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Abstract

This dissertation studies the geometric static problem of under-constrained cable-driven
parallel robots (CDPRs) supported by n cables, with n≤ 6. The task consists of determin-
ing the overall robot configuration when a set of n variables is assigned. When variables
relating to the platform posture are assigned, an inverse geometric static problem (IGP)
must be solved; whereas, when cable lengths are given, a direct geometric static prob-
lem (DGP) must be considered. Both problems are challenging, as the robot continues to
preserve some degrees of freedom even after n variables are assigned, with the final con-
figuration determined by the applied forces. Hence, kinematics and statics are coupled and
must be resolved simultaneously.

In this dissertation, a general methodology is presented for modelling the aforementioned
scenario with a set of algebraic equations. An elimination procedure is provided, aimed at
solving the governing equations analytically and obtaining a least-degree univariate poly-
nomial in the corresponding ideal for any value of n. Although an analytical procedure
based on elimination is important from a mathematical point of view, providing an upper
bound on the number of solutions in the complex field, it is not practical to compute these
solutions as it would be very time-consuming. Thus, for the efficient computation of the
solution set, a numerical procedure based on homotopy continuation is implemented. A
continuation algorithm is also applied to find a set of robot parameters with the maximum
number of real assembly modes for a given DGP. Finally, the end-effector pose depends
on the applied load and may change due to external disturbances. An investigation into
equilibrium stability is therefore performed.

The present dissertation is structured as follows. Chapter 2 is devoted to the description
of some mathematical techniques concerning the solution of systems of polynomials. In
particular, techniques based on computational algebraic geometry and homotopy continua-
tion are discussed. The Dietmaier algorithm is also presented for computation of the upper
bound on the number of real solutions of a system of polynomials. In Chapter 3, cable-
driven parallel robots are modelled and a strategy is provided for deriving the equations
governing the related geometric and static problems. In Chapter 4, the aforementioned
equations are obtained for any value of n≤ 6 and the corresponding problem-solving elim-
ination procedure are implemented. By obtaining a least-degree univariate polynomial in
each case, a proof of the number of solutions in the complex field is provided. Subse-
quently, an estimation of the upper bound on the number of real solutions is obtained by
applying the Dietmaier algorithm. Chapter 5 is devoted to the software DGP−Solver,



composed to solve the direct displacement analysis. The high complexity of this problem
justifies the necessity for composing software capable of efficiently obtaining complete
solution sets. Finally, Chapter 6 concludes the thesis by summarising the results obtained
throughout Chapters 2 to 5.
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Chapter 1

Introduction

A manipulator is a device used to manipulate materials without direct contact (Wikipedia [2013]). This
definition may be found as a first result of a simple search for the term ”manipulator” in Google. More
precisely, as stated by Angeles [2002], manipulators are a subclass of dynamic mechanical system. A
dynamic system is a system with three elements: a state, an input and an output. A mechanical system
is a dynamic system composed of mechanical elements. Furthermore, a man-made mechanical system
can be either controlled or uncontrolled and, in the former case, the classification may be further
divided into robotic or non-robotic1. As with most current industrial robots, a robotic mechanical
system may be programmable. Hence, by the term manipulator, a programmable mechanical system
that assists in executing a particular manipulation is intended. This component is the subject that will
be addressed in this dissertation.

In recent decades, a growing demand has been witnessed for the use and control of manipula-
tors in various industrial applications to optimise productivity in production and to increase reliability,
precision and access to environments unreachable by humans. Examples of manipulators are the well-
known six-axis industrial manipulators, six-degree-of-freedom flight simulators, walking machines,
mechanical hands and rolling robots. For many years, the most common manipulator structure imple-
mented in industry consists of joining several kinematic joints successively to obtain a serial kinematic
chain, which has an anthropomorphic character resembling a human arm. These are called serial ma-

nipulators. Due some drawbacks of these devices, however, another type of manipulator called the
parallel manipulator has seen some use. A parallel manipulator consists of a base platform, a moving
platform and various legs. Each leg, in turn, is a kinematic serial chain whose end links are the two
platforms. In general, these two types of robots are the main features of conventional manipulators. A
brief overview of these two types of manipulators will be presented.

1Non-robotic systems are those supplied with primitive controllers, mostly analogue, such as thermostats, servo valves
etc. (Angeles [2002])
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1. Serial and parallel manipulators

1.1 Serial and parallel manipulators

A serial manipulator consists of a chain of rigid bodies, each being linked to its predecessor and
successor by a one-degree-of-freedom joint. Exceptions are the two end links, which are coupled to
either a predecessor or successor, but not to both (Angeles [2002]; Merlet [2006]). The SCARA robot is
a well-known example of a serial manipulator, presented in Fig. 1.1. Although serial manipulators are

Figure 1.1: The SCARA robot, manufactured by MITSUBISHI (Mitsubishi [2013])

the most common type used in robotics, they suffer from two main drawbacks: poor ability to transport
load and poor accuracy (Angeles [2002]; Merlet [2006]). These drawbacks are consequences of the
serial coupling nature of the links. Each link, in addition to the load imposed on the end-effector, must
support that imposed by the subsequent links and must therefore be more robust than its successor.
Thus, each link in the chain and, consequently, the robot, becomes heavy. Moreover, as links are
joined to each other in series, errors are magnified from the base to the end-effector. Therefore a small
measurement error leads to a large error in the position of the end-effector.

Parallel manipulators are instead closed-chain mechanisms in which an end-effector is linked to a
fixed base by at least two independent kinematic chains (Merlet [2006]). The load of the end-effector is
distributed across the chains so that each must support only part of the end-effector load. For example,
as shown in Fig. 1.2, the well-known Gough-Stewart platform consists of an end-effector supported by
6 chains. When the manipulator is in its central position, each actuator carries approximately 1/6 of
the total load. As a consequence, the chosen link size may be smaller and the overall weight of the
manipulators lower. Bending deformation of the links is reduced and the stiffness of the manipulator
increased. The amplitude of error is almost the same for the actuators and end-effector, as actuator
errors only slightly affect the position of the end-effector. Due to these properties and some other ad-
vantages of parallel manipulators versus their serial counterparts, parallel manipulators have attracted
increasing attention over the last few decades. They have been widely used in industrial, medical and
mining applications, as well as for walking machines, planetary exploration, high precision machine

2



1. Serial and parallel manipulators

Figure 1.2: The Art 72-500 full flight simulator: an example of the Gough-Stewart platform
(Baltic Aviation [2013])

tools and the like. In much of the literature, the Gough-Stewart platform is reported as the first parallel
manipulator applied in industry. It was first developed by Gough [1956-1957] in 1954 for a universal
tyre testing machine and later, in 1965, Stewart [June 1965] published a paper in which he proposed
the same manipulator as a flight simulator. Because the manipulator provides all 6 DOF, it has also
been implemented in many other applications such as Agile Eye, motion simulations, underground
excavation, milling machines etc.

 

Figure 1.3: The Agile Eye: a 3-DOF spherical parallel mechanism (Laval University [2013])

There are many applications, however, in which motion with less than 6-DOF is needed and the
complexity of the 6-DOF Gough-Stewart platform is unnecessary. For these cases, parallel mechanisms

3



1. Serial and parallel manipulators

with limited-DOF and simpler structures are preferred.
A 3-DOF spherical parallel mechanism (Fig. 1.3), introduced by Gosselin and Hamel [1994], is

such a mechanism that is used for applications like camera orienting devices and wrist motion sim-
ulators. The structure of this manipulator is such that the axes of all revolute joints intersect at one
common point that is the centre of rotation of the device. The manipulator only produces the three
rotational degrees of freedom that are needed for the application.

The well-known Delta robot, with 3 translational degrees of freedom (Clavel [1988]), originally
invented by Clavel in 1988, is another parallel robot with limited DOF. As depicted in Fig. 1.4, the
robot consists of 3 identical chains, each of which consists of a lever and a parallelogram four-bar
linkage. The lever is attached via an actuated revolute joint to the base on one side and via a revolute
joint to a parallelogram on the other side. At the end of this parallelogram is a revolute joint that is
linked to the end-effector.

Figure 1.4: The IRB 340 FlexPicker: an example of the Delta robot (ABB [2013])

The Delta has attracted much research interest for its unique properties, such as simple inverse
and direct kinematic solutions, decoupling of the position and orientation of the moving platform and
very high acceleration due to the light weight of moving parts. The manipulator has been used in a
large number of applications, particularly in the electronics, food and pharmaceutical industries for
which reliable product standards are required. A more detailed survey of the application of parallel
manipulators is presented by Patel and George [2012].

Though conventional serial and parallel manipulators have been efficiently implemented in many
industrial applications, there are some in which such conventional manipulators are not practical due
to problems such as limited workspace, weight or size constraints, vibration, noise, cost etc. In long-
reach robotic applications, such as inspection and repair in shipyards and airplane hangars, for example,
workspace requirements may be three to four orders of magnitude larger than what conventional robots
can provide (Oh and Agrawal [2005]). In applications of modern assembly operations with high speed

4



1. Cable-driven parallel manipulators

robotic positioning systems, use of serial link manipulators presents problems relating to weight, vibra-
tion and cost, while parallel manipulators suffer from limited workspace and high motor torque ripple
(S.Kawamura et al. [1995]).

To overcome these problems, in recent years, use of cables in the place of rigid links has received
increasing attention. The following section presents more details on such cable-driven parallel robots.

1.2 Cable-driven parallel manipulators

Cable-driven parallel robots (CDPRs) employ cables in place of rigid body extendable legs to control
the posture of an end-effector. In these manipulators, the pose of the end-effector is controlled appro-
priately by controlling the length of the cables. Cables are usually rolled on drums attached to a base
and are actuated by rotary motor. Cable-driven parallel robots have special advantages such as a larger
workspace, reduced manufacturing and maintenance costs, ease of assembly and disassembly, high
transportability, superior modularity and ease of reconfiguration. As a consequence of the flexibility
and low weight of the cables, implementation of long cables can be easily handled. By controlling ca-
ble lengths within broad ranges, a very large workspace can be accessed. This property makes CDPRs
appropriate for applications in which force transmission or access over a long distance is needed. One
of the main advantages of parallel manipulators is the reduced moving mass and inertial force. Using
cables instead of rigid links further decreases the moving mass, as the actuators do not change position
and are attached to a fixed base such that the only moving parts are the cables and end-effector. As
a consequence, a robot with higher speed and agility is obtained and the payload of the robot may be
increased (Behzadipour et al. [2003]).

Manufacturing costs of cable-driven robots are significantly lower than those of conventional ma-
nipulators. A cable-driven manipulator is simple to set up with low-cost hardware. As outlined by
Merlet and Daney [2010], a portable robot with a load capacity of more than 1 ton can be set up by
assembling a number of low cost winches and cables.

The cable characteristic that makes the control of the end-effector challenging is its inability to
withstand compression. Due to this fact, if a CDPR is intended to control a total number of end-effector
degrees of freedom (DOFs), f , at least f + 1 cables are required (Kurtz and Hayward [1995]; Ming
and Higuchi [1994]; Roberts et al. [1998]). This redundancy of control actions is usually necessary
to guarantee tensile force in all cables and to prevent them from becoming slack when the imposed
load on the moving platform changes. This maintains the control by cable of all degrees of freedom
of the moving platform. Such systems of cable-driven parallel robots are called fully-controlled or
completely-restrained. If the end-effector instead preserves some level of freedom once the actuators
are locked and the cable lengths are fixed, the system is called under-constrained or incompletely-

restrained. This typically occurs when the end-effector is controlled by a number of cables, n, smaller
than f . In such a system, the platform may move and deviate from its equilibrium position. Therefore,
the posture of the moving platform depends on, in addition to the length of the cables, the imposed
load on the moving platform. Fully-constrained robots are attracting increasing interest in the research
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1. Cable-driven parallel manipulators

community and, as such, a rich literature exists. In the following section, some examples of these
robots are presented.

1.2.1 Fully-constrained CDPRs

As one of the first examples of over-constrained cable robots, an ultrahigh speed robot FALCON is
introduced by Kawamura et al. [2000], taking advantage of the small mass of cables in comparison
with rigid links. As depicted in Fig. 1.5, the robot is fully-constrained and an object or end-effector is
suspended by 7 wires (tendons). It achieves peak accelerations of up to 43g and maximum velocities
of 13m/s, even though small motors (60W ) are used.

Figure 1.5: The Falcon-7 (Kawamura et al. [2000])

The CAT4 (Cable Actuated Truss 4-DOF) robot (Kossowski and Notash [2002]) is a 4 DOF parallel
robot that utilises a passively jointed central linkage and six control cables for actuation. The 4 DOFs
of this robot include 3 translational and 1 rotational DOF (pitch angle). The robot, shown in Fig. 1.6,
consists of a wishbone-shaped structural base at the top that forms the backbone of the manipulator and
may be collapsible for transit. A passively jointed linkage descends from the centre of this structure,
comprised of six rigid links (two upper linkage beams, two lower linkage beams, a medial beam and a
tie beam), each of which is a truss in order to minimise structural weight. The truss elements that form
the central linkage are connected with 18 revolute joints. A subset of these joints is sensed by position
encoders or potentiometers to determine the end-effector position and orientation. This jointed central
linkage gives the end-effector, which is attached to the lower linkage beams, the required 3 translational
DOFs and 1 rotational DOF. Brakes are required on a subset of the central linkage joints in order to
ensure single-string fail-safe operation.

A mechanism using eight cables called WARP is introduced by Tadokoro et al. [2002]. The main
concept of this design is the location of some actuator units at the same place in order to avoid tangling
of cables. The combination of actuator units and their positions have considerable effect, while the
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1. Cable-driven parallel manipulators

 

Figure 1.6: The CAT4 robot configuration (Kossowski and Notash [2002])

combination of suspended points influences performance. In order to optimise the configuration, all
possible mechanisms are classified and compared. As explained by Tadokoro et al. [2002], there are
17 different combinations of actuator unit groups. Considering symmetric cable configurations in both
vertical and horizontal directions while minimising the possibility of cable tangling, maximising the
efficiency of moment generation and avoiding cable collisions with the environment, an 8-cable robot,
WARP, is chosen as the best combination of actuator units (Fig. 1.7).

 

Figure 1.7: The WARP robot configuration (Tadokoro et al. [2002])

This architecture has the following remarkable points:

1. Larger rotational motion range than other cable-driven parallel mechanisms. This advantage
allows large virtual acceleration for a long period of time.

7



1. Cable-driven parallel manipulators

2. The motion platform may stay on the ground, as the bottom of the platform does not have any
mechanism.

3. All walls may be used for scene projection of computer graphics, like in the CAVE virtual reality
system.

4. Redundancy of cables improves safety in the case of failure.

Behzadipour and Khajepour [2005] introduce a new cable-based parallel robot, BetaBot, in which
cables are used to apply the necessary kinematic constrains for three pure translational degrees of
freedom. This design demonstrates that an over-constrained robot may be obtained not only by imple-
menting additional cables, but also by linking the end-effector to a constraining mechanism. In order to
maintain tension in the cables, a collapsible element called a ’spine’ is placed between the end-effector
and the base of the robot. The kinematic analysis of this robot is similar to that of a rigid link parallel
manipulator provided that the cables are in tension. In Fig. 1.8, the general design of the BetaBot is
shown. Three pairs of parallel cables are attached to the end-effector and are collected by three spools
after passing through guide holes on the frame of each spool. Each spool shaft is connected to a motor,
permitting the modification of the respective cable’s length. The spools and their frames are attached
to the base, making, together with the cables and end-effector, three parallelograms. The spine is a
collapsible element used to apply a pushing force between the base and end-effector. This element can
be a spring or an air cylinder that is connected to the end-effector and base by universal joints.

 

Figure 1.8: The general structure of the BetaBot (Behzadipour and Khajepour [2005])

Alikhani et al. [2009] introduce a cable-driven mechanism based on the concept of the BetaBot
(Behzadipour and Khajepour [2005]). This mechanism is called the Large Cable Delta Robot (LCDR)
and provides motion with three translational degrees of freedom suitable for manipulation on a large
scale. Extra cables are utilised to ensure tension in all such elements; differing from the BetaBot where
cable pretension is provided by a passive cylinder or ‘spine’. Though use of this cylinder simplifies
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1. Cable-driven parallel manipulators

the design, it puts limits on the size of the workspace and also complicates control of the robot as the
mechanism is not fully restrained by the cables.

 

Figure 1.9: The general structure of the LCDR (Alikhani et al. [2009])

These shortcomings are addressed by the extra cables, replacing the spine and making it a fully-
restrained cable-driven mechanism. In Fig. 1.9, a schematic design of the LCDR is shown. The middle
triangle is the moving platform (end-effector) and the lower and upper triangles are the bases. Three
pairs of parallel cables are attached to the moving platform and collected by three spools mounted on
the upper base after passing through guide holes on the frame of each spool. Each spool shaft is con-
nected to a motor (not shown in the figure), permitting the modification of the respective cable’s length.
The spools and their frames are attached to the base, making, together with cables and end-effector,
three parallelograms. The lower cables, which consist of three cables and the corresponding motorised
spools, are used to maintain tension in the mechanism. The robot therefore needs six rotary actuators:
three motors at the top, each driving one pair of parallel cables, and three motors at the bottom, driving
the lower cables. In this mechanism, the cable arrangement eliminates rotational motion, leaving the
moving platform with three degrees of freedom. The mechanism provides potential for large-scale ma-
nipulation and robotics in harsh environments. The mechanism can develop tensile forces in all cables
to maintain its rigidity under arbitrary external loading.

Bosscher et al. [2006] study wrench-feasible workspace (WFW) of point-mass cable robots as
one of the important classes of fully-constrained cable robots. A method is presented for analytically
generating the boundaries of the WFW for these robots. This method uses the available net wrench set,
which is the set of all wrenches that a cable robot can apply to its surroundings without violating the
tension limits of the cables. The geometric properties of this set permit calculation of the boundaries of
the WFW. Complete analytical expressions for the WFW boundaries are detailed for planar cable and
spatial point-mass cable robots. In these manipulators, all cables attach to a single point on the end-
effector and can change length to control the position of the end-effector. Typically, the end-effector
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is modelled as a lumped mass located at the point of intersection of the cables. As an example, the
manipulators in Fig. 1.10 can be modelled as point-mass cable robots. Due to the fact that the structure
of point-mass cable robots is simple, they are relatively easy to implement and are used in applications
such as camera positioning (Cablecam; SkyCam), haptics (Bonivento et al. [1997]) and cargo handling
(Gorman et al. [2001]).

Several studies are available in the literature concerning the WFW. The reader may refer to Bouchard
et al. [2010]; Ghasemi et al. [2009]; Gouttefarde and Gosselin [2006]; Gouttefarde et al. [2011]; Lau
et al. [2011]

        

 

 
Figure 1.10: Examples of the point mass cable robot

1.2.2 Under-constrained CDPRs

As mentioned previously, in contrast to their fully-constrained counterparts, under-constrained CDPRs
are equipped with a number of cables, n, that is smaller than f , allowing the control of only n end-
effector degrees of freedom. The use of CDPRs with a limited number of cables is justified in several
applications such as measurement, rescue, service and rehabilitation operations, in which the task to
be performed requires limited control or a limitation of dexterity is acceptable in order to decrease
complexity, cost, set-up time, likelihood of cable interference etc. For example, Tadokoro et al. [1999]
proposes an under-constrained cable-driven robot for search and rescue following large-scale urban
earthquakes. Search and rescue is an important application of robotics in such incidents. Robots
must have the potential to efficiently save a number of lives and to reduce the exposure to danger of
rescue squads. The key points in the rescue are different from industrial robots and intelligent robots.
According to Tadokoro et al. [1999], the essential points in rescue robots following urban earthquakes
are as follows:

• streets are narrowed by destroyed buildings;

• rescue robots should provide access to buried people through debris;

• a large number of robots are necessary at one time; and,

• the search activity for buried people is the most critical element.

10



1. Cable-driven parallel manipulators

The above investigation concludes that essential points to robotic systems for search and rescue are:
portability, promptness of installation on site and simplicity. An under-constrained cable-driven paral-
lel robot, as shown in Fig. 1.11, is proposed that satisfies most of the requirements of the rescue robot
system. It is portable and may be assembled rapidly in destroyed houses.

 

Figure 1.11: Concept of the portable rescue system proposed by Tadokoro et al. [1999]

A winch actuator unit consists of a winch for changing cable lengths, a battery for energy and a local
controller of position and force. Multiple cables are connected to a travelling plate with an end-effector
that moves with many degrees of freedom. Teleoperation is performed by a multi-degree-of-freedom
joystick. This system is carried by rescue staff into a collapsed building. The installation (assembly
and identification) may be completed promptly, permitting the transportation of debris immediately.

Surdilovic et al. [2007] address concepts regarding modular, light-weight and interactive gait reha-
bilitation devices and robots based on wire-robot technology. A prototype active weight-bearing and
balancing system (STRING-MAN) is presented, which opens possibilities for assisting rehabilitation
of posture, balance and gait motor functions. As shown in Fig. 1.12, the system consists of a wire
robot in which the wires are connected via a user interface (harness and corsage) to the human trunk
and pelvis.

By closing the kinematic chains in such a way, the person is uniquely integrated into the wire
robot system representing a ‘common robot platform’. This robotic structure optimally provides the
requirements for controlling the posture in 6-DOFs, as well as for balancing the weight on the legs
according to specific gait patterns and training programs. Moreover, by sensing the interaction of
forces, this system can quantify the patient’s effort and therefore control the interaction. For example,
the system can support the patient’s own initiative by applying force or impedance control. STRING-
MAN is a powerful robotic system for supporting gait rehabilitation and restorating motor functions
by combining the advantages of partial body-weight bearing (PWB) with a number of industrial and
humanoid robot control functions. A safe, reliable and dynamically controlled weight-suspension and
posture control supports the patients in autonomously performing gait recovery training from the early
stages of rehabilitation onwards.
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Figure 1.12: The STRING-MAN configuration (Surdilovic et al. [2007])

Rosati et al. [2007] present the development and clinical tests of NeReBot (NEuroREhabilitation
roBOT), a 3-DOF wire-driven robot for post stroke upper-limb rehabilitation. A diagram of the me-
chanical structure of NeReBot is shown in Fig. 1.13. In basic terms, the robot consists of a set of three
wires independently driven by three electric motors. The base of the robot is designed in such a way
that the patient can be treated while sitting in a wheelchair (Fig. 1.13) or lying in a hospital bed. The
base consists of a C-shaped frame, featuring omni-directional wheels that can fit under any commercial
hospital bed. A square-section column is fixed on the central part of the base, holding three horizontal
round-section, hollow aluminium arms on top, which support the wires.

           

Figure 1.13: The NeReBot overall view and structural diagram (Rosati et al. [2007])
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The free ends of each wire are fastened to the patient’s arm by means of a special splint. By
controlling wire length, rehabilitation treatment (based on the passive or active spatial motion of the
limb) can be delivered over a large working space. The arm trajectory is set by the therapist through
a very simple teach-by-showing procedure, enabling most common ‘hands on’ therapy exercises to be
reproduced by the robot. Compared to other rehabilitation robots, NeReBot offers advantages due to its
low-cost mechanical structure, intrinsically safe treatment thanks to the use of wires, good acceptance
by patients who do not feel constrained by an ‘industrial-like’ robot, transportability as it can easily be
placed beside a hospital bed and/or wheelchair and good trade-off between low number of DOF and
spatial performance. These features, along with the very encouraging results of the first clinical trials,
make the NeReBot a good candidate for adoption in the rehabilitation of subacute stroke survivors.

A method for measuring the inertial properties of rigid bodies by using a parallel cable-driven
robot is presented by Gobbi et al. [2011]. Common practice for the estimation of rigid body inertial
properties is their computation by means of 3D CAD models; however, this estimation is prone to
errors generated by the large amount of data that must be entered, geometric tolerances or defects and
uncertainty in material properties such as density. Errors of more than 10% (and sometimes much
more) in the inertial tensor components are commonly experienced for complex systems composed of
thousands of parts. The most reliable way to get an estimation of the inertial properties of a body (or of
a set of inter-connected bodies) is instead via experimental tests. A test rig for the measurement of the
inertial tensor of a rigid body, proposed by Gobbi et al. [2011], was first developed in 2001 and was
constructed the year after to measure the inertial properties of vehicle components such as engines and
gearboxes (Fig. 1.14).

 

Figure 1.14: The InTensino test rig (built in 2002) for relatively compact rigid bodies up to 400 kg
(Gobbi et al. [2011])

The proposed test rig was essentially a multi-cable pendulum. The pendulum was made to swing
freely with well defined initial conditions. The test rig was composed of a frame for carrying a rigid
body and three or four cables connecting this component to another external frame. The cables were
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connected at both ends by low-friction spherical joints, each comprising a Hook’s joint fitted with
roller bearings and an axial bearing. Given a rigid body with a particular mass, the method allows
identification and measurement of the centre of gravity and the inertial tensor with a single test. The
proposed technique is based on the analysis of the free motion of the multi-cable pendulum to which
the body under consideration is connected. The motion of the pendulum and the forces acting on the
system are recorded and the inertial properties identified by means of a mathematical procedure based
on a least squares estimation. The natural frequencies of the pendulum and the accelerations involved
are quite low, making this method suitable for many practical applications.

1.2.2.1 The challenges in studying displacement of under-constrained CDPRs and the objective
of the thesis

Compared to fully-constrained manipulators, under-constrained CDPRs have seen little attention in the
literature and the study of these types of robots is still an open field. For instance, analysis of displace-
ment as a first step in the study of robots is ongoing for the case of under-constrained CDPRs. The
major challenge in the displacement study of under-constrained CDPRs consists of the intrinsic cou-
pling between kinematics and statics (or dynamics). When a fully-constrained CDPR operates in the
portion of its workspace in which the required set of output wrenches is guaranteed with purely tensile
cable forces, the posture of the end-effector is determined in a purely geometric way by assigning ca-
ble lengths. Conversely, for an under-constrained CDPR, when the actuators are locked and the cable
lengths are assigned, the end-effector is still able to move, so the actual configuration is determined by
the applied forces. As a consequence, the end-effector posture depends on both the cable lengths and
equilibrium equations. Moreover, as the end-effector pose depends on the applied load, it may change
due to external disturbances. As such, these factors are fundamental to the investigation of equilibrium
stability. The necessity of simultaneously dealing with kinematics and statics increases the complexity
of position problems aimed at determining the overall robot configuration when a set of n variables is
assigned. The solution to these problems is significantly more difficult than analogous tasks concern-
ing rigid-link parallel manipulators. In the literature, some procedures have been presented to solve
the following problems.

Ghasemi et al. [2010] suggest the use of neural networks to solve the system of polynomial equa-
tions associated with forward displacement analysis of under-constrained cable-driven parallel manip-
ulators. According to this scheme, the neural network is trained by solving the corresponding inverse
displacement analysis, which is much easier than the original problem, over a large set of poses. The
resulting neural network may provide a good approximation of the forward displacement analysis in
many cases; however, it does not guarantee the convergence to an equilibrium pose in general.

Michael et al. [2011] propose a solution to the case of n = 2 cables (i.e. the planar case). This
solution is obtained by finding the equilibrium points on the coupler curve of the analogous planar
four-bar linkage. In the same work, the authors adopt an energetic approach to the case of n = 3, using
the fact that an equilibrium pose corresponds to a minimum in the potential energy. This leads to a
non-convex optimisation problem, whose optima are obtained by varying the initial guess of a local
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optimisation procedure. Fink et al. [2011] instead relax the same formulated optimisation problem into
a convex optimisation problem. The optimum objective value of the relaxed problem may be regarded
as a lower bound on the optimum value of the original problem. Furthermore, the authors provide
geometric conditions under which the lower bound is guaranteed as tight; that is, under which the
optima of the relaxed and original problem coincide.

In a parallel effort, Jiang and Kumar [2010] were able to compute all stable equilibrium poses for
a class of special cases in three-dimensional space. A particular geometry is a member of this class if:

• the cable attachment points on the rigid body are located at the vertices of a regular polygon;

• the rigid-body centre of mass is at the centroid of the said polygon;

• the fixed cable attachment points (i.e. those on the supporting frame) form a regular polygon
with the same planes of symmetry as the rigid-body polygon;

• this fixed polygon is perpendicular to gravity (i.e. lies in a horizontal plane).

These constraints allow the decomposition of the spatial problem into several planar problems, which
may be solved by computing the stationary points on the coupler curve of the equivalent four-bar
linkage.

Collard and Cardou [2013], proceeding very much like Fink et al. [2011], relax the energy min-
imisation problem. The relaxation, however, is different and the lower bound provided by it is cast
in a branch-and-bound algorithm, which allows the computation of a global optimum to the energy-
minimisation problem. This global optimum corresponds to the lowest equilibrium pose and provides a
tight lower bound on the height of the rigid-body centre of gravity, a piece of information that is useful
for guaranteeing no collisions while moving a cable-suspended object above possible obstacles. The
proposed method can be applied to problems with large numbers of cables, which sets it apart from the
other solutions.

In light of this brief overview, it may be noted that most studies related to under-constrained CD-
PRs rely on purely local numerical solution strategies; whereas, no adequate consideration is given to
conceiving static geometric models capable of providing broader solution strategies, tailored to obtain
the complete solution sets of the nonlinear equations governing the problem.

In the present thesis, a methodology is proposed for the kinematic, static and stability analysis
of general under-constrained n-n CDPRs, namely parallel robots in which a fixed base and a mobile
platform are inter-connected by n cables, with n≤ 6, and the anchor points on the base and the platform
are generally distinct. The procedure aims at effectively solving the inverse and direct static geometric
problems; that is, at finding the overall robot configuration and cable tensions when a set of n platform
posture coordinates or n cable lengths are assigned, under the assumption that a constant force is
applied on the platform, that the cables are inextensible and massless, and that interference problems
are not present.
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Chapter 2

Mathematical development for solving
systems of polynomials

Due to the high complexity of systems of polynomials that arise in displacement analysis of under-
constrained cable-driven parallel robots, a suitable mathematical framework for their resolution is re-
quired. Two approaches are often used in the context of kinematics: elimination methods based on
computational algebraic geometry and continuation homotopy. The former is a geometric manifesta-
tion of the solutions of systems of polynomial equations (Cox et al. [2005]). It provides a powerful
theoretical technique for studying the qualitative and quantitative features of the solution sets. The
application of algebraic geometry to kinematic analysis is more natural to a global understanding of
the entire solution set, as opposed to finding only some of the solutions (Masouleh [2010]).

On the other hand, the elimination method may be time consuming and, as such, a numerical pro-
cedure is required as a robust and fast method for computing the complete set of equations governing
the problem for a given set of parameters. To this end, polynomial homotopy continuation may be
used. The procedure has the advantage that very little symbolic information must be extracted from
a polynomial system to proceed. It often suffices, for example, to simply know the degree of each
polynomial, which is easily obtained without a full expansion into terms.

Although the upper bound on the number of solutions of a system of polynomials in the complex
field may be known and all solutions computed by the two aforementioned methods, there may not
be any available information about the upper bound on the number of real solutions that a family of
systems of polynomials may exhibit. In fact, since there may be roots in the solution set that always
remain complex, it may result that the number of real solutions is smaller than the number of complex
ones. The upper bound on the number of real solutions has significant importance in the kinematic
analysis of robots, as it indicates the maximum number of assembly modes that a robot may admit.
Thus, finding a set of robot parameters admitting the maximum number of real solutions is a classic
question in robot kinematics. For example, although it was known that the direct kinematic problem of
the Gough-Stewart platform admitted 40 solutions, a set of the robot parameters with such a number
of real solutions was unknown for years until Dietmaier [1998] proposed an algorithm capable of
providing them. In this context, the same algorithm is adapted to finding a set of robot parameters with
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the maximum number of real assembly modes to the problems emerging in displacement analysis of
CDPRs.

Accordingly, in the first part of this chapter, the concept of computational algebraic geometry
is introduced and the required algorithms presented for solving the systems of polynomials arising in
displacement analysis of under-constrained CDPRs. In the subsequent part, the homotopy continuation
method is presented briefly with its various features and some required terminology. In the final section
of this chapter, the Dietmaier algorithm is also briefly discussed.

2.1 Computational algebraic geometry

The origin of algebraic geometry dates back to Descartes’ introduction of coordinates to describe
points in Euclidean space and the idea of describing curves and surfaces by algebraic equations. Over
the long history of the subject, both powerful general theories and detailed knowledge of many specific
examples have been developed (Cox et al. [2005]). Recently, the advent of computer algebra systems
has made it possible to implement many theories of algebraic geometry relating to robotics using com-
putational algorithms (Brunnthaler [2006]; Masouleh [2010]; Pfurner [2006]). As will be seen in the
following chapters, similar problems emerging in displacement analysis of under-constrained CDPRs
are analysed using these concepts. Before discussing computational algebraic geometry, some impor-
tant terminology must be provided. In particular, an introduction to the ideals of the polynomial ring
K[x1, . . . , xn] will be provided in the following section, followed by an explanation of the total order
of monomials and an introduction to the Groebner basis as one of the powerful elimination strategies
for solving systems of polynomials. There are several software packages that offer the Groebner basis
technique for solving systems of polynomials. In the present thesis, Maple (Maplesoft) is mainly used
to implement the Groebner base technique.

2.1.1 Polynomials and affine varieties

A field is a set where addition, subtraction, multiplication and division are defined with their usual
properties. Standard examples are the real numbers and complex numbers; whereas, integers are not a
field since division fails. Due to the importance of both real and complex solutions to the problem at
hand, most of the computation will be performed in the complex field K = C. On the other hand, for
simplification of computation at many points, the field of rational numbers K=Q will be used.

A monomial in x1, . . . , xn is a product of the form:

xα1
1 · x

α2
2 . . .xαn

n (2.1)

where all exponents α1, . . . , αn are nonnegative integers. The total degree of this monomial is the sum
α1 + . . .+αn. The notation for monomials is simplified by setting α = (α1, . . . , αn) as a n-tuple of
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nonnegative integers and, correspondingly:

xα = xα1
1 · x

α2
2 . . .xαn

n (2.2)

Knowing the definition of a monomial, a polynomial is defined as follows:
A polynomial, f in x1, . . . , xn with coefficients in K, is a finite linear combination (with coefficients

in K) of monomials. It can be written in the form:

f = ∑
α

aαxα (2.3)

where the sum is over a finite number of n-tuples α = (α1, . . . , αn). The set of all polynomials in
X = x1, . . . , xn with coefficients in K is denoted K[X]. When dealing with a polynomial such as f =

∑α aαxα , aα is called the coefficient of the monomial xα . If aα 6= 0, then aαxα is a term of f and the
total degree of f , denoted deg( f ), is the maximum |α| where the coefficient aα is nonzero.

According to a special property of polynomials over the field of complex numbers where every
non-constant polynomial f ∈K has a root in K, the concept of affine variety is defined as follows.

Let f1, . . . , fs be polynomials in K[X], then V ( f1, . . . , fs), called the affine variety defined by
f1, . . . , fs, is:

V ( f1, . . . , fs) = {(x1, . . . , xn) ∈Kn : fi(x1, . . . , xn) = 0, 1≤ i≤ s} (2.4)

An affine variety, V ( f1, . . . , fs) ⊂ Kn, is the set of all solutions of the system of equations f1(x1,
. . . , xn) = . . . = fs(x1, . . . , xn) = 0. In the present work, the letters V ,W etcetera, where not otherwise
stated, are used to denote affine varieties.

2.1.2 Ideals

Ideals define the basic algebraic objects that are used in the present work. A subset 〈I〉 ∈ K[X ] is an
ideal if it satisfies:

• 0 ∈ 〈I〉

• If f , g ∈ 〈I〉, then f +g ∈ 〈I〉

• If f ∈ 〈I〉 and h ∈K[X], then h f ∈ 〈I〉

Given a collection of polynomials, I = { f1, . . . , fs} ∈ K[X], all polynomials that may be built up
from these by multiplication or sums of arbitrary polynomials are denoted as:

〈I〉= 〈 f1, . . . , fs〉= {p1 f1 + . . .+ ps fs : pi ∈K[X] f or i = 1, . . . , s} (2.5)

From this definition it can be proven that 〈I〉 is an ideal. 〈I〉 is called the ideal generated by I =

{ f1, . . . , fs}.
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2.1.3 Monomial orders and polynomial division

One of the key elements for all operations relating to algorithms for solving a system of polynomials
is ordering of terms. This will be used regularly in the present work. A monomial order on K[X] is
any relation > on the set of monomials xα in K[X] satisfying:

1. > is a total (linear) ordering relation

2. > is compatible with multiplication in K[X]; that is, if xα > xβ and xγ is any monomial, then
xαxγ = xα+γ > xβ+γ = xβ xγ

3. > is well-ordering; that is, every nonempty collection of monomials has a smallest element under
>.

According to this definition, there are many ways to define monomial orders. The most important of
these, in the present study, are as follows.

Lexicographic order (lex) first compares exponents of x1 and, in the case of equality, compares
exponents of x2 and so forth. Therefore, if xα and xβ are monomials in K[X], xα >lex xβ if, in the
difference α−β ∈ Zn, the leftmost nonzero entry is positive.

Graded lexicographic order (grlex) first compares the sum of all exponents and, in the case
of equality, applies lexicographic ordering. In this case, xα >grlex xβ if ∑

n
i=1αi > ∑

n
i=1βi; or if

∑
n

i=1αi = ∑
n

i=1βi, then xα >lex xβ .
Graded reverse lexicographic order (grevlex) first compares the total degree then compares ex-

ponents of the last indeterminate xn, reversing the result. In the case of equality, a similar comparison
of xn−1 is performed and so forth ending in x1. Accordingly, xα >grevlex xβ if ∑

n
i=1αi > ∑

n
i=1βi or if

∑
n

i=1αi = ∑
n

i=1βi and the rightmost nonzero entry is negative in the difference α−β ∈ Zn.
There are many other monomial orders besides the ones considered here; however, the aforemen-

tioned orders will be used at many points in the present work. It will be shown that, while grevlex
is almost always much easier for performing some computations, there are many cases in which cal-
culations based on lex or grlex must be performed. It will also be shown that by implementing the
computations in certain orders and combinations they may be performed more efficiently.

For a particular monomial order >, the terms are considered to be of the form cαxα . The leading
term of f (with respect to >) is then the product cαxα , where xα is the largest monomial appearing in f

in the ordering >. The notation LT>( f ) is used for the leading term, or simply LT ( f ) where it is clear
which monomial order is being used. Furthermore, if LT ( f ) = cαxα , then LC( f ) = cα is the leading
coefficient of f and LM( f ) = xα is the leading monomial. One of the first uses of monomial orders is
in the division algorithm, defined as follows:

Taking any monomial order > in K[X] and letting I = { f1, . . . , fs} be a set of polynomials in K[X],
then every f ∈K[X] can be written as:

f = a1 f1 + . . .+as fs + r (2.6)
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Term r is a remainder of f on division by I, with either r = 0 or r being a linear combination of
monomials, none of which is divisible by any of LT>( f1), . . . , LT>( fs).

According to this definition of division, reordering I or changing the monomial order can produce
different ai and r in some cases.

2.1.4 Groebner bases

Since a division algorithm in K[X] has been obtained, one would expect the possibility to determine if
a given f ∈ K[X] is a member of an ideal, 〈I〉 = 〈 f1, . . . , fs〉, by computing its remainder on division.
From Eq.(2.6) it follows that, if r = 0 on dividing by I = { f1, . . . , fs}, then f = a1 f1 + . . .+ as fs and
f ∈ 〈I〉 = 〈 f1 . . . fs〉. It can be shown, however, that r = 0 is not guaranteed for every f ∈ 〈I〉 if an
arbitrary basis I is used for 〈I〉. To produce zero remainders for all elements of I upon division, a
Groebner base as a basis of the ideal is defined as follows. The key idea is that once a monomial
ordering is chosen, each f ∈K[X] has a unique leading term, LT ( f ).

Monomial ideal: An ideal 〈I〉 in K[X] is a monomial ideal if it is generated by a collection (not
necessarily finite) of monomials. Let 〈I〉 be an ideal in K[X], other than 〈0〉. Let LT (I) denote the
set {LT ( fi), fi ∈ 〈I〉} and 〈LT (I)〉 denote the ideal generated by the elements of LT (I). 〈LT ( f1), . . . ,
LT ( ft)〉 and 〈LT (I)〉 can be different ideals. In general, 〈LT ( f1), . . . , LT ( ft)〉 ∈ 〈LT (I)〉.

Hilbert basis theorem: Every ideal 〈I〉 in K[X] has a finite generating set. That is, I = {g1, . . . , gr}
for some g1, . . . , gr ∈ I.

Groebner bases: For a fixed monomial order > on K[X] and 〈I〉 ⊂ K[X] as an ideal, a Groebner
basis G>[I] of 〈I〉 (with respect to >) is a finite collection of polynomials G = {g1, . . . , gt} ⊂ 〈I〉 with
the property that for every nonzero f ⊂ 〈I〉, LT ( f ) is divisible by LT (gi) for some i.

It can be proven that the remainder, r, on division of a generic polynomial f ∈K[X] by a Groebner
basis, G>[I] of 〈I〉, is uniquely dependent on the choice of monomial order only and not on the way
the division is performed. The remainder, r, is called the normal form of f . Indeed, uniqueness of
remainders is the main characterisation of Groebner bases. In other words, all of the monomials in r

are in the normal set of 〈I〉, which is a collection of all monomials not in 〈LT (gi)〉. The normal set,
N[I], contains all monomials that may appear in the remainder of all polynomials on division by G>[I];
defined as follows:

Normal set: Let 〈I〉 be in K[X] and G>[I] be its Groebner basis (with respect to >); then:

N[I] = {xα | xα /∈ 〈LT (G>[I])〉} (2.7)

is the normal set (of I with respect to >).
As a consequence of the Hilbert basis theorem it can be be stated that every ideal 〈I〉 in K[X] other

than 〈0〉 has a Groebner basis. Furthermore, any Groebner basis G>[I] of 〈I〉 is a basis of 〈I〉.
From the definition of a Groebner basis, stated above, one may conclude that if G>[I] is a Groebner

basis of 〈I〉, then the normal set of 〈I〉 is just the normal set of the leading monomials of G>[I].
Useful for many purposes relating to Groebner bases is an algorithm developed by Buchberger that
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takes an arbitrary generating set { f1, . . . , fs} ⊂ 〈I〉 and produces a Groebner basis G>[I] of 〈I〉 from
it. This algorithm works by forming new elements of I using expressions guaranteed to cancel leading
terms and uncover other possible leading terms. It was developed from two basic tools, the reduction
or division process and the critical pairs or S-polynomials.

Let f , g in K[X] be non-zero polynomials.

1. If deg( f ) =α and deg(g) = β , then γ is (γ1, . . . , γn), where γi =max(αi, βi) for each i. Term xγ is
called the least common multiple of LM( f ) and LM(g), noting that xγ = LCM(LM( f ), LM(g)).

2. The S-polynomial of f and g is:

S( f , g) =
xγ

LT ( f )
f − xγ

LT ( f )
g (2.8)

An S-polynomial, S( f , g), is designed to produce cancellation of leading terms. Using the S-polynomials
another characterisation of Groebner bases is obtained, which is, from an algorithmic point of view,
more useful than the definition:

Let 〈I〉 be a polynomial ideal. Then a basis G = {g1, . . . , gs} for 〈I〉 is a Groebner basis G>[I] of
〈I〉 if and only if, for all pairs i 6= j, the remainder of the division of S(gi, g j) by G>[I] (listed in some
order) is zero.

More details on the algorithm and how to compute the Groebner bases can be found in Cox et al.
[2007]. There are many computer algebra systems in which Buchberger’s algorithm is installed; how-
ever, as the algorithm may need large amounts of storage and take many steps, the actual Groebner
basis computation may fail in many cases.

2.1.5 Solving polynomial systems based on Groebner bases

How to solve a system of equations based on the knowledge of Groebner bases will be outlined in the
present section.

2.1.5.1 Elimination ordering

The most straightforward procedure for solving a system of polynomials, I, is based on the elimination
properties of Groebner bases computed according to some elimination monomial order such as the
Lexicographic order. For this technique, the main tools are the Elimination and Extension Theorems.
If Xl = [x1, . . . , xl] is a list of l variables in X = [x1, . . . , xl−1, xl , xl+1, . . . , xn] and X\Xl is the (ordered)
relative complement of Xl in X, a monomial order >l on K[X] is of l-elimination type provided that
any monomial involving a variable in Xl is greater than any monomial in K[X\Xl]. If G>l[I] is a
Groebner basis of 〈I〉 with respect to >l , then G>l[I]∩K[X\Xl] is a basis of the lth elimination ideal,
〈Il〉 := 〈I〉∩K[X\Xl] (Cox et al. [2007]). The elements of Il are actually linear combinations of I =

{ f1, . . . , fn}, with polynomial coefficients that eliminate x1, . . . , xl from the equations f1 = . . .= fn = 0.
As 〈I〉 comprises n variables, the polynomials of 〈I1〉 contain n− 1 variables, the polynomials of 〈I2〉

21



2. Computational algebraic geometry

n− 2, and so on. 〈In−1〉 comprises a single variable and, thus, contains a scalar multiple of the least-
degree polynomial of 〈I〉 in that variable. The implemented l-elimination monomial order induces
grevlex orders on both K[Xl] and K[X\Xl].

Considering a point (al+1, . . . , an) ∈V (Il)⊂Kn−l as a partial solution, it can be proven that, in K,
this partial solution may be extended to (al , al+1, . . . , an) in V (Il−1). The Elimination theorem shows
that a lex Groebner basis, G>, successively eliminates more and more variables. Accordingly, to find all
solutions of the system one may start with the polynomials in G[I] with the fewest variables, solve them
and then try to extend these partial solutions to those of the whole system by applying the extension
theorem one variable at a time. A lex Groebner basis, however, tends to be very large and thus, even
for problems of moderate complexity, they have little chance of actually being computed. Conversely,
the graded reverse lexicographic order produces bases that are endowed with no particular structure
suitable for elimination purposes; however, it provides more efficient calculations. In this perspective,
the FGLM algorithm (Faugère et al. [1993]), which converts a Groebner basis from one monomial
order to another, may be called upon to compute elimination ideals of the type 〈I〉∩K[X\Xl], starting
from a Groebner basis G[I] computed with respect to a grevlex monomial ordering. For example, one
can derive G>l[I] from G[I], for some l. Once G>l[I] is known, one may extract the subset of all
polynomials of G>l[I] that comprise variables in X\Xl only. These polynomials will form a Groebner
basis of 〈Il〉 with respect to grevlex(X\Xl). By computing elimination ideals via the FGLM algorithm,
a least-degree polynomial in one variable may be obtained.

2.1.5.2 Eigenproblem method

In contrast to the discussion in the previous section, where elimination was necessary to obtain a
univariate polynomial, the eigenproblem method only needs some Groebner basis, not necessarily an
elimination order. In this section, a simple explanation of the method by Sommese and Wampler [2005]
is provided.

Consider an ideal 〈I〉 in K[X] with Groebner basis G>l[I]. Let λ be any linear combination:

λ = c0 + c1x1 + . . .+ cnxn (2.9)

for given constants c0, . . . , cn. Consider the normal set, N[I]:

N[I] = [t1, . . . , tn]T (2.10)

Let the polynomial Pi(X) = λ ti for some i and consider a solution of 〈I〉 as X∗.
Since f (X∗) = 0 for any f ∈ 〈I〉, any multiple of a polynomial in the ideal 〈I〉 can be added to

Pi without changing the value of Pi(X∗). This implies that, if ri is the remainder of Pi on division by
G[I], then ri(X∗) = Pi(X∗) = λ ti. But ri(X) is a sum of terms in the normal set, so it can be written
as ri = [ai1 . . .aik]N[I]. The entries ai j are the constant coefficients in the formulae for the remainders
ri, i = 1, . . . , k. Since ri−λ ti belongs to 〈I〉, it must vanish on V [I]. By assembling all equations of this
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kind that may be obtained for t1, . . . , tn, one has:

(A[I, λ ]−λ I)N[I] = 0 (2.11)

where A[I, λ ] = [aik] is an n×n numeric matrix called the multiplication matrix for λ and I is the n×n

identity matrix. Therefore, by computing remainders using the Groebner basis, an eigenvalue problem
is derived. For each eigenvector, [N], a unique solution can be obtained, as it is either in N[I] or is a
leading monomial of G. In the latter case, the solution must simply be evaluated using the Groebner
basis element for which it is the leading monomial.

2.1.5.3 Dialytic elimination

As discussed in Section 2.1.5.1, Groebner bases with respect to some elimination monomial orders are
required in order to eliminate unknowns. In theory, by computing elimination ideals via the FGLM al-
gorithm, a least-degree polynomial in one variable may be calculated. In practice, however, computing
〈Jl〉 is very demanding in terms of both computation time and memory usage, and the procedure may
likely fail. A more efficient alternative that will be implemented in the present work is provided by the
Groebner-Sylvester hybrid approach, proposed by Dhingra et al. [2000]. Let 〈I〉 be an ideal of poly-
nomials in K[X] and G>l[I] be the corresponding Groebner base with respect to an ordering >l . With
Groebner base G known, it may be possible to construct Sylvester’s matrix using all the polynomials
in G[I] or a subset, H[I], of G[I]. Accordingly, a variable xl ∈ X may exist such that the number of
polynomials in G[I] or H[I] equals the number of monomials in the variables of X−xl appearing in the
polynomials. The subset H[I] of G[I] may even be derived from the Groebner basis of any elimination
ideal of 〈Il〉. Using the FGLM algorithm, a subset of the original unknowns is eliminated, thus com-
puting G[Jl] for some l. The elimination process is then completed by applying Dialytic elimination to
the polynomials of G[Jl]. More specifically, if either the entire set of polynomials in G[Il] or a subset,
H[I], of G[Il] is used to set up the Sylvester’s matrix, there may exist q polynomials hi, i = 1 . . .q in
terms of {x1, . . . , xn} ⊂ X. If each hi ∈K[x1, . . . , xn] is expressed as:

hi = ∑
j

a′i jm
′
j, a′i j ∈K[xl], m′j ∈K[x1, . . . , xl−1, xl+1, . . . , xn] (2.12)

the number of monomials, m′j, in H = {h1, . . . , hq}, including 1, may be equal to q (the number of
polynomials in H). Considering H as a square system of homogeneous linear polynomials in the
unknown monomials m′1 = 1, m′2, . . . , m′q, the matrix form may be derived as:


h1
...

hq

=

[
q×q

a′i j ∈K[xl]

]
︸ ︷︷ ︸

S


m′q
...

m′2
m′1 = 1


︸ ︷︷ ︸

E

(2.13)
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where S is a q× q Sylvester’s (coefficient) matrix polynomial in xl and E is a q-dimensional vector
comprising all monomials in G[Il] having variables in X− xl . Letting the determinant of Sylvester’s
matrix, S(xl), vanish yields a spurious-root-free univariate least-degree polynomial in xl . In this al-
gorithm, the key factor in computing the univariate polynomial efficiently is reaching a compromise
between the time required to compute the lth elimination ideal and the size of the Sylvester matrix that
is obtained from the corresponding G[Il].

2.2 Homotopy Continuation

General homotopy continuation consists of a start system with known solutions, a schedule for trans-
forming the start system into a target system and a method for tracking solution paths as the trans-
formation proceeds. Before discussion of each step, some terminology necessary for understanding
polynomial continuation must be introduced.

1. Total degree of polynomial system: The total degree of a system of n polynomial equations for
n unknowns is the product ∏

n
j=1d j, where d j is the degree of the jth polynomial.

2. Projective Space:

N-dimensional complex projective space, denoted PN , is the space of complex lines through the
origin in CN+1. Points in PN are given by (N + 1)-tuples of complex numbers [z0, . . . , zN ], not
all zero, with the equivalence relation given by [z0, . . . , zN ]v [z0

′, . . . , zN
′] if and only if there is

a nonzero complex number λ such that z j
′ = λ z j for j = 0, . . . , N.

This definition makes sense, because a line through the origin in CN+1 is a set of the form:

{(λ z0, . . . , λ zN) ∈ CN+1 | λ ∈ C} (2.14)

with not all zi zero. The zi occurring within the brackets, [z0, . . . , zN ], are called homogeneous
coordinates, even though they are not coordinates on PN , but rather coordinates on CN+1.

3. Multi-homogeneous polynomial:

A polynomial system F of n equations, f1, f2, . . . fn in the n unknowns, z1, z2, . . .zn is ho-
mogenized by partitioning the variables into m collections, denoted Z1, . . . , Zm where Z j =

{z1 j, . . . , zk j j}. So that Z j contains k j variables and ∑
m

j=1k j = n. Now choosing homogeneous
variables z0 j for j = 1 to m, and including these in Z j gives Z j = {z0 j, z1 j, . . . , zk j j}. Reminding
the substitution zi j← zi j/z0 j for i = 1 to k j and j = 1 to m, generates a system F ′ of n equations
in n+m unknowns (after we clear the denominators of powers of the z0 j).

Such a system is called m-homogeneous, understood to include the case of 1-homogeneous. It
is said that a multi-homogeneous system, F , is compatible with the multi-projective space, X , if
the dimensions n1, . . . , nm match.
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As a further explanation of multi-homogeneous polynomials, the following example by Wampler
et al. [1990] is provided. Consider the system:

x2−1 = 0

xy−1 = 0
(2.15)

which is the intersection of two vertical lines, x = ±1, with a hyperbola. The system has a
total degree of 4, but only two finite solutions: (x, y) = (1, 1) and (−1, − 1). Introducing the
homogeneous variable w via the substitutions x← x/w, y← y/w, we obtain:

x2−w2 = 0

xy−w2 = 0
(2.16)

which, in addition to the original solutions (w, x, y) = (1, 1, 1), (1, − 1, − 1), has a solution at
infinity (0, 0, 1) of multiplicity two. Now, consider what happens if two homogeneous variables
are introduced via the substitutions x← x/w1, y← y/w2, creating the system:

x2−w2
1 = 0

xy−w1w2 = 0
(2.17)

Disallowing any solution where (w1, x) = (0, 0) or (w2, y) = (0, 0), one may confirm that the only
solutions are the original finite solutions: (w1, x;w2, y) = (1, 1;1, 1) and (1, − 1;1, − 1). This
is due to the different treatment of infinity with the introduction of more than one homogeneous
variable. The system is called “2-homogeneous” because there are two homogeneous variables.
Thus, it can be seen that the use of multiple homogeneous variables can sometimes reduce the
number of solutions at infinity, which will reduce the computational load when calculating all
solutions of the system.

4. Bezout’s Theorem:

In a multi-homogeneous system of polynomials, the multi-homogeneous degree of equation l

with respect to group j, d jl , is computed as the sum of the variable exponents of group j

in any term from polynomial l. Bezout’s theorem states that the Bezout number of a multi-
homogeneous system of polynomial equations in complex projective space is equal to the coef-
ficient of ∏

m
j=1α j

k j in the product

∏
n
l=1(∑

j=1

md jlα j) (2.18)

Applying this formula to equation Eq. (2.17), it is found that the coefficient of α1α2 in 2α1(α1+

α2) is 2, as expected. It can be shown that for a 1-homogeneous system, this formula yields the
total degree.

25



2. Computational algebraic geometry
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Figure 2.1: Schematic of path tracking

2.2.1 Basic polynomial continuation

Basic polynomial continuation is a path-tracking technique that transforms a start system of polynomial
equations with known solutions to a target system whose solutions must be found (Sommese and
Wampler [2005]). The method tracks the evolution of a system such as:

H(Y, t) = γ (1− t)F0 (Y)+ tF1 (Y) = 0 (2.19)

where F0 (Y) and F1 (Y) are, respectively, the start and target systems, γ is a randomly selected com-
plex number1 and t is a real number called a continuation parameter. The concept consists of varying
t from 0 to 1 while tracking the solutions of the problem from those of F0 (Y) = 0, known, to those of
F1 (Y) = 0, unknown.

The heart of the continuation method is its path-tracking algorithm. General path trackers must
deal with all sorts of difficult issues; for example, a path that bifurcates into several paths or a path
that reverses direction. As discussed by Sommese and Wampler [2005], with proper care in forming
a homotopy, one can ensure that the paths for solving polynomial systems have none of these trou-
bles; they advance steadily as the homotopy parameter, t, advances and never intersect except possibly
at the end target. More precisely, the probability of a singularity occurring on a path is zero. The
path-tracking problem can be turned into an initial-value problem for an ordinary differential equa-
tion. Subsequently, using a predictor/corrector method based on an explicit homotopy, H(Y, t), avoids
build-up errors which often accumulate in numerical O.D.E. solvers. Basic prediction and correc-
tion, schematically illustrated in Fig.2.1, are both accomplished by considering a local model of the
homotopy function via its Taylor series:

H(Y+∆Y, t +∆t) = H(Y, t)+HY(Y, t)∆Y+Ht(Y, t)∆t +higher-order terms (2.20)

where HY = ∂H/∂Y is the n× n Jacobian matrix and Ht = ∂H/∂ t is of size n× 1. Having a point

1The parameter γ , usually computed as eiθ with θ ∈ [−π , π], avoids specially behaved singular paths. More details
may be found in Sommese and Wampler [2005].
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(Y1, t1) near the path H(Y1, t1)≈ 0, one may predict a new approximate solution at t1 +∆t by setting
H(Y+∆Y, t1 +∆t) = 0 and solving the first-order terms to get:

∆Y =−HY
−1(Y1, t1)Ht(Y1, t1)∆t (2.21)

On the other hand, if H(Y1, t1) is not as small as desired, one may hold t constant by setting ∆t = 0
and solving the equation to get:

∆Y =−H−1
Y (Y1, t1)H(Y1, t1) (2.22)

These procedures are precisely Euler prediction and Newton correction, respectively. A robust and
efficient path tracker may be obtained by halving the time step whenever too many correction itera-
tions are required to stay within a given tolerance of the continuation path and doubling it when the
prediction step has been sufficiently accurate several consecutive times.

In general, when no information is known about the roots of the target system, a start system
yielding the maximum possible number of solutions must be constructed. Three restrictions on the
start system are necessary: all of its solutions must be known, each solution must be nonsingular and
the system must have the same multi-homogeneous structure as the target system. First, considering a
1-homogeneous target system, an acceptable start system is:

x j
d j −1 = 0, ( j = 1, . . . , n) (2.23)

where d j is the degree of the jth equation of the target system. Each equation yields d j distinct solution
values for x j and the entire set of ∏

n
j=1d j is found by taking all possible combinations of these

solutions.
Supposing the case of a multi-homogeneous system rather than a 1-homogeneous system, with

d jl denoting the degree of equation l with respect to group j. The corresponding start equation is
constructed as a product of factors, ∏

m
j=1 f jl(x jl , . . . , x jk j), where the degree of f jl is d jl . This yields a

start system with an identical multi-homogeneous structure as the target system. Choosing sufficiently
generic factors (perhaps by choosing random coefficients), the proper number of nonsingular solutions
can be assured. Solutions to the system are found by setting one factor from each equation equal to
zero. Not all choices of factors set to zero yield solutions. In fact, exactly k j distinct factors f jl for
each group j must be chosen. If the factors are all linear, each solution is found by solving m systems
of linear equations; one for each homogeneous group. All solutions to all such choices produce the
entire solution set, with exactly the same number of elements as the Bezout number. This number,
however, is usually much larger than the number of finite solutions of the target system of equations
Nsol in the complex field. As a consequence, for t→ 1, many paths diverge to infinity, whereas only a
limited number of them, equal to Nsol , converge to finite solutions. Tracking of diverging paths causes
significant and non-beneficial computational burden.
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2.2.2 Coefficient-parameter homotopy continuation

Equations arising in robot kinematics express relationships between various physical parameters. Some
of these parameters are the variables, whose unknown values are to be found, while others are known.
Accordingly, a system of equations, F, may be expressed as F(Y, P) = 0, where Y is a vector of
unknown values that are to be found and P are known values that may be considered as a set of
geometric parameters. Thus, any one problem can be considered a member of a whole family of
problems, defined by letting the parameters range over all admissible values (Sommese and Wampler
[2005]). The essence of any continuation method is to track one or more solutions known for one set of
parameter values, P0, to get solutions for some new set of parameters, P1. Continuous parameters enter
only through the coefficients; that is, the coefficients are functions of the parameters. Assuming that
the coefficients are continuous functions of the parameters, a continuous path through the parameter
space determines a continuous evolution of the coefficients and is generally also a solution.

When all nonsingular isolated roots of the solutions are known for a general member of a family of
equations (for instance, because they are computed by the general strategy discussed in Section 2.2.1),
‘coefficient-parameter’ homotopy continuation efficiently finds solutions for all other robots of the
same family. Accordingly, by a suitable homotopy, only the paths originating at the isolated roots of
the start system (with Nsol such paths) may be tracked; whereas, those corresponding to solutions at
infinity may be ignored. In particular, if the Nsol isolated roots of a system of equations are known for
a generic P = P0, the solutions for any other P = P1 may be found by tracking the homotopy:

F(Y, (1− t)P0 + tP1) = 0 (2.24)

with t varying from 0 to 1 or, more robustly, along the curve t = γt ′/[1+(γ−1)t ′], with t ′ ∈ [0, 1]
and γ ∈ C. For a complete discussion of continuation methods, the reader may refer to Sommese and
Wampler [2005].

In this thesis, the software Bertini (Bates et al.) is used as a solver for systems of polynomials by
homotopy continuation. The advantages of Bertini over other homotopy-continuation-based pack-
ages are its capability to implement user-defined parameter homotopies and its convenient interface
with computer algebra systems such as Matlab or Maple.

2.3 Dietmaier’s algorithm

Dietmaier’s algorithm is a continuation procedure for finding a set of robot parameters with the maxi-
mum number of real solutions. As with coefficient-parameter homotopy, a start system is defined for
a given value of P0 and a complete set of solutions is found. Subsequently, an iterative procedure is
established to change the system parameters and conveniently vary the solution set. In contrast with
parameter homotopy, however, the target parameters P1 are unknown a priori. The tracked path is
adaptively modified in such a way that, at each iteration, the imaginary parts of some complex so-
lutions are decreased and, eventually, as many complex roots as possible are transformed into real
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ones.
The start system may be constructed by choosing an arbitrary set of geometric parameters P0 and

calculating, via general homotopy continuation, the corresponding solution set of F(Y, P0): {Yh, h = 1 . . .Nsol}.
Since F(Y, P) is algebraic and has real coefficients, the number of real roots is even, whereas complex
roots appear in complex conjugate pairs. As shown in Fig. 2.2, P is iteratively assigned small varia-
tions, ∆P, in such a way that two complex conjugate solutions continually become nearer. This process
is achieved by decrementing the absolute value of the imaginary parts until the complex roots are trans-
formed into a double real root and, thereafter, into a pair of distinct real solutions. The procedure is
repeated for all pairs of complex conjugate roots. Throughout the process, the algorithm ensures that
no two existing real solutions become too close, so as to prevent them transforming back into a double
root and, eventually, a complex pair.

2.3.1 Distance functions between solutions

To implement Dietmaier’s algorithm, suitable scalar functions must be defined to measure the ‘dis-
tance’ between either a pair of complex conjugate solutions or two real roots.

Accordingly, given a complex solution vector comprising n elements, Yh, the distance between Yh

and its complex conjugate, Yh, may be measured as:

Sh =
n

∑
j=1

∣∣Im(Yh, j)
∣∣ (2.25)

Indeed, when Sh vanishes, the conjugate solutions coalesce into a double real root.
Correspondingly, for two given real solutions, Yr and Ys (r 6= s), the distance between them may

be defined by way of a standard 2-norm, namely:

Drs = (Yr−Ys)
T (Yr−Ys) (2.26)

2.3.2 Decreasing the distance between a pair of complex conjugate solutions

Let a complex solution Yh be considered. The distance, Sh, between this vector and the corresponding
complex conjugate is given by Eq. (2.25). A variation, ∆P, of the parameter vector must be computed
such that Sh decreases.

Differentiating Eq. (2.25) yields:

dSh =
n

∑
j=1

sgn
[
Im(Yh, j)

]
d
[
Im(Yh, j)

]
=

n

∑
j=1

sgn
[
Im(Yh, j)

]
Im(dYh, j) (2.27)

and hence:

dSh = sgn
[
Im
(
YT

h
)]

Im(dYh) (2.28)
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Figure 2.2: Schematic of Dietmier’s algorithm

where the operators sgn and Im are applied to all elements of the corresponding vector or matrix.
Indeed, differentiating F(Y, P) with respect to P and Y yields:

AdP+BdY = 0 (2.29)

where Akw = ∂ fk/∂Pw, Bk j = ∂ fk/∂Yj, so that:

dY =−B−1AdP (2.30)

If J is the matrix obtained from −B−1A, dY immediately emerges from Eq. (2.31) as:

dY = JdP (2.31)

and thus:

dYh = JhdP (2.32)

where Jh is matrix J evaluated for Y = Yh.
Substituting Eq. (2.32) into Eq. (2.28) finally yields:

dSh = sgn
[
Im
(
YT

h
)]

Im(JhdP) = sgn
[
Im
(
YT

h
)]

Im(Jh)dP (2.33)

and thus, by replacing differential quantities with small finite variations:

∆Sh ≈ sgn
[
Im
(
YT

h
)]

Im(Jh)∆P (2.34)
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By Eq. (2.34), the task of bringing two complex conjugate solutions closer together is reduced to
searching for a vector ∆P that minimises the objective function, ∆Sh. This is a linear optimisation
problem, which may be solved by any algorithm for linear programming, such as the simplex method
(Luenberger and Ye [2008]).

Since the formulation given in Eq. (2.34) emerges from the linearisation of a complex nonlinear
system of equations, the estimation that it provides is acceptable so long as ∆P is sufficiently small;
that is:

−∆Pmax ≤ ∆P≤ ∆Pmax (2.35)

where, for the sake of simplicity, all components of ∆Pmax are taken to be equal to a given ∆Pmax.
Furthermore, when the distance between any two real solutions associated with the current value

of P reaches a certain minimal value, Dmin, the algorithm must ensure that they do not become any
closer so as to prevent them eventually forming a complex conjugate pair. If Yr and Ys are any two
such poses, differentiating Eq. (2.26) and further using Eq. (2.32) yields:

dDrs = 2(Yr−Ys)
T (dYr−dYs) = 2(Yr−Ys)

T (Jr−Js)dP (2.36)

Accordingly, the condition that Yr and Ys must not become any closer when assigning the increment
∆P may be expressed by the linear constraint:

(Yr−Ys)
T (Jr−Js)∆P≥ 0 (2.37)

By considering Eqs. (2.34), (2.35) and (2.37), the linear optimisation problem may be stated as:

minimise : sgn
[
Im
(
YT

h

)]
Im(Jh)∆P

subject to : −∆Pmax ≤ ∆P≤ ∆Pmax;
(Yr−Ys)

T (Jr−Js)∆P≥ 0, ∀(Yr, Ys) : Drs < Dmin

(2.38)

If the problem in Eq. (2.38) provides a solution, the corresponding increment, ∆P, is added to P and
the set of geometric parameters is updated. The solutions of the modified F(Y, P) are then computed by
the help of an iterative Newton-Raphson routine, using Yh+Jh∆P, h = 1 . . .Nsol , as a starting estimate.
At this point, the distance-reduction procedure formulated in Eq. (2.38) may be attempted again.

By the iterative application of the aforementioned minimisation procedure, Sh is progressively re-
duced until the imaginary parts of all elements of Yh become smaller than a certain numerical error, ε .
In this situation, Yh and Yh may be, from a numerical point of view, either complex conjugate or real.
A Newton-Raphson algorithm is then used to search in a sphere of radius ε , centred at ℜ(Yh), for two
distinct real solutions, Yu and Yv, so that Yu and Yv may replace Yh and Yh. In order to prevent Yu and
Yv changing back to the complex field in the following steps of the algorithm, they are subsequently
forced apart in the real domain by a certain distance (see Section 2.3.3). At this point, the algorithm is
ready to attempt the transformation of another pair of complex conjugate roots into real ones. The pair
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2. Computational algebraic geometry

that is chosen is always that which has the shortest distance Sh.

2.3.3 Increasing the distance between a pair of real solutions

Let Yu and Yv be two real equilibrium poses. A variation, ∆P, of the parameter vector needs to be
computed such that the distance between them, Duv, is increased. If ∆P is sufficiently small, the
increment of Duv may be expressed as in Eq. (2.36), so that maximising ∆Duv may be reduced to
a linear maximisation problem subject to the same constraints (Eqs. (2.35) and (2.37)) discussed in
Section 2.3.2; that is,

maximize : (Yu−Yv)
T (Ju−Jv)∆P

subject to : −∆Pmax ≤ ∆P≤ ∆Pmax;
(Yr−Ys)

T (Jr−Js)∆P≥ 0, ∀(Yr, Ys) : Drs < Dmin

(2.39)

The procedure in Eq. (2.39) is repeated until either Duv reaches a convenient value, Dr (e.g. 2Dmin),
or no ∆P is found that satisfies the imposed constraints.
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Chapter 3

Geometric Static model of under-constrained
cable-driven parallel robot

It is well-known in robotics that under conditions of static equilibrium, an external wrench, w, applied
to an end-effector relates to actuation forces, τ , as follows:

JT
τ +w = 0 (3.1)

where J is the jacobian matrix that transforms end-effector twists into actuator velocities. As such,
for a platform in a given posture with given wrench, w, the applied force on the cables, τ , may be
obtained as the solution of Eq. (3.1). In general, for f -DOF end-effector and n tendons, J is a matrix of
size f ×n. Based on the dimensions of the jacobian matrix, J, a classification of cable-driven parallel
robots is defined. This was first proposed by Ming and Higuchi [1994] and discussed in further detail
by Kurtz and Hayward [1991]; Roberts et al. [1998]. When the number of cables is more than the
degrees of freedom of the moving platform; that is:

n > f (3.2)

the forces in the cables are computed as:

τ =−JT+w+λh (3.3)

where JT+ is the pseudo-inverse of matrix JT , h is an arbitrary vector in the null space of JT and λ is
a free parameter. One of the special characteristics of cables that makes the control of the end-effector
challenging is that the cable cannot withstand compression. Therefore, in a cable-driven parallel robot
with n cables and the moving platform at rest in equilibrium, the following condition must be satisfied:

τi ≥ 0, i = 1, 2, . . .n (3.4)
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3. Mathematical geometric static model of CDPRs

where τi is the applied force in each cable. Provided that all the components of h in Eq. (3.6) are
positive, λ may be set sufficiently large to ensure that all the applied forces in the cables are positive
regardless of w. Physically, the outcome of this is that the position and orientation of the robot are
independent of the imposed load, w, on the end-effector.

In the case of a robot with the number of cables, n, equal to the number of degrees of freedom, that
is:

n = f (3.5)

the forces in the cables are computed as:

τ =−J−1w (3.6)

When the robot falls into configurations with positive tension in all cables, the pose of the moving plat-
form is independent of the imposed load and may be controlled by changing the cable lengths. These
configurations in which it is impossible for the robot to be moved from its position and orientation
without having to change the cable lengths are called fully constrained.

On the other hand, when the number of cables is less than the number of DOFs; that is:

n < f (3.7)

then, in general, Eq. (3.1) has no solution unless it satisfies the consistency condition. From a mathe-
matical point of view, Eq. (3.1) has solutions only if the external wrench w falls into the column space
of JT . Under this condition, from linear algebra, a solution of the forces in the cables, τ , may be com-
puted for an imposed wrench w. But even if all the forces of the cables be computed as positive, still
some freedoms of the platform can not be controlled because of the condition in Eq. (3.7). Physically,
this means that the posture of the moving platform depends on the imposed load, in addition to the
cable lengths, since when the load changes the pose has to adapt in order to satisfy the consistency
condition. In practice, due to the external wrench, the platform pasture may change even if the cable
lengths are kept constant. Such a system in which the posture of the moving platform depends on
applied load is called under-constrained. Due to the increased complexity of displacement analysis for
such a robot, where kinematics and statics must be dealt with simultaneously, an appropriate math-
ematical model for the robot is necessary to solve the problem efficiently. In the following section,
modelling of such a robot and derivation of the governing equations are discussed.

3.1 Mathematical geometric static model of CDPRs

As shown in Fig. 3.1, a general under-constrained n-n CDPR comprises a mobile platform connected
to a fixed base by n < 6 cables. The ith cable (i = 1, 2, ...n) is attached to the base at point Ai and to
the platform at point Bi. It is assumed that the platform is acted upon by a 0-pitch wrench, w = QLe,
applied at point G, where Q is the constant magnitude of w and Le is the normalised Plücker vector
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3. Mathematical geometric static model of CDPRs

of its line of action. Such a wrench may, for example, result from the weight of the platform acting
through its centre of mass. To formulate the problem, other relevant definitions are as follows:

• Oxyz is a Cartesian coordinate frame fixed to the base with i, j and k being unit vectors along the
coordinate axes.

• O′x′y′z′ is a Cartesian coordinate frame fixed to the end-effector with i′, j′ and k′ being the
corresponding unit vectors along the coordinate axes.

• The platform posture is described by X = [x;Φ], where x = O′−O and Φ is the array grouping
the variables that parameterise the platform orientation with respect to Oxyz.

• ρi is the cable length.

• ai = Ai−O, ri = Bi−O′, si = Bi−Ai and ui = (Ai−Bi)/ρi =−si/ρi.

• bi is the projection of ri on O′x′y′z′.

• R(Φ) is the rotation matrix between the mobile and fixed frame.

• ri = R(Φ)bi.

• Li/ρi is the normalised Plücker vector of the ith cable in axis coordinates.

• pi is any vector from an arbitrarily-chosen reference point P (called for brevity moment pole) to
the cable line.

• Li =− [si;pi× si].

• τi is a scalar representing the cable tensile force.

• (τi/ρi)Li is the wrench exerted by the ith cable on the platform.

For the sake of brevity, the components of x in Oxyz are denoted as x, y and z. Vector components
along the coordinate axes are denoted by righthand subscripts reporting the axes names.

For practical reasons, the following is finally assumed:

1. ρi > 0 and, thus, si 6= 0, i = 1 . . .n (Assumption 1);

2. 0 < ||B j−Bi||< ||(A j−Ai)xy||, i 6= j (Assumption 2).

The latter assumption, according to which the segment BiB j is strictly smaller than the projection of
the segment AiA j on the xy-plane, is not conceptually necessary, but it rules out some special configu-
rations, which could be handled with no difficulty, but whose analysis would burden the presentation.
In particular, the possibility that any two cables may be simultaneously parallel to k is discarded.

It will now be shown that, according to the problem under consideration, the governing equations
can be simplified by appropriately choosing the reference coordinates and the orientation of the axes.
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Figure 3.1: A CDPR with n cables: (a) geometric model and (b) static model.

If all cables are active, the following n geometric constraints must be satisfied:

qi := si · si−ρ
2
i = 0, i = 1 . . .n (3.8)

Since the platform has 6 DOFs, its posture is ultimately determined by mechanical equilibrium. Static
equilibrium may be expressed as:

n

∑
i=1

τi

ρi
Li +QLe =

[
L1 L2 . . . Ln Le

]
︸ ︷︷ ︸

M



(τ1/ρ1)

(τ2/ρ2)
...

(τn/ρn)

Q


= 0 (3.9)

Eqs. (3.8) and (3.9) amount to a system of n+ 6 scalar relations in 2n+ 6 variables; namely, the
variables of platform pose, grouped in the array X = [x;Φ], the length of cable ρi, i = 1 . . .n, and the
cable tensions τi, i = 1 . . .n. A finite set of system configurations may generally be determined if any
n of these variables are known. Depending on the assigned n variables, two types of problem may be
considered:

• Inverse Geometric Static Problem (IGP): When n variables concerning the platform posture are
assigned.

• Direct Geometric Static Problem (DGP): When n cable lengths are assigned.

To solve the problem, the strategy presented by Carricato and Merlet [2010, 2013] is followed.
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3. Mathematical geometric static model of CDPRs

Both problems may be simplified by eliminating cable tensions from Eq. (3.9). A convenient
elimination strategy emerges by observing that Eq. (3.9) holds only if:

rank(M)≤ n (3.10)

namely if L1,L2, . . .Ln and Le are linearly dependent. This is a purely geometric condition, since M
is a 6× (n+ 1) matrix depending only on the platform posture. Furthermore, such relations do not

comprise cable lengths and lead to a partial decoupling of the system equations, with cable lengths
appearing only in Eq. (3.8). The IGP takes particular advantage of the aforementioned decoupling,
as the platform configuration may be directly computed by relations emerging from Eq. (3.10). By
setting all (n+1)× (n+1) minors of M equal to zero and by conveniently changing the moment pole,
a large set of linearly independent relations exclusively comprising the platform pose variables may be
derived; that is:

pk (X) = 0, k = 1 . . .Np (3.11)

where Np is an integer, usually much greater than the number of variables, NX , contained in X. Indeed,
for Eq. (3.10) to hold, all minors of M must vanish and this ordinarily results in more equations than
the number of variables, NX . The solution of the IGP problem coincides with the variety, V , of the ideal
generated by such equations. When n configuration variables are known (typically, either x or Φ), any
set of n equations from Eq. (3.11) may be chosen and a corresponding (generally zero-dimensional)
variety, V , is obtained. Once X is known, cable lengths may be directly calculated by Eq. (3.8).
It is worth emphasising that the IGP only provides potential robot configurations, since, when the
cable lengths emerging from Eq. (3.8) are fed into the actuators of the actual robot, the end-effector
may evolve, a priori, in any one of the feasible solutions emerging from the corresponding DGP and
nothing guarantees that the desired configuration is actually attained. This will be discussed in more
detail later on. The DGP poses remarkably more complex mathematical problems, as in this case, the
platform configuration is entirely unknown and it must be determined by simultaneously satisfying
both the relations emerging from Eq. (3.11) and those emerging from Eq. (3.8).

The cost of eliminating some of the unknowns is that the relations in Eq. (3.11) are significantly
more involved than those in Eq. (3.9). In particular, when they are of polynomial form, as is normally
the case, they have a higher degree, more numerous terms and more complicated coefficients. Formu-
lating equilibrium constraints via Eq. (3.11) is particularly favourable if, in order to solve the DGP,
variable-elimination strategies are pursued that take advantage of the abundance of linearly indepen-
dent relations that this approach provides, such as methods based on Groebner bases or Sylvester’s
dialytic elimination (Carricato [2013a,b]; Carricato and Merlet [2011a,b]). These methods, however,
rely on exact-arithmetic calculations and are particularly expensive in terms of computational burden.
When working with floating-point computation (such as homotopy continuation or interval analysis),
the relations in Eq. (3.11) have two drawbacks. Firstly, they are very sensitive to the accuracy with
which the coefficients are calculated, such that solutions are appreciably affected by numerical errors.

37



3. Mathematical geometric static model of CDPRs

Furthermore, in order to compute a finite set of solutions, a subset of NX −n relations must be selected
within Eq. (3.11), so as to form, together with Eq. (3.8), a square system of NX equations in NX un-
knowns. In this way, only a few minors of M are used and spurious roots are likely to be introduced;
that is, solutions for which some of the unused minors do not vanish. Accordingly, all roots must be
checked against the original set of equations, thus further increasing the computational burden. Due
to these limits, the formulation of static equilibrium via Eq. (3.9) will be preferred for the successful
implementation of numerical continuation methods.

Since using different parameterisations to describe the platform configuration causes Eqs. (3.8),
(3.9) and (3.11) to yield polynomial relations with varied complexity and degree, alternative parame-
terisations will now be discussed.

3.2 Rodrigues’ parameterisation

According to Rodrigues’ parametrisation, the platform posture, X, may be described by 6 variables;
namely, the vector x identifying the position of a point on the platform (e.g. O′) and the array Φ

grouping the three Rodrigues parameters defining the platform orientation with respect to the fixed
frame. Rodrigues parameters are derived using the theorem of Cayley (Bottema and Roth [1990]).
This theorem states that it is possible to represent an orthogonal matrix, R, using a skew symmetric
matrix, S:

R = (I−S)−1(I+S) (3.12)

where I is the 3×3 unit matrix and

S =

 0 −e3 e2

e3 0 −e1

−e2 e1 0

 (3.13)

If the eigenvalues of R do not have values of −1 (meaning that R does not describe a rotation of
angle π), one may compute the matrix S via S = (R− I)(R+ I)−1. From the entries ei of S, one can
directly compute the direction of the rotation axis Φ = (e1, e2, e3) and the rotation angle tan(φ

2 ) =√
e2

1 + e2
2 + e2

3. The parameters ei, i = 1, . . . , 3 are called Rodrigues parameters. The case in which R
describes a rotation of angle π must be handled in a different way, as shown by Angeles [2002].

Accordingly, XT = [xT ;Φ
T ]. Substitution of these variables into Eqs. (3.8) and (3.9) provides n+6

scalar relations in 2n+ 6 variables; that is, x, Φ and τ . This parameterisation is especially suitable
when the elimination strategy is implemented, as it only introduces the minimum number of variables.
Accordingly, the number of elimination steps and the required time are reduced.

It is worth mentioning a drawback of this parameterization when the Dietmaier algorithm, discussed
in Section 2.3, is applied. This parameterisation involves variables with mixed units (the components
of x are lengths, whereas those of Φ are dimensionless), making it difficult to conceive a physically-
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consistent unit to ‘measure’ the distance between two poses that have been dealt with in the Dietmaier
algorithm.

3.3 Study’s parameterisation

Study’s soma coordinates (Bottema and Roth [1990]) provide an 8-parameter homogeneous represen-
tation of the pose. Homogenisation of Rodrigues’ parameterisation by performing the substitutions
ei =

ci
c0

for i = 1, . . . , 3 and recomputing the rotation matrix R gives:

R =
1
∆

 c2
0 + c2

1− c2
2− c2

3 2(c1c2− c0c3) 2(c1c3 + c0c2)

2(c1c2 + c0c3) c2
0− c2

1 + c2
2− c2

3 2(c2c3− c0c1)

2(c1c3 + c0c2) 2(c2c3 + c0c1) c2
0− c2

1− c2
2 + c2

3

 (3.14)

where ∆ = c2
0 + c2

1 + c2
2 + c2

3. Without loss of generality, one may assume normalisation, meaning that
∆ = 1. Considering gk, k = 0 . . .3, as the components of a quaternion such that:

e0g0 + e1g1 + e2g2 + e3g3 = 0 (3.15)

the platform position may be stated as:

x =
1
∆

 −e0g1 + e1g0− e2g3 + e3g2

−e0g2 + e1g3 + e2g0− e3g1

−e0g3− e1g2 + e2g1 + e3g0

 (3.16)

Study coordinates add 2 unknowns and 2 equations to Eqs. (3.8) and (3.9), thus yielding a system
of 8+ n polynomial equations for 8+ 2n unknowns; that is, Y = [e0, e1, e2, e3, g0, g1, g2, g3, τ1, . . . ,
τn, ρ1, . . . , ρn]

T . As explained in the following sections, in some cases the equations derived by this
parameterisation are more stable when homotopy continuation is implemented.

3.4 Dietmaier’s parameterization

Following Dietmaier [1998], the platform posture, X, may be described by 9 variables all representing
vector components with units of length. This is accomplished by describing the platform orientation
by way of the unit vectors e1 and e2 and e3 = e1× e2.

Expressing the components of e1 and e2 in the fixed frame:

e1 = [e11, e12, e13]
T , e2 = [e21, e22, e23]

T (3.17)

the rotation matrix R can be expressed as R = [e1, e2, e3]. By having x = [x, y, z]T , the position vectors
of points B1, B2, B3 and G in Oxyz may be written in a straightforward manner as functions of the
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3. Mathematical geometric static model of CDPRs

array:

X = [x, y, z, e11, e12, e13, e21, e22, e23]
T (3.18)

whose components satisfy the conditions:

e2
11 + e2

12 + e2
13 = 1,

e2
21 + e2

22 + e2
23 = 1,

e11e21 + e12e22 + e13e23 = 0

(3.19)

When the geometric parameters of a robot are known, Eqs. (3.8), (3.9) and (3.19) form a system of
n+9 scalar relations with 2n+9 variables, namely x = [x, y, z], ρi, τi, i = 1 . . .n, and

Y = [e11, e12, e13, e21, e22, e23]
T (3.20)

Dietmaier’s parameterisation introduces a higher number of variables, making it unsuitable for the
elimination procedures. On the other hand, when dealing with continuation methods, this type of
parameterisation is preferred over the Rodrigues variation due to the fact that it yields simpler lower-
order polynomial equations, which prove to be stabler. Furthermore, as explained in Section 2.3,
when Dietmaier’s algorithm is implemented, parameterisation of the platform pose is homogeneous in
terms of units of measurement, which is an advantage for conceiving a physically consistent way of
‘measuring’ the distance between two poses.
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Chapter 4

Problem-solving algorithm for the geometric
static problem of under-constrained CDPRs

This chapter presents analysis results for the geometric static problem of under-constrained cable
driven parallel robots. By implementing the tools discussed in the previous chapter, inverse and di-
rect geometric static problems for robots with 2, 3 . . . , 5 cables are solved. Within the problem-solving
algorithm, the following issues, which are classic challenges in robot analysis, are specifically dealt
with:

1. determination of the number of solutions in the (zero-dimensional) algebraic variety defined by
the polynomial equations of the problem;

2. reduction of the problem to a single equation with one unknown;

3. numerical computation of the solution set;

4. identification of a specific geometry providing the maximum number of distinct real-valued so-
lutions.

By implementing appropriate elimination strategies for the respective IGPs and DGPs, the first two
above mentioned issues have been resolved for robots with n≤ 5 cables. The strategies are explained
in detail in Section 4.1. It will be shown that when a DGP is dealt with, the elimination strategies
yield univariate equations of very high order. Due to the complexity of these equations, numerical
procedures are introduced in Section 4.2 to compute the solutions of the DGP efficiently. The last issue
mentioned above is especially challenging when dealing with DGPs. Due to the very high order of the
univariate polynomials and the complexity of the corresponding equations, it is difficult to identify a
robot geometry with the maximum number of real solutions. Accordingly, as discussed in Section 4.3,
the Dietmaier algorithm is applied to overcome this problem.

41



4. Problem-solving algorithm for the geometric static problem of under-constrained CDPRs

4.1 The elimination approach

Before implementing an elimination procedure, the governing equations are simplified as much as
possible by adopting appropriate coordinate systems and suitable parameterisation. With O chosen to
coincide with A1 (i.e. a1 = 0), k directed along Le, A2 lying in plane A1ij, B1 lying on axis O′i′ and
B2 lying in plane O′i′j′, the position vectors of points A1, A2, A3, . . .An in frame Oxyz and of points
B1, B2, B3, . . .Bn in frame O′x′y′z′ may be expressed as:

[A1]O = [0, 0, 0]T , [A2]O = [a21, 0, a23]
T , [A3]O = [a31, a32, a33]

T , . . . , [An]O = [an1, an2, an3]
T

[B1]O′ = [b11, 0, 0]T , [B2]O′ = [b21, b22, 0]T , . . . , [Bn]O′ = [bn1, bn2, bn3]
T

[G]O = [g1, g2, g3]

(4.1)

with ai j, bi j and g j being known geometric parameters. Using this simplification for each case, the
corresponding governing equations are derived. An appropriate elimination strategy is then adopted to
eliminate all variables but one from the equations until a polynomial is obtained with a single unknown.
If this polynomial has the least possible degree, it provides the exact number of solutions in the complex
field. For an elimination procedure to be successful, a formulation containing the least number of
unknowns is the most suitable. The formulation in Eqs. 3.11 is thus used, in which cable tension
variables are eliminated.

It will be seen in Sections 4.1.1,4.1.2 and 4.1.3, that the IGP is, in general, less complex com-
pared to the DGP and, by use of relatively simple dialytic elimination strategies, all solutions can be
computed.

The DGP will be discussed in detail in Section 4.1.4, since the problem demands more effort. Most
of the material regarding cases of 2-2 and 3-3 CDPRs are from Carricato [2013a,b]; Carricato and
Merlet [2011a,b, 2013], respectively, and for consistency will be presented here briefly.

4.1.1 Inverse geometric static problem of 2-2 CDPRs

Both direct and inverse geometric static analyses of 2-cable robots are presented in detail by Carricato
and Merlet [2013]. The elimination procedure becomes quite simple by remodelling the equations
in-plane as shown in Fig. 4.1. Without loss of generality, the coordinate plane xz, parallel to k, may
be allowed to pass through A1 and A2; whereas x′z′ may be chosen so that it contains B1, B2 and G. If
y and y′ point in the same direction, the robot is said to work in operation mode I (Fig. 4.1) and the
rotation matrix between Oxyz and Gx′y′z′ is:

RI =

 cθ 0 sθ

0 1 0
−sθ 0 cθ

 (4.2)
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Figure 4.1: Geometric model of a cable-driven parallel robot with 2 cables: (a) operation mode I; (b)
operation mode II (Carricato and Merlet [2013])

Whereas if y and y′ point in opposite directions, the robot is said to work in operation mode II (Fig. 4.1)
and the rotation matrix is:

RI =

 cθ 0 sθ

0 −1 0
sθ 0 −cθ

 (4.3)

where θ is the angle formed by x′ and x with a positive rotation about y′ and sθ and cθ stand for sin(θ)

and cos(θ), respectively. If b′i is the coordinate vector of Bi in the Gx′y′z′ frame, then ri = RI(θ)b′i or
ri = RII(θ)b′i. By noting that in equilibrium conditions the two planes xz and x′z′ necessarily coincide
and by considering O = A1 as the reduction pole of the moments, the matrix M in Eq. (3.9) may be
reduced to:

M′ =

[
−(x+ r1) a2− (x+ r2) k

0 −a2× (x+ r2) x×k

]
=

 x+ r1x r21x−a2x 0
z+ r1z r21z−a2z 1

0 a2× (x+ r2) · j −x

 (4.4)

Accordingly, Eq. (3.10) holds if and only if detM′ = 0; namely:

p1 := (r21xx+a2xr1x)z−r21zx2+(r1zr2x−r1xr2z+a2xr21z−a2zr2x)x+r1x(a2xr2z−a2zr2x) = 0 (4.5)

The two constraint equations emerging from Eq. (3.8) may be linearly combined in the form:

p2 := x2 + z2 +2(r1xx+ r1zz)+‖r1‖2−ρ1
2 = 0

p3 := 2(a2x− r21x)x+2(a2z− r21z)z+‖r1‖2−‖a2− r2‖2 +ρ2
2−ρ1

2 = 0
(4.6)

43



4. Problem-solving algorithm for the geometric static problem of under-constrained CDPRs

comprising the variables x, z, θ , ρ1 and ρ2.
The inverse problem of a 2-2 CDPR may be solved by considering only Eq. (4.5). Following Car-

ricato and Merlet [2013], 4 different cases may be distinguished depending on which pose parameters
are assigned:

1. The orientation θ and variable x are assigned:

In this case, Eq. (4.5) provides a single solution in z, except for the case in which r21xx=−a2xr1x.
If the latter condition occurs, the problem may only be solved if the entire polynomial vanishes,
in which case the solution set is one-dimensional and coincides with a line parallel to k. This
occurs if either one of the following conditions holds:

• rix = 0 and x = aix, with i = 1 or 2;

• a2× r21 · j = 0, r21x 6= 0 and x =−a2xr1x/r21x.

In the former case, Ai, Bi and G lie on a line parallel to k and the robot operates as a 1-DOF crane
with the ith cable holding the entire load. In the latter case, the line segments A1A2 and B1B2

are parallel and the platform may follow a quasi-static linear path parallel to k, with orientation
being constant and the load being sustained by both cables.

2. The orientation θ and variable z are assigned:

In this case, Eq. (4.5) provides, in general, two solutions for x. If all coefficients of p1 vanish,
the solution set is one-dimensional and coincides with a line perpendicular to k. p1 is identically
nought if r1z = r2z, z+ r1z = a jz and rix = 0, with i 6= j; namely, if points B1, B2 and A j lie on a
line perpendicular to k.

3. The orientation θ and an approximate location of G are assigned:

If the orientation and an approximate desired location, (xd , zd), of G are assigned, x and z must
be found such that Eq. (4.5) is satisfied and the error, ε = (x− xd)

2 +(z− zd)
2, is minimised.

Since both ε and p1 are continuously differentiable in x and z, the global minimum of ε is a
stationary point of the function Lε = (x− xd)

2 +(z− zd)
2 +λ p1(x, z). Setting the derivatives of

Lε with respect to x and z to zero provides a linear system in x and z, by which both variables
may be determined as functions of λ . Upon substituting x = x(λ ) and z = z(λ ) into p1, a fourth-
degree polynomial in λ is obtained. Its real roots are the stationary points of Lε , among which the
global minimum may be determined by direct evaluation of ε . Clearly, this optimal configuration
is feasible only if the conditions concerning the sign of cable tensions and stability are satisfied.

4. The position (x, y) is assigned:

Letting ri = RI(θ)bi or ri = RII(θ)bi, with i = 1 and 2, p1 becomes a quadratic polynomial in
sθ and cθ . For each operational mode, the resultant of p1 and the trigonometric identity with
respect to cθ yields a fourth-degree equation in sθ . For each root in sθ , Eq. (4.5) provides a
single value of cθ and thus of θ . The problem admits altogether 8 solutions, all of which may be
real.
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4.1.2 Inverse geometric static problem of 3-3 CDPRs

For the case of robot with 3 cables, Eqs. (3.8) and (3.9) amount to 9 scalar relations in 12 variables.
Two cases of the IGP are studied, depending on which set of 3 platform posture variables are assigned:

1. IGP with assigned orientation in which Φ and, correspondingly, all vectors ri, i = 1 . . .3, are
known.

2. IGP with assigned position in which x is given and r1, r2 and r3 are unknown

4.1.2.1 Inverse geometric static problem of 3-3 CDPR with assigned orientation

When Φ is assigned, all vectors ri, i = 1 . . .3, are known. If O is chosen as the reduction pole of
moments, Li andLe may be expressed, in axis coordinates, as− [si; ai× si] and [k; x×k], respectively.
Accordingly, M in Eq. (3.9) becomes:

M(O) =

[
−s1 −s2 −s3 k

0 −a2× s2 −a3× s3 x×k

]
(4.7)

or, equivalently, by setting si = x+ ri−ai and by performing elementary column transformations:

M′(O) =

[
x+ r1 r21−a2 r31−a3 k

0 a2× (x+ r2) a3× (x+ r3) x×k

]
(4.8)

where ri j = ri− r j, i 6= j.
It is important to observe that letting Bi ≡ Ai, with i = 1 . . .3, causes the ith column of M to vanish

(since si = ai× si = 0) and, thus, it causes all 4×4 minors of M (and of M′) to be zero. It follows that
a configuration for which Bi ≡ Ai is a formal solution of the problem, as long as it is compatible with
the assigned constraints. We call it a trivial solution, and we need to discard it, since ρ is required to
be strictly positive:

x̄i := [x̄i, ȳi, z̄i]
T = ai− ri, i = 1 . . .3. (4.9)

This observation is particularly important for the IGP with assigned orientation. In this case, in
fact, it is always possible to displace the platform (with a given orientation) so as to superimpose Bi

onto Ai. Consequently, all trivial solutions appear as solutions of the problem and need to be discarded.
According to Eq. (3.11), the rank of the block matrix M′123(O) must be equal to either 2 or 3.

Discarding the trivial solutions and letting

∆ := detM′123, 234(O) = (r21−a2)x (r31−a3)y− (r21−a2)y (r31−a3)x (4.10)

two cases may be distinguished depending on ∆ being zero or not. It should be noted that ∆ depends
only on the input parameters when Φ is assigned. For physical interpretation of each case, the reader
is referred to Carricato [2013a]; Carricato and Merlet [2011a].
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1. ∆ 6= 0 :

Equations

p1 := detM′1236(O) = A20x2− (B011 +C101)xy

+A02y2 +A10x+A01y+A00 = 0
(4.11a)

p2 := detM′1235(O) = B110xy−A20xz+B020y2

+B011yz+B100x+B010y+B001z+B000 = 0
(4.11b)

p3 := detM′1234(O) = B110x2 +B020xy−C101xz

+A02yz−C100x−C010y−C001z−C000 = 0
(4.11c)

comprise the lowest-degree polynomials among all minors of M′(O), with coefficients Ai j, Bi jk

and Ci jk being functions of the geometric and orientation parameters only. Since rankM′123(O) =

3, satisfying Eqs. (4.11a)-(4.11c) assures that rankM′(O) = rankM′123(O) and thus the variety,
V , generated by Eq. (3.11) is equivalent to the variety, V123, generated by the above three equa-
tions.

p1 is quadratic in x and y and does not contain the variable z. p2 and p3 are quadratic in x, y and
z but do not contain the monomial z2. Eliminating z from p2 and p3 gives a cubic polynomial,
p23, in x and y; whereas eliminating y from p1 and p23 yields a 4th degree equation in x; namely:

p123 :=
4

∑
h=0

Ehxh = 0 (4.12)

It emerges from Eqs. (4.11a)-(4.11c) that the coefficients of the leading monomials y2 and y3 in
p1 and p23 are, respectively, A02 and A02B020 with, in particular, A02 = a3xr21x−a2xr31x. Since
A02 appears in both coefficients, it factors all terms of the resultant of p1 and p23 with respect to
y. p123 is the polynomial obtained by eliminating A02 from such a resultant. This simplification
is obvious when A02 6= 0, but it is still valid when A02 = 0, with a caveat. In fact, if the resultant
of p1 and p23 is calculated after setting A02 = 0, a 4th-degree polynomial in x is again obtained
and it proves to be equal to p123 times the constant:

Γ0 := B020(C001 +A01)−C010B011 (4.13)

Hence, as long as Γ0 6= 0, p123 is still a legitimate elimination ideal for p1 and p23. The case
Γ0 = 0 is discussed by Carricato [2013a]. Since three roots of p123 necessarily correspond to
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trivial solutions, the fourth root, x̄4, must be real and may be computed by Vieta’s formula:

x̄4 =
E0

x̄1x̄2x̄3E4
=

Ê0

Ê4
(4.14)

where the latter expression takes advantage of the fact that it is possible to factorise E0 and E4

as x̄1x̄2x̄3∆2Ê0 and ∆2Ê4, respectively. Once x̄4 is known, ȳ4 may be calculated, for instance
as the greatest common divisor of p1 and p23, and z̄4 may be obtained by either Eq. (4.11b) or
Eq. (4.11c). As long as E4 6= 0, the problem thus admits a single real solution: x̄4 = (x̄4, ȳ4, z̄4).
Special combinations of the geometric parameters and input orientations for which Eqs. (4.11a)-
(4.11c) admit infinite solutions are presented by Carricato [2013a]. In these cases, G may follow
quasi-static paths along assigned curves in space, with the platform orientation remaining con-
stant.

2. ∆ = 0 :

By expanding the coefficients of p123, it is possible to verify that all of them comprise the factor
∆2. Consequently, when ∆ = 0, p123 degenerates and the procedure described in the previous
section is not adequate to solve the problem.

Since it is assumed that (r21−a2)xy and (r31−a3)xy do not vanish, when ∆= 0 these two vectors
must be parallel (Eq. (4.10)):

(r31−a3)xy = α (r21−a2)xy (4.15)

where α ∈ R−{0}.

By enforcing both Eq. (4.15) and ∆ = 0, the polynomial relations in Eq. (4.11) may be factored
as:

p1 := f10g = 0 (4.16a)

p2 := f20g = 0 (4.16b)

p3 := f30g = 0 (4.16c)

where f10 and g are linear polynomials in x and y, and f20 and f30 are linear polynomials in x, y

and z. In particular:

g := detM′123, 124(O) = (ȳ1− ȳ2)x− (x̄1− x̄2)y+ x̄1ȳ2− ȳ1x̄2 (4.17)

where the coefficients multiplying x and y cannot vanish simultaneously, since this would infer
(x̄1− x̄2)xy = (r21−a2)xy = 0.

Equation (4.16) holds if either f10 = f20 = f30 = 0 or g = 0. Since the former requirement
amounts to a linear non-homogeneous system in x, y and z whose coefficient matrix is singular
(and, hence, admits in general no solution), only the latter condition applies. Together with the
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requisite ∆ = 0, this brings about that rankM′123(O) = 2, with the first row of M′(O) linearly
dependent on the second and third rows. The problem may thus be solved by considering the
system comprising the relation:

p4 := g = 0 (4.18)

and any two of the equations:

p5 := detM′2345(O) = 0 (4.19a)

p6 := detM′2346(O) = 0 (4.19b)

p7 := detM′2356(O) = 0 (4.19c)

where p5, p6 and p7 are cubic polynomials in x, y and z, with p6 and p7 being linear in z and p5

being quadratic in z.

If, for instance, p6 and p7 are considered, eliminating z gives a 4th degree polynomial, p67, in
x and y. Further eliminating y from p4 and p67 yields a quartic equation in x, p467 = 0, which
admits a single non-trivial solution. This solution formally coincides with the quotient Ê0/Ê4

at the right-hand side of Eq. (4.14), once Ê0 and Ê4 are expressed as functions of the geometric
and orientation parameters. If M′236(O) has full rank, then rankM′(O) = rankM′236(O) = 3 and
V =V467. In this case, ∆ = 0 and the axes of L1, L2, L3 and Le form a regulus on a hyperbolic
paraboloid.

It may happen that, in special cases, p467 degenerates and the procedure described above is not
adequate to solve the problem. Typically, this may occur when rankM′236 = 2. A different choice
of minors normally allows one to conclude the analysis.

4.1.2.2 Inverse geometric static problem of 3-3 CDPR with assigned position

In the case where x is assigned and r1, r2 and r3 are unknown, the relations in Eq. (4.11) assume a
particularly favourable structure if the platform orientation is described by means of Rodrigues param-
eters.

Indeed, by letting ri = Rbi, i = 1 . . .3, and by clearing the nonzero denominator, 1+ e2
1 + e2

2 + e2
3,

p1, p2 and p3 become quartic polynomials in the Rodrigues parameters:

ph := ∑
k=0...4

m=0...4−k
n=0...4−k−m

Dh, kmnek
1em

2 en
3 = 0, h = 1 . . .3 (4.20)

The quartic polynomials in e1, e2 and e3 that emerge from the minors detM′1245(O), detM′1246(O) and
detM′1256(O) depend linearly on p1, p2 and p3 and may be discarded. A further quartic emerges by
setting detM′j456(O) = 0 for j = 1 . . .3, so that:

(x+ r1)
[
detM′456, 234(O)

]
= 0 (4.21)
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The variety defined by Eq. (4.21) comprises, other than the trivial solution x̄1 = a1− r1 =−r1, the set
of configurations for which

p8 := detM′456, 234(O) = 0 (4.22)

Equation (4.22) is indeed of degree 4 in e1, e2 and e3 (as well as of degree 2 in x, y, z). All minors
of M′(O) not considered so far; namely, detM′1345(O), detM′1346(O), detM′1356(O), detM′2345(O),
detM′2346(O) and detM′2356(O), instead yield sextic equations in the Rodrigues parameters. In order
to solve such a system of polynomials, Sylvester’s dialytic method is implemented as an appropriate
elimination strategy.

An effective implementation of the strategy consists of deriving a larger set of linearly independent
quartics. Let M be written by choosing a generic P as the reduction pole of moments; namely:

M(P) =

[
· · · −si · · · k
· · · −(Bi−P)× si · · · (G−P)×k

]
(4.23)

When P ≡ Bi and P ≡ Ai, i = 1 . . .3, the moment vector in the ith column vanishes, so that setting
detM j456(Bi) = 0 and detM j456(Ai) = 0 for j = 1 . . .3 yields, respectively:

si [detM456, km4(Bi)] = 0 (4.24)

and

si [detM456, km4(Ai)] = 0 (4.25)

with k, m ∈ {1, 2, 3}−{i}. In this way, the following equations may be obtained:

p9 := detM456, 234(B1) = 0 (4.26a)

p10 := detM456, 134(B2) = 0 (4.26b)

p11 := detM456, 134(A2) = 0 (4.26c)

p12 := detM456, 124(B3) = 0 (4.26d)

p13 := detM456, 124(A3) = 0 (4.26e)

Analogously, by defining a convenient additional point, G0, such that G−G0 = k, and by setting P≡G

and P≡ G0, one may also obtain:

p14 := detM456, 123(G) = 0 (4.27a)

p15 := detM456, 123(G0) = 0 (4.27b)

All polynomials p j, j = 9 . . .15, have degree 4 in the Rodrigues parameters (and degree 2 in the
components of x).
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No other quartic polynomial that is linearly independent from p1, p2 and p3 may be obtained from
the minors of M by varying the moment pole. The relations in Eqs. (4.20), (4.22), (4.26) and (4.27)
form a system of 11 quartics, comprising 15 monomials in e1 and e2. By multiplying such quartics by
e2, 11 additional relations may be introduced, which comprise 5 novel monomials in e1 and e2. Among
the new equations, 9 may be chosen so as to form, together with the original ones, a linear system of
the form:

S(e3)E23 = 0 (4.28)

where S(e3) is a 20× 20 matrix depending only on e3, and E23 is a column vector comprising all
monomials of e1 and e2 with degree ≤ 5, except e5

1. The last three entries of E23 are, in particular, e1,
e2 and 1. The determinant of S(e3) provides a 24th-degree resultant devoid of spurious roots; namely:

detS(e3) =
24

∑
h=0

Fheh
3 = 0 (4.29)

where the coefficients Fh depend only on the position of G and the geometric parameters. For each root
of Eq. (4.29), a single value of e1 and e2 may be obtained by solving the linear system in Eq. (4.28).
As a proof that all solutions of Eq. (4.29) may be real, Carricato [2013a] a numerical example with a
set of all-real solutions.

Since Rodrigues parameters are unable to describe orientations requiring e0 = 0, this case must
be considered separately. For example, by setting e0 = 0 and e j = 1, for some j, the relations in
Eqs. (4.20), (4.22), (4.26) and (4.27) become quartics in eh and ek, h 6= j 6= k. Since these equations
contain only 5 monomials in ek, they are more than sufficient to eliminate ek and thus obtain a univariate
resultant in eh. If special geometric conditions are satisfied, common solutions may, however, exist.

The equation degrees involved in the solving procedure are rather high and all coefficients are gen-
erally nonzero, so that positive-dimensional solution sets are unlikely to be found (except, obviously,
when (x, y) = (x̄i, ȳi) and z 6= z̄i, i = 1 . . .3, in which case the robot is allowed to operate like a 1-DOF
crane, with the ith cable holding the entire load).

4.1.3 Inverse geometric static problem of 4-4 CDPRs

When solving the IGP of an n-dof robot, n platform coordinates need to be assigned. For the scenario
involving the IGP of 4-4 CDPRs, two relevant cases are considered, depending on whether: (i) the
orientation, Φ, is assigned and G is constrained to lie in a given plane (IGP with assigned orientation);
or (ii) the position of G is known and a further point, B5, on the platform is required to lie in a given
plane (IGP with assigned position).
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Figure 4.2: A cable-driven parallel robot with 4 cables: (a) model for the IGP with assigned orientation,
(b) model for the IGP with assigned position.

4.1.3.1 Inverse geometric static problem of 4-4 CDPRs with assigned orientation

In the case of an IGP with assigned orientation, Φ is known and G is constrained to lie in a plane Γ

(Fig. 4.2a). The pose coordinates are subject to 4 linear constraints, qi(X) = 0, i = 1 . . .4:

e1 = ē1, e2 = ē2, e3 = ē3, g ·n−dΓ = xn1 + yn2 + zn3−dΓ = 0 (4.30)

where ē1, ē2 and ē3 are known scalars, n = [n1, n2, n3]
T is a unit vector perpendicular to Γ and |dΓ| is

the distance of Γ from A1. Two sub-cases may be identified, depending on whether n3 6= 0 or n3 = 0.

1. n3 6= 0 :

When n3 6= 0, Γ is a non-vertical plane and z may be expressed, from the last relationship in
Eq. (4.30), as z =−(n1/n3)x− (n2/n3)y+dΓ/n3. By taking advantage of this expression and by
imposing the first three constraints in Eq. (4.30), the 5 relations p j(X) = 0, j = 1 . . .5, emerging
from Eq. (3.10) become cubic in x and y, comprising 10 monomials: [y3, y2x, yx2, x3, y2, yx, x2, y,
x, 1].

The problem may be efficiently solved by implementing a Sylvester dialytic method; namely,
by rewriting the relations p j = 0 as linear equations in all monomials involving the original
unknowns except one, which is ’hidden’ in the equation coefficients. If these monomials are
treated as linear unknowns, a square homogeneous system is obtained and the determinant of the
coefficient matrix provides a resultant in the hidden variable. In the case at hand, by hiding y,
4 monomials in x emerge and, thus, four relations p j = 0, j = 1 . . .4 may be used to build up a
square Sylvester matrix. The corresponding resultant, however, exhibits a spurious solution. In
order to remove the extraneous factor, all five relations p j = 0, j = 1 . . .5, may be linearised in
the 5 monomials contained in the array κ1 = [y3, x3, x2, x, 1]T :

S1(y)κ1 = 0 (4.31)
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Table 4.1: A 4-4 CDPR whose IGP with assigned orientation admits 5 real potential solutions (dΓ = 3/
√

6).

[A2]A [A3]A [A4]A [B1−G]A [B2−G]A [B3−G]A [B4−G]A
√

6n
8 9 1 −3 3 2 3 −2
0 7 8 4 −2 1 1 1
5 6 4 3 1 0 2 1

where S1(y) is a 5× 5 matrix whose entries are known polynomial functions of y. Letting the
determinant of S1(y) vanish yields a 5th-degree univariate equation in y. This is obtained in
symbolic form and is devoid of spurious roots. For each root, a unique value of x may be
obtained by solving the linear system in Eq. (4.31).

Solutions may be either complex or real, with only the latter being of physical interest. By
varying the robot’s geometry, the number of real roots may change. Table 4.1 reports an example
for which the IGP with assigned orientation admits 5 real solutions, though with not all of them
necessarily feasible.

2. n3 = 0 :

When n3 = 0 and, without loss of generality, n2 6= 0, Γ is vertical and y may be expressed, from
the last relation in Eq. (4.30), as y =−(n1/n2)x+(dΓ/n2).

By substituting this expression into the relations p j(X) = 0, j = 1 . . .5, one obtains 5 cubics in
the monomials [z2x, zx2, x3, z2, zx, x2, z, x, 1]. By a procedure similar to that described for the case
n3 6= 0, a least-degree univariate equation free of extraneous polynomial factors may be obtained
by linearising all five relations p j = 0, j = 1 . . .5, in the 5 monomials contained in the array
κ2 = [z2, x3, x2, x, 1]T and writing them in the form:

S2(z)κ2 = 0 (4.32)

where S2(z) is a 5× 5 matrix whose entries are known polynomial functions of z. Letting the
determinant of S2(z) vanish yields a 4th-degree univariate polynomial in z, which is available in
symbolic form and devoid of spurious roots. For each root, a unique value of x may be obtained
by solving the linear system in Eq. (4.32). Even in this case, it is possible that all roots are real.

4.1.3.2 Inverse geometric static problem of 4-4 CDPR with assigned position

In the case of an IGP with assigned position, G is known and a further point on the platform, B5, is
constrained to lie on an assigned plane, Π (Fig. 4.2a). The constraints qi(X) = 0, i = 1 . . .4 become:

x = x̄, y = ȳ, z = z̄, r5 ·n−dΠ = 0 (4.33)

where x̄, ȳ and z̄ are known scalars, r5 is the position vector of B5 in Oxyz, n is a unit vector perpendic-
ular to Π and |dΠ| is the distance of Π from A1.
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Table 4.2: A 4-4 CDPR whose IGP with assigned position admits 32 real potential solutions (dΠ =
−0.0543588).

[A2]A [A3]A [A4]A [B1]B [B2]B [B3]B [B4]B [B5]B n (x̄, ȳ, z̄)

0.0096715 0.1602038 0.3227272 0.8585338 0.3187879 0.6598471 0.6273182 0.4579794 0.8894538 0.1339193
0 0.0649423 0.7151215 0 0.4888859 0.6661870 0.9610494 0.5558744 0.4392272 0.2021438

0.5484151 0.6597958 0.5378416 0 0 0.8744523 0.0797477 0.8222827 −.1262981 0.1180386

If R(Φ) is the rotation matrix between Gx′y′z′ and Oxyz, the position vector of Bi, i = 1 . . .5, in
Oxyz may be expressed as ri = [Bi]Oxyz = g+R(Φ)bi, where the position of Bi in Gx′y′z′ is known.
By substituting these expressions in the 5 relations p j(X) = 0, j = 1 . . .5, and imposing the first three
constraints in Eq. (4.33), one obtains 5 sextic equations in e1, e2 and e3. By a similar expansion, the
fourth relationship in Eq. (4.33) (i.e. q4 = 0) becomes a quadratic equation in the Rodrigues parameters.

By denoting the ideal generated by the set J = {p1, . . . , p5, q4} as 〈J〉, the solutions of the IGP
with assigned position form the variety, V , of 〈J〉. The high order of the polynomials in J suggests
applying elimination procedures based on Groebner bases in order to solve the problem. A Groebner
basis, G[J], of 〈J〉 with respect to a grevlex(e1, e2, e3) may be computed in a very expedited manner;
tenths of seconds for the case at hand on a PC with a 2.67GHz Intel Xeon processor and 4GB of RAM.
Once G[J] is known, the FGLM algorithm may be called upon to compute a univariate polynomial in
〈J〉. A more efficient alternative, however, is provided by the Sylvester elimination procedure outlined
in Section 2.1.5.3. G[J] comprises 12 polynomials containing 12 monomials in e1 and e2: κ3 = [e1e4

2,
e5

2, e1e3
2, e4

2, e1e2
2, e3

2, e2
1, e1e2, e2

2, e1, e2, 1]T . Accordingly, G[J] may be set up as a square system of
homogeneous linear equations of the form:

S3(e3)κ3 = 0 (4.34)

where S3(e3) is a 12× 12 matrix polynomial in e3. Letting the determinant of S3(e3) vanish yields a
spurious-root-free univariate polynomial of degree 32 in e3. For each root, unique values of e1 and e2

may be obtained by solving the linear system in Eq. (4.34).
As reported in Table 4.2, an example of a set of robot parameters have been found proving that all

32 solutions may be real.

4.1.4 Direct geometric static problem of CDPRs

The powerful Groebner-basis elimination strategy will be implemented to perform elimination in the
direct geometric static problem due to the complexity of the governing equations. Generally, the
method encompasses three steps:

1. a Groebner basis, G, is computed with respect to an efficient monomial order;

2. a subset of the original unknowns is eliminated by computing a Groebner basis, Gl , of a suitable
elimination ideal utilising the FGLM algorithm ( Faugère et al. [1993]);
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3. a least-degree univariate polynomial devoid of extraneous factors is computed by applying an
elimination strategy.

For a generic CDPR with n cables, n≤ 6, it so happens that the number of monomials in the unknown
variables, X, comprised in the ideal of the governing equations, J, usually become very high, in the
order of several hundreds. As a consequence, computing a Groebner basis is a nontrivial task. The
following strategy is adopted:

• All geometric parameters of the robot are assigned generic rational values so as to ease numerical
computation in the computer algebra system, i.e. the GroebnerPackage provided within the
software Maple15. Accordingly, 〈J〉 ⊂Q[X], where Q[X] is the set of all polynomials in X with
coefficients in Q.

• Groebner bases are computed with respect to grevlex monomial order.

• The abundance of generators in J plays a key role, since it greatly speeds up the calculation; a
feature already noted by Dhingra et al. [2000]). It is therefore fully exploited here within.

By the above expedients, a Groebner basis, G>grevlex [J], of 〈J〉 may generally be computed in a
fairly expedited way. Once G[J] is known, the normal set, N[J], of 〈J〉; that is, the set of all monomials
that are not multiples of any leading monomial in G[J], may be easily computed. From the properties
of Groebner bases (Corless [1996]; Möller [1998]), the number of monomials in N[J] coincides with
the number of complex roots in the variety of 〈J〉 and thus with the number of solutions, Nsol , of the
problem at hand. This is the order of the least-degree univariate polynomials comprised in 〈J〉.

4.1.4.1 Direct geometric static problem of 2-2 CDPRs

The DGP is characterised by assigned values of ρ1 and ρ2 and an unknown platform pose. Considering
x as a linear function of z from the second equation in Eq. (4.6), and substituting into Eq. (4.5) and
the first equation in Eq. (4.6), yields two quadratic equations in z; namely, p4 = 0 and p5 = 0, from
which z may be eliminated. By cancelling the nonzero factor, 16(a2x− r21x)

4, a single equation in θ

may further be obtained in the form of p6 = 0. Expressing sθ and cθ as functions of tθ = tan(θ/2) and
clearing the factor (1+ t2

θ
)6, a 12th-degree polynomial equation in tθ is finally obtained:

12

∑
k=0

Bktθ k = 0 (4.35)

As explained by Carricato and Merlet [2013], for each solution of Eq. (4.35), a single value of z is
computed by the greatest common divisor of p4 and p5, with a single value of x finally obtained from
the second equation in Eq. (4.6). By considering both operational modes, the problems admits up to
24 solutions.
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4.1.4.2 Direct geometric static problem of 3-3 CDPRs

In this case too, all cable lengths are assigned and the platform configuration must be determined. In
order to resolve the problem, both the equations emerging from the geometric constraints and those
inferred from static equilibrium must be solved. Equation (3.10) provides a number of polynomial
relations for the platform posture variables. Among them, Eqs. (4.20), (4.22), (4.26) and (4.27) are
of degree 4 in the elements of Φ (i.e. the Rodrigues parameters) and degree 2 in the components of
x. Equation (3.8) provides three further relations in X; namely, ||s1||2−ρ2

1 = 0, ||s2||2−ρ2
2 = 0 and

||s3||3−ρ2
3 = 0. By subtracting the first relation from both the second and the third one, and by clearing

the denominator 1+ e2
1 + e2

2 + e2
3, one obtains:

q1 := H200x2 +H020y2 +H002z2 +H100x+H010y+H001z+H000 = 0 (4.36a)

q2 := I100x+ I010y+ I001z+ I000 = 0 (4.36b)

q3 := K100x+K010y+K001z+K000 = 0 (4.36c)

where all coefficients Hkmn, Ikmn and Kkmn are quadratic functions in e1, e2 and e3. Let 〈J〉 be the
ideal generated by the set of polynomials J = {q1, q2, q3, p1, p2, p3, p8, . . . , p15}. q1, q2 and q3 have,
respectively, degrees of 4, 3 and 3 in X, whereas all other generators in J have degree 6 in the same
variables.

In general, 348 monomials in X are involved and a Groebner basis, G[J], of 〈J〉 with respect to
grevlex(X) may be computed with variables ordered such that z>y>x >e1>e2>e3.

Table 4.3: DGP of a 3-3 robot: structure of the Groebner bases of the elimination ideals of 〈J〉

G[Jl ] X\Xl Nl
Degrees of the generators Highest degree in w, No. of monomials with variables in

in X\Xl w ∈ X\Xl X\Xl−{w}, w ∈ X\Xl

G[J] [z, y, x, e1, e2, e3] 137 3(2), 4(41), 5(94) 4, 4, 4, 4, 5, 5 183, 183, 172, 181, 150, 137

G[J1] [y, x, e1, e2, e3] 126 5(96), 6(30) 5, 5, 5, 5, 6 145, 144, 142, 141, 126

G[J2] [x, e1, e2, e3] 84 6(54), 7(30) 6, 6, 6, 7 98, 98, 94, 84

G[J3] [e1, e2, e3] 45 8(9), 9(36) 8, 8, 9 53, 53, 45

G[J4] [e2, e3] 18 17(15), 18(3) 17, 18 19, 18

G[J5] [e3] 1 156(1) 156 –

A key factor for the efficiency of such a computation is the abundance of generators available in
J, which significantly simplifies and speeds up the calculation. By exploiting all 14 generators, the
computation of G[J] for the exemplifying 3-3 robot whose dimensions will be reported in Table 4.4
requires roughly 1.3min on a PC with a 2.67GHz Intel Xeon processor and 4GB of RAM. If only 6
generators are used, computation time may be up to 30 times higher and, most significantly, spurious
solutions are introduced.

Once G[J] is known, the normal set of 〈J〉 may easily be computed; namely (in vector format):

N[J] =
[
1, e1, e2, e3, x, y, z, e2

1, e1e3, . . . , xze1e2
]T

(4.37)
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Since N[J] comprises 156 monomials, this is also the number of complex roots in the algebraic variety,
V , of 〈J〉.

In order to actually solve J and thus eliminate the unknowns, Groebner bases are required with
respect to the elimination monomial orders (Section 2.1.5). The structure of the Groebner basis, G[Jl],
of 〈Jl〉 with respect to grevlex(X\Xl) as obtained by the FGLM algorithm is illustrated in Table 4.3
for l = 0 . . .5. Column 3 reports the number of generators, Nl , in G[Jl], column 4 reports the degree
of such generators in X\Xl (the number of generators for each degree is given in brackets), column 5
reports the highest power of w in G[Jl] for each variable w ∈X\Xl and column 6 reports the number of
monomials in G[Jl] having variables in X\Xl−{w} for each variable. By computing elimination ideals
via the FGLM algorithm, a least-degree polynomial in one variable may be obtained. In practical cases,
however, the procedure may fail due to an excessively onerous computational burden. As outlined in
Section 2.1.5.3, a more effective procedure that can be implemented to obtain the univariate equation
is based on the Groebner-Sylvester hybrid approach. For the problem at hand, G[J] comprises 137
generators. By choosing w 6= e3 (e3 being the ‘smallest’ variable in the monomial ordering chosen to
compute G[J]), the number of monomials in X−{w} proves to be always greater than 137; however,
by choosing w = e3, the number of monomials in X−{e3} is exactly equal to 137 (see Table 4.3). By
this approach, the resultant in w emerges from the expansion of a 137× 137 matrix, which is still a
very expensive computational task. On the contrary, as Table 4.3 shows, the Groebner basis, G[J3], of
〈J〉∩Q[e1, e2, e3] with respect to grevlex(e1, e2, e3) comprises only 45 polynomials (9 of degree 8 in
Φ and 36 of degree 9 in Φ), including 45 monomials in e1 and e2 (of degree ranging from 0 to 8). It
follows that if w is assigned the role of ‘hidden’ variable, the generators of G[Jl] may be written in the
form:

T(w)Ew =

(
u

∑
k=0

wkBk

)
Ew = 0 (4.38)

where u is the highest power of w in G[Jl], Bk is a Nl×Nl numerical matrix, T(w) is a matrix polynomial
of degree u in w and Ew is a Nl-dimensional vector comprising all monomials in G[Jl] having variables
in X\Xl−{w}. Accordingly, the desired resultant, free from extraneous polynomial factors, is:

detT(w) =
156

∑
h=0

Lhwh = 0 (4.39)

with the coefficients Lh depending only on the input data; namely, the robot geometry and cable lengths.
The advantage gained by applying a dialytic step to a Groebner basis G[Jl] with l > 0 is evident in

the data presented in Table 4.4. This table reports the CPU time required to compute grevlex bases for
the elimination ideals of 〈J〉 with l = 0 . . .5 on the aforementioned PC. In particular, the third column
reports the CPU time, TG[Jl ], required to obtain G[Jl] by computing 〈J〉∩Q[X\Xl] or, in brackets, by
computing 〈Jl−1〉∩Q[X\Xl]. The elimination task generally proves to be computationally expensive
and time consuming1. In particular, the ‘deeper’ the elimination process (i.e. the smaller the number of

1Computation time may significantly increase depending on the complexity of the coefficients of the polynomials in J.
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Table 4.4: DGP of a 3-3 robot: Computation time to obtain Groebner bases of the elimination ideals
of 〈J〉

Geometric dimensions and load: a2 = [10;0;0], a3 = [0;12;0], b1 = [1;0;0], b2 = [0;1;0], b3 = [0;0;1],
(ρ1, ρ2, ρ3) = (7.5, 10, 9.5), Q = 10.

l 〈Jl〉 TG[Jl ] [min] T〈J〉∩Q[e3] [min]

0 〈J〉 1.3 1919

1 〈J〉∩Q[y, x, e1, e2, e3] 19 2159

2 〈J〉∩Q[x, e1, e2, e3] 42 (27) 579

3 〈J〉∩Q[e1, e2, e3] 49 (24) 33

4 〈J〉∩Q[e2, e3] 160 (80) 11

5 〈J〉∩Q[e3] . . . –

variables in X\Xl), the longer the time taken to perform the computation and, more critically, the larger
the amount of memory required. The latter issue is particularly critical; indeed, the final elimination
ideal for the example at hand cannot be computed on the given PC due to excessive memory usage1.
The fourth column reports the CPU time, T〈J〉∩Q[e3], required to calculate 〈J〉 ∩Q[e3] by applying
Sylvester’s dialytic method to G[Jl] for l = 0 . . .4. In this case, computation time depends on the
dimension of T(w) and thus normally decreases with the number of variables in X\Xl . Memory
requirements are modest and the algorithm is normally successful. Deriving 〈J〉∩Q[e3] by computing
〈J3〉 and then applying dialytic elimination to G[J3] requires less than 1/20 of the computation time
that would be needed by applying dialytic elimination directly to G[J]. It emerges from the above
consideration that a hybrid approach, which eliminates a subset of variables by the FGLM algorithm
and further applies Sylvester’s method on the Groebner basis of the corresponding elimination ideal,
provides a profitable strategy to compute a least-degree univariate polynomial in 〈J〉.

4.1.4.3 Direct geometric static problem of 4-4 CDPR

When all cables of the robot are in tension, Eq.(3.8) yields 4 relations in X. By subtracting the first
relation from the other 3 and clearing the denominator 1+ e2

1 + e2
2 + e2

3, the following equations are
obtained:

q1 := H200x2 +H020y2 +H002z2 +H100x+H010y+H001z+H000 = 0 (4.40a)

q2 := I100x+ I010y+ I001z+ I000 = 0 (4.40b)

q3 := J100x+ J010y+ J001z+ J000 = 0 (4.40c)

q4 := K100x+K010y+K001z+K000 = 0 (4.40d)

From Eq.(3.11), when P ≡ A1, all equations emerging by setting the 5× 5 minors of M equal to

1 Maple estimated a required memory usage of about 12GB to derive 〈J5〉 from 〈J4〉.

57



4. Problem-solving algorithm for the geometric static problem of under-constrained CDPRs

zero are linearly independent; namely:

p1 := detM23456(A1) = 0 (4.41a)

p2 := detM13456(A1) = 0 (4.41b)

p3 := detM12456(A1) = 0 (4.41c)

p4 := detM12356(A1) = 0 (4.41d)

p5 := detM12346(A1) = 0 (4.41e)

p6 := detM12345(A1) = 0 (4.41f)

On the other hand, the relations obtained by letting P≡ Ai, i= 2 . . .4, are linearly dependent on those in
Eq.(4.41) and may therefore be discarded. 9 additional linearly independent equations may conversely
be obtained by letting P≡ Bi, i = 1 . . .4; that is:

p7 := detM23456(B1) = 0 (4.42a)

p8 := detM13456(B1) = 0 (4.42b)

p9 := detM12456(B1) = 0 (4.42c)

p10 := detM23456(B1) = 0 (4.42d)

p11 := detM13456(B1) = 0 (4.42e)

p12 := detM12456(B1) = 0 (4.42f)

p13 := detM23456(B3) = 0 (4.42g)

p14 := detM13456(B4) = 0 (4.42h)

p15 := detM12456(B5) = 0 (4.42i)

Two more may be obtained by letting P≡ G; that is:

p16 := detM23456(G) = 0 (4.43a)

p17 := detM13456(G) = 0 (4.43b)

As outlined in Section 2.1.5, the variety of the ideal 〈J〉 generated by the polynomial set J =

{q1, q2, q3, q4, p1, ..., p17} is the solution of the problem. q1, q2, q3 and q4 have, respectively, degrees
of 4, 3, 3 and 3 in X; whereas all other generators in 〈J〉 are of degree 9 in the same variables. In
general, 1576 monomials in X are involved. A Groebner basis, G[J], of 〈J〉 with respect to grevlex(X)

may be computed with variables ordered such that z> y> x > e1 > e2 > e3. As explained previously,
a key factor for the efficiency of such a computation is the abundance of generators available in 〈J〉,
which simplifies and speeds up calculation. Numerical tests have shown that the fastest computation
is achieved by exploiting the first 19 generators in 〈J〉: {q1, q2, q3, q4, p1, ..., p17}. The computation of
G[J] for the exemplifying robot whose dimensions are reported in Table 4.6 requires roughly 18min on
a PC with a 2.67GHz Intel Xeon processor and 4GB of RAM. If only 6 generators are used, compu-
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tation time is 4 times higher and, most importantly, spurious solutions are introduced as only two out
of six minors of M are used. Knowing G[J], the normal set of 〈J〉 may be easily computed; namely (in
vector format):

N[J] = [1, e3, e2, e1, x, y, z, e2
3, e2e3, . . . , e1e2e2

3x, e1e2e2
3y]T (4.44)

Since N[J] comprises 216 polynomials, this is also the number of complex roots (including multiplic-
ity) in the algebraic variety, V , of 〈J〉 and thus the order of the least-degree univariate polynomials
comprised in 〈J〉.

The structure of G[J] with respect to grevlex(X), as obtained by the FGLM algorithm, is illustrated
in Table 4.5 for l = 0 . . .5. Column 3 reports the number of generators, Nl , in G[Jl], column 4 reports
the degree of such generators in X\Xl (the number of generators for each degree is given in brackets)
and column 5 reports the number of monomials in G[Jl] having variables in X\Xl −{w} for each
variable w ∈ X\Xl .

As in the 3-cable case, by computing elimination ideals via the FGLM algorithm, a least-degree
polynomial in one variable may be obtained. However, the advantage gained by applying a dialytic
step to a Groebner basis, G[Jl], with l > 0 is evident in the data presented in Table 4.6. The table reports
the CPU time required to compute grevlex bases for the elimination ideals of 〈J〉 with l = 0 . . .5 on
the aforementioned PC for an exemplifying 4-4 CDPR. In particular, the third column reports the CPU
time, TG[Jl ], required to obtain G[Jl] by computing 〈Jl−1〉∩Q[X\Xl] via the FGLM algorithm and the
fourth column reports the CPU time, T〈J〉∩Q[e3], required to calculate 〈J〉∩Q[e3] via application of
dialytic elimination to G[Jl] for l = 0 . . .4. As expected, the higher l is (i.e. the more variables are
eliminated), the more demanding the FGLM elimination becomes. In particular, the last elimination
ideal cannot be computed due to excessive memory usage. Conversely, the computation time of the
dialytic step decreases with l, as it depends on the dimensions of T(w). For the example at hand,
〈J〉∩Q[e3] cannot be computed from G[Jl] with l = 0 . . .2 due to excessive computation time. Instead,
the univariate polynomial in e3 may be successfully computed from either G[J3] or G[J4]. The more
efficient computation of 〈J〉∩Q[e3] is obtained by eliminating {x, y, z} by the FGLM algorithm and
{e1, e2} by the dialytic step.

4.1.4.4 Direct geometric static problem of 5-5 CDPRs

Solutions to the DGP of a robot with 5 cables and the corresponding univariate polynomial are com-
puted by implementing the same elimination strategy. From Eq. (3.8), 5 polynomials may be derived;
namely, {qi, i = 1 . . .5}, similar to Eq. (4.40). For the case of 5-5 CDPRs, M is a 6× 6 matrix from
which only one equation is obtained by letting its determinant equal zero:

p := detM(A1) = 0 (4.45)

In contrast to the cases of robots with n < 5 cables, all other similar relations obtained by changing the
reduction pole of the moment linearly depend on Eq.(4.45) and must therefore be discarded. Thus, in
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Table 4.5: Structure of the Groebner bases of the elimination ideals of 4-4 CDPRs

G[Jl] X\Xl Nl
Degrees of the generators No. of monomials with variables in

in X\Xl X\Xl−{w}, w ∈ X\Xl

G[J] [z, y, x, e1, e2, e3] 195 3(3), 4(5), 5(158), 6(29) 230, 232, 232, 271, 224, 195

G[J1] [y, x, e1, e2, e3] 147 5(36), 6(111) 185, 180, 181, 160, 147

G[J2] [x, e1, e2, e3] 111 5(1), 7(99), 8(11) 127, 127, 117, 111

G[J3] [e1, e2, e3] 61 8(1), 10(60) 66, 61, 61

G[J4] [e2, e3] 21 20(15), 21(6) 22, 21

G[J5] [e3] 1 216(1) –

Table 4.6: Computation times to obtain Groebner bases of the elimination ideals of 4-4 CDPRs for the
robot geometry :a1 = [0;0;0], a2 = [9;0;1], a3 = [11;9;0], a4 = [−2;8;−1], b1 = [−2;−1;−1], b2 =
[1;−2;0], b3 = [2;1;−1], b4 = [0;2;−1], (ρ1, ρ2, ρ3, ρ4) = (6, 7, 8, 9), Q = 10.

l 〈Jl〉 TG[Jl ] [min] T〈J〉∩Q[e3] [min]

0 〈J〉 17 . . .

1 〈J〉∩Q[y, x, e1, e2, e3] 227 . . .

2 〈J〉∩Q[x, e1, e2, e3] 670 . . .

3 〈J〉∩Q[e1, e2, e3] 567 340

4 〈J〉∩Q[e2, e3] 1063 67

5 〈J〉∩Q[e3] . . . –

this case the ideal, 〈J〉, comprises just 6 polynomials, {q1, q2, q3, q4, q5, p}, in which q1, q2, q3, q4 and
q5 have, respectively, degrees of 4, 3, 3, 3 and 3 in X while p, inferred from static equilibrium, has a
degree as high as 9 in the same variables. The total number of monomials in X contained in 〈J〉 is 1576.
Though the computation of G[J] may not take advantage of redundant generators in J, it is relatively
fast, mainly due to the fact that a single high-degree polynomial appears in J. For the exemplifying
robot reported in subsequent Table 4.8, G[J] may be computed in roughly 3 minutes.

The normal set; namely:

N[J] = [1, e3, e2, e1, x, y, z, e2
3, e2e3, . . . , e1xy2, e1xyz, x4]T (4.46)

contains 140 monomials such that Nsol = 140. The structure of G[Jl] with respect to grevlex(X\Xl)

is reported in Table 4.7 for l = 0 . . .5. The table is constructed in the same manner as Table 4.5.
Notably, in this case, G[Jl] comprises monomials in X\Xl −{e3} equal to Nl for only l = 1, 3, 4.
Hence, Sylvester dialytic elimination may be applied to neither G[J] nor G[J2]. Indeed, these contain
more monomials in X\Xl−{e3} than available generators.

Table 4.8 reports, for an exemplifying generic robot, the CPU time, TG[Jl ], required to compute
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Table 4.7: Structure of the Groebner bases of the elimination ideals 〈Jl〉 of 〈J〉 for a CDPR with 5
cables and a generic geometry

G[Jl] X\Xl Nl
Degrees of the generators No. of monomials with variables in

in X\Xl X\Xl−{w}, w ∈ X\Xl

G[J] [z, y, x, e1, e2, e3] 110 3(4), 4(46), 5(60) 159, 156, 147, 168, 141, 118

G[J1] [y, x, e1, e2, e3] 110 4(6), 5(84), 6(20) 130, 128, 139, 124, 110

G[J2] [x, e1, e2, e3] 68 4(1), 5(4), 6(40), 7(23) 87, 96, 83, 69

G[J3] [e1, e2, e3] 31 4(1), 8(11), 9(6), 10(6), 11(6), 12(1) 62, 43, 31

G[J4] [e2, e3] 17 16(13), 17(4) 18, 17

G[J5] [e3] 1 140(1) –

G[Jl] from 〈Jl−1〉∩Q[X\Xl] and the CPU time, T〈J〉∩Q[e3], required to calculate 〈J〉∩Q[e3] by applying
Sylvester’s elimination to G[Jl] for l = 1, 3, 4. The most efficient computation is obtained by eliminat-
ing {x, y, z} via the FGLM algorithm and {e1, e2} via a dialytic step (3.3+43.0+59.5+56.7+7.5≈
170min). G[J3] comprises 11 polynomials (1 of degree 4, 11 of degree 8, 6 of degree 9, 6 of degree 10,
6 of degree 11 and 1 of degree 12 in Φ), including 31 monomials in e1 and e2. Hence, a 140-degree
polynomial in e3 may be computed by expanding a 31×31 matrix.

Table 4.8: Computation times to obtain Groebner bases of the elimination ideals, 〈Jl〉, for a robot
with 5 cables and a1 = [0;0;0], a2 = [1;2;−0.75], a3 = [3.5;1;1], a4 = [3.25;−1;1], a5 = [1;−2;−0.5],
b1 = [−1;0;−1], b2 = [−0.5;1;−1.25], b3 = [0.75;0.75;−1.25], b4 = [0.5;−0.75;−1.25], b5 =
[−0.25;−0.8;−1.5], (ρ1, ρ2, ρ3, ρ4, ρ5) = (4.5;5;3;3.75;4.75).

l 〈Jl〉 TG[Jl ] [min] T〈J〉∩Q[e3] [min]

0 〈J〉 3.3 . . .

1 〈J〉∩Q[y, x, e1, e2, e3] 43.0 4042

2 〈J〉∩Q[x, e1, e2, e3] 59.5 . . .

3 〈J〉∩Q[e1, e2, e3] 56.7 7.5

4 〈J〉∩Q[e2, e3] 73.0 10.7

5 〈J〉∩Q[e3] . . . –

4.2 Numerical computation of the solution set of the DGP

As discussed in Section 4.1.4, for cases of DGP, the elimination strategy yields univariate polynomi-
als of high degree that have no practical use due to the inability to manage such high orders from a
numerical point of view. Thus, purely numerical options may be considered to compute the solutions.
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4.2.1 Eigenvalue formulation

As discussed in Section 2.1.5.2, once a Groebner basis, G[J], of 〈J〉 is known, the solutions of the
problem may be efficiently computed by constructing a multiplication matrix with the eigenproblem
method in Eq. (2.11). Considering N[J] from Eqs. (4.37), (4.44) and (4.46) for the cases of robots with
3, 4 and 5 cables, one may identify that the first 7 entries of N[J] are always 1, e1, e2, e3, x, y, z. For
each case, a unique solution in X emerges from each eigenvector, Ni, as:

e1, i =
ti, 2

ti, 1
, e2, i =

ti, 3

ti, 1
, e3, i =

ti, 4

ti, 1
, xi =

ti, 5

ti, 1
yi =

ti, 6

ti, 1
, zi =

ti, 7

ti, 1
. (4.47)

For all cases, computation of A[J, e3] and the corresponding eigenvalues may be performed in tenths
of a second. Once a robot configuration is found, cable tensions may be obtained via any subset of
Eq. 3.9. A drawback of this approach is that it relies on a prior computation of G[J]. The efficiency of
Groebner basis computation depends heavily on the ‘size’ of the rational coefficients of the polynomials
generating the basis. Indeed, for Groebner-basis computation, the coefficients expressing the robot
geometric parameters must be assigned rational values, which are normally obtained by converting real
values. The higher the number of digits in the original floating-point data, the larger the numerators
and denominators of the resulting rationals and the larger the coefficients in the polynomials forming
the ideal. As a result, computation becomes slower and more memory-demanding. This is a limitation
shared by all computational methods using Groebner bases.

4.2.2 Homotopy continuation

Due to the drawbacks of the eigenvalue formulation discussed in the previous section, homotopy con-
tinuation (Sommese and Wampler [2005]) is chosen to compute the solution set numerically. Continu-
ation has the significant advantage that it requires no prior Groebner-basis computation by a computer
algebra system and real-value geometric parameters may be directly handled with floating-point arith-
metic. As a consequence, the dependence of computation time on the specific values of the robot
parameters is rather modest.

Though formulating equilibrium constraints via Eq. (3.11) is particularly favourable when pursuing
elimination strategies, the complexity and high degree of the polynomials emerging from the elimina-
tion of cable tensions are a disadvantage for continuation algorithms, as they slow down computation
and cause stability problems. For this reason, formulation via Eqs. (3.8) and (3.9) is preferable. For
the same reason, pose parameterisation by Study or Dietmaier coordinates (see Sections 3.3 and 3.4) is
preferable over the 6-parameter representation described in Section 3.2. Though the resulting system
involves more variables and more equations than that in the elimination strategy, it comprises much
simpler lower-order polynomials, which are more stable when homotopy continuation is implemented,
thus leading to faster computation.
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4.2.2.1 General homotopy continuation

As introduced in Section 2.2, polynomial homotopy continuation is a path-tracking technique that
transforms a start system of polynomial equations with known solutions to a target system whose
solutions must be found (Sommese and Wampler [2005]). The method tracks the evolution of a system
such as:

H(Y, t) = γ (1− t)F0 (Y)+ tF1 (Y) = 0 (4.48)

where F0 (Y) and F1 (Y) are the start and the target system, respectively, γ is a randomly selected
complex number and t is a real number called the continuation parameter. The concept consists of
varying t from 0 to 1 while tracking the solutions of the problem from those of F0 (Y) = 0, known, to
those of F1 (Y) = 0, unknown.

As previously discussed, the procedure may be classified as general homotopy continuation or
parameter homotopy continuation depending on how the start system is constructed. The former is
employed when no information is known a priori about the roots of the target system. In this case, a
start system yielding the maximum possible number of solutions must be constructed. This number is
equal to the minimum multi-homogeneous Bezout number, NBez, of the target system (Wampler et al.
[1990]). Since NBez coincides with the number of paths to be tracked, it is of paramount importance
for computational efficiency.

In the case of a robot with 2 cables, one may take advantage of in-plane formulation by ignoring
all variables corresponding to direction j. Accordingly, the attachment points on the base and moving
platform may be expressed as:

[A1]O = [0, 0, 0]T , [A2]O = [a21, 0, a23]
T , [B1]O′ = [b11, 0, 0]T , [B2]O′ = [b21, 0, 0]T ,

[G]O = [x, 0, z]T
(4.49)

Using Dietmaier parameterisation, having x = [x, 0, z]T and altering the components of e1 and e2 to:

e1 = [e11, 0, e13]
T , e2 = [e21, 0, e23]

T (4.50)

the position vectors of points B1, B2 and G in Oxz may be written as functions of 6 variables:

X = [x, z, e11, e13, e21, e23]
T (4.51)

Using this parameterisation, 2 geometric equations from Eq. (3.8) and 3 equilibrium equations from
Eq. 3.9 may be derived. By introducing the 3 equations from Eq. (3.19), a system of 8 polynomials
in 8 variables (X, τ1 and τ2) is obtained, which governs the DGP of a 2-2 CDPR in the x-z plane. As
outlined in Section 2.2.1, when considering general homotopy continuation, a start system must be
constructed with the number of solutions equal to the minimum multi-homogeneous Bezout number.
For the case at hand, using the multi-homogenisation {τ1, τ2}, {e11, e13, e21, e23, x, z} yields a minimum
Bezout number of 96.
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In contrast, in cases of robots with n > 3, the smallest NBez for the governing equations may be
obtained using other parameterisations. In Table 4.9, the smallest Bezout number according to different
parameterisations are listed. For each case, the partition of variables yielding the smallest Bezout
number is as follows:

1. Rodrigues’ parameterisation: {τ1, . . .τn}, {e1, e2, e3}, {x, y, z}

2. Dietmaier’s parameterisation: {τ1, . . .τn}, {e11, e12, e13}, {e21, e22, e23}, {x, y, z}

3. Study’s parameterisation: {τ1, . . .τn}, {x0, x1, x2, x3, y0, y1, y2, y3}

Table 4.9: Minimum multi-homogeneous Bezout number of equations governing DGP of n-n CDPR
according to different parameterisations

n-n CDPR Rodrigues’ parameterisation Dietmaier’s parameterisation Study’s parameterisation

3-3 CDPR 10080 9600 5120

4-4 CDPR 10560 14400 3840

5-5 CDPR 5760 11520 1536

6-6 CDPR 1280 3840 256

Accordingly, since the parametrisation yielding the smallest NBez for the equations governing the
DGP of CDPRs appears to be the one based on Study coordinates, this has been chosen for imple-
mentation of the general continuation routine. It is easy to see that NBez is much larger than the actual
number solutions to the problem, Nsol , which for the same robots is equal to 156, 216, 140 and 40,
respectively. As a consequence, for t → 1, many paths diverge to infinity and only a limited number
converge to finite solutions. Tracking diverging paths causes significant and non-beneficial computa-
tional burden. Furthermore, when Study parameterisation is used, the number of converging paths is
equal to 2Nsol . This is due to the fact that S and−S represent the same platform pose (see Section 3.3).
As a result, if S is a solution to the problem, so is −S. Clearly, repeated solutions must be discarded.

4.2.2.2 Parameter homotopy continuation

Parameter homotopy continuation may be implemented when a start system and a homotopy with the
same number of finite solutions can be determined for any value of t. In this case, the burden of
tracking diverging paths is ignored from the start. Since the coefficients of the equations governing the
DGP are continuous functions of the geometric parameters of the robot, P, a continuous path through
parameter space results in continuous evolution of the coefficients and, generally, continuous solution
paths as well. Accordingly, using a suitable homotopy, only Nsol paths originating at the isolated roots
of the start system must be tracked, while those corresponding to diverging solutions may be ignored.
This is the reason why, when implementing parameter continuation, Dietmaier parameterisation is
preferred over Study parameterisation. In the latter case, in fact, the number of isolated roots of the
equations governing the DGP is 2Nsol (see Section 4.2.2.1), which is also the number of finite paths that
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must be tracked for parameter homotopy to work in a robust manner. This problem does not appear
if Dietmaier parameterisation is used, as in this case the number of isolated roots of the modelling
equations is exactly Nsol .

When Nsol isolated roots are known for a generic P = P0, the solutions for any other P = P1 may
be found by tracking the homotopy:

F(Y, (1− t)P0 + tP1) = 0 (4.52)

with t varying from 0 to 1 or, more robustly, along the curve t = γt ′/[1+(γ−1)t ′], with t ′ ∈ [0, 1] and
γ ∈ C.

4.3 Number of real-valued solutions of the DGP

As outlined previously, the solution strategies introduced for solving the systems of equations govern-
ing the displacement analysis of under-constrained CDPRs provide all solutions to the problems in the
complex field. As a matter of fact, the number of solutions, Nsol , may be complex or real; however,
only the latter are of physical interest. By varying robot parameters, the number of real roots varies.
Since there may be roots that always remain complex in the solution set, the maximum number of real
solutions in each case may be less than Nsol . Determining a tight bound on this number is a challeng-
ing task. In the DGP of under-constrained CDPRs, the upper bound on the number of solutions in the
complex field was 24, 156, 216 and 140 for robots with 2, 3, 4 and 5 cables, respectively. Except in the
case of a 2-2 CDPR, where a robot parameter set was obtained randomly with all 24 solutions being
real, there is usually no knowledge of the maximum number of real solutions that may be obtained for
a particular parameter set. Due to the very high number of solutions, it is almost impossible to find a
robot parameter set with all such solutions being real. It is therefore necessary to use a systematic pro-
cedure for finding parameters with the maximum number of real solutions. Accordingly, the Dietmaier
procedure introduced in Section 2.3 may be implemented to find sets of CDPR parameters for which
the DGP provides the highest number of real configurations. The algorithm begins with a system of
equations with known solutions and proceeds by iteratively changing the parameters in such a way that
two complex conjugate solutions become continually nearer until they transform into a double real root
and, thereafter, a pair of distinct real solutions. This is achieved by decrementing the absolute value of
the imaginary parts of the two complex conjugate solutions in question. The procedure is repeated for
all pairs of complex conjugate roots until the maximum number of real solutions is obtained. To im-
plement the algorithm successfully, the governing equations of the problem must first be re-derived by
choosing an appropriate coordinate system and applying a suitable parameterisation. More explanation
on how the equations are derived is provided in the following sections.
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4.3.1 Governing equations and parameterisation

It has been shown that, for each solution strategy, the equations governing the DGP may become
simpler by adopting a suitable parameterisation and choosing an appropriate coordinate system. For
example, Rodriques’ parameterisation with the least number of variables is suitable for elimination
strategies, while Study’s and Dietmaier parameterisation are the most suitable procedures for numer-
ical methods. Further to parameterisation, the proper definition of geometric parameters has great
importance if the algorithm is to work efficiently. Here, the equations governing the DGP of a robot
are re-derived by choosing appropriate coordinate axes and reference points. The origin of the Carte-
sian frame appended to the moving platform, O′x′y′z′, is chosen to coincide with B1 such that the
position of the moving platform with respect to the base is described by the vector n, identifying the
position of point B1 instead of the centre of mass, G. By this choice, the position vectors of points
B1, B2, . . . , Bn, and G on frame B may be expressed as:

[B1]O′ = [0, 0, 0]T , [B2]O′ = [b21, 0, 0]T , [B3]O′ = [b31, b32, 0]T ,
...

[Bn]O′ = [bn1, bn2, bn3]
T ,

[G]O′ = [g1, g2, g3]
T

(4.53)

As discussed in Section 2.3, the algorithm is mainly based on the definition of two scalar functions, Sh

and Drs, that measure the ‘distance’ between either a pair of complex conjugate solutions or two real
roots. Since the solutions of the DGP, are vectors, any definition of such functions requires appropri-
ate weighting of the vector components. This is difficult to accomplish, however, since the solution
vectors are dimensionally non-homogeneous. The non-homogeneity of solutions is due to the fact
that they comprise variables corresponding to cable tensions. Parameterisation can also cause non-
homogeneity. For example, as discussed in Section 3.2, Rodrigues parameterisation gives solutions of
mixed dimensions. Those of Φ = (e1 : e2 : e3) are dimensionless, while parameters in x corresponding
to the position of the moving platform have dimensions of length. The problem of non-homogeneity
may be circumvented by firstly changing the parameterisation. As discussed in Section 3.4, Dietmaier
parameterisation provides all posture parameters of the moving platform with the same dimensions of
length, which makes it appropriate for defining the scalar functions in the algorithm. Additionally, by
observing that a unique solution for the cable tensions, τ , corresponds to any given equilibrium pose,
X, the cable tension variables may be ignored in the aforementioned definition. Accordingly, distance
functions may be equivalently defined in the platform configuration space, which is dimensionally
homogeneous1.

By implementing Dietmaier parameterisation and scaling the robot such that ρ1 = 1, the position
vector n = B1− A1 has unit magnitude2. Eqs. (3.8), (3.9) and (3.19) yield a system of equations,

1 Indeed, the solutions of the DGP may be computed directly in terms of X by way of Eqs. (3.8) and (3.11).
2 This is somewhat equivalent to establishing a ‘characteristic’ length for the Euclidean group of rigid-body displace-

ments. The operation is generally physically inconsistent, but it is not so in this case, as ρ1 is an assigned constant.
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F(Y, P) = 0, in which Y and P are defined as follows:

P = [ρ2, ρ3, . . .ρn,

a21, a23, a31, a32, a33, . . . , an1, an2, an3,

b21, b31, b32, . . .bn1, bn2, bn3,

g1, g2, . . .gn]
T

(4.54)

Y =
[
XT , τ

T ]T = [n1, n2, n3, e11, e12, e13, e21, e22, e23, τ1, τ2, . . .τn]
T (4.55)

4.3.2 Application of the Dietmaier algorithm

The start system is easily constructed by choosing an arbitrary set, P0, of geometric parameters and
computing the corresponding solution set by homotopy continuation. From Eq. (2.29), the increment
of a complex solution, Y, according to a change in P, may be obtained as:

AdP+BdY = 0 (4.56)

The dimensions of matrices A and B vary depending on the number of cables in each CDPR case. For
example, for a robot with 3 cables, the system of equations F(Y, P) comprises 12 equations for 12
unknown variables, Y, and 13 geometric parameters, P. Accordingly, the size of matrices A and B are
12×13 and 12×12, respectively. From Eq. 2.31, the increment of Y may be computed as:

dY =−B−1AdP (4.57)

Since the last n rows of matrix −B−1A for CDPRs relate the increment of cable tensions to changes in
P, they may be eliminated from the matrix −B−1A. Calling this new matrix J, dX may be computed
as:

dX = JdP (4.58)

and thus:

dXh = JhdP (4.59)

where Jh is matrix J evaluated for Y = Yh.
An alternative procedure consists of choosing relations within Eq. (3.11) and complementing them

with Eqs. (3.8) and (3.19), thus obtaining an alternative system of 9 equations that depend only on the
9 platform coordinates and the geometric parameters; namely:

F′ (X, P) =
[

f ′1 (X, P) , . . . , f ′9 (X, P)
]T

= 0 (4.60)
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By differentiating Eq. (4.60), one obtains an alternative formulation, J′h, of Jh. Indeed, by choos-
ing different triplets of equations within Eq. (3.11), one may obtain several alternative formulations
of Jh. Switching between Jh and any other substitute Jacobian, J′h, may prove useful when Jh is
ill-conditioned, in order to smooth the numerical computation. By the above observation, the minimi-
sation and maximisation procedure formulated in Eq. (2.38) and Eq. (2.39) may be redefined according
to the corresponding pose, Xh, as:

minimize : sgn
[
Im
(
XT

h

)]
Im(Jh)∆P

subject to : −∆Pmax ≤ ∆P≤ ∆Pmax;
(Xr−Xs)

T (Jr−Js)∆P≥ 0, ∀(Xr, Xs) : Drs < Dmin

(4.61)

and:

maximize : (Xu−Xv)
T (Ju−Jv)∆P

subject to : −∆Pmax ≤ ∆P≤ ∆Pmax;
(Xr−Xs)

T (Jr−Js)∆P≥ 0, ∀(Xr, Xs) : Drs < Dmin

(4.62)

At this point, the optimisation procedures may be performed efficiently. It may happen that the
optimisation procedure fails, returning ∆P = 0 for Sh > ε . In this case, the algorithm attempts to ad-
vance by improving the accuracy with which the solution path is tracked (achieved by decreasing ∆Pmax

or switching between different formulations of the DGP equations) or by relaxing the constraints in
Eq. (2.38) (i.e. decreasing Dmin to allowing real solutions to become closer). By finding an incre-
ment, ∆P, the set of geometric parameters is updated and the solutions of the modified F(Y, P) are
then computed by help of an iterative Newton-Raphson routine. If the Newton-Raphson routine does
not converge or converges twice to the same solution (likely to occur when the paths corresponding to
two distinct solutions pass close to each other), a different start guess is attempted (i.e. Xh) or a dif-
ferent formulation of the DGP equations is utilised. If the Newton-Raphson routine continues to fail,
the solution set is updated by a more robust, but slower, solver; namely, a parameter-homotopy-based
routine implemented within Bertini Bates et al.. At any iteration step, the algorithm works on the
pair of complex conjugate solutions whose mutual distance is the shortest. The general structure of the
algorithm is presented in Tab. 4.3.2.

4.3.2.1 Auxiliary parameters of the algorithm

The effectiveness and efficiency of Dietmaier’s algorithm depends on the proper adjustment of a num-
ber of auxiliary parameters. A brief discussion concerning the most important ones is presented in the
following section.

∆Pmax : The smaller ∆Pmax, the slower the advancement of the algorithm, but the better the lineari-
sation approximation in procedures (2.38) and (2.39) and, thus, the more accurate the obtained results.
A reasonable strategy consists of choosing a not-too-small increment at the beginning of each iteration
(e.g. ∆Pmax = 0.01). Subsequently, if the optimisation step is successful and the imposed constraints
are respected after P and X are updated, the value of ∆Pmax is considered acceptable; otherwise, it is
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Algorithm 1 Summary of Dietmaier algorithm
Require: A guess for P0 and the corresponding solutions computed by homotopy continuation

for All complex solutions do
Choose the complex solution with the shortest mutual distance, Xi
while Imaginary part of Xi 6= 0 do

Compute ∆P according to minimisation 2.38
if minimisation procedure fails then

Try the optimisation procedure by relaxing the constraints, improving the accuracy or switch-
ing between different formulations according to Eq. 4.60
if Optimisation continues to fail then

Go to another pair of complex solutions
end if

else
Update the geometric parameters and compute the new solutions by the Newton-Raphson
routine
if Newton-Raphson routine fails then

Use homotopy continuation to compute all solutions
end if

end if
if Two real solutions become too close to each other then

Compute ∆P according to the maximisation 2.39 and compute solutions according to the
updated P

end if
end while

end for
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decreased. For instance, when the minimisation (2.38) is attempted, ∆Pmax is decreased when either
∆P = 0 (i.e. the minimisation algorithm fails) or a nonzero ∆P is found but, after P and X are updated,
Dh is verified to not decrease or the number of real solutions is lower.

Dmin : The smaller this parameter, the weaker the imposed constraints on the optimisation routines
and, thus, the likelier the routines are to be successful. When Dmin is small, however, real solutions
are allowed to become closer together and the risk of two becoming a complex conjugate is higher.
Accordingly, at the beginning of each iteration, Dmin is set equal to a given fraction (e.g. 1/6) of the
average distance between all real solutions. Subsequently, if optimisation fails, Dmin is decreased (i.e.
constraints are relaxed); whereas, if a pair of real solutions switches back to the complex domain, Dmin

is increased.
ε : This parameter should be chosen, in theory, small enough to make, from a numerical point

of view, both
(
Xh, Xh

)
∈ C9×C9 and (Xu, Xv) ∈ R9×R9 satisfy F(Y, P) = 0. Setting ε too small,

however, would significantly slow the process. As a rule of thumb, experiments have shown that ε is
not required to be smaller than e−4.

4.3.2.2 Case study

The program has been repeatedly executed with different start systems and parameter-tuning configura-
tions for CDPRs with 3, 4 and 5 cables. Accordingly, the maximum number of real solutions obtained
for each case is 54, 98 and 74, respectively. An example of the corresponding parameters is as follows:

1. Example of 3-3 CDPR parameters with maximum number of 54 real equilibrium configurations:
a1 = [0, 0, 0],a2 = [0.89744, 0, −0.72651],a3 = [0.65671, 0.74636, −0.59091], b1 = [1.55665, 0,
0], b2 = [0.69695, 0.78429, 0], b3 = [−0.46441, −1.38980, −1.19948], (ρ1, ρ2, ρ3)= (1, 1.0805,
2.6025) and Q = 10.

2. Example of 4-4 CDPR parameters with maximum number of 98 real equilibrium configurations:
a1 = [5.521454, 7.836054, −1.009788], a2 = [−5.366081, 8.252356, 1.959491], a3 = [−10.315057,
1.612391, 0.946641], a4 = [5.392802, −7.491653, 0.579554], b1 = [2.182515, 3.334434, 1.997996],
b2 = [−2.214432, 3.330068, 1.013029], b3 = [−3.659557, 0.265737, 1.111276], b4 = [1.404915,
−3.195786, 1.219710], (ρ1, ρ2, ρ3, ρ4)= (14.549082, 14.549329, 15.763856, 10.898894) and Q=

10.

3. Example of 5-5 CDPR parameters with maximum number of 74 real equilibrium configurations:
a1 = [8.762837, −1.064001, −0.715711], a2 = [6.732934, 8.223691, 0.187221], a3 = [−5.094292,
7.798299, 1.258330], a4 = [−11.189309, −0.138832, −1.614663], a5 = [4.870417, −8.101810,
0.176616], b1 = [3.889210, 0.116354, 1.549903], b2 = [1.262183, 3.258968, 1.975178], b3 =

[−1.533217, 2.692867, 1.915029], b4 = [−3.991803, 0.020197, 1.186929], b5 = [1.257342, −
3.138215, 1.992397], (ρ1, ρ2, ρ3, ρ4, ρ5)= (14.772834, 12.755196, 13.153812, 13.969011, 15.712028)
and Q = 10.

Although the Dietmaier algorithm works according to the new coordinate system presented in Sec-
tion 4.3.1, all parameters have been provided in the old coordinate system discussed in Section 3.1
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for consistency throughout the thesis. Tables of real solutions for the DGPs relating to each set of
parameters are provided in Appendix-A.
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Chapter 5

DGP−Solver

Thus far, the equations governing DGP and IGP of CDPRs have been studied and a number of dif-
ferent solving algorithms have been presented for computation of solutions in the complex field for
cases of robots with n ≤ 6 cables. Using an elimination strategy, a proof of the number of solutions
has been provided and the univariate equations corresponding to each robot case have been computed.
Subsequently, using numerical algorithms, complete solution sets have been computed efficiently. Ob-
viously, all computed solutions are not necessarily solutions of the physical problem. In fact, most of
the solutions are complex and do not have any physical meaning at all. For instance, as discussed in
Section 4.3, up to now it has not been possible to find a set of parameters with all real solutions for the
DGP, except when considering robots with either 2 or 6 cables. Thus, for a given set of parameters,
the complex solutions must be discarded and only the real solutions interpreted as having physical
meaning. On the other hand, when cable lengths are assigned as the input, nothing ensures a priori

that, when the platform reaches an equilibrium pose, all cables are active. Indeed, the final pose may
be either a DGP solution for the current n− n CDPR or a valid pose for any m−m CDPR that may
be derived from the initial n− n robot with m < n, in which n−m cables are slack. Finally, even if
all of the aforementioned matters are considered, an investigation into the stability of the computed
configuration must take place. By taking advantage of the procedures developed in the present study,
a computer program, DGP−Solver (Abbasnejad and Carricato), has been composed that solves the
DGP for a generic n-n CDPR, with n ≤ 6. DGP−Solver receives the robot geometry, cable lengths
and external load as inputs, computing all possible equilibrium configurations of the robot that are
compatible with the given constraints, under the assumption that cables are inextensible and massless.
Two noteworthy features of the software are that the computed configurations include those with slack
cables and the program determines whether equilibrium configurations are stable or not.

5.1 Feasible equilibrium configurations

The overall solution set includes all possible solutions to the problem in the complex field. Only the
real solutions for which all cable tensions are nonnegative are, however, of physical interest, since
cables exert unilateral constraints. Among these, only those in which static equilibrium is stable are
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A1
A2

A3

B1 B2 B3

Figure 5.1: Schematic of a robot with one slack cable.

actually feasible. The 0-dimensional variety of the ideal generated by Eqs. (3.8) and (3.9) yields all
possible solutions of the DGP when n cables are in tension. As previously mentioned, however, the
final pose of a robot with n assigned cable lengths may be either a DGP solution for the current n−n

CDPR or a valid pose for any m−m CDPR that may be derived from the initial n−n robot, with m < n

in which n−m cables are slack. For example, as shown in the schematic in Fig. 5.1, when a robot with
3 cables rests in equilibrium pose, it may happen that a cable becomes slack and the end-effector is
supported by just two cables. In the same way, one may suppose that instead of cable 3 being slack,
cables 1 or 2, or both, may instead become slack. In general, the number of configurations in which
just m < n cables are in tension for a robot with n cables may be calculated as

(n
m

)
combinations of m

out of n.
Accordingly, the overall solution set of a robot with n cables must be obtained by solving the DGP

for all possible combinations. The number of combinations for each case is provided in Table 5.1. As
an example, for a robot with 5 cables, 31 DGPs must be solved; namely, 1 DGP with 5 active cables, 5
DGPs with 4 active cables, 10 DGPs with 3 active cables, 10 DGPs with 2 active cables and 5 DGPs
with 1 active cable.

Table 5.1: Number of different combinations of DGP that must be considered for an n-n CDPR
n-n CDPR 1-1 DGP 2-2 DGP 3-3 DGP 4-4 DGP 5-5 DGP 6-6 DGP

1-1 CDPR 1 - - - - -

2-2 CDPR 2 1 - - - -

3-3 CDPR 3 3 1 - - -

4-4 CDPR 4 6 4 1 - -

5-5 CDPR 5 10 10 5 1 -

6-6 CDPR 6 15 20 15 6 1

It has been demonstrated that the overall solution set of a robot with n cables is obtained by solving
the DGP for all possible combinations. However, all real computed solutions for all possible combi-
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Figure 5.2: Stability of a pendulum

nations may not be physically acceptable. For example, consider the case of the robot with 3 cables
shown in Fig. 5.1, where only two cables are active. Resolution of the DGP for a robot with 2 cables,
considering cable length constraints and equilibrium, has already been discussed; however, length con-
straints on the third cable must still be considered since a solution in which ||A3−B3||> ρ3 is not
acceptable. Accordingly, in general, the overall solution set must be obtained by solving the DGP for
all possible constraint sets {||A j−B j||= ρ j, j ∈W}, withW ⊆{1, 2, . . . , n} and card(W)≤ n, and by
retaining, for each solution set, only the solutions for which ||Ak−Bk||≤ ρk, with k 6∈ W . When m = 6
and all cables are in tension, the relations in Eq. (3.8) are sufficient to determine the platform pose
and the DGP is equivalent to the displacement analysis of the generalised Gough-Stewart manipulator
(Merlet [2006]). When a single cable is in tension (i.e. m = 1), say the hth one, points Ah, Bh and G

must be aligned and ||Ak−Bk|| must be smaller than ρk for any k 6= h. In this case, the orientation of
the platform around the line AhBh is undetermined.

After all admissible configurations have been found, stability must be assessed. A very well-known
example is the two equilibrium positions of a simple pendulum, as shown in Fig. 5.2. As is known,
a pendulum can easily deviate from an unstable equilibrium position with a very small perturbation.
This is a simple example, which can be extended to the equilibrium position of an under-constrained
CDPR. Let an equilibrium configuration, (X, ρ1 . . .ρm), be considered, with m being the number of
cables contributing to support of the platform. By a convenient reordering of indexes, the first m may
be assumed to comprise the taut cables, with m ≤ n. Since the platform preserves 6−m DOFs, it
may displace under the effect of a change in the external force acting upon it, while the cable lengths
remain unvaried. For the sake of simplicity, it is assumed that the number of cables in tension does
not change due to this perturbation, which is reasonable but not necessarily true. Therefore, as noted
by Carricato and Merlet [2013], equilibrium solutions in which the pose does not change under the
effect of a change in the external force may be accepted as feasible solutions. In particular, while the
constraints in Eq. (3.8) hold for i = 1 . . .m, G may generally move within a closed region in R3, which
in some cases is a surface or curve. If g is the frontier of this region, the equilibrium is stable any
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time the potential energy, U , associated with the external wrench, −Qk · x, is at a local minimum on
g. In such a condition, when the platform displaces under the effect of a perturbation, the original
configuration is restored if the perturbation ceases. Mathematically, the problem may be defined as a
constrained optimisation problem:

Minimise: U =−Qk ·G(X)

Subject to:

qi := si · si−ρ
2
i = 0, i = 1 . . .m

(5.1)

Finding the minima of a constrained function is a classic issue in optimisation theory. The problem
may be solved by introducing the Lagrange function (Rao [2009]), L, which is defined by Lagrange
multipliers λ j, j = 1 . . .n, for each constraint, qi, as:

L =−Qk ·G−
m

∑
i=1

λiρi (||si||−ρi) (5.2)

The necessary condition for the extremum of L can be obtained by setting its variation equal to zero:

δL =−Qk ·δG−
m

∑
i=1

λisi ·δBi = 0 (5.3)

If δx and δΦ are, respectively, the virtual displacement of G and the virtual rotation of the platform,
then:

δG = δx, δBi = δ si = δx+δΦ× ri (5.4)

and thus:

δL =−Qk ·δx+
m

∑
i=1

λisi ·δ si = f ·δx+m ·Φ = 0 (5.5)

It can be inferred that, by setting f and m equal to zero, the same equations in Eq. 3.9 may be obtained
from Eq. 5.5. It can further be shown that the physical interpretation of the Lagrange multipliers is the
following:

λi =
τi

ρi
(5.6)

The sufficient condition for the minimum of L may be assessed by evaluating the definiteness of
the reduced Hessian Hr of L; that is, the Hessian of L taken with respect to the configuration variables,
further restricted to the tangent space of the constraints C in Eq. 3.8 (Luenberger and Ye [2008]). The
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second-order variation of δL is given by:

δ
2L =−Qk ·δ 2x+

m

∑
i=1

λiδ si ·δ si +
m

∑
i=1

λisi ·δ 2si (5.7)

with:

δ
2si = δ

2x+δ
2
Φ× ri +δΦ× (δΦ× ri) (5.8)

Substituting Eq. 5.8 in Eq. 5.7 and enforcing f = m = 0 yields:

δ
2L =

m

∑
i=1

λi[δ si ·δ si + si ·δΦ× (δΦ× ri)] (5.9)

and thus:

δ
2L =

m

∑
i=1

λi[δxT
δx−2δxT r̃iδΦ+δΦ

T r̃i(x̃− ãi)δΦ] (5.10)

where ñ denotes, for a generic vector n the scew-symmetric matrix expressing the operator n×. δ 2L

is a bilinear form in the twist space of the platform. If the platform virtual displacement is expressed,
in ray coordinates, as δ t = [δx;δΦ] and I3 denotes the 3× 3 identity matrix, the symmetric matrix
associated with this form is:

H =
m

∑
i=1

λi

[
I3 −r̃i

r̃i
1
2 [̃ri(x̃− ãi)+(x̃− ãi)r̃i]

]
(5.11)

which represents the pseudo-Hessian of L (H is not a true and proper Hessian, since δΦ is not generally
integrable). The tangent space of C is obtained by setting the equation

δ (||si||−ρi) = δ ||si||=
si ·δ si

ρi
=

si ·δx+ ri× si ·δΦ

ρi
(5.12)

equal to zero for all values of i. In matrix notation, this amounts to:

Jδ t =


sT

1 (r1× s1)
T

...
...

sT
m (rm× sm)

T


[

δx
δΦ

]
= 0 (5.13)

where the ith row of J coincides with−Li, expressed in axis coordinates and assuming G is the moment
pole. J is the pseudo-Jacobian of the constraint equations. If N is any 6×(6−m) matrix whose columns
generate the null space of J, the reduced Hessian of C is the following (6−m)× (6−m) matrix:

Hr = NT HN (5.14)
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A sufficient condition for stable equilibrium is Hr being positive definite.

5.1.1 The software DGP−Solver

DGP−Solver is a software based on the procedures outlined in Sections 4.2.2.1, 4.2.2.2 and 5.1. It
solves the DGP for a generic n-n CDPR, with n ≤ 6 and computes all possible stable configurations
that are compatible with the given constraints, including those with slack cables.

5.1.1.1 Input file

The program works according to a text file ‘RobotConfig.txt’, which must be filled in before executing
‘DGP-Solver.exe’. The file is comprised of two parts. The first part specifies the robot geometric pa-
rameters and sets a few environment variables that determine the mode in which the program is to run.
These parameters consist of the coordinates of the cable exit points on the base, the coordinates of the
cable anchor points on the moving platform, the coordinates of the load application point, the magni-
tude of the external load and the cable lengths. The program interprets the real numbers specified after
the string ‘Coordinates Points A:’ as the coordinates of the cable exit points on the base. Coordinates
may be specified in an arbitrary fixed Cartesian frame. While the x, y and z coordinates of a single
point are separated by commas, distinct points must be separated by a semicolon. The program auto-
matically computes the number of cables in the robot. The real numbers after the string ‘Coordinates
Points B:’ define the coordinates of the anchor points on the moving platform in an arbitrarily chosen
Cartesian frame on the platform. The syntax is the same as that used for the base exit points. The real
numbers after the string ‘Coordinates Point G:’ define the coordinates of the application point of the
load (e.g. the centre of mass) on the platform-attached frame. The real numbers after the string ‘Load:’
define the 3 components of the load vector in the fixed Cartesian frame and, finally, cable lengths are
specified after the string ‘Cable Lengths:’, separated by commas. After the program is launched, all
possible DGPs relating to different combinations of active cables are composed according to the pro-
cedure in Section 5.1. Equilibrium configurations may exist in which the platform is supported by m

cables, with m < n and n−m cables being slack. By default, the program computes all equilibrium
configurations with any possible number, m, of active cables; however, the user may decide to solve
the DGP with only a selected number of cables, which is specified after the string ‘Cable Groups:’.
In a 5-5 CDPR, for example, entering ‘Cable Groups:’ equal to 2, 3 means the program is supposed
to consider the cases in which 2 or 3 cables are active, regardless of the other cases where 1, 4 or 5
cables could be active. After composing the DGP for all the combinations of robot cables, the program
begins to solve each case one by one. The numerical procedure, homotopy continuation as discussed in
Sections 4.2.2.1 and 4.2.2.2, is implemented to compute all solutions to each problem. In recent years,
several software packages have been developed to ease the implementation of homotopy-continuation
algorithms. DGP−Solver uses Bertini (Bates et al.) as the computational engine. DGP−Solver

uses both parameter and general continuation routines. The former provides the fastest computation,
though some (normally complex) solutions may be missed. When this happens, DGP−Solver uses
general continuation to correct the outcome. As the numerical computations may be time consuming,
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the program provides the possibility of parallel computation if the available hardware has a multicore
processor. The integer following the string ‘NCPUs:’ specifies the number of available CPUs. As
explained previously, there are two alternatives to performing computation by homotopy continuation:
general homotopy continuation (GHC) or coefficient parameter homotopy continuation (PHC). The
integer following the string ‘Method Type:’ is a flag giving the user the possibility to choose between
these two types of continuation strategies. 0 instructs DGP−Solver to use PHC only. This option
provides for the fastest computation, but some solutions (normally complex) may be missed. If the flag
is specified as 1, DGP−Solver uses GHC to correct the results obtained by PHC when some solutions
are missed. If the flag is specified as 2, DGP−Solver uses GHC in all cases, though computation may
be very slow. The integer following the string ‘NSolMiss:’ is effective only when ‘Method-Type’ is
set to 1. It may happen that PHC converges to a number of solutions that is smaller than that expected
(the number of solutions with m active cables, in the complex field, is known from the previous chap-
ter). If ‘Method-Type’ is set to 1, any time PHC misses a number of solutions equal to ‘NSolMiss’,
DGP−Solver repeats computation by using GHC. This gives the user a higher chance of obtaining all
solutions to the problem.

The second part of the input file contains optional settings that are passed on to Bertini. These
optional settings are those that may be ordinarily specified in a standard Bertini input file, in the
configuration part between the strings ‘CONFIG’ and ‘END’. For details on adjusting Bertini set-
tings, the user may refer to the Bertini manual (Bates et al.). It is worth noting that the two parts
of RobotConfig.txt must be separated by the string ‘CONFIG’, which is necessary even if no Bertini

settings are specified. In the latter case, Bertini default values are used.

5.1.1.2 Output files

Given an n−n CDPR, Bertini constructs all m−m CDPRs that may be derived from the initial robot,
with m ≤ n. For any one of these, identified by the cable subset W ⊆ {1, 2, . . . , n}, Bertini solves
a DGP, thus obtaining a number of solutions in the complex field. At this point, real solutions are
extracted and, for any k 6∈ W , the program verifies whether ||Ak−Bk||≤ ρk. Real solutions that meet
the latter requirement are denoted as admissible. Clearly, among these, only those with nonnegative
tensions in all active cables have physical interest. DGP−Solver finally verifies whether equilibrium
configurations are stable or not. Stable, admissible configurations with nonnegative tension in all active
cables are called feasible.

After computation is completed, the user may access the computation files produced by Bertini

in the folder BertiniOutput (for more details on these files, the user is referred to Bates et al.). The
main results are grouped in a number of text files contained in the folder Results. For each group of
active cables:

• RealSols provides all real solutions;

• AdmissibleSols provides all admissible solutions;

• PositiveTensionSols provides all admissible solutions with nonnegative tensions in the cables;
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• FeasibleSols provides all feasible solutions;

• Summary provides a prospect with the number of real solutions, admissible solutions, admissible
solutions with nonnegative cable tensions and feasible solutions.

Each group of active cables is identified by a sequence of digits, where the first digit is the number,
m, of active cables and the other digits are the indexes identifying the cables. For instance, the sequence
3−245 identifies a group of 3 cables composed of the 2nd, 4th and 5th cables.

A solution with m active cables and m > 1 is given as:

S x y z R11 R12 R13 R21 R22 R23 R31 R32 R33 τ1 . . . τm (5.15)

where S ∈ {−3, − 2, − 1, 0}, x, y, z are the coordinates of the origin of the mobile frame in the fixed
frame, Rhk is the element in the hth row and kth column of the rotation matrix between the mobile and
fixed frames and τi is the tensile force in the ith cable, with i = 1, . . . , m. S is a flag with the following
meaning:

• if S =−3: the solution is complex;

• if S =−2: the solution is real but not admissible;

• if S =−1: the solution is admissible;

• if S = 0: the solution is admissible and all cables have nonnegative tensions;

• if S = 1: the solution is feasible.

When m = 1, the solution is provided as:

S x y z (5.16)

where S has the same meaning as before, while x, y, z are the coordinates of point G in the fixed frame.
The file only lists the equilibrium configuration for which A, B and G are arranged in this order in the
direction of the load, as this is the only feasible configuration. The position of the origin of the mobile
frame and the rotation matrix are not provided, as in this case, the platform is free to rotate about the
line ABG.

The results provided by DGP−Solver for an examplifying 2-cable CDPR are given in Table 5.2.
These results have been extracted from samples that will be discussed in Section 5.2. Due to space
limitations, only real solutions with nonnegative tension in all cables are reported. The platform orien-
tation is specified by Rodrigues parameters. As shown in Fig. 5.3, the robot has 6 configurations with
all two cables in tension, among which only the first configuration is stable. Due to the simplicity of
2-cable robot configurations, the fact that only the first configuration is stable may be inferred simply
from the figures.

In the same manner, Tables 5.3 and 5.4 show the results provided by DGP−Solver for two exem-
plifying CDPRs with 4 and 5 cables, respectively. The 4-cable robot in Table 5.3 has 2 configurations
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Table 5.2: DGP of a CDPR with 2 cables: real solutions with nonnegative tension in all cables

Geometric dimensions and load: a1 = [3.823126, 8.816128, 1.541947], a2 = [−6.213115, 7.171288,
0.506044], b1 = [1.962229, 3.138447, 1.186822], b2 = [−2.104132, 2.813451, 1.176657], (ρ1, ρ2) =
(10.293260, 11.095270), Q = 10.

Conf. (x, y, z) (e0, e1, e2, e3) (τ1, τ2) Hr

1 −1.6275, 7.9228, 14.4645 1, −1.4622, −0.1857, 0.0264 4.66, 5.77, >

2 3.3446, 8.7377, 7.9420 1, 0.7157, −0.2150, 0.2468 9.49, 0.63, <>

3 −5.9784, 7.2098, 7.8948 1, 0.6378, 0.3441, −0.1366 0.28, 9.79, <>

4 −1.0972, 8.0097, 12.1912 1, −3.2387, 28.1621, −19.2119 6.44, 6.98, <>

5 −1.0388, 8.0193, 8.0716 1, 0.6787, 0.0506, 0.0646 5.22, 5.21, <>

6 −1.0159, 8.0231, 5.7940 1, 1.6887, −14.6618, −21.7249 6.50, 6.92, <>

Table 5.3: DGP of a CDPR with 4 cables: real solutions with nonnegative tension in all cables

Geometric dimensions and load: a1 = [10.830397, − 0.462135, − 0.418191], a2 = [3.074004, 10.213429,
1.739355], a3 = [−8.791518, − 1.292838, 0.296207], a4 = [4.717787, − 7.113540, − 0.448884], b1 =
[3.760649, 0.232910, 1.993820], b2 = [1.637005, 2.644740, 1.452987], b3 = [−3.496261, − 0.119685,
1.373177], b4 = [1.313785, − 3.240876, 1.114063], (ρ1, ρ2, ρ3, ρ4) = (14.900603, 15.459668, 11.310118,
13.058653), Q = 10.

Conf. (x, y, z) (e0, e1, e2, e3) (τ1, τ2, τ3, τ4) Hr

1 −0.1362, −0.9264, 9.7358 1, 0.0190, −0.0905, −0.0005 5.25, 0, 6.11, 0, <>

2 −1.4177, −4.4700, 8.9256 1, −0.5549, 0.1478, 0.0364 0, 0, 4.87, 5.91, <>

3 2.1927, −5.0136, 8.9574 1, −0.9246, −0.9035, −0.4648 1.33, 0, 4.65, 7.59, <>

4 0.0743, −1.6315, 9.7820 1, −0.1070, −0.1094, −0.0116 4.43, 0, 5.65, 1.22, >

5 2.5358, −6.0922, 8.6514 1, −0.7649, −0.2370, −0.1887 0, 0.10, 2.38, 8.66, <>

6 −0.9995, 2.5837, 11.2117 1, 1.0384, 0.0012, 0.1941 0.37, 4.80, 4.41, 2.87, >

with only two cables in tension, both unstable, 3 configurations with 3 cables in tension and only one
configuration in which all 4 cables are in tension. As seen in Fig 5.4, it is almost impossible to judge
the stability of the 4-cable robot configuration simply by looking at the schematic models. This fact
shows the necessity of an efficient mathematic procedure to perform stability analysis. The 5-cable
robot in Table 5.4 has 9 unstable configurations with two, three or four cables in tension and 4 stable
configurations, of which half have four cables in tension and the other half have five cables in tension.
When the DGP admits multiple feasible solutions, the robot may switch (due to inertial forces or ex-
ternal disturbances) across portions of the configuration space characterised by different numbers of
taut cables, thus bringing the end-effector onto unpredicted trajectories. Accordingly, the computa-
tion of the complete set of equilibrium configurations is essential for robust trajectory planning. This
motivates and gives relevance to the algorithms presented in this thesis.
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Figure 5.3: Schematic configurations of DGP solutions for 2-cable robot reported in Table 5.2

5.2 Case study

A robot with n cables is designed to control n DOFs of the platform; however, depending on the
configuration and the load, only m cables may be active, with m < n. Slack cables contribute to neither
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Figure 5.4: Schematic configurations of DGP solutions for robot with 4 cables reported in Table 5.3

controlling the platform pose nor sustaining the load and are thus instantaneously ineffectual. This
amounts to a loss of robot capacity. Investigating the most suitable architectures and geometries that
guarantee the optimal exploitation of the available actuators is necessary. A stochastic investigation is
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Table 5.4: DGP of a CDPR with 5 cables: real solutions with nonnegative tension in all cables

Geometric dimensions and load: a1 = [8.762837, − 1.064001, − 0.715711], a2 = [6.732934, 8.223691, 0.187221], a3 =
[−5.094292, 7.798299, 1.258330], a4 = [−11.189309, − 0.138832, − 1.614663], a5 = [4.870417, − 8.101810, 0.176616],
b1 = [3.889210, 0.116354, 1.549903], b2 = [1.262183, 3.258968, 1.975178], b3 = [−1.533217, 2.692867, 1.915029], b4 =
[−3.991803, 0.020197, 1.186929], b5 = [1.257342, − 3.138215, 1.992397], (ρ1, ρ2, ρ3, ρ4, ρ5) = (14.772834, 12.755196,
13.153812, 13.969011, 15.712028), Q = 10.

Conf. (x, y, z) (e0, e1, e2, e3) (τ1, τ2, τ3, τ4, τ5) Hr

1 (−1.8836, −0.5703, 3.6644) (1, 1.9122, 103.4291, −2.6272) (20.26, 0, 0, 20.86, 0) <>

2 (−0.9683, 4.6303, 8.1748) (1, 0.4483, 0.1963, 0.0244) (0, 6.19, 0, 5.44, 0) <>

3 (−0.5205, 0.5002, 9.6903) (1, −22.1474, −12.1484, −1.3686) (0, 0, 10.24, 0, 10.34) <>

4 (−2.2633, 3.8189, 4.8682) (1, 14.9241, −32.9020, 16.6404) (0.47, 21.60, 0, 22.88, 0) <>

5 (−2.1884, 2.2735, 4.9241) (1, 4131.8466, −12513.9896, 3408.9760) (4.72, 13.77, 0, 18.94, 0) <>

6 (1.5688, −3.0697, 10.5834) (1, −0.5711, −0.3564, −0.1105) (1.10, 1.85, 0, 3.66, 5.40) <>

7 (1.3853, −2.5305, 10.5848) (1, −0.4701, −0.2959, −0.0865) (1.22, 2.02, 0, 3.72, 4.87) >

8 (−1.7403, 0.4235, 10.0329) (1, 24.6125, 21.5424, 3.9457) (1.44, 0, 6.64, 2.85, 7.07) <>

9 (−2.5658, 2.0842, 10.1100) (1, 2.8702, 2.2467, 0.5195) (0, 1.62, 5.36, 3.23, 6.15) <>

10 (1.5754, −2.4698, 10.6232) (1, −1.6897, −0.3362, −0.1492) (0, 3.75, 0.50, 3.17, 6.71) >

11 (1.5476, −3.5523, 10.5849) (1, −1.0357, −0.4345, −0.1603) (0, 2.02, 1.14, 2.90, 7.12) <>

12 (−2.6029, 1.9238, 10.1101) (1, 3.0172, 2.4254, 0.5732) (0.02, 1.54, 5.32, 3.34, 6.24) >

13 (1.5460, −3.4460, 10.6187) (1, −0.9363, −0.6196, −0.1883) (0.60, 1.70, 0.77, 3.52, 6.53) >

Figure 5.5: Schematic of the robot samples used for the stochastic investigation.

reported hereafter providing preliminary ground in this respect.
Two scenarios are envisaged. In one case, the robot geometry is established and the platform

configuration and load orientation are changed. In the other, the load is assigned and the robot geometry
and configuration are varied. Since the two scenarios are equivalent, the latter will be described here
within. For the sake of simplicity, the anchor points on the base and the platform are chosen inside
cubes having centre-points located on the vertices of regular hexagons (Fig. 5.5). The circumradii of
the base and platform hexagons are 10 and 3.5, respectively; whereas the side lengths of the base and
platform cubes are 4 and 1, respectively. G is located on the line perpendicular to the platform hexagon
that passes through its circumcircle, at a distance of 1.5 from the latter. Cable lengths are varied over the
interval [10, 16]. 500 robot configurations are randomly chosen within the above limits, thus generating
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5. DGP−Solver

500 samples of 6-cable robots. For each sample, DGP−Solver computes the overall solution set, S.
The latter comprises all solutions of the DGP such that {‖ si ‖≤ ρi, i = 1 . . .6}, where the equality
holds for taut cables and the inequality for slack cables. By ignoring the constraint ‖ si ‖≤ ρi for 6− k

cables, 500
(6

k

)
additional samples of k-cable robots with k = 2 . . .5 may be easily extracted from the

DGP−Solver computation1.
Accordingly, a large sample of robots with m cables, m < n, may be derived from the same simula-

tions. For example, ifW ⊆ {1, 2, 3, 4, 5}, enforcing ‖ A6−B6 ‖≤ ρ6 provides an admissible configu-
ration of the 6-cable robot with only 5 cables in tension; whereas neglecting it provides an admissible
configuration of the 5-cable robot with all cables in tension. In particular, among the 500 sample 6-
cable CDPR geometries, 7500 robots with 2 cables, 10000 robots with 3 cables, 7500 robots with 4
cables and 3000 robots with 5 cables are derived. The results of the simulation are summarised in
Table 5.5. The nth column, with n = 2 . . .6, reports the results obtained for the samples suspended by
n cables and, in particular, the number of samples considered (row 1), the number of feasible config-
urations globally obtained (row 2) and the number of feasible configurations with m cables in tension,
m≤ n (row 2+m).

The data emerging from the table appears to show that, when the number of cables increases, the
probability of finding feasible configurations with all cables in tension decreases. For the robots with
2 cables, almost 90% of equilibrium configurations have both cables as active, whereas for the robots
with 3 cables, all cables are active in roughly 80% of cases. This trend continues as n increases, until,
for the samples with 6 cables, almost no configurations are present with all 6 cables being active.
Columns 4 through 6 show that, in most cases, the robots with 4 cables have only 3 taut cables,
whereas the robots with 5 and 6 cables have only 3 or 4 cables in tension. It is worth noting that, while
equilibrium configurations with slack cables may only occur at the frontier of the geometric workspace2

for robots with 2 or 3 cables, this is not the case when n ≥ 4, where equilibrium configurations with
slack cables may occur in the middle of the workspace.

Another interesting issue concerns the probability of a CDPR admitting multiple feasible configu-
rations. When this occurs, the stable equilibrium pose of the platform may change under the influence
of external perturbations, which is not favourable in practice. In this context, Table 5.6 investigates the
number of multiple solutions encountered when solving the DGP of the samples in Table 5.5. Rows
2, 3 and 4 report the percentages of samples admitting 1, 2 or more feasible solutions, respectively. It
is evident that, when the number of cables increases, the probability of having a single solution of the
DGP decreases. It is roughly 83% for the 3-cable robots, 53% for the 4-cable samples and a little less
than 25% for the 5- and the 6-cable robots.

From the data reported in Tables 5.5 and 5.6, one could argue that, as long as only 3 cables are
employed, all of them may reasonably be expected to support the platform with a single stable equi-
librium pose being unambiguously determined in most circumstances. When 4, 5 or 6 cables are used,

1 As explained in Section 5.1, DGP−Solver provides the DGP solutions for all possible constraint sets CW = {‖
s j ‖= ρ j, τ j > 0, j ∈W}, withW ⊆ {1, 2, 3, 4, 5, 6}, m = card(W) ≤ 6 and {‖ sk ‖≤ ρk, ∀k /∈W}. By ignoring the latter
requirement, the DGP solutions for CW provide the equilibrium configurations of a robot including only m cables.

2 When a single cable is taut, the external wrench, QLe, must be aligned with it. When n = 3 and only two cables are
taut, the latter and QLe must be coplanar (Carricato [2013b]; Carricato and Merlet [2013]).
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5. DGP−Solver

full control of the robot becomes challenging, as it is difficult to take advantage of all available cables.
Controlling the platform pose in a deterministic way in this case is therefore not simple.

Table 5.5: Stochastic analysis of random samples of robot geometries with 2, 3, 4, 5 and 6 cables.

n-n CDPRs 2-2 CDPRs 3-3 CDPRs 4-4 CDPRs 5-5 CDPRs 6-6 CDPRs

No. of samples 7500 10000 7500 3000 500

No. of feasible solutions 7500 12048 12006 5912 1114

No. of feasible solutions
with 1 active cable

785(10.46%) 70(0.58%) 0 0 0

No. of feasible solutions
with 2 active cables

6715(89.53%) 2424(20.11%) 109(0.90%) 3(0.05%) 0

No. of feasible solutions
with 3 active cables

− 9554(79.29%) 6987(58.19%) 2362(39.95%) 380(34.11%)

No. of feasible solutions
with 4 active cables

− − 4910(40.89%) 2626(44.41%) 420(37.70%)

No. of feasible solutions
with 5 active cables

− − − 921(15.57%) 312(28.00%)

No. of feasible solutions
with 6 active cables

− − − − 2(0.17%)

Table 5.6: Distribution of multiple feasible configurations as emerging from stochastic analysis.

parbox[t]1.4inn-n CDPRs 2-2 CDPRs 3-3 CDPRs 4-4 CDPRs 5-5 CDPRs 6-6 CDPRs

No. of samples 7500 10000 7500 4000 500

No. of cases with 1 feasi-
ble solutions

7500(100%) 8320(83.20%) 3941(52.54%) 988(24.70%) 113(22.60%)

No. of cases with 2 feasi-
ble solutions

0 1299(12.99%) 2754(36.72%) 1276(31.90%) 213(42.60%)

No. of cases with more
than 2 feasible solutions

0 381(3.81%) 805(10.73%) 736(18.40%) 174(34.80%)
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Chapter 6

Conclusions

In this dissertation, the geometric static problem of under-constrained cable-driven parallel robots (CD-
PRs) supported by n cables, with n ≤ 6, was studied. The task consisted of finding the overall equi-
librium configurations of a robot subject to both geometric and static constraints; namely, with n robot
variables and a static load assigned. The kinematics and statics are coupled and must be solved si-
multaneously, which is a major challenge. When n constraints are imposed on the moving platform,
an inverse geometric static problem is concerned, which consists of computing the overall pose of the
platform, the cable lengths and the cable tensions. The direct geometric static problem consists of
determining the platform posture and cable tensions when the n cable lengths are assigned. In order
to propose a sufficient solution strategy, the problem was modelled by a set of algebraic equations in
Chapter 3.

In Chapter 4, least-degree univariate polynomials in the ideal corresponding to particular IGPs and
DGPs were found for any value of n by using an appropriate elimination procedure, thus setting an
exact bound on the number of solutions admitted in the complex field. The IGP was less complex
and, by introducing some ingenious strategies, was solved with the attainment of low-order univariate
polynomials. The most challenging tasks were associated with the DGP for n = 3, 4 and 5, where
the aforementioned polynomials had degrees as high as 156, 216 and 140, respectively. Though these
polynomials proved to be too large to be numerically useful, they provided meaningful benchmarks to
test the effectiveness of an innovative variable-elimination procedure. It was proven that this proce-
dure may succeed when other methods either fail or are too computationally onerous, thus providing
an efficient alternative in calculating a least-degree univariate polynomial in a given ideal; a classic
challenge in robot analysis and synthesis. For the numerical computation of the solution set, a nu-
merical procedure based on homotopy continuation was developed. As discussed in Chapter 4, this
is a path-tracking technique that transforms a start system of polynomial equations with known so-
lutions to a target system whose solutions must be found. In general, homotopy continuation, with
no information about the roots of the target system, sees the construction of a start system yielding
the maximum possible number of solutions, equal to the Bezout number. Converting the start system
of the equation to the target one and tracking all solution paths, many such paths diverge to infinity,
while only a limited number converge to finite solutions. Usually this number of paths is much larger
than the finite solutions of the target system of equations in the complex field and, as a result, tracking
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6. Conclusions

diverging paths causes significant and non-beneficial computational burden. It has been demonstrated
that the Bezout number and corresponding number of tracked paths may be significantly smaller if
the corresponding system of equations are multi-homogenised, yielding faster algorithm execution.
On the other hand, when all nonsingular isolated roots of solutions to a general member of a family
of equations are known, ‘coefficient-parameter’ homotopy continuation may be implemented to find
solutions for any other robots of the same family in a more efficient way. Accordingly, by a suitable
homotopy, only the paths originating at the isolated roots of the start system were tracked; whereas
those corresponding to solutions going to infinity were ignored.

Another challenge addressed in this thesis was determination of the maximum number of real solu-
tions admitted by the studied systems. The solutions of each problem may be complex or real, but only
the latter have physical interest. By varying robot parameters, the number of real roots varies. Due to
the very high number of solutions attained during the direct displacement analysis of under-constrained
CDPRs, a systematic procedure to find a set of robot parameters with the maximum number of real
solutions was necessary. Accordingly, a procedure borrowed from the Dietmaier was introduced in
Section 2.3 to find sets of CDPR parameters for which the DGP provided the highest number of real
configurations. Dietmaier’s algorithm, like the homotopy method, is a continuation procedure in which
a start system is defined for a given set of robot parameters and an iterative procedure is established to
change the system parameters and conveniently vary the solution set. In contrast with parameter ho-
motopy, however, the target parameters are unknown a priori. The tracked path is adaptively modified
in such a way that, at each iteration, the imaginary parts of some complex solutions are decreased and
eventually as many complex roots as possible are transformed into real roots. By applying this tech-
nique on the DGP of CDPRs with 3, 4 and 5 cables, the maximum number of real solutions obtained
for each case was 54, 98 and 74, respectively.

By taking advantage of the homotopy continuation procedure, a program DGP−Solver was com-
posed, which is freely available. The code receives the robot geometry, cable lengths and external load
as inputs and computes, under the assumption that cables are inextensible and massless, all possible
equilibrium configurations of the robot that are compatible with the given constraints. Distinctive fea-
tures of the code are that it finds all solutions of the problem, including those with slack cables, and
assesses the feasibility of each configuration with an integrated stability analysis.

It was shown that the DGP may admit multiple equilibrium configurations, characterised by dif-
ferent numbers of taut cables. Since slack cables contribute to neither controlling the platform pose
nor sustaining the load, they represent a loss of capacity of the robot, which is instantaneously unable
to control some of the end-effector degrees of freedom. A preliminary investigation was performed to
find the most suitable architectures that guarantee an optimal exploitation of the available actuators.
The probability of a CDPR admitting multiple stable equilibrium configurations (which is a critical
situation for reliable robot control) was also considered. From the data reported in Chapter 5, one
could argue that, as long as only 3 cables are employed, all of them may be reasonably expected to
support the platform, with a single stable equilibrium pose being unambiguously determined in most
circumstances.
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Appendix A

In this section, numerical examples of geometric parameters admitting the maximum number of real
solutions for robots with 3, 4 and 5 cables are provided. These examples are the results of the Dietmaier
procedure outlined in Section 4.3 .
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Table 1: All real solutions of DGP of a 3-3 CDPR with maximum number of 54 real solutions
Geometric dimensions and load: a1 = [0, 0, 0], a2 = [0.897440, 0, − 0.726510], a3 = [0.656710, 0.746360, − 0.590910],
b1 = [1.556650, 0, 0], b2 = [0.696950, 0.784290, 0], b3 = [−0.464410, − 1.389800, − 1.199480], (ρ1, ρ2, ρ3) = (1, 1.080500,
2.602500), Q = 10.

Conf. (x, y, z) (e1, e2, e3) (τ1, τ2, τ3)

1 0.0634, 0.1736, −0.5293 −0.5534, −0.9854, −0.8871 10.54, −1.21, −2.76

2 0.9948, −0.0455, −2.1045 1.0390, −0.9800, 1.2955 −9.48, −8.99, 2.33

3 0.5102, −0.1635, −0.5159 −2.1568, −2.2788, −1.9020 4.74, 6.43, 3.13

4 1.4323, 1.0452, −1.6514 2.4261, −2.8663, 3.6663 −50.28, −5.73, 49.47

5 0.2508, −0.0479, −0.6094 −0.2969, −1.0008, −0.0929 6.22, 7.93, 7.49

6 0.6483, 1.1466, −1.8930 −0.8594, −0.3795, −1.1743 −19.92, 14.07, −12.01

7 0.8516, −0.0142, −0.6959 0.1903, −1.3668, −0.5069 0.75, 11.32, 3.08

8 1.1117, −0.1800, −0.4811 6.0423, 13.3840, 4.2951 8.82, 15.20, 19.36

9 0.3744, −0.0308, −0.5111 −1.0816, −1.3568, −1.2971 5.90, 4.25, 0.53

10 0.6098, 0.0192, −1.3549 −0.1640, −0.8795, 0.2065 4.13, −17.24, −16.32

11 0.9362, −0.0509, −1.6747 −0.5647, −3.6481, −0.2073 0.22, −16.05, −13.65

12 0.6129, 0.6724, 0.9651 41.9368, −0.5618, −44.3965 −6.59, 0.34, 7.95

13 0.8858, −0.4903, −0.4509 3.2461, 4.1824, 2.4811 7.60, 12.71, 10.87

14 0.5614, 0.9292, 0.2029 −2.1638, 2.1129, 0.0571 4.71, 6.89, 10.66

15 1.2810, 0.0257, −0.5133 1.1515, 6.1838, 2.4650 5.59, 22.92, 21.84

16 0.8983, −0.0179, −0.6935 0.1435, −1.3928, −0.8091 0.11, 10.46, 0.92

17 0.9443, 0.0077, −2.1090 0.9186, −1.1658, 0.9016 −6.21, −8.26, −1.22

18 0.5369, 0.7693, −1.4696 0.0993, −0.6693, −0.3427 2.19, −5.25, −12.46

19 2.4401, 0.6365, −0.0380 −0.1171, 2.9441, −5.6330 −33.47, 26.48, 8.84

20 0.6796, 0.5035, 0.4579 −1.9056, 7.1397, −7.5311 13.67, −11.31, 6.92

21 0.4697, 0.4552, 0.0534 −0.7309, 2.0689, −0.7835 −3.12, −0.96, 8.20

22 0.5715, 0.7385, 0.1670 −3.1734, 3.2184, −0.9303 1.89, 2.70, 8.87

23 0.8954, 0.1520, 1.1534 0.0756, 0.9074, −1.2974 −1.40, 7.54, 4.01

24 0.8223, 0.6116, −1.6669 −0.1435, −2.9073, −1.4004 1.17, −12.89, −16.32

25 0.6759, 0.4964, 1.0546 −7.6257, −3.8442, 14.9347 −2.93, 6.20, 5.79

26 0.7150, −0.3392, 0.2513 −0.0682, −4.2850, 3.2341 39.94, −33.98, −3.74

27 −0.6475, 0.0685, 0.2574 1.2351, 0.4542, −0.5850 −26.32, −16.34, −1.68

28 0.8120, 0.3450, 1.0225 3.6139, 1.2486, −3.7415 −2.95, 4.97, 4.64

29 0.0000, 0.0003, −0.5566 −2.3817, −0.9993, −2.3831 10.00, −0.01, −0.00

30 0.4932, 0.0208, −0.6134 −0.5848, −1.4390, −0.2065 4.63, 9.31, 10.44

31 1.0589, −0.4306, −0.4556 1.8378, 3.0461, 2.0388 5.60, 14.99, 9.91

32 1.5486, 0.4002, −1.7581 −1.0092, −1.1007, −1.8713 −23.04, 20.76, −4.92

33 1.6482, 1.5973, −0.6567 0.3694, −0.9632, −2.6851 59.39, 2.61, −66.98

34 0.6244, 0.3345, 0.9358 0.4628, 3.4054, −5.7540 −11.53, 15.27, 5.13

35 0.2263, −0.0531, −0.6094 −0.2882, −0.9769, −0.0852 6.43, 7.76, 7.32

36 0.7741, 0.8653, −1.9269 −0.8376, −0.8822, −1.0477 −7.99, 1.73, −9.57
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37 0.6231, 0.9516, 0.1995 −1.5319, 1.7594, −0.0227 3.32, 5.05, 11.57

38 0.8369, −0.1204, 0.8292 0.9606, 1.2807, −0.8110 −10.10, 8.23, −4.08

39 1.2552, 0.6976, 0.0004 −6.3727, 9.9899, 5.0805 14.88, 25.43, 9.02

40 2.0431, −0.3251, −1.1174 −0.3020, −4.9995, 3.7384 33.36, −41.90, −3.96

41 0.8970, 0.3504, −1.6633 −0.2785, −3.4817, −1.0557 1.08, −16.97, −17.98

42 2.3001, 0.9783, −0.0311 0.2733, 0.6574, −6.8637 −37.69, 13.64, 27.52

43 2.3215, 0.9513, −0.0311 0.2128, 0.8485, −6.9045 −35.89, 14.32, 25.12

44 0.0102, −0.1188, −0.6065 −0.2191, −0.7297, 0.0307 8.21, 9.26, 8.91

45 0.0089, −0.1397, −0.5596 −4.1698, −1.6030, −3.1349 8.71, 2.54, 2.19

46 −0.4270, −0.6998, 0.0563 −9.6174, −3.5104, 4.3730 −28.59, −4.33, −17.74

47 0.7234, 0.3059, −2.2934 −67.4748, 3.0846, −71.3742 −3.98, −4.75, −3.64

48 0.3095, 0.2323, 0.9427 0.9028, 2.2638, −3.8926 −8.45, 10.71, 4.37

49 −0.5698, 0.4582, −0.0776 −5.6647, 0.6000, 0.2701 29.16, 23.17, 13.96

50 1.1079, 0.4296, 0.9547 0.1429, 8.0783, −15.7334 −7.48, 13.08, 5.55

51 0.7204, 0.7007, 0.1753 0.3915, 4.0488, −2.7628 0.56, −3.00, 10.42

52 0.9818, −0.3338, −1.3954 −0.3452, −1.2753, 0.7052 4.28, −15.57, −8.41

53 0.3393, −0.6917, −0.4700 3.7171, 2.5379, 1.7731 13.38, 10.81, 11.71

54 0.3022, 0.1565, −0.9638 −1.1499, −3.1127, −3.8924 −6.86, 10.82, −1.96
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Table 2: All real solutions of DGP of a 4-4 CDPR with maximum number of 98 real solutions
Geometric dimensions and load: a1 = [0, 0, 0], a2 = [−0.760549, 0, 0.909316], a3 = [−0.716460, 0.680475, 0.079703], a4 =
[0.025744, 0.704210, 0.873897], b1 = [16.548180, 0, 0], b2 = [17.163583, 0.777200, 0], b3 = [16.222490, 0.751536, 0.768740],
b4 = [17.386036, 0.095675, 0.817269], (ρ1, ρ2, ρ3, ρ4) = (1, −1.014940, −1.121710, 1.138240), Q = 10.

Conf. (x, y, z) (e1, e2, e3) (τ1, τ2, τ3, τ4)

1 −3.0636, 3.6998, −16.5218 1.2350, −0.9881, 0.8529 28.40, 27.84, 28.89, 28.20,

2 15.5132, 2.5903, −4.9524 1.7397, −8.0431, 7.1683 170.86, −97.16, −112.86, 162.36,

3 13.1838, −8.2574, −3.5469 −0.0401, −1.3812, 2.6625 102.30, −307.78, −337.65, 34.17,

4 11.5670, 6.2772, −9.4221 −3.1177, 1.9410, −8.3627 −741.38, −12.62, 723.44, 128.59,

5 −11.6506, 0.2819, −11.4601 6.8831, −0.2595, 2.9118 −123.21, −115.84, 147.87, −14.07,

6 −10.4613, 11.3382, −8.0156 −4.1399, 1.3489, −1.6696 36.85, −104.40, 186.37, 87.31,

7 10.9196, −11.7787, −1.5815 −30.6642, −70.4630, −12.3521 106.85, −32.59, −268.48, 263.88,

8 −8.6254, −13.1375, −4.6443 3.4338, 1.7411, 1.2351 1101.60, −190.69, −1096.86, 1.21,

9 0.4579, −0.2077, 17.2784 −0.9776, 1.0344, 0.9627 10.16, 0.67, 5.46, −7.69,

10 −7.5948, −12.6090, −6.9715 3.1084, 1.4708, 1.4897 −1025.22, 19.34, 1014.02, 176.33,

11 −9.1237, 0.8618, 14.7504 −0.2707, 0.5708, 0.0957 −167.87, 262.52, 74.43, 93.20,

12 −1.2968, 2.9696, −16.5224 1.2218, −1.0292, 0.9594 23.34, 23.20, 21.14, 21.91,

13 −11.0831, −7.8604, −9.5570 −43.5416, −14.2111, −15.2502 −301.63, 126.92, 287.66, 231.30,

14 −0.7078, 0.3997, 17.3022 −0.8216, 1.0171, 0.7931 3.00, 3.46, −3.42, −2.46,

15 13.3972, −1.1048, −9.7319 0.0425, −2.7658, 0.3565 12.82, 287.02, −114.72, −241.29,

16 −11.6161, 1.7051, −11.4871 19.1728, −0.9528, 8.0644 −88.24, −80.58, 139.66, 20.18,

17 −9.9961, −2.9112, 14.0549 −2.3816, 0.2279, 1.3161 −245.54, 207.84, −70.40, −24.45,

18 −16.9518, 0.3842, 1.2556 2.4621, 0.0476, −0.0431 333.77, −49.79, −115.57, 281.65,

19 −16.9147, 2.8563, 1.8056 1.2138, −0.0294, −0.1204 172.32, −121.63, −107.24, 173.98,

20 10.0205, 13.1293, −5.4691 1.3368, −3.1248, −0.6672 71.81, 203.92, −134.34, −1.42,

21 13.5463, 8.6135, −4.8598 −19.7447, 49.3021, −38.2869 281.05, −39.41, −109.85, 252.90,

22 11.2216, −9.9730, −6.4402 1.2434, 1.4742, 3.4988 −191.86, −102.77, 28.30, 69.28,

23 11.8391, −8.3162, −7.7833 −0.4730, −2.4900, 0.7901 226.98, −1106.38, 41.91, 1115.05,

24 −1.2041, −0.4941, 17.2804 −0.9000, 0.9551, 0.8716 5.26, 12.60, −1.54, 6.27,

25 14.7591, 6.2906, −4.8544 4.2253, −14.6369, 8.9408 261.35, −81.21, −64.15, 272.76,

26 3.4207, −15.5757, −1.7527 3.7214, 4.6109, 1.9663 276.39, 58.21, −434.59, 298.79,

27 −5.4436, 16.2817, −1.3017 −0.0318, −0.0510, −0.7501 189.51, −256.56, −67.01, 163.51,

28 −11.4917, −12.2734, 0.1200 1.0395, 0.4993, 0.4527 263.16, −398.88, −508.04, −63.00,

29 −1.7881, −11.4731, −12.0581 −0.4036, −0.9176, 0.3017 29.77, 103.85, −75.37, −147.94,

30 −1.8657, 11.1139, 13.3556 −0.7322, 1.1125, −0.0938 −361.45, 160.02, −134.48, −209.23,

31 3.2997, 10.6518, 13.3938 14.2253, −9.4774, −13.8594 −575.10, −308.78, 601.30, −1117.08,

32 7.9368, −13.9365, −1.5610 18.0074, 31.2452, 7.0112 136.81, −23.94, −267.28, 233.74,

33 −1.2579, 2.3595, −16.5964 1.1209, −1.0636, 0.9813 16.20, 16.01, 18.16, 16.72,

34 11.6118, −7.0364, −9.2964 −0.3474, −2.3354, 0.5990 −54.28, 1011.71, −204.69, −989.87,
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35 −3.6200, −3.1202, −14.9369 0.7934, −0.6334, 0.8057 −24.18, −36.99, −34.93, −20.47,

36 −3.5109, 1.7287, 16.9889 −1.0206, 0.8807, 0.7744 −35.51, 19.94, −39.87, 9.98,

37 9.8118, −11.5275, −3.6059 0.6629, 0.7295, 2.4030 −187.54, −88.75, −41.68, 120.15,

38 1.0196, −0.7691, −16.9923 −0.9582, −1.1682, −1.0171 −13.62, 19.69, −11.30, 6.12,

39 2.3010, −12.2175, 11.1641 0.2460, 1.0457, 0.6962 −595.31, −1236.09, −2306.74, 1318.60,

40 −0.6590, 17.0521, 2.0952 −1.0830, 1.1323, −0.8898 538.10, −342.55, 133.24, 325.24,

41 −8.5796, −5.5863, 14.0797 −1.8980, 0.0910, 1.2490 −191.23, 220.17, −0.54, 44.50,

42 −11.5374, −7.2881, −10.6960 −0.2298, −0.4486, 0.1577 54.06, 43.18, −82.27, −153.07,

43 −16.5082, 1.1372, 5.3901 −0.0148, 0.1572, −0.0467 293.06, −506.20, −315.15, −89.51,

44 14.5033, 6.8223, −4.8527 7.2326, −22.7125, 15.4999 255.41, −67.11, −81.97, 252.18,

45 −0.1189, 0.5187, 17.2900 −1.1053, 0.9706, 1.0528 3.28, 3.39, −2.75, −2.93,

46 −2.3452, 3.4595, −16.5200 1.2721, −1.0089, 0.9245 27.14, 27.38, 25.61, 26.74,

47 5.7669, 0.0877, 16.1842 −2.4653, 1.2553, 3.4840 53.22, 46.46, 126.13, −81.89,

48 −1.6981, −16.4849, 1.2052 −0.8282, −0.7479, 0.9331 285.29, −443.51, −302.77, −109.91,

49 −0.0238, 0.9983, 17.2778 −1.0559, 1.0178, 0.9575 −1.55, −2.90, −6.66, −9.02,

50 −8.4014, 3.5033, 14.7855 −0.3503, 0.6220, 0.0406 −171.12, 209.30, 8.72, 55.17,

51 −0.6585, −16.1920, −3.9849 −1.6116, −1.8141, 0.4874 305.14, −353.11, −26.23, 140.50,

52 −1.1213, −13.8783, −7.8141 2.6998, 1.8657, 2.0903 −366.31, −161.09, 334.68, −16.78,

53 −9.0877, −13.6176, −3.1217 −23.4962, −13.3231, −2.8181 406.46, −270.86, −263.37, −12.96,

54 −6.7220, −7.4720, 14.0653 −1.6268, 0.0259, 1.2758 −167.28, 253.68, 67.75, 84.12,

55 −13.5658, 2.8961, −10.5377 0.2359, −0.3764, −0.0046 177.14, 194.06, 64.10, −188.40,

56 −0.6962, 17.1318, −1.3030 0.0097, −0.0962, −0.9989 118.05, −177.95, −116.98, 166.12,

57 −9.4683, 8.0857, −10.3923 −4.4154, 0.8894, −2.2367 −22.01, −59.33, 133.80, 65.33,

58 12.0232, 8.2022, −7.3781 −2.0126, 1.9488, −5.8751 867.76, −106.67, −871.81, 66.80,

59 −3.0973, 3.9717, −16.5136 1.1367, −1.0085, 0.7741 30.28, 25.70, 32.66, 29.43,

60 −3.5403, 16.7819, −1.3001 −0.0279, −0.0559, −0.8454 159.85, −219.18, −86.78, 157.26,

61 0.9427, 10.9804, −11.9501 −1.6599, 0.3896, −2.1343 −156.04, 26.19, 159.60, 122.53,

62 −16.6690, −0.6791, 4.3865 −17.8995, −0.4171, 2.0004 500.41, −278.68, 90.89, 313.33,

63 0.3626, 15.2344, −8.0626 0.6423, −1.0925, −0.5572 45.36, 222.96, −90.65, −155.07,

64 1.3668, 11.1445, −12.2038 −3.8554, 2.0272, −4.0943 −113.04, −78.00, 160.88, 24.32,

65 2.9583, 2.8202, −15.1643 −0.8981, −1.0091, −1.3430 −26.28, 18.64, −22.35, 36.11,

66 −0.5208, 0.1328, 17.3060 −1.0670, 1.0225, 0.9968 2.11, 3.14, −4.28, −2.67,

67 16.3464, 3.4989, 0.7733 11.3059, −118.4029, −4.6459 211.19, 95.55, −239.05, 316.02,

68 −0.0329, 0.1893, 17.2887 −0.9558, 0.9977, 0.8902 3.68, 2.79, −2.28, −3.59,

69 −17.4454, 1.1040, 0.9311 0.4639, 0.0205, −0.0400 17.37, −358.12, −311.19, 144.65,

70 −0.3857, 0.3993, 17.2735 −0.1550, 1.0215, 0.1251 2.81, 2.81, −3.20, −3.42,

71 −6.8654, 14.5186, −6.7774 0.3779, −0.5253, −0.4865 191.69, 864.91, 16.74, −847.61,

72 −1.5917, −11.5959, −12.0470 −0.5046, −0.9937, 0.2440 0.39, 134.58, −107.10, −162.69,

73 2.0308, −10.5979, 12.9100 0.1284, 1.0251, 0.6358 574.75, 1043.87, 1989.71, −1107.98,

74 4.9629, 1.6947, −15.1507 −0.9950, −1.2040, −1.6246 −39.25, 37.41, −40.34, 55.19,

75 −11.1806, 8.3382, −9.8984 0.0162, −0.3849, −0.2890 −85.71, 227.46, −201.97, −216.17,

76 −4.5377, 5.8776, 15.7660 −7.1976, 2.6089, 4.7423 −136.45, −5.14, −35.08, −127.96,

77 −5.5175, −5.7080, 15.3695 −0.1116, 0.6740, 0.3152 −1.07, 165.58, 136.37, 35.22,

78 11.7485, 12.0228, −1.5498 0.0215, −0.3513, −2.5346 60.83, −71.99, −290.46, 267.97,

79 −5.4578, −13.2439, −7.7592 1.7785, 0.8147, 1.2665 −344.37, 71.25, 334.80, 193.23,
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80 −3.7312, 15.5777, −6.8992 0.3902, −0.6362, −0.6047 271.50, 624.55, 112.19, −615.78,

81 3.5662, 2.6486, −15.1679 −0.9527, −1.0377, −1.4724 −30.44, 24.23, −25.60, 41.73,

82 −0.2476, 11.1074, −12.2150 −3.0624, 1.3031, −3.0921 −92.70, −51.69, 144.13, 45.06,

83 −8.4154, 14.8584, −3.7961 0.3745, −0.3752, −0.5197 2.79, −930.91, −192.59, 948.96,

84 −0.4145, 17.2918, −2.5308 0.3939, −0.5353, −0.9287 −179.78, −529.68, −436.36, 708.58,

85 2.9404, 16.8826, −1.2948 0.0736, −0.1894, −1.2342 74.96, −146.05, −162.90, 197.13,

86 −0.3618, 0.4121, 17.3248 −5.0689, 0.9144, 4.9177 2.75, 2.71, −3.67, −3.07,

87 12.6637, 1.7361, −9.6306 77.1195, −31.2701, 238.2116 −314.35, −4.98, 276.00, 116.56,

88 0.1148, 16.5864, −2.7131 −0.5383, 0.3499, −1.1451 374.87, −312.55, −140.79, 30.53,

89 3.3588, 13.5767, 10.4255 3.6731, −2.7332, −3.5815 788.87, 325.61, −800.67, 1419.29,

90 0.8043, −13.7855, −8.1404 1.7219, 1.1359, 1.8345 −224.66, −56.06, 157.58, 71.34,

91 −10.1361, −10.2561, −7.6349 −0.1779, −0.3927, 0.3236 103.97, −16.28, −79.78, −165.79,

92 4.9946, 0.4885, 16.3671 −0.3346, 1.4333, 0.4389 −18.06, −34.52, 74.45, −110.36,

93 −13.0870, −1.2559, −11.1548 −0.0203, −0.3928, 0.0379 56.39, 79.86, −55.87, −144.93,

94 11.7283, 10.0478, −5.7690 0.6982, −2.7080, −1.0165 110.37, 181.38, −74.80, −18.22,

95 −0.0845, −11.3657, −12.0416 −0.2943, −0.9356, 0.4088 59.71, 101.52, −45.58, −146.25,

96 −11.6845, 12.8484, 0.8473 1.0531, −0.4355, −0.4450 347.58, −238.65, 27.03, 448.67,

97 −5.0174, 14.5255, −7.8659 0.5991, −0.7684, −0.4124 −36.81, 309.20, −174.84, −287.03,

98 15.6052, −3.8242, 2.4675 −0.4272, 0.4396, 6.4481 −107.93, −247.56, −371.75, 241.56,
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Table 3: All real solutions of DGP of a 5-5 CDPR with maximum number of 74 real solutions
Geometric dimensions and load: a1 = [0, 0, 0], a2 = [1.444170, 0, 1.203330], a3 = [0.302415, 1.262060, 0.555330],
a4 = [−0.711127, 0.808726, 0.810451], a5 = [0.749568, 0.761578, − 0.469085], b1 = [2.161690, 0, 0], b2 = [−0.125711, 0,
1.326150], b3 = [−0.412791, 0.021143, 0.449869], b4 = [−0.162650, − 0.468249, − 0.399945], b5 = [1.596530, 1.314460,
0.962240], (ρ1, ρ2, ρ3, ρ4) = (2.464490, 1.995860, 1.206220, 1.423950, 2.430200), Q = 10.

Conf. (x, y, z) (e1, e2, e3) (τ1, τ2, τ3, τ4)

1 −0.2837, −0.1765, 0.2861 −0.9878, −0.6538, −1.0446 11.74, 0.23, −1.94, −0.99, −2.82,

2 0.5312, 0.6906, −0.7303 −0.4333, 0.9140, −0.4121 2.86, 1.88, 17.78, 3.08, −33.92,

3 0.6764, 2.1323, 0.4556 0.1229, 1.4532, −0.3371 −135.72, −60.35, −172.56, 138.78, 189.75,

4 1.2297, 1.1158, 0.6440 −0.6782, 0.4388, −0.5549 27.02, −6.23, 48.62, −46.72, −21.12,

5 0.1548, −0.0888, 0.3115 −1.3644, −1.1945, −1.2275 10.37, 2.35, 4.15, −1.06, 3.29,

6 1.0020, 1.4049, 0.3247 −0.0524, 1.0933, 0.0764 −30.88, −15.22, −18.11, 21.28, 37.16,

7 0.1363, 0.9933, −0.9479 −0.2815, 0.9396, −0.5967 −9.63, −1.45, −25.77, 4.17, 22.46,

8 0.4281, 0.4239, −0.7045 −0.6045, 0.8501, −0.4034 16.06, 3.99, 102.86, −12.02, −118.32,

9 −0.3582, 2.1809, 0.5294 0.3037, 0.2975, −0.1669 −6.97, −16.70, 16.56, 1.98, 7.97,

10 −0.9130, 1.3560, 0.0753 83.0105, −24.9753, 80.8086 2.53, 15.28, −15.22, −6.10, 5.03,

11 −0.4607, 0.0108, 0.6416 0.5670, 4.1847, 1.1578 −82.57, 3.09, 100.70, −89.99, 63.90,

12 −1.3491, 0.9141, 0.1015 −0.9261, 0.5187, −1.8319 18.17, 5.35, 0.08, −16.88, −12.61,

13 0.5107, 0.9502, 1.1408 −0.2853, 0.4373, 0.4091 0.65, 2.09, 10.29, −1.70, −1.52,

14 −0.4694, 0.6436, 1.7056 −9.8403, 3.5712, −1.2696 1.73, 0.47, 2.31, 7.55, 0.48,

15 0.2243, 1.2378, −0.8704 −0.1238, 1.1975, −0.7995 26.07, 6.64, 64.42, −28.30, −77.52,

16 −0.1060, 1.0669, 0.0947 1.7150, −0.3236, 0.7042 7.49, 7.28, −3.92, −5.09, 5.45,

17 −0.1064, 0.1791, 1.0325 0.2008, 53.0584, −8.5358 9.20, −6.32, −1.54, 3.99, −2.06,

18 0.1132, 0.8172, 1.6214 4.1771, −0.3353, −0.6053 5.12, 4.17, 7.05, 5.87, 0.81,

19 0.3336, 0.7842, −0.4449 2.1191, 4.0645, −5.3532 −14.88, 11.74, −9.74, 0.64, −2.86,

20 −0.6706, −0.1342, 0.0699 −0.5845, 1.6081, 0.0576 140.84, −157.06, −178.83, 53.97, 100.65,

21 −0.8354, 1.8229, 1.4399 −0.2594, 2.1498, −0.4546 −4.65, −12.19, 5.94, 4.79, 9.83,

22 0.3662, 0.4199, −0.3881 1.0575, 0.7139, −1.4214 −17.64, 2.08, 13.06, 9.12, −11.98,

23 0.1825, 0.7634, 0.1265 1.1952, −0.0899, 0.0737 0.17, 0.26, −5.00, −6.20, 3.90,

24 −0.3065, 1.4008, 1.3108 0.6942, 2.2769, −4.5700 1.13, −3.68, 10.74, 2.08, 0.46,

25 −1.1314, 1.2503, 0.0753 −3.9748, 1.3324, −4.7641 −8.15, 39.49, −32.44, −9.72, 19.65,

26 −0.4868, 1.9962, 0.5210 0.4409, 0.2077, −0.1097 −15.89, −30.82, 23.22, 14.70, 14.02,

27 −0.0282, 0.5763, −0.1349 12.5513, 10.6915, 15.9334 1.01, 2.85, 14.62, −8.02, 16.18,

28 −0.5173, 1.0320, −0.1333 0.0762, 0.0876, 0.2274 −7.40, −3.38, −2.47, −4.75, 6.80,

29 0.6686, 0.2969, −0.4893 −0.9115, 0.6119, −0.4893 3.24, 5.97, −41.09, −15.81, 43.46,

30 0.1711, 0.9219, 0.0821 2.3583, −0.5316, 1.0148 1.93, 2.36, −6.87, −3.16, 4.28,

31 0.5643, 0.3875, −0.0311 1.1899, 0.3178, −0.8087 11.93, 2.32, −18.47, −23.71, 16.29,

32 −0.0973, 1.6540, 1.4568 −0.9555, 0.5756, −1.7557 6.16, −5.31, 15.58, −6.54, −2.88,
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33 0.3553, 0.6625, −0.4498 1.6934, 2.2968, −3.4782 −10.73, 6.76, −3.29, −0.59, −4.13,

34 0.9388, 1.0269, 0.7520 1.9527, 5.9393, 0.7878 0.31, −9.18, −7.10, 7.29, 4.08,

35 0.8958, 1.5893, −0.2146 −0.0721, 1.0494, −0.3239 −32.77, −21.12, 24.89, −51.95, 71.70,

36 −0.0833, −0.1848, −0.3040 −0.9629, 1.0579, −0.2260 −41.55, −8.17, 6.11, 22.41, 12.08,

37 −0.7052, 1.5521, 1.2600 −0.2759, 1.0069, −2.2936 −3.92, −8.55, 12.72, 4.56, 5.97,

38 −1.0635, 1.2974, 0.0753 −6.4385, 2.0797, −7.1895 −1.10, 25.15, −22.27, −7.74, 10.29,

39 0.3027, 0.6760, 0.3765 −0.8220, −2.6709, 2.9390 29.39, −19.91, 27.06, −13.34, −10.95,

40 1.2054, 1.0751, 0.6343 −0.9432, 0.4714, −0.7765 43.29, −11.86, 90.21, −80.86, −40.78,

41 0.4418, 0.1927, 0.6460 −4.6140, −8.4841, −3.7763 6.59, −10.30, −14.74, 7.30, −8.84,

42 0.5834, 0.2172, −0.4841 −0.9146, 0.7383, −0.4486 −11.60, 10.30, −121.68, 4.28, 114.91,

43 −0.2089, 0.0338, 0.7458 2.7490, 10.0872, 3.3235 34.08, −10.69, −35.02, 33.31, −23.92,

44 0.0739, 1.1328, −0.9382 −0.1995, 1.0771, −0.7477 −19.16, −0.48, −54.96, 17.21, 47.24,

45 0.0665, 0.4217, 0.0153 3.5456, 4.9828, 4.6809 −11.19, −4.01, −17.20, −9.17, −9.66,

46 0.6214, 2.1929, 0.3699 0.0734, 1.2226, −0.3357 113.43, 22.03, 164.32, −125.41, −146.08,

47 0.0828, 0.5548, 1.6098 9.3285, −1.3700, −0.9277 12.03, 14.35, 4.69, 8.41, 1.44,

48 0.6561, 1.1819, −0.6655 −0.1956, 1.0172, −0.4598 25.76, 15.92, 21.10, 20.11, −87.87,

49 1.0524, 1.4965, 0.3719 −0.1824, 0.8072, −0.0598 162.26, 30.54, 168.11, −167.41, −172.36,

50 −0.5641, 1.6225, 0.3104 0.5994, 0.0851, 0.0355 19.62, 30.43, −16.93, −30.07, −10.21,

51 1.0278, 1.4705, 0.3274 −0.1251, 0.9397, −0.0072 −98.19, −33.12, −84.40, 89.32, 111.36,

52 0.4918, 2.2898, 0.3568 0.0413, 0.9774, −0.3180 28.91, −5.45, 53.02, −37.75, −32.60,

53 0.4134, 0.1282, −0.5038 −0.8628, 0.8880, −0.3873 −29.84, −7.92, −143.35, 43.19, 128.44,

54 −0.2825, 0.3675, −0.5258 0.4871, 0.5334, −1.1867 −7.76, 0.91, 2.67, −4.82, 0.67,

55 0.3368, 0.1393, 1.2652 37.5553, −5.3037, −5.5255 −20.87, −31.39, 2.14, −5.99, 0.30,

56 −0.1278, 1.1309, −0.9476 −0.1984, 1.1423, −0.8971 −5.36, 1.32, −19.30, 2.49, 10.96,

57 0.9441, 0.6527, 0.2264 −3.3534, 1.3891, −1.8684 4.42, −6.83, −3.60, 3.42, −3.75,

58 −0.0023, 0.0150, 0.6541 −0.1923, −0.1528, −0.2376 10.83, −1.39, 8.46, −11.36, −1.99,

59 −0.8793, −0.0161, 0.1400 −0.4370, 1.4731, 0.2285 −1.67, −25.10, 1.40, −5.47, 19.74,

60 −1.3614, 1.3325, 0.2694 −1.6298, 1.3744, −2.3369 29.45, 40.63, −23.49, −32.05, −17.35,

61 1.0086, 0.4496, −0.0239 −1.3156, 0.7400, −0.7150 103.08, −45.09, 186.07, −103.38, −163.28,

62 0.9379, 1.2051, 0.3295 0.1487, 1.4494, 0.3033 −12.68, −8.10, 0.90, 0.18, 16.09,

63 −0.5244, −0.1694, −0.0583 −0.6830, 1.4965, −0.0419 −213.43, 152.49, 282.18, −67.13, −122.82,

64 −0.7410, 0.5791, −0.1580 −0.1644, 0.4463, 0.4641 −8.02, −4.12, −0.78, −4.74, 5.87,

65 1.1280, 0.9932, 0.4236 −1.5807, 0.5910, −1.2229 −36.84, 14.13, −97.02, 75.50, 49.11,

66 −0.5693, 0.6741, −0.1965 −9.3397, −4.2033, −12.1619 1.05, 1.18, 1.17, −8.09, 3.26,

67 −0.3987, 0.7036, −0.0598 −0.0816, 0.0974, 0.3804 −46.55, 0.93, −33.89, 16.34, 29.91,

68 0.1908, 0.7721, −0.1539 35.9920, 22.1885, 43.1066 0.31, −0.08, 2.01, −5.41, 6.39,

69 −0.1649, 0.5597, 0.1779 −0.1225, −0.0087, 0.3862 66.76, −11.03, 55.50, −40.37, −38.80,

70 −0.8399, 1.3674, 0.0753 12.4335, −3.6207, 11.3678 3.07, 12.97, −13.50, −5.73, 4.12,

71 −1.3369, 1.4526, 0.9523 −1.6895, 1.9967, −1.7759 −36.66, −36.43, 18.11, 29.54, 28.35,

72 −0.0556, 1.0020, 0.1161 1.3905, −0.2024, 0.4061 −4.35, −1.83, −8.71, −5.85, 1.10,

73 −1.2480, 1.1327, 0.0836 −2.0757, 0.7835, −2.8924 50.11, −58.39, 39.99, −2.27, −53.54,

74 −0.3171, 0.0244, 0.7432 1.3636, 6.6077, 1.9086 62.91, −13.07, −69.23, 64.29, −45.60,
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