution through the three soil depths (0-0.15, 0.15-0.30 

and 0.30-0.60 m) was significant for both land use systems and, as shown in 

Section One, C distribution was especially restricted in the topsoil, with a major 

evidence for Miscanthus (29.2 Mg C ha-1) than giant reed (21.3 Mg C ha-1), 

compared to the deeper layers. 

SOC distribution within soil aggregates in the three layers (C × D × F interaction) 

resulted in a significant interaction in both the plant groups (Tab. 5). In general, 

the higher amount of organic C was found in the POM fraction under both 

perennial crops (average 17.9 and 18.1 Mg C ha-1 in Miscanthus and giant reed, 

respectively), while under annual crops a lower C storage was observed (12.6 

and 11.1 Mg C ha-1 in continuous wheat and maize/wheat rotation, respectively) 

(Fig.9). In the POM fraction, 58.1% and 72% of total SOC were stored in 

Miscanthus and giant reed soils, respectively. Under Miscanthus, total SOC was 

stored in all three soil aggregate classes, in all soil layers, whereas, under giant 

reed, the POM fraction evenly stored a greater C content through soil depths, 

compared to IALF and MF. 

Shares of the total SOC stocks decreased in IALF and MF fractions, with a similar 

trend between the two perennial grasses: in Miscanthus, C stored in 

microaggregates (IALF), silt and clay (MF), was higher than C stored in the same 

aggregate classes under continuous wheat (7.9 Mg C ha-1 and 2.4 Mg C ha-1 vs 4.2 

Mg C ha-1 and 1 Mg C ha-1, respectively) (Fig. 9.a). Under giant reed, the share of 

total SOC in microaggregates was higher than under the maize/wheat rotation 

(average 5.8 and 4.4 Mg C ha-1, respectively) but lower in the mineral fraction 

(average 1.3 Mg C ha-1 and 2 Mg C ha-1, respectively) (Fig. 9.b). 
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Figure 9 Total soil organic carbon (SOC) within the soil fractions, in the three soil 

depths, in Miscanthus vs  wheat (A) and in giant reed vs maize/wheat rotation (B). 

Horizontal bars represent standard errors (n= 6). LSD0.05 , least significant difference 

at P ≤ 0.05. 
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ISOTOPE MASS BALANCE AND CONTRIBUTION OF PERENNIAL SPECIES TO SOC IN SOIL 

FRACTIONS 

As seen in Section One, δ13C values and distribution in soil aggregates, both in 

perennial and annual crops, appear to be strongly influenced by their C3 or C4 

photosynthetic pathways. Within soil layers, the δ13C values of all aggregates 

size fractions remained consistent in annual crops, while a great difference 

appeared when comparing the two perennial plants. δ13C values were 

significantly higher under Miscanthus (i.e., less negative) (Table 6) and 

significantly lower under giant reed (i.e., more negative) (Table 7). 

 

Table 6 δ13C values (‰) for soil aggregate fractions in the two land use systems, 

Miscanthus  (C4) and continuous wheat (C 3). Standard errors are in brackets. 

δ13C         

Depth (m) Land use POM IALF MF 

0-0.15 Miscanthus -20,72 -22,12 -22,32 

  
(0.35) (0.21) (0.20) 

 
Wheat -25,35 -25,47 -25,25 

  
(0.08) (0.07) (0.05) 

0.15-0.30 Miscanthus -23,78 -24,43 -23,96 

  
(0.10) (0.15) (0.08) 

 
Wheat -25,48 -25,58 -25,29 

  
(0.06) (0.05) (0.06) 

0.30-0.60 Miscanthus -24,18 -24,33 -24,15 

  
(0.08) (0.06) (0.02) 

 
Wheat -25,38 -25,45 -25,23 

  
(0.15) (0.08) (0.08) 
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Table 7 δ13C values (‰) for soil aggregate fractions in the two land use systems, 

giant reed (C3) and maize/wheat rotation (C4/3). Standard errors are in brackets. 

δ13C 
    

Depth (m) Land use POM IALF MF 

0-0.15 Giant reed -25,30 -25,62 -25,22 

  
(0.13) (0.08) (0.09) 

 
Maize/Wheat -23,32 -23,65 -23,24 

  
(0.14) (0.10) (0.06) 

0.15-0.30 Giant reed -24,85 -25,20 -24,85 

  
(0.04) (0.06) (0.08) 

 
Maize/Wheat -23,21 -23,28 -22,44 

  
(0.18) (0.08) (0.14) 

0.30-0.60 Giant reed -25,15 -25,33 -24,84 

  
(0.07) (0.05) (0.12) 

 
Maize/Wheat -23,17 -23,63 -23,19 

  
(0.18) (0.06) (0.09) 

 

The effects of the substitution of arable crops with perennial grasses, in terms of 

SOC storage and distribution in soil aggregates and relative share of C3- and C4-

derived C, indicates a different behaviour between Miscanthus and giant reed. 

Under Miscanthus, in the 0-0.15 m soil layer, 48.8% of all C4-derived C was 

located in macroaggregates (POM); in the two deeper layers, 12% and 7.3% 

were concentrated in POM, respectively (Fig. 10). Moreover, with reference to 

the IALF and MF fractions, the input of C4-derived C from Miscanthus was 

principally found in the shallow layer, where 14.3% was located in 

microaggregates and 4.7% in silt and clay. Based on these data, after 9 years of 

Miscanthus plantation, the amount of C4-derived C in the whole soil profile was 

12.6 Mg C ha-1, with the most part of total SOC localised in the topsoil, according 

to the distribution in soil aggregates described above. 

Furthermore, under Miscanthus, in all soil aggregate classes, it was observed an 

average amount of C3-derived C, higher than in wheat soil (Fig. 10). 

On the other hand, under giant reed, 28.1%, 20.2% and 22.6% of all C3-derived 

C was located in the POM fraction in the shallow, intermediate and deep layers, 

respectively (Fig. 11). The topsoil (0-0.15 m) stored 6 Mg C ha-1 of C3-derived C, 
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while in the other soil fractions (IALF and MF), a lower input of C3-derived C 

was observed. On the whole, 71%, 23.7% and 5.4% of the C3-derived C was 

located in the POM, IALF and MF soil fractions, respectively. 

Based on these data, after 9 years of giant reed plantation, the amount of C3-

derived C in the whole soil profile was 27.9 Mg C ha-1, according to the 

distribution through the soil layers and within soil aggregates, described above 

(Fig. 11). 
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Figure 10 Soil organic carbon (SOC) content in the aggregate soil fractions (POM-

IALF-MF), in the three soil layers, for Miscanthus  and wheat. Vertical bars represent ± 

standard errors (n= 6). 
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Figure 11 Soil organic carbon (SOC) content in the aggregate soil fractions (POM-

IALF-MF), in the three soil layers, for giant reed and maize/wheat rotation. Vertical 

bars represent ± standard errors (n= 6).  
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DISCUSSION 

Combining SOM physical fractionation with 13C natural abundance analysis 

enabled us to further understand the SOC dynamics after the land conversion 

from annual crops to the two perennial species, Miscanthus and giant reed. In 

fact, as reported by many authors, physical fractionation has an important 

influence on sequestration of C in soils following land use change (Edwards and 

Bremner, 1967; Elliott, 1986; Six et al., 2002; Denef et al., 2004). 

The comprehensive results show differences, not only between the land use 

systems (annual vs perennial), but also between the two perennial energy crops. 

Soil C content and distribution across the physical fractions and the soil layers 

mainly increased into macroaggregates (POM), with a significant amount in 

perennial crops. Under Miscanthus, SOC is evenly stored also into physical 

protected (microaggregates) and chemical protected SOM (silt and clay), while, 

under giant reed, SOC is preferentially accumulated into particulate organic 

matter (POM). These results correspond well with Kahlon et al. (2013), who 

compared, in a long-term experiment, the effects of no-till, ridge till and plow till 

on soil physical properties and SOC concentrations. The authors reported that 

macroaggregates contained more C than microaggregates (Dorodnikov et al., 

2009), particularly in no-till fields. The amount of C content may be attributed 

to an increase in soil aggregation, especially macroaggregates, and to a 

relatively higher increase in labile C pools as a result of less disturbance and 

more residue retention (Havlin et al., 1990). As perennial energy crops need soil 

tillage only in the year of the establishment, we can consider soils under 

Miscanthus and giant reed as undisturbed crop systems. Thus, the assumptions 

of Kahlon et al. (2013) and other authors (Six et al., 1999, 2004, Paustian et al., 

2000; West and Post, 2002; Lal et al., 2004; Plaza et al., 2013) may be efficient 

also in our case. 

It is reasonable to suppose that the different SOC distribution between the two 

perennial species is due also to their different root biomass, as previously 
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discussed in Section One. The greatest root biomass in Miscanthus and the 

resulting rhizodeposition activity occur in the topsoil and the shallow rooting 

growth results in a higher C storage in the macroaggregates, at 0-0.15 m. As 

reported in other studies (Plaza et al., 2013; Dondini et al., 2009), we may 

suppose that the high C content observed in POM at 0-0.15 m is sequestered in 

microaggregates within macroaggregates, considered by many authors the 

primary site for long-term soil C sequestration. 

The role of microaggregates is important for the contribution to the long-term 

stabilisation of SOM in the perennial systems, by providing physical protection 

not only to mineral-free SOM but also to chemically-protected SOM adsorbed on 

mineral surfaces (Plaza et al., 2013). This main difference between the two 

perennial energy crops may also be due to the microbial activity that probably 

differs, as a possible consequence of their different root biomass, as discussed 

above. Recent work has found the contribution of microbial biomass to soil SOM 

to be much more important than previously thought (Miltner et al., 2012; 

Simpson et al., 2007b). In their study, Plaza et al. (2013) observed that a 

reduced aggregate turnover due to less soil disturbance enhances the formation 

of stable organo-mineral complexes between mineral particles and microbial 

materials. It is likely that, at least in part, microbes play an active role in 

anchoring themselves to clay surfaces, through the secretion of biofilms that 

mix with various inorganics to produce “hutches” (Lünsdorf et al., 2000). One 

anchored to clay, it is likely that the microbes can only access readily available 

components close to the mineral surfaces. Microbes and microbial by-products, 

adsorbed on mineral surfaces and physically protected by entrapment within 

very small microaggregates, appear to constitute an important pool of SOM 

stabilisation and C sequestration in soils under no-till. 

Perennial energy crops show a distinct trend also in newly derived C storage 

within soil aggregates. 

Most of the C4-derived C under Miscanthus was found in the POM fraction in 

topsoil, while its content decreased with soil depth. On the other hand, 

microaggregates and mineral fraction appear to have a secondary role in newly 
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derived C storage. Moreover, under Miscanthus, all soil fractions showed a 

greater amount of C3-derived C relative to continuous wheat. This result is in 

agreement with Dondini et al. (2009), indicating that Miscanthus may be a 

preservative system in old derived C storage. Dondini et al. explained this fact 

by assuming that, at the start of their field experiment, the soils of the future 

Miscanthus plantation and the reference site were not fully in equilibrium with 

their use as arable land. Continued soil disturbance through ploughing would 

then further decrease soil C3 stocks in the reference site. To explain the C3-

derived C under Miscanthus, we hypothesise also a slower C turnover associated 

with the preference of soil microbial biomass to use the newly derived C as 

substrate for degradation, because of better chemical and structural quality. 

Under giant reed, most of the C3-derived C was stored in the macroaggregates, 

but a considerable share of newly derived C was stored also in the 

microaggregates and in the mineral fraction, through all soil layers. From this 

evidence, giant reed appears to be a less preservative system of old derived C, 

compared to Miscanthus. 

In agreement with Von Lützow et al. (2008), we can confirm that the potential 

for SOM stabilisation and C sequestration in agricultural soils is site- and depth- 

specific, but our results demonstrate that it is also crop-specific. Indeed, we 

observed that between the same land use system of perennial crops, both 

Miscanthus and giant reed can differently act in the enhancement of soil as a C 

sink. 
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CONCLUSION 

After 9 years of Miscanthus and giant reed plantations, the majority of newly 

sequestered carbon was found in the relatively labile particulate organic matter 

(POM). 

Differences in the distribution of newly sequestered carbon in soil fractions 

have been evidenced between the two perennial crops: Miscanthus appears to 

be a more preservative system of old derived carbon in all fractions, whereas 

giant reed can store a higher content of new carbon in the microaggregates 

(IALF) and the mineral fraction (MF). 

Under giant reed, along with its root biomass distribution, the carbon storage is 

evenly distributed in all soil layers. 

The conversion from annual arable crops to perennial energy species reflected 

in a land management conversion, from tillage to a reduced soil disturbance. 

Continuous disturbance, such as long-term arable farming of annual crops, 

shows to have a significant effect on carbon associated with stable aggregates. 

Indeed, while intensive tillage disturbs the labile and stable carbon pools by 

leading to a reduction in associated carbon stocks, a no-till practice, like 

perennial energy crops management, may help to maintain and preserve soil 

organic matter. 

The experimental approach used in this Section allowed to investigate more in 

detail the fate of the newly sequestered carbon in soil physical aggregates. 

Results support the idea that both Miscanthus and giant reed can represent a 

sustainable solution for the restoration and enhancement of soil carbon sink 

potential, also in warm-temperate environments. 
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SECTION THREE  

Soil enzyme activities and microbial 

community structure after 9 years of 

perennial energy crops: Impact of 

Miscanthus  and giant reed 
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ABSTRACT 

In the recent decades perennial rhizomatous grasses have been introduced in 

the Po Valley (Northern Italy), not only for their energetic potential, but also to 

face the loss of soil organic carbon, largely due to anthropic practices. As 

literature data especially concern Northern Europe and continents as North 

America and Africa, we investigated an experimental site in Southern Europe, 

under a Mediterranean temperate climate, to improve the level of information 

on these crops’ potential in different agro-climatic conditions. Also, there is a 

need for sustainable production of bioenergy services research in the 

Mediterranean area, especially considering their fast expansion in the last years. 

The aim of this research was to evaluate changes induced by the introduction of 

perennial energy crops on soil microbial community structure and on some key 

aspects of soil functionality. We compared two 9-year old perennial energy crop 

systems, Miscanthus and giant reed, with two annual crop systems, established 

in the late 1960’s. 

The structure of the bacterial community was studied by denaturing gradient 

gel electrophoresis (PCR-DGGE), a profiling-sequence analysis of PCR-amplified 

16S rDNA fragments. The functional aspects were investigated through the 

determination of three soil enzyme activities, involved in soil carbon, nitrogen 

and phosphorous cycles (β-glucosidase, urease and alkaline phosphatase, 

respectively). Introduction of perennial energy crops positively stimulated soil 

enzymes, especially in the shallow layer (0-0.15 m), where storage of carbon 

and nitrogen was stronger. Enzyme activities were also positively correlated to 

organic carbon, especially in soils under perennial species. A significant but 

weaker correlation was also observed with total nitrogen. The DGGE profiles 

revealed the relationship between land use systems (annual vs perennial) and 

soil microbial communities. Community richness was higher in perennial than 

in annual crops but no effect of soil depth was observed. In contrast, Shannon 
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index of diversity was not influenced by land use system, but only by soil depth, 

with a 32% increase in the top layer. 

Results highlight that the introduction of perennial energy crops in a South 

European agricultural area increases both soil biochemical activity and 

microbial diversity, thanks to the absence of soil disturbance and to the ability 

of these crops to stabilise SOM in soil. This is relevant mainly because this 

geographical area is notoriously characterised by a rapid turnover of organic 

carbon and nitrogen. Moreover, perennial energy crops could represent a 

sustainable choice for the recovery of soils exhausted by intensive agricultural 

management. 
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INTRODUCTION 

Perennial energy crops, such as giant reed (Arundo donax L.) and Miscanthus 

(Miscanthus × giganteus Greef and Deuter), have been proposed as potential 

biofuel feedstocks in alternative to fossil fuels, because of their annual biomass 

production. The interest in these crops as a component in a portfolio of climate 

mitigation measures is promoting their diffusion in many agricultural areas of 

the world (Sims et al., 2006; Rechberger and Lötjönen, 2009; IEA, 2013). 

The introduction of perennial species is expected to take place at the expense of 

the traditional annual crops with consequent changes in applied agricultural 

techniques. Unlike annual species, the need for soil tillage in perennial crops is 

limited to the year of the establishment. The ecological advantages of the long 

periods without tilling are reduced risk of soil erosion and a likely increase in 

soil carbon content (Kahle et al., 2000; Ma et al., 1999). Furthermore, due to the 

recycling of nutrients by their rhizome systems, perennial grasses have a low 

demand for nutrient inputs (Christian et al., 1997; Barbanti, 2014) and N 

fertilisation (Fazio and Monti, 2011). Since they have few natural pests, they 

may also be produced with little or no pesticide use (Lewandowski et al., 2000). 

As shown by previous studies, these aspects could have a direct impact on SOC 

accumulation with subsequent influence on microbial structure community and 

functioning and soil biogeochemical cycles of the elements, particularly C and N 

(Hakey et al., 2010; Mao et al., 2011; Piotrowska and Wilczewski, 2012). As 

reported by Paul and Clark (1996), the deep rooting system and the higher root 

density of perennial species allow to allocate more resources to belowground 

organs (rhizomes) and to maintain more complex food webs and, in turn, may 

accommodate a larger population of beneficial microorganisms. 

Perennial crops are typically harvested after aboveground biomass has 

senesced, leaving stems and leaves accumulating on soil surface as pre-harvest 

losses, hence causing high SOC input (Beuch, 1999). The incorporation of plant 

litter by the soil fauna is a major source of SOC, and the perennial nature of 
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these species not only allows for senescence leading to higher litter input, but it 

has also been shown that the reduced disturbance has a positive impact on the 

soil fauna hence enhancing litter incorporation further (Chan, 2001; Van 

Eekeren et al., 2008; Ernst et al., 2009). 

Compared to this, fewer information, concerning the impact of perennial energy 

crops on soil microbial functionality, is available. There is previous evidence 

that perennial crop residues, including plant root exudates, may either stimulate 

or inhibit the growth and activity of different fractions of soil microbial 

community; thus the planting of different crops may result in distinct microbial 

communities (Mao et al., 2011). 

Identifying land use effects on soil microbiota, together with the knowledge of 

community-specific functions, can improve the understanding of fundamental 

controls on communities and their processes (Liang et al., 2012). This 

knowledge is crucial for the development of sustainable agriculture, as soil 

microorganisms represent an integrative component of soil quality because of 

their involvement in many ecosystems processes (i.e. SOM decomposition and 

nutrient cycling, N2 fixation, aggregate formation and stabilisation) (Schutter et 

al., 2001). 

Due to this reason and to its quick adaptability to changes of environmental 

conditions, soil microbiota represents an early and sensitive indicator of soil 

quality changes (Schloter et al., 2003, Dick, 1992; Bending et al., 2004; Winding 

et al., 2005). In both the US and in Europe, there are various candidate perennial 

grasses available which differ considerably in their potential productivity, 

chemical and physical properties of their biomass, environmental demands and 

crop management requirements. 

As the first research on perennial grasses began in the humid-continental 

environments of North America and then in the Atlantic and Continental regions 

of Northern Europe, fewer information is available for Mediterranean-

temperate areas of Southern Europe where average temperatures, annual 

precipitation, moisture and global radiation are different. 
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As affirmed by Lewandowski et al. (2003), the wide range of climatic conditions 

from Northern to Southern Europe influences yields of these perennial crops 

but also the soil C sink potential. 

On these bases, the present research was carried out in the South-East of the Po 

Valley (Northern Italy), identified as part of the Mediterranean North 

environmental zone (Metzger et al., 2005). This agro-ecosystem is characterised 

by low SOC stocks (<10 g C kg-1 up to 0.30 m; ARPA, 2009), largely due to 

anthropic practices as intensive tillage, a strong specialisation of cropping 

systems and a concurrent decline of the livestock farm activity. We investigated 

the changes occurred on soil microbiota and its biological activity after 9 years 

of perennial energy crops, Miscanthus (Miscanthus × giganteus Greef and 

Deuter) and giant reed (Arundo donax L), replacing two 40-years annual arable 

systems. 

The microbial community was studied in terms of structure and richness, while 

the functional aspects were investigated through the determination of three soil 

enzymes, involved in soil carbon, nitrogen and phosphorous cycles (-

glucosidase, urease and alkaline phosphatase, respectively). 
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MATERIALS AND METHODS 

EXPERIMENTAL SITE 

The field experiment was located at the experimental farm of the University of 

Bologna (Italy), in Cadriano (44° 33’ N, 11° 21’ E, 32 m a.s.l.), with mean annual 

precipitation and temperature of 700 mm and 13.3 °C, respectively. The area is 

identified as part of the Mediterranean North environmental zone, implying 

mild winter and long growing season, in exchange for precipitation mostly 

concentrated in the cold semester (Metzger et al. 2005). The soil at this site has 

a clayey-loamy texture. Continuous wheat (Triticum aestivum L.) and a 

maize/wheat crop rotation (Zea mays / Triticum aestivum L.) are the two annual 

systems which have been replaced, after 40-years, with the perennial energy 

crops, Miscanthus (Miscanthus × giganteus Greef and Deuter) and giant reed 

(Arundo donax L.), respectively. 

Table 8 Physical and chemical characterisation of the studied soils under perennial 

(Miscanthus and giant reed) and annual crop (continuous wheat and maize/wheat 

rotation) systems. Soil analysis according to the Italian method D.M. 13/09, 1999.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Soil   

 
Perennial energy 

crops 
Annual arable 

crops 

pH H2O 7.6 6.1 

Texture (%) 
  

Sand 26.7 34.5 

Silt 45.3 42 

Clay 28 23.5 

Limestone (%) 
  

total 1.7 < 0.5 

active 1.6 < 0.1 

CORG (g kg-1) 12.5 6.9 

NTOT (g kg-1) 1.5 0.9 

C:N 8.3 8 

Available P (mg kg-1) 19.4 26.4 
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A chemical and physical characterisation of the studied soils under perennial 

and annual crops was carried out, according to the current Italian methods of 

soil analysis (D.M. 13/09 1999). Results were averaged for crop type because 

very similar; they are reported in Table 8. 

CROP MANAGEMENT AND EXPERIMENTAL LAYOUT 

Two replicates from a field experiment, arranged in a completely randomised 

design, were used in the present research. 

Continuous wheat and maize/wheat rotation are the two annual systems that 

were established in experimental plots in the late 1960’s. Miscanthus and giant 

reed plots were established in 2002 in soils previously cultivated with annual C3 

and C4/C3 species, respectively. 

Endemic to East Asia, Miscanthus is adapted to warmer climates but it has 

shown a good adaptability to the climatic conditions of Central and Southern 

Europe. European research has focused on the genotype Miscanthus × giganteus, 

which is a sterile, triploid interspecific hybrid. Its sterility necessitates 

vegetative propagation by rhizome division or in vitro cultures (Angelini et al., 

2009). 

Native from East Asia, giant reed is widely diffused in Mediterranean 

environment where it is frequently found in riparian habitats. It is reported that 

giant reed is an asexual reproductive species, due to seed sterility (Bhanwra et 

al., 1982). Usually this crop does not set fruit because the pollen results 

unfruitful; consequently, the better propagation method is the use of rhizomes 

(Angelini et al., 2009). 

In both annual and perennial crops 0 (N0) and 120 (N120) kg ha-1 of mineral N, 

supplied as urea, were applied annually during the spring time. Moreover, 50 kg 

P2O5 ha-1, as triple superphosphate, were applied every year in annual crops. In 

Miscanthus and giant reed, 200 kg P2O5 ha-1 were added prior to planting in 

spring 2002. No K fertiliser was applied, given the sufficient level of this 

nutrient in the soil. 
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Tillage at 0.30 m was carried out every year in annual crops; only prior to 

planting (autumn 2001) in perennial ones. In both annual and perennial species, 

the rest of crop husbandry reflected the normal practice followed in the 

experimental area. In particular, perennial crops were always harvested every 

year in the early autumn (September 25 – October 15); annual crops were 

harvested at maturity (wheat, early summer; maize, late summer) and the 

recoverable fraction of their residues (wheat straw and maize stover) was 

always removed from the field. 

Soil sampling took place in March 2011 at the beginning of the 10th growing 

season, using a 85 mm diameter soil corer up to a depth of 0.60 m, divided in 

three soil layers (0-0.15, 0.15-0.30, 0.30-0.60 m). For each crop two replicates 

were taken. Each replicate was composed by three subsamples, which were put 

together and transported back to the laboratory the same day. 

Soil samples for microbiological analysis were subsequently sieved (2 mm mesh 

sieve), plant organic material as leaves, stubbles and litter were removed and 

samples were stored at -20 °C. Soil samples for chemical analysis (SOC; TN; 

PAVAIL contents; microbial biomass carbon, Cmic) were also sieved as described 

above but then air-dried outdoors. 

TOTAL C, TOTAL N AND AVAILABLE P 

Soil samples were air-dried and finely ground before analysis for total soil 

organic C (SOC) and N (TN) The C and N contents of soils were directly 

measured with an elemental analyser (CHNS-O mod. EA 1110, Thermo Fischer, 

Germany) using acetanilide as a standard for C and N concentration. As traces of 

carbonates were detected in the studied soils, samples were pre-treated with 

acid. An aliquot of soil (10 - 13 mg) was weighed into silver capsules and, after 

adding a few drops of 6 M HCl, heated to 80°C on a heating plate until dry. Then 

the capsules were closed and analysed in the elemental analyser. Soil available P 

(PAVAIL) was measured by the Olsen method (Olsen and Sommers, 1982). For 

each sample 2 g of soil were dispersed in 0.5 M NaHCO3 (pH 8.5), extracted on a 

horizontal shaker for 30 min and finally filtered through Whatman no.42 filter 
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paper and analysed for the available P content with an inductively coupled 

plasma mass spectrometry (ICP-OES, Spectro Arcos, Ametek, Germany). 

MICROBIAL BIOMASS CARBON 

Microbial biomass carbon (Cmic) was determined using the chloroform 

fumigation extraction method (Brookes et al., 1985; Vance et al., 1987). The 

equivalent of 10 g of oven-dried soil was fumigated with ethanol-free 

chloroform for 24 h at 25 °C, in a desiccators, in the dark. Fumigated and 

unfumigated samples were dispersed in 40 ml of 0.5 M K2SO4 and extracted on a 

horizontal shaker at 250 rev min-1 for 30 min. Extracts were filtered through 

Whatman no. 42 filter paper and analysed for the organic C content with an 

elemental analyzer (TOC – VCPH/CPN, Shimadzu, Kyoto, JP). 

Cmic was calculated as organic C in the fumigated minus organic C in the 

unfumigated soil extracts. 

SOIL ENZYME ACTIVITIES 

β-glucosidase (GLU) activity was determined using 1 g of soil (dry weight, d.w.), 

according to Eivazi and Tabatabai (1988). Absorbance was measured at 400 nm 

and activity expressed as μg PNG g-1 h-1. 

Urease activity (UR) was determined using 3 g of soil (d.w.), according to 

Kandeler and Gerber (1972). The absorbance was measured in the supernatant 

at 600 nm and the enzyme activity was expressed as mg N-NH4+ g-1 h-1. 

Alkaline phosphatase (PAL) activity was performed according to Eivazi and 

Tabatabai (1977), using 1 g of soil (d.w.) and measuring the absorbance at 400 

nm. Phosphatase activity was expressed as mg PNP g-1 h-1. 

SOIL DNA EXTRACTION 

Based on the results of soil enzyme activities, the DNA was extracted only from 

soil samples taken at the 0-0.15 and 0.30-0.60 m depths. Before DNA extraction, 

soil samples were homogenized with pestle and mortar. Four 1 g subsamples 

(dry weight, d.w.) of each replicate were used for DNA extraction by the bead-

beating method, following the manufacturers’ instructions of the MoBio 
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UltraClean Soil DNA Isolation Kit (MoBio Laboratories Inc., Solana Beach, 

California, USA) with a few modifications, including the repetition of the second 

step (Inhibitor Removal Solution) to remove trace concentrations of PCR 

inhibitors. Then the DNA samples were checked for concentration and quality 

using the NanoDrop ND-1000 Spectrophotometer (NanoDrop® Technologies, 

Wilmington, Delaware, USA). 

PCR-DGGE ANALYSIS 

PCR on the DNA samples was performed with the 16S rDNA universal bacterial 

denaturing gradient gel electrophoresis (DGGE), with primers 907R (5’-

CCGTCAATTCCTTTGAGTTT-3’) and GC-341F (P3) (5’-CCTACGGGAGGCAGCAG-

3’) (TIB®MOLBIOL, Berlin, Germany) to amplify the V3–V5 hypervariable 

regions of 16S rDNA genes. Primer P3 contains the same sequence as 341F but 

with an additional 40-nucleotide GC-rich sequence (GC clamp) at its 5’ end (Yu 

and Morrison, 2004). 

The PCR programme was performed as described by Vivas et al. (2009) with 

some modifications. It was initiated by a hot start of 9 min at 95 °C; after 1 min 

of initial denaturation at 94 °C, a touchdown thermal profile protocol was used, 

and the annealing temperature was decreased by 1 °C per cycle from 65 °C to 55 

°C. Amplification was carried out with 1 min of denaturation at 94 °C, 1 min of 

primer annealing at 55 °C and 1.5 min of primer extension at 72 °C, followed by 

10 min of final primer extension. The total reaction mixture of the first PCR 

consisted of 25 μl containing: a range of extracted DNA concentrations 

approximately between 4.5 ng and 5.5 ng; 2.5 μl of 10X PCR Buffer; 0.75 μl 

MgCl2 50 mM; 2.5 μl dNTPs 10 mM; 1 μl primer P3 10 μM and 1 μl primer 907R 

10 μM; 0.15 μl 0.025 U/μl BIOTAQ DNA and sterile Milli-Q water to a final 

volume. 

PCR products were analysed by electrophoresis in 2% agarose gel to select the 

best amplified DNA concentrations (ng). 

The second amplification was performed using the selected DNA concentrations 

tested in the first PCR as template to a final volume of 50 μl. In this 
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amplification, primers P3 and 907R were used under the same conditions as 

described above. 

Then PCR products were purified by “DNA Clean & Concentrator™-5 Kit” (Zymo 

Research Corp., California, USA) and checked for concentration and quality 

using the NanoDrop ND-1000 Spectrophotometer (NanoDrop® Technologies, 

Wilmington, Delaware; USA). 

DGGE analysis was conducted using 550 ng of concentrated PCR products and 

loaded into a 30%-55% urea-formamide-polyacrilamide gel. Electrophoresis 

was performed at 200 V for 10 min and then at 75 V for 18 h at 58 °C, using an 

INGENYphorU System (Ingeny International BV, The Netherlands). Gel was 

silver stained with the Bio-Rad Silver Stain, according to the standard DNA-

staining protocol and then photographed. 

STATISTICAL ANALYSIS 

Normal distribution and equal variance of data were controlled through the 

Kolmogorov-Smirnov and Bartlett test, respectively. Data were then submitted 

to the analysis of variance (ANOVA) through the CoStat 6.3 software (CoHort 

Software, Monterey, California - USA), according to a completely randomised 

factorial scheme: in each trait the significance of the investigated sources (crops, 

soil depths and their interaction) was determined. The Student - Newman-Keuls 

(SNK) test at P ≤ 0.05 was adopted to separate means of statistically significant 

sources. 

Data were also analysed by the orthogonal contrasts method (or single degree 

of freedom procedure) (Snedecor and Cochran, 1980), to test selected effects 

addressing specific combinations of crop groups (perennial vs annual) and soil 

depths (shallow vs deep). 

The structural diversity of microbial community was examined by the Shannon 

diversity index (H’) and by the community richness (R). The intensity of bands 

was reflected as peak heights in the densitometric curve. Community richness 

was evaluated by the presence or absence of the band in the DGGE analysis. The 
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H’ value was calculated from the number of bands and their relative intensities 

in each lane, with the following equation: 

H’= -Σ(Pi × log Pi) 

where Pi= ni/N; ni is the height of peak and N is the sum of all peak heights in 

the curve. 

To test if the similarities observed within and between samples were larger or 

smaller than those expected by the different treatments, band matching data 

were stored as a binary matrix and analysed using Raup and Crick’s probability-

based index of similarity SRC (Raup and Crick, 1979). SRC indicates the 

probability that the randomised similarity would be larger than or equal to the 

observed similarity, and SRC values above 0.95 or below 0.05 signify differences, 

which are not random assortments of the same species (bands or OTUs) (Rowan 

et al., 2003). 

Pearson’s correlation (r) was used to study the relationships among soil enzyme 

activities, biochemical properties and biodiversity indices. 
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RESULTS 

SOIL ENZYME ACTIVITIES 

Soil enzyme activities were significantly influenced by crops, soil depths and 

their interaction (Table 9). Giant reed particularly stimulated GLU, achieving a 

65% higher activity than continuous wheat. Likewise, Miscanthus boosted UR 

and PAL activities, attaining +250% and +130% than maize/wheat rotation and 

wheat, respectively. 

The shallow layer (0-0.15 m) consistently showed a higher enzyme activity: 

+106%, +22% and +52% in GLU, UR and PAL, respectively, than the deep layer 

(0.30-0.60 m). 

Table 9 Soil enzyme activities depending on crops, soil depths and their interaction. GLU, -

glucosidase; UR, urease; PAL, alkaline phosphatase. 

Sources 
GLU 

(μg PNG g-1 h-1) 
UR  

(mg N-NH4+ g-1 h-1) 
PAL  

(mg PNP g-1 h-1) 

Crop (C) 
     

Miscanthus 30.04 ab 
 

50.88 a 
 

79.03 a 

Giant reed 39.34 ab 
 

36.16 b 
 

56.79 b 

Wheat 24.64 b 
 

31.52 b 
 

34.01 c 

Maize/Wheat 30.49 ab 
 

14.45 c 
 

62.13 b 

P 0.024* 
 

< 0.001*** 

 
< 0.001*** 

Depth (D; m) 
     

0-0.15 52.14 a 
 

37.49 a 
 

72.01 a 

0.15-0.30 23.21 b 
 

32.25 b 
 

52.82 b 

0.30-0.60 25.27 b 
 

30.79 b 
 

47.25 b 

P < 0.001*** 
 

0.006** 
 

< 0.001*** 

P (C × D)  < 0.001*** 
 

0.145 ns 
 

0.001*** 

ns, *, ** and *** mean non-significant and significant at P ≤ 0.05, ≤ 0.01 and ≤ 0.001, 

respectively. Different letters indicate significantly different means  

(SNK test; P ≤ 0.05). 

GLU and PAL also exhibited a significant interaction between the two factors 

considered, indicating a positive effect of perennial species in the topsoil (Fig. 

12), especially in the case of Miscanthus with PAL, and giant reed with GLU 

activity. 
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Fig. 12 Significant crop × depth (C × D) interaction of β-glucosidase (GLU) (A) and 

alkaline phosphatase (PAL) (B). Different letters indicate significantly different means 

(SNK test; P ≤ 0.05). Vertical bars represent ± standard errors (n= 3).  

The effect of land use systems (perennial vs annual) and soil depths (shallow vs 

deep layer) was highlighted by the linear contrasts test (Table 10). 

The group composed by the two perennial species displayed a 36%, 77% and 

32% increase in GLU, UR and PAL, respectively, over the group represented by 

the two annual crops. Regardless of the crop system, in the shallow layer a 

115%, 19% and 44% increase in the three respective enzymes was observed 

over the two combined deep layers (0.15-0.60 m). As a result, the effect of 
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perennial over annual species appeared further enhanced in the shallow layer 

(+167%, +101% and +76% in the three respective enzymes). 

Table 10 Most relevant orthogonal contrasts of soil enzyme activities between crop 

types, soil layers and their combinations. A, annual crop systems ( continuous wheat 

and maize/wheat rotation); P, perennial energy species (Miscanthus and giant reed); 

GLU, β-glucosidase; UR, urease; PAL, alkaline phosphatase.  

Orthogonal  
contrast 

Enzyme activity 

GLU 
(μg PNG g-1 h-1) 

UR 
(mg N-NH4+ g-1 h-1) 

PAL 
(mg PNP g-1 h-1) 

A vs P 27.5 vs 37.5* 22.9 vs 40.5** 48.1 vs 63.5** 

0-0.15 vs 0.15-0.60 52.1 vs 24.2** 37.4 vs 31.5** 72.0 vs 50.0** 

(A vs P) 0-0.15 26.0 vs 69.5** 23.3 vs 46.9** 49.4 vs 87.1** 

* and ** mean significant at P ≤ 0.05 and ≤ 0.01, respectively. 

Significant correlations were evinced between enzyme activities and chemical 

properties. In fact, GLU, UR and PAL were positively correlated to SOC (r= 0.56**, 

0.82*** and 0.75***, respectively) (Fig. 13), because of the role of perennial 

crops and the shallow soil layer in enhancing both SOC and enzyme activities. 

There was also a positive correlation between GLU, UR and PAL activities and TN 

(r= 0.50*, 0.72*** and 0.42*, respectively) (Fig. 14), although weaker than those 

with SOC (Fig. 13). However, it is still possible to observe the combined effect of 

perennial crops and the shallow layer (0-0.15 m) in enhancing TN and enzyme 

activities. UR was the enzyme showing the best correlations with both SOC and 

TN. 

In contrast, no correlation was observed between enzyme activities and PAVAIL 

(data not shown). 
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Figure. 13 Correlations of β-glucosidase (GLU) (A), urease (UR) (B) and alkaline 

phosphatase (PAL) (C) activities with soil organic carbon (SOC) over four crops 

(Miscanthus , giant reed, wheat and maize/wheat rotation), three soil layers (0-0.15, 

0.15-0.30 and 0.30-0.60 m) and two replicates (**= P ≤0.01; ***= P ≤0.001) (n= 24). 
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Figure 14 Correlations of β-glucosidase (GLU) (A), urease (UR) (B) and alkaline 

phosphatase (PAL) (C) activities with soil total nitrogen (TN) over four crops (giant 

reed, Miscanthus , wheat and maize/wheat rotation), three soil layers (0 -0.15, 0.15-

0.30 and 0.30-0.60 m) and two replicates (*= P≤0.05; ***= P ≤0.001) (n= 24). 
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The activity of soil enzymes was also analysed in connection with microbial 

biomass carbon (Cmic). Cmic content was significantly correlated with UR and PAL 

activities, exhibiting respective correlation coefficients (r) of 0.59** and 0.75***, 

and weakly correlated with GLU (r= 0.47*), as shown in Table 11. In all 

correlations between Cmic and enzyme activities, the strong effect of Miscanthus 

on microbial biomass C in the topsoil (0-0.15 m) is particularly evident (Fig. 15). 

Table 11 Matrix of correlations (r) between soil enzyme activities, chemical 

properties and microbial biomass carbon in the three soil depths (0 -0.15; 0.15-0.30 

and 0.30-0.60 m) (n = 24). GLU, -glucosidase; UR, urease; PAL, alkaline phosphatase; 

SOC, soil organic carbon; TN, total nitrogen; PAVAIL, available phosphorus; Cmic, 

microbial biomass carbon.  

  GLU UR PAL SOC TN PAVAIL Cmic 

GLU 1 
      

UR 0.20 ns 1 
     

PAL 0.56** 0.44* 1 
    

SOC 0.56** 0.81*** 0.75*** 1 
   

TN 0.50* 0.72*** 0.42* 0.81*** 1 
  

P AVAIL  -0.50* -0.41 ns 0.21 ns -0.29 ns -0.62** 1 
 

Cmic  0.47* 0.59** 0.75*** 0.79*** 0.52* 0.01 ns 1 

ns, *, ** and *** mean non-significant and significant at P ≤ 0.05, ≤ 0.01 and ≤ 0.001, respectively. 
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Figure 15 Correlations of β-glucosidase (GLU) (A), urease (UR) (B) and alkaline 

phosphatase (PAL) (C) activities with microbial biomass carbon (C mic) over four crops 

(giant reed, Miscanthus , wheat and maize/wheat rotation), three soil layers (0-0.15, 

0.15-0.30 and 0.30-0.60 m) and two replicates (*= P≤0.05; ***= P ≤0.001) (n= 24). 
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PCR-DGGE ANALYSIS 

Comparison of bacterial communities between soils under perennial and annual 

crops showed quite markedly different profiles across the 16S rDNA-DGGE gel 

(Fig. 16). The resulting genetic profile, representing the community structure, is 

characterised by rare intensity and relatively few DGGE bands. Nevertheless, it 

is possible to observe the main differences between perennial and annual crop 

soils in the high part of the DGGE gel. 
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Figure 16 PCR-DGGE patterns of V3-V5 hypervariable regions of 16S rDNA of soil 

microbial community in giant reed, Miscanthus , wheat and maize/wheat rotation over 

two soil layers (S-shallow layer, 0-0.15; D-deep layer, 0.30-0.60 m) and two replicates 

(samples 2574-2575, 2586-2587 for giant reed; 2598-2599, 2610-2611 for 

Miscanthus; 2646-2647, 2658-2659 for wheat; 2664-2665, 2676-2677 for 

maize/wheat rotation). 
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The structure of bacterial community was influenced by the investigated factors 

to a variable extent (Table 12). Community richness (R) showed a significant 

crop effect, evidencing higher values in perennial than in annual crops. 

Conversely, the effect of soil depth was negligible. By contrast to this, H’ was not 

significantly influenced by crop species, whereas the shallow soil layer exhibited 

a 32% higher value over the deep layer. In both R and H’, the crop × depth 

interaction was not significant. 

Table 12 Community richness (R) and Shannon index of general diversity (H') for 

DGGE (Denaturing Gradient Gel Electrophoresis) profiles, depending on crops, soil 

depths and their interaction.  

Sources R H' 

Crop (C)     

Miscanthus 10.00 a 1.95 

Giant reed 12.25 a 2.16 

Wheat 5.50 b 2.11 

Maize/Wheat 7.00 b 2.07 

P 0.016* 0.853 ns 

Depth (D; m)     

0-0.15 9.37 2.38 a 

0.30-0.60 8.00 1.80 b 

P 0.282 ns 0.009** 

P (C × D) 0.500 ns 0.462 ns 

ns, * and ** mean non-significant and significant at P ≤ 0.05, 

≤ 0.01 and ≤ 0.001, respectively. 

Figure 17 shows the dendrogram generated by the Raup and Crick cluster 

analysis. Similarities within replicates were significant in all cases (SRC=1, data 

not shown). Soils managed with the same crop system (perennial vs annual) 

proved significantly similar (SRC>0.95). By contrast, in the pair-compared DGGE 

profiles, a significant dissimilarity (SRC<0.05) was observed between Miscanthus 

and giant reed profiles in contrast with wheat and maize/wheat rotation.
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Figure 17 Raup and Crick probability-based index of similarity cluster analyses for DGGE profiles . 
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Richness of microbial species, deriving from DGGE profiles, was then correlated 

with the enzyme activities and the chemical properties of soil determined in this 

research. The intention was to detect the effect of perennial energy crops on the 

potential relation between soil bacteria diversity and biochemical functions. 

This approach is based on the relationships between microbial diversity and 

soil functionality, considering that most of processes in soil are mediated by 

bacteria. Correlations are summarised in Table 13. 

As shown in Figure 18, community richness (R) was directly correlated with 

GLU activity (r= 0.62**) and also with SOC and TN (r= 0.65** and 0.73**, 

respectively). 

In contrast, community richness was not well correlated with UR and PAL. Figure 

18 also illustrates how richness was distributed through soil layers (0-0.15 and 

0.30-0.60 m), showing an evident gap established by perennial crops in the 

topsoil (0-0.15 m), relative to the deeper layers. 

Table 13 Matrix of correlations (r) between soil enzyme activities, chemical 

properties and biodiversity indices through the topsoil (0 -0.15 m) and the deeper 

layer (0.30-0.60 m). GLU, -glucosidase; UR, urease; PAL, alkaline phosphatase; SOC, 

soil organic carbon; TN, total nitrogen; PAVAIL, available phosphorus; R, community 

richness; H’, Shannon index of diversity.  

ns, *, ** and *** mean non-significant and significant at P ≤ 0.05, ≤ 0.01 and ≤ 0.001, respectively. 

  GLU PAL UR SOC TN PAVAIL R H' 

GLU 1 
       

PAL 0.64* 1 
      

UR 0.38 ns 0.52* 1 
     

SOC 0.68** 0.80*** 0.83*** 1 
    

TN 0.64** 0.42 ns 0.73** 0.79*** 1 
   

PAVAIL  -0.19 ns 0.21 ns -0.39 ns -0.30 ns -0.65** 1 
  

R 0.62** 0.40 ns 0.39 ns 0.65** 0.73** -0.49 ns 1 
 

H' 0.57* 0.33 ns 0.01 ns 0.25 ns 0.08 ns -0.01 ns 0.29 ns 1 
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Figure 18 Correlations of β-glucosidase activity (GLU) (A), soil organic carbon (SOC) 

(B) and total nitrogen (TN)  (C), with community richness over four crops (giant reed, 

Miscanthus , wheat and maize/wheat rotation), two soil layers (0-0.15 and 0.30-0.60 

m) and two replicates (*= P≤0.05; **= P ≤0.01; ns= non significant)  (n= 16). 
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DISCUSSION 

The land conversion from annual arable crops to perennial energy grasses 

positively influenced the three soil enzymes surveyed in this research. The 

effect was particularly evident in the shallow layer where soil C input is mostly 

determined by turnover of large roots and harvest losses, and where 

microorganisms are most active. The positive effect is likely due to the different 

agricultural management of perennial species: unlike annual crops, the need for 

soil tillage in perennial grasses is limited to the year in which these crops are 

established. The reduced soil disturbance by tillage could reflect in increased 

soil C storage thanks to reduced microbial oxidation under conditions of lower 

aeration (King et al., 2004). 

Soil organic carbon and nitrogen are among the most important factors that 

may considerably influence the activity of soil enzymes (Gianfreda and Bollag, 

1996). It is well known that soil enzymes are early indicators of changes in soil 

physical and chemical properties (Amador et al., 1997), induced by tillage 

(Carter, 1986; Powlson et al., 1987; Friedel et al., 1996; Salinas-Garcia et al., 

1997), fertilisation regimes (Giacometti et al., 2013), vegetation changes 

(Waldrop et al., 2000; Sinsabaugh et al., 2002), disturbance (Bolton et al., 1993; 

Eivazi and Bayan, 1996; Garcia and Hernández, 1997; Boerner et al., 2000) and 

plant succession (Tscherko et al., 2003). 

Results confirm this assumption, showing that, limited to the upper soil layer, a 

remarkable stimulation of GLU, UR and PAL activities was linked to the 

introduction of plants involving low or no tillage as perennial crops. A high 

activity of soil enzymes may indicate insufficient nutrient supply for 

microorganisms, but the significant correlation of GLU, UR and PAL activities 

with microbial biomass C and SOC allows to suppose that this is not the reason. 

On the contrary, the amount of SOC and microbial biomass C, observed in soils 

under Miscanthus and giant reed, may have caused the high activity of GLU, UR 

and PAL. 
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A similar result, comparing perennial and annual cropping systems, has been 

previously reported by Dick et al. (1996). We observed this occurrence in a 

South European site, notoriously characterised by a rapid turnover of organic 

carbon and nitrogen, thus hampering their stabilisation in soil. 

Based on soil enzyme activity data, we addressed soil microbial community 

structure and distribution considering the top (0-0.15 m) and the deep (0.30-

0.60 m) layers as the two opposite cases in a gradient of richness distribution. In 

this frame, the microbial community structure was examined by using the 

bacterial DNA profiles, produced by 16S rDNA-DGGE. DGGE banding data were 

used to estimate the diversity indices (R and H’), by treating each band as an 

individual operational taxonomic unit (OTU). Moreover, because it is not 

possible to be sure whether the different H’ index reflects differences in species 

richness, species evenness or simply sampling differences, the H’ and the Raup 

and Crick’s probability-based index of similarity (SRC) were combined. 

Previous works (De Deyn et al, 2010; Liang et al., 2012) indicated that soil 

microbial communities are differentially influenced by host plant species and by 

other microorganism communities of varying diversity. Soils of different types, 

harbouring specific microbial communities, are also assumed to exert a 

selection as shown in a continental-scale study by Fierer and Jackson (2006). In 

agreement with these authors, data of R and H’ provide evidence that the 

characteristics of the bacterial community have changed after 9 years of 

Miscanthus and giant reed, introduced in the agricultural management of the 

study site. Dendrogram generated by Raup and Crick’s probability-based index 

of similarity cluster analysis from PCR-DGGE profile reinforced this assumption 

(Fig. 17). 

Community richness is positively correlated with SOC and TN contents, 

suggesting possible effects of the host plants and of the reduced disturbance 

characterising perennial crops management on soil microbiota. One mechanism 

by which plants and plant communities may exert selection on soil microbial 

community is by modifying resource availability. Richness is consistent with a 

mechanism in which plants impact soil microbial communities through the 
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quantity of resources provided. In fact, provision of C substrates via 

rhizodeposition is commonly assumed to be a primary mechanism for plant-

driven impacts on soil microbial communities (De Deyn et al., 2010). 

In this research, it is necessary to consider the significant contribution in terms 

of aboveground biomass, that typically characterises perennial crops, in the 

form of stem and leaves accumulated on soil surface as pre-harvest losses 

(Anderson-Teixeira et al., 2009). In spite of all evidence, supporting a picture of 

general advantage from enhanced soil microbial community, data of this 

research reveal a lack of relationship between bacterial diversity (R and H’ 

indices) and two of the three enzyme assayed (UR and PAL). The approach is 

based on the potential relationships between microbial diversity and soil 

functionality, considering that 80 - 90% of the processes in soil are reactions 

mediated by microbes (Nannipieri et al., 2003; Caldwell, 2005). 

However, it is perceived as soil enzymes are a key point in the evaluation of 

biological soil quality, as described by Burns et al. (2013): extracellular enzymes 

represent the pre-requisite for the success of microorganisms that rely on the 

degradation of polymeric substrates and must prioritise carbon and nutrient 

allocation to enzyme production, in order to prevent starvation. The weak 

correlations may be explained by the fact that a considerable part of soil 

enzymes is present in protected extracellular form and therefore their activity is 

not always directly correlated with soil microbial populations (Burns et al., 

2013; Boyd and Mortland, 1986; Burns, 1986; Dick and Tabatabai, 1987). 

At the same time, a good correlation between enzyme activities and SOC was 

found in this research and this is consistent with the assumption that soil 

organic matter is one of the main factors involved in soil protection of 

extracellular enzymes (Burns et al., 2013). 
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CONCLUSION 

In their work Liang et al. (2012) showed that microbial communities were 

considerably impacted by cropping system, with a significantly lower microbial 

biomass in conventional maize than in mixed prairie. 

In this research we can confirm how, in a land use change from arable cropping 

to perennial species, the choice of crop types, and their consequently 

agricultural management, is crucial in determining structural and functional 

aspects of soil microbial community. Integrating soil ecosystem with perennial 

rhizomatous grasses increases the biochemical activity of soil thanks to their 

ability to sequester and stabilise organic carbon in soil, along with the reduced 

disturbance of tillage. This results in less aeration and lower decomposition 

rates of organic matter. 

Along with other studies demonstrating the potential of perennial energy crops 

in terms of enhanced chemical (carbon and nitrogen) (Dondini et al., 2009; Mao 

et al., 2011) and biological properties (soil enzymatic activity and microbial 

community structure), this research supports the role of these crops as a 

sustainable option for the recovery of soils depleted by long periods of intensive 

management also in Southern Europe. 
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GENERAL CONCLUSIONS 

This long-term field experiment involved a change in land use system from 40 

years of annual arable crops (continuous wheat and a maize/wheat rotation) to 

9 years of perennial biomass crops (Miscanthus and giant reed). To date, these 

two species have mainly been studied in view of their conversion into various 

forms of bioenergy (heat and power, biogas and 2nd generation biofuels). Hence, 

the net energy yield and environmental impact associated with their cultivation 

have especially been focused in previous research dealing with Miscanthus and 

giant reed. Conversely, a large uncertainty lies in the side effects determined by 

their cropping on soil properties in warm-temperate environments. 

In fact, it has been frequently remarked in literature that perennial energy crops 

have a high carbon sequestration potential, due to high below-ground allocation 

to storage organs (rhizomes)and dense rooting, in association with undisturbed 

soil after tillage in the year of establishment. There are many studies on soil 

organic carbon potential of perennial crops, especially Miscanthus, carried out in 

Atlantic and Continental zones of North-Central Europe. In contrast, this 

research has been performed in a South European site, the Po Valley, classified 

as part of the Mediterranean North environmental zone (Metzger et al., 2005). 

This agro-ecosystem is generally characterised by low soil organic carbon, due 

to intensive anthropic practices and higher temperatures hampering carbon 

storage. Responding to these constraints, this thesis addresses the carbon 

sequestration potential of Miscanthus and giant reed under these climatic 

conditions and, what is more, investigates in detail the newly sequestered 

carbon distribution in soil aggregates and the changes occurred in soil microbial 

communities, after perennial energy crops introduction. 

Applying the 13C natural abundance analysis, combined with soil physical 

fractionation, has made it possible to precisely determine the portion of total 

soil organic carbon derived from Miscanthus and giant reed in 9 years of 

cropping , as well as its allocation trend, by quantifying organic carbon in the 
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three soil fractions. Results show that soil organic carbon is significantly higher 

in the whole investigated profile (0-0.60 m) under perennial crops, compared to 

the respective soils under annual species. Besides the two land use systems 

(annual vs perennial species), differences have been observed between the two 

perennial crops, reflecting their fibrous root biomass: Miscanthus appears to 

have a greater carbon accumulation potential, but limited to the topsoil (0-0.15 

m), while giant reed can store more soil carbon in deeper soil layers (0.15-0.60 

m). 

Soil physical fractionation shows that, 9 years after planting Miscanthus and 

giant reed, the majority of newly sequestered carbon is found in the relatively 

labile particulate organic matter (POM). Even in this case, differences in the 

distribution of total organic carbon have been evidenced between Miscanthus 

and giant reed: the former represents a more preservative system of old derived 

carbon in all fractions, while the latter can store a higher content of new carbon 

in the stable and protected pools (IALF and MF). The amount in the 

macroaggregates under perennial species is likely a result of both lower soil 

disturbance, carried out only in the year of the establishment, and their 

developed root biomass that entails a greater C storage potential. Less 

disturbance leads to a reduced aggregate turnover of soil organic matter and to 

a consequent formation of stable organo-mineral complexes between mineral 

particles and microbial materials. This explains why, in opposition to long-term 

conventional tillage, long-term no-till as in perennial energy crops can maintain 

more carbon in soil by having positive effects also on soil microbial 

communities. 

Considering that different management practices may result in variable soil 

organic carbon contents and also in different soil microbial communities, a 

biomolecular approach, based on soil DNA extraction and PCR-DGGE, was used 

for soil community analysis, in terms of species richness estimate. However, this 

approach only informs about bacteria presence in soil; it cannot give 

information about gene expression, which is important to understand bacterial 

activities in soil, such as their growth, degradation of various compounds, and 
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responses to environmental factors. Further insight could be provided by the 

study of the small subunit ribosomal RNA gene through real-time PCR (RT-PCR), 

which is considered able to improve the knowledge on bacterial responses to 

treatments or natural changes in the soil environment. 

In conclusion, in the frame of a sustainable agriculture with an increasing 

commitment to environment protection, the use of Miscanthus and giant reed to 

counter soil organic carbon loss and restore soil fertility, appears a suitable 

solution in the warm-temperate areas of Southern Europe. As it was previously 

stated, these perennial energy crops can, not only recover the carbon loss due to 

previous soil disturbances, but enhance the soil carbon sink potential, storing 

significant newly derived carbon portions, with a considerably smaller 

environmental impact than annual crops. 

Nevertheless, the “future of soil organic carbon research” requires collaboration 

and communication between the scientific community and the “practice sector”, 

facilitated by individuals with hard knowledge and social intelligence. In order 

to be applicable to the practice sector, new findings in soil organic carbon 

dynamics need to be addressed in a conceptual framework to communicate the 

necessity for change as being “compatible”, “observable”, “achievable” and 

foremost “economical” (Robertson et al., 2012). 
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