Shape memory and elastoplastic materials: from constitutive and numerical to fatigue modeling

Scalet, Giulia (2014) Shape memory and elastoplastic materials: from constitutive and numerical to fatigue modeling, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Ingegneria civile e ambientale, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6617.
Documenti full-text disponibili:
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (163MB) | Anteprima


Shape memory materials (SMMs) represent an important class of smart materials that have the ability to return from a deformed state to their original shape. Thanks to such a property, SMMs are utilized in a wide range of innovative applications. The increasing number of applications and the consequent involvement of industrial players in the field have motivated researchers to formulate constitutive models able to catch the complex behavior of these materials and to develop robust computational tools for design purposes. Such a research field is still under progress, especially in the prediction of shape memory polymer (SMP) behavior and of important effects characterizing shape memory alloy (SMA) applications. Moreover, the frequent use of shape memory and metallic materials in biomedical devices, particularly in cardiovascular stents, implanted in the human body and experiencing millions of in-vivo cycles by the blood pressure, clearly indicates the need for a deeper understanding of fatigue/fracture failure in microsize components. The development of reliable stent designs against fatigue is still an open subject in scientific literature. Motivated by the described framework, the thesis focuses on several research issues involving the advanced constitutive, numerical and fatigue modeling of elastoplastic and shape memory materials. Starting from the constitutive modeling, the thesis proposes to develop refined phenomenological models for reliable SMA and SMP behavior descriptions. Then, concerning the numerical modeling, the thesis proposes to implement the models into numerical software by developing implicit/explicit time-integration algorithms, to guarantee robust computational tools for practical purposes. The described modeling activities are completed by experimental investigations on SMA actuator springs and polyethylene polymers. Finally, regarding the fatigue modeling, the thesis proposes the introduction of a general computational approach for the fatigue-life assessment of a classical stent design, in order to exploit computer-based simulations to prevent failures and modify design, without testing numerous devices.

Tipologia del documento
Tesi di dottorato
Scalet, Giulia
Dottorato di ricerca
Scuola di dottorato
Ingegneria civile ed architettura
Settore disciplinare
Settore concorsuale
Parole chiave
plasticity, shape memory alloys, shape memory polymers, constitutive modeling, numerical integration, fatigue modeling, biomedical applications, high-cycle fatigue, experimental campaign
Data di discussione
19 Maggio 2014

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi