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Abstract

The present work focuses on elastic waves behaviour in ordinary struc-

tures as well as in acousto-elastic metamaterials via numerical and

experimental applications.

After a brief introduction on (i) the behaviour of elastic guided waves

in the framework of non-destructive evaluation (NDE) and structural

health monitoring (SHM) and (ii) on the study of elastic waves prop-

agation in acousto-elastic metamaterials, dispersion curves for thin

walled beams and arbitrary cross-section waveguides are extracted

via Semi-Analytical Finite Element (SAFE) methods. After complex

multi-modal and dispersive behaviour for such geometries is predicted,

a novel strategy tackling signal dispersion to locate defects in the case

of irregular waveguides is proposed and numerically validated. Finally,

a time-reversal and laser vibrometry based procedure for impact lo-

cation is numerically and experimentally tested on a flat aluminium

plate reinforced by two unidirectional eccentric stiffeners.

In the second part of the thesis, a general introduction and a brief

review of the basic definitions necessary to describe elastic and acous-

tic metamaterials is provided. In addition, a numerical approach to

extract dispersion properties in such structures is highlighted. Af-

terwards, solid-solid and solid-fluid phononic systems are discussed

via numerical applications. In particular, band structures and trans-

mission power spectra are predicted for 1P-2D, 2P-2D and 2P-3D

phononic systems. In addition, attenuation bands in the ultrasonic

as well as in the sonic frequency regimes are experimentally investi-

gated. In the experimental validation, PZTs in a pitch-catch configu-

ration and laser vibrometric measurements are performed on a PVC



phononic plate in the ultrasonic frequency range and sound insulation

index is computed for a 2P-3D phononic barrier in the sonic frequency

range. In both cases the comparison between numerical and experi-

mental results confirms the existence of the numerical predicted band

gaps.

Finally, the feasibility of an innovative passive isolation strategy based

on giant elastic metamaterials is numerically proved to be practical for

civil structures. In particular, attenuation of seismic waves is demon-

strated via finite elements analyses. Further, a parametric study

shows that depending on the soil properties, such an earthquake-proof

barrier could lead to significant reduction of the superstructure dis-

placement.
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Chapter 1

Introduction

In the last decades elastic waves have shown great potentials in different appli-

cation fields. In particular, the present thesis focuses on a specific class of elastic

waves, the so called guided waves (GWs), in the framework of non-destructive

evaluation (NDE) and structural health monitoring (SHM), as well as on the

study of waves propagation in metamaterials (artificial periodic materials).

Generally speaking, elastic waves are particle disturbances of a medium (solid

or fluid) associated with volume and/or shape deformation caused by an external

source. For small disturbances, the energy of elastic deformation associated to

the wave propagation is transferred in the absence of matter transport. Elastic

waves are generally classified according to the motion of individual particles with

respect to the propagation direction (plane, spherical, or cylindrical wave front)

and to the eventual restrictions imposed to the elastic medium (bulk, surface and

guided waves1).

Elastic waves can be fully described by defining the amplitude and vibration

frequency of the particles of the medium, its wavelength, phase and group veloc-

ities, and the law governing the distribution of displacements and stresses over

the wave front [1].

1 Examples of elastic waves include the waves generated in the Earth’s crust during earth-
quakes and sonic and ultrasonic waves in solids and fluids.
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1. INTRODUCTION

1.1 Introduction to GWs-based NDE

In recent years, the interest in non-destructive (NDE) and non-invasive evaluation

techniques based on guided waves is increasing in many fields including civil,

industrial and medical engineering and geophysical science.

Guided waves are stress waves that propagate along elongated structures with

one (such as plates and shells) or two (such as pipes and rods) dimensions much

smaller than the remaining. The name derives from the fact that the geometry

of the structure “guides” the stress waves along the length of the structure itself.

Guided waves (GWs) can be classified according to the boundary conditions

of the structure: (i) surface waves propagating in a semi-infinite medium with a

stress free surface give rise to Rayleigh waves; (ii) Lamb waves exist in a thin infi-

nite plate with stress free boundaries; (iii) Love waves exist at an interface between

a thin layer and a semi-infinite medium, while, (iv) Stoneley waves propagate at

the interface of two semi-infinite mediums. Further details of wave propagation

can be found in reference literature [1, 2, 3, 4].

Guided waves SHM systems use waves propagating in structures to determine

the health state of the structural component. Compared to traditional bulk

waves, guided waves are of interest because they provide larger monitoring ranges

and the complete coverage of the waveguide cross-section. Furthermore, guided

waves often allow to reach hidden areas that are generally difficult to inspect by

traditional methods.

For example, water and oil transportation industry widely exploits GWs-based

techniques for the detection of defects in pipelines. In the rail-road industry they

are used to monitoring the conditions of rails, with the aim to prevent failures that

can cause disservices or compromise safety. In the aerospace industry, they are

largely employed for the quality assessment of adhesively-bonded components. In

the civil engineering field, guided waves have proven to be effective in the damage

detection of bridge cables, inspections of foundation piles, weld inspections and

characterization of the material constants in composite structural components.

However, to fully exploit the potentials of GWs for NDE purposes in the afore-

mentioned applications, an accurate knowledge of their complex multi-modal and

dispersive behaviour is needed. In fact, the structural geometry and wave prop-
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agation phenomenon interaction give rise to the well known concept of waves

dispersion, which denotes a variation of the behaviour of GWs as a function

of the frequency [5]. Phase velocity, group/energy velocity and attenuation are

the fundamental dispersive parameters describing the process. Phase and group

velocities denote the rate at which the crests of a particular guided mode prop-

agate along the waveguide at a certain frequency and the rate at which packets

of waves at infinitely close frequencies move along the waveguide, respectively.

Attenuation, instead, expresses the wave amplitude decay per unit of travelled

distance.

These features give an indication about how much dispersion occurs for a

signal generated in a certain frequency range, i.e. how much the shape of the

signal is distorted while it propagates along the waveguide [6].

Such complexities are strictly related to the geometrical and mechanical prop-

erties of the waveguide cross-section which, generally, affects wavelength, group

velocity, attenuation and wave-structure of propagating multiple mechanical waves.

1.2 Introduction to metamaterials

Wave propagation through periodic structures is a subject of interest for several

branches of science and technology, such as water, seismology, acoustics and elec-

tromagnetism. The most important common property of such systems is perhaps

the presence of the so called “band gaps”, i.e. frequency ranges in which wave

propagation is inhibited. Many interesting physical phenomena arise from this

property such as wave localization, excitation of evanescent waves, as well as

relevant applications concerning filtering, focusing and waveguiding [7].

Historically, the first dealing with metamaterials was the Russian physicist

Victor Veselago, who published a visionary paper predicting a medium with si-

multaneously negative permittivity and magnetic permeability characterized by

a negative refractive index in 1967 [8]. However this negative index medium re-

mained as an academic curiosity for almost thirty years, until Pendry et al. [9]

proposed the designs of artificial structured materials which would have effec-

tively negative permeability and permittivity. In next years, the interest focused

whether designing metamaterial for other kind of waves, for example, acoustic

3
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wave, was possible. At the end of last millennium, the development of phononic

materials for the control of vibrational waves underwent a great growth. In par-

ticular the group of Ping Sheng, at the University of Hong-Kong provided the first

numerical and experimental evidence of a localized resonant structure for elastic

wave propagating in three-dimensional arrays of thin coated spheres [10]. This

work paved the way towards phonons, sound, and other waves to be manipulated

and controlled.

However, before dwelling in the technical aspects of metamaterials, the mean-

ing of the word metamaterial itself shall be first defined.

So, what are Metamaterials ? The prefix “meta”- comes from Greek µǫτά

and originally has been used in the sense of “spring” of new properties from a

special combination of materials exhibiting conventional behaviours. Nowadays,

however, the most common meaning given to the prefix “meta” in metamaterials

is “beyond”, “above”, “over”, as in the word metaphysics. Following this lat-

ter interpretation, the word metamaterials, then, indicates a particular class of

artificial materials that exhibit properties commonly not found in nature. The

therm has been introduced in 2000 by Rodger M. Walser who gave the following

definition:

“Metamaterials are defined as macroscopic composites having a man-made, three

dimensional, periodic cellular architecture designed to produce an optimized combina-

tion, not available in nature, of two or more responses to a specific excitation” [11].

Since then, other definitions have been suggested in the scientific literature,

such as:

“A class of artificial materials exhibiting surprising and anomalous properties that

cannot be found in natural materials” [12].

“Metamaterials are typically man-made and have properties that are not found in

nature” [13].

All definitions above share the ideas that metamaterials (i) are not present

in nature and (ii) their resulting properties are not observed in the single con-
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stituents.

Despite the aforementioned more traditional definitions, in the present thesis

another description is preferred in order to provide a general standpoint valid for

several areas of physics: acoustics, mechanics, electro-magnetics and so on:

“A metamaterial is a composite material characterized by an artificially designed

structure such that the emerging effective macroscopic response of the system to a given

excitation is not readily encountered in nature”.

From the above discussion, it emerged that a universally accepted definition

of metamaterial does not exist yet. Nevertheless, the whole scientific community

agrees that it owes much to crystallography, a specific branch of Solid State

Physics. This branch of physics deals with the arrangement of atoms in solids,

studying how the large-scale properties of solid materials result from their atomic-

scale properties.

Following from recent developments of this field, the idea behind metama-

terials is that as electrons in a semiconductor can only occupy certain energy

bands, a metamaterial allows waves to travel through via the pass band only in

specific frequency ranges, whilst other frequencies are inhibited by the so called

“frequency band gaps” (BGs)1. The core concept of BGs is driven directly from

Bragg reflections and metamaterials consist in replacing the “atoms” composing

matter with man-made structures, viewed then as “artificial atoms” on a scale

comparable (ordinary elastic metamaterials) or much smaller (locally resonant

elastic metamaterials) than the relevant wavelength involved in the propagation

phenomenon.

This addressed scientists in restless designing new artificial materials which

offer a way to dramatically manipulate light (photonic materials), elastic waves

1It is well known from quantum mechanics that the energy of an electron in an atom assumes
discrete values. However, when the atomic orbitals overlap as the atoms come close together
in a solid, the energy levels of the electrons broaden and form continuous regions, also known
as energy bands. At the same time, because of the periodicity of the crystal structure, the
electronic wave functions undergo strong Bragg reflections at the boundaries of the Brillouin
zones. The destructive interference of the Bragg-scattered wave functions gives rise to the
existence of energy regions in which no electronic energy levels exist. Since these regions are
not accessible by the electrons, they are also known as forbidden bands.
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(phononic materials - PMs) as well as both of them (phoxonic materials). These

materials exhibit a rich variety of physical properties of interest to theoretical

and applied research [14], as the huge available literature on the topic confirms

[15].

In this thesis, the interest is mainly focused on phonons, sound, and elastic

waves control and manipulation, therefore on phononic materials (PMs).

1.3 Thesis outline

The present work focuses on elastic waves behaviour in ordinary structures as well

as in acousto-elastic metamaterials via numerical and experimental applications.

In particular, Chapter 1 provides a brief introduction on: (i) the behaviour of

elastic guided waves in the framework of non-destructive evaluation (NDE) and

structural health monitoring (SHM) and (ii) the study of elastic waves propaga-

tion in acousto-elastic metamaterials.

Afterwards, in Chapter 2, dispersion curves for thin walled beams and arbi-

trary cross-section waveguides are extracted via Semi-Analytical Finite Element

(SAFE) methods. After complex multi-modal and dispersive behaviour for such

geometries is predicted, in Chapter 3 a novel strategy tackling signal dispersion

to locate defects in the case of irregular waveguides is proposed and numerically

validated. Finally, in Chapter 4 a time-reversal and laser vibrometry based pro-

cedure for impact location is numerically and experimentally tested on a flat

aluminium plate reinforced by two unidirectional eccentric stiffeners.

For what concerns the second part of the thesis, Chapter 5 provides a general

introduction and a brief review of the basic definitions necessary to describe elastic

and acoustic metamaterials is provided. In addition, a numerical approach to

extract dispersion properties in such structures is highlighted. In Chapter 6, solid-

solid and solid-fluid phononic systems are discussed via numerical applications.

In particular, band structures and transmission power spectra are predicted for

1P-2D, 2P-2D and 2P-3D phononic systems. In addition, Chapter 7 provides an

experimental investigation on attenuation bands in the ultrasonic as well as in

the sonic frequency regimes. In the experimental validation, PZTs in a pitch-

catch configuration and laser vibrometric measurements are performed on a PVC
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phononic plate in the ultrasonic frequency range and sound insulation index is

computed for a 2P-3D phononic barrier in the sonic frequency range. In both

cases the comparison between numerical and experimental results confirms the

existence of the numerical predicted band gaps.

Finally, in Chapter 8 the feasibility of an innovative passive isolation strategy

based on giant elastic metamaterials is numerically proved to be practical for civil

structures. In particular, attenuation of seismic waves is demonstrated via finite

elements analyses. Further, a parametric study shows that depending on the soil

properties, such an earthquake-proof barrier could lead to significant reduction

of the superstructure displacement.
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Part I

Elastic guided waves
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Chapter 2

Dispersion properties prediction

2.1 Introduction

The non-destructive evaluation of structural integrity is a very important task

in present-day industry. Recently, the interest to ultrasonic guided waves has

considerably increased. Compared to classical bulk waves based inspections, the

use of ultrasonic guided waves has many advantages such as longer inspection

range, higher sensitivity to small flaws and larger versatility. Furthermore, guided

waves often allow to reach hidden areas that are generally difficult to inspect by

traditional methods.

In general, guided waves develop in waveguides like plates, rods, pipes or elon-

gated structures, after several reflections and refractions of the original incident

wave. Multiple guided waves can propagate, the majority of which are disper-

sive, i.e. their principal features, known as phase and group velocity, attenuation,

wavestructure and wavelength, are frequency dependant [5].

However, to fully exploit the potentials of guided waves for NDE purposes,

their complex multi-modal and dispersive behaviour must be predicted. In this

thesis, such complexities are unveiled by means of Semi-Analytical Finite Element

(SAFE) formulations modelling guided waves in plates, cylinders, arbitrary cross-

section and thin-walled beams waveguides.

To date numerous SAFE formulations have been proposed for modelling guided

waves in plates, cylinders [16], helical wires [17] and arbitrary cross-section waveg-
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uides [18, 19, 20].

While for first two classes of waveguides geometrical symmetries allow exploit-

ing mono-dimensional finite elements, with enormous computational cost savings,

for arbitrary cross-section waveguides planar bi-dimensional finite elements have

been generally employed. The use of such elements type becomes computationally

onerous when the waveguide cross-section has thin walls. In this case, in fact, the

number of planar elements can be prohibitive. To avoid such a problem, ad-hoc

SAFE formulations based on low order structural theories have been proposed

[21, 22, 23].

In what follows, dispersion curves for some of the aforementioned types of

waveguides are extracted by means of different SAFE approaches, which proved

to be fast and reliable.

2.2 Dispersion curves extraction in thin walled

beams structures

Computation of the complex behaviour of mechanical waves in thin walled beam-

like structures by means of a SAFE formulations is here presented. SAFE formu-

lations have been recently used to predict guided waves in thin-walled waveguides

[22, 23]. In particular, these formulations, being based on mono-dimensional shell

elements, allow to model each thin-wall of the waveguide cross-section by using

only one or few finite elements developed combining the in-plane and out-of-plane

behaviour of the thin-wall lamina.

In this section the formulation in Ref. [22] is extended to linear viscoelastic

materials by exploiting the approach proposed in Refs. [19, 24].

A SAFE element shell that combines the plane strain in-plane and out-of-

plane behaviour of the lamina is developed. By formulating the governing equa-

tion in the frequency domain, linear viscoelastic rheological constitutive relations

are introduced at the element level. The guided wave equation for viscoelastic

waveguides with arbitrary thin-walled cross-section is built by simply interpolat-

ing the cross-section mid line. As a result, the guided waves attenuation dispersive

spectrum can be obtained.
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The proposed formulation is applied to model the mechanical guided waves in

waveguides with simply and multiply connected cross-section. It is shown that for

increasing frequencies the waveguide with simply connected cross-section presents

more guided waves compared to the multiply connected section.

2.2.1 Mathematical formulation

A SAFE shell element is used to build the guided wave equation. The waveguide

cross-section is subdivided into nel elements. Each element is defined with respect

to a local reference system xyz, as shown in Fig. 2.1. The element is assumed

to have an infinite length in the axial direction, x, a finite width, Lu, in the

y-direction and a constant thickness, t, in the z-direction. A global reference

coordinates system (X, Y, Z) is assumed such that X coincides with x, and the

y-axis makes an angle ϑ with the global XY plane as shown in Fig. 2.1a. The

element is formulated by combining the in-plane and the out-of-plane behaviour

of the shell. The in-plane response (u, v) of the shell is modelled by means of

a 3 node SAFE element in plane stress, while its out-of-plane kinematic (w, ϑ)

is represented by two quadratic SAFE elements with 2 nodes per element. This

approach was used to have an inter-element continuous description of the strain

[22].

2.2.1.1 In-plane problem

For the in-plane problem, at the generic point x ≡ (x, y, z) the displacement

u, the stress σ and the strain ε vectors with components u =
[

u v
]T

, σ =
[

σxx σyy σxy

]T

, ε =
[

εxx εyy εxy

]T

, where the T superscript means trans-

position, are considered. Taking into account a 3 node shell element of length Lu,

the displacement at a point within the generic i− th element is approximated as:

uh(x, y, t) = Nu(y)q(x, t) (2.1)

where Nu(y) is a 2×12 matrix containing the element quadratic shape functions,

the upper-script u denotes the in-plane behaviour and q(x, t) is the assumed
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Figure 2.1: Schematic representation of the waveguide (a) and generic element
(b).

vector of nodal displacements:

q =
[

u1 v1 w1 ϑ1 u2 v2 w2 ϑ2 u3 v3 w3 ϑ3

]T

(2.2)

The approximated strain vector is written as:

εh(x, y, t) = Bx

∂q

∂x
+ Byq (2.3)

where Bx = LxN
u and By = Ly

∂Nu

∂y
and the Li operators are defined as:

Lx =

[

1 0 0

0 0 1

]T

, Ly =

[

0 0 1

0 1 0

]T

(2.4)

At a given frequency ω, the kinetic and potential energies are respectively:

Th =
1

2
ω2

∫ ∫

ρtuT
huhdxdy, Πh =

1

2

∫ ∫

ε
T
h D̃

u (ω) εhdxdy (2.5)

where ρ is the material density, t is the element thickness and D̃u (ω) = tD̃. D̃

is the frequency dependent complex linear viscoelastic operator for plane-stress
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defined as:

D̃ =







D̃11 D̃12 0

D̃21 D̃22 0

0 0 D̃66






(2.6)

where the coefficients D̃ij depend on the assumed rehological behaviour of the

material.

After some algebraic manipulations, that include the Fourier transformation

of the x-dependence into the wavenumber domain (ξ), the element governing

equations can be written in the form:

−ξ2k1q + iξk2q− k3q + ω2muq = 0 (2.7)

where:

k1 =

∫ Lu

0

BT
x D̃

uBxdy, k2 =

∫ Lu

0

(

BT
y D̃

uBx −BT
x D̃

uBy

)

dy, (2.8)

k3 =

∫ Lu

0

BT
y D̃

uBydy, mu =

∫ Lu

0

ρt (Nu)TNudy (2.9)

2.2.1.2 Out-of-plane problem

For the out-plane problem, at the generic point x ≡ (x, y, z) the displacement u

presents only the displacement component w, while the stress σ and the curvature

κ vectors are defined as σ =
[

σxx σyy σxy

]T

, κ =
[

−∂2w
∂x2 −∂2w

∂y2
−2 ∂2w

∂x∂y

]T

.

The displacement at a point within the generic i−th element can be approximated

as:

wα
h(x, y, t) = Nw(y)q(x, t) α = 1, 2 (2.10)

where Nw(y) is a 1 × 12 vector containing the cubic element shape functions in

positions 3, 4, 7 and 8, the upper-script w denotes the out-of-plane and α = 1, 2

indicates the first and the second element, respectively (see Fig. 2.1b). The
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approximated strain vector is written as:

κh(x, y, t) = −aαq− bα

∂q

∂x
− cα

∂2q

∂x2
(2.11)

where aα,bα and cα are defined as:

a1 =







0 0 0 0 0 0 0 0 0 0 0 0

0 0
∂2Nw

1

∂y2
∂2Nw

2

∂y2
0 0

∂2Nw
3

∂y2
∂2Nw

4

∂y2
0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0






(2.12)

b1 =







0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 2
∂Nw

1

∂y
2
∂Nw

2

∂y
0 0 2

∂Nw
3

∂y
2
∂Nw

4

∂y
0 0 0 0






(2.13)

c1 =







0 0 Nw
1 Nw

2 0 0 Nw
3 Nw

4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0






(2.14)

for α = 1 and where a2,b2 and c2 can be obtained from matrices a1,b1 and c1,

respectively, by moving the columns 3, 4, 7 and 8 in positions 7, 8, 11 and 12.

The expressions of the kinetic and potential energies for the out-of-plane prob-

lem are:

Th =
1

2
ω

∫ ∫

ρtwT
hwhdxdy, Πh =

1

2

∫ ∫

κ
T
h D̃

w (ω)κhdxdy (2.15)

where D̃w (ω) = t3/12D̃.

The equations governing the element out-of-plane problem becomes:

−ξ4eα1q + ξ2eα2q− eα3q + ω2mα
b q = 0 (2.16)
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where:

eα1 =

∫ Lw

0

dT
αD̃

wdαdy, eα2 =

∫ Lw

0

(

dT
αD̃

waα − bT
αD̃

wbα + aT
αD̃

wdα

)

dy,

(2.17)

eα3 =

∫ Lw

0

aT
αD̃

waαdy, mα
b =

∫ Lw

0

ρt (Nw)TNwdy (2.18)

where Lw is the out-of-plane element length.

Combining the in-plane and out-of-plane problems, the element dynamic equa-

tion can be written in the local coordinates as:

−ξ4s1q− ξ2s2q + iξs3q− s4q + ω2mq = 0 (2.19)

where:

s1 = e11 + e21, s2 = k1 − e12 − e22,

s3 = k2, s4 = k3 + e13 + e23, m = mu + m1
b + m2

b

(2.20)

Applying standard procedures for finite elements yields to a system of M

equations representing the wave equation of the waveguide:

[

−ξ4S1 − ξ2S2 + ξŜ3 − S4 + ω2M
]

Q = 0 (2.21)

where Ŝ3 = TT (iξS3)T and T is a diagonal matrix with its elements corre-

sponding to the u degrees of freedom equal to the imaginary unit while those

corresponding to the other degrees of freedom are equal to 1.

2.2.1.3 Solution method

The dispersive properties of guided waves can be found by solving the eigenvalue

problem in eq. (2.21). Such problem can be solved for a given real ξ in the

unknown ω. Even if the S1 matrix is singular, the problem remains well posed,

but some predicted eigenvalues will be infinite; these solutions will simply be
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ignored. However, to capture damped waves eq. (2.21) must be solved in the

wavenumber ξ for given ω. By reordering eq. (2.21) in the following 4M × 4M

linear system:

























0 −I 0 0

0 0 −I 0

0 0 0 −I

(S4 − ω2M) −Ŝ3 S2 0













− ξ













−I 0 0 0

0 −I 0 0

0 0 −I 0

0 0 0 −S1





































Q

ξQ

ξ2Q

ξ3Q













=













0

0

0

0













(2.22)

all the 4M wavenumbers ξm = ξmℜ + iξmℑ and waveshapes Qm existing at the given

frequency ω can be obtained solving the associated eigenvalue problem.

In order to avoid numerical instabilities in computing the eigenvalues of eq.

(2.22), the elements of the identity matrix I were multiplied by 10e9.

Whereas in elastic medium, by using this method, real, purely imaginary and

complex eigenvalues corresponding to wave numbers of propagating and evanes-

cent waves, respectively, are obtained, when viscoelasticity is introduced all the

modes assume a complex wavenumber and such a type of distinction is no longer

possible. In such case the real part of the wavenumber describes the wave spa-

tial frequency in the x-direction, while its imaginary part expresses the wave

amplitude decay.

From each ξm, the phase velocity [m s−1] and the attenuation [Np m−1] of the

m− th wave are computed as:

cmph =
ω

ξmℜ
, attm = ξmℑ (2.23)

where an attenuation of one Neper per meter means that a wave of unit amplitude

is reduced to an amplitude of e−ξm
ℑ after travelling one meter. Mode attenuation

in Decibel per meter [dB m−1] can be easily obtained since Decibel and Neper

have a fixed linear ratio to each other: 1 dB = ln (10) /20 Np.

The m− th wave group velocity can be computed as:

cmg =
∂ω

∂ξmℜ
=

(Qm)T
[

−4 (ξmℜ )3 S1 − 2ξmℜ S2 + Ŝ3

]

Qm

2ω (Qm)T MQm
(2.24)
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From these relations the phase/group velocity and attenuation can be evalu-

ated for each solution (ω, ξm) and the dispersion curves traced.
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Figure 2.2: (a) Multiply connected cross-section (8 elements, 16 nodes, 64 dofs);
(b) simply connected cross-section (8 elements, 17 nodes, 68 dofs); (c) zoom for
the line cut.

2.2.2 Numerical applications and discussions

A hollow waveguide with square cross-section characterized by a 100 mm side

and a 5 mm thickness is considered. Two cases are examined: a closed hollow

quadratic section (see Fig. 2.2a) and a simply connected case where a cut of

neglecting depth has been considered (see Fig. 2.2b). The location of the cut is

emphasised in Fig. 2.2c.

The material is steel, with the following nominal properties: longitudinal bulk

wave speed cL = 6020 m s−1, shear bulk wave speed cS = 3217 m s−1, longitudinal

bulk attenuation κL = 0.003 Np m−1, shear bulk wave attenuation κS = 0.008

Np m−1 and density ρ = 7800 kg m−3. Assuming a hysteretic rehological model,

the complex Young’s modulus Ẽ = Eℜ + iEℑ = 209.9 − i0.463 GPa and complex

Poisson’s ratio ν̃ = νℜ + iνℑ = 0.3001 + i0.0004 can be obtained by well known

formulae [19] and the coefficients of the constitutive operator defined:

D̃11 = D̃22 =
Ẽ

1 − ν̃2
, D̃12 = D̃21 =

ν̃Ẽ

1 − ν̃2
, D̃66 =

(1 − ν̃) Ẽ

2 (1 − ν̃2)
(2.25)

The dispersive curves in terms of phase, attenuation and group velocity are
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Figure 2.3: Phase, Attenuation and Group velocity curves for the multiply con-
nected section (a, c, e) and for the simply connected section (b, d, f).
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Figure 2.4: Differences emphasize between the Euler-Bernoulli EB beam theory
and the SAFE theory predictions in the 0 − 0.4 kHz frequency range.

represented in Fig. 2.3 for both waveguides. For the multiply connected cross-

section (see Fig. 2.3a, c and e) in the 0−2 kHz frequency range up to six

waves exist. In particular two longitudinal waves (L1, L2), three flexural waves

(F1y, F1z, F2) and a torsional wave (T1) were recognized also by means of the

waveshape representations (see Fig. 2.5).

At low frequency, the L1 and T1 waves have a very low dispersive behaviour

in agreement with the longitudinal and rotational waves for an Euler-Bernoulli

beam, represented in Fig. 2.3 and 2.4 with dashed lines:

cL1ph =
ω

ξL1
=

√

Ẽℜ

ρ
∼= 5187 ms−1, cT1

ph =
ω

ξT1
=

√

G̃ℜJt

ρIp
∼= 2782 ms−1(2.26)

where G̃ℜ = Ẽℜ/(2(1 + ν̃ℜ)), Jt is the Saint-Venant torsion constant and Ip =

Iy + Iz is the sum of the area moments about the principal y− and z− axis of the

cross-section. However, while the T1 wave has a phase speed almost coincident

with the one predicted by the Euler beam theory, contrary the L1 wave has a

phase speed slightly smaller than that predicted by the Euler beam theory. As

it can be seen from the waveshape L1 in Fig. 2.5, in fact, the L1 wave besides

a main extensional behaviour shows an out-of-plane deformation of the cross-

section. Due to such deformation the cross-section results more flexible and the
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L1      T1   F1y   

F1z

F2   L2   

Figure 2.5: Wavestructures for the multiply connected cross-section calculated at
2 kHz frequency.

speed of the longitudinal wave smaller than 5187 m s−1.

In addition to the T1 and L1 waves, two fundamental flexural waves, with

identical dispersive behaviour exist. Such waves are labelled as F1y and F1z,

since they present a global rotation of the cross-section with respect the principal

y− and z−axis, as it can be noted from Fig. 2.5. In agreement with the Euler-

Bernoulli theory, such waves start propagating at zero frequency with a dispersive

behaviour for increasing frequency:

cF1y
ph =

ω

ξF1y
=

4

√

ẼℜIy
ρA

ω2, cF1z
ph =

ω

ξF1z
=

4

√

ẼℜIx
ρA

ω2 (2.27)

where A is the cross-section area.

Finally, the two more waves labelled F2 and L2, with cut-off frequency around

0.7 kHz and 1.2 kHz, respectively, show distorted wavestructures that cannot be

described by Euler-Bernoulli beam theory. By observing also the attenuation

curves it can be inferred that in the considered frequency range the T1 and

L1 waves have very low attenuation and therefore can be chosen as potential
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F1y 
F1z 

T1  
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Figure 2.6: Wavestructures for the simply connected cross-section calculated at
0.5 kHz frequency.

candidates for the long range inspection of such waveguides.

In the simply connected cross-section, see Fig. 2.3b, d and e, more waves

exist in the same frequency range. From the curves comparison at very low fre-

quencies, it appears that the longitudinal L1 wave, characterized by the highest

speed among the propagative waves, doesn’t differ much in the two cases. Lon-

gitudinal waves, in fact, are driven by the axial stiffness of the cross-section that

is practically identical for the multiply and the simply connected cross-section.

On the other hand, since the torsional stiffness for the simply connected sec-

tion is much lower than the torsional stiffness for the multiply connected section,

the formerly T1 wave is not any more supported by the simply connected cross-

section. The dispersion curves of the guided torsional T1 wave for the simply

connected section, with wave shape highlighted in Fig. 2.6, in fact, shows a

smaller and dispersive phase and group velocities.

It can also be noted that for the simply connected cross-section the two fun-

damental flexural waves assume a different dispersive behaviour, since their wave-

shapes behave differently, as can be seen in Fig. 2.6. For increasing frequencies

more waves with coupled behaviour appear. For instance, the TF1 wave, with
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torsional and flexural behaviour coupled has been highlighted. Such wave with

coupled motion, as many others in the same frequency range, exists due to the

fact that the mass centre of the cross-section does not coincide to its shear centre.

2.3 Dispersion curves extraction in waveguides

with arbitrary cross-section

This section investigates dispersion curves in waveguides characterized by arbi-

trary cross-sections. A semi-analytical finite element (SAFE) formulation based

on a 3-node triangular constant strain elements with both linear or quadratic

shape functions is used to set the guided wave equation.

Besides, how an open internal crack running along the cross section of a

straight pipe affects the dispersion curves is examined. This allows to highlight

the guided waves phase velocity sensitivity to various depths of the open crack

and to define some modes, being particularly sensitive to the defect, as good

candidates for the non-destructive detection of the crack depth.

2.3.1 Mathematical formulation

A semi-analytical finite element formulation is used to extract the principal guided

wave features. Such formulation requires a bi-dimensional finite element mesh

over the waveguide cross-section only, here generated by using the ”pdetool” of

Mtalab.

Figure 2.7 shows a schematic representation of the infinitely long considered

waveguide1. The waveguide cross-section belongs to the x−y plane and the z axis

coincides with the longitudinal axis of the waveguide. The structure is considered

to be in vacuum. The wave propagates along z direction. The problem variables

at the general point x ≡ (x, y, z) of the waveguide are the displacement u, the

1It’s worth noticing that even if the examined case consists of a circular pipe, the routine
is still valid for arbitrary cross-section waveguides.
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Figure 2.7: Schematic representation of the waveguide and the cross-section bi-
dimensional finite element mesh.

stress σ and the strain ǫ vectors with components:

u = [ux uy uz]
T , σ = [σxx σyy σzz σyz σxz σxy]

T ,

ǫ = [ǫxx ǫyy ǫzz γyz γxz γxy]
T (2.28)

where the T superscript means transposition. The structure cross-section is dis-

cretized by constant strain triangular (CST) elements, with 3 dofs per node as-

sociated to the displacement ux, uy and uz. The generic displacement vector at

a point within the generic e− th element can be approximated as:

uh(x, t) = N(x, y)q(z, t) (2.29)

with N(x, y) shape functions matrix and q(z, t) vector with the e − th element

nodal displacements. Similarly, it is possible to write the approximated strain

vector as:

ǫ(x, t) = Bxyq + Bz

∂q

∂z
(2.30)
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where Bxy = Lx
∂Nx

∂x
+ Ly

∂Ny

∂y
, Bz = LzN, and the Li operators are defined as:
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(2.31)

By using Hamilton’s principle, the waveguide Lagrangian reads:

L =
1

2

nel
⋃

e=1

∫ +∞

−∞

∫

Ωe

[

ρeu̇T
h u̇h − ǫ

T
hC

e
ǫh

]

dxdydz (2.32)

where ρe is the element mass density, Ce is the viscoelastic operator [25]. Those

quantities are considered to be constant over Ωe. After some algebraic manipu-

lations the guided wave equation is obtained from Eq. (2.32):

[A− ξB]2H Q = 0 (2.33)

where H is the total number of degrees of freedom of the cross-section mesh.

The solution of the wave equation is found using the ”eig” command of Matlab

[26], for a given frequency in input (ω = 2πf). Then all the complex wavenumbers

ξm and waveshapes Qm exsisting at that frequency, where m = 1, 2, 3, ..., 2H , are

obtained. Finally, phase velocity is calculated from these modal properties by

means of simple formulae. Dispersion curves are traced repeating this procedure

for all the frequencies of interest.

Mathematical steps are discussed in details in the Ref. [19].

2.3.2 Numerical applications and discussions

A hollow cylinder is considered. Inner and outer radius are Ri = 10 cm and

Re = 20 cm, respectively. The material is steel, with the following nominal

properties: longitudinal bulk wave speed cL = 5875.1 m/s, shear bulk wave speed
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cS = 3140.4 m/s, density ρ = 7800 kg/m3. Steel is modelled as an isotropic

elastic material.

Case D0 D1 D2 D3
Defect semi a = 0 cm a = 2 cm a = 4 cm a = 6 cm

diameters lengths b = 0 cm b = 2 cm b = 2 cm b = 2 cm

Table 2.1: Analysed cross-section denomination and defect description.

Four cases are considered: the pristine hollow cylinder and three damaged

cases with an elliptical notch of increasing depth. The notch is characterized by

its semi-diameters lengths a and b (see Table 2.1). The location of the notch is

identical for all the cases considered (see Fig. 2.8). The mesh around the crack

location is refined in order to obtain a more accurate solution.
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Figure 2.8: Analysed cases: from a pristine cross-section (a) to damaged cross-
sections (b,c,d).

The phase velocity dispersion curves for the pristine cylinder are represented
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in Fig. 2.9. It can be noted that in the 0-8000 Hz range several dispersive waves

exist. Larger slope of the curves denotes higher dispersion: in those zones, called

high dispersive zones, waves are more distorted with propagating distance.
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Figure 2.9: Phase velocities curves and waveshapes for the pristine case.

Normalised waveshapes for each mode are also reported in Fig. 2.9. It appears

that below 3000 Hz three guided modes exist: a flexural one (F), a torsional one

(T) and a longitudinal one (L). The F-mode and the L-mode are dispersive; the

T-mode is non-dispersive. For upper frequency values, new dispersion curves

exist.

A fundamental aspect in the inspection procedure is related to the sensitivity

that each propagating wave shows with respect to the target defect. In this

study, sensitivity is defined as the difference between the phase velocity for the

intact case (chosen as a reference curve) and the phase velocity for the damaged

cases (see Fig. 2.10). As it can be seen, the longitudinal mode shows potential

for detection of this kind of defect. The above results indicate that the phase

velocity of the L(0,1) mode in the 4000 - 8000 kHz frequency range decreases for

increasing crack depths. In conclusion, this wave-phase velocity shift could be

potentially used for detecting the presence of an internal open elliptical crack on

pipes.
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Figure 2.10: (a) L(0,1) phase velocity dispersion curves for the four considered
cases. (b) L(0,1) sensitivity curves for the elliptical notch.

2.4 Conclusions

Different semi-analytical finite element (SAFE) formulations have been presented

to study guided waves in cylinders, arbitrary cross-section and thin-walled waveg-

uides having infinite length in the wave propagation direction.

Plane strain (arbitrary cross-section waveguides) and plane stress (thin-walled

beams) assumptions have been made according to the analysed cases. Numerical

examples illustrate good accuracy for the lowest modes and the general applica-

bility of the methods.

The formulations can be useful in constructing the elastodynamic Green’s

function as well as for solving boundary-value problems of such structures. How-

ever, it must be remembered that while the group velocity computation hold for

undamped media, when material attenuation is accounted, as for some of the

considered cases, the energy velocity should be computed as in Ref. [19].

However, for frequency independent constitutive relations and low attenuation

values, the group velocity can still be accepted to predict the speed of propagation

of mechanical guided pulses.

Further efforts will be toward the implementation and testing of the energy

velocity.
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Chapter 3

Dispersion compensation for

defect detection and localization

3.1 Introduction

In recent years, ultrasonic Guided Waves (GWs) have received a great deal

of attention among the nondestructive testing and structural health monitor-

ing (NDT/SHM) scientific community mainly thanks to the ability to travel

long distances without substantial attenuation as well as to the versatile mul-

timode/frequency examination for defects detection, classification and sizing.

Among the various applications based on GWs, numerous approaches have been

proposed to detect and locate defects in pipes [27, 28], cables [29], rails [25, 30]

as well as in plates-like structures [5, 31, 32, 33, 34].

Operating in pulse echo mode, generally, a defect is revealed within the re-

ceived signal by means of unexpected waves generated (scattered) by the interac-

tion of the incident wave/waves with the defect. These unexpected waves are next

utilized to locate the defect. In this step, the use of GWs dispersion compensa-

tion procedures is of great benefit. In fact, such procedures exploit the dispersive

properties of GWs, that can be computed once the waveguide material and geo-

metrical properties are known, to extract from the received signal the distance of

propagation of the scattered waves. Once this information has been obtained, the

defect can be located straightforwardly in mono-dimensional waveguides (cables,
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pipes, rails, etc.) or by means of triangulation based procedures in bi-dimensional

structures (plates).

GWs signal compensation is not an easy task since several dispersive modes

might simultaneously appear in the received signal. The modes, in fact, overlap

in both time and frequency domains and simple Fourier analysis techniques are

not able to separate them. To such purpose, recent works in the area of time-

frequency representations (TFRs) have been proposed [35, 36, 37, 38].

Nevertheless, even in the time-frequency domain, fast identification and sepa-

ration of guided modes is a challenging step in the process of damage detection and

localization. This task is even more difficult in waveguides (irregular) composed

by segments with (i) different material properties, (ii) different cross-section, (iii)

tapered geometry, as well as (iv) different radii of curvature (for instance a bent

pipe in a pipeline). The waves propagating in these segments, in fact, are char-

acterized by a different dispersive behavior thus complicating further the final

received signal. In such cases, dispersion compensation procedures designed to

operate in waveguides with constant dispersive properties [39, 40] fail.

In this chapter a novel strategy to tackle signal dispersion in case of irregular

waveguides is proposed and validated numerically on simulated waveforms. In

particular, once a so called reference portion (RP) of the irregular waveguide has

been assumed, and within which the defect is sought, a two-step signal processing

strategy is applied. In the first step, the Warped Frequency Transform (WFT)

[41] is exploited to compensate the acquired signal for the dispersion experienced

by the guided wave propagating along the reference portion (RP). The second

step is aimed at removing the additional group delay produced by the remaining

segments, i.e. the irregular portion (IP) of the waveguide, which are characterized

by dispersive patterns different from the one of the regular portion (RP).

The above processing, applied to a received signal, reveals immediately the

distance traveled by the defect-reflected wave in the regular portion (RP), allow-

ing thus to locate the defect in an irregular waveguide.

The potential of the proposed procedure is shown by means of some exam-

ples in which guided waves signals are obtained via accurate Finite Elements

simulations. In particular, plate waves propagating in waveguides composed by

uniform, tapered and curved segments are considered. It is shown that the disper-
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sion compensated signals detect immediately the distance traveled by the waves,

thus allowing to precisely localize defects in irregular plate waveguides.

It is worth noticing that the low computational cost of WFT, which is com-

parable with that of the Fast Fourier Transform, makes the new tool suitable for

real time applications. In addition, the procedure can be extended to arbitrary

cross-section waveguides.

3.2 Group delay computation

The group delay can be considered as a measure of the time delay introduced in

each frequency component of a dispersive signal by the distance of propagation.

For a given distance, such time delay depends on the dispersive pattern of the

waves for the given waveguide. If the waveguide is composed by multiple seg-

ments with different dispersive properties, i.e. if the waveguide is irregular, the

group delay will depend on the dispersive patterns of all the segments traveled by

the wave. As well known, for a waveguide segment with homogeneous material

properties, as those that will be considered in this work, the dispersive pattern

only depends on its cross-section geometry.

The group delay of a GW propagating in an irregular waveguide is computed

by using the approach previously presented in [42], and concisely summarized

hereinafter. An irregular waveguide is assumed as composed of a sequence of N

segments each with a well defined dispersive pattern. Thus, the group delay of the

M-th guided wave propagating for a distance D =
∑N

i=1 ∆xi, can be computed

as:

τMD (f) =

N
∑

i=1

τM∆xi
(f) (3.1)

where τM∆xi
is the group delay that the wave experiences in the i-th segment of

length ∆xi. For instance, referring to the case of Fig. 3.1, the group delay for

the M-th wave traveling from point A to point G reads:

τMDAG
(f) = τMDAB

(f) + τMDBC
(f) + τMDCD

(f) + τMDDE
(f) + τMDEF

(f) + τMDFG
(f) (3.2)
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Figure 3.1: Schematic representation of an irregular waveguide composed by
uniform (ĀB, C̄D and F̄G), tapered (B̄C and D̄E) and curved (ĒF ) segments.

As well known, a guided wave crossing two segments with different cross-

section and/or traveling along tapered waveguides may experience wave reflection

[43] and mode conversion [44]. However, as long as the attention is not on the wave

energy that is reflected or converted in different guided modes but on the behavior

that a specific GW undergoes while traveling along an irregular waveguide, Eq.

(3.1) is acceptable for the computation of its group delay [43, 45, 46]. Obviously,

this requires that the GW considered in each portion for the computation of the

group delay is generated by the incoming wave that has been considered in the

previous segment of waveguide.

3.2.1 Segments with uniform cross-section

The group delay of the M-th GW propagating for a distance D in a straight

segment with uniform cross-section is defined as:

τMD (f) =
D

cgM(f,Ω)
(3.3)

where cgM(f,Ω) is the M-th wave group velocity while f and Ω denote the

frequency and the waveguide cross-section, respectively. The above equation

holds also for curved segments with uniform cross-section and constant radius

of curvature. In such case, the distance of propagation can be computed as
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D = R∆φ, where R is the mean radius and ∆φ is the angle subtended by the

first and last cross-section of the curved waveguide.

3.2.2 Tapered segments

The group delay computation in Eq. (3.3) can be extended to the case of a

segment with moderately and continuously varying cross-section, tapered, by

computing the following integral [42]:

τMD (f) =

∫ D

0

dx

cgM(f,Ω(x))
(3.4)

where cgM(f,Ω(x)) is the M-th wave group velocity curve at the cross-section

Ω(x), and x is a coordinate along the segment axis. It can be observed that Eq.

(3.4) simplifies to Eq. (3.3) when applied to a waveguide segment with uniform

cross-section Ω.

For the numerical computation of such integral, it was shown in [42] that a

proper group delay can be calculated as a summation of group delays that the

wave ideally experiences propagating in a sequence of NU short waveguides with

uniform cross-section, used to approximate the tapered waveguide, as:

τMD (f) =

NU
∑

i=1

∆xi

cgM(f,Ωi)
(3.5)

where ∆xi is the length of the i-th portion with uniform cross-section Ωi for which

the wave has a group velocity cgM(f,Ωi), and D =
∑NU

i=1 ∆xi is the total length

of the tapered waveguide (see Fig. 3.2).

Such procedure was successfully applied to predict the group delay of lon-

gitudinal waves propagating in tapered steel rods and of symmetric Lamb-type

waves propagating in aluminum tapered plates [42], as well as to other different

waveguides by different authors [47, 48, 49].
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Figure 3.2: Sketch of a waveguide segment with varying cross-section Ω1 → ΩN .

3.2.3 Group-delay of the reference (RP) and irregular

(IP) portions

The group delay τMDAG
(f) in Eq. (3.2), and in general the one of a GW propagating

in an irregular waveguide, can be rewritten as:

τMD (f) = τMDR
(f) + τMDI

(f) (3.6)

where τMDR
(f) is the group delay that the wave experiences while traveling in

the reference portion (RP) of the waveguide, and τMDI
(f) takes into account the

group delay of the GW gained while traveling along all the remaining waveguide

segments characterized by different dispersive properties with respect to that of

the reference portion (RP). Such part of the waveguide is termed as irregular

portion (IP). Defects placed at unknown positions within the reference portion

(RP) of the waveguide can be localized by the proposed strategy.

As it will be shown later, in fact, the proposed procedure is capable of ex-

tracting the unknown distance traveled by a GW in a waveguide with constant

dispersive properties (RP) once the group delay of the waveguide irregular part

(IP), in which the distance traveled by the wave is known, has been computed.
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Thus, the reference portion of the waveguide can be composed by one or more

uniform cross-section segments with identical dispersion properties.

For instance, for a wave traveling from point A to point G in the scheme of

Fig. 3.1, both (or only one of them) segments ĀB and F̄G, characterized by

equal dispersive properties, can be assumed as the reference portion (RP) of the

waveguide, i.e. τMDR
(f) = τMDAB

(f)+ τMDFG
(f), while the tapered segments B̄C and

D̄E, the segment C̄D (characterized by a constant cross-section but different

from that of the reference portion) as well as the curved segment ĒF as the

irregular portion (IP), i.e. τMDI
(f) = τMDBC

(f) + τMDCD
(f) + τMDDE

(f) + τMDEF
(f).

3.3 Signal dispersion compensation

3.3.1 The Warped Frequency Transform (WFT)

The WFT is a unitary time-frequency transformation that produces a flexible

sampling of the time-frequency domain. Given a generic signal s(t) which fre-

quency representation is S(f) = F {s(t)}, being F the Fourier Transform oper-

ator, the Frequency Warping operator Ww reshapes the periodic frequency axis

by means of a proper warping map w(f), such as:

sw(t) = Ww {s(t)}

F {sw(t)} =
√

ẇ(f) · S(w(f)) (3.7)

where sw(t) is the warped signal, and ẇ(f) represents the first derivative of w(f).

w(f) must be an odd function, i.e. w(f) = −w(−f), and in order to preserve

invertibility, w(f) must map f axis on itself, i.e. w−1 [w(f)] = f .

The WFT can be exploited to compensate a received signal from the dispersion

generated by a traveling GW (see [41]). To such aim, the warping map w(f) can

be defined, through its functional inverse, as:

K
dw−1(f)

df
=

1

cgM(f,Ω)
(3.8)

where K is a normalization parameter selected so that w−1(0.5) = w(0.5) = 0.5
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Figure 3.3: Warping map w(f) for A0 wave dispersion compensation and its
functional inverse w−1(f) designed according to Eq. (3.8).

and cgM(f,Ω) is the group velocity of the GW which dispersive effect has to be

compensated.

For instance, a sample warping map is depicted in Fig. 3.3 along with its

functional inverse. It was computed according to Eq. (3.8) by considering the

group velocity curve of the Lamb A0 mode for a Ω = 1 mm-thick aluminium plate

with Young modulus E = 69 GPa, Poisson’s coefficient ν = 0.33 and density

ρ = 2700 kg/m3, represented in Fig. 3.4. These Lamb waves group velocity

curves were obtained by using a free tool [50] based on the Semi-Analytical Finite

Element (SAFE) formulation proposed in [19]. The number of SAFE elements

used for the computation was set according to the accuracy criterion given in

[24].

3.3.2 Step 1: compensation of dispersion due to the ref-

erence portion (RP) of the waveguide

Let us suppose that operating in pulse-echo mode a dispersive M-th GW is ex-

cited by means of an impulsive waveform s(t, x), starting at position x = 0, in

a uniform cross-section waveguide with cross-section ΩR. In this context such
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Figure 3.4: Group velocity dispersion curves cg(f, h) for the Lamb waves prop-
agating in an aluminium h = 1 mm thick-plate (Young modulus E = 69 GPa,
Poisson’s coefficient ν = 0.33, density ρ = 2700 kg/m3).

waveguide could represent the reference portion (RP) of an irregular waveguide.

The response at a distance x = DR, indicated as s(t, DR), can be modelled in the

frequency domain as:

S(f,DR) = S(f, 0) · e
−j2π

∫ f
0 τM

DR
(α)dα

(3.9)

where S(f, 0) is the Fourier Transform of the exciting pulse in the point of actu-

ation and τMDR
(f) is the group delay of the wave component of frequency f . In

force of Eqs. (3.3) and (3.8) the right hand term of Eq. (3.9) can be rewritten

as:

S(f,DR) = S(f, 0) · e
−j2πDR

∫ f

0
1

cgM (α,ΩR)
dα

= S(f, 0) · e−j2πw−1(f)KDR (3.10)

in which a signal dispersive distortion results from the nonlinear phase term.

At this point, the application of the warping operator Ww to s(t, DR) leads
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to a new signal whose frequency transform is:

FWw{s(t, DR)} = [
√

ẇ(f)S(w(f), 0)] · e−j2πfKDR (3.11)

Now, the phase term in Eq. (3.11) presents a linear dependence on warped

frequencies. Therefore, the inverse Fourier Transform (F−1) of Eq. (3.11) yields

to a warped signal sw(t) = sw(Kx) that peaks in correspondence of KDR and so

directly related to the distance traveled by the wave DR (please see Figure 3 of

Ref. [41]).

The above signal processing is perfectly suited for active localization of defects

in uniform mono-dimensional waveguides (similar approaches have been proposed

in Refs. [39, 40]). In fact, processing a received guided wave, that has been gen-

erated at a known location and reflected from a defect positioned at an unknown

location, will yield to the distance traveled by the wave and thus to the defect

position. Similarly, such procedure has been used in a triangulation approach to

locate defects in plate-like structures [51].

3.3.3 Step 2: compensation of dispersion due to the ir-

regular portion (IP) of the waveguide

A signal processing as the one proposed in Eq. (3.11) is not sufficient in case the

M-th GW propagates for a distance D = DR +DI along an irregular waveguide,

as the one represented in Fig. 3.1, where DR is the path length traveled over the

reference portion (RP) of the waveguide and DI is the distance traveled along

the irregular portion (IP). In such a case, in fact, the response s(t, x) in x = D

can be modeled in the frequency domain as:

S(f,D) = S(f, 0) · e
−j2π

∫ f

0
τM
DR

(α)dα
· e

−j2π
∫ f

0
τM
DI

(α) dα
(3.12)

It follows that, by applying the warping operator and Fourier transforming

the warped signal, the following distortion in the phase term is obtained:

FWw{s(t, D)} = [
√

ẇ(f)S(w(f), 0)] · e−j2πfKDR · e
−j2π

∫ f
0 τ̂MDI

(α) dα
(3.13)
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where:

τ̂MDI
(f) =

d
∫ f

0
τMDI

(w(f)) dw(f)

df
= KτMDI

(w−1(f)) · cgM(w−1(f),ΩR) (3.14)

is the group delay for the M-th wave induced by the irregular portion (IP) of the

waveguide. Such group delay can be easily removed from the warped signal in

Eq. (3.13) by forcing an opposite term −τ̂MDI
(f) in its phase spectrum as:

Scomp
w (f,D) = FWw{s(t, D)} · e

j2π
∫ f

0
τ̂M
DI

(α) dα

= [
√

ẇ(f)S(w(f), 0)] · e−j2πfKDR (3.15)

By doing so, a dispersion compensation of the actuated pulse suitable to

extract the distance traveled by the M-th GW in the regular portion (RP) of

the irregular waveguide, i.e. DR, is obtained. In fact, the signal scomp
w (KxR) =

F−1Scomp
w (f,D), where xR denotes a coordinate along the regular portion (RP) of

the waveguide, peaks in correspondence of KDR. It follows that defects located

in the regular portion (RP) of the irregular waveguide at unknown positions,

as long as they reflect part of the M-th wave, can be located by the proposed

approach.

3.4 Numerical validation

The procedure has been tested on different irregular waveguides composed by

straight and curved plate portions, both symmetric and anti-symmetric tapered

segments, and different locations/type of defects. In particular, the following

cases have been considered: (i) a waveguide composed by two flat plates with

different thickness and a symmetric tapered segment in between, (ii) a similar

one but with an anti-symmetric tapered segment, (iii) one with both a symmetric

and an anti-symmetric tapered segments positioned within three uniform straight

plates (see Fig. 3.5), and finally, (iv) a more complex waveguide with two straight

segments, two tapered segments and a curved segment (see Fig. 3.6).
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Figure 3.5: Schematic representation of the three straight irregular plate waveg-
uides considered as cases (i), (ii) and (iii). Please note the different scale in the
x and y-direction.

In all these examples, the propagation of guided waves was simulated by

means of Finite Element (FE) analyses using the commercial package Abaqus

explicit [52]. For all the FE simulations, some common features apply and are

here recalled:

• a linear elastic aluminium with Young modulus E = 69 GPa, Poisson’s

coefficient ν = 0.33 and density ρ = 2700 kg/m3, was considered;

• only the x − y propagation plane of the waveguide is modeled as a bi-

dimensional body in plane strain condition by using linear (4-nodes) plate
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Figure 3.6: Schematic representation of the irregular waveguide considered as
case (iv).

elements (CPE4R);

• to mainly excite flexural waves the waveguide has been excited at its left

edge (x = 0) by imposing an impulsive out-of-plane (y direction) displace-

ment v(t);

• the imposed displacement is shaped in time as a triangular window with

a maximum amplitude of 1 nm and a total duration of 10 µs in order to

excite consistent guided waves up to 100 kHz (see Fig. 3.7);

• to ensure accuracy to the time-transient finite element simulations [53] the

plate domain was discretized with elements of maximum side length Lmax =

0.125 mm and the time integration step was kept ∆t < 1e− 8 s.
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Figure 3.7: Time and frequency representation of the imposed displacement used
to mainly excite the A0 mode in the irregular waveguides.

It must be remarked that because of the assumed plane strain condition of

the propagation plane, that is the waveguide cross-section in the x − y plane,

neither wave reflections generated by plate edges in z-direction nor geometrical

attenuation due to wave radiation in the z-direction, that might be present in

real cases, are modelled. Nevertheless, for the purpose of validating the proposed

signal processing approach, the assumed plane strain condition is sufficient since

it allows to the applied pulse to fully develop signal dispersion in the different

considered segments.

In addition, also for plates with finite dimension along the z-axis, the actuation

can be designed to focus the wave energy along the y-axis with minimal radiation

in the z-direction and the plane strain assumption can be reasonably used to

model the waveguide response.

3.4.1 Straight waveguides with symmetric and antisym-

metric tapering

For cases (i), (ii), and (iii), as shown in Fig. 3.5, notches of width b= 1 mm and

depth a=0.5 mm (y-direction) were placed on the top side of the waveguides at

x= 800 mm, x= 1100 mm, and x= 1500 mm, respectively.
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Figure 3.8: Time-transient responses vA(t) acquired at x=250 mm for the three
cases (i), (ii) and (iii) represented in Fig. 3.5.

The out-of-plane time-transient responses in the y-direction vA(t) were recorded

at x=250 mm (see Fig. 3.8). As can be seen from Fig. 3.8, the incipient A0 mode

is clearly visible in the responses within 0.5× 10−3 s, but nothing can be inferred

on the defects from the remaining portions of the signals. Wave reflections can

be clearly seen in the spectrogram of vA(t) for case (i) represented in Fig. 3.9(a).

On such plot, the A0 group delay curves for the different wave paths depicted

in Fig. 3.9(b) and denoted as W1, W2a, W2b, W3a and W3b, are overimposed.

In particular, W1 refers to the incipient A0 wave, W2a and W3a denote the A0

waves reflected from the defect and from the right edge of the waveguide, respec-

tively, while W2b and W3b include the further A0 reflection from the left edge

of the waveguide. The group delay curves have been computed as described in

Section 3.2 by using the SAFE based tool proposed in Ref. [50].
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Figure 3.9: (a) Spectrogram of the time-transient response vA(t) for case (i)
represented in Fig. 3.8. The group delay curves for the A0 wave computed with
the proposed procedure considering different paths are overimposed: incipient
wave (W1), notch and right edge reflections (W2a and W3a, respectively), left
edge reflections (W2b and W3b). (b) Schematic representation of the different
paths.
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Figure 3.10: Warped version of the time-transient signals vA(t) represented in
Fig. 3.8 for the three cases (i), (ii) and (iii).

As can be seen, the group delay curves perfectly overlap the energy content

of the incipient, scattered (from the defect) and reflected (from the edges) A0

modes within the signal. Therefore, this confirms the reliability of the adopted

group delay computation for irregular waveguides that will be exploited for the

purpose of detecting/locating a defect at an unknown position by means of the

proposed dispersion compensation strategy.

First the WFT operator must be defined. The three considered irregular

waveguides, i.e. cases (i), (ii) and (iii), have an identical reference portion (RP)

consisting in a 1 mm thick plate. The group velocity curve for the fundamental

antisymmetric A0 mode for such a plate was thus selected as M-th wave to design
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Figure 3.11: Normalized Henv of the signals depicted in Fig. 3.10. The vertical
lines mark the distance traveled by notch and edge reflected waves.

the WFT operator. Processing the time-waveforms represented in Fig. 3.8 by

the designed operator, leads to the warped signals shown in Fig. 3.10.

As it can be noted, in the warped domain, due to the removal of the group

delay dependency on distance in τMDR
(f), i.e. compensating the dispersion due

to DR, the pulses energy is confined in smaller spots. Such pulses are related to

the direct, scattered from the defect and reflected from the waveguide edges A0

waves within the signals vA(t).

However, a further processing step is needed to compress the remaining fre-

quency modulation due to the group delay introduced by the irregular part of

the waveguide τMDI
(f). The effect of such processing leads to the new signals
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Scomp
w (f,D), along with their inverse Fourier Transforms scomp

w (KxR), which re-

sulting envelopes Henv are shown in Fig. 3.11 after normalization. Envelopes

are computed as the absolute value of the Hilbert Transform, i.e. Henv =

|H(scomp
w (KxR))|, where H denotes the Hilbert operator.

It is worth noticing that the energy of the processed signals is now concen-

trated near the actual distance traveled by the waves in the reference portion of

the waveguide. In particular, the signals peak at 400 mm, 1000 mm and 1400

mm, for the case (i), (ii) and (iii), respectively, i.e. at exactly twice the distance

from the left edge of the reference portion (RP) and the defect. The spurious

contributions in Fig. 3.11 (due to further reflections from the plate edges) could

be easily removed, for example, by combining the results of multiple acquisitions

at different locations (for instance by using classical delay-and-sum beamforming

procedures).

3.4.2 Irregular waveguide with straight, curved and ta-

pered segments

The waveguide considered in this example is shown in Fig. 3.6. A notch of width

b= 1 mm and depth a=0.5 mm was placed on the straight portion after the curved

segments at 300 mm from the end of the second tapering. The time-transient re-

sponse vA(t) at x=250 mm along the y-direction, was recorded and plotted in

Fig. 3.12, along with the related spectrogram. In the time-frequency plane, the

predicted group delay curves of the incipient pulse (W1), notch (W2a) and right

edge reflections (W3a) are highlighted. Notch and edge reflections are further

reflected by the left edge of the waveguide (W2b and W3b). For the curved por-

tion, the anti-symmetric type Lamb wave group velocity curve was computed by

using the analytical formulation provided in Ref. [54] for circumferential guided

waves. In particular, the curves were obtained by searching for null values of

the secular equation using a bi-section method. As it can be noted, the signal

dispersion induced by the irregular waveguide complicates the detection of notch

reflections.

To localize the unknown position of the defect the signal processing steps

detailed in sec. 3.3 have to be applied. At first, dispersion compensation for the
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Figure 3.12: Time-transient response vA(t) for case (iv) along with its spectro-
gram. In the spectrogram the group delay curves for the incipient pulse (W1),
notch and right edge reflections (W2a and W3a, respectively), W2a and W3a
reflections from the left edge (W2b and W3b), have been overimposed. Group
delays are estimated according to Eq. (3.5).

reference portion of the waveguide (a straight plate 1 mm thick) is performed,

considering the A0 mode to shape the WFT operator. By warping the acquired

response the signal shown in Fig. 3.13 along with its spectrogram is obtained.

Then, the group delay τMDI
introduced by the irregular part of the waveguide (the

two tapered segments and the curved segment) is computed and transposed in

the warped domain through Eq. (3.14). Finally, the group delay τ̂MDI
is subtracted

to the warped signal.

The resulting envelope Henv is shown in Fig. 3.14. In this figure, it is possible
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to evaluate the combined effect of the WFT and of the group delay compensation

procedure. It is worth noticing how the abscissa value corresponding to envelope

maxima are directly related to the distances traveled by the waves scattered by

the defect and reflected by the right edge of the waveguide. There is also a

significant spurious contribution which is due to the reflections of the same waves

from the left edge. However, the contribution of W2a and W3a is higher and

more picky, because the compensation was explicitly designed to enhance the

defect localization in the thinner portion of the waveguide.
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Figure 3.13: Warped version of vA(t) represented in Fig. 3.12 along with the spec-
trogram of the warped signal. In such plot the warped group delays of incipient
pulse (W1), notch and right edge reflections (W2a and W3a, respectively), W2a
and W3a reflections from the left edge (W2b and W3b), have been overimposed.
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3.5 Conclusions

In this chapter, a signal processing strategy aimed at locating defects in plates

by analysing plate-type waves is proposed. The method is suitable for tapered

and irregular waveguides, and it is based on a two-step procedure applied to the

acquired signals. The implemented signal processing directly reveals the distance

traveled by the waves, thus overcoming the difficulties associated to wave arrival

time detection in dispersive media. In particular, by exploiting the dispersion

compensation properties of the WFT, waveforms characterized by a unique time-

frequency pattern are obtained. The remaining time-frequency modulation is

compressed in a subsequent processing step. This step is based on the estimation

of the group delay in tapered, curved or irregular portions of the waveguide. The

reported spectrograms showed that the adopted method has an excellent accuracy

in group delay calculation. Such accuracy can be conveniently exploited for wave

distance of propagation estimation, as shown by several numerical examples.

Thanks to its unique potential the developed tool could lead to a new class of

procedures to locate defects in waveguides.
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Chapter 4

Time-reversal and

laser-vibrometry based impact

location

4.1 Introduction

Assessment of the integrity of structural components is of great importance for

aerospace vehicles and systems, land and marine transportation, civil infrastruc-

tures, oil industry as well as other biological and mechanical applications. It is

well known that accidental impacts may generate hidden damage in structures,

that can develop under cyclic load, until it endangers the integrity of the whole

structure. In some case, undetected damages can be the cause of the structure

collapse. One of the most known failure case is the one occurred when the com-

posite tile on the leading edge of the wing of the Space Shuttle Columbia fractured

due to impact. It led to catastrophic failure of the whole vehicle on February 1,

2003.

In order to prevent such incidents the capability to identify impacts and then

to monitor eventual damage evolution in the neighbourhood of the impact is of

crucial importance. To this aim, the use of guided waves (GWs) driven by a

network of piezoelectric transducers1 has attracted several researchers interest in

1PZTs sensors can be used both in active or passive monitoring modes. Under the active
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recent decades.

For isotropic plates, various impact localization techniques have been proposed

over the years, the majority of which locate the point of impact after detecting

the acoustic emission signal (generated by the impact phenomenon) by at least

three sensors and applying standard triangulation techniques [41].

Contrary, when the isotropy assumption is removed in monitored plates stan-

dard triangulation technique fails. Therefore, among the others, alternative meth-

ods have been proposed for anisotropic [55] and inhomogeneous plate-like [56]

structures.

However, one difficulty associated with this type of algorithms is that they

are very sensitive to the time of detection and a small error in the measurement

of the time of flight at a sensor can result in a large error in the impact location

prediction. Furthermore, because of the presence of noise in the received signals,

there is always some error in the time of flight measurement that results in a

large uncertainty in the predicted location of the impact point.

In order to overcome these difficulties, recently, a new impact localization al-

gorithm based on time reversal and scanning laser Doppler vibrometer (SLDV)

was proposed [57]. This technique is shown to be very powerful particularly in

complex structures because it does not require the knowledge of the wave velocity

or the structural geometry. Its main advantages over the existing techniques are:

(a) it can be applied to complex structures with additional structural features

such as ribs, stringers, stiffeners, spars, and rivet connections; (b) only simple

correlation calculations are required for impact localization, making it attrac-

tive for real-time automated monitoring; (c) a high spatial resolution of impact

localization is achieved using SLDV for sensing.

However, to nowadays, while the time-reversal procedure (TRP) for non-

dispersive body waves has been well-established, the study of the TRP for Lamb

waves is still relatively new. Historically, Ing and Fink first adapted the TRP

to Lamb waves1 in order to compensate for their dispersive behaviour to detect

mode, acoustic actuators generate ultrasonic signals; under passive mode monitoring, the impact
of foreign objects (or crack initiation) acts as the acoustic source. Ultrasonic sensors are placed
in critical areas of the structure to efficiently receive ultrasonic signals and monitor its condition
[41].

1Broadly speaking, researches focused on the spatial focusing of TR Lamb waves can be
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defects in a pulse-echo mode [58]. Afterwards time-reversal has been extensively

used both to focus Lamb wave energy for damage detection in plates [59, 60, 61]

and for impact localization [57, 62].

In what follows, first, the mechanism of time-reversal applied to Lamb waves

in plates is elucidated through numerical simulations and then the time-reversal

based procedure is applied to a flat aluminium plate reinforced by two unidirec-

tional L-shaped eccentric stiffeners.

4.2 A time-reversal based procedure for impact

location

4.2.1 Time-reversal basic principles

Time-reversal was introduced by the acoustics community and applied to many

fields such as lithotripsy, ultrasonic brain surgery, active sonar and underwater

communications, medical imaging, hyperthermia therapy, bioengineering, and

non-destructive testing (NDT).

Its basic physics states that in a non-dissipative medium, for every burst of

sound that diverges from a source, a set of waves that would precisely retrace the

path of the sound back to the source exists.

The procedure to obtain such a converging wave [58] is shown in Fig. 4.1: (i)

apply a generic tone burst excitation UD(t) in A; (ii) record the forward wave

Uacq(t) in B; (iii) emit the time-reversed wave Uacq(−t) from B back to A; (iv)

pick up the wave in A as the reconstructed wave UD,r(−t).

divided into two categories depending on equipment used in the TR process. One is to use the
time reversal mirror (TRM) being a sophisticated probe carefully designed through integrating
tens to hundreds of piezoelectric transducers. Dispersive characteristics of Lamb waves get the
spatial focusing enhanced when using the TRM. However, the TRM requires very expensive
equipment which can conduct actuation and reception simultaneously through numerous piezo-
electric transducers. The other category is to use a chaotic cavity which makes the spatial
focusing possible using a small number of transducers. In the chaotic cavity, an incident wave
emitting from the arbitrary location should cover the entire cavity at least one time due to
reflections as time passes by. Draeger et al. (1999) have realized the spatial focusing of TR
Lamb waves at the original input source using only one-channel sensor on a chaotic cavity made
of a silicon wafer.
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BB

A

(a)

Input signal U
D
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(t)

Reconstructed input signal U
D,r

(−t) Reversed signal U
acq

(−t)

Direct path

Signal time
reversing

Inverse path

(b)

Figure 4.1: Representation of the TR procedure. (a) Schematic representation of
a generic waveguide. (b) Block diagram of the TR procedure (from the top left
side and cloackwise): (i) apply a generic tone burst excitation UD(t) in A; (ii)
record the forward wave Uacq(t) in B; (iii) emit the time-reversed wave Uacq(−t)
from B back to A; (iv) pick up the wave in A as the reconstructed wave UD,r(−t).

In fact, in the range of sonic or ultrasonic frequencies, where adiabatic pro-

cesses dominate, the acoustic pressure field is described by a scalar p(r, t) that,

within a heterogeneous propagation medium of density ρ(r) and compressibility

κ(r), satisfies the equation:

(Lr + Lt)p(r, t) = 0 (4.1)
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where:

Lr = ∇ ·

(

1

p(r, t)
∇

)

, Lt = −κ (r∂tt) (4.2)

This equation is time-reversal invariant because: (i) Lt contains only second-

order derivatives with respect to time and (ii) Lr satisfies spatial reciprocity, since

interchanging the source and the receiver does not alter the resulting fields [63].

In a non-dissipative medium, Eq. (4.1) guarantees that for every wave propagat-

ing from a source and possibly reflected, refracted, or scattered, a set of waves

that precisely retraces all of these complex paths and converges in synchrony at

the original source, as if time was going backward, in theory exists. This fact re-

mains true even if the propagation medium is inhomogeneous with variations of

density and compressibility which reflect, scatter, and refract the acoustic waves.

If the source is point like, time reversal allows focusing back to the source what-

ever the medium complexity [64, 65, 66]. Spatial reciprocity is not broken by

velocity dispersion, multiple scattering, mode conversion, anisotropy, refraction

nor attenuation, as long as the attenuation is linear with wave amplitude. Con-

trary, non linear elastic effects may break spatial reciprocity. Similarly, spatial

reciprocity is also broken if the medium’s velocity structure changes in the direct

and inverse propagation paths. An example is a medium that experiences changes

in temperature, altering then its wave velocity [67].

4.2.2 Time-reversal for Lamb waves

Lamb waves are extensively involved in plate structure non invasive inspection

because of their guided nature. However, their dispersive nature often limits their

use because of the large time duration and the complex waveform of signals. In

fact, pulses will distort due to variation in modal group velocities. Because of

this, the received signals are often difficult to interpret.

This issue makes the time-reversal an attractive tool to overcome the GWs

dispersion problem. In fact it only requires a little prior knowledge of the mon-

itored structures and does not need any knowledge of the propagating medium

[59, 61].

In the following a description of how the TRP works for Lamb waves in plates
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is examined by means of dynamic transient finite element (FE) simulations. To

this purpose, an aluminium 1 mm-thick plate is considered, as shown in figure

4.2.
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Figure 4.2: Schematic representation of the FE model involved into the two step
TR procedure. Please note the different scale in the x and y-direction.

First, a source emits waves with time-history UD(t), with generic components

U1D(t) and U2D(t). Such waves propagate through and are distorted by the

waveguide. In-plane U1(t) and out-of-plane U2(t) displacements are detected and

stored along all the nodes discretizing the transversal cross-section after waves

travelled 400 mm. Afterwards, each stored signal U1(t) and U2(t) is reversed -

U1(−t) and U2(−t) - and played back in synchrony with the others.

Due to the time invariance and spatial reciprocity1 of linear wave Eq. (4.1), the

original wave is re-created travelling backward, thus retracing its passage back

1Paths traversed by a pulse from point A to point B, including reflected paths, will also be
traversed if the same pulse is sent from point B to point A.
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t = 0.85e-4 [s]

t = 2.55e-4 [s]

t = 3.44e-4 [s]

t = 1.70e-4 [s]

Direct path

acquisition

section

Figure 4.3: Different snapshots of the wave propagation phenomenon in the for-
ward wave propagation. Deformation scale factor was assumed equal to 107 in
order to highlight the waves behaviour.

through the medium, untangling its distortions and refocusing on the original

source point (compare Fig. 4.3 and Fig 4.4). Fig. 4.5 shows the source UD(t)

reconstruction as UD(−t) in the time domain. After the time-reversal procedure,

the two signal are similar unless than a scale factor [68].

Guided waves propagation shown in Figs. 4.3 and 4.4 is simulated by means

of the commercial package Abaqus/Explicit [52]. For the FE simulations, some

common features apply and are here recalled:

i) a linear elastic aluminium with Young modulus E = 69 GPa, Poisson’s

coefficient ν = 0.33 and density ρ = 2700 kg/m3, was considered;

ii) only the xy propagation plane of the waveguide is modelled as a bi-dimensional

body in plane strain condition by using linear (4-nodes) plate elements

(CPE4R);

iii) the imposed displacement is shaped in time as a sinusoidal n-cycles Han-

ning windowed toneburst with a maximum amplitude of 1 nm and central
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t = 8.50e-4 [s]

t = 7.65e-4 [s]

t = 6.8e-4 [s]

Inverse path

excitation

section

Figure 4.4: Different snapshots of the wave propagation phenomenon in the time-
reversal reconstruction. Deformation scale factor was assumed equal to 107 in
order to highlight the waves behaviour. Please note the dispersion compensation
occurring in the TR reconstruction.

frequency equal to 100 kHz (where n depends on the application);

iv) to ensure accuracy to the time-transient finite element simulations the plate

domain was discretized with elements of maximum side length Lmax = 0.1

mm and the time integration step was kept ∆t = 1e− 8 s.

The waveguide has been excited at its left edge(x = 0) by imposing a generic

impulsive displacement UD(t).

It must be remarked that even if assuming the propagation plane in plane

strain condition does not allow to account for geometrical attenuation, it permits

to the applied pulse to fully develop signal dispersion representing in full the TRP

process.

Unlike the time-reversal using bulk waves, time-reversal of Lamb waves is

complicated by the dispersion and multi-mode characteristics of Lamb waves

themselves. Anyway, it has been proved that from a numerical point of view
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Figure 4.5: Reconstructed wave using a 2-count 100 kHz tone burst excitation in
simulation of two-mode Lamb wave time-reversal.

Lamb wave is fully time reversible even under the circumstances of multiple-mode

excitation/extraction.

4.2.3 Procedure description

Fig. 4.6 overviews the impact procedure, originally proposed by Park et al. [57]:

- a pulse input is generated by a surface-mounted PZT transducer (red circle)

and the corresponding out-of-plane velocity V2(t) is measured (OPV) by

Scanning Laser Doppler Vibrometer (SLDV) at a single point (one of the

black dots) within the target scan area (bounded by the red dashed lines).

The shape of the pulse input is adjusted so to approximate that of an

expected real impact event (Fig. 4.6a).

- The same pulse excitation is repeated by the PZT transducer and additional

OPVs are obtained by scanning the entire target scan area. Responses are

stored in a data set called Training data: g1(t), ..., gm(t) (Fig. 4.6b).

- An impact occurring in any point within the scanned area is simulated by

means of a PZT sensor (Fig. 4.6c).
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Figure 4.6: Schematic overview of the proposed technique for the impact local-
ization: (a) scanning area; (b) Training data set acquisition; (c) actual impact
event; (d) actual impact Impulse response function (OPV).

- The response f(t) is recorded at the red circle point by the SLDV (Fig.

4.6d).

At this point, correlations between the actual impact response f(t) and the

OPVs in the training data gi(t) are computed. Because of the dispersive nature

of Lamb waves, without any numerical manipulation correlations result very poor

(the signals are completely different), as shown in fig. 4.7a. Contrary, if corre-

lations between the actual impact response f(t) and the OPVs in the training

data gi(t) are computed exploiting time reversibility of Eq. (4.1), the gi(t) with

maximum correlation to the actual impact response f(t) can be much preciser

62



4. Time-reversal and laser-vibrometry based impact location

0 10 20 30 40 50 60 70 80 90
2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

−11

Grid point

C
or

re
la

tio
n 

F
ac

to
r

(a)

0 10 20 30 40 50 60 70 80 90
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

−10

Grid point

C
or

re
la

tio
n 

F
ac

to
r

(b)

Figure 4.7: Correlation values for the numerical case between each signal of the
scanned area gi(t) and the signal of the actual impact point f(t). (a) If time
reversibility is not exploited, correlation is coarse and more than one point can
be assumed as the impact position. (b) When time reversibility is taken into
account, identification procedure is much more precise.

identified as the most likely related to the impact location (Fig. 4.7b).

Let f(t) and g(t) represent actual and one of the training OPVs, respectively.

The correlation between the two OPVs is defined as follows:

(f ⋆ g)(τ) =

∫ +∞

−∞

f(t)g(τ + t)dt (4.3)

where ⋆ denotes the correlation operation. On the other hand, the convolution

of two functions is defined as:

(f ⊗ g)(τ) =

∫ +∞

−∞

f(t)g(τ − t)dt (4.4)

where ⊗ is the convolution operation. Comparison of equations (4.3) and (4.4)

reveals that the correlation and convolution are related to each other as follows:

(f ⋆ g)(τ) = f(−t) ⊗ g (4.5)

Equation (4.5) shows that the correlation between two OPVs is mathemati-

cally equivalent to the convolution between one OPV and the time-reversed ver-
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sion of the other OPV.

Because the computation of convolution is typically time consuming, its com-

putation is often performed in the frequency domain based on the convolution

theorem. By applying the Fourier transform, the convolution in the time domain

is transformed into a simple multiplication in the frequency domain:

F{f ⊗ g} = F{f} · F{g} (4.6)

where F denotes the Fourier transform operator. The convolution is reconstructed

by taking the inverse Fourier transform of equation (4.6):

f ⊗ g = F
−1{F{f} · F{g}} (4.7)

Since this new formula involves only Fourier and inverse Fourier transforms

and point-wise multiplications, the correlation or convolution can be computed

effectively:

f ⋆ g = f(−t) ⊗ g = F
−1{F{f(−t)} · F{g}} (4.8)

The maximum correlation value, obtained using equation (4.8) is designated

as the most likely impact point.

A fully detailed description of the impact localization technique can be found

in Ref. [57].

4.3 Impact localization: numerical and experi-

mental results

4.3.1 Description of the tested element

The reviewed impact localization technique has been applied to a reinforced alu-

minium plate, schematically presented in Fig. 4.8. The tested article is 1000 mm

in length and 1000 mm in width. It is composed of a flat aluminium 1-mm thick

plate reinforced by two unidirectional eccentric stiffeners with L cross-section.

Width of both the web and the flange of the stiffeners is 3 mm. The stiffeners are
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parallel to the rectangular edge and are connected to the plate along their full

length. The area supposed to be scanned is indicated by the light grey rectangle

in Fig. 4.8a.

The article tested in the experimental analysis has been provided by the Lab-

oratory of Department of Mechanics of Intelligent Structures of the Institute of

Fluid-Flow Machinery, Polish Academy of Science. Material properties are the

following: Young modulus E = 68 GPa, Poisson ratio 0.32 and density ρ = 2700

kg/m3.

(a)

L = 1000 mm h = 50 mm

L1 = 285 mm s = 1 mm

L = 330 mm t = 3 mm

L

L2 = 330 mm t = 3 mm

Ls = 47 mm

h

s 

t 

s+t

h

L1 L1 L2L LL1 L1 L2

L

Ls Ls

(b)

Figure 4.8: A schematic representation of the specimen. (a) xy plane view and
(b) its cross-section. The drawings, for sake of clarity, are not to scale. Measures
are given in millimetres. The light grey rectangle indicates the scanning area.
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(a) (b)

Figure 4.9: (a) Eccentrically stiffened aluminium plate finite element model. (b)
Snapshot in terms of Von Mises stresses of guided waves propagating in the
specimen 30 ms after the impact occurred. It is worth noticing that the stiffeners
waveguide the wave absorbing a lot of energy due to its high rigidity.

4.3.2 Numerical application

Reliability of the proposed technique has been first tested numerically by means

of Finite Element (FE) analyses simulating the propagation of guided waves in

the aforementioned specimen. The commercial package Abaqus Explicit [52] has

been used. Fig. 4.9a shows the implemented 3D FE model. Main features used

in the FE simulations are here recalled:

- full 3D propagation field is simulated by using linear hexahedral brick ele-

ments of type C3D8R. Total number of nodes is 2, 686, 684.

- to ensure accuracy to the time-transient finite element simulations the plate

domain was discretized with elements of maximum side length Lmax = 1

mm and the time integration step was kept tint ≤ 1e− 8 s [69].

It must be remarked that both wave reflections, generated by plate edges

and stiffeners, and geometrical attenuation, due to wave radiation, are taken into

account.

Fig. 4.9b sows a snapshot of guided waves propagation in terms of Von Mises

stress 30 ms after the simulated impact has been applied. Impact was simulated
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Figure 4.10: Excitation pulse: the excitation signal has been designed as a sharp
square pulse in order to be a good representative of actual impact event.

by imposing an out-of-plane displacement shaped in time as a sharp square pulse

of 1 nm and a total duration of 10 µs (see fig. 4.10).

In the FE analyses only 81 scanning points covering a square scanning area of

900 × 900 mm have been considered. The following impact cases are presented:

i) impact point corresponding to a grid point, Figs. 4.11a, 4.11b;

ii) impact point corresponding to a random point within the area delimited by

the stiffeners, Figs. 4.11c, 4.11d;

iii) impact point corresponding to an equispaced point between four grid points,

Figs. 4.11e, 4.11f;

Corresponding responses are collected for 32 ms at a 512 kHz sampling fre-

quency and processed as explained in Section 4.2.3. Results presented in Fig.

4.11 confirm the methodology reliability. Furthermore, it was found that, when

the impact point coincides with an acquisition point (Figs. 4.11b), the correlation

presents a higher value (Fig. 4.11a) than for a random point (Figs. 4.11c and

4.11e) and predicting the impact location is extremely accurate (Fig. 4.11b).

Therefore, it can be inferred that the farther is the impact point from a

scanning point, generally the lower the correlation value is. The minimum is

achieved when an impact occurs in an equispaced position between more scanning

points (Figs. 4.11e and 4.11f).
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Figure 4.11: Numerical results. (a,c,e) Correlation values between each signal of
the scanned grid points and the signal of the actual impact points (1-D plot);
the estimated point of impact is highlighted; (b,d,f) 2-D visualization of the
estimated impact points. The black dots denote the scanning points, the red
circle the acquisition point, the green spot the real impact position and the blue
cross the estimated one.
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4.3.3 Experimental application

Fig. 4.12 presents a scheme of the experimental set-up. A scanning measurement

head is connected to a data acquisition system and steering circuit. A synchroni-

sation cable connects the digital generator with the steering circuit through the

amplifier that feeds the inducing signal to the piezoelectric element. Additionally,

a signal from the generator is fed into the data acquisition system. A computer

system integrated with the data acquisition system and steering circuit provides

communication with the user and allows measurements to be processed.

Data Acquisition System 

and Steering Circuit
TGA1241 Generator

PC – GU 

Interface

Data Management System

Laser Scanning Vibrometer

PSV 400 3D Polytec

Video

EPA – 104 Amplifier

Sensor head

Laser Beam

Actuator

Specimen

Figure 4.12: Schematic diagram of the experimental set-up. A scanning mea-
surement head is connected to a data acquisition system and steering circuit.
A synchronisation cable connects the digital generator with the steering circuit
through the amplifier that feeds the inducing signal to the piezoelectric element.
Additionally, a signal from the generator is fed into the data acquisition system. A
computer system integrated with the data acquisition system and steering circuit
provides communication with the user and allows measurements to be processed.

In particular, elastic guided waves were induced using a ceramic piezoelectric

disk of diameter 10 mm made of SonoxR© by CeramTecR© glued to the surface
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Figure 4.13: Illustration of the tested specimen. The red circle represents the
position of both the PZT transducer used as actuator for the data training ac-
quisition and of the SLDV acquisition point after the impact occurred. The
testing region (768 mm × 803 mm), represented as the yellow rectangular box,
is made of 93 × 91 acquisition equispaced points. The unknown impact points -
#1 = (494, 433),#2 = (424, 354) and #3 = (392, 150) - are represented by means
of black stars and chosen within the area delimited by the stiffeners.

of the investigated sample using commercial super-glue. A 3D laser scanning

vibrometer PSV 400 3D by PolytecR© was used to perform the out-of-plane mea-

surements of the velocities over the target area. The pulse excitation was fed

from a TGA1241 generator by Thurlby Thandar Instruments through an EPA-

104 amplifier by Piezo SystemsR© Inc, inducing a 20 Vpp signal. In order to

improve measurements accuracy the investigated specimen was covered with self-

adesive retroreflective film by ORALITER©. This was aimed at improving the

laser vibrometer signal level in each measurement point regardless of the angle of

incidence of the measurement beam on the surface being measured [1].

Impacts have been simulated into 3 different random points chosen within

the area delimited by the stiffeners to verify experimentally the reliability of

the proposed technique (see fig. 4.13). The training process has been realized by

means of a pulse excitation with a duration of 1 ms applied to the PZT transducer.

For each scanning point, 16, 384 samples are collected over 8 ms by the SLDV
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at a sampling rate of 256 kHz, and 100 time signals are averaged to improve the

signal-to-noise ratio. Approximately, 50 ms intervals are provided between two

consecutive pulse excitations to allow signals to decay close to a background noise

level before a new data collection. Measurement of all time signals from 8, 463

scanning points takes approximately 8 hours.

The results for the 3 experiments are shown in Fig. 4.14. As it can be seen

accuracy is very high for all the examined cases regardless the impact position.

4.3.4 Further considerations on the acquired signals

In this section how the proposed procedure is capable to efficiently work in a

passive way is highlighted. Fig. 4.15a shows the acquired signal for the first ex-

amined impact point. For simplicity in the experiment the PZT actuator and the

laser-vibrometer acquisition were synchronized so that the zero time acquisition

point coincides with the excitation time. In real impacts the time of actuation is

unknown. Therefore, to recreate such a situation, the acquired signal has been a

posteriori modified by adding or removing some idle time to the registered signals

(Figs. 4.16a and 4.16c).

Localization results for these modified signals are represented in Figs. 4.16b

and 4.16d: the procedure still properly identifies the impact positions, even if the

arrival times of the original and modified waves are quite different. This confirms

the good reliability and robustness of the procedure to work in a passive manner

as well, making the technique a promising approach for real time impact location.

4.4 Conclusions

This chapter dealt with an impact localization procedure based on time-reversal

and laser-vibrometry acquisition. The central idea was to locate an impact events

simply by comparing an impact response with OPVs obtained from a grid of train-

ing points. The method revealed to be suitable for irregular wave-guide, poten-

tially regardless of the geometric complexity of the specimen or additional struc-

tural features attached to it. The proposed technique revealed to be a promising

approach for real time impact location.

71



4. CHAPTER IV

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

Grid point

C
or

re
la

tio
n 

F
ac

to
r

(a)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x−coordinate [m]

y−
co

or
di

na
te

 [m
]

Scanning area

 

 

8463
91

01

02
 . . .
m . . .

PZT sensor
Real Impact Point
Estimated Impact point
Scanned Area

(b)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Grid point

C
or

re
la

tio
n 

F
ac

to
r

(c)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x−coordinate [m]

y−
co

or
di

na
te

 [m
]

Scanning area

 

 

8463
91

01

02
 . . .
m . . .

PZT sensor
Real Impact Point
Estimated Impact point
Scanned Area

(d)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Grid point

C
or

re
la

tio
n 

F
ac

to
r

Acquisition Point

(e)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x−coordinate [m]

y−
co

or
di

na
te

 [m
]

Scanning area

 

 

8463
91

01

02
 . . .
m . . .

PZT sensor
Real Impact Point
Estimated Impact point
Scanned Area

(f)

Figure 4.14: Experimental results. (a,c,e) Correlation values between each signal
of the scanned grid points and the signal of the actual impact points (1-D plot);
the estimated point of impact is highlighted; (b,d,f) 2-D visualization of the
estimated impact points. The black dots denote all the scanning points, the red
circle the acquisition point, the green spot the real impact position and the blue
cross the estimated one.
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Figure 4.15: (a) Acquired signal for the first impact case. (b) For simplicity
in the experiment the PZT actuator and the laser-vibrometer acquisition were
synchronized so that the zero time acquisition point coincides with the excitation
time.

Both numerical and experimental results confirmed the methodology capabil-

ity to identify unknown impact positions without a prior knowledge of the tested

specimen. The so far described procedure is validated using only a single acquisi-

tion point. Actually, multiple acquisition points can be performed on the target

structure. This will enhance the localization performance, although it is not a

necessary requirements for the proposed technique.

The effectiveness of the proposed localization technique is examined using the

data obtained from a stiffened aluminium plate. It has been demonstrated that

the locations of test impacts are successfully identified regardless of the impact

position (near to the sensor, far from the sensor, near to a plate edge, near to

a stiffener). However, a special surface treatment with retro-reflective tapes is

necessary to obtain strong laser return signals for SLDV measurement.

Future developments involve additional tests in order to examine the robust-

ness of the proposed localization technique under temperature variations.

Although many methods are already available, thanks to its unique poten-

tial to treat in the same manner different kind of wave-guides (isotropic as well

as anisotropic, homogeneous as well inhomogeneous, simple or irregular geome-

tries) the developed tool allows to locate unexpected impacts regardless of the

complexity of the material as well as the mechanical properties.
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Figure 4.16: A posteriori modification of the actual registered signal and impact
localization results for the first impact case. (a) The original signal has been
lengthened by adding 1.765e µs of idle time and (c) shortened by removing 0.3
µs of the original signal. (b,d)In both cases results are still accurate.

Results also show the robustness of the method working in a passive manner,

making the technique suitable for real time applications.
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Chapter 5

Elastic and acoustic

metamaterials

5.1 Introduction

Over the past years, metamaterials have shown tremendous potential in many

disciplines of science and technology. The prefix meta- comes from Greek µǫτά

and means beyond, above, over. The word metamaterials, then, indicates a par-

ticular class of artificial materials that exhibits properties commonly not found

in nature.

Although a universally accepted definition of acoustic metamaterials does not

exist yet, there is no doubts that they owe much to crystallography, a specific

branch of Solid State Physics. This branch of physics deals with the arrangement

of atoms in solids, studying how the large-scale properties of solid materials result

from their atomic-scale properties.

Following from recent developments of this field, the idea behind metamateri-

als is that as electrons in a semiconductor can only occupy certain energy bands,

a metamaterial allows elastic and/or electromagnetic waves in specific frequency

ranges to travel through via the “pass bands” meanwhile the other frequencies

are inhibited by the so called “frequency band gaps”.

Therefore, the keen interest of scientists in metamaterials is mainly due to

their capacity of manipulating light as well as elastic waves replacing the “atoms”
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composing matter with man-made structures, viewed then as “artificial atoms”.

These innovative properties make metamaterials of great interest from both

theoretical and applied research viewpoint [14], as the increasing available liter-

ature on the topic confirms.

In this thesis, the interest is mainly focused on phonons, sound, and elastic

waves control and manipulation, therefore on phononic crystals.

5.2 Basic definitions

It is convenient to introduce few basic definitions that apply to one-, two- and

three-dimensional crystals. It’s worth noticing that concepts discussed in this

section are of general nature and can be applied to any periodic system without

being limited to atomic crystals [15].

5.2.1 Crystal lattice

To the naked eye, a solid appears as a continuous body. Experiments have proved,

however, that all solids are composed of discrete basic units: atoms. These atoms

are not distributed randomly, but they are arranged in a highly ordered manner

relative to each other. Such a group of ordered atoms is typically referred to as a

crystal1. Therefore, a solid is said to be a crystal if the atoms are arranged in such

a way that their positions are exactly periodic. Fig. 5.1a illustrates the concept for

the 2-D case. The distance between any two nearest neighbours along the x and y

directions is a and b, respectively (x and y axes are not necessarily orthogonal). A

perfect crystal maintains this periodicity in both x and y directions from −∞ to

+∞. It follows from the periodicity that the atoms A, B, C, etc. are equivalent.

In other words, to an observer located at any of these atomic sites, the crystal

lattice appears exactly the same. Depending on the geometry of the atomic

arrangement the physical properties of the solid change.

There are two classes of lattices: the Bravais lattice and the non-Bravais lat-

tice. In a Bravais lattice, all lattice points are equivalent, and hence by necessity

all atoms in the crystal are of the same kind. On the other hand, in a non-Bravais

1Crystallography is the science focused on the geometrical pattern of the matter.
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Figure 5.1: A crystalline solid. (a) A Bravais lattice: all the atoms are arranged
periodically. (b) A non-Bravais lattice.

lattice, some of the lattice points are non-equivalent. Fig. 5.1b shows it clearly.

Here the lattice sites A, B, C are equivalent to each other, and so are the sites

A′, B′, C ′ among themselves, but the two sites A and A′ are not equivalent to

each other, as can be seen by the fact that the lattice is not invariant under a

translation by AA′.

5.2.2 Basis vectors

Consider the lattice shown in Fig. 5.2 and choose the origin of coordinates at the

lattice point A.

b' 

x

y 

A B 
a 

b 

C 

D 

Origin 

Figure 5.2: Vectors a and b are basis vectors of the lattice. Vectors a and
b′ form another set of basis vectors. Shaded and hatched areas are unit cells
corresponding to first and second set of basis vectors, respectively.

The position vector of any lattice point can be written as:

R = n1a + n2b (5.1)
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where a, b are the two vectors shown and (n1, n2) is a pair of integers which values

depend on the lattice point1. Thus, it occurs that for the point D, (n1, n2) = (0, 2)

and for the point B, (n1, n2) = (1, 0).

The two vectors a and b (which must be non co-linear) form a set of basis

vectors for the lattice, in terms of which the positions of all lattice points can be

conveniently expressed by the use of Eq. (5.1). The set of all vectors expressed

by this equation is called the lattice vectors. It is possible also to say that the

lattice is invariant under the group of all the translations expressed by (5.1), i.e.

crystals have translational symmetry, meaning that if the crystal is translated by

any vector joining two atoms, say R in Fig. 5.1a, the crystal appears exactly the

same as it did before the translation.

The choice of basis vectors is not unique. Thus one could equally take the

vectors a and b′(= a + b) as a basis (Fig. 5.2). Other possibilities are also

evident. The choice is usually dictated by convenience.

5.2.3 The unit cell

The area of the parallelogram the sides of which are the basis vectors a and b is

called unit cell of the lattice (Fig. 5.2) if translating such a cell by all the lattice

vectors of Eq. (5.1) the area of the whole lattice is covered once and only once.

The unit cell is usually the smallest area which produces this coverage. Therefore

the lattice may be seen as composed of a large number of equivalent unit cells

placed side by side, like a mosaic.

The choice of the unit cell is not unique. The following remarks may be

helpful.

i. All unit cells have the same area. Thus the cell formed by a, b has the

area S = |a× b|, as the one formed by a, b′ has the area S ′ = |a× b′| =

|a× (a + b)| = |a× b| = S, where the result a× a = 0 has been used.

Therefore the area of the unit cell is unique, even though the particular

shape is not.

1All the previous statements can be extended to three dimensions in a straight-forward
manner. In that case, the lattice vectors become three-dimensional and can be expressed by
R = n1a + n2b + n3c, where a, b and c are three non co-planar vectors joining the lattice
point at the origin to its near neighbours; n1, n2 and n3 are a triplet of integers.
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ii. The unit cell formed by a× b has four points at its corners, but each of

these points is shared by four adjacent cells. Hence each unit cell has only

one lattice point.

5.2.4 Primitive versus non-primitive cells

The unit cell discussed above is called primitive cell. It is sometimes more con-

venient to deal with a unit cell which is larger and exhibits the symmetry of the

lattice more clearly. The idea is illustrated by the Bravais lattice in Fig. 5.3.

Clearly, the vectors a1, b1 can be chosen as a basis set, in which case the unit

cell is the parallelogram S1. However, the lattice may also be regarded as a set

of adjacent rectangles, where the vectors a2 and b2 are taken as basis vectors.

The unit cell is then S2. It has one lattice point at its center, in addition to the

points at the corner. This cell is non-primitive unit cell.

The reason for the choice of the non-primitive cell S2 is that it shows the

rectangular symmetry most clearly.

b2 

a2 

S2 

S1 

a1b1 

Figure 5.3: Area S1 is a primitive unit cell; area S2 is a non-primitive unit cell.

5.2.5 Reciprocal lattice

The reciprocal lattice plays a fundamental role in most analytic studies of peri-

odic structures. Consider a set of points R constituting a Bravais lattice, and a

plane wave eık·r. For general k, such a plane wave will not, of course, have the

periodicity of the Bravais lattice, but for certain special choices of wave vector it

will. The set of all wave vectors k that yield plane waves with the periodicity of

83



5. CHAPTER V

  

a1

a2 

a3 

DIRECT LATTICE

(a)

b1 

b2

b3

LATTICE RECIPROCAL LATTICE
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Figure 5.4: Simple-cubic direct lattice (a) and its reciprocal lattice (b). The
primitive vectors of both lattices are also indicated.

a given Bravais lattice is known as its reciprocal lattice. Analytically, k belongs

to the reciprocal lattice of a Bravais lattice of points R if the following relation:

eık·(r+R) = eık·r (5.2)

holds for any r and for all R in the Bravais lattice. Factoring out eık·r, the

reciprocal lattice can be characterized as the set of wave vectors k satisfying:

eık·R = 1 (5.3)

for all R in the Bravais lattice.

Note that a reciprocal lattice is defined with reference to a particular Bravais

lattice. The Bravais lattice that determines a given reciprocal lattice is often

referred to as the direct lattice, when viewed in relation to its reciprocal [70].

For example, considering a 3-D lattice, as the shown in Fig. 5.4a, defined by

a basis vectors: a1, a2 and a3, a new set of basis vectors b1, b2 and b3 can be

defined according to the following relations:

b1 = 2π
a2 × a3

Ω

b2 = 2π
a3 × a1

Ω

b3 = 2π
a1 × a2

Ω

(5.4)
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where Ω = a1 · a2×a3 is the volume of the unit cell. Now it is possible to exploit

the vectors b1, b2 and b3 as a basis for a new lattice, the vectors of which are

given by:

G = n1b1 + n2b2 + n3b3 (5.5)

where n1, n2 and n3 are any set of integers. The lattice just defined is known as

the reciprocal lattice, and b1, b2 and b3 are called the reciprocal basis vectors.

5.2.6 Wigner-Seitz primitive cell

Among the possibles choices available for a primitive cell, the most common is

the Wigner-Seitz cell. The Wigner-Seitz cell about a lattice point is the region

of space that is closer to that point than to any other lattice point. Because of

the translational symmetry of the Bravais lattice, the Wigner-Seitz cell, when

translated through all lattice vectors, will just fill space without overlapping; i.e.,

the Wigner-Seitz cell is a primitive cell.

Figure 5.5: The Wigner-Seitz cell for a two-dimensional Bravais lattice. The sides
of the cell bisect the lines joining the central points to its nearest neighbouring
points (shown in blue lines). In two dimensions the Wigner-Seitz cell is always a
hexagon unless the lattice is rectangular.

The Wigner-Seitz cell in the reciprocal space is known as the first Brillouin

zone (BZ). In 2D, the first BZ is always a hexagon (see Fig. 5.5) unless the lattice

possess rectangular symmetry, as shown in Fig. 5.6. It can also be defined as the

set of all points in k-space that can be reached from the origin without crossing

any Bragg plane1. The BZs of higher orders also exist, with the n-th BZ defined

1A Bragg plane for two points in a lattice is the plane which is perpendicular to the line
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Figure 5.6: (a) The first three Brillouin zones of the reciprocal lattice of the
2D square Bravais lattice. The dots indicate reciprocal lattice points, the solid
lines indicate Bragg planes, and the digits indicate the order of the corresponding
Brillouin zone. (b) The first Brillouin zone with the two high-symmetry directions
commonly referred to as Γ −X and Γ −M .

as the set of points that can be reached from the origin by crossing (n−1) Bragg

planes. The first BZ is of great importance in the theory of solids with periodic

structures, since the periodicity of the structure allows the description of the

properties of the solids within the first BZ. Figure 5.6 shows the first three BZs

of the 2D square Bravais lattice. The first BZ has a shape of a square with two

high-symmetry directions, which are commonly referred to as Γ−X and Γ−M .

5.3 Phononic materials

The concept of phonon was introduced by Russian physicist Igor Tamm. The

name phonon comes from the Greek word ϕωνη (phonè), which translates as

sound, voice, as long-wavelength phonons give rise to sound. In physics, a phonon

is a quasi-particle representing the quantization of a special type of vibrational

motion, in which a lattice uniformly oscillates at the same frequency. In classi-

cal mechanics these are known as normal modes1. These modes are important

between the two points and passes through the bisector of that line.
1While normal modes are wave-like phenomena in classical mechanics, they have particle-

like properties in the wave-particle duality description of quantum mechanics.
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because any arbitrary lattice vibration can be considered as a superposition of

these elementary vibrations.

Phononic materials (PMs) are composite materials with a periodic distribution

of elastic properties and mass density according to a particular lattice symme-

try. They are made, for instance, by periodically distributed elastic scatterers

embedded in a matrix with high impedance contrast of mass densities and/or

elastic properties1. This can give rise to new acoustic dispersion band structures

if compared to the traditional dispersion maps [71].

As well known, PMs are characterized by the existence of band gaps (BGs),

i.e. frequency ranges in which they do not support the propagation of elastic

waves. This property makes PMs suitable for several applications such as sound

isolators, acoustic filters, acoustic mirrors, acoustic resonators, seismic shields,

among others [72, 73, 74, 75, 76].

Since the pioneering work of Kushwaha [77], that explored the concept of

phononic materials in 1993, and the one of Martinez et al. [78], who confirmed

the existence of acoustic band gaps in the famous periodic sculpture by Eusebio

Sempere, elastic band gaps in one-dimension [79, 80, 81, 82], two-dimension [83]

and three-dimension [84] PMs, have been extensively studied for solid-solid, fluid-

fluid and mixed solid-fluid composite systems.

A coarse classification of PMs can be made on the base of lattice periodicity

and geometrical dimensions. Fig. 5.7 depicts the possible arrangements, where

the letter “P” refers to the lattice periodicity, while the letter “D” defines the

dimensionality of the structure.

Generally speaking, PMs can be classified into two categories: acoustic phononic

materials (APMs) characterized by a fluid matrix, and elastic phononic crystals

(EPMs) with an elastic solid matrix.

In past years, much efforts were dedicated to the band structure calculation

and its mechanism of formation [14, 76, 85, 86, 87]. To this end, several calculation

methods have been proposed and adopted in order to compute PMs dispersion

band structure. Among them, plane wave expansion (PWE) method, finite-

difference time-domain (FDTD) method, finite element (FE) method and transfer

1Generally speaking, matrix and scatterers need to be composed of different materials,
however holes drilled in the matrix material can work as well.
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1P 1D!structure
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(c)

Figure 5.7: Lattice periodicity and geometrical dimensions based classification of
PMs. The “P” letter refers to the lattice periodicity, meanwhile the “D” letter
defines the dimensionality of structure.

matrix (TM) method are the most popular [88, 89].

Researchers predicted theoretically the existence of absolute band gaps in

two-dimensional phononic crystals [14, 77] prior to being demonstrated experi-

mentally.

Theoretical models of two-dimensional [90, 91, 92] and three-dimensional [93]

phononic materials have shown that the width of the acoustic band gaps strongly

depends on: (i) a large contrast in physical properties such as density and speeds

of sound between the inclusions and the matrix, and (ii) a sufficient filling factor of

inclusions. Several classes of phononic materials differing in the physical nature of

the inclusions as well as of the matrix have been intensively investigated. Among
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them, solid-solid, fluid-fluid and mixed solid-fluid1 composite systems have been

considered [87].

5.4 Dispersion properties

A phononic material consists at least of two different materials A and B character-

ized by different rheological properties, as the key requirement is that the elastic

wave scattering on the inclusions is very efficient. To describe the governing

wave equations, consider a phononic material made of a material A (inclusions)

embedded in an infinite elastic matrix B.

The density and elastic properties, ρA and CA for the inclusions and ρB and

CB for the matrix are periodic functions of the position r. This allows to identify

a unitary cell characterized by lattice parameters ai, (i = 1, 2 or 3 depending on

the space dimension of the material) and a ratio between inclusion and matrix,

also known as filling fraction, denoted by f . In force of such a periodicity, it is

possible to write material density ρ and elastic properies C as Fourier series [87]:

ρ(r) =
∑

G

ρ(G)e(ıGr) (5.6)

and:

C(r) =
∑

G

C(G)e(ıGr) (5.7)

where r is the position vector and G is the reciprocal lattice vector. Similarly,

the time t dependent wave displacement field u can be represented as:

u(r, t) = eı(k·r−ωt)
∑

G

ukGe(ıG·r) (5.8)

where k is the wavevector, ω is the wave circular frequency and uk is the wave

amplitude. Under these conditions, the dispersion properties of the system can

be fully investigated exploiting Bloch theorem considering a unitary cell only.

1In mixed composites, the fluid can be either a condensed liquid or a gas
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The Fourier coefficients in Eq. (5.6) take the form:

ρ(G) =
1

V

∫

d3rρ(r)e(−ıGr) (5.9)

where the integration is performed over the unit cell of volume V . For G = 0,

Eq. (5.9) gives the average density:

ρ(G = 0) = ρ̄ = ρAf + ρB(1 − f) (5.10)

For G 6= 0, Eq. (5.9) may be written as:

ρ(G 6= 0) = (ρA − ρB)F (G) (5.11)

where F (G) is the structure factor given by:

F (G) =
1

V

∫

d3re(−ıGr) (5.12)

In Eq. (5.12), the integration is only performed on material A. In an analo-

gously way, Eq. (5.7) gives:

C(G = 0) = C̄ = CAf + CB(1 − f) (5.13)

and:

C(G 6= 0) = (CA −CB)F (G) = (∆C)F (G) (5.14)

Considering small amplitude waves propagating in a linear elastic metama-

terial, compatibility, constitutive and equilibrium equations, in absence of body

forces, read:

ε =
1

2

[

(∇u)T + ∇u
]

σ = Cε

∇ · σ + ρω2u = 0

(5.15)

where ε is the strain vector, σ is the Cauchy stress tensor.
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Substituting Eqs. (5.6)-(5.8) into Eqs. (5.15) and applying proper periodic

boundary conditions, the equations of motion can be described taking into ac-

count a unitary cell only.

5.4.1 Finite Element discretization

In this study, the finite element method (FEM) has been used to approximate

the equation of motion. The unit cell is first divided into an arbitrary number

of discrete finite elements, as shown in Fig. 5.8a. Within each finite element a

polynomial formulation is assumed for the displacement field, which is related

to the displacements of node points defining each element. By considering the

equilibrium equations, the material constitutive relations, the strain-displacement

relations and the boundary conditions, the general equation of motion results:

Mü + Ku = F (5.16)

where M is the structural mass matrix, symmetric and positive definite, K is

the structural stiffness matrix, symmetric and positive or semipositive definite,

F is the vector of applied loads, and u, ü are the displacement and acceleration

vectors, respectively.

The global vector of nodal displacements contains degrees of freedom corre-

sponding to:

- nodes belonging to the x-axis normal boundaries (UBCx+ and UBCx− in

Fig. 5.8b);

- nodes belonging to the x-axis normal boundaries (UBCy+ and UBCy− in

Fig. 5.8c);

- nodes belonging to the x-axis normal boundaries (UBCz+ and UBCz− in

Fig. 5.8d),

as well as all the other internal nodes, Ui. Thus, the vector of nodal displace-
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Figure 5.8: (a) Finite elements discretization and (b-d) proper boundary condi-
tions of the unitary cell.

ments, and similarly, the force vector for the cell are:
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(5.17)

When the periodic cell vibrates harmonically, with circular frequency ω, ac-

cording to the partition of Eq. (5.17), and assuming a displacement field of the
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form:

u = U0e
ı(k·r−ωt) (5.18)

where U0 is the wave amplitude, the equation of motion Eq. (5.16) becomes:

(K− ω2M)U = F (5.19)

where the symmetric nature of the stiffness and mass matrices was outlined.

When a free wave propagates through an infinite structure, Fi = 0, whilst the

nodal forces at the end nodes of the cell, FBC+ and FBC−, are not zero, since

these forces are responsible for transmitting the wave motion from one cell to

the next. According to Bloch’s theorem [94], the ratio between corresponding

displacements in adjacent cells of the model is equal to eµ, where µ is the complex

propagation constant. For instance, for a propagating wave along x-direction,

µ = ıkxLx, where Lx denotes the periodic distance in the x direction. Similarly

nodal displacements along boundaries BCx+ and BCx− are separated by the

same periodic distance Lx. Thus, if the degrees of freedom on boundary BCx+

is identical to that on boundary BCx−, the nodal displacements are related by:

UBCx− = eıkxLxUBCx+ (5.20)

Similarly, equilibrium between adjacent sections implies that nodal forces and

moments at the boundaries are related by:

FBCx− = eıkxLxFBCx+ (5.21)

Further details can be found in Refs.[95, 96, 97].
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Chapter 6

Numerical modelling of stress

waves in metamaterials

6.1 Introduction

In this Chapter, solid-solid and solid-fluid phononic systems are discussed via

numerical applications. Generally, first band structures are derived and then

transmission power spectra are investigated. The influence of the number of

repeated unitary cells compounding the metamaterial is illustrated. Effects of

prestrain/prestress on BGs is also taken into account in a 1P-2D phononic slab.

Finally, the plane strain assumption is removed and the effects of the thickness

in a 2P-3D PM is investigated by means of FEM wave propagation analyses.

6.2 1P-2D phononic materials

Although from a theoretical point of view, PMs are supposed to be infinite along

three dimensions in real space, recently, properties of plate-mode waves in 1P1-

2D2 phononic slabs have been studied because of their potential technological

applications [98] ranging from acoustic filters to ultrasonic silent blocks, focus

lens and non-destructive evaluation [90].

11P refers to the periodicity of the lattice. In this case, lattice repeats only in one direction.
22D refers to the dimensionality of the modelled structure.
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Generally speaking, PMs studied for the plate-mode waves are taken to be a

finite size system in at least one direction. It has been shown that Lamb waves

can be supported in 2D phononic plate both with the slab surfaces perpendicular

or parallel to the axis of periodicity [81].

In this study, characteristics of Lamb waves in a phononic plate consisting of

a row or more of square cylinders placed periodically in the hosting material as

shown in Fig. 6.1 are investigated.

In particular, first the dispersion properties for an ordinary isotropic plate are

computed and compared to literature results to validate the followed procedure.

Next, the effect of prestress is introduced. Finally, the influence of the phononic

region length (number of unitary cells) on the transmitted energy is studied.

6.2.1 Dispersion properties of phononic materials

Since Lamb waves are of interest in this study, only the propagation plane in 2D

plane strain condition, see Fig. 6.1a-b, is considered to build numerical models.

Both ordinary and phononic plates can be seen as periodic in the x-direction [94],

allowing their dispersion features to be extracted by analysing a unitary cell only.

For the ordinary plate, a unitary cell a × a is considered. For the phononic

waveguide, the unitary cell (a × a) embeds a square cylinder (denoted by B)

of side length m, as shown in Fig. 6.1. The inclusion is located at the square

lattice centre and the thickness of the slab h equals the lattice spacing a. This

allows to define the filling rate as f = (m2)/(a2). The structure is assumed to be

infinitely long in the out of plane direction, along the which axes of the cylinders

inclusions are placed, as well as the periodicity of the elementary cell, repeating

in the x-direction.

Figs. 6.1e-f illustrate the schematics of the cross-section of a single unit cell

considered for the FE calculation both for the ordinary and phononic plate. Ma-

terials A and B represent aluminium and vacuum, respectively. Aluminium rheo-

logical properties used in the calculations are as follows: density ρ = 2699 kg/m3,

Young’s modulus E = 70.3 GPa and Poisson’s ratio ν = 0.3436 (refer to Tab. 6.1

for further details).

Band structures of the Lamb wave modes are computed using Comsol Multi-
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Figure 6.1: Wave propagation plane in an ordinary (a) and in a phononic (b) plate
under 2D plane strain assumption. Schematic representation of several coupled
periodic elements joined together end-to-end in the ordinary (c) and phononic (d)
waveguide. Ordinary (e) and phononic (f) unitary cell with geometric dimensions
and prescribed boundary conditions.
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Table 6.1: Mechanical properties of the materials used in the analyses. Depending
on the material, density ρ, Young modulus E, Poisson ratio ν and longitudinal,
cL, and transverse, cS, wave velocities are given.

Material ρ E ν cL cS
[kg m−3] [Pa] [/] [ m s−1 ] [ m s−1 ]

W 19200 404 ·109 0.287 5231 2860
Al 2699 70.3 ·109 0.3436 6378 3113

Steel 7850 210 ·109 0.3 6001 3207
PVC 1430 3 ·109 0.40 2120 865

Epoxy 1180 4.44 ·109 0.399 2830 1160
Pb 10760 21.5 ·109 0.384 1960 850

Concrete 2500 30 ·109 0.3 4020 2148
Soil 1750 0.340 ·109 0.25 482 278

Rubber 1300 1.37 ·105 0.463 22 6
Water 1000 / / 1490 /

Air 1.25 / / 343 /

physics [99]. The FE model is based on the Bloch-Floquet theorem [73], which

allows to express waves in the periodic structure as:

u(r, t) = eı(k·r−ωt)uk(r) (6.1)

where u and r are the displacement and position vectors, respectively, t is the

time, k is the reduced wave vector within the first irreducible Brillouin zone of

the considered 1P-2D PM and ω is the circular frequency. Due to the periodic

property of material constants, the Fourier expansion is taken into consideration:

ρ(r) = ρ(x) =
∑

G0

ρ(G0)eiG0·r

Cii(r) = Cii(x) =
∑

G

Cii(G)eiG·r, i = 1, 4

u(r) = u(x) =
∑

G′

uk(G′)ei(k+G′)·r

(6.2)

where ρ is the mass density, C11 = λ + 2µ, C44 = µ with λ and µ the first and
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second Lamè constants, respectively and G0, G and G′ are the reciprocal lattice

vectors. The starting point is the motion equation, which reads:

∇(λ + 2µ)(∇ · u) −∇µ×∇× u = ρü (6.3)

As in this case the phononic slab is periodic in the x-direction and finite in

the y-direction, a plane elastic wave propagating only along x-direction can be

considered. In such a case, the displacement vector u is independent of y and

z coordinates, namely u(r, t) = u(x, t). Therefore, Eq. (6.3) can be decoupled

into:

ρ(x)
∂2ux

∂t2
=

∂

∂x

[

λ(x)
∂ux

∂x

]

+
∂

∂x

[

2µ(x)
∂ux

∂x

]

ρ(x)
∂2uy

∂t2
=

∂

∂x

[

µ(x)
∂uy

∂x

]

ρ(x)
∂2uz

∂t2
=

∂

∂x

[

µ(x)
∂uz

∂x

]

(6.4)

Inserting Eqs. (6.2) into Eqs. (6.4) and applying standard finite element

assembling procedures described in Chap. 5, the discrete form of the eigenvalue

equations for the unit cell can be written as:

(K− ω2M)u = 0 (6.5)

where K and M are the stiffness and mass matrices of the discrete system. Period-

icity allows to compress calculation in one unit cell applying proper Bloch-Floquet

periodic boundary conditions (PBC1 and PBC2 in Figs. 6.1e-f) to the sides of

the unit cell along the x-direction:

u(x + a, y) = u(x, y)eı(kx·a) (6.6)
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with kx the only component of Bloch wave vector. On the other hand, free

boundary conditions FBC1 and FBC2 are applied to the top and bottom surfaces

of the unit cell, as shown in Figs. 6.1e-f.

The Comsol “Solid Structures Module” operating under the 2D plane strain

hypothesis is chosen for the eigenvalue calculations. The modelled unit cell is

meshed by Lagrange linear triangular elements provided by COMSOL. Good

convergence for a maximum frequency of 2.5 MHz is obtained when the finite ele-

ment length is set to Lmax
FE = 1.25× 10−4 m. The analysis type “Eigenfrequency”

is selected as the solve mode and the direct (PARADISO) solver is chosen as

the linear system solver. For a given wavenumber ki
x, a group of corresponding

eigenfrequencies and eigenmodes are obtained with the FEM algorithm.

In the case of the phononic plate, dispersion properties are 2π/a periodic with

respect to the wavenumber kx, i.e. ω(kx) = ω(kx + 2π/a). This property allows

to limit the wavenumber values to the first Brillouin zone [94], commonly defined

in the wavenumber range [−π/a, π/a]. Therefore, the dispersion diagrams are

drawn in the half Brillouin zone, i.e. in the [0, π/a] = [Γ, X ] wavenumber range,

as it contains all the relevant information for the phononic plate [100]. Running

ki
x along the boundaries of the first Brillouin zone and repeating the calculation,

dispersion curves for the Lamb wave modes are obtained [73, 80]. The overall

Comsol flowchart is provided in Fig. 6.2.

Fig. 6.3 reports dispersion curves for both ordinary and phononic aluminium

plate in the [0, 1] reduced wavenumber k∗ = k · a/π range. Comsol procedure

reliability to extract dispersion maps is tested via SAFE comparison in the case

of ordinary waveguide and by means of literature available results comparison in

the case of phononic waveguide. It is worth noticing that dispersion curves in

the case of phononic waveguide are distorted if compared to the ordinary ones,

as clearly showed in Figs. 6.4. Such distortion allows the band gap nucleation,

highlighted in Fig. 6.3 as a light grey rectangle. In this frequency range, wave

propagation is theoretically inhibited.
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Figure 6.2: Comsol script flowchart.

6.2.2 Effect of phononic region length

In this subsection, filtering properties of the phononic region length towards Lamb

waves propagation is investigated. To this end, several FE models with an in-

creasing number of phononic cells have been analysed to evaluate the effect of the

phononic region length on the energy transmitted beyond the phononic region.

A schematic representation of the considered waveguide consisting of a central

finite phononic portion confined by two homogeneous regions is presented in Fig.

6.5. Materials employed in the analyses are tungsten and vacuum, respectively

(see Tab. 6.1). Unitary cell repeating in the waveguide phononic portion is the

same reported in Fig. 6.1f.

First, the band structure is extracted and reported in Fig. 6.6. Results

present good agreement with those published by Chen et al. [90]. Besides, it is

worth noticing that the higher rigidity and density of tungsten w.r.t. aluminium

enlarged and shifted towards lower frequencies the complete band gap.

After BG frequency range has been located, a wave packet is launched in the

whole system along the x-direction at the first homogeneous edge (red arrows

in Fig. 6.5). Perfectly Matched Layers (PMLs) are implemented on the right

side of the calculation domain [101] to avoid undesired wave reflections. The
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Figure 6.3: Dispersion curves for both ordinary and phononic waveguides. Band
diagram is plotted in the k∗ ∈ [0, 1] reduced wavenumber range, corresponding
to the symmetry direction Γ − X of the first Brillouin zone. Ordinary plate
band diagram is extracted both via Comsol and via SAFE. Perfect agreement is
found. Dispersion curves for the phononic plate (extracted via Comsol) are also
provided. The light grey rectangle emphasizes the position of the band gap.

excitation signal consists of a 13-cycles Hanning modulated sinusoidal toneburst

with a central frequency fc = 1.55 MHz and amplitude A = 1 · 10−9 m, as shown

in Fig. 6.7. The high number of cycles was chosen to generate a low dispersive

signal.

Time transient analyses have been conducted by means of the commercial FE

package ABAQUS 6.12 [52] and a transmission power spectrum coefficient αT has

been defined to indicate how much energy propagates across the phononic region

as a function of frequency. In particular, αT is here defined as:

αT =
F
[

uP
x (t)

]

F [ūP
x (t)]

(6.7)

where uP
x (t) is the displacement along the x-axis acquired at the point P at
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Figure 6.4: (a) Dispersion curves in the case of phononic waveguide are distorted
if compared to the ordinary aluminium plate. Detailed behaviours of: (b) 2nd and
3rd bands between k∗ = 0.7245 and k∗ = 0.7247; (c) 4th and 5th bands between
k∗ = 0.429 and k∗ = 0.431; (d) 4th and 5th bands between k∗ = 0.5275 and
k∗ = 0.5295.

d = 0.6 · L1 from the right edge of the plate (see Fig. 6.5), ūP
x (t) is the same

quantity acquired in the ordinary plate (i.e. with no phononic region) and F

denotes the Fourier Transform operator.

The influence of the number of cells on the wave propagation phenomenon is

shown in Figs. 6.8 and 6.9. They present stress fields for the ordinary structure

and when additional phononic unit cells are added.

In general, it can be seen that, due to the huge mismatch between the acoustic

impedance of the material constituting the PM, the vacuum square cylinders act

as very efficient scatterers, so that the acoustic energy after only few cells of
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Figure 6.5: Schematic representation of the FE model exploited to evaluate the
influence of the phononic region length on the transmission coefficient.
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Figure 6.6: Dispersion curves for the symmetry direction Γ − X of the first
Brillouin zone for the Tungsten-vacuum phononic waveguide.

phononic material does not propagate further in the structure. Figs. 6.10 and

6.11 clearly show this fact in terms of transmission coefficient. In particular, it can

be inferred that as the number of periodic cells constituting the phononic region

n increases, the transmitted energy decreases (widths of the peaks attenuate).

In the case of n = 4 almost a complete reduction of the transmitted wave can

be observed. Finally, it can be observed that the transitions between the BGs

and the transmitting frequency ranges is made sharper by adding more unit cells.

This is an interesting property for filtering applications, where it is important to

obtain square sharp spectrum [102].
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Figure 6.7: Time and frequency representation of the excitation signal.

Figure 6.8: Von Mises stress field (snapshots at 28 µs) for the waveguide presented
in Fig. 6.5 consisting of a central portion containing the finite PC sandwiched
between two homogeneous regions. From the bottom to the top the number of
unit cells is increased from 0 to 4.
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Figure 6.9: Von Mises stress field (snapshots at 36 µs) for the waveguide presented
in Fig. 6.5 consisting of a central portion containing the finite PC sandwiched
between two homogeneous regions. From the bottom to the top the number of
unit cells is increased from 0 to 4.
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Figure 6.10: Influence of the number of periodic cells on the transmission coef-
ficient αT . The grey regions delimit the full band gap for the infinite PC. From
the top: n ∈ [1, 3]-periodic-long phononic plate.
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Figure 6.11: Influence of the number of periodic cells on transmission coefficient
αT . The grey regions delimit the full band gap for the infinite PC. From the top:
n ∈ [4, 7]-periodic-long phononic plate.

6.2.3 Effect of an applied prestrain/prestress field

The potential of PMs-based applications can be extended by means of methods

capable of modifying/controlling (nucleation, shifting and/or annihilation) the

band gaps. To such objective, different approaches have been proposed over the

years to manipulate BGs [103]. Some researchers have focused on the effect of

constitutive parameters, for instance by changing filling fraction and shape of

the inclusions [73, 87] or varying the elastic characteristics of the constitutive

materials [104, 105, 106]. Different authors proposed the use of electrorheological

materials in conjunction with the application of external electric field [107]. Other

researchers have considered the effect of temperature [108]. A further way to

tune BGs is to superpose to the periodic material an initial field of strain/stress

[8, 103, 109]. This approach has a great potential since prestress/prestrain1 can

be easily applied to structures.

In this subsection, the effect of an applied prestrain field on the BGs of Lamb

1In what follows, the word prestrain will be mainly used as the corresponding prestress can
be immediately computed via Hooke’s law.
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waves propagating in phononic plates is investigated, extending a recent study

by Chen et al.[90], in which the effect of the phononic waveguide thickness on

the Lamb waves dispersion properties is studied. To account for an initial pre-

strain/prestress field on BGs of the phononic plate, first a representative unit cell,

under 2D plane strain assumption, with boundary conditions imposed according

to the Bloch’s theorem, is considered. Next, static analyses under the effect of

initial strain, including non-linear deformations, are performed. Finally, eigen-

frequencies are computed taking into account the non-linear geometric effects by

means of proper compatibility relations. Results in terms of dispersion curves

obtained by COMSOL MultiPhysics 4.3 [99] show the effects of prestrain on the

Lamb waves BG.

The dependence of guided wave velocity on applied prestrain is fundamentally

a non-linear effect that can be modelled in COMSOL MultiPhysics by means of

a two-step analysis exploiting the module Prestressed Analysis, Eigenfrequency

[99].

The linearised equations governing the harmonic behaviour of a prestrained

linear elastic material, in absence of body forces, read:

ε =
1

2

[

(∇u)T + ∇u + (∇u)T∇u
]

S− S0 = C (ε− ε0)

∇ · σ + ρω2u = 0

(6.8)

where u(r, t) is the time-dependent displacement vector, r is the position vector,

ε is the Green-Lagrange strain vector, ε0 is the applied initial strain, C is the

constitutive matrix, S and S0 are the actual and initial second Piola-Kirchhoff

stress tensors, ρ is the material density and ω is the angular frequency. Consider-

ing small displacements the actual second Piola-Kirchhoff stress tensor coalesces

with the Cauchy stress tensor σ.

Material density ρ (r) and elastic moduli C (r) expanded in Fourier series as

well as the displacement vector for a periodic structure as described in section

6.2.1 drive to the statement of the global governing equations.

Substituting Eqs. (6.2) into the third of Eq. (6.8) and applying proper peri-
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odic boundary conditions, a FEM based discretization leads to the global govern-

ing equation in the form [K(k) − ω2M]U = 0, where K is the structural stiffness

matrix, M is the structural mass matrix and U is the generalized vector of nodal

displacements [97]. Then, as in the standard case of waveguide without pre-

strain/prestress applied field, for a given wavenumber ki in input, eigensolutions

of the global governing equation lead to the dispersion properties of the formu-

lated problem.

6.2.3.1 Lamb waves in ordinary plates under prestrain

In order to validate the approach in COMSOL, the effect of prestrain on Lamb

waves existing in a 1-mm thick aluminium plate (see Tab. 6.1 for material prop-

erties) is computed and compared with literature results [110]. To this purpose,

a single elementary cell of dimensions a×a (a = 1 mm), in plane strain condition

(x-y plane), is generated, (see Fig. 6.1e). Next, periodic boundary conditions

(PBCs) are imposed on the edges orthogonal to the x-axis. Free boundary con-

ditions (FBCs) are considered on the remaining two edges of the cell.

The unit cell is meshed by means of 4-node quadrilateral Lagrange linear

elements of maximum edge size 0.05 mm in order to provide accurate results up

to the maximum frequency of interest of 1 MHz. Then, the resulting eigenvalue

problem is solved using the PARADISO algorithm [99] for kx ∈ [0, 700] m−1.

As in Ref. [110] levels of prestrain εx0 corresponding to 0.04%, 0.08% have

been considered. In addition, here also the effect of negative (compressional)

axial strain has been investigated for εx0 equal to −0.04% and −0.08%.

In Fig. 6.12 the A0 mode phase velocity, normalized w.r.t. the shear bulk wave

speed in aluminium, is represented for the different levels of applied prestrain.

Results for positive prestrain are in perfect agreement with those of Ref. [110]

confirming the reliability of the COMSOL procedure. It can be observed that

at low frequencies positive strain, and so tensile stress along the x-axis, tends to

increase the natural frequencies, while negative strain, and so compressive stress,

tends to decrease them. On the other hand, at relatively high frequencies the

effect of load induced by the strain begins to be negligible. At these frequencies

the properties of guided wave propagation are governed almost entirely by the
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Figure 6.12: FE results showing the effect of prestrain on A0 mode phase velocity
in a 1-mm thick aluminium plate. Phase velocity is normalized w.r.t. to the bulk
transverse shear wave speed in aluminium. Tensile strains tend to increase the
natural frequencies, while compressive strains tend to decrease them.

material stiffness of the waveguide.

6.2.3.2 Lamb waves in phononic plates under prestrain

Here a 1-mm thick aluminium phononic plate (see Tab. 6.1) is considered. The

unitary cell is characterized by a square shaped-hole inclusion (vacuum) located

in its centre as shown in Fig. 6.1. In particular, the cell has outer dimensions

a× a (a = 1 mm) whereas the square inclusion is m×m (m = 0.3 mm), so that

the filling fraction is f = (m2)/(a2) = 0.09. The unit cell is assumed to be in

plane strain condition.

Fig. 6.13 shows the dispersion map in terms of reduced wavenumber k∗ =

(kxa)/π versus frequency f = ω/(2π) in the [0−2.5] MHz frequency range, where

5 modes are visible. Numerical convergence for the maximum frequency of 2.5

MHz was obtained using finite elements of maximum edge length of 0.025 mm. A

total band gap between the third and fourth modes and its shifting due to different

levels of prestrain can be observed. Comparing the band structures it is possible

to note that some bands are lightly affected by the external load while others
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Figure 6.13: Phononic plate dispersion diagram for different levels of applied
prestrain. The main effect of the prestrain field is to shift towards higher/lower
frequencies dispersion curves.

are more significantly shifted toward higher/lower frequencies. In particular, Fig.

6.14 shows the effects of prestrain on the 1st mode for the considered phononic

plate.

6.3 2P-2D phononic materials

Theoretical and experimental works concerning elastic BGs in bi-dimensional

structures have been done because of the high technological interest related to

them. The most famous experimental attempt to find such a band gap in the

audible range was the measurement of sound attenuation by an artistic sculpture

(obviously not specially designed for this purpose) which, however, failed to find

a full band gap [111].

In this section elastic band structure for 2P-2D phononic materials are pre-

sented. Dispersion curves for combinations of different material types (solid/solid,

solid/fluid) are calculated, emphasizing the existence of complete band gaps.
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Figure 6.14: Prestrain effects on the 1st mode for the considered phononic plate.

6.3.1 Solid-solid PM

The first investigated model is a square lattice phononic material consisting of

steel cylinders embedded in an epoxy matrix. The steel scatterers are denoted

by the shaded regions in Fig. 6.15a. The PM lattice constant is a = 0.008 m and

R = 0.003 m is the radius of the cylinder scatterer. The filling fraction for the

PM is f = πR2/a2 = 0.4418.

The choice of these materials is based on the mismatch of their densities and

elastic constants, ρsteel = 7850 kg/m3, Esteel = 210 · 109 Pa and νsteel = 0.3 for

steel, and ρepoxy = 1180 kg/m3, EEpoxy = 4.44·109 Pa and νepoxy = 0.399 for epoxy

(see Tab. 6.1). To calculate the eigenmodes of acoustic waves in the PM-plate,

the unit cell is defined and marked in solid black lines in Fig. 6.15a.

The first irreducible Brillouin zone of the model is also plotted in Fig. 6.15b.

Since the Bravais lattice is square-shaped and the materials are isotropic, the

representation of the bands along the M − Γ − X − M closed path in the first

irreducible Brillouin zone contains all relevant information.

Plane strain condition is assumed in order to study the wave propagation

confined within the x − y plane (the structure is considered to extend infinitely

along the z direction).
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Figure 6.15: (a) Schematics of the epoxy/steel phononic plate with square lattice
constant a = 0.008 m and filling fraction f = 0.4418. (b) The first irreducible
Brillouin zone M − Γ −X .

Fig. 6.16 presents the band structure for the PM in the three high symmetry

directions M−Γ−X of the first irreducible 2D Brillouin zone. The horizontal axis

is the reduced wavenumber k∗ = ka/π and the vertical axis reports the frequency

values in Hz. Curves are not flat but dispersive and therefore propagating modes

are available for most frequencies. However, the existence of a relatively flat band

in the band structure is also noticeable (240 − 250 kHz range). Flat bands are

usually associated with the existence of localized states in the composite material,

characterized by very small group velocity [72, 92].

The plot shows unambiguously the existence of 4 complete band gaps in the

0 − 350 kHz frequency range, i.e. frequency ranges within the propagation of

acoustic or elastic waves is inhibited regardless the direction of waves propagation.

The largest observed complete band gap appears between 89 kHz and 198 kHz

and the other three extend from 229 to 239 kHz, 246 to 250 kHz and 293 to

297 kHz, respectively. On the other hand, when considering waves propagating

in a specific direction of the irreducible 2D Brillouin zone (M − Γ, Γ − X or

X −M), some stop bands (or partial band gaps) may be observed, such as the

one occurring from 0 to 42 kHz in the X−M direction, for instance. Other local

stop bands appear at higher frequencies in the three directions of propagation

(see Table 6.2 and Fig. 6.17 for further details).
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Figure 6.16: Band structure of the steel/epoxy PC with square lattice. Only
complete band gaps are highlighted by means of light grey rectangles. Note the
existence of a low-dispersive single pass band separating the second and third
complete band gaps. Letters denote normal modes associated to particular re-
duced wavevector and frequency values.

Figs. 6.18 - 6.20 depict the eigenmodes in terms of displacement in the three

symmetry directions M−Γ, Γ−X and X−M for particular frequency and reduced

wavenumbers values. Modes are clearly coupled and their classification resemble

the one used in Lamb waves in the classical plates [93] (flexural antisymmetric,

longitudinal symmetric, and transverse shear horizontal waves).

Each mode is uniquely identifiable by means of its wavenumber coordinates

and frequency, as shown in Fig. 6.16. For example the first eigenmode (point

A of Fig. 6.16) has reduced wave vector k∗ = (k∗
x = 1, k∗

y = 1) and frequency

f = 62.59 kHz. Besides, Figs. 6.18 - 6.20 show different modes at different

frequencies. They all belong to the first band, except modes D, H and L, which

belong to the third, forth and second band, respectively.
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Table 6.2: Frequency values of the stop bands occurring in specific directions of
propagation.

Stop Band Direction of propagation and frequency range [kHz]
M − Γ Γ −X X −M

# 1 0 - 42
# 2 250 - 252
# 3 221 - 229
# 4 252 - 293
# 5 297 - 318
# 6 332 - 337
# 7 327 - 331
# 8 341 - 348

6.3.1.1 Transmission spectra

Here, the transmission spectrum of waves crossing the two-dimensional solid-solid

PM composed of circular and centred arrays of steel inclusions in an epoxy resin

matrix is investigated via FE simulations.

The analyses reproduce a transmission experiment which employs a couple

of ultrasonic piezoelectric transducers used as transmitter/receiver transducers.

With reference to Fig. 6.21, point A simulates a PZT used as actuator launching

the probing waves. B denotes the acquisition point. To launch a broadband wave

packet capable to test the complete BGs (therefore involving wavevectors with

different combinations of kx and ky) as well as examining a wide range of frequen-

cies, a short time pulse (see Fig. 6.22a) was applied at point A. Displacement

along the x axis is then recorded at point B. Afterwards, processing the data by

means of a Fourier transform, the corresponding transmission power spectrum1

is obtained and plotted in Fig. 6.22b.

The phononic band structure for an infinite PM are then compared with the

transmission power spectrum (TPS) measured numerically in a 10-period-long

finite size composite sample in Fig. 6.21.

Measured transmission drops to low levels throughout the frequency intervals

in reasonable agreement with the frequency stop bands calculated for the infinite

1In this case, the transmission power spectrum has not been normalized w.r.t. the wave
propagating in the corresponding ordinary plate.

115



6. CHAPTER VI

0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Reduced Wave Vector

F
re

qu
en

cy
 [H

z]

M Γ X M

(a)

Figure 6.17: Band structure of the steel/epoxy PM with square lattice. Complete
band gaps (light grey) and stop bands (dark grey) are highlighted.

PM (Fig. 6.22b).

6.3.2 Solid-fluid PM

Since first works showed phononic band gaps in elastic composite materials [112,

113], there have been efforts to search wider, lower-frequency and large numbers

of band gaps by varying the constituent materials and their configuration arrange-

ment. In recent years a growing interest focused on the propagation of acoustic

waves in a particular class of periodic composites, the so called sonic/acoustic

crystals, i.e. acoustic metamaterials operating in the audible frequency range

(approximately from 20 Hz to 20 kHz).

As in the case of elastic metamaterials the primary phenomena responsible for

the band structures of sonic/acoustic crystals are Bragg scattering and local reso-

nance. Because of their large acoustic mismatch or low acoustic impedance, sonic

metamaterials (solid/liquid, solid/air or liquid/liquid PMs) proved to achieve
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(a) (b)

(c) (d)

Figure 6.18: Displacement fields (magnitude) of eigenmodes in the M − Γ di-
rection of propagation. (a) k = (3.92, 3.92) m−1, f = 62.59 kHz corresponding
to the point A of Fig. 6.16; (b) k = (196.35, 196.35) m−1, f = 66.71 kHz corre-
sponding to the point B of Fig. 6.16; (c) k = (392.69, 392.69) m−1, f = 86.15 kHz
corresponding to the point C of Fig. 6.16; (d) k = (3.92, 3.92) m−1, f = 239.00
kHz corresponding to the point D of Fig. 6.16.
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(a) (b)

(c) (d)

Figure 6.19: Displacement fields (magnitude) of eigenmodes in the Γ−X direction
of propagation. (a) k = (3.92, 0) m−1, f = 1.24 kHz corresponding to the point
E of Fig. 6.16; (b) k = (196.35, 0) m−1, f = 80.94 kHz corresponding to the
point F of Fig. 6.16; (c) k = (392.69, 0) m−1, f = 72.38 kHz corresponding to
the point G of Fig. 6.16; (d) k = (196.35, 0) m−1, f = 273.07 kHz corresponding
to the point H of Fig. 6.16.
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(a) (b)

(c) (d)

Figure 6.20: Displacement fields (magnitude) of eigenmodes in the X −M direc-
tion of propagation. (a) k = (0, 3.92) m−1, f = 42.27 kHz corresponding to the
point I of Fig. 6.16; (b) k = (0, 3.92) m−1, f = 221.39 kHz corresponding to the
point L of Fig. 6.16; (c) k = (0, ) m−1, f = 72.38 kHz corresponding to the point
G of Fig. 6.16; (d) k = (196.35, 0) m−1, f = 273.07 kHz corresponding to the
point H of Fig. 6.16.
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Figure 6.21: FE model exploited for the transmission spectra evaluation. Red
and green dots denote excitation and acquisition points, respectively.

larger and/or lower-frequency band gap, if compared to elastic metamaterials.

This led to a growing interest in exploiting potentials of sonic crystals as acoustic

filters and noise/sound insulators [91].

Recently, studies concerning phononic materials (also known as sonic crystals)

used as noise barriers reported sound attenuation up to 25 dB [114, 115]. In

particular, the main advantages of employing sonic crystals as sound barriers

instead of a traditional solid sound barriers regard (i) the ability to attain peaks

of attenuation in a selected frequency range by varying the distance between the

scatterers, (ii) the possibility to allow light to pass through and (iii) to have no

obstruction to the free flow of air [116].

The relationship between the lattice parameter and operating frequency sug-

gests the required barrier dimensions in order to attenuate the target frequency

noise. Locally resonant sonic materials (LRSM) are also well suited to this pur-

pose due to their ability to form band gaps decoupled from the lattice periodicity.

However, these BGs are generally characterized by smaller attenuation ranges.
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Figure 6.22: (a) Time and frequency representation of the imposed displacement
used to excite modes up to 400 kHz in the PM. (b) PC band structure together
with normalized transmission power spectrum (TPS) measured after 10 periodic
cells at A (see fig. 6.21). TPS clearly shows a almost complete attenuation in
the complete band gap zones.
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Figure 6.23: Single unit cell for the considered sonic crystal system. Periodic
boundary conditions are applied to the borders of the unit cell in terms of pressure
distribution.

6.3.2.1 Band structures in sonic metamaterials

First, an array of infinitely long aluminium cylinders in air [91] is studied1.

The cylinders are arranged in a two-dimensional square periodic array. The

unit cell used as a basis for the calculations is shown in Fig. 6.23a where the light

blue indicates the fluid domain (air) and dark blue the solid domain (aluminium).

The structure is assumed to be infinite in the out of plane direction and periodic

in the x- and y-directions with constant lattice a = 20 mm and cylinders radius

R = 8 mm.

In this case, proper periodic boundary conditions concern pressure distribution

p for the nodes lying on the boundary of the unit cell. The aforementioned

periodic boundary conditions ensure that the finite simulation space mimics an

infinitely periodic crystal both in the x and y directions. As in the case of elastic

metamaterials, Bloch wavevector is defined along the edges of the first Brillouin

zone (see Fig. 6.23b), i.e.:

i. ΓX path: kx varies from 0 to π/a, whilst ky is set equal to 0;

ii. XM path: ky varies from 0 to π/a, whilst kx is set equal to π/a;

1The same methods revised in previous chapters (plane wave expansion method, finite-
difference time-domain method, finite element method) can be employed to calculate wave
propagation in such materials.
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Figure 6.24: Band structures of the acoustic phononic crystal made of aluminium
cylinders immersed in air.

iii. MΓ path: both kx and ky vary from 0 to π/a.

Fig. 6.24 shows the band structure for the described system. Good agreement

is found with literature available results [91]. It’s worth noticing that outside the

complete band gap, which is centred approximately at 10 kHz, waves for most

frequencies can propagate. Some waves coalesce at the high symmetry point M

outside the BG boundaries, as it occurs between 2nd and 3rd or 5th and 6th curves.

However they do not bring to any other total band gap nucleation.

6.3.2.2 Sound barriers

It is possible to exploit acoustic metamaterials for the design of lightweight noise

barrier operating at low frequency range as an alternative solution to stiffness-

based or dissipation-based solutions (which generally require high areal masses).

The idea consists in creating sonic band gaps in order to limit acoustic wave prop-

agation at certain frequencies (for example, create a BG with a central frequency

at around 1 kHz, i.e. the main frequency range of the vehicle traffic noise).
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Exploiting the BG deriving from the Bragg scattering theory, the target fre-

quency to inhibit sets the scale of spatial periodicity of the phononic structure

which needs to be in the order of the target wavelength1.

In what follows, finite element (FE) models are developed to study mechanical

and geometrical properties of the acoustic metamaterials capable of inhibiting the

propagation of sound waves in air at around 1 kHz.

To this purpose four metamaterials are considered:

i. a solid aluminium cylinder with radius R = 80 mm surrounded by air

a = 200 mm (Fig. 6.25a);

ii. a hollow aluminium cylinder with outer radius R = 80 mm, thickness t = 3.2

mm, surrounded by air a = 200 mm (Fig. 6.25b);

iii. a hollow Polyvinyl chloride (PVC) cylinder with outer radius R = 80 mm,

thickness t = 3.2 mm, surrounded by air a = 200 mm (Fig. 6.25c);

iv. a C-shaped PVC thin wall with external radius R = 80 mm and thickness

t = 3.2 mm (Fig. 6.25d).

In force of the high acoustic mismatch between the solid materials (aluminium

and PVC) and air, Neumann boundary conditions have been applied to the solid

scatterer surfaces.

Dispersion curves for the above mentioned cases are presented in Fig. 6.26.

Comparing Fig. 6.26a and Fig. 6.26b it clearly emerges that more propagating

modes exist in the same frequency range 0 − 3000 Hz for the case of hollow

cylinders. However, despite the number of modes the total BG at around 1000

Hz is preserved. The hollow cylinder cases present also an additional band gap

as well as the existence of some non-dispersive modes.

Changing the aluminium with PVC produces only a slight shifting towards

higher frequencies of the band gaps ([104 − 145] to [145 − 202] for the first BG

and [863 − 1113] to [867 − 1117] for the second one) as shown in Fig. 6.25b and

Fig. 6.25c.

1Although this could limit this approach for shielding environmental noise where space is
not limited, locally resonant sonic materials (LRSMs) can be used as a viable alternative for
low frequency applications when the installation space is limited.
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Figure 6.25: Unit cell (a = 200 mm) for the analysed acoustic metamaterials:
(a,b) air-aluminium interaction, (c,d) air-PVC interaction (R = 80 mm).

Finally, in the case iv (Fig. 6.25d), because of the C-shaped inclusion, dis-

persion curves appear less dispersive if compared to the other cases. This implies

that modes associated with such flatter bands are supposed to have low group ve-

locity and then to exhibit strong spatial localisation. Besides, it is worth noticing

that nucleation of new complete BGs is observable.

6.3.2.3 FEM wave propagation analyses

In this section, sound pressure levels for phononic systems are calculated via finite

element analyses. First, the existence of predicted directional BGs is highlighted
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Figure 6.26: Band structures for (a,b) air-aluminium interaction, (c,d) air-PVC
interaction.

in a 4-period-long phononic system. Afterwards, pressure maps at frequencies

inside and outside the BG are shown to emphasizes the screening potentials of

the phononic material in the audible frequency range. Finally, the influence of the

phononic region length is investigated in order to predict the minimum number

of cells needed to reduce the sound pressure level under a desired threshold.

The Comsol Multiphysics software has been adopted to solve the acoustic

wave propagation equation in the phononic system:

1

ρ0c2
∂2p

∂t2
+ ∇ ·

(

−
1

ρ0
∇p

)

= 0 (6.9)
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Figure 6.27: Finite element model implemented in Comsol Multiphysics to com-
pute the pressure fields at different frequencies inside and outside BGs. The
model consists of 3.2 mm thick hollow PVC cylinders immersed in air. A plane
wave radiation boundary condition is set to the left side of the system. Sound
hard boundaries (SHB) have been assigned to the PVC cylinders, as well as to
the external domain boundaries.

with ρ0 mass density, p pressure distribution and c speed of sound. This reduces

to a Helmholtz equation for a time harmonic pressure wave excitation, p = p0e
ıωt:

∇ ·

(

−
1

ρ0
∇p0

)

−
ω2p0
ρ0c2

= 0 (6.10)

where ω = 2πf is the angular frequency. Eq. (6.10) resolution leads to the

pressure field [116].

A 2D model in plane strain, Ls = 6 m, H = 2 m, with a central phononic

region made of 4 × 10 PVC hollow cylinders (R = 80 mm and t = 3.2 mm)

immersed in air, as shown in Fig. 6.27, is analysed. Material properties for

PVC and air are presented in Tab. 6.1, and are here reported for sake of clarity:

ρPV C = 1400 kg/m3, νPV C = 0.42 and EPV C = 3 GPa and ρAir = 1.25 kg/m3

and cAir = 343 m/s1.

In the simulations, a rising tone noise source at the left edge of the domain,

from 1 to 3040 Hz, is modelled as a plane wave radiation boundary condition

with pressure source set to 1 Pa. The remaining boundaries are modelled as

1The considerable mismatch between density and mechanical properties of PVC and air
allows to apply sound-hard boundary conditions to the PVC cylinders.
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sound hard boundaries (SHB) in order to capture the screening power of the only

phononic system upon the wave.

Sound pressure levels are measured as the peak values registered within the

3L × L acquisition areas located either before and after the phononic region

(see Fig. 6.27). L = 0.8 m has been dimensioned to ensure that at least half

wavelength develop at all the considered frequencies.

Numerical accuracy is guaranteed choosing a triangular mesh with maximum

finite element dimension Lmax
FE = 10 mm.

6.3.2.4 Transmission power spectrum and pressure maps in the audi-

ble frequency range

Solving the wave equation for a parametric frequency sweep from 1 to 3040 Hz,

with a ∆f = 80 kHz, allows to compute the transmission power spectrum for the

phononic system (see Fig. 6.28). It can be noted that the first directional BG,

extending from 144 to 202 Hz, shows noticeable sound attenuation potential.

In addition, all BGs are in good agreement with those of the band structure

calculations.

In addition, Fig. 6.29 illustrates pressure maps taken at 480, 800 and 1280

Hz, corresponding to frequencies before, inside and beyond the second directional

visible BG (ranging from 534 to 1118 kHz). It is worth noticing that at frequencies

outside the BGs, the sonic crystal system behaves as a homogeneous material

and acoustic wave propagation is unaltered. This because the lattice parameter

is much smaller than the wave wavelength. As the wavelength of the incoming

acoustic wave is comparable to the lattice parameter, pressure map clearly shows

that wave propagation is severely attenuated due to multiple scattering effects and

a shadow zone is formed beyond the sonic crystal. Again, at 1280 Hz, post band

gap formation, the wave is free to propagate through the sonic crystal system, as

the wavelength of the acoustic wave is smaller than that of the lattice parameter

of the sonic crystal system. Pressure maps clearly agree with the predicted band

gaps.
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Figure 6.28: A comparison of finite element computed band structure in the Γ−X
direction against the FE computed frequency spectra for sound pressure level.

6.3.2.5 Influence of the rows number on the PM attenuation

Besides the computation of dispersion properties of a phononic material, from

a practical point of view is important to examine the properties of a structure

composed by a finite number of periodic unit cells. In the following a parametric

study is conducted to evaluate the effect on the PM attenuation potentials w.r.t.

the number of periodic cells.

Pressure maps and sound insulation index are chosen as the parameters de-

scribing the screening power of the phononic region in order to infer information

about the “finiteness” effects on: (i) the frequency band layout, that is, how well

the frequency bands match those of the infinite periodic material and (ii) the level

of wave attenuation within the BGs. Sound insulation index has been extracted

according to the procedure reported in Ref. [117] and here briefly reviewed.

Fig. 6.30 shows a schematic representation of the implemented FE model. A

plane wave is set in input at a distance LLs from the first row of the phononic

barrier of length LPhR, whilst air impedance matching boundaries have been set

to the remaining edges of the model in order to investigate only the phononic
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Freq = 480 Hz ! Total acoustic pressure field [Pa]

(a)

 

Freq = 800 Hz ! Total acoustic pressure field [Pa]

(b)

 

Freq = 1280 Hz ! Total acoustic pressure field [Pa]

(c)

Figure 6.29: Pressure maps for hollow PVC cylinders placed in air via finite
element computation at: (a) 480, (b) 800 and (c) 1280 Hz, respectively.
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Figure 6.30: Finite element model implemented in Comsol Multiphysics exploited
to compute the pressure maps and the sound insulation index. The model consists
of hollow PVC cylinders (R = 80 mm and t = 3.2 mm) immersed in air. A plane
wave radiation boundary condition is set to the left side of the system, while
the remaining are air impedance matching boundaries. Sound pressure levels
are measured at positions M − P1, M − P2 and M − P3, LM = 0.25 m away
from the last row of cylinders and spaced apart 5 cm. The phononic region is
LPhR = n · a wide, where n is the number of unitary cells and a = 0.2 m. The
first row of cylinders is set LLs = 1 m away from the radiation boundary. Sound
hard boundaries have been assigned to the PVC cylinders, as well.

system screening power. Data are registered at 3 points positioned at a distance

LM from the phononic barrier. In addition, responses at the 3 acquisition points

placed at a distance LLs +LPhR +LM but without including the phononic region

(free-field measurements) are also simulated.
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The sound insulation index is computed as:

SI = −10 lg







∑n
k=1

∫

∆fj

‖F[ptk(t)wtk(t)]‖2dfd2c

n ·
∫

∆fj
‖F[pi(t)wi(t)]‖2df







(6.11)

where pi(t) is the reference free-field component, ptk(t) is the transmitted com-

ponent at the kth scanning point, dc is a geometrical spreading correction factor,

wi(t) is the time window for the reference free-field component, wtk(t) is the

time window for the transmitted component at the kth scanning point, F is the

Fourier transform, ∆fj is the frequency band and n is the number of scanning

points [117].

Pressure maps at the frequency of 800 Hz1 and sound insulation index for

various phononic barriers are reported in Figs. 6.31 and 6.32, respectively. In

the calculations the number of pipes rows varies from 1 to 4 in the pressure map

definition and from 1 to 5 in the sound insulation calculation, respectively.

From the numerical results, it can be inferred that the response of the finite

periodic system is still frequency-banded and generally respects the band layout

of the infinite periodic material (infinite phononic system BG are reported in Fig.

6.32 as light grey rectangles). This confirms that wave interference mechanisms

responsible for the BG nucleation are still achieved within a confined periodic

region.

Further, it is worth pointing out that as the phononic region width increases

(i.e. a higher number of unit cells are introduced) frequency bands transition are

made sharper and, therefore, higher match with the band layout of the infinite

periodic material can be observed. On the other hand, if only one cell is used

the pressure sound level does not seem to be affected within the BG frequency

ranges, especially in the narrower ones. With two unit cells, the transmission

power starts to follow the frequency band layout even though a well definite

jump in the amplitudes within the BG is not clearly remarkable.

According to the parametric study, a good compromise between sound pres-

sure level attenuation and crystal dimensions can be established in 4 rows of

unitary cells, which grantees above 30 dB attenuation on the pressure sound

1It is worth noticing that this frequency value belongs to the second visible partial BG of
Fig. 6.28
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Freq = 800 Hz ! Total acoustic pressure field [Pa]

(a)

Freq = 800 Hz ! Total acoustic pressure field [Pa]

(b)

Freq = 800 Hz ! Total acoustic pressure field [Pa]

(c)

Freq = 800 Hz ! Total acoustic pressure field [Pa]

(d)

Figure 6.31: Influence of the number of unitary cells compounding the phononic
region. Pressure maps for hollow PVC cylinders placed in air via finite element
computation for 1, 2, 3 and 4 unitary cells, respectively.

level. It is worth noticing that 4 rows of cylinders are sufficient to achieve an

insulation power of more than 30 dB inside the predicted BGs.

6.4 2P-3D Phononic materials

In previous sections, the study of phononic materials mainly concerned 1-periodic

and 2-periodic systems under plane strain condition which implied the transversal
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Figure 6.32: Influence of the number of unitary cells compounding the phononic
region. Sound insulation index for hollow PVC cylinders placed in air is calculated
via finite element computation for different configurations.

dimension to be infinite. However, an increasing attention has been recently

pointed on 3D phononic slabs [73, 118, 119, 120], typically formed by etching

periodic holes in a solid matrix. In this case, elastic waves are scattered not only

by periodically arranged scatterers but also by the free surfaces of the slab itself.

This makes such systems naturally well suited for making waveguide in integrated

structure as the elastic wave will be confined within the thickness direction and

manipulated by the geometry of the structure in the plane of periodicity. Band

gaps in such structures are mainly determined by geometric parameters.

In this section, the plane strain assumption is removed and the influence

of the out-of-plane finite dimension on band gaps for 2P-3D systems will be

investigated via numerical analyses. In particular, in what follows, first, a 2P-

3D unitary phononic cell made of periodically arranged cross-holes air inclusions

in an aluminium matrix studied numerically by Wang et al. [121] is reviewed.

Afterwards, the influence of the slab thickness is investigated in the case of a 3D

steel/epoxy phononic system. Finally, the screening power of a 3D aluminium

phononic plate is examined.
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6.4.1 Dispersion diagram in a phononic slab

Consider a phononic slab consisting of a square lattice of unit cell made of cross-

like cylindrical holes embedded in an isotropic elastic matrix, as shown in Fig.

6.33. Be the square lattice characterized by the parameter a and by a finite

dimension h in the out-of-plane direction. Be the inclusion geometry defined by

two parameters b and c, defining the length and the thickness of the cross arms,

respectively. In such a configuration, elastic waves are supposed to propagate

along the xy plane, whilst the z-axis is along the slab thickness direction. Elastic

parameters used in the calculations are the same used in Ref. [121] and are here

reported for sake of clarity: ρ = 2700 kg/m3, E = 20 GPa and ν = 0.25.

The FE model and properly applied boundary conditions for the above de-

scribed phononic unitary cell are depicted in Fig. 6.33, whilst Fig. 6.34 reports

its band structure. The existence of the two complete band gaps predicted in

Ref. [121] are clearly confirmed. The lower BG extends approximately from 28

to 40 kHz and is located between the 6th and 7th dispersion curves; the upper

BG goes from 41.4 to 54 kHz and involves the 7th and 8th curves. It is also worth

noticing that the two BGs are almost connected, because the 7th curve is nearly

flat, i.e. scarcely dispersive.

Vibration modes are also calculated and reported in Figs. 6.35b-d together

with the computation domain discretization (Fig. 6.35a). They allow to infer that

the nucleation of the wide low-frequency BGs in the system is due to the local

resonance of the resonant elements with large lumps connected by the narrow

connectors.

6.4.2 Effects of the slab thickness on dispersion diagram

In this subsection the influence on the band diagram of the ratio tr = h/a between

thickness and lattice constant is investigated. Starting from a 2D plane strain

model, dispersion curves for different 3D models characterized by tr = 0.125,

tr = 0.25 and tr = 0.5 are investigated. The analysed phononic system is made

of circular steel inclusions in an epoxy matrix, as shown in Fig. 6.36a together

with its properly applied boundary conditions (Fig. 6.36b-d).

Dispersion diagrams are plotted in Fig. 6.37. In particular, it can be inferred

135



6. CHAPTER VI

  

a 

h 

a

b 

Aluminium 

c 

(a)

 

PBCx

(b)

  

PBCy 

(c)

 

FBCz 

(d)

Figure 6.33: Unit cell for the phononic material made of cross-like cylindrical
holes in aluminium matrix: (a) geometry description; (b) periodic boundary
condition along x-direction (PBCx); (c) periodic boundary condition along y-
direction (PBCy); free boundary condition along z-direction (FBCz).

that under the 2D plane strain assumption, all the modes involving out-of-plane

displacements are inhibited (Fig. 6.37a). This allows a large unique band gap

approximately ranging from 80 kHz up to 200 kHz. As the third dimension is

taken into account, much more modes are visible in the diagram in the same

frequency range. In fact, in a 3D model, flexural modes are not inhibited any

more. As a consequence, narrower band gaps are distinguishable (Fig. 6.37b-d).

Finally, it is worth noticing that increasing the ratio tr BGs undergo a significant

enlargement (see Fig. 6.37c-d) which tends to re-stablish the dispersion diagram

of Fig. 6.37a, apart from the almost non-dispersive mode splitting the BG.
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Figure 6.34: Band structures of cross-like cylindrical holes embedded in an
isotropic elastic solid slab in a square lattice.

6.4.3 FE wave propagation in a 3D phononic system

Theoretically speaking, the above analyses have shown that perfect filtering prop-

erties exist in an infinite, undamped periodic structure. However, in real appli-

cations, geometries finiteness must be taken into account also in the in-plane

dimensions. To this end a phononic system composed of a PVC plate hosting a

phononic region, as shown in Fig. 6.38, in analysed.

The phononic region is made of 2P-3D cross-holes in a specific portion of a

1000 × 500 × 12 mm3 PVC plate, as shown in Fig. 6.38. A schematic of the

unitary cell constituting the phononic region is also reported in Figs. 6.39, where

lattice parameter a = 20 mm, cylinder radius c = 3 mm, cross-length b = 12

mm and plate height H = 12 mm are also indicated. Material properties are

ρPV C = 1430 kg/m3, EPV C = 3 · 109 Pa, νPV C = 0.4 and ρAir = 1.25 kg/m3,

cAir = 343 m/s for PVC and air, respectively.

First, BGs for the described unitary cell are computed and presented in Fig.

6.40. The horizontal axis reports the reduced wavenumber k∗ = ka/π in the three

high symmetry directions M − Γ −X of the first irreducible Brillouin zone and
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(a) (b)

(c) (d)

Figure 6.35: (a) Mesh discretization for the unit cell and (b-d) vibration modes
(VM) in the first Brillouin zone: (b) VM belonging to the Γ − X path, charac-
terized by k = (157, 0) m−1, f = 9.061 kHz; (c) VM belonging to the X − M
path, characterized by k = (0, 157) m−1, f = 4.099 kHz; (d) VM belonging to
the M − Γ path, characterized by k = (157, 157) m−1, f = 19.18 kHz.

the vertical axis reports the frequency values in Hz. Curves are dispersive for

the majority of the available frequencies. However, the existence of a relatively

low-dispersive curve in the band structure is also noticeable at approximately

30 kHz. The plot shows unambiguously the existence of 2 complete BGs in the

considered 0 − 50 kHz frequency range. Directional BG are barely present.
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Figure 6.36: Schematic representation of the PM unit cell (circular steel cylinders
embedded into a background epoxy matrix) and set boundary conditions: (a) ge-
ometry description; (b) periodic boundary condition along x-direction (PBCx);
(c) periodic boundary condition along y-direction (PBCy); free boundary condi-
tion along z-direction (FBCz).

To qualitatively and quantitatively verify the screening power of the predicted

BGs, wave propagation is studied in the finite phononic system presented in Fig.

6.38. The basic idea of the analyses is to excite dispersive Lamb waves in the

system at point E by means of an imposed displacement (orthogonally to the

plate). In-plane as well as out-of-plane displacements are then received at the

two acquisition points A and B as functions of time. To have a direct measure of

the screening power of the designed phononic region, acquisition points have been

set equidistant from the input source E and located in an ordinary portion of the

system (point A) as well as inside the screened area (point B). After that, signals

are Fourier transformed and their frequency content is compared to highlight the
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Figure 6.37: Dispersion curves for a PM made of circular cylindrical inclusions
in an epoxy matrix. (a) 2D model under plane strain assumption; (b) 3D model
with tr = 0.125, (c) 3D model with t = 0.25. (d) 3D model with tr = 0.5.

differences of the two frequency responses.

Two input signals are provided into the simulations, according to the band

structure of Fig. 6.40. First, (i) a pulse of 2 sinusoidal cycles centred at 50

kHz and modulated by a Hanning window (Fig. 6.41a) and then (ii) a pulse of

21 sinusoidal cycles centred at 27.5 kHz and modulated by a Hanning window

(Fig. 6.41b). Such a typologies of pulses have been chosen in order to highlight

the filtering capabilities of the phononic portion, emphasizing the pass-band and

band gaps frequency ranges.

Figs. 6.42 and 6.43 show stress (Von Mises) maps for both broad and narrow

band excitations. They clearly show that waves with a frequency content falling

outside the BG essentially propagate through the phononic region (Fig. 6.42),

140



6. Numerical modelling of stress waves in metamaterials

 

E

A 

B 

L 

L 

L 

L 

L 

L 

Figure 6.38: Schematics of the phononic system composed of an ordinary PVC
plate hosting a phononic region screening a specific region. Excitation point (E)
and receiving points (A and B) are highlighted.
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Figure 6.39: (a) Isometric and (b) in-plane view of the unitary cell composing
the phononic part of the system.
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Figure 6.40: Dispersion map for the unit cell presented in Fig. 6.39.

whilst when the frequency content of the wave is centred inside the BG, the

phononic region inhibits the wave propagation and a shadow zone (“blind area”)

is formed behind the periodic inclusions (Fig. 6.43).

To quantify numerically the screening power of the designed phononic system,

displacements for the broadband excitation case at points A and B in the x ≡ 1,

y ≡ 2 and z ≡ 3 directions, as well as their energy content in the frequency domain

are shown in Figs. 6.44 - 6.46. It is worth noticing that at low frequencies (1 - 20

kHz), the phononic system behaves as a homogeneous material and acoustic wave

propagation is permitted through the periodic structure. This is due to the lattice

parameter being much smaller than the relevant wavelength. As the frequency

content of stress waves approaches the BG frequency range, i.e. the wavelength

of the incoming wave is comparable to the lattice parameter, the elastic wave

is severely attenuated due to multiple scattering effects. Again, at frequencies

higher than the BG upper limit, i.e. f ≃ 36 kHz, the phononic system lattice

parameter is much bigger than the wavelength of the propagating wave which is

free to propagate through the phononic system, as the wave see the system as

individual scatterers.
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Figure 6.41: Excitation displacements: (a) 50 kHz centred pulse of 2 sinusoidal
cycles modulated by a Hanning window and (b) 27.5 kHz centred pulse of 21
sinusoidal cycles modulated by a Hanning window.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.42: Simulated Von Mises stress for cross-rounded holes phononic plate.
Frequency excitation was centred at 50 kHz (therefore covering frequencies even
outside the band gap). Snapshots are taken at: (a) t = 1.2 · 10−4 s, (b) t =
2.4 · 10−4 s, (c) t = 3.6 · 10−4 s, (d) t = 4.8 · 10−4 s, (e) t = 6 · 10−4 s and (f)
t = 12 · 10−4 s.
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Figure 6.43: Simulated Von Mises stress for cross-rounded holes phononic plate.
Frequency excitation was centred at 27.5 kHz (therefore covering frequencies even
outside the band gap). Snapshots are taken at: (a) t = 3·10−4 s, (b) t = 4.8·10−4
s, (c) t = 6.6 · 10−4 s, (d) t = 8.4 · 10−4 s, (e) t = 10 · 10−4 s and (f) t = 20 · 10−4
s.
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Figure 6.44: Normalized displacement u1 at points A and B versus time (left)
and its Fourier spectrum (right). The complete band gap is also highlighted as
the light grey region.
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Figure 6.45: Normalized displacement u2 at points A and B versus time (left)
and its Fourier spectrum (right). The complete band gap is also highlighted as
the light grey region.
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Figure 6.46: Normalized displacement u3 at points A and B versus time (left)
and its Fourier spectrum (right). The complete band gap is also highlighted as
the light grey region.

A comparison of the transmission power spectrum against the computed BGs

for the infinite phononic system is also made in Figs. 6.44b - 6.46b. In general, the

FE calculations give BGs of larger width w.r.t. the infinitely periodic structure.

This difference could be attributed to the finite number of scatterers used in the

FE models and the subsequent diffraction effects around the edges of the phononic

region. However, the BGs overall locations in the frequency domain are in good

agreement with those predicted for the infinite PM.

Furthermore, it is useful to remark that numerical simulated measurements of

the transmission spectra resulted in the observation of a unique large total band

gap extending from 23.32 to 35 kHz instead of two band gaps ranging from 23.5

to 31 kHz and from 31.5 to 35 kHz. This directly derives from the nature of the

excitation, which was supposed orthogonal to the plate.
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Chapter 7

Experimental applications

7.1 Phononic materials in the ultrasonic range

7.1.1 Introduction

Lamb waves propagation in plate-like phononic structures [76] recently received

increasing interest, especially in conjunction with the use of high-frequency piezo-

electric transducers (PZTs) [8]. Experimental work in this context has confirmed

the existence of directional (partial) as well as complete band gaps for Lamb wave

modes in phononic plate structures. In addition, results of these studies proved

that phononic plates of finite thickness with only a bi-dimensional periodicity are

able to guide elastic waves along desired paths [84].

To date experimental evidence of BGs in phononic plates with lattice constants

ranging from millimetre to micrometer scales exists. In this study, complete BGs

for Lamb waves with lattice constant of the centimetre order is presented. In

particular, a 2P-3D phononic plate with cross-like holes, as the one modelled in

Section 6.4.3, is manufactured and experimentally tested.

Ultrasonic and laser vibrometric measurements have been performed and com-

pared to numerically predicted results with a twofold scope, i.e. (i) validating the

numerical results and (ii) proving the existence of BGs in the designed sample.
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7.1.2 Sample description

A Polyvinyl chloride (PVC) plate of dimensions 1000× 500 × 12 mm3 is initially

considered. The plate has been subjected to a machining process in which 160

hollow rounded cross-cylinder inclusions have been drilled as shown in Fig. 7.11.

The holes are distributed over a square frame of width 4 × a = 80 mm (where

a = 20 mm is the lattice constant). An unaltered area of 120 × 120 mm2 is

therefore left in the centre of the phononic region. As in the numerical study, the

radius of the cylindrical inclusion is c = 3 mm and its cross-length b = 12 mm,

resulting in a filling fraction of approximately f = 41%. For the sake of clarity,

the unit cell is schematically reported in Fig. 7.2.

Nominal material properties are ρPV C = 1430 kg/m3, EPV C = 3 · 109 Pa,

νPV C = 0.4 and ρAir = 1.25 kg/m3, cAir = 343 m/s for PVC and air, respectively.

The choice of PVC and air as constitutive materials derives from the strong

contrast in their densities and elastic constants [87].

7.1.3 PZT in pitch-catch configuration

Three PZT PIC-181 transducers (10 mm diameter, 0.63 mm thickness) have been

bonded to the plate using Phenylethyl Salilcilate2 in positions A, B and E, as

shown in Fig. 7.1. The inter-distances are set ĀE = ĒB = 250 mm. It must be

noted that the transducer in position A is placed within the phononic region.

Guided Lamb waves are generated by means of the PZT at position E and

received at both PZTs located in A and B.

Sine function with 21-cycle and Hanning3 modulated, with central frequency

ranging from 10 to 80 kHz have been used as the input signals. These kind of

pulses have been preferred in order to highlight the filtering capability of the

1In the practical realization of the specimen, a tolerance of 0.1 mm was respected. Gen-
erally speaking, introduction of such irregularities in the lattice lightly alter the acoustic wave
propagation, therefore, modifying the band structure of such materials. In some cases further
attenuation can be introduced.

2Phenylethyl Salilcilate is a white crystalline powder, derived from salicylic acid. Its melting
point is around 40◦ and it recrystallizes as it cools.

3The Hanning window, commonly used in ultrasonic non-destructive evaluation (NDE)
applications, is applied in order to reduce energy dispersion away from the central excitation
frequency.
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(a)

 

E A 
B 

L 

L 

L L L L 

(b)

Figure 7.1: In-plane view of the phononic plate constituted of 160 hollow rounded
cross-cylinder inclusions drilled into a 1000 × 500 × 12 mm3 Polyvinyl chloride
(PVC) matrix: (a) experimentally tested specimen and (b) numerical model.
Emitting/Receiver transducers are also visible.
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Figure 7.2: (a) Isometric and (b) in-plane view of the unitary cell constituting
the phononic region of the plate.

phononic portion and to avoid energy dispersion due to broadband excitation.

As an example, Fig. 7.3 shows time history, Hanning modulation and frequency

content of a probing pulse centred at 27.5 kHz.

The experimental apparatus, shown in Fig. 7.4, consists of an arbitrary wave-

form function generator by Keithley, and a GA-2500A Gated RF amplifier by

Ritec used to amplify the input signal up to Vpp = 200 V. Signals are acquired

by a 4-channel LeCroy LC534AL oscilloscope. A personal computer controls the

equipment and allows data to be processed.

As the transmitted signals have been measured under the same experimental

conditions, a direct comparison between the transmitted intensities can be made.

Figs. 7.5 - 7.8 show typical example of actuated (PZT - position E) and detected

(PZTs - positions A and B) signals for actuation frequencies centred at 15, 27.5,

42.5 and 51 kHz. Such frequencies correspond to pre-, in- and post-band gap

frequencies. In addition, in Figs. 7.5b - 7.8b the signals spectra are provided.

Effects on the transmitted pulses of multiple scattering inside the phononic region

are clearly visible both in the time and frequency domains. A comparison between

the signals allows to infer that: (i) the waves propagating from E to A experience

higher amplitude reduction w.r.t. the waves propagating in the ordinary portion

of the plate (from E to B); (ii) every kind of wave propagation with a frequency

content falling inside the numerically predicted BG is effectively inhibited in the

phononc region; (iii) the wave travelling within the phononic region undergoes to

a heavier distortion and to a time shift ∆tg if compared to the signal acquired in
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Figure 7.3: Example of time history for a 21 cycles sine pulse, its Hanning mod-
ulation and its frequency content. The probing pulse is centred at 27.5 kHz.

the ordinary PVC plate (see Fig. 7.9).

Finally, the maximum of the frequency responses related to actuation pulses

driven from 10 to 80 kHz at both A and B positions, normalized w.r.t. the energy

content of the input signals, are represented in Fig. 7.10. Thus, the diagram

summarizes the screening properties of the phononic region exhibiting a well

defined drop in intensity between 22 and 36 kHz (red line with square markers)

if compared to the transmission spectrum of the ordinary PVC plate (blue line

with circular markers). Indeed, a very good agreement between experimental and

numerical results is found. In the BG frequency range only noise level intensity

is measured at the sensor located in the screened region. Furthermore, it can be

noted as some intensity peaks appear around 42.5, 51 and 67 kHz in the phononic

portion of the plate.

7.1.4 Laser vibrometer experiments

In this test, elastic guided waves were induced using a using a SonoxR© ceramic

piezoelectric disk, (diameter 10 mm) by CeramTecR©. The transducer was glued
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Figure 7.4: Measurement setup adopted in the PZT pitch-catch experiment to
extract the transmission coefficient in the PVC phononic plate.

to the surface of the investigated sample using commercial super-glue at point E

of Fig. 7.1. The actuation signals used both in the numerical simulations (see

Section 6.4.3) and in the pitch-catch experiment have been considered.

A 3D laser scanning vibrometer PSV 400 by PolytecR© was used to perform the

out-of-plane measurements of the velocities over the target area (see Fig. 7.11b).

The pulse excitation was fed from a TGA1241 generator by Thurlby Thandar

Instruments through an EPA-104 amplifier by Piezo SystemsR© Inc, inducing a

200 Vpp signal. In order to improve measurements accuracy the investigated

specimen was covered with self-adesive retroreflective film by ORALITER©. This

was aimed at improving the laser vibrometer signal level in each measurement

point regardless of the angle of incidence of the measurement beam on the surface

being measured [1].

Fig. 7.11 presents a scheme of the experimental apparatus. A scanning mea-
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Figure 7.5: (a) Time waveforms (RF signals) detected by the sensors at 15 kHz.
(b) Power spectrum of the excitation and acquired signals.
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Figure 7.6: (a) Time waveforms (RF signals) detected by the sensors at 27.5 kHz.
(b) Power spectrum of the excitation and acquired signals.
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Figure 7.7: (a) Time waveforms (RF signals) detected by the sensors at 42.5 kHz.
(b) Power spectrum of the excitation and acquired signals.
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Figure 7.8: (a) Time waveforms (RF signals) detected by the sensors at 51 kHz.
(b) Power spectrum of the excitation and acquired signals.
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Figure 7.9: Top and bottom panels present time waveforms for a 21 cycles Han-
ning modulated pulse centred at 42.5 kHz propagating through the ordinary PVC
plate and through the phononic region, respectively. A significant time delay can
be observed when the wave propagates in the phononic region of the plate.

surement head is connected to a data acquisition system and steering circuit.

A synchronisation cable connects the digital generator with the steering circuit

through the amplifier that feeds the inducing signal to the piezoelectric element.

Additionally, a signal from the generator is fed into the data acquisition system. A

computer system integrated with the data acquisition system and steering circuit

provides communication with the user and allows measurements to be processed

[1].

In the following, out-of-plane velocity maps for exciting pulses with central

frequencies corresponding to 15 and 27.5 kHz are presented in Fig. 7.12. As it

can be seen, the experimental behaviour reproduces quite well the numerically

predicted behaviour. In particular, the expected “blind” area inside the phononic

region is clearly visible in Fig. 7.12b.
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Figure 7.10: Transmission power spectrum as a function of the frequency. The y
axis is normalised w.r.t. the input signal energy content. The light grey rectan-
gular box denotes the numerical predicted band gap width.

7.1.5 Results and discussion

Existence of band gap for Lamb waves concerning a phononic plate of finite thick-

ness with rounded cross-like holes recently numerically investigated is here exper-

imentally validated through measurements of the transmission power spectrum.

Screening potentials of such a phononic material have been highlighted.

Experimental results are in very good agreement with the numerical ones lo-

cating accurately BG frequency range, capturing the dropping trend of the trans-

mission power spectrum. In fact a relatively large complete band gap between 22

and 36 kHz was observed.

It has been also noted that dispersion introduced by the phononic region is

very strong, resulting in a dramatic temporal spreading of the incident acoustic

pulse, if compared with waves propagating in the ordinary PVC plate.

It could be interesting to extend the experiments to other geometries of prac-

tical interest, and especially to weakly disordered phononic materials, in order to

improve the understanding of acoustic wave localization.
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(a)

 

(b)

Figure 7.11: Representation of the experimental setup. A scanning measurement
head is connected to a data acquisition system and steering circuit. A synchroni-
sation cable connects the digital generator with the steering circuit through the
amplifier that feeds the inducing signal to the piezoelectric element. Additionally,
a signal from the generator is fed into the data acquisition system. A computer
system integrated with the data acquisition system and steering circuit provides
communication with the user and allows measurements to be processed.

7.2 Phononic materials in the audio range

7.2.1 Introduction

The majority of both theoretical and experimental studies regarding phononic

materials concern the ultrasonic transmissions, which effectively involves the eas-

iest frequency range to study and observe the anomalous phenomena of band

gaps, due to the highly directive potentials of ultrasounds. [122].

However, Mart́ınez-Sala et al. [78] found that phononic materials tunability

allows band gaps nucleation also in the audible frequency range. Since the Eusebio

Sempere sculpture, made of a periodic array of acoustic scatterers (solid cylinders)

embedded in a homogeneous matrix material (air) proved to exhibit partial band
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(b)

Figure 7.12: Measured out-of-plane velocity maps for cross-rounded holes
phononic plate. Frequency excitations were centred at: (a) 15 kHz, i.e. out-
side the band gap and (b) 27.5 kHz, i.e. inside the band gap.

gaps also in the acoustic frequency range, a large number of theoretical and

experimental investigations have been carried out on the topic [86, 88, 112, 123].

These studies have shown the existence of a pronounced sound attenuation

band strongly connected with a large acoustic impedance ratio between the scat-

terers and the matrix material. The band width and depth vary with the density

of the scatterers inside the sonic crystal [7].

The existence of such acoustic band gaps is significant for the design of acoustic

wave filters and guides. Usually the goal in the design of sound insulation material

is to achieve strong sound attenuation over a large frequency range. However,

for application as acoustic filters or noise suppression, materials that impede the

propagation of acoustic waves only at selected frequency bands may be desirable,

as well [124].

In what follows, evidence of sound attenuation bands in the audible frequency
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range for a 2P-3D array of hollow cylinders embedded in air are experimentally

investigated. Sound insulation index is computed and compared with numerical

results for different array geometries in order to validate the numerical predictions.

7.2.2 Sample description

Fig. 7.13 presents both numerical model and tested specimens. The unitary cell

of the phononic sample consists of PVC1 hollow circular cylinder (R = 80 mm,

t = 3.2 mm) immersed in air. Cells are distributed on a square lattice with

periodicity a = 0.2 m. The phononic system is made of 15 × n cylinders, placed

orthogonally to the incident wave (see Fig. 7.13b-c). The n layers extend in the

y-direction, resulting into a n×a m width. Pipes are placed manually within two

polystyrene supports (visible at the bottom and top of the cylinders) helping the

operators to respect the phononic lattice.

7.2.3 Measurements description

A loudspeaker is placed facing the first row of phononic barrier under test and

an array of microphones on the opposite side. The acoustic emitter sends a test

sound wave that is partly reflected, partly transmitted, and partly diffracted by

the barrier. In particular, the loudspeaker, positioned at a distance LLs = 1

m away from the phononic region2, generates powerful ultrasonic carrier waves

sweeping from f = 0.2 up to f = 3 kHz frequency range3. The microphone, placed

at Ls = 0.25 m downstream the phononic crystal, receives a signal that, suitably

post-processed, gives an overall impulse response. This includes the transmitted

component, travelling from the sound source through the noise barrier to the

microphone, the component diffracted by the top edge of the screen and other

“parasitic” components.

In particular, for the test to be meaningful, the diffraction from the lateral

1Scatterers are made of PVC in reason of the large impedance contrast between PVC and
air, which ensures the hypothesis of infinite rigidity of inclusions w.r.t. the matrix material to
be respected.

2It is usually accepted that after such a distance, the plane wave nature of the beam is
established before the wave-front reach the barrier.

3Such a frequency range has been chosen in order to avoid non-linear effects.
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Figure 7.13: (a) Numerical model and experimental set-up for the (b) 2-period
long and (c) 4-period long specimen consisting of hollow circular cylinders arrays.
Scatterers are 3 m long with an external radius Re = 80 mm and a thickness of 3.2
mm. The acoustic wave generator and acquisition microphones are also visible.
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Figure 7.14: (a) Experimental response for the free-field measurement and (b-d)
the experimental waveforms at the three acquisition points M −P1, M −P2 and
M − P3 for the case of n = 3-period long in the y direction barrier. Amplitudes
are normalised to the maximum registered value of each signal.

edges should be sufficiently weak and delayed. The transmitted sound pressure

wave is extracted by the global impulse response applying a suitable time window.

If the measurement is repeated without the noise barrier between the loudspeaker

and the microphone (this is called “free-field” measurement), the direct compo-

nent alone can be sampled. The power spectra of the direct “free-field” component

and the transmitted component, corrected to take into account the path length

difference of the two signals, gives the basis for calculating the transmission loss

(or sound insulation index, as defined in Section 6.3.2.5).

Four phononic arrangements have been considered varying n from 1 to 4 rows.

For each case, measurements are repeated at three points placed on an ideal grid
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5 cm horizontally equally spaced (M − Pi scanning points in Fig. 7.13a, with

i = 1, 2, 3). The final sound insulation index is the logarithmic of the results in

the acquisition positions.

7.2.4 Results and discussion

Acoustic pressure time-transient responses are recorded at Ls = 250 mm from

the last pipes row (see Fig. 7.13) and presented in Fig. 7.14. Incoming waves are

clearly visible in the responses within 1.5 × 10−2 s, but nothing can be inferred

about the filtering phononic properties.

Therefore, the processing step described in Chapter 6 is exploited to highlight

the screening power of the phononic barrier under test. Such a processing leads

to the sound insulation indices reported in Figs. 7.15 and 7.16.

Now, the processed signals clearly show the screening power of the phononic

barrier. In general, it can be inferred that a good match between numerical pre-

dictions and experimental results has been found, especially for what concerns

the first directional BG, where at some frequencies a superimposition of the sound

insulation index is observed. As numerically predicted, the first BG has a central

frequencies approximately of 800 Hz. Finally it is worth remarking that exper-

imental results confirm the numerical prediction of only three rows needed to

achieve an insulation index of approximately 30 dB.
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Figure 7.15: Sound insulation index comparison between numerical and exper-
imental analyses. Results are presented for (a, c, e) 1-period long and (b, d, f
2-period long) phononic barrier for (a, b) M − P1, (c, d) M − P2 and (e, f)
M − P3 acquisition points, respectively.
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Figure 7.16: Sound insulation index comparison between numerical and exper-
imental analyses. Results are presented for (a, c, e) 3-period long and (b, d, f
4-period long) phononic barrier for (a, b) M − P1, (c, d) M − P2 and (e, f)
M − P3 acquisition points, respectively.
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Chapter 8

Seismic shields

8.1 Introduction and state of the art

Reduction or isolation of vibrations for required area enhances structural func-

tionality and safety against natural and man-made induced hazards. This is

particularly important in strategic facilities such as hospitals, emergency centres,

skyscrapers, energy plants, long span bridges and so on. Therefore engineers and

researchers have devoted considerable attention to this topic in the last decades

[125].

Elastic waves, including body waves (BWs) and surface waves (SWs), can

be generated by several different sources. As examples, some physical sources

are indicated in Tab. 8.1 together with the wave typology and its frequency

content that such sources produce. Among all the possible natural and man-

made causes (trains, tunnels, heavy equipment), certainly earthquakes are the

most devastating disasters that can induce building to vibrate. Earthquakes are

the result of sudden release of huge amount of energy in the Earth’s crust that

produces seismic waves with large amplitudes and low frequencies (see Tab. 8.1).

Table 8.1: Waves behaviours and frequency range for various sources.
Physical source Generated waves Frequency range [Hz]
Highway/rail Surface/Body 3 - 40
Buried explosions Body 1 - 80
Seismic waves Surface/Body 0.1 - 30
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Seismic waves are a kind of inhomogeneous acoustic wave with various wave-

lengths. Mainly two types of seismic waves exist: body waves, divided into

Primary (P) and Secondary (S), and surface waves, Rayleigh (R) and Love (L).

Surface waves travel slower than body waves and the amplitudes decrease expo-

nentially with the depth. They travel about 1 − 3 km/sec with lots of variety

within the depth of a wavelength. The wavelengths are in the order of 100 m

and the frequencies are about 10− 30 Hz, that is, low and just below the audible

frequency. However, they decay slower than body waves and are most destructive

because of their low frequency, long duration, and large amplitude [126].

Rayleigh waves can exist only in an homogeneous medium with a boundary

and have transverse motion. Earthquake motions observed at the ground surface

are mainly due to R waves. On the other hand, L waves are polarized shear waves

guided by an elastic layer. These waves are the main cause of horizontal shifting

of the Earth during earthquakes. L waves have both longitudinal and transverse

motion and this is what most people feel directly during earthquakes [126, 127].

It is the collapse of bridges, dams, power plants, and other structures that

causes extensive damage and loss of life during earthquakes. Therefore, aseismic

capabilities are highly relevant to public safety and the design of buildings and

other structures capable of withstanding earthquake events has been the focus of

research by engineers for many decades. Although a variety of isolation systems

have been developed and shown to be effective in tests, some problems still exist

with these systems and a commonly accepted method for the design of seismic-

resistant buildings and structures has not been developed up to the present time

[128].

Traditional strategies commonly accepted by the engineering community as

means for decreasing or eliminating the effect of ground vibration on buildings

include (i) passive, (ii) active, (iii) hybrid and (iv) semi-active systems.

(i) To nowadays, the most widely diffused isolation strategy is based on passive

control devices. The basic idea of a passive control system is to increase the energy

dissipation capacity of a structure through dissipative devices placed either within

a localized isolation system or diffused over the structure. In such devices reactive

forces are imparted to the structure in response to the motion of the structure

itself. A passive control system does not require any external power source.
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This implies that energy transmitted to the structure cannot be increased by

the passive control devices. Passive supplemental strategies can include base

isolation systems, viscoelastic dampers, and tuned mass dampers, among the

others. Their main drawback is that these passive-device methods are unable

to adapt to structural changes and loading conditions. For example, passively

isolated structures in one region of Los Angeles that survived the 1994 Northridge

earthquake, may well have been damaged severely if they were located elsewhere

in the region [129].

(ii) Active control systems are capable to apply forces to the structure in a

prescribed manner. These forces can be used to both add and dissipate energy

in the structure. Signals sent to the actuators are function of the structure

response measured by an active feedback control system by means of physical

(optical, mechanical, electrical, chemical, and so on) sensors. Prestressed tendons

to stabilize structures, control of tall buildings by cables attached to jacks and

use of systems which can provide increased strength to the structure to counter

exceptional over-loading are typical examples of active structural control systems

[130, 131].

(iii) Afterwards, hybrid control systems are obtained by the combination of ac-

tive and passive control systems. Because multiple control devices are operating,

hybrid control systems can alleviate some of the restrictions and limitations that

exist when each system is acting alone. Thus, higher levels of performance may

be achieved. Additionally, the resulting hybrid control system can be more reli-

able than a fully active system, although it is also often more complicated [129].

A structure equipped with distributed viscoelastic damping supplemented with

an active mass damper on the top of the structure, or a base isolated structure

with actuators actively controlled are examples of hybrid control systems.

(iv) Semi-active control systems have only very recently been considered for

structural control applications. A semi-active control system generally originates

from a passive control system which has been subsequently modified to allow

for the adjustment of mechanical properties. For example, supplemental energy

dissipation devices which dissipate energy through shearing of viscous fluid and

sliding friction have been modified to behave in a semi-active manner. The me-

chanical properties of these systems may be adjusted based on feedback from the
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excitation and/or from the measured response. As in an active control system,

a controller monitors the feedback measurements and generates an appropriate

command signal for the semi-active devices. As in a passive control system, how-

ever, the control forces are developed as a result of the motion of the structure

itself. The control forces are developed through appropriate adjustment of the

mechanical properties of the semi-active control system. Besides, the control

forces in many semi-active control systems primarily act to oppose the motion of

the structural system and therefore promote the global stability of the structure.

Semi-active control systems are a class of active control systems for which the

external energy requirements are orders of magnitude smaller than typical active

control systems. Typically, semi-active control devices do not add mechanical en-

ergy to the structural system and are often viewed as controllable passive devices

[132, 133].

Smart controlled systems (active, semi-active and hybrid control systems) are

appealing and have good potential for isolation, but they require sensors and ac-

tuators with feedback control loops, which make them more complex than purely

passive systems. While research on smart controlled systems is developing, pas-

sive isolation systems may be still explored in order to provide a new class of

passive isolation system offering higher performance keeping design and imple-

mentation simplicity in comparison with active or semi-active systems.

8.2 A potential passive seismic isolation strat-

egy

Based on recent developments in Solid-State Physics, a new idea for passive iso-

lation has been proposed. Differently from the traditional technologies briefly

summarized above, this method makes use of phononic materials (PMs) in order

to shield structures from seismic waves [14, 87, 92, 94, 134].

In brief, Fig. 8.1 shows how in the same PM if the frequency of an incident

wave is outside the BG, the wave propagates through the PM and is transmitted

to the other side (Fig. 8.1a - top). In contrast, if the incoming elastic wave

frequency is within the BG, it is not allowed to propagate through the PM and
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the energy is partially trapped and partially reflected (Fig. 8.1a - bottom). Sim-

ilarly, Fig. 8.1b illustrates wave propagation in both periodic and non-periodic

structures from a point source [135]. The source generated wave (and energy),

supposed in the BG frequency range, cannot propagate in the periodic struc-

ture on the left side meanwhile it can, however, propagate in the homogeneous,

non-periodic structure on the right side of the figure [135, 136].

The origin of phononic BGs lies in the multiple scattering of a propagating

wave at the interfaces of the inclusions (denoted by circles in Fig. 8.1). The scat-

tering leads to the appearance of secondary waves interfering with each other.

Constructive interference results in formation of propagation bands, whereas de-

structive interference causes BGs. These gaps in the frequencies make PMs acting

as elastic reflectors.

When the aforementioned interferences are related to the Bragg scattering

[137], these types of periodic panels are named “Bragg-scattering periodic panels”.

Scalability of the equations that governs wave propagation allowed researchers

to focus their efforts on possible applications of periodic materials to civil engi-

neering structure. In fact, any wave phenomena that appears for a certain range

of wavelengths and length scale can be extrapolated to other systems whose order

length is scaled up or down with respect to the previous one. In other words,

if we halve the length scale we double the energies [138]. From the experimen-

tal side, this property allows to work with manageable samples in a laboratory

environment.

Driven by the aforementioned developments of metamaterial science, some

researchers introduced a new seismic isolation system called periodic foundation

(PF). PF, differently from traditional base isolation systems, which cause a shift in

the structure fundamental vibrating frequency, reduces the seismic response of the

structure by means of frequency BGs. The influence of physical and geometrical

parameters such as density and elastic modulus as well as filling fraction of the PF

and its materials on the BGs were investigated, and different designs proposed.

Bao et al. [139] studied the dynamic responses of a seven-storey frame struc-

ture with three different foundations, including the so-called PFs. Numerical

simulations proved that seismic waves are not able to propagate in the periodic

foundation without being attenuated when the frequencies of the seismic wave fall
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Figure 8.1: Phononic bandgaps. An elastic wave is incident on the surface of a
two-dimensional PM made of cylinders arranged in a triangular lattice. (a) When
the frequency of the incoming wave is not inside the BG, the wave is transmit-
ted through the structure (top). If the elastic wave has a frequency within the
gap, its propagation is not permitted any more within the PM and it is reflected
backwards (bottom). (b) Numerical calculation showing an ultrasonic wave prop-
agating within the periodic metallic composite made of pure aluminium (right)
and aluminium-mercury ultrasonic materials (left). The vertical line indicates
the boundary between the two regions. The mercury cylinders are indicated by
superimposed circles.

within the band of frequency gap of the foundation. Thus, the dynamic responses

of the supported structure will be greatly reduced.

Xiang et al. [140], based on previous analytical and numerical results, fabri-

cated a scaled model frame with a periodic foundation and experimentally proved

strong harmonic vibration attenuations when the exciting frequencies felt into the

BGs, exploiting shake table tests.

Finally, elastic wave attenuation by phononic structure directly built in the

ground has been demonstrated both numerically by Alagöz et al. [141] and ex-

perimentally by Brûlé et al. [142].

Even though these works demonstrated that periodic materials have a great
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potential in future applications for seismic isolation, employing the hole-ground

structures proposed by Alagöz et al. [141] means involving very large areas, in

the order of thousands of meters. On the other hand, Brûlé et al. [142] designed

geometries characterized by only partial BG, i.e. for waves propagating in a

specific direction, and involved small wave intensities, compared to the earthquake

intensities.

The purpose of the present Chapter is to investigate the potential of using PM

as seismic barriers. In particular, a parametric study is conducted to achieve a

frequency BG in the desired frequency range (1-30 Hz, typical of seismic waves).

After that, the benefits of the application of periodic theory in solving the prob-

lems of seismic isolation are numerically demonstrated. It is shown that the

present findings allow to decrease dramatically the induced seismic displacements

to structures (more than 10 times w.r.t. an ordinary structure). For multiple rows

of piles, results obtained for both the frequency domain and the time domain show

that strong vibration attenuation is found in the range of the calculated BGs. The

screening effectiveness of periodic pile barriers and the effect of pile parameters

are also discussed.

8.2.1 Strategy overview

In the proposed strategy, the ground is considered the matrix of the PM and it

will be referred to as “hosting material”. Periodic inclusions are directly built in

the ground, just beneath the building foundations, as shown in Fig. 8.2.

Researchers dealing with pile barriers focused their attention on the develop-

ment of different theoretical as well as numerical methodologies to analyse the

performance of discontinuous pile barriers. However, in most cases, only a single

row of piles was investigated and even when multiple rows of piles were consid-

ered, the periodic nature of rows of piles was not taken into account and the

concept of dispersion curves was not properly discussed [143, 144].

Here, the pile-soil system consists of piles arranged in a periodic configuration

and referred as “phononic barrier” or “periodic structures”. Geometry and me-

chanical parameters of the inclusions define the dispersion curves for the periodic

pile-soil system allowing the calculation of the attenuation zones (AZs) frequency
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SEISMIC WAVES

Figure 8.2: Schematic illustration of the metamaterial barrier protecting a strate-
gic building from seismic waves.

range where the elastic waves experience a strong attenuation.

To reveal the inherent properties existing in a complicated system such as a

3D pile soil system, some simplifications and assumptions must be introduced.

In the present work, it is assumed that both soil and concrete are homogeneous

linearly elastic materials that are perfectly bonded at the interface. In practical

engineering, it may be better that the soil is described as inelastic-plastic mate-

rial. However, goals of this study do not include the estimation of the distribution

of stress and strain fields in the ground, which is only modelled to support elastic

waves causing structure vibration. Elastic waves are assumed to be plane waves

and impacting the periodic piles embedded in the soil from vertical direction.

Thus, plane-strain assumption is reasonably introduced [125, 145]. Material me-

chanical parameters adopted in the present numerical simulation are provided in
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Figure 8.3: (a) Top view of the infinite pile-soil system. (b) First Brillouin zone
and irreducible Brillouin zone.

Tab. 8.2. They are assumed to be constants and stress independent.

Table 8.2: Mechanical properties of the materials used in the analysis. Density
ρ, Young modulus E, Poisson ratio ν, longitudinal cL and transverse cT speeds
of sound are given.

Material ρ E ν cL cT
[kg m−3] [Pa] [/] [ m s−1 ] [ m s−1 ]

Ground 1750 340 ·106 0.25 482 278
Steel 7850 210 ·109 0.3 6000 3207

Concrete 2500 30 ·109 0.25 3794 2190
Rubber 1300 1.37 ·105 0.463 482 278

Air 1.25 - - 343 -

Generally speaking, the 2D plane strain model is adopted because this model

can reflect some major properties of a pile barrier system in some circumstances.

In the present investigation, attention will be focused on the first band of fre-

quency gap, because a low critical frequency for the frequency band is more

interesting in civil engineering applications.
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Figure 8.4: Periodic boundary conditions for periodic materials.

8.3 Dispersion relations and attenuation zones

Only a single structural unit of the periodic system is modelled, as shown in Fig.

8.4. It consists of three different materials arranged periodically in a square lattice

of constant a. The unit cell is made of: (i) a hard core circular cylinder of radius

Ri = Rhcm; (ii) a soft coating material of thickness t = Re − Ri = Rsm − Rhcm;

(iii) hosting material. Elastic and geometrical properties used in the simulations

are listed in Tab. 8.2 and Tab. 8.3, respectively. Parametrically sweeping on

wavenumbers, frequency values are extracted by means of an ordinary eigenfre-

quency solver, under 2D plane strain assumption. The mesh size is set according

to the shortest wave length expected among the frequency range, controlled by:

λS = cS · fmax

 LFE = λS/β
(8.1)

where cS is the shear wave velocity, fmax is the maximum frequency content

expected in the propagating wave and β is a coefficient depending on the order

of the finite element (β = 10 for linear elements, β = 4 for quadratic elements).

First of all, to verify the method used in the present work, dispersion curves

for a phononic system made of steel cylinders (hard core material) embedded into

a rubber coating (soft material) hosted into a square concrete (hosting material)

matrix is solved. Fig. 8.5 shows good agreement of the present method with
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Figure 8.5: Dispersion curves for infinite periodic panels made of steel cylinders
embedded into a rubber coating hosted into a square concrete matrix. Results
are in perfect agreement with available literature.

literature available results [146].

After, a unit cell considering the soil as the matrix material is considered.

The hard material core, made of concrete and with radius of Rhcm = 0.25a, is

embedded into a rubber coating Rsm = 0.45a. Taking the lattice parameter

a = 1.0 m, the dispersion curves of the infinite periodic structure are shown in

Fig. 8.6. Segments Γ − X , X − M , M − Γ on the abscissa represent waves

travelling along the direction of 0◦, 0◦ − 45◦, 45◦ respectively and the vertical

coordinate represents the frequency of the wave. Waves with frequencies that

have no corresponding reduced wave vector k∗ on the abscissa cannot propagate

in the periodic structure, since there are no corresponding modes. In this case,

the frequency gap is named “complete frequency band gap” and waves coming

from all directions cannot travel in the periodic structure. In this case no wave

vector can be found in the region [11.13 − 13.09] Hz, between the third and the

fourth dispersion curves.

Comparing Figs. 8.5 and 8.6 it clearly emerges that dispersion relations (and

therefore attenuation zones) strongly depend on the mechanical and geometrical
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Figure 8.6: Dispersion curves for soil/rubber/steel arrangement with the following
geometrical properties: a = 1 m, Rhcm = 0.25a = 0.25 m and Rsm = 0.45a = 0.45
m.

parameters of the PM. In the following, a comprehensive parametric study is

performed in order to identify the most influential properties on the band gap

frequency range and to understand how they modify the dispersion relations.

8.4 Parametric study

As mentioned before, waves with frequencies in the range of the AZs cannot

propagate in the PM. As wave propagation in strongly influenced by mechanical

and geometrical properties of the lattice, this makes PM innovative filters for

mechanical waves. In fact different AZs can be achieved when different materials

and geometries are proposed for the lattice. A comprehensive knowledge of how

this parameters influence the AZs is of paramount importance to the PM design

in order to produce proper AZs able to block the propagation of waves in a desired

frequency range. The study is focused on vibrational properties connected with

the mechanical/geometrical parameters of the structure, which can be engineered

to provide special effects, such as:
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i. frequency band gap shifting, i.e. the lower bound frequency (LBF) and

upper bound frequency (UBF) of band gaps shift in frequency depending

on the lattice parameters. This can produce significant variations in the

width of the attenuation zones (WAZ);

ii. frequency band gap annihilation, i.e. LBF and UBF shift in opposite di-

rection (LBF increases and UBF decreases) so that WAZ assumes the null

value (the band gap no longer exists);

iii. frequency band gap nucleation, i.e. dispersion curves do not cover any more

specific frequency ranges (a new band gap is formed).

With reference to the attenuation zone shown in Fig. 8.6, a comprehensive

investigation of factors influencing the AZ is provided. Results are summarized

for the different cases showing the lower bound frequency (LBF), upper bound

frequency (UBF) and the width of attenuation zone (WAZ) changes as function

of the parameter. Both geometrical (radius of the core Rhcm and of the soft

material Rsm) and mechanical properties (Young modulus E, Poisson ratio ν,

density ρ) are studied. The periodic constant is set a = 1 m. In the following

parametric discussion one of the parameters changes, whereas all the other remain

unchanged. The base settings are presented in Tab. 8.3.

Table 8.3: Base parameters settings and variations.
Material parameter Base value Variation range

a 1 [m] -
Rsm 0.45 [m] 0.30 - 0.45 [m]
Rhmc 0.27 [m] 0 - 0.36 [m]

Ehm 340·106 [Pa] 1·103 - 500·106 [Pa]
νhm 0.25 [-] 0.1 - 0.4 [-]
ρhm 1750 [kg/m3] 0.30 - 0.45 [kg/m3]

Esm 1.37·105 [Pa] 1·103 - 7·105 [Pa]
νsm 0.463 [-] 0.1 - 0.4 [-]
ρsm 1300 [kg/m3] 1000 - 1800 [kg/m3]

Ehmc 30·109 [Pa] 1·109 - 400·109 [Pa]
νhmc 0.25 [-] 0.1 - 0.4 [-]
ρhmc 2500 [kg/m3] 1000 - 7000 [kg/m3]
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8.4.1 Filling fraction

Considering a typical square arrangements of the unit cell, the influence of the

filling fraction, i.e. the ratio between the inclusion and matrix areas, on the

attenuation zones is first investigated. Keeping a = 1 m, two cases are considered:

(i) pile radius of the hard material core varying in the range Rhmc ∈ [0, 0.36a] and

rubber coating external radius Rsm = 0.45a; (ii) rubber coating external radius

varying in the range Rsm ∈ [0.30a − 0.45a] and pile radius of the hard material

core Rhmc = 0.27a.

Dispersion curves are shown in Figs. 8.7 and 8.8, respectively. Results are

interpreted by means of Fig. 8.9, where UBF, LBF and WAZ for the complete

frequency band gap are presented. In both cases, dispersion curves shift producing

changes in the attenuation zone (between the third and the fourth curve). The

observed effects are of: (i) increasing the WAZ as the Rhmc increases or (ii)

decreasing the WAZ as the Rsm increases. Besides the band gap itself undergoes

a shifting process: (i) BG shifts towards higher frequencies as the Rhmc approaches

a/2 and (ii) towards lower frequencies as the Rsm increases. Trends are not linear.

For sake of clarity, when the pile radius of the hard material core is 0.09a,

the complete band gap just started nucleating and it is barely visible. Contrary,

when Rhcm = 0.36a a large WAZ ranging from 17.71 Hz to 25.05 Hz is obtained.

From a practical point of view, this range corresponds to the middle dominant

frequencies of vibrations for rail traffic. Thus, commonly available pile diameters

have potential applications in ground vibration reduction.

8.4.2 Hosting material parameters investigation

Mechanical properties of the hosting material (soil in the examined case) are

important parameters in design of pile barriers. In fact, in practical applications,

while soft coating and core material properties (elastic modulus, Poisson ratio,

density) can generally be chosen, soil properties are given by the site condition

and very few man-made adjustment can be done. They vary significantly due to

different location conditions and different soil types, especially the soil modulus

which ranges from 1 MPa to 200 MPa [147] (see Tab. 8.4), from types of soft soils,

such as loose uniform sand, stiff clay, and soft clay to hard soils such as gravels.
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Figure 8.7: Influence of the filling fraction on dispersion modes in a
soil/rubber/concrete PM: (a) Rhmc = 0.09a (b) Rhmc = 0.018a, (c) Rhmc = 0.27a,
(d) Rhmc = 0.36a.

Similarly, common soil Poisson ratio and density are in the range of 1800 − 2000

kg/m3 and 0.1 − 0.45, respectively.

In this work Ehm ∈ [1 − 500] MPa, νhm ∈ [0.1 − 0.4] and ρhm ∈ [1600 − 2200]

kg/m3 will be used. Fig. 8.10 shows LBF, UBF and WAZ for different values of

soil elastic modulus, Poisson ratio and density. These plots suggest that:

i. the most influencing parameter is the elastic modulus. For the considered

PM, when a very soft and loose material is considered no band gaps are

open. A band gap starts nucleating at E > 85 MPa, as shown in Fig. 8.11.

Besides, WAZ increases as the hosting material rigidity increases up to 250

MPa. After that it stabilizes.
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Figure 8.8: Influence of the filling fraction on dispersion modes in a
soil/rubber/concrete PM: (a) Rsm = 0.30a (b) Rsm = 0.35a, (c) Rsm = 0.40a,
(d) Rsm = 0.45a.

ii. Poisson ratio has almost no influence on the dispersion relations.

iii. Hosting material density has little influence on the dispersion relations;

in particular, the LBF is almost not influenced while the UBF linearly

decreases as the density of the hosting material increases.

8.4.3 Hard material core parameters investigation

This study revealed that the elastic modulus and Poisson’s ratio of the core

have little influence on the BG if compared to the density, which is the most
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Figure 8.9: Lower bound frequency (LBF), upper bound frequency (UBF)
and width of attenuation zone (WAZ) for different filling fraction of the
soil/rubber/concrete PM.

Table 8.4: Mechanical properties of the most common soils. Density ρ, Young
modulus E and Poisson ratio ν are given.

Material ρ E ν
[kg m−3] [MPa] [ / ]

Clay 1900 10 - 200 0.25 - 0.45
Sandy 1800 10 - 50 0.25 - 0.4
Gravel 2000 70 - 170 0.15 - 0.35

Dense sand 2000 35 - 70 0.15 - 0.35
Shale 2500 1’000 - 70’000 0.2 - 0.4

Granite 2700 10’000 - 70’000 0.1 - 0.3

sensitive and effective in altering the band of frequency gap. Therefore, the band

of frequency gaps produced by different core materials are compared.

From Fig. 8.12, emerges that as the core density increases, LEF and UBF

monotonically decreases rapidly. With ρ = 7000 kg/m3 a LEF as low as 7.29 Hz

can be achieved, which is appropriate for seismic isolation. It is also important

to note that when the core density becomes very large, a low LEF as well as

wider WAZ are achieved. This property is critical and helpful in constructing

foundations with a low frequency gap.
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Figure 8.10: Lower bound frequency (LBF), upper bound frequency (UBF) and
width of attenuation zone (WAZ) for different values of elastic modulus, Poisson
ratio and density for the hosting material.

8.4.4 Soft material parameters investigation

Fig. 8.13 shows LBF, UBF and WAZ behaviour as functions of Esm, νhm and ρhm,

respectively. It can be seen that using different values of rigidity for the coating

layer, a maximum of WAZ can be achieved in proximity of 1 cot 105 Pa, while

increasing it up to 1 cot 105 Pa, a band gap annihilation occurs, i.e. the complete

band gap no more exists. Besides, increasing the rigidity of the coating layer, the

BG shifts towards higher frequencies values, getting far from the frequencies of

interest for seismic isolation. On the other hand, a higher value of Poisson ratio,

allows larger BG to form. In the end, lower density of the coating layer leads to

larger WAZ as well. This explains the necessity to maintain low elastic modulus
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Figure 8.11: Influence of the hosting material elastic modulus E on the first 15
dispersion modes in a soil/rubber/concrete PM: (a) Ehm = 1 MPa (b) Ehm = 85
MPa, (c) Ehm = 170 MPa, (d) Ehm = 255 MPa.

and density for the coating layer.

8.5 Numerical validation

Effectiveness of the strong attenuation occurring in finite periodic system has

been verified both numerically and experimentally. Very strong attenuation has

been observed when the phononic region is made of 4 periods. Based on the above

studies, an earthquake-proof barrier is here designed and tested numerically. It

consists of a giant metamaterial structure arranged directly in the ground, so to

prevent the wave to reach the building itself (see Fig. 8.2).
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Figure 8.12: Lower bound frequency (LBF), upper bound frequency (UBF) and
width of attenuation zone (WAZ) for different values of elastic modulus, Poisson
ratio and density for the hard material core.

Based on the above results, a simple geometry constituting the giant phononic

metamaterial is proposed and schematically presented in Fig. 8.14a. The hosting

material is considered to be a loose sandy soil (ρ = 1800 kg/m3, E = 20 MPa

and ν = 0.4) and inclusions are made of steel (ρ = 7800 kg/m3, E = 210 GPa

and ν = 0.3). Lattice parameter is a = 8 m and external and internal radii of the

inclusion are Re = 3 m and Ri = 2.7 m, respectively. Its corresponding dispersion

map clearly shows a band gap ranging from 6.3 to 8.1 Hz, as shown in Fig. 8.14b.

To verify vibration attenuation of the designed earthquake proof barrier, soil

and four-storey frame structure dynamic response to different inputs for a (i) a

soil hosting a phononic region and (ii) for an ordinary soil, as shown in Fig. 8.15

are numerically extracted. Both the structure and specific points of the ground
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Figure 8.13: Lower bound frequency (LBF), upper bound frequency (UBF) and
width of attenuation zone (WAZ) for different values of elastic modulus, Poisson
ratio and density for the soft material coating.

are monitored.

Fig. 8.15 illustrates the four-storey frame structure built above a loose sandy

soil with an earthquake-proof barrier isolation system, as well as the same struc-

ture, built above the same soil without isolation capabilities. Mechanical proper-

ties (Young’s modulus, Poisson’s ratio and density) used in the analyses are given

in Tab. 8.5.

8.5.1 Responses to incident waves

To numerically quantify the screening power of the giant acoustic metamaterial,

both soil and structure responses to incident elastic waves are computed using
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Figure 8.14: (a) Schematic representation of the giant acoustic metamaterial
constituting the earthquake-proof barrier. Hosting material is the ground itself,
considered as a loose sandy soil. Inclusions are made of steel. (b) Dispersion map
for the giant acoustic metamaterial.

Table 8.5: Mechanical properties of the materials used in the numerical simula-
tions. Density ρ, Young modulus E and Poisson ratio ν are given.

Material ρ E ν
[kg m−3] [GPa] [ / ]

Sandy soil 1800 0.010 0.4
Steel 2500 210 0.3

Concrete 2400 30 0.25

finite element method. First, a simple time-harmonic horizontal incident wave

is considered. A displacement with unitary amplitude, as shown in Fig. 8.16, is

applied.

The most significant wave propagation patterns are presented in Figs. 8.17 -

8.20, which show snapshots of the stress field at 1.25 s, 2.5 s, 5 s and 7.5 s, for

both the case of soil with earthquake-proof barrier and ordinary soil, respectively.

Numerical simulations clearly show that when the wave propagating reaches the

phononic material, as the frequency content of the wave entirely belongs to the

phononic system BG the wave is almost totally reflected back, preventing the

building to be reached by the wave (see also Fig. 8.21). Fig. 8.22 provides a
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Figure 8.15: Four-storey frame structure built above an earthquake-proof barrier
(left side) and on an ordinary loose sandy soil without isolation capabilities (right
side).

zoom of the deformations occurring in the two cases.

At this point a seismic response to the El Centro earthquake1 has been con-

sidered as the exciting horizontal displacement of the nodes at the bottom of

the considered volume of soil. As the soil damping can reduce the seismic waves

as well, in order to show only the reduction of the waves due to giant phononic

barrier, no damping was introduced into the soil modelling. The normalized dis-

placement time history and frequency content of the El Centro earthquake is

shown in Fig. 8.23. The corresponding energy content of the monitored points

1El Centro earthquake occurred at 05:35 UTC on May 19 in the Imperial Valley in Southern
California near the international border of the United States and Mexico. It had a magnitude
of 6.9 and a maximum perceived intensity of X on the Mercalli intensity scale. The earthquake
was characterized as a typical moderate-sized destructive event with a complex energy release
signature. It was the strongest recorded earthquake to hit the Imperial Valley.

191



8. CHAPTER VIII

0 1 2 3 4 5
−1

0

1

Time (s)

f(
t)

0 1 2 3 4 5
−1

0

1
(b)

Time (s)H
an

ni
ng

 m
od

ul
at

ed
 f(

t)

0 2 4 6 8 10 12 14 16
0

50

100
(c)

Frequency (Hz)

|F
F

T
 f(

t)
|

Figure 8.16: Imposed displacement time history for an artificially created hori-
zontal elastic wave. It consists of a 21 cycles modulated Hanning signal with a 7
Hz central frequency.

Figure 8.17: Snapshot of the wave propagation phenomenon at 1.25 s. Excitation
wave time history is reported in Fig. 8.16.
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Figure 8.18: Snapshot of the wave propagation phenomenon at 2.5 s. Excitation
wave time history is reported in Fig. 8.16.

Figure 8.19: Snapshot of the wave propagation phenomenon at 5 s. Excitation
wave time history is reported in Fig. 8.16.
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Figure 8.20: Snapshot of the wave propagation phenomenon at 7.25 s. Excitation
wave time history is reported in Fig. 8.16.
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Figure 8.21: Time history and energy content of for the monitoring points.
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(a) (b)

Figure 8.22: Zoom of the displacement field of the four-storey frame built above
a loose sandy soil with phononic isolation capabilities (a) and above the same soil
without any PM barrier (b).

M2g,ph and M2g,or in the x-direction are shown in Fig. 8.24. As expected, the part

of the input frequency contents falling inside the BGs are much lower if compared

to the case of structure without phononic barrier.

8.6 Conclusions: some design considerations

In this study, attenuation of seismic waves via giant phononic metamaterials is

numerically demonstrated. In particular, it has been shown that the seismic

response of the structure can be greatly reduced when the incident waves are

filtered by a phononic barrier with more than three unit cells.

In addition, parametric studies showed that the phononic barrier needs to be

accurately designed depending of the soil properties within the which it will be

embedded. In fact BGs location and width proved to strongly depend both on ge-

ometrical and physical properties of the unit cell constituent materials. Anyway,

in general it is possible to infer that the most influential parameters are the filling

fraction of the PM and the density of the hard material core, although matrix

and coating properties also influence the BG frequency. However, a proper PM

design should match the following requests at once: (i) having sufficiently high

elastic modulus in order to support upper loads and (ii) having a large contrast

in physical properties (mass densities more than elastic constants) between the

inclusions and the host material.
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Figure 8.23: Time history and energy content for the El Centro earthquake.
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Figure 8.24: Energy content of the monitored point Mg,2 for an ordinary loose
sandy soil without isolation capabilities and the same soil with an embedded PM
barrier for the El Centro earthquake.
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In conclusion, in this study the feasibility of an innovative passive isolation

strategy is proved to be practical for civil structures. This almost total isolation

will be of special significance to some emergency/critical structures such as hos-

pitals, bridges, power plants, laboratories, medical facilities and so on, allowing

impressive economic savings and structural safety.
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