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1. INTRODUCTION 
 

1. GENETIC VARIABILITY AND MOLECULAR MARKERS IN THREATENED PLANT 

SPECIES 

 

The genetics of threatened species have been of great interest to both evolutionary 

biologists and conservation managers for long time (Avise and Hamrick 1996, Young 

and Clarke 2000, Hedrick 2001). 

Analysis of the genetic structure is necessary not only to fully evaluate the impact of 

the endangered status on genetic variation of the population, but also because 

knowledge on the genetic structure of the species can be applied to the preservation 

of the evolutionary potential of species, which is one of the conservation goals (Godt 

and Hamrick 1998). Thus, molecular tools can be valuable means for investigating 

the pattern of genetic diversity in threatened species, and clarifying demographic and 

ecological issues early in species management in order to plan long-term 

conservation or restoration projects (Kim et al. 2005). 

As predicted by population genetic theory, loss of genetic variation is a major threat 

to endangered species with small populations or located in narrow geographic areas. 

A low level of genetic variability often results in minor fitness of individuals 

(Oostermeijer et al. 1994, Fischer and Matthies 1998, Luijten et al. 2000, Hansson 

and Westerberg 2002), reduces the viability or adaptability of populations in 

changing environments (Young et al.1996), and in extreme cases causes the 

extinction of species. These effects may be most pronounced in species that are self-

compatible and/or have limited seed dispersal ability. However, some endemic 

species exhibit highly levels of diversity compared to their common congeners 

(Torres et al. 2003, Conte et al. 2004, Ellis et al. 2006). Ellis et al. (2006), for 

istance, used nuclear and chloroplast microsatellites to investigate the population 

genetics of an extremely rare sunflower, Helianthus verticillatus Small., which is 

known from only three locations in North America. Despite its rarity, H. verticillatus 

possesses significantly higher levels of genetic diversity than the more common H. 

angustifolius at nuclear loci and equivalent levels of chloroplast diversity. 
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Moreover, a low level of genetic diversity is also expected in clonal species where, 

theoretically, the clonal propagation has similar effects for population genetic 

structure as strict selfing (inbreeding) reproductive system. However, as observed in 

Prunus ssiori, clonal populations can maintain considerable genetic diversity, 

comparable to sexually reproducing species (Nagamitsu 2004). 

Thus, although it is possible to find generalizations in published literature that link 

pattern of genetic diversity to factors such as reproductive system or geographic 

range (Hamrick and Godt 1989, Karron 1991, Ellstrand and Elam 1993, Gitzendanner 

and Soltis 2000), predicting the amount and distribution of genetic variability in 

plant species on the basis of distribution size and mating system is often not reliable 

and each case should be independently investigated.  

In last decades, genetic issues have gone from relative obscurity to a significant 

emphasis in conservation research as modern molecular techniques revolutionized 

our ability to delineate relationships among individuals, populations, and species. 

Despite some researchers have questioned the relative importance of genetic 

information, stating that ecological or demographic issues may be more pressing 

(e.g. Lande 1988, Schemske et al. 1994), molecular markers have become part of a 

repertoire of tools needed to assess the amount of genetic variation in populations of 

endangered species and to address the everincreasing loss of biodiversity. 

An outstanding advantage of molecular approach is the immense amount of potential 

data they provide (Petersen and Seberg 1998). Furthermore rates of evolution of 

different parts of the genome are extremely variable, allowing molecular data to be 

applicable at any taxonomic level. 

Both dominantly (e.g. AFLP, RAPD, and ISSR) and codominantly inherited markers 

(e.g. allozymes and microsatellites) have been used to study population genetics and 

life history traits in many species. Among these, polymerase chain reaction (PCR)-

derived markers obtained with nonspecies specific primers have become exceedingly 

popular since they do not request sequence information for the target species. 

Consequently, these methods are especially suited to situations where little or no 

molecular genetics research has been conducted previously, which is true for the 

majority of wild plant species, in particular for endangered species.  
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The first and so far most commonly used method in this group is RAPD (random 

amplified polymorphic DNA) which was introduced in 1990 (Williams et al. 1990). 

A few years later, the relatively similar ISSR (intersimple sequence repeats) 

(Zietkiewicz et al. 1994) and the somewhat more technically demanding AFLP 

(amplified fragment length polymorphism) (Vos et al. 1995) were introduced. In 

spite of the obvious advantages of these methods related to the efficient and quick 

PCR amplification of polymorphic DNA fragments starting from small amounts of 

template, however, they share some limitations in the interpretation of the multi-band 

profiles produced: heterozygotes cannot be detected because of their dominant 

nature; homology of comigrating bands cannot be assigned certainly; from a 

technical point of view, competitive priming (Halldén et al. 1996), and the 

occurrence of artefactual bands produced by nested primer annealing or interactions 

within and between DNA strands during PCR (Rabouam et al. 1999) still remain 

potential problems. The difficulty of achieving robust profiles, particularly in 

RAPDs, may make the reliability of these markers somehow questionable, but the 

reproducibility of RAPD analysis can be enhanced through improved laboratory 

techniques and band scoring procedures (Skroch and Nienhuis 1995, Weising et al. 

1995) while AFLP and ISSR are less affected by the problem of reliability than 

RAPD (Zietkiewicz et al. 1994, Vos et al. 1995, Palacios et al. 1999) because longer 

primers and higher annealing temperatures are employed.  

From the 90ies, SSR markers, based on microsatellite DNA loci with tandem repeats 

of one to six nucleotides, became increasingly popular in plant population genetics 

due to their hypervariability. These loci are detected with PCR, and sequence 

information is necessary for primer design. As opposed to previous multilocus-based 

approaches, SSR analysis provides locus-specific and codominant markers. The 

major drawback with microsatellite DNA analysis has been attributed to time and 

cost involved in developing species-specific primers from genomic libraries or 

sequence databases (Squirrell et al. 2003).  

The use of degenerate primers (primers developed for a particular species and 

applicable to related taxa) offers an exciting prospect since avoids the laborious and 

time-consuming process of cloning new microsatellites. However, in many instances, 

heterologous primers do not lead to amplification products at all or introduce 
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artefacts since the structure and/or average length of the actual microsatellite locus 

can differ considerably between different taxa (van Treuren et al. 1997). 

Microsatellite performance may be sometimes hampered by apparent heterozygote 

deficiency due to the occurrence of null alleles (Callen et al. 1993) or short allele 

dominance (Wattier et al. 1998).  

The different molecular techniques hitherto examined have become the genetic 

markers of choice for many applications in biodiversity studies. They differ in the 

way that they evaluate DNA sequence variation without sequencing and in the type 

of data that they generate, but the common rationale behind their development has 

been the search for polymorphic and “easy-to-handle” markers. Their abundance and 

ubiquitous distribution have made them very valuable genetic markers. 

In data compilations, estimates of genetic variation obtained with different types of 

dominant markers (AFLP, RAPD, ISSR) proved to be quite similar in magnitude, 

both for within and among populations (Zawko et al. 2001). In contrast, 

microsatellite-derived estimates of within-population diversity were at least twice 

higher than values from non-SSR loci (Nybom et al. 2004). This difference may be 

attributed to the hypervariability of SSR loci, up to four orders of magnitude higher 

than the mutation rate at diverse loci (O’Hanlon et al. 2000). In contrast, population 

differentiation estimated by microsatellites was found lower than that measured by 

codominant markers (Nybom et al. 2004) but the discrepancy in this case may be 

apparent and attributable to the use of traditional statistics that underestimate 

measures of differentiation from highly polymorphic SSRs (Hedrick 1999).   

As example of feasibility of using molecular markers for accurate fingerprinting of 

endemic taxa some recent case studies will be mentioned in detail. Palop-Esteban et 

al. 2007 used microsatellite markers to investigate the levels and distribution of 

genetic diversity within and among populations of Limonium dufourii (Girard) 

Kuntze. It is a highly endemic, triploid species (2n=3x=27) from the coasts of eastern 

Spain (Castellón and Valencia provinces) whose distribution range has been greatly 

reduced along with urban development (Crespo and Laguna 1993). Given its critical 

status, L. dufourii has been considered a priority species for conservation and has 

been included as Critically Endangered in the Spanish catalogue of endangered plants 

(VVAA 2000; Crespo 2004). 
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In this study, sixty-five alleles from 13 microsatellite regions were amplified in a 

sample of 122 individuals collected from the six extant populations. Limonium 

dufourii showed moderate to high levels of genotypic diversity within populations in 

the analyzed microsatellite regions, with most genotypes restricted to one or a few 

populations, a common pattern in asexually reproducing plants. L. dufourii presented 

also a strong population differentiation with a high proportion of the genetic variance 

distributed among populations (72.06%) and significant isolation by distance. This 

pattern can be explained by restricted gene flow between populations, founder events 

produced by a limited number of individuals, absence of recombination and spread of 

single asexual clones within populations. In order to preserve extant genetic variation 

of L. dufourii, in situ strategies such as the preservation of its habitat are suggested. 

Heptacodium miconioides Rehd., the only species in genus Heptacodium, is an 

endangered plant, endemic to China (Jin et al. 2007) that has declined in recent 

decades to such an extent that it is limited to small isolated areas and eventually 

fragmented into island-like small populations. To characterize genetic diversity and 

genetic differentiation within and among populations of H. miconioides, 12 ISSR 

primers were tested on 180 adult trees. Diversity indices revealed low genetic 

variation at population level and high genetic variation at species level, indicating 

that H. miconioides populations are endangered for ecological reasons and long-term 

deforestation rather than for scarce genetic variation. Two-thirds of the total 

variation was attributed to differences among populations by the AMOVA analysis. 

This highly structured pattern may be correlated to small number of remnant 

individuals and consequent genetic drift in the small population isolated by distance, 

while significant correlation between geographical distance and genetic distance 

reflects the population distribution pattern of isolation-by-distance. It appear evident 

that, to maintain the most of the genetic diversity accumulated by H. miconioides, 

conservation in situ by preserving as many populations as possible is the best way to 

protect this threatened species. 

12 RAPD primers were used to assess genetic variation between- and within 

populations of Anisodus tanguticus Wu & C. Chen., an endangered perennial species 

endemic to the Qinghai Tibetan Plateau (Zheng et al. 2008). A. tanguticus is a 

medicinal plant and, as a result of extensive collection and habitat over-exploitation, 
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the number and size of the extant populations have decreased greatly in the last 

years. Also in this case, analysis of molecular variance (AMOVA) showed that 

among-population genetic variation accounted for about two-thirds of the total 

genetic variation. The differentiation among isolated populations may be a 

consequence of anthropic factors or a natural effect: in fact this species is distributed 

in the Qinghai Tibetan Plateau where high mountains and deep valleys are abundant. 

The complex topography of the region may have hindered gene flow via both pollen 

and seeds among populations, and thus promoted population differentiation. The 

observed genetic variations suggest that as many populations as possible should be 

considered in any planned in situ or ex situ conservation programs for this species. 

In conclusion, both dominant multi-locus (RAPD and ISSR) markers and codominant 

single locus (microsatellites) markers are able to estimate levels and partioning of 

genetic variability in threatened plant species, providing appropriate information in 

relation to the conservation of genetic resources. 
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1.1.1 DISTRIBUTION, MORPHOLOGY AND ECOLOGY OF THE PUTATIVE PARENTAL 

SPECIES OF QUERCUS CRENATA LAM.: QUERCUS CERRIS  L. AND QUERCUS SUBER L.  

 

Despite Quercus suber L. and Quercus cerris L. belong to the same taxonomic 

group, subgenus Cerris (Schwarz 1993, Manos et al. 1999), they are well distinct 

morphologically, and have different geographical and ecological ranges.  

The natural distribution ranges of Q. cerris from central and southern Europe to Asia 

Minor, although it has been planted extensively north of its native range over the last 

500 years (Stone et al. 2001) (Figure 1a). In Italy it is widely distributed in all 

regions, but is rare in Sicily and absent in Sardinia.  

Q. cerris (Turkey oak) is a large deciduous tree growing to 25-40 m tall with a trunk 

up to 2 m diameter. The bark is dark grey and deeply furrowed. The leaves are 7-14 

cm long and 3-5 cm wide, with 6-12 triangular lobes on each side; the regularity of 

the lobing varies greatly, with some trees having very regular lobes, others much less 

regular. The flowers are wind-pollinated aments, maturing about 18 months after 

pollination; the fruit is a large acorn, 2,5-4 cm long and 2 cm broad, bicoloured with 

an orange basal half grading to a green-brown tip; the acorn cup is 2 cm deep, 

densely covered in soft 4-8 mm long 'mossy' bristles. It prefers basic soils and 

prevails between 100 and 800 m asl. Its range includes submontane and montane 

vegetation belts, but can reach 1200 m on sunny slopes (Bellarosa et al. 2003a). The 

species is fairly resistant to thermal extremes, and is moderately tolerant of summer 

drought; its fully deciduousness and biennial reproductive cycle are well suited to 

overcome stress due to winter cold, and allow the species to reach the slopes of the 

Alps (Bellarosa et al. 2005). 

 

Q. suber has a narrow geographical range, restricted to discontinuous areas located 

exclusively in the western part of the Mediterranean Basin and along the Atlantic 

coast of North Africa and of south-western Europe, including the main west 

Mediterranean islands as well as the coastal belts of Maghreb (Algeria and Tunisia), 

Provence (France) and Catalonia (Spain). In Italy it is distributed mainly along the 

Tyrrhenian coast; it is absent along the Adriatic coast, except in Apulia, where there 
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are small stands, while it is present in central Sicily and widespread in Sardinia 

(Bellarosa et al. 2003a) (Figure 2a).  

Q. suber (cork oak) is a sclerophyllous evergreen oak. It may reach about 20 m in 

height, with massive branches forming a round crown. Its thick and soft bark is the 

source of cork, which is stripped every 10–12 years from the outer layer of the bark 

along the lower portion of the trunk (Gellini and Grossoni 1997). The leaves are 4-7 

cm long, weakly lobed or coarsely toothed, dark green above, paler beneath, with the 

leaf margins often downcurved. The acorns are 2-3 cm long, in a deep cup fringed 

with elongated scales, 5 to 7 veins. It is a monoecious wind-pollinated species with a 

protandrous system to ensure cross pollination (Figure 2b). 

Cork oak avoids limestone substrates and usually grows in warm stands of the humid 

and sub-humid Mediterranean areas with at least 450 mm mean annual rainfall and 

>4–5°C mean temperature for the coldest month. 

In natural conditions cork oak usually occurs in pure stands or in mixed stands 

together with Q. ilex L.and Q. pubescens Willd. However, the surface area covered 

by the species is rapidly and progressively declining, mainly due to human activities 

connected with fires, overgrazing, ploughing, indiscriminate extraction of cork, and 

insect or pest attacks (Careddu and Vogiatzakis 2003). The different strategies for 

drought resistance and the absence of competition for water, documented by Nardini 

et al. (1999) in a mixed natural stand of Q. cerris and Q. suber growing in Sicily, 

attest that the two species experience different degrees of water stress in their natural 

environments, and resist drought to different extents. 

 

 

 

 

 

 

 

 

 

 



 12

 

 
 
 
    
           a                                                                                                     b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: (a) natural distribution range of Quercus cerris L.; (b) tree, acorns, leaves 
and bark of Quercus cerris Lam.  
 
 
 
 
 
 
 
         a                                                                                       b  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: (a) natural distribution range of Quercus suber L.; (b) tree, acorns, leaves 
and bark of Quercus suber Lam. 
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1.1.2 QUERCUS CRENATA LAM. : TAXONOMY, DISTRIBUTION, MORPHOLOGY AND 
ECOLOGY 

 

Quercus crenata Lam. is a species with a controversial taxonomic status: in most 

floras (Flora Europaea 1964,  Pignatti 1982, Schwarz 1993) it is hyphothesized to be 

a hybrid between Quercus suber L. and Quercus cerris L.; some Authors considered 

instead it as a fixed species (Hegi 1957, Odasso and Prosser 1996).  

Besides the unresolved taxonomic position of this species, nomenclatural ambiguity 

results from the fact that Santi (“Viaggio al Monteamiata” 1795) described a plant of 

Tuscany which closely resembled the plant of Lamarck which he named Quercus 

pseudo-suber, whereas Gussone (1825, 1844) used the name Q. fontanesii for a plant 

of Sicily, also morphologically similar to Q. crenata (Cristofolini and Crema 2005). 

The species, assuming the three names are synonyms (Schwarz 1993), occurs as rare 

and scattered individuals, from southern France (Alpes Maritimes) to all continental 

Italy (without Apulia) and Sicily, western Slovenia and western Croatia (Cristofolini 

and Crema 2005) (Figure 3a). However, if in peninsular Italy and in Sicily it occurs 

where the ranges of Q. cerris and Q. suber overlap, its presence in northern Italy, 

Alpes Maritimes and Slovenia is puzzling since Q. suber, one of the presumed 

parents, is not present in these regions, and long distance pollen dispersal from the 

nearest stands of Q. suber (on the Thyrrhenian coast) is highly unlikely.  

As a possible explanation for this paradox, Goiran (1897, 1899) proposed that the Q. 

crenata specimens surviving at this time in the north-eastern Italy may be considered 

the offspring of hybridization events prior to local extinction of Q. suber. On the 

other hand, considering the ecological and morphological differentiation among Q. 

crenata individuals growing in different regions, Barbero et al. (1972) suggested  

that the name Q. crenata may be referred to a heterogeneous complex including two 

different entities, i.e. a “good” species, growing in the northern part of the 

distribution range, and a swarm of hybrids inter parentes in the southern part. More 

recently, Cristofolini and Crema (2005) examined the morphology of 91 specimens 

of supposed Q. cerris x Q. suber hybrids and grouped them into two taxa: Quercus 

crenata Lam., applied to plants considered relicts of ancient hybridization and 

growing in northern Italy, southern France and Slovenia, and Quercus x pseudosuber 

Santi, referred to plants growing in peninsular Italy and Sicily, which are considered 
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inter parentes hybrids. In addition to morphological intermediacy, biochemical and 

molecular additivity have been used to document the hybrid status of Q. crenata in 

peninsular Italy, where Q. cerris and Q. suber occur sympatrically. Seed proteins and 

rDNA restriction fragments of both putative parental species were found in Q. 

crenata (Bellarosa et al. 1996). Nuclear rDNA ITS sequences from Q. cerris and Q. 

suber did not clearly exhibit codominance in Q. crenata, however, the three species 

clustered together in the “Cerris s.s.” group and the most parsimonious analysis 

determined the position of Q. crenata as more closely related to Q. suber (Bellarosa 

et al. 2005).  

Q. crenata (Figure 3b) is a semi-evergreen tree of medium height (10 to 20-25 m) 

with bark deeply furrowed and moderately corky. Leaves are circular to oblong, 

usually ovate, with base truncate, little foliar lobes which are rounded and slightly 

incised and apex acute; surface adaxially is glabrous and coloured brilliant green, 

while abaxially is grey-white due to the abundance of hairs, they are coriaceous 

resembling those of Q. suber but their general shape is intermediate between those of 

Q. suber and Q. cerris  (Figure 3c).  They persists throughout the winter and fall in 

spring, shortly before the new leaves develop. It is a monoecious plant, the male 

aments are sessile, 3-6 cm long, with connate sepals; stamens (4-6), surrounding tuft 

of silky hairs. The female flowers are tiny, solitary and occur at the leaf axils, with 

5-6 connate sepals and long styles (4-6). The flowering period is between May and 

early June and the pollination is anemophilous. The fruits have a biennial maturation, 

and the warty cupules have linear and reflexed scales resulting similar to those of Q. 

cerris. 

The plant, as Q. cerris, prefers heavy, sandy or clay soils, neutral or slightly acid. It 

grows between 150 m and 1,000 m, at south, south-east or south-western exposure. It 

is mostly found in open places, in meadows, more rarely in woods, usually Q. cerris 

coppice. 

Q. crenata is considered protected in Piemonte (L.R. n°32 – 2/11/1982), Veneto and 

Emilia-Romagna (L.R. n°2 – 1970). It has been proposed for preservation in Liguria 

(Cresta and Salvidio 1991) and Trentino. 
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Figure 3a: distribution range of Quercus crenata Lam. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3b: Quercus crenata Lam. individual in Acqui –AL. (11cr). 
 
 
 
 
 
 
 
 
 
Figure 3c: acorns, leaves and bark of Quercus crenata Lam.  
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1.1.3 HYBRIDIZATION AND INTROGRESSION IN THE GENUS QUERCUS 

 

Hybridization is considered to be widespread among plants and has been estimated to 

be involved in the differentiation of up to 70% of the Angiosperms (Whitham et al. 

1991). As recently reported (Rieseberg and Wendel 2004), phylogenetic studies 

conducted over the past decade in several plant genera have shown that the ‘marks’ 

of past hybridization are considerably more frequent than previously believed (Cronn 

and Wendel 2004, Doyle et al. 2004). Hybridization is therefore a prominent factor 

in plant evolution which may trigger the differentiation of new lineages (Arnold 

1997).  

Hybrids usually grow intermingled with one or both of the original species. The 

introgression, the movement of genes (gene flow) from one species into the gene 

pool of another by backcrossing between the interspecific hybrid and one of its 

parents, is one of the principal evolutionary consequences of reproduction in the wild 

plants. It may readily occur if viability and fertility of the hybrids are sufficiently 

high and is expected to increase levels of genetic diversity, to provide new gene 

combinations on which selection can act, and may also lead to speciation if 

reproductive isolation is established. In any case, introgression is difficult to 

identify. In polymorphic populations, introgression may  go unnoticed because 

appropriate methods for its detection are not used or few diagnostic features separate 

parental taxa. Futhermore, differences between introgressed individuals and the 

parent species follow a decay function with time since first introgression occurred 

(Rieseberg and Wendel 1993). 

Although morphology, comparative anatomy and physiology have provided primary 

evidence for plant hybridization and introgression in hundreds of studies, during the 

last three decades classical strategy for the confirmation of a hybrid origin of a 

species have increasingly been complemented by molecular techniques.  

Morphological traits and molecular data have been used jointly to verify and explore 

hybridization: in Iris fulva Ker-Gawl and Iris haxagona L. (Arnold 1994), Salix 

sericea Marshall and Salix eriocephala Michaux (Hardig et al. 2000), Helianthus 

anomalus Blake, Helianthus annuus L. and Helianthus petiolaris Plains 
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(Schwarzbach et al. 2001), Cardamine pratensis L. and Cardamine raphanifolia 

Pourr. (Lihová et al. 2007).  

 

Oaks (Quercus genus, Fagaceae) consist of several hundred diploid species 

(2n=2x=24), which are known for their high propensity to interbreed. Interspecific 

hybridization makes the task of identifying oaks - already a challenge because of the 

large number of taxa, phenotypic plasticity, and juvenile versus adult character 

differences - especially difficult. Indeed, oaks represent a classic example of a 

taxonomic group in which individual species maintain distinct morphological and 

ecological identities despite extensive hybridization and introgression (Stebbins 

1950, Burger 1975, Grant 1981, Whittemore and Schaal 1991), as observed in cross 

breeding species: Q. suber L. and Q. ilex L. (Belhabib et al. 2001), Q. gambelii Nutt. 

and Q. grisea Liebm. (Williams et al. 2001), Q. crassifolia Humb. & Bonpl. and Q. 

crassipes Humb. & Bonpl. (Tovar-Sánchez and Oyama 2004), Q. affinis Scheidw. 

and Q. laurina Humb & Bonpl. (González-Rodríguez et al. 2004). 

According to Ishida et al. (2003), several intercrossing oak species are more 

distinctly discriminated by morphological or ecological (i.e., adaptive) traits than by 

isozyme or DNA markers because the firsts might have differentiated faster than the 

seconds during relatively rapid and recent speciation processes. In addition, isozymes 

or DNA markers, which are probably not affected by natural selection, might have 

been transferred from species to species through hybridization, while alleles 

responsible for differential adaptation might not have been transferred despite 

hybridization.  

Because oaks appear to have weak internal barriers to hybridization, they have been 

proposed as a model taxon for species concept that rely on ecological criteria, rather 

than reproductive isolation, in delimiting species boundaries (Van Valen 1976). 

Oaks, along with other wind-pollinated species, are seen as bearing the “cost” of 

hybridization, producing many hybrid offsprings that are destined either to fail or to 

be restricted to narrow or ephemeral habitats (Stebbins et al. 1947, Hardin 1975).  

Jiggins and Mallet (2000) suggested that such hybrid zones are more effectively 

maintained by ecological divergence between parental species than by their genetic 

incompatibility. As a result, most pairs of Quercus species which remain distinct 
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despite hybridization differ in ecological niches (Kleinschmit et al. 1995, Howard et 

al. 1997, Bruschi et al. 2000, Tomlinson et al. 2000, Williams et al. 2001).  

Hybridization in oaks was initially detected based on morphological characters 

(Stebbins et al. 1947, Hardin 1975, Cottam et al. 1982, Rushton 1993). Leaf 

morphology, in particular, has been useful to demonstrate hybridization between two 

distantly related Mexican black oaks Quercus conzattii and Quercus eduardii (Bacon 

and Spellenberg 1996) and to evaluate the pattern of relationships among populations 

and the change of particular foliar traits across the geografical gradient in a complex 

consisting of two species of Mexican red oaks, Quercus affinis Scheidw., and 

Quercus laurina Humb. & Bonpl. (González-Rodríguez et al. 2005).  

When morphological characters alone did not confirm unequivocally the existence of 

hybridization (Bacilieri et al. 1995, Manos et al. 1999, Mayol and Rossellò 2001), 

other methods were employed (Crawford et al. 1993, Rieseberg and Ellstrand 1993).  

Quercus afares Pomel, an endemic North African species which combines 

morphological, physiological and ecological traits from Quercus suber L. and 

Quercus canariensis Willd., was investigated using both nuclear (allozymes) and 

chloroplastic markers (cpDNA) (Mir et al. 2006). The study showed that Q. afares 

Pomel originated from a Quercus suber x Quercus canariensis hybridization. At 

most loci, Q. afares predominantly possesses alleles from Q. suber, suggesting that 

the initial cross between Q. suber and Q. canariensis was followed by backcrossing 

with Q. suber.  

Craft et al. (2002) applied DNA microsatellite markers to study hybridization 

between Quercus lobata L. and Quercus douglasii L., two widely overlapping 

species growing in a mixed stand in central coastal California, and concluded that 

hybrids of Q. douglasii x Q. lobata were actually rare that and morphological 

plasticity of the two species might have led to overestimates of crossbreeding events. 

These results stress that apparently intermediate phenotypes between Q. lobata and 

Q. douglasii are not necessarily hybrids and that true hybrids are not necessarily 

intermediate in phenotype.   

High correspondence between morphological variables and RAPD markers was found 

in a hybrid zone between Q. gambelii and Q. grisea in New Mexico (Howard et al. 

1997), while different rates of evolution in different characters may explain the 
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partial congruence between morphology and molecular markers observed some times 

in plant hybrid analyses where, in general, introgression of morphological characters 

is more restricted than introgression of molecular markers (Rieseberg and Wendel 

1993). 

To characterize and discriminate Quercus crispula Blume and Quercus dentata 

Thunberg and their hybrids, Ishida et al. (2003) used several morphological traits, 

the composition of Phyllonorycter species (leafmining insects) and AFLP data. 

Morphological traits and Phyllonorycter composition differ enough in these two oaks 

species and resulted to be useful for identification of species and hybrids. AFLP data 

instead were less informative for the identification of hybrids, because the degree of 

molecular differentiation between the two species was low. Then, the two species 

were similar genetically and this similarity contrasts rather sharply with their 

morphological distinctness. Although there are several possible explanations for the 

incongruence between molecular and phenotypic patterns (Rieseberg and Ellstrand 

1993), it seems likely that if foliar morphology has experienced restricted 

introgression despite interspecific gene flow and exchange of neutral markers, it is 

probably due to selective factors operating against the recombination of genomic 

regions controlling adaptively relevant traits, while considerable gene flow can still 

occur at the rest of the genome, as suggested by Wu (2001). The same Author states 

that that if reproductive isolation has once developed between species or populations 

to some degree, genes responsible for that isolation and submitted to differential 

selection might not transfer across species even if hybridization occurs.  
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1.1.4 PRIMULA APENNINA WIDMER: TAXONOMY, MORPHOLOGY, DISTRIBUTION AND 

ECOLOGY 

 

Primula apennina Widmer is a member of section Auricula subsection Auricula 

(Primulaceae). 

Primula L. comprises c. 500 species distributed largely in the Sino-Himalayan region 

(Hu and Kelso 1996) which, together with the adjacent ranges in Central Asia, 

account for some 78 per cent of all Primula species. Members of Primula distributed 

outside of this Asian highland center of diversity occupy the mountains or high 

latitudes of North America, Europe, and Asia; a few species also extend into South 

America, Ethiopia, Java, and Sumatra (Richards 1993). 

Section Auricula is endemic to the central and southern European mountains and is 

one of the few endemics of the European alpine system with a comparatively large 

number of species (Ozenda 1995). Its distributional range encompass the Cantabrian 

Mountains, Pyrénées, Alps, Sudetan Mountains, Carpathians (including Tatra 

Mountains), Apennines, and Balkans. The highest species diversity, however, is 

clearly found in the Alps, where 21 species occur, including 12 local or regional 

endemics (Zhang and Kadereit 2004).  

The majority of species of sect. Auricula likely originated from an Asian ancestor in 

the earlier Quaternary (Zhang et al. 2004). A molecular clock analysis based on ITS 

sequences suggests that sect. Auricula originated approximately 3.6 Mya, i.e. in the 

Pliocene, and that the two major clades of this section (Auricula, Cyanopsis) shared a 

common ancestor at about 2.4 Mya, i.e. at the Plio-Pleistocene boundary (Zhang et 

al. 2004). Thus, the ancestor of this section must have reached Europe between 3.6 

and 2.4 Mya (Zhang and Kadereit 2004). 

P. apennina, included in the section Auricula, is an endangered species endemic to 

the mountain tops of the Tosco-Emilian Apennines. It is hexaploid (Zhang and 

Kadereit 2004), with a chromosome number of 2n=62 derived on the basis of x=11. 

Its range is a narrow corridor of approximately 45 km x 5 km between Monte Prado 

(Reggio Emilia) and Monte Orsaro (Parma), where P. apennina grows in isolated 

populations on the mountain tops (Figure 4a). 
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 P. apennina Widmer is a hemicryptophyte plant (Figure 4b), with small bracts, 1-3 

(-5) mm long. The leaves are wedge-shaped, rather square-ended usually with entire 

margins or occasionally very shallowly wavy-toothed. The most important characters 

for species identification include red-tipped glandular hairs shorter than 0.2 (-0.3) 

mm along margin and the absence of a farinose flavonoid exudate on the leaves. New 

leaves are produced in May and June. The scape exceeds the leaves, forming a more 

clustered head of flowers with a hint of blue in the pink to red perianth. It has one 

inflorescence stalk, each with 2-18 flowers with 2-6 (-7) mm long calyces, which 

emerge in spring. All flowers in a population open fairly synchronously from May to 

June and the flowering continues for 2-3 weeks.  

Like all species of section Auricula, P. apennina is a heterostylous and self-

incompatible plant (Richards 1993) with two distinct mating types: long and short-

styled morphs, requiring insect pollinators for reciprocal pollination. This structural 

difference is often accompanied by a sporophytically controlled, diallelic 

incompatibility system which makes intermorph crosses more successful than 

intramorph crosses. Production of  fruits is concentrated from June to July. 

It proliferates both by sexual and vegetative reproduction. Each genet of the species 

is composed of various numbers of physiologically independent ramets, which are 

clonally propagated by woody short rhizomes which grow a few centimeters each 

year.  

It is more frequently found in acidic grassland, in stabilized scree or peaty turf, but 

also on shaded volcanic cliffs (Richards 1993), mostly in north-facing ledges and 

sandstone crevices at 1,500-1,800 m. 

It is included in the Regional Red List of the endangered vegetal species (Conti et al. 

1997), in the Appendix II of Bern Convention and in Appendices II and IV of the 

92/43/CEE Directive (“Habitats” Directive).  
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Figure 4a: distribution range of Primula apennina Widmer. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4b: Primula apennina Widmer 
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1.2.1 RANDOM AMPLIFIED POLYMORPHIC DNA (RAPD)  

 

Since their introduction, Random Amplified Polymorphic DNA (RAPD) markers 

(Williams et al. 1990) have become very popular and have been used for a variety of 

purposes in plant genetics: cultivar identification (Cabrita et al. 2001, Martins-Lopes 

et al. 2007, Rasul et al. 2007), parentage determination (Elisiàrio et al. 1999), genetic 

relationships evaluation (Nicese et al. 1998, Rout et al. 2006), estimation of 

population genetic variability (Sales et al. 2001, Medraoui et al. 2007), identification 

of interspecific hybrids (Neuffer et al. 1999, Caraway et al. 2001, Koontz et al. 2001, 

Lee et al. 2006, Saitou et al. 2007) and estimation of clonality (Esselman et al. 1999, 

Haangelbroek et al. 2002, Albert et al. 2003, Chen et al. 2006).  

The basic principles of the method have been presented by three independent groups 

in the early 1990s, each suggesting a different protocol. The standard RAPD 

technology (Williams et al. 1990) utilizes short synthetic oligonucleotides (10 bases 

long - GC content of at least 50%) of random sequences as primers to amplify 

anonymous PCR fragments from genomic template DNA under relaxed stringency 

conditions. Amplification products are generally separated on agarose gels and 

stained with ethidium bromide. Welsh and McClelland (1990) independently 

developed a similar technique using primers about 15-20 nucleotides long and called 

it the arbitrarily primed polymerase chain reaction (AP-PCR) technique. Two cycles 

with low stringency (allowing for mismatches) are followed by 30 to 40 cycles with 

high stringency. Radiolabeled nucleotides are included in the last 20 to 30 cycles 

only. PCR are separated by polyacrylamide gel electrophoresis and made visible by 

autoradiography. PCR amplification with primers shorter than 10 nucleotides [DNA 

amplification fingerprinting (DAF)] has also been used producing more complex 

DNA fingerprinting profiles (Caetano-Annoles et al. 1991). Although the three 

approaches are different with respect to the length of the random primers, 

amplification conditions and visualisation methods, they all relies on the fact that 

whereas the standard PCR requires two different oligonucleotides whose base 

composition is fixed by the sequence of the fragment to be amplified, RAPDs require 

only the presence of a single “randomly chosen” oligonucleotide, without any prior 
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knowledge of the genome subjected to the analysis. Under the annealing conditions 

used, this single oligonucleotide acts as both a forward and reverse primer.  

There is, therefore, a theoretically infinite number of oligonucleotides which could 

be chosen as RAPD primers. Individual RAPD primers are able to hybridize to 

several hundred sites within the target DNA, however, not all of these hybridizations 

lead to the production of a PCR fragment. In order for this to happen, it is necessary 

for the primer to anneal at two sites on opposite strands of the DNA within 2 kb of 

each other, i.e. the approximate maximum size of a PCR fragment. 

According to the model propesed by Caetano-Annolés et al. (1992) RAPD 

amplification is modulated at two levels. 

First, primer target sites are selected in a template screening phase. The selectivity at 

this stage is determined by primer sequences and influenced by reaction conditions. 

Bona fide as well as mismatch annealing may occur, resulting in a complex family of 

primary amplification products. 

In subsequent rounds of amplification, the newly formed molecules may interact in 

diverse ways, in the sense that competition may occur among single-stranded 

template DNA, primers, and terminal palindromic sequences of amplified ssDNA 

molecules to form double-stranded template DNA, primer-target DNA complexes, 

intra-molecular hairpin loops in the ssDNA. The model suggests that the different 

types of molecules tend to reach an equilibrium, and only a subset of potential target 

sites is amplified to high copy numbers. Given that RAPD primer sequences are 

arbitrarily chosen, the genome is expected to be sampled randomly. 

The ability of RAPDs to produce multiple bands using a single primer means that a 

relatively small number of primers can be used to generate a very large number of 

fragments. These fragments are usually generated from different regions of the 

genome and hence multiple loci may be examined very quickly. 

 

 

SOURCE OF VARIABILITY AND POLYMORPHISM 

 

RAPD polymorphisms can theoretically result from several types of events:  
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- insertion of a large piece of DNA between the primer binding sites may exceed the 

capacity of PCR, resulting in fragment loss 

- insertion or deletion of a small piece of DNA will lead to a change in size of the 

amplified fragment 

- the deletion of one of the two primer annealing sites results in either the loss of a 

fragment or an increase in size 

- a nucleotide substitution within one or both primer target sites may affect the 

annealing process, which can lead to a presence versus absence polymorphism or to a 

change in fragment size. 

Polymorphisms resulting from insertions or deletions between mutated primer 

binding sites are codominant. They represent, however, only a small portion of the 

polymorphisms identified: 5% according to 1546 463 bibia 

Polymorphisms between individuals mainly result from sequence differences in one 

or both of the primer binding sites and are visible as the presence or absence of a 

particular amplification product. These polymorphisms behave, therefore, as 

dominant genetic markers (Sperisen and Bücher 1998). 

High sensitivity of the technique to changes in experimental conditions, artifactual 

bands produced in the PCR process, and the dominant inheritance of RAPD markers 

are obvious limitations in applicability and in interpretation of results. 

However, with proper attention and study, RAPD markers have proved to be a highly 

effective and efficient method for genetic analyses. 

An important measure to enhance reproducibility is keep reaction conditions 

perfectly constant within each set of experiments. Qualitative changes in banding 

pattern have been obtained increasing the annealing temperatures (Weising et al. 

2005) and using slow transition from the annealing to the extension steps (Schweder 

et al. 1995). Moreover, since both heterozygous- and homozygous-dominant 

individuals at a certain locus have the same “band present” phenotype, adequate 

approaches based on phenetic relations and disregarding allele frequencies should be 

used in performing data analyses.  
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1.2.2 INTER-SIMPLE SEQUENCE REPEATS (ISSR) 

 

One of the variant following the utilization of microsatellites as molecular marker is 

based on using single primers complementary to part of SSR sequences in the PCR-

amplification.  

The successful application of microsatellite-specific oligonucleotides as PCR primers 

was first described by Meyer et al. (1993), who amplified DNA from different strains 

of the human fungal pathogen Cryptococcus neoformans with the primers (CA)8, 

(CT)8, (CAC)5, (GTG)5, (GACA)4, and (GATA)4. The technique was subsequently 

applied to numerous plant genetics studies: identification of cultivars (Raina et al. 

2001, Arnau et al. 2003), genetic mapping (Sankar and Moore 2001), assessment of 

genetic diversity (Zhao et al. 2007, Rizza et al. 2007), biogeographical studies 

(Meekins et al. 2001), detection of somaclonal variation (Leroy and Leon 2000, 

Leroy et al. 2001) and molecular systematics (Raina et al. 2001, Mort et al. 2003, 

Dogan et al. 2007). 

Several acronyms were proposed, including single primer amplification reactions 

(SPAR), inter-simple sequence repeat PCR (ISSR-PCR), and microsatellite-primed 

PCR (MP-PCR), all referring to semiarbitrary markers amplified by PCR in the 

presence of one primer complementary to a target microsatellite. Gupta et al. (1994) 

used 23 primers complementary to di-, tri-, tetra-, and pentanucleotide repeats to 

amplify genomic DNA across a panel of eukaryotes. They found that tetranucleotide 

repeat primers were most efficient in amplifying polymorphic patterns. GC- as well 

AT-rich primers worked equally well. Primers representing a combination of two 

tetranucleotide repeats, or compound microsatellites, were also effective. Single base 

permutations produced different PCR fingerprints. Banding patterns of higher 

complexity were observed when radiolabeled PCR products were separated on 

denaturing polyacrylamide gels and detected by autoradiography. Bands mapped as 

dominant markers in a segregating maize population. These results were in part 

confirmed by Weising et al. (1995a) who used a variety of di-, tri-, and 

tetranucleotide repeats as PCR primers for the analysis of plant species. Distinct and 
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polymorphic banding patterns were only obtained with tri- and tetranucleotide 

repeat-specific primers containing a minimum of 25% GC.  

ISSRs sample a large portion of the genome, because microsatellites are abundant 

throughout the genome and evolve rapidly; consequently, ISSRa may reveal a high 

number of polymorphic fragments per primer. Meyer et al. (1993) stressed that MP-

PCR combined some advantages of  RAPD analysis (i.e., no need for sequence 

information) and microsatellite analysis (i.e., use of high-stringency annealing 

conditions, leading to more reproducible banding patterns). According to Tikunov 

(2003) the repeatibility of ISSR is better than RAPDs because ISSR primers are 

longer (15 to 20 bp) and hence have higher annealing temperature. 

Both the use of ISSRs and RAPDs has been objected because bands of the same size 

may not be homologous, but this problem is considered minimal at the infraspecific 

level, where homologous bands represent about 90% of comigration products 

(Schrader and Graves 2004). If carefully optimized, both RAPD and MP-PCR are 

expected to yield reliable and reproducible results within the same laboratory.  

Some times complex fingerprintings are produced by ISSRs due to incidental 

annealing of primers within SSRs during PCR amplification. Initial priming in fact 

may occur in different registers within the microsatellite target region or the average 

product size may be continuously reduced by internal priming in sucessive cycles so 

that the final product is expected to be primed from the extreme 3’-end of each 

flanking microsatellite. 

The more sophisticated anchored ISSR variant developed by Zietkiewicz et al. 

(1994), also coined anchored microsatellite-primed PCR (AMP-PCR) uses 5’- or 3’-

anchored di- or trinucleotide repeats as single PCR primers. The anchor is composed 

of nonrepeat bases and ensures that the amplification is initiated at the same 

nucleotide position in each cycle. AMP-PCR has several advantages over unanchored 

variants of microsatellite-primed PCR. First, primer design ensures annealing of the 

primer only to the ends of a microsatellite, thus circumventing internal priming and 

smear formation. Second, the anchor allows only a subset of the targeted inter-repeat 

regions to be amplified, thereby reducing the overwhelming number of PCR products 
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sometimes produced from interepeat regions to sets of easily resolvable bands. Third, 

functional 5’-anchors ensure that the targeted microsatellite is part of the product.  

 

 

SOURCE OF VARIABILITY AND POLYMORPHISM 

 

Since the primer is a SSR motif the frequency and distribution of the microsatellite 

repeat motifs influence the generation of bands. 

In general, primers with (AG), (GA), (CT), (TC), (AC), (CA) repeats show higher 

polymorphism than primers with other di-, tri- or tetra-nucleotide repeats. (AT) 

repeats are the most abundant di-nucleotides in plants but the primers based on (AT) 

would self- anneal and not amplify. Tri and tetra-nucleotides are less frequent and 

their use in ISSRs is lesser than the di-nucleotides. The (AG) and (GA) based 

primers have been shown to amplify clear bands in rice (Blair et al. 1999, Joshi et al. 

2000, Reddy et al. 2000, Sarla et al. 2000), trifoliate orange (Fang et al. 1997) and 

Douglas fir and sugi (Tsumura et al. 1996), whereas primers based on (AC) di-

nucleotide repeats were found more useful in wheat (Nagaoka and Ogihara 1997, 

Kojima et al. 1998) and potato (McGregor et al. 2000). 

Usually di-nucleotide repeats, anchored either at 3’ or 5’ end reveal high 

polymorphism (Blair et al. 1999, Joshi et al. 2000, Nagaoka and Ogihara 1997). 

The evolutionary rate of change within microsatellites is considerably higher than 

most other types of DNA, so the likelihood of polymorphism in these sequences is 

greater. The source of variability in the ISSRs can be attributed to any one of the 

following reasons or any combination of these. The extent of polymorphism also 

varies with the nature (3’-anchored, or 5’-anchored) of the primer employed. The 

primers anchored at 3’ end give clearer banding pattern as compared to those 

anchored at 5’ end (Tsumura et al. 1996, Nagaoka and Ogihara 1997, Blair et al. 

1999). When 5’ anchored primers are used, the amplified products include the 

microsatellite sequences and therefore variability in number of nucleotides within the 

sequence would result in length polymorphisms. 

ISSR markers are theoretically inherited in a dominant or codominant Mendelian 

fashion (Gupta et al. 1994, Wu et al. 1994, Tsumura et al. 1996, Wang et al. 1998, 
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Sankar and Moore 2001), however, they are interpreted as dominant markers similar 

to RAPD data (Wolfe et al. 1998b). 

Polymorphism may relate to mutations at the priming site that prevent amplification 

giving a presence/absence pattern while insertion/deletion events within the SSR 

region or the amplified region would result in the absence of a product or, more 

rarely, in length polymorphism, depending on the amplifiability of the resulting 

fragment size. 
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1.2.3 MICROSATELLITES 

 

SSRs are among the most commonly used molecular markers in population and 

evolutionary biology and are widely used to evaluate the genetic diversity within 

species (Sangiri et al. 2007, Ali et al. 2007, Varshney et al. 2007, Zhan et al. 2008), 

to investigate phylogenetic relationships  (Goldstein and Pollock 1997, Zhan et al. 

2008), to identify and test the paternity of cultivars (Diaz et al. 2007), to study 

population structure and gene flow (Schueler et al. 2006, Edh et al. 2007), to develop 

a gene mapping (Hayden et al. 2006), to reveal the clonal status of a species and to 

determine the extent of clonality (Nagamitsu et al. 2004, Iketani et al. 2007). 

SSR polymorphism is reflects differences in simple repetitive sequences of defined 

regions of the genome. With the advent of polymerase chain reaction (PCR) 

technology this property was converted into a highly versatile genetic marker (Litt 

and Luty 1989, Tautz 1989, Weber and May 1989) and became the basis for SSR-

based DNA fingerprinting. Products of different length can be amplified with primers 

flanking the variable microsatellite region and single loci are typically amplified, 

resulting in one or two bands, depending on the homo- or heterozygous state in 

diploid organisms. Therefore, microsatellites are considered locus-specific and 

codominant markers.  

The popularity of microsatellites stems from a unique combination of several 

important advantages: the relatively abundance with uniform genome coverage, the 

enormous extent of allelic diversity, the hypervariability, the codominant inheritance, 

the ease of detection by PCR using pair of flanking primers, and requirement for only 

a small amount of starting DNA. Numerous molecular marker strategies have been 

developed, but the most common employs sequence information of repeat-flanking 

regions to design locus-specific PCR primer pairs. The necessity of sequence 

information for primer design is the more serious obstacle of this technique, in 

addition to the possible presence of undetected null alleles, which can interfere with 

the interpretation of inheritance data. Null alleles can be due to mutations in one or 

both primer binding sites (Weber and May 1989) and these mutations can prevent 

PCR amplification. Homozygous individuals for a null allele do not show any band at 

all, whereas heterozygotes have only one band and therefore mimic a homozygote on 
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the electrophoresis gel. Erroneous interpretations due to null alleles may be solved 

by redesigning primer pairs for the locus, avoiding the mutated primer binding site 

and by examining multiple microsatellite loci, reducing the influence of null alleles. 

Microsatellites, or Simple Sequence Repeats (SSRs), or Simple Tandem Repeats 

(STRs), are very short motifs (about 1 to 6 base pairs) usually characterized by a 

high degree of repetition and occur at many thousand loci in the nuclear genome. 

They are widely dispersed through the genomes of eukaryotes and some prokaryotes 

(Weber 1990, Field and Wills 1996). They tend to occur in non-coding DNA, most 

frequently in introns and intergenic regions. However, the tandem-repetitive 

organization is also exhibited by some genes, such as the transcription units for 

histone mRNA and ribosomal RNA, and, in some plants, they are demonstrated to be 

associated to non-repetitive DNA (Morgante et al. 2002). As a general rule, 

trinucleotide repeats are the predominant type of microsatellite found in exons, 

whereas repeats consisting of multiples of one, two, four, and five base pairs are rare 

in genes. 

In plants, the presence of microsatellites was first demonstrated by RFLP 

fingerprinting with (GATA)4 and (GACA)4 oligonucleotide probes in the genome of 

chickpea (Cicer arietinum) and barley (Hordeum vulgare) in 1989 (Weising et al. 

1989). In 1992 Akkaya et al. first used PCR primers complementary to flanking 

regions of six SSR loci to ascertain the presence and degree of simple sequence 

repeat (SSR) DNA length polymorphism in the soybean. 

These initial studies suggested a lower abundance of microsatellites in plants as 

compared with animals. However, more recent surveys based on large data sets from 

Arabidopsis, rice, maize, soybean, and wheat genome demonstrated that 

microsatellites frequencies in plants are higher than previously anticipated (Morgante 

et al. 2002, Cardle et al. 2000). Estimates of the frequency of SSR occurrence in 

plant genomes range from average inter-SSR distances of less than 10kb considering 

all repeat motifs in database sequences (Becker and Heun 1995, Lagercrantz et al. 

1993), to over 1,2 Mb considering only GA/CT and GT/CA repeats in genomic 

libraries (Broun and Tanksley 1996). 

The repeated sequence is often simple, consisting of two, three or four nucleotides 

(di-, tri-, and tetranucleotide repeats respectively), although tri-, tetra- and 
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pentanucleotide motifs are generally less common than mono- and dinucleotide 

repeats. (A)n, (AT)n, (GA)n and (GAA)n repeats are the most frequent motifs in 

plants. Over 25% of identified loci may belong to compound and/or interrupted 

families, which tend to be less polymorphic than perfect families (Jarne 1996).  

Weber (1990) recognized three microsatellite classes which relate to the degree of 

perfection of the arrays: perfect repeats, which consist of a single, uninterrupted 

array of a particular motif, imperfect repeats, in which the array is interrupted by one 

or several out-of-frame bases, and compound repeats, with intermingled perfect or 

imperfect arrays of several motifs. 

 

 

SOURCE OF VARIABILITY AND POLYMORPHISM 

 

Microsatellites are subject to mutations during evolution. Microsatellite mutation 

rates proved to vary considerably depending on the locus, on the number, the length 

and the type of repeat motif, the flanking sequence, the recombination rate, the 

organism, and sometimes the alleles (Schlötterer 2000). 

Despite microsatellites being widely used as genetic markers (Schlötterer 2004), the 

processes underlying microsatellite genesis are still not fully understood. In principle 

three different, not mutually exclusive, processes have been described; DNA 

replication slippage, 3’-extension of retrotranscipts and transposable elements 

containing a proto-microsatellite. 

DNA replication slippage, is the predominant mutation mechanism of microsatellites, 

causing the gain and loss of repeat units. Slipped-strand mispairing involves local 

denaturation and displacement of the strands of a DNA duplex followed by 

mispairing of complementary bases at the site of an existing short tandem repeat. 

Following replication or repair can then lead to insertions or deletions of one or 

several of the short repeat units. 

Levinson and Gutman (1987) proposed that short proto-microsatellites are generated 

by mutation. Once a sufficient number of repeats are generated, DNA replication 

slippage can operate and expand the repeat. Rose and Falush (1998) suggested that a 
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minimum number of repeats is required before DNA slippage can extend the proto-

microsatellite, but not all the Authors agree (Pupko and Graur 1999).  

This simple model of microsatellite genesis is contrasted with experimental evidence 

showing high frequency of microsatellites in the proximity of interspersed repetitive 

elements, such as short interspersed repeats (SINEs) and long interspersed elements 

(LINEs). Nadir et al. (1996) suggested that they originated from the 3’poly(A) tails 

of reverse transcribed RNA which has been inserted into the genome. Nevertheless, it 

is unlikely that the majority of microsatellites originated through this mechanism. 

Firstly, mainly A-rich microsatellites are associated with the 3’poly(A) tails (Nadir 

et al. 1996). Secondly, at least in some plants, microsatellites are abundant 

throughout the genome (Schlötterer 2000, Morgante et al. 2002). Ultimately, 

microsatellite genesis has been associated with proto-microsatellite sequences 

embedded in transposable elements. Consistent with the hypothesis that proto-

microsatellites in transposable elements can be one important factor in microsatellite 

genesis, most microsatellites associated with repetitive elements were expansions of 

transposable elements sequences in barley (Ramsay et al. 1999). Nevertheless, it is 

not clear to what extent (proto-) microsatellites contained in repetitive DNA 

contribute to the genomic microsatellite repertoire. 

 

 

PRIMERS TRANSFERABILITY BETWEEN SPECIES AND PRIMERS ISOLATION 

 

The cross-species transfer of nuclear microsatellite markers in plants has been 

demonstrated in numerous taxa. This consists of the use, in the species under 

investigation, of microsatellite primers isolated in a closely related species.  

The chance of a successful cross-species (heterologous) amplification of any DNA 

sequence by polymerase chain reaction certainly depends on the source and 

characteristics of the genomic library and on the evolutionary distance of the species 

sampled (Dayanandan et al. 1997). Given that primer binding sites are expected to be 

more conserved when the microsatellite flanking sequences are maintained under 

selective constraints and that microsatellites are surprisingly common in the vicinity 

of genes (Morgante et al. 2002), microsatellite within genes provide good chances to 
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design primer pairs which are more broadly applicable. Nevertheless, it is yet unclear 

why microsatellites and their flanking DNA are relatively conserved in some taxa, 

but not in others. 

For a considerable number of economically important plant species, including potato, 

tomato and rice, computer-assisted cloning provides a valuable source of marker 

generation, futhermore database mining has already resulted in hundreds of 

microsatellite markers. For the majority of species, however, since database entries 

are still limited or even nonexistent and/or cross-transferability is not applicable, 

microsatellites have to be cloned and their flanking regions sequenced for every 

species under study. The labour-intensive procedures needed to develop 

microsatellite markers for a new species have discouraged the use of SSR markers on 

a large scale. Nevertheless, elaborate enrichment cloning techniques have been 

developed which facilitate the isolation of SSR locus-specific primers. The most 

popular class of isolation methods is based on selective hybridization. The basic 

protocol as proposed by Karagyozov et al. (1993), Armour et al. (1994), Kijas et al. 

(1994), is relatively straightforward, although several modifications have been 

independently suggested by various authors in an attempt to further optimize crucial 

steps or to remove unnecessary procedures. Zane et al. (2002) have presented a 

modification to the classic hybridization selection which results in a faster and 

simpler method. This protocol, called FIASCO (Fast Isolation by AFLP of Sequences 

COntaining repeats) will be described in Material and Methods.  
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1.3.1 ASSESSMENT OF HYBRIDIZATION AND INTROGRESSION IN THE GENUS QUERCUS 

USING RAPD AND ISSR MARKERS 

 

Methods involving examination of DNA have proven to be most conclusive in 

identifying plant hybrids (Crawford et al. 1993, Rieseberg and Ellstrand 1993) 

because molecular markers can provide a large number of neutral and independent 

characters that are extremely useful in the genetic analysis of hybrid zones 

(Riesenberg and Ellstrand 1993).  

In particular, both random amplified polymorphic DNA - RAPD - (Samuel et al. 

1999, Scheepers et al. 2000, Caraway et al. 2001, Ho et al. 2002, González-Pérez et 

al. 2004), and inter-simple sequence repeat - ISSR - (Wolfe et al. 1998 A-B, Wolfe 

and Randle 2001, Ruas et al. 2003, Archibald et al. 2004), have been extensively 

used.  

RAPD markers were employed in the assessment of genetic diversity and the 

documentation of hybridization in three species of Casuarina grown in Taiwan 

showing that most plants of Casuarina currently grown in Taiwan are the result of 

introgressive hybridization involving C. equisetifolia, C. glauca, and, at a less 

extent, C. cuninghamiana (Ho et al. 2002).   

González-Pérez et al. (2004) used RAPD primers to differentiate unambiguously 

Phoenix canariensis, a Canarian endemic palm species, from its widespread congener 

Phoenix dactylifera and to detect hybridization events between the two species.  

Wolfe et al. (1998) used genetic markers generated from ISSR primers to examine 

patterns of hybridization and purported examples of hybrid speciation in a hybrid 

complex involving P. centranthifolius, P. grinnellii, P. spectabilis and P. 

clevelandii. The study revealed patterns of introgression involving P. 

centranthifolius and demonstrated the hybrid origin of P. clevelandii from P. 

centranthifolius and P. spectabilis. Morphological traits and ISSR markers were used 

to test the hybrid status of intermediate individuals found in sympatric populations of 

Zaluzianskya microsiphon (O.Kuntze) K. Schum. and Zaluzianskya natalensis Krauss 

(Archibald et al. 2004). Putative hybrids had intermediate band frequencies relative 

to the two species for most of the loci, lending support to the hypothesis of occurring 

hybridization followed by asymmetrical backcrossing to Z. microsiphon.  
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Markers such as AFLP, ISSR or RAPD have usually provided better discrimination 

also between closely related, hybridizing oak species (Bodénès et al. 1997, Samuel 

1999, Coart et al. 2002), compared to other techniques. 

The patterns of variation of randomly amplified polymorphic DNA (RAPD) markers 

and several foliar traits were studied to assess the structure of genetic and 

morphological variation between Quercus affinis Scheidw. and Quercus laurina 

Humb., two closely related Mexican red oaks with partially overlapping distributions 

(González-Rodríguez et al. 2004). Because none of the markers was completely 

diagnostic, a maximum likelihood estimate of hybrid index scores was used. It 

indicated a shift in the genetic composition of populations from one species to the 

other along a macrogeographic gradient, with genetically intermediate populations 

situated in the area of overlap. Foliar variation was also continuous between the two 

species, but only a comparatively small fraction of the individuals was intermediate, 

and a particular morphology predominated in most populations (i.e., Q. affinis-like or 

Q. laurina-like individuals). The observed patterns were interpreted as consistent 

with the original hypothesis of an a origin for the individuals located in the area of 

intergradation through hybridization between the two oak species and subsequent 

introgression.   

To estimate genetic diversity in the same species and to analyze genetic 

differentiation among populations, and between morphologically defined groups of 

populations representing the two species (i.e., Q. affinis-like and Q. laurina-like 

populations) a larger, random sample of molecular markers constituted by RAPD 

bands was used (González-Rodríguez et al. 2005). A large proportion of the total 

genetic variation was found within populations of these two Mexican red oaks. The 

genetic relationships among the populations were largely noncongruent with their 

morphological classification of populations as Q. affinis-like or Q. laurina-like, 

suggesting that interspecific genetic exchange has affected the morphological 

differentiation between Q. affinis and Q. laurina to a lesser extent. A significant 

association between geographic and genetic distances among populations was 

confirmed by a Mantel Test suggesting that the distribution of nuclear genetic 

variation among populations in the Q. affinis - Q. laurina complex is firstly a 
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function of geography and secondly, but also significantly, a reflection of the 

morphologically based taxonomic subdivision of populations. This results implies 

that gene flow and isolation by distance are the predominant forces shaping the 

population structure of neutral, nuclear genetic variation within this complex.   

 In contrast, RAPD markers and morphological characters were highly coincident and 

supported the hypothesis of hybridization between Quercus crassifolia H. & B. and 

Quercus crassipes H. & B. in Mexico (Tovar-Sánchez and Oyama 2004). The 

Authors used diagnostic primers which demonstrated geographic pattern in support 

of the morphological evidence, indicating that each species is distinct and that each 

has some degree of genetic cohesiveness.  

To estimate the consequences of interspecific hybridization on the genetic structure 

of kermes oak (Quercus coccifera L.)  populations in the Iberian Peninsula, ITS 

sequences and ISSR banding patterns were investigated (Rubio de Casas et al. 2007). 

ISSR results gave clear evidence of recent and recurrent gene-flow across Quercus 

taxa and ITS results demonstrated extensive hybridization in Q. coccifera 

populations of the Iberian Peninsula with holm oak Q. ilex. Ongoing gene-flow and 

interspecific introgression may be responsible for limited molecular divergence of 

kermes oak populations and Quercus species. In spite of molecular evidence for 

widespread hybridization between kermes and holm oaks, morphologically 

identifiable hybrids are rare. 

The reported examples show that RAPD and ISSR analyses may provide adequate 

tools to unambiguously characterize hybrid individuals and to estimate the possible 

incidence of introgression between closely related Quercus species. 

In spite of the limitations imputed to RAPD and ISSR techniques, these markers can 

become immensely useful if complete patterns, comprising information from many 

loci randomly distributed across the genome, are considered (Wu et al. 2004, Archak 

et al. 2003). 
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1.3.2 DEVELOPING OF MICROSATELLITE MARKERS IN THE GENUS PRIMULA 

 

Despite the great advances in genomic technology observed in the last years, the 

availability of molecular tools such as microsatellite markers has been limited in the 

genus Primula. Thus, genomic microsatellite enriched libraries can be an efficient 

alternative for marker development in this species. 

Microsatellite markers for the genus Primula were first developed by Isagi et al. 

(2001) in a clonal herb, Primula sieboldii E. Morren which occurs in moist habitats 

in northeastern Asia (Richards 2003). Among the 75000 clones screened, 

approximately 200 (0.27%) were identified as positive. Seventyfive positives were 

randomly chosen out of the 200 clones for the DNA sequencing and repeated 

structures were found in 56 clones. Among the 56 microsatellites, there were thirty, 

three, two and two identical clones, resulting in 23 distinct microsatellite sequences. 

Of these, 13 contained flanking regions of suitable length to design primers. Among 

13 designed primer pairs, eight amplified target microsatellite loci. Allelic variation 

was examined for about 20 samples of P. sieboldii; of the eight primer sets which 

amplified the target microsatellite, seven were polymorphic. The seven polymorphic 

loci had 2–7 alleles and expected heterozygosities ranged from 0.23 to 0.81. The 

relatively small number of alleles observed for each locus may be caused by limited 

sampling area for the present study or by the loss of genetic diversity in this species 

as a consequence of habitat fragmentation. 

Some of these primers were subsequently used in the same species to estimate the 

gene dispersal distance, the magnitude of inbreeding depression (Ishihama et al. 

2005), paternity analysis (Ishihama et al. 2006) and genetic restoration (Honjo et al 

2007). 

In 2003 Ueno et al. developed a genetic enriched library in Primula sieboldii using a 

Digoxigenin-labeled (CT)20 probe. 1728 clones were sequenced and 193 were 

suitable for primer design; seven of these primer pairs were subsequently selected for 

the clear banding patterns and used to examine variability of the loci in 30-32 

samples. The seven polymorphic loci had 2–9 alleles and expected heterozygosities 

ranged from 0.067 to 0.808. This library was expanded with nine additional primer 



 39

pairs (Ueno et al. 2005) with 4–13 alleles per locus, and expected heterozygosity 

values of  0.269–0.838.  

Five of these primer pairs developed by Ueno et al. (2003-2005), other three and a 

trnT-trnL cpDNA primer pair, were used by Kitamoto et al. (2005) to identify clones 

and to reveal spatial genetic structure among and within populations of P. sieboldii. 

It grows in the University Forest of Tsukuba, located on the side of Mt. Yatsugatake 

(Nagano Prefecture-Central Japan) along seven streams, each composed of anything 

from several to hundreds of genets. This study reveals that, in this species, the 

dispersal of clonal propagule is a rare effect, given that of the 380 samples, only two 

pairs of ramets with identical multilocus genotypes for the eight SSR loci were 

distantly distributed along the same streambank. Moreover, the genetic 

differentiation among streamside population at SSR loci was low compared with that 

in cpDNA, suggesting that seed dispersal among streams was restricted, and pollen 

was the primary agent of gene flow among streamside populations while, the 

differentiation among subpopulations within streams, low at both markers, suggests 

that seed dispersal occurs along the stream probably during flooding. 

Most of these primer pairs developed by Ueno et al. (2003-2005) were also used in 

paternity analysis (Ishihama et al. 2003, Ishihama et al. 2006) and in genetic 

restoration (Honjo et al. 2007). 

In 2004, Shimono et al. characterized 11 polymorphic loci for Primula modesta 

Bisset et Moore, a common alpine plant distribuited throughout Japan, whose 

populations are expected to serve as a model monitoring system of influences of 

anthropogenic climate change on Japanese alpine habitats. Using two biotinylated 

probes (CT)15 and (GT)15, fragments contaning microsatellite were selected with 

streptavidin coated magnetic beads, ligated into plasmid vectors and cloned into 

competent cells. To verify the presence of a microstellite, 2550 recombinant clones 

were transferred to nylon membrane and screened by colony hybridization with 

Digoxigenin-labelled (CT)20 and (GT)20 probes. A total of 1056 positive clones were 

detected and 670 were selected for sequencing. Using the criterion of at least 10 

repeat units in the target sequence, 48 primer pairs were designed and specific 

amplification and polymorphism were achieved for 11 primer sets. A total 31-35 

samples were genotyped for allelic diversity and from three to fourteen alleles were 
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scored. The observed heterozygosity ranged from 0.161 to 0.828 and no evidence for 

linkage disequilibrium was found. 

Kreivi et al. (2006) developed polymorphic microsatellite markers for Primula 

nutans, a seshore plant, endangered in Finland and near threatened in Sweden. The 

genomic DNA was amplified using DOP (degenerate oligonucleotide-primed) – PCR 

and DNA fragments of 650-1300bp in size were ligated to a vector and screened with 

γ32P end-labelled dinucleotide probes (AG)10, (TC)10, (GT)10, and (CA)10. Seven 

primer pairs were designed; three loci showed nonspecific amplification or were 

monomorphic and, using 378 samples, the number of alleles was low, ranging from 

two to four with observed heterozygosity of 0.003-0.229 and expected heterozygosity 

of  0.016-0.527. 

Five of the microsatellite primers developed by Ueno et al. (2003-2005) for Primula 

sieboldii were then used as cross-species microsatellite markers in a clonal herb, 

Primula kisoana (Ohtani et al. 2005) endemic to Mount Narukami and the 

surrounding area in the northern Kanto region of Honshu Island in Japan. In order to 

evaluate the extent of clonality and the genetic variation within the species in seven 

local populations, comprising of less than 600 ramets, also eight non-coding spacers 

of chloroplast DNA were amplified and sequenced in this study. Six of eight non-

coding spacers of cpDNA were polymorphic and four different haplotypes were 

distinguished. Only ten genotypes were found for the five microsatellite loci, each of 

which was likely to represent a unique genet. In total, the number of genets surviving 

in the wild would be at most twenty, suggesting a rapid and severe bottleneck of this 

species. These markers also reveled that the species still maintains relatively high 

levels of genetic diversity even after a rapid decline in its population. However, 

because genetic relationships between haplotypes are not close, only a small part of 

the past gene pool may now exist, demonstrating the top priority to preserve all 

remaining populations of P. kisoana.  
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1.4 GOALS  

 

ARBITRARY AND SEMI-ARBITRARY MARKERS  

 

In the present study RAPD and anchored ISSR markers were employed to analyze the 

molecular differentiation among morphologically defined groups of individuals 

representing the three oak species Q. cerris, Q. suber and Q. crenata.  

Further objectives were: 1) to document the hybrid status of Q. crenata grown in 

Northern Italy, a part of its distribution range where its putative parents do not 

overlap at present. 2)  to detect possible introgressive patterns related to the relative 

frequency of parental taxa, 3) to evaluate the suitability and congruence of RAPD 

and anchored ISSR markers and compare the discriminating power of these different 

markers in order to assess genetic diversity and hybridization among closely related 

species.  

 

 

 
SPECIFIC MARKERS 
 

No previous microsatellite markers have been published, and no study of genetic 

population structure have been made for Primula apennina Widmer. Therefore, the 

aim of this investigation was to characterize  polmorphic microsatellite loci for 

ongoing and subsequent population genetic studies. 
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2. MATERIALS AND METHODS  
 
2.1 ARBITRARY AND SEMI-ARBITRARY MARKERS (RAPD AND ANCHORED ISSR) 

 

2.1.1 PLANT SAMPLING 

 

Leaves from Q. crenata plants were collected at all the known and accessible sites in 

northern Italy (Table 1-Figure 1). All the Q. crenata sampled individuals occur as 

solitary plants in open areas or interspersed with Q. cerris. Q. crenata specimens 

were identified by possessing a combination of parental characters, in particular the 

leaf persistence in winter, which makes it easily identifiable; given that the sampling 

was conducted preferably in the autumn and winter periods.  

In order to provide material from presumed parent species the sample included from 

one to six Q. cerris individuals close to Q. crenata, and a small sample of Q. suber 

from localities beyond the Tosco-Emilian Apennine; Q. crenata plants were also 

collected in the latter area, when present and standing in close proximity. When more 

than one tree was tested at the same site, the specimens chosen were separated from 

each other by at least 100 m to avoid collecting related individuals. In all, 37 Q. 

cerris, 21 Q. suber and 27 Q. crenata individuals were considered. Voucher 

specimens are preserved in the herbarium at Bologna University (BOLO).  

At each site, undamaged leaves were collected from the plants and kept in silica gel. 

After lyophilization, the leaves were stored at -20°C until required. 
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Table 1: collecting data for samples of Quercus cerris, Q. suber and Q. crenata. Site 

numbers correspond to those in Figure 1. Shown are the locality name, region, 

number of individuals sampled at each site and abbreviations used for single plants.  

Number of samples /species and abbreviations Sampling 

Sites Locality Region 
Quercus cerris Quercus suber Quercus crenata 

1 
Ca' Carbonaro 

(BG) Lombardia     1 1cr 
2 Cugno (BS) Lombardia 3 2cA, 2cB, 2cC   1 2cr 
3 La Santa (BS) Lombardia 3 3cA, 3cB, 3cC   1 3cr 
4 Cugnolo (BS) Lombardia     1 4cr 
5 Sarezzo (BS) Lombardia 3 5cA, 5cB, 5cC   1 5cr 
6 Gussago (BS) Lombardia     1 6cr 
7 Monte Baldo (VR) Veneto 3 7cA, 7cB, 7cC   1 7cr 

8 
Cerro Veronese 

(VR) Veneto     1 8cr 
9 Casalborgone (TO) Piemonte 3 9cA, 9cB, 9cC   1 9cr 

10 Tassarolo (AL) Piemonte     1 10cr 
11 Acqui (AL) Piemonte     1 11cr 
12 Cimaferle (AL) Piemonte     2 12crA, 12crB 

13 Bedonia (PR) Emilia 3 
13cA, 13cB, 

13cC   1 13cr 

14 Guiglia (MO) Emilia 3 
14cA, 14cB, 

14cC   1 14cr 

15 
Gaggio Montano 

(BO) Emilia 3 
15cA, 15cB, 

15cC   1 15cr 
16 Zocca (MO) Emilia 1 16c   1 16cr 

17 Montese (MO)  Emilia 6 

17cA, 17cB, 
17cC,  

17cD, 17cE, 
17cF   2 17crA, 17crB 

18 
Monte Romano 

(RA) Romagna 3 
18cA, 18cB, 

18cC   1 18cr 

19 
Monte Gamberaldi 

(FI) Romagna 3 
19cA, 19cB, 

19cC   1 19cr 
20 Tirrenia (PI) Toscana   1 20s   

21 
Tenuta del 

Tombolo (PI) Toscana   3 21sA, 21sB, 21sC   
22 Calambrone (PI) Toscana   1 22s   
23 Colognole (LI) Toscana     1 23cr 
24 Val Benedetta (LI) Toscana     1 24cr 

25 
Monterotondo 

marittimo (GR) Toscana   3 25sA, 25sB, 25sC 4 
25crA, 25crB, 
25crC, 25crD 

26 
Castiglione della 

Pescaia (GR) Toscana   1 26s   
27 Alberese (GR) Toscana   3 27sA,27sB, 27sC   

28 
Capo d'Arco-Isola 

d’Elba (LI)  Toscana   3 28sA, 28sB, 28sC   
29 Luogosanto (SS) Sardegna   3 29sA, 29sB, 29sC   

30 
Nuraghe Majori 

(SS) Sardegna   3 30sA, 30sB, 30sC   
   37  21  27  
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Figure 1: oak sampling sites in northern Italy (locations from 1 to 19) and central 

Italy (locations from 20 to 30). Numbers correspond to the list given in Table 1.       

 symbol correspond to Quercus crenata samples,  symbol to Quercus cerris 

samples and  symbol to Quercus suber samples.  
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2.1.2 DNA EXTRACTION  

 

The protocol of Dumolin et al. (1995) for genomic DNA extraction was followed, 

with only minor modifications. Specifically, 3-4 mg of frozen leaf tissue per plant 

was ground to a fine powder in liquid nitrogen with 0,1 M Tris-HCl, 0,02 M EDTA 

(ethylenediaminetetraacetic acid), 1,4 M NaCl, 1% PVP (polyvinyl-pyrrolidone), 2% 

ATMAB (alkyltrimethyalammonium bromide), 0,2% 2-mercaptoethanol. The 

omogenate was transferred to a Beckman tube (2 ml) and place inside the shaking 

incubator for 1 h at 55°C to provide the cellular lysis. To facilitate the precipitation 

of the fragments 400 µl of dichloromethane was added to the cooled tube and mixed 

gently. The emulsion was centrifugated at 13000 rpm for 10’ (4°C) and, to avoid 

pipetting the inter phase, only 600 µl of upper phase was collected in a new labelled 

Eppendorf tube. To ensure the complete separation of the genomic DNA and the 

cellular waste this sequence was repeated again. To promote the DNA isolation and 

precipitation 270 µl of cooled isopropanol (-20°C) was added to the supernatant. The 

tube was put in a freezer (-20°C) and stored overnight. 

To cause the DNA separation the tube was centrifugated at 13000 rpm for 10’ (4°C) 

and the supernatant was removed carefully to avoid the pellet loss. The DNA pellet 

was dried by leaving it upside down on filter paper for 15’. The DNA was washed by 

adding 1 ml of ethanol 76% and centrifugated again at 13000 rpm for 10’ (4°C). The 

ethanol was removed carefully and the DNA pellet was dried at room temperature for 

1h 30’. The final suspension was made in 50 µl of pure water. 

The DNA concentration was determined for each sample by the absorbance read at 

260 nm (BioPhotometer, Eppendorf) and adjusted to 5-10 ng/µl for working solution. 

The tube was then stored at -20°C until required. 

Purity determination of DNA interference by contaminants can be recognized by 

ratio calculations in the Eppendorf BioPhotometer. The ratio A260/A280 is used to 

estimate the purity of nucleic acid since protein absorbs at 280 nm. Pure DNA should 

have a ratio of approximately 1,8. Absorption at 230 nm reflects contamination of the 

sample by substances such as carbohydrates, peptides, phenols or aromatic 

compounds. In the case of pure samples, the ratio A260/A230 should be >2,0.  
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2.1.3.1 RAPD (RANDOM AMPLIFIED POLYMORPHIC DNA) AMPLIFICATION 

 

The "Ready-To-Go RAPD Analysis Beads” kit (GE Healthcare Life Sciences) was 

used for the RAPD reactions. It provides the reagents for RAPD reactions in a 

convenient ambient-temperature-stable bead. The beads are manufactured using a 

proprietary technology licensed to GE Healthcare and are available predispensed into 

0,5 ml PCR tubes. Ready-To-Go RAPD Analysis Beads have been optimized for 

RAPD reactions and contain thermostable polymerases (AmpliTaq DNA polymerase 

and Stoffel fragment), dNTPs (0,4 mM each dNTP in 25 µl reaction volume), BSA 

(2,5) and buffer [3 mM MgCl2, 30 mM KCl and 10 mM Tris, (pH 8,3)] in a 25 µl 

reaction volume. The two different thermostable polymerases, combined in a 

proprietary ratio, produce a more complex RAPD fingerprinting pattern than either of 

the polymerases alone. The only reagents that must be added to the reaction are an 

arbitrary primer and template DNA. The Ready-To-Go bead format significantly 

reduces the number of pipetting steps, thereby increasing the reproducibility of the 

RAPD technique and minimizing the risk of contamination.  

In addition to the RAPD Analysis Primer included in the kit, a primer set consisting 

of six primers of arbitrary sequence, with a GC content at least 60% and containing 

no hairpin structures, was used. Each primer is a 10-mer of arbitrary sequence that is 

specifically designed and tested for use in RAPD analysis. The RAPD Analysis 

Primer Set contains 2,5 nmol of each of the following primers: 

 

RAPD Analysis Primer 1 - (5'-d[GGTGCGGGAA]-3') 

RAPD Analysis Primer 2 - (5'-d[GTTTCGCTCC]-3') 

RAPD Analysis Primer 3 - (5'-d[GTAGACCCGT]-3') 

RAPD Analysis Primer 4 - (5'-d[AAGAGCCCGT]-3') 

RAPD Analysis Primer 5 - (5'-d[AACGCGCAAC]-3') 

RAPD Analysis Primer 6 - (5'-d[CCCGTCAGCA]-3') 

 

The primers were reconstituted with 500 µl of sterile distilled water to give a final 

concentration of 5 pmol/µl and stored at -20°C. Then 10 µl (50 pM) of the primer of 
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choice and 10 ng of the required template DNA were added to each reaction mixture 

along with sterile distilled water to make up the total volume of 25 µl. 

Several annealing temperatures were tested in a series of preliminary amplifications 

and the best results were obtained with higher values than those routinely used. Very 

stringent conditions at the annealing stage are known to give the most efficient 

reproducibility of the RAPD fingerprints because at high temperatures only perfectly 

matching primer/template hybrids are stable and contamination by products does not 

appear (Linz et al. 1990). 

The PCR Express thermal cycler (Hybaid) was programmed as follows (primer-

specific annealing temperatures given in Table 2, pag. 48): an initial melting step of 

4 min at 94°C; 40 cycles each of 1 min at 94°C (denaturation), 1 min at 50°C–55°C 

(annealing), 2 min at 72°C (extension); a final extension step of 72°C for 5 min was 

performed after the 40 cycles and samples were maintained at 4°C after the 

completion of the cycles, until they could be used, or stored at -20°C. In order to 

ensure reproducibility of the results, each primer-sample combination was repeated 

at least twice.  

 

 

 

2.1.3.2 ANCHORED ISSR (INTER SIMPLE SEQUENCE REPEAT) AMPLIFICATION 

 

Three UBC (University of British Columbia) primers (synthesized from Operon 

Biotechnologies, Germany) were selected for the ISSR analysis based on that they 

could give reproducible bands: (AG)8T, (AG)8C, (GA)8C. 

The "PuReTaq Ready-To-Go PCR Beads" kit (GE Healthcare Life Sciences) was 

used for the ISSR reactions. The beads contain room temperature-stable beads with 

stabilizers, BSA, dATP, dCTP, dGTP, dTTP, ~2,5 units of recombinant PuReTaq 

DNA polymerase and reaction buffer. When a bead is reconstituted to a 25 µl final 

volume, the concentration of each dNTP is 200 µM in 10 mM Tris-HCl, (pH 9,0 at 

room temperature), 50 mM KCl and 1,5 mM MgCl2.  

For each reaction was added to a tube containing a PCR bead 30 ng template DNA, 4 

µl (40 pM) of the primer and sterile high-quality water to a final volume of 25 µl. 
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Amplifications were done using the same thermocycler with the following settings: 1 

cycle of 5 min at 94°C followed by 45 cycles of 1 min at 94°C, 45 sec at 56°-58°C 

(Table 2, pag. 48), and 2 min at 72°C; a final extension step of 72°C for 7 min was 

performed. The effects of DNA concentrations and different temperatures during the 

annealing stage of amplification were examined for each primer in a series of 

preliminary amplifications in order to ensure reproducibility and polymorphic 

amplification patterns. 

 

 

 

2.1.4 AUTOMATIZED PAGE 

 

The amplification products were separated using polyacrylamide Phast-Gel minigels 

and visualized using the Amersham Biosciences PhastSystem high speed 

electrophoresis system. 

The Amersham Biosciences PhastSystem consists of a Separation-Control unit for 

system control and electrophoresis, and a Development Unit for gel staining.  

Separation is performed on a thermostatic plate capable of maintaining temperatures 

accurately from 0 to +70°C. The gel was positioned on the separation bed and the 

PhastGel buffer strip holder was placed over it. The buffer strips were inserted into 

the compartments in the buffer strip holder; one in the anode (+) and one in the 

cathode (-) compartment; they are made of 3% agarose IEF and serve as buffer 

reservoirs to generate discontinuous buffer systems in the gel during a run. 

Approximately 1 µl of each sample was loaded onto the gel by using the sample 

applicator 8/1 with 8 sample wells. The electrodes rest on the strips during 

electrophoresis and transfer current and voltage to the gel to promote the bands 

separation.  

For RAPD fragments a PhastGel gradient 10-15 with a continuous gradient from 10 

to 15% polyacrylamide was used, whereas PhastGel gradient 8-25 was used for ISSR 

fragments. These minigels consist of a 13 mm stacking zone and a 32 mm gradient 

gel zone. The buffer system in the gels is 0,1 M acetate (leading ion) and 0,1 M Tris, 

pH 6,4. The buffer system in the buffer strips is of 0,2 M tricine (trailing ion), 0,2 M 
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Tris and 0.55% SDS (analytical grade), pH 7,5.  

The gel ran according to the protocol for PhastGel in the Phast System Owner’s 

Manual: 

 

First step (sample applicator lowered onto the gel) 

1.1:        

100W   7mA   1,0W   15°C  

10Vh 

Second step (sample applicator raised from the gel) 

1.2:        

250W   7mA   2,0W   15°C  

100Vh 

 

The duration (volthours) of the separation runs for each RAPD and ISSR primer was 

different, in order to clearly visualize the size range of the amplified products (Table 

2, pag. 48). 

At the separation end the gel was transferred to the development chamber and 

visualized with silver stain according to a procedure adapted from Bassam et al. 

(1991):  

1th step - fixing solution: 20% trichloroacetic acid for 5 min at 25°C 

2th step - sensitizer solution: 5% glutaraldehyde 50% for 6 min at 40°C 

3th and 4th step - washing solution: distilled water for 2 min at 40°C 

5th step - staining solution: 0,137% silver nitrate, 0,04% formaldehyde for 10 min at 

30°C 

6th step - washing solution: distilled water for 2 min and 30 sec at 25°C 

7th step - washing solution: distilled water for 30 sec at 25°C 

8th step - washing solution: distilled water for 30 sec at 30°C 

9th developing solution – 2,5% sodium carbonate, 0,06% formaldehyde, 1,10-4% 

sodium thiosulphate 

10th step – stopper solution: 10% acetic acid for 20 min at room temperature 

11th step - preserving solution: 10% glycerol and 10% acetic acid for 20 min at room 

temperature. 

The presence of formaldehyde in the silver staining solution and in the developing 

solution improves both sensitivity and contrast, reducing development time, while 

the sodium thiosulphate is useful for dissolving insoluble silver salts by complex 
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formation, removing silver ions from the minigel surface, which in turn decreases 

non specific and background staining.  

The concentration of silver nitrate, formaldehyde and sodium thiosulphate is focal to 

ensure a reproducible and clear band pattern; therefore a preliminary screening was 

conducted on 21 samples using the six RAPD primers and the three ISSR primers. In 

order to establish the best balance between these reagents, different concentrations 

were tried:  

-in the staining solution the silver nitrate was tested from 0,100% to 0,212% and 

formaldehyde between 0% and 0,05% 

-in the developing solution the sodium thiosulphate was varied from 0% to 1,10-4% 

and the formaldehyde between 0,05% and 0,075%. 

The development was carried out automatically up to the 8th step and manually 

completed to assess the optimal developing time, which was different for each primer 

(Table 2, pag. 48). 

Following staining, the gel was dried and analyzed. 
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Primer type Sequence (5’-3’) 

Annealing 

temperature 

(°C) 

Separation 

run (Vh) 

Developing 

time (min) 

RAPD 

primers 
    

1 GGTGCGGGAA 50 71-72 4’30”-6’ 

2 GTTTCGCTCC 51 66-67 6’-8’ 

3 GTAGACCCGT 51 60-62 5’-7’ 

4 AAGAGCCCGT 54 69-71 5’-6’30” 

5 AACGCGCAAC 52,5 66-70 4’30”-7’ 

6 CCCGTCAGCA 55 70-76 5’-7’ 

ISSR 

primers 
    

UBC 807 (AG)8T 56 74-81 5’30”-6’30” 

UBC 808 (AG)8C 58 76-83 4’30”-6’30” 

UBC 811 (GA)8C 57 79-85 3’30”-5’30” 

 

 

 

Table 2: list of RAPD and ISSR primers used and optimal annealing temperature for 

each of them; duration of the separation run and developing time are also indicated. 
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2.1.5 DATA SCORING AND STATISTICAL ANALYSIS 

 

DATA SCORING 

Digital images of the gels were analyzed and fragment sizes were determined by 

comparison with the known fragments of the standard marker lane pBR322 DNA-

BstN I Digest (121 bp, 383 bp, 929 bp, 1058 bp, 1857 bp) using the TotalLab image 

analysis software (Fotodyne Inc.), which permits the fast and consistent analysis of 

1D electrophoresis gel images performing precise band edge detection.  

To assess the reproducibility of PCR products, the DNA from the 85 individuals was 

amplified independently twice with each RAPD and ISSR primer. Only intensely 

stained, unambiguous, polymorphic bands were used in the analysis. 

Amplified fragments, with the same mobility according to the molecular weight (bp), 

were clustered in weight ranges and scored as discrete variables, using 1 to indicate 

presence and 0 for absence of homologous bands. Since RAPD and ISSR are 

dominant markers, each amplification product was considered to represent the 

molecular phenotype at a single bi-allelic locus and it was assumed that similarity of 

fragment size was an indicator of homology (O’Hanlon and Peakall 2000). Although 

the frequency of the two alleles at each locus can be inferred from the frequency of 

presence and absence of the band (e.g. Lynch and Milligan 1994), analyses that do 

not rely on knowing these frequencies were preferred in this study to avoid the 

uncertain assumption of Hardy-Weinberg equilibrium.  

Two binary qualitative data matrices of the different RAPD and ISSR molecular 

phenotypes were assembled; the rows corresponded to the samples and the columns 

corresponded to the weight ranges (bp). 

These two matrices were then used for the following statistical analysis. 

 

 

STATISTICAL ANALYSIS 

In order to assess the molecular diversity within each species sample, the percentage 

of polymorphic fragments (PPB) and the Simpson diversity index (S) were calculated 

by the software PAST, version 1.63 (Hammer et al. 2001). Simpson's Index (S) 

measures the probability that two individuals randomly selected from a sample will 
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belong to the same species. 

The ISSR and RAPD binary matrices were processed in the PAUP* version 4.0b10 

(Swofford 2000) package and converted into similarity matrices using the Nei and Li 

index (Nei and Li 1979). 

Many statistical analyses are based on genetic distances and rely on estimates of 

phenotypic diversity, thereby obviating the need for locus-specific data. As a first 

step in these analyses, multilocus band patterns are subjected to one of various 

strategies to quantify pairwise similarity of the genotypes represented in the different 

lanes. Most commonly a similarity index is calculated from band sharing data of each 

pair of fingerprints. These indices can be used to construct matrices of pairwise 

similarity which are used as an input file for various subsequent multivariate 

analyses.  

The Nei and Li coefficient is one of the most commonly used similarity indices, 

which is also known as Dice’s coefficient: 

D= 2 nab/( na + nb) 

Here, na and nb represent the numbers of bands present in lanes a and b, respectively, 

and nab represents the number of bands shared by both lanes. D can acquire any value 

between 0 and 1, where 0 means no bands in common, and 1 means patterns are 

identical. This index takes only positive matches (both bands are present) into 

account and, placing a weight of 2 on shared bands, purportedly permits a better 

differentiation of individuals with low levels of similarity. Given that the absence of 

an RAPD or ISSR band may have several different causes, it has been argued that 

using the mutual absence of bands is improper for calculating similarity. The 

similarity matrices serve as a starting point for the subsequently multivariate  

analyses.  

The main purpose of multivariate statistics is to condense the differences between the 

entries for many characters into fewer characters and to visualize these entries in a 

multidimensional space. 

 

 



 54

2.1.5.1 CLUSTER ANALYSIS 

 

Cluster analysis, also referred to as distance method or phenetic method, is the most 

used type of classification analysis, whose goal is to group similar objects into 

identifiable and interpretable classes that can be distinguished from neighboring 

classes and to resume these relationships in a dendrogram (tree-diagram). Cluster 

analysis takes m observations, each of which has associated with n continuous 

numerical variables, and segregates the observation into groups. It can be used to 

group observations on the basis of species abundances or presences-absences, or to 

group organisms on the basis of similarity in measured characteristics such as 

morphology or DNA fragments. 

There are several methods available for clustering data but the most commonly used 

by environmental scientists are agglomerative and hierarchical clustering. These 

methods proceed by taking many separate observations and grouping them into 

successively larger clusters until one cluster is obtained. 

The UPGMA (Unweighted Pair-Group Method with Arithmetic Mean) (Sneath and 

Sokal 1973) is an algorithmic method which uses a specific series of calculations to 

estimate a tree. The starting point is the ISSR or the RAPD matrix of pairwise 

similarity, calculated from the primary data by the Nei and Li algorithm using the 

program PAUP. This program first finds the pair of taxa with the smallest distance 

between them and defines the branching between them as half of that distance 

placing a node at the midpoint of the branch. It then combines the two taxa into a 

“cluster” and rewrites the matrix with the distance from the cluster to each of the 

remaining taxa. Since the “cluster” serves a substitute for two taxa, the number of 

entries in the matrix is now reduced by one. That process is repeated on the new 

matrix and reiterated until the matrix consists of a single entry. That set of matrices 

is then used to build up the tree by starting at the root and moving out to the first two 

nodes represented by the last two clusters. The resulting dendrograms express 

phenetic similarities among the taxa and are therefore called phenograms. They do 

not necessary reflect phylogenetic relationships.  
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Strict consensus trees, containing only those clusters found in all the trees and based 

on the two similarity matrices, were constructed with the UPGMA procedure. In 

order to evaluate the topological consistency, the consensus fork index (CFI) 

(Colless 1980, Swofford 1991) and the Mickevich (1978) consensus information 

index (MCI) were also calculated. The consensus fork Index (CFI) measures tree 

similarity by calculating the number of shared clades between two trees divided by 

the total number of possible clades, which is the total number of taxa minus two. 

 

 

2.1.5.2 PRINCIPAL COMPONENT ANALYSIS 

 

A principal component analysis was performed in order to highlight the resolving 

power of the ordination. 

Ordination techniques are used to order multivariate data. Ordination creates a few 

key variables, each of which is a composite of many of the original variables. It 

constructs a new set of orthogonal coordinate axes such that the projection of points 

onto them has the maximum variance. These new variables characterize as fully as 

possible the variation in a multivariate dataset and they are not correlated with one 

another. Used in this way, ordination is a data-reduction technique: beginning with a 

set of n variables, the ordination generates a smaller number of variables that still 

illustrate the important patterns in the data.  

Among the ordination methods, Principal Component Analysis (PCA) is one of the 

most important techniques.  PCA is a procedure for finding hypothetical variables 

(components) which account for as much of the variance in the multidimensional 

data as possible. PCA has several applications, the most important of them are: 

• reduction of the data set to only three variables (the three most important 

components), for plotting and clustering purposes 

• determination of a correlation between the three most important components 

and some other underlying variables. 
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The PCA takes the cloud of data points, and rotates it such that the maximum 

variability is visible. The first stage in rotating the data cloud is to standardize the 

data by subtracting the mean and dividing by the standard deviation.  

The first component extracted in a Principal Component Analysis accounts for a 

maximal amount of total variance in the observed variables where the “total 

variance” in the data set is simply the sum of the variances of the observed variables. 

Because of this, the total variance in a Principal Component Analysis will always be 

equal to the number of observed variables being analyzed. Then, under typical 

conditions, the first component will be correlated with at least some of the observed 

variables. It may be correlated with many. 

The second component extracted will have two important characteristics. First, this 

component will account for a maximal amount of variance in the data set that was not 

accounted for by the first component. Again under typical conditions, this means that 

the second component will be correlated with some of the observed variables that did 

not display strong correlations with component 1. 

The second characteristic of the second component is that it will be uncorrelated (or 

orthogonal) with the first component. Literally, if the correlation between 

components 1 and 2 is computed, that correlation would be zero.  

The remaining components that are extracted in the analysis display the same two 

characteristics: each component accounts for a maximal amount of variance in the 

observed variables that was not accounted for by the preceding components, and is 

uncorrelated with all of the preceding components. A Principal Component Analysis 

proceeds in this way, with each new component accounting for progressively smaller 

and smaller amounts of variance (this is why only the first few components are 

usually retained and interpreted). When the analysis is complete, the resulting 

components will display varying degrees of correlation with the observed variables, 

but are completely uncorrelated with one another. 

 

The Principal Component Analysis was conducted in this study using the program 

NTSYS-pc vers. 2.2 (Rohlf 1996). Variables chosen for any analysis are usually 

measured in different units and are generally not additive. Hence, it is necessary to 

convert them in some standard comparable units such that the initial scale chosen for 
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measuring them do not bias the results. The binary matrices of RAPD and ISSR data 

were standardized using the default options of the STAND program. Standardized 

data were converted into symmetric correlation matrices with the SIMINT function. 

Three eigenvectors were extracted from the correlation matrices using the EIGEN 

function. The RAPD and ISSR standardized data were projected onto the resulting 

eigenvectors using the PROJ function and two three-dimensional plots of the RAPD 

and ISSR objects were achieved using the MOD3D function.   

 

 

2.1.5.3 THE HYBRID INDEX 

 

In order to quantify the genetic contribution of the two hybridizing parental species 

to Q. crenata individuals, a hybrid index was computed using the software program 

HINDEX (Buerkle 2005) version for Linux (x86) systems. The hybrid index (h) is 

based on information from molecular markers and uses maximum-likelihood (ML) to 

estimate the proportion of alleles that were inherited from one of two parental 

species; for this reason does not require to identify diagnostic loci for the two 

parental species Q. suber and Q. cerris. Allele frequencies in the parental 

populations were used as the end points for calculating a plant's h. Plants with an h 

of zero were genotypically similar to plants from Q. suber-like parental populations, 

whereas those with an h of 1 were genotypically similar to plants from Q. cerris-like 

parental populations. The index is defined for dominant and codominant molecular 

markers. 

The likelihood function is determined by the unknown individual’s genotype and the 

frequencies of alleles within each of the parental species at each of the loci. For 

dominant loci the index hj is the probability that the jth diploid genotype is from one 

of the two parental species. Suppose that each locus consists of two alleles, with the 

A allele dominant to the a allele. RAPDs and ISSRs are assumed to be dominant, 

with genotypes AA or Aa corresponding to band presence. The A allele is present in 

a parental species (Q. cerris) at frequency p, and in the other parental species (Q. 

suber) at frequency q. 
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The probability of observing a band from an individual from Q. cerris is Pr[AA or 

Aa| Q. cerris] =1-Pr[aa] = 1-(1-p)2 = p(2-p). Similarly, the probability of observing a 

band, given membership in Q. suber, is 1-(1-q)2 = q(2-q). On the other hand, the 

probability of not observing a band from an individual of Q. cerris is Pr[aa| Q. 

cerris] = (1-p)2. Likewise for Q. suber. The likelihood of hybrid index h j is Lj|b = 

hp(2-p)(1-h)q(2-q) when a band is observed, and Lj|n = h(1-p)2(1-h)(1-q)2 when no band is 

observed. Maximizing the likelihood with respect to the hybrid index, dLog Lj|b/dh= 

0, provides a maximum likelihood estimator of the index.  

Suppose a band is observed. The maximum likelihood estimator of the hybrid index 

is then hj|b = p(2-p)/[p(2-p) + q(2-q)]. This index takes on value 1 when an observed 

band is present only in Q. cerris, 0 when an observed band is present only in Q. 

suber, and intermediate values when both species contain the band. When a band is 

not observed, the maximum likelihood estimate of the hybrid index is hj|n = (1-

p)2/[(1-p)2 + (1-q)2]. Again, the index ranges between 0 and 1, with extreme values 

occurring when only one species is polymorphic for band presence.  

This method extends to multiple loci (RAPD and ISSR bands), assuming loci are 

independent of one another. Suppose an individual has dominant phenotype at 1, …, 

m loci and recessive phenotype at m + 1, …, n loci. The likelihood of the hybrid 

index hj is Lj = Πm i=1 Li,j|b x Πn i=m+1 Li,j|n. 

 

 

The maximum likelihood estimate of the hybrid index for the jth individual is: 

 

hj =      Σ m i=1 pi(2-pi)                 +         Σ n i=m+ i(1-pi)2                  

       Σ m i=1   p(2-pi)+qi(2-qi)                 Σ n i=m+ i (1-pi)2+(1-qi)2 

 

where pi indicates allele frequency of the dominant allele at the ith locus in Q. cerris 

species. 

The results were represented in two frequency histograms and the distributions were 

tested for normality by the Shapiro-Wilk W-test which calculates a W statistic that 

tests whether a random sample, x1, x2, ..., xn comes from a normal distribution . The 

null hypothesis for this test is that the data are normally distributed. Small values of 
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W are evidence of departure from normality. The Prob.< W value listed in the output 

is the p-value. If the chosen alpha level is 0.05 and the p-value is less than 0.05, then 

the null hypothesis that the data are normally distributed is rejected. If the p-value is 

greater than 0.05, then the null hypothesis has not been rejected. 

The distributions were then compared by Pearson correlation coefficient (ρ) using 

PAST version 1.40 (Hammer et al. 2001).  
 

The correlation between two variables reflects the degree to which the variables are 

related. The most common measure of correlation is the Pearson Product Moment 

Correlation (ρ). Correlation is a technique for investigating the relationship between 

two quantitative, continuous variables. Pearson's correlation coefficient (ρ) is a 

measure of the correlation of two variables X and Y measured on the same object or 

organism, that is, a measure of the tendency of the variables to increase or decrease 

together. It is defined as the sum of the products of the standard scores (which are a 

dimensionless quantity derived by subtracting the population mean from an 

individual raw score and then dividing the difference by the population standard 

deviation) of the two measures divided by the degrees of freedom. 

The result obtained is equivalent to dividing the covariance between the two 

variables by the product of their standard deviations. 

 

The coefficient ranges from −1 to 1. A value of 1 shows that a linear equation 

describes the relationship perfectly and positively, with all data points lying on the 

same line and with Y increasing with X. A score of −1 shows that all data points lie 

on a single line but that Y increases as X decreases. A value of 0 shows that a linear 

model is inappropriate – that there is no linear relationship between the variables. 
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2.1.5.4 THE MANTEL TEST 

 

In order to estimate the congruence among dendrograms, cophenetic matrices for 

each marker was computed and compared using the Mantel test. The Mantel Test was  

conducted in this study using the program NTSYS-pc vers. 2.2 (Rohlf 1996). The 

SIMQUAL program was used to calculate the Nei and Li index and the two similarity 

matrices obtained for the two markers was processed with the COPH program in 

order to compute the two cophenetic matrices from the two tree matrices. The 

MXCOMP program performs the comparisons taking the two cophenetic matrices 

and plot one matrix against the other element by element. It computes the cophenetic 

correlation, r, and the Mantel test statistic, Z (Mantel 1967) to measure the degree of 

relationship between the two matrices and it can be used as a measure of validity of 

fit for a cluster analysis.  

Mantel’s statistic is based on a simple cross-product term: 

          n     n 
z=      Σ    Σ   xijyij 
            i=1    j=1 

and is normalized: 

                         n     n 
r =         1          Σ    Σ   (xij – X) . (yij – Y) 
          (n – 1)     i=1   j=1      sx             sy 

where x and y are variables measured at locations i and j and n is the number of 

elements in the distance matrices (= m(m-1)/2 for m sample locations), and the sx and 

sy  are standard deviations for variable x and y. The degree of fit can be interpreted 

subjectively as follows: 

0.9 < r  Very good fit. 

0.8 < r < 0.9 Good fit. 

0.7 < r < 0.8 Poor fit. 

r < 0.7 Very poor fit. 
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2.2 SPECIFIC MARKERS 
 

2.2.1 PLANT MATERIAL AND DNA EXTRACTION 

 

The sampling involved 16 individuals collected from Monte Prado site, 4 individuals 

from the Lago Santo site, and 4 individuals from Lago Verde site. 

Genomic DNA was extracted from 4 mg of leaf tissue of Primula appenina Widmer 

using the Invisorb Spin Plant Minikit for 250 extractions with slight modifications. 

The starting material was omogenized in a mechanical tissue homogenizer 

(Ribolyser, Hybaid) using thirty small glass balls and four medium glass balls to help 

powdering. In order to induce lysis of membranes and liberation of DNA from 

nuclei, it was added 400 µl of Lysis buffer P and 20 µl of proteinase K, to remove 

RNA. After a incubation at 65°C for 45 min under continuous shaking, the lysate was 

centrifugated at 12000 rpm for 10 min (4°C) and transferred onto a Spin Filter by a 

blu tip. After a centrifugation of 1 min at 12000 rpm (4°C) the Spin Filter was 

removed and 200 µl of Binding buffer P was added. The suspension was transferred 

onto a new Spin Filter and incubated for 1 min and then 550 µl of Wash Buffer I was 

added to the binded DNA in order to wash it. The washing step was repeated adding 

550 µl of Wash Buffer II. After a centrifugation of 5 min at 12000 rpm (4°C) to 

remove residual ethanol the Spin Filter was placed into a 1,5 ml Receiver Tube and 

100 µl of prewarmed Elution Buffer D was added to obtain the DNA elution. The 

DNA concentration was determined by the absorbance read at 260 nm 

(BioPhotometer, Eppendorf) and the tube was then stored at -20°C until required. 

 

 

2.2.2 CROSS-SPECIES TRANSFERABILITY WITHIN THE GENUS PRIMULA 

 

All the primer pairs isolated for the genus Primula and available in the GenBank 

database are used: 16 primer pairs developed for Primula sieboldii (Ueno et al. 2003, 

2005), 11 primer pairs for Primula modesta (Shimono et al. 2004), 7 primer pairs for  

Primula nutans (Kreivi et al. 2006) and 3 primer pairs for Primula vulgaris 
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(http://www.ncbi.nlm.nih.gov/) were tested in 32 sample individuals of Primula 

apennina Widmer.  

PCR reactions were performed in a final volume of 25 µl. The reaction buffer 

contained 25 ng of DNA template, 0,02 µmol/l of each primer, 0,4 mM of each 

dNTP, 4 mM of MgCl2 and 0,05 units/µl Taq-DNA polymerase (Fermentas). One 

cycle of 3 min  at 94°C, was followed by 35 cycles of 30 sec at 94°C, 30 sec at the 

annealing temperature chosen for each primer in a precedent stage, and 1 min at 

72°C, with a final elongation step of 7 min at 72°C.  

In order to isolate only the band of the expected size the “crush and soak” method 

was used. This method provided that the portion of the silver-stained polyacrilamide 

gel containing the band of interest was cut out, the gel slice was crushed against the 

wall of the tube with a pipette tip and, after centrifugation (13000 g for 2 min), the 

supernatant was used as template in a PCR. 

PCR was performed as descrived above, and the products were loaded onto a 

polyacrylamide gel in order to control the size of the amplified fragment. After 

verification of the size, the PCR products were sequenced (ABI PRISM® 310 

Genetic Analyzer – Applera). 

 

 

2.2.3 MICROSATELLITE MARKERS ISOLATION BY FIASCO PROTOCOL 

 

Microsatellite markers were isolated using the modified genomic DNA enrichment 

protocol of fast isolation by AFLP of sequences containing repeats (FIASCO) (Zane 

et al. 2002). 

This protocol involves the following steps: 

 

• Genomic DNA is simultaneously fragmented with MseI and ligated to MseI AFLP 

adaptor MseAdU (5’-GAC GAT GAG TCC TGA G -3’) e MseAdD:  (5’- TAC 

TCA GGA CTC AT -3’) to facilitate later cloning steps. 
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• Ligation products are amplified in PCR with adapter-specific primers. The 

number of cycles in the PCR amplification needs to be optimized because over-

amplification was found to change the average size of amplified fragments. The 

PCR conditions producing a visible product on agarose gel (in the form of a 

smear) are considered optimal and are selected for further use. 

 

• In order to obtain several hundred nanograms of amplified DNA, PCR 

amplification under optimal conditions is replicated 10 times. The resulting PCR 

products are mixed and controlled by an agarose gel. 

 

• DNA is then hybridized with single-stranded, microsatellite-specific 

oligonucleotides attached to streptavidin-coated magnetic particles as target for 

hybridization selection. DNA molecules hybridized to biotinylated (AC)17 probe . 

The beads-probe-DNA complex is then separated by a magnetic field from the 

hybridization buffer, which is then discarded. 

 

• After washing off unbound DNA, hybridizing fragments, which should be 

enriched with microsatellites, are eluted from beads-probe complex by two 

denaturation steps and reamplified using adapter-complementary primers. These 

PCR products are the best candidates for producing a highly enriched 

microsatellite library, because they are likely to contain the largest proportion of 

repeat-containing fragments. 

 

• The enriched, PCR-amplified DNA fraction is then ligated into a vector and 

transformed into Escherichia coli competent cells. 

 

• Transformants are plated, then insert-containing clones are selected by blue-white 

screening. Unfortunately, not all positive clones prove to be useful for primer 

design. Thus, some clones may not contain a microsatellite at all (false positive), 

whereas others contain a microsatellite so close to one of the insert-plasmid 

boundaries that no flanking primer can be designed. To eliminate such useless 

positives and minimize unnecessary sequencing, a PCR-based pre-screening 
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procedure is performed to establish the presence and position of the 

microsatellites. 

 

• By electophoresis on agarose gel PCR products are selected according to size 

range (400 to 800 bp) to ensure the sequencing and the developing of specific 

primers. 

 

• The selected PCR products can be purified by presequencing kit and directly 

sequenced. 

 

 

Despite the extraordinary increase of interest in SSRs in the last few years and the 

technical advances that have been made in recent years to facilitate microsatellite 

development, the microsatellite library construction is only the first stage in the 

process of developing a set of working microsatellite primers. The task of developing 

a working primer set from an enriched library can in itself represent a significant 

workload (Zane et al. 2002).  

As explained previously, the successful isolation of microsatellite markers 

necessitates several distinct steps to obtain a working set of primers which can 

amplify polymorphic microsatellite loci. At each stage, there is the potential to 

“lose” loci and the number of loci which will eventually constitute the working 

primer set will be a fraction of the original number of sequenced clones. The first 

“attrition stage”, in which losses can occur, consists in the identification of clones 

containing microsatellite. There are inevitably some sequences which do not contain 

a microsatellite, and, on those which contain microsatellites, not all will be unique, 

hence, there is some level of redundancy. On average, approximately 1/3 of the 

sequenced clones are lost due to the absence of a unique microsatellite. 

Ultimately, it is possible to encounter chimeric sequences, in which one of the 

flanking regions (but not the other) matches that of another clone.  

The second “attrition stage” takes into account that not all the microsatellite flanking 

regions can be suitable for primer design. Microsatellites may be located too close to 
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the end of an insert to accommodate primer design in the flanking region, and even 

when there is sufficient length of sequence, the base composition may be unsuitable.  

The last stage comprises those primer pairs which, seemingly suitable, fail to 

amplify. Some optimization of reaction conditions can improve success, but this 

nevertheless represents an additional source of attrition (Figure 2).  

 

                                                               

Figure 2: Diagramatical 

representation of                                      

microsatellite attrition (Squirel 

et al. 2003) 
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2.2.3.1 DIGESTION AND LIGATION 

A total of 200 ng genomic DNA was digested with MseI (BioLabs) in a 25-µl volume 

and ligated to AFLP adaptors using T4 DNA ligase (TaKaRa). The recognition 

sequence of the MseI restriction enzyme is:   

 

5’- T|TAA -3’ 

3’- AAT|T -5’ 

 

and the MseI AFLP adaptors are: 

 

- MseAdU (5’- GAC GAT GAG TCC TGA G -3’) 

- MseAdD: (5’- TAC TCA GGA CTC AT -3’) 

The reaction mixture was: 

- H2O dd 13,75 µl 

- Buffer One Phor All 10X 2,5 µl (GE-Healhcare) 

- DTT 100 mM 1,25 µl 

- BSA 10 mg/ml 0,125 µl 

- Adaptors 50 µM 0,5 µl 

- ATP 20 mM 0,25 µl 

- T4 Ligase 1 µl (GE-Healhcare) 

- MseI 0,625 µl 

-DNA 200 ng 

 

and was incubated at 37°C for 3 hours. In order to inactivate the MseI restriction 

enzyme and the T4 ligase the reaction mixture was heated at 65°C for 20 minutes. 

The digestion was checked with 1,5% agarose gel and a visible product in the form 

of a smear was considered optimal. 

 

The digestion-ligation mixture was subsequently amplified using AFLP adaptor-

specific primers (5’- GAT GAG TCC TGA GTA AN- 3’), i.e. MseI-N). In order to 

reduce, at least partly, the problem of biased amplification (over-amplification was 
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found to change the average size of amplified fragments), parallel PCR 

amplifications were progressively performed using two digestion-ligation mixture 

diluition (1:7, 1:10) and increasing the number of cycles (17-20-23-26). 

 

The PCR reaction mixture was: 

- H2O dd 7,32 µl 

- Primer MseI 4 µl 

- Buffer 10X 2 µl 

- MgCl2 25 mM 1,2 µl 

- dNTPmix 2 mM 0,4 µl 

- Taq polimerase 0,08 µl 

- DNA 5 µl 

 

Then, 1:7 diluition and 23 cycles were chosen, after electrophoresis, as optimal 

conditions and the polymerase chain reaction (PCR) was performed using a program 

of  94°C 30s, 53°C 1 min, 72°C 2 min. 

 

To obtain several hundred nanograms of amplified DNA, 10 PCR amplifications 

under optimal conditions were replicated and quantified by an agarose gel.  

 

The 200 µl of  PCR product was precipitated with 20 ml of sodium acetate 3M and 1 

ml of ethanol absolute (EtOH 100%), after 15 min on ice and centrifugation of 15 

min (14000 rpm), DNA pellet was washed with 500 µl 70% ethanol. After a 

centrifugation of 15 min (14000 rpm) the supernatant was discarded, dried and 

dissolved in 50 µl of dH2O. 

 

 

 

2.2.3.2 ENRICHMENT AND HYBRIDIZATION 

 

The enrichment protocol included the hybridization of the DNA fragments with a 

biotinylated probe (AC)17. To isolate the enriched DNA and to remove nonspecific 
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binding, several washes were done and streptavidin-coated magnetic beads were used 

to attract the biotin and the fragments binded to it.  

The washing solutions TEN 100 and TEN 1000 were prepared as follows: 

 

TEN 100: 

- 50 µl Tris 1M pH = 7,5 

- 10 µl EDTA 0,5 pH = 8 

- 200 µl NaCl 2,5 M 

Bring the volume to 5 mL with distilled water. 

 

TEN 1000: 

- 50 µl Tris 1M pH=7,5 

- 10 µl EDTA 0,5 pH=8 

- 2 ml NaCl 2,5 M 

Bring the volume to 5 ml with distilled water. 

 

Streptavidin Magnetic Particles (Roche Applied Science) [100 µl particles x n° 

species x n° probes] were prepared by washing them in 100 µl TEN 100 three times 

and resuspending them in 40 µl of the same buffer. To minimize nonspecific binding 

of genomic DNA, 10 µl of an unrelated PCR product (mitochondrial DNA) was 

mixed with the beads before adding the hybridization mixture.  

 

The hybridation mixture was prepared in 0,5 ml Eppendorf tube as follows: 

 

- saline-sodium citrate (SSC) 20X              21 ml 

- biotinylated (AC)17 probe                        (75 pM)      5 ml 

- sodium dodecyl sulfate SDS 10%             0,7 ml 

-DNA                                                         400 ng 

 

Bring the volume to 100 µl with distilled water. 
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DNA was denatured at 95°C (3 min), and annealing was performed at room 

temperature for 15 min. 

 

The prepared beads were then mixed to the DNA-probe hybrid molecules (diluted 

with 300 mL of TEN 100) and incubated for 30 min at room temperature with 

constant gentle agitation to induce the bond between biotinylated probe and magnetic 

particles. 

 

 

2.2.3.3 WASHING STEPS 

 

The beads-probe-DNA complex was separated by a magnetic field from the 

hybridization buffer, which was then discarded. Nonspecific DNA was removed by 

three nonstringency washes and three stringency washes. Nonstringency washes were 

performed by adding 400 ml of TEN 1000, while stringency washes were performed 

by adding 400 ml of SSC 0.2X, 0.1% SDS to the DNA. Each wash was done for 5 

min at room temperature and with gentle mixing. DNA was recovered by magnetic 

field separation each time.  

 

DNA was separated from the beads-probe complex by two denaturation steps. In the 

first step 50 ml of TLE 1X (Tris-HCl 10 mm, EDTA 1 mm, pH 8) was added to the 

beads, which were then incubated at 95°C for 5 min. The supernatant, containing 

target DNA, was separated from magnetic particles with a magnetic field and quickly 

removed, centrifugated (12000 rpm  for 1 min) to eliminate the last magnetic beads 

and then stored.  

 

The second denaturation step was performed by treating beads with 12 ml of 0.15 M 

NaOH; in this case the recovered supernatant must be neutralized, before storage, by 

the addition of an appropriate amount of acetic acid. This was determined in advance 

by treating the NaOH stock solution with 0.1667 M acetic acid (CH3COOH). The 

supernatant was then separated from magnetic particles with a magnetic field and 
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quickly removed, centrifugated (12000 rpm for 1 min) to eliminate the last magnetic 

beads and TLE 1X was added to reach a final volume of 50 ml. 

To eliminate the residual SDS, DNA recovered from the washing and denaturation 

steps was precipitated with 500 µl EtOH 100% and put on ice for 15 min. To 

eliminate the supernant a centrifugation (14000 rpm) of 5 min was carried out. To 

wash the pellet 250 µl EtOH were added and centrifugated together for 5 min at 

14000 rpm removing the supenatant. The pellet was then dried and resuspended in 50 

ml of TLE 1X. 

 

 

Two microliters from each recovered fraction (TLE 1X and NaOH) were amplified 

by 30 cycles of PCR using the MseI-N primer under the following conditions: 

 

94°C  30 s 

53°C  1 min            30 cycles 

72°C  1 min 

72°C 10 min  

 

and with this PCR mixture: 

-H20 dd 10,32 µl 

-primer MseI  4 µl 

-buffer 10X 2 µl 

-MgCl2 1,2 µl 

-dNTPmix 0,4 µl 

-Taq polimerase 0,08 µl 

-DNA 2 µl 

 

Agarose gel visualization of the amplified fragments should display in each of the 

two PCRs a smear above 200 bp. Ideally the PCR of the last stringency wash should 

not yield any product, indicating complete removal of nonspecifically bound DNA. 

The PCR products of the two elution steps were the best candidates for producing a 
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highly enriched microsatellite library, because they were likely to contain the largest 

proportion of repeat-containing fragments. 

 

 

2.2.3.4 CLONING AND TRANSFORMATION 

 

The fragment were ligated into a pGEM-T Easy Vector System I (Promega) as 

follows (Figure 3): 

 

-2X Rapid Ligation Buffer 5 µl 

-T4 DNA Ligase 1 µl 

-pGEM-T Easy Vector System I (50 ng) 1 µl  

-Insert DNA 2 µl  

 

dH2O to a final volume of 10 µl  

The reactions were mixed by pipetting and incubated overnight at 4°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: pGEM-T Easy Vector circle map and sequence reference points 
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Cloning plates were prepared and plasmid vectors were incorporated into competent 

cells of Escherichia coli (JM 109 Competent cells-Promega). These cells are made to 

take up the plasmid vector P-GEM, which contains two engineered genes, one for 

ampicillin resistance (ampicillin resistance gene) and the other (LacZ gene that codes 

for ß-galactosidase) to convert X-gal in nutrient agar to a blue color. A sample of 

competent cells is made to take up the vector with the two genes. When E. coli with 

this insert is plated on nutrient agar with ampicillin and X-gal, the resulting colonies 

will be blue. Another sample is made to take up another vector with a DNA insert 

(recombinant plasmid). The DNA is inserted in a restriction site located within the ß-

galactocidase gene. When E. coli with the recombinant plasmid are plated out on 

ampicillin nutrient agar with X-gal, the gene that would normally convert X-gal to a 

blue color is no longer functioning because the DNA insert disrupted the gene. These 

colonies will be white (the ampicillin gene is not affected). E. coli is sensitive to 

ampicillin and will not grow on nutrient plates in the presence of this antibiotic. E. 

coli with vector is resistant to ampicillin and will grow on these plates (this shows 

that DNA equals genes or traits). E. coli with plasmid also will be seen as blue 

colonies. Only the recombinants (those that took up vector with a DNA insert) will 

be seen as white colonies (changing DNA changes the properties of the plasmid P-

Gem) and E. coli with the recombinant plasmid, which contains the DNA insert. 

 

Two LB/ampicillin/IPTG/X-Gal plates for each ligation reaction were prepared: 

-2,5 g Luria Broth Base 

-1,5 g Selected Agar 

-Bring the volume to 100 ml with dH20  

-Autoclave for 45 min and allow it to cool until the bottle can be held with bare 

hands 

-Add 0,01 g ampicillin 

-Pour enough melted agar into each sterile plastic petri dish to cover the bottom 

-Place agar plates on a counter top to cool and set (agar medium will solidify at room 

temperature) 

-Store at 4°C 
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Place 200 µl of the X-gal (5-bromo-4-chloro-3-indolyl- beta-D-galactopyranoside) in 

a plastic tube. Add 50 µl of IPTG (Isopropyl β-D-1-thiogalactopyranoside – inducer 

of β-galactosidase) to the tube and mix the two solutions. 

Transfer 40 µl of the X-gal/IPTG mixture on the surface of the ampicillin plates. Dip 

a glass spreader in 95% ethanol and flame to sterilize and let it cool for a few 

seconds by touching the agar surface. Use the spreader to distribute the X-gal/IPTG 

mixture evenly over the surface of the plate. Replace the lid on the plate and invert 

the plate. Repeat this process for the other plate of ampicillin.  

 

-Centrifuge the tubes containing the ligation reactions to collect contents at the 

bottom of the tube 

-Add 2 µl of each ligation reaction to a sterile 1.5ml microcentrifuge tube on ice. 

-Remove tube of frozen JM109 High Efficiency Competent Cells from storage and 

place in an ice bath until just thawed (about 5 min). Mix the cells by gently flicking 

the tube. 

-Carefully transfer 50 µl of cells into each tube prepared above. 

-Gently flick the tubes to mix and place them on ice for 20 min. 

-Heat-shock the cells for 30 sec in a water bath at exactly 42°C to induce the 

transformation. 

-Immediately return the tubes to ice for 2 min. 

-Add 250 µl room temperature SOC medium (20 g bacto-tryptone, 5 g bacto-yeast 

extract, 0,5 g NaCl, 10 ml KCl 250mM, 20 mM glucose dissolved in 950 ml dH2O) to 

the tubes containing cells transformed with ligation reactions. 

-Incubate for 1 hour at 37°C with shaking (200 rpm). 

-Plate 150 µl and 100 µl on each of two plates of each transformation culture onto 

duplicate LB/ampicillin/IPTG/X-Gal plates.  

-Incubate the plates overnight at 37°C.  

 

Recombinant clones (85) were then identified using blue/white screening on the agar 

plates and amplified with M13 forward and reverse primers: 

-M13 Forward (5’-GTA AAA CGA CGG CCA GT -3’) 
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-M13 Reverse (5’-CAG GAA ACA GCT ATG AC-3’) 

 

For each PCR reaction a colony was picked and put on the following PCR mixture: 

-dH20 37 µl 

-10X Buffer 5 µl 

-dNTPmix 4 µl 

-MgCl2 3 µl 

-M13 Forward 0,5 µl 

-M13 Reverse 0,5 µl  

-Taq polimerase 0,25 µl 

 

with the following PCR program: 

 

94°C  2 min 

94°C  30s 

55°C  30 s            30 cycles 

72°C  1 min 

72°C  7 min  

 

Agarose gel visualization of the amplified fragments should display an amplification 

product between 400 bp and 800 bp in size because it probably contained a 

microsatellite. 

 

 

2.2.3.5 PCR PRODUCT PURIFICATION 

 

The PCR product purification was carried out using the Wizard® SV Gel and PCR 

Clean-Up System (Promega) following this protocol: 

-Add equal volume of Membrane Binding Solution to PCR reaction 

-Transfer sample to SV Minicolumn 

-To induce the binding of the DNA to the membrane leave them at room temperature 

for 1 min 
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-Centrifugate (10000 rpm) for 1 min 

-Discart the filtrate 

-Add 700 µl Membrane Wash Solution 

-Centrifugate (10000 rpm) for 1 min 

-Add 500 µl Membrane Wash Solution 

-Centrifugate (10000 rpm) for 5 min 

-Transfer spin column to a 1.5 ml microcentrifuge tube 

-Centrifugate (10000 rpm) for 1 min 

-Elute with 50 µl Nuclear-Free Water 

 

The DNA concentration was estimated by a 1% agarose gel electroforesis. 

 

 

2.2.3.6 DNA SEQUENCING 

 

The positive clones were sequenced with ABI BigDye Terminator Cycle Sequencing 

Kit (Applied Biosystem) in a ABI PRISM® 3100 automated sequencer. 

 

The following components were mixed for the sequencing DNA reaction: 

- 70 ng purified PCR product 

- 2 µl BigDyeTM  Terminator Cycle Sequencing Kit (Applera) 

- 4 µl primer (1 mM) 

- dH20 up to a final volume of 20 µl 

 

using the following program: 

 

96°C 10 sec 

50°C 5 sec           25 cycles 

60°C 4 min 

DNA sequencing is the determination of the precise sequence of nucleotides in a 

sample of DNA.  
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Automated fluorescent DNA sequencing using a capillary DNA sequencing 

instrument (ABI PRISM® 310 Genetic Analyzer - Applera) is based on the use of a 

different colored fluorescent dye for each of the four DNA bases. The most popular 

method for doing this is called the dideoxy method or Sanger method (named after its 

inventor, Frederick Sanger, who was awarded the 1980 Nobel prize in chemistry for 

this achievment - Sanger et al. 1977).  

DNA is synthesized from four deoxynucleotide triphosphates (fig 4A: 

deoxythymidine triphosphate (dTTP)). Each new nucleotide is added to the 3′-OH 

group of the last nucleotide added.  

                      

   4A 

 

 

 

  4B 

 

 

 

 

 

 

The dideoxy method gets its name from the critical role played by synthetic 

nucleotides that lack the -OH at the 3′ carbon atom (fig. 4B). A dideoxynucleotide 

(dideoxythymidine triphosphate-ddTTP) can be added to the growing DNA strand but 

when it is, chain elongation stops because there is no 3′ -OH for the next nucleotide 

to be attached to. For this reason, the dideoxy method is also called the chain 

termination method.  

 

The DNA to be sequenced is prepared as a single strand, denaturing the double 

stranded DNA. 

This template DNA is supplied with: 
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- a mixture of all four normal (deoxy) nucleotides in ample quantities: 

o dATP  

o dGTP  

o dCTP  

o dTTP 

-a mixture of all four dideoxynucleotides, each present in limiting quantities and 

each labeled with a "tag" that fluoresces a different color:  

o ddATP  

o ddGTP  

o ddCTP  

o ddTTP  

-DNA polymerase I  

Because all four normal nucleotides are present, chain elongation proceeds normally 

until, by chance, DNA polymerase inserts a dideoxy nucleotide (shown as colored 

letters) instead of the normal deoxynucleotide (shown as vertical lines) (Fig. 4C). If 

the ratio of normal nucleotide to the dideoxy versions is high enough, some DNA 

strands will succeed in adding several hundred nucleotides before insertion of the 

dideoxy version halts the process. 

  

 

  4C 
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DNA sequencing reactions can be carried out in a single reaction tube and be 

prepared for loading once the reaction reagents had been filtered out. The capillary 

system is set up to deliver new polymer to the capillary, load the sequencing reaction 

into the capillary, apply a constant electrical current through the capillary (fig. 4D), 

and have the resolved fragments migrate past an optical window where a laser would 

excite the dye terminator, a detector would collect the fluorescence emission 

wavelengths (fig. 4E), and software would interpret the emission wavelengths as 

nucleotides (fig. 4F). At the present time such systems can deliver 500–1000 bases of 

high quality DNA sequence in a matter of a few hours. 

 

 

4D                                                                                      4E 

 

 

 

 

 

 

 

 

 

 

 

 4F 
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2.2.3.7 PRIMER DESIGN AND PRIMER PAIRS PRESCREENING 

 

The sequences contained microsatellites were aligned using a MEGA version 4.0 

(Tamura et al. 2007) and, to discover the location and orientation of the 

microsatellites into the sequence, the software TRF (Benson 1999) was used. 

Primer pairs were designed for the microsatellite inserts using the Primer3 v.0.4.0 

computer program (Rozen and Skaletsky 1998) with these conditions: 

 

-primer size: 18-22 bp 

-annealing temperature: 54°C-65°C 

-self complementarity: 5 – 2 

 

In order to optimize the amplification protocol and to test the primer pairs 

performance, PCR amplifications were performed with the unlabelled primer pairs in 

some individuals of Primula apennina Widmer collected from Monte Prado. Many 

parameters which influenced the outcome were changed. These included the MgCl2 

concentration, the temperature profile, the number of cycles and the presence of 

certain additivities (Bovine serum albumine-BSA). The optimal protocol for each 

primer pair is summarized in the Table 3.  
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Primer pairs Annealing temperature Number of cycles 

1 48° 40 

2 48° 40 

3 54°C 40 

4 54°C 40 

5 56°C 35 

6 58°C 35 

7 58°C 35 

8 58°C 35 

9 60°C 40 

10 58°C 35 

11 50°C 40 

12 52°C 35 

13 54°C 35 

14 58°C 35 

15 56°C 35 

Table 3: annealing temperature and number of cycles for each primer pair. 

 

 

PCR amplifications were performed in a final volume of 10 µl containing: 

-1 µl BSA 

-1 µl buffer 

-1 µl BSA 

-0,8 µl DNTp 

-0,5 µl each primer 

-0,3 µl MgCl2                                  

-0,05 µl Taq polimerase 

-20 ng of genomic DNA 

 

The amplification conditions were: 

 

94°C  5 min 
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94°C  30 sec 

…°C  30 sec           … cycles 

72°C  30 sec 

72°C  7 min  

 

 

2.2.3.8 FRAGMENT ANALYSIS  

 

After prescreening, forward or reverse primers were labelled with dye-D2, D3 or D4 

WELLRED fluorochromes (Sigma-Proligo) and used for the PCR amplifications, 

following the conditions described above. 

To evaluate whether the individual loci were likely to be polymorphic the primer-set 

was screened against a range of representative samples. 

Fluorescently labeled fragments were detected using the automatic sequencer CEQ™ 

8000 Genetic Analysis System (Beckman Coulter) and then interpreted using CEQ 

8000 analysis software. Four different colored fluorescent dyes can be detected in 

one sample. One of the dye colors was used for a labelled size standard that was 

added to each lane to allow comparison of samples from lane to lane.  The analysis 

software uses the size standard to create a standard curve for each lane and then 

determines the length of each dye-labeled fragment by comparing it with the standard 

curve for that specific lane. 

The differential labelling with three fluorochromes allowed the combination of three 

primer pairs in a single reaction (multiplexing). 
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3. RESULTS 
 

3.1 RAPD AND ISSR MARKERS RESULTS  

 

I only used amplification products which were clearly present or absent through all 

experiments for the data analysis. This approach reduced the influence of non-

reproducible, artifactual bands that might bias the analyses. Individuals with a 

substantial number of missing data were excluded from the analysis. 

A total of 172 polymorphic bands were scored using the six RAPD primers. The size 

of amplification products ranged from 160 to 1084 bp. Each primer produced 

between 22 and 45 bands corrisponding to an average of 28,67 bands per primer; of 

these 79,65% (137 in total) were polymorphic among the three species (Table 1). 

Primer 1 produced three monomorphic bands in Q. crenata, seven different 

monomorphic bands in Q. suber and one monomorphic band in Q. cerris. Primer 2 

gave one monomorphic band in Q. crenata and in Q. cerris and three monomorphic 

bands in Q. suber. Primer 3 produced five monomorphic bands in Q. suber, one 

monomorphic band in Q. cerris and primer 4 only one monomorphic band in Q. 

crenata and two monomorphic bands in Q. suber; primer 5 gave only one 

monomorphic band in Q. crenata and primer 6 three monomorphic bands in Q. 

crenata, eleven different monomorphic bands in Q. suber and one monomorphic 

band in Q. cerris. 

 

The three ISSR primers generated between 12 and 17 products corresponding to an 

average of 14 bands per primer; of these 52,38% (22 in total) were polymorphic 

among the three species. A total of 42 polymorphic bands ranging in size from 174 to 

532 bp were scored (Table 1). 

Six monomorhic bands were produced by the primer (AG)8T in Q. suber, one in Q. 

crenata and two in Q. cerris. The primer (AG)8C produced 6 monomorphic bands in 

Q. suber, two monomorphic bands in Q. crenata and the primer 6 gave monomorphic 

bands in Q. suber, one band in Q. cerris and three monomorphic bands in Q. crenata. 
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Primer type Sequence (5’-3’) 
No. of recorded 

fragments 
Size range bp 

RAPD primers    

1 GGTGCGGGAA 28 160-995 

2 GTTTCGCTCC 27 185-946 

3 GTAGACCCGT 25 171-741 

4 AAGAGCCCGT 22 191-571 

5 AACGCGCAAC 25 164-535 

6 CCCGTCAGCA 45 169-1084 

Total  172  

ISSR primers    

UBC 807 (AG)8T 17 174-499 

UBC 808 (AG)8C 12 177-520 

UBC 811 (GA)8C 13 197-532 

Total  42  

 

Table 1: genetic data for each primer type 

 

A                                                                      B 

 
Figure 1: example of the polymorphic banding pattern obtained for six sampled 

plants with two of the primers used: RAPD primer 1 (A) and ISSR primer (AG)8T 

(B).  
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The percentage of polymorphic bands (PPB) and the estimates of  Simpson diversity 

index (S) for each species based on RAPD and ISSR markers is shown in Table 2, in 

which Q. cerris exhibited the highest level of variability (PPB) according to both 

RAPD (97,67) and ISSR (92,86) markers, while Q. suber showed the lowest for both 

markers (RAPD: 84,30; ISSR: 57,14). Q. cerris had also the highest S value for 

RAPD (0,82) and ISSR (0,81) primers. The lowest S value was instead obtained for 

Q. suber with RAPD markers (0,63) and for Q. crenata with ISSR markers (0,75). 

 

 

Primer type 
Number of 

polymorphic bands 

Percentage of 

polymorphic bands 

(PPB) 

Simpson diversity 

index (S) 

RAPD primers    

Q. cerris 168 97,67 0,82 

Q. suber 145 84,30 0,63 

Q. crenata 163 94,77 0,69 

ISSR primers    

Q. cerris 39 92,86 0,81 

Q. suber 24 57,14 0,77 

Q. crenata 36 85,71 0,75 

 

Table 2:  Numbers of polymorphic bands, percentage of polymorphic bands (PPB) 

and Simpson diversity index (S) calculated for the three Quercus species. 

 

Molecular data would support a hypothesis of hybrid origin if diagnostic markers 

(present in all individuals of one species and none of the other) or species-specific 

markers (unique to one species but not necessarily found in all individuals) found in 

the putative parents were additive in the putative hybrid. However, in a stabilized 

hybrid species, strict additivity would not be expected in all individuals due to the 

often close relationship of the parental species or to hybridization.; rather, 

combinations of parental markers would be found at the population level (i.e. some 
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individuals might have both parental markers, whereas others may have markers of 

one parent or the other; Galez and Gottlieb 1982). 

 Several studies have therefore used less stringent methods for defining marker 

bands, calculating the percentage of private bands (bands found exclusively in one 

species), common bands (band present in two taxa and absent in the third one), and 

shared bands (bands co-occurring in two taxa, regardless of their presence/absence 

in the third or recurring in all three species at the same time) (Archibald et al. 2004). 

Two different private RAPD bands were unique to Q. cerris and Q. crenata; three 

different private bands in Q. cerris, two in Q. suber, and another one in Q. crenata 

were instead detected with ISSR markers. Seven (4,07%) common fragments within 

the Q. cerris and Q. suber individuals were scored, 21 (12,21%) within Q. cerris and 

Q. crenata individuals, and only one (0,58%) within Q. suber and Q. crenata 

individuals. A total of 139 (80,81%) RAPD fragments were shared among the three 

species, 147 (85,47%) between Q. cerris and Q. suber, 160 (93,02%) between Q. 

cerris and Q. crenata, and 140 (81,40%) between Q. suber and Q. crenata. Only Q. 

cerris and Q. crenata individuals had ten (23,81%) fragments in common, while the 

species pairs Q. cerris - Q. suber and Q. suber - Q. crenata did not show any band in 

common. A total of 21 (50,00%) ISSR fragments were shared among the three 

species and between Q. suber and Q. crenata, 22 (52,38%) between Q. cerris and Q. 

suber, 35 (83,33%) between Q. cerris and Q. crenata. No completely diagnostic or 

species-specific loci were found (Table 3). 
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Table 3: Summary of RAPD and ISSR bands which characterize the three Quercus 

species studied. 

 

 

 

 

 

 

 

 

 

Species Private bands Common bands Shared bands 

   RAPD    

Q. cerris 2 (1.16)     

Q. suber 0 (0.00)  0/172   

Q. crenata 2 (1.16)     

Q. cerris vs Q. suber     7 (4.07) 147 (85.47)  

Q. cerris vs Q. crenata   21 (12.21) 160 (93.02) 

Q. suber vs Q. crenata     1 (0.58) 140 (81.40) 

Q. cerris vs Q. suber vs Q.   139 (80.81) 

    

   ISSR    

Q. cerris 3 (7.14)   

Q. suber 2 (4.76)   

Q. crenata 1 (2.38)   

Q. cerris vs Q. suber     0 (0.00) 22 (52.38) 

Q. cerris vs Q. crenata   10 (23.81) 35 (83.33) 

Q. suber vs Q. crenata     0 (0.00) 21 (50.00) 

Q. cerris vs Q. suber vs Q.   21 (50.00) 
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DATA ANALYSIS 

 

Similarity matrices computed for each of the two markers with the Nei and Li index 

were used to cluster the data using the UPGMA strict consensus trees shown in 

figure 2 as unrooted dendrograms. The RAPD tree scored low consistency indices 

(CFI = 0,157; MCI = 0,233) and did not appear to discriminate the three species. 

Individuals from both the putative parental species and the hybrid species were 

interspersed between three main clusters which hence include a mixture of members 

of the three  species (Figure 2a). 

The ISSR tree likewise had low consistency indices (CFI = 0,204; MCI = 0,272), but 

two main groups with some taxonomic correspondence were defined: in the upper 

clade individuals from Q. suber formed a distinct group consisted of Q. suber 

individuals placed in a separate clade along with few Q. crenata individuals; the 

second group clustered all the Q. cerris individuals with most of Q. crenata samples 

(Figure 2b). The genetic relationships among plants, as depicted in the unrooted 

trees, were largely non-congruent with their morphological classification, nor there 

was any tendency for geographical proximate plants to cluster together.  

The Mantel test between the matrices of cophenetic correlation values gave r = 0,315 

(500 random permutations, P = 0,002), showing low correlation between the values 

of Nei and Li similarity index based on RAPD and ISSR data.  

The partitioning of molecular variability for each of the two markers is more sensibly 

rendered in the plots generated by the PCA (Figure 3). PCA of the RAPD data set 

accounted for 33.77% of the observed variance with the first 10 components, and as 

many as 18 components were required to explain 50.75% of the total variance. In the 

plot of individual component scores along the first three axes, the three species were 

not identifiable as discrete groups; however, Q. cerris and Q. suber samples showed 

a general separation with putative hybrid Q. crenata individuals in an intermediate 

position (Figure 3a). The eigenvalues and the variance by the principal components 

were less evenly distributed for the ISSR data set: 33.91% of the total variance was 

extracted by the first 4 components, and 51.98% by the first 8 components. In this 

case, a plot of individual component scores along the first three axes resulted in two 

clusters corresponding to the putative parental species with the Q. crenata sample 
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intermediate to them, but mostly overlapping with Q. cerris individuals (Figure 3b). 

Both the dispersal of the total variance in several components and the low measures 

of consensus trees resolution (CFI, MCI) reflect the high proportion of bands shared 

by the three species. Moreover, no groupings that correspond to geographical regions 

could be discerned in these analyses. 

The histograms of ML hybrid index scores for Q. crenata derived from the two 

markers were set up so that Q. cerris would have high scores and Q. suber low scores 

at the end points on a linear scale between 1 and 0 (Figure 4). Hybrid index scores of 

Q. crenata based on RAPD markers (Figure 4a) ranged from 0,28 to 0,90 (mean 0,59 

± 0,17). The hybrid index values based on ISSR markers (Figure 4b) ranged from 

0,14 to 0,97 (mean 0,65 ± 0,19). Although the two methods result in a different 

arrangement of some individuals, both distributions were not significantly different 

from normality (W = 0,97, P = 0,633 for RAPD histogram; W = 0,94, P = 0,139 for 

ISSR histogram) and showed a moderate but significant correlation (ρ = 0,27, P = 

0,187). These histograms derived for both markers demonstrate a minimal degree of 

skewing towards Q. cerris indicating a more pronounced molecular similarity of Q. 

crenata to Q. cerris.  
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A 

 

 

 

CFI= 0,157 

MCI= 0,233 

 

 

 

 

 

 

B 

 

 

 

 

 

CFI=0,204 

MCI=0,272 

 

 

 

Figure 2: strict consensus unrooted trees from UPGMA analysis depicting molecular 

relationships among Q. cerris (  ) Q. crenata ( ) and Q. suber ( ) individuals. 

(A) RAPD data. (B) ISSR data. Consensus fork index (CFI) and Mickevich 

consensus information index (MCI) values are indicated for each tree.  
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Figure 3: three-dimensional distributions of Q. cerris ( ), Q. crenata ( ) and Q. 

suber ( ) individuals obtained by PCA based on the correlation matrices for the 

presence/absence of RAPD (A) and ISSR (B) fragments. The curved line in the 

ISSR-based plot indicates the separation of Q. suber from Q. cerris plus Q. crenata 

individuals.  
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3.2 SSR MARKERS RESULTS                                                         

CROSS-SPECIES TRANSFERABILITY WITHIN THE GENUS PRIMULA 

 

Though several attempts using a range of reaction and cycling condition were made, 

31 primer pairs had no amplification at all and only 5 primer pairs produced a 

multiple banding patterns. The 5 bands of interest were sequenced but only two of 

them shared homology with the original species Primula sieboldii. Of these two loci, 

examined for allelic diversity in 32 samples, none were polymorphic. Thus, cross-

species transferability can not be used between Primula apennina and the three other 

species. 

 

 

MICROSATELLITE MARKERS ISOLATION BY FIASCO PROTOCOL 

 

In this study, 63 positive clones were obtained. Of these, 38 sequences were 

heretofore analyzed and 11 sequenced clones did not contain a microsatellite. Of the 

27 remaining sequences, six, two, and three sequenced clones contained identical 

sequences. The remaining twenty sequences were analysed with the software TRF 

(Benson 1999). The TRF program discovered 72 microsatellites for the 20 sequences 

but only the microsatellites above a certain threshold length (a period size of 2 to 9, 

repeated at least 4 times) and not too close to the insert-plasmid boundaries were 

selected. The 11 sequences enriched with the selected microsatellites and the 15 

correspondent microsatellites are shown in the Table 4. 
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Table 4: 11 sequences enriched with the selected microsatellites and the 15 

correspondent microsatellites. 

 

Primer pairs (Table 5) were designed for the 15 microsatellite inserts using the 

Primer3 v. 0.4.0 computer program (Rozen and Skaletsky 1998). 

 

 

 

 

Sequence name Microsatellite sequence (5’-3’) 

2a3 

a:TATACATATACATATATATATGTGTGTGTGTGTGTAAGAAAGAGAGG
GAAAGAGTGGAACAAAGTGGGAGAAAGCAAGGTAGAGAGAGAGAGA
AAGAAGAGATAGTCGTAGTGGGGAGATTGTAGAGACATAAAAGAGGA
TAGAGAGAGAGTGCGTGATCCCAGATAGAGAGAGGAGAGAGAGATCG
CAGTCATCATCATGAGAGTGCAAAGAGGGAAATAGTGTTTCAAGTTAG
GTGTCCACC 
 
b:GAGATCGCAGTCATCATCATGAGAGTGCAA 

2a4 

a:ATCTATATACATATATGTATGTATGTATGTCTATGTAGGTAATCTCTC
TATATATATATGTATGTGTGTGTATGTGTATGTGTGTGTGTGTGTATCTC
TCCCATAT 
 
b: ATAGATAGAGCGGGTACATAGATAGA 

2a7 
GTGATTACAGGTGTGTGTGTGTGTGTGTGTGAAAAAATAGG 

2a11 
ACTAGTTTCAATATATATATACATAGATATGTATATGTATGTGTGTTTG
A 

2a15 
CTCCATCCCAACACACACACACAACACAGCATACACCCCATTTTCT 
 

1a17 
CAACCCATTCACTTACACACATACATACACGCACAGAGG 
 

2b24 

TCGAAAATTTCACATGCACATTGCACACATACATACACACATACACAT
ACATACGTACACACATACACACACAAACATATACATACACATACATAC
ATATACAAACACTCACATACATATACATATAAACACATACACACATAC
ACACATACATACATACATAAACACATAAAAACATAAAAACATAAAAGC
ATACACACATACATTCCAACACATACACACATACAAACACACATACAC
ATACAAAAAAAAACATGCACACACACACACATA 
 

2c33 
CGCTAACCGGTGCTTGCTTTGCTTTGCTTGGTGTCTTCG 

2c35 
TTTATAATTTTGTGTGTGTGTGTGAGCACACGCG 

2d62 
GCTATATATATGTGTGTGTGTCATAGTTGGC 

1d62 
ACAAGAATGCAAAACTATACAAAATAAAAAAAATAGAAAACCCATAA
AATAAATGTAATGCGTATA 
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Primer pair Sequence name Primer sequence (5’-3’) 

1-L 2a3a-L TGAAGAGGGTTATGGATATGGAA 

1-R 2a3a-R TGGACTCGGTAATATAGGTGGA 

2-L 2a3b-L TGGGAGAAAGCAAGGTAGAGAG 

2-R 2a3b-R TGGACTCGGTAATATAGGTGGA 

3-L 2a4a-L TGTAGTGTCCGATGTAAAAACGA 

3-R 2a4a-R GGCATCACTCTCCCTATCAATTAC 

4-L 2a4b-L TCGAATGAGTAATTGATAGGGAGA 

4-R 2a4b-R GGTACTTTTCATAATTTCACTTTGT 

5-L 2a7-L CAAGAAATCCAAATAAACCTCCA 

5-R 2a7-R TATATATTATTAGACCCTCATTTTT 

6-L 2a11-L TCTAACTCAAGTCTGGCACGAA 

6-R 2a11-R AGATCCCACACACAAATCACAC 

7-L 2a15-L CCAAGTTGAAGCGCAATTAGA 

7-R 2a15-R ATGAGGTAGGAAGGTACGTGGA 

8-L 1a17-L ATCAAAGCAATGACAGAGGTAACA 

8-R 1a17-R TCAGATAACCTTTCCACCCATC 

9-L 2b24-L TAAGGACGGAGGGAGTAGAAC 

9-R 2b24-R GTGTGTGTCGGTTTGTCTATTTG 

10-L 2c33-L AGGTCGTTGGTTCAAAAAGAAA 

10-R 2c33-R ATTGCCATGACTTCACAAAATG 

11-L 2c35-L TGGGCATGACTTGATAGTTGATAC 

11-R 2c35-R TGGCAATCATATCTTTTTCACATT 

12-L 2d62-L GATGGTTGTCATTTGCTTGTTG 

12-R 2d62-R TTTCCCATATCGCTTTCTGTTT 

13-L 1d67a-L TGCAAATCCATCAAAACCATAA 

13-R 1d67a-R TCAGACCATCAAAATTCAAAACC 

14-L 1d67b-L GGTTTTGAATTTTGATGGTCTG 

14-R 1d67b-R ATTATTCGCGTTTTGGTGATTT 

15-L 1d67c-L GGTTTTGAATTTTGATGGTCTG 

15-R 1d67c-R AAATTATTCGCGTTTTGGTG 

Table 5: primer pairs designed for the 15 microsatellites. 
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In the preescreening the 15 not labelled primer pairs (Invitrogen TM) were tested in 

16 representative individuals of Primula apennina collected from Monte Prado (5.1a, 

5.8, 5.9a, 10.1b, 10.5a, 10.8, 11.1b, 11.2a, 3.1a, 3.1b, 4.3a, 4.3b, 4.3c, 5.9b, 5.10, 

5.11a). The primer pairs 1 (2a3a), 2 (2a3b) failed to amplify. 

 

After prescreening, forward or reverse primers of  the 13 loci were labelled with dye-

D2, D3 or D4 WELLRED fluorochromes (Sigma-Proligo)(Table 6).  

 

Primer pair Sequence (5’-3’) 

3L TGTAGTGTCCGATGTAAAAACGA 

4L TCGAATGAGTAATTGATAGGGAGA 

5L CAAGAAATCCAAATAAACCTCCA 

6L TCTAACTCAAGTCTGGCACGAA 

7L CCAAGTTGAAGCGCAATTAGA 

8R TCAGATAACCTTTCCACCCATC 

9L TAAGGACGGAGGGAGTAGAAC 

10R ATTGCCATGACTTCACAAAATG 

11L TGGGCATGACTTGATAGTTGATAC 

12L GATGGTTGTCATTTGCTTGTTG 

13L TGCAAATCCATCAAAACCATAA 

14L GGTTTTGAATTTTGATGGTCTG 

15R AAATTATTCGCGTTTTGGTG 

 

Table 6: forward or reverse primers labelled with dye-D2, D3 or D4 WELLRED 

fluorochromes. 

Levels of locus polymorfism were assessed in the previous 16 individuals of P. 

apennina from Monte Prado. At this stage 6 (primer n° 3, 4, 7, 10, 14, 15) primer 

pairs produced monomorphic genotypes in all analysed samples, one primer pairs 

(primer pair 8) produced three alleles and two primer pairs (primer pairs 6, 9) 

produced complex multibanded profiles not readily interpretable in term of loci and 

alleles (Table 7). Primer pairs 5, 11, 12 and 13 were not tested in the Monte Prado 
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samples because discovered after this stage. To remove the multibanded profiles the 

annealing temperature was increased; the primer pairs 6 resulted in a interpretable 

profile while the primer 9 failed to amplify. 

 

Subsequently, to assess polymorphism the screening was extended to Lago Santo and 

Lago Verde samples, and heretofore, 6 primer pairs tested on 4 individuals randomly 

selected from the two sites were found to be polymorphic (Table 7). 

 

 

 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
4. DISCUSSION 
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4.1 RAPD AND ISSR DISCUSSION 

The reproductive biology of species in the genus Quercus presents a significant 

challenge to the use of molecular data to infer organismal relationships. Considering 

that published accounts of inter- and intraspecific molecular variation indicate that 

closely related, interfertile oak species are not well differentiated (Whittemore and 

Schaal 1991) this study examines the hybrid origin of Q. crenata from Q. cerris and 

Q. suber in northern Italy, where Q. suber is currently lacking, and discusses the 

introgression process to Q. cerris, which is the only parent occurring in northern 

Italy. 

By using RAPD and ISSR primers, high levels of molecular polymorphism (S, PPB) 

in the three oak species were detected. This seems to fit with the general literature on 

oaks and other long-lived perennials (Bellarosa et al. 1996, Mayes et al. 1998, Coart 

et al. 2002, Petit et al. 2002, Yakovlev and Kleinschmidt 2002, González-Rodríguez 

et al. 2005), although comparing results across studies must be done with caution 

because differences in sampling strategies, geographic scale considered, markers 

employed, and analytical procedures are customary. The relatively low level of 

intraspecific diversity in Q. suber, stressed by the ISSR markers, might be expected, 

given that, as reported by Bellarosa (2003), the few relict areas of south-western 

Italy constitute the far eastern limit of the species and that Q. suber is, in these areas, 

strongly subjected to selection of highly productive varieties. The low level of 

genetic variation  and the range reduction in these  marginal populations of Q. suber 

have been documented and explained as a consequence of severe drought periods 

following the mid-Holocene humid warm phase (Magri 1997, Jiménez et al. 1999). In 

spite of considerable phenotypic differences existing between the three taxa, both 

molecular markers show a low degree of neutral genetic differentiation which may be 

the consequence of high frequency of genetic exchange through hybridization 

(Bodénès et al. 1997, Bruschi et al. 2000, Tomlison et al. 2000, Williams et al. 2001, 

Ishida et al. 2003, González-Rodríguez et al. 2005). Indeed, the low frequency of 

private bands and the distribution of molecular markers in Q. cerris, Q. suber and Q. 

crenata indicate that most of the molecular diversity found among them is due to 
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band-frequency differences rather than the fixation of discriminant bands. This study 

confirms that morphology of oak species hybridizing in nature often does not reflect 

the degree to which genomes have become contaminated. In that case, interspecific 

gene flow is masked by strong selection for a limited number of genes controlling 

striking morphological and physiological features. Q. cerris, Q. suber and Q. 

crenata, like other hybridizing oak species (Belhabib et al. 2001, Craft et al. 2002, 

Williams et al. 2001, Tovar-Sánchez and Oyama 2004, Mir et al. 2005), are capable 

of remaining morphologically or ecologically different in the face of hybridization 

and possible local introgression. Therefore, according to Hardin (1975), oak species 

may be appropriately considered as adaptive peaks, in which the tendency of species 

to merge through semipermeable barriers is balanced by selection for groups of 

coadapted alleles. In addition, Wu (2001) suggested that if reproductive isolation has 

once developed between species or populations to some degree, genes responsible for 

that isolation and submitted to differential selection might not transfer across species 

even if hybridization occurs. It seems likely that selective factors operate also in this 

case to maintain coadapted complexes of genomic regions controlling relevant traits, 

while DNA neutral markers, which are less or not affected by natural selection, may 

be transferred from species to species through hybridization.  

The general inference that genetic distances among oaks tend to be relatively small 

(Howard et al. 1997) is also evident in cluster and principal components analyses. 

The relationships among plants depicted in these analyses bolster that Q. cerris, Q. 

suber and Q. crenata do not represent fully isolated gene pools, although this neutral 

similarity contrasts rather sharply with their morphological distinctness. RAPD 

markers provide no resolution of variation among the three species, however the 

putative hybrid individuals occurred across the range between the clusters of Q. 

cerris and Q. suber in the PCA plot. This pattern agrees with the hypothesis of 

hybridization and indicates that individuals that appear to be typical morphotypes of 

one species harbour RAPD markers characteristic of another species. ISSR data 

provided stronger resolution of interspecific variation. Some evidence of taxonomic 

grouping emerges from the clustering pattern in the UPGMA tree, where Q. suber 

formed a clearly separated subcluster; an additional relationship apparent in the PCA 
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is that Q. crenata group is located among the clusters of individuals belonging to the 

parental species, but closer to Q. cerris.  

The low correlation between RAPD and ISSR sets of genetic similarity data has been 

assessed by the Mantel test and may explain the diverse distribution pattern of 

polymorphism in the relative UPGMA plots. PCA also supported the result derived 

from the Mantel test, with different groupings found by the two techniques. Low 

congruence between the two neutral markers has been reported also in other works 

(Souframanien and Gopalakrishna 2004, Wu et al. 2004, Hou et al. 2005, Li et al. 

2005) and relies on the distinct DNA segments surveyed by the two methods, their 

distribution throughout the genome, and the extent of the DNA target which is 

analyzed by each specific assay. 

In spite of this, both RAPD and ISSR hybrid index scores computed for Q. crenata 

showed the same general pattern, providing additional indications about the hybrid 

status of Q. crenata individuals in the absence of information about the exact nature 

of their crossing history. When graphed, the hybrid indices reveal a continuous 

distribution skewed toward the Turkey oak extreme; shifts of this kind occur as a 

consequence of asymmetrical backcrossing (Carney et al. 2000, Hardig et al. 2000, 

González-Rodríguez et al. 2004, Tovar-Sánchez and Oyama 2004, Watano et al. 

2004, Burgess et al. 2005). The lack of diagnostic nuclear markers between the two 

parental species prevents a detailed analysis of introgression, nevertheless the higher 

number of common and shared RAPD and ISSR bands in Q. cerris and Q. crenata 

individuals, the fact that both the species cluster together on the ISSR UPGMA tree 

and PCA plot, and the greater amount of variation (an assumed consequence of 

introgression) in the examined samples of Q. cerris support the hypothesis of some 

level of backcrossing in the direction of this parent. 

Oak hybrids are often produced in an isolated and sporadic manner and they may 

introgress with parental species without altering their integrity (Bacon and 

Spellenberg 1996); asymmetrical introgression is an expected genetic consequence of 

hybridization when parental taxa differ in abundance (Hill and Buck 1980, Burgess et 

al. 2005) and hybrid zones with high levels of disturbance may enhance the 

establishment of backcrossed hybrids (Tovar-Sánchez and Oyama 2004). Both 
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conditions are satisfied in different parts of the distribution area of Q. crenata.  

According to palaeobotanical records (Magri 1997), it is possible that cork oak 

occurred widely in Italy during the Holocene humid warm phase (6000-3000 bp). 

Subsequent drought periods may have drastically affected the distribution of 

thermophilous species like Q. suber and the decline had to be more severe in the 

marginal populations exposed to limiting climate conditions. The extinction of Q. 

suber in northern Italy and the low level of genetic variability of the extant Italian 

stands (Jiménez et al. 1999) may be considered consequences of the past climate 

history in the easternmost fringe of the species distribution. Moreover, human 

influence during the last centuries has certainly caused some changes in the genetic 

diversity and structure of Italian cork oak populations, given that Goiran (1897, 

1899) stated that Q. suber was cultivated in northern Italy until the beginning of the 

XVIII century. In his opinion, the specimens of Q. crenata surviving at his time were 

the offspring of hybridization prior to local extinction of Q. suber. Under this 

scenario, introgression to Q. cerris has been the unavoidable outcome of 

backcrossing to the parent favoured by demographic superiority. 

Consistent with previous morphological overviews (Goiran 1897-1899, Cristofolini 

and Crema 2005), the present results support the assumption of a hybrid origin for Q. 

crenata specimens growing in continental Italy, a possible past contact zone of the 

two parental species, Q. cerris and Q. suber. On the other hand, the greater affinity 

between Q. crenata and Q. cerris, resulting from RAPD and ISSR analyses, stands in 

contrast to patterns of interspecific relationships as recently depicted by Bellarosa et 

al. (2005); in the reported cladogram, relied upon ITS sequences of nuclear rDNA, Q. 

crenata clustered with Q. suber in a sister relation, suggesting greater affinity to this 

parent than to Q. cerris. There are several possible explanations for such 

discrepancies, the most obvious being the prevailing asymmetrical backcrossing to 

Q. suber along the Tyrrhenian coast, and the exclusive asymmetrical backcrossing to 

Q. cerris in northern Italy.   

Though both RAPD and ISSR techniques are equally good at generating fingerprints 

of individual genotypes, greater resolving power of ISSR markers compared to 

RAPD markers in unravelling diversity has been previously pointed out (Goulão et 

al. 2001, Qian et al. 2001, Mattioni et al. 2002, Mort et al. 2003, Tanyolac 2003, 
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Archibald et al. 2004, Schrader and Graves 2004, Souframanien and Gopalakrishna 

2004, Nkongolo et al. 2005) and ascribed to the abundance and hypervariability of 

repetitive DNA regions targeted by the ISSR primers (Li et al. 2005). In the present 

survey, ISSR markers produced sharper results with a smaller number of bands, 

resulting more effective than RAPD in discriminating between the two parental 

species Q. cerris and Q. suber, thereby providing information about patterns of 

hybridization and introgression concerning Q. crenata. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 DISCUSSION SSR MARKERS 
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Studies about marker transferability often revealed a tendency of microsatellites to 

be shorter and less polymorphic in species other then that from which they were first 

isolated (Van Treuren et al. 1997). Mechanistically, this decrease of polymorphism 

observed in nonfocal species is often caused by the interruption of long, contiguous 

microsatellite arrays by base substitutions, and/or by shortening of perfect arrays 

through slippage events (Barrier 2000). However, studies about marker 

transferability often revealed a tendency of microsatellites to be shorter and less 

polymorphic in species other then that from which they were first isolated (Van 

Treuren et al. 1997). Mechanistically, this decrease of polymorphism observed in 

nonfocal species is often caused by the interruption of long, contiguous 

microsatellite arrays by base substitutions, and/or by shortening of perfect arrays 

through slippage events (Barrier 2000).  

 Moreover, high polymorphism observed in a species does not guarantee that similar 

polymorphism will be found in related species especially when increasing the 

evolutionary distance (Morin et al. 1998). 

Kijas et al. (1995) tested two primer sets in 10 different Citrus species and two 

related genera and found conservation of the sequences. Cross-species amplification 

has also been reported between cultivated rice and related wild species (Wu and 

Tanksley 1993) and between Vitis species (Thomas and Scott 1993). Provan et al. 

(1996) could show successful amplification of two tomato SSR primer pairs tested on 

potato cultivars. Weising et al. (1997) reported conservation of SSR flanking sites in 

different species of kiwifruit (Actinidia chinensis). Usually, a low percentage of 

markers also amplifies fragments from species belonging to other genera from the 

same family. Within the Poaceae family, primers worked even across different 

genera (Röder et al. 1995) but, only 50% of microsatellite loci identified in wheat 

were also polymorphic in rye and barley cultivars. Whitton et al. (1997) tested 13 

SSR loci in 25 representatives of the Asteraceae, where it was demonstrated that the 

regions flanking the repeats are not highly conserved, neither in nucleotide sequence 

nor in relative position. Indeed, in general, transferability of polymorphic markers in 

plants is likely to be successful mainly within genera (success rate close to 60% in 

eudicots and close to 40% in the reviewed monocots) rather than between genera 
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(transfer rates are approximately 10% for eudicots) within the same family (Barbarà 

et al. 2007).  

17 SSR primer sets developed for Quercus petraea were tested on eight different 

members of the Fagaceae family (Steinkellner et al. 1997). In total 66% resulted in 

interpretable amplification products and most of them were really homologous to the 

originally cloned SSR fragment from Q. petraea. This study demonstrated that, 

although SSR primers worked even across different genera, with increasing 

evolutionary distance there was a clear tendency for decreasing ability to 

successfully amplify loci and a decreasing proportion of polymorphism amongst 

those markers which could be amplified. 

It is yet unclear why microsatellites and their flanking DNA are relatively conserved 

in some taxa, but not in others. In any case, the chance of a successful cross-species 

(heterologous) amplification of any DNA sequence by polymerase chain reaction 

certainly depends on the source and characteristics of the genomic library and on the 

evolutionary distance of the species sampled (Dayanandan et al. 1997). Given that 

primer binding sites are expected to be more conserved when the microsatellite 

flanking sequences are maintained under selective constraints and that microsatellites 

are surprisingly common in the vicinity of genes (Morgante et al. 2002), 

microsatellite within genes provide good chances to design primer pairs which are 

more broadly applicable.  

The decline of amplification success with increasing divergence of the species could 

be the main cause of PCR failure for the primer pairs developed for Primula 

sieboldii, Primula modesta, Primula nutans and Primula vulgaris which were tested 

for Primula apennina Widmer in the present study. All these primrose, belonging to 

different sections from Primula apennina, have sufficiently diverged that they no 

longer show conserved flanking primer regions, confirming that cross-species 

transferability depends on the evolutionary relationship of the species sampled and 

that it can not be applicated between species which are not closely related. 

Futhermore, the lack of polymorphism could be due to a high conservation of primer 

binding sites which are present in coding regions, resulting in an absence of 

variability and rendering impossible the use of this technique. 

Consequently, a microsatellite library was developed to isolate microsatellite loci.  
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The polymorphic microsatellite markers described in this work will be useful tools to 

evaluate the relative importance of sexual and asexual recruitments in Primula 

apennina Widmer (Sydes and Peakall 1998, Nagamitsu et al. 2004), to identify 

genets from a large numbers of ramets based on the identity of their genetic 

composition within each population (Naito et al. 1999, Reusch et al. 1999, Hämmerli 

and Reusch 2003), and to investigate the process by which the populations were 

established (Miwa et al. 2001). 

Further studies could use the SSR isolated here to investigate the genetic variation 

and the infraspecific structure of P. apennina. In addition, the data obtained could be 

compared to results from studies with different marker systems in order to evaluate 

the utility of microsatellite markers in terms of population genetics studies. 
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