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ABSTRACT 

The instability of river bank can result in considerable human and land losses. The 

Po river is the most important in Italy, characterized by main banks of significant 

and constantly increasing height. This study presents multilayer perceptron of 

artificial neural network (ANN) to construct prediction models for the stability 

analysis of river banks along the Po River, under various river and groundwater 

boundary conditions. For this aim, a number of networks of threshold logic unit are 

tested using different combinations of the input parameters. Factor of safety (FS), 

as an index of slope stability, is formulated in terms of several influencing 

geometrical and geotechnical parameters. In order to obtain a comprehensive 

geotechnical database, several cone penetration tests from the study site have been 

interpreted. The proposed models are developed upon stability analyses using finite 

element code over different representative sections of river embankments. For the 

validity verification, the ANN models are employed to predict the FS values of a 

part of the database beyond the calibration data domain. The results indicate that 

the proposed ANN models are effective tools for evaluating the slope stability. The 

ANN models notably outperform the derived multiple linear regression models.  
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CHAPTER 1 

INTRODUCTION 
 

1- 1 Introduction 

Slope stability has been a subject of continued concern because of tremendous loss 

of properties and infrastructure caused annually in many places in the word (Shioi 

and Sutoh, 1999; Zhang, 2001). In construction areas, instability may result due to 

rainfall, increase in groundwater table and change in stress conditions. Similarly, 

slopes that have been stable for many years may suddenly fail due to changes in 

geometry, external forces and loss of shear strength (Abramson et al. 2002). 

Slope failures, also referred to as slides or landslides, whether sudden or gradual, 

are due to overstress of the slope or foundation materials with respect to their 

available strength (Morgenstem 1963; Davis, 1968; Ching and Fredlund, I983; 

Abramson, 1996; Dai et al., 2000). Overstresses may occur due to the following: 

1) factors causing an increase in shear stress (e.g., external loads, steepening of 

slope, undercutting of a slope at the toe. sudden draw down, earthquakes); 

2) factors causing a decrease in shear strength (e.g., liquefaction triggered by shock 

or dynamic forces, saturation of a slope particularly in desiccated soils, other 

factors that increase excess pore water pressure); 

3) hydrodynamic forces (such as earthquake-induced waves, seepage forces); 

4) hydrostatic forces (such as tension cracks filled with water in fissured clays or 

desiccated clays, artesian pressures in filled aquifers).  

Due to numerous factors affecting slope failures, slope stability analyses have 

always been a difficult and complex task in geotechnical engineering and 

geomechanics (Cousins, 1978; Leshchinsky et al., 1985; Wakai and Ugai, 1999).  



The majority of slope stability analyses performed in practice still use traditioanal 

limit equilibrium approaches involving methods of slices that have been remained 

essentially unchanged for decades. The finite element method in conjunction with 

elastic-perfectly plastic (Mohr-Coulomb) stress strain model represents a powerful 

alternative approach for slope stability analysis which is accurate, versatile and 

requires fewer a priori assumptions, especially regarding to failure mechanism. 

Slope failure in the finite element model occures “naturally” through the zones in 

which the shear strength of the soil is insufficient to resist the shear stresses. 

Since many factors are involved in modeling slope stability, physics-based models 

can have difficulties in representing real-life situations and in considering such 

important factors as slope geometry and soil properties affecting the stability of 

slopes (Bishop, 1971, Jiao et al.. 2000). The neural network approach can be a 

useful modeling tool in such situations. Among important attributes, neural 

network models are based on laboratory and/or field data and thus it is easier to 

include the factors affecting slope stability in such models. Because artificial 

neural network models have learning capability that physics-based models do not 

have, they can model slopes with a reasonable accuracy even when some data 

pertaining to geometric and/or soil properties are unavailable.  

 

1-2 Scope and Objective of the Study 

In this study, artificial neural network modeling approach is used for analyses of 

slopes. For developing the neural network model as adopted in this study, stability 

analyses using finite element code over different representative sections of Po river 

embankments contributed to the database. Po River is the most important in Italy.  

In order to obtain a comprehensive geotechnical database, several cone penetration 

tests with the measurement of pore water pressure (CPTu) from the study site have 



been interpreted with the use of a self-developed CPTu interpreting program based 

on most reliable and recent empirical an semi- empirical correlations.  

The specific Steps in order to fulfill this study include the following: 

(i) Develop a program in order to interpret cone penetration tests with the 

measurement of pore water pressure (CPTu); 

(ii) Interpreting of 220 CPTu tests to obtain a comprehensive geotechnical 

database. 

(iii) Stability analysis of 77 Po river banks with the use of FE based program 

(Plaxis2D version 2012). 

(iv)  Develop an artificial neural network-based model for analysis of slope 

stability with the contribution of FE analysis results; 

(v) Compare the performance of ANN model with a developed multiple 

linear regression models. 

 

1- 3 Format of the Dissertation 

Presentation of this thesis has been organized in several Chapters and Appendices. 

A brief description is given here. The introduction to slope stability problems and a 

detailed literature review of the methods of slope stability analysis is presented in 

Chapter2, The review focuses on the limit equilibrium (LE) and finite element(FE) 

principles in FOS determination. Moreover, most common LE methods are 

discussed with highlights on their fundamental differences and limitations in 

practical applications.  

Finally, the chapter ends with introducing brief working principles of FE computer 

software codes (PLAXIS2D) that are applied in the present study.  

Chapter 3 describes artificial neural networks and their application in geotechnical 

engineering. Soil stratigraphy with the use of CPTu tests on Po riverbanks and 



their FE analysis is presented in chapter4. Moreover a description of the study site 

and one of the most reliable geotechnical in-situ test (CPTu) is concluded. 

Chapter5 presents the proposed neural network method for modeling slope 

stability. The proposed models are developed upon stability analyses using finite 

element code over different representative sections of river embankments. Finally, 

in Chapter6 summary and conclusions of this study are presented and, 

recommendations for further studies are discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER2 

SLOPE STABILITY EVALUATION 
 

2- 1 Introduction 

 Slope stability analysis is an important area in geotechnical engineering. A 

detailed review of equilibrium methods of slope stability analysis is presented by 

Duncan (Duncan, 1996). These methods, in general, require the soil mass to be 

divided into slices. The directions of the forces acting on each slice in the slope are 

assumed. This assumption is a key role in distinguishing one limit equilibrium 

method from another.  

Limit equilibrium methods require a continuous surface passes the soil mass. This 

surface is essential in calculating the minimum factor of safety (FOS) against 

sliding or shear failure. Before the calculation of slope stability in these methods, 

some assumptions, for example, the side forces and their directions, have to be 

given out artificially in order to build the equations of equilibrium. 

In the past decades finite element method has been increasingly used in slope 

stability analysis. The advantage of a finite element approach in the analysis of 

slope stability problems over traditional limit equilibrium methods is that no 

assumption needs to be made in advance about the shape or location of the failure 

surface, slice side forces and their directions. The method can be applied with 

complex slope configurations and soil deposits in two or three dimensions to 

model virtually all types of mechanisms. General soil material models that include 

Mohr-Coulomb and numerous others can be employed. The equilibrium stresses, 

strains, and the associated shear strengths in the soil mass can be computed very 

accurately. The critical failure mechanism developed can be extremely general and 

need not be simple circular or logarithmic spiral arcs. The method can be extended 



to account for seepage induced failures, brittle soil behaviors, random field soil 

properties, and engineering interventions such as geo-textiles, soil nailing, drains 

and retaining walls. This method can give information about the deformations at 

working stress levels and is able to monitor progressive failure including overall 

shear failure (Griffiths, 1999). 

 

2- 2 Limit Equilibrium Methods 

 Limit equilibrium methods are still currently most used for slopes stability studies. 

These methods consist in cutting the slope into fine slices so that their base can be 

comparable with a straight line then to write the equilibrium equations (equilibrium 

of the forces and/or moments). According to the assumptions made on the efforts 

between the slices and the equilibrium equations considered, many alternatives 

were proposed (Table 2-1). They give in most cases rather close results. The 

differences between the values of the safety factor obtained with the various 

methods are generally lower than 6% (Duncan, 1996).  

 

Table 2- 1 The main limit equilibrium methods (Duncan et al, 1987) 

 



All limit equilibrium methods utilise the Mohr‐Coulomb expression to determine 

the shear strength (τf) along the sliding surface. The shear stress at which a soil 

fails in shear is defined as the shear strength of the soil. According to Janbu (1973), 

a state of limit equilibrium exists when the mobilised shear stress (τ) is expressed 

as a fraction of the shear strength. Nash (1987) says, “At the moment of failure, the 

shear strength is fully mobilised along the failure surface when the critical state 

conditions are reached”. The shear strength is usually expressed by the Mohr‐ 

Coulomb linear relationship, where the τf and τ are defined by: 

 

Shear strength (available):         
           or  (     )                 (2-1) 

Shear stress (mobilised):                    
  

 
  

          

 
                            (2-2) 

Where, a, c´ and ø´ = attraction, cohesion and friction angle respectively in 

effective stress terms, and F = factor of safety (FOS). 

The available shear strength depends on the type of soil and the effective normal 

stress, whereas the mobilized shear stress depends on the external forces acting on 

the soil mass. This defines the FOS as a ratio of the τf to τ in a limit equilibrium 

analysis (Janbu 1954), as defined in Equation 2-2. 

However, the FOS can be defined in three ways: Limit equilibrium, force 

equilibrium and moment equilibrium (Abramson et al. 2002). These definitions are 

given in Figure 2-1. As explained above, the first definition is based on the shear 

strength, which can be obtained in two ways: A total stress approach (su‐analysis) 

and an effective stress approach (a‐φ −analysis). The type of strength consideration 

depends on the soil type, the loading conditions and the time elapsed after 

excavation. The total stress strength is used for short–term conditions in clayey 

soils, whereas the effective stress strength is used in long‐term conditions in all 

kinds of soils, or any conditions where the pore pressure is known (Janbu 1973). 



The second and third definitions are based on force equilibrium and movement 

equilibrium conditions for resisting and driving force and moment components 

respectively. 

 

Figure 2- 1 Various definitions of the factor of safety (FOS) (Abramson et al. 2002) 
 

The last two definitions may sometimes be confusing while defining the terms, 

whether the force or moment components are contributing on resisting or driving 

sides. The reason can be explained with simple examples. The support force 

component along the sliding surface can be considered on the resisting side as a 

positive contribution, since it increases resistance capacity against the movement. 

At the same time, this component can also be considered on driving side as 

negative contribution, since it decreases the driving tendency. Similarly, the 

moments from the self weight of slices located at the toe are sometimes resisting 

and thus, considered either on the resisting side as positive contribution or on the 

driving side as negative contribution. These two different considerations result in 

different FOS. But this is not a case in the first definition. 

 



 

2-2- 1 The Ordinary method 

The Ordinary method satisfies the moment equilibrium for a circular slip surface, 

but neglects both the interslice normal and shear forces. The advantage of this 

method is its simplicity in solving the FOS, since the equation does not require an 

iteration process. The forces considered in ordinary method are shown in figure 2-

2. The FOS is based on moment equilibrium and computed by (Abramson et al. 

2002, Nash 1987): 

    
∑(           )

∑     
                                                                                             (2-3) 

    (        )                                                                                          (2-4) 

Where, u = pore pressure, l = slice base length and α = inclination of slip surface at 

the middle of slice. 

 

Figure 2- 2 The forces considered in ordinary method 

 

2-2- 2 Bishop'S Simplified Method of Slices  

Bishop's method of slices (1955) is useful if a slope consists of several types of soil 

with different values of c and ø and if the pore pressures u in the slope are known 

or can be estimated. Figure 2-3 gives a section of an earth dam having a sloping 



surface AB. The soil mass above the failure surface is divided into a number of 

slices.  

Consider for analysis a single slice abed [Figure 2 -3 (a)] which is drawn to a 

larger scale in Figure 2 -3 (b). The forces acting on this slice are  

W = weight of the slice  

N = total normal force on the failure surface cd  

U = pore water pressure = ul on the failure surface cd  

FR = shear resistance acting on the base of the slice  

E1, E2 = normal forces on the vertical faces be and ad  

T1, T2 = shear forces on the vertical faces be and ad  

θ = the inclination of the failure surface cd to the horizontal  

The system is statically indeterminate. An approximate solution may be obtained 

by assuming that the resultant of £, and T^ is equal to that of E2 and T2, and their 

lines of action coincide. 



 

Figure 2- 3 Bishop's simplified method of analysis 

 

The factor of safety Fs is then given as 

    
∑{        ,(       )    -      }

 

  

∑     
                                                             (2-5) 

Where 

          
         

  
                                                                                     (2-6) 

The value of Fs may then be computed by first assuming an arbitrary value for Fs. 

The value of Fs may then be calculated by making use of equation 2-5. If the 

calculated value of Fs differs appreciably from the assumed value, a second trial is 



made and the computation is repeated. Figure 2 -4 developed by Janbu et al. (1957) 

helps to simplify the computation procedure. 

 

Figure 2- 4 Values of mθ (Janbu et al., 1957) 
 

In summary, Bishop's simplified method satisfies moment equilibrium for FOS, 

satisfies vertical force equilibrium for N, considers interslice normal force, more 

common in practice, and applies mostly for circular shear surfaces. The forces 

considered in Bishop's simplified method are shown in figure 2-5. 

 

Figure 2- 5 forces considered in Bishop's simplified method 



2-2- 3 Janbu’s generalised method 

Janbu‟s generalised method or Janbu‟s generalised procedure of slices (Janbu 

1973) considers both interslice forces and assumes a line of thrust to determine a 

relationship for interslice forces. As a result, the FOS becomes a complex function 

with both interslice forces (Nash 1987): 

 

    
∑[{    (    )      }     ]

∑*  (     )+      ∑(     )
                                                                          (2-7) 

Similarly, the total base normal force (N) becomes a function of the interslice shear 

forces (T) as: 

   
 

 α
 2  (     )  

 

 
(          )    α3                                           (2-8) 

This is the first method that satisfies both force and moment equilibrium. The 

moment equilibrium for the total sliding mass is explicitly satisfied by considering 

an infinitesimal slice width (dx) and taking moments about the mid point of the 

slice base (Janbu 1957, 1973). The infinitesimal slice width was introduced to 

avoid the confusion about the point of application of base normal force. This 

equilibrium condition in fact gives the relationship between the interslice forces (E 

and T) as: 

          
  

  
                                                                                             (2-9) 

Where, tanαt = slope of the line of thrust, and ht = height from the mid point of the 

slice base to dE. 

The interslice force relationship obtained in equation 2-9 is the same as Janbu first 

established, except for the interslice shear force direction, which is assumed here 

counter‐clockwise for a slide occurring from left to right as shown in figure 2-6. 



The last term in equation 2-9 cannot be ignored because of the gradient of 

interslice normal force with respect to distance. 

The line of thrust follows the centroid of the earth pressure (Janbu 1973, Nash 

1987). However, for statically determinate solutions, the actual location is searched 

for by an iteration procedure until the total equilibrium is satisfied (Abramson et al. 

2002). Since the overall force equilibrium is satisfied by the interslice forces, the 

moment equilibrium automatically fulfils for the sliding mass (Nash 1987).  

 

Figure 2- 6 forces considered in Janbu‟s generalised method 
 

 2-2- 4 Morgenstern‐Price method 

This is perhaps the best known and most widely used method developed for 

analyzing generalized failure surfaces. The method was initially described by 

Morgenstem and Price (1965).The Morgenstern‐ Price method also satisfies both 

force and moment equilibriums and the overall problem is made determinate by 

assuming a functional relationship between the interslice shear force and the 

interslice normal force. According to Morgenstem and Price (1965), the interslice 

force inclination can vary with an arbitrary function (f(x)) as: 

   ( )  λ                                                                                                      (2-10) 



where,  

f(x) = interslice force function that varies continuously along the slip surface  

and λ = scale factor of the assumed function. 

 

The method suggests assuming any type of force function, for example half‐sine, 

trapezoidal or user defined. The relationships for the base normal force (N) and 

interslice forces (E, T) are the same as given in Janbu‟s generalised method. For a 

given force function, the interslice forces are computed by iteration procedure 

until, Ff  is equals to Fm in equations (2-11) and (2-12) (Nash 1987).  

 

   
∑[{    (    )      }     ]

∑*  (     )+      ∑(     )
                                                                         (2-11) 

 

    
∑(    (    )      )

∑     
                                                                                     (2-12) 

 

 

Figure 2- 7 Forces considered in Morgenstern‐Price method 
 

The Morgenstem Price method is fairly widely used and accepted for general 

analysis of non-circular failure surfaces and its results have been verified in several 



comparative studies; but acceptability of solutions should always be checked 

(Costa and Thomas. 1984; Abramson, 1996). 

 

2-2- 5 Spencer’s method 

Spencer‟s method is the same as Morgenstem Price method except the assumption 

made for interslice forces. A constant inclination is assumed for interslice forces 

and the FOS is computed for both equilibriums (Spencer 1967). According to this 

method, the interslice shear force is related to: 

                                                                                                            (2-13) 

In summary, Spencer‟s method, considers both interslice forces, assumes a 

constant interslice force function, satisfies both moment and force equilibrium, and 

computes FOS for force and moment equilibrium. 

The forces considered are shown in figure 2-8. 

 

Figure 2- 8 Forces considered in Spencer‟s method 
 

2- 3 Finite Element Method 

The finite element method (FEM ) represents a powerful alternative approach for 

slope stability analysis. This method is accurate, versatile, and requires fewer a 

priori assumptions, especially regarding the failure mechanism. The FEM is very 



powerful in solving problems with irregular boundaries and complex variation of 

potential and flow lines (Zaman et al., 2000). The region to be analyzed is divided 

into elem ents which are joined at nodes. The unknown displacements at each node 

may be computed and from these the strain and stress fields within the body may 

be found. 

The main advantages of the FE approach over traditional limit equilibrium 

methods for slope stability analysis are that no assumption needs to be made in 

advance about the shape or location of the failure surface, slice side forces and 

their directions and the slip surface could be of any shape (Chollada, 2013).  

General soil material models that include Mohr-Coulomb and numerous others can 

be employed.  

Limit equilibrium methods only give an estimate of FS with no information on 

deformation of the slope.  In numerical analysis, failure occurs “Naturally” which 

evolve during the calculation in a way that is representative of the natural evolution 

of the physical failure plane in the slope (Wyllie and Mah, 2004).  

 

2- 4 Computer Codes used for stability analysis 

Slope stability analyses today can be performed by using various computer based 

geotechnical software. Software utilizing LE formulations has been used for many 

years. Similarly, finite element (FE) software, based on constitutive laws and 

appropriate soil models, has drawn growing interest both of researchers and of 

professionals. Today, both LE and FE based software are commonly used in 

geotechnical computations. A brief introduction and working principles of the 

software that are used in this study is briefly introduced in the following sections. 

 

 



2-4- 1 SLOPE/W software 

SLOPE/W, developed by GEO‐SLOPE International Canada, is used for slope 

stability analysis. 

This software is based on the theories and principles of the LE methods discussed 

in the previous sections. In this study, SLOPE/W has been applied separately and 

together with SEEP/W, other software program, which computes the pore pressure 

distributions, based on finite elements mesh and groundwater seepage analyses. 

Finally, the pore pressure distributions were coupled with slope stability analysis 

and FOS was determined. The software SLOPE/W computes FOS for various 

shear surfaces, for example circular, non‐circular and user‐defined surfaces 

(SLOPE/W 2002, Krahn 2004). However, only the circular SS is automatically 

searched.  

 

2-4- 2 The SLIDE software 

SLIDE software, developed by Rocscience Inc Toronto Canada, is also used for 

slope stability analysis for soil and rock slopes. The software is also 2D‐LE based 

computer program, which can be applied to evaluate the stability for circular or 

non‐circular failure surfaces (SLIDE 2003). 

In fact, SLIDE is found similar to the SLOPE/W though there are few additional 

features, for example groundwater analysis and back analysis for support forces.  

Modelling in SLIDE for the study was possible for external loading, groundwater 

and forces, like surcharge and from pseudo‐static earthquakes. The circular critical 

slip surface was located automatically and the corresponding FOS was computed 

by the software in the similar way as in SLOPE/W. 

 

 



2-4- 3 The PLAXIS software 

PLAXIS is a finite element code for soil and rock analyses (PLAXIS 2012), 

developed by PLAXIS BV in cooperation with several universities including DUT 

in the Netherlands and NTNU in Norway. The computer program is applicable to 

many geotechnical problems, including stability analyses and steady‐state 

groundwater flow calculations. This software contains several FE models and four 

main sub‐routines. These routines are inputs, calculations, outputs and curve plots. 

The FOS versus displacement is plotted from the curve plots sub‐routine. 

The FE code Plaxis2D version 2012 in conjunction with an elastic-perfectly 

plastic (Mohr-Coulomb) stress strain model has been used in this study.  Material 

properties including shear strength parameters were defined for each soil layer. A 

plain strain model of 15 noded triangular elements was used to generate the finite 

element mesh. Similarly, pore pressure distributions were generated based on 

phreatic level with and without corrections and the steady‐state groundwater 

calculation.  

The Mohr-Coulomb failure criterion is currently the most widely used method 

for soil in practical applications (El-Naggar, 2010). The Mohr–Coulomb model is a 

linearly elastic and perfectly plastic constitutive model. The parameters needed for 

the Mohr–Coulomb model are the Young‟s modulus (E) and Poisson‟s ratio (ν) for 

the elastic strain component of the soil behavior. The effective strength parameters 

cohesion (c'), and friction angle (φ'), as well as the dilatancy angle (ψ) are needed 

for the plastic strain component of the soil behavior. 

 

2-4-3- 1 Computation of FOS 

FOS was computed by using the „c‐φ reduction‟ procedure. According to 

PLAXIS2D version 2012, this approach involves in successively reducing the soil 



strength parameters c‟ and tanφʹ until the failure occurs. The strength parameters 

are automatically reduced until the final calculation step results in a fully 

developed failure mechanism. Further, Nordal and Glaamen (2004) say, “By 

lowering the strength incrementally, a soil body is identified to fail after a certain 

strength reduction”. In this way, PLAXIS computes the FOS as the ratio of the 

available shear strength to the strength at failure by summing up the incremental 

multiplier (Msf) as defined by: 

FOS= Value of  ∑    at failure = 
         

           
  

      

        
                                 (2-14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3  

Artificial Neural Network 
 

 

3- 1 Introduction 

Artificial neural networks (ANNs) are a form of artificial intelligence which 

attempt to mimic the function of the human brain and nervous system. ANNs learn 

from data examples presented to them in order to capture the subtle functional 

relationships among the data even if the underlying relationships are unknown or 

the physical meaning is difficult to explain. This is in contrast to most traditional 

empirical and statistical methods, which need prior knowledge about the nature of 

the relationships among the data. ANNs are thus well suited to modeling the 

complex behavior of most geotechnical engineering materials which, by their very 

nature, exhibit extreme variability. This modeling capability, as well as the ability 

to learn from experience, have given ANNs superiority over most traditional 

modeling methods since there is no need for making assumptions about what the 

underlying rules that govern the problem in hand could be. 

 

3- 2 Artificial Neuron Model and Network Architecture 

The neuron model and the architecture of a neural network describe how a network 

transforms its input into an output. This transformation can be viewed as a 

computation. The model and the architecture each place limitations on what a 

particular neural network can compute (Hertz et al. 1991). The way a network 

computes its output must be understood before training methods for the network 

can be explained. 

 



3-2- 1 Artificial Neuron Model 

A single artificial neuron with R inputs is shown in Figure 4-1. Here the input 

vector p is represented by the solid dark vertical bar at the left. The dimensions of 

p are shown below the symbol p in the figure as Rx l . Thus, p is a column n vector 

of R input values. These inputs go to the row vector w. which is of size R. 

 

Figure 3- 1 Artificial Neuron Model (McCullock and Pitts, 1943) 

 

As shown in Figure 4-1, the net input to the transfer function F is n, the sum of the 

bias b and the product w×p. This sum is passed to the transfer function F to get the 

neuron's output a. which in this case is a scalar. If we have more than one neuron, 

the network output will be a vector. The row vector w and the column vector p are 

shown below. 

w = [w(1.1)w(1.2)...w(1.R)]                                                                            (4-1) 

p = [p(1)p(2)...p(R )]
T                                                                                                                                          

(4-2) 

 



A layer of a network is defined in the figure shown above. A layer includes the 

combination of the weights, the multiplication and summing operation, the bias b. 

and the transfer function F. The input vector, p. will not be called a layer.  

The transfer function F can take different shapes depending on different problems. 

Two of the most commonly used functions are shown below. The linear transfer 

function, as shown in Figure 4-2. can be used as a linear approximator (Widrow 

and Hoff. 1960: Hertz e tal.. 1991). 

 

Figure 3- 2 Linear Transfer Function (Widrow and Hoff, 1960) 
 

The sigmoid transfer functions, as shown in Figure 4-3. takes the input and 

transforms the output into the range -1 to +1. This transfer function is commonly 

used in multiple-layer networks, in part because it is differentiable (McClelland 

and Rumelhart. 1986; Demuth and Beale, 1995). 

 



 

Figure 3- 3 Sigmoid Transfer Function (McClelland and Rumelhart. 1986) 
 

3-2- 2 Neural Network Architecture 

Two or more of the neurons shown in Figure 4-1 may be combined into a layer, 

and a particular network might contain one or more such layers. 

 

3-2-2- 1 Single-layer Network 

A single-layer network with R inputs and S neurons is shown below. Here p is an 

input vector of length R. w is a matrix (SxR) as shown below, and a and b are 

vectors of  length S. As defined previously, the neuron layer includes the weight 

matrix, the multiplication operations, the bias vector b, the sum , and the transfer 

function boxes. 



 

Figure 3- 4 Single-layer Neural Network (Rosenblatt. 1958) 
 

                                                                (4-3) 

 

 

In this network, as shown in Figure 4-1 each element of the input vector p is 

connected to each neuron input through the weight matrix w (Equation 4-3). The 

ith neuron has a summing that gathers its weighted inputs and bias to form its own 

scalar output n(i). The various n(i) taken together form an S-element vector n. The 

neuron layer outputs form a colum n vector a. A single-layer network is generally 

used for simple problem s, while a multiple-layer network can be used to solve 

complex problems. 

 

 



3-2-2- 2 Multiple-layer Feedforward Network 

A network can have several layers. Each layer has a weight matrix w, a bias vector 

b. and an output vector a. The network shown below (Figure 4-5) has R inputs. SI 

neurons in the first layer, S2 neurons in the second layer, etc. It is common for 

different layers to have different number of neurons. 

 

Figure 3- 5 Multiple-Layer Feedforward Network (Rosenbaltt. 1958) 
 

Note that the outputs of the intermediate layer are the inputs to the following layer. 

Thus, layer 2 can be analyzed as a single layer network with R - S1 inputs. 

S = S2 neurons, and  S1x S2 weight matrix w = w2. The input to layer2 is p = a1. 

the output is a = a 2 . Now that all the vectors and matrices of layer2 are identified, 

it can then be treated as a single layer network on its own. This approach can be 

taken with any layer of the network. 

The layers of a multiple-layer network play different roles. A layer that produces 

the network output is called an output layer. All other layers are called hidden 

layers. The two layer networks shown above have one output layer and one hidden 

layer. Multiple-layer networks are much more powerful than single layer networks 

since multiple-layer networks are able to use the combination of sigmoid and/or 

linear transfer functions. Flood (1991) stated that there are many solution surfaces 



that are extremely difficult to model using a sigmoidal network using one hidden 

layer. 

In addition, some researchers (Flood and Kartam 1994; Ripley 1996; Sarle 1994) 

stated that the use of more than one hidden layer provides the flexibility needed to 

model complex functions in many situations. Lapedes and Farber (1988) provided 

more practical proof that two hidden layers are sufficient, and according to Chester 

(1990), the first hidden layer is used to extract the local features of the input 

patterns while the second hidden layer is useful to extract the global features of the 

training patterns. However, Masters (1993) stated that using more than one hidden 

layer often slows the training process dramatically and increases the chance of 

getting trapped in local minima. 

 

3- 3 Model Optimization (Training) 

The process of optimizing the connection weights is known as “training” or 

“learning”. The method most commonly used for finding the optimum weight 

combination of feed-forward MLP neural networks is the back-propagation 

algorithm (Rumelhart et al. 1986) 

The back-propagation algorithm is a non-linear extension of the least mean squares 

(LMS) algorithm for multi-layer perceptrons (Brown and Harris 1994). It is the 

most widely used of the neural network paradigms and has been successfully 

applied in many fields of model-free function estimation. The back-propagation 

algorithm generated criticism concerning its ability to converge. The back 

propagation network (BPN) is expensive computationally, especially during the 

training process. Many researchers have attempted, therefore, to modify the basic 

back-propagation algorithm in order to render it suitable to speed training. Properly 



trained BPN tends to produce reasonable results when presented with new data set 

inputs. 

 

3- 4 Stopping Criteria 

Stopping criteria are used to decide when to stop the training process. They 

determine whether the model has been optimally or sub-optimally trained (Maier 

and Dandy 2000). Many approaches can be used to determine when to stop 

training. Training can be stopped: after the presentation of a fixed number of 

training records; when the training error reaches a sufficiently small value; or when 

no or slight changes in the training error occur. However, the above examples of 

stopping criteria may lead to the model stopping prematurely or over-training. The 

cross-validation technique (Stone 1974) is an approach that can be used to 

overcome such problems. It is considered to be the most valuable tool to ensure 

overfitting does not occur (Smith 1993). Amari et al. (1997) suggested that there 

are clear benefits in using cross-validation when limited data are available, as is the 

case for many real-life case studies. The cross-validation technique requires that 

the data be divided into three sets; training, testing and validation. The training set 

is used to adjust the connection weights. The testing set measures the ability of the 

model to generalize, and the performance of the model using this set is checked at 

many stages of the training process. Training is stopped when the error of the 

testing set starts to increase. The testing set is also used to determine the optimum 

number of hidden layer nodes and the optimum values of the internal parameters 

(learning rate, momentum term and initial weights). The validation set is used to 

assess model performance once training has been accomplished. A number of 

different stopping criteria (e.g. Bayesian Information Criterion, Akaike‟s 

Information Criterion and Final Prediction Error) can also be used, as mentioned 



previously. Unlike cross-validation, these stopping criteria require the data be 

divided into only two sets; a training set, to construct the model; and an 

independent validation set, to test the validity of the model in the deployed 

environment. The basic notion of these stopping criteria is that model performance 

should balance model complexity with the amount of training data and model 

error. 

 

3- 5 Model Validation 

Once the training phase of the model has been successfully accomplished, the 

performance of the trained model should be validated. The purpose of the model 

validation phase is to ensure that the model has the ability to generalize within the 

limits set by the training data in a robust fashion, rather than simply having 

memorized the input-output relationships that are contained in the training data. 

The approach is to test the performance of trained ANNs on an independent 

validation set, which has not been used as part of the model building process. If 

such performance is adequate, the model is deemed to be able to generalize and is 

considered to be robust. 

The coefficient of correlation, r, the root mean squared error, RMSE, and the mean 

absolute error, MAE, are the main criteria that are often used to evaluate the 

prediction performance of ANN models. The coefficient of correlation is a 

measure that is used to determine the relative correlation and the goodness-of-fit 

between the predicted and observed data. Smith (1986) suggested the following 

guide for values of |r| between 0.0 and 1.0:   

|r| ≥ 0.8             strong correlation exists between two sets of variables; 

0.2 < |r| < 0.8    correlation exists between the two sets of variables; and 

|r| ≤ 0.2             weak correlation exists between the two sets of variables. 



The RMSE is the most popular measure of error and has the advantage that large 

errors receive much greater attention than small errors (Hecht-Nielsen 1990). In 

contrast with RMSE, MAE eliminates the emphasis given to large errors. Both 

RMSE and MAE are desirable when the evaluated output data are smooth or 

continuous (Twomey and Smith 1997). 

Investigation into the robustness of ANNs carried out by Shahin et al. (2005c) for a 

case study of predicting the settlement of shallow foundations on granular soils. 

found that good performance of ANN models on the data used for model 

calibration and validation does not guarantee that the models will perform well in a 

robust fashion over a range of data similar to those used in the model calibration 

phase. For this reason, Shahin et al. (2005c) proposed a method to test the 

robustness of the predictive ability of ANN models by carrying out a sensitivity 

analysis to investigate the response of ANN model outputs to changes in its inputs. 

The robustness of the model can be determined by examining how well model 

predictions are in agreement with the known underlying physical processes of the 

problem in hand over a range of inputs. In addition, Shahin et al. (2005c) also 

advised that the connection weights be examined as part of the interpretation of 

ANN model behavior, as suggested by Garson (1991).  

They concluded that this approach provided the best overall methodology for 

quantifying ANN input importance in comparison to other commonly used 

methods, though with a few limitations. 

 

3-6 Application on Artificial Neural Network in Geotechnical Engineering 

Over the last few years or so, the use of artificial neural networks (ANNs) has 

increased in many areas of engineering. In particular, ANNs have been applied to 

many geotechnical engineering problems and have demonstrated some degree of 



success. A review of the literature reveals that ANNs have been applied 

successfully  to many geotechnical engineering topics such as triaxial compression 

behavior of sand and gravel (Dayakar et al., 1999), stress- strain modeling of soils 

(Ellis et al.,1995), capacity of driven piles in cohesionless soils (Abu Kiefa., 1998),  

assessment of geotechnical properties (Yang and Rosenbaum., 2002), digital soil 

mapping (Behrens et al., 2005), stability analysis of slopes (Sakellariou and 

Ferentinou, 2005), and maximum dry density and optimum moisture content 

prediction of chemical stabilized soil (Alavi et al., 2010).  

For brevity, some works are selected to be described in some detail: 

 

3-6- 1 Pile Capacity 

Goh (1994a; 1995b) presented a neural network to predict the friction capacity of 

piles in clays. The neural network was trained with field data of actual case 

records. The model inputs were considered to be the pile length, the pile diameter, 

the mean effective stress and the undrained shear strength. The skin friction 

resistance was the only model output. The results obtained by utilising the neural 

network were compared with the results obtained by the method of Semple and 

Rigden (1986) and the â method (Burland 1973). The methods were compared 

using regression analysis as well as the error rate as shown in Table 3-1. It is 

evident from Table 1 that ANNs outperform the conventional methods.  

 

Table 3- 1 Summary of correlation coefficients and error rate for friction pile capacity (Goh 1995) 

 

 



Goh (1995a; 1996b), soon after, developed another neural network to estimate the 

ultimate load capacity of driven piles in cohesionless soils. In this study, the data 

used were derived from the results of actual load tests on timber, precast concrete 

and steel piles driven into sandy soils. The inputs to the ANN model that were 

found to be more significant were the hammer weight, the hammer drop, the pile 

length, the pile weight, the pile cross sectional area, the pile set, the pile modulus 

of elasticity and the hammer type. The model output was the pile load capacity. 

When the model was examined with the testing set, it was observed that the neural 

network successfully modelled the pile load capacity. By examining the connection 

weights, it was observed that the more important input factors are the pile set, the 

hammer weight and the hammer type. The study compared the results obtained by 

the neural networks with the following common relationships: the Engineering 

News formula (Wellington 1892), the Hiley formula (Hiley 1922) and the Janbu 

formula (Janbu 1953). Regression analysis was carried out to obtain the 

coefficients of correlation of predicted versus measured results for neural networks 

and the traditional methods. Table 3-2 summarises the regression analysis results 

which indicate that the neural network predictions of the load capacity of driven 

piles were found to be better than these obtained using the other methods. 

 

Table 3- 2 Summary of regression analysis results of pile capacity prediction (Goh 1995) 

 



Lee and Lee (1996) utilised neural networks to predict the ultimate bearing 

capacity of piles. The problem was simulated using data obtained from model pile 

load tests using a calibration chamber and results of in-situ pile load tests. For the 

simulation using the model pile load test data, the model inputs were the 

penetration depth ratio (i.e. penetration depth of pile/pile diameter), the mean 

normal stress of the calibration chamber and the number of blows. 

The ultimate bearing capacity was the model output. The prediction of the ANN 

model showed maximum error not more than 20% and average summed square 

error less than 15%. For the simulation using the in-situ pile load test data, five 

input variables were used representing the penetration depth ratio, the average 

standard penetration number along the pile shaft, the average standard penetration 

number near the pile tip, pile set and hammer energy. Two neural network models 

were developed. The results of these models were compared with Meyerhof‟s 

equation (Meyerhof 1976) based on the average standard penetration value. Figure 

4 shows the plots of the testing set results of estimated versus measured pile 

bearing capacity obtained from the neural network models and Meyerhof‟s 

equation. The plots in Figure 3-6 show that the predicted values from the neural 

networks matched the measured values much better than those obtained from 

Meyerhof‟s equation. 



 

Figure 3- 6 Testing results of predicted vs measured pile bearing capacity from in-situ pile load test 
(Lee and Lee 1996) 

Abu-Kiefa (1998) introduced three neural networks to predict the capacity of 

driven piles in cohesionless soils. The first model was developed to estimate the 

total pile capacity. The second model was employed to estimate the tip pile 

capacity, whereas the final model was used to estimate the shaft pile capacity. Five 

variables were selected to be the model inputs in the first and second model. These 

inputs were the angle of shear resistance of the soil around the shaft, the angle of 

shear resistance at the tip of the pile, the effective overburden pressure at the tip of 

the pile, the pile length and the equivalent cross-sectional pile area. The model had 

one output representing the total pile capacity.  The input variables used to predict 

the pile shaft capacity were four, representing the average standard penetration 

number around the shaft, the angle of shear resistance around the shaft, pile length 

and pile diameter. The results of the networks obtained in this study were 

compared with four other empirical techniques. 

These techniques were those proposed by Meyerhof (1976), Coyle and Castello 

(1981), the American Petroleum Institute (1984) and Randolph (1985). The results 

of the total pile capacity prediction demonstrated high coefficients of 



determination (0.95) for all data records obtained from the neural network model, 

while they ranged between 0.52 and 0.63 for the other methods. Figures 3-7 to 3-9 

show the measured versus predicted values of all data records for the pile capacity, 

tip pile capacity and shaft pile capacity, respectively. It can be seen from these 

figures that the predictions of the neural networks produce less scatter than the 

predictions of all other methods, and thus provide the best prediction of pile load 

capacity, tip pile capacity and shaft pile capacity. 

 

Figure 3- 7 Comparison of predicted and measured total pile capacity (Abu-Kiefa 1998) 

 

Figure 3- 8 Comparison of predicted and measured tip pile capacity (Abu-Kiefa 1998) 



 

Figure 3- 9 Comparison of predicted and measured shaft pile capacity (Abu-Kiefa 1998) 
 

3-6- 2 Settlement of Foundation 

The design of foundations is generally controlled by the criteria of bearing capacity 

and settlement; the latter often governing. The problem of estimating the 

settlement of foundations is very complex, uncertain and not yet entirely 

understood. This fact encouraged some researchers to apply the ANN technique to 

settlement prediction. Goh (1994a) developed a neural network for the prediction 

of settlement of a vertically loaded pile foundation in a homogeneous soil stratum. 

The input variables for the proposed neural network consisted of the ratio of the 

elastic modulus of the pile to the shear modulus of the soil, pile length, pile load, 

shear modulus of the soil, Poisson‟s ratio of the soil and radius of the pile. The 

output variable was the pile settlement. The desired output that was used for the 

ANN model training was obtained by means of finite element and integral equation 

analyses developed by Randolph and Wroth (1978). A comparison of the 

theoretical and predicted settlements for the training and testing sets is given in 

Figure 3-10. The results in Figure 3-10 show that the neural network was able to 

successfully model the settlement of pile foundations.  



 

Figure 3- 10 Comparison of theoretical settlements and neural network predictions (Goh 1994) 

 

Most recently, Shahin et al. (2000) carried out similar work for predicting the 

settlement of shallow foundations on cohesionless soils. In this work, 272 data 

records were used for modelling. The input variables considered to have the most 

significant impact on settlement prediction were the footing width, the footing 

length, the applied pressure of the footing and the soil compressibility. The results 

of the ANN were compared with three of the most commonly used traditional 

methods. These methods were Meyerhof (1965), Schultze and Sherif (1973) and 

Schmertmann et al. (1978). 

The results of the study confirmed those found by Sivakugan et al. (1998), in the 

sense that ANNs were able to predict the settlement well and outperform the 

traditional methods. As shown in table 3-3, the ANN produced high coefficients of 

correlation, r, low root mean squared errors, RMSE, and low mean absolute errors, 

MAE, compared with the other methods. 

 

 

 



 

Table 3- 3 Comparison of predicted vs measured settlements (Shahin et al. 2000) 

 

 

3-6- 3 Liquifaction 

Liquefaction is a phenomenon which occurs mainly in loose and saturated sands as 

a result of earthquakes. It causes the soil to lose its shear strength due to an 

increase in pore water pressure, often resulting in large amounts of damage to most 

civil engineering structures. Determination of liquefaction potential due to 

earthquakes is a complex geotechnical engineering problem. Goh (1994b) used 

neural networks to model the complex relationship between seismic and soil 

parameters in order to investigate liquefaction potential. The neural network used 

in this work was trained using case records from 13 earthquakes that occurred in 

Japan, United States and Pan-America during the period 1891–1980. The study 

used eight input variables and only one output variable. The input variables were 

the SPT-value, the fines content, the mean grain size, the total stress, the effective 

stress, the equivalent dynamic shear stress, the earthquake magnitude and the 

maximum horizontal acceleration at ground surface. The output was assigned a 

binary value of 1, for sites with extensive or moderate liquefaction, and a value of 

0 for marginal or no liquefaction. The results obtained by the neural network 

model were compared with the method of Seed et al. (1985). The study showed 

that the neural network gave correct predictions in 95% of cases, whereas Seed et 



al. (1985) gave a success rate of 84%. Goh (1996a) also used neural networks to 

assess liquefaction potential from cone penetration test (CPT) resistance data. The 

data records were taken for sites of sand and silty sand deposits in Japan, China, 

United States and Romania, representing five earthquakes that occurred during the 

period 1964–1983. A similar neural network modelling strategy, as used in 

Goh (1994b), was used for this study and the results were compared with the 

method of Shibata and Teparaksa (1988). 

The neural network showed a 94% success rate, which is equivalent to the same 

number of error predictions as the conventional method by Shibata and Teparaksa 

(1988). 

Two other works (Najjar and Ali 1998; Ural and Saka 1998) also used CPT data to 

evaluate soil liquefaction potential and resistance. Najjar and Ali (1998) used 

neural networks to characterise the soil liquefaction resistance utilising field data 

sets representing various earthquake sites from around the world. The ANN model 

that was developed in this work was generated to produce a liquefaction potential 

assessment chart that could be used by geotechnical engineers in liquefaction 

assessment tasks. Ural and Saka (1998) used neural networks to analyse 

liquefaction. Comparison between this approach and a simplified liquefaction 

procedure indicated a similar rate of success for the neural network approach as the 

conventional approach. 

Other applications of ANNs for liquefaction prediction include the prediction of 

liquefaction resistance and potential (Juang and Chen 1999), investigation of the 

accuracy of liquefaction prediction of ANNs compared with fuzzy logic and 

statistical approaches (Ali and Najjar 1998) and assessment of liquefaction 

potential using standard penetration test results (Agrawal et al. 1997). 

 

 



 

 

3-6- 4 Slope Stability 

Ni et al. (1996) proposed a methodology of combining fuzzy sets theory with 

artificial neural networks for evaluating the stability of slopes. In this approach, the 

input parameters were gradient, horizontal profile, vertical profile, location, height, 

geological origin, soil texture, depth of weathering, direction of slopes, vegetation, 

land use, maximum daily precipitation and maximum hour precipitation. The 

output was the slope failure potential. A number of hypothetical natural slopes 

were evaluated by both neural networks and an analytical model, and the results of 

the neural network approach were in a good agreement when compared with those 

obtained by the analytical model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 4 

STABILITY EVALUATION OF PO RIVER BANKS  

 
4- 1 Introduction 
 

In the assessment of slopes, engineers primarily use FS values to determine how 

close or far slopes are from failure. Conventional limit-equilibrium techniques are 

the most commonly-used analysis methods (Haut., 2006; Mwasha., 2008; Ozcep., 

2010; Sharma., 2011). Recently, elasto-plastic analysis of geotechnical problems 

using finite element (FE) method has been widely accepted in the research arena 

for many years. Slope stability represents an area of geotechnical analysis in which 

a nonlinear finite element approach offers real benefits over existing methods. 

Slope stability analysis by elasto-plastic FE is accurate, robust and simple enough 

for routine use by practicing engineers. 

 The main advantages of the FE approach over traditional limit equilibrium 

methods for slope stability analysis are that no assumption needs to be made in 

advance about the shape or location of the failure surface, slice side forces and 

their directions and the slip surface could be of any shape (Chollada, 2013).  

General soil material models that include Mohr-Coulomb and numerous others can 

be employed.  

Limit equilibrium methods only give an estimate of FS with no information on 

deformation of the slope.  In numerical analysis, failure occurs “Naturally” which 

evolve during the calculation in a way that is representative of the natural evolution 

of the physical failure plane in the slope (Wyllie and Mah, 2004).  

The FE code Plaxis2D version 2012 in conjunction with an elastic-perfectly plastic 

(Mohr-Coulomb) stress strain model has been used for the stability analysis of 

river banks along the Po River the main in Italy, under various river and 



groundwater boundary conditions in this study. The Mohr-Coulomb failure 

criterion is currently the most widely used method for soil in practical applications 

(El-Naggar, 2010). The Mohr–Coulomb model is a linearly elastic and perfectly 

plastic constitutive model. The parameters needed for the Mohr–Coulomb model 

are the Young‟s modulus (E) and Poisson‟s ratio (ν) for the elastic strain 

component of the soil behavior. The effective strength parameters cohesion (c'), 

and friction angle (φ'), as well as the dilatancy angle (ψ) are needed for the plastic 

strain component of the soil behavior. 

 

4- 2  Study Area 

The Po River is known as the longest river entirely flowing in the Italian peninsula. 

The main stream of this river is about 652 km long. It is also the Italian river with 

the most extended catchment, stretches across northern Italy from the French 

border on the west to the Adriatic Sea on the east whose area is about 71000 km2 

at the delta. Figure 4-1 presents a schematic map of the Po River basin. The river is 

subject to heavy flooding. Consequently more than half its total length is immured 

by man-maded fine-grained earthen embankments called argini.  

In order to gain a better understanding of the behaviors of the river regime, the 

hydrological behaviors of the Po River have been extensively studied, especially 

for what refers to the flood regime (Marchi, 1994; Visentini, 1953; Piccoli, 1976; 

Zanchettini et al., 2008; Montanari., 2012). The average yearly water flow at the 

estuary is 1460 m
3
. The Po River has the Alpine water regime on its higher course. 

During which the water level of the river Po and its tributaries rises by 5 to 10 

meters. The history of the Po River floods is well known. In fact, starting from the 

middle age the lands surrounding the river were intensively cultivated and since 

that time they were recorded. By observing their frequency, one may assess that 



events with about 5-year return period were recorded. Since the area is 

characterized by a very high concentration of population and industrial activities, 

evaluation of embankment along the Po River is crucial. This study investigates the 

Po river banks slope stability using the ANN method. 

The engineering properties of body of the embankments and the foundation soils 

were investigated by in situ tests. Results from the experimental activities and their 

interpretation were applied to generate minimum FS of 77 river banks with 

different geometry and shear strength parameters using the FE method in 

conjunction with an elastic-perfectly plastic (Mohr-Coulomb) stress strain model. 

Each section of the Po river bank is evaluated under two different water level 

according to low level of water in river and high water stage in Po.  

 

 

Figure 4- 1 Map of the Po River basin (from Wikipedia) 

 

 

4- 3 Plaxis2D 

Plaxis is an FE computer programming which is mainly used for the stress-

deformation analysis; stability and leakage analysis in geotechnical projects.  

In general, the analysis in Plaxis includes:  



1. Defining the geometry and FE model layout  

2. Specifying material parameters: appropriate selection of material strength and 

stiffness parameters from laboratory or in-situ tests.  

3. Generating stresses.  

4. Construction staging i.e. defining various stages of excavation using staged 

construction.  

After defining the geometry of the problem, assigning geotechnical specifications 

of soil layers and water table and stress-strain and safety analysis are done through 

four phases by stage construction capability of the software (Plaxis 2D 2011). 

 Determination of the Factor of Safety 

The FS of a soil slope is defined here as the factor by which the original shear 

strength parameters must be divided in order to bring the slope to the point of 

failure. The factored shear strength parameters (c´f and øˈf ) are therefore given by:   

  
   

 

   ⁄                                                                                                              (4-1)     

  
        .

     

   
/                                                                                                  (4-2) 

where SRF is a “Strength Reduction Factor”. This method is referred to as the 

“shear strength reduction technique” (e.g. Matsui and San 1992; Griffi and Lane, 

1999) and allows for the interesting option of applying different strength reduction 

factors to the c´ and ´ terms. In this paper, however, the same factor is always 

applied to both terms. To find the true FS, it is necessary to initiate a systematic 

search for the value of SRF that will cause the slope to fail. When this value has 

been found, FS = SRF 

 

 

 



 4- 4 Data Availability and Slope Stability 
 

4-4- 1Soil Stratigraphy with the Use of Cone penetration testing with pore-

water pressure measurement (CPTu)  
 

The electric Cone Penetration Test (CPT) has been in use for over 40 years. The 

CPT has major advantages over traditional methods of field site investigation such 

as drilling and sampling since it is fast, repeatable and economical. In addition, it 

provides near continuous data and has a strong theoretical background. These 

advantages have led to a steady increase in the use and application of the CPT in 

many places around the world.  

In order to obtain the soil stratigraphy, physical and mechanical properties of 

subsurface strata and groundwater conditions, 220 cone penetration tests have been 

conducted on 77 embankments along the Po river.  

Numerous correlations have been developed to estimate geotechnical parameters 

from the CPTu for a wide range of soils. These correlations vary in their reliability 

and applicability.  

Based on most reliable and recent empirical and semi empirical correlations a 

program is set up. Following, equations 4-3 to 4-26, is the body of equations that 

have been used in this investigation to interpret the CPTu results in order to find 

out the soil classification (Robertson, 2010; Robertson and Cabal, 2011). A 

schematic view of the developed program in excell is shown in tablaes 4-1 and 4-2. 

Table 4-1 contains the input values driven direcly from the CPTu test and the soil 

index parameters as outputs of the program are shown in table 4-2  

 

 

 



CPTu Interpretation- Body of Equations 

[1] Cone resistance [MPa]: 

    
  

  
                                                                                                                (4-3) 

Qc: The force acting on the cone 

Ac: Area of the cone 

[2] Corrected cone resistance [MPa]: 

         (   )                                                                                           (4-4) 

           (                     ) 

                                                     

For sandy soils, a=1 

[3] Net cone resistance [MPa]: 

                                                                                                               (4-5) 

                         

[4] Normalized cone resistance: 

    
      

   
                                                                                                           (4-6) 

   
                                    

[5] Normalized cone resistance: 

    0
      

   
 1 ,
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                                                                                            (4-7) 

                                       

                        

 



[6] Pore pressure ratio: 

   
  

  
                                                                                                                (4-8) 

                                                                                                              (4-9) 

                                      

[7] Sleeve friction [MPa]: 

   
  

  
                                                                                                               (4-10) 

                                                

                                   

[8] Friction ratio: 

   
  

  
                                                                                                     (4-11) 

[9] Soil Behavior Type Index: 

   ((          )
  (          )

 )                                                    (4-12) 

[10] Unit eight of soil [MN/m3] (Robertson2010): 

           .          
  

  
      /                                                     (4-13) 

                        

[11] Drained Young’s modulus [MPa](Robertson 2009): 

  (     )          
                                                                        (4-14) 

Note: For silica sands 

[12] Small strain shear modulus [MPa] (Eslaamizaad&Robertson 1996): 

   (     )           
                                                                    (4-15) 

Note: For Wide range of Soils 



[13] Equivalent SPT N60 (Jefferies&Davies 1993): 

         
  

  
 

 

                 
                                                                     (4-16) 

Note: Does not work good in stiff clays 

[14] Peak drained friction angle (Kulhawy & Mayne 1990): 

                                                                                                   (4-17) 

SBT= 5,6,7,8 

[15] Effective stress friction angle (Mayne 2005): 

          
                                                                                                 (4-18) 

0.1 <    < 1 

20 <   < 45 

Note: Apply to normally to lightly over consolidated clays- For small and medium 

projects- For heavily over consolidated clays the lab tests should be done. 

[16] In situ stress ratio (Kulhawy&Mayne 1990): 

      
     

  
                                                                                           (4-19) 

         

[17] Untrained peak shear strength [kPa] (All theories): 

   
(     )

   
 

  

   
                                                                                             (4-20) 

              (  )                                                                                   (4-21) 

SBT= 1,2,3,4,9 

[18] Remolded undrained shear strength [kPa]: 

  (        )                                                                                                  (4-22) 

SBT=1,2,3,4,9 



[19] Soil sensitivity: 

   
  

  (        )
                                                                                                 (4-23) 

[20] Shear wave velocity [m/s]: 

   
  

 
                                                                                                               (4-24) 

[21] Permeability [m/s] (Robertson 2010): 

                                                                                                (4-25) 

                                                                                               (4-26) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4- 1 Developed program for interpreting the CPTu tests- Inputs 

 

Table 4-1 Continue 

 

Profondità Profondità Deviazione Profondità Risultante

Misurata Corretta dalla verticale Friction inclinometri

  [m]   [m]   [m]   [m] [MPa] [MPa] [MPa]  [Gradi] [Mpa]

0.025 0.025 0.000 -0.045 0.43786 0.00349 0.00012 0.44 0

0.033 0.033 0.000 -0.037 0.45475 0.00326 0.00070 0.43 0

0.041 0.041 0.000 -0.029 0.64587 0.00277 0.00012 0.40 0

0.050 0.050 0.000 -0.020 0.77348 0.00279 0.00070 0.33 0

0.058 0.058 0.000 -0.012 0.80368 0.00307 0.00070 0.53 0

0.066 0.066 0.000 -0.004 0.98125 0.00310 -0.00046 0.32 0

0.074 0.074 0.001 0.004 1.01156 0.00297 0.00012 0.53 0

0.082 0.082 0.001 0.012 1.04511 0.00318 0.00012 0.30 0

0.091 0.091 0.001 0.021 1.15907 0.00395 -0.00046 0.54 0

0.099 0.099 0.001 0.029 1.12910 0.00408 0.00070 0.44 0

0.107 0.107 0.001 0.037 1.10539 0.00430 -0.00046 0.46 0

0.115 0.115 0.001 0.045 1.25960 0.00410 -0.00104 0.25 0

0.123 0.123 0.001 0.053 1.22640 0.00430 0.00070 0.55 0

0.131 0.131 0.001 0.061 1.27325 0.00455 0.00012 0.37 0

0.139 0.139 0.001 0.069 1.36025 0.00489 -0.00104 0.55 0

qt fs u U0

[MPa] % [kN/m
3
] [MPa] [MPa] [MPa] %

0.4378399 0.7970932 14.38 0.0003596 0.0003593 0.43744 N/A 2499.7433 0.797867622

0.454615 0.7173918 14.32 0.0004725 0.0004722 0.45419 N/A 1966.2751 0.718277812

0.6458512 0.428659 14.26 0.0005848 0.0005844 0.64518 N/A 2248.0814 0.429122067

0.7733419 0.3604768 14.34 0.0007171 0.0007166 0.77263 N/A 2207.5851 0.360873315

0.8035371 0.3824674 14.47 0.0008393 0.0008387 0.80269 N/A 1977.1335 0.382937166

0.9813434 0.3163635 14.56 0.000961 0.0009603 0.98013 N/A 2121.5555 0.316725601

1.0115385 0.2934145 14.52 0.0010744 0.0010737 1.01030 N/A 1950.4555 0.293779859

1.0450887 0.3041243 14.61 0.0011982 0.0011974 1.04372 N/A 1818.3787 0.304530442

1.1591594 0.3408051 14.91 0.0013566 0.0013557 1.15752 N/A 1817.2 0.341260554

1.1289642 0.3610475 14.94 0.0014785 0.0014775 1.12742 N/A 1626.9201 0.361586444

1.1054791 0.38891 14.99 0.0016038 0.0016027 1.10357 N/A 1473.4343 0.389551008

1.25981 0.3253726 14.98 0.0017231 0.001722 1.25765 N/A 1562.3408 0.325878381

1.2262598 0.350624 15.03 0.0018486 0.0018474 1.22431 N/A 1422.0043 0.351222844

1.2732301 0.3576679 15.11 0.0019796 0.0019783 1.27103 N/A 1386.1123 0.358294597

1.3604606 0.3596332 15.22 0.0021157 0.0021144 1.35789 N/A 1395.6134 0.360259008

Bq Qt

qn Rf NormalizedFR ɣ σv0 σ'v0qc



 

Table 4- 2 Developed program for interpreting the CPTu tests- Outputs 

 

 

4-4- 2Slope stability analysis 

The FE stability analysis with Plaxis2D and steady state seepage analysis was 

conducted for each section of Po river embankments for low and high water level 

in river. In each section the body of the embankment and the soil layer beneath the 

embankment, two different water levels are considered in the analyses.  

The calculation consists of four phases. In the initial phase, initial stresses and 

initial pore water pressure in low water level condition are calculated using Gravity 

Loading. For this situation, the water pressure distribution is calculated using a 

steady-state groundwater flow calculation. This phase is followed by so called „nil 

step‟ to increase the accuracy of the stress field, before considering the high water 

level situation. The third phase considers the long term behavior of the river bank 

at high level of river water, which involves a steady-state groundwater flow 

[MPa] [MPa] m/day [°]

1.12  Sand Mixtures- Silty Sand to Sandy Silt (5) 15.2 19.0 0.399856 4.4 45.4

1.09  Sand Mixtures- Silty Sand to Sandy Silt (5) 14.9 18.7 0.297402 4.2 45.0

0.86  Sand Mixtures- Silty Sand to Sandy Silt (5) 14.8 18.6 0.329316 4.2 45.0

0.79  Sand Mixtures- Silty Sand to Sandy Silt (5) 14.6 18.3 0.301699 4.1 44.8

0.82  Sand Mixtures- Silty Sand to Sandy Silt (5) 14.4 18.0 0.203901 3.9 44.3

0.73  Sand Mixtures- Silty Sand to Sandy Silt (5) 14.3 17.9 0.199819 3.9 44.2

0.71  Sand Mixtures- Silty Sand to Sandy Silt (5) 14.2 17.8 0.198701 3.9 44.2

0.73  Sand Mixtures- Silty Sand to Sandy Silt (5) 14.2 17.8 0.239397 3.9 44.3

0.78  Sand Mixtures- Silty Sand to Sandy Silt (5) 14.0 17.5 0.173574 3.8 43.8

0.82  Sand Mixtures- Silty Sand to Sandy Silt (5) 14.0 17.6 0.156815 3.8 43.7

0.86  Sand Mixtures- Silty Sand to Sandy Silt (5) 14.2 17.8 0.178793 3.9 43.9

0.78  Sand Mixtures- Silty Sand to Sandy Silt (5) 14.1 17.6 0.117649 3.7 43.4

0.83  Sand Mixtures- Silty Sand to Sandy Silt (5) 14.0 17.6 0.124096 3.7 43.4

0.84  Sand Mixtures- Silty Sand to Sandy Silt (5) 14.0 17.5 0.122030 3.7 43.3

0.84  Sand Mixtures- Silty Sand to Sandy Silt (5) 13.9 17.4 0.148440 3.7 43.4

Ic

K
NSPT

ɸ´E´ G0

Soil Behavior Type



calculation to calculate water pressure distribution. Finally for all tow water 

pressure situations the FS of the bank is calculated by means of phi-c reduction. 

   In the Plaxis2D analysis, additional displacements are generated during a safety 

calculation. The total incremental displacement in the final step (at failure) gives 

an indication of the likely failure mechanism (Figure 2(c) and (d)). The soil layers 

were modeled using 15-node triangular elements. The powerful 15-node element 

provides an accurate calculation of stresses and failure nodes. Due to a stress 

concentration around the toe of embankment, a finer FE mesh is used in these areas 

and mesh became coarser in the zones away from the toe.  As an example of the 

works that are done on 77 sections of Po river embankments, the geological map 

with the location of CPTu tests, the results of CPTu tests and the soil stratigraphy 

driven from the CPTu results for a two selected river banks is shown in figure 4-

2(a) to (e) and 4-5(a) to (e). Then the developed FE model, and the failure 

mechanism in two different water levels for the first section is presented in figure 

4-3(a) to (c). As indicated before the sections have been simplified to be 

investigated with ANN method. The simplified geometry and the FE stability 

analysis on two selected simplified section in two different water levels is shown in 

figure 4-4(a) to (c) and 4-6 (a) and (b). 



 

(a) Geological Map of Section U204-205-206FEN 

 



 

 

(b) Cptu results and soil profile of U204FEN 



 

 

 

(c) Cptu results and soil profile of U205FEN 



 

 

(d) Cptu results and soil profile of U206FEN 



 

 

(e) Final stratigraphy of section U204-205-206FEN 

Figure 4- 2 (a) Geological map of section U204-205-206FEN (b) Profile U205FEN (c) Profile 
U205FEN (d) Profile U206FEN (e) Final stratigraphy of section U204-205-206FEN 

 

Note: The base level of the presented depths is the ground level at the river side of the 

embankment. 

 



 

(a) Finite element model of section U204-20-206FEN 

 

(b) Failure mechanism- Low water level- Factor of Safety: 1.802 

 

(c) Failure mechanism- High water level- Factor of Safety: 1.397 

 

Figure 4- 3 (a) Finite element model of section U204-20-206FEN (b) Failure mechanism- 
Low water level- Factor of Safety: 1.802 (c) Failure mechanism- High water level- Factor of 

Safety: 1.397 
 

 

 

 

 

 



 

 

 

(a) Simplified finite element model of section U204-205-206FEN 

 

 

(b) Failure mechanism- Low water level- Factor of Safety: 1.787 

 

  

(c) Failure mechanism- High water level- Factor of Safety:  1.402 

 

 

Figure 4- 4 (a) Simplified finite element model of section U204-205-206FEN (b) Failure 
mechanism- Low water level- Factor of Safety: 1.787 (c) Failure mechanism- High water level- 

Factor of Safety:  1.402 

 

 

 

 

 



 

(a) Geological Map of Section U204-205-206FEN 

 

 

 

 

 

 

 



 

 

(a) CPTu results and soil profile of U114SRRN 
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(C ) CPTu results and soil profile of U115SRN 

Ic Average SBT
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(d) CPTu results and soil profile of 116SRN 

Ic Average SBT

Es [MPa] 14

G0 [MPa] 19

K m/s 0.000113

ɸ [°] 37

Es [MPa] 2

G0 [MPa] 30

K m/s 5.79E-08

ɸ [°] 3

Es [MPa] 47

G0 [MPa] 59

K m/s 3.22E-05

ɸ [°] 37

Es [MPa] 0

G0 [MPa] 43

K m/s 4.3E-09

ɸ [°] 2

Es [MPa] 115

G0 [MPa] 145

K m/s 0.00023

ɸ [°] 40

-7.452 3.22

Clays- 

silty clay 

to clay

-11.952 1.69

Sands- 

clean sand 

to silty 

sand

-11.952

-11.952

-5.952 1.96

Sands- 

clean sand 

to silty 

sand

7.048 2.61

Silt 

mixtures- 

clayey silt  

to silty 

clay

2.048 3.04

Clays- 

silty clay 

to clay

Depth[m]

-7.452

-5.952

2.048



 

 

(e) Final stratigraphy of section U114-115-116SRN 

Figure 4- 5 (a) Geological map of section U114-115-116SRN (b) Profile U114SRN (c) Profile 
U115SRN (d) Profile U116SRN (e) Final stratigraphy of section U114-115-116SRN 

 

Note: The base level of the presented depths is the ground level at the river side of the 

embankment. 
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(a) Failure mechanism- Low water level- Factor of Safety: 2.072 

 

 

 

 

(b) Failure mechanism- High water level- Factor of Safety:  1.881 

Figure 4- 6 (a) Failure mechanism- Low water level- Factor of safety: 2.072 (b) Failure 
mechanism- High water level- Factor of Safety: 1.881 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 5 

PROPOSED NEURAL NETWORK MODEL FOR 

SLOPE STABILITY ANALYSIS 

5- 1Introduction 

In this chapter, an artificial neural network approach is outlined to predict the 

factors of safety of slopes. The solution is attempted by employing a neural 

network and predicting the results using the data collected from field case studies. 

An artificial neural network can acquire, store, and utilize experiential knowledge 

like a physical cellular system, to some extent. Neural networks are composed of 

many simple elements usually operating in parallel (McCullock and Pitts, 1943). 

The network computation is performed by a dense mesh of com putting nodes and 

connections. They operate collectively and simultaneously on most or all data and 

inputs (Minsky, 1954, Minsky and Papert, 1969). The network function is 

determined largely by the connections between elements. We can train a neural 

network to perform a particular function by adjusting the values of the connections 

between elements. 

The basic processing elements of neural networks are called artificial neurons, or 

simply neurons (McCullock and Pitts, 1943; Rosenblatt, 1958). Often we simply 

call them nodes. Neurons can be perceived as summing and non-linear mapping 

functions. In some cases they can be considered as threshold units that get 

activated when their total input exceeds certain bias levels (Rosenblatt, 1958; 

Widrow and Hoff, 1960). Neurons operate in parallel and are configured in regular 

architectures. They are often organized in layers, and feedforward and/or feedback 

connections both within the layer and toward adjacent layers are allowed 



(Kohonen, 1977, 1982; Hopfield, 1984). The strength of each connection is 

expressed by a numerical value called weight, which can be modified. 

The most basic characteristic of a neural network is its architecture. Design of 

network architecture includes selecting the number of layers and the number of 

nodes in each layer and the interconnection schem es between layers. A variety o f 

functions can be used as the interconnection function between inputs and hidden 

layer or between hidden layer and output layer (Kohonen, 1977, 1984; McClelland 

and Rumelhart, 1986). Neural networks differ from each oher in their learning 

modes (Widrow and Hoff, 1960). There are a variety of learning rules that 

establish when and how the connecting weights change. Networks exhibit different 

speeds and efficiency of learning, thus they also differ in their ability to accurately 

respond to the values presented at the input (Amari, 1977, 1990; Anderson et al., 

1977; Kohonen, 1982, 1988). 

A neural network‟s ability to perform computations is based on the premise that we 

can reproduce some of the flexibility and power of a human brain by artificial 

means (Von Neumann, 1958; Arbib, 1987). Advances have been made in applying 

such systems for problems found intractable or difficult for traditional computation 

approaches (Kohonen, 1984; Hopfield, 1984; Zurada, 1992). Neural network users 

do not specify an algorithm to be executed by each computing node (neuron). 

Instead, they select what in their view is the best architecture, specify the 

characteristics of the neurons and initial weights, and choose a training mode for 

the network (Rumelhart et al., 1986; Hertz et al., 1991; Demuth and Beale, 1995, 

2000). 

Appropriate inputs are then applied to the network so that it can acquire know 

ledge from the environment. As a result of such exposure, the network assimilates 

information that can be later recalled by the user (Kohonen, 1988). 



The field of neural networks has a history of some six decades but has found 

meaningful applications only in the past twenty years. The field is still developing 

rapidly. Today neural networks can be trained to solve problems that are difficult 

for conventional computational, physics-based methods (Demuth and Beale, 1995, 

2000). Neural networks are becoming a useful tool for industry, education and 

research, a tool that helps users find what works and what does not, and a tool that 

helps develop and extend the field of neural networks (Zurada, 1992). However, 

the neural network modeling is limited to the fact that it is based on the data 

available and extrapolation might not be reliable. 

Application of artificial neural network to slope stability analysis is a relatively 

new topic. It has been well known that neural network can be used to solve both 

linear and especially non-linear problems. For the case of slope stability, the 

problem is known to be highly non-linear and a non-linear model may be 

warranted.  

A brief introduction to concepts of artificial neural systems such as artificial 

neuron model and network architectures is in chapter 3. 

 

5- 2 Modeling Slope Stability with Neural Network 

One of the most widely used ANN models in literature are multilayer perceptron 

network (MLP). MLP is a class of ANN structures using feedforward architecture. 

The MLP networks are usually applied to perform supervised learning tasks, which 

learning process is achieved by adjusting the weights in network until a particular 

input leads to a specific target output. They are usually trained with a back 

propagation (BP) (Rumelhart et al., 1986) algorithm. Figure 5-1 shows a schematic 

diagram of a back-propagation neural network. Multilayer perceptron networks 

consist of an input layer, at least one hidden layer of neurons, and an output layer. 



Each of these layers has several processing units, and each unit is fully 

interconnected with weighted connections to units in the subsequent layer. Each 

layer contains a number of nodes (Alavi et al., 2010). 

Every input is multiplied by each of the nodes using its interconnection weight. 

The output (hj) is obtained by passing the sum of the product through an activation 

function as follows: 

    (∑       )                                                                                             (5-1) 

where f ( ) is activation function, xi is the activation of ith hidden layer node, and 

wij is the weight of the connection joining the jth neuron in a layer with the ith 

neuron in the previous layer. For nonlinear problems, the sigmoid functions 

(Hyperbolic tangent sigmoid or log-sigmoid) are usually adopted as the activation 

function (Alavi et al., 2010). Adjusting the interconnections between layers will 

reduce the following error function: 

  
 

 
∑ ∑ (  

    
 )                                                                                      (5-2) 

where   
  and   

  are the calculated output and the actual output value, 

respectively; n is the number of sample, and k is the number of output nodes. 

Further details of MLPs can be found in Haykins (1999) and Cybenko (1989). 

 

 

Figure 5- 1 A schematic diagram of a neural network using BP algorithm (Alavi et al., 2010). 

 

 



5-2- 1 Formulation of the River Banks Stability  

In order to have precise estimations of the FS values, it is considered to be a 

function of several important parameters as follows: 

  , , ,,, HBC, HfFS 212̀1̀21                                                                             (5-3) 

Where, 

BC: Crest width      

H1: Embankment height      

H2: Height of the first layer under the embankment  

HW: Height of the water level      

`1: Right hand side slope      

`2: Left hand side slope      

 ´1: Friction angle of embankment body  

 ´2: Friction angle of first layer      

The significant influence of the above parameters in determining FS is well 

understood. Figure 5-2 presents a schematic representation of slop along with the 

considered parameters.  

 

 

 

 

 
Figure 5- 2  A schematic representation of the investigated slopes 

 



5-2- 2 Model Development Using MLP 

The available databases are used for establishing the MLP prediction models. After 

developing different models with different combinations of the input parameters, 

the final explanatory variables (BC, H1 H2, HW, `1, `2,  ´1,  ´2) are selected as 

the inputs of the optimal models. For the development of the MLP models, a script 

is written in the MATLAB environment using Neural Network Toolbox 5.1 

(MathWorks, 2007; Mollahasani et al, 2011). The performance of an ANN model 

mainly depends on the network architecture and parameter settings. According to a 

universal approximation theorem (Cybenko, 1989), a single hidden layer network 

is sufficient for the traditional MLP to uniformly approximate any continuous and 

nonlinear function. Choosing the number of the hidden layers, hidden nodes, 

learning rate, epochs, and activation function type plays an important role in the 

model construction. Hence, several MLP network models with different settings 

for the mentioned characters are trained to reach the optimal configurations with 

the desired precision (Mollahasani et al, 2011). The written program automatically 

tries various numbers of neurons in the hidden layer and reports the correlation 

coefficient (R), root mean squared error (RMSE) and mean absolute percent error 

(MAPE) values for each model. The models with the highest R and lowest RMSE 

and MAPE values on the training data sets are chosen as the optimal models. 

Various training algorithms are implemented for the training of the MLP network 

such as gradient descent (traingd), Levenberg–Marquardt (trainlm), and resilient 

(trainrp) back propagation algorithms. The best results are obtained by Levenberg–

Marquardt (trainlm) method. Also, log-sigmoid is adopted as the transfer function 

between the input-hidden and hidden layer-output layers. The model architectures 

that gave the best results for the formulation of the FS are found to contain:  

 



Low Water Level: 

 One invariant input layer, with 8 (n = 8) arguments and a bias term; 

 One invariant output layer with 1 node providing the value of FS. 

 One hidden layer having 9 (m = 9) nodes. 

 

High Water Level: 

 One invariant input layer, with 8 (n = 8) arguments (BC, H1 H2, HW, `1, `2, 

 ´1,  ´2) and a bias term; 

 One invariant output layer with 1 node providing the value of FS. 

 One hidden layer having 16 (m = 16) nodes. 

 

The MLP models are built with a learning rate of 0.05 and trained for 1500 epochs. 

 

5-2- 3 Data Preprocessing  

As noted previously, the data used for constructing the model are from The FE 

stability analysis with Plaxis and steady state seepage analysis on each section of 

Po river embankments for low and high water level in river. The descriptive 

statistics of the data used in this study are also given in Table 5-1.  

 Data for a total of 77 slopes were collected, as shown in Table 5 -2, with the 

principal parameters of each slope listed. The body of emabankments typically 

composed of sandy and silty soils. The slope heights range from 4.8m to 10.6m.  

 

 



Table 5- 1 Descriptive statistics of the variables used in the model development 

Low Water Level 

        

Parameter H1 H2 HW ø´1 ø´2 B `1 `2 FS 

Mean 7.9 6.4 -1.3 34.2 19.5 10.6 24.2 14.8 1.5 

Standard Deviation 1.4 4.2 1.7 6.4 5.9 5.1 6.3 4.2 0.3 

Minimum 4.9 2.5 -5.7 19.2 6.3 4.6 8.2 8.3 1.0 

Maximum 10.3 28.2 2.3 56.5 38.7 30.0 43.9 27.9 2.3 

High Water Level 

        

Parameter H1 H2 HW ø´1 ø´2 B `1 `2 FS 

Mean 7.9 6.2 6.8 34.8 20.1 11.3 23.5 14.4 1.3 

Standard Deviation 1.5 3.9 1.5 6.5 6.6 6.9 5.3 3.9 0.2 

Minimum 4.8 2.5 3.5 23.3 8.8 4.6 13.2 8.3 1.0 

Maximum 10.6 28.2 9.2 56.5 41.8 41.6 35.9 26.1 2.1 

          
 

Table 5- 2 Slopes for Developing the Proposed Artificial Neural Model

 

 

OUTPUT

H1 H2 HW ø´1 ø´2 B 𝞪1 𝞪2

m m m ˚ ˚ m ˚ ˚

1 U298RON U299RON 6 9 -4 23 24 9 29 11 1.358

2 6 9 6 23 24 9 29 11 1.599

3 U295RON U296RON 7 6 -2 40 15 9 36 11 1.219

4 7 6 6 40 15 9 36 11 1.315

5 U291RON U292RON U293RON 7 6 -3 41 26 9 13 12 2.805

6 7 6 6 41 26 9 13 12 1.612

7 U288RON U289RON U290RON 8 7 -2 37 26 7 29 9 1.332

8 8 7 8 37 26 7 29 9 1.315

9 U285RON U286RON U287RON 10 5 -1 40 27 7 26 15 1.605

10 10 5 8 40 27 7 26 15 1.228

11 U279RON U280RON U281RON 10 3 -3 37 27 9 22 11 1.595

12 10 3 9 37 27 9 22 11 1.308

13 U276RON U277RON U278RON 10 3 0 35 16 9 27 11 1.232

14 10 3 9 35 16 9 27 11 1.262

15 U273RON U274RON U275RON 10 6 -1 29 15 9 32 11 1.019

16 10 6 9 29 15 9 32 11 1.084

17 U270RON U271RON U272RON 7 8 -2 40 24 8 21 11 1.819

18 7 8 7 40 24 8 21 11 1.442

19 U264RON U265RON U266RON 9 3 -1 40 14 17 31 11 1.052

20 9 3 8 40 14 17 31 11 1.129

21 U262RON U263RON 8 4 -3 38 24 20 19 11 1.902

22 8 4 7 38 24 20 19 11 1.427

23 U258RON U259RON U260RON 10 4 0 39 25 14 26 12 1.231

24 10 4 9 39 25 14 26 12 1.277

25 U258RON U259RON U260RON 10 5 0 30 16 26 19 17 1.361

26 10 5 9 30 16 26 19 17 1.102

27 U252RON U253RON U254RON 7 5 -3 40 20 16 22 14 1.47

28 7 5 6 40 20 16 22 14 1.121

29 U250FEN U251FEN 7 9 -2 29 20 10 22 8 1.287

30 7 9 5 29 20 10 22 8 1.213

31 U243FEN U244FEN 8 4 0 23 33 9 11 10 2.27

32 8 4 7 23 33 9 11 10 1.095

FOSSECTIONNo.

INPUTS



Table 5-2 Continued

 

OUTPUT

H1 H2 HW ø´1 ø´2 B 𝞪1 𝞪2

m m m ˚ ˚ m ˚ ˚

33 U240FEN U241FEN U243FEN 8 5 -2 35 25 8 26 20 1.373

34 8 5 7 35 25 8 26 20 1.161

35 U237FEN U238FEN U239FEN 10 5 -1 34 24 12 21 15 1.547

36 10 5 8 34 24 12 21 15 1.362

37 U231FEN U232FEN U233FEN 11 6 0 23 16 24 24 11 1.112

38 11 6 9 23 16 24 24 11 1.145

39 U225FEN U226FEN U227FEN 9 5 0 28 19 8 25 11 1.208

40 9 5 8 28 19 8 25 11 1.337

41 U222FEN U223FEN U224FEN 9 5 1 38 21 8 24 12 1.235

42 9 5 7 38 21 8 24 12 1.256

43 U216FEN U217FEN U218FEN 5 7 -4 38 16 6 27 13 1.148

44 5 7 2 38 16 6 27 13 1.008

45 U207FEN U208FEN U209FEN 9 3 -2 40 25 8 23 12 1.52

46 9 3 6 40 25 8 23 12 1.283

47 U198FEN U199FEN U200FEN 9 4 -1 41 26 5 17 11 2.087

48 9 4 8 41 26 5 17 11 1.565

49 U193FEN U194FEN 9 6 0 40 16 8 22 11 1.126

50 9 6 8 40 16 8 22 11 1.022

51 U183FEN U184FEN U185FEN 9 3 1 33 14 8 24 11 1.078

52 9 3 8 33 14 8 24 11 1.149

53 U168FEN U169FEN U170FEN 8 4 -2 36 42 10 25 17 1.585

54 8 4 6 36 42 10 25 17 1.508

55 U165FEN U166FEN U167FEN 8 6 -2 23 7 16 16 13 Fail

56 8 6 6 23 7 16 16 13 Fail

57 U162FEN U163FEN U164FEN 8 6 -2 33 20 7 18 13 1.632

58 8 6 7 33 20 7 18 13 1.202

59 U156FEN U157FEN U158FEN 8 6 -2 40 24 21 12 9 2.7

60 8 6 7 40 24 21 12 9 1.56

61 U153FEN U154FEN U155FEN 6 7 -2 38 6 13 21 19 1.212

62 6 7 5 38 6 13 21 19 FAIL

63 U151FEN U150FEN U152FEN 7 7 -3 41 25 10 25 16 1.729

64 7 7 6 41 25 10 25 16 1.492

INPUTS

No. SECTION FOS

OUTPUT

H1 H2 HW ø´1 ø´2 B 𝞪1 𝞪2

m m m ˚ ˚ m ˚ ˚

65 U147FEN U148FEN U149FEN 5 7 N.A 37 19 9 28 22 1.195

66 5 7 4 37 19 9 28 22 0.983

67 U144FEN U145FEN U145FEN 7 6 -3 31 15 8 30 14 1.24

68 7 6 7 31 15 8 30 14 1.19

69 U141FEN U142FEN U143FEN 7 7 2 37 17 10 33 15 1.244

70 7 7 7 37 17 10 33 15 1.321

71 U138FL U139FL U140FL 8 8 0 29 24 7 27 19 1.465

72 8 8 8 29 24 7 27 19 1.38

73 U132FL U133FL U134FL 9 6 -1 33 25 7 30 14 1.482

74 9 6 8 33 25 7 30 14 1.652

75 U129FL U130FL U131FL 8 3 1 38 34 10 27 24 1.904

76 8 3 7 38 34 10 27 24 FAIL

77 U127FL U128FL 7 7 -3 38 14 5 24 18 2.375

78 7 7 5 38 14 5 24 18 2.16

79 U123FL U124FL U125FL 9 5 -1 35 30 8 25 15 1.955

80 9 5 8 35 30 8 25 15 1.946

81 U120SRN U121SRN U122SRN 8 3 -2 39 12 13 29 28 1.157

82 8 3 7 39 12 13 29 28 FAIL

83 U114SRN U115SRN U116SRN 7 5 -2 35 23 20 28 24 2.072

84 7 5 6 35 23 20 28 24 1.881

85 U111SRN U112SRN U113SRN 8 9 -1 35 15 13 24 26 1.274

86 8 9 7 35 15 13 24 26 1.043

87 U105SRN U106SRN U107SRN 5 7 -4 41 16 6 26 17 1.612

88 5 7 3 41 16 6 26 17 1.415

89 U100SRN U101SRN 9 4 -2 35 15 5 25 17 1.303

90 9 4 8 35 9 5 25 17 1.083

91 U97CP U98CP U99CP 8 11 1 38 15 6 32 15 1.125

92 8 11 7 38 15 6 32 15 1.138

93 U94CP U95CP U96CP 7 8 -2 29 14 5 18 18 1.507

94 7 8 6 29 14 5 18 18 1.072

95 U91CP U92CP U93CP 8 5 -1 37 17 6 14 19 1.178

96 8 5 7 37 17 6 14 19 1.24

INPUTS

No. SECTION FOS



Table 5-2 Continued 

 

 

OUTPUT

H1 H2 HW ø´1 ø´2 B 𝞪1 𝞪2

m m m ˚ ˚ m ˚ ˚

97 U89CP U90CP 9 7 0 27 20 11 32 18 1.179

98 9 7 8 27 10 11 32 18 1.304

99 U85CP U86CP U87CP 10 4 2 34 17 8 27 16 1.23

100 10 4 9 34 10 8 27 16 1.122

101 U52GSN U53GSN U54GSN 8 4 2 25 20 11 14 19 1.509

102 8 4 7 25 20 11 14 19 1.287

103 U49GSN U50GSN U51GSN 7 28 2 24 39 5 21 8 1.772

104 7 28 6 24 39 5 21 8 2.082

105 U46GSN U47GSN U48GSN 6 3 1 26 10 30 23 16 1.048

106 6 3 5 26 7 30 23 16 FAIL

107 U40GSN U41GSN U42GSN 5 5 -2 38 13 7 19 18 1.586

108 5 5 5 38 13 7 19 18 1.167

109 U34GL U35GL U36GL 7 12 -4 23 10 7 30 15 1.14

110 7 12 6 23 10 7 30 15 1.083

111 U31GL U32GL U33GL 7 7 -2 41 19 17 22 17 1.892

112 7 7 6 41 19 17 22 17 1.45

113 U25GL U26GL U27GL 7 6 -6 38 20 6 19 11 2.121

114 7 6 6 38 20 6 19 11 1.61

115 U22GL U23GL U24GL 7 6 -1 39 20 10 21 15 1.888

116 7 6 5 39 20 10 21 15 1.546

117 U19BR U20BR U21BR 7 6 -1 32 26 9 21 14 2.117

118 7 6 -9 32 26 9 21 14 1.825

119 U16BR U17BR U18BR 8 8 -3 24 20 17 14 19 1.743

120 8 8 7 24 20 17 14 19 1.29

121 U13BR U14BR U15BR 7 7 -3 57 14 9 20 12 1.738

122 7 7 6 57 14 9 20 12 1.233

123 U07BR U08BR U09BR 5 8 -1 40 15 42 23 11 1.684

124 5 8 4 40 15 42 23 11 1.47

125 U04BR U05BR U06BR 6 7 -1 32 22 10 18 17 2.145

126 6 7 5 32 22 10 18 17 1.583

127 U01BR U02BR U03BR 6 4 -1 35 20 8 22 13 1.843

128 6 4 5 35 20 8 22 13 1.56

INPUTS

No. SECTION FOS

OUTPUT

H1 H2 HW ø´1 ø´2 B 𝞪1 𝞪2

m m m ˚ ˚ m ˚ ˚

129 8 3 0 43 19 12 30 9 1.436

130 8 3 7 43 8 12 30 9 1.699

131 10 21 -3 30 13 9 21 11 1.269

132 10 21 9 30 13 9 21 11 1.024

133 U234FEN U236FEN 6 7 -1 35 21 9 44 15 1.298

134 6 7 4 35 21 9 44 15 1.381

135 U219FEN U220FEN U221FEN 8 3 -1 35 16 20 26 24 1.324

136 8 3 6 35 16 20 26 24 1.134

137 9 7 -4 31 18 5 14 14 2.083

138 9 7 7 31 18 5 14 14 1.306

139 U213FEN U214FEN U215FEN 10 5 0 19 12 8 8 11 1.407

140 10 5 7 19 6 8 8 11 FAIL

141 U204FEN U205FEN U206FEN 9 6 1 34 19 15 34 13 1.787

142 9 6 6 34 19 15 34 13 1.402

143 U201FEN U202FEN U203FEN 6 7 -3 39 24 9 27 14 1.978

144 6 7 3 39 24 9 27 14 1.865

145 5 8 -14 31 26 14 24 22 2.011

146 5 8 4 31 26 14 24 22 1.672

147 U189FEN U190FEN U191FEN 7 6 -3 43 30 7 27 9 2.316

148 7 6 5 43 30 7 27 9 2.381

149 U186FEN U187FEN U188FEN 8 3 -3 27 26 9 25 11 1.676

150 8 3 7 27 26 9 25 11 1.793

151 U177FEN U178FEN U179FEN 5 14 -3 40 26 9 28 12 1.491

152 5 14 5 40 26 9 28 12 1.449

153 U172FEN U173FEN 8 4 -2 36 19 9 14 21 1.739

154 8 4 8 36 19 9 14 21 1.109

INPUTS

No. SECTION FOS

U25ARGINE

U22ARGINE

U26ARGINE

U28CAMPAGNA



For the MLP analysis, the data sets were randomly divided into training and testing 

subsets. Training data were used for learning. The testing data were used to 

measure the performance of the MLP models on data that played no role in 

building the models (Alavi et al., 2010). Out of the available data for the low level, 

44 and 14 data vectors are used for the training and testing, respectively. For the 

high water level, 32 data vectors are used for the training process and 11 data are 

taken for the testing of the models. In order to obtain a consistent data division, 

several combinations of the training and testing sets are considered. Both the input 

and output variables are normalized in this study. After controlling several 

normalization methods (Mollahasani et al, 2011; Mesbahi, 2000), the following 

method is used to normalize the variables to a range of [L, U]: 

                                                                                                               (5-4) 

Where,    

  
   

         
                                                                                                      (5-5) 

                                                                                                            (5-6) 

 

in which Xmax and Xmin are the maximum and minimum values of the variable and  

Xn  is the normalized value. In the present study, L = 0.05 and U = 0.95.  

Comparisons of the predicted versus experimental FS values for the low and high 

water levels are shown in Figures 5-3 and 5-4, respectively.  

 



 

Figure 5- 3 Predicted versus experimental FS values using for low water level: (a) training 
data, (b) testing data 

 

 

 

Figure 5- 4 Predicted versus experimental FS values using for high water level: (a) training 
data, (b) testing data 

 

5- 3  Performance Analysis of the Models  

Precise models are developed for the prediction of FS upon reliable databases. 

Based on a logical hypothesis (Smith, 1986), if a model gives R > 0.8, and the 

RMSE and MAPE values are at the minimum, there is a strong correlation between 

the predicted and measured values. The model can therefore be judged as very 

good. It can be observed from Figures 5 and 6 that the ANN models with high R 

and low RMSE and MAPE values are able to predict the target values to an 
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acceptable degree of accuracy. The performance of the models on the training data 

is much better than that on the testing data. Moreover, the predictions for the low 

water level are more accurate than those for the high water level. No rational 

model has been found for the prediction of FS that encompasses the influencing 

variables considered in this study. Thus, it is not possible to conduct a comparative 

study between the results of this research and those in hand. However, a 

multivariable linear least squares regression (LSR) analysis is performed to have 

an idea about the predictive power of the best MLP models. The LSR prediction 

equations relate FS to the predictor variables as follows: 

92817654321 2`1̀21   HWHHBCFS                                                             (5-7)                                                                                                   

 

   where α denotes coefficient vector. The LSR model is calibrated using the entire 

databases for the high and low water level. Eviews software package is used to 

perform the regression analysis. The LSR-based formulations of FS are as given 

below: 

 

High Water Level: 

67404.10106.00046.02`00042.01̀0179.0

00059.020171.010092.00444.0

21 





HWHHBCFS

                                                           
 (5-8)                                                                                                   

 

Low Water Level: 

5702.100608.00239.02`00018.01̀0293.0

00546.020289.010045.00525.0

21 





HWHHBCFS                                                               (5-9)                                                                                                   



A comparison of the predictions made by the MLP and LSR models and the 

measured FS values is shown in Figure 5-5. It is obvious that, in all cases, the MLP 

models have a remarkably better performance than the LSR models. Empirical 

modeling based on statistical regression techniques has significant limitations. 

Most commonly used regression analyses can have large uncertainties. It has own 

major drawbacks pertaining idealization of complex processes, approximation and 

averaging widely varying prototype conditions. Contrary to MLP, the regression-

based methods model the nature of the corresponding problem by a pre-defined 

linear or nonlinear equation (Mollahasani et al., 2011). 

 

 

Figure 5- 5 A comparison of the predictions made by the MLP and LSR models: (a) Low 
water level (b) High water level 

 

 

 

 

 

 

1.00

1.50

2.00

2.50

1.00 1.50 2.00 2.50

MLP (R = 0.94,  RMSE = 0.12, MAPE = 0.03)

LSR (R = 0.88,  RMSE = 0.15, MAPE = 0.08)

(a) 

P
re

d
ic

te
d

 F
S

 

Measured FS 

1.00

1.50

2.00

2.50

1.00 1.50 2.00 2.50

MLP (R = 0.93,  RMSE = 0.08, MAPE = 0.02)

LSR (R = 0.90,  RMSE = 0.09, MAPE = 0.06)

(b) 

P
re

d
ic

te
d

 F
S

 

Measured FS 



5- 4 Conclusions 

In this research, reliable models are derived for assessing the stability analysis of 

river banks along the Po River in Italy using the ANN paradigm. The FS of slopes 

along the river is formulated in terms of several influencing variables. The 

developed models for both high and low water levels give reliable estimations of 

the FS values and outperform the regression-based models. The models can be 

improved to make more accurate predictions for a wider range by adding newer 

data sets for other soil types and test conditions. A major distinction of ANN for 

determining the FS values lies in its powerful ability to model the mechanical 

behavior without assuming prior form of the existing relationships.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 6 

CONCLUSION 
 

6- 1Summary 

This research attempts to evaluate slope instability using the BPNN model 

combined with a detailed field survey. In this study, a literature review of the slope 

stability analysis methods (Chapter 2) were introduced and followed by a 

description of artificial neural networks and its application in geotechnical 

engineering (Chapter 3). Collecting a comprehensive geotechnical database from 

CPTu test and FE stability analysis on 77 Po river banks with a description of the 

study site is presented in chapter4. 

In Chapter5, an artificial neural network model is introduced, as an alternate 

approach, for modeling slope stability. Out of the available data for the low level, 

44 and 14 data vectors are used for the training and testing, respectively. For the 

high water level, 32 data vectors are used for the training process and 11 data are 

taken for the testing of the models. In order to obtain a consistent data division, 

several combinations of the training and testing sets are considered. The available 

databases are used for establishing the MLP prediction models. After developing 

different models with different combinations of the input parameters, the final 

explanatory variables (BC, H1 H2, HW, `1, `2, ø´1, ø´2) are selected as the inputs 

of the optimal models. According to a universal approximation theorem (Cybenko, 

989), a single hidden layer network is sufficient for the traditional MLP to 

uniformly approximate any continuous and nonlinear function. The written 

program automatically tries various numbers of neurons in the hidden layer and 

reports the correlation coefficient (R), root mean squared error (RMSE) and mean 

absolute percent error (MAPE) values for each model. The best results are obtained 



by Levenberg–Marquardt (trainlm) method. Also, log-sigmoid is adopted as the 

transfer function between the input-hidden and hidden layer-output layers. The 

MLP models are built with a learning rate of 0.05 and trained for 1500 epochs. 

Also a multivariable linear least squares regression (LSR) analysis is performed to 

have an idea about the predictive power of the best MLP models, in comparison 

with a classical statistical approach. 

 

6- 2 Conclusions and Recommendations 

1. The proposed ANN model is found to be more effective in representing 

relatively complex slopes with layered soils and/or pore water pressures. it is 

worth recognizing that the BPNN, as an effective approach of evaluation 

methods for slope stability, represents a method with huge potential for 

application in geotechnical engineering. 

2. A comparison of the predictions made by the MLP and LSR models and the 

measured FS values illustrates that the MLP models have a remarkably 

better performance than the LSR models. 

3. The models can be improved to make more accurate predictions for a wider 

range by adding newer data sets for other soil types and test conditions. 

4. The study also pointed out that the main criticism of the ANN methodology 

is its inability to trace and explain the logic it uses to arrive at the outputs 

from the inputs. 

5. It should be noted, however, that the application of BPNN to slope-stability 

analysis is based on the assumption that the training data sets have the 

similar mechanisms and are based on similar geological conditions. 

6.  Based on the method of slices, numerous traditional simplified deterministic 

methods for FS calculation suffer from limitations, such as the inability to 



consider variability in input parameters. However, other methods cannot be 

substituted for the deterministic approach to slope engineering. 

7. The database developed in this study, having data for 77 slopes including 

field data, is found to be adequate for training the proposed ANN model. 

Additional field data would enrich the database further. 

8.  The factors of safety obtained by the proposed ANN model are in general 

agreement with the results from the FEM analyses. 

9. This study illustrates that the proposed ANN model is useful alternatives for 

slope stability analyses. Other techniques such as finite element method can 

be used for a more detailed analysis when needed. 

10.  Artificial neural network is still very much a developing field. It is, 

therefore, necessary for the potential users of this new tool (i.e. neural 

network technique) to be well aware of the assumptions underlying the 

technique as well as of its limitations. One must, therefore, be wary of 

attaching overwhelming importance to the absolute values of calculated 

factors of safety. It is the comparison of calculated factors of safety using 

different alternatives that is really important. These thoughts should be kept 

well in mind when adopting any analyses of slope stability.  

11.   As to the neural network-based approach, further study should involve 

collecting more field data that can be used to enhance training and 

evaluation of the model. Also, future studies should account for the effect of 

pore water pressure in a more comprehensive manner including the time 

dependent nature of pore pressure and slope failure. 

12.  The principal component analysis and ranking of input factors used in 

developing the neural network model are also considered important topics 

for future research. 



13.  Laboratory and field studies can be pursued to generate data that can be 

used for further development and validation of neural network models. 
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