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Abstract

Shape memory materials, which include shape memory alloys, shape memory ceramics and shape memory
polymers, represent an important class of multi-phase smart materials that have the ability to return from a
deformed state to their original shape. Such a property is typically induced by an external stimulus such as
heat, electricity or magnetism.
Thanks to such a unique property, shape memory materials are utilized in a wide range of innovative
commercial applications. As an example, shape memory alloys find the most successful applications in
the biomedical, robotic as well as automotive areas, thanks to their properties known as pseudo-elasticity,
one-way and two-way shape memory effects. On the contrary, shape memory polymers have a promising
future for interesting applications as, e.g., actuators, packaging, films with insulating properties, biomedical
devices, and damping elements, thanks to their large elastic deformations, low energy consumption, cost
and density, biocompatibility, biodegradability, and manufacturability.

The increasing number of shape memory material based applications and the consequent growing in-
volvement of industrial players in the field have motivated researchers to formulate constitutive models able
to catch the complex thermo-mechanical behavior of these materials and to develop robust computational
tools for advanced design purposes. However, such a research field is still under progress, especially in the
prediction of shape memory polymer behavior as well as of several important effects characterizing shape
memory alloy based applications.
Moreover, the frequent use of shape memory and metallic materials in biomedical devices, particularly
in cardiovascular stents, which are permanently implanted in the human body and experience millions of
in-vivo cycles induced by the pulsing blood pressure, clearly indicates the need for a deeper understanding
of fatigue and fracture failure in microsize components. In particular, the development of a reliable stent
design procedure against fatigue is still an open and debated subject in scientific literature.

Motivated by the described framework, the thesis is dedicated to several research issues involving the
advanced constitutive, numerical and fatigue modeling of elastoplastic and shape memory materials.

Starting from the constitutive modeling, the present thesis proposes to develop refined and flexible one-
dimensional and three-dimensional phenomenological models for reliable descriptions of shape memory
alloy and polymer behaviors.

Then, concerning the numerical modeling, the present thesis proposes to implement the introduced mo-
dels into numerical software through the development of appropriate implicit and explicit time-integration
algorithms, to guarantee robust computational tools, which could be effectively utilized for practical pur-
poses. Since the structure of the equations proposed to describe shape memory alloy and polymer behavior
is very similar to that characterizing rate-independent plasticity models, the thesis first presents a detailed
and critical analysis of several computational approaches for classical plasticity in order to investigate
possible solution algorithms to be applied to shape memory material models.

The described constitutive and numerical modeling activities are completed by two experimental inve-
stigations on shape memory alloy actuator springs as well as on low-density and high-density polyethylene-
based polymers, that are being considered for packaging applications. The comparison between numerical
predictions and experimental data allows to quantitatively validate the proposed models as well as to assess
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the robustness and efficiency of their numerical counterparts.
Finally, regarding the fatigue modeling, the thesis proposes the introduction of a reliable, general

and complete computational approach for the fatigue-life assessment of a classical coronary balloon-
expandable stent design, in order to exploit computer-based simulations to prevent undesired failures and
modify stent design, without making and testing numerous physical devices. To this purpose, the present
thesis combines advanced computational methods and fatigue-life prediction methodologies with available
material fatigue data to lay down the basis for the prediction of fatigue-controlled service life of balloon-
expandable stents as well as to provide useful information either to be used for product improvements or
for clinicians to make life-saving decisions.

Key-words: plasticity, shape memory alloys, shape memory polymers, constitutive modeling, numeri-
cal integration, fatigue modeling, biomedical applications, high-cycle fatigue, experimental campaign



Sommario

I materiali a memoria di forma, che includono leghe, ceramiche e polimeri a memoria di forma, rappre-
sentano un’importante classe di materiali intelligenti multi-fase, caratterizzati da inusuali proprietà mec-
caniche. La loro caratteristica principale è quella di essere in grado di recuperare la forma iniziale, dopo
essere stati deformati, tramite l’applicazione di uno stimolo esterno come il calore, l’elettricità od un campo
magnetico.
Grazie a questa proprietà, i materiali a memoria di forma trovano impiego in una vasta gamma di interes-
santi ed innovative applicazioni commerciali. A titolo di esempio, le leghe a memoria di forma vengono
notevolmente sfruttate in campo biomedico, robotico e dell’automazione, grazie alle loro proprietà note
come pseudoelasticità ed effetto a memoria di forma ad una ed a due vie. Al contrario, i polimeri a memo-
ria di forma hanno un futuro promettente per applicazioni come attuatori, imballaggi, pellicole isolanti,
dispositivi biomedici o smorzatori, grazie a proprietà quali elevate deformazioni elastiche, basso consumo
energetico, bassi costi, bassa densità, biocompatibilità, biodegradabilità e facile producibilità.

Il crescente numero di applicazioni che sfruttano materiali a memoria di forma ed il conseguente au-
mento di partner industriali coinvolti in tale ambito hanno spinto i ricercatori a formulare modelli costitutivi
in grado di descrivere il complesso comportamento termo-meccanico di questi materiali ed a sviluppare ro-
busti strumenti computazionali da utilizzare per la progettazione di componenti strutturali e dispositivi
reali. Tuttavia, quest’ambito di ricerca necessita a tutt’oggi di ulteriori approfondimenti, specialmente in
relazione alla modellazione sia di polimeri a memoria di forma sia di effetti rilevanti per le applicazioni
che sfruttano leghe a memoria di forma.
Inoltre, il frequente impiego di materiali a memoria di forma e metallici in dispositivi biomedici, come
stent cardiovascolari, che sono permanentemente impiantati nel corpo umano e di conseguenza sottoposti
a milioni di cicli di carico indotti dalla pressione sanguigna, rende evidente la necessità di uno studio più
profondo ed accurato dei problemi di fatica e frattura in queste componenti microscopiche. In particolare,
lo sviluppo di un’affidabile procedura di progettazione a fatica per stents è tuttora un problema aperto nella
lettetura scientifica.

La presente tesi si colloca nel quadro descritto, dedicandosi a diversi temi di ricerca che coinvolgono
una sofisticata modellazione costitutiva, numerica e a fatica di materiali elastoplastici e a memoria di forma.

Partendo dalla modellazione costitutiva, la tesi propone lo sviluppo di raffinati e flessibili modelli costi-
tutivi macroscopici monodimensionali e tridimensionali in grado di descrivere in modo affidabile il com-
portamento di leghe e polimeri a memoria di forma.

Per quanto riguarda la modellazione numerica, la tesi si propone di implementare i modelli proposti in
software di calcolo attraverso lo sviluppo di appropriati schemi di integrazione nel tempo impliciti ed es-
pliciti, al fine di sviluppare un potente strumento computazionale, efficacemente utilizzabile ai fini pratici.
Data la somiglianza tra le equazioni proposte per descrivere il comportamento di leghe e polimeri a memo-
ria di forma e quelle per materiali elastoplastici rate-independent, la tesi presenta inizialmente un’analisi
dettagliata e critica di vari approcci computazionali per la plasticità classica, per valutare possibili algoritmi
da applicare ai modelli per materiali a memoria di forma.

Le attività di modellazione costitutiva e numerica, sopra descritte, sono completate da due campagne
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sperimentali condotte su molle in leghe a memoria di forma per attuatori e su polimeri di polietilene a
bassa ed alta densità impiegati in applicazioni di packaging. Il confronto tra risultati numerici e sperimen-
tali consente di validare quantitativamente i modelli proposti e di verificare l’affidabilità, la robustezza e
l’efficienza dei relativi algoritmi numerici.

Infine, per quanto riguarda la modellazione a fatica, la presente tesi si propone l’introduzione di un ap-
proccio computazionale affidabile, generale e completo per la valutazione della vita a fatica di un generico
stent coronarico, che consenta l’impiego di simulazioni numeriche in attività di design e di prevenzione
da rotture indesiderate, senza la necessità di onerose prove sperimentali. A questo scopo, la tesi combina
metodi computazionali innovativi e metodologie di previsione della vita a fatica con appropriati dati speri-
mentali disponibili in letteratura, allo scopo sia di creare un approccio numerico in grado di predire la vita
a fatica di stents di tipo balloon-expandable sia di fornire informazioni utili ai medici o ai produttori che si
occupano dell’ottimizzazione di tali dispositivi.

Parole-chiave: plasticità, leghe a memoria di forma, polimeri a memoria di forma, modellazione costi-
tutiva, integrazione numerica, modellazione a fatica, dispositivi biomedici, fatica ad alto numero di cicli,
campagna sperimentale
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Thesis motivations and organization

Shape memory materials, which include shape memory alloys, shape memory ceramics and shape memory
polymers, represent an important class of multi-phase smart materials that have the ability to return from a
deformed state to their original shape. Such a property is typically induced by an external stimulus such as
heat, electricity or magnetism.
Thanks to such a unique property, shape memory materials are utilized in a wide range of innovative com-
mercial applications. As an example, shape memory alloys find the most successful applications in the
biomedical, robotic as well as automotive areas, thanks to their properties known as pseudo-elasticity, one-
way and two-way shape memory effects. On the contrary, shape memory polymers have a promising future
for interesting applications as, e.g., MEMS, actuators, packaging, films with insulating properties, biome-
dical devices, and damping elements, thanks to their large elastic deformations, low energy consumption,
cost and density, biocompatibility, biodegradability, and manufacturability.

The increasing number of shape memory material based applications and the consequent growing in-
volvement of industrial players in the field have motivated researchers to formulate constitutive models able
to catch the complex thermo-mechanical behavior of these materials and to develop robust computational
tools for practical and advanced design purposes. However, such a research field is still under progress,
especially in the prediction of shape memory polymer behavior as well as of several important effects cha-
racterizing shape memory alloy based applications.
Moreover, the frequent use of shape memory and metallic materials in biomedical devices, particularly
in cardiovascular stents, which are permanently implanted in the human body and experience millions of
in-vivo cycles induced by the pulsing blood pressure, clearly indicates the need for a deeper understanding
of fatigue and fracture failure in microsize components. In particular, the development of a reliable stent
design procedure against fatigue is still an open and debated subject in scientific literature.

Motivated by the described framework, the present thesis is dedicated to several research issues in-
volving the advanced constitutive, numerical and fatigue modeling of elastoplastic and shape memory
materials.

The thesis is divided into two main parts and an appendix. The first part addresses the constitutive
and numerical modeling of elastoplastic and shape memory materials. The second part is dedicated to the
fatigue modeling of elastoplastic and shape memory materials. An appendix gives a short introduction to
convex analysis and to the numerical software used in the present thesis. In the following, we will shortly
comment on the individual chapters.

PART I: Constitutive and numerical modeling of elastoplastic and shape memory materials

The first part of the thesis is organized as follows.
Chapter 1 is devoted to a brief summary of the fundamental concepts of Continuum Mechanics and

Elasticity in order to prepare the framework for the study of non-linear inelastic material behavior.
Then, motivated by the similarities between the structures of equations representing shape memory and
elastoplastic material behavior, Chapter 2 presents the fundamental concepts of the classical J2 elastopla-
sticity theory and of the mathematical modeling of such phenomenon, in order to prepare the framework

1
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for the analysis of several computational approaches relevant for the numerical solution of complex ini-
tial boundary-value problems. Chapter 3 presents a detailed and critical analysis of several computational
approaches available from the literature for J2 perfect plasticity in order to investigate possible solution
algorithms to be then applied to shape memory material models. Chapter 4 is devoted to the numerical in-
vestigation of two integration algorithms for J2 elastoplasticity with linear isotropic kinematic hardening,
i.e., the return-mapping and the Fischer-Burmeister complementarity algorithms.

Chapter 5 presents an introduction to shape memory alloys by recalling the historical background,
material properties, and applications. Then, Chapter 6 is devoted to a literature review on shape memory
alloy constitutive modeling. The chapter concludes with the description of three well-known and widely ac-
cepted in practice phenomenological models, i.e., the models by Souza et al. (1998), Auricchio et al. (2009,
2011), and Boyd and Lagoudas (1996); Lagoudas et al. (2012). The explicit time-integration scheme for
solving the constitutive equations of the model by Boyd and Lagoudas (1996); Lagoudas et al. (2012)
is derived. Chapter 7 proposes to develop a refined, flexible and general three-dimensional phenomeno-
logical constitutive model for shape memory alloys. Such a ’flexible’ model takes into account several
physical phenomena and it is numerically treated through the effective and efficient procedure investigated
in Chapter 4, consisting in the replacement of the classical set of Kuhn-Tucker inequality conditions by the
Fischer-Burmeister function. Chapter 8 is devoted to a detailed numerical and experimental investigation
of shape memory alloys to assess the reliability of the ’flexible’ model as well as the effectiveness of its
numerical counterpart. In particular, numerical predictions are compared to experimental data available
from the literature and the finite element analysis of a real device is presented. Then, an experimental inve-
stigation of NiTi actuators springs, conducted in SAES Getters, is presented and the results are compared
to numerical predictions.

Finally, Chapter 9 focuses on the experimental analysis, constitutive modeling and numerical simula-
tion of shape memory polymers. In particular, the chapter presents an experimental campaign on semi-
crystalline shape memory polymers, conducted in the Basic Chemicals and Plastics Research Center of
Versalis (ENI), and proposes to develop a new predictive one-dimensional phenomenological model asso-
ciated to its numerical counterpart, based on the Fischer-Burmeister function.

PART II: Fatigue modeling of elastoplastic and shape memory materials

The second part of the thesis is organized as follows.
Chapter 10 starts with an overview of the fatigue problem in metals by recalling general concepts on the

phenomenon, historical examples, and standard literature approaches. Then, Chapters 11 and 12 present
an overview of the state of art in polycylic (or high-cycle) and oligocyclic (or low-cycle) fatigue of metals,
in order to prepare the basis for the fatigue-life assessment of cardiovascular stents.

Chapter 13 provides an in-depth analysis of the fatigue-life assessment for microsize 316L stainless
steel components, which find typical applications in the biomedical field, e.g., in cardiovascular stents. To
this purpose, the chapter presents the analysis of some experimental data from the literature on 316L stain-
less steel smooth and notched microsize components by using a global computational approach. Several
aspects are discussed as the choice of an appropriate constitutive law for cyclic material behavior, fatigue
criteria based on shakedown concepts for finite and infinite lifetime, and gradient effects in relation with
hot-spot as well as average or mean volume approaches for the lifetime estimation.

Then, Chapter 14 proposes the introduction of a reliable and general methodology for the numerical
fatigue-life assessment of cardiovascular balloon-expandable stents. To this purpose, the main idea is to
combine advanced computational methods and fatigue prediction techniques with the experimental fatigue
data investigated in Chapter 13, in order to lay down the basis for a complete fatigue-life methodology for
balloon-expandable stents.

Finally, Chapter 15 concludes by reviewing the actual knowledge on the fatigue of shape memory
alloys, with a special focus on the fatigue of cardiovascular self-expanding stents.
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Appendix

The appendix of the thesis is organized as follows.
Appendix A presents a brief introduction to convex analysis, particularly useful to understand the ma-

thematical theory of elastoplasticity, presented in Chapter 2, within a convex-analytic context.
Appendix B presents a detailed introduction to the innovative Mathematica packages, called AceGen

and AceFEM, developed by Joze Korelc, Professor at the Faculty of Civil and Geodetic Engineering of the
University of Ljubljana, and recently released by Wolfram Research. Such packages, extensively used in
the present thesis, bring to Mathematica a robust and optimized architecture for a rapid numerical proto-
typing and a finite element analysis.
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PART I
Constitutive and numerical modeling

of elastoplastic and
shape memory materials





Chapter 1

Continuum Mechanics and Elasticity

This Chapter is devoted to a brief summary of the fundamental concepts of Continuum Mechanics and
Elasticity in order to prepare the framework for the study of non-linear inelastic material behavior, that is
the object of next chapters.

The Chapter is organized as follows. Section 1.1 presents a review on the notation used throughout
the thesis. Section 1.2 focuses on the kinematics of a deformable material body. Then, Section 1.3 briefly
presents the formulation of the static and dynamic equilibrium for a material body within the context of
the three-dimensional infinitesimal theory. Section 1.4 reviews the constitutive equation for linear elastic
isotropic materials. Section 1.5 focuses on the first and second laws of thermodynamics and, particularly, on
the special case of linear elastic material bodies undergoing isothermal transformations. Finally, Section 1.6
presents the classical displacement local formulation of the initial boundary-value problem of equilibrium
for a deformable body constituted of linear elastic material.
For a detailed discussion on the present topic, the reader is referred to, e.g., (Ciarlet, 1993; Gurtin et al.,
2010; Lemaitre and Chaboche, 1994).

1.1 Review on notation

Vectors and tensors

The present thesis deals with different types of mathematical objects, namely with scalars, second-order
tensors and fourth-order tensors as well as with generalized vector and matrix operators. In particular,
we denote scalars with italic letters like a, α, A; vectors, second-order tensors and generalized vector
operators with boldface letters like a, α, A, Σ; fourth-order tensors and generalized matrix operators
with uppercase bold blackboard letters like A, G.
In the following, we adopt the summation or Einstein convention for repeated indices1.

We start by referring to a three-dimensional Euclidean space, <3, and by making use of a Cartesian
coordinate system equipped with an orthonormal basis, (e1, e2, e3), to which components of vectors and
tensors are systematically referred.

A vector, a ∈ <3, is identified by the ordered set {ai}T , for i = 1, 2, 3, which defines its coordinates
with respect to the canonical basis, such that a = aiei. We can adopt the following notations for vectors
of <3:

• Compact: a

1The summation or Einstein convention requires that a repeated index in a multiplicative term implies the presence of a summation
over the possible index range. Consistently, a non-repeated index in a multiplicative term implies that it may assume indifferently any
value in the possible index range.
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• Indicial: ai = a|i

• Engineering: {a} = {a1, a2, a3}T

The scalar product of two vectors a and b is defined by:

a · b = aibi (1.1)

while the Euclidean norm of a vector a by:

‖a‖ =
√

a · a (1.2)

The three-dimensional Euclidean space, <3, with the natural operations introduced above forms a vector
space, indicated in the following as lin.
The cross product or vector product of two vectors a and b is a vector c, orthogonal to both a and b, with
length equal to the area of the parallelogram defined by the vectors a and b and direction defined according
to the right-hand rule. The following expression results:

c = a× b = (aiei)× (bjej) = aibj (ei × ej) (1.3)

for i, j = 1, 2, 3.
Second-order tensors are objects defined to generalize such a property in the sense that they operate

on a vector returning a vector. Thus, a second-order tensor, τ , is defined as a linear operator, mapping
vectors into vectors. Clearly, dealing with a three-dimensional space, to completely define the action of a
second-order tensor, it is necessary to consider at least the action on three independent vectors of lin, such
as the three basis vectors. Since the action of the second-order tensor on the three basis vectors is to return
three new vectors, we may conclude that second-order tensors are in general identified through a set of nine
scalar components.

The fundamental operation to construct the space of second-order tensors is the tensor product of two
vectors a and b, defined as:

(a⊗ b) c = (b · c) a ∀a,b, c ∈ lin (1.4)

The space of second-order tensors with the natural operation defined in Eq. (1.4) forms a vector space,
indicated in the sequel as Lin.
We can adopt the following notations for second-order tensors of Lin:

• Compact: τ

• Indicial: τij = τ |ij

• Engineering: [τ ] =

 τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33


The tensor products of the basis vectors of lin, (ei ⊗ ej), are a set of second-order tensors, providing
a suitable basis for expressing the components of second-order tensors of Lin. In particular, we define
the ij-th component of a tensor τ as τij = ei · τej , which implies that the second-order tensor τ can be
expressed in component form as τ = τij (ei ⊗ ej).
The transpose of a second-order tensor τ is defined by the following relation:

τT |ij = τji (1.5)

while the trace is a scalar-valued function defined as:

tr(τ ) = τii (1.6)
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The scalar product or double-dot product of two second-order tensors σ and τ is a scalar defined by:

σ : τ = tr(τTσ) = σijτij (1.7)

The Euclidean norm of a second-order tensor τ , induced by the scalar product, is:

‖τ‖ =
√
τ : τ (1.8)

The multiplication or combination of two second-order tensors σ and τ is a second-order tensor, defined
as:

η = στ such that ηij = σikτkj (1.9)

A unique additive decomposition of any second-order tensor τ is given by the sum of its deviatoric part,
τ dev , and its volumetric or spherical part, τ vol, respectively defined as:

τ vol =
1

3
tr(τ ) I

τ dev = τ − 1

3
tr(τ ) I

(1.10)

such that:
τ = τ vol + τ dev (1.11)

where I is the second-order identity tensor, defined by the relation Ia = a ∀a ∈ lin.
A fourth-order tensor is defined as a linear operator mapping the space of second-order tensors, Lin,

onto itself. To properly define the action of a fourth-order tensor, it is necessary to consider the action on a
second-order tensor basis; since the action of a fourth-order tensor on a second-order tensor is to return a
second-order tensor, we may conclude that fourth-order tensors are in general defined by a set of eighty-one
scalar components.

The fundamental operation to construct the space of fourth-order tensors is the dyadic product of two
second-order tensors τ and σ, defined as to return a fourth-order tensor D:

D = τ ⊗ σ (1.12)

such that:
Dη = (τ ⊗ σ)η = (σ : η) τ = tr(ηTσ) τ ∀η ∈ Lin (1.13)

The space of fourth-order tensors with the natural operation introduced in Eq. (1.12) forms a vector space,
indicated in the sequel by Lin.
We can adopt the following notations for fourth-order tensors of Lin:

• Compact: D

• Indicial: Dijkl = D|ijkl
The tensor products between the second-order basis tensor provide a suitable basis for expressing the
components of a fourth-order tensor of Lin. In particular, we define the ijkl-th component of a tensor D,
as follows:

Dijkl = (ei ⊗ ej) : D (ek ⊗ el) (1.14)

such that the fourth-order tensor D can be expressed as:

D = Dijkl (ei ⊗ ej)⊗ (ek ⊗ el) (1.15)

The action of a fourth-order tensor D on a second-order tensor τ is denoted as follows:

σ = Dτ such that σij = Dabklτkl (1.16)
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The fourth-order identity tensor, I, is defined to satisfy the relation Iτ = τ ∀τ . A splitting into the
volumetric and deviatoric parts of I in the form:

I = Ivol + Idev (1.17)

is achievable by setting: 
Ivol =

1

3
I⊗ I

Idev = I− 1

3
I⊗ I

(1.18)

With the above positions, the volumetric and deviatoric part, τ vol and τ dev , of any second-order tensor, τ ,
defined in Eq. (1.10), are respectively given by:{

τ vol = Ivol τ
τ dev = Idev τ

(1.19)

In some cases, we make also use of algebraic vectors orm-tuples. For instance, them-component alge-
braic vector, ξ, can be equivalently indicated in compact or algebraic notation as ξ = (ξk) = (ξ1, ..., ξm).
It is noted that components, ξk, with k = 1, ...,m, may be objects of different type, namely scalars, vectors
or tensors. Similarly, in some cases, we make also use of algebraic or matrix operators. Such matrix
operators, generally represented in engineering notation as:

[G] =

[
G11 G12

G21 G22

]
(1.20)

It is noted that components, Gij , may be objects of different type, namely scalars, second-order tensors or
fourth-order tensors.
The use of algebraic vectors and matrix operators will be specified whenever needed in order to avoid
confusion.

Invariants of second-order tensors

The algebraic problem of finding every scalar, λ, and every non-zero vector, q, such that τq = λq leads to
the standard eigenvalue problem, which consists of solving the characteristic equation:

det (λI− τ ) = 0 (1.21)

or equivalently:

λ3 − I1λ2 + I2λ− I3 = 0 (1.22)

Here, I1, I2, and I3 are the principal scalar invariants of τ , defined as:
I1 = tr(τ ) = λ1 + λ2 + λ3

I2 =
1

2

[
tr(τ ) 2 − tr(τ 2)

]
= λ1λ2 + λ2λ3 + λ1λ3

I3 = det τ = λ1λ2λ3

(1.23)

where the scalars, λ1, λ2, and λ3, are the eigenvalues of τ as well as the roots of the characteristic equation
(1.21) (a multiple root is counted repeatedly according to its multiplicity). The eigenvalues of τ are often
referred to as the principal components of τ .
The gradient of a scalar field, φ = φ (x), defined on lin, is defined as:

∇φ =
∂φ

∂xi
εεεi (1.24)
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The divergence and the gradient of a vector field, u = u (x), defined on lin, are respectively a scalar and
a second-order tensor field, defined as:

divu =
∂ui
∂xi

∇u =
∂ui
∂xj

ei ⊗ ej

(1.25)

The divergence of a second-order tensor, τ , defined on lin, is a vector defined as:

divτ =
∂τij
∂xj

(1.26)

The derivative of a scalar-valued function, f = f (τ ), defined on Lin, with respect to τ is defined as a
second-order tensor in the following form:

∂f (τ )

∂τ
=
∂f (τ )

∂τij
ei ⊗ ej (1.27)

For a time-dependent quantity, z, we denote with ż its partial derivative with respect to time, t.

1.2 Kinematics of a material body

Kinematical relations concern the description of the deformation and motion of a material body, the deriva-
tion of strain measures, as well as the time derivatives of kinematical quantities. All kinematical relations
are needed within the constitutive equations and the weak formulation of balance laws.

Material body

We consider a body,B, that at the macroscopic level may be regarded as composed of material continuously
distributed in space. We assume that at any time instant, t, the body, B, can be identified with a closed
subset, Ω ⊂ <3, such that B ≡ Ω ⊂ <3. Accordingly, it is possible to associate any material point in the
body, B, to a point X ∈ Ω ⊂ <3. Such an identification procedure allows to treat the material body as a
continuum.

In the present context, we start by addressing the kinematics of the body which is the common starting
point to describe the behavior of general continuous media. As it is well known, such a framework remains
independent of what acts on the body and of the constitution of the body itself.

Change of configuration

We consider two distinct time instants, t0 and t, such that t0 < t, referred to as initial and current time
instant, respectively. At time t0 the material body, B, can be identified with a subset Ω0 ⊂ <3, indicated
as initial or reference configuration, such that at the same time instant the generic material point in B can
be identified with a corresponding point X ∈ Ω0. At time t, the material body, B, can be identified with a
subset Ω ⊂ <3, indicated as current configuration, such that at the same time instant the generic material
point in B can be identified with a corresponding point x ∈ Ω2.

It is possible to construct a map between the reference and the current configuration, indicated, in
general, as change of configuration or deformation map, ϕ = ϕ (X), expressed as:

x = ϕ (X) (1.28)
2 The convention indicates the reference position vector, X, with an upper case boldface letter and the current position vector, x,

with a lower case boldface letter. More generally, either using a compact or an indicial notation, quantities relative to the reference
configuration are indicated with upper case letters and quantities relative to the current configuration are indicated with lower case
letters.
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The gradient of the deformation map, or deformation gradient, F, is defined as:

F = ∇Xϕ (1.29)

Without distinguishing between the deformation map, ϕ, and the current position, x, the deformation
gradient can be also written as:

F = ∇Xx (1.30)

It can be shown that ϕ maps an infinitesimal vector, dX, with origin in X, into an infinitesimal vector, dx,
with origin in x, as follows:

dx = FdX (1.31)

Accordingly, the deformation gradient is a two-point second-order tensor; in fact, it is a second-order ten-
sor since it maps vectors into vectors, but it is two-point since one component is relative to the reference
configuration and one component is relative to the current configuration. This is consistent with the fact
that F operates on vectors defined in the reference configuration and it returns vectors defined in the current
configuration. The deformation gradient, F = F (X), is in general function of position, since the defor-
mation map is in general non uniform as well. Likewise, ϕ is in general a non-linear map in space and F

results as its pointwise linearization.

Strain tensor

It is possible to prove that the deformation gradient, F, being a pointwise-defined second-order tensor,
characterizes the strain status of the point X neighborhood. In particular, given F, it is possible to compute
the relative change in length of a generic fiber emanating from X, as well as the change in angle between
two fibers emanating from X.

Consider an infinitesimal vector, dS, with origin in X and expressed as dS = NdS, with N unit vector,
and indicate with ds the vector with origin in x, obtained from dS through the deformation map, ϕ, i.e.,
ds = FdS = FNdS.
After defining the stretch of the vector dS as the elongation of the vector through the deformation map,
that is, as the ratio between the norm of the vector after and before the mapping:

λ =
‖ds‖
‖dS‖ (1.32)

and recalling that ‖N‖ = 1, it holds:

λ2 = CN · N = λ2 (N) (1.33)

where C is the right Cauchy-Green deformation tensor, defined as:

C = FTF (1.34)

Accordingly:

λ =
√

CN · N (1.35)

i.e., given F and hence C, we can compute the elongation of any fiber with origin in X and extremum in a
sufficiently small neighborhood of X. Such an elongation is a function of the direction N.

Consider two infinitesimal vectors, S1 and S2, with origin in X and expressed as S1 = N1dS1 and
S2 = N2dS2, respectively, with N1 and N2 unit vectors. Then, indicate with s1 and s2 the vectors with
origin in x, defined through the deformation map as ds1 = FdS1 and ds2 = FdS2, respectively. If θ0 is
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the angle between dS1 and dS2 and θ is the angle between s1 and s2, the difference γ = θ − θ0 represents
the angle variation. Also this quantity can be expressed in terms of F since:

cos θ =
ds1 · ds2

‖ds1‖ ‖ds2‖
=

FN1 · FN2

‖FN1‖ ‖FN2‖
(1.36)

Despite the fact that F and C represent a correct tool to calculate the local state of strain, neither of
them is an appropriate strain measure. In fact, in the undeformed configuration, we have F = C = I, while
we would expect a proper strain measure to be zero in the undeformed configuration. Such a lacking can
be avoided by introducing the Lagrangian or Green strain tensor, E, defined as:

E =
1

2
(C− I) =

1

2

(
FTF− I

)
(1.37)

The second-order tensor, e, called Eulerian or Almansi strain tensor, is defined as:

e =
1

2

(
I− b−1

)
(1.38)

where the second-order tensor, b, is the left Cauchy-Green or Finger deformation tensor, defined as:

b = FFT (1.39)

It is convenient to describe the change of configuration introducing the displacement field, u = u (X),
defined as the pointwise difference between the current and the reference vector position, i.e.,

u (X) = x (X)−X (1.40)

Then, the current position vector, x, is given by the sum of the reference position and displacement vectors,
as follows:

x = ϕ (X) = X + u (X) (1.41)

The expression of the deformation map in terms of displacement gives rise to alternative expressions of the
strain tensors introduced previously. For example, the deformation gradient, F, becomes:

F =
∂x

∂X
= I +∇Xu = I + H (1.42)

Moreover, we may write: C = FTF = I + H + HT + HTH

E =
1

2
(C− I) =

1

2

(
H + HT + HTH

) (1.43)

The Lagrangian strain tensor, E, defined in Eq. (1.37), admits the splitting:

E = E1 + E2 = εεε+ E2 (1.44)

which identifies the linear and non-linear parts of E, indicated respectively as E1 =
(
H + HT

)
/2 and

E2 =
(
HTH

)
/2.

Small displacement gradient

In many structural engineering problems the deformations can be regarded as small in some sense. Such an
assumption, which is rigorously formalized, obviously introduces an approximation in the treatment but,
nevertheless, permits to simplify the problem formulation and thus remains of notable interest.

We consider the case of a motion with a small displacement gradient,∇u, that is:

‖∇Xu‖ = ε with ε << 1 (1.45)

Without entering into details (Gurtin et al., 2010), in such a case, we have:
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• the non-linear term, introduced in Eq. (1.43), can be neglected;

• tensors E and εεε coincide as well as C and b;

• the displacement gradient corresponding to a rigid deformation is skew.

In the following chapters, we indicate a deformation map characterized by a small displacement gradient
field as a small deformation map or simply we talk about small deformations, that is:

Small deformations ⇔


‖∇Xu‖ << 1

εεε =
1

2

[
∇Xu + (∇Xu)

T
] (1.46)

Volume change

We are now interested in the evaluation of the unit volume variation produced in the change of configuration
of the body by means of the deformation map, ϕ.
The volume, V = V (a,b, c), of a parallelepiped, defined by vectors a, b, and c, is given by:

V = (a× b) · c (1.47)

Then, we consider a parallelepiped of material described by a triad of infinitesimal vectors, {dS1, dS2, dS3},
expressed respectively as a product of unit vectors, N1,N2,N3, and of infinitesimal lengths, dS1, dS2, dS3.
Accordingly, the infinitesimal volume, dV , of the parallelepiped is given by:

dV = [(N1 ×N2) · N3] dS1dS2dS3 (1.48)

The deformed parallelepiped is described by vectors, {FN1,FN2,FN3}, multiplied respectively by
quantities, dS1, dS2, dS3. Accordingly, the corresponding infinitesimal volume, dv, is given by:

dv = [(FN1 × FN2) · FN3] dS1dS2dS3 (1.49)

Hence, we get:

dv

dV
= det F = J (1.50)

where the classical notation, det F = J , indicates the Jacobian of the deformation gradient.
The above formula can be specialized in the case of small deformations, as follows:

J = det F = det I +∇u = 1 + divu (1.51)

A body transformation that produces no volume change is said to be isochoric, i.e.,

J = 1 ∀x ∈ Ω (1.52)

Accordingly, for an isochoric infinitesimal deformation process, the displacement field satisfies the condi-
tion:

tr(εεε (u (x))) = divu (x) ∀x ∈ Ω (1.53)

A material that cannot undergo any transformation that is accompanied by change in volume is called
incompressible.
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1.3 Equilibrium for a material body

1.3.1 Static equilibrium

This Section starts by investigating the conditions of static equilibrium.
Given a body, B, in a configuration, Ω, we postulate that the interaction between the external world and

the body itself can be described through two force fields:

• a surface or contact force field, t, with dimension of force per unit area and defined on a portion of
the current boundary surface, ∂Ωt;

• a volume or body force field, b, with dimension of force per unit volume and defined on the current
configuration, Ω.

We also postulate that the interaction between any internal portion, Ω
′
, of the body in the current configura-

tion, Ω, and the remaining part of the body, Ω/Ω
′
, can be described through a surface force field, indicated

also as traction force field, with dimension of force per unit area and defined on ∂Ω
′
. Such interaction

forces are assumed to be functions of the local outward normal to Ω
′

and, accordingly, we indicate such a
field with tn, where subscript, n, expresses the dependency on the normal, n.
Then, we can define the force resultant, r = r

(
Ω
′
)

, and the moment resultant, m = m
(

Ω
′
)

, relative to

Ω
′ ⊆ Ω, as follows: {

r =
∫

Ω′
bdv +

∫
∂Ω′

tnda

m =
∫

Ω′
(x× b) dv +

∫
∂Ω′

(x× tn) da
(1.54)

where x is the current position vector and the resultant momentum is computed with respect to a generic
origin, o.
Now, we may state the following Axiom:

STATIC EQUILIBRIUM AXIOM. A deformable body is in equilibrium if and only if the force resultant,
r = r

(
Ω
′
)

, and the force momentum, m = m
(

Ω
′
)

, on each portion, Ω
′
, of the body are zero, i.e., a

body, B, in a configuration, Ω, is in equilibrium if and only if:{
r = 0 ∀Ω′ ⊆ Ω

m = 0 ∀Ω′ ⊆ Ω
(1.55)

Eqs. (1.55)1 and (1.55)2 are indicated as linear momentum and angular momentum balance laws, respec-
tively.

We may note that the quantity tn, introduced in system (1.55) through system (1.54), is unknown.
Thus, we need to investigate the actions that internal parts of the body mutually exchange. To this purpose,
we introduce a surface, Σ, ideally dividing the body, Ω, in two parts. Assuming that the whole body is
in equilibrium, by the static equilibrium axiom, we have that each single part of the body should be in
equilibrium, hence, also the two parts. Without showing all the calculations (Gurtin et al., 2010), we have:∫

Σ

(tn + t−n) da = 0 (1.56)

which, recalling the arbitrariness of the surface Σ, implies:

tn = −t−n (1.57)

Eq. (1.57) is known as action-reaction principle or Cauchy reciprocal principle or first Cauchy theorem.
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Stress tensor

Now, we introduce a right-angle tetrahedron, T , contained in the body, and a coordinate system with origin,
o, in the tetrahedron right-angle vertex and axes given by the tetrahedron edges, respectively with lengths
along the coordinate axes equal to ε1, ε2, ε3. Moreover, we indicate with pi (with i = 1, 2, 3) the other
tetrahedron vertices, with ei the unit vector along the i-th coordinate axis, with v the volume, with ai
the area of the face with unit normal −ei, and with an the fourth area describing the tetrahedron, having
normal n.
We consider the tetrahedron equilibrium, taking into account the traction vector fields acting on the four
sides and the body force field acting on the volume. The following integral force balance holds:∫

v

bdv +

3∑
i=1

∫
ai

t−eida+

∫
an

tnda = 0 (1.58)

Omitting, for brevity, the mathematical manipulations and using the action-reaction principle, it is possible
to state that the above equilibrium condition for the tetrahedron implies the following relation:

tn = σn (1.59)

which is known as second Cauchy theorem, valid for any point internal to the body.
It is interesting to emphasize how, starting from the assumption that the traction vector tn depends on n,
this dependency is linear through a second-order tensor, σ, known as Cauchy stress tensor. Accordingly,
knowing σ in a point, it is possible to compute the stress vector, tn, acting on any surface of normal n,
which is equivalent to say that σ contains all the information relative to the local state of stress.

Static equilibrium equations

Now, we transform the equilibrium requirements from the global integral format of system (1.55) to a local
differential format.
To this purpose, we recall that, given any tensor field, G, defined on a region, Ω

′
, with normal, n, and

boundary, ∂Ω
′
, the divergence theorem of a tensor field states:∫

∂Ω′
Gn da =

∫
Ω′

divG dv (1.60)

Applying this equality to Eq. (1.55)1, we get the corresponding local form of the equilibrium equation in
the following form:

divσ + b = 0 (1.61)

which corresponds to a set of three linear partial differential equations.
On the contrary, the corresponding local form of the angular momentum balance implies the symmetry of
the Cauchy stress tensor, σ, i.e., σ = σT ; see, e.g., (Gurtin et al., 2010) for details.

In conclusion, the local form of the balance equations can be rewritten as follows:
divσ + b = 0 in Ω

σ = σT in Ω

t = σn on ∂Ωt

(1.62)

1.3.2 Dynamic equilibrium

Without entering into details (Gurtin et al., 2010), we recall only that the local form of the equation of
motion takes the form:

divσ + b = ρü (1.63)



1.4. CONSTITUTIVE EQUATION 17

where ρü denotes the acceleration term. Again, the local form of the angular momentum balance implies
the symmetry of the Cauchy stress tensor, σ, i.e., σ = σT .

Remark 1.3.1. All the equilibrium considerations presented so far are relative to the natural configuration
where equilibrium should hold, hence they are all relative to the current configuration, Ω, and written in
terms of geometrical quantities relative to the current configuration, Ω. However, thanks to the invertibility
of the map, ϕ, and relating the current configuration, Ω, to the reference configuration, Ω0, we could also
write:

• equilibrium equations relative to the current configuration, Ω, in term of geometrical quantities
relative to the reference configuration, Ω0;

• equilibrium equations relative to the reference configuration, Ω0, in term of geometrical quantities
relative to the reference configuration, Ω0.

In particular, when a small deformation regime is considered, the distinction between reference and current
configuration may be ignored. In such a case, the alternative forms of equilibrium listed above coincide.

1.4 Constitutive equation

We have so far described the equations of motion and the strain-displacement relations within the frame-
work of infinitesimal deformation. In component form, these equations are given by a set of nine partial
differential equations: three from the balance law and six from the strain-displacement relation (admitting
the symmetry of εεε). Correspondingly, we have a total of fifteen unknowns represented by the six indepen-
dent components of the strain and of the stress and by the three displacement components. It is clear that
six additional equations are needed in order to have a well-defined problem.
From physical considerations, we may infer that the missing equations should regard the behavior of the
material constituting the body. This further set of equations are the constitutive equations.

In the present Section, we summarize the basic equations and properties related to linear elastic mate-
rials.

1.4.1 Linear elastic material body

A material body is said to be elastic if the stress tensor, σ, is entirely determined by the current state of
deformation. Assuming the strain tensor, εεε, as a measure of the local state of deformation, we have:

σ = σ (εεε) (1.64)

Such a position implies that the stress cannot depend on the deformation history and, in particular, on the
path followed to reach the actual state. However, introducing the density of internal work done in going
from an initial strain, εεεi, to a final strain, εεεf , on a path, Γεεε, as:

W int
Γεεε =

∫
Γεεε

σ : dεεε (1.65)

it is in general possible that W int
Γεεε

may depend on the specific strain path, Γεεε.
In the absence of internal constraints and under proper mathematical conditions, Eq. (1.64) can be

inverted, as follows:

εεε = εεε (σ) (1.66)
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It is also interesting to consider an incremental format of Eq. (1.64), in the form:

σ̇ = Ctgε̇εε (1.67)

where Ctg is the tangent elastic tensor, defined as:

Ctg =
∂σ

∂εεε
(1.68)

An elastic material is said to be linear if stress and strain are related through a (linear) relation of the
type:

σ = Cεεε (1.69)

where the fourth-order tensor, C, is called elastic tensor and presents the following properties:

• C possesses the so-called minor symmetries and thus presents, at most, twenty-one independent
components, since, by definition, relates symmetric second-order tensors;

• C is said to be positive definite if:

εεε : Cεεε > 0 ∀εεε ∈ Linsym (1.70)

• C is said to be strongly elliptic if:

(a⊗ b) : C (a⊗ b) > 0 ∀a,b ∈ lin (1.71)

• C is said to be pointwise stable if there exists a constant α > 0 such that:

εεε : Cεεε > α ‖εεε‖2 ∀εεε ∈ Linsym (1.72)

Clearly pointwise stability implies (but is not implied) strong ellipticity. Moreover, pointwise sta-
bility is equivalent to pointwise positive definiteness, under the assumption that C is continuous on
Ω.

Inverting Eq. (1.69), we obtain:

εεε = Aσ (1.73)

where the fourth-order tensor, A, is called compliance tensor and it is the inverse of C.

1.4.2 Isotropic elastic material body

A material that has no preferred directions in a way that it resists to external agencies independently of its
orientation is said to be isotropic. The property of isotropy for a linear elastic material reduces the twenty-
one independent components of the elastic tensor, C, to two and, from a mathematical standpoint, such a
property amounts to say that the elastic tensor, C, presents also the so-called major symmetries.
Such an hypothesis admits the following representation:

C = λ (I⊗ I) + 2µII (1.74)

where constants λ and µ are called Lamé moduli and depend on the material.
Thus, Eq. (1.64) can be rewritten as follows:

σ = λ tr(εεε) I + 2µεεε (1.75)
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Bearing in mind the previous definition and recalling the volumetric/deviatoric splitting of the fourth-order
identity tensor, presented in Eq. (1.17), we may perform the decoupling into volumetric and deviatoric
parts of the elastic tensor, as well. Thus, the following relationship is derived:

C = λ (I⊗ I) + 2µII = 3KIvolεεε+ 2µIdevεεε (1.76)

with 3K = 3λ+ 2µ.
Recalling the split of a second-order tensor into its volumetric and deviatoric components, introduced in
Eq. (1.10), we may write: 

σ = pI + s with p =
1

3
tr(σ)

εεε =
1

3
θI + e with θ = tr(εεε)

(1.77)

where p and θ are, respectively, the pressure and the volumetric deformation, while σ and e are, respec-
tively, the stress and strain deviator.
The uncoupled volumetric and deviatoric constitutive equations, thus, read:{

p = Kθ

s = 2µe
(1.78)

The scalar coefficient, µ (denoted by G in the following), is referred to as the shear modulus, while the
material coefficient, K, is called the bulk modulus and represents a measure of the ratio between the
spherical stress and the change in volume.

With the above relation, it is possible to invert Eq. (1.75) and to obtain a useful expression of strain in
terms of stress:

εεε = E−1 [(1 + ν)σ − ν tr(σ) I]λ tr(εεε) I + 2µεεε (1.79)

where E is the Young’s modulus and ν the Poisson’s coefficient. The above linear relationship between
strain and stress, valid for isotropic media, is commonly referred to as Hooke’s law.

1.5 Thermodynamic setting for Elasticity

A common procedure in Mechanics of Solids is to introduce a constitutive model as a set of relations that
hold from a thermodynamic standpoint (Gurtin et al., 2010). Precisely, the most favorable context is within
a thermodynamic theory. In the present Section, we present the linear elastic material behavior in such a
framework.

Suppose that a material body, Ω, is subjected to a body force, b, in its interior and to a surface traction,
t, upon its boundary. Analogously, the body is acted by thermal equivalents of the previous mechanical
sources: a heat source, r, per unit volume in the interior and a heat flux, q, across its boundary unit area.

The first law of thermodynamics, which is an energy balance, indicates that for any part, Ω
′
, of the

body, Ω, the rate of change of the total energy plus the kinetic energy equals the amount of work done
on that part by the mechanical forces plus the heat supply. Mathematically, the law can be formulated as
follows:

d

dt

∫
Ω′

(
e+

1

2
ρ ‖u̇‖2

)
dv =

∫
Ω′

b · u̇dv +

∫
∂Ω′

tn · u̇da+

∫
Ω′
rdv −

∫
∂Ω′

q · ṅda (1.80)

where e is the internal energy density, u̇ the velocity field, and ∂Ω
′

the boundary of Ω
′
. The minus sign

before the last integral in Eq. (1.80) appears, since the heat flux vector, q, points outward the surface, Ω
′
,
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as well as n.
The preceding formulation can be simplified by applying the divergence theorem (1.60) to the term invol-
ving the surface traction which, invoking the symmetry of σ, becomes:∫

∂Ω′
tn · u̇da =

∫
Ω′
σ : ε̇εεdv +

∫
Ω′

divσ · u̇dv (1.81)

Substituting Eq. (1.81) into Eq. (1.80) and recalling the equation of balance of linear momentum, the first
law can be rewritten in the local form, as follows:

ė = σ : ε̇εε+ r − divq (1.82)

It is useful to introduce also the notions of entropy per unit volume or entropy density, η. This notion
is given through the absolute temperature, T > 0. Accordingly, it is assumed that the entropy flux across
the bounding surface, ∂Ω

′
, into a material body, Ω

′
, is given by:∫

∂Ω′
T−1q · nda (1.83)

while the entropy supplied by the exterior is:∫
Ω′
T−1rdv (1.84)

The second law of thermodynamics states that the rate of increase in entropy in the body is not less than
the total entropy supplied to the body by the heat sources. The second law can be thus formalized as an
integral inequality, as follows:

d

dt

∫
Ω′
ηdv ≥

∫
Ω′
T−1rdv −

∫
∂Ω′

T−1q · n da (1.85)

As done for the first law, we can derive the local form of the second law, as follows:

η̇ ≥ −div
(
T−1q

)
+ T−1r (1.86)

Inequalities (1.85) and (1.86) are known as the Clausius-Duhem form of the second law of thermodynamics.
After introducing the Helmholtz free-energy, Ψ, defined by:

Ψ = e− ηT (1.87)

and recalling the local form of the first law (1.82), we rewrite Eq. (1.86) in the following form, known as
local dissipation inequality:

Ψ̇ + ηṪ − σ : ε̇εε+ T−1q ·∇T ≤ 0 (1.88)

Since the arguments of the following Sections will always refer to isothermal processes, it is convenient
to specialize the local dissipation inequality (1.88) to such a case. Assuming that the body temperature, T ,
is uniformly constant and that the reference material body does not experience any exterior heat supply, q,
the local dissipation inequality simplifies to:

Ψ̇− σ : ε̇εε ≤ 0 (1.89)
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INITIAL BOUNDARY-VALUE PROBLEM for ISOTROPIC LINEAR ELASTICITY

Find the displacement field, u (x, t), which, for any x ∈ Ω and any t ∈ [0, T ],
solves the following governing equations:

1. equation of dynamic equilibrium: divσ + b = ρü

2. strain-displacement relation: εεε =
1

2

[
∇u + (∇u)

T
]

3. constitutive relation: σ = Cεεε

and satisfies the:

1. boundary conditions:

{
u = u on ΓD

σn = t on ΓS

2. initial conditions:

{
u (x, 0) = u0 (x)

u̇ (x, 0) = u̇0 (x)

Table 1.1: IBVP for isotropic linear elasticity.

1.5.1 Linear elastic material body

It is possible to give a characterization of the linear elastic material behavior in the thermodynamic frame-
work. In such a sense, it is customary to define a linear elastic material as one for which the constitutive
equations take the form: {

Ψ = Ψ (εεε)

σ = σ (εεε)
(1.90)

i.e., the Helmholtz free-energy, Ψ, and the stress, σ, depending only on the strain, εεε. It is assumed that the
functions appearing in system (1.90) are sufficiently regular with respect to their argument so that they can
be differentiated as many times as required.

Substituting Eq. (1.90)1 into the local dissipation inequality (1.89), we derive:(
∂Ψ

∂εεε
− σ

)
: ε̇εε ≤ 0 (1.91)

Hence, admitting that inequality (1.91) holds for all ε̇εε, the stress, σ, is expressed through the Helmholtz
free-energy, Ψ, as follows:

σ =
∂Ψ

∂εεε
(1.92)

The stress-strain relationship of Eq. (1.69), which is the characterizing feature of linear elastic materials,
is obtained as a special case of Eq. (1.92), i.e., when the Helmholtz free-energy is a quadratic form of the
strain, as follows:

Ψ =
1

2
εεε : Cεεε (1.93)

Eq. (1.93) implies a relationship between C and Ψ of the following type:

C =
∂2Ψ

∂εεε2
(1.94)

which holds if the elastic tensor possesses the major symmetries, as already discussed.
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1.6 Initial boundary-value problem of equilibrium in Elasticity

Following the previous arguments, it is possible to formulate the mathematical problem that describes
the deformation and the stress state of an isotropic linear elastic material body under an assigned set of
external actions. For simplicity, the treatment is limited to isothermal static processes in which the effects
of temperature variations and of heat flux exchanges are neglected. Such a problem is modeled by a set of
partial differential equations posed on the body domain, plus a set of boundary conditions, assigned on the
boundary of the body, and a set of initial conditions.

Given a body with current configuration, Ω ⊂ <3, we indicate for compactness its boundary with ∂Ω

such that Γ = ΓD ∪ ΓS , with ΓD ∩ ΓS = ∅. Suppose that, for t ∈ [0, T ] ⊂ <+, a body force, b (x, t), is
assigned in Ω, a displacement field, u (x, t), is assigned on ΓD and a surface traction, t (x, t), is assigned
on ΓS . Initial values for the displacement u (x, 0) = u0 (x) and the velocity field v (x, 0) = v0 (x) are
known data as well.

With the above specifications, the formulation of the initial boundary-value problem (IBVP) for the
isotropic linear elastic body under consideration is reported in Table 1.1. Taking the displacement as the
primary unknown, the problem can be reduced to one singular partial differential equation, by solving
successively for the stress and the strain. When the problem data are such that the acceleration term can be
omitted, i.e., ü = 0, the problem is defined as quasi-static.



Chapter 2

Elastoplasticity theory

This Chapter is intended to present the fundamental concepts of the classical elastoplasticity theory and of
the mathematical modeling of such phenomenon. The elastoplastic formulation is here critically revisited
to prepare the framework for the analysis of several computational approaches relevant for the numerical
solution of complex initial boundary-value problems, that is the object of Chapter 3.

The Chapter is organized as follows. Section 2.1 starts by addressing the three-dimensional infinites-
imal elastoplastic modeling formulation within the thermodynamics with internal variables setting. Then,
Section 2.2 presents the J2 or von-Mises elastoplastic constitutive model with hardening mechanisms. Sec-
tion 2.3 presents the initial boundary-value problem of equilibrium for a deformable body constituted of
elastoplastic material. Section 2.4 recalls and revisits the principle of maximum plastic dissipation. Section
2.5 is dedicated to the recasting of the mathematical theory of elastoplasticity within a convex-analytic con-
text, which is particularly useful when dealing with non-differentiable convex functions and multi-valued
operators. The mathematical concepts used in this Section are supported by the definitions and fundamental
results on convex analysis and sub-differential calculus (Rockafellar, 1970), which are briefly reported in
Appendix A at the end of the thesis. Finally, Section 2.6 reformulates the elastoplastic constrained problem
as an unconstrained problem, by introducing appropriate complementary functions.
For further reading on the physical background, detailed equations and generalizations, the reader is re-
ferred to (Besson et al., 2010; de Souza Neto et al., 2008; Lemaitre and Chaboche, 1994; Lubliner, 1990;
Simo and Hughes, 1998), while on the mathematical theory to (Han and Reddy, 1999; Hill, 1950).

2.1 Thermodynamic setting for elastoplasticity

The continuum thermodynamic theory, presented in Section 1.5, is a suitable tool for the discussion of
elasticity and thermo-elasticity, but the same does not hold true when complex mechanic phenomena are
taken into consideration. In fact, it is often necessary to equip the thermodynamic models with a finite
number of internal variables, intended to describe irreversible processes. In such a case, the theory is
referred to as thermodynamics with internal variables and may be conveniently adopted as a plasticity
theory1.

2.1.1 Isothermal behavior

The theory of plasticity developed in the following assumes that all the transformations are isothermal, i.e.,
thermal effects as temperature variation or flux of heat are negligible.

1The first and second laws of thermodynamics remain valid, as well as the thermodynamic hypotheses of isothermal process with
no heat flux nor change in temperature in the body.

23
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2.1.2 Rate-independence

The theory of plasticity developed in the following refers to quasi-static transformations of a material
body. In other words, the considered transformations take place sufficiently slow so that the inertial term
appearing in the equation of motion (1.63) is negligible. Moreover, our discussion is here limited to the
case of a body undergoing a sufficiently slow process such that the rate-independent material response can
be taken as a good approximation of real behavior.

2.1.3 Internal variables

In order to apply the thermodynamic theory with internal variables to the context of elastoplasticity, we
need to identify the variables describing material constitutive behavior.

In the classical rate-independent plasticity framework and from a phenomenological point of view, we
regard plastic flow as an irreversible process in a material body (typically a metal), characterized in terms of
the history of the total strain, εεε, and two additional variables: the plastic strain, εεεp, and a set of strain-like
internal variables, ξ = (ξk) = (ξ1, ..., ξm), describing internal kinematic irreversible phenomena such as,
for instance, material hardening, and thus often referred to as hardening parameters. Such a set, ξ, can be
in general constituted of objects of different nature, namely second-order tensors and scalars2.

Following thermodynamic arguments, the stress-like primary and internal variables are the thermo-
dynamically conjugates to the kinematic variables. Thus, we assume as stress-like primary and internal
variables, respectively, the stress, σ, and the internal forces, χ = (χk) = (χ1, ...,χm).

In this context, the scalar product between the stress- and strain-like variables is defined as:

σ : ε̇εεp + χ · ξ̇ (2.1)

and represents either a rate of work done or the dissipation taking place as a result of plastic deformation3.
Accordingly, we could distinguish between a strain-space and a stress-space formulation of plasticity.

In a strain-driven formulation, plastic flow is described in terms of the driving variables {εεε,εεεp, ξ} and the
stress tensor, σ, is assumed as a dependent function of such variables. However, in classical plasticity, the
response functions, i.e, the yield condition and the flow rule, are formulated in stress-space in terms of the
variables {σ,χ}, as discussed in next Sections.

In the following, we focus on the strain-driven formulation of plasticity and we formulate the response
functions in stress-space. Nevertheless, implicitly we always regard {εεε,εεεp, ξ} as the independent driving
variables.

2.1.4 Thermodynamic assumptions

We assume that the Helmholtz free-energy, Ψ, and the stress, σ, are functions of the strain, εεε, and of the
strain-like internal variables, ξ, as follows:{

Ψ = Ψ (εεε, ξ)

σ = σ (εεε, ξ)
(2.2)

2The choice of not grouping the plastic strain within the internal variables class turns out to be a consequence of the thermodynamic
theory adopted, even if there are instances in which the specific model is so simple that εεεp can be identified as an internal variable,
e.g., in the case of pure linear kinematic hardening behavior.

3In compact notation and generalizing the above definitions, we may refer to the kinematic variables representing irreversible
internal phenomena with the ordered pair, P = (εεεp, ξ), called generalized plastic strain. Similarly, the ordered pair, S = (σ,χ), is
referred to as generalized stress. In this context, it is found that the scalar product between S and Ṗ is defined as S · Ṗ. In this sense,
we consider S and P thermodynamically conjugate variables of the model under consideration.
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As a consequence of the second law of thermodynamics, the stress, σ, is related to the Helmholtz free-
energy function, Ψ, as follows:

σ =
∂Ψ

∂εεε
(2.3)

The internal forces, χ, are defined as conjugate quantities to the internal variables, ξ, in the following
sense:

χ = −∂Ψ

∂ξ
(2.4)

The non-negative variation:

χ · ξ̇ = χk : ξ̇k (2.5)

is defined as internal dissipation.
Then, in order to account for non-linear irreversible effects, we consider an evolution law of the strain-like
internal variables, ξ, as follows:

ξ̇ = β (εεε, ξ) (2.6)

2.1.5 Additive decomposition of strain

The total strain, εεε, can be decomposed into two parts, the elastic strain, εεεe, and the plastic strain, εεεp, as a
consequence of the thermodynamic framework herein adopted.

We introduce the Gibbs free-energy, G = G (σ, ξ), defined through a Legendre transformation of the
Helmholtz free-energy, Ψ, assuming the stress as independent variable:

G = σ : εεε−Ψ (2.7)

The relation conjugate to Eq. (2.3) is:

εεε =
∂G

∂σ
(2.8)

After defining the following fourth-order tensors:
A =

∂εεε

∂σ

Bk =
∂εεε

∂ξk

(2.9)

for k = 1, ...,m, we compute the strain rate as:

ε̇εε = Aσ̇ + Bkξ̇k (2.10)

It is known that for crystalline materials the elastic compliance matrix, A, is independent of the irreversible
processes and hence its dependence on the variables, ξ, can be neglected. Thus, assuming A = A (σ), it
follows that Bk = Bk (ξ), for k = 1, ...,m, since:

0 =
∂

∂ξk

∂Bk
∂σ

(2.11)

It is then possible to decompose additively the strain tensor, εεε, in the form:

εεε = εεεe + εεεp (2.12)
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where the elastic strain, εεεe = εεεe (σ), depends only on the stress, while the plastic strain, εεεp = εεεp (ξ), on
the internal variables.

In the case where A is independent of σ, the elastic strain is given as a linear function of the stress by:

εεεe = Aσ (2.13)

or

σ = Cεεεe (2.14)

It is clear that the fourth-order compliance tensor, A, is the inverse of the elastic tensor, C.

2.1.6 Free-energy as a function of elastic strain and internal variables

Since Eqs. (2.3) and (2.12) imply that:

∂εεεe

∂σ
=
∂εεε

∂σ
=
∂εεεT

∂σ
=
∂ (εεεe)

T

∂σ
(2.15)

recalling a multivariable calculus theorem, we may assert the existence of a scalar potential, Ge = Ge (σ),
such that:

εεεe =
∂Ge

∂σ
(2.16)

The above potential admits the Legendre transform, Ψe = Ψe (εεεe), defined by:

Ψe = σ : εεεe −Ge (2.17)

which satisfies the following relation:

σ =
∂Ψe

∂εεεe
(2.18)

Since Eq. (2.17) holds, we have the following representation of the Gibbs free-energy, G = G (σ, ξ):

G = σ : (εεεe + εεεp)−Ψ = Ge + σ : εεεp −Ψp (2.19)

by which the inelastic part of the Helmholtz free-energy, Ψp = Ψp (ξ), results defined as:

Ψp = Ψ−Ψe (2.20)

In conclusion, the Helmholtz free-energy, Ψ = Ψ (εεε, ξ), and the Gibbs free-energy, G = G (σ, ξ), can
be additively decomposed into elastic and plastic parts, respectively, as:{

Ψ = Ψe + Ψp

G = Ge +Gp
(2.21)

Recalling the second law of thermodynamics and using definition (2.21)1, we obtain Eq. (2.18) which
leads to the reduced dissipation inequality in the alternative form:

σ : ε̇εεp + χ · ξ̇ ≥ 0 (2.22)
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2.1.7 Plastic incompressibility

Physical evidences have shown that, for metallic materials, volume changes occur almost exclusively as a
consequence of elastic deformation. Hence, it is reasonable to assume that the plastic part of the deforma-
tion is only of deviatoric or shearing type, such that:

tr(εεεp) = 0 (2.23)

which implies that εεεp = ep.
Using the above arguments on the additive decomposition of strain and the assumption on plastic incom-
pressibility, it is possible to generalize the linear elastic relations for the isotropic elastic material response,
as follows: {

p = Kθ

s = 2Gee = 2G (e− ep)
(2.24)

where: {
e = ee + ep

θ = θe
(2.25)

2.1.8 Yield surface

An yield function represents a constraint on the evolution of the stress and of the thermodynamic forces. In
the three-dimensional case, this means that at all times the state, (σ,χ), must lie in the closed connected set
Eσ , called admissible region. The interior of this set, int (Eσ), is called elastic region, while its boundary,
∂Eσ , is known as yield surface. The complement of Eσ is not attainable. Whenever (σ,χ) lies within the
interior of Eσ , purely elastic behavior takes place, while plastic loading may be observed only if (σ,χ)

evolves on the boundary of Eσ .
A convenient way to represent the constrained evolution mechanism of (σ,χ) is to introduce a convex

scalar function, f , called yield criterion, such that the admissible region is defined as:

Eσ := {(σ,χ) : f (σ,χ) ≤ 0} (2.26)

The elastic region is the interior of Eσ defined as:

int (Eσ) := {(σ,χ) : f (σ,χ) < 0} (2.27)

while the yield surface is the boundary of Eσ , defined as:

∂Eσ := {(σ,χ) : f (σ,χ) = 0} (2.28)

As explained in next sections, plastic models differ from one another in the choice of the internal variable
set and of the yield function.

2.1.9 Associative plasticity

When the yield surface is smooth, i.e., it presents a well-defined gradient at each point, recalling that(
ε̇εεp, ξ̇

)
lies parallel to the normal to ∂Eσ at (σ,χ), we may write the following important form of the

normality laws: 
ε̇εεp = γ̇

∂f

∂σ
= γ̇n

ξ̇ = γ̇
∂f

∂χ
= γ̇h

(2.29)



28 CHAPTER 2. ELASTOPLASTICITY THEORY

where γ̇ is the non-negative consistency parameter. System of equations (2.29) states that f represents a
flow potential for εεεp and ξ. Flow rules (2.29)1 and (2.29)2 are said to be associated with the yield function
in stress-space.
The following equation:

χ = −∂Ψp

∂ξ
(2.30)

in rate form, reads:

χ̇ = −∂
2Ψp

∂ξ2 ξ̇ (2.31)

Introducing the evolutive equation (2.29)2 into (2.31) and defining the fourth-order tensor:

Dk = −∂
2Ψp

∂ξ2
k

(2.32)

for k = 1, ...,m, we can recast the rate form of the hardening law (2.31) in the following form:

χ̇ = −γ̇ D
∂f

∂χ
(2.33)

where D is the (diagonal) generalized matrix operator containing the tensors Dk. Eq. (2.33) can be regarded
as a hardening law associated with the function, Ψp, which clearly reveals to be a hardening potential.
Equivalently, Eq. (2.31) represents the rate form of the mentioned hardening law which, admitting the
normality law, leads to the generalized associative hardening law (2.33) in stress-space.

A constitutive model characterized by the flow rule (2.29)1 and by the two evolutive equations (2.29)2
and (2.33), regarding the internal hardening variables, is then referred to as associative plasticity.

2.1.10 Kuhn-Tucker complementary inequality conditions

To complete the statement of our problem, we need to give the conditions on the plastic multiplier, γ̇, and
on the yield function, f .

Let 0 ≤ x⊥ y ≥ 0 be the complementarity condition, where x and y are vectors in <n and the symbol
⊥ denotes orthogonality (Chen and Mangasarian, 1995). In particular for finite-dimensional real vector
spaces this means that, if one has vectors x and y with non-negative components (xi ≥ 0 and yi ≥ 0 for
all i = 1, ..., n), then for each pair of components xi and yi one of the pair must be zero, hence the name
complementarity.

In classical plasticity, we could adopt this general definition by assuming that the consistency parameter,
γ̇, obeys the following Kuhn-Tucker complementarity inequality conditions (KT) (Karush, 1939; Kuhn and
Tucker, 1951):

γ̇ ≥ 0, f ≤ 0, γ̇f = 0 (2.34)

In addition to conditions (2.34), γ̇ satisfies the consistency (or persistency) condition:

γ̇ḟ = 0 (2.35)

which corresponds to the physical requirement that, for ε̇εεp and χ̇ to be non-zero (i.e., γ̇ > 0), the state
(σ,χ) must persist on ∂Eσ so that ḟ = 0.
In the classical literature, conditions (2.34) and (2.35) go by the names loading/un-loading and consistency
conditions, respectively.
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Interpretation of the Kuhn-Tucker complementarity conditions

The following alternative situations occur:

1. First, consider the case in which (σ,χ) ∈ int (Eσ) so that f < 0. Therefore, from conditions (2.34)
we conclude that:

γ̇f = 0 and f < 0 ⇒ γ̇ = 0 (2.36)

Then, it follows that ε̇εεp = 0 and χ̇ = 0; thus, ε̇εε = ε̇εεe and the rate form of Eq. (2.14) leads to:

σ̇ = C ε̇εε ≡ C ε̇εεe (2.37)

In view of Eq. (2.37), we call this type of response instantaneously elastic.

2. Now, suppose that (σ,χ) ∈ ∂Eσ which implies that f = 0. Then, conditions (2.34) are automa-
tically satisfied even if γ̇ > 0. Whether γ̇ is actually positive or zero is concluded from condition
(2.35). Two situations can arise:

• First, if ḟ < 0, from condition (2.35) we conclude that:

γ̇ḟ = 0 and ḟ < 0 ⇒ γ̇ = 0 (2.38)

Thus, from Eq. (2.29) it follows that ε̇εεp = 0 and χ̇ = 0. Since Eq. (2.37) holds and (σ,χ) ∈
∂Eσ , this type of response is called unloading from a plastic state.

• Second, if ḟ = 0, condition (2.35) is automatically satisfied. If γ̇ > 0, then ε̇εεp 6= 0 and χ̇ 6= 0

and the situation is called plastic loading; on the other hand, the case γ̇ = 0 (and ḟ = 0) is
termed neutral loading.

Consistency condition and elastoplastic tangent moduli

Consider the case where (σ,χ) (t) ∈ ∂Eσ ⇔ f (t) = 0 at time t. Then, it is easily shown that ḟ ≤ 0,
since should ḟ be positive it would imply that f (t+ ∆t) > 0 for some ∆t > 0, which violates the
admissibility condition f ≤ 0. Further, we specify that γ̇ > 0 only if ḟ = 0, and we set γ̇ = 0 if ḟ < 0,
i.e., {

γ̇ > 0 ⇒ ḟ = 0

ḟ < 0 ⇒ γ̇ = 0
(2.39)

Therefore, we have the additional condition (2.35) corresponding to the physical requirement that, for ε̇εεp

and χ̇ to be non-zero (i.e., γ̇ > 0), (σ,χ) (t) ∈ ∂Eσ must persists on ∂Eσ so that ḟ = 0.
To exploit condition (2.35), we start out by evaluating the time derivative of f at (σ,χ) ∈ Eσ . Using

the chain rule, along with the rate forms of the stress-strain relationship (2.14), the flow rule and hardening
laws (2.29), we find that:

ḟ = ∂σf : σ̇ + ∂χf · χ̇ = ∂σf : C (ε̇εε− ε̇εεp) + ∂χf · χ̇ (2.40)

∂σf : C ε̇εε− γ̇ (∂σf : C n + ∂χf · h) ≤ 0

To carry our analysis further, we need to make an additional assumption about the structure of the flow
rule and hardening laws. Explicitly, we make the following hypothesis:
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Assumption 2.1.1. The flow rule, hardening law, and yield condition in stress-space are such that the
following inequality holds:

∂σf : C n + ∂χf · h > 0 (2.41)

for all admissible states (σ,χ) ∈ ∂Eσ .

This assumption always holds for associative perfect plasticity. With such an assumption in hand, it
follows from Eq. (2.35) that:

ḟ = 0 ⇔ γ̇ =
〈∂σf : C ε̇εε〉

∂σf : C n + ∂χf · h
(2.42)

where 〈 · 〉 denotes the maximum function. In view of Eqs. (2.41) and (2.42), we conclude that:

for f = 0 and ḟ = 0, γ̇ ≥ 0 ⇔ ∂σf : Cε̇εε ≥ 0 (2.43)

This relationship provides a useful geometric interpretation of the plastic and neutral loading conditions.
Plastic or neutral loading takes place at a point (σ,χ) ∈ ∂Eσ if the angle in the inner product defined by
the elasticity tensor, C, between the normal, ∂σf , to ∂Eσ at σ and the strain rate, ε̇εε, is less or equal than
90 ◦C.
Finally, we have:

σ̇ = C (ε̇εε− ε̇εεp) = C (ε̇εε− γ̇n) (2.44)

Then, substituting Eq. (2.42) into Eq. (2.44) yields the rate of change of σ in terms of the total strain rate,
ε̇εε, as:

σ̇ = Cepε̇εε (2.45)

where Cep is the so-called tangent elastoplastic moduli tensor given by the following expression:

Cep =

C if γ̇ = 0

C− C n⊗ C ∂σf

∂σf : C n + ∂χf · h
if γ̇ > 0

(2.46)

We remark that Cep is generally non-symmetric for arbitrary n, except in the case of associative flow rule.

2.2 von-Mises yield criterion

In this Section, we first introduce the definition of the von-Mises yield function for the simplest case of
perfect plasticity. Then, we generalize the expression of the von-Mises yield criterion and of the relative
flow and hardening laws to the case of hardening materials. The primary consideration that needs to be
noted is that, regardless of the type of hardening, the von-Mises yield function is independent of the mean
stress or pressure and it is an isotropic function.

Perfect plasticity

The von-Mises yield function, f = f (σ), is defined by:

f = ‖s‖ − σy (2.47)
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with σy = σy,0 the yield stress. Equivalently, denoting by J2 the second scalar invariant of σ, the von-
Mises yield function may be expressed as:

f =
√

2J2 − σy (2.48)

In view of the last expression, a perfect elastoplastic model with a von-Mises yield surface is usually
referred to as J2 plasticity model. We observe that the condition of plastic incompressibility can be satisfied
if and only if the yield function depends on the stress only through its deviatoric part, s.

The associated flow rule follows:

ε̇εεp = γ̇
∂f

∂σ
= γ̇n (2.49)

Linear isotropic hardening

Linear isotropic hardening is characterized by a single scalar strain-like internal variable, ξ, representing
a measure of the accumulated plastic deformation, and by a single scalar thermodynamically conjugate
force, χ. A typical choice for ξ is the accumulated plastic strain, defined as:

ep (t) =

∫ t

0

‖ε̇εεp (τ)‖ dτ (2.50)

which represents the total plastic strain accumulated from the beginning of the loading history.
The von-Mises yield function becomes:

f = ‖s‖ − σy (2.51)

where σy = σy (χ) depends on the internal variable χ through a relation of the form:

σy = σy,0 +G (2.52)

where σy,0 is the uniaxial initial yield stress, while G = G (χ) is a monotonically increasing function
satisfying G (0) = 0. Accordingly, isotropic hardening is viewable as the yield surface projection on
the stress-space which expands retaining its original shape by an amount which is proportional to the
accumulated plastic deformation through the function, G.
The expression of the Helmholtz free-energy, Ψ = Ψ (εεεe,εεεp), is:

Ψ =
1

2
εεεe : C εεεe +

1

2
Hiso (ep)

2 (2.53)

where the material constant, Hiso, is the isotropic hardening modulus. We derive χ, as follows:

χ = − ∂Ψ

∂ep
= −Hisoe

p (2.54)

Admitting, for simplicity, that G = −χ, Eq. (2.52) becomes:

σy = σy,0 +Hisoe
p (2.55)

The associated flow rule and hardening laws follow:ε̇εε
p = γ̇

∂f

∂σ
= γ̇n

ė
p

= ‖ε̇εεp‖ χ̇ = −Hisoė
p

(2.56)
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Linear kinematic hardening

The kinematic hardening mechanism, differing from isotropic hardening which causes the yield domain to
expand homogenously, produces a shifting of the initial yield surface in stress-space. The description of
such a mechanism implies a single internal tensorial variable, ξ, usually taken to be the plastic strain, εεεp.
The Helmholtz free-energy, Ψ = Ψ (εεεe,εεεp), is assumed in the form:

Ψ =
1

2
εεεe : Cεεεe +

1

2
εεεp : Dεεεp (2.57)

where D = HkinI, with Hkin the linear kinematic hardening modulus.
The conjugate force is defined as:

χ = − ∂Ψ

∂εεεp
= −Hkinεεε

p (2.58)

The yield condition, f = f (σ,χ), is obtained by introducing the thermodynamic force, χ:

f = ‖s + χ‖ − σy (2.59)

with σy = σy,0 the yield stress.
Introducing the new internal stress variable, α = −χ, which is a deviatoric tensor defined in the stress
space, called backstress, the yield function, f = f (σ,α), becomes:

f = ‖s−α‖ − σy (2.60)

The backstress tensor represents the shifting of the center of the yield surface in the stress-space due to the
kinematic hardening effects. The tensor, Σ = s−α, is called the relative stress and defines the generalized
stress-space also referred to as the relative stress-space.
The associated flow rule and hardening laws are:ε̇εε

p = γ̇
∂f

∂σ
= γ̇n

α̇ = Hkinε̇εε
p = Hkinγ̇n

(2.61)

Combined linear isotropic and kinematic hardening

To assemble the effects of both linear kinematic and linear isotropic hardening into a single model, it is
necessary to sum up the hardening potential, in terms of internal variables, relative to each single mecha-
nism.
The ensuing form of the Helmholtz free-energy, Ψ = Ψ (εεεe,εεεp, ep), is given by:

Ψ =
1

2
εεεe : C εεεe +

1

2
εεεp : D εεεp +

1

2
Hiso (ep)

2 (2.62)

The conjugate forces and laws are exactly the same ones found in the case of pure linear isotropic and
kinematic hardening mechanisms.

2.3 Initial boundary-value problem of equilibrium in J2 elastoplasti-
city

In this Section, we formulate the mathematical problem that describes the deformation and the stress state
for an isotropic material body characterized by a J2 elastoplastic model under an assigned set of external
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actions. Such a problem is modeled by a set of partial differential equations posed on the body domain,
plus a set of boundary conditions assigned on the boundary of the body and a set of initial conditions.

Given a body with current configuration, Ω ⊂ <3, we indicate for compactness its boundary with ∂Ω

such that Γ = ΓD ∪ ΓS , with ΓD ∩ ΓS = ∅. Suppose that, for t ∈ [0, T ] ⊂ <+, a body force, b (x, t), is
assigned in Ω, a displacement field, u (x, t), is assigned on ΓD and a surface traction, t (x, t), is assigned
on ΓS . Initial values for the displacement u (x, 0) = u0 (x) are known data as well.

Table 2.1 reports the formulation of the initial boundary-value problem (IBVP) for J2 perfect plasticity.
Such a problem results highly non-linear for two main reasons: (i) the time-integration of the rate consti-
tutive equations requires careful consideration of the loading/unloading conditions relative to the choice of
the correct tangent operator; (ii) the stress and the internal variables are constrained during their evolution
by the yield limit. The object of next Chapters is mainly concerned with the numerical solution of the
above stated problem.

INITIAL BOUNDARY-VALUE PROBLEM for J2 ELASTOPLASTICITY

Find the displacement field, u (x, t), which, for any x ∈ Ω and any t ∈ [0, T ],
solves the following governing equations:

1. equation of static equilibrium: divσ + b = 0

2. strain-displacement relation: εεε (u) =
1

2

[
∇u + (∇u)

T
]

3. elastoplastic constitutive laws:



p = Kθ

s = 2G (e− ep)

f = ‖s‖ − σy
ε̇εεp = γ̇n

γ̇ ≥ 0, f ≤ 0, γ̇f = 0, γ̇ḟ = 0

together with σ̇ = Cepε̇εε

and satisfies the:

1. boundary conditions:

{
u = u on ΓD

σn = t on ΓS

2. initial conditions: u (x, 0) = u0 (x)

Table 2.1: IBVP for J2 perfect elastoplasticity.

2.4 The principle of maximum plastic dissipation

This Section recalls and revisits the principle of maximum plastic dissipation, by limiting the discussion to
the case of J2 perfect plasticity.

We start by defining the plastic dissipation, Dp = Dp(τ ; ε̇εεp), as:

Dp := τ : ε̇εεp (2.63)

where ε̇εεp is regarded as a fixed but otherwise arbitrary function and τ as a possible stress satisfying the
yield criterion.

The principle of maximum plastic dissipation, often credited to von-Mises (Hill, 1950), and subse-
quently considered by several authors (Lubliner, 1984, 1986; Mandel, 1964), plays a crucial role in the
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variational formulation of plasticity. It states that, for given plastic strain, ε̇εεp, among all possible stresses,
τ , satisfying the yield criterion, the plastic dissipation, Dp, attains its maximum for the actual stress tensor
σ, i.e., σ ∈ Eσ is the argument of the maximum principle:

σ ∈ Eσ ⇔ Dp(σ; ε̇εεp) = max
τ∈Eσ

[τ : ε̇εεp] (2.64)

Maximum plastic dissipation (2.64) implies:

i. associative flow rule in stress-space (2.29)1

ii. loading/un-loading conditions in Kuhn-Tucker complementarity form (2.34)

iii. convexity of the elastic domain Eσ

Proof. To prove (i) and (ii), we use the classical method of Lagrange multipliers (Bertsekas, 1982), as
follows. First, we transform the maximization principle into a minimization principle merely by changing
the sign in Eq. (2.64) and considering −Dp as objective function. Next, we transform the constraint
minimization problem into an unconstrained problem by introducing the cone of Lagrange multipliers:

Kp :=
{
δ̇ : δ̇ ≥ 0

}
(2.65)

The Lagrangian functional, Lm, follows:

Lm
(
τ , δ̇; ε̇εεp

)
:= −Dp(τ ; ε̇εεp) + δ̇f (τ ) (2.66)

where ε̇εεp is regarded as a fixed but otherwise arbitrary function.
Then, the solution to problem (2.64) is given by the point (σ, γ̇) satisfying the classical Kuhn-Tucker
optimality conditions: 

∂Lm
∂τ

∣∣∣∣
(σ,γ̇; ε̇εεp)

≡ −ε̇εεp + γ̇∇f (σ)

γ̇ ≥ 0, f (σ) ≤ 0, γ̇f (σ) = 0

(2.67)

To see that the convexity condition (iii) on the elastic domain, Eσ , also follows from the principle of
maximum plastic dissipation, it suffices to show that the function f is convex. To this purpose, we observe
that, in view of Eq. (2.64), the extremum point σ ∈ ∂Eσ satisfies the condition:

Dp(σ, ε̇εεp) ≥ Dp(τ , ε̇εεp) ⇔ σ : ε̇εεp ≥ τ : ε̇εεp ∀τ ∈ Eσ (2.68)

Accordingly, we have the inequality:

[τ − σ] : ε̇εεp ≤ 0 ∀τ ∈ Eσ (2.69)

which, in view of the Eq. (2.67)1, reduces to:

[τ − σ] : ε̇εεp = γ̇ [τ − σ] : ∇f (σ) ≤ 0 ∀τ ∈ Eσ (2.70)

From the Kuhn-Tucker optimality condition, it follows that:

γ̇ [τ − σ] : ∇f (σ) ≤ γ̇f (τ ) for σ ∈ ∂Eσ and ∀τ ∈ Eσ (2.71)

If γ̇ = 0, the inequality is satisfied trivially. On the other hand, γ̇ > 0 and since f (σ) = 0:

[τ − σ] : ∇f (σ) ≤ f (τ )− f (σ) = f (τ ) ≤ 0 ∀τ ∈ Eσ (2.72)

which coincides with Eq. (2.71); hence, convexity follows.

In the stated form, condition (2.64) is not suitable for numerical calculations. Therefore, in the follow-
ing, we transform such an optimization problem into an evolution problem for the plastic deformation, εεεp,
i.e., yielding the flow rule with no more inequality constraints.
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Lagrangian multiplier formulation

We transform the maximization principle into a minimization principle merely by changing the sign in
Eq. (2.64) and considering −Dp as objective function. Then, we transform the constraint minimization
problem into an unconstrained problem by defining the following Lagrangian multiplier functional, Lm:

Lm
(
τ , δ̇; ε̇εεp

)
:= −Dp(τ ; ε̇εεp) + δ̇f (τ )− I<+

(
δ̇
)

(2.73)

where ε̇εεp is regarded as a fixed but otherwise arbitrary function. Here, τ and δ̇ are the generic stress and
Lagrange multiplier, respectively; on the contrary, σ and γ̇ denote the stress and Lagrange multiplier at the
solution.

The function I<+

(
δ̇
)

is the convex indicator function of the set of non-negative real numbers, <+,
defined as:

I<+

(
δ̇
)

=

{
0 if δ̇ ≥ 0

+∞ otherwise
(2.74)

The subdifferential set, ∂I<+

(
δ̇
)
, of the indicator function, I<+

(
δ̇
)
, is defined as:

∂I<+

(
δ̇
)

=

{
<− if δ̇ = 0

0 if δ̇ > 0
(2.75)

Condition (2.64) is then enforced demanding stationarity of the Lagrangian functional (2.73) with re-
spect to τ and δ̇ (Bertsekas, 1982). Thus, the solution is given by the point (σ, γ̇) which satisfies the
Kuhn-Tucker optimality conditions:0 ∈ ∂τLm

(
τ , δ̇; ε̇εεp

)∣∣
(σ,γ̇; ε̇εεp)

⇐⇒ ε̇εεp ∈ γ̇∂σf(σ)

0 ∈ ∂δ̇Lm
(
τ , δ̇; ε̇εεp

)∣∣
(σ,γ̇; ε̇εεp)

⇐⇒ f(σ) ∈ ∂I<+

(
γ̇
) (2.76)

Condition (2.76)2 may be written equivalently in the well-known form:

γ̇ ≥ 0, f (σ) ≤ 0, γ̇f (σ) = 0 (2.77)

Penalty formulation

Another approach is based on the elimination of constraints through a (standard quadratic) penalty formu-
lation of problem (2.64) (Bertsekas, 1982).

We introduce the penalty Lagrangian functional, Lp (Schmidt-Baldassari, 2003):

Lp (τ ; ε̇εεp) := −Dp(τ ; ε̇εεp) +
1

2
{max [0, cf (τ )]}2 (2.78)

with an (arbitrary) positive penalty factor c (Luenberger, 1984). Here, τ is the generic stress; on the other
hand, σ denotes the stress at the solution.

Enforcing stationarity of the penalty Lagrangian functional (2.78) with respect to τ yields:

ε̇εεp = max [0, cf (σ)]n (2.79)

i.e., the flow rule with no further inequality constraints.
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Augmented Lagrangian formulation

Another approach is based on elimination of constraints through an Augmented Lagrangian formulation of
problem (2.64) (Bertsekas, 1982).

We convert the inequality constrained problem (2.64) into the following problem, involving exclusively
equality constraints (Bertsekas, 1982):

Dp(σ; ε̇εεp) = max
τ∈E∗σ, z

[τ : ε̇εεp] (2.80)

where z is an additional variable and E∗σ is defined as:

E∗σ :=
{
σ : f∗ = f + z2 = 0

}
(2.81)

Then, we consider the following Augmented Lagrangian functional, La:

La
(
τ , δ̇, z; ε̇εεp

)
:= −Dp(τ ; ε̇εεp) + δ̇f∗ (τ ) +

1

2
cf∗ (τ )

2 (2.82)

where c is a positive parameter. Again, τ and δ̇ are the generic stress and Lagrange multiplier, respectively;
on the other hand, σ and γ̇ denote the stress and Lagrange multiplier at the solution. The Augmented
Lagrangian functional, La, is a combination of the Lagrangian multiplier functional (2.73) and the penalty
Lagrangian functional (2.78).

Demanding stationarity of La with respect to z allows to eliminate such a variable in advance. In fact,
the minimization of La with respect to z can be carried out explicitly for fixed τ . In particular, we note
that:

min
z
La
(
τ , δ̇, z; ε̇εεp

)
= −Dp(τ ; ε̇εεp) + min

z

[
δ̇
[
f (τ ) + z2

]
+

1

2
c
[
f (τ ) + z2

]2]
(2.83)

The minimization with respect to z is equivalent to the following minimization with respect to the variable
u ≥ 0:

min
u≥0

[
δ̇ [f (τ ) + u] +

1

2
c [f (τ ) + u]

2

]
(2.84)

Since the function in Eq. (2.84) is quadratic in u, its unconstrained minimum is û at which the derivative
is zero:

δ̇ + c [f (τ ) + û] = 0 (2.85)

Thus, the solution of problem (2.84) is:

u∗ = max

[
0,− δ̇

c
− f (τ )

]
(2.86)

which can be rewritten as:

f (τ ) + u∗ = max

[
f (τ ) ,− δ̇

c

]
(2.87)

The minimization problem (2.83) can be finally expressed as:

min
z
La
(
τ , δ̇, z; ε̇εεp

)
= −Dp(τ ; ε̇εεp) + δ̇max

[
f (τ ) ,− δ̇

c

]
+
c

2

[
max

[
f (τ ) ,− δ̇

c

]]2

(2.88)
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and the reduced augmented Lagrangian functional, Lra, follows:

Lra
(
τ , δ̇, z; ε̇εεp

)
= −Dp(τ ; ε̇εεp) + δ̇max

[
f (τ ) ,− δ̇

c

]
+
c

2

[
max

[
f (τ ) ,− δ̇

c

]]2

(2.89)

An alternative expression for the reduced augmented Lagrangian functional, Lra, is:

Lra
(
τ , δ̇; ε̇εεp

)
= −Dp(τ ; ε̇εεp) +

1

2c

[
max

[
0, δ̇ + cf (τ )

]2
− δ̇2

]
(2.90)

A straightforward calculation leads to the stationarity conditions for Lra, as follows:{
ε̇εεp = max [0, γ̇ + cf (σ)]n

γ̇ = max [0, γ̇ + cf (σ)]
(2.91)

which result in an augmented flow rule and consistency condition with no further inequality constraints.
We can easily verify that system (2.91) with an arbitrary penalty factor, c, is equivalent to system of

equations (2.76), expressing the flow rule and consistency conditions. Compared to the penalty Lagrangian
functional, the penalty factor, c, is now a purely numerical regularization parameter with no influence on
the exact fulfillment of the yield conditions and it may be chosen solely with respect to the argument of
well-possessedness of the algorithm.
The attractive property of the Augmented Lagrangian methods is the ability to solve constrained opti-
mization problems by combining the advantages of the Lagrange multiplier and penalty methods without
inheriting the shortcomings. Namely, Augmented Lagrangian methods enforce the constraints with very
high precision and, at the same time, the number of variables of the original problem is not increased by
the presence of the multipliers. Finally, such methods are a very attractive alternative to Lagrangian algo-
rithms, that present poor global convergence properties, in spite of their high (asymptotically quadratic)
rate of convergence (Luenberger, 1984).

2.5 Elastoplasticity in a convex-analytic setting

It is possible to re-examine the elastoplastic thermodynamic theory studied hitherto by adopting the stand-
point of convex analysis (Rockafellar, 1970). As a result, the yield surface constraint can be avoided,
permitting to obtain a set of alternative forms of the plastic flow laws, which become of great importance
for the analysis of the variational problem of elastoplasticity (Moreau, 1976; Nguyen and Halphen, 1975).

In the following, we focus on the classical J2 perfect plasticity.

2.5.1 Pseudo-potential of dissipation for J2 perfect plasticity

In the case of J2 perfect plasticity, the internal variable is the plastic strain, εεεp, and the corresponding
associated variable is the Cauchy stress, σ. Relations (2.29)1 and (2.34) refer to the rate formulation of the
plastic flow and are probably the most popular form of the flow rule.

An alternative form of the flow rule (2.29)1 and of the complementarity relations (2.34) is given by the
maximum plastic dissipation inequality, introduced in Section 2.4:

σ ∈ Eσ such that ε̇εεp : (σ − τ ) ≥ 0 ∀τ ∈ Eσ (2.92)

where τ is any plastically admissible stress.
It can be shown through the use of the following Drucker’s inequality:{

σ̇ : ε̇εεp ≥ 0 for all states

σ̇ : ε̇εεp = 0 only if ε̇εεp = 0
(2.93)
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that the yield surface of a work-hardening or perfectly plastic material with an associated flow rule must
be convex, so that any vector to a point on the surface from an interior point or from another point on the
surface forms an acute (or at most a right) angle with the outward normal on the surface. Since the actual
stress is necessarily plastically admissible, it follows that σ : ε̇εεp = supτ [τ : ε̇εεp], where the maximum is
taken over all currently possible stresses. Accordingly, we introduce the plastic dissipation, Dp:

Dp (σ; ε̇εεp) = sup
τ

[τ : ε̇εεp] (2.94)

Then, we can rewrite inequality (2.92), as follows:

Dp (σ; ε̇εεp) ≥ τ : ε̇εεp (2.95)

known as postulate of maximum plastic dissipation and valid for all the elastoplastic materials with an
associated flow rule and a convex yield surface. Conversely, the postulate of maximum plastic dissipation
implies the associated flow rule and the convexity of the yield surface.

By transforming adequately inequality (2.92), we obtain the set-valued mapping relating the stress and
the plastic strain rate (Moreau, 1976). The idea is to make use of the indicator function of the set Eσ to
which stresses σ and τ are required to belong and defined as:

IEσ (σ) =

{
0 if σ ∈ Eσ
+∞ otherwise

(2.96)

The indicator function is not differentiable in the classical sense and it is convex if the set to which it refers
is convex (see Appendix A). Having at hand this tool, a key step is to rewrite the variational inequality
(2.92), in the following equivalent way:

ε̇εεp : (σ − τ ) + IEσ (τ ) ≥ IEσ (σ) (2.97)

We remark that, if inequality (2.92) is satisfied, it follows that inequality (2.97) is also satisfied. Conversely,
if inequality (2.97) holds, by taking τ ∈ Eσ , we see that IEσ (τ ) has a finite value (zero) and IEσ (σ) must be
equal to zero, i.e., σ ∈ Eσ and therefore inequality (2.92) is fulfilled. Inequality (2.97) corresponds to the
convexity inequality applied to a non-differentiable function. It means that ε̇εεp belongs to the subdifferential
of Eσ(σ) at σ or, equivalently, ε̇εεp and σ are related by the differential inclusion:

ε̇εεp ∈ ∂IEσ (σ) = ∂I[−∞,0](f)∂f (σ) = γ̇∂f (σ) (2.98)

which is equivalent to the flow rule (2.29)1 and the complementarity conditions (2.34).
Here, I[−∞,0](f) is the indicator function of the set of non-positive real values assumed by f , defined as:

I[−∞,0](f) =

{
0 if f ≤ 0

+∞ otherwise
(2.99)

which is called complementary dissipation pseudo-potential and it is denoted by φ∗ = φ∗(σ).
The term ∂I[−∞,0](f) represents the subdifferential of I[−∞,0](f) at σ and it corresponds to the set of
all subgradients of I[−∞,0](f) at σ itself. In particular, for a differentiable function, the subdifferential is
reduced to a singleton which corresponds to the classical gradient. The subdifferential is equal to a non-
negative scalar, γ̇, satisfying the Kuhn-Tucker conditions.
By recalling the definition of normal cone,N , to a convex set (Rockafellar, 1970) and by observing that the
normal cone, NEσ , to the convex domain, Eσ , coincides with the subdifferential of the indicator function,
IEσ (σ), of the convex set Eσ , we have the following expression:

ε̇εεp ∈ NEσ (σ) (2.100)
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which represents the normality law and ensures that the well-known property for the plastic strain rate to
belong to the normal cone to the convex domain Eσ is satisfied.

Relationship (2.98) may be inverted by applying the Fenchel transform (Rockafellar, 1970):

φ(ε̇εεp) = sup
σ

[σ : ε̇εεp − IEσ (σ)] = sup
σ∈Eσ

[σ : ε̇εεp] (2.101)

where φ = φ(ε̇εεp) is the dissipation pseudo-potential, which is convex by construction. The inverse flow
rule is then:

σ ∈ ∂φ(ε̇εεp) (2.102)

which is equivalent to σ :
(
ε̇εεp − ε̇εεp′

)
+ φ

(
ε̇εεp
′
)
≥ φ(ε̇εεp).

Formulations (2.98) and (2.102) are particularly useful for associating dual extremum principles to IBVPs
involving plastic materials with associated flow rules. The dissipated power is exactly equal to φ(ε̇εεp);
hence, in the present case, φ(ε̇εεp) may be called the dissipation function of the material.

Now, we derive the expression of the dissipation pseudo-potential. The scalar product can be decom-
posed as:

sup
σ∈Eσ

[σ : ε̇εεp] = sup
σ∈Eσ

[s : ėp + pθp] (2.103)

Since θp = 0, i.e., εεεp = ep, it is clear that the supremum is achieved for σ colinear to ε̇εεp, i.e.,

σ : ε̇εεp ≤ ‖σ‖ ‖ėp‖ (2.104)

To be able to use the yield criterion, we replace the Euclidean norm of σ by the von-Mises norm:

σ : ε̇εεp ≤ ‖σ‖eq ‖ėp‖
∗
eq (2.105)

where ‖ėp‖∗eq =
√

2/3 ‖ėp‖. Taking into account that ‖σ‖eq is bounded by the yield stress, σy , we have:

σ : ε̇εεp ≤ σy ‖ėp‖∗eq (2.106)

Thus, the expression of the dissipation pseudo-potential is given by:

φ(ε̇εεp) = σy ‖ėp‖∗eq (2.107)

As a consequence of the Fenchel transform property, the pseudo-potential of dissipation is convex. More-
over, it is a positive function, homogeneous of degree one which takes a zero value at the origin where the
function is non-differentiable. The fact that the pseudo-potential is homogeneous of degree one implies a
rate-independent behavior.

Functions φ(ε̇εεp) and φ∗(σ) satisfy the following relation:

φ
(
ε̇εεp
′
)

+ φ∗(τ ) ≥ ε̇εεp′ : τ ∀
(
ε̇εεp
′
, τ
)

(2.108)

Equality is reached when a couple (ε̇εεp,σ) is linked by the evolution law. Finally, the evolution law can be
expressed equivalently by:

ε̇εεp ∈ ∂IEσ (σ) ⇔ σ ∈ ∂φ(ε̇εεp) ⇔ φ(ε̇εεp) + φ∗(σ) = ε̇εεp : σ (2.109)

Although the pseudo-potential was introduced here for the simple model of perfect plasticity, the previous
approach can be easily extended to take into account hardening effects by providing additional internal
variables. The elastic domain is then expressed in the generalized stress-space and the rate form of the
evolution law takes the form of a generalized normality rule. This leads to the class of Generalized Standard
Materials of (Nguyen and Halphen, 1975).
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Remark 2.5.1. In a one-dimensional setting, the expression of the dissipation pseudo-potential becomes:

φ(ėp) = σy |ėp| (2.110)

which is differentiable everywhere except at the origin. The subdifferential is given by:

∂φ(ėp) =


−σy if σ ≤ 0

(−σy,−σy) if σ = 0

σy if σ ≥ 0

(2.111)

which corresponds to the elastic domain at the origin. Again, the set-valued relation is related to the non-
differentiability of the potential and the convexity of the potential is a consequence of the monotonic nature
of the behavior.

Lagrangian multiplier formulation

The Lagrangian multiplier functional, Lm, is defined as:

Lm
(
εεεp
′
, δ̇;εεε

)
:= Ψ

(
εεεp
′
;εεε
)

+ σy

∥∥∥ε̇εεp′∥∥∥∗
eq

+ δ̇ tr(εεεp
′
) (2.112)

Here, εεεp
′

and δ̇ are the generic plastic strain and Lagrange multiplier, respectively; on the other hand, εεεp

and γ̇ denote the plastic strain and Lagrange multiplier at the solution.

2.6 Complementarity problem functions

In the literature, complementarity problem (CP) and smoothing functions have been extensively used to
solve mathematical programs with equilibrium or complementarity constraints. Such problems play an
important role, for example, in the design of transportation networks (Harker and Pang, 1990), economic
modeling (Tobin, 1992), and shape optimization (Haslinger and Neittaanmäki, 1988).
The reader is referred to (Luo et al., 1996) for further material on mathematical programs with equilibrium
constraints and their applications.

2.6.1 Fischer-Burmeister complementarity problem function

A CP function is a function, Φ : <2 → <, such that:

Φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0 ∀a, b ∈ < (2.113)

For classical plasticity we can adopt such a general definition by rewriting the complementarity ine-
quality constraints (2.34) as an equality constraint, by replacing conditions (2.34) with an CP function.
Among all the possible choices (Leyffer, 2006), we apply to classical plasticity the Fischer-Burmeister
complementarity function Φ = Φ(f, γ̇) (FB) (Fischer, 1992):

Φ =
√
f2 + γ̇2 + f − γ̇ (2.114)

such that:

Φ = 0 ⇔ f ≤ 0, γ̇ ≥ 0, f γ̇ = 0 (2.115)
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Proof. Start by proving: Φ = 0 ⇒ f ≤ 0, γ̇ ≥ 0, f γ̇ = 0.
By imposing Φ =

√
f2 + γ̇2 + f − γ̇ = 0, we have if γ̇ ≥ f :√

f2 + γ̇2 = −f + γ̇ (2.116)

Squaring both members:

f2 + γ̇2 = f2 + γ̇2 − 2fγ̇ (2.117)

and simplifying, we obtain fγ̇ = 0. Thus, if f ≤ 0, γ̇ ≥ 0.
Now, we prove: f ≤ 0, γ̇ ≥ 0, f γ̇ = 0 ⇒ Φ = 0.

Start by imposing the following equality
√
f2 + γ̇2 = −f + γ̇ where γ̇ ≥ f . We square both members:

f2 + γ̇2 = f2 + γ̇2 − 2fγ̇ (2.118)

and simplifying, we obtain fγ̇ = 0 that is verified by hypothesis. Therefore, we have Φ =
√
f2 + γ̇2 +

f − γ̇ = 0.

We may observe that the FB function, Φ, is non-differentiable at the origin, i.e., at (f, γ̇) = (0, 0), and
its Hessian is unbounded at the origin. In fact, the first derivatives of Φ:

∂Φ

∂f
=

f√
f2 + γ̇2

+ 1

∂Φ

∂γ̇
=

γ̇√
f2 + γ̇2

− 1
(2.119)

are non-differentiable at (f, γ̇) = (0, 0).
The same considerations can be made for the second derivatives:

∂2Φ

∂f2
=

1√
f2 + γ̇2

+
2f2

(f2 + γ̇2)
3/2

∂2Φ

∂γ̇2
=

1√
f2 + γ̇2

+
2γ̇2

(f2 + γ̇2)
3/2

∂2Φ

∂γ̇∂f
=

∂2Φ

∂f∂γ̇
=

2fγ̇

(f2 + γ̇2)
3/2

(2.120)

To circumvent such a numerical difficulty, we may use a smoothing technique, consisting in the intro-
duction of the smoothed Fischer-Burmeister function, Φ = Φδ(f, γ̇, δ) (Kanzow, 1996):

Φδ =
√
f2 + γ̇2 + 2δ + f − γ̇ = 0 (2.121)

where δ is a positive smoothing parameter.
Then, we have:

Φδ = 0 ⇔ f ≤ 0, γ̇ ≥ 0, f γ̇ = −δ (2.122)

Proof. Start by proving: Φδ = 0 ⇒ f ≤ 0, γ̇ ≥ 0, f γ̇ = −δ.
By imposing Φδ =

√
f2 + γ̇2 + 2δ + f − γ̇ = 0, we have if γ̇ > f :√

f2 + γ̇2 + 2δ = −f + γ̇ (2.123)

Squaring both members, we obtain:

f2 + γ̇2 + 2δ = f2 + γ̇2 − 2fγ̇ (2.124)
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and simplifying, we have fγ̇ = −δ. Thus, if f ≤ 0, γ̇ ≥ 0.
Now, we prove: f ≤ 0, γ̇ ≥ 0, f γ̇ = −δ ⇒ Φδ = 0.

Start by imposing the following equality
√
f2 + γ̇2 = −f + γ̇ where γ̇ ≥ f . Squaring both members:

f2 + γ̇2 + 2δ = f2 + γ̇2 − 2fγ̇ (2.125)

and simplifying, we have fγ̇ = −δ, that is verified by hypothesis. Thus, Φδ =
√
f2 + γ̇2 + 2δ+ f − γ̇ =

0.

Now, we may observe that for any δ > 0, the function Φδ is smooth everywhere and its first derivatives
are given by: 

∂Φδ
∂f

=
f√

f2 + γ̇2 + 2δ
+ 1

∂Φδ
∂γ̇

=
γ̇√

f2 + γ̇2 + 2δ
− 1

(2.126)

The same considerations can be made for the second derivatives given by:

∂2Φδ
∂f2

=
1√

f2 + γ̇2 + 2δ
+

2f2

(f2 + γ̇2 + 2δ)
3/2

∂2Φδ
∂γ̇2

=
1√

f2 + γ̇2 + 2δ
+

2γ̇2

(f2 + γ̇2 + 2δ)
3/2

∂2Φδ
∂γ̇∂f

=
∂2Φδ(f, γ̇, δ)

∂f∂γ̇
=

2fγ̇

(f2 + γ̇2 + 2δ)
3/2

(2.127)

Figure 2.1 shows the effect of the replacement of the KT complementary conditions (2.34) by the
smoothed FB function Φδ , varying the smoothing parameter, δ. As it can be observed, Φδ converges to the
KT complementary conditions as δ decreases.
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Figure 2.1: Fischer-Burmeister complementarity problem function. Effect of the replacement of the Kuhn-
Tucker (KT) conditions by the smoothed Fischer-Burmeister (FB) function, Φδ , varying the smoothing
parameter, δ.

2.6.2 A different form of complementarity problem function

Complementary inequality conditions (2.34) could also be rewritten in the following equivalent form:

µγ̇ − 〈µγ̇ + f〉 = 0 (2.128)
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where µ is a positive constant used for dimensional consistency.
If Eq. (2.128) holds, only one of the two following cases occur for the yield surface, f , independently of
the value of µ: {

µγ̇ + f ≥ 0

µγ̇ − 〈µγ̇ + f〉 = 0
⇒ f = 0, γ̇ ≥ 0 (2.129)

and {
µγ̇ + f < 0

µγ̇ − 〈µγ̇ + f〉 = 0
⇒ γ̇ = 0, f < 0 (2.130)

Since Eq. (2.128) is non-differentiable at the origin, i.e., at (f, γ̇) = (0, 0), several smoothing proce-
dures have been proposed in the literature. In the following, we recall two approaches frequently used in
the literature to overcome the problem.

Chen-Mangasarian smoothing procedure

The Chen-Mangasarian smoothing procedure (CM) (Chen and Mangasarian, 1995) consists in the intro-
duction of the sigmoid function, known as s-function, S = S (x, α):

S :=
1

1 + exp−αx
(2.131)

and of its integral, known as p-function, P = P (x, α):

P :=

∫ x

−∞
S (y, α) dy =

∫ x

−∞

1

1 + exp−αy
dy = x+

1

α
ln
(
1 + exp−αx

)
(2.132)

with α a positive parameter.
The p-function, P , is k-times continuously differentiable for any positive integer k and can be viewed as
an approximation of the ramp or maximum function 〈x〉 = max [0, x], as shown in Figure 2.2(a):

〈x〉 = max [0, x] ≈ P = x+
1

α
ln
(
1 + exp−αx

)
(2.133)

In particular, P = P (x, α) converges to 〈x〉 as α increases, since:

lim
α→+∞

[P (x, α)− 〈x〉] = 0 (2.134)

Moreover, since the maximum function is the integral of the Heaviside or unit step function, H =

H (x):

H =


0 if x < 0

0.5 if x = 0

1 if x > 0

(2.135)

the sigmoid function, S, can be treated as an approximation of H , as shown in Figure 2.2(b).
Thus, Eq. (2.128) can be rewritten, as follows (assuming µ = 1):

γ̇ − P (γ̇ + f, α) = γ̇ −
[
(γ̇ + f) +

1

α
ln
[
1 + exp−α(γ̇+f)

]]
= 0 (2.136)

which, after some simple passages, becomes:

exp−αf
(
1− exp−αγ̇

)
= 1 (2.137)

The KT conditions (2.34) are so converted into the smooth unconstrained minimization problem (2.137),
the solution of which approximates the solution of the original problem to a high degree of accuracy for α
sufficiently large (Areias et al., 2012). Figure 2.2(c) represents the effect of the replacement of Eq. (2.128)
by Eq. (2.137), varying the parameter, α.
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Figure 2.2: Chen-Mangasarian smoothing procedure. Effect of the replacement of: (a) the max function,
〈x〉, by the p-function, P = P (x, α); (b) the Heaviside step function, H = H (x), by the s-function,
S = S (x, α); (c) the Kuhn-Tucker (KT) equation γ̇ − 〈γ̇ + f〉 = 0 by the Chen-Mangasarian (CM)
equation γ̇ − P (γ̇ + f, α) = 0, varying the parameter, α.

Balakrishna-Biegler smoothing procedure

The Balakrishna-Biegler smoothing procedure (BB) (Balakrishna and Biegler, 1992) consists in rewriting
the maximum or ramp function, as follows:

〈x〉 = max [0, x] =
|x|
2

+
x

2
(2.138)

and in approximating the absolute value function, |x|, with an hyperbole, as shown in Figure 2.3(a):

|x| ≈
√
x2 + ε2 (2.139)

The approximation of the maximum function (2.138) follows:

〈x〉 = max [0, x] ≈
√
x2 + ε2

2
+
x

2
(2.140)

with ε a positive smoothing parameter, as shown in Figure 2.3(b).
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Figure 2.3: Balakrishna-Biegler smoothing procedure. Effect of the replacement of: (a) the abso-
lute value function, |x|, by hyperbole,

√
x2 + ε2; (b) the maximum function, max [0, x], by hyperbole,(√

x2 + ε2 + x
)
/2; (c) the Kuhn-Tucker (KT) equation γ̇−〈γ̇ + f〉 = 0 by the Balakrishna-Biegler (BB)

equation (γ̇ − f)/2−
√

(γ̇ + f)
2

+ ε2/2 = 0, varying the parameter, ε.

Therefore, Eq. (2.128) can be rewritten in the following form (assuming µ = 1):

γ̇ −

 γ̇ + f

2
+

√
(γ̇ + f)

2
+ ε2

2

 = 0 (2.141)

and simplified, as follows:

γ̇f = −ε
2

4
(2.142)

Such an approximation is differentiable at the origin and its Hessian is bounded at the origin, i.e., at
(f, γ̇) = (0, 0). Figure 2.3(c) represents the effect of the replacement of Eq. (2.128) by Eq. (2.141),
varying the parameter, ε.
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Comparisons

Figure 2.4 presents a comparison between the approaches based on the FB function, the CM smoothing
procedure, and the BB smoothing procedure. The same value of the regularization parameters, δ, α, and
ε, is assumed. As it can be observed, the FB function requires lower values of the parameter, δ, to better
approximate the KT conditions.
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Figure 2.4: Complementarity problem functions. Comparison between the approaches based on the
Fischer-Burmeister (FB) function, the Chen-Mangasarian (CM) smoothing procedure, and the Balakrishna-
Biegler (BB) smoothing procedure.



Chapter 3

Integration algorithms for J2
elastoplasticity

Due to the highly non-linearity of the governing equations for elastoplasticity, the solution to large scale
problems rising from practical engineering area has to adopt robust and efficient computational methods.
This Chapter presents a detailed analysis of several numerical approaches available from the literature and
relevant to the olution of the initial boundary-value problem for J2 perfect plasticity, presented in Section
2.3. The aim is to critically review a number of existing algorithmic schemes, starting from the classical
and well-known return-map algorithm.

The Chapter is organized as follows. Section 3.1 presents an introduction to the problem and a detailed
literature review on several numerical approaches. Section 3.2 presents the structure of the discrete problem
for J2 perfect plasticity, the fundamental role played by the discrete Kuhn-Tucker conditions, and the
geometric interpretation of the solution as the closest point projection. Then, Section 3.3 focuses on the
numerical treatment of the principle of maximum plastic dissipation presented in Section 2.4. Section
3.4 presents the derivation of the elastoplastic problem from the minimization of the total energy. Finally,
Section 3.5 presents the discrete formulation of the complementary problem functions introduced in Section
2.6.
The reader is referred to, e.g., (Simo and Hughes, 1998), for a detailed analysis on the numerical solutions
to elasto-plastic problems.

3.1 Literature review

The numerical solution of the initial boundary-value problem (IBVP), presented in Section 2.3, is based on
an iterative solution of the discrete momentum balance equation. Typically, the following three steps are
involved:

1. the discretized momentum equation generates incremental motions which, in turn, are used to calcu-
late the incremental strain history by kinematic relationships;

2. for a given incremental strain history, new values of the variables, {σ,εεεp,χ}, are obtained by inte-
grating the local constitutive equations with given initial conditions;

3. the discrete momentum balance equation is tested for the computed stresses and, if violated, the
iteration process is continued by returning to step 1.

In most of the computational architectures currently in use, steps 1 and 3 are carried out at a global level
by finite element (FE) or finite difference procedures. In the present Chapter, we are concerned with

47
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the numerical integration of local constitutive equations (i.e., step 2), which is regarded as the central
problem of computational plasticity as it corresponds to the main role played by constitutive equations
in actual computations. Such an integration is carried out locally at each quadrature point in typical FE
implementations. The crucial aspect is the fact that, from a computational standpoint, such a problem
can always be regarded as strain-driven in the sense that variables, {σ,εεεp,χ}, are computed for a given
deformation history. In particular, stresses and updated internal variables, characterizing material inelastic
response, are sought for a given strain increment and previous values of the internal variables. Finding the
solution of the discrete local constitutive equations of step 2 proves to be crucial for the successful solution
of the global IBVP.

Nowadays, the use of return-mapping algorithms for the integration of the local plastic evolution equa-
tions has become widely used (Simo and Hughes, 1998). The main component in return-mapping algo-
rithms is the enforcement of the plastic consistency condition defined by the yield function. A common
feature is the use of an operator split strategy in the solution of such local equations. Briefly, final stresses
and updated internal variables are obtained by imposing the consistency conditions after a trial state has
detected the activation of the plastic evolution equations. Common to many approaches is the use of an
elastic trial state in this process, leading then to a plastic corrector step approximating the plastic evolution
equations. Of interest is the consideration of the so-called closest-point projection approximation for this
plastic corrector step, perhaps the most commonly used strategy in practical applications, both in the in-
finitesimal and finite deformation ranges. This strategy involves an implicit approximation of the governing
equations, leading to a non-linear system of algebraic equations in stresses and updated internal variables.

Except for very particular cases where a closed-form solution can be found (e.g., the J2 theory with
linear hardening), an iterative algorithm needs to be applied for the solution of the resulting non-linear
system of local plastic algebraic equations. Generally, a Newton-Raphson scheme is applied thanks to its
asymptotic quadratic rate of convergence and the availability of its linearization in closed form, leading
to the algorithmic tangent employed in the solution of the global IBVP. However, the well-known limited
local convergence properties of Newton-Raphson schemes (in the sense that actual convergence can only
be assured for initial estimates close to the final solution) make this approach difficult when considering
complex constitutive models required in many practical applications of interest.

Several strategies can be found in the literature to avoid such difficulties.
As an example, the consideration of alternative trial predictors initializing the iterative process can be found
in (Bićanić and Pearce, 1996; de Souza Neto et al., 1994; Han and Reddy, 1999), which are however sui-
table for particular models. Iterative strategies involving line-search schemes can be found in, e.g., (Dutko
et al., 1993). Similarly, the consideration of sub-stepping techniques has been proposed to alleviate conver-
gence difficulties (Abbo and Sloan, 1996; Owen and Hinton, 1980; Pérez-Foguet et al., 2001; Sloan, 1987).
The work by Artioli et al. (2007) considers four schemes based on the generalized midpoint rule and the
return-map algorithm for the integration of the classical J2 plasticity with linear hardening. Artioli et al.
(2006) proposed a new exponential-based integration algorithm for associative J2 plasticity with linear
isotropic and kinematic hardening. The works by Armero and Pérez-Foguet (2002a,b) focus on a rich ma-
thematical structure behind the closest-point projection equations characteristic of the local integration of
elastoplastic models, including their viscoelastic extensions, in both the infinitesimal and finite deformation
ranges, and address the formulation of robust numerical strategies for the solution of the resulting system
of equations. Augmented Lagrangian extensions are also applied to the standard displacement approach,
allowing a complete regularization of the problem in the constrained rate-independent limit.

Alternatively, we can find in the literature other approaches than abandon the original closest-point
projection approximation. An early example is the so-called cutting plane algorithm, presented in (Ortiz
and Simo, 1986), based on a steepest descent strategy which avoids an implicit treatment of the governing
equations. The resulting scheme involves an explicit iterative process, thus exhibiting improved conver-
gence properties. However, no expression exists for the algorithmic consistent linearization making the use
of such techniques somehow limited in actual FE implementations employing a Newton-Raphson solu-
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tion strategy. Furthermore, such schemes show poorer accuracy properties when compared to the original
closest-point projection approximation (Simo, 1998).

Recently, the application of multi-step schemes (backward difference schemes) and alternative Runge-
Kutta one-step methods can be found in (Papapadopulos and Taylor, 1994; Simo, 1998). Such approaches
usually lead, however, to complex implicit non-linear systems of algebraic equations, exhibiting the same
difficulties in their iterative solution.

An important class of numerical procedures developed on the basis of mathematical programming (MP)
concepts (Luenberger, 1984) has been also proposed. For details on this class of methods, the reader is re-
ferred to (Comi et al., 1991; Maier, 1970; Martin et al., 1987; Reddy and Martin, 1991; Romano et al.,
1993). Here, we recall that such procedures reduce the complete IBVP or only the elastoplastic evolution
problem at the Gauss point level to an MP problem which can be solved by means of standard numerical
algorithms, by exploiting the potential structure that characterizes many elastoplasticity models and con-
cepts of convex analysis. Moreover, the MP approach can make the formulation and solution procedures
of plasticity analysis separately. As a result, the MP developers do not have to take care of the details of
plasticity theory and the computational plasticity researchers could release from the work of designing the
solution algorithms. This is distinguished from the most currently used method in plasticity analysis, e.g.,
the return-mapping algorithms. Additionally, compared to the return-mapping algorithms, in which the set
of active constraints (i.e., the set of Gauss points whose stress state changes) has to be identified artifi-
cially by a ’trial and error’ process, the MP approach automatically chooses which inequalities satisfying
as equations by a wealth of efficient and robust numerical algorithms.
Up to now, several approaches belonging to the MP class have been developed. The application of Aug-
mented Lagrangian approaches to complementary formulations of plasticity has been introduced in the
papers by Contrafatto and Ventura (2004); Cuomo and Contrafatto (2000), where the constitutive laws of
elastoplasticity with internal variables are described through the definition of suitable dual potentials, in-
cluding various hardening models. A family of variational principles for inelastic problems is so obtained
using convex analysis tools and the structural problem is analyzed using the complementary energy func-
tional. The present complementary formulation exhibits better convergence rate than classical displacement
formulations (Armero and Pérez-Foguet, 2002a,b), reaching the same accuracy with a considerably smaller
number of elements.
Other MP approaches are the parametric quadratic programming approaches (Zhang et al., 2004), the
interior-point methods for general non-linear programming problems (Krabbenhoft et al., 2007), the so-
lution methods based on linear (Zhu, 1995) or non-linear complementarity problems (Tin-Loi and Pang,
1993) (denoted as LCPs and NCPs, respectively), non-smooth Newton methods (Christensen, 2002), se-
quential quadratic programming methods (Wieners, 2008) and the so-called bi-potential formulation (Hjiaj
et al., 2003). Recently, Bilotta et al. (2012) presented a new method for the incremental elastoplastic ana-
lysis of structures, where the elastoplastic step is solved through a sequential quadratic programming with
equality constraints.
Semi-smooth Newton methods have been applied to small strain elastoplasticity with hardening by Gruber
and Valdman (2009). The merit of semi-smooth Newton methods is their super-linear convergence at all
levels of refinement and the independence of the number of iterations on the level of refinement.
In the context of LCPs and NCPs, the replacement of the Kuhn-Tucker conditions by equivalent comple-
mentary functions makes possible to omit an active set search, a fundamental advantage especially when
dealing with many coupled evolution equations and constraints on internal variables. As an example, the ef-
fective and efficient procedure based on the Fischer-Burmeister complementarity function (Fischer, 1992),
presented in Section 2.6, has been introduced by Schmidt-Baldassari (2003) in the context of crystal pla-
sticity and applied to solve several engineering problems; see, e.g., Ahn (2007); Tin-Loi (1999).
Similar approaches consist in the Chen-Mangasarian (CM) (Chen and Mangasarian, 1995) and Balakrishna-
Biegler (BB) (Balakrishna and Biegler, 1992) smoothing procedures, presented in Section 2.6. The CM
procedure has been applied by Areias et al. (2012) to finite strain plasticity with elastic isotropy and ar-
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bitrary flow rules; the BB procedure has been applied in several fields ranging from reactor networks to
chemical processes and tray optimization (Balakrishna and Biegler, 1992; Gopal and Biegler, 1999; Lang
and Biegler, 2002).

An amount of significant work has been dedicated to the so-called conic programming (CP) in the
field of MP (Ben-Tal and Nemirovski, 2001). Based on the realization of the cone representation of some
plasticity failure criterion (Bisbos and Pardalos, 2007; Krabbenhoft et al., 2007), the CP approach has been
quickly applied to the formulation and solution of elastoplasticity problems. Compared to the classical
non-linear programming method for plasticity, the CP method does not only provide elegant mathematical
formulation for plasticity, but also holds as a computationally attractive aspect. Once a practical problem
is formulated as a CP problem, a fruitful available specific software can be directly employed, developed
by the MP community within the framework of interior point methods (Ben-Tal and Nemirovski, 2001)
or non-interior point methods (Chen and Pan, 2012). As an important branch of conic optimization, the
second-order cone complementarity problem, which can be regarded as the natural extension of LCP and
just differs from LCP by permitting certain non-linear inequality constraints having the form of a convex
cone, has received increasing attention from mathematical and algorithmic points of view (Hayashi, 2004;
Zhang et al., 2013).

3.2 The notion of closest point projection

The non-linear evolution equations of classical J2 perfect plasticity, as summarized in Table 2.1, define an
unilaterally constrained problem of evolution. By applying an implicit backward-Euler difference scheme,
such continuum problem is transformed into a discrete constrained optimization problem, governed by
discrete Kuhn-Tucker (KT) conditions. Thus, computationally, the solution of the constrained problem of
evolution collapses to the (iterative) solution of a convex mathematical programming problem. We will
show below that such a problem reduces to the standard problem of finding the closest distance (in the
energy norm) of a point (the trial state) to a convex set (the elastic domain).

3.2.1 Outline of the discrete equations for J2 elastoplasticity

We now elaborate on the algorithmic treatment of the equations summarized in Table 2.1.
For the sake of notation simplicity, the convention establishes superscript n for all the variables evaluated
at time tn, while drops superscript n+1 for all the variables computed at time tn+1. Knowing the strain, εεε,
at time tn+1 and the solution at time tn, represented by the ordered set {σn,εεεn,εεεpn}, we need to compute
the solution at time tn+1.

A backward-Euler discretization of flow rule (2.29)1, together with the discrete form of the KT inequal-
ities (2.34), yields: {

εεεp = εεεpn + ∆γ∂σf (σ)

∆γ ≥ 0, f (σ) ≤ 0, ∆γf (σ) = 0
(3.1)

where ∆γ =
∫ tn+1

tn
γ̇dt is the time-integrated consistency parameter.

The evaluation of the stress-strain relationship (2.14) at time tn+1 yields:

σ = ∇Ψ(εεεe) = C (εεε− εεεp) (3.2)

As in the continuum case, the discrete KT conditions (3.1)2 define the appropriate notion of loading-
unloading and can be reformulated in a form directly amenable to computational implementations. We
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introduce the following trial elastic state at time tn+1, as follows:
εεεp,trial = εεεpn

εεεe,trial = εεε− εεεp,trial

σtrial = ∇Ψ(εεεe,trial) = C
(
εεε− εεεp,trial

)
f trial = f(σtrial)

(3.3)

which, from a physical standpoint, is obtained by freezing plastic flow during the time step. We will show
below that such a trial state arises naturally in the context of an elastoplastic operator split.

3.2.2 Return-mapping algorithm

To deal with the non-linear discrete problem of Eqs. (3.1) and (3.2), we consider the so-called return-
map algorithm (Simo and Hughes, 1998). Such a scheme belongs to a family of elastic-predictor plastic-
corrector algorithms and, hence, is a two part procedure: (i) a purely elastic trial state is first computed,
as reported in system (3.3); (ii) then, if the trial state violates the model constitutive equations, a plastic
correction is computed using the trial state as an initial condition. Table 3.1 presents the numerical scheme
for the return-mapping algorithm.
Such an algorithm possesses a fundamental interpretation which is the manifestation of a basic variational
structure underlying classical rate-independent plasticity. We will show below that such algorithm is in-
terpreted as the KT optimality conditions of a convex optimization problem which is, in fact, the discrete
counterpart of the principle of maximum plastic dissipation (Simo and Hughes, 1998). The interpretation
of such an algorithm as optimality conditions of a convex minimization problem is of fundamental signifi-
cance in the three-dimensional theory, especially in the presence of complicated yield conditions, as often
in practice. Such an interpretation opens the possibility of applying several algorithms developed in convex
mathematical programming.

3.2.3 Geometric interpretation of closest point projection

Strain-space formulation

Now, we examine the geometric interpretation associated with the non-linear discrete problem of Eqs. (3.1)
and (3.2) in strain-space.
The solution εεεe = εεε− εεεp is the closest point projection in the energy norm of the trial state, εεεe,trial, onto
the yield surface, i.e.,

εεεe = arg

[
min

f(∇Ψ(εεεe′ ))≤0

1

2

∥∥∥εεεe,trial − εεεe′∥∥∥2

C

]
(3.4)

where ‖ · ‖C :=
√

· : C · is the energy norm.
Such a geometric interpretation follows by noting that the Lagrange multiplier functional, Lm, asso-

ciated with the constrained problem (3.4), is expressed as:

Lm
(
εεεe
′
,∆δ

)
:=

1

2

∥∥∥εεεe,trial − εεεe′∥∥∥2

C
+ ∆δf

(
∇Ψ(εεεe

′
)
)

(3.5)

and the corresponding KT optimality conditions are:
∂Lm
∂εεεe

∣∣∣∣
n+1

:= C

[
−εεεe,trial + εεεe + ∆γ

∂f

∂σ

∣∣∣∣
n+1

]
∆γ ≥ 0, f (∇Ψ(εεεe)) ≤ 0, ∆γf (∇Ψ(εεεe)) = 0

(3.6)
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1. Elastic Trial Step
We assume that no plastic deformation occurs in the interval [tn, tn+1].
We have as trial values: 

εεεp,trial = εεεpn

∆γ = 0

σtrial = C
(
εεε− εεεp,trial

)
If the elastic trial state is admissible, i.e., f trial = f

(
σtrial

)
≤ 0, then it represents the new solution

at tn+1 and step 2 is skipped.
If the elastic trial state is not admissible, a plastic correction is performed.

2. Plastic Corrector Step
We solve the following system: {

εεεp = εεεpn + ∆γ∂σf (σ)

f (σ) = 0

complemented with σ = C (εεε− εεεp).
The plastic corrector stage consists in finding a solution {εεεp,∆γ}, satisfying ∆γ > 0.

Table 3.1: Return-mapping algorithm for J2 rate-independent perfect plasticity.

which coincide with system of equations (3.1). Here, εεεe
′

and ∆δ are the generic elastic strain and Lagrange
multiplier, respectively; εεεe and ∆γ denote the elastic strain and the Lagrange multiplier at the solution.

We formulate on the algorithmic scheme for problem (3.4) as a minimization procedure. Then, we
consider the Newton-Raphson algorithm reported in Table 3.2. Since Eσ is convex, the algorithm is un-
conditionally convergent, regardless of the initial starting point εεεe,trial. Technically, step-size adjustment
is needed (Luenberger, 1984).

The penalty functional, Lp, associated with the constrained problem (3.4), is expressed as:

Lp
(
εεεe
′
)

:=
1

2

∥∥∥εεεe,trial − εεεe′∥∥∥2

C
+

1

2

〈
cf
(
∇Ψ(εεεe

′
)
)〉2

(3.7)

where c is a positive penalty parameter.
The Augmented Lagrangian functional, La, associated with the constrained problem (3.4), is expressed

as:

La
(
εεεe
′
,∆δ

)
:=

1

2

∥∥∥εεεe,trial − εεεe′∥∥∥2

C
+

1

2c

(〈
∆δ + cf

(
∇Ψ(εεεe

′
)
)〉2

−∆δ2

)
(3.8)

Stress-space formulation

A similar interpretation holds in stress-space. From Eq. (3.2) we have:

σ = σtrial −∆γ C ∇f (σ) (3.9)

where σtrial = C (εεε− εεεpn). It follows that, for an associative flow rule, σ is the closest point projection in
the energy norm of the trial elastic stress σtrial onto the yield surface, i.e.,

σ = arg

[
min
τ∈Eσ

1

2

∥∥σtrial − τ∥∥2

C−1

]
(3.10)
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1. Define the residual at iteration (k) by:

∇L(k)
m :=

[
∂εεεeL(k)

m ∂∆δL(k)
m

]T
2. Check whether convergence is attained. If

∥∥∥∇L(k)
m

∥∥∥ < tol, then EXIT.

3. ELSE compute Hessian matrix∇2L(k)
m .

4. Solve the linearized system:

∇2L(k)
m

[
∆εεεe(k) ∆2δ(k)

]T
= −∇L(k)

m

5. Update the solution, as follows: {
∆δ(k+1) = ∆δ(k) + ∆2δ(k)

εεεe(k+1) = εεεe(k) + ∆εεεe(k)

6. Update k = k + 1.

7. GO to step 2.

Table 3.2: Newton-Raphson algorithm to solve problem (3.4) in strain-space.

where ‖ · ‖ :=
√

· : C−1 · .
Such a geometric interpretation follows by noting that the Lagrangian multiplier functional, Lm, asso-

ciated with the constrained problem (3.10), is expressed as:

Lm (τ ,∆δ) :=
1

2

∥∥σtrial − τ∥∥2

C−1 + ∆δf (τ ) (3.11)

The associated KT optimality conditions are given by:
∂Lm
∂σ

∣∣∣∣
n+1

:= C−1
[
−σtrial + σ

]
+ ∆γ

∂f

∂σ

∣∣∣∣
n+1

∆γ ≥ 0, f (σ) ≤ 0, ∆γf (σ) = 0

(3.12)

which coincide with system of equations (3.1). Here, τ and ∆δ are the generic stress and Lagrange multi-
plier, respectively; εεεe and ∆γ denote the stress and the Lagrange multiplier at the solution, respectively.

Again, we formulate the algorithmic scheme for problem (3.10) as a minimization procedure. Then,
we consider the Newton-Raphson algorithm reported in Table 3.3. Since Eσ is convex, the algorithm is
unconditionally convergent, regardless of the initial starting point σtrial. Technically, step-size adjustment
is needed, see, e.g., (Luenberger, 1984).

The Augmented Lagrangian functional, La, associated to the constrained problem (3.10), is given by
(Armero and Pérez-Foguet, 2002a):

La (τ ,∆δ) :=
1

2

∥∥σtrial − τ∥∥2

C−1 +
c

2

[〈
∆δ

c
+ f (τ )

〉2

−
(

∆δ

c

)2
]

(3.13)

for a general scalar variable ∆δ, not constrained to be non-negative as in the case for the plastic multiplier
previously employed.
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1. Define the residual at iteration (k) by:

∇L(k)
m :=

[
∂σL(k)

m ∂∆δL(k)
m

]T
2. Check whether convergence is attained. If

∥∥∥∇L(k)
m

∥∥∥ < tol, then EXIT.

3. ELSE compute Hessian matrix∇2L(k)
m .

4. Solve the linearized system:

∇2L(k)
m

[
∆σ(k) ∆2δ(k)

]T
= −∇L(k)

m

5. Update the solution, as follows: {
∆δ(k+1) = ∆δ(k) + ∆2δ(k)

σ(k+1) = σ(k) + ∆σ(k)

6. Update k = k + 1.

7. GO to step 2.

Table 3.3: Newton-Raphson algorithm to solve problem (3.10) in stress-space.

Setting the gradient of the Augmented Lagrangian functional (3.13) to zero and denoting the final solution
by (σ,∆γ) leads to: 

∂La
∂σ

∣∣∣
(σ,∆γ)

= 0

∂La
∂∆δ

∣∣∣
(σ,∆γ)

= 0

(3.14)

where the solution coincides with the solution of the original closest-point projection equations for the case
of associate plasticity. In particular, Eq. (3.14)2 can be rewritten as:

∂La
∂∆δ

∣∣∣
(σ,∆γ)

=
1

c
[〈∆γ + cf (σ)〉 −∆γ] = 0 (3.15)

from which we identify the relation:

∆λ = 〈∆γ + cf (σ)〉 (3.16)

The fact that solution, (σ,∆γ), of system of equations (3.14) corresponds to the solution of the closest-
point projection equations, follows after noting that:

∆γ + cf (σ) ≤ 0 ⇒ ∆γ = 0 ⇒ ∆λ = 0 (3.17)

and

∆γ + cf (σ) > 0 ⇒ f (σ) = 0⇒ ∆λ = 〈∆γ〉 > 0 (3.18)

which recover the discrete Kuhn-Tucker conditions (2.34).
The Augmented Lagrangian functional can be written also in the form (Cuomo and Contrafatto, 2000):

La (τ ,∆δ) :=
1

2

∥∥σtrial − τ∥∥2

C−1 + ∆δ f (τ ) +
1

2
c
∣∣f (τ )

∣∣2 (3.19)
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where c is a positive penalty parameter and the function f (σ):

f (σ) = max

[
f (σ) ,−∆δ

c

]
(3.20)

converts the inequality constraint f (σ) ≤ 0 into the equality one f (σ) = 0, removes the sign restriction
on the Lagrangian multiplier and preserves the functional continuity in a neighbor of the solution.

For further details about the numerical treatment, the reader is referred to (Armero and Pérez-Foguet,
2002a).

Remark 3.2.1. The normality law, in its subdifferential form, is equivalent to the inverse subdifferential
relation:

σ ∈ ∂φ(ε̇εεp) (3.21)

Moreover:

∂IEσ (σ) 3 ε̇εεp (3.22)

and

∂φ∗(σ) 3 ε̇εεp (3.23)

Since the elastic stress-strain relationship yields:

σ = C (εεε− ε̇εεp) (3.24)

we obtain:

ε̇εεp = −C−1σ̇ + ε̇εε (3.25)

Substituting Eq. (3.22) in Eq. (3.25), we obtain:

C−1σ̇ + ∂IEσ (σ) 3 ε̇εε (3.26)

In variational terms:

C−1σ + ∂IEσ (σ) 3 εεε− εεεn + C−1σn (3.27)

from which:

σ =
(
C−1 + ∂IEσ (σ)

)−1 (
εεε− εεεn + C−1σn

)
(3.28)

where
(
C−1 + ∂IEσ (σ)

)−1
and

(
εεε− εεεn + C−1σn

)
represent the projection onto Eσ and the elastic trial,

respectively.

3.3 The principle of maximum plastic dissipation

We now elaborate on the algorithmic treatment of Eqs. (2.91) and (2.79).
For the sake of notation simplicity, the convention establishes superscript n for all the variables evaluated
at time tn, while drops superscript n+1 for all the variables computed at time tn+1. Knowing the strain, εεε,
at time tn+1 and the solution at time tn, represented by the ordered set {σn,εεεn,εεεpn}, we need to compute
the solution at time tn+1.
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3.3.1 Augmented Lagrangian formulation

To achieve a stable time-integration, we apply a backward-Euler scheme to system (2.91) (Schmidt-Baldassari,
2003). We gain the following time-discrete formulation:{

εεεp = εεεpn + max [0,∆γ + ∆tcf (σ)]∂σf (σ)

∆γ = max [0,∆γ + ∆tcf (σ)]
(3.29)

where ∆γ =
∫ tn+1

tn
γ̇dt is the time-integrated consistency parameter.

Now, a favorable algorithmic scheme can be developed by solving the discrete consistency condition
(3.29)2 with aid of a fixed-point iteration scheme:

∆γ(i+1) = max
[
0,∆γ(i) + ∆tcf

(
σ(i)

)]
(3.30)

starting from ∆γ(1) = 0 and with σ(i) = C
(
εεε− εεεp(i)

)
. The intermediate states of the plastic strain is

given implicitly via:

εεεp(i) = εεεpn + max
[
0,∆γ(i) + ∆tcf

(
σ(i)

)]
∂σf

(i) (3.31)

The solution of (3.31) cannot be derived in closed form. The usage of a damped Newton-Raphson scheme,
where the damping guarantees the convergence of the Newton-Raphson scheme on the non-smooth func-
tion, has been proposed (Allen and Isaacson, 1998). Within the fixed-point steps, the yield conditions can
be fulfilled with arbitrary accuracy independent of the choice of c, but the number of iteration steps depends
on c. Therefore, it seems to be convenient to replace c by a variable penalty factor c(i) and add the relation:

c(i+1) = mc(i), c(1) = c0, m > 1 (3.32)

Now, we are able to start the iterations using a substantially small penalty factor, which implies a rather
smooth and well-conditioned problem. A rapid increase in c assures fast convergence of the fixed-point
scheme.
The scheme is summarized in Table 3.4.

1. Start with i = 1.

2. Assume ∆γ(1) = 0 and c(1) = c0.

3. Solve (3.31).

4. Update (3.30).

5. If fixed-point reached, evaluate εεεp and EXIT.

6. Update c(i+1) = mc(i).

7. GO to step 3.

Table 3.4: Fixed-point iteration scheme for the discrete Augmented Lagrangian formulation (3.29) of the
principle of maximum plastic dissipation.

3.3.2 Penalty formulation

The time-integration of the penalty formulation (2.79) reduces simply to the first step during the fixed-point
iteration in the implementation of the Augmented Lagrangian method as, for i = 1, Eq. (3.31) takes the
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form (Schmidt-Baldassari, 2003):

εεεp(1) = εεεpn + max
[
0,∆tcf

(
σ(1)

)]
∂σf

(1) (3.33)

This relation, together with εεεp(1) = εεεp, is exactly a backward-Euler step applied to the flow rule (2.79).
Numerical difficulties in the penalty formulation could be caused by the non-differentiable right-hand

side of Eq. (2.79). Moreover, possible disadvantages could be due to slow convergence and ill-conditioning
when minimizing Eq. (2.78) for large values of c (Bertsekas, 1982). In fact, the larger the penalty factor, c,
the better is the approximation to a solution of the original problem (2.64).

Penalty formulation in a one-dimensional setting

Now, we reduce Eq. (2.79) to a one-dimensional setting.
The yield criterion f can be written as follows:

f (σ) = |σ| − σy = |E (ε− εp) | − σy (3.34)

where σy and E are the yield stress and the elastic constant, respectively. Accordingly, Eq. (2.79) can be
rewritten as follows:

ε̇p = max [0, cf (σ)]
σ

|σ| = max [0, c (|E (ε− εp) | − σy)]
σ

|σ| (3.35)

Assume that during tensile loading (σ > 0) plastic deformation takes place. Eq. (3.35) becomes:

ε̇p = cE (ε− εp)− cσy (3.36)

Now, we discretize in time, i.e., ε̇p = (εp − εpn) /∆t, and we substitute in Eq. (3.36):

εp − εpn
∆t

= cE (ε− εp)− cσy (3.37)

After some simplifications, we obtain:

εp =
1

1

∆t
+ cE

(
cα+

εpn
∆t

)
(3.38)

where α = Eε− σy . The expression for the stress σ can be rewritten in the form:

σ = E (ε− εp) = α+ σy − Eεp (3.39)

Consider a time interval [0, 1] with a constant time-step ∆t = 0.1 and assume σy = 1 MPa, E = 1 MPa
and α increasing from 0 to 9. Figures 3.1(a), 3.1(b) and 3.1(c) represent diagrams in terms of plastic strain,
α = Eε − σy , and stress, varying the penalty parameter, c. We may observe that as c is increased, the
diagrams plot the exact solution for perfect plasticity.

3.4 The energy minimization problem

This Section presents the J2 perfect elastoplastic model within the incremental energy minimization frame-
work (Petryk, 2003). In particular, the aim is to examine the applicability of the incremental energy min-
imization to time-independent dissipative solids when the increments of the internal variable are treated
as independent unknown. Three constitutive functions are involved: the Helmholtz free-energy, the rate-
independent dissipation, and the constraint function.
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Figure 3.1: One-dimensional setting for the discrete penalty formulation (3.33) of the principle of maxi-
mum plastic dissipation. Diagrams in terms of: (a) plastic strain, εp, and α = Eε − σy; (b) stress, σ, and
α = Eε− σy; (c) stress, σ, and plastic strain, εp, varying the penalty parameter, c.

Again, for the sake of notation simplicity, the convention establishes superscript n for all the variables
evaluated at time tn, while drops superscript n + 1 for all the variables computed at time tn+1. Knowing
the strain, εεε, at time tn+1 and the solution at time tn, represented by the ordered set {σn,εεεn,εεεpn}, we need
to compute the solution at time tn+1.

Starting from the definition of the Helmholtz free-energy function, Ψ = Ψ (εεε,εεεp):

Ψ :=
1

2
(εεε− εεεp) : C (εεε− εεεp) (3.40)

and of the plastic dissipation function, Dp = Dp(σ; ε̇εεp):

Dp := σ : ε̇εεp (3.41)

we recover the elastic stress-strain relationship:

σ = −∂εεεpΨ = C (εεε− εεεp) (3.42)
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as wee as the normality law, in its subdifferential form, which is equivalent to the inverse subdifferential
relation:

σ ∈ ∂Dp(ε̇εεp) (3.43)

From Eqs. (3.43) and (3.42) we have:

∂εεεpΨ (εεεp;εεε) + ∂Dp(ε̇εεp) = 0 (3.44)

Substituting ε̇εεp by its incremental form (εεεp − εεεpn) (time step ∆t can be neglected), Eq. (3.44) becomes:

∂εεεpΨ (εεεp;εεε) + ∂Dp(εεεp − εεεpn) = 0 (3.45)

Now, we introduce the total energy in the incremental form:

∆e = ∆Ψ + ∆Dp (3.46)

where:

∆Ψ = Ψ (εεεp;εεε)−Ψ (εεεpn;εεεn) (3.47)

and ∆Dp represents the energy dissipation related to jumps from one energy well to another:

∆Dp = σ : (εεεp − εεεpn) (3.48)

It is assumed that the increment, symbolized by ∆, is sufficiently small to treat all changes within the
increment as monotonic. The increments can be arbitrarily small, so that the formulation covers both the
time-discrete form and the time-continuous rate form in the limit. Note that the incremental dissipation,
∆Dp, does not vanish with reducing the rate of change of εεεp with respect to a natural time to zero as it is
independent of that rate.

With the rate-independence property of ∆Dp used, the material response is postulated to be governed
by the incremental energy minimization principle (Petryk, 2003).

Find εεεpn+1 : min
f≤0

∆e (for given εεε) (3.49)

The solution can be shown to be unique if Ψ is strictly convex (Petryk, 2003).

Lagrangian multiplier formulation

The Lagrangian multiplier functional, Lm, associated with the constrained problem (3.49), is expressed
as:

Lm
(
εεεp
′
,∆δ

)
:= Ψ

(
εεεp
′
;εεε
)

+ ∆Dp
(
εεεp
′ − εεεpn

)
−∆δf

(
−∇Ψ(εεεp

′
)
)

(3.50)

and the corresponding KuhnTucker optimality conditions are:
∂Lm
∂εεεp

∣∣∣
(εεεp,∆γ)

:= C

[
εεεp − εεεpn −∆γ

∂f

∂σ

∣∣∣∣
n+1

]
∆γ ≥ 0, f (−∇Ψ(εεεp)) ≤ 0, ∆γf (−∇Ψ(εεεp)) = 0

(3.51)

We note that, for the minimum, the parts of Eq. (3.49) which depend only on the previous time step are of
no interest.
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Penalty formulation

The penalty functional, Lp, associated with the constrained problem (3.49), is expressed as:

Lp
(
εεεp
′
)

:= Ψ
(
εεεp
′
;εεε
)

+ ∆Dp
(
εεεp
′ − εεεpn

)
− 1

2

〈
cf
(
−∇Ψ(εεεp

′
)
)〉2

(3.52)

Augmented Lagrangian formulation

The Augmented Lagrangian functional, La, associated with the constrained problem (3.49), is expressed
as:

La
(
εεεp
′
; ∆δ

)
:= Ψ

(
εεεp
′
;εεε
)

+ ∆Dp
(
εεεp
′ − εεεpn

)
− 1

2c

(〈
∆δ + cf

(
−∇Ψ(εεεp

′
)
)〉2

−∆δ2

)
(3.53)

3.5 Complementarity problem functions

We now elaborate on the algorithmic treatment of the complementary problem functions, presented in
Section 2.6. Again, for the sake of notation simplicity, the convention establishes superscript n for all the
variables evaluated at time tn, while drops superscript n + 1 for all the variables computed at time tn+1.
Knowing the strain, εεε, at time tn+1 and the solution at time tn, represented by the ordered set {σn,εεεn,εεεpn},
we need to compute the solution at time tn+1.

3.5.1 Fischer-Burmeister complementarity problem function

The discrete Kuhn-Tucker conditions (3.1)2 are substituted by the following discrete Fischer-Burmeister
(FB) function in the time-discrete frame:√

f2 + ∆γ2 + 2δ + f −∆γ = 0 (3.54)

As we will note in next Chapter, possible numerical difficulties, especially for complex model problems,
can be linked to the numerical sensitiveness of the FB scheme (due to the presence of the regularization
parameter δ) and to the proper choice of Newton-Raphson initial guess to guarantee a fast and correct
convergence. To overcome potential difficulties it is possible to apply a line search strategy.

3.5.2 A different form of complementarity problem function

Chen-Mangasarian smoothing procedure

The discrete Kuhn-Tucker conditions (3.1)2 can be substituted by the following Chen-Mangasarian (CM)
function in the time-discrete frame, which is the discrete form of Eq. (2.136):

− f − 1

α
ln
[
1 + exp−α(∆γ+f)

]
= 0 (3.55)

Balakrishna-Biegler smoothing procedure

The discrete Kuhn-Tucker conditions (3.1)2 can be substituted by the following Balakrishna-Biegler (BB)
function in the time-discrete frame, which is the discrete form of Eq. (2.141):

∆γ − f
2

−

√
(∆γ + f)

2
+ ε2

2
= 0 (3.56)



Chapter 4

Numerical tests for J2 elastoplasticity

This Chapter is devoted to the numerical investigation of two integration algorithms for J2 elastoplasticity
with linear isotropic kinematic hardening, presented in Chapter 2, i.e., the return-mapping and the Fischer-
Burmeister algorithms. The proposed numerical analysis is intended to provide a comparison in terms of
precision and efficiency and it is carried out through several kinds of numerical tests, ranging from mixed
stress-strain loading histories to initial boundary-value problems on three-dimensional material bodies.

The Chapter is organized as follows. Section 4.1 briefly presents the governing equations for J2 elasto-
plasticity with linear isotropic kinematic hardening, in both time-continuous and time-discrete frameworks.
Then, Section 4.2 concerns with the setup of the numerical tests and the investigation of the two numerical
schemes.

4.1 Outline of the governing equations for J2 elastoplasticity

We recall the following system of time-continuous equations for J2 elastoplasticity with linear isotropic
kinematic hardening, already introduced in Section 2.2:



p = Kθ

s = 2G (e− ep)

Σ = s−α
f = ‖Σ‖ − σy
ε̇εεp = γ̇n

σy = σy,0 −Hisoe
p

α̇ = Hkinγ̇n

γ̇ ≥ 0, f ≤ 0, γ̇f = 0, γ̇ḟ = 0

(4.1)

where ėp = ‖ε̇εεp‖ = γ̇ and εεεp = ep.

We now elaborate on the algorithmic treatment of system of equations (4.1). For the sake of notation
simplicity, the convention establishes superscript n for all the variables evaluated at time tn, while drops
superscript n + 1 for all the variables computed at time tn+1. Thus, the corresponding system of time-
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discrete equations follows: 

p = Kθ

s = 2G (e− ep)

Σ = s−α
f = ‖Σ‖ − σy
εεεp − εεεpn −∆γn = 0

σy = σy,0 −Hisoe
p

α−αn −Hkin∆γn = 0

∆γ ≥ 0, f ≤ 0, ∆γf = 0

(4.2)

where ∆γ =
∫ tn+1

tn
γ̇dt is the time-integrated consistency parameter and ep = epn + ∆γ.

The Kuhn-Tucker conditions of system of equations (4.2) can be equivalently rewritten as follows:√
f2 + ∆γ2 + f −∆γ = 0 (4.3)

In the following, we focus on two algorithmic schemes, i.e., the return-mapping and Fischer-Burmeister
based algorithms, already presented in Chapter 2. The FE implementation of model equations and of all
the numerical examples presented in the next Section is carried out using the symbolic code generation
system AceGen/AceFEM (Korelc, 2009). This system extends the symbolic capabilities of Mathematica
(Wolfram, 2013a) with the automatic differentiation technique, simultaneous optimization of expressions,
and automatic generation of program code. Accordingly, we do not provide explicit expressions resulting
from differentiation as these are obtained automatically using the automatic differentiation technique im-
plemented in AceGen (Korelc, 2009). Application of these automation tools leads to exact linearization of
the non-linear FE equations (consistent tangent matrix). This guarantees quadratic convergence rate of the
global Newton method and results in a robust and efficient FE implementation of the model. The reader is
referred to Appendix B for further details about the AceGen and AceFEM packages.

Parameter Value Unit

E 21000 MPa
ν 0.3 -
σy,0 24 MPa
Hiso 100 MPa
Hkin 1 MPa

Table 4.1: J2 elastoplastic model with linear isotropic kinematic hardening. Adopted parameters.

4.2 Numerical test setup

The present Section is devoted to the setup of several numerical tests in order to investigate two algorithmic
schemes presented in Sections 3.2.2 and 3.5, i.e., the return-mapping and the Fischer-Burmeister based
algorithms (denoted, respectively, as RM and FB). We carry out a detailed comparison of the presented
methods in terms of accuracy, robustness, efficiency as well as of specific properties shown by each method.
First, we consider mixed stress-strain loading histories for a material point in order to study both the
accuracy and efficiency granted by the numerical methods with respect to the computation of the stress-
strain asset. Then, we present two classical initial boundary-value problems (IBVPs), which we study to
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analyze the algorithms reliability and efficiency on practical engineering problems. In the following, we
first present the conducted tests; then, we discuss the obtained results. Table 4.1 lists the model parameters
adopted in all the numerical tests.

4.2.1 Mixed stress-strain loading histories

We consider biaxial non-proportional stress-strain loading histories. Such histories are obtained assuming
to control two strain components and four stress components, particularly, {ε11, ε22, σ33, σ12, σ13, σ23}.
For each loading history we require that all the controlled stress components are identically equal to zero,
while the strains are varied according to a chosen history. In particular, we investigate two types of loading
histories, defined on the reference time interval [0, T ], with T equal to 8 and 10 s, respectively. The histories
consist of an hourglass- and a square-shaped strain history input, respectively, where the strain components,
ε11 and ε22, vary in the range ±4%, as shown in Figures 4.1(a)-(d).
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Figure 4.1: Mixed stress-strain loading histories. (a)-(b) Butterfly- and (c)-(d) square-shaped history inputs
under strain control up to 4%.
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Algorithm Steps/second Aver. Newton iteration number/step Aver. comput. time/step [s]

RM 2 4.875 0.1148
20 3.9063 0.0457

500 3.3293 0.0426

FB 2 5.0625 0.1194
20 4.2688 0.0489

500 3.8818 0.0499

Table 4.2: Biaxial butterfly-shaped loading history input. Comparison of computational efficiency between
the RM and the FB algorithmic schemes in terms of average number of global Newton iterations and
average computational time per time step increment.

Iterations and computational time

The biaxial non-proportional tests are performed using time step increments, ∆t, of 0.5, 0.05 and 0.002

s, corresponding to 2, 20 and 500 steps per second. To assess the computational efficiency of the RM and
FB algorithms, Tables 4.2 and 4.3 report the average number of global Newton iterations and the average
computational time per time step increment for the butterfly- and square-shaped histories, respectively.

Algorithm Steps/second Aver. Newton iteration number/step Aver. comput. time/step [s]

RM 2 6 0.1189
20 5.97 0.0982

500 5.2872 0.0611

FB 2 6 0.2544
20 5.98 0.0722

500 4.9816 0.0594

Table 4.3: Biaxial square-shaped loading history input. Comparison of computational efficiency between
the RM and the FB algorithmic schemes in terms of average number of global Newton iterations and
average computational time per time step increment.

Instantaneous error

Lacking the analytical solutions of the two loading histories under investigation, we compute the ’exact’ so-
lutions using a reference scheme, i.e., the RM algorithm with a very fine time discretization, corresponding
to 10000 steps per second (i.e., ∆t = 0.0001 s). Then, we compare the ’exact’ solutions to the ’numerical’
ones, computed respectively with 2, 20 and 500 steps per second (i.e., ∆t of 0.5, 0.05 and 0.002 s).

The error is evaluated separately for stresses and strains; for stresses we introduce the following relative
norm:

En =
‖vexn − vnumn ‖2

Rn
(4.4)

where Rn is the yield surface radius at time tn and vexn and vnumn are vectors containing, respectively, the
’exact’ and the ’numerical’ solution at time tn. For strains we use the same relative norm scaled by 2G.
Figures 4.2 and 4.3 show the stress and strain relative error, En, related to ∆t of 0.5, 0.05 and 0.002 s for
the butterfly- and square-shaped histories, respectively.
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Figure 4.2: Biaxial butterfly-shaped loading history input. Stress (left column) and strain (right column)
relative error, En, for ∆t of 0.5, 0.05 and 0.002 s for the RM and the FB algorithmic schemes.

Total error

In order to further investigate the rate of convergence of the compared methods, we introduce the total
error, defined as follows:

ET =

N∑
n=1

∆t ‖vexn − vnumn ‖1 (4.5)
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Figures 4.4(a)-(b) and 4.5(a)-(b) present the stress and strain total error, ET , versus the number of steps per
second for the butterfly- and square-shaped histories, respectively.
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Figure 4.3: Biaxial square-shaped loading history input. Stress (left column) and strain (right column)
relative error, En, for ∆t of 0.5, 0.05 and 0.002 s for the RM and the FB algorithmic schemes.
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Figure 4.4: Biaxial butterfly-shaped loading history inputs. Stress (left) and strain (right) total error, ET ,
vs. number of steps per second for the RM and the FB algorithmic schemes.
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Figure 4.5: Biaxial square-shaped loading history inputs. Stress (left) and strain (right) total error, ET , vs.
number of steps per second for the RM and the FB algorithmic schemes.

4.2.2 Initial boundary-value problems

Three-dimensional perforated strip

We consider a three-dimensional perforated square strip, subjected to uniaxial displacement-control exten-
sion. The strip has an edge length of 50 mm and a thickness of 10 mm; moreover, the strip has a central
circular hole of radius 10 mm. According to the symmetry of the problem, we model only one quarter
of the domain for the strip by applying appropriate boundary conditions. The mesh is composed of 3080

8-node brick elements and 4002 nodes (see Figure 4.6).
Initially the strip results undeformed and unstressed. The loading history is composed of a first phase,

in which, the strip is stretched up to a maximum vertical displacement of 0.1 mm at top side, and a second
phase in which the imposed displacement is set back to zero. Tests are performed using time step incre-
ments, ∆t, of 0.1 and 0.01 s, corresponding to 10 and 100 steps per second. To assess the computational
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efficiency of the RM and FB algorithms, Table 4.4 reports the average number of global Newton iterations
and the average computational time per time step increment.

Figure 4.6: 3D perforated strip. Adopted mesh.

Algorithm Steps/second Aver. Newton iteration number/step Aver. comput. time/step [s]

RM 10 5.55 1.8315
100 4.77 1.36

FB 10 5.55 2.1271
100 4.735 1.63911

Table 4.4: 3D perforated strip. Comparison of computational efficiency between the RM and the FB
algorithmic schemes in terms of average number of global Newton iterations and average computational
time per time step increment.

Helicoidal spring

To test the algorithms on a more complex three-dimensional case, we consider a helicoidal spring. The
spring consists of 3.5 free coils of initial length of 24.59 mm, a wire diameter of 1.5 mm, a spring external
diameter of 13.3 mm, a spring internal diameter of 10.3 mm and a pitch size of 6.4 mm. Figure (4.7)
reports the adopted mesh, consisting of 6912 8-node brick elements and 7497 nodes.

The spring is fixed at one end and at the other hand a force is applied. The force is increased to a
maximum value of 3 N and then unloaded back to zero. Tests are performed using time step increments,
∆t, of 0.1 and 0.01 s, corresponding to 10 and 100 steps per second. Table 4.5 reports the average number
of global Newton iterations and the average evaluation time per time step increment for the RM and FB
algorithmic schemes.
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Figure 4.7: Helicoidal spring. Adopted mesh.

Algorithm Steps/second Aver. Newton iteration number/step Aver. comput. time/step [s]

RM 10 5.65 11.6661
100 5.035 7.9420

FB 10 5.7 8.4455
100 4.7 7.8232

Table 4.5: Helicoidal spring. Comparison of computational efficiency between the RM and the FB algo-
rithmic schemes in terms of average number of global Newton iterations and average computational time
per time step increment.

4.2.3 Discussion on results

As it can be observed from all the numerical tests, the obtained results reveal that the RM and FB algo-
rithms can be equally used for numerical simulations of elastoplastic bodies with linear isotropic kinematic
hardening. In particular, the number of global Newton iterations and the computational time is quite similar
for the two algorithms (see Tables 4.2, 4.3, 4.4, and 4.5) and decrease as the number of steps per second
increases. Also, the stress and strain total and relative errors, En and ET , present identical values, as
shown in Figures 4.2, 4.3, 4.4(a)-(b), and 4.5(a)-(b). We remark that possible difficulties in the FB scheme
could be linked to the numerical sensitiveness of such scheme (due to the presence of the regularization
parameter) and to the proper choice of the Newton-Raphson initial guess to guarantee a fast and correct
convergence. In fact, a potential disadvantage of this method is that when the initial point is far from a
solution, the method might not converge or may converge very slowly. To resolve these shortcomings, we
could apply a line-search strategy. In the present case, however, the presence of the regularization parame-
ter in the FB algorithm does not affect the convergence.
Therefore, the obtained results encourage a further investigation of the FB scheme and of its application to
more complex constitutive models, e.g., involving non-linear kinematic hardening or describing the beha-
vior of smart materials, as shape memory materials. In the following Chapters, we will make use of the FB
algorithm for the numerically treatment of several computational problems involving shape memory alloys
and polymers. The FB scheme will demonstrate its suitability to treat numerically constitutive equations
involving several constraints on internal variables and Kuhn-Tucker conditions.
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Chapter 5

Introduction to shape memory alloys

This Chapter presents an introduction to shape memory alloys which, among the different types of smart
materials, play an important role in various innovative applications.

The Chapter is organized as follows. Starting from the role of intelligent materials in the technological
progress, Section 5.1 describes shape memory alloy historical background. To briefly explain the reasons of
the great success of shape memory alloys, Section 5.2 focuses on physical material properties, particularly
on pseudo-elasticity and shape memory effects. Then, Section 5.3 reinterprets material properties in terms
of micromechanical configuration. Finally, Section 5.4 presents a quick overview on the large variety of
shape memory alloy-based applications.

5.1 Shape memory alloy historical background

Shape memory alloy discovery dates back to the 1960s, when Buehler et al. (1963) developed a series of
nickel-titanium alloys (NiTi), composed of 53 to 57% nickel by weight and exhibiting an unusual effect:
severely deformed specimens of the alloys, with residual strain of 8-15%, regained their original shape
after a thermal cycle. This effect became known as the shape memory effect and the alloys exhibiting it
were named shape memory alloys (SMAs). It was later found that, at sufficiently high temperatures, such
materials also possess the property of pseudoelasticity, i.e., the ability of recovering large deformations
during mechanical loading-unloading cycles performed at constant temperature. The term NiTiNOL was
coined for the NiTi material in honor of its discovery at the Naval Ordinance Laboratory (NOL).

The discovery of NiTi alloys spearheaded active research interest into SMAs and allowed the develop-
ment of many commercial applications. The first commercial SMA applications, known as Cryofit, were
pipe couplings in F-14 fighter aircraft (Wayman and Harrison, 1989). During the 1970s, several uses of
NiTi alloys in biomedical applications appeared, but it was not until the 1990s that NiTi stents made their
commercial breakthrough. By this time, SMAs had found additional applications in air conditioning vents,
electronic cable connectors, valves, and other products (Duerig et al., 1990; Lagoudas, 2008).

Various other materials are known to display shape memory properties, such as ternary NiTi alloys
(e.g., NiTi-Cu, NiTi-Fe) and copper-based alloys (e.g., Cu-Zn, Cu-Al-Ni). However, the NiTi alloy is still
the most common commercially available SMA.

5.2 Shape memory alloy properties

As one of the most important branches of smart materials, shape memory alloys (SMAs) provide a huge
variety of fascinating properties, known as pseudo-elasticity (PE), one-way and two-way shape memory
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effects (SMEs) (Duerig et al., 1990; Otsuka and Wayman, 1998). If the material is deformed at low tem-
perature, upon unloading it retains an apparently plastic deformation, which can be recovered by heating
it above a characteristic temperature (thermal recovery, known as the SME). At high temperature, on the
contrary, large deformations can be recovered by simply removing the applied load (mechanical recovery,
known as PE).

(a)

(b)

Figure 5.1: SMA material properties. (a) Shape memory effect and (b) pseudo-elasticity.

Figure 5.1(a) presents the SME property in a one-dimensional diagram, in terms of stress, σ, strain,
ε, and temperature, T . The material starts from the reference configuration at a given low temperature
and zero stress (point A). If a load is applied and increased, material behavior is at first linearly elastic;
then apparently plastic deformations start to develop at nearly constant stress. Unlike plastic deformation,
however, SMA deformation reaches saturation at a certain level of the load and an additional increase of
the load leads to a new linear elastic branch until the final point B. Upon unloading, a residual deformation
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is present (point C), which can be recovered by heating the material above a characteristic temperature
under no applied load (from point C to point D). Finally, if the material is cooled down to the starting
reference temperature (from point D to point A), the initial material state (point A) is completely recovered
and no change in shape occurs. The described property is also known as one-way SME, as only the high-
temperature shape is memorized by the material.

The two-way SME, on the contrary, is related to the ability of the material to remember two different
shapes at low and high temperatures. Such a property allows to move between the two shapes by simply
changing the temperature, with no need of an applied load. Figures 5.2(a) and 5.2(b) schematically repre-
sent the one-way and two-way SMEs, respectively. It should be noted that, while the one-way SME is an
intrinsic characteristic of SMAs, the two-way SME needs to be induced by particular treatments, such as
training1.

(a) (b)

Figure 5.2: SMA material properties. (a) One-way and (b) two-way shape memory effect.

Figure 5.1(b) presents the PE property in a one-dimensional diagram, in terms of stress, σ, and strain, ε.
The material starts from the reference configuration at a given high temperature and zero stress (point A).
The loading branch is similar to that described for the SME (from point A to points C through B), whereas
a stress plateau is present upon unloading (point D), leading to no residual deformation at zero stress (point
A).

The apparently unrelated properties of SME and PE, can be observed in the same material if it is tested
at different temperatures. Indeed, the characteristic temperature that separates SME and PE temperature
ranges depends upon the type and the chemical composition of the alloy; thus, it is possible to find alloys
which show either of the effects at room temperature.

5.3 Micromechanical interpretation of shape memory alloy proper-
ties

The macroscopic behavior of SMAs depends upon the presence of two solid phases with different degrees
of symmetry (Duerig et al., 1990). The parent phase, called austenite, has a high symmetry crystal structure
(typically body-centered cubic) and it is stable at high temperature and low levels of stress; the other phase,
called martensite, has lower symmetry (typically rhombohedral or monoclinic) and it can appear in a

1Training consists in repeatedly cycling the material in different ways. It is also useful to stabilize SMA properties.
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number of cristallographically equivalent variants, which differ in their orientation with respect to material
axes2. The different martensitic variants, formed in a single grain of polycrystalline SMA, are shown in
Figure 5.3.

The transformation from one phase to the other (known as martensitic transformation) occurs by a
shear lattice distortion, without volume change (Lagoudas, 2008; Otsuka and Wayman, 1998). Indeed, the
phase transformation (PT) between the two phases is displacive; thus, it requires only small movements of
the atoms within the crystal lattice and its evolution is time-independent3.

Figure 5.3: Formation of different martensitic variants in a single grain of polycrystalline CuZnAl alloy
during uniaxial tensile loading, taken from (Patoor et al., 2006).

A PT can be induced by controlling material temperature and/or stress conditions. In thermal-induced
transformations under zero stress, multi-direction martensite variants compensate each other and arrange
themselves in a self accommodating manner through twinning, with no observable macroscopic shape
change (Duerig et al., 1990). In stress-induced transformations, starting from a martensitic specimen, the
application of a loading induces martensite reorientation, resulting into a detwinning process of martensitic
variants and leading to the presence of a single-variant; upon unloading, a large residual strain remains,
which can be recovered by heating (Duerig et al., 1990). This phenomenon, introduced in Section 5.2, is
referred to as SME. On the contrary, when a stress is applied to an austenitic specimen, at high temperature,
the growth of some martensite variants (up to 24 for NiTi) is favoured and a transformation from austenite
to single-variant martensite occurs; upon unloading, the strain attained during loading is recovered. This
process, introduced in Section 5.2, is referred to as PE (Otsuka and Wayman, 1998).
We remark, also, that some NiTi alloys display a two-step PT (Sadjadpour and Bhattacharya, 2007). Upon
cooling, austenite transforms first into a trigonal structure known as the R-phase, which in turn changes
into martensite as the temperature continues to decrease. The austenite to R-phase transition has a very
small hysteresis and it is associated to a limited recoverable shape change (about 1% elongation versus the
10% elongation associated to martensite) and to a significant change in electrical resistivity.

Figure 5.4(a) represents a schematic one-dimensional diagram, in terms of stress, σ, and temperature,
T , which illustrates the different crystal structures of a given SMA with fixed composition, i.e., auste-
nite, multi-variant and single-variant martensites, along with the PT regions4. The construction of such a

2Martensite can be present in different but crystallographically equivalent forms (variants). If there is no preferred direction
along which the martensite variants tend to align, then multiple-variants are formed. If, instead, there is a preferred direction for the
formation of martensite, just one (single) variant is formed.

3Diffusive phase transitions, on the other hand, require breaking of the crystal lattice and long distance atom movements, thus
their evolution depends upon the time of reaction.

4Another unique SMA material feature is the possibility to modify and adjust the PT regions and the thermo-mechanical characte-
ristic parameters through variations in the alloy composition and/or through proper thermo-mechanical treatments (Coda et al., 2006;
Norwich, 2011). As an example, the material can remember a desired manufactured shape, which can be set to be different from the
original shape, through a process referred to as shape training (Barras and Myers, 2010).
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diagram, called phase diagram, involves the interpretation of SMA material response to various thermo-
mechanical loading paths. In Figure 5.4(a) the PTs from austenite to multi- and single-variant martensites
(termed forward transformations), from multi-variant to single-variant martensite, and from multi- and
single-variant martensites to austenite (termed reverse transformations) are indicated by blue arrows.

Accordingly, the properties of SMA materials, i.e., SME and PE, described in Section 5.2, can be
represented in the phase diagram. Figures 5.4(b) and 5.4(c) show the loading paths associated to the SME
and PE, respectively.
As it can be seen in Figure 5.4(b), material microstructure is initially composed of multi-variant martensite
at low temperature. Upon loading, the stress reaches the critical value for detwinning and martensite
reorientation starts, leading to single-variant martensite and to macroscopic deformation. At the end of
the PT, martensite is completely detwinned and further loading only causes elastic deformation of the new
microstructure. Upon unloading, the macroscopic deformation is retained as all variants of martensite
are equally stable. When the material is heated above a characteristic temperature, the transformation
from martensite to austenite starts, allowing to recover the macroscopic deformation. During cooling, the
austenite to martensite PT occurs under no load, thus no macroscopic change can be observed.

As it can be seen in Figure 5.4(c), material microstructure is initially austenitic at high temperature.
During loading, the critical stress for PT is reached and the material transforms directly into single-variant
martensite. Once PT is complete, further loading only causes elastic deformation of multi-variant marten-
site. Since austenite is the only stable phase at high temperature and no stress, during unloading the critical
stress for the reverse PT is reached and the macroscopic deformation is recovered.

5.4 Shape memory alloy applications

Thanks to their unique properties, SMAs represents an attractive choice for a huge variety of innovative
applications. SMA applications can be divided into the following categories (Van Humbeeck, 2010):

1. free-recovery applications, exploiting the one-way and two-way SMEs, e.g., applications in which
the single function of the SMA element is to cause motion or shape changes, without any biasing
stress;

2. clamping devices, exploiting the generation of recovery stresses, e.g., SMA couplings and connec-
tors, ranging from very small (< 1 mm) to very large (> 1 m) diameters;

3. actuation applications, exploiting the work production capacity of SMAs;

4. biomedical applications, exploiting the PE property of SMAs;

5. damping applications, exploiting the high damping capacity of SMAs. In particular, the high dam-
ping capacity of martensite is interesting for passive damping, while the PE hysteresis for earthquake
damping and isolation purposes.

At present, more than 90% of SMA applications are based on NiTi or ternary NiTi-Cu and NiTi-
Nb alloys (Van Humbeeck, 2010). Other SMAs are close to market introduction (Fe-Mn-Si), while still
others have interesting potentials, but are difficult to produce or suffer from brittleness, such as alloys
envisaged for applications at high temperatures (Firstov et al., 2006). Although NiTi-based SMAs are more
expensive and more difficult to machine than Cu-based SMAs, there are several reasons why almost only
NiTi-based SMAs are used in new developments. In particular, NiTi-based SMAs are stronger and more
ductile, show a higher stability in cyclic applications, and have a higher electrical resistivity which makes
electrical activation simpler. The biocompatibility requirement for medical applications also eliminates
Cu-based alloys. Mainly Ni, but also Ti, can be partially (a few percent) replaced by elements as Cu, Co,
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Figure 5.4: One-dimensional phase diagram in terms of stress, σ, and temperature, T . (a) Crystal structures
for austenite, multi- and single-variant martensites and phase transformations (indicated by blue arrows);
(b) shape memory effect and (c) pseudo-elastic loading paths.

Fe, Nb, or Mo, that can improve, for instance, stress and/or temperature hysteresis, corrosion, resistance,
transformation temperatures or fatigue behavior.

In the following, we mention some famous SMA-based applications.

5.4.1 Couplings and fasteners

Couplings and fasteners exploit the force created by a deformed SMA element during constrained recovery.
The first large-scale application of SMAs, consisting in a coupling to connect titanium hydraulic tubing

in the Grumman F-14 aircraft, was developed by Raychem in 1971 (Otsuka and Wayman, 1998). The
original alloy was a NiTi-Fe, where Fe was alloyed to obtain a low transformation temperature down to
−55 ◦C and to possibly prevent the transformation into martensite at lower temperatures, and thus the leak-
age. The mounting procedure was, however, quite complicated: expansion of the ring in liquid nitrogen,
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storing (also during transport) in liquid nitrogen until mounting by just bringing it to room temperature.
Later, the problem of liquid nitrogen storage was solved by the stabilization of martensite, either thermal
(in Cu-based alloys) or mechanical (in NiTi-Nb alloys). The development of NiTi-Nb alloys was a real
breakthrough for the coupling business, but also Fe-Mn-Si alloys received quite a lot of attention in spite
of their low recoverable strain (Duerig et al., 1990).
Dedicated applications were specifically named as Crocon and Crofit®(hydraulic couplings), Crolive®(more
complicated tool to couple), Tinel®lock and Unilock®rings, and Betaflex™and Crotact™electrical connec-
tors for Zero Insertion Force connectors (Van Humbeeck, 2010). Figure 5.5 shows some commercially
available SMA devices.

Figure 5.5: SMA devices. Clockwise from top left: memory card ejector mechanism for laptop computers;
Cryofit® hydraulic pipe couplings; Cryocon® electrical connector; fire safety lid release for public garbage
receptacles, taken from (Schwartz, 2002).

The main advantages of all the listed systems are their lightweight, easy installation even in difficult to
access areas, proven reliability, good shock, vibration and thermal cycling properties providing a hermetic
seal (Otsuka and Wayman, 1998); possible disadvantages are the high costs, limited operational tempera-
ture range (from −20 ◦C to 200 ◦C), and limited memory amount of motion available.

5.4.2 Actuators

A thermal actuator is a constrained SMA element able to generate a recovery force that can be used to
perform work. Indeed, thermal energy is directly converted into mechanical energy. Important reasons
to select SMA as an actuation mechanism are its simplicity, the creation of clean, silent, spark-free and
zero gravity working conditions, as well as high power/weight (or power/volume) ratios (Van Humbeeck,
2010). However, some drawbacks have to be considered, e.g., low energy efficiency, limited bandwidth
due to heating and cooling restrictions, degradation, and fatigue.

Apart from some specific on/off applications, such as an air damper for a multifunction electric oven
or an SMA generated fog lamp protective louver, designers have shown a special interest in such a type of
applications, namely in robotic applications. Three important items distinguish robotic applications: the
type of deformation used for the active memory element (bending, torsion, or pure tension), the position
feedback that enables free-positioning of the actuator, the way of heating (cooling) the active element
(mainly resistive heating, induction heating, immersion heating).

Space applications offer other arguments in favor of SMA actuators, e.g., almost zero-gravity action
in contrast to most electrical engines, high power/volume (mass) density, and simple mechanism, no dust
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particles created, and no leakage of fluids (Van Humbeeck, 2010).
SMA actuators are also considered for repeated actions such as grippers and positioners, where the

low thermal energy is compensated by the ease of mechanism which includes a high gain on weight, high
work/volume density, and almost zero gravity accelerations.

5.4.3 Adaptive materials and hybrid composites

Smart materials involve three functions, i.e., sensor, actuator and control, generally combined by using
different materials connected with a control unit. The combination of several materials leads to structural
elements called hybrid composites that, if connected with a control unit, can then be used eventually as a
smart structure.

The most envisaged applications can be summarized as follows:

• active strain energy tuning: restrained wires are embedded in the matrix. If such composite plate
vibrates at resonance, the wires can be heated to develop a recovery stress at the composite matrix
wire interface and thus to produce a change in energy balance;

• active modal modification: unstrained wires are embedded in the matrix. To change the modal
response, the wires are heated resulting in a large increase of the elastic modulus of wires during
martensitic transformation;

• active shape control: SME is used to change the shape of the composite matrix;

• active fatigue-life and impact resistance improvement (self-repairing or self-healing): PE embed-
ded deformed wires create compressive stresses inhibiting crack growth and even promoting crack
closure. Embedded strained martensitic wires can also be activated by heating;

• active stress-relaxation: stress- or strain-induced martensite can relax imposed stresses due to spe-
cific loading, differences in thermal expansion coefficients or thermal chocks. Depending on the type
of application, SMAs can be embedded as thin wires, fibers, particles, thin films, while the matrix
can be a metallic material, a ceramic, a polymer or a composite.

5.4.4 Civil engineering applications

SMA applications in civil engineering are still significantly limited due to the high cost and small size of
components (Janke et al., 2005).

The significant damping capacity of SMAs, related to the hysteresis present in both superelastic and
shape memory stress-strain curves, can be used in earthquake engineering to develop passive control de-
vices which reduce the response of a structural system during dynamic excitation (Casciati et al., 1998).
The cost issue can be partially overcome by using copper-based SMAs (Casciati and Faravelli, 2004).

Another idea is to use SMA devices to prevent two classical damage mechanisms of masonry buildings,
i.e., out of plane collapse and diagonal cracks. The first mechanism can be prevented by improving the
connections between the walls placed in different directions. This is usually done with steel connections,
whose linear elastic behavior might end up exerting excessive forces and damaging historical masonry.
Superelastic devices, on the contrary, can limit the forces applied on the masonry by tuning the upper and
lower transformation plateau. This concept has been applied to the restoration of Assisi Upper Basilica,
damaged during the earthquake of September 26th and 27th, 1997. The second damage mechanism can
be prevented by pre-compressing the masonry walls. With respect to traditional steel devices, superelastic
elements exert only a limited pre-compression force and dissipate part of the seismic action due to their
damping capacity. This concept has been applied to the seismic retrofitting of the San Giorgio in Trignano
bell tower in San Martino in Rio (Reggio Emilia), damaged during the earthquake of October 15th, 1996.
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Recently, several applications exploit the SME property to create self-erecting structures. Another re-
cent idea is to use SMA bars as concrete reinforcement; this idea falls within the topic of SMA composites,
thus it is not discussed here (Daghia et al., 2011, 2008, 2010; Faiella et al., 2011).

5.4.5 Biomedical applications

Nowadays, the largest commercial successes of SMAs are linked to biomedical applications, thanks to ma-
terial good workability in the martensite phase, good strength and ductility, good resistance to corrosion
and fatigue, Food and Drug Administration approval, excellent biocompatibility, good compatibility with
magnetic resonance imaging and computer tomography scanning (Duerig et al., 1999; Petrini and Migli-
avacca, 2011). Especially, the PE property results in a unique combination of high strength, high stiffness
and high pliability and the temperature-dependent character of the PE property is of less importance in the
biomedical field because of the stable temperature in the human body (Van Humbeeck, 2010). Also, the
concept of a metallic material with an extreme elasticity and with nearly constant stress levels over a large
strain area is something that can be tackled easier by designers.

In the following, we describe only some of the numerous medical applications for SMAs, ranging
from orthodontics, orthopedics, and otoryngology to neurosurgery, ophthalmology, physiotherapy, active
prostheses, and robot-assisted surgery.

Figure 5.6: Orthodontic applications of SMAs. Examples of wires, taken from (Petrini and Migliavacca,
2011).

Orthodontic applications

The first medical use of NiTi-based alloys was in the orthodontic field in 1971, when Andreasen and Hille-
man (1971) introduced NiTi orthodontic archwires, observing that NiTi was able to produce constant and
lighter forces. Nowadays, even if SMAs are more difficult and expensive to manufacture than conventional
materials, they are among the most common materials used for orthodontic devices.

The properties of SMAs have been successfully implemented in a variety of dental applications. Cur-
rently, archwires of Figure 5.6 and palatal expanders of Figure 5.7(a) are the most important SMA or-
thodontic applications, taking advantage of PE features. The motivation for such a successful exploitation
is connected to the material ability to apply to the teeth almost constant forces over a large range of de-
formations. Material PE behavior is also exploited for producing orthodontic distractors, as in Figure
5.7(b), which are used for solving the problem of teeth overcrowding in the mandible district (Idelsohn
et al., 2004). Another example is represented by dental drills for root canal procedures (see Figure 5.8)
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(a) (b)

Figure 5.7: Orthodontic applications of SMAs. (a) Palatal arch, taken from (Petrini and Migliavacca,
2011); (b) orthodontic distracters, taken from (Idelsohn et al., 2004).

(Lagoudas, 2008; Montenegro-Santillan et al., 2013), which exploit NiTi performance at high strains in
strain-controlled environments (Pelton et al., 2000).

Figure 5.8: Orthodontic applications of SMAs. Endodontic file, taken from (Petrini and Migliavacca,
2011).

Orthopedic applications

To obtain an effective soldering or union between two disjoint bone segments, essential aspects are a sta-
ble fixation and a proper compression action between the two segments. Accordingly, fractured bones
are treated with a fixation device, which should strengthen the bone and keep the correct alignment during
healing, being sufficiently stable at the same time; moreover, the fixation should be minimally invasive, bio-
compatible, and induce a biologically-appropriate compression to enhance optimal fracture healing (Tarnita
et al., 2011). SMAs can provide all these requirements in a very efficient way.

The simplest fixation device is the SMA staple, shown in Figure 5.9(a). At room temperature, the
material being in martensitic phase, the staple can be easily shaped to facilitate insertion; when installed
and maintained at body temperature, the staple tends to close and compress the two disjoint bones (i.e.,
inducing a constrained shape recovery), taking advantage from the material transformation into austenite,
hence from the presence of an unloading stress-strain plateau (Dai et al., 1993). In particular, the device
simplicity allows a reduction in operation time with apparent advantage also from the clinical perspective.

Similar conceptual devices are exploited in SMA plates, shown in Figures 5.9(b) and 5.9(c), fixed with
screws to maintain bone alignment and placed on fractured regions where external cast cannot be easily
performed (e.g., facial area, nose, jaws).
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(a) (b)

(c) (d)

Figure 5.9: Orthopedic applications of SMAs. (a) Staple before and after distraction, taken from (Laster
et al., 2001); (b) staple for fixing a frontozygomatic fracture, taken from (Laster et al., 2001); (c) NiTi plate
for mandible fracture, taken from (Duerig et al., 1990); (d) spinal vertebrae spacer, taken from (Duerig
et al., 1990).

Special NiTi devices have also been designed for the treatment of spine damage or deformities. As an
example, the spinal vertebrae spacer of Figure 5.9(d) is a device for the treatment of scoliosis. Material PE
response allows the application of a constant load regardless of the patient position, patient who preserves
some degree of motion (Machado and Savi, 2003).

In orthopedics treatments, SMA properties are also exploited during the physiotherapy of partially
atrophied muscles (Machado and Savi, 2003). As an example, gloves for promoting the movements of
hands are developed by positioning SMA wires in correspondence of the fingers. In such an application the
two-way SME is exploited: by heating or cooling, the wires contract or stretch and, accordingly, the hand
is closed or opened, as shown in Figures 5.10(a) and 5.10(b).
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(a) (b)

Figure 5.10: Orthopedic applications of SMAs. Gloves with SMA wires: position at (a) low and (b) high
temperatures, taken from (Machado and Savi, 2003).

General surgery applications

Another field taking significant advantage of SMA features is endoscopic surgery, which is a modern
surgical technique where diagnosis and disease treatment are performed through small incisions or natural
body openings. As easily inferable, endoscopic surgery, also called minimally invasive surgery, provide
patients with several benefits such as less post-operational complications, reduced pain, faster recovery,
reduction of infection risk (Kianzad et al., 2011).

However, surgical endoscopic procedures require devices able to access and operate into intricate re-
gions. In this respect, a great advantage of SMAs with respect to stainless steel and other conventional
materials is that lower size of the components is needed, since PE and SME provide higher flexibility,
improving effectiveness in narrow cavities. Furthermore, PE provides high strain recovery and a wide con-
stant stress plateau over a large range of strains. Such unique SMA characteristics have led to the design
and manufacturing of novel optimized instruments, especially suited for endoscopic surgery, e.g., ablation
devices, tongs, suture passers, grippers, deflectable graspers, scissors (see Figure 5.11).

Among the first applications of SMA devices in endoscopic surgery, we can cite, for example, various
NiTi tools for laparoscopy, retrieval baskets used to remove stones from bile ducts and kidneys, the RITA
radio frequency tissue ablation device, forceps for laparoscopy, active bending electric endoscopes, self-
closing clips for suturing tissues, and guide wires (Cuschieri, 1991).

The most celebrated medical applications of NiTi are probably the self-expandable stents (Petrini and
Migliavacca, 2011), consisting of a tubular NiTi mesh, possibly coated, which can be introduced in body
conduits to treat dangerous obstructions (see Figure 5.12). NiTi stents find their major application in
cardiovascular surgery to treat atherosclerotic lesions in the coronary, carotid, and pheriperal arteries, but
they are also successfully used for the treatment of obstructions in various body canals, such as biliary,
intestinal and esophageal conduits.

5.4.6 Other applications

There are many other fields and applications incorporating SMAs. The oil industry has shown extensive
interest to use SMA actuation capabilities in release devices and protection systems for down hole drilling
equipment. The high-temperature operating conditions have also opened the avenue for the use of high-
temperature SMAs in these devices (Lagoudas, 2008). Flexible metallic eyeglasses and headphones, that
can be bent without breaking, are other applications that employ the PE behavior. SMAs have also been
used in sporting goods like golf clubs where SMAs, embedded in the club, absorb the impact of the strike.
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Figure 5.11: General surgery of SMAs. Endoscopic tools, taken from (Duerig et al., 1999; Endosmart,
2013; Kourambas et al., 2000).

Figure 5.12: General surgery of SMAs. Examples of stents, taken from http://prashantborde123.blogspot.
it/2013/02/biotechology-and-medicine.html.
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Chapter 6

Literature review on shape memory
alloy constitutive modeling

This Chapter is first devoted to a literature review on shape memory alloy constitutive modeling. Then, it
focuses on the description of three well-known and widely accepted in practice phenomenological models,
i.e., the models by Souza et al. (1998), Auricchio et al. (2009, 2011), and Boyd and Lagoudas (1996);
Lagoudas et al. (2012). The explicit integration scheme for solving the constitutive equations of the model
by Boyd and Lagoudas (1996); Lagoudas et al. (2012) is derived.

The Chapter is organized as follows. Section 6.1 starts with the description of the approaches generally
adopted to model shape memory alloy behavior. Then, Section 6.2 focuses on the phenomenological
modeling approach by presenting some contributions available from the literature. Finally, Section 6.3
concludes with the description of three cited models and with the derivation of the explicit integration
scheme for the model by Boyd and Lagoudas (1996); Lagoudas et al. (2012).
The reader is referred to, e.g., (Khandelwal and Buravalla, 2009; Lagoudas et al., 2006; Patoor et al., 2006),
for an overview on shape memory alloy modeling.

6.1 Constitutive modeling approaches for shape memory alloys

From 1980 up to now, constitutive modeling of shape memory alloys (SMAs) has been a topic of great
interest. Several approaches have been exploited by researchers in order to propose one-dimensional and
three-dimensional models, able to describe the complex thermo-mechanical behavior of SMAs.

The main characteristics, which characterize SMA behavior, are the pseudo-elastic and shape memory
properties under a general three-dimensional multiaxial loading (i.e., variant reorientation is also impor-
tant), while other characteristics are of secondary importance. We may thus categorize SMA characteristics
into two groups, as follows:

• primary effects, which include pseudo-elasticity, shape memory effect, as well as variant reorienta-
tion. It is expected that a SMA constitutive model can capture, at least, such effects;

• secondary effects, which cover other effects which may turn out to be relevant in some practical cases,
e.g., tension-compression asymmetry (Orgeas and Favier, 1998; Thamburaja and Anand, 2001), dif-
ferent elastic properties for austenite and martensite (Auricchio et al., 2009; Cernoch et al., 2004),
progressive strain under cyclic loadings (Feng and Sun, 2007; Sittner et al., 1995; Tanaka et al.,
1995), internal loops (Dolce and Cardone, 2001), thermo-mechanical coupling (Grabe and Bruhns,
2008; Shaw and Kyriakides, 1995; Tobushi et al., 1998).

The resulting models can be classified into three major categories:

85
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1. macroscopic phenomenological models, built on phenomenological thermodynamics and/or directly
on curves fitting experimental data. These models are generally suitable for engineering applications
due to their simplicity and fast computations, but they can only describe the global mechanical re-
sponse and ignore all the microscopic details. Moreover, since these models are generally based on
standard phase diagrams determined experimentally, the models are also quite accurate. However,
several three-dimensional macroscopic phenomenological models based on continuum thermodyna-
mics with internal variables have been successfully proposed in the literature, as described in the
following;

2. microscopic thermodynamics models, focused on the description of micro-scale features, e.g., nu-
cleation, interface motion, and twin growth (Abeyaratne and Knowles, 1990; Ball and James, 1987).
Such models are extremely helpful to understand the fundamental phenomena rather than the quanti-
tative description of macroscopic behavior, but are often difficult to apply to engineering applications.
Details can be found in, e.g., (Ball and James, 1987; Falk, 1980, 1983);

3. micro-mechanics based macroscopic models, based on the modeling of a single grain and further
averaging the results over a representative volume element to obtain a polycrystalline response of the
SMA. Such models use thermodynamics laws to describe phase transformations and utilize micro-
mechanics to estimate the interaction energy due to material transformation (Fischer and Tanaka,
1992; Gao et al., 2000; Huang et al., 2000; Lexcellent et al., 1996; Sun and Hwang, 1993a). As
an example, Patoor et al. (1996) modeled the behavior of a polycrystalline SMA by using a single
crystal model and the self-consistent averaging method to account for the interactions between the
grains. Sun and Hwang (1993a,b) presented a micro-mechanical model able to capture different
effects of SMA behavior such as pseudo-elasticity and shape memory effect. Micro-mechanics based
macroscopic models appear to have good predictive capabilities and moreover, in some cases, they
are also able to successfully reproduce reorientation and detwinning of martensite variants (Gao and
Brinson, 2002; Marketz and Fischer, 1996; Thamburaja, 2005). However, such models employ a
large number of internal variables which makes computations time intensive, resulting in a difficult
application for engineering purposes.

6.2 Phenomenological models for shape memory alloys

The present thesis focuses on the macroscopic or phenomenological modeling approach, since well-suited
for practical engineering purposes.

In the phenomenological framework, the thermodynamic state of a material at a given point and instant
is completely described by a set of state variables at that instant, which depends only upon the considered
point. Therefore, different material behaviors can be described by choosing an appropriate set of state
variables, whose evolution in time constitutes a thermodynamic process. As an example, we recall the
elastoplastic modeling based on continuum thermodynamics with internal variables, presented in Chapter
2. State variables can be divided into observable variables (typically the total strain and temperature),
which are the only ones involved in non-dissipative phenomena, and internal variables, introduced to
keep track of material history and influencing material current behavior in dissipative phenomena. Some
examples of internal variables often introduced in SMA models are the martensite volume fraction and the
total transformation strain.

Generally, the macroscopic or phenomenological modeling approach can be categorized in two groups
of models, depending on the presence or not of internal variables in the formulation, as explained in the
following.
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6.2.1 Models without internal variables

Such models describe material behavior by strain, stress, temperature, and entropy without the introduction
of internal variables representing phase mixture.

Polynomial potential models

Such models provide constitutive information by introducing a polynomial free-energy function from
which constitutive equations for strain (or stress) and entropy are derived (Daghia et al., 2010; Falk, 1980,
1983; Falk and Konopka, 1990). The main advantage of such models is their simple form, but they are
not able to model complex material behaviors as well as to describe accurately the evolutive nature of the
processes.

Hysteresis models

Hysteresis models seek to reproduce experimental curves that involve high non-linearity and complex loo-
ping and have been widely used in several fields, in particular for magnetic materials. In such an approach,
constitutive equations are proposed directly on the basis of their mathematical properties, often without
explicit focus on their link with the underlying physical phenomena of interest (Huo, 1989; Ivshin and
Pence, 1994; Likhacev and Koval, 1992; Ortin, 1992).

6.2.2 Models with internal variables

Such models introduce appropriate internal variables describing material internal structure. A general
thermodynamical consistent approach then allows to derive evolution equations for the internal variables.
The first application of such an approach to SMAs seems to be due to Tanaka and Nagaki (1982) who
employed internal variables to describe the development of the underlying phase mixture.
Models based on internal variables can be categorized into two groups, as described in the following.

Models with assumed phase transformation kinetics

Models with assumed phase transformation kinetics consider the martensitic volumetric fraction as an in-
ternal variable. Several authors propose different functions to describe the volumetric fraction evolution.
The model firstly developed by Lin et al. (1994); Tanaka and Iwasaki (1985); Tanaka et al. (1995) was
originally conceived to describe three-dimensional problems involving SMAs, but nevertheless, its imple-
mentation was restricted to the one-dimensional context. Boyd and Lagoudas (1994) rewrote the Tanaka
original model in a three-dimensional framework. Liang and Rogers (1990) presented an alternative evo-
lution law for the volumetric fraction and developed a three-dimensional model. Brinson (1993) offered
an alternative approach to the phase transformation kinetics, in which the author splitted the martensite
fraction into two distinct quantities, the temperature-induced and the stress-induced martensites.

Models with internal variable evolution equations

Such models are developed within a more rigorous thermodynamical continuum approach. The theory is
in fact composed of physical laws, i.e., constitutive equations characterizing material features, and mate-
rial behavior requirements ensuring thermo-dynamical process restrictions. Constitutive information are
specified by two kinds of relations:

• state equations for the entities conjugated to control variables, directly formulated or obtained as
partial derivatives of a suitable free-energy function after enforcing the Clausius-Duhem inequality
for every process. If heat conduction is included, then a constitutive equation relating temperature
gradient and heat flux (usually the Fourier equation) is also required;
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• kinetic equations for the internal variables. In view of phase transformation hysteresis, these equa-
tions generally depend on material past history. Standard practice is to specify such a dependence
through equations relating the rates of the internal variables to the current state and its time deriva-
tives. The internal state then follows from the solution of differential equations in time.

Micro-plane method

The micro-plane modeling approach originated from the work by Taylor (1938), who studied the constitu-
tive behavior of polycrystalline metals by developing relations between stress and strain vectors on generic
planes of arbitrary orientations in the material and by determining the macroscopic stress or strain tensors
as a resultant of all these vectors. Such concept is commonly known as slip theory of plasticity. As slip is
not the source of inelastic response for all types of materials, Bazant (1984) introduced a neutral term called
the micro-plane theory. In such an approach, a one-dimensional constitutive law for one stress component
and the associated strain component on each micro-plane is sufficient to generate a macroscopic three-
dimensional model by considering either of two main formulations in micro-plane theory, named static
and kinematic constraint. In the static constraint formulation, it is assumed that the stress vector acting on
each micro-plane is the projection of the macroscopic stress; in the kinematic constraint formulation, the
strain vector on any micro-plane is considered as the projection of the macroscopic strain. Moreover, there
are some particular material laws where both static and kinematic constraints coexist. Brocca et al. (2002)
presented a model based on micro-plane theory, able to describe both pseudo-elasticity and shape memory
effect. Kadkhodaei et al. (2007) proposed a micro-plane constitutive model for polycrystalline SMA by
first deriving a one-dimensional model and then generalizing it to a three-dimensional case.

Frémond model

Frémond (2002) developed a three-dimensional model, able to reproduce both the pseudo-elasticity and
shape memory effect, with the aid of three internal variables that should obey internal constraints related to
the coexistence of the different phases. The model takes into account phenomena as linear hardening pla-
sticity, plastic-phase transformation coupling, phase transformation due to temperature variation, internal
subloops due to incomplete phase transformation, tension-compression asymmetry, and transformation-
induced plasticity. Successively, Paiva et al. (2005); Savi and Braga (1993) published several works based
on the model by Frémond (2002).

6.3 Review on some phenomenological models

In the present thesis we employ the continuum thermodynamics with internal variables which is, in our
opinion, the most suited approach for the development of reliable three-dimensional SMA constitutive
equations, able to describe material response under complex multiaxial thermo-mechanical loadings, as
discussed in Chapter 7.
This Section briefly reviews the principal features of the three-dimensional phenomenological constitutive
models investigated in the following Chapters, i.e., the models by Souza et al. (1998), Auricchio et al.
(2009, 2011), and Boyd and Lagoudas (1996); Lagoudas et al. (2012). The explicit integration scheme for
solving the constitutive equations of the model by Lagoudas et al. (2012) is also derived. For a detailed
model presentation, the reader is referred to the works (Auricchio et al., 2009, 2011; Auricchio and Petrini,
2004a; Boyd and Lagoudas, 1996; Lagoudas et al., 2012; Souza et al., 1998).
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6.3.1 Model by Souza et al. (1998)

The first investigated model has been originally presented by Souza et al. (1998) and then investigated by
Auricchio and Petrini (2004a). The model has been recognized as very effective in capturing main SMA
macroscopic features, especially in consideration of the limited number of involved parameters. The model
is in fact able to describe both pseudo-elasticity and shape memory effect by assuming the total strain, εεε,
and the absolute temperature, T , as control variables, and the transformation strain, etr, associated to
transformations between austenite and single-variant martensite, as internal one.

Assuming a small strain regime, the free-energy function, Ψ = Ψ (εεε, T, etr), is defined as:

Ψ = Ψel + Ψtr + Ψch + Ψv (6.1)

where: 
Ψel =

1

2
Kθ2 +G‖e− etr‖2

Ψtr =
1

2
h‖etr‖2

Ψch = τm (T ) ‖etr‖

(6.2)

Here K and G are, respectively, the bulk and the shear modulus, depending on the Young’s modulus, and
on the Poisson’s ratio; h is a positive parameter related to material hardening during phase transformation;
τm = β 〈T − T0〉 with β a positive material parameter related to the dependence of the critical stress on
temperature and T0 the temperature below which only martensite phase is stable.

The term Ψv = IεL(‖etr‖) is an indicator function introduced to satisfy the constraint on the norm of
etr, as follows:

IεL(‖etr‖) =

{
0 if ‖etr‖ ≤ εL
+∞ otherwise

(6.3)

where εL is a parameter related to the maximum transformation strain reached at the end of the transfor-
mation during an uniaxial test.

Following standard arguments (Gurtin et al., 2010), the constitutive equations are derived:

p =
∂Ψ

∂θ
= Kθ

s =
∂Ψ

∂e
= 2G(e− etr)

X = − ∂Ψ

∂etr
= s− τm

etr

‖etr‖ − hetr − γ etr

‖etr‖

(6.4)

The quantities p = tr(σ) /3 and s are, respectively, the volumetric and the deviatoric part of the stress,
σ; the quantity, X, is the thermodynamic force associated to the transformation strain, etr; the variable, γ,
results from the indicator function subdifferential, ∂IεL(‖etr‖).

To describe phase transformation and inelasticity evolution, the limit function, F = F (X), is defined
as follows:

F = ‖X‖ −R (6.5)

while the flow rule for etr as:

ėtr = ζ̇
X

‖X‖ (6.6)

where R is the positive radius of the elastic domain and ζ̇ a non-negative consistency parameter.



90 CHAPTER 6. LITERATURE REVIEW ON SMA CONSTITUTIVE MODELING

The model is finally completed by the classical Kuhn-Tucker conditions:

ζ̇ ≥ 0, F ≤ 0, ζ̇F = 0, ζ̇Ḟ = 0 (6.7)

The model has been numerically treated by Auricchio and Petrini (2004a). The solution algorithm is
simple and robust as it is based on a plasticity-like return map procedure and makes the model suitable for
implementation within FE codes, allowing the simulation of complex SMA devices.

6.3.2 Model by Auricchio et al. (2009) and Auricchio et al. (2011)

The model by Auricchio and Petrini (2004a); Souza et al. (1998) presents some limitations, e.g., in properly
capture low stress phase transformations, as often required by industrial applications (Auricchio et al.,
2009).
The model can be extended as done by Auricchio et al. (2009, 2011), through the introduction of a linear
dependence of the elastic radius, R, on temperature, T , to improve model capability to catch the transition
phase for low stress phase transformations. The radius, R, introduced in Eq. (6.5), is thus assumed to
control the width of the hysteresis loops, i.e., R = R(T ), through the introduction of two radii, R0 and R1,
corresponding to the elastic domain radii at low and high temperatures, respectively.
The same numerical treatment of the model by Souza et al. (1998) has been adopted for the model by
Auricchio et al. (2009, 2011).

6.3.3 Model by Boyd and Lagoudas (1996) and Lagoudas et al. (2012)

The last investigated model has been originally presented by Boyd and Lagoudas (1996) and then genera-
lized by Lagoudas et al. (2012). The improved model is able to take into account the description of smooth
transitions in the thermo-mechanical response at the beginning and the end of phase transformation, the
variation of transformation strain magnitude with applied stress level, and the variation of the transforma-
tion hysteresis area with applied stress level due to the stress-dependent critical thermodynamic force for
transformation.

The model assumes the stress, σ, and the absolute temperature, T , as control variables, and the tran-
sformation strain, εεεt, the total martensitic volume fraction, ξ, and the transformation hardening energy, gt,
as internal ones. The total martensitic volume fraction, ξ, is bounded by 0 ≤ ξ ≤ 1.

Assuming a small strain regime, the Gibbs free-energy function, G = G (σ, T,εεεt, ξ, gt), is defined as:

G = (1− ξ)GA + ξGM +Gmix (6.8)

where Gi = Gi (σ, T ) is defined as follows:

Gi = − 1

2ρ
σ : Siσ − 1

ρ
σ : α (T − T0) + ci

[
T − T0 − T ln

(
T

T0

)]
− si0T + ui0 (6.9)

for i = A,M .
The energy of mixing, Gmix = Gmix (σ,εεεt, ξ, gt), is defined as:

Gmix = −1

ρ
σ : εεεt +

1

ρ
gt (6.10)

Model parameters, S, c, s0, and u0, denoting the compliance tensor, specific heat, specific entropy at the
reference state, and specific internal energy at the reference state, respectively, are assumed to be different
for each phase; parameters, ρ and α, denoting the density and the thermal expansion tensor, respectively,
are assumed to be the same regardless of phase. The effective values of the phase-dependent parameters,
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S, c, s0, and u0, are evaluated in terms of the martensitic volume fraction, ξ, by the rule of mixtures, as
follows: 

S = SA + ξ
(
SM − SA

)
c = cA + ξ

(
cM − cA

)
s0 = sA0 + ξ

(
sM0 − sA0

)
u0 = uA0 + ξ

(
uM0 − uA0

) (6.11)

The evolution equation for the transformation strain, εεεt, is defined as follows:

ε̇εεt = ξ̇Λt (6.12)

where:

Λt =


Λt
fwd =

3

2
Hcur s

σ
if ξ̇ > 0

Λt
rev =

εεεt−r

ξr
if ξ̇ < 0

(6.13)

with σ =
√

3/2 s : s.
In the above definition, Λt

fwd and Λt
rev are the transformation direction tensors during forward and re-

verse transformation, respectively, while εεεt−r and ξr are the macroscopic transformation strain and the
martensite volume fraction at the reverse transformation, respectively. The uniaxial transformation strain
magnitude for full transformation, Hcur = Hcur (σ), is defined as:

Hcur =

{
Hmin if σ ≤ σcrit
Hmin + (Hsat −Hmin)

(
1− exp−k(σ−σcrit)

)
if σ > σcrit

(6.14)

Here, Hmin corresponds to the observable uniaxial two-way shape memory effect; the parameter, Hsat,
describes the ultimate transformation strain given in an uniaxial loading, i.e., the maximum recoverable
transformation strain generated such that increases in stress magnitude do not increase the transformation
strain. Additionally, σcrit denotes the critical Mises equivalent stress below which Hcur = Hmin. The
parameter, k, controls the rate at which Hcur exponentially evolves from Hmin to Hsat.

The evolution equation for the transformation hardening energy, gt, is defined as follows:

ġt = f tξ̇ (6.15)

where the hardening function, f t = f t (ξ), is defined as:

f t =

{
f tfwd if ξ̇ > 0

f trev if ξ̇ < 0
(6.16)

such that
∫ 1

0
f tfwddξ +

∫ 0

1
f trevdξ = 0. The two terms for forward and reverse transformation, f tfwd

and f trev , are defined to take into account a smooth transition from elastic to transformation response, as
follows:

f t =


f tfwd =

1

2
a1 (1 + ξn1 − (1− ξ)n2) + a3

f trev =
1

2
a2 (1 + ξn3 − (1− ξ)n4)− a3

(6.17)

where a1, a2, a3 are positive material parameters and the exponents n1, n2, n3 and n4 assume real number
values in the interval (0, 1].
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Following standard arguments (Gurtin et al., 2010), the following constitutive equations are derived:
εεε = −ρ∂G

∂σ
= Sσ +α (T − T0) + εεεt

s = −∂G
∂T

=
1

ρ
α : σ + c ln

(
T

T0

)
+ s0

(6.18)

The total thermodynamic force, πt, conjugate to ξ, is then derived:

πt = σ : Λt + p− f t (6.19)

where p = −ρ∂G/∂ξ.
The transformation function, φt, is denoted as follows:

φt =

{
φtfwd = πtfwd − Y tfwd if ξ̇ > 0

−φtrev = −πtrev − Y trev if ξ̇ < 0
(6.20)

where the critical thermodynamic driving force, Y t = Y t (σ), is:

Y t =

{
Y tfwd = Y t0 +Dσ : Λt

fwd if ξ̇ > 0

Y trev = Y t0 +Dσ : Λt
rev if ξ̇ < 0

(6.21)

Here Y t0 is a positive constant and D is an additional positive model parameter that captures the stress
dependency of the critical thermodynamic force.

The model is finally completed by the classical Kuhn-Tucker conditions:{
ξ̇ ≥ 0, φtfwd ≤ 0, ξ̇φtfwd = 0

ξ̇ ≤ 0, φtrev ≤ 0, ξ̇φtrev = 0
(6.22)

6.3.4 Explicit integration scheme for the model by Boyd and Lagoudas (1996) and
Lagoudas et al. (2012)

We now elaborate on the algorithmic treatment of the governing equations of the model by Boyd and
Lagoudas (1996); Lagoudas et al. (2012). For the sake of notation simplicity, the convention establishes
superscript n for all the variables evaluated at time tn, while drops superscript n + 1 for all the variables
computed at time tn+1.

In order to discretize Eq. (6.12) in time, we can use the general trapezoidal rule, as follows (Hartl,
2009):

εεεt = εεεtn + (ξ − ξn)
[
(1− α) Λt

n + αΛt
n+1

]
(6.23)

where α is an algorithmic parameter that ranges from 0 to 1. Infinitely many options exist for the value of
α, which is often chosen and then held constant during the analysis. In particular, the case α = 0 leads to
the well-known forward-Euler integration, while the case α = 1 leads to the well-known backward-Euler
integration. For a detailed investigation, the reader is referred to (Hartl, 2009; Lagoudas et al., 2012; Ortiz
and Simo, 1986; Qidwai and Lagoudas, 2000a).

In this Section, we consider only the case α = 0 (Hartl, 2009). Therefore, forward integration is
performed by setting α = 0 in Eq. (6.23), which gives:

εεεt = εεεtn + (ξ − ξn) Λt
n (6.24)

where a purely explicit forward integration depends on the ability to approximate both εεεt and Λt directly
from the solution at the previous time step. While the transformation strain direction tensor, Λt, has a
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known functional form thanks to Eq. (6.13), i.e., Λt = Λt (σn), a similar form for calculating ξ is not
immediately evident. We can derive such a relation by using the transformation consistency conditions
(6.22).

Enforcing the consistency condition in the current time step, we have:

φt (T, ξ,σ) = 0 (6.25)

In some cases, i.e., when n1 = n2 = n3 = n4 = 1 in Eq. (6.17), it is possible to invert Eq. (6.25) and to
find ξ = ξ̂ (σ, T ). Using the forward-Euler explicit methodology and recalling that T is provided by the
global solver, we then assume that for small increments ξ ≈ ξ̂ (σn, T ).

Thus, we can write the explicit forward-Euler integration of the transformation strain evolution equation
as:

εεεt = εεεtn +
(
ξ̂ (σn, T )− ξn

)
Λt
n (6.26)

This allows for simplified coding and rapid calculation, but very small time steps are required to achieve
accuracy. This reduces the overall efficiency of the scheme. Further, the integration algorithm can become
unstable and thus may not converge to the correct solution (Hartl, 2009; Lagoudas et al., 2012; Ortiz and
Simo, 1986; Qidwai and Lagoudas, 2000a).

Table 6.1 provides a summary of the full explicit algorithm needed to integrate the constitutive rela-
tions in a FE framework. Such a scheme has been implemented within the Abaqus/Explicit user material
subroutine, VUMAT (SIMULIA, 2012).

1. Initialize: ξ(0) = ξn, εεεt(0) = εεεtn, S(0) = Sn, α(0) = αn

2. Elastic prediction:

• σ(0) = C(0)
[
εεε−α(0) (T − T0)− εεεt(0)

]
• Λt(0) = Λt

(
σ(0)

)
• Evaluate φt(0)

• If φt(0) ≤ 0 then EXIT (elastic response)

3. Transformation correction:

• else if φt(0) > 0 CONTINUE

• find ξ = ξ̂
(
σ(0), T

)
• if 0 ≤ ξ ≤ 1 then CONTINUE, ELSE set ξ to violated bound

• update εεεt = εεεtn + (ξ − ξn) Λt(0)

• update S = S (ξ), α = α (ξ)

• update σ = C [εεε−α (T − T0)− εεεt]
• update Λt = Λt (σ)

• EXIT

Table 6.1: Explicit forward-Euler integration scheme for the model by Boyd and Lagoudas (1996) and
Lagoudas et al. (2012).

Numerical test for the model by Boyd and Lagoudas (1996) and Lagoudas et al. (2012)

We now test the proposed VUMAT on an uniaxial tensile test at constant temperature, simulated as simple
uniaxial tension test with displacement control and prescribed homogeneous constant temperature field.
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In the numerical test we adopt the material parameters reported in Table 6.2. We consider a constant tem-
perature of 27 ◦C for the tensile test with internal subloop. Accordingly, Figure 6.1 reports the stress-strain
diagram with the curves obtained with both the implicit and explicit integration schemes for the models
by Boyd and Lagoudas (1996); Lagoudas et al. (2012) and by Auricchio and Taylor (1997)1 (denoted as
TAMU and AAT, respectively). The reported curves are exactly matching and encourage further investiga-
tions of the developed VUMAT for more complex quasi-static and dynamic analyses.

Parameter Value Unit

EA 55 GPa
EM 46 GPa

νA = νM 0.33 -
α 0 1/ ◦C

Ms −28 ◦C

Mf −43 ◦C

As −3 ◦C

Af 7 ◦C(
CM = CA

)
σ̄=300MPa

7.4 MPa/ ◦C
Hcur (σ̄) = H 0.056 -

Table 6.2: Adopted parameters for the model by Boyd and Lagoudas (1996) and Lagoudas et al. (2012).
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Figure 6.1: Pseudoelastic uniaxial tensile test with displacement control and internal subloop at a constant
temperature of 27 ◦C. Comparison between the implicit and explicit integration schemes for the models by
Lagoudas et al. (2012) and Auricchio and Taylor (1997) (denoted, respectively, as TAMU and AAT).

1The model by Auricchio and Taylor (1997) is currently provided as a standard component of all recent Abaqus installations.



Chapter 7

A new ’flexible’ approach for shape
memory alloy modeling

This Chapter proposes to develop a refined, flexible and general three-dimensional phenomenological con-
stitutive model for shape memory alloys, along the lines of what recently proposed by Auricchio and
Bonetti (2013) in a more theoretical context. Such a ’flexible’ model takes into account several physi-
cal phenomena, as martensite reorientation and different kinetics between forward/reverse phase transfor-
mations, including also smooth thermo-mechanical response, low-stress phase transformations as well as
transformation-dependent elastic properties. The model is then treated numerically through the effective
and efficient procedure based on the Fischer-Burmeister complementarity function, already investigated in
Chapter 4 for J2 elastoplasticity.

The Chapter is organized as follows. Section 7.1 presents an introduction to the work and explains
the motivations of the proposed approach. Then, Section 7.2 presents the new ’flexible’ model. Section
7.3 presents the one-dimensional phase diagram and model calibration based on a simple physical inter-
pretation. Section 7.4 describes the numerical implementation of model equations and the full solution
algorithm. Finally, conclusions are given in Section 7.5.

7.1 Introduction and motivations

The unique functional properties of shape memory alloys (SMAs), described in Section 5.2, motivate
researchers to formulate constitutive models able to catch the interesting behavior of these alloys and to
develop robust computational tools for practical purposes.
In the following, we focus on both the constitutive and numerical modeling of SMAs by briefly reviewing
the actual state of art and by carefully describing the improvements of the proposed ’flexible’ approach.

Constitutive modeling: state of art

In the past three decades SMAs have been deeply investigated from the point of view of modeling, analysis,
and computation with the focus on a variety of aspects, e.g., stress- and temperature-induced transforma-
tions, martensite reorientation, or cyclic effects.

In terms of modeling, there have been several attempts to properly reproduce SMA features and the
resulting models can be categorized as either micro, micro-macro or macro, as extensively discussed in
Chapter 6. In the following, we focus on phenomenological macro-modeling approaches which appear
to be a powerful tool for the direct simulation of SMA applications, thanks to their simple numerical
implementation and reduced time-consuming calculations, compared to micro-mechanical approaches. In

95
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particular, the research presented in this Chapter is devoted to the aim of finding a flexible and accurate
three-dimensional phenomenological model for a reliable description of SMA-based real devices behavior.

In the phenomenological framework, an appropriate set of internal variables has to be chosen to repre-
sent at least a scalar and a directional information (Luig and Bruhns, 2008). Physical motivations usually
lead to the introduction of a martensite volume fraction and of a tensorial variable describing martensitic
inelastic deformation processes (Arghavani et al., 2010; Luig and Bruhns, 2008; Peultier et al., 2006; Saleeb
et al., 2011). Such a simplified description is motivated by the aim to obtain fast and efficient models with
a low number of fitting parameters.

A set of only scalar variables is, in fact, not adequate due to the loss of explicit directional information.
For instance, the model by Frémond (2002) describes SMA behavior in terms of austenite and two marten-
site variants and assumes the transformation strain direction to be known, although experimental studies
showed that variant reorientation can be considered as a main phenomenon in SMA non-proportional loa-
dings (Bouvet et al., 2002; Grabe and Bruhns, 2009; Helm and Haupt, 2003; Lim and McDowell, 1999;
Sittner et al., 1995; Sun and Li, 2002).

On the other hand, models with only tensorial internal variables, by including directional information,
seem to be more successful, but present some limitations since scalar and directional informations are
tightly interconnected, possibly leading to limited or constrained modeling approaches. As an example,
the model by Souza et al. (1998), then investigated by (Auricchio and Petrini, 2004a,b), introduces the
transformation strain tensor as an internal variable and presents a simple and robust algorithm (see Section
6.3.1 for details). On the contrary, it is not able to capture phase transformations (PTs) for low levels
of stress and does not include some secondary effects that may turn out to be relevant in practical cases
(Auricchio et al., 2009; Thamburaja and Anand, 2001).

Numerous analyses of existing models and their comparison to experimental results have shown that
current SMA constitutive models have reached a high level of sophistication. Several authors extended,
in fact, such simplified phenomenological descriptions by using additional variables as volume fraction of
twinned/detwinned martensites (Lexcellent et al., 2000; Panico and Brinson, 2007; Popov and Lagoudas,
2007), plastic strain (Auricchio et al., 2007; Hartl et al., 2010; Peng et al., 2012; Saint-Sulpice et al., 2009;
Zaki et al., 2010), twins accommodation strain (Chemisky et al., 2011), viscoplasticity (Chemisky et al.,
2014), or thermo-mechanical coupling (Morin et al., 2011a,b; Zaki and Moumni, 2007a,b). The recent and
innovative work by Sedlák et al. (2012) formulates a new dissipation function to simulate non-proportional
loadings and includes anisotropic behavior of textured SMAs as well as the thermo-mechanical response
due to austenite-R-phase transformation. However, the most capable models usually achieve accuracy at
the cost of complexity, since they consider multiple and simultaneous processes (Chemisky et al., 2011;
Popov and Lagoudas, 2007) or require costly calibrations of a high number of model parameters (Saleeb
et al., 2013, 2011).

Constitutive modeling: proposed improvements

Starting from the reviewed literature about constitutive modeling, the work proposed in the present Chap-
ter is motivated by the necessity of developing constitutive models that can predict the complex thermo-
mechanical behavior of SMAs and that can also be implemented numerically. Such models have to ac-
curately capture material response not only during classical pseudo-elastic (PE) and shape memory effect
(SME) loading paths, but also during loading paths involving the co-existence of all the three material
phases, i.e., austenite, multiple- and single-variant martensite. Moreover, model material parameters have
to be derived from a simple physical interpretation, which is important for the calibration process. Indeed,
the goal of the present work is to introduce a refined, flexible and general three-dimensional phenomenolo-
gical constitutive model for SMAs, along the lines of the recent theoretical work by Auricchio and Bonetti
(2013), limiting the discussion to the small deformation regime.

The model by Auricchio and Bonetti (2013) addresses a general flexible theoretical framework for the
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development of constitutive models able to describe multiple phase transformations (PTs), which may or
may not interact. The model is investigated from a purely mathematical point of view, by proposing some
general considerations on requirements to be satisfied to make the model thermo-dynamically consistent.
In particular, the cited reference does not cover the following fundamental details:

1. as concerns the constitutive modeling, the cited work gives only some very general indications on
the effective modeling of SMA materials and, as a matter of fact, it reports only a very simple one-
dimensional qualitative hand-computed response of the model. In fact, the cited reference does not
apply in details the model to the case of SMAs and, at the same time, it does not give any indication
on the possibility of effectively and robustly solving the complex set of possible PTs occurring in
real SMAs, which represents the essential starting point into SMA modeling;

2. as concerns the model parameters’ physical interpretation and identification, the cited reference does
not address the important issue related to the physical interpretation of model parameters, as a clear
and effective parameter identification procedure is an important key for the employment of a con-
stitutive model by engineers in real-life simulations. In particular, model parameters are defined as
general constants or general functions of temperature and volume fractions;

3. as concerns the numerical modeling, the cited model does not address any numerical solution algo-
rithm to model formulation.

In this context, the present work aims to do a step-forward with respect to the work by Auricchio
and Bonetti (2013) by deepening all the listed lacking aspects and to possibly offer a new contribution to
the existing modeling solutions. The purpose is to formulate a general, complete and flexible theoretical
framework that can predict the complex behavior of SMAs and is based on a physical interpretation of
material parameters as well as to offer a robust numerical framework to be then used for the simulation of
real devices.

From the modeling point of view, the proposed model combines the main features of the approaches
by Frémond (2002) and Souza et al. (1998) and describes secondary effects in PTs as well as directional
information for the transformation strain. Volume proportions of different configurations of crystal lattice
(i.e., austenite, single- and multiple-variant martensites) are used as scalar internal variables and the direc-
tion of single-variant martensite as tensorial internal variable. From the physical point of view, material
parameters are then derived from a simple physical interpretation, and thus, are no more represented as
general constants or general functions of temperature and volume fractions.

With respect to the model by Frémond (2002), the present model considers the transformation strain
direction unknown, by assuming the direction of single-variant martensite as tensorial internal variable.
Compared to the model by Souza et al. (1998), the proposed theoretical framework allows for a completely
independent description of the different PTs, leading to a very flexible frame in terms of model features
and allowing to capture PTs at low levels of stress. Compared to the model by Auricchio and Bonetti
(2013), the proposed model naturally presents similarities in terms of theoretical aspects and governing
equations. In the present work, however, we propose an enriched generalization, able to describe several
phenomena such as martensite reorientation, different kinetics between forward/reverse phase transforma-
tions, smooth thermo-mechanical response, low stress phase transformations, transformation-dependent
elastic properties. We remark, moreover, that the proposed modeling approach presents similarities with
some three-dimensional phenomenological models presented in the literature, in terms of capturing the
reorientation process in martensite. Among the others, we can cite the interesting works by Arghavani
et al. (2010) and Chemisky et al. (2011). Compared to the cited references, the proposed approach is very
flexible since it can capture loading paths involving the co-existence of three material phases.
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Numerical modeling: state of art

The proposed work focuses on another important aspect of SMA modeling, i.e., the development of an
appropriate model implementation into numerical softwares (such as FE packages) to guarantee a robust
computational tool, which could be effectively utilized for practical purposes. From a numerical point
of view, robust and efficient integration algorithms for the zero-dimensional problem (e.g., constitutive
equations at the Gauss point level in a FE scheme) need to be proposed in order to then solve complex
boundary-value problems and to simulate SMA real devices behavior within FE codes. Some examples
of SMA models are available in the literature in a suitable form to conduct three-dimensional thermo-
mechanical simulations (Arghavani et al., 2011; Auricchio and Petrini, 2004a; Gao et al., 2007; Hartl et al.,
2010; Hartl and Lagoudas, 2009; Helm, 2007; Lagoudas et al., 2012; Peultier et al., 2008; Popov and
Lagoudas, 2007; Sedlák et al., 2012; Stupkiewicz and Petryk, 2012; Zaki, 2012a,b).

Generally, SMA macroscopic models are solved by return-map algorithms, either through norm regu-
larization schemes at the cost of inaccuracy due to the corresponding approximation (Auricchio and Petrini,
2004a,b; Auricchio and Stefanelli, 2004) or nucleation-completion conditions (Arghavani et al., 2011). The
recent work by Sedlák et al. (2012) applies the Nelder-Mead minimization algorithm to solve the derived
energy minimization problem and introduces a regularization energy to assure the fulfillment of constraints
on internal variables. Stupkiewicz and Petryk (2012) presented a PE model within the incremental energy
minimization framework and proposed an unified augmented Lagrangian treatment of both constitutive
constraints and non-smooth dissipation function. The recent works by Peigney and Seguin (2013); Peigney
et al. (2011) propose a new numerical approach for a micro-mechanical material model, based on the re-
formulation of the incremental problem as a linear complementarity problem (LCP), which can be solved
using well established algorithms such as interior-point methods. Solving the obtained LCP allows to fully
take the constraints on the internal variable into account and leads to an efficient numerical algorithm. The
work by Popov and Lagoudas (2007) applies an extension of the closest point projection algorithm to de-
scribe a SMA model incorporating single- and multi-variant martensites. The work by Hartl and Lagoudas
(2009) proposes a three-dimensional constitutive model capturing conventional SMA functional proper-
ties and thermal strain recovery, and additionally considering the initiation and evolution of plastic strains.
The model is numerically implemented in a FE framework using a return mapping algorithm to solve the
constitutive equations at each material point.

However, algorithm schemes still need robustness investigations, aiming also at the development of
flexible, effective and efficient procedures, applicable to models as the one introduced in the present work.
In fact, the numerical application of standard predictor-corrector methods is not suitable for the proposed
approach, because an elaborate active set search has to be carried out. Compared to the work by Hartl
and Lagoudas (2009), for instance, the proposed model deals with multiple scalar and tensorial internal
variables, whose evolution is strongly coupled, and involving several constitutive constraints imposed on
internal variables, which introduce additional complexity in the incremental schemes used in FE computa-
tions and, consequently, decrease algorithmic efficiency.

Numerical modeling: proposed improvements

For the reasons explained above, different approaches need to be explored for the proposed modeling
framework. Recalling the above discussion, the model by Auricchio and Bonetti (2013) does not address
any numerical solution algorithm to model formulation.

The purpose of the present work to integrate the proposed constitutive equations is to reduce the com-
plexity, and thus increase the efficiency, of the algorithmic treatment. This is achieved by eliminating
the need for a predictor-corrector-type scheme and by automatically constraining the range of the variant
volume fractions. Consequently, we conduct the numerical investigation of the proposed model through
the effective and efficient procedure, based on the Fischer-Burmeister complementarity function, already
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investigated in Chapter 4 for J2 elastoplasticity. It allows to omit an active set search, a fundamental
advantage when dealing with several phase fractions and many coupled evolution equations.

Besides the contributions by Bartel and Hackl (2009, 2010); Bartel et al. (2011) in the context of
SMA micro-mechanical modeling, the work by Kiefer et al. (2012) presents two alternative algorithms
for the integration of the coupled, non-linear and inelastic constitutive equations for magnetic SMAs, i.e.,
the classical predictor-corrector return-mapping scheme and the Fischer-Burmeister based algorithm. The
work shows the greater numerical efficiency of the second algorithm that is however tested for simple
loading cases and not for three-dimensional analyses. Therefore, the research of the present Chapter aims
to a detailed investigation of the Fischer-Burmeister based algorithm, applied to the case of SMAs, to test
its robustness and efficiency.

7.2 A time-continuous model formulation

This Section addresses a general three-dimensional phenomenological model for SMAs along the lines of
the recent theoretical work by Auricchio and Bonetti (2013) and then, it proposes a simplified formulation
based on physically motivated considerations.
In the following, we adopt superscripts A, M , and S to indicate austenite, multi-variant and single-variant
martensites, respectively.

7.2.1 A general model formulation

In the framework of macroscopic modeling and of small strain continuum mechanics, we assume the total
strain, εεε, and temperature, T , as state variables. A general assumption of additive strain decomposition is
adopted in the form:

εεε = εεεe + εεεie + εεεth (7.1)

where εεεe, εεεie and εεεth denote the elastic, inelastic and thermal strain, respectively. The inelastic strain,
εεεie, should include the description of several physical phenomena, ranging from permanent plasticity and
PTs, up to void generation and fracture. In the following, all inelastic phenomena are neglected except for
reversible martensitic PTs which are considered in combination with martensite reorientation.

Recalling the discussion reported in Section 7.1, the model introduces scalar and tensorial internal
variables taking into account different PTs between austenite, multiple- and single-variant martensites as
well as directional information for the transformation strain. The model decouples the pure reorientation
from the pure transformation mechanism, but additionally, takes into account for temperature-induced
transformation. Consequently, similarly to (Arghavani et al., 2010; Chemisky et al., 2011), we do not
treat the inelastic strain, εεεie, as a unique tensor variable, but we clearly distinguish between its norm and
direction with the aim of getting more modeling freedom. In the following, we choose a measure of the
amount of single-variant martensite as scalar internal variable, being related to the amount of inelastic
strain due to stress-induced PT, while the average direction of different variants (or preferred direction of
variants) as tensorial internal variable, representing the inelastic strain direction. Consequently, we may
clearly interpret these two internal variables as PT and variant reorientation in order to hopefully describe
transformation and reorientation with more flexibility. Moreover, we choose a measure of the amount of
multiple-variant martensite as scalar internal variable, being related to the amount of martensite due to
thermal-induced PT.

According to the previous discussion, volume proportions of different configurations of crystal lattice
(austenite and martensite variants) are assumed as scalar internal variables and are represented by three
phase parameters, χA, χM , χS , standing, respectively, for austenite, multiple-variant and single-variant
martensite, such that χA, χM , χS ∈ [0, 1] and χA + χM + χS = 1. Thanks to this last constraint, the
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model restricts itself just to two independent phase variables, χM and χS , letting χA = 1 − χM − χS .
Then, the following restrictions need to be fulfilled:

0 ≤ χM , χS ≤ 1, χM + χS ≤ 1 (7.2)

Consequently, the inelastic strain is given by:

εεεie = εLχ
Sdtr (7.3)

where εL is a material parameter related to the maximum transformation strain reached at the end of the
transformation during an uniaxial test (Otsuka and Ren, 2005), while dtr is the direction of single-variant
martensite, assumed as tensorial internal variable with the following constraint:

‖dtr‖ = 1 (7.4)

We remark, again, that the choice of dealing with a tensorial variable, dtr, and two scalar variables,
χM and χS , allows to distinguish between a phase to which no macroscopic strain is associated and a
phase to which a homogenized macroscopic strain is associated, as well as to consider thermal-induced
transformations when no stress is applied. Moreover, the model is able to distinguish between the norm
and the direction of the inelastic strain, εεεie, similarly to other effective modeling approaches as the one
proposed in Arghavani et al. (2010); Chemisky et al. (2011), but allowing to get a richer model compared,
for instance, to the works by Auricchio and Petrini (2004a,b); Frémond (2002); Souza et al. (1998).

Helmholtz free-energy function

The Helmholtz free-energy function, Ψ = Ψ
(
εεε, T, χM , χS ,dtr

)
, is assumed in the following form:

Ψ = Ψel + Ψch + Ψint + Ψv (7.5)

where Ψel is the elastic energy, Ψch the chemical energy related to entropic changes due to PTs, Ψint

the interaction or interfacial energy, often derived from micro-mechanical or metallurgical considerations
(Chemisky et al., 2011; Moumni et al., 2008; Peultier et al., 2006), and Ψv the energy due to internal
constraints.

For the first two components of the Helmholtz free-energy function, i.e., Ψel = Ψel
(
εεε, χM , χS ,dtr

)
and Ψch = Ψch

(
T, χM , χS

)
, presented in Eq. (7.5), we employ the rule of mixtures (Lagoudas et al.,

2006), considering that each of them is a combination of austenite, multiple-variant and single-variant
martensites. In particular, we set:Ψel =

(
1− χM − χS

)
Ψel,A + χMΨel,M + χSΨel,S

Ψch =
(
1− χM − χS

)
Ψch,A + χMΨch,M + χSΨch,S

(7.6)

To treat the elastic energy of Eq. (7.6)1, Ψel, we develop the aspect of phase mixture following the
model of Reuss, by assuming the material as elastically isotropic with a homogeneous distribution of
stresses in austenite, multiple-variant and single-variant martensites. The elastic energy term, Ψel, follows:

Ψel =
1

2
Kθ2 +G‖e− εLχSdtr‖2 − 3αKθ (T − T0) (7.7)

where T0 is the equilibrium temperature. The bulk modulus, K, is assumed equal for all phases and the
total shear modulus, G = G

(
χM , χS

)
, is determined from the Reuss model (Wagner and Windl, 2008),

i.e.: 
K = KA = KM = KS

1

G
=
(
1− χM − χS

) 1

GA
+ χM

1

GM
+ χS

1

GS

(7.8)



7.2. A TIME-CONTINUOUS MODEL FORMULATION 101

The last right-side term of Eq. (7.7) derives from the assumption that εεεth = α (T − T0), α = αI being
the thermal expansion coefficient tensor.

To treat the chemical energy of Eq. (7.6)2, Ψch, we define the free-energies of pure phases at stress-free
conditions, Ψch,i = Ψch,i (T ), as:

Ψch,i = ui0 − si0T + ci
[
(T − T0)− T log

T

T0

]
(7.9)

for i ∈ A, M , S. Here ui0 and si0 are the internal energy and entropy of the i-phase at a fixed equilibrium
temperature, T0; ci is the constant heat capacity of the i-phase (Leclercq and Lexcellent, 1996; Lexcellent
et al., 2006; Panico and Brinson, 2007).

The free-energy component, Ψint = Ψint
(
χM , χS

)
, presented in Eq. (7.5), represents the interac-

tions that appear between the phases, typically the incompatibilities between deformations (Leclercq and
Lexcellent, 1996; Raniecki et al., 1992). One of the characteristics of this energy is that it must disap-
pear when only one phase is present inside the material. Moreover, in the case of three phases coexisting,
this term must take into account interactions between one phase and the two remaining ones, separately
(one interface separates two phases and not three). Indeed, we assume the following expression for the
configurational energy (this expression has the great advantage to become fairly simple):

Ψint =
(
1− χM − χS

) (
Ψ
AM

χM + Ψ
AS
χS + Ψ

AMS
χMχS

)
+ Ψ

MS
χMχS (7.10)

Ψ
AM

, Ψ
AS

, Ψ
MS

, and Ψ
AMS

being material constants indicating interaction energies between phases A
and M , A and S, M and S, A, M and S, respectively (Leclercq and Lexcellent, 1996; Raniecki et al.,
1992).

To satisfy constraints (7.2) and (7.4) on internal variables, we define the free-energy contribution, Ψv ,
presented in Eq. (7.5), as:

Ψv = I[0,1]

(
χM , χS

)
+ I1

(
‖dtr‖

)
(7.11)

where the indicator function, I[0,1]

(
χM , χS

)
, is set to enforce inequality constraints (7.2) on χM and χS

as (Rockafellar, 1970):

I[0,1]

(
χM , χS

)
=

{
0 if 0 ≤ χM , χS ≤ 1, χM + χS ≤ 1

+∞ otherwise
(7.12)

and the indicator function, I1 (‖dtr‖), is defined to enforce equality constraint (7.4) on dtr as:

I1
(
‖dtr‖

)
=

{
0 if ‖dtr‖ = 1

+∞ otherwise
(7.13)

In conclusion, the energy term, Ψ, reads as:

Ψ =
1

2
Kθ2 +G‖e− εLχSdtr‖2 − 3αKθ (T − T0) (7.14)

+ uA0 − sA0 T + cA
[
(T − T0)− T log

T

T0

]
−
(
∆uAMχM + ∆uASχS

)
+
(
∆sAMχM + ∆sASχS

)
T

−
(
∆cAMχM + ∆cASχS

) [
(T − T0)− T log

T

T0

]
+
(
1− χM − χS

) (
Ψ
AM

χM + Ψ
AS
χS + Ψ

AMS
χMχS

)
+ Ψ

MS
χMχS + I[0,1]

(
χM , χS

)
+ I1

(
‖dtr‖

)
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where: {
∆uAM = uA0 − uM0
∆uAS = uA0 − uS0

{
∆sAM = sA0 − sM0
∆sAS = sA0 − sS0

{
∆cAM = cA − cM

∆cAS = cA − cS
(7.15)

Constitutive equations

Starting from the adopted free-energy, Ψ, presented in Eq. (7.14), and following standard arguments
(Gurtin et al., 2010), we derive the volumetric and the deviatoric part of the stress tensor, σ, denoted,
respectively, with p and s, and the entropy, η:

p =
∂Ψ

∂θ
= Kθ − 3αK (T − T0)

s =
∂Ψ

∂e
= 2G

(
e− εLχSdtr

)
η = −∂Ψ

∂T
= sA0 −

(
∆sAMχM + ∆sASχS

)
+
(
cA −∆cAMχM −∆cASχS

)
log

T

T0
+ 3αKθ

(7.16)

as well as the thermodynamic forces, BM , BS and Bd, associated to χM , χS and dtr, respectively:

BM = − ∂Ψ

∂χM
= − ∂G

∂χM
‖e− εLχSdtr‖2 + ∆uAM −∆sAMT

+∆cAM
[
(T − T0)− T log

T

T0

]
−
(

Ψ
AM

+ Ψ
AMS

χS
) (

1− 2χM − χS
)

+
(

Ψ
AS −Ψ

MS
)
χS − γM

BS = − ∂Ψ

∂χS
= 2GεL

(
e− εLχSdtr

)
: dtr − ∂G

∂χS
‖e− εLχSdtr‖2

+∆uAS −∆sAST + ∆cAS
[
(T − T0)− T log

T

T0

]
−
(

Ψ
AM

+ Ψ
AMS

χM
) (

1− χM − 2χS
)

+
(

Ψ
AS −Ψ

MS
)
χM − γS

Bd = − ∂Ψ

∂dtr
= 2GεLχ

S
(
e− εLχSdtr

)
− γddtr

(7.17)

Variables γM and γS are defined as:

γM = ∂I[0,1]

(
χM , χS

)
=


γM0 ≤ 0 if χM = 0

0 if 0 < χM < 1

γMS ≥ 0 if χM + χS = 1

(7.18)

and

γS = ∂I[0,1]

(
χM , χS

)
=


γS0 ≤ 0 if χS = 0

0 if 0 < χS < 1

γMS ≥ 0 if χM + χS = 1

(7.19)

while
γd = ∂I1

(
‖dtr‖

)
6= ∅ if ‖dtr‖ = 1 (7.20)
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We can rewrite Eqs. (7.18)-(7.19) in terms of the classical Kuhn-Tucker complementarity conditions:
χM ≥ 0, γM0 ≤ 0, γM0χM = 0

χS ≥ 0, γS0 ≤ 0, γS0χS = 0(
χM + χS − 1

)
≤ 0, γMS ≥ 0, γMS

(
χM + χS − 1

)
= 0

(7.21)

Moreover, we may observe that, in the case of proportional loading, i.e., neglecting the reorientation
process, by definition, the preferred variant direction, dtr, coincides with the deviatoric stress direction, s.
Under this assumption, we may simplify model equations by setting dtr = s/‖s‖.

Evolution equations and limit functions

As traditionally done in the context of associative evolution, we assume the evolution equations of internal
variables as follows: 

χ̇M = ζ̇M
BM

|BM |

χ̇S = ζ̇S
BS

|BS |

ḋtr = ζ̇d
Bd

‖Bd‖

(7.22)

where ζ̇M , ζ̇S and ζ̇d are non-negative consistency parameters.
Then, we define three limit functions, i.e., FM = FM

(
BM

)
, FS = FS

(
BS , χS , T

)
and F d =

F d
(
Bd, χS

)
, playing the role of yield functions (Lubliner, 1990), to describe PTs and reorientation evolu-

tions, in the following form: 
FM = |BM | −RM

FS = |BS | −RS

F d = ‖Bd‖ −Rd
(7.23)

where RM and RS = RS
(
BS , χS , T

)
represent the positive radii of elastic domains to activate tempera-

ture and pure transformations, respectively, while Rd = Rd
(
χS
)

represents a positive threshold value for
the component of stress in the direction normal to the preferred direction of variants to activate variant reo-
rientation. We observe that the proposed limit functions depend on the three thermodynamic forces, BM ,
BS , and Bd, and on the radii, RM , RS , and Rd, whose adopted forms determine the specific dependencies
of each limit function.

The model is finally completed by the classical Kuhn-Tucker and consistency conditions, as follows:
ζ̇M ≥ 0, FM ≤ 0, ζ̇MFM = 0, ζ̇M ḞM = 0

ζ̇S ≥ 0, FS ≤ 0, ζ̇SFS = 0, ζ̇SḞS = 0

ζ̇d ≥ 0, F d ≤ 0, ζ̇dF d = 0, ζ̇dḞ d = 0

(7.24)

A significant flexibility is assigned to the model in terms of ability to reproduce experimental evidences
by introducing a very special form for RS . In particular, through a proper choice of RS we can guarantee
the following features:

• asymmetric behavior between forward and reverse PTs, also modeled, for instance, in the works by
Bouvet et al. (2004); Lagoudas et al. (2012);
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• hardening effects, also modeled, for instance, in the work by Bouvet et al. (2004);

• increasing hysteresis width for low applied stresses in thermal-cycling tests at constant load, as exper-
imentally demonstrated by Shaw and Kyriakides (1995); Stachowiak and McCormick (1987, 1988)
and also modeled, for instance, in the works by Brinson (1993); Chemisky et al. (2011); Lagoudas
et al. (2012); Panico and Brinson (2007); Peultier et al. (2008); Popov and Lagoudas (2007);

• width of the hysteresis loop in superelasticity (i.e., difference between upper and lower plateau stress)
decreasing with increasing temperature, as experimentally demonstrated by Sittner et al. (2009) and
also modeled, for instance, in the work by Sedlák et al. (2012);

• smooth thermo-mechanical response, as experimentally demonstrated by Hartl et al. (2010); Lagoudas
et al. (2006) and also modeled, for instance, in the work by Lagoudas et al. (1996).

To take into account all these aspects we introduce the following very specific form for RS :

RS =

R
S
f0 + hSf χ

S + aSf0

(
χS
)n

+ aSf1

(
1− χS

)n
if BS ≥ 0

RSr0 − hSr χS − cST (T − T0) + aSr0
(
χS
)n

+ aSr1
(
1− χS

)n
if BS < 0

(7.25)

RSf0 , RSr0 , hSf , hSr , cST , aSf0 , aSr0 , aSf1 , aSr1 , and n ∈ [0, 1] being positive material parameters, discussed in
Section 7.3 (subscripts f and r stand for forward and reverse PT).

We remark that we derive such an expression by starting from some modeling contributions presented
in the literature and cited in the above list. In particular, we distinguish between the positive and negative
sign of BS to model the asymmetric behavior between forward and reverse PTs. Then, we introduce
the following terms: (i) hSf χ

S and hSr χ
S to classically describe hardening effects due to single-variant

martensite; (ii) aSf0

(
χS
)n

, aSf1

(
1− χS

)n
, aSr0

(
χS
)n

, and aSr1
(
1− χS

)n
to describe hardening effects as

well as smooth thermo-mechanical response always due to single-variant martensite; and (iii) cST (T − T0)

to model increasing hysteresis width for low applied stresses in thermal-cycling tests at constant load as
well as the width of the hysteresis loop in superelasticity decreasing with increasing temperature. This last
choice manifests itself as two different slopes of the phase diagram boundaries for forward and reverse
transformations, known as stress influence coefficients (Liang and Rogers, 1992) or stress rates (Duerig
et al., 1990; Otsuka and Wayman, 1998), as presented in Section 7.3.

Dissipation function

Although the proposed model relies on an yield surface-based formulation, we complete the description by
recalling that the yield surface conditions can be equivalently converted in a pseudo-potential of dissipation,
φ = φ

(
χ̇M , χ̇S , ḋtr

)
, which is a positive convex functional depending on dissipative variables, vanishing

for vanishing dissipation, in particular in the form:

φ = RM |χ̇M |+RS |χ̇S |+Rd‖ḋtr‖ (7.26)

The introduced pseudo-potential of dissipation, φ, captures forward and reverse austenite to multiple-
variant martensite and austenite to single-variant martensite transformations as well as the reorientation
process of single-variant martensite. The pseudo-potential of dissipation, φ, may also depend on state
and internal variables through the particular forms chosen for RM , RS , and Rd. This choice assigns a
significant flexibility to the model.

7.2.2 A simplified model formulation

Based on physically motivated considerations, the present Section introduces a simplified model formula-
tion, still able to capture fundamentals SMA feature effects.

We start by making the following assumptions:
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1. regarding single- and multiple-variant martensites, we reasonably assume:

• equal internal energies and entropies between single- and multi-variant martensites, implying
∆uAMS = ∆uAM = ∆uAS and also ∆sAMS = ∆sAM = ∆sAS ;

• equal interaction energies between single- and multiple-variant martensites with austenite, i.e.,
Ψ
in

= Ψ
AM

= Ψ
AS

and Ψ
AMS

= Ψ
MS

= 0;

• equal shear moduli between single- and multiple-variant martensites, i.e., GMS = GM = GS ;

2. since many calorimetry experiments showed that the heat capacities of austenite and single-variant
martensite are almost equal, we assume ∆cAS = 0 (Qidwai and Lagoudas, 2000b). We make the
same reasonable assumption for multiple-variant martensite, i.e., ∆cAM = 0;

3. since T0 denotes the equilibrium temperature at which phases energy is equal, we choose T0 such
that Ψch,A (T0) = Ψch,S (T0), i.e., we obtain T0 = ∆uAS/∆sAS (Sedlák et al., 2012). Since
∆uAMS = ∆uAM = ∆uAS and ∆sAMS = ∆sAM = ∆sAS , it follows ∆uAMS = ∆sAMST0.

4. since thermal expansion is a secondary effect compared to martensite production, we set the thermal
expansion material coefficient, α, equal to zero.

Then, by applying such assumptions to Eq. (7.14), we derive the free-energy function, Ψsimpl =

Ψsimpl
(
εεε, T, χM , χS ,dtr

)
(superscript simpl stands for simplified):

Ψsimpl =
1

2
Kθ2 +G‖e− εLχSdtr‖2 (7.27)

+ uA0 − sA0 T + cA
[
(T − T0)− T log

T

T0

]
+ ∆sAMS

(
χM + χS

)
(T − T0) + Ψ

in
(1− χM − χS)(χM + χS)

+ I[0,1]

(
χM , χS

)
+ I1

(
‖dtr‖

)
We remark that the introduced free-energy function, Ψsimpl, does not include full thermo-mechanical
coupling since temperature is considered as a prescribed parameter.

A review of the model equations derived from the simplified free-energy (7.27) is reported in Table 7.1.

7.3 Model calibration

This Section is dedicated to the calibration of the proposed model. To properly calibrate most of the model
parameters it is sufficient to focus on one-dimensional stress states, condition which reduces the model to
the following simplified form:

Ψ1D =
1

2

σ2

E
+ uA0 − sA0 T + cA

[
(T − T0)− T log

T

T0

]
+ ∆sAMS

(
χM + χS

)
(7.28)

(T − T0) + Ψ
in (

1− χM − χS
) (
χM + χS

)
+ I[0,1]

(
χM , χS

)
where σ is the uniaxial state of stress and E is the Young’s modulus defined in terms of the elastic modulus
of austenite, EA, and of the elastic modulus of martensite, EMS , as follows:

1

E
=
(
1− χM − χS

) 1

EA
+
(
χM + χS

) 1

EMS
(7.29)

In the following, for the sake of calculus simplicity, we assume E = EA = EMS .
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TIME-CONTINUOUS SIMPLIFIED ’FLEXIBLE’ MODEL FORMULATION

State variables: εεε, T

Internal variables: χM , χS , dtr

Constraints on internal variables:
0 ≤ χM , χS ≤ 1, χM + χS ≤ 1, ‖dtr‖ = 1

Constitutive equations:
p = Kθ

s = 2G(e− εLχSdtr)

η = sA0 −∆sAMS(χM + χS) + cA log
T

T0

BM = − ∂G

∂χM
‖e− εLχSdtr‖2 −∆sAMS(T − T0)

−Ψ
in

(1− 2χM − 2χS)− γM

BS = 2GεL(e− εLχSdtr) : dtr − ∂G

∂χS
‖e− εLχSdtr‖2

−∆sAMS(T − T0)−Ψ
in

(1− 2χM − 2χS)− γS

Bd = 2GεLχ
S(e− εLχSdtr)− γddtr

Evolution equations:

χ̇M = ζ̇M
BM

|BM | , χ̇S = ζ̇S
BS

|BS | , ḋtr = ζ̇d
Bd

‖Bd‖

Limit functions:
FM = |BM | −RM , FS = |BS | −RS , F d = ‖Bd‖ −Rd

Radii of elastic domains:
RM = const.

RS =

R
S
f0 + hS

f χ
S + aSf0

(
χS
)n

+ aSf1

(
1− χS

)n
if BS ≥ 0

RS
r0 − h

S
r χ

S − cST (T − T0) + aSr0
(
χS
)n

+ aSr1
(
1− χS

)n
if BS < 0

Rd = χS

Kuhn-Tucker conditions:
ζ̇M ≥ 0, FM ≤ 0, ζ̇MFM = 0, ζ̇M ḞM = 0

ζ̇S ≥ 0, FS ≤ 0, ζ̇SFS = 0, ζ̇SḞS = 0

ζ̇d ≥ 0, F d ≤ 0, ζ̇dF d = 0, ζ̇dḞ d = 0

Table 7.1: Time-continuous simplified ’flexible’ model equations review.

Then, we can derive the thermodynamic forces, BM and BS , as follows:B
M = −∆sAMS (T − T0)−Ψ

in (
1− 2χM − 2χS

)
− γM

BS = εLσ −∆sAMS (T − T0)−Ψ
in (

1− 2χM − 2χS
)
− γS

(7.30)

Moreover, we recall the adopted expression for RS :

RS =

R
S
f0 + hSf χ

S + aSf0

(
χS
)n

+ aSf1

(
1− χS

)n
if BS ≥ 0

RSr0 − hSr χS − cST (T − T0) + aSr0
(
χS
)n

+ aSr1
(
1− χS

)n
if BS < 0

(7.31)

In the following, we firstly present the one-dimensional stress-temperature phase diagram related to
the proposed model. Then, we list the model parameters to be calibrated, we indicate possible calibration
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techniques and we also comment, whenever possible, on their physical interpretation. In particular, we
observe that:

• the elastic moduli (EA and EMS , with the corresponding three-dimensional quantities, GA, GMS ,
and K) and the maximum amount of single-variant martensite, εL, can be determined directly from
experimental uniaxial stress-strain curves at constant temperature;

• the difference of entropy between the austenitic and single-variant martensitic phases, ∆sAMS , can
be determined from the slope of the forward phase transformation curve in a stress-temperature
space, usually obtained from experimental tensile tests (Qidwai and Lagoudas, 2000b; Sedlák et al.,
2012). Its determination is deepened in Section 7.3.3;

• the material parameter, cST , describes the change of the hysteresis loop width in superelasticity (i.e.,
the difference between upper and lower plateau stress), which decreases with increasing temperature,
as experimentally demonstrated by Sittner et al. (2009) and also modeled, for instance, in the work
by Sedlák et al. (2012). Its determination from the slope of the reverse phase transformation curve
in a stress-temperature space, usually obtained from experimental tensile tests, is reported in Section
7.3.3;

• the material constant indicating interaction energies between phases, Ψ
in

, the equilibrium tempe-
rature, T0, and the parameters related to the transformation radii, i.e., RM , RSf∗ , R

S
r∗ , h

S
f , hSr , can

be easily calibrated by considering a temperature-induced transformation under zero stress and a
stress-induced transformation at high temperature;

• the parameters aSf0 , aSr0 , aSf1 , aSr1 , and exponent, n, of Eq. (7.25) or (7.31), do not have an associated
material property and are directly chosen to best fit the four corners of the transformation hysteresis
plots.

In the following, we consider only the governing equations of the two transformations necessary to
model calibration, i.e., a temperature-induced transformation under zero stress and a stress-induced tran-
sformation at high temperature. Moreover, for the sake of calculus simplicity, we assume RS as follows:

RS =

R
S
f0 + hSf χ

S if BS ≥ 0

RSr0 − hSr χS − cST (T − T0) if BS < 0
(7.32)

7.3.1 One-dimensional phase diagram

This Section presents the one-dimensional stress-temperature phase diagram related to the proposed model
and shown in Figure 7.1(a).

To simplify the presentation, the three phases are denoted byA,M and S, standing for austenite, multi-
and single-variant martensites, respectively. The five possible PTs, indicated in Figure 7.1(a), are denoted
by A→ M , A→ S, M → A, S → A, and M → S for austenite to multi-variant martensite, austenite to
single-variant martensite, multi-variant martensite to austenite, single-variant martensite to austenite and
multi- to single-variant martensite, respectively.

The critical start and finish transformation temperatures at zero stress level are denoted as follows: Ms

and Mf for the A → M transformation, AMs and AMf for the M → A transformation, Ss and Sf for
the A → S transformation, and ASs and ASf for the S → A transformation. ASs and ASf are assumed as
different from AMs and AMf in agreement with experiments provided by Popov and Lagoudas (2007). All
the temperatures are indicated in Figure 7.1(a), except for Ss and Sf .

The critical uniaxial start and finish stresses required for detwinning of twinned martensite, i.e., tran-
sformation M → S, are denoted by σs and σf , respectively.
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Figure 7.1: 1D phase diagrams generated by (a) the proposed ’flexible’ model and (b) the Souza model, in
terms of stress, σ, and temperature, T .

The phase diagram of Figure 7.1(a) follows the established literature in assuming three regions where
only the pure phases A, M and S can exists (light-blue shaded regions of Figure 7.1(a)). The three regions
are separated by transformation strips which are labeled according to the transformations which take place.
Note that some of these strips overlap and in an overlap region multiple transformations are possible. In
the non-shaded region of the phase diagram various mixtures can exist (white regions of Figure 7.1(a)).

Due to the lack of inelastic strain associated with the A↔M transformation, we assume the start and
finish lines for the forward and reverse transformations A ↔ M vertical and passing through the critical
temperatures Ms, Mf , AMs and AMf , respectively (Leclercq and Lexcellent, 1996; Popov and Lagoudas,
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2007). This assumption has been adopted in several models taking into account the separate development
of single- and multiple-variant martensites, e.g., for instance, (Leclercq and Lexcellent, 1996; Popov and
Lagoudas, 2007). Clearly, the two strips are bounded by the critical stress, σf .

The start and finish lines for the forward strip A→ S pass through the critical temperatures Ss and Sf
and exhibits a temperature dependence, defined by the positive slope, kf , in Figure 7.1(a). Equivalently,
the start and finish lines for the reverse strip S → A pass through the critical temperatures ASs and ASf
and exhibits a temperature dependence, defined by the positive slope, kr. Moreover, the two strips present
different widths. These features are due to the fact that the present flexible model takes into account for:
(i) different kinetics between forward and reverse PTs; (ii) the increasing hysteresis width for low applied
stresses in thermal-cycling tests at constant load; and (iii) the width of the hysteresis loop in superelasticity
decreasing with increasing temperature.

Since Popov and Lagoudas (2007) demonstrated that if the finish line for the A→ S strip passes above
the intersection point (Ms, σf ) then one can find a particular isobaric cooling path which leads to jump
discontinuities in the strain as the temperature is lowered, we assume the finish line for the A → S strip
passing through or below the point (Ms, σf ) (in Figure 7.1(a) the extreme case is represented by an orange
dot). Furthermore, two approaches are available from the literature for the definition of the A → S strip
at low stresses (σ < σs) and temperatures (T < Ms): some authors have extended it to zero-stress level
(Bekker and Brinson, 1997); others (Lagoudas and Shu, 1999) suggest that in the region T < Ms the
dependence on temperature disappears and there is a critical stress below which A→ S does not occur. In
our case, we assume the first choice reasonable.

Now, we consider the simple phase diagram related to the model by Souza et al. (1998) and shown
in Figure 7.1(b), which classically describes the behavior of SMAs material in a one-dimensional setting.
The model considers the presence of only two possible phase fractions, i.e., austenite and single-variant
martensite, as shown in Figure 7.1(b). As clearly explained in Section 7.1, the model is unable to catch
SMA behavior for work conditions where the material is considered as linear elastic and where the model is
particularly sensitive to its numerical implementation. Such a work condition includes stress values lower
than σf at T < T0, as it can be observed in Figure 7.1(b). Contrarily, the proposed model allows for a more
flexible approach taking into account the presence of multiple PTs and PTs at low levels of stress.

7.3.2 Temperature-induced transformation

We start considering a temperature-induced transformation under zero stress. To this purpose, Figure 7.2
focuses only on theA↔M transformation, by highlighting the two related vertical strips (orange regions).
Accordingly, exploiting the definition (7.30)1 for the driving force BM , we can detect start and finish of
forward and reverse PT through the following conditions:

• Start forward PT: FM
∣∣
T=Ms

= −∆sAMS(Ms − T0)−Ψ
in −RM = 0

• Finish forward PT: FM
∣∣
T=Mf

= −∆sAMS(Mf − T0) + Ψ
in −RM = 0

• Start reverse PT: FM
∣∣
T=AM

s
= −∆sAMS(AMs − T0) + Ψ

in
+RM = 0

• Finish reverse PT: FM
∣∣
T=AM

f

= −∆sAMS(AMf − T0)−Ψ
in

+RM = 0

where Ms, Mf , AMs and AMf can be easily determined by differential scanning calorimetry tests (Popov

and Lagoudas, 2007; Qidwai and Lagoudas, 2000b). We assume T0 =
(
Mf +AMf

)
/2, i.e., we treat T0 as

equilibrium temperature. Accordingly, since forward and reverse PTs are perfectly symmetric, we derive
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RM and Ψ
in

by considering only the two equations related to forward PT:
Ψ
in

= −∆TAM∆sAMS

2

RM = ∆sAMS

(
∆T0 +

∆TAM

2

) (7.33)

where ∆TAM = Ms −Mf = AMf −AMs and ∆T0 = T0 −Ms = AMs − T0 (see Figure 7.2).
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Figure 7.2: Identification of ’flexible’ model parameters from a temperature-induced transformation.

7.3.3 Stress-induced transformation

We now consider a stress-induced transformation at constant high temperature, T ∗. To this purpose, Figure
7.3 focuses only onA↔ S transformation, by highlighting the related strips (orange regions). The loading
path is represented in Figure 7.3 by a vertical violet line passing through T ∗.

Accordingly, exploiting the definition (7.30)2 for the driving force BS , we can detect start and finish of
forward and reverse PT through the following conditions:

• Start forward PT: FS
∣∣
σ=σS

s
= εLσ

S
s −∆sAMS(T ∗ − T0)−Ψ

in −RSf0 = 0

• Finish forward PT: FS
∣∣
σ=σS

f

= εLσ
S
f −∆sAMS(T ∗ − T0) + Ψ

in −RSf0 − hSf = 0

• Start reverse PT: FS
∣∣
σ=σA

s
= εLσ

A
s −∆sAMS(T ∗ − T0) + Ψ

in
+RSr0 − hSr − cST (T ∗ − T0) = 0

• Finish reverse PT: FS
∣∣
σ=σA

f

= εLσ
A
f −∆sAMS(T ∗ − T0)−Ψ

in
+RSr0 − cST (T ∗ − T0) = 0

where σSs , σSf , σAs and σAf are the martensitic and austenitic start and finish stresses, respectively. The
transformation lines for forward and reverse transformations are linear with slopes kf = ∆sAMS/εL and
kr =

(
∆sAMS + cST

)
/εL, respectively (see Figure 7.3). Once kf and kr are experimentally determined,

we can calibrate both ∆sAMS and cST .
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Finally, we deduce the remaining model parameters by considering the four equations, as follows:

hSf = εL∆σS + 2Ψ
in

hSr = εL∆σA + 2Ψ
in

RSf0 = εLσ
S
s −Ψ

in −∆sAMS(T ∗ − T0)

RSr0 = (∆sAMS + cST )(T ∗ − T0) + Ψ
in − εLσAf

(7.34)

where ∆σS = σSf − σSs and ∆σA = σAs − σAf (see Figure 7.3).
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Figure 7.3: Identification of ’flexible’ model parameters from a stress-induced transformation.

7.4 A time-discrete model formulation

The present Section aims to a detailed investigation of the Fischer-Burmeister based algorithm, applied to
the case of SMAs, to test its robustness and efficiency.

We start by elaborating on the algorithmic treatment of the model equations summarized in Table 7.1.
For the sake of notation simplicity, the convention establishes superscript n for all the variables evaluated
at time tn, while drops superscript n+ 1 for all the variables computed at time tn+1.

We make use of a classical backward-Euler integration algorithm for the evolution equations (7.22), as
follows: 

χM − χMn −∆ζM
BM

|BM | = 0

χS − χSn −∆ζS
BS

|BS | = 0

dtr − dtrn −∆ζd
Bd

‖Bd‖ = 0

(7.35)

where ∆ζM =
∫ tn+1

tn
ζ̇M , ∆ζS =

∫ tn+1

tn
ζ̇S and ∆ζd =

∫ tn+1

tn
ζ̇d are the time-integrated consistency

parameters.
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Then, according to the Fischer-Burmeister based algorithm investigated in Chapter 4 for J2 elastopla-
sticity, we substitute the discrete Kuhn-Tucker conditions deriving from system (7.24) by the following set
of functions in the time-discrete frame:

√
(FM )2 + (∆ζM )2 + FM −∆ζM = 0√
(FS)2 + (∆ζS)2 + FS −∆ζS = 0√
(F d)2 + (∆ζd)2 + F d −∆ζd = 0

(7.36)

We employ the same strategy to treat the set of inequalities given by constraint (7.2). In fact, the additional
Kuhn-Tucker conditions (7.21) can be substituted by the equivalent equalities:

√
(γM0)2 + (χM )2 + γM0 − χM = 0√
(γS0)2 + (χS)2 + γS0 − χS = 0√
(γMS)2 + (χM + χS − 1)2 − γMS + (χM + χS − 1) = 0

(7.37)

The time-discrete problem, Q = Q (εεε,h), evaluated at time tn+1, takes the specific form:

Q =



χM − χMn −∆ζM
BM

|BM | = 0√
(FM )2 + (∆ζM )2 + FM −∆ζM = 0√
(γM0)2 + (χM )2 + γM0 − χM = 0

χS − χSn −∆ζS
BS

|BS | = 0√
(FS)2 + (∆ζS)2 + FS −∆ζS = 0√
(γS0)2 + (χM )2 + γS0 − χS = 0√

(γMS)2 + (χM + χS − 1)2 − γMS + (χM + χS − 1) = 0

dtr − dtrn −∆ζd
Bd

‖Bd‖ = 0√
(F d)2 + (∆ζd)2 + F d −∆ζd = 0

‖dtr‖ − 1 = 0



= 0 (7.38)

with h =
{
χM ,∆ζM , γM0, χS ,∆ζS , γS0, γMS ,dtr,∆ζd, γd

}
. The active set can now be determined

via the solution of the non-linear system of equations (7.38), using a classical Newton-Raphson method,
which results in the standard update relation at iteration (k), as follows:

h(k+1) = h(k) + ∆h(k) (7.39)

where:

∆h(k) = −
(
∂Q

∂h

)−1

Q
(
εεε,h(k)

)
(7.40)

The FE implementation of model equations and of all the numerical examples presented in Chapter 8 is
carried out using the symbolic code generation system AceGen/AceFEM (Korelc, 2009); the reader is
referred to the Appendix B for further details about AceGen/AceFEM. Accordingly, we do not provide
explicit expressions resulting from differentiation as these are obtained automatically using the automatic
differentiation technique implemented in AceGen (Korelc, 2009). Application of these automation tools
leads to exact linearization of the non-linear FE equations (consistent tangent matrix). This guarantees
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quadratic convergence rate of the global Newton method and results in a robust and efficient FE implemen-
tation of the model, as illustrated by the numerical examples of Chapter 8. We remark that, in cases where
no analytically evaluation of the Jacobian matrix is possible, the most known approximation is through a
finite difference scheme (Quarteroni et al., 2007).

Moreover, we observe that in the case of proportional loading, we may simplify model equations by
setting dtr = s/‖s‖, as presented in Section 7.2.1. In such a case, system (7.38) is composed of only
scalar-valued, rather than tensorial, equations by consequently increasing efficiency.

7.4.1 Numerical difficulties and adopted solutions

Since the Fischer-Burmeister complementary function is non-differentiable at (0, 0), we make use of the
smoothed Fischer-Burmeister function, presented in Eq. (2.121), by assuming δ as a positive regularization
parameter (Kanzow, 1996). This aspect characterizes especially the initiation of PTs, when both a and b
are equal to zero.

Therefore, as already discussed in Chapter 4 for J2 plasticity, possible difficulties could be linked to the
numerical sensitiveness of these schemes (due to the presence of δ) and to the proper choice of the Newton-
Raphson initial guess to guarantee a fast and correct convergence. In fact, a potential disadvantage of this
method is that when the initial point is far from a solution, the method might not converge or may converge
very slowly. In the present case, to resolve these shortcomings, we apply a line-search strategy (Dennis
and Schnabel, 1983; Nocedal and Wright, 1999). Such a choice is suggested by practical experience which
reveals that it is not necessary to solve accurately for Eq. (7.40) to devise efficient methods (Quarteroni
et al., 2007), rather, it is crucial to enforce some limitations on the step length such that:

h(k+1) = h(k) + α(j)∆h(k) (7.41)

where α(j) represents the admissible coefficient at iteration (j) of the line-search procedure. Without
introducing any limitation, a reasonable request on the choice of α(j) would seem be that satisfying the
following condition: ∥∥∥Q(εεε,h(k+1)

)∥∥∥ < ∥∥∥Q(εεε,h(k)
)∥∥∥ (7.42)

for which the new iterate, h(k+1), satisfies the inequality when h(k) and ∆h(k) have been fixed. To this pur-
pose, a simple procedure, that starts from a sufficiently large value of the step length, α(j), and halves this
value until condition (7.42) is fulfilled, can be used even if not always satisfactory (Dennis and Schnabel,
1983). In fact, more stringent criteria than condition (7.42) have to be adopted in the choice of possible
values for α(j) to avoid a slow descent rate of the sequence and the use of small step sizes. Among the
most up-to-date strategies, we adopt here the back-tracking line-search technique for which the following
condition needs to be satisfied (Quarteroni et al., 2007):∥∥∥Q(εεε,h(k+1)

)∥∥∥ < ∥∥∥Q(εεε,h(k)
)∥∥∥+ λα(j) ∂Q

∂h
∆h(k) (7.43)

with λ ∈ (0, 0.5). In our case, the procedure, that starts from a sufficiently large value of the step length,
α(j), and halves this value until condition (7.43) is fulfilled, has been demonstrated effective and efficacy.
Clearly, other strategies can be used for the choice of α(j) and theoretical results can be found in the
well-known book by Dennis and Schnabel (1983).

The application of the Fischer-Burmeister algorithm to the proposed problem leads to a well-behaved
and robust algorithmic scheme as demonstrated by examples described in Chapter 8. Table 7.2 provides
a summary of the full algorithm needed to integrate the constitutive relations in a FE framework, also
detailing the algorithmic scheme for the adopted line-search strategy, where we assume λ = 10−4 and
ρ = 0.5.
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1. Initialize

i. Set k = 0, h(0) =
(
χMn ; ∆ζMn ; γM0

n ;χSn ; ∆ζSn ; γS0
n ; γMS

n ; dtrn ; ∆ζdn; γdn
)

at time tn+1

2. Determination of the solution
Repeat:

i. Compute BS(k) = BS(εεε, T,h(k)) at time tn+1

ii. Compute RS(k) = RS(BS(k),h(k), T ) at time tn+1

iii. Find ∆h(k) solving system (7.38) via Newton-Raphson scheme through Eq. (7.40)
iv. Evaluate h(k+1) by applying a line-search strategy, as follows:

a. Choose λ ∈ (0, 0.5) and ρ ∈ (0, 1)

b. Set j = 0, α(0) = 1

c. Compute h(k+1) = h(k) + α(0)∆h(k)

d. While
∥∥Q (εεε,h(k+1)

)∥∥ > ∥∥Q (εεε,h(k)
)∥∥+ λα(j) ∂Q

∂h
∆h(k) do

• α(j+1) = ρα(j)

• h(k+1) = h(k) + α(j+1)∆h(k)

• j = j + 1
e. End

v. Set k = k + 1

until
∥∥Q (εεε,h(k)

)∥∥ < tol

Table 7.2: Full algorithmic scheme for the proposed ’flexible’ model.

Moreover, in Eq. (7.25) we choose RS such that its derivatives become infinite as χS approaches
0 or 1 to ensure a smooth transition in stress-strain or strain-temperature response predicted at initiation
and completion of transformation. While this condition is essentially an analytical one, the numerical
evaluation of these derivatives at χS = 0 and χS = 1 may cause computational difficulties. To avoid this
problem, we introduce a modification of RS as follows:

RS =

R
S
f0 + hSf χ

S + aSf0

(
χS + ε

)n
+ aSf1

(
1− χS + ε

)n
if BS ≥ 0

RSr0 − hSr χS − cST (T − T0) + aSr0
(
χS + ε

)n
+ aSr1

(
1− χS + ε

)n
if BS < 0

(7.44)

ε being a positive regularization parameter. For small values of ε (e.g., ε = 10−8), Eq. (7.44) produces
results similar to those provided by Eq. (7.25).

7.5 Conclusions

This Chapter has developed a refined, general and flexible three-dimensional phenomenological constitu-
tive model for SMAs, taking into account several physical phenomena, and has proposed the numerical
implementation of the new model, through the effective and efficient procedure, based on the Fischer-
Burmeister function. The great advantage of such a numerical algorithm is that no active set search is
required, allowing an efficient procedure for complex models. Possible numerical difficulties and the
adopted solutions have been described. In the following Chapter, numerical robustness and efficiency
as well as model reliability will be carefully investigated through several extensive numerical tests.



Chapter 8

A numerical and experimental
investigation of shape memory alloys

This Chapter is first devoted to a detailed numerical investigation of the ’flexible’ model, presented in
Chapter 7, in order to assess its reliability as well as the effectiveness of its numerical counterpart. In
particular, we conduct several numerical finite element simulations, ranging from simple uniaxial tests to
more complex three-dimensional analyses of a real-life device, and we give details about computational
times, number of steps and iterations. The conducted finite element analyses allow to qualitatively show
and emphasize all the ’flexible’ model features, while the comparison between numerical predictions and
experimental data available from the literaure allows to quantitatively validate the proposed model and
to demonstrate its reliability. Then, the present Chapter is dedicated to a numerical and experimental
investigation of NiTi actuators springs, in order to discuss several aspects characterizing shape memory
alloy behavior as well as prediction capabilities of shape memory alloy models.

The Chapter is organized as follows. Section 8.1 compares numerical predictions to several experi-
mental data available from the literature and presents the finite element analysis of a real device. Then,
Section 8.2 presents the experimental investigation of NiTi actuators springs, conducted in SAES Getters.
The results of the experimental campaign are then compared to the numerical predictions of the proposed
’flexible’ model and of the models by Souza et al. (1998) and Auricchio et al. (2009, 2011), presented in
Section 6.3.

8.1 ’Flexible’ model validation

In this Section we test the validity of the ’flexible’ model as well as its algorithm efficiency through several
numerical simulations and comparisons with experimental results on thin superelastic NiTi wires, reported
by Sittner et al. (2009). Then, we approach a complex three-dimensional finite element (FE) analysis of a
real shape memory alloy (SMA) based device, i.e., an helical spring actuator.

In all the numerical tests we adopt the material parameters reported in Table 8.1 and calibrated as
described in Section 7.3, by referring to the material properties characterizing NiTi wires and provided
by Pilch et al. (2009); Sittner et al. (2009); in particular, the material parameters are extracted from an
experimental curve, i.e., a tensile test at a constant temperature of 10 ◦C (see Figure 8.1).

It is important to notice that all the parameters are calibrated using only uniaxial data. The reduced
number of experimental data for the calibration certainly reduces the model accuracy, but the purpose is to
emphasize model prediction capabilities, based on a simple calibration method, through a quantitative vali-
dation with experimental data, as well as the robustness and efficiency of the adopted numerical procedure,
through a more complex three-dimensional analysis of a real SMA-based device. In all the simulations, to
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Parameter Value Unit Parameter Value Unit

GA 21890 MPa RM 1 MPa
GMS 9016 MPa RSf0 1 MPa
K 31125 MPa RSr0 17 MPa
εL 6.15 % hSf 1 MPa
T0 -48.15 ◦C hSr 1 MPa

∆sAMS 0.31 MPa/ ◦C aSf0 2 MPa

Ψ
in

-0.1 MPa aSf1 0.5 MPa
cST 0.2 MPa/ ◦C aSr0 0.01 MPa
n 0.1 - aSr1 9 MPa

Table 8.1: ’Flexible’ model parameters used in all the numerical simulations.

emphasize the improvements of the new modeling framework, we compare the proposed model with the
model by Souza et al. (1998), presented in Section 6.3, whose parameters are reported in (Auricchio et al.,
2009).
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Figure 8.1: ’Flexible’ model calibration on a tensile test at a constant temperature of 10 ◦C.

8.1.1 Uniaxial isothermal tensile tests

We start considering uniaxial tensile tests at constant temperature, simulated as simple uniaxial tension
tests, with displacement control and prescribed homogeneous constant temperature field. We consider five
constant temperatures of 60, 40, 20, −10 and −20 ◦C for the tensile tests and five constant temperatures
of 60, 40, 20, 10 and −20 ◦C for the tensile tests with internal subloops. Accordingly, Figures 8.2 and 8.3
report stress-strain diagrams. Compared to the model by Souza et al. (1998), the proposed model allows
for an accurate description of material behavior by reproducing experimental hysteresis loops decreasing
with increasing temperature, transformation-dependent elastic properties as well as phase transformations
(PTs) smoothness.
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Figure 8.2: Model response for isothermal tensile tests.

8.1.2 Uniaxial thermal-cycling tests at constant applied stress

We now present thermal-cycling tests at constant stress, simulated as uniaxial tension tests with load control
and prescribed homogeneous varying temperature field. We consider four constant stresses of 300, 400, 450

and 500 MPa. Accordingly, Figure 8.4 reports strain-temperature diagrams. The experimental curves are
successfully predicted by both models for σ = 400, σ = 450, and σ = 500 MPa, while both models fail for
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Figure 8.3: Model response for isothermal tensile tests with internal subloops.

σ = 300 MPa since an experimental weak inelastic strain is obtained for low stress levels. Although there is
no clear experimental evidence, these small actuation strains can be attributed to a R-phase transformation
(Sittner et al., 2009), not taken into account by both models. Another clear feature of the proposed model
is the decrease of temperature hysteresis width with increasing stress.
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Figure 8.4: Model response for thermal-cycling tests at constant tensile stresses.

8.1.3 Uniaxial thermo-mechanical recovering stress tests

We now present thermo-mechanical recovering stress tests carried out on a wire strained in tension at room
temperature, up to a certain level of prestrain, at upper and lower plateau, respectively, followed by thermal-
cycling at constant prestrain and final unloading at room temperature. Again, the present tests are simulated
as uniaxial tension tests. We consider a room temperature of 24 ◦C and three levels of prestrain of 2%,
3.5% and 5%. Accordingly, Figures 8.5 and 8.6 represent stress-strain (left) and stress-temperature (right)
diagrams at both upper and lower plateau. The transformation slopes as well as the achieved magnitude of
the recovery stress at maximum temperature predicted by the proposed model are in good agreement with
experiments also if both models do not capture the absence of hysteresis in the stress-temperature plot.

8.1.4 Isothermal combined tension-torsion tests

We present results of combined tension-torsion tests consisting of isothermal loading paths with applied
angular displacement at constant axial stress. The numerical prediction are obtained considering a 1 mm
wire segment, modeled using 8-node brick FE discretization consisting in one element through the wire
thickness and 320 elements in the cross-section (see Figure 8.7). Accordingly, Figure 8.8 represents torque-
angular displacement (left) and axial strain-angular displacement (right) diagrams. Tests in the first row
of Figure 8.8 are performed at a constant tensile stress of 70 MPa and at a constant temperature of 30 ◦C;
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Figure 8.5: Model response for thermo-mechanical recovering stress tests at upper plateau.

curves in the second row are plotted for a constant tensile stress of 194 MPa and at a constant temperature
of 40 ◦C; curves in the third row are plotted for a constant tensile stress of 379 MPa and at a constant
temperature of 40 ◦C.

Both models underpredict the resulting torque moment and overestimate the maximum amount of tran-
sformation strain reached at the end of the transformation. However, discrepancies are not surprising since
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Figure 8.6: Model response for thermo-mechanical recovering stress tests at lower plateau.

all the material parameters are calibrated using uniaxial tests. In fact, thin wires loaded in tension often
exhibit a localization of transformation, which produces more well stress-oriented variants, resulting in an
important transformation strain in tension. In torsion test, due to the stress gradient through the radius,
no localization is expected and, consequently, a reduced transformation strain is expected. As the mo-
dels consider the transformation in an average way, this kind of effects is not captured. Moreover, there
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Figure 8.7: Combined tension-torsion tests. Adopted mesh for the wire segment.

are discrepancies in terms of axial strains, due to the effect of strong material texture and anisotropy, not
accounted by isotropic models, which influences yield transformation surfaces and transformation strains
(Sittner et al., 2009). In fact, tension/compression asymmetry, which is accounted for in the model by
Souza et al. (1998), originates from the transformation anisotropy associated with NiTi cubic to mono-
clinic martensitic transformation (Sittner et al., 2009). The model by Souza et al. (1998) nevertheless
remains isotropic and hence the tension/compression asymmetry does not solve the problem of the length
of the plateau in angular displacements in torsion. Beside these discrepancies, the global behavior of the
proposed model is generally in good agreement with experiments.

8.1.5 Isothermal multiaxial non-proportional tests

We now present the results of three biaxial non-proportional stress-strain loading histories. Such histo-
ries are obtained assuming to control two strain components and four stress components, particularly,
{ε11, ε22, σ33, σ12, σ13, σ23} and {ε11, ε12, σ22, σ33, σ13, σ23}. For each loading history we require that all
the controlled stress components are identically equal to zero, while the strains are varied according to a
chosen history. In particular, we investigate two types of loading histories, consisting of an hourglass- and a
square-shaped strain history input, respectively, as shown in Figures 8.9(a), 8.9(c), and 8.9(e). We consider
a constant temperature of 60 ◦C.
Accordingly, Figures 8.9(b), 8.9(d), and 8.9(f) represent diagrams in terms of the non-zero stress compo-
nents. The aim is to emphasize qualitative aspects of the model response, which are similar to that observed
experimentally. Moreover, the results illustrate also the robustness of the present formulation and imple-
mentation. The markers indicate the solution obtained using large load increments (automatic step size
control1), whereas the solid line corresponds to fixed small load increments. As it can be seen, the former
solution follows exactly the latter.

1All computations are performed using an automatic step size control procedure in which the desired number of Newton iterations
is prescribed (here, equal to 8), and the current load increment is increased (decreased) when the number of iterations at the previous
increment is smaller (larger) then the desired number.



8.1. ’FLEXIBLE’ MODEL VALIDATION 123

-3 -2 -1 0 1 2 3
-0.2

-0.1

0

0.1

0.2

 

 

Angular displacement θ [rad mm]

T
o
rq

u
e
 M

 [
N

 m
m

]

Experimental

Proposed model

Souza model

T = 30 °C

σ = 70 MPa

-3 -2 -1 0 1 2 3
0

1

2

3

4

 

 

Angular displacement θ [rad mm]

A
x
ia

l 
s
tr

a
in

 ε
 [

%
]

Experimental

Proposed model

Souza model
σ = 70 MPa

T = 30 °C

-3 -2 -1 0 1 2 3
-0.2

-0.1

0

0.1

0.2

 

 

T
o
rq

u
e
 M

 [
N

 m
m

]

Angular displacement θ [rad mm]

Experimental

Proposed model

Souza model

T = 40 °C

σ = 194 MPa

-3 -2 -1 0 1 2 3
0

1

2

3

4

 

 

A
x
ia

l 
s
tr

a
in

 ε
 [

%
]

Angular displacement θ [rad mm]

Experimental

Proposed model

Souza model

T = 40 °C

σ = 194 MPa

-3 -2 -1 0 1 2 3
-0.2

-0.1

0

0.1

0.2

 

 

Angular displacement θ [rad mm]

T
o
rq

u
e
 M

 [
N

 m
m

]

Experimental

Proposed model

Souza model

T = 40 °C

σ = 379 MPa

-3 -2 -1 0 1 2 3
0

2

4

6

8

 

 

Angular displacement θ [rad mm]

A
x
ia

l 
s
tr

a
in

 ε
 [

%
]

Experimental
Proposed model
Souza modelσ = 379 MPa

T = 40 °C

Figure 8.8: Model response for combined tension-torsion tests.

8.1.6 Simulations of a shape memory alloy based real device

We conclude this Section by considering a real SMA-based device, i.e., an SMA helical spring actuator.
The device consists of 3.5 free coils of initial length of 24.59 mm, a wire diameter of 1.5 mm, a spring
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Figure 8.9: Model response for mixed stress-strain loading histories. (a) Butterfly- and (c)-(e) square-
shaped history inputs under strain control; Obtained diagrams in terms of the non-zero stress components
for the (b) butterfly- and (d)-(f) square-shaped history inputs (markers, large load increments; solid line,
small increments).
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external diameter of 13.3 mm, a spring internal diameter of 10.3 mm and a pitch size of 6.4 mm. Figure
(8.10) reports the adopted mesh, consisting of 6912 8-node brick elements and 7497 nodes, and the initial
geometry.

Figure 8.10: SMA spring actuator. Adopted mesh.

First, we simulate a helical spring at a constant temperature of 40 ◦C. We apply an axial force at the
bottom end of the helical spring while the top end is completely fixed. We increase the force from zero to
its maximum value and then, we unload the force back to zero. We remark that all the nodes on the bottom
section are constrained against the two translations in the directions orthogonal to the axial one (thus
ensuring that the bottom section is restrained against twist rotation). Figure 8.11(a) shows the deformed
shape under the maximum force, compared to the initial geometry of the spring. After unloading, the spring
recovers its original shape as expected in the pseudo-elastic (PE) regime. Figure 8.11(b) shows the force-
vertical displacement (of the loaded end) diagram. The results presented in Figure 8.11(b) illustrate also
the robustness of the present formulation and implementation. The markers indicate the solution obtained
using large load increments (automatic step size control), whereas the solid line corresponds to fixed small
load increments. As it can be seen, the former solution follows exactly the latter. To assess computational
efficiency of the present model and its FE implementation, Table 8.2 provides the total number of steps,
the total number of global Newton iterations and the total computation time for both small and large load
increments.

Load increments Number of steps Number of iterations Total time [s]

Large 52 401 909.046
Fine 204 1023 2134.75

Table 8.2: Pseudoelastic test of a SMA spring actuator. Comparison of computational efficiency.

Then, to qualitatively compare the behavior of the proposed model to that by Souza et al. (1998) for
low-stress PTs, we consider the spring fixed at the top end, initially loaded by a vertical force at the bottom
end and subjected to temperature cycle while keeping constant the load. We consider two constant loads
of 5 and 15 N. Figures 8.12(a) and 8.12(c) show the two loading histories during the simulations, while
Figures 8.12(b) and 8.12(d) show the vertical displacement-temperature diagrams. As it can be observed
from Figures 8.12(b) and 8.12(d), compared to the model by Souza et al. (1998), the proposed model is
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Figure 8.11: Pseudoelastic test of a SMA spring actuator. (a) Spring initial geometry and scaled deformed
geometry under the maximum force (color map indicates distribution of the single-variant martensite vo-
lume fraction, χS); (b) force vs. vertical displacement of the loaded end of the spring diagram (markers,
large load increments; solid line, small increments).

able to capture low-stress PTs and to predict the decrease of temperature hysteresis width with increasing
stress.

8.2 A numerical/experimental investigation of NiTi actuator springs

The present Section deals with the numerical modeling, simulation and experimental analysis of SMA
helicoidal springs. An experimental campaign is conducted in SAES Getters and the obtained experimental
results are used to investigate three phenomenological constitutive models, i.e., the models by Souza et al.
(1998) and Auricchio et al. (2009, 2011), and the proposed ’flexible’ model.

8.2.1 Introduction and motivations

NiTi-based SMAs are exploited in a variety of interesting applications. Solid PTs, induced either by stress
or temperature, are behind the remarkable functional properties of SMAs, promoting the concept of inno-
vative smart actuators. SMA helicoidal springs are devices that combine an actuator, a sensor (typically
a temperature sensor), and a displacement amplifier. A single component is indeed a system able to ac-
complish complex functions, as reacting to a temperature variation with an actuation. Despite the apparent
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Figure 8.12: Thermal-cycling test at constant load of a SMA spring actuator. (a)-(c) Temperature and
force loading histories during simulation; (b)-(d) vertical displacement of the loaded end of the spring vs.
temperature diagrams.

simplicity, the behavior of SMA helicoidal springs is rather complex due to SMA thermo-mechanical pro-
perties. Consequently, the development process of such devices is a difficult task and their design may
possibly take advantage of numerical simulations.

The literature presents numerous efforts for the modeling, design, simulation and control of SMA
actuator systems (Bundhoo et al., 2009; Khidir et al., 2008). Among them, some works present different
spring modeling approaches and calibration techniques to model the thermo-mechanical behavior of SMA
helicoidal springs (Attanasi et al., 2011; de Aguiar et al., 2013, 2010; Dhakal et al., 2013; Dumont and Kuhl,
2005; Savi and Braga, 1993; Toi et al., 2004). For instance, the paper by Attanasi et al. (2011) investigates
SMA spring superelastic mechanical behavior in tension and compression through some experimental and
numerical analyses. Springs are modeled using two-node simple beam elements and material properties
are computed through a trial and error fitting process on several experimental data related to a spring
specimen. The paper by Dumont and Kuhl (2005) proposes a FE model of the Euler-Bernoulli beam and
a material parameters identification on experimental data related to SMA wires. de Aguiar et al. (2010)
assume a one-dimensional constitutive model to describe SMA thermo-mechanical shear behavior and a
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classical approach for linear-elastic springs. Toi et al. (2004) extend Brinson’s one-dimensional constitutive
modeling to consider the asymmetric tensile and compressive behavior as well as the torsional behavior
of superelastic, large deformation analysis of SMA springs. The authors formulate the FE method using
linear Timoshenko beam elements. The work by Dhakal et al. (2013) focuses on the characterization of the
cyclic behavior of 55NiTi using a new modeling framework and its three-dimensional FE implementation
applied to springs. Model calibration is based on a single thermal-cycling test at constant load on a SMA
wire.

However, computational methods have not yet been well established for the analysis of SMA springs
(Toi et al., 2002a,b), particularly, in relation to the aim of finding an accurate FE modelization of spring
devices, an appropriate SMA constitutive model as well as a simple calibration technique.

Motivated by these considerations, the work presented in this Section focuses on the investigation of
SMA helicoidal spring actuator behavior, by combining the results of an experimental campaign conducted
in SAES Getters with a thorough understanding of SMA experimental behavior and the selection of ap-
propriate constitutive models. More specifically, the purpose is to investigate reliable and exhaustive SMA
three-dimensional constitutive models which could be used by engineers needing to perform accurate si-
mulations for the design and study of the response of SMA structures or components, in particular of
SMA helicoidal springs. To reach this goal, the considered models have to be interfaced with commercial
analysis programs; accordingly, good models should also be robust and flexible, possibly including both
superelasticity and shape-memory effect, without increasing modeling complexity. Also, the problem of
the physical interpretation of the model parameters is an important issue, as a clear and effective parameter
identification procedure is the key for the employment of a constitutive model by engineers in real-life
simulations.

Among the several models available in the recent literature, the present work focuses on three different
SMA macroscopic constitutive models; in particular, on (i) the model by Souza et al. (1998) and then
investigated by Auricchio and Petrini (2004a,b); (ii) the model by Auricchio et al. (2009, 2011); and (iii)
the proposed ’flexible’ model.

The investigation of the three models is based on a comparison between numerical predictions and ex-
perimental data. Such data are obtained by an experimental campaign conducted in SAES Getters on both
SMA straight wires and helicoidal springs that experienced the same annealing process and presenting dif-
ferent geometries. The conducted tests consist of two experimental temperature loops at different constant
tensile loads, carried out on wires and springs. Accordingly, the main goal of the present work is to cali-
brate constitutive model parameters on some experimental results related to SMA wires and then to test the
resulting models with experimental data on helicoidal springs. The comparison between numerical predic-
tions and experimental results allows to make considerations on the models reliability and design aspects
as well as to discuss some features of SMA material behavior, highlighted by the experimental campaign.
In the following, we describe the calibration process of constitutive model parameters and we compare
numerical predictions to experimental data on helicoidal springs. Finally, we conclude by discussing and
commenting the obtained results.

8.2.2 Experimental campaign conducted in SAES Getters

This Section presents the experimental campaign conducted in SAES Getters. Experiments consisted in
thermal cycling at constant tensile load and were performed on the following samples:

• 1.5 mm diameter straight annealed wires;

• 1.0 mm diameter straight annealed wires;

• helicoidal springs manufactured by shape setting of either 1.5 mm and 1.0 mm diameter cold drawn
wires.
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All samples material nominal composition was Ti-49Ni at%. The geometrical parameters of the two spring
configurations are reported in Table 8.3.

Geometrical parameters Spring 1 Spring 2

Wire diameter 1.5 mm 1.0 mm
External coil diameter 13.3 mm 7.5 mm

Pitch 6.4 mm 3.0 mm
Free coils 3.5 6

Initial length 24.59 mm 18.0 mm

Table 8.3: Geometrical parameters of the first and second helicoidal spring actuators (Springs 1 and 2,
respectively).

The shape setting processes of both spring versions were conducted with identical process parameters.
Wires heat treatment were performed so that the wire experienced the same temperature time evolution
of the corresponding spring. All thermal cycling tests were carried out on a self-constructed measuring
system, already described in (Urbano and SMAq, 2006). The system was recently provided with a thermo-
static chamber featuring a temperature range from less than −100 ◦C to more than 350 ◦C. The chamber
is made of an inner brass chamber. Inside its walls holes for Nitrogen flow and resistive heaters are drilled.
The brass chamber is contained is a two layers thermal insulation case, the inner layer having high tem-
perature stability, the outer layer good structural capability. Temperature inside the thermostatic chamber
is monitored by means of three thermocouples, one of which, placed more or less in the center of the free
volume and very close to the sample, is utilized for feedback control. A fan inside the chamber contributes
to homogenize the temperature profile. Temperature and displacement were registered during the tests.
The displacement was measured by means of the encoder of the linear motor exerting the load, properly
corrected to compensate for thermal dilatation and elastic elongation of the loading chain. Thermal cycling
was run on each SMA sample, either wire or spring, with increasing load. Two thermal cycles, starting
from the high temperature, were performed for each load. Figure 8.13 shows the springs before and after
testing and Table 8.4 summarizes all the performed tests.

8.2.3 Model parameter calibration

This Section is dedicated to the calibration of the investigated models. Ideally, the calibration procedure of
a comprehensive material model with an extensive amount of experimental data on SMA springs should be
automated using sophisticated optimization techniques. In the present work, however, the identification of
all the material parameters is based on two experimental thermal-cycling tests at constant load conducted
on a SMA wire. We consider these kind of experimental results, instead of classical stress-strain curves,
because the strain-temperature response is very significant for SMA producers, being one of the most im-
portant characteristic of SMA for actuators. In particular, the calibration technique is achieved through
a comparison between the two experimental curves in a one-dimensional setting, as already done for the
Souza model by Auricchio et al. (2009). Consequently, we easily calibrate the following parameters of the
model by Souza et al. (1998): (i) the elastic properties (E and ν), (ii) the maximum amount for single-
variant martensite (εL), and (iii) four additional parameters (R, h, β and T0) characteristic of martensitic
transformations. We remark that, since the performed tests are under tensile load, we take a typical appro-
ximate value of the Poisson’s ratio from literature (Lagoudas, 2008).
Then, we adopt the same values for the parameters of the model by Auricchio et al. (2009, 2011), except
for R1, assumed equal to R, and for the radius, R0, calibrated to catch material behavior for low stress
conditions. Finally, we adopt the same elastic properties (E and ν) and the same maximum amount for
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Figure 8.13: Springs before and after testing.

Component Load Thermal Cycles for each load

1.0 mm diameter wire

15 MPa
30 MPa
50 MPa 2
100 MPa
200 MPa

1.5 mm diameter wire
55 MPa
100 MPa 2
144 MPa

Spring 1
3 N
5 N 2
8 N

Spring 2

1 N

2
2 N
5 N
7 N

Table 8.4: Summary of the performed tests in SAES Getters.

single-variant martensite (εL) for the ’flexible’ model and we calibrate the remaining parameters (i.e., Ψin,
∆sASM , RM , RSf , RSr , hMf , hSf , hSr and T0), through a comparison between the two experimental curves
in a one-dimensional setting as described in Section 7.3. In the following, we refer to the three models as
the Souza-Auricchio model, the modified Souza-Auricchio model, and the Auricchio-Bonetti model.

We remark that the above calibration process is based on the results of tensile tests under the hypothesis
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of isotropic material response and tension-compression symmetry, since we are interested in catching the
global material behavior. Thus, we do not capture important features for drawn NiTi wires as the effects of
tension-compression asymmetry and of material texture which may strongly influence the yield transfor-
mation surfaces and the transformation strains. In such a case, a multiaxial characterization of NiTi wires
would be appropriate, although difficult.

For the identification procedure, we use the 100 and 144 MPa curves related to the 1.5 mm wire.
Table 8.5 lists the values of the parameters adopted in all the numerical simulations (already reported to
a three-dimensional setting) and Figures 8.14(a)-(c) present the one-dimensional phase diagrams for the
three models in terms of stress, σ, and temperature, T .

Souza-Auricchio model Mod. Souza-Auricchio model Auricchio-Bonetti model

E = 45000 MPa E = 45000 MPa E = 45000 MPa
ν = 0.3 ν = 0.3 ν = 0.3

εL = 0.049 εL = 0.049 εL = 0.049
T0 = 343 K T0 = 343 K T0 = 325 K
R = 110 MPa R1 = 110 MPa RM = 1 MPa
h = 1000 MPa R0 = 10 MPa RSf = 2.4 MPa
β = 4.49 MPa/K h = 1000 MPa RSr = 8 MPa

β = 4.49 MPa/K hSf = 1.3 MPa
hSr = 2.0 MPa

Ψin = 0.25 MPa
∆sASM = 0.2 MPa/K

Table 8.5: Calibrated material parameters for the three models.

As it can be observed from Figures 8.14(a) and 8.14(b), the Souza-Auricchio and the modified Souza-
Auricchio models consider the coexistence of only two phases, i.e., austenite and single-variant martensite,
and differ from each other for material behavior at low temperatures, i.e., at T < T0, where T0 is assumed
equal to 70 ◦C. In particular, the modified Souza-Auricchio model considers a lower value of the elastic
radius than the Souza-Auricchio model, i.e., R0 = 10 MPa, which allows to take into account tempera-
ture transformations at low levels of stress. The Auricchio-Bonetti model considers also the presence of
multi-variant martensite, consequently taking into account thermal-induced transformations at zero stress
(indicated by vertical red dot lines in Figure 8.14(c)).

With the calibrated parameters of Table 8.5, we produce the numerical curves for the 100 and 144 MPa
cases, to compare with the experimental curves from which the parameters have been identified. Such
numerical curves have been obtained in two Mathematica FE packages, AceGen and AceFEM (Korelc,
2009), by simulating the experimental thermal-cycling tests at constant load as uniaxial tension tests with
load control and prescribed homogeneous varying temperature field (see Appendix B for further details
about AceGen/AceFEM). Figures 8.15(a) and 8.15(b) report the comparison between the experimental and
the calibrated curves in terms of strain, ε, and temperature, T , for the two levels of load. In this and in the
following figures, we refer to the Souza-Auricchio model as SA, to the modified Souza-Auricchio model
as mod. SA, and to the Auricchio-Bonetti model as AB.

In particular, Figures 8.15(a) and 8.15(b) show the inability of the Souza-Auricchio model to catch
SMA behavior for work conditions where the material is considered as linear elastic and where the model
is particularly sensitive to its numerical implementation. Given the assessed material coefficient set, such a
work condition includes stress values approximately lower than 150 MPa at T < T0, as it can be observed
in Figure 8.15(a). The applied experimental loads belong exactly to such a stress range, causing the inef-
ficiency of the Souza-Auricchio model. Contrarily, the modified Souza-Auricchio and Auricchio-Bonetti



132 CHAPTER 8. A NUMERICAL AND EXPERIMENTAL INVESTIGATION OF SMAS

0 50 100 150
0

100

200

300

S
tr

e
s
s
 σ

 [
M

P
a
]

Temperature T [°C]

Mod. Souza-Auricchio model

Single-variant
martensite

Austenite

(a)

0 50 100 150
0

100

200

300

S
tr

e
s
s
 σ

 [
M

P
a
]

Temperature T [°C]

Austenite

Souza-Auricchio model

Single-variant
martensite

(b)

0 50 100 150
0

100

200

300

Temperature T [°C]

S
tr

e
s
s
 σ

 [
M

P
a
]

Multi-variant
martensite

Auricchio-Bonetti model

Austenite

Single-variant
martensite

(c)

Figure 8.14: 1D phase diagrams generated by (a) the Souza-Auricchio model; (b) the modified Souza-
Auricchio model and (c) the Auricchio-Bonetti model, in terms of stress, σ, and temperature, T .

models demonstrate their efficiency in capturing real material response.

8.2.4 Comparison with experiments on SMA helicoidal wires and springs

This Section presents the comparison between experimental data and numerical predictions on SMA heli-
coidal wires and springs presenting different geometries.
Experimental tests have been carried out in SAES Getters, as described in Section 8.2.2. Numerical results
are obtained by conducting three-dimensional FE analyses of SMA helicoidal springs subjected to tempe-
rature cycling at constant load with the material parameters presented in Table 8.5.
We remark that the aim is to show as the three models catch SMA experimental behavior with a simple ca-
libration process. Consequently, all the studied experimental data-sets are simulated with a unique choice
of material parameters, obtained with the calibration procedure described in Section 8.2.3. The material
parameters calibrated on 1.5 mm wires are so employed in the analysis of 1.0 mm wires.
In the following, we present the results of FE analyses on 1.5 and 1.0 mm wire springs and, then, we report
some considerations about model results and SMA experimental behavior.
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Figure 8.15: Model parameter calibration on thermal-cycling tests on 1.5 mm SMA wires. Deformation,
ε, vs. temperature, T , curves at constant tensile loads of 100 and 144 MPa.

Results for 1.5 mm wires and 1.5 mm wire springs

First, we present thermal-cycling tests at constant load on a 1.5 mm wire, simulated as uniaxial tension
tests with load control and prescribed homogeneous varying temperature field. Figure 8.16 reports the
comparison between experimental and numerical curves in terms of deformation, ε, and temperature, T ,
for a tensile load of 55 MPa.
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Figure 8.16: Thermal-cycling test on 1.5 mm SMA wire. Deformation, ε, vs. temperature, T , curves at a
constant tensile load of 55 MPa.

Then, we consider the FE analysis of a SMA helicoidal spring actuator (Spring 1 of Table 8.3). The
adopted mesh consists of 6912 8-node brick elements and 7497 nodes, as shown in Figure 8.17(a).

We consider the spring fixed at the top end, initially loaded by an axial force at the bottom end and
then, keeping constant the load, subjected to temperature cycle. We apply three forces of 3, 5, and 8 N. We
remark that all the nodes on the bottom section are constrained against the two translations in the directions
orthogonal to the axial one (thus ensuring that the bottom section is restrained against twist rotation).
Moreover, we observe that the magnitudes of the three forces produce average values of approximately
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(a)

(b)

Figure 8.17: Adopted meshes. (a) Spring 1 of Table 8.3; (b) Spring 2 of Table 8.3.

33, 55, and 88 MPa for the distribution of effective stresses (
√

3/2 s : s, where s is the stress deviator
tensor) in SMA coils. This provides a comparable stress level to that utilized in the experiments used for
characterization and calibration described in Section 8.2.3. Figures 8.18(a)-(c) show the spring relative
elongation, (L− L0)/L0, versus temperature, T , diagrams, where L0 is the initial length of the spring.

Results for 1.0 mm wires and 1.0 mm wire springs

First, we present thermal-cycling tests at constant load on a 1.0 mm wire. We consider simulations of
thermal-cycling tests at constant loads of 15, 30, 50, 100, and 200 MPa. Figures 8.19(a)-(e) report ε-T
diagrams for the five levels of loads.

Then, we consider the FE analysis of a SMA helicoidal spring actuator (Spring 2 of Table 8.3). The
adopted mesh consists of 14976 8-node brick elements and 16511 nodes, as shown in Figure 8.17(b). In
this case, we consider four force values of 1, 2, 5, and 7 N, whose magnitudes produce average values of
approximately 23, 46, 115, and 161 MPa for the distribution of effective stresses in SMA coils. Figures
8.20(a)-(d) show spring relative elongation, (L− L0)/L0, versus temperature, T , diagrams.

8.2.5 Discussion on results

Numerical simulations show that the results of both the Auricchio-Bonetti and modified Souza-Auricchio
models are almost the same and in close agreement with experimental data, revealing that the considered
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Figure 8.18: Thermal-cycling tests on 1.5 mm wire springs. Spring relative elongation, (L − L0)/L0, vs.
temperature, T , curves at constant loads of 3, 5 and 8 kg.

models capture the general thermo-mechanical behavior of SMA springs, notwithstanding the simple cali-
bration process.
Starting from Figures 8.15(a)-(b), 8.16 and 8.18(a)-(c), referring to 1.5 mm wires and 1.5 mm wire springs,
both the models catch successfully the experimental curves.

The effect of the variation of spring geometrical properties (e.g., diameter, number of coils, etc.) is
then investigated by focusing on 1.0 mm wires and 1.0 mm wire springs. Numerical predictions related
to 1.0 mm wires do not present satisfactory results, as shown in Figures 8.19(a)-(e). Experimental curves
reveal, in fact, a significative influence of the variation of the diameter on SMA wire behavior, which is
not taken into account by the uniaxial FE simulations. This can be observed by comparing, for instance,
the experimental curves related to the applied load of 100 MPa for both the 1.5 mm and 1.0 mm wires (see
Figures 8.15(a) and 8.19(d), respectively). Numerical curves are almost matching, while experimental ones
differ for the values of the stroke and of the transformation temperatures. Despite the poor matching for
1.0 mm wires, the results related to 1.0 mm wire springs are satisfactory in terms of the hysteresis loops,
as reported in Figures 8.20(a)-(d), especially for the loads of 5 and 7 N, both generating high values of
the effective stress. In fact, the two models capture successfully the hysteresis loops, while don’t match
exactly the transformation temperatures. This issue could be related to the fact that material parameters
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Figure 8.19: Thermal-cycling tests on 1.0 mm SMA wires. Deformation, ε, vs. temperature, T , curves at
constant tensile loads of 15, 30, 50, 100 and 200 MPa.
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Figure 8.20: Thermal-cycling tests on 1.0 mm wire springs. Spring relative elongation, (L − L0)/L0, vs.
temperature, T , curves at constant loads of 1, 2, 5 and 7 N.

have been calibrated on 1.5 mm wires and, in fact, experimental curves related to 1.5 mm wire springs are
well described (see Figures 8.18(a)-(c)).
Compared to the modified Souza-Auricchio model, the Auricchio-Bonetti model presents a more flexible
approach, but also an increasing modeling complexity and a high number of material parameters. More-
over, the modified Souza-Auricchio model solves, with a low number of material parameters, the problem
highlighted for the Souza-Auricchio model whose behavior depends on the numerical implementation.
As anticipated in Section 8.2.3, the Souza-Auricchio model does not catch successfully the experimental
curves. This issue is related to the low values of the applied loads in experimental tests. In fact, starting
from Figures 8.15(a) and (b), 8.16 and 8.18(a)-(c), referring to 1.5 mm wires and 1.5 mm wire springs, we
observe the inability of the Souza-Auricchio model to catch SMA behavior for low work conditions. The
results of the Souza-Auricchio model for 1.0 mm wires and 1.0 mm wire springs are not satisfactory too,
as reported in Figures 8.19(a)-(e) and 8.20(a)-(d). In Figures 8.19(a)-(e), in fact, we observe that the only
caught curve is that related to an applied load of 200 MPa. In Figures 8.20(a)-(d), the Souza-Auricchio
model does not match the curve related to the load of 7 N, generating an approximate effective high stress
of 161 MPa. This issue could be related to the numerical sensitiveness of the algorithm in the range of
stresses lower or around 150 MPa and, in fact, the Souza-Auricchio model shows a starting transformation
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producing an uncompleted hysteresis loop.
Moreover, experimental curves highlight some characteristic features of SMA real behavior. As it can

be observed in Figures 8.18(a)-(c), 8.19(a)-(e) and 8.20(a)-(d), the 1.5 mm wire springs, 1.0 mm wires
and 1.0 mm wire springs reveal a double transformation transition due to the presence of the R-phase,
particularly evident for low levels of stress. In Figures 8.19(a)-(e), related to 1.0 mm wires, such a transition
takes place in the range of temperatures between 40 and 60 ◦C. Contrarily, the 1.5 mm wires do not show
any effect due to the R-phase, since their characterization involves high values of the load. Additionally,
all the figures show irreversible strains.

8.3 Conclusions

Section 8.1 has presented extensive numerical tests in order to carefully investigate the robustness as well
as efficiency of the integration algorithm for the proposed ’flexible’ model, introduced in Chapter 7. The
quantitative validation of the proposed model with several experimental data available from the literature
has been addressed to confirm the reliability of the ’flexible’ model.
Then, Section 8.2 has presented the numerical and experimental investigation of NiTi actuator springs.
Comparison between numerical and experimental results has shown the inability of Souza-Auricchio model
to catch SMA behavior for low levels of stress, while the modified Souza-Auricchio and Auricchio-Bonetti
models have revealed good predictions of global SMA behavior, by allowing to take advantage of these
preliminary results for future design purposes. Moreover, experimental curves have revealed the presence
of some aspects characterizing SMA material behavior, as R-phase, plasticity, as well as training effects,
which are not accounted by the models.
We remark, however, that the calibration process, adopted in the present study, requires the availability
of experimental data on SMA wires for the identification of model parameters to be then used for spring
simulations. Thus, in order to make the calibration as easy as possible and to avoid a calibration process
for each type of available wire, we have calibrated model parameters only on 1.5 mm wires. Moreover, the
calibration on data related to wires with specific geometries and material treatments are not well represen-
tative of all SMA wire springs. Despite this, the calibration is very simple compared to more sophisticated
optimization techniques requiring large amount of experimental data and calculation time.
The present work will be used as a starting point for an ongoing detailed investigation about the calibration
technique, the study of the effect of the variation of geometry properties and material treatment as well as
of the application of compression loads.



Chapter 9

A theoretical, numerical and
experimental investigation of shape
memory polymers

This Chapter focuses on the experimental analysis, constitutive modeling and numerical simulation of
shape memory polymers, which nowadays represent a new and challenging field of research.

The Chapter is organized as follows. Sections 9.1 and 9.2 present an introduction to material behavior
and modeling and to the motivations of the proposed work. Then, Section 9.3 focuses on an experimen-
tal uniaxial campaign on semi-crystalline shape memory polymers conducted in the Basic Chemicals and
Plastics Research Center of Versalis (ENI). Section 9.4 present a new predictive one-dimensional phe-
nomenological model and its numerical counterpart, based on the Fischer-Burmeister function, already
tested for J2 elastoplasticity in Chapter 4 and for shape memory alloys in Chapter 7. Finally, Section 9.5
qualitatively and quantitatively investigates the proposed model and compares numerical predictions to
experimental results.

9.1 Introduction to shape memory polymer behavior and activities

Shape memory materials represent an important class of multi-phase smart materials that have the ability
to return from a deformed state to their original shape. Such a property, known as shape memory recovery,
is typically induced by an external stimulus such as heat, electricity or magnetism (Wei et al., 1998a,b).

Among the others, shape memory polymers1 (SMPs) possess the advantages of large elastic deforma-
tions, low energy consumption for shape programming, low cost and density, potential biocompatibility,
biodegradability, and excellent manufacturability (El Feninat et al., 2002; Hu et al., 2012). As an exam-
ple, SMPs can recover an elongation as large as 150%, which is significantly larger than the largest shape
recovery observed in shape memory alloys, which is about 8% (Lendlein and Kelch, 2002). Moreover,
SMPs are less expensive than shape memory alloys and they need a cheaper process for the production of
different shapes and sizing. Figure 9.1 shows a closed flower (temporary shape), made of a SMP and fixed
at a low temperature, which recovers its original shape (open flower) when the temperature is increased
(Hu and Chen, 2010).

Thanks to such characteristics, SMPs have attracted a great deal of interest for their potential appli-
cations and have a promising future for applications as, e.g., micro electro-mechanical system devices,

1A polymer is a large molecule composed of many repeated subunits, known as monomers. The most common way of classifying
polymers is to separate them into three groups: thermo-plastics, thermo-sets, and elastomers.

139
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Figure 9.1: A closed flower (temporary shape), made of a SMP and fixed at a lower temperature, recovers
its original shape (open flower) when the temperature is increased above its switch temperature, taken from
(Hu and Chen, 2010).

actuators, temperature sensors, packaging, fibers and films with insulating properties, digital storage, bio-
medical devices, and damping elements (Monkman, 2000; Poilane et al., 2000; Sai, 2010; Tey et al., 2001).

The mechanism responsible for shape memory in polymers is not related to a single material property of
a specific polymer; rather, it results from the combination of polymer structure and morphology2, together
with the applied processing and heat treatment3. In fact, shape memory behavior can be observed for
several polymers that may differ significantly in their chemical composition.
Despite the increasing interests, only a few SMPs are described in the literature. As an example, various
studies are devoted to polymers mainly based on polyurethanes (Kim et al., 1998, 1996; Yang et al., 2006)
or focus on systems as ethylene/vinyl acetate copolymers, poly(ε-caprolactone), semi-crystalline polymers
and related blends (Pandini et al., 2012; Zhu et al., 2003, 2006, 2005).

Several experimental investigations have been conducted to characterize the behavior of SMPs (Abra-
hamson et al., 2003; Atli et al., 2009; Baer et al., 2007; Gall et al., 2002; Kim et al., 2010; Kolesov et al.,
2009; Lagoudas et al., 2010; Lendlein and Kelch, 2002; Liu et al., 2006, 2004; Tobushi et al., 1997, 1998;
Volk et al., 2010). Many of the initial studies focused on the SMP response under small deformations,
i.e., under extensions less than 10% (Liu et al., 2006; Tobushi et al., 1997, 1998); recently, experimental
efforts have investigated the response under finite deformations, i.e., under extensions greater than 10%

(Atli et al., 2009; Baer et al., 2007; Lagoudas et al., 2010; Voit et al., 2010; Volk et al., 2010; Ware et al.,
2010; Wilson et al., 2007).

In addition to experimental efforts, the ever increasing applications of SMPs have motivated a con-
siderable part of the research, focused on the prediction and description of SMP behavior, through the
development of appropriate and reliable constitutive models. However, such research field is still under

2Polymer morphology is the overall form of the polymer structure, including, e.g., crystallinity, branching, molecular weight,
cross-linking. Polymers can be crystalline (molecules are arranged in a regular order), amorphous (totally lacking positional order on
the molecular scale), or semi-crystalline (containing both crystalline and amorphous regions in the same sample).

3A cross-link is a bond that links one polymer chain to another. Cross-linking is used in both synthetic polymer chemistry and in
the biological sciences. When the term ’cross-linking’ is used in the synthetic polymer science field, it usually refers to the use of
cross-links to promote a difference in the polymer physical properties. When cross-linking is used in the biological field, it refers to the
use of a probe to link proteins together to check for protein-protein interactions, as well as other creative cross-linking methodologies.
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progress, due to the complex behavior of SMPs. In particular, there is a lack of modeling of shape memory
effect in polymers, in spite of the fact that polymers represent a good and promising alternative to, e.g.,
shape memory alloys which have been widely studied from the point of view of both theoretical and numer-
ical aspects (Arghavani et al., 2010; Auricchio and Bonetti, 2013; Auricchio and Petrini, 2004a; Lagoudas
et al., 2012).

Several macroscopic or phenomenological constitutive models, e.g., (Baghani et al., 2012; Chen and
Lagoudas, 2008a,b; Kim et al., 2010; Liu et al., 2006; Qi et al., 2008; Reese et al., 2010; Xu and Li, 2010)
as well as microscopic or physical-based models (Barot et al., 2008; Nguyen et al., 2008; Srivastava et al.,
2010) have been proposed in both the small and finite deformation regimes.

In the following, we focus on phenomenological macro-modeling approaches which appear to be a
powerful tool for the direct simulation of SMP applications, thanks to their simple numerical implementa-
tion and reduced time-consuming calculations, compared to micromechanical approaches.

Most of the earlier modeling efforts have adopted rheological models consisting of spring, dashpot, and
frictional elements in one-dimensional models, in order to quantitatively describe the shrinkage behavior in
amorphous polymers (Abrahamson et al., 2003; Bhattacharyya and Tobushi, 2000; Khonakdar et al., 2007;
Pakula and Trznadel, 1985; Tobushi et al., 1997, 2001; Trznadel and Kryszewski, 1988). However, while
such models seem to be simple, they have limitations in certain classes of constitutive relations and usually
lead to predictions that agree only qualitatively with experiments.

Liu et al. (2006) developed a one-dimensional constitutive model where the SMP consists of two
phases, a rubbery and a glassy phase, and the memory effect is achieved by defining a storage deformation.
Based on Liu’s phase concept and storage deformation, Chen and Lagoudas (2008a,b) extended the model
to a three-dimensional framework. Recently, Qi et al. (2008) developed a three-dimensional finite defor-
mation model for thermo-mechanical behavior of SMPs, based on the evolution of the deformation energy
from an entropy dominated state to an enthalpy dominated state. Barot and Rao (2006); Barot et al. (2008)
applied a similar concept to crystallizable polymers.

Approaches involving the viscosity change in the material when the temperature traverses the glass
transition temperature are particularly suited for amorphous polymers. As an example, the work by Nguyen
et al. (2008) considers visco-elasticity in a finite deformation framework and the works by Reese et al.
(2010); Srivastava et al. (2010) include thermo-mechanical coupling in models that have been implemented
in finite element (FE) analysis packages.

On the contrary, the phase evolution approach represents the physical phenomena at work during de-
formation in semi-crystalline polymers. Recently, Long et al. (2009) have showed that such a modeling
scheme can also be applied to other active polymers, like photo-activated polymers. The paper by West-
brook et al. (2010) presents a one-dimensional model based on the concept of phase evolution to quanti-
tatively capture both one-way and two-way SMEs in semi-crystalline polymers exhibiting stretch-induced
crystallization. Volk et al. (2011) performed tensile tests and one-dimensional modeling on a high recovery
force polyurethane SMP for biomedical applications. Recently, Baghani et al. (2012) have presented a
three-dimensional phenomenological model under time-dependent multiaxial thermo-mechanical loadings
in the small strain regime.

9.2 Motivations of the proposed work

The work proposed in the present Chapter focuses on semi-crystalline polymers, particularly, both on low-
density (LDPE) and high-density (HDPE) polyethylene-based polymers4.

In semi-crystalline polymeric materials, the shape memory behavior manifests itself through thermal
retraction on heating when the molecular structure has been oriented by mechanical loads. Such an effect
may be considered as a shape memory property since, after a permanent deformation by mechanical loads,

4The difference between LDPE and HDPE is due to the range of density which is of 0.910-0.935 and 0.935-0.965, respectively.
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polymers may recover their original shape just by thermal actions. In particular, the deformation remains
fixed by lowering the temperature, while a retraction occurs (or a residual stress) by heating. In PE-
based polymers, thermal retraction finds important industrial applications, e.g., in packaging of goods. For
example, while LDPE is very flexible and used for packaging and production of home products, HDPE
finds applications in blow molding and it is used to produce tubes, film, bottles.

The objectives of the present Chapter are two-fold and aim to experimentally investigate LDPE and
HDPE polymers with known compositions, that are being considered for packaging applications, and to
introduce and numerically assess a new one-dimensional macroscopic model, limiting the discussion to the
small deformation regime.

Specifically, the first objective of the proposed work is to evaluate the behavior and the characteris-
tics of PE-based SMPs through an experimental campaign conducted at the Basic Chemicals and Plastics
Research Center in Versalis (ENI) by Pachera (2011); Talamazzi (2012). Such experimental effort charac-
terizes the orientation process as well as the free and constrained thermal retraction properties, which are of
fundamental importance in the design of SMP devices for packaging applications. Specifically, to achieve
the requested shape change, the material and/or the thermo-mechanical load paths have to be appropriately
selected. We investigate both HDPE and LDPE polymers to study the effect of density on material beha-
vior. Moreover, some of the tested LDPE polymers differ in terms of molecular weights to evaluate the
effect of weight variation.

The second objective of the present work is to introduce and numerically investigate a new one-
dimensional macroscopic model, describing the thermo-mechanical behavior of semi-crystalline polymers.
The idea is to extend to SMPs modeling and numerical features already introduced and widely accepted
for shape memory alloys. The proposed model is thus based on the so-called phase transition approach
which describes both phase transformation and phase separation dynamics, as well as non-smooth internal
constraints on the variables (Frémond, 2002, 2012). Thanks to such an approach, we are able to include
in our model the typical phenomenon of crystallization in semi-crystalline polymers, which represents a
microscopic configuration change taking place at certain temperatures and which can be described as a
phase transformation. The main idea is that material properties depend on the microscopic structure which
is represented by a suitable scalar parameter, the so-called phase parameter, denoting which kind of mi-
crostructure is present. As shape memory in polymers strongly depends on the orientation of the polymers
chains, we associate an order parameter to the non-oriented microstructure and we also define a set of pa-
rameters capable of describing the mechanical behavior of the material at different temperatures. Hence,
by using general thermo-mechanical laws, we recover a system of constitutive relations coming from en-
ergy and dissipation functionals, chosen on the basis of the experimental obtained evidences. Moreover,
we assume that no viscosity appears and that phase evolution is rate-independent. We conduct the nu-
merical investigation of the proposed model through an effective and efficient computational procedure,
introduced in the framework of crystal plasticity by Schmidt-Baldassari (2003) and of shape memory al-
loys by Bartel and Hackl (2009, 2010); Bartel et al. (2011); Kiefer et al. (2012) and in Chapter 7. It consists
in replacing the Kuhn-Tucker complementarity inequality conditions by the equivalent Fischer-Burmeister
complementarity function (Fischer, 1992) and in making possible to omit an active set search, a fundamen-
tal advantage when dealing with several variable constraints as in our model. Additionally, the proposed
work presents several numerical results for uniaxial tests and a comparison between numerical predictions
and experimental results, to show the capability of the model to qualitatively and quantitatively reproduce
basic effects such as the orientation process, free and constrained thermal retraction.

9.3 Experimental campaign conducted in Versalis (ENI)

The present Section describes an experimental campaign conducted at the Basic Chemicals and Plastics
Research Center - Versalis (ENI), on commercial LDPE and HDPE polymers by Pachera (2011); Talamazzi
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(2012).

Table 9.1 lists the property values of the tested materials, which differ in terms of density and molecular
weight. In particular, we conduct some experimental tests on one type of LDPE (Mat. A) and one type
of HDPE (Mat. E) to evaluate the effect of density variation on material behavior; then, we conduct some
tests on three types of LDPE (Mat. B, C and D) to consider the effect of molecular weight variation on
material behavior.

Property Mat. A Mat. B Mat. C Mat. D Mat. E
Melt flow index (MFI)

0.79 0.80 2.20 0.25 0.15
(190 ◦C, 2.16 Kg) [g/10 min]

Density [g/cm3] 0.9221 0.9230 0.9230 0.922 0.939

Cristallinity [%] 50.00 47.47 47.30 47.54 70.00

Melting point (Tm) [ ◦C] 110.1 113.0 113.0 112.0 129.0

Weight Average Molecular
- 170 145 220 -

Weight (Mw) [KDa]

Table 9.1: Property values of the tested LDPE and HDPE polymers (Pachera, 2011; Talamazzi, 2012).

All the specimens are obtained from isotropic sheets created through a Saspol press (see Figure 9.2).
For the realization of the isotropic material, the technique of compression molding, consisting in both
combining and compacting the material, is used. Starting from a reel of polymeric film, 100 × 100 mm
material portions are obtained and subsequently placed in the center of a square mold of 200×0.0002 mm.
The mold is placed between the plates of the press, previously heated up to a temperature of 170 ◦C (see
Figure 9.2). After ten minutes, the mold is first pressed for two minutes at a pressure of 15 bar, then further
three minutes at 50 bar. Finally, the mold is cooled without applying any external force, which is the ideal
situation to ensure a state of isotropy. Consequently, polymeric sheets of dimension 200 × 200 × 0.2 mm
are obtained. The tested specimens, obtained from these sheets, take the form of 100 × 9 mm rectangular
bars.

Figure 9.2: Saspol press (left) and zoom of the plates (right) (Pachera, 2011; Talamazzi, 2012).



144 CHAPTER 9. A THEORETICAL, NUMERICAL, EXPERIMENTAL INVESTIGATION OF SMPS

9.3.1 Orientation test

Material orientation under isothermal conditions (at temperatures below the melting temperature5, Tm) is
realized by using a dynamometer Instron series 4505 equipped with a cell temperature (see Figure 9.3), in
which it is possible to set the following variables:

• gage length (fixed at 15 mm);

• maximum imposed elongation;

• testing temperature;

• crosshead speed (fixed at 9 mm/min).

Figure 9.3: Dynamometer Instron series 4505 and temperature cell (Pachera, 2011; Talamazzi, 2012).

The orientation test consists of the following steps:

1. the crosshead moves at a fixed speed until the maximum imposed elongation is reached;

2. after reaching the required elongation, the crosshead moves in the opposite direction at the same
speed, thus allowing the specimen to recover a partial deformation until it reaches a stable thermo-
dynamic state at zero stress.

Figures 9.4(a) and 9.4(c) present the orientation curves in terms of stress, σ, and strain, ε, at tempera-
tures of 26, 30, 45, 60, 75 and 90 ◦C and maximum imposed deformation of 600%, for materials A and E,
respectively. Figures 9.4(b) and 9.4(d) show the orientation curves in terms of stress, σ, and strain, ε, at a
constant temperature of 60 ◦C and maximum imposed deformations of 10, 25, 50, 100, 200, 400 and 600%

for materials A and E, respectively.
5The term melting point, when applied to polymers, suggests a transition from a crystalline or semi-crystalline phase to a solid

amorphous phase. Though abbreviated as simply Tm, the property in question is more properly called the crystalline melting tem-
perature. Another parameter of particular interest is the glass transition temperature (Tg), at which amorphous polymers undergo a
transition from a rubbery, viscous liquid, to a brittle, glassy amorphous solid on cooling.
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Figure 9.4: Experimental orientation process on materials A and E. Curves in terms of stress, σ, and strain,
ε, (a)-(c) at different temperatures of 26, 30, 45, 60, 75 and 90 ◦C and maximum imposed deformation of
600%; (b)-(d) at constant temperature of 60 ◦C and different imposed deformations of 10, 25, 50, 100, 200,
400 and 600%.

As it can be observed from Figures 9.4(a) and 9.4(c), the material is first deformed in the elastic region,
characterized by increasing slope and yield stress and by decreasing yield strain with decreasing tempe-
rature. At high temperatures, in fact, the macromolecular chains have more freedom to move; thus, the
deformation of the elastic phase increases with increasing temperature, while the slope decreases. Sim-
ilarly, at high temperatures material toughness and yield stress decrease. Then, after reaching the yield
stress, the orientation process of the amorphous chains starts. Upon unloading, the material reaches a
residual strain at zero stress, as equilibrium thermodynamic state for a given temperature. The slope of the
curve upon unloading and the residual strain increase with decreasing temperature.

As it can be observed from Figures 9.4(b) and 9.4(d), the slope of the curve upon unloading decreases
with increasing imposed deformation, while the residual deformation increases. We already remark that, if
temperature is increased after unloading, the material is no more in an equilibrium state due to the presence
of a reduced number of oriented chains and thermal retraction effect is manifested.

Materials A (LDPE) and E (HDPE) present a similar trend, but also some differences:
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• the slope in the elastic region is higher in material E which presents a lower amorphous part than
material A;

• material E presents a higher yield stress and a transition zone around the yield stress from a maximum
stress to a lower stress before reaching a plateau. This aspect is explained by the phenomenon of
necking, not manifesting in material A which shows a gradual transition from the elastic to the
plastic zone;

• upon unloading, the recovered strain is higher in material A than material E, consequence of the fact
that material E has a lower elastic part to recover.

Figure 9.5 shows the orientation curves in terms of stress, σ, and strain, ε, at a constant temperature
of 60 ◦C and maximum imposed deformation of 600% for materials B, C and D. As it can be observed,
material behavior is equivalent.
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Figure 9.5: Experimental orientation process on materials B, C, and D. Curves in terms of stress, σ, and
strain, ε, at a temperature of 60 ◦C and maximum imposed deformation of 600%.

9.3.2 Constrained thermal retraction test

All the specimens, oriented as described in Section 9.3.1, are subjected to a constrained thermal retraction
test. The test is carried out by using a rheometer ARES LS II (see Figure 9.6), equipped with a tempe-
rature cell, able to measure the force generated by the specimen when subjected to heating at constrained
deformation.

The constrained thermal retraction test consists of the following steps:

1. the specimen is oriented at a predefinite temperature and imposed deformation;

2. the specimen is placed inside the temperature cell on grips at a predefined distance, which remains
unchanged during the whole test. After few minutes at an initial temperature of 30 ◦C, a small force
is applied to fully relax the specimen;

3. the temperature is increased from the initial temperature to a value above the melting temperature,
Tm, at a rate of 2 ◦C/min. As temperature increases, the specimen tries to shrink in order to reach a
thermodynamic equilibrium state. Due to the constraint, the specimen generates a force of entropic
nature and consequence of the tendency of the oriented macromolecular chains to reach a state of
thermodynamic equilibrium.
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Figure 9.6: Rotational rheometer ARES LS II (left) and zoom of the temperature cell (right) (Pachera,
2011; Talamazzi, 2012).

Figures 9.7(a) and 9.7(c) present the constrained thermal retraction curves in terms of stress, σ, and
temperature, T , for materials A and E, oriented at temperatures of 26, 30, 60 and 90 ◦C and at maximum
imposed deformation of 600%, respectively. Figure 9.7(b) shows the constrained thermal retraction curves
in terms of stress, σ, and temperature, T , for material A oriented at a temperature of 60 ◦C and at three
imposed deformations of 200, 400 and 600%.

As it can be observed from Figures 9.7(a) and 9.7(c), the stress increases until a maximum value and
then decreases until a zero value at the melting temperature, Tm, where material loses its original shape. In
particular, the slope of the curve increases until the orientation temperature is reached and the maximum
value of the stress increases with decreasing orientation temperature. From Figure 9.7(b), we observe that
firstly the maximum value of the stress increases with increasing imposed strain and then it decreases with
increasing imposed strain.

Again, materials A (LDPE) and E (HDPE) present a similar trend, but however material E exerts higher
stresses than material A .

Figure 9.8 shows the comparison between the experimental curves in terms of stress, σ, and tempera-
ture, T , for materials B, C and D oriented at a temperature of 60 ◦C and at maximum imposed deformation
of 600%. As it can be observed, material behavior is again equivalent.

9.3.3 Free thermal retraction test

All the specimens, oriented as described in Section 9.3.1, are also subjected to a free thermal retraction
test. The test is carried out by using a rheometer ARES LS II (see Figure 9.6), equipped with a temperature
cell.

The free thermal retraction test consists of the following steps:

1. the specimen is oriented at a predefinite temperature and imposed deformation;

2. the specimen is placed inside the temperature cell on grips at a predefined distance and initial tem-
perature of 30 ◦C;

3. the temperature is increased from the initial temperature to a value above the melting temperature,
Tm, at a rate of 2 ◦C/min. The specimen is free to move.
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Figure 9.7: Experimental constrained thermal retraction test on materials A and E. Curves in terms of
stress, σ, and temperature, T , for specimens oriented (a)-(c) at temperatures of 26, 30, 60 and 90 ◦C and
at maximum imposed deformation of 600%; (b) at a temperature of 60 ◦C and at imposed deformations of
200, 400 and 600%.

Figures 9.9(a) and 9.9(c) present the free thermal retraction curves in terms of shrinkage, and tempera-
ture, T , for materials A and E oriented at temperatures of 26, 30, 60 and 90 ◦C and at maximum imposed
deformation of 600%, respectively. Figure 9.9(b) shows the free thermal retraction curves in terms of
shrinkage and temperature, T , for materials A oriented at a temperature of 60 ◦C and at three imposed
deformations of 200, 400 and 600%.

As it can be observed from Figures 9.9(a) and 9.9(c), the retraction process begins at the orientation
temperature and the maximum value of the shrinkage is reached at the melting temperature, Tm. Moreover,
as shown in Figure 9.9(b), the maximum value of the shrinkage increases with increasing imposed strain.
In such a test, the curve related to material E (HDPE) at low temperatures is below the curve of material
A (LDPE), while, around Tm, the slope of the curve increases and reaches a maximum value of shrinkage
which is greater for material E.

Figure 9.10 shows the comparison between the experimental curves in terms of shrinkage and tempera-
ture, T , for materials B, C and D oriented at a temperature of 60 ◦C and at maximum imposed deformation
of 600%. Again, material behavior is equivalent.
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Figure 9.8: Experimental constrained thermal retraction test on materials B, C, and D. Curves in terms of
stress, σ, and temperature, T , for specimens oriented at a temperature of 60 ◦C and at maximum imposed
deformation of 600%.

9.3.4 Test above the melting temperature

From the results related to materials B, C, and D (see Figures 9.5, 9.8 and 9.10), it is clear that the molec-
ular weight has no influence on material behavior at temperatures below the melting temperature, Tm.
Consequently, we investigate the behavior of such materials at the molten state (Talamazzi, 2012).

The material is placed in a tank at a temperature of 190 ◦C, and then melted. Through the movement
of a piston, a force increasing in time is then applied, thus leading to an increase of the internal pressure
in the tank and to an exiting flow. A capillary rheometer measures material viscosity with increasing force
and flow. Figure 9.11(a) shows the flow curves in terms of viscosity and strain rate. As it can be observed,
materials B, C, and D present a different degree of fluidity.

Then, the constrained thermal retraction test is realized on polymeric films created through blown film
processes. Figure 9.11(b) shows the comparison between the experimental curves in terms of stress, σ, and
temperature, T . As it can be observed, stress is zero until temperatures around the melting temperature,
Tm, it reaches its maximum value at Tm, and finally, it comes back to zero. An important result is the fact
that stresses obtained by orienting the specimens below Tm are higher than those obtained by orienting
above Tm, as shown in Figures 9.8 and 9.11(b).

9.4 A new phenomenological model for shape memory polymers

This Section addresses a new one-dimensional phenomenological model for SMPs, based on the so-called
phase transition approach. In the following, we present the model formulation in both time-continuous and
time-discrete framework and we propose a physical interpretation of model parameters.

9.4.1 A time-continuous model formulation

In the framework of macroscopic modeling and of small strain continuum mechanics, we assume the total
strain, ε, representing the total deformation of the material, and temperature, T , as state variables. A
general assumption of additive strain decomposition is adopted in the form:

ε = εe + εie (9.1)

where εe and εie denote the elastic and inelastic strain, respectively.
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Figure 9.9: Experimental free thermal retraction test on materials A and E. Curves in terms of shrinkage
and temperature, T , for specimens oriented (a)-(c) at different temperatures of 26, 30, 60 and 90 ◦C and
maximum imposed deformation of 600%; (b) at a temperature of 60 ◦C and at different imposed deforma-
tions of 200, 400 and 600%.

Recalling the discussion of Section 9.1, the phenomenon of thermal retraction in PE-based polymers
is a shape memory property and it is strongly connected with molecules orientation under mechanical and
thermal loads. Thus, in the phase transition framework, the main idea is that the microscopic structure
of the polymer can be represented by a suitable scalar parameter, the so called phase-parameter, denoting
which kind of microstructure is present. As shape memory strongly depends on the orientation of the
polymer chains, we associate to the non-oriented microstructure a phase parameter, χ, related to the local
proportion of non-oriented phase with respect to oriented phase. Due to its physical meaning, the phase
parameter has to be between 0 and 1, i.e., χ ∈ [0, 1]. In particular, the case χ = 1 corresponds to the
presence of completely non-oriented chains, while the case χ = 0 stands for complete ordered phase.

The inelastic strain, εie = εie (T, χ), is assumed as follows:

εie = Cα exp

[
α

T − T0

]
(1− χ) (9.2)

where α and Cα are positive material parameters and T0 a reference temperature.
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Figure 9.10: Experimental free thermal retraction test on materials B, C, and D. Curves in terms of shrink-
age and temperature, T , for specimens oriented at a temperature of 60 ◦C and at maximum imposed defor-
mation of 600%.
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Figure 9.11: Tests above the melting temperature, Tm, on materials B, C, and D. Curves (a) in terms of
viscosity and strain rate; (b) in terms of stress, σ, and temperature, T , for specimens obtained through
blown film processes.

Helmholtz free-energy function

The Helmholtz free-energy function, Ψ = Ψ (ε, T, χ), is assumed in the following classical form:

Ψ =
1

2
E (εe)

2 − csT lnT + I[0,1] (χ) (9.3)

which, after introducing Eq. (9.1), becomes:

Ψ =
1

2
E
(
ε− εie

)2 − csT lnT + I[0,1] (χ) (9.4)

where cs > 0 is the specific heat and I[0,1] (χ) is the indicator function forcing to fulfill the constraints on
χ, defined as:

I[0,1](χ) =

{
0 if 0 ≤ χ ≤ 1

+∞ otherwise
(9.5)
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The function E = E (T, χ) represents the Young’s modulus, which, according to experimental evidences
of Figures 9.4(a)-(d), we assume to strongly depend on the temperature, T , and on the phase, χ, as follows:

E (T, χ) = ET (T )Eχ (χ) (9.6)

In particular, we assume that at constant temperature, T , the Young’s modulus depends on the phase, χ,
following the model of Reuss, while at constant phase, χ, the Young’s modulus depends exponentially
on temperature, T , as shown in Figures 9.4(a)-(d). Thus, we assume the following expression for E =

E (T, χ):

E = exp

[
β

T − T0

]
1

χ

E1
+

1− χ
E0

(9.7)

E1 and E0 being positive parameters due to material rigidity for the two cases χ = 1 and χ = 0, respec-
tively (with E1 > E0), and β a positive material parameter. Such an expression has been demonstrated to
be the only function of χ such that dσ/dε = 0 when no hardening is assumed, i.e., we have a flat plateau
in the stress, σ, versus strain, ε, diagram during phase transformation (Auricchio et al., 2009).

Constitutive equations

Starting from the free-energy, Ψ, presented in Eq. (9.4), and following standard arguments (Gurtin et al.,
2010), we derive the stress, σ:

σ =
∂Ψ

∂ε
= E

(
ε− εie

)
(9.8)

= exp

[
β

T − T0

]
1

χ

E1
+

1− χ
E0

(
ε− Cα exp

[
α

T − T0

]
(1− χ)

)

as well as the thermodynamic force, Xnd, governing the evolution of χ:

Xnd = −∂Ψ

∂χ
= −1

2

∂E

∂χ

(
ε− εie

)2
+ E

(
ε− εie

) ∂εie
∂χ
− γ (9.9)

= −1

2

∂E

∂χ

σ2

E2
+
∂εie

∂χ
σ − γ

= −1

2
exp

[
β

T − T0

]
(E1 − E0)E1E0

(E0χ+ E1 (1− χ))
2

(
ε− Cα exp

[
α

T − T0

]
(1− χ)

)2

− Cα exp

[
α+ β

T − T0

]
1

χ

E1
+

1− χ
E0

(
ε− Cα exp

[
α

T − T0

]
(1− χ)

)
− γ

where γ ∈ ∂I[0,1] (χ), with ∂I[0,1] (χ) the subdifferential of the indicator function I[0,1] (χ), taken in the
sense of convex analysisis (Brézis, 1973):

∂I[0,1] (χ) =


γ0 ≤ 0 if χ = 0

0 if 0 < χ < 1

γ1 ≥ 0 if χ = 1

(9.10)

We can associate to Eq. (9.10) the classical Kuhn-Tucker complementarity conditions, as follows:χ ≥ 0, γ0 ≤ 0, γ0χ = 0

(χ− 1) ≤ 0, γ1 ≥ 0, γ1 (χ− 1) = 0
(9.11)
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Evolution equations and limit functions

We define a limit function, F = F
(
Xnd, T

)
, playing the role of yield function (Lubliner, 1990), in the

following form:

F =
∣∣∣Xnd +

η

2

∣∣∣− η

2
(9.12)

where η = η (T ) is a sufficiently smooth function, governing the yield level of stress activating the phase
transition, i.e., the orientation process:

η = Cη exp

[
Eη

T − T0

]
(9.13)

being Cη and Eη positive material parameters.
Then, as traditionally done in the context of associative evolution, we assume the evolution equation of

the internal variable, χ, as follows:

χ̇ = ζ̇
Xnd +

η

2∣∣∣Xnd +
η

2

∣∣∣ (9.14)

where ζ̇ is a non-negative consistency parameter.
The model is finally completed by the classical Kuhn-Tucker conditions, as follows:

ζ̇ ≥ 0; F ≤ 0; ζ̇F = 0 (9.15)

Dissipation function

Although the proposed model relies on an yield surface-based formulation, we complete the description by
recalling that the yield surface condition can be equivalently converted in a pseudo-potential of dissipation,
φ = φ (χ̇, T ), which is a positive convex functional depending on dissipative variables, vanishing for
vanishing dissipation, in particular in the form:

φ =

{
−ηχ̇ if χ̇ ≤ 0

0 if χ̇ > 0
(9.16)

We remark that, once defined the pseudo-potential of dissipation, φ, we can prescribe the constitutive
relation for the internal force, X , responsible for the phase transition, as follows (Frémond, 2002, 2012;
Gurtin et al., 2010):

X = Xnd +Xd = −∂Ψ

∂χ
− ∂φ

∂χ̇
(9.17)

Such a force is splitted into two contributions, i.e., a non-dissipative term, Xnd, and a dissipative term,
Xd. The constitutive relation for the internal non-dissipative force, Xnd, is given in Eq. (9.9), while the
constitutive relation for the dissipative force, Xd, is:

Xd = −∂φ
∂χ̇

=

{
−η if χ̇ ≤ 0

0 if χ̇ > 0
(9.18)

From the definition of X we can then derive the limit function introduced in Eq. (9.12). We note that such
an approach, similar to that employed in shape memory alloy modeling, considers a translation of Xnd to
allow phase transformation in the thermal retraction case, for which X = 0, i.e., σ = 0.
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Therefore, the evolution of the phase, χ, depends on the internal force, X , which is included in the
energy balance of the system. We get the following balance equation:

X = Xnd +Xd = 0 (9.19)

after assuming that no micro-forces are applied to activate the orientation of polymer chains. From Eq.
(9.19) we can derive the evolution equation (9.14) of the internal variable, χ.

9.4.2 Physical interpretation of model parameters

To introduce a physical interpretation of the model parameters, we consider the one-dimensional diagram
of Figure 9.12, in terms of stress, σ, and strain, ε, where all the quantities of interests are reported.
In the following, we derive all the general equations and then we simplify such equations by assuming
an unique Young’s modulus, E∗ = E1 = E0, to give a simple and practical interpretation of all the
parameters. We recall, moreover, that model parameters are discussed by taking into account that the aim
of the model is to reproduce experimental evidences.

A

CB

D

σ

εεres εsεy

σy

ki
kf

Figure 9.12: Identification of model parameters from a 1D diagram in terms of stress, σ, and strain, ε.

The material starts from the reference configuration at a given temperature and zero stress in the amor-
phous state, i.e., χ = 1 (point A).

If a load is applied and then increased, material behavior is at first linearly elastic with slope, ki, which
increases with decreasing temperature, T , as follows:

ki = exp

[
β

T − T0

]
E1 (9.20)

According to Eq. (9.12), the material stays in equilibrium for χ̇ = 0 till Xnd = −η. Thus, with increasing
load, when Xnd = −η, the strain reaches an yield value, εy (point B). After substituting Eq. (9.9) into Eq.
(9.12), the yield strain, εy , is solution of the following equation:

exp

[
β

T − T0

]
(E1 − E0)E1

2E0
ε2
y + Cα exp

[
α+ β

T − T0

]
E1εy = Cη exp

[
Eη

T − T0

]
(9.21)

The yield stress, σy , follows:

σy = Eεy = exp

[
β

T − T0

]
E1εy (9.22)
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If we assume an unique Young’s modulus E∗, the yield strain and stress result:
εy =

Cη
Cα

1

E1
exp

[
Eη − α− β
T − T0

]
σy =

Cη
Cα

exp

[
Eη − α− β
T − T0

] (9.23)

Since experimental evidences of Figures 9.4(a)-(d) show that the yield strain decreases with decreasing
temperature and the yield stress increases with decreasing temperature, we derive the following constraints
on model parameters from system of equations (9.23):{

Eη < α+ β

Eη > Eα
(9.24)

If the load further increases, inelastic deformations start to develop at constant yield stress (no hardening
is assumed) and the orientation process starts. Once reached the imposed level of load, the orientation
process reaches a certain level of orientation (point C), where χ = χ̂ and ε = εs. In such a case, if the
orientation process is completed, i.e., χ = χ̂ = 0, the maximum transformation strain, εmax, is reached at
σ = σy for χ = 0, as follows:

exp

[
β

T − T0

]
E1εy = exp

[
β

T − T0

]
E0

(
εmax − Cα exp

[
α

T − T0

])
(9.25)

If we assume an unique Young’s modulus E∗, the maximum transformation strain, εmax, becomes:

εmax =
Cη
Cα

1

E0
exp

[
Eη − α− β
T − T0

]
+ Cα exp

[
α

T − T0

]
(9.26)

and increases with decreasing temperature, T , thus reproducing experimental evidences of Figures 9.4(a)-
(d).

If we start to unload, we evolve in the region χ̇ = 0. The slope upon unloading, kf , follows:

kf = exp

[
α

T − T0

]
1

χ̂

E1
+

1− χ̂
E0

(9.27)

and increases with decreasing temperature, T , and with increasing χ, as experimentally observed in Figures
9.4(a)-(d).

Upon unloading, i.e., when σ = 0 and thus Xnd = 0, a residual strain, εres, is present (point D), in the
following form:

εres = Cα exp

[
α

T − T0

]
(1− χ̂) (9.28)

and increases with decreasing temperature, T , and χ. At such a point, we have χ̇ > 0. This last remark
justifies irreversibility of the retraction process at σ = 0.

If we start increasing temperature, at fixed ε = εres, we obtain, after assuming an unique Young’s
modulus E∗,: 

σ = E∗ exp

[
β

T − T0

](
εres − Cα exp

[
α

T − T0

]
(1− χ̂)

)
X = −Cα exp

[
α

T − T0

]
σ

(9.29)

On the other hand, if we start increasing temperature at σ = 0 and no constraints on the material, the
residual strain, εres, can be partially recovered. The two described cases are known as constrained and free
thermal retraction tests, respectively.
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9.4.3 A time-discrete model formulation

We now elaborate on a possible algorithmic treatment of model equations. For the sake of notation sim-
plicity, the convention establishes superscript n for all the variables evaluated at time tn, while drops
superscript n+ 1 for all the variables computed at time tn+1.

We start making use of a classical backward-Euler integration algorithm for the evolution equation
(9.14). In this sense, the time-discretized evolution equation is given by:

χ− χn −∆ζ
Xnd +

η

2∣∣∣Xnd +
η

2

∣∣∣ = 0 (9.30)

where ∆ζ =
∫ tn+1

tn
ζ̇ is the time-integrated consistency parameter.

In the resulting model, since we deal with one phase fraction involving constraints, we adopt the ap-
proach based on the Fischer-Burmeister complementarity function, already applied to J2 elastoplasticity in
Chapter 4 and to shape memory alloys in Chapter 7. The discrete Kuhn-Tucker conditions deriving from
Eq. (9.15) are so substituted by the following set of functions in the time-discrete frame:√

F 2 + ∆ζ2 + F −∆ζ = 0 (9.31)

The same strategy can be employed to treat the set of inequalities given by the constraint on χ. In fact, the
additional Kuhn-Tucker conditions (9.11) can be substituted by the equivalent equalities:

√
χ2 + (γ0)2 + γ0 − χ = 0√
(χ− 1)

2
+ (γ1)2 + (χ− 1)− γ1 = 0

(9.32)

The time-discrete problem, Q = Q (ε,h), evaluated at time tn+1, takes the specific form:

Q =



χ− χn −∆ζ
Xnd +

η

2∣∣∣Xnd +
η

2

∣∣∣ = 0

√
F 2 + ∆ζ2 + F −∆ζ = 0√
χ2 + (γ0)2 + γ0 − χ = 0√

(χ− 1)
2

+ (γ1)2 + (χ− 1)− γ1 = 0


= 0 (9.33)

with h =
{
χ,∆ζ, γ0, γ1

}
. The active set can now be determined via the solution of the non-linear system

of equations (9.33), using a classical Newton-Raphson method.
The FE implementation of model equations and of all the numerical examples presented in Section 9.5

is carried out using the symbolic code generation system AceGen/AceFEM (Korelc, 2009). The reader is
referred to the Appendix B for further details about AceGen/AceFEM. Similarly to the ’flexible’ model
algorithm presented in Chapter 7, since the Fischer-Burmeister function is non-differentiable at (0, 0), we
make use of its smoothed countepart, by introducing δ as a positive regularization parameter (Kanzow,
1996).

9.5 Numerical investigation

In this Section we test the validity of the proposed model as well as its algorithm through some numerical
simulations and comparisons with experimental results described in Section 9.3. The purpose is to empha-
size model prediction capabilities through a qualitative and then quantitative validation with experimental
data.
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In all the numerical tests we adopt the material parameters reported in Table 9.2. Parameters are cal-
ibrated through a trial and error procedure on some experimental orientation curves of Figures 9.4(a) and
9.4(c), related to materials A and E, by starting from the physical interpretation given in Section 9.4.2.

Parameter Unit LDPE HDPE
E1 MPa 1.6 1.6

E0 MPa 0.02 0.03

α K 195 195

β K 390 390

Eη K 385 385

Cη MPa 5.24117 15.72351

Cα MPa 4 9.8

T0 K 216 216

Table 9.2: Model parameters calibrated on experimental orientation curves of materials A and E.

9.5.1 Orientation test

We start by simulating the orientation tests on materials A and E, shown in Figures 9.4(a)-(d), as simple
uniaxial tension tests, with displacement control and prescribed homogeneous constant temperature field.
We first consider constant temperatures of 26, 30, 45, 60, 75 and 90 ◦C and maximum imposed deformation
of 600%; then, we consider a constant temperature of 60 ◦C and imposed deformations of 10, 25, 50, 100,
200, 400 and 600%.
Figures 9.13(a)-(d) shows the comparison between predicted and experimental curves, in terms of stress, σ,
and strain, ε. As it can be observed the model successfully predicts the experimental curves for both LDPE
and HDPE polymers, thus demonstrating its flexibility in capturing the behavior of PE-based polymers
with different densities. As expected, model quantities, ki, kf , σy , and εres, increase with decreasing
temperature, while εy decreases (see Figure 9.14).

9.5.2 Constrained thermal retraction test

Due to evident difficulties in the simulation of the experimental constrained thermal retraction test, we
make a qualitative interpretation of such a test for numerical purposes. In particular, we simulate the test as
simple uniaxial tension test, with displacement control and prescribed homogeneous constant temperature
field. Upon unloading, at zero stress, we fix the residual strain and we start increasing the temperature
until a value above the melting temperature, Tm. Figures 9.15(a) and 9.15(b) show the qualitative model
response for a specimen orientated at a temperature of 26 ◦C and maximum deformation of 600%. As
shown in Figure 9.15(b), the stress starts from a zero value at 26 ◦C, reaches its maximum value and then
decreases. As expected from Eq. (9.8), the stress stabilizes around an asymptotic value at temperatures
above Tm.
To verify the irreversibility of the retraction process, we simulate a simple uniaxial tension test, with dis-
placement control and prescribed homogeneous constant temperature field. Upon unloading, at zero stress,
we fix the residual strain and we start lowering the temperature. Figures 9.15(c) and 9.15(d) show the
results predicted by the model. In such a case, the specimen does not change its state.

Following this line, we simulate the experimental constrained thermal retraction tests on materials A
and E for specimens oriented at a temperature of 30 ◦C and maximum deformation of 600%. Figure 9.16(a)
shows the comparison between numerical and experimental results. As it can be observed, the predicted
stress reaches its maximum value at a lower temperature than the experimental stress and then decreases.
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Figure 9.13: Model response for orientation tests. Comparisons with experimental data on materials A and
E.
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Figure 9.14: Qualitative model response for orientation tests at constant temperatures of 26 and 90 ◦C and
maximum imposed strain of 600%.
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Figure 9.15: Constrained thermal retraction test. (a)-(b) Qualitative model response; (c)-(d) irreversibility
of the retraction process during cooling.

The poor matching is due to the evident difficulties into simulating the experimental tests and to the use
of true stresses in experimental curves. Moreover, discrepancies could be also attributed to the fact that no
viscous effects are accounted by the proposed model.

9.5.3 Free thermal retraction test

Also in such a case, we make a similar qualitative interpretation of the test. We simulate such a test as
simple uniaxial tension test, with displacement control and prescribed homogeneous constant temperature
field. Upon unloading, at zero stress, we fix the stress and we start increasing the temperature until a value
above the melting temperature, Tm. Figures 9.17(a)-(b) show the qualitative model response for a specimen
orientated at a temperature of 26 ◦C and maximum deformation of 600%. As shown in Figure 9.17(b), the
strain starts from a residual value at 26 ◦C and then decreases, i.e, a shape recovery takes place by heating.

Following this line, we simulate the experimental tests on materials A and E for specimens oriented at
a temperature of 30 ◦C and maximum deformation of 600%. Figure 9.16(b) shows the comparison. As it
can be observed, the maximum value of the shrinkage is well predicted. However, the two curves present
different concavities, due to the fact that no viscous effects are accounted by the proposed model.
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Figure 9.16: Comparison between model response and experimental tests on materials A and E for (a)
constrained and (b) free thermal retraction tests.
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Figure 9.17: Free thermal retraction test. (a)-(b) Qualitative model response.

9.6 Conclusions

The present Chapter has first presented the results of an experimental investigation on semi-crystalline
SMPs by Pachera (2011); Talamazzi (2012). Experimental data have been analyzed to show the main
features of material behavior, in particular related to material orientation and thermal retraction. Then,
a simple new one-dimensional model has been introduced to predict the behavior of LDPE and HDPE
polymers at temperatures below the melting temperature. The model has been demonstrated to be able to
describe qualitative aspects of material behavior, involving both orientation and thermal retraction, as well
as to predict experimental orientation processes for semi-crystalline PE-based polymers with different den-
sities. In future works, the model can be extended to include viscous effects as well as material orientation
at temperatures above the melting temperature and it can be expanded to a three-dimensional and finite
strain framework to possibly simulate important industrial processes, e.g., packaging.
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Chapter 10

Introduction to fatigue of metals

Fatigue has been a problem for engineers since the earliest days of industrial revolution. This Chapter
presents an overview on the fatigue problem in metals by recalling general concepts on the phenomenon,
historical examples, and standard literature approaches.

The Chapter is organized as follows. Section 10.1 starts with the definition of fatigue. Section 10.2
presents a review on fatigue notation. Then, Sections 10.3 and 10.4 report the description of the historical
background and of some historical accidents. Section 10.5 discusses the fatigue phenomenon as a mecha-
nism occurring in metallic materials, first on a microscopic scale and later on a macroscopic scale. Then,
Section 10.6 presents the standard classification of fatigue regimes, depending on the number of cycles to
failure. Section 10.7 describes the shakedown concept at the macroscopic scale and Section 10.8 presents
the global computational approach methodology usually adopted in the literature to treat fatigue problems.
Finally, Section 10.9 concludes by recalling the fatigue criteria forms, usually adopted in the literature to
evaluate the fatigue lifetime of a structure.

10.1 Definition of fatigue

The phenomenon of fatigue occurs when a material is subjected to cyclic loading and manifests itself as a
localized and progressive degradation of the mechanical material properties, often leading to cracking or
final breaking. Initially, fatigue is in fact a phenomenon localized at the scale of a material volume, for
which the load-induced stresses are less than the ultimate tensile strength and often lower than the yield
strength of the material.

Over the years, fatigue has been a widely accepted term in engineering field to describe damage and
failure of materials under cyclic loading. In general, several common types of fatigue can be distinguished:
mechanical, creep, thermo-mechanical, sliding, rolling, fretting, and corrosion fatigue (Schijve, 2009;
Suresh, 1998). Fluctuations in applied stresses or strains result in mechanical fatigue; cyclic loading asso-
ciated to high temperatures results in creep fatigue; combinations of cyclic loading and thermal high-low
temperature fluctuations cause thermo-mechanical fatigue; repeated applications of load in conjunction
with sliding and rolling contact between material surfaces produce sliding and rolling contact fatigue, re-
spectively; pulsating stresses along with oscillatory relative motion and frictional sliding between surfaces
result in fretting fatigue; fluctuating loads in the presence of corrosive environments cause corrosion fa-
tigue.

163
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10.2 Review on fatigue notation

This Section presents a brief review on fatigue notation.
Consider a structure subjected to an uniaxial stress cyclic loading with constant amplitude, as shown in
Figure 10.1. We define the following parameters to characterize a given cyclic loading history:

• stress range, ∆σ:

∆σ = σmax − σmin (10.1)

• stress amplitude, σa:

σa =
∆σ

2
=
σmax − σmin

2
(10.2)

• mean stress, σm:

σm =
σmax + σmin

2
(10.3)

• loading ratio, R:

R =
σmin
σmax

(10.4)

Therefore, we can distinguish between:

• fluctuating loads: both stresses, σmax and σmin, are strictly different from zero and have the same
sign;

• repeated loads: one of the two stresses, σmax or σmin, is zero;

• alternating loads: both stresses, σmax and σmin, have different signs.

The listed notation is also valid in case of strain cyclic loading with constant amplitude.

σ

Time

σmax

σmin

σm
σa

Δσ

Figure 10.1: Review on fatigue notation for a structure subjected to an uniaxial stress cyclic loading.
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10.3 Historical background

Fatigue has been a problem for engineers since the earliest days of industrial revolution.
The first study of metal fatigue was conducted by a German mining engineer, W.A.J. Albert, who performed
repeated proof load tests on iron mine-hoist chains around 1829.

Since then, significant progress has been made in the study of fatigue (Schijve, 2009; Suresh, 1998).
The first detailed research into fatigue was initiated in 1842, following the Versailles railway accident
in France (Suresh, 1998). An early explanation for fatigue has been the crystallization theory, which
postulates that the cause of fatigue failure in materials results from microstructural crystallization due to the
very fine and smooth appearance of fatigue crack. This theory remained unchallenged for several decades
until the work of Ewing and Humfrey (1903) showed the development of slip bands and subsequent fatigue
cracks in polycrystalline materials (see Figure 10.2).

Figure 10.2: Micrographs showing how surface fatigue cracks grow as material is further cycled, taken
from (Ewing and Humfrey, 1903).

Successive workers, e.g., (Thompson et al., 1956), used ductile polycrystals and sophisticated metal-
lographic techniques and added details which, in general, confirmed the sequence of events described by
Ewing and Humfrey (1903).

One of the earliest systematic investigations of fatigue failure, worked by Wöhler (1870) from 1852

to 1869, was a full scale fatigue testing in torsion, bend and axial loading of railway axles. Such a work
contributed to the characterization of fatigue behavior in terms of stress amplitude-life curves (the so-
called S-N curves) and also to the introduction of the concept of fatigue endurance limit. Some engineers
in the second half of the nineteenth century, such as Gerber (1874) and Goodman (1899), began developing
methods for fatigue design and formulated ways to account for mean stresses. Bauschinger (1886) first
observed the differences in the elastic limit for materials subjected to reverse loading, and later, Bairstow
(1910) investigated the changes in the stress-strain response during cycling and, subsequently, identified
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cyclic softening and hardening behavior in metals.
Basquin (1910) first proposed equations for the characterization of S-N curves, later refined by Coffin

(1953) for strain-based characterization of fatigue. Palmgren (1924) and Miner (1945) performed inve-
stigations into damage accumulation models for fatigue. Neuber (1946) studied the effects of notches on
monotonic and cyclic deformation, while Langer (1937) pioneered the work in variable amplitude fatigue.

Paris et al. (1961) proposed a power law, known as Paris law, which characterized the crack propagation
rate in terms of stress intensity factor amplitude. The next important contribution came when Elber (1970)
showed that fatigue cracks could remain closed even when subjected to cyclic tensile loads (the so-called
crack closure effect). Today, crack closure and its associated effects form the basis for any mechanistic
study of fatigue crack propagation (Suresh, 1998).

Recently, significant interest in fatigue research has centered on short or small fatigue crack propa-
gation. This problem was first identified by Pearson (1975), who observed that crack propagation rates
for short cracks are higher than those observed for long cracks at the same stress intensity range. Crack
propagation, even at stress intensity ranges below the threshold for long cracks has also been detected.
Such anomalous behavior contradicts conventional linear elastic fracture mechanics theory and thus far,
significant progress has been made in characterizing the types of short cracks and explaining this unique
behavior (Suresh, 1998).

The past decade witnessed a confluence of high performance computing, advanced experimental me-
thods for in-situ and ex-situ measurement of evolving microstructure at various length scales under cyclic
loading, and substantial advances in understanding deformation mechanisms, material degradation, and
relevant modeling concepts in fatigue. Together, these various elements introduced new possibilities
to consider the role of the microstructure on the initiation and propagation of small cracks in fatigue.
Microstructure-sensitive computational methods for fatigue crack formation in polycrystalline microstruc-
tures over the past few decades were developed rapidly (Barbe et al., 2001; Devincre et al., 2006; Forest
et al., 2001; McDowell and Dunne, 2010; Saai et al., 2010; Schwartz et al., 2010). Such approaches can
be pursued to explore effects of microstructure attributes that give rise to extreme value fatigue responses
which are associated with the tails of probability distributions of potential surface and subsurface fatigue
crack formation sites, including transitions between modes of crack formation, surface to subsurface tran-
sitions, and so forth.

10.4 Historical accidents

The phenomenon of fatigue strongly affects several industrial fields. In the following, we recall some
noticeable accidents in both the mechanical and nuclear fields.

Versailles rail accident in 1842

The Versailles rail accident occurred on 8th May 1842 and was probably the starting point dedicated to the
phenomenon of fatigue studies. During King Louis Philippe I’s celebrations at the Palace of Versailles, a
train returning to Paris derailed at Meudon, due to the rupture of an axle in the leading locomotive, and
the carriages piled into it and caught fire. The French government appointed a commission to investigate
such an accident, that recommended to test several axles to determine their service life and to monitor their
usage so that they could be replaced after traveling a safe distance. Metal fatigue was poorly understood at
the time and, consequently, the accident is linked to the beginnings of systematic research into the problem.

Comet aircraft accident in 1954

Around 1950, several Comet aircraft manufactured by Havilland failed at high altitude and crashed. To
understand the origin of these failures attributed to the cabin, several tests were carried out on the ground
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by pressurizing the cabin and by applying cyclic bending on the wings of the plane. After applying tests
equivalent to 9000 hours of flight, the pressure inside the cabin dropped quickly and caused the propagation
of cracks in the corner of a square window.

Nuclear Civaux accident in 1998

Rail and aviation are not the only industries affected by the phenomenon of fatigue. In May 1998, a leak
of 30 m3 per hour was detected in the stop circuit of the nuclear power plant at Civaux, at a mixing tee
realized in 304L austenitic stainless steel. The leak was attributed to a crack caused by thermal fatigue
phenomenon.

10.5 Fatigue as a phenomenon in the material

When a structure is subjected to a cyclic loading, a fatigue crack nucleus can be initiated on a microscopi-
cally small scale, followed by crack growth to a macroscopic size, and finally by the failure of the structure
in the last cycle of the fatigue-life (Schijve, 2009). Thus, in the phenomenon of fatigue three different
scales can be considered:

1. the microscopic scale of atoms, crystals and dislocations;

2. the mesoscopic scale of grains;

3. the macroscopic scale of the structure.

The present Section discusses the fatigue phenomenon as a mechanism occurring in metallic materials,
first on a microscopic scale and later on a macroscopic scale. Understanding of the fatigue mechanism is
essential for considering various technical conditions which affect fatigue-life and crack growth, such as the
material surface quality, residual stress, and environmental influence, and, consequently, for the analysis of
fatigue properties of an engineering structure.

(a) (b)

Figure 10.3: Development of cyclic slip bands and microcrack in a pure copper specimen, taken from
(Bullen et al., 1953). (a) Visible slip lines; (b) Plastically strained opening a microcrack.
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10.5.1 Fatigue-life phases

Microscopic investigations in the beginning of the twentieth century showed that fatigue crack nuclei start
as invisible microcracks in slip bands (Ewing and Humfrey, 1903), as shown in Figures 10.3(a) and 10.3(b).
After more microscopic information on the growth of small cracks became available, it turned out that nu-
cleation of microcracks generally occurs very early in the fatigue-life and that it may take place almost
immediately if a cyclic stress above the fatigue limit is applied1. In spite of the early crack nucleation,
microcracks remain invisible for a considerable part of the total fatigue-life, due to effects of the mi-
crostructure, e.g., grain boundaries. This micro-plasticity can occur more easily in grains at the material
surface, that are less constrained than subsurface grains, because the surrounding material is present at one
side only. However, after some micro-crack growth has occurred away from the nucleation site, a more
regular growth is observed. This is the beginning of the real crack growth period. Once cracks become
visible, the remaining fatigue-life of a laboratory specimen is usually a small percentage of the total life.
The latter percentage may be much larger for real structures such as ships and aircraft (Schijve, 2009).

Figure 10.4 shows the various steps in the fatigue-life. In particular, the fatigue-life until failure consists
of two periods: the crack initiation period and the crack growth period. Differentiating between the two
periods is of great importance because several surface conditions affect the initiation period, but have a
negligible influence on the crack growth period, e.g., surface roughness and corrosive environments. We
can already note here that fatigue prediction methods are different for the two periods.

Cyclic slip Crack 
nucleation

Microcrack 
growth

Macrocrack 
growth Final failure

INITIATION PERIOD CRACK GROWTH 
PERIOD

Figure 10.4: Different phases of the fatigue-life (Schijve, 2009).

The fatigue mechanism and design

By summarizing, the failure of a structure subjected to a cyclic loading is composed of the following
steps: (i) initiation of microcracks and voids, i.e., micro-defects; (ii) propagation and coalescence of micro-
defects; (iii) initiation of a macroscopic crack; (iv) propagation of the macroscopic crack; (v) failure of the
structure.

From the structural point of view, we are essentially interested in the macroscopic initiation and propa-
gation of cracks; from the design point of view, we often consider that the lifetime of the structure is defined
by the initiation of a macroscopic crack. However, in cases where inspections occur during the functioning
of the structure (e.g., aero-engines or electrical plants), we can also accept the existence of cracks in the
structures, provided they do not propagate to a critical length in the period between inspections.

10.6 The fatigue regimes

The general terminology distinguishes between the two following fatigue regimes as depending on the
applied loading level, i.e., on the number of cycles to failure:

1The fatigue limit is the cyclic stress level below which a fatigue failure does not occur.
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Eric Charkaluk, Laurence Bodelot, and Rian Seghir

1 INTRODUCTION

It is now well known that the fatigue phenomenon in metals is essentially associated to the
gliding of dislocations and the creation of slip bands which characterize irreversible damaging
mechanisms at the grains scale. A review of these mechanisms can be founded for example, in
the monograph of [34], in the pioneering works of [28] or in the recent synthesis of [24, 25, 26].
The behavior of mono- and polycrystals is dependent of the loading level and other factors such
as environment, temperature, . . . . For a Representative Elementary Volume of material (REV),

Σ(t), E(t) Σ(t), E(t)

Generalized plasticity Localized plasticity plastic inclusion

    well-oriented
     slip plane

Figure 1: Plasticity developed at the macroscopic scale in LCF and at the mesoscopic scale in HCF.

they can be summarized using the following scheme (see figure 1):

• if the loading level is very low, only a single slip system can be considered in each grain
with a shear stress below the resolved yield stress on this slip plane. An elastic response is
therefore obtained in all the grains and no slip bands can be observed. The macroscopic
response, on the REV boundaries, is then also elastic.

• if the loading level is increased but is still low, a single slip system can be considered
in each grain. The shear stress might exceeds resolved yield stress in some grains pos-
sessing a properly oriented crystallographic system with respect to the active slip system
and the loading direction. In such grains, the mechanisms of dislocations gliding and
slip bands creation can be activated. At the grain surface, such bands can be observed.
This heterogeneous plastic behavior, depending on the grains orientations, has recently
been quantified by [22] by diffraction measurements. Some observed grains display a
quasi elastic response while others cyclically plastify. However, if this plastic behavior
is confined in a few grains, the macroscopic response, on the REV boundaries, remains
quasi-elastic.

• if the loading level becomes more important, it can induce two effects. On the one hand,
the quantity of plastic grains becomes more important [33] and, on the other hand, mul-
tiple slip systems can be activated in the same grain. Plastic behavior is then no more
confined, is generalized in all the REV, and the macroscopic behavior becomes elasto-
plastic.

The three schemes correspond to three different fatigue domains, which can easily be described
by a Wöhler’s curve, schematically represented on the figure 2. The first case, presenting an

2

Figure 10.5: Representative elementary volume of material. Plasticity developed at the macroscopic scale
in the LCF regime (left) and at the mesoscopic scale in the HCF regime (right), taken from (Charkaluk
et al., 2009).

1. the high-cycle fatigue (HCF) or polycyclic fatigue regime, which is defined by a number of cycles to
failure greater than 104. In general no irreversible deformation (plastic or viscous) is detected at the
macroscopic level. Material behavior seems to be purely elastic, meaning that stresses and strains are
related through linear relations. However, at a mesoscopic level, irreversible strains occur in a certain
number of grains and generate a heterogeneous plastic strain field. Only misoriented crystals undergo
plastic slip corresponding to a heterogeneous distribution of microcracks (see Figure 10.5 on the
right). Within the HCF region, we can distinguish between two subdomains: the infinite endurance
domain (HCF-IE) at small loads, where lifetime seems to be infinite, and the finite endurance domain
(HCF-FE) at slightly higher loads, where lifetime is finite;

2. the low-cycle fatigue (LCF) or oligocyclic fatigue regime, which is defined by a number of cycles to
failure less than 104. Significant macroscopic deformations conducting to irreversible deformations
are detected. Stress and strain fields are generally related through highly non-linear differential
equations. At the mesoscopic level, metal grains are subjected to plastic deformation in a more
homogeneous manner than in the HCF regime (see Figure 10.5 on the left). The first cracks at a
mesoscopic level appear in the persistent slip bands quite early in the lifetime of the structure. Within
this region we generally distinguish three domains with increasing load: the alternating plasticity
domain (LCF-P), the ratchetting domain (LCF-R) where failure occurs due to accumulation of plastic
strain, and the unrestricted plastic strain domain (LCF-U).

Figure 10.6 shows the diagram in terms of the stress amplitude, σa, and the number of cycles to failure,
Nf , where the Wöhler’s or S-N curve is represented along with the listed fatigue regimes.

10.7 Cyclic behavior of an elastoplastic structure

Depending on the loading level, we can classify the asymptotic response of an elastoplastic structure sub-
jected to cyclic mechanical loading, as follows:

• existence of a limit cycle in alternating elasticity (i.e., elastic shakedown in the HCF-IE and HCF-FE
domains) or in alternating plasticity (i.e., plastic shakedown in the HCF-FE and LCF-P domains), as
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σa

Nf

LCF HCF

LCF-U LCF-R LCF-P HCF-FE HCF-IE

Figure 10.6: Schematic Wöhler curve and fatigue regimes.

shown in Figures 10.7(a) and 10.7(b);

• no limit cycle described generally as ratchetting (i.e., accumulation of plastic strain over all cycles in
the LCF-R domain) or unrestricted plastic yield in the LCF-U domain, as shown in Figure 10.7(c).

Different theoretical studies have been performed to define the conditions for the occurrence of an
asymptotic state in an elastoplastic structure subjected to cyclic mechanical loading. The works by Koiter
(1960); Mandel et al. (1977); Melan (1936) give a theorem with sufficient conditions for the elastic shake-
down of a perfect plastic material. Such conditions are path-independent and do not depend on the initial
state of the structure. This work has been extended to other elastoplastic constitutive laws (Nguyen, 2003).

In addition to theoretical results, the asymptotic response of a structure subjected to cyclic loading can
be also determined after a complete computation of a large number of cycles. However, the time required to
determine the stabilized response of a structure subjected to cyclic mechanical loading can be prohibitive,
due to the tens of cycles that have to be computed to reach the asymptotic state. The reduction of this
computation time is of prime importance for industrial applications. To this aim, different approaches have
been proposed in literature, mainly for elastoplastic constitutive laws.
The different methods proposed to reduce computation time aim at determining the asymptotic material
state directly, without going through the whole loading history. Among these approaches, Peigney and
Stolz (2003) proposed a method based on the optimal control theory. The asymptotic state is calculated
as the solution of a minimization problem and the minimized function represents the elastic energy of a
generalized stress field associated to the distance to periodicity (the function is equal to zero when the
solution is periodic). Zarka et al. (1998) proposed a simplified method, which allows a direct computation
of the stabilized cycle based on the introduction of a transformed parameter linked to both the local behavior
and to the structural coupling. A direct cyclic method was developed by Maitournam et al. (2002), based
on a method proposed by Akel and Nguyen (1989) and on the large time increment method developed by
Boisse et al. (1990). Masud and Xia (2006) developed a variational multiscale method, which has been
applied to shape memory alloys and leads to interesting gain of computation time. Another finite element
method have been developed for elastoplasticity by Commend et al. (2004) employing the Petrov-Galerkin
method.
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Figure 10.7: Cyclic behavior of an elastoplastic structure. (a) Elastic shakedown; (b) plastic shakedown;
and (c) ratchetting.

10.8 The global computational approach

The methodology generally adopted in the literature to treat fatigue problems is based on the general
philosophy of the global computational approach, consisting of the following two steps (Constantinescu
et al., 2003):



172 CHAPTER 10. INTRODUCTION TO FATIGUE OF METALS

i. a mechanical analysis to calculate the shakedown or stabilized mechanical state, by assuming the
geometry of the structure, loading, and material constitutive law known. Such an analysis can be
performed with different tools, such as the finite element method (Amiable et al., 2006) or analytical
and semi-analytical solutions (Ferjani et al., 2011a,b). The mechanical behavior can be described by
microscopic or macroscopic models. To keep the final objective of a global simple representation
of material behavior at the structure scale, we restrict our choice to phenomenological macroscopic
models, in the following;

ii. a fatigue analysis to compute the number of cycles before failure, e.g., the macroscopic crack ini-
tiation, through the introduction of appropriate fatigue criteria (see Section 10.9). Such an analysis
assumes the existence of a stabilized cycle, i.e., elastic or plastic shakedown, and the possibility of
computing such a cycle through the mechanical analysis. Fatigue damage parameters are in fact
evaluated at this cycle.

We remark that the main assumption of the global computational approach is the uncoupling between
material behavior and damage. This is a consequence of the assumption on cyclic material behavior,
which is considered stabilized for most of the lifetime; therefore, the evolution of damage parameters
can be neglected in the constitutive law and consequently in the structural computation. On the contrary,
Lemaitre and Chaboche (1994) proposed interesting constitutive laws coupled with damage for continuum
mechanics. In the following, we accept such the uncoupling hypothesis to be able to compute three-
dimensional structures in a reasonable amount of time.

10.9 General forms of fatigue criteria

The lifetime of a structure can be generally evaluated through the following two forms of fatigue criteria:

1. a parametric form, with the classical fatigue criteria expressed as:

Φ (εεε,εεεp,σ, ...) = Nf (10.5)

where Φ denotes the criterion function depending on both the mechanical state of the point under
consideration and material parameters, and the set (εεε,εεεp,σ, ...) represents the values of the mecha-
nical field during a complete stabilized cycle. In the case of infinite lifetime, the form becomes:

Φ (εεε,εεεp,σ, ...) ≤ 0 (10.6)

We remark that an underlying hypothesis is the existence of a stabilized cycle and that the life es-
timation is done on such a limit cycle. Within this framework, stress-, strain-, and energy-based
approaches can be used (Schijve, 2009). We can cite, for instance, for the LCF regime, the works
by Coffin (1953); Ellyin (1989); Manson (1953) and, for the HCF regime, by Crossland (1956);
Dang Van (1999); Papadopoulos (2001); Sines (1959);

2. an evolutionary form to track the complete evolution of damage. The evolution of the damage pa-
rameter set, d, is described as a system of ordinary differential equations, as follows:

ḋ = Φ (d,εεε,εεεp,σ) (10.7)

Such an approach stems from the pioneering works of Kachanov (1986); Rabothov (1969) and it has
been later developed by Lemaitre and Desmorat (2005).

Compared to the parametric approach, the evolutionary form of fatigue criteria hides a series of difficulties
related to the definition of the damage parameters, which is correlated with micromechanical mechanism
and conducts to a large number of variables, to the necessity of a complex function, Φ, as well as to a large
number of parameters. For such reasons, the present thesis focuses on the parametric form of the fatigue
criteria for the design of structures.



Chapter 11

Polycyclic fatigue of metals

This Chapter presents an overview on the state of art in polycylic or high-cycle fatigue of metals, which
can be defined by a number of cycles to failure greater than 104. Such an overview allows to prepare the
framework for the treatment of the fatigue-life assessment of cardiovascular stents treated in next Chapters.

The Chapter is organized as follows. Sections 11.1 and 11.2 focus on both the empirical and semi-
empirical approaches to fatigue by recalling some uniaxial and multiaxial criteria. Then, Section 11.3 con-
cludes with the description of the multiscale approach to fatigue, by focusing on the criterion by Dang Van
(1973).

11.1 Empirical approach to fatigue

The empirical approach to fatigue is based on simple conventional tests, e.g., uniaxial tests at room tempe-
rature. Such a classical approach allows to define different phases of the fatigue-life of the tested material.
This Section presents some well-known uniaxial and multiaxial stress-based criteria, particularly suited in
the high-cycle fatigue regime.

11.1.1 Uniaxial fatigue criteria

Uniaxial stress loading paths are commonly used in simple experiments and are therefore easily explored.
Standard proportional stress loading paths are expressed in the following form:

σ (t) =

 σm + σa sin (t) 0 0

0 0 0

0 0 0

 (11.1)

σ (t) =

 0 τm + τa sin (t) 0

τm + τa sin (t) 0 0

0 0 0

 (11.2)

In the following, we list some classical uniaxial fatigue criteria developed from traction-compression
fatigue experiments. We remark that such criteria are very restrictive, since obtained from uniaxial traction-
compression tests.

The diagram by Wöhler (1870)

As we have already stated in Chapter 10, the work by Wöhler (1870) represents the result of the first
systematic studies on the phenomenon of fatigue. Wöhler recognized, in fact, that a single load application,

173
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below the static strength of a structure, does not damage the structure itself; however, if the same load is
repeated many times, it could induce a complete failure of the structure.

Starting from such considerations, we consider a structure submitted to a cyclic loading with stress
amplitude, σa, and we record the lifetime as the number of cycles to failure,Nf , for each loading amplitude.
The experimental points can be represented in a stress amplitude versus number of cycles to failure diagram
and the obtained curve is known as Wöhler or S-N curve (see Figure 11.1).

Figure 11.1: Fatigue test data on smooth specimens of a low alloy steel (SAE 4130) in the Wöhler diagram,
taken from (Grover et al., 1951).

To connect the stress amplitude, σa, to the number of cycles to failure, Nf , several functions have been
proposed. As an example, we may mention the relation by Basquin (1910), expressed in the following
form:

σa = σ
′

f (2Nf )
b (11.3)

where σ
′

f is the fatigue strength coefficient and b the fatigue strength or Basquin’s exponent.

The diagram by Haigh (1917)

Another common way to represent experimental points is to plot the stress amplitude, σa, versus the mean
stress, σm, as shown in Figure 11.2. The obtained diagram is known as Haigh or constant-life diagram
(Haigh, 1917).

Several fatigue criteria have been proposed to be plotted in such a diagram. Among the others, we can
cite the following criteria, whose representations are shown in Figure 11.2:

• Goodman line (1899):
σa
σ−1

+
σm
σu
≤ 1 (11.4)

where σu is the ultimate tensile stress and σ−1 the fatigue limit for fully reversed loading.

• Soderberg line (1939):
σa
σ−1

+
σm
σy
≤ 1 (11.5)

where σy is the yield stress.
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Figure 11.2: A comparison between uniaxial fatigue criteria in the Haigh diagram.

• Gerber parabola (1874):

σa
σ−1

+

(
σm
σu

)2

≤ 1 (11.6)

From Figure 11.2 we note that the lines by Goodman (1899) and Soderberg (1939) strongly reduce the
fatigue domain compared to the parabola by Gerber (1874). The relationship by Gerber (1874) is interesting
in the case of positive mean stresses, i.e., in traction; however, it does not reflect material behavior in the
case of negative mean stresses, i.e., in compression.

11.1.2 Multiaxial fatigue criteria

Complex multiaxial stress loading paths have also been explored and analyzed in the literature. However,
such paths involve a large number of parameters, thus implying that a large number of experiments have to
be explored to asses the fatigue laws.
In the following, we shortly present some criteria established in the literature. It is important to notice that
the range of validity includes only loading systems similar to the tested ones.

Formula by Hohenemser and Prager (1933)

Hohenemser and Prager (1933) studied the influence of a static traction state superposed on an alternated
traction. The stress path is expressed in the following form:

σ (t) =

 σm 0 0

0 0 0

0 0 0

+

 0 τa 0

τa 0 0

0 0 0

 sin (t) (11.7)

For the studied metal, the authors noticed an important influence of the value of the static traction test
on the endurance limit of the metal. They concluded by proposing the following criterion:

τ2
a

τ2
−1

+
σm
σu
≤ 1 (11.8)

where τ−1 is the endurance limit in alternated torsion.



176 CHAPTER 11. POLYCYCLIC FATIGUE OF METALS

Criterion by Gough and Pollard (1935)

The criterion by Gough and Pollard (1935) is the first systematic analysis of fatigue tests in order to con-
struct a fatigue criterion. Their work covers a large database of alternating bending-torsion stress paths,
expressed in the following form:

σ (t) =

 σa τa 0

τa 0 0

0 0 0

 sin (t) (11.9)

Gough and Pollard (1935) tested several metals, splitted in two different classes, i.e., ductile and brittle
metals; then, for each class, the authors proposed a different infinite endurance curve.

Later, the authors completed the initial work in collaboration with Gough et al. (1951), with stress paths
in the following form:

σ (t) =

 σm τm 0

τm 0 0

0 0 0

+

 σa τa 0

τa 0 0

0 0 0

 sin (t) (11.10)

such that σm/σa = τm/τa.
For ductile metals, the authors described the infinite endurance curve as follows:

τ2
a

τ2
−1

+
σ2
a

σ2
−1

≤ 1 (11.11)

while for brittle metals as:

τ2
a

τ2
−1

+

(
σ−1

τ−1
− 1

)
σ2
a

σ2
−1

+

(
2− σ−1

τ−1

)
σa
σ−1

≤ 1 (11.12)

Formula by Davies (1935)

Davies (1935) tested a relative small number of specimens in combined bending-torsion experiments, pre-
cisely, in an alternating bending stress state superimposed on a static torsion state. The non-proportional
stress path can be expressed as follows:

σ (t) =

 0 τm 0

τm 0 0

0 0 0

+

 σa 0 0

0 0 0

0 0 0

 sin (t) (11.13)

Then, Davies (1935) proposed the following relation as endurance limit:

σ2
a

σ2
−1

+
τm
τu
≤ 1 (11.14)

where τu is the ultimate stress in a monotonic torsion test. We remark that the conclusions by Davies
(1935) are in contradiction with the formulas proposed by Gough and Pollard (1935).

Criterion by Nishihara and Kawamoto (1945)

After exploring the endurance limit on nine different steels, Nishihara and Kawamoto (1945) proposed two
empirical fatigue criteria, depending on the value of the ratio (σ−1/τ−1):

• for (σ−1/τ−1) ≥
√

3, the authors recovered the ellipse proposed by Gough and Pollard (1935);

• for (σ−1/τ−1) ≤
√

3, the authors proposed the criterion:

τ2
a

τ2
−1

+
1

2

(
3− σ2

−1

τ2
−1

)
σa
σ−1

+
1

2

(
1− σ2

−1

τ2
−1

)
σ2
a

σ2
−1

≤ 1 (11.15)
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11.2 Semi-empirical approach to fatigue

Since it was difficult to experimentally explore all the possible stress loading paths, it appeared the necessity
to assume a basic physical phenomenon associated to fatigue, in order to successfully formulate a series of
criteria for a large number of stress paths and materials.

Most of such criteria are based on physical observations of the first propagation stage of a fatigue crack1.
Since in the first propagation stage the crack evolves in a slip plane, many authors naturally concluded that
the mechanical parameter governing crack initiation is the shear stress on the corresponding slip plane
and they accepted that the normal stress has also influence on the crack initiation stage, since such a stress
component has a crack opening or closing role. As a consequence, the parameter determining the endurance
limit was assumed to be a combination between the shear and normal stress components on a given slip
plane. The fatigue criterion can be expressed as follows:

Φ (n, C,N) ≤ 0 (11.16)

whereC andN are the shear and normal stress components on the slip plane of unit normal, n, respectively.
Several criteria have been proposed along this line, which differentiate in the definition of the stress

measure (e.g., in terms of stress components, C andN , or in terms of equivalent shear, Ceq , and hydrostatic
pressure, P ) and in the choice of the critical plane of unit normal, n, representing the plane of the fatigue
crack propagation in the first stage2.
In the following, we mention some of the most famous criteria.

11.2.1 Criterion by Findley (1957)

After exploring a large number of testing configurations, Findley (1957) proposed the following criterion:

Ca (n∗) + aNmax (n∗) ≤ b (11.17)

where a and b denote material parameters. The critical plane, Π∗, with unit normal, n∗, is defined by the
following minimum:

n∗ = argminn [Ca (n) + aNmax (n)] (11.18)

Such a formula is the best compromise between a simple theoretical concept and experimental results from
bending-torsion tests and it can be applied for all the loading paths. However, due to its computation
complexity, Findley himself only applied the criterion to radial bending-torsion loading paths.

11.2.2 Criterion by Crossland (1956)

Crossland (1956) derived a criterion from an important series of experiments on En25T steel (in british
denomination). In particular, Crossland (1956) proposed a linear combination between the amplitude of
equivalent shear, Ta, and the maximal hydrostatic pressure, Pmax, during the cycle, as fatigue parameter:

Ta + aPmax ≤ b (11.19)

where material constants, a and b, can be identified from reversed torsion and bending experiments. The
criterion matches well the general trends of the observations in a large range of materials and it is a good
compromise between criteria complexity and experimental results.

1The first propagation stage of a fatigue crack is defined as the initial propagation of a crack in a polycrystalline metal on a slip
plane in the interior of a metal grain (Schijve, 2009).

2The critical slip plane is in general different from the plane of maximal equivalent shear strain or stress.
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11.2.3 Criterion by Sines (1959)

The criterion proposed by Sines (1959) is one of the most used fatigue criteria for practical purposes. The
fatigue parameter is similar to that proposed by Crossland (1956), but the maximal hydrostatic pressure is
replaced by the mean hydrostatic pressure, Pm, as follows:

Ta + aPm ≤ b (11.20)

where material constants, a and b, can be identified from reversed torsion and bending experiments. How-
ever, Sines discouraged the application of his fatigue criterion to brittle materials.

11.3 Multiscale approach to fatigue

All the above high-cycle fatigue criteria define the endurance limit as a function of macroscopic quantities,
i.e., quantities computed at the structure scale. Consequently, such criteria do not take into account physical
phenomena inducing fatigue, as observed at the grain scale. In order to represent such phenomena, it is
necessary to adopt a multiscale approach to fatigue. The first application of such a passage to fatigue
is attributed to Dang Van (1973). Later, such a proposal has been extended by Dang Van et al. (1989)
and Papadopoulos (1987, 2001), who proposed a similar criterion using quantities which are more easily
computed.

11.3.1 Meso-macro passage

The multiscale approach to fatigue considers two scales: (i) a macroscopic scale, characterized by an
arbitrary elementary volume surrounding the point where fatigue analysis is made and representing, for
instance, an element of the finite element mesh (the usual scale considered by engineers); (ii) a mesoscopic
scale, corresponding to a subdivision of the previous volume (see Figure 11.3).
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Fig. 1. The macroscopic and the local scale of material description 
 
 
The general relation between these quantities at any time t of the loading cycle is: 
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where ρρρρ(m,t), is the local residual stress tensor, which characterises the local stress in V(M). 
The tensor ρρρρ corresponds to the local fluctuation at the point m of the stress tensor in 
comparison to mean value ΣΣΣΣ in V(M) induced by local inhomogeneous inelastic deformation. If 
the imposed loading is low (i.e. near the fatigue limit), it is reasonable to suppose that elastic 
shakedown should occur. This hypothesis means that after a given number of loading cycles, 
ρρρρ(m) becomes independent of t (see Melan’s theorem and its extension by Mandel et al [7] as 
recalled in [4]) and that the local plasticity criterion is then no longer violated; the whole 
stabilised stress path σσσσ(m,t) is then contained in the local limit elastic domain represented by a 
hypersurface in the stress space. If von Mises yield function is chosen, this surface is a 
hypershere S centred on ρρρρ(m) in the deviatoric stress space. This property provides a way to 
estimate the local stress cycle in the parts, which may suffer fatigue without knowing precisely 
the local constitutive equation. We observe that the maximum modulus of the local shear 
corresponds to a point situated on a hypersurface. Another important consequence of this 
model, in particular for welding applications presented hereafter, is that  ρρρρ(m) does not depend 
on the deviatoric part of the macroscopic residual stress; only the hydrostatic part 
corresponding to its trace occurs. 

Figure 11.3: Macroscopic and local scales of material description, taken from (Dang Van et al., 2003).

The dependence of the mesoscopic quantities (e.g., stress σ, strain εεε, plastic strain εεεp) on the macro-
scopic ones (e.g., stress Σ, strain E, plastic strain Ep) is complex and exact relations can be found, for
instance, in (Bui et al., 1981); intuitively macroscopic quantities are approximately the mean value of the
mesoscopic ones. Therefore, the macroscopic field is supposed constant in a small volume, surround-
ing the point under consideration. In the theories of polycrystalline aggregates, such a volume is called
representative volume element (RVE).
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As an example, the mesoscopic stress, σ, and the macroscopic stress, Σ, are related by the following
(exact) formula:

σ = AΣ + ρ (11.21)

where ρ is the local residual stress and A is the elastic stress localization tensor, corresponding to the
identity tensor if the local and the macroscopic elastic moduli are similar. All the variables of Eq. (11.21)
depend of time, t, except when the asymptotic cyclic state is purely elastic. In order to derive a unified
theory of fatigue, Dang Van (1973) supposed that elastic shakedown occurs at the microstructure level as
well as at the macroscopic one, as explained in the following.

Relation (11.21) shows that Σ is not adequate for characterizing phenomena which occur at the grain
scale since the local stress, σ, in the grain is not proportional to Σ. The additive term, ρ, function of the
plastic strain, is closely related to the loading path. Therefore, fatigue criteria using maximum stress (or
some combination of maximum stress) are only valid for the loading paths for which they are derived by
correlating experimental results. They should be extended to take account of multiaxial loadings, and as a
consequence their use for practical design is difficult, and sometime non-conservative. However, this way
to proceed is very often used even if not theoretically valid.

To illustrate relation (11.21), we consider the Lin-Taylor model which supposes that the total macro-
scopic and mesoscopic strains are equal, i.e., E = εεε (Lin, 1957). Thus, Ep + Ee = εεεp + εεεe. If l and L

are respectively the mesoscopic and the macroscopic compliance tensors of the material, we obtain:

σ = lL−1Σ + l (Ep − εεεp) (11.22)

where lL−1 corresponds to the localization tensor, A, which is equal to the identity tensor if l = L, as
assumed in the following. The term, l (Ep − εεεp), corresponds to the local residual stress, ρ, characterizing
the difference between the local stress, σ, and the mean stress, Σ, in the REV. Thus, ρ is due to the
heterogeneity of plastic strain, difference between the local plastic strain, εεεp, and its mean value, Ep.
In particular, ρ decreases if this difference diminishes and the gap between mesoscopic and macroscopic
parameters vanishes, i.e., in situations when plastic deformation is important.

The evaluation of the local mesoscopic fields from the macroscopic ones is in general a difficult task,
because the material is locally heterogeneous and has to be considered as a structure when submitted to
complex loading histories. Depending on the loading characteristics, we can accept reasonable simplifying
assumptions which will permit a solution to the problem.

11.3.2 The criterion by Dang Van (1973) and Dang Van et al. (1989)

The classical Dang Van criterion allows to define the limit of the imposed external loads under which the
structure will have an infinite life. To this purpose, Dang Van adopted a multiscale approach which assumes
that elastic shakedown happens at both macroscopic and mesoscopic scales before crack initiation.

As a first step, Dang Van evaluated the stabilized mesoscopic stresses. Thanks to the shakedown as-
sumption at the mesoscopic scale, it is possible to estimate the mesoscopic stress cycle from the macro-
scopic stress cycle through Eq. (11.21), as follows:

σ (t) = Σ (t) + ρ∗ (11.23)

where ρ∗ is a time-independent stress field.
Then, Dang Van defined his fatigue criterion in the following form:

∀n, ∀t τ (n, t) + aσh (t) ≤ b (11.24)

Here, σh and τ are the instantaneous hydrostatic and shear stresses, associated to the stabilized mesoscopic
stress, σ, respectively; material parameters, a and b, are usually deduced from two Wöhler curves related
to smooth specimens, giving the fatigue limit in alternated torsion and in fully reversed bending.
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To express the criterion in terms of macroscopic stresses, Dang Van (1973) made the following con-
siderations. Firstly, the mesoscopic hydrostatic stress, σh, is equal to the macroscopic one, Σh. Then, to
evaluate the mesoscopic shear stress, τ , Dang Van suggested the following method, shown in Figure 11.4:
on a material surface with a normal vector, n, the macroscopic shear, C (n, t), describes a closed curve,
φ (n) (smooth curve in Figure 11.4); the residual shear stress, τ ∗ (n) = ρ∗.n is given by the vector RO,
where R is the center of the smallest circle circumscribing the curve, φ (n).
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Figure 5.5: Calculation of the mesoscopic shear stress
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Figure 5.6: Examples of Dang Van's diagram in case of fatigue and no fatigue.

Figure 11.4: Calculation of the mesoscopic shear stress, τ , taken from (Dang Van, 1973).

Consequently, the criterion can be rewritten in the following form:

max
n

{
max
t

[τ (n, t) + aσh (t)]
}
≤ b (11.25)

and allows to state that the lifetime is infinite if the mesoscopic shear stress, τ , and the hydrostatic stress,
σh, satisfy inequality 11.25 in all the points of the structure.

Later, Dang Van et al. (1989) proposed another way to evaluate the mesoscopic stress. In particular, by
knowing that the mesoscopic deviator stress, s (t), is given by:

s (t) = S (t) + ρ∗ (11.26)

Dang Van defined −ρ∗ as the center of the smallest hypersphere circumscribing the loading path, S (t).
The maximum mesoscopic shear over all the material plane passing by a given point is thus given by:

τ (t) =
ΣI (t)− ΣIII (t)

2
(11.27)

where ΣI (t) and ΣIII (t) are respectively the greatest and the smallest principal macroscopic stresses;
principal stresses of the mesoscopic stress can also be used.
The Dang Van criterion is then rewritten as:

max
t

[τ (t) + aσh (t)] ≤ b (11.28)



Chapter 12

Oligocyclic fatigue of metals

This Chapter presents an overview on the state of art in oligocyclic or low-cycle fatigue of metals, which is
defined by a number of cycles to failure less than 104. Such an overview allows to prepare the framework
for the fatigue-life assessment of cardiovascular stents treated in next Chapters. In particular, the appli-
cation of the global computational approach, described in Chapter 10, to the low-cycle fatigue regime is
treated in detail.

The Chapter is organized as follows. Section 12.1 describes the main features of the global com-
putational approach. Section 12.2 presents the first step of the global computational approach, i.e., the
mechanical analysis, by concentrating on material constitutive behavior. Then, Section 12.3 focuses on the
second step of the global computational approach, i.e., the fatigue analysis, by presenting some strain- and
energy-based fatigue criteria usually adopted in the literature.

12.1 The global computational approach to fatigue

The question of oligocyclic or low-cycle fatigue (LCF), defined by a number of cycles to failure less than
104, arised in the middle of the twentieth century, when the engineering needs demanded lifetime predic-
tions for aeronautical and nuclear plants.
The main difference when compared to the high-cycle fatigue domain, treated in Chapter 11, is the pre-
sence of plasticity and/or viscosity at the macroscopic scale of the structure and therefore the modeling
needs the application of non-linear constitutive laws. Moreover, in the LCF domain, an energy dissipation
takes place through a series of mechanisms, and therefore the structure does not attain an infinite lifetime.
Consequently, the classical stress-life approaches, described in Chapter 11, are no more appropriate, since
suitable for situations involving primarily elastic deformations and components expected to have a long
lifetime. Thus, energy- and strain-based fatigue life approaches are usually adopted in the literature to
treat LCF and the generally applied methodology is based on the philosophy of the global computational
approach (Constantinescu et al., 2003), introduced in Section 10.8 and consisting of a mechanical and a
fatigue analysis. In the following sections, we discuss in details the main aspects characterizing these two
steps.

12.2 Mechanical analysis

The mechanical analysis assumes the geometry of the structure, loading, and material constitutive law
known and can be performed with different tools, such as the finite element method (Amiable et al., 2006)
or analytical and semi-analytical solutions (Ferjani et al., 2011a,b). Material behavior can be described
by microscopic or macroscopic models. To keep the final objective of a global simple representation of
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Figure 12.1: Cyclic material behavior for isothermal LCF tests carried out by Skelton (1991, 1993).

material behavior at the scale of the structure, we restrict our choice to phenomenological macroscopic
models, in the following.

12.2.1 Material constitutive behavior

Monotonic versus cyclic material behavior

Monotonic stress-strain curves are usually used to obtain design parameters for limiting stresses on struc-
tures subjected to static loading. In the description of material constitutive behavior, we generally suppose
that material behavior can be identified from a series of traction-compression or torsion tests also combined
with dwell, relaxation and creep periods (Lemaitre and Chaboche, 1994).

By analogy, cyclic stress-strain curves may be used to evaluate the durability of structures subjected to
cyclic loading. When a metal is subjected to cyclic loading, characteristic stress-strain response curves are
observed depending on material type, initial condition (annealed or work hardened) and loading conditions
(e.g., stress- or strain-controlled, loading amplitude). With continued cyclic loading, a quasi-steady state
of stress-strain cycle (i.e., cyclic saturation) is usually reached within half-life fatigue loading. As a result,
the calculation of fatigue parameters is generally based on mid-life hysteresis loop data (Schijve, 2009;
Stephens et al., 2000).

To better understand the underlying phenomena, we recall the interpretation of material cyclic behavior
in the LCF regime by Skelton (1991, 1993), who described the cyclic material behavior, i.e., the recorded
stress level under applied strain amplitude, by proposing the identification of three different phases defined
by the saturation, tangent, and final points, as shown in Figure 13.7: the hardening/softening phase [0-Nsat]
corresponding to the stabilization of the plastic material properties; (ii) the stabilized phase [Nsat-Ntan]

represented by a flat plateau with small property variations; (iii) a final failure phase [Ntan-Nfin] char-
acterized by a fast drop of the measured stress (as we impose the displacements/strains). Conventionally,
Nfin is defined by a 5% or 10% load drop. Reaching the saturation of the plastic cyclic behavior implies a
stabilized cyclic behavior of the structure.

Skelton (1991, 1993) showed that the accumulated dissipated energy until stabilization can be conside-
red constant for a given material. These results also suggested that the accumulated dissipated energy up to
the hardening or softening stabilization point is reached can be used as a crack initiation criterion in LCF.
Such a view has been successfully applied to LCF lifetime predictions in (Amiable et al., 2006, 2009a,b;
Constantinescu et al., 2003).
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Identification of material behavior

It is well accepted that the choice of the constitutive law, the identification of material parameters, and the
numerical integration algorithm are key issues of every structural computation. It is generally recommend a
simple constitutive law, with a small number of parameters, capable of modeling the phenomena of interest.
As an example, structures evolving at high temperature need to consider elasto-visco-plastic constitutive
laws, whether in a low temperature range one can restrain to elastoplastic constitutive laws (Lemaitre and
Chaboche, 1994).

The parameters of the adopted constitutive law can be identified through the following two methods:

• direct method, which directly estimates material parameters, e.g., tangent slope at the origin for the
Young’s modulus, tangent slope at high strain level for the hardening parameters, apparent stress
level after relaxation for the yield limit;

• inverse method, which uses an optimization tool and tries to minimize a cost functional measuring the
distance between computed and measured strain or stress predictions with respect to the parameters
of the constitutive law (Constantinescu and Verger, 2002).

12.3 Fatigue analysis

The fatigue analysis assumes the existence of a stabilized cycle, i.e., elastic or plastic shakedown, and the
possibility of computing such a cycle through the mechanical analysis, in order to evaluate fatigue damage
parameters at such a cycle.

Depending on the stabilized state obtained from the mechanical analysis, different damage states can
occur and appropriate predictive criteria can be applied during the fatigue analysis.

A fatigue crack initiation criterion is classically defined as a local relation (i.e., in each spatial point of
the structure, x ∈ Ω), between the values of the mechanical fields, (εεε,εεεp,σ..), computed for the stabilized
cycle, and the number of cycles to failure, Nf , of the structure:

max
x∈Ω

[f (εεε,εεεp,σ)] = cN b
f (12.1)

where b and c are material parameters and f represents the fatigue damage parameter that is characteristic
of each criterion. Within the LCF framework, strain- and energy-based approaches can be used (Schijve,
2009).
In the present Section, we focus on some multiaxial criteria for LCF, that we will use in the following
Chapters.

The fatigue criterion by Coffin (1953) and Manson (1953)

The fatigue criterion by Coffin (1953) and Manson (1953) is defined as follows:

∆εp = cN b
f (12.2)

where f = ∆εp is the amplitude of the plastic strain in the uniaxial case. If the considered experiments are
multiaxial, we can extend the amplitude, ∆εp, to this case as follows:

∆εp = max
t1

max
t2

√
2

3
[εp (t1)− εp (t2)] : [εp (t1)− εp (t2)] (12.3)

where t1 and t2 represent different time instants of the stabilized cycle. The present extension measures
the diameter of the plastic strain path.
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The dissipated energy per cycle criterion and modified version

The criterion based on the dissipated energy per cycle is defined as follows (Charkaluk and Constantinescu,
2009; Korsunsky et al., 2007):

W p = cN b
f (12.4)

where f = W p is the dissipated energy per cycle, integrated in each point of the structure over the complete
stabilized cycle, as follows:

W p =

∫
cycle

σ : ε̇εεpdt (12.5)

The use of the dissipated energy as fatigue damage parameter allows a continuous approach from LCF to
high-cycle fatigue and it is generally preferable in case of complex fatigue problems (e.g., for instance,
multiaxial or thermo-mechanical fatigue) (Bentachfine et al., 1999). As an example, such a criterion has
been successfully used in a series of fatigue analyses on specimens (Dowling, 1972; Feltner and Morrow,
1961; Morrow, 1965) and structures (Charkaluk et al., 2002; Constantinescu et al., 2004; Tabibian et al.,
2013) and presents the advantage of a direct relation of the fatigue properties with the plastic shakedown
strain-stress loop.

The definition of a fatigue parameter depending only on the dissipated energy implies that this quantity
is the only driving force of the damage. However, the effect of mean stress on fatigue is a well-known
phenomenon. The modification proposed by Amiable et al. (2006, 2009a,b) consists in the addition of a
maximal hydrostatic stress term.

The modified dissipated energy criterion takes the following form:

(W p + aσmaxh ) = cN b
f (12.6)

where f = (W p + aσmaxh ) is the sum of the dissipated energy, W p, and the maximal hydrostatic stress
attended during the stabilized cycle, σmaxh = maxt σh (t), with σh = 1/3 tr(σ) , while a is an additional
material parameter.



Chapter 13

Fatigue of 316L stainless steel notched
microsize components

This Chapter provides an in-depth analysis of the fatigue-life assessment for microsize 316L stainless steel
components, which find typical applications in the biomedical field, e.g., in cardiovascular stents. To this
purpose, the present Chapter presents the analysis of some experimental data from the literature, related
to 316L stainless steel smooth and notched microsize components, by using the global computational
approach described in Chapter 10. Several aspects are discussed, as the choice of an appropriate constitutive
law for cyclic material behavior, fatigue criteria for finite and infinite lifetime, and gradient effects in
relation with hot-spot as well as average or mean volume approaches for the lifetime estimation.

The Chapter is organized as follows. Section 13.1 presents an introduction to the problem and the
motivations of the proposed work. Section 13.2 revisits the two experimental campaigns. Then, in the
framework of the global computational approach, Sections 13.3 and 13.4 present the performed mechanical
and fatigue analyses. Conclusions and summary are finally given in Section 13.5.

13.1 Introduction and motivations

In the past fifty years, austenitic stainless steels have been widely and extensively used in several fields,
ranging from nuclear or aerospace industries to chemistry or food and beverage processing (Baddoo, 2008).
In particular, type 316L stainless steel has been largely appreciated for its high ductility and strength under
complex thermo-mechanical loadings, i.e., such a material can reach considerable plastic strains of 0.5-1%

at millions of cycles. However, materials like the 316L or 304L stainless steels present a complex material
behavior characterized by primal and secondary hardening (Alain et al., 1997; Gerland and Violan, 1986;
Pham et al., 2011; Polak et al., 1994), as shown in Figures 13.1(a)-(c) and 13.2(a)-(b), which make the
design of structures a difficult task. Nowadays, in spite of a large database of models and experimental
data (Lemaitre and Chaboche, 1994), both experimental (Huang et al., 2006; Mohammad et al., 2013;
Puchi-Cabrera et al., 2008) and modeling campaigns (Amiable et al., 2006, 2009a,b; Laamouri et al., 2013;
Le Pécheur et al., 2012) are still continuing in order to improve both safety and performance of the designed
structures.

In the recent decades, type 316L stainless steel has gained a privileged position among the materials
employed in biomedical devices, e.g., stents, vena cava filters, guide-wires for catheters and pacemaker
leads (Bombac et al., 2007; Winters and Nutt, 2003). The attractive properties of such a material, e.g.,
well adapted mechanical characteristics (great ductility, high tensile strength, and a raised elastic limit),
biocompatibility, resistance to corrosion as well as fatigue performances, assure the long-term service
required by biomedical devices. However, the biomedical field is imposing two specific constraints in the
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A similar behavior is encountered for the above three 
plastic strain amplitudes. Therefore, the amplitude Aep/ 
2 = ___ 2 x t0 -~ will be more specifically analysed and 
only the most relevant features will be considered for 
the two other amplitudes. 

The cyclic behavior of  the 316L type stainless steel 
illustrated by Figs. 4 - 6  will be characterized from the 
tensile stress reached at the first quarter of  cycle and 
from the data concerning the three successive stages 
exhibited by the material: the primary cyclic hardening 
stage a cyclic softening stage and the secondary cyclic 
hardening stage. 

The duration of  those stages appears more clearly in 
Fig. ? for the plastic strain amplitude of  Aep/2 = ___ 2 x 
10 -3" 
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tied out at A @ 2 =  + 2 ×  10 .3  . It was possible to 
achieve an average curve of  the tensile stress at the first 
quarter of  cycle versus temperature (see Fig. 8, open 
square symbols), For this plastic strain amplitude, the 
stress level encountered corresponds to the conven- 
tional yield stress (Cry 0.2%). Actually, the stress levels 
found for this amplitude are in very good agreement 
with the specifications given by the supplier Creusot -  
Loire Industries. As it can be seen, the yield stress 
decreases abruptly from 20 to 300°C, then slower up to 
600°C, with a 'quasi-plateau' in the temperature-ra-fige 
of 300-400°C. 

It must also be noted that the decrease of  the yield 
stress is not only the result of  a decrease of  the Young's 
modulus with temperature. Indeed, the modulus de- 
creases quasi-linearly (see Fig. 9) at the rate of 8% every 
100°C, whilst the yield stress decreases about  40% from 
20 to 200°C. 
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The literature relates the presence of the 'quasi- 
plateau' to the appearance of strain ageing [14-16]. In 
that temperature range the total yield stress is the sum 
of the stress increment due to strain ageing and the 
stress of the basic rate controlling mechanism. That 
increment of stress can be considered as a frictional 
stress for dislocation motion [15]. The appearance of 
strong serrated yielding in the hysteris loops at interme- 
diate temperatures tends to prove the existence of dy- 
namic strain ageing in the present case. According to 
several authors [17-19], the serrated yielding encoun- 
tered would be the result of strong interactions between 
dislocations and carbon-vacancy pairs from 200 to 
450°C and between dislocations and chromium solute 
above 450°C. 

3.2.1.2. Primary cyclic hardening. That stage, commonly 
observed in annealed metallic materials [20,21], has 
been encountered in 316L for all the testing conditions 
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investigated (Figs. 4-6); however, its importance varies 
with temperature. 

Indeed, the increase in stress amplitude reached at 
the end of this stage wilt depend both on the initial 
hardening rate and on the duration of the stage. As it 
can be seen in Fig. 7, the nmnber of cycles correspond- 
ing to the end of the primary hardening stage increases 
with temperature from about 20 cycles at room temper- 
ature to about 1000 cycles at 600°C. Eventhough the 
initial hardening rates appear to be quite similar, a 
more accurate analysis enlighten differences with the 
temperature level. Indeed, despite the scattering, the 
numerous experiments performed allowed to calculate 
an average hardening rate on the five first cycles. It 
appears that, at the very beginning of the stage, the 
cyclic hardening follows a logarithmic law: ko-/2 = A + 
B tog (N) (N being the number of cycles). It is relevant 
to notice (see Fig. 10) that the factor B, which describes 
the initial hardening rate, is smaller between 200 and 
500°C than the ones found at 20 and 600°C. That point 
will be discussed later. 

As a consequence of the initial stress amplitude and 
the primary hardening characteristics, the stress level 

End of 
primary 
hardening 

End of 
softening 

Failure 

1 _  

0 100 200 300 400 SO0 600 700 

160 

150 

140 

130 

GPa 
190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

180 __ I 

170 

roc 

0 100 200 300 400 SO0 600 700 

Fig. 7. Stages of the cyclic behavior at zXep/2 = + 2 x 10 -3. Fig. 9. Evolution of Young's modulus with temperature. 

(c)

Figure 13.1: Evolution of the cyclic stress at several temperatures for (a) ∆εp/2 = ±2 · 10−3; (b) ∆εp/2 =

±6 · 10−4 and (c) ∆εp/2 = ±5 · 10−3, taken from (Alain et al., 1997).

(a) (b)

Figure 13.2: Fatigue hardening and softening curves for (a) 316L-VZ steel and (b) 316L-TH steel, taken
from (Polak et al., 1994).

design of 316L stainless steel devices: (i) the interest in the very high-cycle fatigue domain (i.e., 107-108

cycles) and (ii) the use of mm- and µm-size components.
As an example, cardiovascular 316L stainless steel stents have to withstand both their initial deployment

within the artery, which involves large amounts of plastic deformation, and the long-term service loading
induced by the pulsing blood pressure (Dumoulin and Cochelin, 2000). In particular, such devices must
withstand at least 10 years service without failure (US Food and Drug Administration, 2010). Such a
constraint translates into 400 million (i.e., 4 · 108) cycles during stent lifetime, since 70 artery pulses per
minute impose 40 million cycles per year.
Moreover, stents are manufactured either through welding of microscopic wires or through laser cutting
from thin-walled tubes, both leading to a final truss-type structure composed of struts connected by hinges,
with thicknesses in the range of 50-150 µm (Harewood and McHugh, 2007; Murphy et al., 2006, 2003;
You et al., 2006). Stents manufactured through both processes will finally present small radius and thus
will be subjected to stress concentrations (Wiersma et al., 2006). Also, µm-size components like stents
have length scale in the order of magnitude of the length of grains characterizing their microstructure, i.e.,
the ratio between the length scales of the mesoscopic structure of grains and of the macroscopic structure
of the device, characterized by approximately 10-20 grains across the section, makes the application of
standard bulk models inadequate (Connolley et al., 2005; Harewood and McHugh, 2007; Murphy et al.,
2006, 2003; You et al., 2006). As an example, Figure 13.3 illustrates the scanning electron microscope
image of a 316L steel stent strut, where only 6-10 grains are visible accross the width.
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Additionally, in spite of the importance of such applications, insufficient (only few) data sets are available in
the literature (Donnelly, 2012; Wiersma et al., 2006; Wiersma and Taylor, 2005), due to practical difficulties
of testing very small specimens. Standard mechanical test equipment is in fact not suitable for testing
micrometric components due to the operating range and resolution of load and displacement transducers
and the design of gripping members.

Figure 13.3: Scanning electron microscope of a 316L stainless steel stent strut, showing scale of strut
dimensions and morphology of material microstructure, taken from (Murphy et al., 2003).

Thus, the design for reliability of cardiovascular stents is very complex, since it has to take into account
high and very high-cycle fatigue loading, material and device specificities, manufacturing-induced features
as well as corrosive environment.

In order to bridge the gap between the existing experiments and the fatigue design of such components,
several numerically-based attempts have recently been proposed to assess the lifetime of these microscopic
structures; see, e.g (Auricchio, 2001; Azaouzi et al., 2012b; Barrera et al., 2012; dos Santos et al., 2012;
McGarry et al., 2004; Sweeney et al., 2012). Numerical simulations minimize the number of design cycles
and structural experiments and prevent failure. However, the use of an appropriate constitutive law and the
application of standard fatigue prediction criteria to biomedical devices have to be carefully investigated,
since they could potentially produce non-conservative estimates of safe working loads in case of size effects
and stress gradients, and thus they could result in in-vivo fractures of devices. Moreover, most of the
available numerical approaches for the fatigue-life assessment of stents do not dispose of adequate criteria,
i.e., identified on appropriate experimental data in terms of size and notch effects.

Accordingly, the aim of the present work is to provide an in-depth analysis of the fatigue-life assess-
ment of microsize components for the design of stents manufactured by laser cutting. This is realized by
revisiting the shakedown concepts and by taking into account several aspects characterizing stents, as the
complex material behavior, size effects, and stress concentration features.

The practical difficulties of testing microsize specimens and the inadequacy of fatigue data related to
macroscopic specimens lead us to critically investigate and analyze two experimental campaigns available
from the literature by Wiersma et al. (2006); Wiersma and Taylor (2005) and Donnelly (2012), on 316L
stainless steel microscopic smooth and notched components, produced with the standard procedure applied
in the stent manufacturing industry.
We complete the reported data by using the global computational approach described in Chapter 10. In par-
ticular, in the fatigue analysis, in case of elastic shakedown, we focus on the fatigue criterion by Dang Van
(1999) and, in case of plastic shakedown, on fatigue crack initiation criteria associated with hot-spot as well
as mean or volume element approaches, i.e., the Manson-Coffin criterion (Coffin, 1953; Manson, 1953),
the dissipated energy per cycle criterion (Charkaluk and Constantinescu, 2009; Korsunsky et al., 2007),
and a modified version of the dissipated energy criterion (Amiable et al., 2006, 2009a,b).

The discussion of the shakedown state, resulting from the elastoplastic mechanical analysis, allows to
investigate several fatigue criteria for infinite and finite lifetime, in particular distinguishing between high-
cycle, very high-cycle, and low-cycle fatigue regimes (denoted, respectively, as HCF, VHCF and LCF).
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We calibrate such criteria on the cited experimental data and therefore, we are able to provide a set of
criteria that can be used to numerically predict the fatigue-life of cardiovascular 316L stainless steel stents.
The obtained results assess the suitability of standard prediction methods, normally used for macroscopic
components, for µm-size components and give a new insight into the treatment of fatigue issues in µm-size
components.

13.2 316L steel: material and fatigue experimental data

The present Chapter focuses on 316L austenitic stainless steel with chemical composition and thermo-
mechanical properties given in Tables 13.1 and 13.2; see (Lê, 2013) for details.
Before entering into the details of the global computational approach adopted in the present work, this Sec-
tion describes the main results of the two extensive experimental campaigns conducted on 316L specimens
of micrometric size by Wiersma et al. (2006); Wiersma and Taylor (2005) and Donnelly (2012).

Element C Mn Si S P Ni Cr Mo Cu N
Mass

0.024 1.86 0.36 0.0045 0.026 11.6 17.2 2.55 - -
content [%]

Table 13.1: Chemical composition (wt%) of 316L austenitic stainless steel (Lê, 2013).

Property Unit Values

T ◦C 20 50 100 150 200 250 300 350
ν − 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
E 103 MPa 197 195 191.5 187.5 184 180 176.5 172
α 10−6/ ◦C 15.54 16.0 16.49 16.98 17.47 17.97 18.46 18.95
λ

ρC
10−6m2s−1 3.89 3.89 3.89 3.94 3.99 4.06 4.17 4.26

λ W/m ◦C 14.0 15.2 15.4 15.8 16.6 17.3 17.9 18.6

Table 13.2: Thermo-mechanical properties of 316L austenitic stainless steel (Lê, 2013).

13.2.1 Experimental tests by Wiersma et al. (2006); Wiersma and Taylor (2005)

Wiersma et al. (2006); Wiersma and Taylor (2005) carried out a complete experimental campaign on
316L stainless steel specimens taking the form of smooth and notched round/rectangular bars (see Fi-
gures 13.4(a)-(d) and Tables 13.3 and 13.4).
Specimens were produced with the standard procedure applied in the stent manufacturing industry: (i) laser
cutting; (ii) vacuum anneal treatment or not; (iii) electro-polishing. The size of the tested specimens was
approximately 0.1 mm, thus comparable to that characterizing industrially produced stents. Moreover, the
cross-section of the tested specimens contained around 10 grains.

Monotonic tensile test results are represented in terms of stress-strain curves in Figure 13.5(a) and
mechanical properties are reported in Table 13.5. The grain size and hardness values provided in Table
13.5 are identical for the macroscopic and microscopic specimens, confirming that the material itself is
identical. The stress-strain curves show that µm-size annealed specimens, when compared to macroscopic
specimens, display lower values of yield and ultimate tensile strengths and strain to failure, as well as larger
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Figure 13.4: Geometries of the 316L µm-size notched specimens tested by Wiersma et al. (2006); Wiersma
and Taylor (2005) (b is the net section; s the thickness; d the notch depth; R the fib-slot; H the hole radius;
L the slot length).

Fatigue Experimental
Specimen Features ratio fatigue limit

(R) [MPa]

MACRO

Smooth
Round bar

(D = 7.5 mm, gauge length 25 mm)
0.1 420

Notched
Round bar

(D = 12 mm, circumf. V-shaped notch of
0.1

depth 1 mm, root radius 0.08 mm)
0.8 150

Table 13.3: Summary of tests on macroscopic 316L specimens and of fatigue limits by Wiersma et al.
(2006); Wiersma and Taylor (2005).
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Fatigue Experimental
Specimen Features ratio fatigue limit

(R) [MPa]

MICRO

Smooth
Rectangular bar

(width 0.1 mm, thickness 0.09 mm)
0.1 420

50-notch
Rectangular bar

(net section of 0.11 mm, thickness 0.09 mm, 0.1 360
notch depth 0.05 mm)

100-notch
Rectangular bar

(net section of 0.11 mm, thickness 0.09 mm, 0.1 355
notch depth 0.1 mm)

145-notch
Rectangular bar

(net section of 0.11 mm, thickness 0.09 mm, 0.1 350
notch depth 0.145 mm)

50-fib
Rectangular bar

(net section of 0.11 mm, thickness 0.09 mm, 0.1 320
notch depth 0.05 mm, slot of 0.001 mm)

60-hole
Thin-walled tube

(outer diameter 1.7 mm, wall thickness 0.09 mm, 0.1 250
hole radius 0.06 mm)

400-slot
Thin-walled tube

(outer diameter 1.7 mm, wall thickness 0.09 mm, 0.1 120
slot length 0.4 mm)

1500-slot
Thin-walled tube

(outer diameter 1.7 mm, wall thickness 0.09 mm, 0.1 115
slot length 1.5 mm)

Table 13.4: Summary of tests on µm-size 316L specimens and of fatigue limits by Wiersma et al. (2006);
Wiersma and Taylor (2005).

values of reduction in area before failure, thus demonstrating a size effect. Therefore, one can conclude that
for annealed material decreasing specimen size reduces strength but increases ductility. On the contrary,
unannealed specimens show a higher strength and lower ductility.

Fatigue tensile tests were carried out using a sinusoidal loading cycle with R ratios varying from 0.1

to 0.8 and are summarized in Tables 13.3 and 13.4. Figures 13.5(b)-(d) show fatigue tensile test results in
terms of the applied stress range and the number of cycles to failure. The reported applied stress level for
specimens with stress concentrations (notches or slots) is a mean stress level computed as the ratio between
the applied force and the net area. Tables 13.3 and 13.4 summarize the obtained fatigue limits, defined as
the values of the stress range for which the average number of cycles to failure is 2 · 106.
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Figure 13.5: Results from the experiments by Wiersma et al. (2006); Wiersma and Taylor (2005). (a) Stress
vs. strain diagram from monotonic tensile tests. Net stress range vs. number of cycles to failure diagram
from fatigue tensile tests on (b) smooth macroscopic and µm-size specimens; (c)-(d) notched µm-size
specimens.

Specimen Grain Yield Ultimate Hardness Strain to Reduction
size [mm] strength tensile [Vickers] failure in area [%]

(0.2% proof) strength
[MPa] [MPa]

MACRO 0.0115 396 754 186 0.60 73
MICRO 0.0105 315 580 170 0.37 87
MICRO - 680 780 312 0.05 -

(unannealed)

Table 13.5: Material properties from monotonic tensile tests by Wiersma et al. (2006).
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13.2.2 Experimental tests by Donnelly (2012)

Donnelly (2012) carried out a complete experimental campaign on 316L stainless steel specimens taking
the form of smooth rectangular bars (see Table 13.6).
Again, specimens were produced with the standard procedure applied in the stent manufacturing industry:
(i) laser cutting; (ii) vacuum anneal treatment; (iii) seamless tubing; (iv) electro-polishing. The size of
the tested specimens ranged from 0.05 to 0.15 mm, thus comparable to that characterizing industrially
produced stents. The number of grains per cross-section ranged from 5 to 15.

Fatigue tensile tests were carried out using a push-pull traction cycle with R ratio of 0.5 and are sum-
marized in Table 13.6. Figures 13.6(a) and (b) show the results of the monotonic and fatigue tensile tests,
where the fatigue limit is defined as the value of the stress amplitude for which the average number of
cycles to failure is 107. The fatigue limit decreases for the 50 µm specimen, which can be associated to a
size effect.

Fatigue Experimental
Specimen Features ratio fatigue limit

(R) [MPa]

MICRO

Smooth Rectangular bar
50 µm (width 0.05 mm, thickness 0.06 mm)

0.5 120

Smooth Rectangular bar
75 µm (width 0.075 mm, thickness 0.06 mm)

0.5 150

Smooth Rectangular bar
100 µm (width 0.1 mm, thickness 0.06 mm)

0.5 150

Smooth Rectangular bar
150 µm (width 0.15 mm, thickness 0.06 mm)

0.5 150

Table 13.6: Summary of tests on µm-size 316L specimens and of fatigue limits by Donnelly (2012).

13.3 316L steel: constitutive law and mechanical analysis

In order to critically investigate the described experimental campaigns, this Section presents the first step
of the adopted global computational approach, that is, a mechanical analysis to calculate the shakedown
or stabilized mechanical state. In particular, we describe first our modeling assumptions and the adopted
constitutive law; then, we present the mechanical analysis performed with the finite element (FE) method.
Models and analyses are realized using the object-oriented FE program, Cast3M; see, e.g., (Cast3M, 2013).

13.3.1 Modeling assumptions

The cyclic behavior of 316L stainless steel shows exceptional ductility and a complex evolution which can
be described by using a series of superposed hardening laws, see, e.g., (Alain et al., 1997; Gerland and
Violan, 1986; Pham et al., 2011; Polak et al., 1994).

In the following, we adopt the simplifying view, shown in Figure 13.7, as proposed initially by Skelton
(1991, 1993) and described in Section 12.2.1. During the saturation phase we assume that the structure has
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Figure 13.6: Results from the experiments by Donnelly (2012). (a) Stress vs. strain diagram from mono-
tonic tensile tests; (b) stress amplitude vs. number of cycles to failure from fatigue tensile tests on µm-size
specimens.

reached an asymptotic limit cyclic (plastic shakedown) which is described by the constitutive law and can
be computed numerically on the structure under scrutinity.
Moreover, we reasonably admit that the mechanical response at Nf = Nfin/2 lies within the stabilized
period and corresponds to material behavior identified for our computational needs (see Figure 13.7). This
is compatible with the fatigue analysis where characteristics used in the interpretation are equally taken
after Nfin/2 cycles.
Such an approach neglects the fine description of real material behavior (Alain et al., 1997; Gerland and
Violan, 1986; Pham et al., 2011; Polak et al., 1994) and leads to an approximate error of about 5% in the
computed stress level, which is of the order of magnitude of other uncertainties in the modeling. Similar
assumptions have already been successfully used for thermo-mechanical fatigue predictions of 304L steel
behavior (Amiable et al., 2006, 2009a,b) or other steels (Skelton, 1991, 1993).

Lo
ad

Ncycles

Micro crack initiation

Nsat N tan N fin

= Material data

= Model

Macro-crack initiation

Micro crack propagation

Nf

Final failure

Figure 13.7: Schematic representation of the cyclic material behavior adopted in the present approach; see
also (Skelton, 1991, 1993).

Another modeling assumption concerns size effects and the application of a continuous model to a
structure with sizes close to the grain size. We assume that the present analysis will provide a typical
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’mean’ answer of the structure and that the inherent variability of the properties of the microstructure will
provide the spread of the fatigue lifetime. However, such an aspect is not treated here and will be the object
of future work.
Moreover, since an important feature of cardiovascular stent applications is given by their small size, where
the size of the structure is close to that of the representative volume element, one could reasonably suggest
that an appropriate model should include crystal plasticity. However, this would further imply that the
microstructure is precisely known, or that a Monte Carlo method need to be employed to estimate the
solution for different grain orientations (Morhácová, 1995). Here, we consider a homogenized macroscopic
approach and we further assume that size effects are taken into account through the fatigue-life estimations
based on µm-size experiments.

13.3.2 Constitutive law for 316L stainless steel

The elastoplastic constitutive model has a J2 yield function and non-linear isotropic and kinematic harde-
ning (with one kinematic center) (Benallal and Marquis, 1987; Chaboche et al., 1979; Krempl and Khan,
2003; Lemaitre and Chaboche, 1994). On the one side, isotropic hardening controls the rate at which the
stabilized response is achieved, by allowing yield surface expansion and thus, by defining the evolution
of stress magnitudes reached in a cyclic stress-strain response; on the other side, kinematic hardening in-
fluences the shape of the stabilized hysteresis curve, by allowing yield surface displacement and thus, by
introducing a back stress into the cyclic stress-strain response, which reduces yield stress upon reversal of
loading.

The multiaxial equation for the back stress tensor, X, is defined by:

Ẋ =
2

3
C (p) ε̇εεp − γXṗ (13.1)

with C (p) = C∞ (1 + (ψ − 1) exp−ωp) and ṗ =
√

2/3 ε̇εεp : ε̇εεp, where εεεp is the plastic strain tensor, p
is the accumulated plastic strain, and C∞, ψ, γ, and ω are kinematic constants. The isotropic hardening
function, R = R (p), is given by the following relation:

Ṙ = b (R∞ −R) ṗ (13.2)

where R∞ is the saturated value of isotropic hardening and b the rate of decay for isotropic hardening. The
yield surface, f = f(σ,X, p), is defined by the classical function:

f =

√
3

2
(s−X) : (s−X)−R0 −R (13.3)

where s is the deviatoric tensor for stress and R0 the initial yield stress. The evolution law for the plastic
strain, εεεp, takes the form:

ε̇εεp =
3

2
ξ̇

s−X√
3

2
(s−X) : (s−X)

(13.4)

In the absence of direct cyclic measurements on the fatigue experiments, we identify model parameters
on the experiments by Lê (2013), consisting of uniaxial strain controlled tension tests with variable ampli-
tude loading on cylindrical specimens. Table 13.7 lists the adopted constitutive model parameters.
Figures 13.8(a) and 13.8(b) present the monotonic and stabilized stress-strain curves generated by the
model with parameters of Table 13.7. The order of magnitude of the numerical stresses and strains with
respect to the experimental ones is illustrated in Figures 13.8(a) and 13.8(b) through a comparison with
the monotonic experimental curves obtained by Wiersma et al. (2006); Wiersma and Taylor (2005) and
Donnelly (2012). As it can be observed, the numerical monotonic and stabilized curves lie within the
experimental stress range.
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Parameter Description Value Unit

E Young modulus 196000 MPa
ν Poisson ratio 0.3 -
R0 Initial yield stress 211 MPa
R∞ Saturated value of isotropic hardening 231 MPa

b Decay rate for isotropic hardening 6.69 -
C∞ Kinematic constant 67050 MPa
γ Kinematic constant 218 -
ψ Kinematic constant 0.73 -
ω Kinematic constant 0.91 -

Table 13.7: Summary of the adopted model parameters for 316L stainless steel (Lê, 2013).
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Figure 13.8: (a) Comparison between monotonic stress-strain tensile curves obtained by the adopted model
and by Wiersma et al. (2006); Wiersma and Taylor (2005) and Donnelly (2012); (b) stabilized hysteresis
curve generated by the adopted model compared to monotonic tensile curves by Wiersma et al. (2006);
Wiersma and Taylor (2005) and Donnelly (2012).

13.3.3 Mechanical analysis

A complete series of elastoplastic FE analyses is performed on each specimen in accordance to the loading
cycle of experiments (Donnelly, 2012; Wiersma et al., 2006; Wiersma and Taylor, 2005). In the case of
notched specimens, a preliminary analysis is accomplished in order to asses the accuracy of the solution at
the notch tip. The mesh refinement is stopped when the elastic solution converges and, therefore, correctly
represents the solution.

We consider the notched specimens of Figures 13.4(a)-(d) and we generate all the meshes for the spe-
cimens taking the form of rectangular bars (i.e., the 50-notch, 100-notch, 145-notch, and 50-fib specimens)
using two-dimensional 6-node quadratic plain stress elements, due to the lack of constraint in the thickness
direction of these specimens. Then, we generate the meshes of the specimens taking the form of tubes (i.e.,
the 60-hole, 400-slot, and 1500-slot specimens) using three-dimensional 20-node quadratic brick elements.

According to the symmetry of the problem, we model only one quarter of each specimen, except for the
50-fib specimen for which we model only one half, as shown in Figures 13.9(a)-(d). The finest zone of the
mesh corresponds to the notched zone of the specimen and the elements in this part of the mesh are refined
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depending on the dimension of the notch radius and of the grain size. In particular, specimens are meshed
using 4662 elements for the 50-notch, 6582 for the 100-notch, 9068 for the 145-notch, 75000 for the 50-fib,
61624 for the 60-hole, 23346 for the 400-slot, and 25473 for the 1500-slot, as shown in Figures 13.9(a)-
(d). Compared to the grain size, we assume approximately 5 elements per grain size. Consequently, the
smallest element size at the root of the notch is characterized by an element size/notch radius ratio ranging
between 0.0013 and 0.04. To estimate possible errors due to large spatial gradients, we test finer meshes
and we can report that refining mesh above the present limit causes an important increase of computing
time without a noticeable improvement of the results (see Section 13.3.4 for details).

(a) (b)

(c) (d)

Figure 13.9: Adopted meshes for the specimens of Figures 13.4(a)-(d). 2D quadratic plain stress elements
for the (a) notch and (b) fib specimens; 3D quadratic brick elements for the (c) hole and (d) slot specimens.
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13.3.4 Discussion on results

As a result of the conducted elastoplastic FE analyses, we obtain elastic shakedown for the experiments on
smooth specimens by Wiersma et al. (2006); Wiersma and Taylor (2005) and Donnelly (2012) and plastic
shakedown for the experiments on notched specimens by Wiersma et al. (2006); Wiersma and Taylor
(2005).

In order to avoid possible material failures, we first compare the computed strains to the experimental
strains to failure (see Table 13.5) and to the strains of the monotonic curves of Figures 13.8(a) and 13.8(b).
The computed strains lie in the range 0.01-0.1 for all the specimens and loading conditions, thus avoiding
possible premature failures.

Figure 13.10 shows the distribution of the dissipated energy, W p, at the stabilized cycle, defined as
follows:

W p =

∫
cycle

σ : ε̇εεpdt (13.5)

for the 50-notch specimen of Figure 13.4(a), subjected to a net pressure range of 360 MPa (see Figure
13.5(c)). As it can be observed, plasticity is localized in a very small region of about 0.01 mm (grain
size) around the notch, where W p assumes a maximum value of about 1 MPa; the remaining part of the
specimen presents an elastic shakedown state and no W p is manifested. The dissipated energy, W p, is also
plotted along the edge AB in Figure 13.10. Moreover, Figure 13.11 shows how mesh refinement does not
allow noticeable improvements of the results in terms of dissipated energy.
The 100-notch and 145-notch specimens present similar results since they have the same net section.

Wp [MPa]

y

x B

1

0

0.5

A

B

A

Figure 13.10: Results of the mechanical analysis for the 50-notch specimen subjected to a net pressure
range of 360 MPa. Distribution of the dissipated energy, W p, in the specimen (left) and along the edge AB
(right).

Figure 13.12 shows the distribution of the dissipated energy, W p, in the 50-fib specimen of Figure
13.4(b), subjected to a net pressure range of 320 MPa (see Figure 13.5(c)). In such a case, plastic effects
are distributed in a very small zone of only 0.001 mm (1/10 grain size) around the smaller notch (point
A), where W p assumes a maximum value of 6 MPa, evidencing elevated gradient effects. Plastic effects
are also visible around the bigger notch (point B) where, however, W p assumes a maximum value of about
0.5 MPa, comparable to the one obtained for the 50-notch specimen. The dissipated energy, W p, is also
plotted along the edge AB in Figure 13.12.

The reported observations for the notch specimens are confirmed by the results of a linear elastic ana-
lysis conducted on each notched specimen to evaluate the stress concentration factor, Kt, defined as the
ratio between the peak stress, σpeak, at the root of the notch and the nominal stress, σnom, which would be
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A

B

Figure 13.11: Results of the mechanical analysis for the 50-notch specimen subjected to a net pressure
range of 360 MPa. Comparison between two mesh refinement in terms of the dissipated energy, W p, along
the edge AB.

present if a stress concentration did not occur (Pilkey and Pilkey, 2008):

Kt =
σpeak
σnom

(13.6)

In particular, we obtain a value of approximately 2.4 for the 50-notch, 100-notch, and 145-notch specimens
(in accordance with the values provided in (Pilkey and Pilkey, 2008)) and of 6 for the 50-fib specimen.

A B

A

B

Wp[MPa]

y

x

8

4

0

Figure 13.12: Results of the mechanical analysis for the 50-fib subjected to a net pressure range of 320

MPa. Distribution of the dissipated energy, W p, in the specimen (left) and along the edge AB (right).

Figure 13.13(a) shows the distribution of the dissipated energy, W p in the 60-hole and 1500-slot spe-
cimens of Figures 13.4(c)-(d), subjected to a net pressure range of 250 and 115 MPa, respectively (see
Figure 13.5(d)). The values assumed by the dissipated energy are higher for the 1500-slot specimen,
notwithstanding the lower load, and additionally, are distributed in a very small zone. In this case, the
stress concentration factor, Kt, assumes a value of approximately 3 for the 60-hole, 6 for the 400-slot, and
10 for the 1500-slot specimen.
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Figure 13.13: Results of the mechanical analysis in terms of the dissipated energy, W p, for the (a) 60-hole
subjected to a net pressure range of 250 MPa; (b) 1500-slot subjected to a net pressure range of 115 MPa.

13.4 316L steel: fatigue analysis

This Section presents the second step of the adopted global computational approach, i.e., the fatigue ana-
lysis to compute the number of cycles before failure. Such an analysis is based on the investigation of the
stabilized cycle obtained within the mechanical analysis described in Section 13.3.3. In particular, depen-
ding on the nature of the shakedown cycle, i.e., elastic or plastic, we use a Dang Van (1999) or LCF crack
initiation (Amiable et al., 2006, 2009a,b; Charkaluk and Constantinescu, 2009; Korsunsky et al., 2007)
criterion, respectively. All the criteria are calibrated on the described experimental campaigns in order
to provide a set of criteria that can be used to numerically predict the fatigue-life of cardiovascular 316L
stainless steel stents.

13.4.1 Elastic shakedown: Dang Van criterion

The classical Dang Van (DV) criterion (Dang Van, 1999) has been described in Section 11.3.2. Without
entering into details (see Section 11.3.2), a simple passages between the macroscopic and the mesoscopic
scale allow to state that the lifetime is infinite if the mesoscopic shear stress, τµ (t), and the hydrostatic
stress, σh (t), satisfy the following inequality in all the points of the structure (subscript µ stands for
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mesoscopic variables):

max
t
τµ (t) + α∞σh (t) ≤ β∞ (13.7)

where α∞ and β∞ are material parameters (subscript∞ stands for infinite lifetime). Such parameters are
usually deduced from two Wöhler curves related to smooth specimens, giving the fatigue limit in alternated
torsion and fully reversed bending. In general, the Wöhler curves are not defined for an infinite number of
cycles but rather for 106-107 cycles. Thus, in the following, we indicate these coefficients as αN and βN ,
where subscript N stands for finite lifetime (Ferjani et al., 2011a,b; Wackers et al., 2010).

Material parameters, αN and βN , can be also calibrated by considering two uniaxial cyclic loadings
with respective ratios R1 and R2 and fatigue limits fR1

and fR2
. In the simple case of a cyclic uniaxial

bending loading of R ratio, expressed in the classical form σxx (t) = σa sinωt + σm, we derive the
following equation:

σa
2

+ αN
σa
3

(
1 +

1 +R

1−R

)
= βN ∀R (13.8)

which can be generalized for two different loadings of ratios R1 and R2, as follows:

fRi

2
+ αN

fRi

3

(
1 +

1 +Ri
1−Ri

)
= βN for i = 1, 2 (13.9)

The following expressions for αN and βN are then obtained:

αN =
3

4

fR2
− fR1

fR1

1−R1
− fR2

1−R2

βN =
fR1

fR2

fR1

1−R1
− fR2

1−R2

R1 −R2

2 (1−R1) (1−R2)

(13.10)

The DV parameters, αN and βN , are calibrated by using the experimental data on the smooth rectan-
gular bars of 75, 100, and 150 µm widths, resulting in an elastic shakedown state (see Tables 13.4-13.6).
The calibrated DV parameters refer to 107 cycles (i.e., N = 107) or to an equivalent stent implant period
of approximately 8 months, instead of the requested 108 cycles (US Food and Drug Administration, 2010).
We however remark that 107 cycles have already been considered as an infinite lifetime as, for example,
in (Pelton et al., 2008; Subash, 1998), coherently with the definition given in (Donnelly, 2012; Wiersma
et al., 2006; Wiersma and Taylor, 2005). Although specimens tested by Wiersma et al. (2006); Wiersma
and Taylor (2005) and Donnelly (2012) refer to a fatigue-life of 2 · 106 and 107 cycles, respectively, we
could set N = 107 for the specimens used for the calibration, since the slope of the fatigue curves of
Figure 13.5(b) is almost horizontal (Wiersma et al., 2006; Wiersma and Taylor, 2005). For safety reasons,
we assume a reduced fatigue limit of 400 MPa for the specimens tested by Wiersma et al. (2006); Wiersma
and Taylor (2005) (see Table 13.4).
The calibrated DV parameters follow:{

αN = 0.4821

βN = 171.4286 MPa
(13.11)

Figure 13.14 represents the diagram in terms of the mesoscopic shear stress, τµ, and the hydrostatic
stress, σh, where the calibrated DV line (red smooth line) and the loading paths generated by the simu-
lations of the experimental specimens of 75, 100, and 150 µm widths are represented. The maximum
values for the hydrostatic stress are generated by the specimens tested by Donnelly Donnelly (2012) since
presenting high values of mean stress, while the highest mesoscopic shear stresses are generated by the
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specimen tested by Wiersma et al. (2006); Wiersma and Taylor (2005), presenting a higher load amplitude.
Additionally, Figure 13.14 shows the calibrated DV line (red dot line) related to the specimen of 50 µm
width, which presents a lower value of the fatigue-life due to size effects (Donnelly, 2012). As additional
data for another R ratio are absent in this case, we construct such a DV line assuming the same slope as in
the 75-150 µm width case.

10   cycles

7

DV line - 50 mm

DV line - 75/150 mm

10   cycles

7

Figure 13.14: DV lines in the hydrostatic-mesoscopic stress plane and loading paths from the tensile expe-
riments used for calibration (Donnelly, 2012; Wiersma et al., 2006; Wiersma and Taylor, 2005).

13.4.2 Plastic shakedown: fatigue crack initiation criteria

In the present Section, we focus on the following fatigue crack initiation criteria: (i) the Manson-Coffin
criterion (Coffin, 1953; Manson, 1953); (ii) the dissipated energy per cycle criterion (Charkaluk and Con-
stantinescu, 2009; Korsunsky et al., 2007); and (iii) a modified version of the dissipated energy criterion
(Amiable et al., 2006, 2009a,b). Such criteria have been described in Section 12.3 and are denoted, re-
spectively, as Φ∆εp , ΦWp , and ΦWσh

, in the following. Moreover, in order to tackle the difficulties related
to the high gradients of the fields close to the notched regions, we adopt a volumetric approach in the
dissipated energy per cycle criterion. In the following, we compare the obtained results.

Discussion on results

The identification of material parameters, a, b and c, introduced in Eqs. (12.2), (12.4) and (12.6), is a re-
gression problem which can be easily solved using existing solvers (e.g., the fitting tools, cfootl and sftool,
in Matlab).
Such parameters are identified by postprocessing the values of the fatigue damage parameters, ∆εp, W p,
and (W p + aσmaxh ), computed at the root of the notch (hot-spot approach) or around the notch (volume-
tric approach). In particular, the volumetric approach consists in considering a process volume for fatigue
mechanisms (Dang Van et al., 2009; Maitournam et al., 2009) and in assuming such a volume to be a cylin-
der for the three-dimensional specimens (slot tubes) and a circle for the two-dimensional specimens (notch
bars) with the center corresponding to the root of the notch. We evaluate the radius of the cylinder/circle
by minimizing the differences between the experimental and predicted numbers of cycles.
We apply such an approach to the dissipated energy criterion, ΦWp , since averaging the dissipated energy
inside a process volume can be seen as a distribution of plastic localization around the notch. The size
of the radius which minimizes the differences between the experimental and predicted numbers of cycles
results of 0.01 mm (grain size).
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Criterion Approach a b c R2

Φ∆εp Hot-spot - -0.4214 0.6199 0.75
ΦWp Hot-spot - -0.4687 431.4 MPa 0.74
ΦWp Volume element - -0.6187 907.8 MPa 0.86
ΦWσh

Hot-spot 0.00203 -0.3641 137.1 MPa 0.76

Table 13.8: Calibrated material parameters, a, b, and c, and obtained correlation coefficient, R2.

Table 13.8 lists the calibrated parameters, a, b and c, for the considered criteria.
Figures 13.15(a)-(c)-(e) and 13.16(a) present the diagram in terms of the fatigue parameter and the expe-
rimental number of cycles to failure, while Figures 13.15(b)-(d)-(f) and 13.16(b) present the comparison
between the experimental and the estimated number of cycles to failure for both the hot-spot and volume-
tric approaches. The results can be placed in a scattered band with a factor of ±3 on the number of cycles
to failure, corresponding to the standard deviation.

As a first observation, the lifetimes predicted with the hot-spot approach are not well predicted by all
the criteria, while the volumetric approach gives very good results as the points are inside the ±3 factor on
the lifetimes. However, all the hot-spot criteria predict safely lower numbers of cycles to failure.

As it can be observed from Figures 13.15(b)-(d)-(f), the hot-spot approach fails into predicting the
fatigue limits of the 50-fib and 1500-slot specimens due to their high stress gradients and plastic strain
localization at a distance of only few microns near the notch (see Section 13.3).
This aspect has been also treated by Wiersma et al. (2006); Wiersma and Taylor (2005) who observed that
the three notched bar specimens (i.e., the 50-notch, 100-notch, and 145-notch bars) have the same fatigue
behavior in terms of net stress range (a fact which might be anticipated from basic notch theory, since the
stress field of these notches is almost identical as well), as reported in Table 13.4. On the contrary, the
fatigue limit of the 50-fib specimen is slightly lower. This has important consequences for the design of
microscopic components, because it implies that very small root radii can be used in components such as
stents, without compromising their fatigue behavior (Wiersma et al., 2006). Slotted tube specimens (i.e.,
the 60-hole, 400-slot, and 1500-slot tubes) show a decreasing fatigue limit with increasing slot length (see
Table 13.4).

Moreover, we observe that the dissipated energy criterion and its modified version present almost the
same results. This can be due to the fact that both these criteria based on values computed at the root of the
notch fail in case of high stress gradients. To this purpose, Figure 13.17 presents the diagram in terms of
the dissipated energy, W p, and the maximal hydrostatic stress, σmaxh , for all the specimens and shows very
high values of the hydrostatic terms for the 50-fib and 1500-slot specimens. We observe also that there is a
linear correlation between the dissipated energy and the maximal hydrostatic stress.

To compare accurately the prediction capabilities of the different criteria, we propose to use the corre-
lation coefficient, R2, corresponding to the linear association between experimental and computed fatigue
lifetimes. R2 is defined as in standard statistical textbooks (Di Bucchianico, 2008), as follows:

R2 = 1−
∑
j

(
Nexp
j −N comp

j

)2∑
j

(
Nexp
j −N

)2 (13.12)

where Nj is the number of cycles related to experiment j (subscripts exp and comp stand for the ex-
perimental and the computed values of the number of cycles, respectively), and N is the mean of the
experimental data.
Table 13.8 lists the computed correlation coefficients for each criterion. The obtained values lie in a rea-
sonable range of reliability for the criteria (see, e.g., (Tabibian et al., 2013) for comparison). However, the
results related to the hot-spot approach show relative low values of R2 ≈ 0.74-0.76, while the volumetric
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Figure 13.15: Hot-spot approach for the Φ∆εp , ΦWp , and ΦWσh
fatigue criteria. (a)-(c)-(e) Fatigue param-

eter vs. experimental number of cycles to failure; (b)-(d)-(f) estimated vs. experimental number of cycles
to failure.
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Figure 13.16: Volumetric approach for the ΦWp fatigue criterion. (a) Fatigue parameter vs. experimental
number of cycles to failure; (b) estimated vs. experimental number of cycles to failure.
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Figure 13.17: Dissipated energy, W p, vs. maximal hydrostatic stress, σmaxh , computed at the notch root.

approach R2 = 0.86. Consequently, all the hot-spot approach criteria are relatively equivalent for the life-
time prediction, while the volumetric approach demonstrates its capability in lifetime prediction of notched
µm-size specimens.

13.5 Conclusions

The present Chapter has explored the fatigue of stainless steel microsize components by analyzing expe-
rimental data from the literature. The specimens were either smooth or notched and presented features
similar to those characterizing cardiovascular stents. In fact, 316L stainless steel for biomedical devices
is subjected to conditions (e.g., HCF or VHCF loading and corrosive environment) completely different
from those characterizing standard applications as nuclear components, and additionally, it is employed in
structures of very small sizes (of the order of grain size).
The proposed work has investigated several fatigue criteria for infinite and finite lifetime, i.e., the fatigue
criteria by Dang Van and Manson-Coffin as well as the dissipated energy per cycle criterion and its modified
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version, associated with hot-spot as well as volume element approaches. The results have demonstrated
that the volume element approach is efficient in the presence of high stress gradients and size effects. The
provided criteria, calibrated on suitable experimental data, can be used in the numerical fatigue-life assess-
ment of cardiovascular 316L stainless steel stents.
In order to effectively demonstrate the reliability of the proposed criteria, next Chapter will focus on the
introduction of a computational approach which combines advanced numerical methods with fatigue-life
prediction methodologies and available material fatigue data to lay down the basis for the prediction of
fatigue-controlled service life of biomedical stents. The idea of introducing material variability as a prob-
ability density function will be the object of future work.
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Chapter 14

A computational approach for the
fatigue-life prediction of cardiovascular
balloon-expandable stents

This Chapter proposes the introduction of a reliable and general methodology for the numerical fatigue-
life assessment of cardiovascular balloon-expandable stents. To this purpose, the main idea is to combine
advanced computational methods and fatigue prediction techniques with available material fatigue data
in order to lay down the basis for a complete fatigue-life methodology for balloon-expandable stents. In
particular, the present Chapter investigates the fatigue behavior of a classical 316L stainless steel coronary
stent design (i.e., the Medinol/Boston Scientific NIR™stent) through a global computational approach
composed of a mechanical finite element analysis, followed by a fatigue analysis. After assuming an
appropriate material constitutive model and computing the loading of the stent during the implant, the
fatigue analysis is conducted through the application of the multiaxial high-cycle fatigue criterion by Dang
Van. Such a criterion is calibrated on experimental data on 316L stainless steel µm-size components, used
during industrial stent manufacturing, as reported in Chapter 13.

The Chapter is organized as follows. Section 14.1 starts with an introduction to the problem and
explains the motivations of the proposed work. Section 14.2 presents the mechanical analysis. Then,
Section 14.3 describes the fatigue analysis. Conclusions are finally given in Section 14.4.

14.1 Introduction and motivations

Cardiovascular disease has become a major global health care problem in the last decade. The advantage
of stenting intervention with respect to the classical bypass surgery has been largely demonstrated in the
treatment of heart disease (AHA, 2010).

Stents are small tube-like medical devices used to restore patency of blood vessels where the lumen area
is reduced due to atherosclerosis, a degenerative disease of the vessel wall. The stent acts as a mechanical
scaffold for the vessel and its implant is performed by a minimally invasive procedure inserting a catheter
through a small incision in the femoral artery.

Several materials, as the 316L austenitic stainless steel, the cobalt-chromium alloy or the NiTi-based
shape memory alloy, have been imposed as standard materials for cardiovascular stents (Bombac et al.,
2007; Disegi et al., 1999; Petrini and Migliavacca, 2011; Winters and Nutt, 2003). As an example, the
316L stainleess steel is used for the PalmazSchatz (Cordis) or the Medinol/Boston Scientific NIR™balloon-
expandable stents, thanks to its good properties in the fully annealed condition, e.g., well adapted mecha-
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nical characteristics (i.e., great ductility, high tensile strength, and a raised elastic limit), biocompatibility,
resistance to corrosion as well as fatigue performances (Winters and Nutt, 2003).

Although stent design is considered a relatively mature topic, recently, fatigue failure has emerged as
one of the main cause of stent drawback (Hibbert and O’Brien, 2011; Morlacchi et al., 2014; Shaikh et al.,
2008; Sianos et al., 2004). This indicates the need for a deeper understanding of fatigue and fracture failure
in microsize components and for a reliable fatigue design procedure.
In particular, stent fatigue investigation represents a complex task since these devices have to withstand
both their initial deployment within the artery, which involves large amounts of plastic strains, and the
long-term service loading induced by the pulsing blood pressure (Aziz et al., 2007; Dumoulin and Cochelin,
2000). Moreover, stents should survive at least for 10 years without exhibiting failure (US Food and Drug
Administration, 2010). This constraint translates into 400 million cycles during stent lifetime, since 70

artery pulses per minute impose 40 million cycles per year. Therefore, the design lies within the high- and
very high-cycle fatigue regime (denoted, respectively, as HCF and VHCF) (Schijve, 2009; Suresh, 1998).

The reliability or fatigue design of stents is, however, a complex task due to a series of conditions:
small-size of the devices, manufacturing-induced features, complex material behavior, corrosive environ-
ment. Stents are in fact manufactured either through welding of microscopic wires or through laser cutting
from thin-walled tubes, both leading to a final truss-type structure composed of struts connected by hinges,
whose small thicknesses generally belong to the range of 50-150 µm (Harewood and McHugh, 2007; Mur-
phy et al., 2006, 2003; You et al., 2006). Both these manufacturing processes induce the presence of stress
concentration features, in particular, of small radius connections affecting stent fatigue behavior (Wiersma
et al., 2006). We also remark that µm-size components like stents have the same order of magnitude as
microstructure of steel alloys, i.e., the specific ratio between the length scales of the mesoscopic structure
of grains and of the macroscopic structure of the device, characterized by approximately 10-20 grains in
the section, makes the application of standard bulk models inadequate (Connolley et al., 2005; Harewood
and McHugh, 2007; Murphy et al., 2006, 2003; You et al., 2006). Moreover, despite the importance of such
applications and the associated difficulty, the literature dispose of few experimental data sets (Donnelly,
2012; Glenn and Lee, 1997; Szymczak et al., 2009; Weiss and Meissner, 2006; Weiss et al., 2009; Wiersma
et al., 2006; Wiersma and Taylor, 2005).

In order to bridge the gap between the existing experiments and the fatigue design of such components,
several computational tools, as finite element (FE) analysis, have already proved extensively their useful-
ness for stent design, e.g., (Auricchio, 2001; Cao et al., 2009; De Beule et al., 2008; Grogan et al., 2013;
Ju et al., 2008; Martin and Boyle, 2013; Wang et al., 2009). Among the others, only a few works deal
with the numerical fatigue-life assessment of stents, e.g., (Azaouzi et al., 2012b; Barrera et al., 2012; dos
Santos et al., 2012; Harewood and McHugh, 2007; Li et al., 2010; Marrey et al., 2006; McGarry et al.,
2004; Perry et al., 2002; Schievano et al., 2010; Sweeney et al., 2012), which however are not calibrated
from real precise experiments on stents. As an example, the interesting work by Sweeney et al. (2012)
introduces a refined FE 316L stent fatigue methodology based on crystal plasticity theory and some sim-
ple criteria calibrated on experiments related to macroscopic specimens (Lemaitre and Chaboche, 1994).
Additionally, many computational modeling works on stents directly apply bulk material properties to the
structure (Auricchio, 2001; Azaouzi et al., 2012b; Barrera et al., 2012; dos Santos et al., 2012; Li et al.,
2010; Marrey et al., 2006; Schievano et al., 2010). Among these works, the recent work by dos Santos
et al. (2012) presents a numerical lifetime procedure for the analysis of balloon-expandable stainless steel
stents by incorporating a two-scale plasticity-damage model (Lemaitre et al., 1999). Such an approach,
however, requires the calibration of several parameters, which has been done by referring to experimental
data on macroscopic specimens. The work by Barrera et al. (2012) applies the multiaxial HCF criterion
by Dang Van (1999) to cardiovascular stents. Such a criterion, based on a micro-macro approach, success-
fully meets the need of microstructural representation in crack initiation predictions. However, the work by
Barrera et al. (2012) does not investigate the experimental data used for the criterion calibration (Wiersma
et al., 2006; Wiersma and Taylor, 2005) and assumes the same fatigue limits in bending and torsion. The
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work by Azaouzi et al. (2012b) predicts the fatigue-life of 316L stainless steel stents through the well-
known Goodman diagram and the theory of critical distance based on the results provided by Wiersma
et al. (2006); Wiersma and Taylor (2005). The Goodman parameters are again calibrated on experimental
data by Wiersma et al. (2006); Wiersma and Taylor (2005) without a detailed investigation.

The aim of the present Chapter is the introduction of a computational approach for the lifetime assess-
ment of a classical coronary stent design (i.e., the Medinol/Boston Scientific NIR™stent). The main idea is
to adapt and interpret classical notions, models, and techniques as well as to consider suitable experimental
data for the calibration of stent fatigue criteria, in order to obtain a reliable, general and coherent fatigue
prediction methodology for biomedical balloon-expandable stents.

The proposed methodology is based on the introduction of a global computational approach, composed
of a three-dimensional mechanical FE analysis, followed by a fatigue analysis. The mechanical FE analysis
calculates the shakedown or stabilized mechanical state of the stent under investigation, by assuming the
structure, loading, and material behavior known. The fatigue analysis is then based on the investigation of
the stabilized state obtained within the mechanical analysis and it is conducted by using the results pre-
sented in Chapter 13, where we proposed several fatigue criteria for the fatigue-life assessment of 316L
stainless steel stents, calibrated on the experimental data (Donnelly, 2012; Wiersma et al., 2006; Wiersma
and Taylor, 2005) on smooth and notched µm-size components, produced with the standard procedure ap-
plied in the stent manufacturing industry. In particular, we investigated the criterion by Dang Van (1999)
and several LCF crack initiation criteria (Amiable et al., 2006; Charkaluk and Constantinescu, 2009; Cof-
fin, 1953; Korsunsky et al., 2007; Manson, 1953).
Since the investigated stent results in an elastic shakedown state from the performed mechanical FE analy-
sis, we conduct the fatigue analysis through the application of the multiaxial HCF criterion by Dang Van
(1999). Such a criterion takes into account the micrometric size of biomedical components as well as ma-
terial monotonic and cyclic behavior.
The results from both the mechanical and fatigue analyses are compared to several results available from
the literature in order to assess the validity and reliability of the proposed methodology.

Consequently, the present work combines advanced computational methods with fatigue-life predic-
tion methodologies and available material fatigue data to lay down the basis for the prediction of fatigue-
controlled service life of biomedical balloon-expandable stents.

14.2 Mechanical analysis

In this Section we illustrate the mechanical analysis performed with the FE method to compute the loading
and the stabilized state of the stent during and after the implant.
In particular, we adopt a stent model resembling the design of the Medinol/Boston Scientific NIR™stent,
which is nowadays a classical coronary stent design. However, it is worth noting that the present study
aims at proposing a general numerical framework addressing the fatigue behavior of a generic stent design,
independently of the chosen shape or material of the stent.

14.2.1 Stent: geometrical modeling and mesh

The geometry of the adopted stent model is based on the information reported by Sweeney et al. (2012).
The generation of such a model is defined by a series of steps, detailed in the following.
We firstly create a planar computer aided design representation of the stent, using the software Rhinoceros
v.4.0 (McNeel & associates, Seattle, WA, USA). The unfolded geometry of the device can be constructed
by mirroring and replicating a primitive geometry, shown in Figure 14.1(a). The FE mesh is obtained by
meshing the primitive geometry as reported in Figure 14.1(b) and similarly by mirroring and replicating
it, as shown in Figure 14.1(c). The software used for this operation is Abaqus v.6.11 (Simulia, Dassault
Systems, Providence, RI, USA). The final mesh of the stent is presented in Figure 14.1(d).
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The whole stent model has an outer diameter of 0.876 mm and a length of 8.049 mm. As depicted in Figure
14.1(a), both strut thickness and width are approximately 0.10 mm. We remark that the characteristic
dimensions of the stent geometry are comparable to the dimensions (ranging from 0.05 to 0.15 mm) of the
specimens (Donnelly, 2012; Wiersma et al., 2006; Wiersma and Taylor, 2005), on which the considered
fatigue criteria have been calibrated (for details, see Chapter 13).
The mesh is defined by 89760 nodes and 57600 three-dimensional brick elements (C3D8) available in the
element library of the software Abaqus v.6.11, used as finite element analysis (FEA) solver. Taking into
account the grain size given in (Donnelly, 2012; Wiersma et al., 2006; Wiersma and Taylor, 2005), the
actual mesh has about 2 elements per grain.

(a) (b)

(c) (d)

Figure 14.1: Stent geometrical modeling and mesh: (a) primitive geometry; (b) mesh of the geometrical
unit of the design; (c) creation of the stent model by replicating and mirroring the mesh of the geometrical
unit along the plane; (d) final stent model.

14.2.2 Stent: constitutive modeling

The stent is assumed to be made of a 316L stainless steel. Since stent lifetime is affected by the initial de-
formation due to the crimp and deployment processes and by systolic-diastolic cyclic loading, the adopted
material model has to simulate both monotonic and cyclic behaviors of 316L stainless steel. In particular,
we adopt a J2 elastoplastic constitutive model with non-linear isotropic and kinematic hardening (with one
kinematic center), which facilitates computational studies of both monotonic and cyclic behaviors of 316L
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stainless steel.
The J2 continuum constitutive model has been described in Section 13.3.2 and it is already implemented

within the material library of the FEA software Abaqus v.6.11 and labeled by the keyword *Plastic, harde-
ning=COMBINED, number backstresses=1.

It is worth noting that we adopt a constitutive model calibrated on experimental data related to both
monotonic and cyclic behavior of 316L stainless steel. However, we make a simplifying assumption con-
cerning size effects and the application of a continuous model to a structure with sizes close to the grain
size, explained as follows. Since an important feature of cardiovascular stent applications is given by their
small size, where the size of the structure is close to that of the representative volume element, one could
reasonably suggest that an appropriate model should include crystal plasticity. This would further imply
that the microstructure is precisely known or that a Monte Carlo method is needed to estimate the solution
for different grain orientations (Morhácová, 1995). Therefore, in our work, we simply assume to consider
a homogenized macroscopic approach and that the size effect is taken into account through the fatigue-life
estimations based on µm-size experiments.

14.2.3 Vessel: geometrical modeling, mesh, constitutive modeling

The coronary artery is modeled as an idealized vessel represented by a thick-walled pipe with an initial
inner diameter of 2 mm, wall thickness 0.5 mm and length 14 mm.
The mesh model consists in 19552 nodes and 14508 hybrid three-dimensional brick elements (C3D8H)
available in the Abaqus v.6.11 element library.

The mechanical response of the artery wall is modeled using polynomial hyperelastic model, suitable
for incompressible isotropic materials and available in the software material library as *Hyperelastic; see
(SIMULIA, 2012). The adopted material parameters stem from the work by Lally et al. (2005, 2006), who
performed FEA of coronary stenting to investigate the impact of stent design on vessel tissue solicitation.

14.2.4 Analysis set-up

The device is first mounted onto an angioplasty balloon, through a radial crimping in order to ensure the
necessary grip between the device and the delivery system. Subsequently, the balloon/stent system is driven
to the target vascular region and, once in place, the balloon is inflated forcing the stent deployment. After
the acute elastic recoil, the stent acts as a scaffold of the vessel ensuring the lumen patency.

Although comprehensive simulation of stenting would embed all the previously described procedural
steps, i.e., crimping, delivery and deployment (Mortier et al., 2010), in the present study we neglect the
delivery stage for three specific reasons. From the mechanical point of view, the solicitations experienced
by the stent during crimping and deployment are more predominant when compared to those imposed by
the stent delivery. Furthermore, given the study aim, our main interest regards the pulsatile solicitation ex-
perienced by the stent after its implant. Nevertheless, such a choice reduces significantly the computational
cost of the analysis.
For such reasons, we split the stenting simulation in two analyses: the first one accounts for the stent crimp-
ing, while the second one addresses the simulation of stent deployment and the subsequent physiological
loading within the artery (i.e., fatigue loading).

Stent crimping

The FE model of this analysis accounts for two parts: the stent and a rigid cylinder, which is aimed
at imposing the reduction of the stent outer diameter; the rigid surface is discretized by 1280 4-node
quadrilateral surface elements (SFM3D4) and 1312 nodes.
The analysis is divided in two steps. In the first step the outer diameter of the rigid surface is reduced
from 0.9 mm to 0.72 mm through a displacement-driven strategy. At the same time, a surface-to-surface
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contact is activated between the outer surface of the stent and the inner surface of the rigid cylinder. In
particular, we adopt a frictionless contact characterized by hard contact pressure-overclosure relationship
for the normal component, enforced by linear penalty method (with 0.001 as a scale factor for the default
linear penalty stiffness). In the second step, the rigid cylinder is re-enlarged allowing the elastic recoil
of the stent, which however keeps partially crimped. At the end of the analysis the outer stent profile is
reduced from 0.876 mm to 0.758 mm. Appropriate boundary conditions are applied to some stent nodes to
avoid rigid motion.

Stent deployment and physiological loading

This second stage of the analysis has the final increment of the previous analysis as starting point, i.e.,
see Figure 14.2(a). In fact, the loaded and deformed configuration of the crimped stent is imported in the
simulation environment, which now consists of three model parts: i) the stent itself, ii) the vessel, and iii)
the balloon. The vessel and the balloon are modeled as previously discussed (see Section 14.2.3). The
balloon inflation is consequently modeled through a displacement-driven analysis where an uniform radial
displacement is imposed to the cylindrical rigid surface imposing the corresponding stent enlargement
through the contact with the inner stent surface.
The analysis is divided into the following steps:

1. vessel inflation: the arterial model is pressurized through the application of an internal pressure of
120 mmHg. Assuming a cylindrical coordinate system, axial and circumferential displacements of
the vessel ends are fixed, allowing only the radial displacement.

2. stent expansion: the balloon model is radially enlarged, allowing the stent expansion to the target
outer diameter of 3 mm, as shown in Figure 14.2(b). In this step two contact pairs are activated:
the first between the inner surface of the stent (slave surface) and the outer surface of the balloon
model (master surface) and the second between the inner surface of the vessel (slave surface) and the
outer surface of the stent (master surface). The contact settings are similar to those adopted for the
crimping analysis.

3. vessel deflation (diastole): in this step the contact between the balloon and the stent is deactivated
and the inner pressure reduced to 80 mmHg, thus mimicking the diastolic conditions and allowing
the stent/vessel system to reach the equilibrium after elastic recoil; see Figure 14.2(c).

4. vessel inflation (systole): the internal pressure of artery is again increased to 120 mmHg, thus simu-
lating the systolic condition, closing a loading cycle.

The analysis is then completed by ten loading cycles.

Considerations

It is worth noting that, as the first main goal of the present study is to propose a fatigue-life numerical
method for the analysis of balloon-expandable coronary stents, and not an accurate simulation of the stent
implant, the adopted modeling procedure does not take into account the actual in-vivo behavior of the stent.
More realistic simulations should account for patient-specific vessel geometry and anisotropy of the vessel
tissue (Mortier et al., 2010). Also regarding this point, although the inclusion of the balloon can provide
a more realistic representation of the transient deformation during the deployment (De Beule et al., 2008;
Gervaso et al., 2008), the balloon is herein modeled as an expanding cylinder. Further developments of
the present work will focus on the impact evaluation of these aspects on the computation of the stent stress
state and the related fatigue-life assessment.
As for the loading conditions, systolic-diastolic pulsatile pressure is not the only clinical force/deformation
mode that must be addressed in bench testing or analysis. Other cyclic deformation modes, such as arterial
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Figure 14.2: Simulation of stent deployment: a) initial configuration; b) maximum balloon expansion (the
contact between the balloon and the vessel is not activated); c) stent/vessel configuration after balloon
deflation.

bending, crushing, axial tension or compression, and torsion, can occur at various frequencies and phases,
appearing due to the different physiological forcing functions (e.g., cardiac, respiratory, locomotion), as
well as the physiological environment, in particular humidity and corrosion conditions, should also be
accounted for.

14.2.5 Discussion on results

Table 14.1 reports several outputs at different steps of the performed FE simulation, i.e., at crimping,
maximum balloon expansion, systole and diastole. In particular, we report the diameter of the central
section of the stent as well as the maximum and minimum values, among all the elements of the stent
model, of the von-Mises equivalent stress (MISES), equivalent pressure stress (PRESS), and equivalent
plastic strain (PEEQ).
As expected, the diameter of the stent increases from a value of 0.737 mm during crimping to a value
of 3.022 mm at maximum balloon inflation. The passage from systole to diastole results in a very low
diameter change of 0.002 mm. The von-Mises equivalent stress ranges between a minimum value of 0.898

MPa during crimping and a maximum value of 442.067 MPa at maximum balloon inflation. Similarly,
the equivalent pressure stress reaches its (absolute) maximum values at maximum balloon inflation and
presents almost constant values during systole and diastole. The presented results highlight very high
values of the equivalent plastic strain, especially at maximum balloon inflation, which slightly increase
during systole and remain constant during diastole. Such values evidence how both the initial deployment
of the stent within the artery and the long-term service loading induced by the pulsing blood pressure are
important steps which need to be accounted for during stent design and simulation.

In order to further investigate the results presented in Table 14.1, we focus on the distribution of the
variables of interest in a stent strut composed of two axialsymmetric units; the single unit is shown in
Figure 14.1(b).

Residual stresses introduced in the described analysis steps can be clearly seen in the von-Mises equi-
valent stress (MISES) distributions along the stent strut of Figure 14.3. In particular, we report three views
of the stent strut (indicated, respectively, as View 1, View 2, and View 3) at different steps of the FE simula-
tion, i.e., at crimping, maximum balloon expansion, systole and diastole.
After the elastic recoil, the von-Mises stress distribution remains mainly at the inner regions of the curved
stent strut sections (see View 1 and View 2 for crimping) and it is particularly concentrated along the
thickness of the strut with the lowest curvature radius (see View 3 for crimping). The highest stresses are
generated in the same regions at maximum balloon inflation (see View 1, View 2, and View 3 for max ex-
pansion). The von-Mises stress distribution during fatigue loading at systole and diastole peaks is almost
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Step Diameter [mm] MISES [MPa] PRESS [MPa] PEEQ [%]
Max Min Max Min Max Min

Crimping 0.737 249.745 0.898 138.640 -126.074 5.500 0

Max balloon
3.022 442.067 2.515 482.840 -475.611 95.800 0

expansion

Systole 2.760 421.852 3.386 252.984 -271.799 99.700 0

Diastole 2.758 441.905 3.806 252.071 -271.702 99.700 0

Table 14.1: Simulation outputs at different FE analysis steps. The following results are reported: diameter
of the central section of the stent and maximum and minimum values, among all the elements of the stent
model, of the von-Mises equivalent stresses (MISES), equivalent pressure stresses (PRESS), and equivalent
plastic strains (PEEQ).

the same and again shows the highest values at the inner regions of the curved stent strut sections (see View
1, View 2 and View 3 for systole and diastole).

Figure 14.3: Contour plot of the von-Mises equivalent stress (MISES) distribution [MPa] along the stent
strut. Three views of the stent strut (indicated, respectively, as View 1, View 2, and View 3) are reported
at different steps of the stent FE simulation, i.e., at crimping, maximum balloon expansion, systole and
diastole.

Contour plots of the equivalent pressure stress (PRESS) are presented in Figures 14.4(a) and 14.4(b) at
different analysis steps. The maximum values are again reached at maximum balloon inflation, as shown
in Figure 14.4(a), while decrease at diastole peak, as reported in Figure 14.4(b). Similarly to the von-Mises
stress distribution, the pressure distribution remains mainly at the inner regions of the curved stent strut



14.2. MECHANICAL ANALYSIS 215

sections and along the thickness. Such a concentrated distribution of both the von-Mises and pressure
stresses will affect the fatigue-life of these regions, as explained in the following Section.

Figure 14.4: Contour plot of the equivalent pressure stress (PRESS) distribution [MPa] along the stent strut
at different analysis steps: (a) at maximum balloon inflation; (b) at diastole peak.

As already mentioned above, high values of the equivalent plastic strain (PEEQ) are reached at the
maximum balloon expansion (see Table 14.1). This could imply a failure of material during initial de-
ployment of the stent rather than during fatigue loading. To this purpose, we propose to investigate also
the distribution of the equivalent plastic strain along the entire stent during the analysis steps. We remark,
moreover, that many works from the literature, dealing with stent fatigue, have mainly focused on variable
evolution during fatigue loading without analyzing a possible failure during deployment.
Figure 14.5 shows the histogram of the equivalent plastic strain at different analysis steps, i.e., at post
crimping, maximum balloon inflation, systole, and diastole. The frequency is defined as the ratio between
the number of elements, Nel, and the total number of elements of the mesh, Ntot. The values assumed by
the equivalent plastic strain during the analysis are divided into five intervals ranging from 0 to 100%. As
it can be observed, the major percentage of elements (about 90-95%) presents low equivalent plastic strain
values ranging from 0 to 20% at all the analysis steps. In particular, 93% of elements at post crimping,
67% of elements at maximum balloon inflation, and 65% of elements at diastole and systole present values
between 0 and 1%. Only few elements (0.0885% at max balloon inflation and 0.1163% at diastole and
systole), mainly located at the inner regions of the curved stent strut sections, show values of the equivalent
plastic strain in the range 80-100%.

Recalling the discussion of Section 14.1, the mechanical FE analysis allows to calculate the variables of
interest at the shakedown or stabilized mechanical state reached by the stent under investigation, to be then
used for the fatigue analysis. As a result of the mechanical FE analysis, we obtain a stabilized cycle under
elastic shakedown. This is particularly clear by recalling the results provided in Table 14.1 and Figure 14.5,
which show a constant value of the equivalent plastic strain during diastole and systole. To this purpose,
Figure 14.6 shows the equivalent plastic strain versus time diagram. Two curves are represented: the blue
curve is related to the point where the maximum value of equivalent plastic strain is reached among all
the mesh elements; the red curve is related to the point of the analyzed stent strut where the maximum
value of equivalent plastic strain is reached. In both cases, the equivalent plastic strain stabilizes on a limit
value, thus demonstrating the existence of a stabilized cycle for the stent, i.e., the occurrence of elastic
shakedown.
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Figure 14.5: Histogram of the equivalent plastic strain (PEEQ) [%] at different analysis steps, i.e., at post
crimping, maximum balloon inflation, systole, and diastole. The frequency is defined as the ratio between
the number of elements, Nel, and the total number of elements of the mesh, Ntot.
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Figure 14.6: Cyclic behavior of the metallic stent under consideration. Equivalent plastic strain vs. time
diagram, proving the existence of a limit cycle in alternating elasticity, i.e., elastic shakedown in the HCF
domain. Two curves are represented: the blue curve is related to the point where the maximum value of
equivalent plastic strain is reached among all the mesh elements; the red curve is related to the point of the
analyzed stent strut where the maximum value of equivalent plastic strain is reached. The locations of the
two points in the stent model are shown.
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Comparison with results from the literature

In order to assess the reliability of the obtained FEA results, we compare our results to those available from
the literature. In particular, Figures 14.7(a)-(d) compare the initial and deformed stent geometry from the
conducted FE simulations to the scanning electron microscope of a generic stent, designed for laboratory
testing based on the NIR™stent following laser cutting and deployment (Weldon, 2001). As it can be ob-
served, the proposed geometry successfully matches the available data.
The, we compare our results to those provided by McGarry et al. (2004); Sweeney et al. (2012), who inves-
tigated the same stent design. In particular, the predicted values of the von-Mises stress are in accordance
with those by Sweeney et al. (2012), ranging between 0 and 250 MPa after post crimp recoil and between
0 and 700 MPa after post deployment recoil (see Table 14.1). Additionally, the equivalent pressure stress
values reported by McGarry et al. (2004) are comparable to our values (see Table 14.1), although very high
peaks (about 4000 MPa) are highlighted in some localized regions (McGarry et al., 2004). Similarly to
our results (see Table 14.1), the accumulated plastic slip by McGarry et al. (2004); Sweeney et al. (2012)
ranges between 0 and 100%. Also, the distribution of the reported variables is similar and shows the highest
values along the curved regions of the stent strut.

(a) (b)

(c) (d)

Figure 14.7: Scanning electron microscope of a generic stent, taken from (Weldon, 2001), designed for
laboratory testing based on the NIR stent: following (a) laser cutting and (c) deployment. Comparison with
(b) the stent FE mesh and (d) the deformed stent FE geometry after deployment.



218 CHAPTER 14. A COMPUTATIONAL APPROACH FOR STENT FATIGUE-LIFE PREDICTION

14.3 Fatigue analysis

This Section presents the fatigue analysis based on the investigation of the shakedown or stabilized mecha-
nical cycle of the stent, obtained after crimping, deployment and ten cycles of physiological loading.

14.3.1 Fatigue criterion

Once the mechanical fields are obtained, the major challenge is to determine a fatigue criterion to be used.
The proposed criterion need to predict crack initiation, and not fatigue rupture. To predict the total life
of the stent up to final failure, the analysis should also take into account crack propagation effects and
proceed with the fatigue analysis using, for instance, a fracture mechanics approach up to final failure
(Schijve, 2009). Despite this, we remind that, in the HCF regime, the crack initiation stage may cover a
large percentage of the fatigue-life and, thus, a fracture mechanics approach up to final failure is out of the
present scope.

Since the stabilized cycle results under elastic shakedown (see Section 14.2.5), then we propose to
use a Dang Van (DV) based approach (Dang Van, 1999), already described in Section 11.3.2. Without
entering into details (see Section 11.3.2), a passage between the macroscopic and the mesoscopic scale
(Dang Van et al., 1989) allows to state that the lifetime is infinite if the mesoscopic shear stress, τµ (t), and
the hydrostatic stress, σh (t), satisfy the following inequality in all the points of the structure (subscript µ
stands for mesoscopic variables):

max
t

[τµ (t) + αNσh (t)] ≤ βN (14.1)

where αN and βN are material parameters, calibrated as presented in Chapter 13. The reader is referred
to Chapter 13 for details about the fatigue criterion and its calibration on experimental data related to µm-
size components (Donnelly, 2012; Wiersma et al., 2006; Wiersma and Taylor, 2005). We remark that the
calibrated DV parameters refer to 107 cycles (i.e., N = 107) or to an equivalent stent implant period of
approximately 8 months, instead of the requested 108 cycles (US Food and Drug Administration, 2010).
We however highlight that 107 cycles have already been considered as an infinite lifetime as, for example,
in (Pelton et al., 2008; Subash, 1998), coherently with the definition given in (Donnelly, 2012; Wiersma
et al., 2006; Wiersma and Taylor, 2005).

Considerations

It is worth noting that the adopted multiaxial HCF criterion by Dang Van (1999), based on a micro-macro
approach, successfully meets the need of microstructural representation in crack initiation predictions. Ob-
viously, inhomogeneity effects observed in explicit modeling of random crystalline microstructures cannot
be captured by the DV approach. However, we have already mentioned that, in our work, the size effect is
taken into account through the fatigue-life estimations based on µm-size experiments.
It is worth to emphasize, also, that such a criterion has been calibrated on experimental data related to
micrometric specimens, produced with the standard procedure applied in the stent manufacturing industry.
We remark here that such fatigue data have been obtained by testing the specimens in air. However, the
fatigue results in terms of numbers of cycle to failure are comparable to those provided by the experimen-
tal tests by Glenn and Lee (1997), who tested thirty IsoStent NiTi stents and ten real 316L stainless steel
Palmaz-ShatzTM stents (15 mm long stents from Johnson and Johnson Corporation) in a saline solution
at 37 ◦C to simulate real (in-vivo) physiological conditions. In particular, as regards 316L stainless steel
stents, results show that, although 2 out of 2 tested stents have survived to 1 · 106 cyclic loadings, 0 out
of 2 stents have survived to 10 · 106 cycles, only 1 out of 2 stents have survived to 40 · 106 cycles. The
experimental results also indicate that 0 out of 4 stents have survived to 100 · 106 cycles.
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14.3.2 Fatigue predictions

The mechanical fields have been obtained by the FE simulation described in Section 14.2 and the DV
criterion is computed as post-processing in all the Gauss integration points of the stent model. The post-
process is performed with the Matlab implementation of the optimization code SDPT3 (Tütüncü et al.,
2003).

10   cycles

7
Integration points
loading paths 10   cycles

7

DV line - 50 mm

DV line - 75/150 mm

10   cycles
7

DV line - 50 m
m

Figure 14.8: Application of the Dang Van (DV) criterion to the stent in the hydrostatic-mesoscopic stress
plane. (a) The calibrated fatigue limit DV lines (in red), related to several micrometric widths, are rep-
resented as smooth lines; the loading paths (in blue), related to the integration points, are represented by
markers. (b) Zoom of an integration point loading path (in blue).

Figure 14.8(a) represents the diagram in terms of the mesoscopic shear stress, τµ, and the hydrostatic
stress, σh. The set of calibrated DV lines, related to several micrometric widths of the tested specimens
(Donnelly, 2012; Wiersma et al., 2006; Wiersma and Taylor, 2005), are represented as red smooth lines (see
Chapter 13); the loading paths related to all the Gauss integration points of the stent model are represented
by blue markers. Compared to the DV lines, both strut thickness and width are approximately 0.10 mm
and the diameter of the stent unit cell is 0.077 mm, as depicted in Figure 14.1(a). Figure 14.8(b) shows a
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zoom of a generic loading path (in blue).
As it can be observed from Figure 14.8(a), all the markers lie under the DV lines, thus indicating that the
considered stent has an endurance limit of 107 cycles. In particular, data from stent FEA reveal high values
of the hydrostatic stress, σh and low values of mesoscopic shear, τµ. The stress paths in terms of hydrostatic
versus shear stress at the mesoscopic grain level (see, e.g., the one reported in Figure 14.8(b)) present a
very interesting feature, as they are almost allineated with the hydrostatic stress axes. This emphasizes
the important role of stress concentrations in stents, due to the existence of small radii and high stress
gradients. The von-Mises stress values of Figure 14.3 shows, in fact, a variation of around 200 MPa along
the stent strut at the same istant, while the pressure stress values of Figure 14.4 a variation of 200-300 MPa.
Moreover, the high values assumed by the pressure stress play a fundamental role in fatigue predictions of
stents and need to be accounted for.

In order to highlight the most solicited parts of the stent strut, we compute the following DV fatigue
damage parameter:

CDV = max
t

τµ (t) + αNσh (t)− βN
βN

(14.2)

Positive values of the DV parameter, CDV , indicate failure, while negative values indicate no failure.
Figure 14.9 shows the isovalues of the DV parameter, CDV , calibrated with respect to the 50 µm DV line,
along the stent strut. As it can be observed, the distribution of CDV is almost uniform in the stent strut.
The critical points (see the zoom on the right of Figure 14.9) are located along the thickness in the region
with the lowest curvature radius, where a value of −0.14 is reached.

Figure 14.9: Application of the Dang Van (DV) criterion to the stent strut (in red on the left). Isovalues
of the DV parameter, CDV , computed with respect to the DV line calibrated on 50 µm width specimens.
Zoom of the region (on the right) where the critical points are located.
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Comparison with results from the literature

The presented fatigue predictions are in accordance with the results provided by McGarry et al. (2004);
Sweeney et al. (2012). It is worth to highlight that the conducted three-dimensional analysis allows to
take into account variable distributions and gradients along the stent thickness and thus to localize possible
critical points along the stent thickness for the fatigue-life assessment.

14.4 Conclusions

This Chapter paper has presented the numerical fatigue-life assessment of balloon-expandable stents. To
this purpose, the present work has investigated the fatigue behavior of a classical 316L stainless steel coro-
nary stent design through a structural FEA, followed by a fatigue analysis. The fatigue analysis has been
conducted through the application of the multiaxial HCF criterion by Dang Van, calibrated on experimental
data on 316L stainless steel µm-size components. The advantages and limitations of the proposed method
have been highlighted, and possible research directions for the development of numerical approaches for
the fatigue-life assessment of cardiovascular balloon-expandable stents have been briefly discussed. The
results of the mechanical and fatigue analyses have been verified to be in accordance with numerical and
experimental results available from the literature.
The obtained results provide useful information either to be used for product improvement or for clinicians
to make life-saving decisions and encourage further investigation of such an approach for future research
developments in the framework of the numerical fatigue-life assessment of stents. This approach is in fact
not limited to 316L stainless steel: further applications could concern other metallic materials as, e.g.,
cobalt-chromium alloys. Moreover, the idea of introducing the material variability as a probability density
function will be the object of future work.



222 CHAPTER 14. A COMPUTATIONAL APPROACH FOR STENT FATIGUE-LIFE PREDICTION



Chapter 15

Introduction to fatigue of shape
memory alloys

Since their discovery in 1960, shape memory alloys have been used for couplings and actuators as well as
for biomedical applications. Most of the biomedical applications are permanently implanted in the human
body and experience millions of in-vivo cycles, and thus require a fully understand of material fatigue and
fracture resistance. However, descriptions of shape memory alloy fatigue remain incomplete even today,
due to the uncertain role of the transformation under cyclically varying deformations and the complexity
of the various phases. This Chapter is intended to review the actual knowledge on the fatigue of shape
memory alloys, with a special focus on the fatigue of cardiovascular stents.

The Chapter is organized as follows. Section 15.1 presents a general introduction to the phenomenon of
fatigue in shape memory alloys. Then, Sections 15.2 and 15.3 focus on the mechanical and thermal fatigue
of shape memory alloys, respectively. Section 15.4 concludes with a review on the fatigue concepts in the
biomedical field.
For a recent comprehensive review, the reader is referred to (Robertson et al., 2012).

15.1 Shape memory alloys and fatigue

Literature usually distinguish between two kinds of fatigue for shape memory alloys (SMAs) (Eggeler
et al., 2004; Lagoudas et al., 2009; Pelton, 2011; Van Humbeeck, 1991; Wagner et al., 2004):

1. mechanical fatigue, which occurs in a structure subjected to cyclic mechanical loading at imposed
strain or stress amplitude under constant external temperature. The material may be either marten-
sitic, austenitic or undergo phase change during the loading cycle. Classically, the phenomena asso-
ciated with mechanical fatigue are a cyclic hardening of the stress-strain plateaus, the appearance of
persistent slip bands, the initiation and propagation of cracks, ultimately leading to the failure of the
structure;

2. thermal fatigue or amnesia, which occurs in a structure subjected to thermal or thermo-mechanical
cycling. This kind of fatigue causes the degradation of the physical, mechanical or functional pro-
perties of the material, such as the transformation temperatures, the size of the hysteresis loop, the
degradation of the two-way shape memory effect.

During the past fifty years, many investigations have focused on both the mechanical and thermal
fatigue behavior of SMAs, especially of NiTi-based alloys (Robertson et al., 2012), but most of them suffer
from several problems. First, NiTi-based SMAs are difficult to melt and requires tight controls on the
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absolute purity and on the reproducibility of melt compositions; therefore, the results of the earlier studies
have to be used with caution if they are included to provide predictions about devices fatigue. Second, many
of the early investigations reflect the state of art of those years, since focusing on materials tested in the
fully annealed condition or with high temperature and long duration thermal treatments; again, such results
may lead to generalizations that may not pertain to modern thermo-mechanically processed materials used
in NiTi implants. Third, there is the question of how the early studies evaluated the fatigue properties of
NiTi-based SMAs (Robertson et al., 2012).

Nevertheless, taken as a whole, such fatigue studies fail to provide a comprehensive approach to the
fatigue design of SMA-based components, with appropriate test methods, life prediction strategies and
mechanistic understanding. However, such a dearth of understanding is not unexpected. Such an alloy
exhibits, in fact, unusual fracture and fatigue responses, if compared with common engineering metals, due
to its stress-induced and/or thermally-induced microstructural evolution. As a consequence, well-known
theoretical models and standard testing procedures cannot be applied to NiTi-based SMAs. Moreover,
NiTi-based SMAs are currently employed in the shape of wires, tubes or sheets and their functional and
mechanical properties are significantly affected by the thermo-mechanical processes. Furthermore, such a
situation is completed by the fact that experimental fatigue data of NiTi devices are not largely available.

15.2 Mechanical fatigue of shape memory alloys

The available research on the mechanical fatigue behavior of SMAs can be classified into the following
groups:

• metallurgical investigations, which aim at explaining the cyclic stabilization of the thermo-mechanical
properties of SMAs by, e.g., the creation of defects, the presence of residual martensite, the creation
of persistent slip bands;

• development of fatigue methodologies, which involves tests on specimens presenting different geo-
metries and chemical compositions and subjected to different loading cases.

15.2.1 Metallurgical investigations

In conventional materials as well as in SMAs, surface quality has a detrimental effect on fatigue resistance,
by the presence of inclusions and grain size. For SMAs, phase change also participates to the creation of
defects.
Melton and Mercier (1979) were early pioneers in the field of the mechanical fatigue of NiTi-based SMAs.
They performed tensile tests on NiTi cylindrical specimens and showed that the martensite start temperature
does not impact the rate of crack growth in martensite. Miyazaki et al. (1986, 1988) studied the influence of
inclusions on crack initiation, which generate geometric incompatibilities and stress concentrations. They
showed that it is important to avoid inclusions by specific heat treatments, since incompatibilities exist
at grain boundaries and stress concentrations are particularly evident around inclusions. Moreover, they
studied the influence of temperature on crack growth and showed that a low propagation rate is obtained
for martensitic materials, because the deformation is due to the movement of intervariant interfaces, and
that propagation rate increases with temperature. Nayan et al. (2008) performed tensile fatigue tests on
cylindrical NiTi specimens and studied the evolution of yield stress, hysteresis area and Young’s modulus.

15.2.2 Fatigue methodologies

The literature present two main approaches to evaluate the fatigue behavior of SMAs:
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1. total-life fatigue methodology, which provides insights into the effects of stress- or strain-life ap-
proaches as well as effects of test temperature, transformation temperature and applied mean stress
or strain (Coffin, 1953; Wöhler, 1870). Since total-life tests are experimentally easy to conduct, the
literature is rich with examples, especially with tests conducted under constant strain conditions. In
fact, because of material superelastic behavior, where significant (superelastic) global strain can oc-
cur at essentially constant stress, expressing lifetimes in terms of applied strains, rather than stresses,
is far more appropriate (Robertson et al., 2012; Runciman et al., 2011). Additionally, it is apparent
that, unlike conventional metallic materials, the amplitude of the alternating strain has a significant
effect on the fatigue-life than the applied mean strain (Pelton et al., 2008; Tolomeo et al., 2000);

2. damage-tolerant methodology, which assumes a distribution of pre-existing cracks and considers the
growth of a single dominant crack as a function of the number of cycles and applied stress (Paris
et al., 1961).

Few studies have been conducted in the damage-tolerant framework, since the NiTi industry is currently
dominated by commercial products with geometrically small feature sizes (e.g., cardiovascular stents),
where the emphasis is placed on preventing the fatigue crack nucleation rather than controlling the crack
growth (Robertson et al., 2012). Consequently, the following Sections focus only on the total-life fatigue
methodology since we are interested in the fatigue-life assessment of biomedical components.

In the total-life fatigue framework, SMA mechanical fatigue behavior is analyzed through one- or three-
dimensional criteria. Data are generally collected in terms of the number of cycles to failure as a function
of the applied alternating and mean stresses or strains (Wöhler, 1870). Following (Wagner et al., 2004),
three types of fatigue can be defined in terms of the number of cycles to failure:

1. high-cycle fatigue, typically occurring for small strain amplitudes. The response of the material
remains elastic and the number of cycles to failure is higher than one million;

2. intermediate fatigue, occurring for intermediate strain amplitudes. No stress-induced martensite
exists, but some martensite plates exist locally due to fatigue micro-crack initiation;

3. low-cycle fatigue, occurring for high strain amplitudes. Most of the structure undergoes stress-
induced martensitic transformation and the number of cycles to failure highly depends on the strain
amplitude.

One-dimensional criteria

In the total fatigue framework, stress- or strain-life fatigue behavior of NiTi has been investigated for
different types of uniaxial loading, e.g., (Dolce and Cardone, 2001; Kang et al., 2012; Kim and Miyazaki,
1997; Maletta et al., 2012; McNichols et al., 1981; Melton and Mercier, 1979; Nayan et al., 2008, 2009;
Nemat-Nasser and Guo, 2006; Pelton et al., 2013, 2003; Reinhoehl et al., 2000; Soul et al., 2010; Tobushi
et al., 1998; Wagner et al., 2008; Wang et al., 2008).

Melton and Mercier (1979) firstly proposed a Manson-Coffin law to model their fatigue results and
showed that the fatigue limit at room temperature decreases for increasing martensite starting temperature.

A complete study on the uniaxial strain-life fatigue of NiTi is due to the works by Pelton (2011); Pelton
et al. (2003, 2008), who investigated diamond-shaped NiTi samples, processed to emulate the commercial
processing of stents. Specifically, Pelton (2011); Pelton et al. (2008) investigated the effects of mean strain
and strain amplitude on diamond-shaped samples cycled in bending up to 107 cycles and compared the
fatigue results with radial pulsatile fatigue testing of commercially available NiTi self-expanding stents.
Figure 15.1(a) shows the strain amplitude versus the number of cycles to failure diagram for conditions of
zero (white markers) and non-zero (black markers) mean strain from the diamond specimen compression
testing. Only conditions that led to fracture are shown. The diagram can be separated into low-cycle
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(103 to 105 cycles) and high-cycle (>105 cycles) regions. The fatigue strain limit at the high-cycle data
is 0.4%. The inset in Figure 15.1(a) shows also a diamond-shaped subcomponent designed to simulate a
representative unit cell of a commercial stent (8 mm length, 0.33 mm width and 0.35 mm thick), and hence
to assess the pulsatile fatigue properties of a NiTi biomedical device.
Figure 15.1(b) replots the diamond fatigue-life data from Figure 15.1(a) as a constant-life diagram in terms
of mean strain versus strain amplitude. In addition to the ’diamond’ fatigue data, results from micro-
dogbone specimens are also included (Pelton et al., 2008). Specimens that survived 107 cycles are shown
as open symbols, whereas specimens that fractured are shown as solid symbols. A trend line, representing
the 107 cycle life boundary, is drawn to connect the lowest strain amplitude that resulted in fracture. For
mean strains between 1.5 and 3%, there is an increase in fatigue-life from 0.4 to 0.6% strain amplitude;
a dotted line at 0.6% strain amplitude is drawn between 3 and 7% mean strain to indicate that there are
insufficient fracture data for a complete analysis. Above 7% mean strain, the constant-life data exhibit a
negative slope. Mechanistically, it is clear that enhanced fatigue-life between 1.5 and 7% mean strains is
due to microstructural effects of stress-induced martensite. Hence, within this strain range, mean strain
should be more accurately viewed as the volume fraction of stress-induced martensite. Such investigations
demonstrate that the composite structure of stress-induced martensite plus austenite is able to accommodate
a greater amount of strain amplitude, leading to longer fatigue-lives, than either austenite or deformed
martensite.
The overwhelming conclusion from the recent studies by Pelton (2011); Pelton et al. (2003, 2008) is that
NiTi fatigue can not be modeled with traditional Goodman or Soderberg type analyses, typically used with
conventional engineering materials.

Due to the great interest of NiTi alloys in the biomedical field, several studies have been devoted to the
functional and structural fatigue properties of tubes, similar to that used for manufacturing of endovascular
stents or stent components (Stankiewicz et al., 2007; Tabanli et al., 2001; Tolomeo et al., 2000; Zipse et al.,
2011). In particular, Tabanli et al. (2001) analyzed the effects of mean stress and strain, revealing that
classic fatigue criteria for common metals cannot be applied to NiTi-based SMAs, as a consequence of
stress-induced mechanisms.

Three-dimensional criteria

Unlike tension/compression/bending loading, there are no corresponding comprehensive fatigue data avai-
lable in the literature for the torsional fatigue loading of NiTi, although a few studies pertain to torsional
behavior under non-cyclic loads (Adler et al., 1990; Imbeni et al., 2003; McNaney et al., 2003; Olier et al.,
2004; Predki et al., 2006). Runciman et al. (2011) analyzed the Coffin-Manson approach by defining an
equivalent strain obtained from multiaxial loading conditions and determined the torsional strain-life fa-
tigue curve for the superelastic NiTi tubing used for stents, at several strain ratios.

In the three-dimensional framework, it is worth to remember the work by Moumni et al. (2005) who
firstly proposed an energy approach, where the dissipated energy of the pseudoelastic hysteresis cycle is
used as a parameter for lifetime estimation. The criterion is validated for tensile/compressive experiments,
but not for other loading cases. Later, Morin et al. (2010) extended such a criterion to account for the
influence of the hydrostatic pressure.

15.3 Thermal fatigue of shape memory alloys

Thermal fatigue is defined as cycling through the transformation temperatures multiple times; in the sim-
plest cases, there is no application of external stress or strain.
Differential scanning calorimetry is an elucidating method to monitor the changes in transformation tem-
perature due to stress-free thermal cycling. As an example, Figure 15.2 illustrates the behavior of annealed
Ni50.5Ti49.5 upon cooling to 150 ◦C and subsequent heating to 120 ◦C repeated for 100 cycles (Pelton,
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strain (0-4%) and strain amplitudes (0.2-1.5%) are shown in
Fig. 5. The data follow the expected trends of low-cycle fatigue
behavior at the higher strain amplitudes and high-cycle fatigue
behavior at the lower strain amplitudes. These fatigue-life data
are re-plotted in a more illuminating manner in a constant-life
diagram in Fig. 6. In addition to the ‘‘diamond’’ fatigue data,
results from micro-dogbone specimens laser machined from
Ni50.8Ti49.2 tubing with mean strains up to 9% are also included
in this figure. The specimens that survived 107 cycles are
shown as open symbols, whereas specimens that fractured are
shown as solid symbols. A trend line was drawn to connect the
lowest strain amplitude that resulted in fracture; this line
therefore represents the 107-cycle life boundary. For mean
strains between 1.5 and 3%, there is an increase in fatigue life

from 0.4 to 0.6% strain amplitude. A dotted line at 0.6% strain
amplitude is drawn between 3 and 7% mean strain to indicate
that there are insufficient fracture data for complete analysis.
Above 7% mean strain, which corresponds to the superelastic
plateau length at 37 �C, however, the constant-life data exhibit
a negative slope.

Mechanistically, it is clear that enhanced fatigue life
between 1.5 and 7% mean strains is due to microstructural
effects of stress-induced martensite. Hence, within this strain
range, mean strain should be more accurately viewed as the
volume fraction of stress-induced martensite. A few selected
variants of stress-induced martensite (determined by the
appropriate Taylor factors; Ref 21) reduce the internal strains
due to the transformation. Collectively, these investigations
demonstrate that the composite structure of stress-induced
martensite plus austenite is able to accommodate a greater
amount of strain amplitude, leading to longer fatigue lives, than
either austenite or deformed martensite.

4. Summary

A review of the Nitinol fatigue literature demonstrates that
cyclic transformations between austenite and martensite are
more complicated than those that elastic (continuum) crystal-
lographic theories predict. Thermal and mechanical cycling
processess create plasticity, which may be due to the effects of
moving martensite interfaces. Accumulation of the dislocations
modifies transformational behavior, resulting in changes in
transformation temperatures, strain (under stress-control) and
stress (under strain-control). Processing has a major effect on
fatigue properties, whereby optimized thermomechanically
treated microstructures yield more stable (and predictable)
behavior than annealed microstructures.
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that there are insufficient fracture data for complete analysis.
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variants of stress-induced martensite (determined by the
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due to the transformation. Collectively, these investigations
demonstrate that the composite structure of stress-induced
martensite plus austenite is able to accommodate a greater
amount of strain amplitude, leading to longer fatigue lives, than
either austenite or deformed martensite.

4. Summary

A review of the Nitinol fatigue literature demonstrates that
cyclic transformations between austenite and martensite are
more complicated than those that elastic (continuum) crystal-
lographic theories predict. Thermal and mechanical cycling
processess create plasticity, which may be due to the effects of
moving martensite interfaces. Accumulation of the dislocations
modifies transformational behavior, resulting in changes in
transformation temperatures, strain (under stress-control) and
stress (under strain-control). Processing has a major effect on
fatigue properties, whereby optimized thermomechanically
treated microstructures yield more stable (and predictable)
behavior than annealed microstructures.
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105 cycles) and high-cycle (‡105 cycles) regions. The fatigue strain
limit at the high-cycle data is 0.4%, corresponding to the lowest
strain amplitude where fractures were observed, according to Ref 12
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Fig. 6 Constant-life diagram from the diamond stent subcomponent
fatigue testing where the various conditions of mean strain and strain
amplitude are plotted. Also included are data from micro-dogbone
specimens laser machined from Ni50.8Ti49.2 tubing with mean strains
out to 9%. Conditions that survived the 107 cycle testing are shown
as open squares, whereas cyclic conditions that led to fracture <107

cycles are represented with closed squares. Note that mean strain
leads to increasing fatigue life in the 1.5-7% mean strain region,
unlike conventional linear-elastic materials, according to Ref 12
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(b)

Figure 15.1: Experimental fatigue tests on diamond stent subcomponents taken from Pelton (2011). (a)
Strain amplitude vs. number of cycles to failure diagram; (b) constant-life diagram in terms of mean strain
and strain amplitude.

2011). Such results show that martensite and austenite peaks decrease in temperature whereas the R-phase
transformation temperature increases with increasing numbers of cycles.
In the following, we do not enter into details; for a recent comprehensive review, the reader is referred to
(Pelton, 2011).

15.4 Shape memory alloy biomedical devices and fatigue

An increasing number of medical devices is manufactured from NiTi (Duerig et al., 1999). Many of
such devices, particularly endovascular stents, undergo tens to hundreds of millions of loading cycles in
a corrosive physiological environment during their lifetime. In particular, such devices must withstand
at least 10 years service without exhibiting failure (US Food and Drug Administration, 2010). A rapid
computation shows that 70 artery pulses per minutes impose 40 million cycles per year and, consequently,
400 million cycles during its lifetime. However, fracture occurrences of up to 50% have been reported
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biomedical devices. Nitinol fatigue investigations have yet to
provide coherent insight into the mechanisms for all observed
effects. Furthermore, early fatigue investigations suffered from
three issues: First, the material was substandard in terms of
modern practices (including homogeneity, purity, inclusion
content, and thermomechanical processing). Therefore, the
results from these investigations must be critically examined
before application in a predictive model. Second, the early
studies focused on materials that were tested in the annealed

condition, which may lead to generalizations, but may not
pertain to thermomechanically processed materials used for
medical devices. Third, there are three basic approaches that
have been used to evaluate the fatigue behavior of Nitinol: (1)
stress-life, (2) strain-life, and (3) damage-tolerant analysis. Data
obtained with one test method may not provide enough
understanding of the results obtained from another test method.

Melton and Mercier (Ref 10) pioneered the field of Nitinol
mechanical fatigue; no investigation before or since has
attempted to understand behavior from all the three fatigue
methods on the same Nitinol materials. Annealed binary
compositions with Af values between +10 to +110 �C were
tested at room temperature in fully reversed uniaxial stress or
strain amplitude. These investigations documented several
important trends:

(1) Superelastic Nitinol provides longer lives and greater
fatigue limits than thermal martensite subjected to
stress-control fatigue. Melton and Mercier relate this
observation to the difference in plateau strength between
austenite and martensite. The 107-cycle stress fatigue
limit is approximately 80% of the respective stress
plateau (superelastic) or detwinning plateau (martensite).

(2) Repeated stress-controlled cycling leads to an increase
in strain at constant stress amplitude. This implies that
there is an accumulation of plasticity with cycling.

(3) The fatigue life of thermal martensite is superior to
superelastic Nitinol under strain control. This observation
may be due to the combined effects of a lower modulus
and a reduced mechanical energy per cycle, which is re-
lated to the area of the stress-strain hysteresis loop.

(4) Repeated cycles under strain-control lead to cyclic hard-
ening at constant strain amplitude. This hardening is
speculated to be due to the effects of an increase in dis-
location density with increasing cycles.

Nitinol medical implants present an entirely different
deformation profile than those investigated by Melton and
Mercier (Ref 10) and therefore require a different method to
characterize the fatigue behavior. For example, Nitinol endo-
vascular self-expanding stents may undergo a large single strain
excursion (�10%) during constraint into a delivery system and
then the opposite strain excursion during deployment into an
artery (Ref 11, 12). Upon implantation, the stent is slightly
oversized with respect to the vessel diameter; this ‘‘interference
fit’’ produces a mean strain on the stent. Furthermore, the
physiological movements from the cardiac systolic-diastolic
cycle as well as musculoskeletal motions provide strain
amplitudes. A TEM investigation was conducted on fatigued
superelastic Ni50.8Ti49.2 specimens to understand the effects of
processing and mean strain and strain amplitudes (Ref 13).
Tensile specimens were machined from superelastic wire with a
3-mm-diameter gage. The specimens were either annealed at
900 �C for 30 min (Af = �15 �C) or stress relieved at 500 �C
for 10 min (Af = 20 �C). Figure 3(a) shows the strain-
controlled fatigue curves for the annealed specimen at 1.5%
mean strain and 0.25% strain amplitude for 1, 10, and 100
cycles tested at room temperature. With increasing cycles, the
hysteresis width decreases, the modulus increases, with both
cyclic hardening and softening. The TEM microstructure after
10 cycles consists of banded austenite with a high density of
dislocations (�1014 m�2) with Æ100æ/{011} slip systems inter-
spersed with retained deformed martensite, Fig. 3(b). It is likely
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Fig. 1 DSC thermograms of heating and cooling cycles 1, 10, 20,
50, and 100 for annealed Ni50.5Ti49.5. The martensite and austenite
peaks decrease in temperature whereas the R-phase transformation
temperature increases with increasing numbers of cycles, according
to Ref 5

Fig. 2 Large array of dislocation loops in the cubic austenite phase
of the Ni50.5Ti49.5 specimens after one thermal cycle that was imaged
near [111]A with g 011. Under these imaging conditions, the disloca-
tion line directions, u, are parallel to [020]A and are perpendicular to
the foil surface; hence the dislocations have a screw character. The
strong-contrast dislocation band through the array is composed of
mixed orientations and is parallel to 0:889; 0:404; 0:215ð Þ, according
to Ref 5
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Figure 15.2: Differential scanning calorimetry thermograms of heating and cooling cycles 1, 10, 20, 50,
and 100 for annealed Ni50.5Ti49.5, taken from (Pelton, 2011).

in some stents after only one year (Pelton et al., 2008). This indicates a clear need to gain a deeper
understanding of stent fracture and fatigue behavior and to develop failure prediction methods to aid stent
design refinements.

The majority of fatigue data on NiTi-based SMAs to support such life-prediction procedures is based
on cyclic testing under uniaxial loading (Robertson et al., 2012), even if many medical devices, for exam-
ple endovascular stents, are subjected to more complex modes of loading in the body (Runciman et al.,
2011). Moreover, much of the early work on NiTi fatigue has been conducted at fully-reversed stresses
or strains. However, self-expanding stents may undergo a large single strain excursion (up to 10%) dur-
ing constraint into a delivery system and then the opposite strain excursion during deployment into the
anatomical location. The physiological movements from the cardiac systolic-diastolic cycle and musculo-
skeletal motion provide the imposed strain amplitude, as illustrated in Figure 15.3(a). Figures 15.3(b) and
(c) show a Cordis NiTi SMART stent with partial deployment from a delivery system and as deployed in a
mock arterial vessel respectively.

Additionally, another important aspect in biomedical applications is the the ratio between the length
scales of the mescoscopic structure of grains and of the macroscopic structure of the device. The thermo-
mechanical processing of NiTi tubing and devices results, in fact, in a grain size of approximately 100 nm
in the stents and stent subcomponents (Pelton et al., 2008). As such, the average number of grains per cross-
section is 1000 (compared with typical stainless steel stent material that has 10 grain diameters per section).
Moreover, many of the early fatigue studies on NiTi were conducted on fully annealed material with grain
sizes of approximately 100 mm and with low defect density (Robertson et al., 2012). These studies provide
insight into many of the fundamental mechanisms; however, they are incomplete with respect to providing
a definitive microstructure mechanics explanation that could be used to predict fatigue behavior of modern
medical devices that exclusively use thermo-mechanically processed NiTi material.

In order to bridge the gap between the existing experiments and the fatigue design of such components,
numerical and experimental investigation have gained a lot of interest in the engineering community (Au-
ricchio et al., 2010; Azaouzi et al., 2013, 2012a; Grujicic et al., 2012; Harvey, 2011; Wu et al., 2007).
As an example, the utility of data by Pelton et al. (2008), described in Section 15.2.2, is in the prediction of
stent lifetimes. Accordingly, as validation of the pulsatile fatigue behavior, Pelton et al. (2008) conducted
radial distension to fracture proof tests on 10 mm diameter Cordis SMART stents. Figure 15.4 shows
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Figure 15.3: (a) Stress-strain data for a NiTi stent, schematically illustrating the initial crimp stress, de-
ployment and subsequent in vivo cycles; (b) Cordis NiTi SMART stent being deployed from a delivery
catheter; the strain on the stent inside the catheter can be about 10%, taken from (Pelton et al., 2008;
Robertson et al., 2012); (c) illustration of a 9 mm diameter Cordis NiTi SMART stent in a 6 mm diameter
mock vessel, which simulates a constant in-vivo mean strain, taken from (Pelton et al., 2008; Robertson
et al., 2012).

the experimental stent pulsatile fatigue data, overlaid on the diamond data. White circles represent test
conditions that survived 107 pulsatile cycles; red circles represent conditions that led to fracture at < 107

pulsatile fatigue cycles. Stent fatigue testing is consistent with the diamond data, whereby fracture tends to
occur above the 0.4% strain amplitude (dotted line) for a range of mean strains. The shaded box represents
mean and amplitude strains for typical oversizing and pulsatile fatigue conditions. The results shown in
Figure 15.4 demonstrate the incorporation of the diamond subcomponent testing analysis as a useful and
accurate indicator of NiTi stent lifetimes for radial dilation fatigue conditions.

Recently, Petrini et al. (2013) presented a numerical and experimental approach based on tests per-
formed on NiTi specimens, obtained from the same tubes and with the same procedure used in the produc-
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Figure 15.4: Experimental fatigue tests taken from Pelton et al. (2008). Stent pulsatile fracture data are
overlaid on the diamond fatigue data from Figure 15.1(b).

tion of commercial peripheral stents and on the validation of numerical stent models for the prediction of
fatigue behavior through the comparison with experimental tests. Meoli et al. (2013) presented a computa-
tional approach to evaluate the fatigue behavior of NiTi pheriperal stents. Results reveal the influence of the
stent oversizing on fatigue behavior and highlight the impact of stent design on fatigue performance. Hsiao
and Yin (2013) investigated a simple concept of stent design aimed at enhancing pulsatile fatigue-life.



Conclusions and future work

Motivated by the increasing number of shape memory material based applications and by the consequent
growing involvement of industrial players in the field, the present thesis has investigated several research
issues involving the advanced constitutive, numerical and fatigue modeling of elastoplastic materials, shape
memory alloys and shape memory polymers. As such, the present thesis has pursued a multi-disciplinary
approach, ranging from theoretical mathematics and computational science to experimental validation and
fatigue modeling.

To conclude this thesis, the key points presented in the previous chapters are summarized, and future
research tasks pertaining to these are suggested. We remark that only the chapters containing new results
are here recalled.

PART I: Constitutive and numerical modeling of elastoplastic and shape memory materials

The first part of the thesis has presented the following new results.
Motivated by the similarities between the structures of equations representing shape memory and

elastoplastic materials behavior, Chapter 3 has presented a detailed analysis of several computational ap-
proaches available from the literature and relevant to the numerical solution of the initial boundary-value
problem for J2 elastoplasticity. The aim was to critically review a number of existing algorithmic schemes,
ranging from the classical return-map and Augmented Lagrangian approaches to complementary problem
function-based algorithms. Then, Chapter 4 has presented the numerical investigation of two integration
algorithms for J2 elastoplasticity with linear isotropic kinematic hardening, i.e., the return-mapping and
the Fischer-Burmeister algorithms. The proposed numerical analysis has been carried out through several
kinds of numerical tests and has provided a comparison in terms of precision and efficiency. Possible diffi-
culties in the Fischer-Burmeister scheme and solution strategies have been addressed. The obtained results
have revealed that these two algorithms can be equally used for numerical simulations of elastoplastic bod-
ies and, therefore, encourage further investigations of the Fischer-Burmeister scheme for its application to
more complex constitutive models, e.g., involving non-linear kinematic hardening or describing the beha-
vior of smart materials, as shape memory materials. Future work will deal with the investigation of other
numerical schemes for elastoplasticity.

Focused on shape memory alloy modeling, Chapter 6 has proposed the derivation of an explicit in-
tegration scheme for solving the constitutive equations of the model by Boyd and Lagoudas (1996) and
Lagoudas et al. (2012). The scheme has been tested for a simple uniaxial test. The results encourage fur-
ther works focusing on a comparison between explicit and implicit integration schemes.
Then, Chapter 7 has developed a refined, flexible and general three-dimensional phenomenological consti-
tutive model for shape memory alloys taking into account several physical phenomena. The model has been
treated numerically through the effective and efficient procedure based on the Fischer-Burmeister function,
already investigated in Chapter 4. Moreover, the one-dimensional phase diagram and model calibration
based on a simple physical interpretation have been addressed.
Chapter 8 has been devoted to a detailed numerical and experimental investigation of shape memory alloys
to assess the reliability of the ’flexible’ model, introduced in Chapter 7, as well as the effectiveness of its
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numerical counterpart. Numerical robustness and efficiency have been carefully investigated. Possible dif-
ficulties and the adopted solutions have been described. Extensive numerical tests have been performed to
show robustness as well as efficiency of the proposed integration algorithm and the quantitative validation
of the proposed model with experimental data available from the literature has been addressed to confirm
model reliability. Then, a numerical and experimental investigation of NiTi actuators springs has been
conducted in SAES Getters. The modified Souza-Auricchio and the ’flexible’ models have revealed good
predictions of global SMA behavior, by allowing to take advantage of these preliminary results for future
design purposes. The present work will be used as a starting point for an ongoing detailed investigation
about the calibration technique, the study of the effect of the variation of geometry properties and material
treatment as well as of the application of compression loads.

Focused on shape memory polymers, Chapter 9 has first presented the results of an experimental investi-
gation, conducted in Versalis (ENI), on semi-crystalline polyethylene-based shape memory polymers with
different densities. Experimental data have been analyzed to show the main features of material behavior,
in particular related to material orientation and thermal retraction. Then, a simple new one-dimensional
model has been introduced to predict material behavior at temperatures below the melting temperature.
The model has been demonstrated to be able to describe qualitative aspects of material behavior, invol-
ving both orientation and thermal retraction, as well as to predict experimental orientation processes for
semi-crystalline polyethylene-based polymers with different densities. In future works, the model will be
extended to include viscous effects as well as material orientation at temperatures above the melting tem-
perature. Moreover, it will be expanded to a three-dimensional and finite strain framework to possibly
simulate important industrial processes, e.g., packaging.

PART II: Fatigue modeling of elastoplastic and shape memory materials

The second part of the thesis has presented the following new results.
Focused on metallic biomedical device fatigue behavior, Chapter 13 has explored the fatigue of stainless

steel components of microsize by analyzing several experimental data from the literature. The specimens
were either smooth or notched and presented features similar to those characterizing cardiovascular stents.
In fact, 316L stainless steel for biomedical devices is employed in structures of very small sizes. The
Chapter has investigated several fatigue criteria for infinite and finite lifetime, associated with hot-spot as
well as volume element approaches. The results have demonstrated that the volume element approach is
efficient in the presence of high stress gradients and size effects. The provided criteria can be used in
the numerical fatigue-life assessment of 316L stainless steel stents. The idea of introducing the material
variability as a probability density function will be the object of future work.

In order to effectively demonstrate the reliability of the proposed criteria, Chapter 14 has presented the
numerical fatigue-life assessment of cardiovascular balloon-expandable stents. To this purpose, the present
work has investigated the fatigue behavior of a classical 316L stainless steel coronary stent design through
a complete and general computational approach, consisting of a mechanical and a fatigue analysis. The
fatigue analysis has been conducted through the application of the high-cycle fatigue criterion by Dang
Van, calibrated as explained in Chapter 13. The advantages and limitations of the proposed method have
been highlighted, and possible research directions for the development of numerical approaches for the
fatigue-life assessment of balloon-expandable stents have been briefly discussed. The obtained results
provide useful information either to be used for product improvement or for clinicians to make life-saving
decisions and encourage further investigations of such an approach for future research developments in the
framework of the numerical fatigue-life assessment of stents. This approach is in fact not limited to 316L
stainless steel: further applications will concern other metallic materials as, e.g., cobalt-chromium alloys.

Focused on shape memory alloy fatigue behavior, Chapter 15 has reviewed the actual knowledge on the
fatigue of shape memory alloys, with a special focus on the fatigue of cardiovascular stents. Future work
will involve the introduction of a numerical fatigue-life assessment of self-expandable stents.



Appendix A

Some elements of convex analysis

This Appendix presents a brief introduction to convex analysis. For further details, the reader is referred
to, e.g., (Frémond, 2012; Rockafellar, 1970).

A.1 Convex sets

Definition A.1.1. Let C be a set of linear space V . The set is convex if:

∀x ∈ C, ∀y ∈ C, ∀α ∈ (0, 1) , αx+ (1− α) y ∈ C (A.1)

As an example, segment [0, 1] of space V = < is convex; the interior of a circle is a convex set of space
V = <2, while the exterior is not convex.

A.2 Convex functions

Let < = < ∪ {+∞}. The regular addition is completed by:{
∀a ∈ <, a+ (+∞) = +∞

+∞+ (+∞) = +∞
(A.2)

while multiplication by positive numbers is completed by:

∀a ∈ <, a > 0, a× (+∞) = +∞ (A.3)

Therefore, it is forbidden to multiply either by 0 or by negative numbers.

Definition A.2.1. Let f an application from linear space V into <. The function is convex if:

∀x ∈ V, ∀y ∈ V, ∀α ∈ (0, 1) , f (αx+ (1− α) y) ≤ αf (x) + (1− α) f (y) (A.4)

A.2.1 Examples of convex functions

Let V = <. Functions, fp, such that:

x ∈ < → fp (x) =
1

p
|x|p , with p ∈ <, p ≥ 1 (A.5)

are convex.
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Let V = <. The indicator function, I , of segment [0, 1], from V into <, defined as:

I (x) =

{
0 if x ∈ [0, 1]

+∞ otherwise
(A.6)

is convex and it is shown in Figure A.1(a).
More generally, we define the indicator function of a set, C ⊂ V , as:

IC (x) =

{
0 if x ∈ C
+∞ otherwise

(A.7)

0 1
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0 1
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Figure A.1: (a) Indicator function, I , of segment [0, 1]. The subgradients at points 0 and 1 are the slopes of
the lines which are under the curve representing the function and in contact with the curve at points 0 and
1; (b) subdifferential set, ∂I , of the indicator function, I , of segment [0, 1] (Frémond, 2012).

We can easily connect the convex function and convex set notions by showing that:

Theorem A.2.1. A set C ⊂ V is convex if and only if its indicator function, IC , is convex.

A.3 Linear spaces in duality

Definition A.3.1. Two linear spaces, V and V ∗, are in duality if there exists a bilinear form 〈 · , · 〉 defined
on (V × V ∗) such that:{

for any x ∈ V, x 6= 0 there exists y∗ ∈ V ∗, such that 〈x, y∗〉 6= 0

for any y∗ ∈ V ∗, y∗ 6= 0 there exists x ∈ V, such that 〈x, y∗〉 6= 0
(A.8)

A.3.1 Examples of linear spaces in duality

Let V = < and V ∗ = <. Spaces V and V ∗ are in duality with the bilinear form which is the usual product
〈x, y〉 = x · y.

Let V = <n and V ∗ = <n. Spaces V and V ∗ are in duality with the bilinear form which is the usual
scalar product 〈x, y〉 = x · y, with x ∈ <n and y ∈ <n.

Let V = S and V ∗ = S, where S is the linear space of symmetric matrices (3× 3). Spaces V and V ∗

are in duality with the bilinear form 〈e, s〉 = e : s, with e ∈ V and s ∈ V ∗. Linear spaces V and V ∗ are
also in duality with the bilinear form 〈〈e, s〉〉 = e11s11 + e22s22 + e33s33 + e12s12 + e13s13 + e23s23.
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A.4 Subgradients and subdifferential set of convex functions

The convex function fp, given in Eq. (A.5), is differentiable for p > 1, but not for p = 1, since it is equal
to the absolute value function which has no derivative at the origin. Similarly, the indicator function, I ,
of segment [0, 1], given in Eq. (A.6), is not differentiable, because its value is +∞ at some points and
it has no derivative at points 0 and 1. Thus, it seems that we have to loose all the calculus properties
related to derivatives. Fortunately, it is possible to define generalized derivatives and keep a large amount
of properties related to derivatives (Frémond, 2012).

Consider the function, f , shown in Figure A.2, which is convex but not differentiable at point A. We
note, in fact, that at a point where the function has a derivative, the curve is everywhere above the tangent;
on the contrary, at point A, there exist several lines demonstrating such a property. The slopes of the lines
are the subgradients which generalize the derivative.

f

xxA

A

Figure A.2: The convex function, f , has generalized derivatives at point A. The slopes of the lines passing
through A and under the curve representing f are the subgradients which constitute the subdifferential set
(Frémond, 2012).

Definition A.4.1. Let convex function f be defined on V in duality with V ∗. A subgradient of f at point
x ∈ V is an element x∗ ∈ V ∗ which satisfies:

∀z ∈ V, 〈z − x, x∗〉+ f (x) ≤ f (z) (A.9)

The set of the x∗ which satisfy definition (A.9) is the subdifferential set of f at point x, denoted with
∂f (x). Subgradient depends on f , but also on the bilinear form 〈 · , · 〉.

A.4.1 Properties of the subdifferential set

The subdifferential set keeps usual properties of the derivative. For a convex function we define the first
property as follows.

Theorem A.4.1. Let convex function f 6= +∞. If this function is subdifferentiable at point x, i.e., if
∂f (x) 6= ∅, then it is finite at that point: f (x) < +∞.

This theorem applies in numerous constitutive laws where we have the relationship B ∈ ∂I (β): be-
cause ∂I (β) is not empty, we have I (β) < +∞ which implies that I (β) = 0 and 0 ≤ β ≤ 1 (see Figure
A.1(a)).

Moreover, we define the second property, as follows.
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Theorem A.4.2. Let f be a convex function. We have:

∀y∗ ∈ ∂f (y) , ∀z∗ ∈ ∂f (z) , 〈y − z, y∗ − z∗〉 ≥ 0 (A.10)

A.4.2 Examples of subdifferential sets

The subdifferential set of the indicator function, I , of segment [0, 1], shown in Figure A.1(b), is defined as:

∂I (x) =


<− if x = 0

<+ if x = 1

{0} if x ∈ (0, 1)

∅ otherwise

(A.11)

A.5 Dual functions

Let V and V ∗ be in duality with the bilinear form 〈 · , · 〉. Let f be a convex function of V into V ∗, the dual
function f∗ of f is a function of V ∗ into <, defined by:

f∗ (y∗) = sup
[
〈x, y∗〉 − f (x)

∣∣x ∈ V ] (A.12)

It is possible to prove:

Theorem A.5.1. Dual function f∗ is convex. If function f is subdifferentiable at point x, the properties:

y∗ ∈ ∂f (x) , x ∈ ∂f∗ (y∗) , and f (x) + f∗ (y∗) = 〈x, y∗〉 (A.13)

are equivalent.

A.5.1 Examples of dual functions

Let V ∗ = < and the bilinear form be the usual multiplication 〈x, y〉 = xy. The dual function of the
indicator function, I , of segment [0, 1] is defined by:

I∗ (y) = sup
[
xy − I (x)

∣∣x ∈ V = <
]

= sup
[
xy
∣∣x ∈ [0, 1]

]
(A.14)

and it is called support function of segment [0, 1]. It is easy to get:

I∗ (y) =

{
y if y ≥ 0

0 if y ≤ 0
(A.15)

We note that function I∗ is the positive part function, i.e.,

I∗ (y) = sup [y, 0] (A.16)

A.5.2 Internal energy, potential and free enthalpy

The Helmholtz free-energy depends on temperature, T , and on other state quantities, η, i.e., Ψ = Ψ (T,η).
The dual function of its opposite function, which is convex, i.e.,

(−Ψ)
∗

(y,η) = sup
[
xy − (−Ψ) (x,η)

∣∣x ∈ V = <
]

(A.17)

defines the internal energy, e, depending on entropy, η, and on η, as follows:

e (η,η) = (−Ψ)
∗

(η,η) (A.18)
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It results also the equivalent relationships:
T ∈ ∂e (η,η)

η ∈ −∂Ψ (T,η)

e (η,η) = ηT + Ψ (T,η)

(A.19)

where the subdifferential sets are with respect to η and T , with η a fixed parameter.
Another example of dual function is the potential or Gibbs free-energy, G, defined with dual function

of the Helmholtz free-energy, Ψ, with respect to density, 1/τ . We define the function, Ψ∗ (p, T ), by:

Ψ∗ (p, T ) = sup
x

[
p

1

x
−Ψ (x, T )

∣∣x ∈ V = <
]

(A.20)

where p is the pressure, function 1/τ → Ψ (τ, T ) is convex, and potential G is given by:

G (p, T ) = −Ψ∗ (p, T ) (A.21)

with:

G (p, T ) = −p 1

τ
+ Ψ (τ, T ) ⇔ 1

τ
=
∂Ψ∗

∂p
⇔ p =

∂Ψ

∂ (1/τ)
(A.22)

The free enthalpy, Ĝ, is defined with the specific free-energy, Ψ̂ = τΨ, as follows:

− Ĝ (P, T ) = Ψ̂∗ (−P, T ) = sup
x

[
−Px− Ψ̂ (x, T )

]
(A.23)

with:

Ĝ (P, T ) = Pτ + Ψ̂ (τ, T ) ⇔ τ =
∂Ĝ

∂P
⇔ P = −∂Ψ̂

∂τ
(A.24)

A.6 Concave functions

A function f is concave if its opposite −f is convex. For concave function, uppergradients, instead of
subgradients, are defined and satisfy:

∀z ∈ V, 〈z − x, x∗〉+ f (x) ≥ f (z) (A.25)

In such a case, the set of the uppergradients at point x is denoted as upperdifferential set, ∂̂f (x).

A.6.1 Examples of concave functions

The Helmholtz free-energy, Ψ = Ψ (T,εεε,β,∇β), is a concave function of temperature, T , because it is
the dual function of the opposite of the internal energy, e = e (η,εεε,β,∇β), which is a concave function
of entropy, η. It results that the heat capacity, −∂2Ψ/∂T 2, is non-negative.
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Appendix B

AceGen and AceFEM packages

B.1 Overview on traditional finite element environments

Nowadays, numerical simulations are well-established in several engineering fields such as automotive,
aerospace, or civil engineering.

The need of numerical methods which can provide a general tool for arbitrary problems in Mechanics
of Solids has a long history. Most of the existing numerical methods for solving partial differential equa-
tions can be classified into two main classes: finite difference method (FDM) and finite element method
(FEM). Unfortunately, the applicability of such numerical methods is often limited. As an example, the
use of traditional commercial finite element (FE) environments, e.g., FEAP (Taylor, 2013) or ABAQUS
(SIMULIA, 2012), offers a possibility to analyze a variety of problems and to incorporate user-defined
elements and material modes. However, it is time-consuming to develop and test new user-defined pieces
of softwares and numerical procedures, since a lot of time is spent to derive characteristic quantities like
gradients, Jacobean, or Hessian.

The basic numerical tests on a single FE or on a small patch of elements can be done most efficiently
by using general symbolic-numeric environments or computer algebra (CA) systems, such as Mathema-
tica1 (Wolfram, 2013a) or Maple (Maplesoft, 2013). However, the symbolic level of analysis becomes
very inefficient if iterative procedures have to be performed, or if a large number of elements have to be
considered as for real industrial simulations. Consequently, in order to assess element performances under
real conditions, the easiest way is to perform tests on sequential machines with good debugging capabilities
(typically personal computers and programs written in FORTRAN or C/C++ language).

For such reasons, during the development of new numerical models, the classical approach, based on
the element re-coding in different languages, would be extremely time-consuming and it is never done.

In order to avoid the above troubles, the hybrid symbolic-numerical (HSN) approach combines different
techniques inside one system and offers a multi-language and multi-environment generation of numerical
codes. Consequently, the automatically-generated codes can be then incorporated into the FE environment
that is most suitable for the specific step of the research process.

Motivated by such a framework and by the necessity of the development of numerical models for elasto-
plastic and shape memory materials, the present thesis makes use of a couple of innovative Mathematica
packages, called AceGen (Wolfram, 2013c) and AceFEM (Wolfram, 2013b), recently released by Wolfram
Research in order to bring to Mathematica a robust and optimized architecture for a rapid numerical proto-
typing and a FE analysis. The combination of the FE environment, AceFEM, with its HSN code generator,
AceGen, represents an ideal tool for the development of new numerical models. Such packages have been

1Mathematica is a well known software program largely used in several technical computing like scientific, engineering and other
mathematical fields (Wolfram, 2013a).
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written and developed by Joze Korelc, Professor at the Faculty of Civil and Geodetic Engineering of the
University of Ljubljana (Korelc, 2002, 2009).

B.2 Introduction to AceGen and AceFEM packages

This Section presents an overview on AceGen and AceFEM packages, pointing out all their main innovative
features (Korelc, 2002, 2009; Wolfram, 2013b,c).

B.2.1 AceGen package

AceGen features and advantages

The AceGen package has been designed in order to approach several problems, especially those where
the general strategy of an efficient formulation of numerical procedures, such as the analytical sensitivity
analysis of complex multi-field problems, has not yet been established.

The great advantage of such a HSN tool stands on its new and innovative approach which exploits the
symbolic and algebraic capabilities of Mathematica, avoiding all the typical troubles of such symbolic soft-
ware during the analysis of complex mechanical models. The main task is to derive automatically formulas
that are required during numerical procedures and that can lead to uncontrollable growth of expressions
and inefficient programs in case of symbolic softwares.
Such an automatic code generation is called simultaneous stochastic simplification of numerical code and
combines the CA system Mathematica with an automatic differentiation technique and an automatic theo-
rem proving by examples. Moreover, AceGen multi-language capabilities can be exploited for a rapid
prototyping of numerical procedures in several script languages, such as Mathematica, Matlab, language
codes in Fortran/Fortran90 or C/C++.

Mathematica-AceGen combination

The AceGen package is written in the symbolic language of Mathematica and consists of about 300 func-
tions and 20000 lines of Mathematica’s source code.
Since AceGen runs in parallel with Mathematica, we can use all the capabilities of Mathematica. The ma-
jor algebraic computations that can be directly implemented also with the built-in Mathematica functions
and optimized by AceGen are:

• analytical differentiation;

• symbolic evaluation;

• symbolic solution to the system of linear equations;

• symbolic integration;

• symbolic solution to the system of algebraic equations.

AceGen codes and commercial FE environments

The AceGen package provides a collection of pre-arranged modules for the automatic creation of an inter-
face between the generated FE code and several FE environments like Abaqus, Feap, Elfen, and AceFEM.

The interfacing phase of the automatically generated code and the FE environment is a two-stage pro-
cess. At the first stage user-subroutine codes are generated and each of them performs a specific task. The
input/output arguments of the generated subroutines are environment- and language-dependent; however,
they should contain the same information. Due to fundamental differences among the FE environments,
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the required information is not readily available. Thus, at the second stage the contents of the ’splice-
file’ that contains additional environment-dependent interface and supplementary routines is added to the
user-subroutines codes. The ’splice-file’ code ensures proper data transfer from the environment to the
user-subroutine and back. Automatic interface is already available for a collection of basic tasks required
in the FE analysis. There are several possibilities in the case of need for an additional functionality. Stan-
dard user-subroutines can be used as templates by giving them a new name and, if necessary, additional
arguments. The additional subroutines can be called directly from the environment or from the enhanced
’splice-file’. The additional subroutines can be generated independently just by using the AceGen code
generator and can be called directly from the environment or from the enhanced ’splice-file’. Since the
complexity of the problem description mostly appears in a symbolic input, we can keep the number of data
structures that appear as arguments of the user-subroutines at minimum.
Figure B.1 presents the structure of the HSN system AceGen for multi-language and multi-environment
code generation.

Figure B.1: Structure of the HSN system AceGen for multi-language and multi-environment FE code
generation, taken from (Korelc, 2002, 2009).

B.2.2 AceFEM package

AceFEM overview

The AceFEM package is a general FE environment which exploits the symbolic capabilities of Mathema-
tica to solve multi-physics and multi-field problems, while maintaining numerical efficiency of commercial
FE environments.

The AceFEM package can employ specific own elements or general codes created by AceGen and
it is designed to solve steady-state or transient FE and similar problems implicitly by means of Newton-
Raphson type procedures. The idea is to design a FE environment where code complexity is shifted out of
the FE environment to a symbolic module, which provides all the necessary formulation-dependent codes
by automatic code-generation. The shift concerns the numerical algorithms (at the local element level)
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and data structures like the organization of environment and the nodal or element data. One of the most
important and original issue is that the AceFEM package contains a lot of useful pre-arranged procedures,
written and executed directly inside Mathematica and usually not numerically intensive. As an example, it
is easily possible to:

• generate mesh;

• control solutions procedures;

• run interactive post-processing analysis;

• create graphic post-processing of the results.

Moreover, AceFEM includes a numerical module which exists as Mathematica package and as an exter-
nal program written in C language, connected with Mathematica via the MathLink protocol. This peculiar
and unique capability allows the user to solve different large-scale problems with several unknowns. Figure
B.2 shows the structure of the AceFEM package (Korelc, 2002, 2009).

Figure B.2: Structure of the AceFEM package, taken from (Korelc, 2002, 2009).

AceShare

The AceFEM package has a built-in FE library including standard solid, structural, thermal and contact
elements. Such elements can be accessed through the AceShare system, which is a built-in FE file sharing
software and allows to:

• browse the online FEM libraries;

• create a user-defined library that can be posted on the internet in order to be used by other users of
the AceFEM system.
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