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Sommario

Questo lavoro si propone di presentare diversi aspetti della simulazione numerica
del trasporto di particelle e di radiazione per applicazioni industriali e di protezio-
ne ambientale, per consentire l’analisi di processi fisici complessi in modo veloce,
affidabile ed efficiente.

Nella prima parte è trattata la velocizzazione della simulazione numerica del
trasporto di neutroni per l’analisi del nocciolo di un reattore nucleare. Le proprie-
tà di convergenza della source iteration del Metodo delle Caratteristiche applicate
a geometrie strutturate eterogenee sono state migliorate per mezzo della Boundary
Projection Acceleration, consentendo lo studio di geometrie 2D e 3D con la teoria
del trasporto senza omogeneizzazione spaziale. Le prestazioni computazionali
sono state verificate tramite il benchmark C5G7 2D e 3D, mostrando una sensibile
riduzione del numero di iterazioni e del tempo di calcolo.

La seconda parte è dedicata allo studio dello scattering elastico dei neutroni
con isotopi pesanti in funzione della temperatura vicino alla zona termica. È
presentato il calcolo numerico della convoluzione Doppler del kernel di scattering
elastico col modello gas per una generale sezione d’urto dipendente dall’energia e
per una generica legge di scattering nel sistema del centro di massa. L’intervallo di
integrazione è stata ottimizzato utilizzando un cutoff numerico, consentendo una
valutazione numerica più veloce dell’integrale. I momenti di Legendre del kernel
di trasferimento sono successivamente ottenuti per quadratura diretta e validati
tramite un’analisi numerica della convergenza.

La terza parte è focalizzata alle applicazioni di telerilevamento del trasferimen-
to radiativo per indagini sulla criosfera terrestre. L’equazione del trasporto per
fotoni è applicata per simulare la riflettività dei ghiacciai a diverse età dello strato
di neve o ghiaccio, al suo spessore, alla presenza o meno di altri strati sottostanti,
al grado di polvere inclusa nella neve, creando un sistema in grado di decifrare
segnali spettrali raccolti dai rivelatori orbitanti.





Abstract

The aim of this work is to present various aspects of numerical simulation of
particle and radiation transport for industrial and environmental protection ap-
plications, to enable the analysis of complex physical processes in a fast, reliable,
and efficient way.

In the first part we deal with speed-up of numerical simulation of neutron
transport for nuclear reactor core analysis. The convergence properties of the
source iteration scheme of the Method of Characteristics applied to be heteroge-
neous structured geometries has been enhanced by means of Boundary Projection
Acceleration, enabling the study of 2D and 3D geometries with transport theory
without spatial homogenization. The computational performances have been ver-
ified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of
iterations and CPU time.

The second part is devoted to the study of temperature-dependent elastic scat-
tering of neutrons for heavy isotopes near to the thermal zone. A numerical
computation of the Doppler convolution of the elastic scattering kernel based on
the gas model is presented, for a general energy dependent cross section and scat-
tering law in the center of mass system. The range of integration has been opti-
mized employing a numerical cutoff, allowing a faster numerical evaluation of the
convolution integral. Legendre moments of the transfer kernel are subsequently
obtained by direct quadrature and a numerical analysis of the convergence is pre-
sented.

In the third part we focus our attention to remote sensing applications of
radiative transfer employed to investigate the Earth’s cryosphere. The photon
transport equation is applied to simulate reflectivity of glaciers varying the age of
the layer of snow or ice, its thickness, the presence or not other underlying layers,
the degree of dust included in the snow, creating a framework able to decipher
spectral signals collected by orbiting detectors.





La filosofia è scritta in questo grandissimo libro che continuamente ci sta
aperto innanzi a gli occhi (io dico l’universo), ma non si può intendere se
prima non s’impara a intender la lingua, e conoscer i caratteri, ne’ quali

è scritto. Egli è scritto in lingua matematica, e i caratteri son triangoli,
cerchi, ed altre figure geometriche, senza i quali mezi è impossibile a

intenderne umanamente parola; senza questi è un aggirarsi vanamente
per un oscuro laberinto.

Galileo Galilei, Il Saggiatore (1623), capitolo VI

«O frati,» dissi, «che per cento milia
perigli siete giunti a l’occidente,

a questa tanto picciola vigilia

d’i nostri sensi ch’è del rimanente
non vogliate negar l’esperïenza,

di retro al sol, del mondo sanza gente.

Considerate la vostra semenza:
fatti non foste a viver come bruti,

ma per seguir virtute e canoscenza».
Dante Alighieri, La Divina Commedia, Inferno 26, vv. 112-120
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Introduction

The scientific revolution of the 17th century is universally accepted as the starting
point of modern natural sciences. Galileo Galilei developed the so-called scientific
method during his studies on the motion of falling bodies. Since that time this
method has become the formal procedure for all scientific endeavor, and the glob-
ally accepted way to investigate phenomena and acquire or correct our knowledge
of the world. The scientific method comprises two main aspects: formulation of
an hypothesis and experimental verification of that hypothesis. The continuous
iterative feedback between these two phases, together with the Popperian imag-
inative and “artistic” approach of the scientists, brings to the refinement of the
proposed hypothesis until a convergence and a new theory is established. The de-
ductive reasoning proposed by Aristotle is then rejected for an objective approach
to scientific discovery.

In physical sciences, a formal hypothesis or theory takes the form of one or
more mathematical expressions. The real power of science is then its ability to
describe the world thought these exact mathematical relations and at the same
time to make predictions about the behavior of a particular system. Still, the com-
plexity of the relations needed makes increasingly difficult, and often unfeasible,
to analyze our world only thought experiments.

More recently, an additional aspect has gained more and more importance in
the daily activity of scientists: numerical simulation. The mathematical represen-
tation of the nature can be transformed into computer codes. In fact, with the help
of computers scientists can formalize the details and the interdependent relations
that describe how a particular system behaves. Nature can then be re-created in
scientific dream machines mimicking these dynamics by means of computer mod-
els. In this way, computer simulation serves as an additional step in the scientific
method (Summers, 1998). The interest of engineers in computer simulation is the
ability to have an additional tool to assist the design and analysis of a particular
man-made system. Computer simulation studies are in fact an intermediate step
between the initial ideas and the prototypes.

The research activity presented in this work regards the numerical aspect of
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2 Introduction

particle and radiation transport for industrial and environmental protection ap-
plications. The techniques employed are part of the bigger framework of nuclear
reactor physics, and are connected with the necessity to simulate and analyze
complex physical processes in a fast, reliable, and efficient way. The mathematical
formulation employed to deal with these problems is quite old. The diffusion
and dynamical behavior of an ensemble of neutral particles was considered at the
beginning by Maxwell in 1859, and was later examined by Boltzmann in a more
rigorous fashion in 1895. Boltzmann’s formulation of the problem of particle dif-
fusion under various scattering laws has remained unchanged since its discovery
(Williams, 1966). The transport of neutron is described accurately through Bolz-
mann’s original equation, and more modern quantum mechanical correction and
more rigorous derivation of the base equation do not change the original frame-
work. The mathematics needed to describe these phenomena was therefore ready
and with more than seventy years of maturity when Chadwick discovered the
neutron in 1932. Moreover, due to very low density of neutrons inside matter, the
original non-linear collision terms of the equations proposed by Bolzmann could
be discarded, drastically simplifying the mathematical problems to be solved and
opening the era of the commercial exploitation of nuclear energy for peaceful
purposes.

Also photon transport problems can be approached by linear transport theory,
and the propagation of light can be analyzed with the same methods employed
for neutrons. The problem of specifying the radiation field in an atmosphere that
scatters lights with well-defined physical laws originated in Lord Rayleight’s stud-
ies in 1871 (Chandrasekhar, 1960). Later, the problem of illumination and polar-
ization of light was formalized using the transport theory. Consequently various
solution methods of the Boltzmann equation take their origin at the beginning of
the XX century by astrophysicists and were applied to photon transport in galactic
dusts. Around the middle of the century, and especially at the end of World War
II, new methods were conceived to solve the neutron field inside the multiplying
media of interest for nuclear technology. Lately, new photon applications, like
remote sensing for Earth and climate change monitoring, renewed the interest in
photon applications of the transport theory. This continuous exchange of ideas
and methods between these two fields has stimulated and increased the scientists
and engineers efforts to better represent and simulate the particle and radiation
transport through media using numerical models.

The transport equation describes the population of neutron or the intensity of
a radiation field, and it is based on the principle of particle conservation. Let’s
consider the case of neutrons, knowing that analogous consideration can be done
for photons. Describing the state of a particle system requires knowing the po-
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sition and the speed of each particle in every moment. Although the interac-
tion between neutron and nucleus is described though quantum mechanics laws,
the wave nature of neutron can be discarded for our applications, and a theory
based on classical mechanics can be developed. The collision of a particle inside
a medium takes place in a completely random way, at the same time the direc-
tion and the velocity after a scattering event depend upon probabilistic laws. This
means that the quantum laws of interactions can be enclosed inside a given pa-
rameters named cross sections, that provide the probability of a requested type of
event given input characteristics of the incident neutron. Considering this point
and remembering the quantum indeterminateness characterizing these phenom-
ena, it is justified why the transport of neutron and photons inside matter is better
described thought an approach of statistical mechanics.

The density of neutron in a particular point of the medium to be considered
is a result of the scattering parameters of the said medium. Since scattering itself
is based on a given probability of collision, also the neutron density would be
affected by fluctuations. For a sufficiently big ensemble of particles, the entity of
fluctuations per cm3 is of the order of 1/

√
n. In a thermal nuclear reactor, for

example, n = 1× 106 cm−3 and then 1/
√

n = 0.1 %, that is negligible. This means
that for our considerations the density of neutron will be always sufficiently high,
and the statistical fluctuations will not affect the validity of our calculations. At
the same time the density of nuclei N in the system to be analyzed is much
greater that the neutron density n. For a thermal reactor n = 106 ÷ 109 cm−3 and
N = 1019 ÷ 1022 cm−3. This means that a neutron generated inside a medium
with atomic density N will almost surely interact with another nucleus and not
with another neutron. As a result this justifies the linear nature of transport of
neutron (Boffi, 1974).

In the attempts to better understand the key processes that govern the evolu-
tion and the Earth’s biosphere, the ability to investigate and study the environ-
ment of our planet using remote sensing techniques plays a crucial role. This is
connected with the renewed concerns over global warming and greenhouse effect,
and on the consequent research about the responses of the Earth as a complete sys-
tem. In particular, high-latitude and high-altitude environments are known to be
sensitive to climate change. The complex problem of the reflectance caused by the
atmosphere and by mixtures of soil, snow and debris is therefore of paramount im-
portance in the research connected with surface processes and natural resources
of the cryosphere. Addressing this issue requires modeling and simulation of the
photon field inside those media using the transport equation, whose results should
be compared with the data provided by artificial satellites with scientific instru-
ments orbiting around our planet. These instruments measure the intensity of the
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photon field at various wavelengths, and are sensitive to the spectral emission of
glaciers mixtures, allowing investigations about the composition and thickness of
the polar ice sheets.

At the same time, nuclear technology, and in particular nuclear energy, repre-
sents a concrete and effective alternative to traditional fossil source of energy in
the effort to contrast climate changes, given the bigger and bigger energetic needs
of mankind that, in light of the continuous development and improvement of the
quality of life, require the production and distribution of an increased amount of
electric energy. In fact, nuclear power reactor are devices capable of generate elec-
tricity without a direct emission of greenhouse gases, and therefore are expected
to play a relevant role together with renewable sources in the energy transition
from fossil sources. This transition is essential to preserve Earth’s biosphere and
to guarantee a sustainable development.

The fundamental component of a nuclear system is the reactor core, that is the
place where nuclear reactions and the consequent release of thermal energy take
place. In our applications we are interested only in fission, i.e. in exothermic
split of heavy nuclei provoked by neutron bombardment. The core of a typical
nuclear reactor is composed by the fissile material (like 235U or 239Pu). When one
of these nuclei is hit by a neutron, there is a significant chance that this nucleus
absorb the neutron, becoming highly unstable and splitting into two fragments
after a very short transition (1× 10−22 s to 1× 10−14 s), releasing at the same time
2 or 3 energetic neutrons (about 2 MeV) and a great amount of energy (about
200 MeV). This energy can be transferred to a cooling fluid, and thus used to
produce steam and then electricity using turbines like ordinary coal-fired plants.
At the same time, while the neutron initiating the reaction disappears, the new
neutrons generated sustain the so-called chain reaction. Since not all the neutrons
induce a fission, the nuclear multiplying medium is said to be in critical state
when the neutron population and consequently the energy released is stationary
in time.

The first self-sustained nuclear reaction was realized in Chicago by a group
on scientists lead by Enrico Fermi in 1942, and the potentiality of these reactors
as a powerful source of neutron and gamma rays to be employed for medical
purposes, material testing and power generation was soon realized (Fermi and
Szilard, 1944). The first nuclear reactor whose only scope was generating electric
power appeared in 1954 in the USSR, and a year later in the USA, while the first
commercial power plant was started in the UK in 1956.

From the illustration of the principle of operation of a power plant, it is evident
how the precise knowledge of the neutron population inside the reactor core is
compelling in the design and operation of these systems. Because of the extreme
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complexity and high cost of a real nuclear reactor, it is unfeasible to design such
system only trough experimentation and prototypes, and therefore the contribu-
tion of numerical simulation is decisive in this field. Concerns about safety and
security of nuclear power plants have stimulated in the last decades an increased
effort in developing more and more accurate numerical tools to better calculate
and predict the neutron population inside a reactor core. At the same, such tools
can be applied by the industry to both optimize current operating plants fuel
assemblies and by research centers to investigate and design new innovative Gen-
eration IV systems, that are expected to provide a more concrete and economically
bearable answer to electric generation, while greatly improving the security and
the safety of the current commercially exploited designs.

Since currently the design phase of nuclear core and photons detector is per-
formed by means of numerical models, it is of paramount importance that the
results provided by computers are accurate and very close to reality. In this pro-
cess, a continuous short iterative feedback loop is needed to continually refine the
model of the object or system to be constructed until an optimal design is reached.
Thus, accuracy and velocity play together a crucial role in the effectiveness of nu-
merical simulations used by engineers.

The solution of every complex physical problem, such as the computation
of the radiation field into a generic medium or the determination of the neutron
population inside a reactor core, requires a double step: transformation of the real
physical problem into one or more mathematical equations in which the physical
phenomena are modeled through a series of approximations, and conversion to
a numeric problem to be solved with the algorithmic methods of numerical anal-
ysis. In the last years, in particular with the application of the transport theory
to nuclear and radiative problems, the dependence on large-scale computing and
then the reliance on numerical methods increased, which in turn encouraged de-
velopment of more powerful and sophisticated numerical tools. While these tools
enable more comprehensive investigations of transport processes, they generally
possess an inherent shortcoming, i.e. some degree of numerical discretization
error. This error is a result of the finiteness, though large by past standards, of
computer storage (Ganapol, 2008). This is the reason why it is necessary to validate
the numerical models against experiments and to verify the effectiveness and ac-
curacy of the numerical schemes employed to resolve the equations representing
the system of interest.

There are two different simulation philosophies to solve the neutron and pho-
ton transport equations: stochastic and deterministic methods. The Monte Carlo
method is the direct simulation of a population of particles, and it is realized
though the pseudo-random number generator used to reproduce the inherent
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stochastic nature of particle-matter interaction. This method is based on follow-
ing the stories of a very large number of particles, to get a representative average
thanks to the central limit theorem. While numerous improvements has been
achieved in recent years due to parallel machines, and increased computer speed
and memory storage (Martin, 2012), Monte Carlo remains prohibitive for routine
design studies in remote sensing and nuclear reactor applications, where repeated
very fast simulations are always needed. This is due to the intrinsic nature of
Monte Carlo: while it is very accurate, it requires a very large number of histo-
ries and therefore an excessive calculation time to produce results with acceptable
statistics.

On the contrary, deterministic methods are fundamentally based on a numer-
ical scheme to solve directly the general linear transport equation. The unknown
of this equation is the angular flux, that is a distribution function representing
the particle population in the phase space. Analytical solutions of the transport
equation exist only for idealized cases, i.e. one-dimensional, homogeneous, and
monoenergetic systems. Still, there are efficient numerical schemes to solve this
equation for more realistic cases like real industrial nuclear systems, that present
an extreme complexity in the geometry and heterogeneity of materials. Current
industrial needs comprise tools to calculate a large number of reactor cycles, to
be performed in relatively short times and comprising many three-dimensional
steady-state calculations (Sanchez, 2012). This is the reason why this second ap-
proach is preferred when a multitude of fast calculates is needed in engineering
design.

This work presents various aspects of the improvement of the simulation of
transport processes for neutrons and photons.

In Chapter 1 we deal with the numerical solution of the neutron transport
equation for nuclear reactor applications. In particular we present the utilization
of the Boundary Projection Acceleration (BPA) to the method of characteristics
applied to be heterogeneous structured geometries. This approach has been in-
corporated into the transport solver IDT (Integro-Differential Transport) (Masiello
et al., 2009), part of APOLLO3 code system developed at SERMA1/LTSD2 labo-
ratory of the CEA3 center of Saclay, France. The BPA is a synthetic acceleration
scheme applied to the speed-up of the source iteration for the discrete-ordinates
method deterministic solution of the neutron transport equation. We will see the
details of our implementation of this scheme inside IDT, specifying also how we
deal with the residue on boundary conditions as an additional correction for the

1Service d’Études des Réacteurs et de Mathématiques Appliquées
2Laboratoire de Transport Stochastique et Déterministe
3Commissariat à l’énergie atomique et aux énergies alternatives
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acceleration problem. The effectiveness and accuracy of this approach are tested
using the C5G7 UO2-MOX benchmark case.

In Chapter 2 we deal with the problem of accurately representing the energy
dependent scattering cross section near the thermal range. A numerical computa-
tion of the Doppler convolution of the elastic scattering kernel based on the gas
model is presented, without making assumptions on the variation of the cross
section with energy and for a general scattering law in the center of mass system.
This enhancement of the generation of scattering kernel for multigroup cross sec-
tion generation is needed because it is shown that the exact scattering kernel in-
creases light water reactors Doppler coefficients by 10%, affecting the full power
eigenvalues by about 200 pcm for light water reactors and about 450 pcm for high
temperature reactors (Lee et al., 2008). We will see how the range of integral to
be computed has been optimized employing a numerical cutoff, allowing a faster
numerical evaluation of the convolution integral, and how Legendre moments of
the transfer kernel are subsequently obtained by direct quadrature, presenting a
numerical analysis of the convergence.

In Chapter 3 we focus our attention to remote sensing applications of radiative
transfer employed to investigate the Earth’s cryosphere. The numerical method
employed to solve the radiative transfer equation is based on a multilayer exten-
sion of the Analytical Discrete Ordinates Method (Siewert, 2000), that provides an
efficient and fast way to compute the photon field inside parallel-plane stratified
media typical of remote sensing applications. We will see how the radiative trans-
fer equation can be applied to decipher the spectral signals collected by orbiting
detectors employed in the study of glaciers and frozen lakes. We present the re-
sults of simulations of the reflectivity of glaciers varying the age of the layer of
snow or ice, its thickness, the presence or not other underlying layers, the degree
of dust included in the snow.
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Chapter 1

Synthetic acceleration for neutron
transport in structured geometries

A nuclear reactor is a device conceived to produce and sustain a controlled fis-
sion chain reaction. In the reactor core, neutrons undergo fission, generating new
neutrons, gamma rays, and a large amount of thermal energy. The latter is used
in power plant to produce electricity. Accurate knowledge of neutron popula-
tion inside the reactor core is of paramount importance to efficiently control the
chain reaction. The neutron population can be represented by the angular flux
ψ(r, E, Ω, t), that depends upon the position r, the flight direction Ω, the kinetic
energy E, and time t. The angular flux is determined by solving the neutron
transport equation, that is the balance of neutrons in the phase space.

The study of a nuclear reactor core encounters many delicate aspects,

• the precision of the results. The critically state of a nuclear reactor, which
corresponds to the condition in which the neutron population and thus the
power generated are constants, is a very sensitive equilibrium that requires
a precise determination of the principal quantities (e.g. temperature, power
distribution, etc.). Typically the acceptable errors should not exceed few
percentage (≈ 3÷ 5%).

• the representation of the geometry. A nuclear reactor core is composed by a reg-
ular ensemble of heterogeneous fuel assemblies. The correct representation
of the fuel pins and assemblies is necessary to achieve accurate results. In
particular, the approximation of curved surface is particularly delicate, and
source of errors in the estimation of the angular flux.

• the nuclear data. The physics of nuclear reactions that take place inside
the core are presented through interaction cross sections. The international
databases of nuclear data, such as ENDF/B or JEFF, are provided for a very

9
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Figure 1.1 Discretization of a BWR assembly.

fine energy mesh, thus requiring a process of interpolation or condensation
that can introduce further errors.

The geometrical and material heterogeneity of a nuclear reactor core results
in a strong variation of the angular flux. At the same time, the energy interval
to be taken into account is very large: from few hundredths of eV (thermal neu-
trons) to several MeV (fast neutron resulting from fission). For these reasons a
discretization of the transport equation for the whole reactor is unfeasible, and
the determination of the neutron population is achieved through a two-step pro-
cedure. At first, the neutron transport equation is solved as precisely as possible
over a reduced geometry, e.g. a fuel assembly (see Figure 1.1). This is also called
lattice calculation, since an infinite repetition of the same geometric pattern is taken
into account in solving the transport equation. This computation is performed
with a very fine discretization of the energy variable, in order to compile a few
macrogroup parametrized library of homogenized constants. Then, the second
step consists of a full core calculation. It is generally based on the diffusion the-
ory, that is a simplification of the full transport theory. In addition, the core is
represented in a simplified geometry making use of the few group interaction
cross sections calculated in the first phase. Finally, a reconstruction technique is
applied to accurately determine the angular flux in each position.

The material properties of a nuclear reactor, represented by the macroscopic
cross sections (as we discuss below), change during its operation life. In fact, nu-
clear reactions produce transmutation of nuclei composing the core, thus modify-
ing the isotopic concentrations inside the fuel. In particular, the amount of fissile
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and fissionable material decrease, and an increased amount of fission products
are generated. Nevertheless, experimental evidence has shown that significant
changes in material properties occur on a time scale much greater than the inter-
val between two successive neutron collisions. Thus criticality calculations can
be done assuming a constant material composition using the two-step procedure.
Temporal variation of materials important for reactor fuel cycle analysis is then
studied coupling a multitude of core calculations with isotopic depletion calcu-
lations, that are dependent upon the angular flux. This is a quasi-static process
that removes the non-linearity coming from the dependence on the time of cross
sections. In addition, we underline that we assume the local thermodynamic equi-
librium, since the spatial range of variation of the temperature inside the core is
sensibly larger than the neutron mean free path.

The diffusion theory normally employed in the second step just mentioned
introduces strong approximations. In fact, it is derived from a truncation of the
Taylor’s flux expansion series at first terms, neglecting upper derivatives. As a
consequence, pronounced variations of the flux due to the extreme heterogeneity
commonly found in a nuclear reactor core cannot be completely represented. For
example, this is the case of fuel assemblies containing strong neutron absorbers
for the water cooled and moderated thermal reactors, or of interface core-reflector
for fast reactors. The industrial need of forecast accurately power distribution at
nominal as well as accidental conditions demands improved numerical methods
for reactor core calculations. In this framework, transport theory offer a mathe-
matical tool capable to describe the angular flux in a more precise way. Given the
increase computer power, new numerical methods capable of solving the neutron
transport equation for large optical regions have been conceived in the last years
to perform core computation without the diffusion approximation.

Spatial and angular discretization are need to numerically solve the neutron
transport equation. Regarding the former, various possibilities are possible, e.g. fi-
nite differences, nodal methods, finite elements, method of characteristics (MOC)
(Sanchez and McCormick, 1982). The latter has become a standard for 2D assem-
bly or assembly motifs and is currently applied also for 2D whole-core transport
calculations (Sanchez, 2012b). Its success is due to the high accuracy of its solu-
tions, that are guaranteed thanks to the fact that the neutron balance equation
is solved together with an additional transmission equation, providing a more
precise determination of the interface condition among at the boundaries of the
spatial mesh. In fact, numerical methods such as diamond differences and low-
order finite elements may not give enough accuracy for optically large regions.

The code IDT (Integro-Differential Transport) of the platform APOLLO (Sanchez,
Zmijarevic, et al., 2010) developed by the CEA center of Saclay implements the
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Figure 1.2 Schematic illustration of an heterogeneous cell: water (blue), cladding (black),
fuel (orange).

method of characteristics for structured 2D and 3D Cartesian geometries (Method
of Short Characteristics, (MSC)). It has been conceived as a tool to apply the trans-
port theory to assembly and core analysis. The method of short characteristics
has been proposed in the early 80’s for the solution of transport equation for
x− y regular geometries. It is based on the integral formulation of the transport
equation, that is used to represent exactly the propagation throughout Cartesian
cells. In each cell, the angular flux and the sources are expanded on polynomial
base functions.

The method of short characteristics in IDT has been originally conceived to
determine the angular flux into a reactor core considering homogenized regions
(Zmijarevic, 1998). Despite its fast solution and high accuracy, the homogeneous
rectangular mesh is inefficient for approximating curved material interfaces such
as pin cells, and a pre-homogenization technique is needed to deal with cells
containing fuel pins. Recently the MSC has been extended to heterogeneous
Cartesian cells (HCC) (Masiello, 2004; Masiello, Sanchez, et al., 2009). The het-
erogeneous cell is composed by an external rectangular surface containing an
arbitrary number of concentric and homogeneous rings, thus representing the
typical fuel-cladding-moderator geometry found in fuel pins (see Figure 1.2). The
introduction of heterogeneous cells into IDT permits the analysis of PWR assem-
blies and bundles in the exact geometry, and can be seen as an effort to enable the
accurate and detailed study of a whole core in transport theory.

Numerical codes conceived to solve transport theory are based on a given an-
gular representation. IDT implements the discrete ordinates method (SN), where
an ensemble of discrete directions and associated weights are used to reconstruct
the integral over the angular variable. The resulting large system of algebraic
equations is solved by source iteration. This is the classical method used with
the discrete ordinates codes. While it is proven to enable accurate solutions, its
convergence can be very slow, especially in weakly-absorbing media. This is due
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to its intrinsic solution strategy, where each iteration n corresponds to the deter-
mination of the angular flux for neutron having collided n times. Therefore a
large number of iterations is needed when the ratio between the scattering and
the total cross section is close to 1. Also, slow convergence can result in false con-
vergence, i.e. the interruption of the iterative scheme due to the apparent reached
convergence due the slow variation of the angular flux determined in consequent
iterations. Acceleration techniques are employed to lighten the computational ef-
fort in terms of CPU time and to avoid the effect of false convergence. In this way,
simulations becomes less expensive and it is possible to investigate larger systems
in a more detailed way.

In this chapter we focus our attention to the transport synthetic acceleration
(TSA). It is a class of acceleration schemes where a low order transport operator
is used to speed-up the convergence of the full transport operator. Typically, a
coarser angular representation is considered in the TSA. In particular, the Bound-
ary Projection Acceleration implements the low order transport operator at the
boundaries of the geometrical mesh. In the following we present the mathemat-
ical and numerical implementation of the Boundary Projection Acceleration for
the solution of the neutron transport equation for heterogeneous cells with the
neutronic code IDT. After a review of the basic quantities and equations of the
transport theory for neutrons, we concentrate on the solution strategy of IDT for
HCC, specifying how the BPA has been incorporated for generic 2D and 3D cal-
culations.

The C5G7 benchmark provided by the IAEA is used to test the accuracy and
the effectiveness of the acceleration, for 2D and 3D geometries. We will see how
the BPA effectively decrease the number of transport iteration, thus reducing the
overhall computation burden. Finally, we present the comparison of the BPA with
a non-linear acceleration based on coarse-mesh finite differences (CMFD). 1

1.1 Neutrons transport

1.1.1 Basic quantities

In transport theory, a neutron is represented as a point particle, whose state is fully
represented by its position r and velocity v = vΩ, where v is the neutron scalar
speed and Ω is a unit vector in its flight direction. Since neutrons are electrically
neutral, their direction of motion is not influenced by external fields, and thus
the paths between two successive collisions are considered straight. Neutron has

1This work has been realized in cooperation with CEA/DEN/DANS/DM2S/SERMA/LTSD,
center of Saclay, France.
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spin and magnetic moment that can lead to polarization, but this effect is small
in most practical situations and can be neglected (Bell and Glasstone, 1970).

With these assumptions, we can now recall the definitions of the quantities
involved the description of the neutron population inside a nuclear reactor.

The seven independent variables needed to precisely determine the state of a
particle are:

• r: position, 3 components;

• Ω: flight direction, 2 angles in the spherical coordinate system;

• E: kinetic energy, or alternatively absolute value of the velocity v;

• t: time.

The volume element in the six dimension neutron phase space is thus:

drdΩdE. (1.1)

To describe a population of neutrons we introduce the neutron density distribu-
tion:

n(r, Ω, E, t), (1.2)

where
n(r, Ω, E, t)drdΩdE (1.3)

represents the number of neutrons in the phase space drdΩdE at time t.
The product of v and the neutron angular density is called neutron angular flux:

ψ(r, Ω, E, t) = vn(r, Ω, E, t). (1.4)

It corresponds to the total track length per unit time of all neutron in the phase
space per unit of phase space volume. As we will see below, it is the unknown
quantity of the neutron balance expressed through the linear transport equation.

The integral of the angular flux over all directions is the scalar flux:

φ(r, E, t) =
∫

4π
dΩ′ ψ(r, Ω, E, t). (1.5)

It is the quantity determined when a nuclear system is studied by means of diffu-
sion theory.

We define the angular current as:

J(r, Ω, E, t) = vΩn(r, Ω, E, t) = Ωψ(r, Ω, E, t), (1.6)
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such that n̂ · J(r, Ω, E, t)dΩdE is the net rate of neutrons passing through a unit
area having normal n̂.

The production of neutrons per unit time and per unit phase space volume
that is independent on the neutron density of the system is called external source,
or simply source:

qext(r, Ω, E, t). (1.7)

These neutrons arise from events not connected to neutron collisions, e.g. (α, n)
reactions, spontaneous fissions, cosmic rays, etc.

The probability related to a collision event is expressed through the macroscopic
cross section:

Σx,j(r, E, t), (1.8)

that is the fractional probability of neutron interaction x with a nuclide j per unit
path length traveled. This partial cross section depends on the particle emerging
from a collision. In particular,

• x = s represents a scattering event, that can be further separated in elastic
and inelastic scattering;

• x = c represents a radiative capture, i.e. the emission of gamma rays following
a disappearance of a neutron;

• x = f represents a fission, that is the emission of new neutrons from the split
of a heavy isotope;

• x = a is the absorption, i.e. the sum of capture and fission;

• x = t, where t is often omitted, is the sum of all preceding collision events.

As we have in general a multitude of nuclei, the overall cross section of the mixture
is calculated summing the partial contribution of each isotope:

Σx(r, E, t) =
J

∑
j=1

Σx,j(r, E, t). (1.9)

The reciprocal of the total Σ is the neutron mean free path, or mfp. The variation of
Σx,j with time may arise from fuel depletion or burnup, but it is so slow that may
be easily separable from the neutron transport problem. In the following, it will
be assumed constant in time. In addition, the macroscopic cross section is related
to the microscopic cross section σx,j(E) according to the relation:

Σx,j(r, E) = Nj(r)σx,j(E), (1.10)
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where Nj(r) is the nuclear atomic density of the nuclide j computed as

N =
ρA0

M
, (1.11)

with ρ the density of the material, A0 the Avogadro number, and M the atomic
mass of the nuclide. The value of the cross section is strongly dependent on
the energy of the impinging neutron, and for this reason we need to accurately
determine the neutron population also with respect to the energy variable.

Since the macroscopic cross section is the probability that a neutron will un-
dergo a particular reaction per unit distance, the product vΣx is the corresponding
probability per unit time. Having the angular density of neutrons n(r, Ω, E, t), the
interaction rate or reaction rate is:

vΣx(r, E)n(r, Ω, E, t) = Σx(r, E)ψ(r, Ω, E, t), (1.12)

that gives the number of interaction x at position r per unit phase space volume
per unit time. The total number of interactions (or collisions) is obtained by using
the total macroscopic cross section Σ(r, E). Since each fission releases an amount
of energy, we can determinate the distribution of thermal power with the reactor
knowing the fission reaction rate.

In neutron transport theory, neutrons emitted by fission are usually considered
independent on velocity and direction of the neutron from which they originate.
On the contrary, to properly describe a scattering event it is required to determine
the energy and flight direction of neutrons emerging after the collision. This
relation is express through the law of deflection or differential scattering kernel:

P(Ω′ → Ω, E′ → E)dΩdE, (1.13)

that represents the probability of scattering from direction Ω′ and energy E to the
direction interval dΩ about Ω with energy in dE about E. The neutrons emerging
from a scattering event, either elastic or inelastic, emerges from each neutron
colliding with a nucleus. The transfer probabilities may consequently normalized
to 1: ∫ ∞

0
dE

∫
4π

dΩ′ P(Ω′ → Ω, E′ → E) = 1 (1.14)

The dependence on temperature of the differential scattering kernel will be con-
sidered extensively in Chapter 2.

The differential cross section for a generic nuclear interaction x may be expressed
as the product of the scattering cross section and the scattering kernel:

Σs(r, Ω′ → Ω, E′ → E) = Σs(r, E′)P(Ω′ → Ω, E′ → E). (1.15)
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Figure 1.3 Deviation angle for an elastic scattering.

Even though the scattering law is independent of position, the scattering cross
section includes the atomic density, and subsequently the differential cross section
can provide a spatial variation.

In the following, we assume an isotropic medium, neglecting anisotropy that
can arise from particular crystal configurations. Under this approximation, the
interaction cross sections are independent on the angular direction Ω of the hit-
ting neutrons. Also, the differential transfer cross section is supposed rotationally
invariant: it does not depend on the directions of Ω′ and Ω before and after the
collisions, but only on the deviation angle Θ in the laboratory system, or its cosine
µ0 = Ω′ ·Ω (see Figure 1.3):

Σs(r, Ω′ → Ω, E′ → E) = Σs(r, Ω′ ·Ω, E′ → E) (1.16)

The energy distribution of fission neutrons is represented with the fission spec-
trum:

χ(E), (1.17)

where χ(E)dE gives the probability of a fission neutron appearing within dE about
E. We note that the neutron fission spectrum is assumed to be independent on
the energy of the incident neutron. The function χ(E) is normalized to 1:∫ ∞

0
dE χ(E) = 1. (1.18)

Neutrons emerging from the fission are emitted promptly during the reaction, or
after a delay. Since we intend to analyze the steady-state neutron balance, all
delayed neutrons are assumed to be included with prompt neutrons. Further-
more, it is a good approximation to consider all the fission neutrons to be emitted
isotropically in the laboratory system: this will lead to a 4π normalization factor
for the fission contribution in the neutron balance.

Last but not least, the average number of neutrons produced per fission is
denoted with:

ν(E). (1.19)
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Its energy dependence can be directly included into the fission cross section, i.e.:

ν(E)Σ f (r, E) = νΣ f (r, E). (1.20)

1.1.2 Integro-differential neutron balance

Having defined the quantities normally used in neutron transport theory, we shall
now proceed in the derivation of the neutron balance in the phase space, writing
the Boltzmann neutron transport equation in integro-differential form.

As stated in the introduction, in reaction physics the neutron-neutron interac-
tions can be safely neglected due to the very low “neutron gas” density compared
to the atomic density of the surrounding medium. Also, the average spontaneous
disintegration time of a neutron is many order of magnitude larger than the typi-
cal life of a neutron inside a reactor (≈ 10−5 ÷ 10−7s), and thus for our purposes
neutrons can be considered as stable particles.

The variation of the neutron population into the unit phase space volume
between t and t + d is denoted by:

[n(r, Ω, E, t + dt)− n(r, Ω, E, t)] drdΩdE =

∂

∂t
n(r, Ω, E, t)drdΩdE =

1
v

∂

∂t
ψ(r, Ω, E, t)drdΩdE. (1.21)

It is controlled by four physical phenomena:

• particle streaming;

• losses by collision;

• arrivals due to scattering;

• sources (fission and external).

The neutron balance is then obtained by equaling the variation of the population
(1.21) and the sum all these contributions.

Particle streaming is due to neutrons escaping the phase space unit volume,
and can be described using the concept of angular current. Denoting with dS an
element of the surface of dr having normal n̂, the net number of neutrons with
direction Ω about dΩ and energy E within dE crossing dS during dt is:

J(r, Ω, Et) · n̂ dSdΩdEdt = Ωψ(r, Ω, E, t) · n̂ dSdΩdEdt (1.22)

Integrating over the contour surface ∂V enclosing a volume V, we find the number
of neutrons with direction Ω about dΩ and energy E within dE exiting dr during
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d. Making use of the Gauss’s divergence theorem we have:

∮
∂V

dS n̂ · J(r, Ω, E, t) dΩdEdt =
∫

V
dr ∇ ·Ωψ(r, Ω, E, t) dΩdEdt. (1.23)

Remembering that (∇ ·Ω) = 0 and using the vectorial identity ∇ · ( f g) = g ·
∇ f + f∇ · g, we can write:

∇ ·Ωψ(r, Ω, E, t) = Ω · ∇ψ(r, Ω, E, t). (1.24)

Losses by collisions are described using the concept of reaction rate. The neu-
trons in the phase space element drdΩdE can disappear due to a collision, either
absorption or scattering into another energy or direction. The probability per unit
length of this phenomenon is express using the total macroscopic cross section.
Therefore, the number of neutron that disappear in the unit phase space volume
during dt is:

Σ(r, Ω, E, t)ψ(r, Ω, E, t) drdΩdEdt. (1.25)

If a collision is not an absorption, the impinging neutron is re-emitted with
a different velocity (represented though is direction vector and its corresponding
kinetic energy). This event is represented using the differential scattering cross
section. Thus, the number of neutrons transferred from direction Ω′ and energy
E′ to direction Ω and energy E in the unit phase space volume during d is:

Σx(r, Ω′ ·Ω, E′ → E)ψ(r, Ω′, E′, t) drdΩdEdt. (1.26)

The arrivals due to scattering are therefore computed integrating over all the starting
directions Ω′ and energies E′:

∫ ∞

0
dE′

∫
4π

dΩ′ Σx(r, Ω′ ·Ω, E′ → E)ψ(r, Ω′, E′, t) drdΩdEdt. (1.27)

Finally, the source term is composed by the sum of two contributions: fissions
and external sources. The former is expressed using the fission spectrum and the
average number of neutron produced per fission. Considering as usual the phase
space unit volume in the time interval dt, the arrival of neutrons from fission in
computed integrating over all the incoming directions and energies of the imping-
ing neutron:

χ(E)
4π

∫ ∞

0
dE′

∫
4π

dΩ′ ν(E′)Σ f (r, E′, t)ψ(r, Ω′, E′, t) drdΩdEdt. (1.28)
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The total source term in the phase space unit volume during dt is then given by:

[
qext(r, Ω, E, t)+

χ(E)
4π

∫ ∞

0
dE′

∫
4π

dΩ′ ν(E′)Σ f (r, E′, t)ψ(r, Ω′, E′, t)
]

drdΩdEdt. (1.29)

Upon inserting all the contributions (1.22), (1.25), (1.27), and (1.29) of the bal-
ance (1.21), the result is (Bell and Glasstone, 1970):

[
1
v

∂

∂t
+ Ω · ∇+ Σ(r, E, t)

]
ψ(r, Ω, E, t) =∫ ∞

0
dE′

∫
4π

dΩ′ Σs(r, Ω′ ·Ω, E′ → E, t)ψ(r, Ω′, E′, t)+

χ(E)
4π

∫ ∞

0
dE′

∫
4π

dΩ′ ν(E′)Σ f (r, E′)ψ(r, Ω′, E′, t) + qext(r, Ω, E, t). (1.30)

It is an integro-differential equation of the first order, integral with respect to
Ω and E, and differential with respect to r and t. The right hand side of (1.30)
represents the arrivals in the phase space unit volume due to scattering, fission,
and external source. In the following we may indicate it simply with Q(r, Ω, E, t).

1.1.3 Interface and boundary conditions

Inside a nuclear reactor many materials are present, and the geometrical configu-
ration of the core can be very complex. While the cross sections can be assumed
continuous functions inside each material, at the interfaces between different spa-
tial regions they are discontinuous. At such interfaces it is necessary to deal with
the neutron transport equation considering these discontinuities. However, the
neutron angular flux itself described by (1.30) does not change merely crossing a
physical interfaces. As a consequence the neutron transport equation should be
applied at both sides, applying the condition of continuity of the angular flux.

Different considerations apply for the external boundaries of the system to be
analyzed. In general, the region of interest is supposed to have a convex exter-
nal surface, i.e. each straight segment connecting two points of the domain lies
entirely within the region. Under this condition, a neutron leaving this spatial
domain cannot intersect its surface again. Therefore, for the closure of the math-
ematical problem of (1.30) we need know the distribution of the angular flux in
the boundary ∂V that enters into the spatial domain taken into account, namely:

ψ(rs, Ω, E, t) for rs ∈ ∂V n̂ ·Ω < 0. (1.31)
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At first, we recall the albedo boundary condition, that relates the outgoing angu-
lar flux with the incoming one:

ψ(rs, Ω, E, t) = βψ(rs, Ω′, E, t). (1.32)

Vacuum condition is achieved with β = 0, and total reflection with β = 1. Inter-
mediate values of β represent partial reflection.

Then, we mention the boundary conditions that exploit symmetry of the ge-
ometry:

• specular reflection:

ψ(rs, Ω, E, t) = ψ(rs, Ω− 2n̂(Ω · n̂), E, t) for n̂ ·Ω < 0; (1.33)

• translation:
ψ(rs + ∆r, Ω, E, t) = ψ(rs, Ω, E, t); (1.34)

• rotation:
ψ(rs, Ω + ∆Ω, E, t) = ψ(rs, Ω, E, t). (1.35)

They are very useful to reduce the computational domain, in order to study the
reactor or the fuel assembly considering a reduced domain (e.g. 1/4 of a reactor).

1.1.4 Eigenvalue problem

From physical consideration, a nuclear system can be regarded as being either
subcritical, critical, or supercritical, based on the behavior of the neutron popula-
tion as a function of time. Given an initial non-zero neutron density, the system
is said to be subcritical if the neutron population decreases over time, critical if it
remains constant, and supercritical if it diverges. A critical system is therefore re-
acted when a reactor is capable of maintaining a steady neutron population, and
consequently a steady energy production, in absence of source.

Since we are interested in steady state analysis of a nuclear reactor, in the
following we eliminate the temporal variation in (1.30). However, the material
composition of a reactor changes continuously over time, and thus a perfect criti-
cal state cannot be reached. For example, the steady state inside a power reactor
is maintained by adjusting the control bar level, i.e. controlling the amount of
absorptions.

From the mathematical point of view, the balance of (1.30) needs to be adjusted
where the time derivative and the external sources are eliminated. This can be
done by rescaling the various contributions. A typically choice is to divide the
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neutron generation from fission by the effective multiplication factor k, that measures
the ratio between two successive neutron populations:

[Ω · ∇+ Σ(r, E)]ψ(r, Ω, E) =
∫ ∞

0
dE′

∫
4π

dΩ′ Σs(r, Ω′ ·Ω, E′ → E)ψ(r, Ω′, E′)

+
χ(E)
4π

∫ ∞

0
dE′

∫
4π

dΩ′ ν(E′)
k

Σ f (r, E′)ψ(r, Ω′, E′) (1.36)

The reactor is therefore said to be subcritical, critical, or supercritical if k < 1,
k = 1, and k > 1, respectively.

Equation (1.36) depicts an eigenvalue problem. The trivial solution ψ(r, Ω, E) =
0 obviously are not of our interest. We may note that given ψ(r, Ω, E) a non-
trivial solution Cψ(r, Ω, E) is always a solution of the eigenvalue problem. This
means that the normalization of the angular flux is arbitrary. For engineering
applications, the constant C can be found from the value of the thermal power of
the reactor, by multiplying the angular flux per the amount of energy released in
each fission, and integrating on the entire core.

1.1.5 Integral formulation

The transport of neutrons in the phase space is to be regarded as a both local and
extended phenomenon. In fact, the formulation of the neutron transport equation
presented so far involves derivatives in space and time and integrals in energy
and angle. In a collision, the position and time associated with a neutron change
in a continuous manner, while the energy and the angle present discontinuities.
So the mathematical form of the transport equation must contains integral over
energy and angle: an equivalent differential-only form does not exist.

However, by representing the inversion of the transport operator along the
flight direction of neutrons Ω, it is possible to reformulate the transport problem
into an integral-only form. This procedure is know as the method of characteristics.
A characteristic is a straight line with direction Ω corresponding to a particle
trajectory. We intend to study the transport of neutron along these lines.

Let’s consider a characteristic with direction Ω. The reference position along
this line is called rs, that is the intersection with the entering surface of ∂V. The
position of each point lying over Ω can be expressed with:

r = rs + lΩ, (1.37)

where l is the length of the segment traveled over the characteristic. This segment
can be measured in mean free paths, leading to the definition of optical path:

τ(l, E) =
∫ l

0
dl′ Σ(r + lΩ, E). (1.38)
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At the same time, the generic time t can be referred to the neutron speed v as

t = t0 +
l
v

, (1.39)

where t0 is the instant on which the neutron considered lies on the reference point
rs.

The first two terms at the left hand side of (1.30) can be expressed making use
of the concept of total derivative, expressing the ∇ ·Ω in Cartesian coordinates:

d
dl

=
1
v

∂

∂t
+ Ωx

∂

∂x
+ Ωy

∂

∂y
+ Ωz

∂

∂z
=

dt
dl

∂

∂t
+

dx
dl

∂

∂x
+

dy
dl

∂

∂y
+

dz
dl

∂

∂z
. (1.40)

With this definition it is possible to rewrite the neutron transport equation as:

d
dl

ψ

(
rs + lΩ, Ω, E, t0 +

l
v

)
+Σ

(
rs + lΩ, E, t0 +

l
v

)
ψ

(
rs + lΩ, Ω, E, t0 +

l
v

)
=

Q
(

rs + lΩ, Ω, E, t0 +
l
v

)
. (1.41)

The latter is a first order linear differential equation, that can be solved with
the usual methods of calculus with the angular flux at (rs, t0) as boundary condi-
tion, leading to:

ψ(r, Ω, E, t) = ψ(rs, Ω, E, t0)e−τ(l,E)+∫ l

0
ds e−τ(s,E)Q(rs + sΩ, Ω, E, t0 + s/v) (1.42)

It is worth to note that angular flux in a generic position r is dependent on the
source, the optical path, and the entering contribution. This will be the basis of
the numerical implementation of method of characteristics, both for the balance
and the transmission equation, as we will see in the next sections.

In the integro-differential formulation of the transport problem, the contribu-
tion to the angular flux of the particles emitted is local (that is to say at the same
point r) and the coupling with the other points is obtained though the operator
Ω · ∇. On the contrary, in the integral form the spatial coupling is achieved via
the source term Q. This suggests a possible numerical solution strategy. If the
explicit form of Q(rs + sΩ, Ω, E, t0 + s/v) is introduced in (1.42), the result may
be written as:

ψ = Kψ + Q′, (1.43)
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where K is the integral operator, and Q′ a known function. The solution of (1.43)
can be sought by iteration:

ψ0 = Q′,

ψ1 = Kψ0,
...

ψn+1 = Kψn.

Physically ψ0 is the angular flux of uncollided neutrons emerging after the in-
troduction of independent source Q′. At the same time, ψ1 is the angular flux
of first-collision neutrons. Similarly, ψi is the angular flux of neutrons that have
made n collisions. The solution of (1.43) can be found if this series converges. This
procedure, called source iteration, will be the approach used to solve the neutron
transport equation within IDT.

1.2 Discretization of transport equation

Numerical solution of the transport equation requires the discretization of the
variables describing the position of the neutron in the phase space. In this section
we present the approach usually employed for the variables E, Ω, and r. More
specifically, we will deal with the multigroup approximation, the method of dis-
crete ordinates, and the spatial representation of the angular flux.

1.2.1 Energy variable

The energy discretization is achieved via the multigroup approximation, i.e. by
partitioning the total interval of interest into G energy groups defined so that:

∆Eg = [Eg, Eg−1] for g = 1, . . . , G, (1.44)

where g = 1 corresponds to the highest energy group, and g = G to the lowest.
In this way the cross sections and the angular flux are no more continuous

functions in energy, but are constants in the energy domain inside each group.
The group averaged angular and scalar fluxes are obtained by integration, namely:

ψg(r, Ω) =
∫ Eg−1

Eg

dE ψ(r, Ω, E), (1.45)

φg(r) =
∫ Eg−1

Eg

dE φ(r, E) (1.46)
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The formal definition for the group-averaged cross section is found by preserving
the reaction rate within each group (Hébert, 2009), say:

Σg(r) =

∫
∆Eg

dE Σ(r, E)φ(r, E).

φg(r)
. (1.47)

However, we notice that to calculate the group parameters we need the angular
flux, that is the solution of the problem. This source of non-linearity can be
avoided in the preparation of the library of group cross section by assuming a
spatial independent function φ(E) that works as an integration weight. Typically,
is comes from an infinite-medium approximation representing of the spectrum of
the core or of a spatial subdomain of interest (Sanchez, 2012b).

The multigroup approximation transforms the neutron transport equation into
a system of G equations, where each energy group describes a one-speed balance.
The coupling between these groups is obtained through the scattering integral
and the fission term, according to the physical collision process. Three macro
regions are defined: fast (10 MeV÷300 keV), epithermal (300 keV÷0.625 eV), and
thermal (0.625 eV÷0.001 eV). While in the fast and epithermal regions scattering
mainly decreases the energy of the neutron (down-scattering), in the thermal re-
gion a neutron can acquire energy from a collision (up-scattering). In the formers
the solution is obtained by a cascade, i.e. by proceeding from the highest group
to the slower ones. Instead, In the latters an iterative solution is needed. Finally,
the multigroup solution is found by iteration on the fission source.

In each energy group we may write the transport balance as:

Lgψg(r, Ω) = Hg,gψg(r, Ω) + ∑
g′ 6=g

Hg′,gψg′(r, Ω) + (Fψ)g(r) + qg
ext(r, Ω) (1.48)

where:

• Lg is the one-group transport operator

Lg = Ω · ∇+ Σg (1.49)

• Hg,gψg(r, Ω) is the scattering events inside the energy group considered

Hg,gψg(r, Ω) =
∫

4π
dΩ′ Σg→g

s (r, Ω′ ·Ω)ψg(r, Ω′) (1.50)

• Hg′,gψg′(r, Ω) represents the scattering contribution arriving from other groups

Hg′,gψg(r, Ω) =
∫

4π
dΩ′ Σg′→g

s (r, Ω′ ·Ω)ψg′(r, Ω′) (1.51)
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• (Fψ)g(r) is the contribution of fission in group g

(Fψ)g(r) = χg(r)
G

∑
g′=1

∫
4π

dΩ νΣg′

f (r)ψ
g′(r, Ω) (1.52)

• qg
ext(r, Ω) the external source.

1.2.2 Angular variable

The numerical approximation of the transport equation requires an angular dis-
cretization. There are two numerical techniques employed: spherical harmonics
(PN) and discrete ordinates (SN).

The former is a projection method, in which the angular flux is expanded in se-
ries assuming as basis functions the spherical harmonics spanning on a subspace
invariant by orthogonal transformations,

ψ(Ω) = ∑
h

Ah(Ω)ψh, (1.53)

ψh =
∫

4π
dΩ Ah(Ω)ψ(Ω), (1.54)

where Ah(Ω) represent the real spherical harmonics of order h (the indices ` and
m have been collapsed into a single index h), and ψh is the flux moment of order
h. The solution is achieved by truncating the sum at the order N, and solving the
system of resulting equations. The coupling among the moments occurs though
the streaming term, and the scattering integral is diagonalized. Although the
anisotropy of the scattering is accurately represented, this method results is bigger
and more cumbersome numerical implementations.

In reactor physics the more popular way to represent the angular dependence
of the angular flux is through the discrete ordinates or SN method. It originates from
the seminal work of Chandrasekhar (1960) and it has been proposed for neutron
transport applications by Carlson and Bell (1958). Basically, it is a collocation
method for the angular variable, where a quadrature formula

SN = {wd, Ωd}d=1,D(N) (1.55)

is introduced to represent the scattering integral. The number of angles is a func-
tion of N, an even integer. In this way we obtain a system of equations for every
node in the angular representation. The coupling of these equations occurs in the
scattering integral, and the streaming term is diagonalized. Under some circum-
stances, a SN method can be constructed in a way to satisfy also a related set of
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PN equations (Sanchez, 2012a). IDT is based on this technique, and therefore in
the following we assume always this angular discretization.

The SN method is plagued by a number of problems, such as numerical dis-
persion and, more importantly the ray effect. The latter results in nonphysical
behavior of the numerical solution, and it particularly strong in the presence of lo-
calized sources and regions dominated by strong absorption properties (Lathrop,
1968). However, discrete ordinates methods are very appealing, since they lead
in a natural way to stable iterative solutions based on source iterations (Sanchez,
2012b). Generally, ray effect anomalies are mitigated by increasing the angular
representation and by selecting an appropriate quadrature formula, able to cor-
rectly represent the angular flux in the domain of interest and given the actual
anisotropy of scattering to be taken into account.

We shall now proceed in a brief description of the SN method. Since we are
considering isotropic media, the differential scattering cross section depends only
on the cosine of deviation angle µ0 = Ω′ ·Ω, that it bounded between −1 and 1.
For a specific energy group2, it can be represented with a Legendre polynomial
expansion

Σs(r, µ0) =
1

4π

L

∑
`=0

(2`+ 1)Σs,`(r)P`(µ0), (1.56)

where

Σs,`(r) = 2π
∫ +1

−1
dµ0 Σs(r, µ0)P`(µ0), (1.57)

and L is the anisotropy order of the scattering (e.g. L = 0 for a isotropic scat-
tering, L = 1 for a linearly anisotropic scattering, etc.). At the same time, the
representation of angular flux in spherical harmonics is

ψ(r, Ω) =
L

∑
`=0

2`+ 1
4π

`

∑
m=−`

φm
` (r)Am

` (Ω), (1.58)

where ψm
` (r) is the moment of the angular flux with respect to the spherical har-

monic Am
` (Ω), namely

φm
` (r) =

∫
4π

dΩψ(r, Ω)Am
` (Ω). (1.59)

Making use of the addition theorem of the spherical harmonics

P`(Ω′ ·Ω) =
`

∑
m=−`

Am
` (Ω

′)Am
` (Ω), (1.60)

2the group index is here suppressed for the sake of simplicity and clarity
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the integral of the source of scattering is transformed to

Qscatt(r, Ω) =
L

∑
`=0

Σs,`(r)
`

∑
m=−`

Am
` (Ω)

∫
4π

dΩ′ψ(r, Ω′)Am
` (Ω

′) (1.61)

and, considering (1.59), we may write:

Qscatt(r, Ω) =
L

∑
`=0

Σs,`(r)
`

∑
m=−`

Am
` (Ω)φm

` (r). (1.62)

The SN methodology is applied by substituting (1.59) with a numerical inte-
gration based on (1.55):

φm
` (r) '

D(N)

∑
d=1

wd Am
` (Ωd)ψd(r) (1.63)

where ψd(r) = ψ(r, Ωd). Upon inserting this formulation into (1.36) and consider-
ing a single energy group, we obtain a system of equations valid for each diretion
Ωd of the quadrature formula (1.55):

[Ωd · ∇+ Σ(r)]ψ(r, Ωd) =
L

∑
`=0

Σs,`(r)
`

∑
m=−`

Am
` (Ωd)φ

m
` (r) + Qext(r, Ωd), (1.64)

where Qext(r, Ωd) are the sources external to the energy group considered (i.e.
scattering from other groups and fission). Numerical iteration using (1.64) and
(1.63) are at the basis of the SN methodology.

The quadrature formula of (1.55) have to be chosen carefully. Because the
angular flux can be formally expanded into spherical harmonics, the directions
and the weights should be determined to exactly integrate a maximum number
of spherical harmonics. A typical choice is the level symmetric quadrature, where
nodes are determined using planar and rotational symmetries between the axis,
and weights are determined on the basis of a exact quadrature of a given set of
spherical harmonics (Lewis and Miller, 1984). Another possibility are the product
quadratures. Often, a Gauss-Legendre quadrature is used for the cosine of the
polar angle and a Chebyshev uniform quadrature is used for the azimuthal angle.
While this product quadrature assures that all the weights are positive, it tends
to concentrate the nodes around the polar axis, wasting angular directions. Also,
Galerkin quadratures have been conceived to maximize the number of spherical
harmonics exactly integrated (Sanchez and Ragusa, 2011). In the following we as-
sume a generic angular quadrature, and in the section dedicated at the numerical
results we present the different behavior of the acceleration scheme varying the
quadrature formula.
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1.2.3 Spatial variable

There are many possible spatial discretization techniques. All the methods are
based on partitioning the computational domain into many smaller homogeneous
subdomains. The angular flux is then determined inside each discretized region.

We consider methods based on projection of the flux spatial dependence into
basis functions. In particular, we assume a local spatial development of angular
flux for each direction of the SN method. The numerical method we are interest
with, i.e. the method of short characteristics, requires a pair of equations for the
local resolution of the transport operator: the balance equation for the calculation
of the volume flux inside each cells, and the transmission equation to evaluate the
angular flux at the borders of the cells. The angular flux inside each region and
at the surfaces are therefore represented as:

ψ(r) =
Gα

∑
i=1

f i
α(r)ψ

i
α ∀r ∈ Vα, (1.65a)

ψ(r) =
Gs,α

∑
i=1

f i
s,α(r)ψ

i
s,α ∀r ∈ ∂Vα, (1.65b)

where Gα and Gs,α are the volume and surface maximum order to be represented,
α indicate the subdomain of the mesh discretization. Assuming an orthonormal
basis, the spatial moments are defined as:

ψi
α =

∫
Vα

dr f i
α(r)ψ(r), (1.66a)

ψi
s,α =

∫
∂Vα

dS f i
s,α(r)ψ(r), (1.66b)

The moments of (1.66) are the unknowns to be numerically found for each angular
direction Ωd.

1.3 Solution of the transport problem

Having set the mathematical framework of the neutron transport equation and
its discretization, we can now concentrate on the solution of the one-speed prob-
lem with source (coming from fission and up/down-scattering from other energy
groups). Afterwards, we will see how it is possible to couple a multitude of single
group calculations into a multigroup solution of the transport problem.

1.3.1 Method of short characteristics: IDT

In the last decades many numerical methods have been conceived to solve the
neutron transport equation. The solutions of the transport equations are based
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on three equivalent form of the basic equation: integro-differential, integral, and
surface-integral (Sanchez and McCormick, 1982). Most of the methods are based
on the first two formulations. The integro-differential equation describes a local
balance, and the resulting iteration matrices are sparse. On the other hand, the in-
tegral formulation results in a global balance of particle in each direction. Since its
coefficients are strongly coupled, the matrices describing the numerical discretiza-
tion are full. It is therefore possible to write specialize routines to evaluate exactly
the coefficients for a given geometrical description. In general, integral methods
require an bigger memory storage. While they are able to provide a more precise
representation, their application to large domains poses problem due to intense
processor and memory requirements.

The balance equation assures the conservation of the number of particles. The
integration of the Ω · ∇ operator of (1.64) (one-speed problem) results in a integral
on the surface of each spatial domain that corresponds to the neutron currents
at the interfaces. For this reason, the source at the interior of the domain and
the incoming angular flux are not sufficient to completely solve the transport
problem. In fact, it is necessary to evaluate also the flux exiting the region of
interest. This boundary condition is the mechanism that couple neighbor cell of
the mesh discretization. However, additional relations should be put in place to
provide this coupling. The choice of the approximation used to represent the
transmission of the flux through the cells defines the type of numerical method
used. Finite differences, nodal methods, and the method of characteristics are all
examples of techniques to describe the transmission of neutrons. The peculiarity
of the method of characteristics is that transmission equation is obtained via exact
analytic representation of the propagation through mesh cells using the integral
transport equation. In this way the strong gradients of the flux that can appear
in a nuclear reactor are well represented. In general the balance and transmission
equations for each energy group and each angular direction of the SN method
may be written as:

ψ = Iψ− + CQ, (1.67)

ψ+ = Tψ− + EQ, (1.68)

where ψ±(Ω) contains the approximation of the flux at the exiting (+) and enter-
ing (–) surfaces for the given angular direction, ψ(Ω) contains the approximation
of the flux at the interior of the mesh cell, and Q(Ω) contains the sources (scatter-
ing, fission) at the interior of the mesh cell. The transport properties of each cell
is described using a matrix response formulation, where:

• I(Ω) is the incoming matrix, that relates incoming fluxes on cell surfaces and
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the in-cell angular flux;

• C(Ω) is the collision matrix, that quantifies the contribution that sources
placed inside the cell have on the in-cell angular flux;

• T(Ω) is the transmission matrix, that specify how much flux entering from
one side of the cell arrive at the opposite boundary;

• E(Ω) is the escape matrix, that indicate the contribution of source within the
cell on the angular flux at the boundaries of the cell.

They contain the physical and geometrical properties of each cell. Each angle
of the quadrature formula employed requires the determination of this set of
response matrices, since along each trajectory Ω the material and the geometry
encountered by a neutron are different.

The method of short characteristics implemented in IDT is based on projection
of the balance and transmission equation on basis of polynomial functions. It is
conceive the transport equation on structured 1D, 2D, or 3D Cartesian meshes.
The Cartesian mesh enables a realization of dedicated routines for the calcula-
tion of the response matrices in an efficient way. Also, the regularity of mesh
enables a straightforward iteration scheme, that results in fast and efficient nu-
merical implementations. This methods is currently employed for the study of
large portions of the reactor core (e.g. assembly, 1/4 of a reactor) in transport
theory instead that in diffusion theory. Originally, each cell was represented as an
homogeneous mixtures, requiring a pre-homogenization phase (Zmijarevic, 1998).
Recently (Masiello, 2004), IDT has been extended to take into account directly
rectangular meshes including concentric rings (in 2D), or prismatic cells including
concentric cylinders (in 3D). This extensions, called HCC (Heterogeneous Carte-
sian Cell), enables the exact representation of the typical structure of fuel pin. In
this way, the additional homogenization phase is no longer required and a more
precise solution of the transport problem can be achieved.

The method of short characteristics requires a surface expansion of the angu-
lar flux. While in principle it could be introduced for each internal homogeneous
region of the HCC, it would degrade the numerical precision of the method while
increasing the computational cost. Instead, all the internal homogeneous regions
are treated as a whole, like in collision probabilities method with the difference
that the propagation of the neutrons is considered for each angular direction
(Masiello, Sanchez, et al., 2009). Therefore, the only surface representation and
projection are done on the sides of the mesh cell, preserving the algorithm struc-
ture and enabling a straightforward coupling of heterogeneous and homogeneous
cells. In fact, in reactor applications we need to represent both the fuel pins and
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the moderator/reflector zone, and thus a spatial discretization of a nuclear core
requires both type of cells.

Lastly, we recall the problem of spatial numerical dispersion that affects the
MSC. Since each mesh boundary angular flux is represented through a polyno-
mial expansion that is assumed to be valid on all the surface, an hypothetical
beam of neutron trespassing a cell without attenuation would be represented at
the exiting surface not as a delta function, but as a continuous non-zero function
on all the surface, leading to a numerical diffusion in space. This phenomenon
appears to be more serious when different materials are present at the interior of
the cell. To address this issue IDT allows the subdivision of the boundary sur-
faces of each cell into different parts, enabling a more detailed representation of
the entering and exiting fluxes.

1.3.2 Representation of Balance and Transmission

We now concentrate on the heterogeneous Cartesian cell typical of a fuel element
as it is represented in IDT. The domain V of our basic geometric is defined as

V =
⋃

α=1,R

Vα, (1.69)

where R is the number of subdomains and α is the subdomain index. Each re-
gion inside the cell is in contact with its neighbor region via the entering and
exiting surfaces. The coupling between regions is therefore based on geometrical
considerations.

Figure 1.4 depicts a 2D HCC with two regions (e.g. fuel and moderator). In
the following we may refer to this simple geometries in the description of the
response matrices.

The angular flux and the volume sources inside each flux are expanded using
Legendre polynomials:

ψi
α(r) =

G

∑
i=0

Pi
α(r)ψ

i
α, (1.70)

Qi
α(r) =

G

∑
i=0

Pi
α(r)Q

i
α, (1.71)

where i indicates the order of the polynomial, G the number of spatial moments,
and α the regions of interest. Legendre polynomials are opportunely normalize
considering the actual volume Vα of each region.
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Figure 1.4 Schematic illustration of a 2D HCC with 2 regions. V1 and V2 are the 2
regions. s1, s2, s3, and s4 are the 4 exterior surfaces. o1, o2, o3, and o4 are the
4 octants.

At the same time, the development on the borders of the cell is:

ψk(r−s ) =
Gs

∑
is=0

Pis
α (r
−
s )ψ

is,−
k , (1.72)

ψk(r+s ) =
Gs

∑
is=0

Pis
α (r

+
s )ψ

is,+
k , (1.73)

where Gs is the number of degrees of freedom associated with the border of
the cell, and k represents the side (x, y, z). The basis functions are normalized
considering the lengths of the borders in each direction.

Higher spatial expansions increase the precision of the representation, while
raising the computational cost of the calculation. We need therefore strike a bal-
ance between these two opposite aspects. IDT implements expansions up to bilin-
ear for the volume moments and up to linear for the surface moments, i.e.:

• volume basis: P = (1, x, y, xy) (2D), P = (1, x, y, z, xy, yz, xz) (3D),

• surface basis: Px = (1, y), Py = (1, x) (2D), Px = (1, y, z), Py = (1, x, z),
Pz = (1, x, y) (3D),

where the subscript (x, y, z) indicates the normal of the selected surface.

The balance and transmission equations for each energy group and each an-
gular direction are obtained making use of the steady-state integral formulation
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of the transport equation:

ψ(r) = ψ(rs)e−τ(l) +
∫ l

0
ds e−τ(s)q(s), (1.74)

evaluating ψ(r) in a generic point of a region inside the cell for ψ and on the
surface of the cell for ψ+, writing a pair of equations.

By substituting (1.70) and (1.72) inside (1.74) the integral along the character-
istic line ds is transformed into a sum (polynomials can be integrated exactly).
Subsequently spatial moments are obtained by projecting the integral equation
on the basis functions:

ψi
α = (Pi

α, ψ), (1.75)

ψis,+
k = 〈Pis

k , ψ〉+k . (1.76)

The volume and surface integral resulting from projection (1.75) and (1.76) is com-
puted analytically along the characteristic line and numerically in the perpendic-
ular direction (Masiello, 2004; Masiello, Sanchez, et al., 2009).

The internal fluxes resulting from internal sources and entering fluxes are
provided by (1.75), than after the integration can be recast as follows:

ψi
α = ∑

k=x,y,z

Gs

∑
is=0

Ii,is
k ψis,−

k +
R

∑
β 6=α

G

∑
j=0

Ci,j
α,βqj

β + Ci,i
α,αQi

α, (1.77)

where

• Ii,is
k represents the contribution of the moment is of the entrance flux from

the surface k to the volume moment i,

• Ci,j
α,β represents the contribution of the volume moment j of the internal

region β to the moment i of the region α,

• Ci,i
α,α represents the contribution inside the region α from moment j to mo-

ment i.

The transmission of the flux among neighbor cells for a generic surface s is
represented through (1.76). After projection and integration it can cast so that:

ψis,+
s = ∑

k=x,y,z

Gs

∑
js=0

Tis,js
s,k ψ

js,−
k +

R

∑
β=1

G

∑
j=0

Eis,j
s,βQj

β, (1.78)

where

• Tis,js
s,k represents the contribution of the moment js of the entrance surface k

to the moment is of the exiting surface is,
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• Eis,j
s,β represents the contribution of the moment j of the internal source in the

region β to the moment is of the exiting surface is.

For the simple HCC of Figure 1.4, and indicating with the subscripts the ap-
propriate surface or region, the balance equation is:

[
ψ1

ψ2

]
=

[
I1→1 I2→1 I3→1 I4→1

I1→2 I2→2 I3→2 I4→2

]
·


ψ−1
ψ−2
ψ−3
ψ−4

+

[
C1→1 C2→1

C1→2 C2→2

]
·
[

Q1

Q2

]
(1.79)

and the transmission is:


ψ+

1

ψ+
2

ψ+
3

ψ+
4

 =


T1→1 T2→1 T3→1 T4→1

T1→2 T2→2 T3→2 T4→2

T1→3 T2→3 T3→3 T4→3

T1→4 T2→4 T3→4 T4→4

 ·


ψ−1
ψ−2
ψ−3
ψ−4

+

[
E1→1 E1→2 E1→3 E1→4

E1→2 E2→2 E2→3 E2→4

]
·
[

Q1

Q2

]
(1.80)

Each volume flux, volume source, and surface flux is a vector including the spatial
moments up to the desired spatial expansion. The two equations (1.79) and (1.80)
hold for each direction of the angular SN discretization and for each energy group,
upon calculation of the appropriate response matrices.

Having presented the characteristic formulation of the transport problem, we
now have all the ingredients to introduce the process of transport sweep for the
iterative solution. The iteration starts from the external boundaries of a given
direction Ωd. Imposing an initial ψ− and q the flux inside the region of the first
cell is computed with the aid of (1.79). With the updated flux, a new source term
inside the regions is computed, and the transmission at the external boundary of
the cell is determined using (1.80). The ψ+ obtained are now imposed as ψ− for
the adjacent cell. This transport sweep proceeds on all the cells of the domain until
the external boundary is reached. At this point, an updated ψ− for a different
direction is computed using (1.32), where the definition of β depends on the
peculiar condition imposed at the external boundary of interest. Such procedure
is repeated for each direction of the SN quadrature formula. Subsequent iterations
are employed until converge is reached. For an imposed up/down scattering and
fission term Q(Ω), this iterative scheme provide the solution of the transport
problem inside each group.
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1.3.3 Inner and Outer iterations

The solution of neutron transport equation can be seen as an ensemble of one-
speed problems inside each energy group.

The discrete ordinates iterative scheme inside each group is described by (1.64)
and (1.63), that are here simplified as follows:

[Ωd · ∇+ Σ(r)]ψi+1
d (r) =

Nh

∑
h=0

Σs,h(r)Ah,dφi
h(r) + Qext

d (r), (1.81a)

φi+1
h (r) =

Nd

∑
d=1

wd Ah,dψi+1
d (r), (1.81b)

where the i is the iteration index, the double indices (`, m) of the spherical har-
monics are replaced with the global index h (Nh is the total anisotropy order con-
sidered), the subscript d indicates a discrete direction (so that ψd(r) = ψ(r, Ωd)

and Ah,d = A`,m(Ωd)) (Nd is the number of directions considered), and Qext
d (r)

represents the source term (up/down-scattering and fission). The first equation
is valid for each angular direction of the quadrature formula and the second one
is used to recalculate the flux angular moment to update the in-scattering contri-
bution. They can be rearranged in matrix form, namely:

Lψi+1 = Hψi + q, (1.82)

where L = Ω · ∇ is the transport operator, H is the in-scattering operator, and
q is the “external” source (i.e. external of the given group). We note that (1.82)
corresponds to (1.48), where the term q includes up/down-scattering, fission, and
imposed source.

The peculiar nature of q induces a multiple level of iterations: inners, thermals,
and outers:

• an inner iteration corresponds to the solution of the transport problem in-
side a given group g, imposing an initial source q and an initial set of
entering boundary conditions; convergence of the flux inside each energy
group is obtained proceeding by source iteration with the transport sweep
described in §1.3.2;

• a thermal iteration corresponds to the calculation of the up/down-scattering
among different groups;

• an outer iteration corresponds to the computation of the fission term using
the updated angular fluxes.
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The multigroup transport calculation therefore proceeds as follows. Starting
from the higher energy group, the solution of each one-speed transport problem
is found with the MSC. As long as only down-scattering occurs, the scattering
source is computed is calculated for the subsequent group exaclty, resembling the
Gauss-Seidel iteration scheme. When also up-scattering is present, an additional
iteration is performed: the out-of-group scattering term is recalculated and the
solution of the trasport problem inside each group is repeated until convergence
is reached. When the last energy group is reached, the fission integral (and conse-
quently the eigenvalue k) is recalculated, and procedure restarts.

Convergence criteria for the three level of iterations are:

• inner iterations (i index):

max
r,h,c

|φi+1
r,h,c − φi

r,h,c|
maxh,c|φi

r,h,c|
< εinn, (1.83)

where h is the angular moment, c is the spatial moment, r is the position;

• thermal iterations (t index):∣∣∣∣∣1−
∫

dV φt−1∫
dV φt

∣∣∣∣∣ < εth (1.84)

• outer iterations (e index):

∣∣∣∣1− ke−1

ke

∣∣∣∣ < εk, (1.85)

max
r,c

|Fe
r,c − Fe−1

r,c |
maxc|Fe

r,c|
< εF, (1.86)

where F is the fission integral, and k the eigenvalue computed as ratio be-
tween two successive angular flux estimations.

1.4 Boundary Projection Acceleration

Source iteration process used in the inner iterations (1.82) is a fixed-point itera-
tive strategy emerging from difference relations. In problems with optically thick
regions and a ratio of scattering c = Σs/Σ close to 1, the convergence of this iter-
ative process may become unacceptably slow. In fact, the source iteration process
may be physically interpreted as follows. Starting with a scalar flux φ0(r) = 0,
after i iterations φi(r) is the flux of neutrons emitted by the sources that have
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collided less than i times. Let’s consider a single energy group and a medium
with material and geometrical properties so that absorption, escape, or transfer
to other groups in negligible compared to in-group scattering. A neutron trav-
eling into this medium would be on average elastically scattered a multitude of
times. As a consequence, the source iteration process converges very slowly, and
may become practically unusable. Moreover, the difference between to successive
iterations may be less than the maximum allowed error set as converge criterion.
Thus, false convergence may occurs, resulting in nonphysical and erroneous out-
puts. Acceleration methods are therefore of paramount importance to alleviate
the computational burden of the source iteration and to assure convergence.

Many techniques have been developed in the past to accelerate the conver-
gence of source iterations (Adams and Larsen, 2002), for instance coarse mesh
rebalance or Chebyshev extrapolation (Lewis and Miller, 1984). Among them
synthetic methods have gained popularity thanks to their effectiveness. Synthetic
methods are based on low-order approximation of the transport equation that it
subsequently used to accelerate the convergence. The iterative process is therefore
modified so that the acceleration equation is solved between two successive trans-
port iterations, applying a correction that speeds-up the convergence. The most
simple approach of this category is the Diffusion Synthetic Acceleration (DSA),
where diffusion, that is the more crude approximation of complete transport, is
employed as low-order operator. Acceleration schemes based on transport theory
are called Transport Synthetic Acceleration (TSA).

In the following we present the implementation of the Boundary Projection
Acceleration (BPA) inside IDT for heterogeneous cells. It is a transport synthetic
acceleration that is based on a coarser angular representation, applied only at
the borders of the spatial mesh. It has been originally developed by Adams and
Martin (1988) as technique with the following properties: stability and rapid con-
vergence, generality with respect to geometry, discretization scheme, and mesh
shape. Already ported to IDT for homogeneous cells (Masiello and Rossi, 2013),
this method has been extended for a more general HCC.

1.4.1 Synthetic acceleration

The system of equations to be solved may be represented symbolically as:

(L− H)ψ = q. (1.87)

Since the inversion of the full (L−H) operator as a whole is practically impossible,
we may proceed iteratively calculating only the inverse of L, namely:

ψ(i+1/2) = L−1Hψ(i) + L−1q, (1.88)
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where i and (i + 1/2) designate two successive iterative solutions. By calculating
the difference between (1.88) and (1.87) we may write the equation for the error:

L(ψ−ψ(i+1/2)) = H(ψ−ψ(i)), (1.89)

where ψ is the converged solution. By adding and subtracting ψ(i+1/2) at the right
hand side, we can express the solution as:

ψ = ψ(i+1/2) + (L− H)−1H(ψ(i+1/2) −ψ(i)). (1.90)

It is evident that we can obtain the solution of the problem from the the error
between two successive iteration and the inversion of the full (L− H) operator.

The synthetic acceleration is based on the reformulation of the transport prob-

lem in a simpler way, such that the resulting ˜(L− H) operator is simpler to invert.
In this way (1.90) is transformed to:

ψ(i+1) = ψ(i+1/2) + ˜(L− H)
−1

H(ψ(i+1/2) −ψ(i)), (1.91)

where the theoretical solution ψ is replaced by the accelerated solution ψ(i+1).
The latter can be rearranged as:

˜(L− H)ε = Hδψ (1.92)

where

ε = ψ(i+1) −ψ(i+1/2), (1.93)

is the unknown of the acceleration problem (the correction to be computed), and

δψ = ψ(i+1/2) −ψ(i), (1.94)

is the transport residual of the normal iterations, that acts as source term. The
solution of (1.92) can be found by source iteration as well, namely:

(̃L)ε(j+1) = Hε(j) + δψ, (1.95)

where j is the iteration index for the acceleration problem.
The solution of the transport equation follows these steps:

1. starting from an initial value ψ(i) a transport iteration is performed to ob-
tained a new unaccelerated estimate of the angular flux ψ(i+1/2);
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2. using the two last know values of the angular flux the source term for the
acceleration problem is computed using (1.94), and a numerical solution for
ε is sought iteratively using (1.95);

3. the angular flux is corrected with the error computed with the acceleration,
i.e.

ψ(i+1) = ψ(i) + ε (1.96)

This procedure is repeated until the converge criterion is reached. With this for-
mulation the synthetic acceleration acts as a preconditioner for the full transport
problem.

To be efficient, a synthetic acceleration scheme should be simpler (in terms of
mathematical complexity), lighter (in terms of memory requirements), and faster
(in term of CPU power required) than the original transport problem, while accu-
rate enough to speed-up effectively the iterative solution. Also, it should be stable
enough not to ruin the convergence of the unaccelerated source iteration. As a
matter of fact, DSA schemes may experience instability, while the BPA is proved
to be more robust since it works only with the interface conditions among spatial
cells (Adams and Martin, 1988).

1.4.2 BPA for the Method of Short Characteristics in HCC

The SN method is based on the discretization of the neutron transport equa-
tion into Nd discrete directions. The iterative scheme of (1.81) can be reformu-
lated using the balance and transmission equations of short characteristic scheme
(1.77) and (1.78). Considering a given direction Ωd and writing explicitly the
in-scattering contribution, we may write:

ψ
(i+1/2)
d = Idψ

−,(i+1/2)
d + Cd

[
Hdφ(i) + qext

d

]
(1.97a)

ψ
+,(i+1/2)
d = Tdψ

−,(i+1/2)
d + Ed

[
Hdφ(i) + qext

d

]
(1.97b)

φ
(i+1/2)
h = Dhψ(i+1/2) (1.97c)

where ψd, ψ±d , and qext
d contain the spatial moments of the angular flux inside

the cell, of the angular flux at the edges of the cell, and of the external source
(up/down-scattering and fission, coming from thermal and outer iterations). The
matrix Hd enables the computation of the scattering internal at the selected energy
group starting from the angular moments of the flux, i.e.:

Hdφ =
Nh

∑
h=0

Σs,h(r)Ah,dφh, (1.98)
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where Nh is the number of spherical harmonics used to reconstruct the source. In
turn, the angular moments φh are computed using the quadrature formula with
Nd point that is at the hearth of the SN methodology, namely:

φh = Dhψ =
Nd

∑
d=1

wd Ah,dψd, (1.99)

where Dh is the operator that reconstruct the angular moments starting from the
angular discretization of the flux.

The acceleration equation is obtained by projecting the angular flux on the
borders of the cell on a reduced set of angular directions. We shall now proceed
on the definition of a projection and prolongation operator, to be able to go back
and forth the transport and acceleration unknowns.

The angular discretization of the transport solver is based on an ensemble Nd

of nodes and weights:
{Ωd, wd}d=1,Nd

, (1.100)

while the acceleration employs a reduced set of Nk directions:

{Ωk, wk}d=1,Nk
. (1.101)

Each direction Ωk comes with an associated angular subdomain ∆Ωk, each of
them containing several nodes of the original SN discretization. Therefore, we can
define a characteristic function of each k direction:

χk,d = χ(Ωk, Ωd) =

1 Ωd ∈ ∆Ωk

0 Ωd /∈ ∆Ωk

. (1.102)

The weights of the reduced angular quadrature formula are subsequently com-
puted as:

wk =
∫

∆Ωk

dΩ =
Nd

∑
d=1

wdχk,d. (1.103)

Once the low-order angular discretization has been constructed, we can define
the projection operator able to be used for the interface fluxes. The fluxes in the
coarse angular discretization are calculated as weighted average of the fluxes in
the fine angular mesh:

ψs,k = Ps,k←dψs =
∑Nd

d=1 wdχk,dξs,dψs,d

∑Nd
d=1 wdχk,dξs,d

(1.104)

where s subscript indicates the index of the border surface considered. The def-
inition of the weights ξs,d is arbitrary, but induces the conservation of different
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quantities. For instance, ξs,d = 1 results in the conservation of the scalar flux,
while ξs,d = |Ω · n̂s| leads to the conversation of the partial currents traversing the
borders of the cell. If the projection preserves the partial currents, then the accel-
eration equation preserves the balance of particles inside each cell. We therefore
adopted this scheme.

The prolongation operator operator is constructed considering the angular
fluxes ψk isotropically distributed in each subdomain ∆Ωk, i.e.:

ψd = Pd←kψk =
Nk

∑
k=1

χk,dψk. (1.105)

Using the operators defined so far, the errors of the transport source iteration
are:

ε
±,(i)
s = ψ±s −ψ

±,(i)
s , (1.106a)

ε
±,(i)
s,k = Ps,k←dε

±,(i)
s , (1.106b)

ε(i) = ψ−ψ(i), (1.106c)

δφ
(i)
h = φh −φ

(i)
h = Dhε(i). (1.106d)

We shall proceed on the derivation of the accelerated set of equations. By
subtracting to (1.97a) the converged solution, we get the equation for the error
inside the cell

ε
(i+1/2)
d = Idε

−,(i+1/2)
d + CdHdδφ(i). (1.107)

We proceed by integration over all the directions Ωd using the Dh operator

Dhε
(i+1/2)
d = Dh Idε

−,(i+1/2)
d + DhCdHdδφ(i), (1.108)

and by substitution using the prolongation operator for ε
−,(i+1/2)
d

Dhε
(i+1/2)
d = Dh IdPd←kε

−,(i+1/2)
k + DhCdHdδφ(i) (1.109)

to finally obtain

δφ
(i+1/2)
h = Îh,kε

−,(i+1/2)
k + Ĉh

[
Hdδφ(i+1/2) + Hd(φ

(i+1/2) −φ(i))
]

, (1.110)

where

Îh,k = Dh IdPd←k =
Nd

∑
d=1

wd Ah,d Idχk,d, (1.111)
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and

Ĉh = DhCd =
Nd

∑
d=1

wd Ah,dCd. (1.112)

By subtracting to (1.97b) the converged solution, we get the equation for the
error at the surfaces of the cell

ε
+,(i+1/2)
d = Tdε

−,(i+1/2)
d + EdHdδφ(i). (1.113)

Then, we project the values at the boundary of the cell into the coarser angular
discretization

Pk←dε
+,(i+1/2)
d = Pk←dTdε

−,(i+1/2)
d + Pk←dEdHdδφ(i) (1.114)

and by substitution using the prolongation operator for ε
−,(i+1/2)
d

Pk←dε
+,(i+1/2)
d = Pk←dTdPd←kε

−,(i+1/2)
k + Pk←dEdHdδφ(i) (1.115)

to finally obtain

ε
+,(i+1/2)
k = T̂kε

−,(i+1/2)
k + Êk

[
Hdδφ(i+1/2) + Hd(φ

(i+1/2) −φ(i))
]

, (1.116)

where

T̂k = Pk←dTdPd←k =
∑Nd

d=1 wd|Ω · n̂|χk,dTdχk,d

∑Nd
d=1 wd|Ω · n̂|χk,d

, (1.117)

and

Êk = Pk←dEd =
∑Nd

d=1 wd|Ω · n̂|χk,dEd

∑Nd
d=1 wd|Ω · n̂|χk,d

. (1.118)

The accelerated equations are so far valid for each anisotropy order and each
coarse angular discretization. In order to reduce the computational burden of the
acceleration scheme we decided to accelerate only the isotropic spherical harmon-
ics order h = 0 considering a reduced quadrature set S2, that includes 1 direction
per octant (i.e. Nk = 4 in 2D and Nk = 8 in 3D).

In this way the H operator reduces to a matrix Σs,0 containing only the scat-
tering cross sections of each internal region. In the case of Figure 1.4, it is equal
to3:

Σs,0 =

[
Σs,0,1 0

0 Σs,0,2

]
. (1.119)

To simplify the notation, from now on we drop the subscript h = 0.

3subscripts are: collision type (i.e. scattering), moment order h, region r
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We start introducing some definitions:

∆φ = φ(i+1/2) −φ(i), (1.120)

D̂ = (1− ĈΣs)
−1

, (1.121)

D̂∗ = (1− ΣsĈ)
−1

, (1.122)

where 1 is the identity matrix, and D̂ = D̂∗ in the case of homogeneous cells with
only one region.

The accelerated balance (1.110) becomes:

δφ(i+1/2) = Îkε
−,(i+1/2)
k + ĈΣsδφ(i+1/2) + ĈΣs∆φ, (1.123)

and after the inversion of 1− ĈΣs

δφ(i+1/2) = D̂
(

ĈΣs∆φ + δφ−,(i+1/2)
)

, (1.124)

where
δφ−,(i+1/2) = Îkε

−,(i+1/2)
k . (1.125)

At the same time, the accelerated transmission (1.116) becomes:

ε
+,(i+1/2)
k = T̂kε

−,(i+1/2)
k + ÊkΣsδφ(i+1/2) + ÊkΣs∆φ, (1.126)

and, substituting (1.124),

ε
+,(i+1/2)
k = T̂kε

−,(i+1/2)
k + ÊkΣsD̂ĈΣs∆φ + ÊkΣs∆φ + ÊkΣsD̂δφ−,(i+1/2). (1.127)

The matrix D̂ obeys the following relation:

D̂ = D̂(ĈΣs + 1− ĈΣs) = D̂(ĈΣs + D̂−1) = D̂ĈΣs + 1, (1.128)

and similarly for D̂∗ holds:

D̂∗ = D̂∗(ΣsĈ + 1− ΣsĈ) = D̂(ΣsĈ + D̂∗−1
) = D̂∗ΣsĈ + 1. (1.129)

These two matrices are related by the following identity

ΣsD̂ = D̂∗Σs, (1.130)

in fact

Σs = D̂∗ΣsD̂−1 = D̂∗Σs(1− ĈΣs) = (1− ΣsĈ)(1− ΣsĈ)Σs = Σs. (1.131)
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Making use of (1.130) and (1.129), (1.127) becomes:

ε
+,(i+1/2)
k = T̂kε

−,(i+1/2)
k + ÊkD̂∗(Σs∆φ + Σsδφ−,(i+1/2)). (1.132)

The acceleration problem is defined by the integrated balance (1.124) and the
projected transmission (1.132). As a result, the solution of the transport problem
follows these steps:

• transport iteration using (1.97) to get the spatial moments ψ(i+1/2) and
ψ+,(i+1/2) for each angular direction Ωd, as explained in §1.3.2;

• calculation of source of the acceleration problem as a difference between the
previous accelerated iteration and the current unaccelerated iteration using
(1.120);

• transport sweep with (1.132) to find ε
+,(i+1/2)
k ;

• calculation of the correction to be applied to the flux isotropic angular mo-
ment using (1.124) using the updated ε

−,(i+1/2)
k ;

• update of the fluxes inside the cell:

φ(i+1) = φ(i+1/2) + δφ(i+1/2), (1.133a)

ψ
+,(i+1)
d = ψ

+,(i+1/2)
d + Pd←kε

+,(i+1/2)
k . (1.133b)

1.4.3 Boundary source correction

So far, the acceleration corrects only the values inside each spatial mesh, while
the boundary conditions at the edges of the computational domain are kept un-
accelerated. Basically the transport sweep after the application of the BPA starts
with ψ

+,(i+1/2)
s,d . The BPA methodology can be therefore extended to take into ac-

count also the correction for the boundary conditions, resulting in a more robust
numerical algorithm.

The general albedo boundary condition (1.32) is here rewritten in its iterative
form:

ψ
−,(i+1/2)
s,d = βψ

+,(i)
s,d , (1.134)

and its associated relation at convergence:

ψ−s,d = βψ+
s,d. (1.135)

The error between the two is:

ε
−,(i+1/2)
s,d = βε

+,(i)
s,d = βε

+,(i+1/2)
s,d + βδψ+

s,d, (1.136)
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where
δψ+

s,d = ψ
+,(i+1/2)
s,d −ψ

+,(i)
s,d . (1.137)

After the application of the projection operator, we can calculate the acceler-
ated correction at the boundaries of the computational domain. At the end of each
iteration of the acceleration process, the incoming boundary condition is updated
as well using this formula:

ε
−,(i+1/2)
s,k = Ps,k←dε

−,(i+1/2)
s,d = βε

+,(i+1/2)
s,k + Ps,k←dβδψ+

s,d. (1.138)

The boundary angular fluxes to be used for the successive transport calcula-
tion are then computed with:

ψ
−,(i+1)
s = ψ

−,(i+1/2)
s +

Nk

∑
k=1

χk,dε
−,(i+1/2)
s,k =

ψ
−,(i+1/2)
s +

Nk

∑
k=1

[
χk,d(βε

+,(i+1/2)
s,k + Ps,k←dβδψ+

s,d)
]

. (1.139)

1.4.4 Numerical implementation

Storage strategy and vectorization

This acceleration strategy has been programmed in Fortran 90 inside the multi-
group code IDT of the APOLLO platform (Sanchez, Zmijarevic, et al., 2010). Start-
ing from the pure transport inner iteration, the code has been extended including
the BPA algorithm described so far. The main goal of our implementation is to
provide a fast, efficient, and accurate code, while minimizing the memory require-
ments.

To fulfill this goal, we carefully decided the storage strategy, in order to avoid
wasting memory by storing only the elements different from zero, and to preserve
as much as possible the contiguity in memory of the data to be accessed during
the loops.

The latter is particularly important to avoid the occurrence of cache misses.
In fact, multidimensional arrays got stored into memory as continuous string of
bytes. Fortran utilize the column-major order approach, where the first index
corresponds to elements continuous in memory, and the last is the one that varies
less rapidly when one sequentially scans all the elements of the array. Modern
processors present a cache memory, that is physically in the same silicon chip as
the arithmetical logical unit. This local memory works as a buffer of the central
memory (RAM). While there are multiple levels of this cache, the basic principle
is the same. When the code requires an element of an array, the operating system
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loads into the cache memory a portion of that array. Subsequently the required
value is copied into the processor registers, and the mathematical operations is
computed. Once done, the result is stored back to another portion of the cache,
and then to the main memory. When an operation is performed on multiple
elements of the same array, like in usual loops typical of scientific codes, the
processor may take advantage of the presence of the required value in the local
cache. If it is not there, it should be fetched from the central memory. Since
the RAM is physically farther and intrinsically slower, the processor should wait
until the required values get copied into its registers, wasting CPU cycles and
user time. It is therefore evident that the storage of the coefficients should be
carefully designed so that the subsequent loops required to perform the transport
sweep profit of contiguity in memory of the required values. A substantial loss in
performance is experienced if the loops and the associated arrays are not carefully
designed.

Besides the storage strategy, we designed the code to aid the vectorization of
the computation. Starting from the late ’90s, the presence of vector registers (e.g.
SSE, Streaming Single instruction multiple data Extension) has become more and
more popular also for general purpose mainstream processors based on the x86
technology. Previously, such feature was present only on dedicated workstations
or on supercomputers. With vector registers, the processor is able to perform
the same mathematical operation in parallel for a multitude of values at the same
time. The application of the BPA matrices requires the multiplication of the spatial
moments on the region volume or on the border surface for the corresponding re-
sponse matrix elements. Clearly, this operation is easily vectorized is the compiler
is instructed to do so. Fortran, contrary to C, includes the possibility to express
matrix and vector operations directly without writing a dedicated loop on the
single components. Furthermore, Fortran compilers inherit more than 50 years of
continuous enhancement and optimization in the field of scientific programming.
By carefully expressing the matrix and vector operations, while preserving the
continuity in memory, the compiler is able to optimize these operations exploit-
ing the vector registers. This results in a increased speed of the computation.

Regarding the amount of memory required, the method of short characteristics
requires to store the four response matrices I, C, T , E for each couple material-
geometry4, for each direction and group. For a typical 17× 17 assembly multi-
group depletion calculation the storage required in 2D geometry can easily reach
several hundreds of MiB (Masiello, Sanchez, et al., 2009). Since the BPA only
degrades the angular representation, the additional memory needed should be

4multiple cells with the same geometry and material composition can be pointed to the same
arrays stored in memory
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carefully taken into account, storing only the coefficients different from zero. In
doing this, we can profit from the regularity of the Cartesian cells supported by
IDT.

Regarding the transmission matrix, we note given the geometrical shape of a
cell, we can determine in advance the entering and exiting surface for each octant.
The same consideration can be done for the escape and incoming matrices. Also,
since in the acceleration C and I are employed after integration on all the angu-
lar directions, we decided to store only the integrated values, further reducing
the memory required, and in turn avoiding the necessity to reintegrate over the
angular space at each iteration.

If the rings of the heterogeneous Cartesian cell are concentric, the associated
collision matrix C is made of diagonal blocks (Masiello, 2013). The peculiar na-
ture of the diagonal blocks of Ĉ is reflected also on D̂ and D̂∗. Therefore, for
the inversion required to compute the values of D̂ and D̂∗ a new dedicate rou-
tine has been written based on the Gauss-Jordan elimination with full pivoting
(Press et al., 1992). In fact, the Ĉ may be seen as a square matrix having vector
elements, where each component correspond to the diagonal just mentioned. The
Gauss-Jordan elimination can be subsequently vectorized to take into account this
peculiar structure. The criterion employed for the pivoting is the infinite norm.

Flowcharts of the implementation

The implementation of the BPA algorithm inside IDT can be divided into two
parts: preprocessing and iterative solution.

The flowchart of the former is reported in Figure 1.5. Appropriate routines
have been written to extract the values of response matrices from the ones of
the transport solver. The elements are then integrated (Ĉ, Î) and projected (Ê, T̂)
assuming a coarse quadrature formula S2. The storage required is dynamically al-
located depending on the space required and appropriate pointers to the allocated
structures are put in place to ease sharing of the data. Regarding the boundary
conditions, we implemented the following possibilities:

• vacuum;

• rotation of π/2;

• translation;

• specular reflection;

• axial symmetry.
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allocation

compute projector

set addresses for
matrix coefficients

set boundary conditions
per octant

integration of C and I matrices

projection of E and T matrices

Figure 1.5 Flowchart of the BPA preprocessing.

A schematic representation of the iterative procedure of the BPA is reported
in Figure 1.6. After a normal transport iteration, the source for the BPA problem
is computed and then the iterative solution starts.

The sweeping chain on the cells of the domain is based on the alternating
direction method in the 2D or 3D geometry. Also, the octant ordering is chosen
so that the iteration starts from the directions coming from outside the physical
domain. For example, if we want to represent a small reactor we may employ
symmetry relations to diminish the computational domain. Thus, the boundary
conditions at the internal side would be of specular reflection, and at the external
side of vacuum. Since the transport iteration starts imposing incoming fluxes
equal to zero, it is convenient to start the transport sweep from the direction for
which the initial boundary condition is already known.

The incoming angular flux is reevaluated at each iteration. In this way the
approach to the solution resemble the Gauss-Seidel method (Quarteroni et al.,
2007). Gauss-Jacobi strategy, i.e. the calculation of δφ− once per each acceleration
iteration, has been tested as well. The BPA loop results less expensive in terms
of computational time, but the efficiency is sensibly reduced with respect to the
Gauss-Seidel methodology.

The accelerated boundary conditions at the surfaces of each cell are subse-
quently computed with the aid of the T̂ and Ê operators. The BPA loops exits



50 1. Synthetic acceleration for neutron transport in structured geometries
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Figure 1.6 Flowchart of the iterative BPA algorithm.

when the convergence criterion is reached or after a maximum number of iter-
ations. Besides, the flux corrections is computed and is applied to the original
unaccelerated fluxes of the plain transport iteration.

In selecting the convergence criterion for the BPA, we have to strike a balance
between the additional computational burden of the acceleration process and the
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effective reduction of transport iterations, i.e. the acceleration should be effec-
tive in reducing the spectral radius of the unaccelerated source iteration without
consuming too much CPU time. Except that for testing purposes, the maximum
number of BPA iterations should be tuned not to pass too much of the computa-
tional effort of the transport solver to the acceleration problem.

Moreover, the acceleration of the boundary conditions strengthens the BPA
effectiveness. This is particularly evident for small computational domains, where
the effect of the boundary conditions inside the spatial mesh is more important.
For bigger domains, this enhancement appears to be less relevant.

Finally, we note that by using a S2 quadrature formula also for the transport
iterations, the acceleration problem is equivalent to the full transport. In such
cases, the solution of the transport equation is found with only 1 inner iteration,
since the BPA problem provides a complete inversion of the (L− H) operator.

1.5 Numerical results

By default IDT accelerates the outer iterations with the Chebyshev method and
the thermal iteration with a group rebalance (Zmijarevic, 1998). Recently, it has
been included the possibility to accelerate the outer and inner iterations with
the CMFD (Coarse Mesh Finite Difference) methodology (Masiello, Sanchez, et
al., 2009). In this case the coarse mesh, in which the acceleration operator is
solved, is the standard rectangular mesh that is constructed by homogenizing
the HCC. With CMFD, that is a non-linear scheme contrary to BPA, the solution
is constructed by finite differences based on the diffusion equation, thus further
reducing the degree of freedoms.

We shall now present the performance in terms of reduction of inner iterations
and CPU time, including comparison with the other acceleration schemes for the
standard C5G7 benchmark proposed by IAEA (Lewis, Smith, et al., 2003), for both
2D and 3D geometries. This case problem has been carefully designed to verify
the ability of the deterministic 2D and 3D transport codes to solve typical reactor
problems without spatial homogenization. It is therefore a good candidate to test
the method of short characteristics with heterogeneous cells.

This benchmark considers a reactor core composed by 16 assemblies with two
planes of symmetry. It is therefore possible to study the problem in reduced geom-
etry: 1/4 in 2D, 1/8 in 3D. The four assemblies to be studied are surrounded by
a water reflector. Figure 1.7 reports the geometry, the material composition, and
the solver discretization used. The boundary conditions are of specular reflection
and of vacuum at the internal and external boundaries, respectively. The layout in
2D geometry measures 64.26× 64.26 cm, while each assembly is 21.42× 21.42 cm
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(a) plan (NEA, 2003) (b) discretization

(c) fuel (NEA, 2003)

Figure 1.7 C5G7 benchmark: geometry, material composition, and solver discretization.
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(NEA, 2003). For the 3D configuration, the fuel assemblies are extended in the
vertical direction of 42.84 cm with an additional 21.42 cm water reflector above
them (NEA, 2005). The boundary conditions in the 3D geometry are specular
reflection at the lower boundary, and vacuum at the upper boundary. The overall
dimensions of the core to be studies are therefore 64.26× 64.26× 64.26 cm, while
each assembly is 21.42× 21.42× 42.84 cm.

Each fuel assembly is made up of a 17× 17 lattice of square fuel pin cells. The
side length of every pin cell is 1.26 cm and every fuel cylinder is of radius 0.54 cm.
The composition of the fuel included varies enrichments of MOX and UO2, as
indicated in Figure 1.7.

The material properties are described with a library of seven-group, transport-
corrected, isotropic-scattering cross-sections. These cross sections have been previ-
ously pre-calculated using a 69-group solution in an infinite-lattice fine-mesh col-
lision probability calculation with DRAGON (Cathalau et al., 1996; Lewis, Smith,
et al., 2003). The reference values for the eigenvalue k has been computed using
MCNP (Monte Carlo method).

Regarding the 3D geometry, three possible configurations are provided: Un-
rodded, Rodded A, and Rodded B (NEA, 2005). In the Unrodded configuration
control rod clusters (one cluster for each assembly) are inserted into the upper ax-
ial water reflector. We note that, given the symmetry of this benchmark case, the
control rods appears to be inserted from both the top and bottom of the proposed
reactor, resulting in an unrealistic configuration. In the Rodded A configuration a
control rod cluster is inserted 1/3 of the way into the inner UO2 assembly. Simi-
larly, the Rodded B configuration presents control rod clusters inserted 2/3 of the
way into the inner UO2 assembly and 1/3 of the way into both MOX assemblies.

In the solution of this benchmark problem each fuel pin cell has been represent
as an HCC with one circular region inside. For 3D calculations, the boundaries
surfaces of the mesh cells have been subdivided into two segments, to increase
the accuracy of the calculation.

All the computational times quotes refers on the following machine:

• Intel R© CoreTM i5 CPU 650 @3.20 GHz

• 4096 MiB RAM @1333 MHz

• Linux 3.2.0 64-bit

• Intel R© Fortran 14.0.1

• -O1 optimization level
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1.5.1 C5G7: 2D configuration

We start studying the 2D configuration of the C5G7 benchmark.
At first we have analyzed the effect of the acceleration methods on the accuracy

of the eigenvalue estimation. Indicating with Nc and Nb the number of volume
and surface moments, we have considered the following spatial expansions:

• constant, Nc = 1, Nb = 1;

• linear, Nc = 3, Nb = 2;

• bilinear, Nc = 4, Nb = 2.

The regions of the mesh discretization are 3757 and the external surfaces are 204.
The number of flux moments needed to reconstruct the power distribution in-
side the domain are 26 299, 78 897, and 105 196 for constant, linear, and bilinear
expansions, respectively.

The calculation has been repeated varying the quadrature scheme and the SN

order. In particular, we employed the product quadrature Chebyshev-Legendre
and the default Level-Symmetric quadrature. Also, we have considered the sim-
pler S2 case for which the acceleration problem corresponds to the full transport.
An additional peculiar Level-Symmetric quadrature of order 8 (S∗8) with the an-
gular directions more displaced near the x and y axis has been tested. This type
of quadrature formula allows to better account for the transmission of neutrons
along moderator channels that separate the cells.

The computation has been performed with the following acceleration schemes:

• (unacc) Outers: Chebyshev, Thermals: group rebalance, Inners: Unacceler-
ated;

• (bpa) Outers: Chebyshev, Thermals: group rebalance, Inners: BPA;

• (cmfd) Outers: Chebyshev, Thermals: group rebalance, Inners: CMFD;

• (cmfd+unacc) Outers: CMFD, Inners: Unaccelerated;

• (cmfd+bpa) Outers: CMFD, Inners: BPA;

• (cmfd+cmfd) Outers: CMFD, Inners: CMFD.

The results of the computations just mentioned are given in Table 1.1, that
reports the eigenvalue and its relative difference with respect to the reference
value 1.186 55. First of all we note that, for a given angular discretization and
spatial moment expansion, all the acceleration schemes yield to the same result.
The stability of the BPA algorithm is therefore confirmed.
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Table 1.1 C5G7 2D: eigenvalues and percent difference with respect to reference
(1.18655), varying acceleration (outers and inners), MOC spatial moment or-
der (Constant, Linear, Bilinear). Quadrature schemes: Level-Symmetric and
Chebyshev-Legendre with N = 4, 6, 8, 12, 16, S2, Level-Symmetric S∗8

Acceleration MOC SN quad eig %diff quad eig %diff

unacc C 4 L-S 1.17980 0.569 C-L 1.18026 0.531
unacc L 4 L-S 1.18560 0.080 C-L 1.18567 0.075
unacc B 4 L-S 1.18557 0.082 C-L 1.18564 0.077
bpa C 4 L-S 1.17980 0.569 C-L 1.18025 0.531
bpa L 4 L-S 1.18560 0.080 C-L 1.18566 0.075
bpa B 4 L-S 1.18557 0.082 C-L 1.18565 0.076
cmfd C 4 L-S 1.17981 0.568 C-L 1.18026 0.531
cmfd L 4 L-S 1.18560 0.080 C-L 1.18567 0.074
cmfd B 4 L-S 1.18558 0.082 C-L 1.18565 0.076
cmfd+unacc C 4 L-S 1.17981 0.568 C-L 1.18026 0.531
cmfd+unacc L 4 L-S 1.18561 0.080 C-L 1.18567 0.074
cmfd+unacc B 4 L-S 1.18558 0.082 C-L 1.18565 0.076
cmfd+bpa C 4 L-S 1.17981 0.568 C-L 1.18026 0.530
cmfd+bpa L 4 L-S 1.18561 0.080 C-L 1.18567 0.074
cmfd+bpa B 4 L-S 1.18558 0.082 C-L 1.18565 0.076
cmfd+cmfd C 4 L-S 1.17981 0.568 C-L 1.18026 0.530
cmfd+cmfd L 4 L-S 1.18561 0.080 C-L 1.18567 0.074
cmfd+cmfd B 4 L-S 1.18558 0.082 C-L 1.18565 0.076

unacc C 6 L-S 1.18061 0.501 C-L 1.18151 0.425
unacc L 6 L-S 1.18565 0.076 C-L 1.18600 0.046
unacc B 6 L-S 1.18562 0.078 C-L 1.18597 0.049
bpa C 6 L-S 1.18061 0.501 C-L 1.18151 0.425
bpa L 6 L-S 1.18565 0.076 C-L 1.18600 0.046
bpa B 6 L-S 1.18562 0.078 C-L 1.18597 0.049
cmfd C 6 L-S 1.18061 0.501 C-L 1.18151 0.425
cmfd L 6 L-S 1.18566 0.075 C-L 1.18600 0.046
cmfd B 6 L-S 1.18563 0.078 C-L 1.18597 0.049
cmfd+unacc C 6 L-S 1.18061 0.501 C-L 1.18151 0.425
cmfd+unacc L 6 L-S 1.18566 0.075 C-L 1.18600 0.046
cmfd+unacc B 6 L-S 1.18563 0.078 C-L 1.18598 0.048
cmfd+bpa C 6 L-S 1.18061 0.501 C-L 1.18151 0.425
cmfd+bpa L 6 L-S 1.18566 0.075 C-L 1.18600 0.046
cmfd+bpa B 6 L-S 1.18563 0.078 C-L 1.18598 0.048
cmfd+cmfd C 6 L-S 1.18061 0.500 C-L 1.18151 0.425
cmfd+cmfd L 6 L-S 1.18566 0.075 C-L 1.18600 0.046
cmfd+cmfd B 6 L-S 1.18563 0.078 C-L 1.18598 0.048

unacc C 8 L-S 1.18092 0.474 C-L 1.18140 0.434
unacc L 8 L-S 1.18575 0.068 C-L 1.18611 0.037
unacc B 8 L-S 1.18572 0.070 C-L 1.18608 0.040
bpa C 8 L-S 1.18092 0.474 C-L 1.18141 0.434
bpa L 8 L-S 1.18575 0.067 C-L 1.18611 0.037
bpa B 8 L-S 1.18572 0.070 C-L 1.18608 0.040
cmfd C 8 L-S 1.18092 0.474 C-L 1.18141 0.434
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Table 1.1 C5G7 2D: eigenvalues and percent difference with respect to reference
(1.18655), varying acceleration (outers and inners), MOC spatial moment or-
der (Constant, Linear, Bilinear). Quadrature schemes: Level-Symmetric and
Chebyshev-Legendre with N = 4, 6, 8, 12, 16, S2, Level-Symmetric S∗8

Acceleration MOC SN quad eig %diff quad eig %diff

cmfd L 8 L-S 1.18575 0.067 C-L 1.18611 0.037
cmfd B 8 L-S 1.18572 0.070 C-L 1.18608 0.039
cmfd+unacc C 8 L-S 1.18092 0.474 C-L 1.18141 0.434
cmfd+unacc L 8 L-S 1.18575 0.067 C-L 1.18611 0.037
cmfd+unacc B 8 L-S 1.18572 0.070 C-L 1.18609 0.039
cmfd+bpa C 8 L-S 1.18092 0.474 C-L 1.18141 0.433
cmfd+bpa L 8 L-S 1.18575 0.067 C-L 1.18611 0.037
cmfd+bpa B 8 L-S 1.18572 0.070 C-L 1.18608 0.039
cmfd+cmfd C 8 L-S 1.18092 0.474 C-L 1.18141 0.433
cmfd+cmfd L 8 L-S 1.18575 0.067 C-L 1.18611 0.037
cmfd+cmfd B 8 L-S 1.18572 0.070 C-L 1.18608 0.039

unacc C 12 L-S 1.18126 0.446 C-L 1.18159 0.418
unacc L 12 L-S 1.18597 0.049 C-L 1.18638 0.014
unacc B 12 L-S 1.18593 0.052 C-L 1.18634 0.018
bpa C 12 L-S 1.18126 0.445 C-L 1.18159 0.418
bpa L 12 L-S 1.18597 0.049 C-L 1.18638 0.014
bpa B 12 L-S 1.18594 0.052 C-L 1.18635 0.017
cmfd C 12 L-S 1.18126 0.446 C-L 1.18159 0.418
cmfd L 12 L-S 1.18597 0.049 C-L 1.18638 0.014
cmfd B 12 L-S 1.18594 0.052 C-L 1.18635 0.017
cmfd+unacc C 12 L-S 1.18126 0.446 C-L 1.18159 0.418
cmfd+unacc L 12 L-S 1.18597 0.049 C-L 1.18638 0.014
cmfd+unacc B 12 L-S 1.18594 0.051 C-L 1.18636 0.016
cmfd+bpa C 12 L-S 1.18127 0.445 C-L 1.18159 0.418
cmfd+bpa L 12 L-S 1.18597 0.049 C-L 1.18638 0.014
cmfd+bpa B 12 L-S 1.18594 0.051 C-L 1.18636 0.016
cmfd+cmfd C 12 L-S 1.18126 0.445 C-L 1.18159 0.418
cmfd+cmfd L 12 L-S 1.18597 0.049 C-L 1.18638 0.014
cmfd+cmfd B 12 L-S 1.18594 0.051 C-L 1.18636 0.016

unacc C 16 L-S 1.18144 0.430 C-L 1.18163 0.415
unacc L 16 L-S 1.18613 0.035 C-L 1.18648 0.006
unacc B 16 L-S 1.18610 0.038 C-L 1.18645 0.008
bpa C 16 L-S 1.18145 0.430 C-L 1.18163 0.414
bpa L 16 L-S 1.18613 0.035 C-L 1.18648 0.006
bpa B 16 L-S 1.18610 0.038 C-L 1.18645 0.009
cmfd C 16 L-S 1.18145 0.430 C-L 1.18164 0.414
cmfd L 16 L-S 1.18613 0.035 C-L 1.18648 0.006
cmfd B 16 L-S 1.18610 0.038 C-L 1.18645 0.008
cmfd+unacc C 16 L-S 1.18145 0.430 C-L 1.18164 0.414
cmfd+unacc L 16 L-S 1.18613 0.035 C-L 1.18649 0.005
cmfd+unacc B 16 L-S 1.18610 0.038 C-L 1.18646 0.008
cmfd+bpa C 16 L-S 1.18145 0.430 C-L 1.18163 0.414
cmfd+bpa L 16 L-S 1.18613 0.035 C-L 1.18649 0.005
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Table 1.1 C5G7 2D: eigenvalues and percent difference with respect to reference
(1.18655), varying acceleration (outers and inners), MOC spatial moment or-
der (Constant, Linear, Bilinear). Quadrature schemes: Level-Symmetric and
Chebyshev-Legendre with N = 4, 6, 8, 12, 16, S2, Level-Symmetric S∗8

Acceleration MOC SN quad eig %diff quad eig %diff

cmfd+bpa B 16 L-S 1.18610 0.038 C-L 1.18646 0.008
cmfd+cmfd C 16 L-S 1.18145 0.430 C-L 1.18164 0.414
cmfd+cmfd L 16 L-S 1.18613 0.035 C-L 1.18649 0.005
cmfd+cmfd B 16 L-S 1.18610 0.038 C-L 1.18646 0.008

unacc C 2 - 1.17951 0.594
unacc L 2 - 1.18601 0.045
unacc B 2 - 1.18590 0.055
bpa C 2 - 1.17950 0.594
bpa L 2 - 1.18601 0.045
bpa B 2 - 1.18590 0.055
cmfd C 2 - 1.17951 0.594
cmfd L 2 - 1.18602 0.045
cmfd B 2 - 1.18589 0.056
cmfd+unacc C 2 - 1.17951 0.594
cmfd+unacc L 2 - 1.18602 0.045
cmfd+unacc B 2 - 1.18589 0.056
cmfd+bpa C 2 - 1.17951 0.594
cmfd+bpa L 2 - 1.18602 0.045
cmfd+bpa B 2 - 1.18589 0.055
cmfd+cmfd C 2 - 1.17951 0.594
cmfd+cmfd L 2 - 1.18602 0.045
cmfd+cmfd B 2 - 1.18589 0.056

unacc C 8 L-S* 1.18223 0.365
unacc L 8 L-S* 1.18644 0.009
unacc B 8 L-S* 1.18640 0.013
bpa C 8 L-S* 1.18223 0.364
bpa L 8 L-S* 1.18644 0.009
bpa B 8 L-S* 1.18641 0.012
cmfd C 8 L-S* 1.18223 0.364
cmfd L 8 L-S* 1.18644 0.009
cmfd B 8 L-S* 1.18641 0.012
cmfd+unacc C 8 L-S* 1.18223 0.364
cmfd+unacc L 8 L-S* 1.18644 0.009
cmfd+unacc B 8 L-S* 1.18641 0.012
cmfd+bpa C 8 L-S* 1.18223 0.364
cmfd+bpa L 8 L-S* 1.18644 0.009
cmfd+bpa B 8 L-S* 1.18641 0.012
cmfd+cmfd C 8 L-S* 1.18223 0.364
cmfd+cmfd L 8 L-S* 1.18644 0.009
cmfd+cmfd B 8 L-S* 1.18641 0.012
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Regarding the precision, an increased accuracy is manifested increasing the an-
gular representation. For this specific benchmark case, the Chebyshev-Legendre
scheme appears more accurate than the default Level-Symmetric. Moreover, we
note that the Linear and Bilinear spatial expansions provide on average one ad-
ditional digit of precision to the calculation. Instead, the benefit of the Bilinear
scheme as opposed to the Linear seems less evident.

The effectiveness of the BPA algorithm in terms of spectral accuracy (i.e. re-
duction of inner transport iterations) and total CPU time is presented in Figure 1.8
for Level-Symmetric, in Figure 1.9 for Chebyshev-Legendre, and in Figure 1.10 for
S2 and S∗8 .

First of all, we note that the number of inner iterations to reach convergence is
comparable among different quadrature schemes and orders. Besides, the compu-
tation time is almost linear with respect to the quadrature order. In fact, the num-
ber of Ωd used to represent the angular flux is directly connected to the number
of surface angular moments to be computed. As a consequence, the total number
of floating point operations is greatly affected by the angular representation.

The BPA reduces on average by a factor of 4 the number of internal iterations
needed to achieve convergence. When the CMFD scheme is employed for the
outer iterations, a further 4-fold reduction in total inner iterations is manifested,
resulting to a overall reduction of a factor of 16 of the total iterations.

However, the savings in terms of CPU time is less pronounced. The com-
putational effort required by the BPA looks important, since it reduces only the
angular representation, while preserving the other discretization unchanged. In
fact, increasing the transport SN order results in a more effective acceleration.

Figure 1.11 and Figure 1.12 are dedicated to the comparison between the BPA
and the CMFD, with or without the outer iterations accelerated by CMFD, respec-
tively.

At spectral level, the BPA is more effective, because of the more precise rep-
resentation of the transport phenomenon that it includes. In terms of total com-
putational time, instead, the BPA is too costly for low quadrature orders, but
gains competitiveness for higher angular discretization of the transport solver
and higher spatial representations.

While we would like to stress on the fact that the BPA implementation could
be further improved, it appears that the CMFD should be preferred for low-order
and less precise calculations, while the BPA should be reserved for high-order
more accurate computations.
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Figure 1.8 C5G7 2D benchmark. Quadrature Level Symmetric. Inner iterations and total
time varying MOC spatial order (constant, linear, bilinear), SN quadrature
order, and acceleration scheme.
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Figure 1.9 C5G7 2D benchmark. Quadrature Chebyshev Legendre. Inner iterations
and total time varying MOC spatial order (constant, linear, bilinear), SN
quadrature order, and acceleration scheme.
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Figure 1.10 C5G7 2D benchmark. Quadrature S2 and S8*. Inner iterations and total
time varying MOC spatial order (constant, linear, bilinear) and acceleration
scheme.
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Figure 1.11 C5G7 2D benchmark. Quadrature Level Symmetric. Inner iterations and
total time varying MOC spatial order (constant, linear, bilinear), and SN
quadrature order. Comparison CMFD (Inners) vs BPA (Inners).
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Figure 1.12 C5G7 2D benchmark. Quadrature Level Symmetric. Inner iterations and
total time varying MOC spatial order (constant, linear, bilinear), and SN
quadrature order. Comparison CMFD (Outers) + CMFD (Inners) vs CMFD
(Outers) + BPA (Inners).
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1.5.2 C5G7: 3D Rodded B configuration

For the 3D case, we considered only the Rodded B configuration.
Full 3D heterogeneous transport calculations are today still considered a chal-

lenge for their computational cost. In fact, the code needs an higher number of
trajectories to compute the response matrices. We decided to limit our analysis to
S∗8 quadrature formula, that proved to be the more effective for the 2D version of
this benchmark. Moreover, we discarded the bilinear characteristic scheme, that
did not provide substantial benefits.

In our simulations, the regions of the mesh discretization are 61 290 and the
external surfaces are 35 496. Regarding the latter, we opted for subdividing each
mesh surface into two sub-surface, to achieve better numerical results. The num-
ber of flux moments needed to reconstruct the power distribution inside the do-
main are 429 030 and 11 716 120 for constant and linear expansions, respectively.
The number of unknowns are therefore 2 orders of magnitude more than the 2D
case, resulting in much longer simulation times.

The simulation has been repeated with the same acceleration options of the
2D case. The results are given in Table 1.2, that reports the eigenvalue and its
difference with respect to the reference value 1.077 77. The stability of the BPA
algorithm is confirmed also for the 3D case, since the results obtained with the
same discretization and different acceleration schemes are comparable.

Regarding the accuracy, the constant characteristic scheme is not sufficient for
3D computations. In fact, the relative error with the reference solution is always
above 2%. Subsequently, the eigenvalue estimation does not provide the required
precision for reactor core analysis. On the other hands, the linear scheme is able
to produce much better results.

The spectral accuracy and the computational efficiency of the BPA with re-
spect to the other acceleration schemes can be inferred from Figure 1.13. The BPA
reduces on average by a factor of 6 the number of internal iterations needed to
achieve convergence. When the CMFD scheme is employed for the outer itera-
tions, a further 2-fold reduction in total inner iterations is manifested, resulting to
a overall reduction of a factor of 12 of the total iterations.

For the default acceleration of the outer and thermal iterations, the BPA is
comparable to the CMFD, but it is more costly in term of floating point operations,
and therefore the total time is greater. However, when the CMFD is employed for
the outer iterations, the BPA provided comparable performances with respect to
the CMFD used for inner iterations.

It may be speculated that the BPA would be even more efficient for higher an-
gular representations. However, 3D calculations are intrinsically more demanding
in term of CPU time, and therefore the synthetic acceleration should be coupled
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Table 1.2 C5G7 3D: eigenvalues and percent difference with respect to reference
(1.07777), varying acceleration (outers and inners), MOC spatial moment order
(Constant, Linear). Quadrature scheme: Level-Symmetric S∗8

Acceleration MOC eig %diff

unacc C 1.05258 2.338
unacc L 1.07738 0.036
bpa C 1.05259 2.336
bpa L 1.07739 0.035
cmfd C 1.05233 2.361
cmfd L 1.07719 0.054
cmfd+unacc C 1.05233 2.360
cmfd+unacc L 1.07717 0.056
cmfd+bpa C 1.05232 2.361
cmfd+bpa L 1.07716 0.057
cmfd+cmfd C 1.05234 2.360
cmfd+cmfd L 1.07719 0.054

with other techniques, like parallel computing with domain decomposition.



66 1. Synthetic acceleration for neutron transport in structured geometries

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

Constant Linear

in
ne

r 
ite

ra
tio

ns

MOC order

unacc
cmfd
bpa

cmfd+unacc
cmfd+cmfd
cmfd+bpa

(a) inners

 0

 5000

 10000

 15000

 20000

 25000

 30000

Constant Linear

tim
e 

[s
]

MOC order

unacc
cmfd
bpa

cmfd+unacc
cmfd+cmfd
cmfd+bpa

(b) time

Figure 1.13 C5G7 3D benchmark. Quadrature S8*. Inner iterations and total time vary-
ing MOC spatial order (constant, linear) and acceleration scheme.



1.5 Numerical results 67

References

M. L. Adams and E. W. Larsen (2002). “Fast iterative methods for discrete-ordinates
particle transport calculations”. In: Progress in Nuclear Energy 40.1, pp. 3–159.
doi: 10.1016/S0149-1970(01)00023-3.

M. L. Adams and W. R. Martin (1988). “Boundary Projection Acceleration: A New
Approach to Synthetic Acceleration of Transport Calculations”. In: Nuclear Sci-
ence and Engineering 100.3, pp. 177–189.

G. I. Bell and S. Glasstone (1970). Nuclear Reactor Theory. Van Nostrand Reinhold.
B. G. Carlson and G. I. Bell (1958). “Solution of the transport equation by the Sn

method”. In: Proceedings of the second international conference on the peaceful uses
of atomic energy. Vol. 16, p. 535.

S. Cathalau, J. C. Lefebvre, and J. P. West (1996). Proposal for a Second Stage of the
Benchmark on Power Distributions within Assemblies. OECD/NEA.

S. Chandrasekhar (1960). Radiative Transfer. Dover.
A. Hébert (2009). Applied Reactor Physics. Presses inter Polytechnique.
K. D. Lathrop (1968). “Ray Effects in Discrete Ordinates Equations”. In: Nuclear

Science and Engineering 32.3, pp. 357–369.
E. E. Lewis and W. F. Miller (1984). Computational Methods of Neutron Transport.

Wiley-Interscience.
E. E. Lewis, M. A. Smith, N. Tsoulfanidis, G. Palmiotti, T. A. Taiwo, and R. N.

Blomquist (2003). Benchmark Specification for Deterministic 2-D/3-D MOX Fuel
Assembly Transport Calculations without Spatial Homogenisation. OECD/NEA.

E. Masiello (2004). “Résolution de l’équation du transport des neutrons par les
méthodes des éléments finis et des caractéristiques structurées appliquées à
des maillages hétérogènes”. Ph.D. thesis. Université Evry Val d’Essonne.

E. Masiello (2013). Personal communication.
E. Masiello and T. Rossi (2013). “Improvements of the boundary projection accel-

eration technique applied to the discrete-ordinates transport solver in XYZ ge-
ometries”. In: International Conference on Mathematics and Computational Methods
Applied to Nuclear Science & Engineering (M&C 2013). Sun Valley, Idaho, USA.

E. Masiello, R. Sanchez, and I. Zmijarevic (2009). “New Numerical Solution with
the Method of Short Characteristics for 2-D Heterogeneous Cartesian Cells in
the APOLLO2 Code: Numerical Analysis and Tests”. In: Nuclear Science And
Engineering 161, pp. 257–278.

NEA (2003). Benchmark on Deterministic Transport Calculations Without Spatial Ho-
mogenisation. A 2-D/3-D MOX Fuel Assembly Benchmark. NEA/NSC/DOC(2003)16.
isbn: 92-64-02139-6.

http://dx.doi.org/10.1016/S0149-1970(01)00023-3


68 1. Synthetic acceleration for neutron transport in structured geometries

NEA (2005). Benchmark on Deterministic Transport Calculations Without Spatial Ho-
mogenisation. MOX Fuel Assembly 3-D Extension Case. NEA/NSC/DOC(2005)16.
isbn: 92-64-01069-6.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1992). Numeri-
cal Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University
Press.

A. Quarteroni, R. Sacco, and F. Saleri (2007). Numerical Mathematics. Springer. isbn:
3-540-34658-9.

R. Sanchez and N. J. McCormick (1982). “A Review of Neutron Transport Approx-
imations”. In: Nuclear Science and Engineering 80, pp. 481–535.

R. Sanchez, I. Zmijarevic, M. Coste-Delclaux, E. Masiello, S. Santandrea, E. Marti-
nolli, L. Villate, N. Schwartz, and N. Guler (2010). “APOLLO2 year 2010”. In:
Nuclear Engineering and Technology 42, pp. 474–499.

R. Sanchez (2012a). “On SN-PN Equivalence”. In: Transport Theory and Statistical
Physics 41.5-6, pp. 418–447. doi: 10.1080/00411450.2012.672360.

R. Sanchez (2012b). “Prospects in Deterministic Three-Dimensional Whole-Core
Transport Calculations”. In: Nuclear Engineering and Technology 44.2, pp. 113–
150. doi: 10.5516/NET.01.2012.501.

R. Sanchez and J. Ragusa (2011). “On the Construction of Galerkin Angular Quadra-
tures”. In: Nuclear Science and Engineering 169, pp. 133–154.

I. Zmijarevic (1998). “Résolution de l’équation de transport par des méthodes
nodales et des caractéristiques dans les domaines è deux et trois dimensions”.
Ph.D. thesis. Université de Provence Aix-Marseille I.

http://dx.doi.org/10.1080/00411450.2012.672360
http://dx.doi.org/10.5516/NET.01.2012.501


Chapter 2

Thermal effects of neutron
scattering off heavy isotopes

The first evidence that neutrons can experience large energy losses in collision
with light nuclei was given by Fermi (1934) in a series of fundamental experi-
ments involving neutron diffusion in paraffin wax. For these laboratory experi-
ences Fermi concluded that the elastic cross section for neutrons impinging with
protons (i.e. hydrogen nuclei) is much greater than the corresponding absorption
cross section, and that after a sufficient number of collisions neutrons speed can
be substantially slower (Williams, 1966). Subsequently, Fermi (1936) discussed
mathematically the problem of neutron slowing down, diffusion, and thermaliza-
tion, formulating the infinite medium balance equation, thus deducting the well
known 1/E neutron energy spectrum.

With the advent of nuclear rectors, and given the predominance of thermal re-
actor technology, it has become customary to deal with fast and thermal neutron
separately. After a fission event, a variable number of neutrons are emitted at high
energy in the MeV region. They are consequently slowed down by elastic scatter-
ing with the nuclei composing the moderator until they reach a sort of equilibrium
with the medium in which they diffuse. Besides scattering events, neutrons can
be also absorbed during the slowing down process. As we have seen in Chapter 1,
the neutron population inside a reactor core may be described through the linear
Boltzmann equation involving appropriate constants (cross sections) describing
the events of absorption, scattering, and fission. Accurate modeling of the scatter-
ing phenomenon after the birth of a neutron is thus essential for nuclear reactor
analysis.

For reactor calculations the energy range of interest to be considered ranges
from thermal energies until the top of the fission spectrum, that is around 15 MeV
(Henry, 1975). An accurate description of the cross sections in these domain is

69
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therefore required. Absorption involves the formation of a compound nucleus.
Instead, scattering reactions can occur due to two contributions: potential scatter-
ing, where the collision of the neutron with the nucleus can be represented as an
elastic collision between two billiard balls with conservation of momentum and
kinetic energy, and real reaction, that comprise the formation of an intermediate
compound nucleus before the remission of the neutron. The latter can result both
in an elastic or inelastic resonant scattering (Reuss, 2008).

The absorption cross sections present the well known 1/v behavior, thus show-
ing an increase probability of absorption for lower energies. The 1/v behavior
persists up to high energies for most light elements. On the other hand, interme-
diate and heavy isotopes manifest a complex behavior comprising several peaks
above 1 eV. These very sharp variations of the absorption cross sections are called
resonances. In fact, when the energy of the compound nucleus resulting from a
given impinging neutron speed corresponds to one of its excitation levels, the
formation of the compound is greatly favored, resulting in large resonance peaks
(Henry, 1975). By contrast, the overall behavior of the scattering cross sections is a
constant, that corresponds to the potential scattering. However, intermediate and
heavy nuclides present resonances as well (Reuss, 2008).

For low kinetic energies of the neutrons and therefore low excitation energies,
the levels are clearly separated and the resulting resonances are resolved. For
higher energies they can no longer be distinguished by measurement: it is the
unresolved domain. For example, 238U presents three big a absorption resonances
at 6.67 eV, 20.9 eV, and 36.7 eV. Generally resonances are more oriented towards
either absorption or scattering; however both components always exists (Reuss,
2008).

The resonances are characterized by their peak value and their widths, i.e. the
energy range for which the cross section is greater than its peak value. The latter
is greatly influenced by the the thermal agitation of the medium in which the
neutron diffuse. In fact, the motion of the target nuclei increase the resonance
widths as long as the temperature of the medium is increased. In this case the
resonance is said to be Doppler broadened.

Having presented the general behavior of the interaction cross section we can
turn back to the concept of slowing down. The slowing down of the fission neu-
trons in a thermal reactor in traditionally treated in two parts. As long as the
neutron energy is above 1 eV, the thermal agitation of the target nuclei may be ne-
glected, since the neutron energy is much higher than the corresponding average
kinetic energy of the medium and its chemical binding energy. In such zone the
scattering events can be analyzed by means of the slowing-down, i.e. considering
only down-scattering. At energy below 1 eV, i.e. in the thermal region, neutron
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energies become comparable with those of the nuclei, and therefore neutron may
gain energy as a consequence of a collision. Also, we need to take into account the
effects of molecular and/or metallic binding. Since up-scattering can not be ne-
glected, the previous slowing-down approximation cannot be employed anymore
(Bell and Glasstone, 1970; Hébert, 2009).

In reactor core analysis, and specifically in the preparation of group cross
sections, the differential scattering cross section Σs(r, Ω→ Ω′, E→ E′) should be
calculated taking into account the effect of temperature. The differential scattering
cross section is defined by the product of the scattering cross section (1.8) and of
the scattering kernel (2.30). The result, expressed in (1.15), has to be convoluted
with the energy spectrum of the targets.

Current production codes devoted at this task, like NJOY (MacFarlane and
Muir, 2000), assumes the following simplifications:

• at thermal energies E ≈ kT both cross section and transfer kernel are convo-
luted;

• at higher energies E� kT, and for resonant isotopes, only the cross section
is Doppler-broadened;

• otherwise none is convoluted.

Therefore the transfer kernel for energies above the thermal zone is always con-
sidered to be equal to the asymptotic one, i.e. considering the target at rest in the
laboratory system. This assumption neglects any up-scattering in the resonance
domain.

The validity of this approximation for heavy isotopes was firstly questioned by
Ouisloumen and Sanchez (1991), who introduced a new deterministic approach
to represent the temperature and resonance dependent isotropic scattering kernel
into a host medium behaving like a free gas. Their model showed a non-negligible
up-scattering for neutrons colliding with heavy isotopes like 238U in the vicinity of
resonances slightly above the thermal region. This study was soon corroborated
and extended by a series of papers where the fully double-differential kernel was
explicitly derived (Rothenstein, 1996; Rothenstein and Dagan, 1998). The resonant
kernel has been included as an option into NJOY by Rothenstein (2004), and its
results compared with the formulation of Ouisloumen and Sanchez (1991).

The accuracy of using a Maxwellian velocity distribution to describe the mo-
tion of target nuclei has been verified by means of MCNP analysis of experimental
results at energies in the range of the second 238U resonance, confirming the valid-
ity of the gas model (Danon et al., 2009). The physical problem has been assessed
also through the theoretically study of the binding forces in a UO2 crystal lattice,
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showing relatively small differences with respect to the analysis based on the free
gas scattering kernel (Courcelle and Rowlands, 2007).

The exact scattering kernel has been implemented using the Monte Carlo ap-
proach and the generated resonance integral data has been included into CASMO-
5 deterministic lattice code by Lee et al. (2008). The impact of 238U resonance elas-
tic scattering for Doppler reactivity has been subsequently assessed for thermal
reactors, demonstrating that the asymptotic elastic scattering model traditionally
used in the epithermal energy range in NJOY and Monte Carlo codes leads to
≈ 10% under prediction of Doppler coefficients of light water reactor lattices. Re-
activity effects from the implementation of a more exact scattering kernel was
evaluated of ≈ 200 pcm for PWRs and ≈ 450 pcm for high temperature pebble-
bed reactors. This reactivity drop and the associated noticeable changes in the fuel
inventory at the end of a fuel cycle has been further evaluated using an enhanced
version of TRIPOLI-4 Monte Carlo code (Zoia et al., 2013).

In this chapter, we deal with the numerical computation of the energy and
angular dependent scattering kernel, and its Legendre moments. In fact, discrete
ordinates codes based on the SN methodology requires the generation of multi-
group transfer matrices, that comprise the Legendre moments of the scattering
kernel. After a review of the basic quantities involved in elastic scattering, we
concentrate on the theoretical formulation of the Doppler convolution. The range
of integration has been evaluated following the approach of Sanchez et al. (2013).
The numerical implementation of the calculation of the scattering kernel and its
angular moments is then explained, including a convergence analysis of the com-
putation of the Legendre moments and discussing the techniques employed to
limit the range of integration while eliminating difference effects. Numerical sim-
ulations are subsequently compared with previously published results computed
by direct analytical and numerical evaluation and by Monte Carlo (Arbanas et al.,
2011). 1

2.1 Mathematical formulation of Doppler convolution

2.1.1 Definitions and dynamics of elastic scattering

Hereafter we should use a prime to denote quantities after the scattering event.
Also, lowercase and uppercase velocities refer to the neutron and the target, re-
spectively. The ratio between the target mass M and the neutron mass is indicated

1This work has been realized in cooperation with CEA/DEN/DANS/DM2S/SERMA/LTSD,
center of Saclay, France. Part of this chapter has been presented in the the following conference
proceeding. A. Previti, R. Sanchez, D. Mostacci, Computation of the Doppler-broadened scattering
kernel and its Legendre moments. SNA+MC 2013, Paris, France, October 27-31, 2013.
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with A. The Center of Mass system is denoted with the subscript COM and the
Laboratory system with LAB. We consider only isotropic media, therefore the
elastic scattering and the associated deflection law is assumed to be dependent
only upon the deviation angle depicted in Figure 1.3.

The probability of neutron having energy E to be scattered at the energy E′

and cosine µLAB of the deviation angle in laboratory frame is given by the Doppler-
broadened transfer kernel PT(E → E′, µLAB). To computed this quantity, we start
defining the velocities before and after the elastic collision in the LAB:

• v, v′ designate the neutron;

• V , V ′ refer to the nucleus.

The corresponding scalar speeds are indicated without the bold font. Introducing
the directions Ω and ΩCOM of the neutron, the velocities of the neutron in the
LAB are in the COM are:

v = vΩ; v′ = v′Ω; u = uΩ′
COM; u′ = u′Ω′

COM. (2.1)

The deviation angles in the LAB are in the COM are:

µLAB = Ω ·Ω′ =
v · v′

vv′
, (2.2a)

µCOM = ΩCOM ·Ω′
COM =

u · u′

uu′
. (2.2b)

From the conversation of linear momentum in the LAB

v + AV = v′ + AV ′, (2.3)

it is possible to obtain the velocity of the center of mass

c =
v + AV
A + 1

. (2.4)

The relative neutron-target velocity is:

vr = v− V . (2.5)

The velocities in the COM are:

u = v− c = β−1vr, (2.6a)

U = V − c = − A
A + 1

vr, (2.6b)
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Figure 2.1 Reference system with c as polar axis.

where
β =

A + 1
A

(2.7)

The conservation of linear momentum in the COM

u + AU = u′ + AU′ (2.8)

gives the relations between the velocities of the neutron and of the nucleus in the
COM, i.e.:

u = −AU; u′ = −AU′. (2.9)

The latter result, together with the energy conservation in the COM

u2 + AU2 = u′2 + AU′2, (2.10)

is used to determine the velocity after scattering, giving:

U = U′; u = u′. (2.11)

We now illustrate the relations involving the deviation angles in the LAB and
in the COM. Since c is preserved during scattering, we can introduce a system
where c plays the role of polar axis, as we can see from Figure 2.1. Squaring (2.6),
and considering the latter reference system, we get:

v2 = c2 + u2 − 2cuµ, (2.12a)

v2 = c2 + u2 − 2cuµ′, (2.12b)

where
µ =

u · c
uc

; µ =
u′ · c

uc
. (2.13)
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Making use of (2.12) we obtain

µ =
v2 − c2 − u2

2uc
=

1
mcu

[
E− m

2
(c2 + u2)

]
, (2.14a)

µ′ =
v′2 − c2 − u2

2uc
=

1
mcu

[
E′ − m

2
(c2 + u2)

]
. (2.14b)

Following (Ouisloumen and Sanchez, 1991), it is possible to express µCOM and
µLAB using µ and µ′. Using the polar axis c, ΩCOM and Ω′

COM are defined by
the usual two angles in polar coordinates, i.e. (µ, φ) and (µ′, φ′). Trigonometric
relations give:

µCOM = ΩCOM ·Ω′
COM = µµ′ +

√
(1− µ2)(1− µ′2) cos(φ′ − φ). (2.15)

At the same time we have

µLAB = Ω ·Ω′ =
(u + c) · (u′ + c)

vv′
=

c2 + cu(µ + µ′) + u2µCOM

vv′
. (2.16)

By substituting (2.15) and (2.14) into (2.16), the dot product Ω · Ω′ can be ex-
pressed in terms of the speeds v, v′, c, u, u′ and φ′ (Ouisloumen and Sanchez, 1991;
Rothenstein, 2004):

Ω ·Ω′ =
v · v′

vv′
=

B + C cos(φ′ − φ)

4c2vv′
, (2.17)

where

B =
[
v2 −

(
u2 − c2)] [v′2 − (u2 − c2)] , (2.18a)

C2 =
[
v2 − (u + c)2

] [
v2 − (u− c)2

] [
v′2 − (u + c)2

] [
v′2 − (u− c)2

]
. (2.18b)

The dynamics of elastic scattering may be represented by the probability that a
neutron with velocity v would emerge with a velocity v′ about dv′ after a collision
with a nucleus having velocity V , i.e.:

P(v, V → v′)dv′. (2.19)

A change of variable from v′ to the center of mass velocity u′ is required to impose
the condition u = u′. The velocity c is fully determined by the couple (v, V), and
therefore dv′ = du′. Expressing the direction Ω′

COM in spherical coordinates, we
may write:

du′ = u2du′dµ′dφ′. (2.20)
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Figure 2.2 Bounds for µCOM versus Er.

Since u = u′, the dynamics of elastic scattering is dependent only on th deviation
angle in the COM, i.e.:

P(v, V → v′) = P(u→ u′) =
δ(u− u′)

2πu′2
P(µCOM), (2.21)

where we considered the invariance by rotation around u, and P(µCOM) derives
from interaction models or measurements. For isotropic scattering it is equal to
one half.

2.1.2 Range of integration

From kinematic arguments we can find the allowed neutron exiting energies de-
pending on the deviation angle. Eliminating c from (2.6a), and squaring the result,
we obtain the basic relation between µLAB and µCOM:

v2 + v′2 − 2vv′µLAB = 2u2(1− µCOM). (2.22)

The latter can be conveniently re-expressed in terms of energies:

µCOM = 1− β2 D̂
2Er

, (2.23)

where
D̂ = E + E′ − 2

√
EE′µLAB. (2.24)

and Er is the relative energy.
The Doppler-broadened transfer kernel will be obtained by an integration over

Er. The range of allowed Er and µCOM per given E, E′, and µLAB can be found



2.1 Mathematical formulation of Doppler convolution 77

considering (2.23). Imposing the condition |µLAB| ≤ 1 we found a constrain for
the product Er(1− µCOM), i.e.:

E−r ≤ Er
1− µCOM

2
≤ E+

r (2.25)

where

E±r =

[
β

2
(
√

E±
√

E′)
]2

. (2.26)

Upon defining

E∗ =
(

β

2

)2

D̂ = Er
1− µCOM

2
, (2.27)

and considering the condition |µCOM| ≤ 1, the range of integration is given by
(Sanchez et al., 2013):

E∗ ≤ Er ≤ ∞. (2.28)

Figure 2.2, based on Sanchez et al. (2013), represents graphically the bounds for
µCOM versus Er.

2.1.3 Computation of the transfer kernel

The Doppler-broadened transfer kernel is given by the convolution integral

PT(E → E′, µLAB) =
1

vσT(E)

∫
∞

dV MT(V)vrσ(Er)P(v, V → E′, µLAB), (2.29)

where σT(E) is the Doppler-broadened cross-section for neutrons with initial en-
ergy E, MT(V) is the Maxwellian distribution for the target nuclei speed V at
temperature T in K, and σ(Er) is the scattering cross section at 0 K.

The dynamics of the collision are described by the scattering kernel,

P(v, V → E′, µLAB) =
∫

∞
dv′P(v, V → v′)δ

(
E′ − m

2
v′2
)

δ
(
µLAB −Ω ·Ω′) ,

(2.30)

which gives the density of probability for a scattering event (v, V) to result in a
scattered neutron with energy E′ and cosine of scattering in the laboratory frame
of reference µLAB. It comes from the integration of (2.19) over the neutron velocity
v′ after scattering imposing delta functions to select the desired couple (E′, µLAB).

Following Ouisloumen and Sanchez (1991), we first simplify (2.30) by intro-
ducing the change of variables u′ = v′ − c. Taking into account (2.20) and (2.21)
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we get:

P(v, V → E′, µLAB) =
∫

∞
du′ u′2

∫ 1

−1
dµ′

∫ 2π

0
dφ′

δ(u− u′)
2πu′2

P(µCOM)δ
(

E′ − m
2

v′2
)

δ
(
µLAB −Ω ·Ω′) . (2.31)

Using the scaling and symmetry properties of the delta function and with the
help of (2.14b), we may write:

δ
(

E′ − m
2

v′2
)
=

1
mcu

δ

(
µ′ − 1

mcu

[
E′ − m

2
(c2 + u2)

])
. (2.32)

Inducing this result into (2.31) and considering the constrain |µ′| ≤ 1, we get:

P(v, V → E′, µLAB) =
H(E+ − E′)H(E′ − E−)

mcu
Q, (2.33)

where H is the Heaviside step function, E± = (m/2)(u ± c)2 are the maximum
and the minimum energies after scattering and

Q = P(µCOM)
1
π

∫ π

0
dφ′δ

(
µLAB −Ω ·Ω′) . (2.34)

We note that the integrand in the last integral is a function of cos(φ′−φ). However,
since φ is arbitrary, we can replace the argument of Q with φ′. Furthermore, we
have taken P(µCOM) out of the integral, because for a given kernel integration E,
E′, and µLAB are fixed, and thus µCOM does not depend on φ′, as we can see from
(2.23). The interval of the integral over φ′ is reduced by half, since the integrand
is a function of cos φ′, that is even.

We turn now to (2.29). By introducing the change of variable V → vr we have

dV = dvr = vr
2dvrdΩCOM. (2.35)

In the new integration variable vr, c depends on vr, as expressed in (2.6a). We
consider therefor a spherical coordinates system having v as polar axis, in which
ΩCOM is defined by the couple (µv, φv) with µv = cos(v, vr). The Doppler-
broadened transfer kernel results:

PT(E→ E′, µLAB) =
1

vσT(E)

∫ ∞

0
dvr vr

3σ(Er)
∫ 1

−1
dµv∫ 2π

0
dφv MT(V)P(v, V → E′, µLAB). (2.36)
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The integral over dφv is easily found considering the invariance by rotation around
v. Regarding dµv, by squaring c = v − β−1vr we can express µv in terms of c,
namely:

µv =
β2(v2 − c2) + v2

r
2βvvr

. (2.37)

Equation (2.36) is subsequently re-expressed as:

PT(E→ E′, µLAB) =
2πβ

v2σT(E)

∫ ∞

0
dvrvr

2σ(Er)∫
dc H(E+ − E)H(E− E−)cMT(V)P(v, V → E′, µLAB), (2.38)

where the two Heaviside step functions emerge from the constrain |µv| ≤ 1.
The Maxwellian spectrum is given by (Bell and Glasstone, 1970):

MT(V) =
Am

2πkT

3
2

exp
(
−AmV2

2kT

)
(2.39)

where k is the Boltzmann constant, and V can be conveniently expressed in terms
of v, c, and vr. Defining the constant (in s m−1):

ξ =

√
(A + 1)m

2kT
, (2.40)

we can introduce the following dimensionless quantities:

x = ξc, (2.41a)

t = ξu, (2.41b)

ε = ξv = ξ

√
2
m

√
E, (2.41c)

ε′ = ξv′ = ξ

√
2
m

√
E′, (2.41d)

D = ξ2 2
m

D̂. (2.41e)

After replacement of (2.33), (2.39), and (2.41) in (2.38), we obtain

PT(E→ E′, µLAB) =
Aβ3/2

2
√

πkTEσT(E)

∫ ∞

0
dEre−(Er−βE)/γσ(Er)∫

dxH(E+ − Emax)H(Emin − E−)e−x2
Q, (2.42)

where γ = βkT, Emax = max (E, E′), and Emin = min (E, E′).
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The calculation of PT(E → E′, µLAB) requires the computation of Q, that in
turn involves an integration oven φ′. Making use of (2.41), (2.17) can be reformu-
lated in the reduced energy variables:

Ω ·Ω′ =
B̃ + C̃ cos φ′

4x2εε′
, (2.43)

where

B̃ = ξ4B =
[
ε2 − λ

] [
ε′

2 − λ
]

, (2.44a)

C̃2 = (ξ4C)
2
=
[
(ε2 − λ)

2 − (2εx)2
] [(

ε′
2 − λ

)2
− (2ε′x)2

]
, (2.44b)

with
λ = t2 − x2. (2.45)

Employing the properties of symmetry and scaling of the delta function, and
using the expression (2.43) for Ω ·Ω′, the integral over φ′ in (2.34) becomes:

Q = P(µCOM)H(µ+
LAB − µLAB)H(µLAB − µ−LAB)

1
π

4x2εε′

C̃|sin φ′|
, (2.46)

where the Heaviside step functions come from the condition |cos φ′| ≤ 1, with
µ±LAB = (B̃± C̃)/(4x2εε′). The condition |cos φ′| ≤ 1 applied to (2.43) gives:

F = C̃2 − (4x2εε′µLAB − B̃)
2 ≥ 0. (2.47)

Since C̃2 sin2 φ′ = C̃2 − C̃2 cos2 φ, (2.46) may be reformulated as follows:

Q = P(µCOM)H(F)
1
π

4x2εε′√
F

. (2.48)

Also, since µCOM does not depend on x for given E, E′, µLAB, and Er, it can be
taken outside the innermost integral of (2.42).

After a bit of algebra, the integral over x in (2.42) can be recast as (Sanchez,
2013):

∫
dxH(E+ − Emax)H(Emin − E−)e−x2

Q =

H(Er − E∗)P(µCOM)
εε′√

D
exp

(
−εε′µLAB − t2) 1

π

∫ 1

−1
dz

eηz
√

1− z2
, (2.49)

with

η = εε′

√
(1− µ2

LAB)

(
4t2

D
− 1
)

, (2.50)
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and
ηz = λ + εε′µLAB. (2.51)

Following Blackshow and Murray (1967), after a change of variable we have:

1
π

∫ 1

−1
dz

eηz
√

1− z2
=

1
π

∫ π

0
dφ eη cos φ = I0(η). (2.52)

Wrapping-up all the elements of the Doppler-broadened transfer kernel inte-
gral, we obtain the final expression:

PT(E→ E′, µLAB) =

(
β

kT

) 3
2 A
√

A + 1

2
√

πD̂σT(E)

√
E′

E∫ ∞

E∗
dEr e−

A
kT (Er−E0)σ(Er)P(µCOM)I0(η), (2.53)

where
E0 = E/A− β

√
EE′µLAB. (2.54)

We note that (2.53) was derived earlier in a different way by Blackshow and Mur-
ray (1967). This equation contains a divergence term at E′ = E for µLAB → 1, that
corresponds to the delta behavior for coherent scattering at constant energy.

2.1.4 Calculation of the angular moments

Once the calculation of the Doppler-broadened transfer kernel has been done, it
is possible to compute its moments by quadrature:

Pm,T(E→ E′) =
∫ 1

−1
dµLABPT(E→ E′, µLAB)Pm(µLAB), (2.55)

where Pm(µLAB) is the Legendre polynomial of order m.
It has to be underlined that this methodology to compute the moments is

different from that in previous works, where the moments were directly calculated
from (2.38), resulting in µCOM being a function of φ′ via the relation µLAB = Ω ·Ω′

and preventing taking the Pm(µCOM) out of the integral in φ′, as we have done for
the calculation of the kernel in (2.34).

2.2 Numerical implementation

2.2.1 Kernel computation

The Doppler-broadened transfer kernel given in (2.53) involves the computation of
two non-algebraical functions: the exponential and the modified Bessel function
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of order 0, that have been both tabulated at constant step to speed-up the com-
putation of the integral. In particular, the tabulation of the exponential function
is constructed for x ∈ [0, xexp] such that e−xexp is very small. The Bessel func-
tion has been represented as I0(η)e−η to avoid overflows, with a complementary
asymptotic expansion for higher η values2.

Since the total integration over Er has to be done from the minimum energy
E∗ to infinity, we can introduce a method to limit the integration range. With
the contribution eη the exponent of the exponential in the integral in Er in (2.53)
becomes

− A
kT

(Er − E0) + η, (2.56)

that can be rewritten as

− (x− b)2 + c + b2, (2.57)

with

x =

√
A
kT

(Er − E∗), (2.58a)

c =
A
kT

(E0 − E∗), (2.58b)

b =

√
AEE′

(
1− µ2

LAB

)
kTD̂

. (2.58c)

Since we set to zero the exponential function if the exponent is a negative
number whose absolute value is greater than xexp, we can greatly restrict the
range of integration in Er in (2.53).

Considering that c and b do not depend on Er, the effective range of integration
in Er is constrained by

(x− b)2 ≤ xexp + c + b2 = xc
2. (2.59)

Noting that c + b2 ≤ 0 we proceed as follows. If xc
2 = 0 we set the kernel directly

to zero, otherwise we solve for Er to obtain the final range of integration:

E∗ +
kT
A
(max(0, b− xc))

2 ≤ Er ≤ E∗ +
kT
A
(b + xc)

2. (2.60)

Finally, since σ(Er) is given as a continuous piecewise linear tabulation by
NJOY (MacFarlane and Muir, 2000), the integral in (2.53) is computed by applying
a Gauss-Legendre quadrature to each piece were σ(Er) is linear.

2The Bessel function I0(η) has been computed using a modified version of the routines provided
in the SPECFUN package: http://www.netlib.org/specfun.

http://www.netlib.org/specfun
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2.2.2 Angular moments calculation

We calculate the moments via numerical Gauss-Legendre quadrature of (2.55):

Pm,T(E→ E′) ≈∑
n

wnPT(E→ E′, µn)Pm(µn). (2.61)

Moreover, instead of computing the kernel at the quadrature abscissas, we
introduce a representation of the kernel as a continuous function f (µ) and we use
it to compute the values at the quadrature abscissas. This gives

PT(E→ E′, µn) = ∑
k

[
PT(E→ E′, µk) ∏

k 6=k′

µn − µk′

µk − µk′

]
= ∑

k

[
PT(E→ E′, µk) fk(µn)

]
, (2.62)

where we have assumed that the representation is locally polynomial over the
nodes {µk} and where fk(µn) represents the contribution of the value of the ker-
nel at the representation node µk to the interpolated value of the kernel at the
quadrature node µn. Then, by inserting (2.62) into (2.61) we get:

Pm,T(E→ E′) ≈∑
k

PT(E→ E′, µk)∑
n

wn fk(µn)Pm(µn). (2.63)

We have implemented two types of representations: a Gauss-Legendre collo-
cation (GLC) and a continuous piecewise linear interpolation (CPL). In the former
f (µ) is a Legendre polynomial of order K and it is fully determined by evaluating
the kernel at the zeros of the Legendre polynomial PK+1(µ). This global represen-
tation is not ensured to be always positive over [−1, 1]. The latter, instead, is based
on partitioning [−1, 1] into K segments on which we construct a continuous piece-
wise function which is fully determined by the values of the kernel at the K + 1
nodes (including −1 and 1) used for the partitioning. There are two advantages
for using a representation. The first is that the kernels need to be evaluated only
at the nodes of the representation and not at the quadrature nodes, and the sec-
ond is that knowing the representation one can adapt the type and order of the
numerical quadrature so it gives the exact integral.

There is still a special case to be considered, i.e. E′ = E, for which it is found
that (2.53) behaves as 1/

√
1− µLAB and hence is singular at µLAB = 1. However,

with an appropriate change of variables it is possible to compute the Doppler-
broadened angular moments for E′ = E. Following Abramowitz and Stegun
(1964), we perform the change of variable µ = 1 − 2x2 to rewrite the angular
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?

??

,

Figure 2.3 Flowchart of the computation of Doppler-broadened angular moments.

moment integral as:

∫ 1

−1
dµ

P(µ)√
1− µ

Pm(µ) = 2
√

2
∫ 1

0
dxP(µ)Pm(µ), (2.64)

where P(µ) is the value of the kernel excluding the troublesome factor 1/
√

1− µLAB.

2.2.3 Flowchart of the implementation

The implementation of the algorithm described so far is depicted in the flowchart
of Figure 2.3. There are three main steps:

1. pre-processing;
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2. kernel computation;

3. angular moments calculation.

The cross section data σ(Er) to be used for the computation of the Doppler-
broadened transfer kernel is provided by a continuous piecewise linear tabula-
tion at 0 K. In our case we used the mesh computed with NJOY (MacFarlane
and Muir, 2000), that contains more than 451 000 entries covering the domain
Er ∈ [1× 10−5 eV, 30 MeV]. The deviation probability P(µCOM) is loaded as well;
otherwise the scattering is supposed to be isotropic the the COM. Afterwards,
we compute the nodes and weights for the selected quadrature and the Legendre
polynomials needed for the integral of (2.61). The constant step tabulation for exp
and I0 is subsequently prepared and loaded into memory. Also, the code perform
the Doppler convolution of the cross section for the impinging energy E to obtain
σT(E).

For a given E′ and µLAB, we perform the kernel computation by means of
(2.53), considering the cutoff (2.60). The integration over Er is performed with a
Gauss-Legendre approach for each interval defined by the cross section tabulation
provided by NJOY. The computation is repeated for all the µLAB of the given mo-
ments representation, either GLC or CPL. Finally, the angular moments up to the
order requested are evaluated for all the desired exiting energies E′ by numerical
quadrature. The user can decide to compute only the Doppler-broadened transfer
kernel if the angular moments are not needed.

All our calculations are performed with a double precision floating point rep-
resentation to provide maximum accuracy.

2.3 Numerical results

Having illustrated the mathematical formulation and the numerical implemen-
tation of the algorithm, we shall now proceed with the presentation of the ca-
pabilities of this approach, including comments on the peculiar behavior of the
Doppler-broadened scattering kernel and its angular moments in the vicinity of
the resonance for heavy isotopes. The results will be compared with the asymp-
totic kernel rigorously valid only at 0 K (Hébert, 2009):

PT=0(E→ E′, µLAB) =

1
1− α

δ

[
µ− 1

2
(A + 1)

√
E′

E
+

1
2
(A− 1)

√
E
E′

]
H(E′ − αE)H(E− E′) (2.65)

where α = (A− 1)2/(A + 1)2.
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(a) around 6.67 eV

(b) around 9869 eV

Figure 2.4 Elastic scattering cross section for 238U at 1000 K near various resonances.
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(a) cross section

(b) anisotropy

Figure 2.5 Elastic scattering cross section for 238U near the 1474 eV resonance at 1000 K
and its degree of anisotropy.
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In doing so, we examine the cases of constant cross section and real cross sec-
tion of 238U around the resonances at various temperature, for both isotropic and
anisotropic scattering scattering law. More specifically, we refer to the resonances
of 238U at 6.67 eV and 9869 eV for the isotropic case (Figure 2.4), and at 1474 eV for
the anisotropic case (Figure 2.5)

2.3.1 Kernel computation

First of all we consider the constant cross section case for isotropic scattering in the
COM, for which a closed analytic representation of PT(E → E′, µLAB) is already
known and is reported by Bell and Glasstone (1970). It as a simple case useful to
test the efficiency and the precision of our methodology.

We performed the computation with a Gauss-Legendre quadrature of order
N = 5 with M = 2 subdivisions in each interval of the cross section tabulation,
and we set xexp = 30, for which the cutoff discussed in the previous section
is given by e−30 ' 9× 10−14. As expected, the absolute difference between the
numerical and the analytical calculation is bigger for E′ ≈ E and µLAB ≈ 1, where
the Doppler-broadened kernel is close to a singularity. Still, this difference is
found always less then 1× 10−6, confirming the validity of our approach and in
particular of the exponential cutoff of (2.60). Figure 2.6 depicts PT(E → E′, µLAB)

close to this singularity. It is interesting to note the peculiar behavior given by the
analytical formula: while for E = E′ there is a delta-like trend for µLAB = 1, in the
other cases the Doppler-broadened kernel presents a maximum before dropping
to zero at µLAB = 1.

Dependence on medium temperature

We now proceed to some realistic results for 238U with isotropic scattering law in
the COM, keeping the same settings regarding tabulations and cutoff.

Figure 2.7 and Figure 2.9 reports the the full dependency of the Doppler-
broadened scattering kernel at 50 K, 273 K, and 1000 K for an entering neutron en-
ergy E = 6.5 eV, for both the constant and 238U cross sections, respectively. These
figures have been generated from the computation of the Doppler-broadened ker-
nel on a grid of 1000 points in the E′ variable and 500 points in the µLAB variable.

For the constant cross section case we computed the transfer kernel using the
analytic expression given by Bell and Glasstone (1970), while for the 238U case
we employed the algorithm described so far. The computing time for the latter,
including the overhead for initialization, statistics and printouts for the later 3D
rendering, was 105 s on a Intel R© Xeon R© E5645 at 2.4 GHz. This time accounts for
an average of 2.1× 10−4 s per kernel integration.
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Figure 2.6 Analytical kernel at 1000 K for different E values versus µLAB for σ = 1 and
E = 6.5 eV.

For the analytic case, the shape of the transfer kernel resembles the asymp-
totic expression (2.65) at low temperature. Once the temperature is increased, the
transfer probability drift apart the rigid delta-like behavior, while maintaining its
maximum values in the down-scattering range, and maintaining the singularity
at E′ = E for µLAB = 1. The broadening of the peaks is also depicted in Figure 2.8,
that shows the the values of the kernel ranging from back-scattering (µLAB = −1)
to forward-scattering (µLAB = 0.993).

For the 238U case, at the lowest temperature the kernel resembles the asymp-
totic one, for which the probability is uniformly distributed between E′ ∈ [αE, E].
Once the temperature is raised, an increasing pronounced up-scattering is found,
due to the presence of the resonance at 6.67 eV, with a peak around µLAB = −1.
This is even more evident in Figure 2.10, that shows the kernel cuts for various
µLAB. For higher temperature the behavior at µLAB = −1 is significantly different
with respect the constant cross section case: the curve is in fact mostly in the up-
scattering domain. At room temperature, instead, the discrepancy with respect to
the asymptotic case is less evident, but still present.

As already found before (Ouisloumen and Sanchez, 1991; Sanchez et al., 2013),

3The Doppler-broadened scattering kernel is singular for µLAB = 1. µLAB = 0.99 has been
chosen to depicts the behavior for forward-scattering
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(a) 50 K

(b) 273 K

(c) 1000 K

Figure 2.7 PT(E → E′, µLAB) for E = 6.5 eV near 6.67 eV for σ = 1. 3D rendering of the
dependency upon µLAB and E′.
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Figure 2.8 PT(E → E′, µLAB) for E = 6.5 eV near 6.67 eV for σ = 1. Cuts for most
significant µLAB. Higher temperatures result in a broadening of the peaks.
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(a) 50 K

(b) 273 K

(c) 1000 K

Figure 2.9 PT(E → E′, µLAB) for E = 6.5 eV near the 6.67 eV resonance of 238U. 3D
rendering of the dependency upon µLAB and E′.
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Figure 2.10 PT(E → E′, µLAB) for E = 6.5 eV near the 6.67 eV resonance of 238U. Cuts
for most significant µLAB. A strong up-scattering in backward directions is
manifested for higher temperatures.
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Figure 2.11 P0,T(E → E′) for 238U for different values of T. The asymptotic model is
depicted as a solid black line.

this up-scattering effect is pronounced only in the vicinity of the resonance energy,
in particular on the left side. Outside the resonance energy, the behavior resem-
bles the one of the constant cross section case. This effect promotes an increased
probability of absorption, changing the reactivity feedback (Lee et al., 2008) and
the final burn-up at the end of a fuel cycle in nuclear power plants (Zoia et al.,
2013).

2.3.2 Angular moments calculation

The effect of temperature on the 0th angular moment for 238U and E = 6.5 eV4 is
depicted in Figure 2.11. It has been obtained from integration over µLAB of the
temperature-dependent scattering kernel just presented. The figure reproduces
with a black solid line the asymptotic model valid for T = 0 K.

For the analysis of the plot, we note a progressive deviation for the asymptotic
model once the temperature is raised, due to the combined influence of the ther-
mal agitation and the resonance at 6.67 eV. Indeed, most of the probability moves
from the down-scattering to the up-scattering domain. Therefore, in the follow-
ing analysis of our algorithm for the computation of the angular moments we

4on the left side of the 6.67 eV resonance
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concentrate to the cases at 1000 K, to better show the impact of thermal agitation.

We shall now proceed with the analysis of the behavior of the angular mo-
ments as a function of the representation used and of the energy of the impinging
neutron.

Convergence analysis

The accuracy of the angular moments calculation via (2.61) has been assessed for
both CPL and GLC method. Figure 2.12 presents a convergence analysis for the
values of the 0th moment for impinging neutrons at 6.5 eV. The reference val-
ues have been computed with the different methodology proposed by Sanchez
et al. (2013). The cutoff and the quadrature order for the computation of the
Dopper-broadened scattering kernel are the same of the previous section, while
the quadrature order in the µLAB variable has been automatically determined con-
sidering the maximum possible order of the polynomial to be integrated.

As expected, a numerical difficulty shows up for energies E′ ' E because of
the delta-like behavior of the kernel, while for E′ = E the change of variable of
integration (2.64) provides always the correct result. Still, convergence is achieved
by increasing the order of the representation. In particular, for the comparison
between the present calculation and the reference, it turns out that the maximum
relative difference for CPL is in the order of 1× 10−2 with 640 points in the µLAB

representation and in the order of 1× 10−4 with 10 240 points. For GLC the max-
imum relative differences are 1× 10−4 and 1× 10−6 with 160 and 640 points, re-
spectively. We should point out that difference appears only for E′ ≈ E, while
outside this region smaller quadrature orders attain convergence.

Angular moments near the thermal region

Having established the accuracy of the angular representation, we turn now to
the analysis near the thermal region, considering also higher moments. We focus
our attention of the case for E = 6.5 eV near the first resolved resonance of 238U
at 6.67 eV. To provide maximum accuracy, angular moments have been computed
using a CPL representation with 10 000 points, and considering 500 points in the
range E′ ∈ [6.1 eV, 6.9 eV]. Other calculation parameters, like cutoff, tabulation,
and precision of integration in Er are maintained constant from previous sections.
At first, our calculations have been checked against previous published data (Ar-
banas et al., 2011) obtained with both deterministic and Monte Carlo approach,
observing a good agreement.

P0,T(E → E′) for both constant and 238U cross sections is depicted in Fig-
ure 2.13. Once again, we notice that the temperature modifies the 0th moment for
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Figure 2.12 Convergence analysis of computation of P0,T(E → E′) for 238U increasing
the angular representation with E = 6.5 eV at 1000 K.
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Figure 2.13 P0,T(E → E′) for constant and 238U cross sections at 1000 K for E = 6.5 eV.
A pronounced up-scattering is found when the Doppler convolution is fully
taken into account.
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the σ = 1 case, while maintaining the predominance of down-scattering. When
the effect of the resonance is included, the behavior changes abruptly moving
increasing sensibly the probability of up-scattering.

We turn now our analysis on higher moments, normalizing the results by
P0,T(E → E′). The results for analytical and real cross section are illustrated in
Figure 2.14. We note that, for fixed E, the first normalized angular moment gives
the distribution on E′ of the deviation angle µLAB. The comparison of the two
plots manifests the asymmetry of the curves with respect to E′ = E for 238U,
caused by the up-scattering effect.

Behavior around the resonances

A study on the behavior of the moments varying E around the resonance at
6.67 eV of 238U for the 0th, 1st, 2nd, and 3rd angular moment is reported in
Figure 2.15, 2.16, 2.17, 2.18. It is illustrated how the presence of the resonance
affects the shape of the angular moments. The variation is more pronounced for
E ∈ [6.5 eV, 6.7 eV] and, in particular, for the first angular moment.
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Figure 2.14 Pn,T(E → E′) for constant and 238U cross sections at 1000 K for E = 6.5 eV.
A pronounced up-scattering is found when the Doppler convolution is fully
taken into account.
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Figure 2.16 P1,T(E→ E′)/P0,T(E→ E′) for 238U for different values of E.
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Figure 2.17 P2,T(E→ E′)/P0,T(E→ E′) for 238U for different values of E.

Figure 2.18 P3,T(E→ E′)/P0,T(E→ E′) for 238U for different values of E.
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Effects at higher energies

So far we have concentrated our efforts in the study near the resonance at 6.67 eV
for 238U. An additional set of simulations have been performed around 9869 eV
resonance for E = 9865 eV. The angular moments are reported in Figure 2.19.

As we can see, for higher neutron impinging energies the combined influence
of the thermal agitation and the resonance is not present, confirming the validity
of the asymptotic model in such cases. For these computations at higher neutron
impinging energies, the plot manifests a numerical difficulty for E′ ≈ αE because
of sharp variation of the kernel.

2.3.3 Influence of anisotropy of the scattering

Last but not least, we focus on the effects of anisotropy of the scattering law. So
far only the isotropic case, for which P(µCOM) = 1/2, has been studied. From the
analysis of the cross section ENDF database, it turns out that for 238U a modest
anisotropy begins to appear above 1000 eV. We consider then the effect of the
Doppler broadening near the 1474 eV resonance of 238U.

Figure 2.20 shows 0th angular moment for E = 1473 eV at 1000 K. The dis-
crepancy with respect to the isotropic case is very slight. Moreover, the angular
moment shown does not manifest a tangible contribution of the up-scattering due
to the combined presence of the resonance and of the thermal agitation. We con-
clude that for heavy isotopes, given the lack of anisotropy of the elastic scattering
for smaller neutron energies, the Doppler convolution does not affect substantially
the results.
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(a) P0,T(E→ E′)

(b) Pn,T(E→ E′)/P0,T(E→ E′)

Figure 2.19 Angular moments for 238U at 1000 K for E = 9865 eV. The complete Doppler
convolution does not affect the Legendre moments.
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Chapter 3

Radiative transfer modeling for
remote sensing of the cryosphere

The problem of describing the light propagation through a medium can be ad-
dressed using both wave propagation and a particle approach. The former re-
quires the solution of the Maxwell equations through the medium, which in turn
depends on the complete representation of the electromagnetic scattering and all
the secondary waves generated by each oscillating charge, taking into account
their phase differences. This approach is very demanding given the enormously
large number of elementary charges in each micrometer-sized particle. If the
medium can be considered as a collection of macroscopic scatterers, the problem
can be addressed using the particle approach employing the radiative transfer
equation. This mathematical formulation presents the same form as the neutron
transport equation considered in Chapter 1.

There are basically two different strategies to formulate the radiative transfer
equation: the vector and the scalar models. To take in account all the polarization
effects it is necessary to employ the vector formulation, that relies on the determi-
nation of all the four components of the Stokes’s vector (I, Q, U, V). The scalar
model, instead, assumes that the photons never modify the average polarization
state and leads to the determination of only the first component, I (intensity). This
approximation is not necessarily good for Rayleigh scattering (which, as a matter
of fact, modify the polarization state of the incident beam of light), but appears
to be sufficiently accurate for particles greater than or equal to the wavelength
considered (Mishchenko, Dlugach, et al., 1999). For the purposes of our work we
use the scalar model.

The scattering parameters to be included in the linear transport formulation
of the radiative transfer problem are usually taken from measures of the complex
index of refraction of each medium or from solution of the Maxwell equations in

107
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simpler geometries. A classical model employed in this field is the Lorenz-Mie
scattering theory (1908), that provides the mathematical rigorous solution of the
electromagnetic equations for spherical particles randomly distributed in space.

The ability to solve the photon field in a medium is of paramount impor-
tance in remote sensing using multispectral sensors, and in particular in stud-
ies connected to space exploration, investigations into atmospheric phenomena,
and glacier mapping. Regarding the latter, at-sensor radiance depends on glacier
surface material composition and intermixture of materials, solar and sensor ge-
ometry, and surface topography. As a consequence, interpreting the measured
electromagnetic signal requires establishing a proper modeling of the properties
of the observed surface and the light propagation.

Since the force of gravitation impose a density stratification, the medium prop-
erties tend to vary primarily in the vertical direction (Thomas and Stammes, 1999).
In addition, in many remote sensing applications the surface dimension that cor-
respond to every pixel detected is big enough to consider every position uniform
horizontally and independent from the neighbor points. This is particularly true
when the main source of illumination (i.e. the Sun) is high enough in the horizon
that the non-flat shape of the planet is unimportant. For this reason the radiative
transfer problem to be solved is usually modeled in slab geometry. Even with this
simplification, the radiative transfer equation (RTE) presents significant numerical
challenges for its solution, since its integro-differential form.

In this chapter the problem of determining the radiation field within, at the
surface of, and above glaciers and debris fields is analyzed by means of linear
transport theory. Here an extended multilayered version of the ADO (Analyti-
cal Discrete Ordinates) method is applied to solve the radiative transfer equation.
First proposed by Chandrasekhar (1960), it has been revised recently by Siewert
(2000), who devised a compact solution scheme in a matrix formulation, trans-
forming the problem of finding the separation constants as an eigenvalue problem,
instead of the original zeros roots finding. It was confirmed to lead to extremely
accurate results, with reasonably fast computation time (Previti et al., 2011).

Modeling of the optical properties of single material particles (ice or snow,
lithic debris, and carbon soot) is discussed in the framework of glaciers observa-
tions, including common methods employed to determine single-scattering albedo
and scattering-phase function, for both single-type particles and mixtures

Examples of calculations of the Bidirectional Reflectance Function (BRF) and
the spectral albedo are included to show how remotely measurable quantities
depend on morphological and mineralogical properties of the medium, i.e. BRF
for mixtures of snow and debris, and spectral albedo variation for snow and
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carbon soot with varying grain size and particle concentration. 1

3.1 Fundamentals of radiative transfer

In radiative transfer theory, interference and diffraction of light are usually not
considered and the index of refraction across the transport medium of interest is
assumed constant. Using these hypothesis, it is possible to derive the classic radia-
tive transfer equation as photon balance in the phase space. In this section shall
proceed in the definition of all the quantities involved in such balance, discussing
the approximations employed in remote sensing studies.

3.1.1 Particle and wave models for photon transport

Complete and detailed description of light field through matter requires the study
of propagation of the electromagnetic radiation. A parallel monochromatic beam
of light in vacuum proceeds without any change in intensity or polarization. If
light encounters a small particle two main different phenomena can take place:
conversion of the energy of the beam into heat (absorption), and diversion of the
beam of a given angle (scattering). Also, the particle itself can emit radiation if its
absolute temperature is above zero (thermal emission).

Let’s consider the wave approach to light propagation: a beam of light is an
oscillating plane electromagnetic wave and the particle is an aggregation of many
electric charges. The solution of the electromagnetic field in a dense medium can
be therefore extremely heavy in term of computation burden, since one needs
to take into account all the secondary waves generated by each oscillating charge.
This is impracticable even with the aid of modern computers (Mishchenko, Travis,
et al., 2002).

Fortunately, for typical engineering and physical problems it is possible to con-
sider a large collection of charges as a macroscopic body with a given refractive
index. One often should consider situations where light is scattered by a large ran-
dom group of particles comprising the medium, but fortunately these particle can
be modeled as independent scatterers. If the particles are sufficiently small, the
secondary waves generated in the scattering processes are negligible compared to

1This work is a part of GLIMS project (Global Land Ice Measurements from Space, http://
www.glims.org/), in cooperation with The University of Arizona, USA. The chapter presents a
completely revisited version of the following publication, with extended additions in historical
background and numerical methods, and with only the results of the author of this dissertation.
R. Furfaro, A. Previti, P. Picca, J. S. Kargel, M. P. Bishop, Radiative Transfer Modelling in the
Cryosphere, in: Global Land Ice Measurements from Space, J. S. Kargel, G. J. Leonard, M. P. Bishop,
A. Kääb, and B. Raup (Editors), Praxis-Springer (Publishers), Heidelberg (2013), ISBN: 978-3-540-
79817-0.

http://www.glims.org/
http://www.glims.org/
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the external field, and the total scattered field can be approximated as a sum of
the fields generated by every individual particles (single scattering approximation).

When the medium contains a very large number of particles, like an ordinary
planet surface of a cloud atmosphere, it is needed to explicitly take into account
the multiply scattered radiation. This approach yields to the formulation of the
radiative transfer equation, which is a representation of the radiation field by
means of statistical mechanics and linear transport theory. The hypothesis under
which this model can be used are:

• far-field approximation: the propagation of the light beams occurs is a plane
perpendicular to the oscillation of its associated electric field, the propaga-
tion of the scattered wave is away from the particle, and the amplitude of
the scattered field decreases inversely with distance from the particle;

• the electromagnetic field associated with light propagation is not too strong
and Kerr effect, i.e. perturbation of the refractive index of the medium, does
not take place;

• the collision of each photon consist always of a single scattering event, with-
out any collective phenomenon.

Also, we explicitely exclude Raman and Brillouin scattering and fluorescence, i.e.
electromagnetic scattering occurs only without change of frequency.

Thus, the analysis of light propagation through media comprises three steps
(Mishchenko, Travis, et al., 2002):

1. computation of the scattering and absorption properties of an individual
particle using Maxwell equations under far-field approximation;

2. calculation of scattering and absorption of a small volume element contain-
ing a tenuous particle collection by using the single-scattering approxima-
tion;

3. solution of the multiple scattering problem using the radiative transfer equa-
tion.

Regarding the first point, Lorenz-Mie scattering theory (1908) stays prominent
as a rigorous mathematical solution of the electromagnetic equation in the case of
scattering by spherical particles. A generalization of the model to non-spherical
aggregates is know as T-matrix theory.

3.1.2 Transport modeling for remote sensing

In radiative transfer theory, the medium is assumed to be a collection scattering
and absorbing centers uniformly distributed in a differential volume. The photons’
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behavior is determined by the probability of scattering and absorption within the
host medium. If the conservation of photons is applied in the six-dimensional
phase-space (i.e. position and velocity), the following equation is utilized:

1
c

∂Iλ(r, Ω, t)
∂t

+ Ω ·∇Iλ(r, Ω, t) + Σλ(r)Iλ(r, Ω, t) =

1
4π

∫
4π

dΩ′ Σλ,s(r, Ω′ → Ω)Iλ(r, Ω′, t) + Σλ,a(r)Bλ(T). (3.1)

where Iλ(r, Ω, t) is the spectral radiance [W m−2 sr−1 s−1] of photons at the loca-
tion r traveling in the direction Ω = (µ, φ) within the cone dΩ′. The spectral
radiance, or intensity, is the physical quantity that describes the light distribution
within, entering, and exiting the host medium, and it is the unknown of the ra-
diative transfer problem. The subscript λ underlines that spectral nature of the
intensity, i.e. the fact that this equation is valid for every wavelength of interest.

The first term in (3.1) is the temporal variation of the spectral radiance, where
c is the speed of light. The second term, summed to the first one, represents the
net energy loss of photons streaming out of the phase space. This is balanced by
the energy loss due to the scattering and absorption (third term left-hand side),
the inscattering of photons in the phase space (first term right-hand side), and the
thermal-induced emission of photons (second term right-hand side).

The participating medium is described by the absorption and scattering co-
efficients: Σλ(r) is the total interaction coefficient [m−1], defined as the sum
of the absorption (Σλ,a(r)) and scattering coefficient (Σλ,s(r)). More specifically,
Σλ,s(r, Ω′ → Ω) is the differential scattering coefficient (also called differential
scattering cross section or inscattering coefficient), that describes the probabil-
ity that photons traveling in the Ω′ direction are scattered in the dΩ about Ω

direction. In conventional radiative transfer theory, like in neutron transport ap-
plications for reactors, the host medium is assumed to be rotationally invariant, i.e.
the differential scattering coefficient depends only on the angle between Ω′ and
dΩ, called deviation angle Θ = Ω′ ·Ω. There are situations where this hypothe-
sis is precluded, like in photon transport in canopies, and the complete angular
representation of the scattering term is necessary (Furfaro and Ganapol, 2007).
Finally, Σλ,a(r)Bλ(T) depicts the thermal emission of photons, as a function of
the Planck’s law of radiation Bλ(T) for a blackbody at temperature T and under
the assumptions of the Kirchhoff’s law. The latter states that in thermodynamical
equilibrium the spectral emissivity, which is the ratio between the energy emitted
by a medium of a given temperature T and the energy emitted by a blackbody at
the same temperature and frequency, is equal to the spectral absorptivity Σλ,a.

To complete the mathematical description of the balance of photons interacting
with the host medium, proper boundary conditions that account for the radiative
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flux of photons entering the medium must be provided. Since for the case of snow,
ice, and debris scattering phenomena do not change the energy of the photons,
(3.1) can be solved independently at each wavelength to determine the radiative
regime.

Equation (3.1) does not have a general analytical closed-form solution, given
its integro-differential form. Although it is the basis of the physical models used
in remote sensing, several assumptions should be enforced to derive a more man-
ageable form, allowing fast and accurate numerical solutions. The first imme-
diate simplification comes from the observation that the 1/c term factoring the
time-derivative of Iλ(r, Ω, t) is smaller than the intensity flux time-rate (Davis
and Knyazikhin, 2005). The latter implies that a steady-state is reached almost in-
stantaneously. Indeed, radiative transfer in passive remote sensing applications is
generally modeled as a stationary phenomenon: time-dependent radiative trans-
fer problems are considered only when modeling the response of the surface to
active pulsed illumination by remote-sensing instruments (e.g. LiDAR).

The dimensionality of the complete radiative transfer problem described by
(3.1) make it extremely difficult to be solved in a fast and accurate way. Still, sim-
plified geometries can be used considering the the actual material and particle-
size arrangements typically found in remote sensing applications. Since the force
gravitation imposes a density stratification and the surface dimension that cor-
responds to every pixel detected by sensors is big enough, we consider a 1D
approach, where the medium varies only in the vertical direction and is infinite
in the horizontal one. For example, ASTER2 and MODIS3 pixel resolution are
15 m and 250 m. Therefore for glaciers environments the major glaciological fea-
tures would be fully resolved and a 1D configuration is sufficient, where every
pixel is independent from neighbor pixels4. Also, so long as photons do not
penetrate through grains far enough to interact with different types of minerals,
the reflectance signature of mixtures of snow, air, and debris is simply the area-
averaged reflectance spectra of the mineral components making up the surface.

The spectral radiance depends then spatially only on the optical depth defined
as:

τ =
∫ x

0
dx′ Σλ(x′). (3.2)

At the same time, the dependence on space and deviation of the differential scat-

2Advanced Spaceborne Thermal Emission and Reflection Radiometer. It is a Japanese sensor
launched into Earth orbit for remote sensing purpose by NASA in 1999.

3Moderate-Resolution Imaging Spectroradiometer. Launched by NASA in 1999, it is designed to
provide measurements in large-scale global dynamics including changes in Earth’s environment.

4Independent Pixel Approximation (IPA)
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tering is usually represented as:

Σλ,s(τ, Ω′ ·Ω)

Σλ(τ)
= vλ(τ)pλ(τ, cos Θ), (3.3)

where vλ(τ) and pλ(τ, cos Θ) are the single-scattering albedo and the scattering-
phase function, respectively. Under these assumptions radiant intensity depends
only on one spatial and two angular variables. This is different compared to
neutron transport, where usually one needs the full 3D spatial representation, but
only one angle is considered.

3.1.3 Mathematical setting for layered media

The linear transport equation governing the radiative regime in a vertical hetero-
geneous medium writes (Chandrasekhar, 1960):

µ
∂Iλ(τ, µ, φ)

∂τ
+ Iλ(τ, µ, φ) =

vλ(τ)

4π

∫ 2π

0
dφ′

∫ 1

−1
dµ′ p(τ, cos Θ)Iλ(τ, µ′, φ′) + [1−vλ(τ)] Bλ (T(τ)) . (3.4)

For cryosphere studies, given the typical wavelengths analyzed and the media
temperature, the thermal source [1−vλ(τ)] Bλ (T(τ)) is usually neglected.

Boundary conditions are necessary to fully specify the radiance field Iλ(τ, µ, φ).
Even though the general conditions for a linear transport problem include both
direct and diffusive illumination, specular and diffuse reflectance, and surface
thermal emission, the most relevant contributions at the upper boundary for ra-
diative transfer problems are the first two terms, that take into account the effect
of the Sun illumination. In radiative transfer problems with remote applications,
the medium is generally optically thick and hence vacuum boundary conditions
are considered at the bottom surface.

Therefore, the boundary conditions to be coupled with (3.4) are:

Iλ(0,+µ, φ) = f0πδ(µ− µ0)δ(φ− φ0) + f (µ), (3.5a)

Iλ(τ0,−µ, φ) = 0. (3.5b)

where τ0 is the total optical length of the medium, µ0 (azimuthal angle) and φ0

(polar angle) determine the inclination of the solar beam of total flux f0π, and
the diffusive illumination due to the surrounding atmosphere is expressed as a
function of µ. The direction of the τ-axis is considered positive in the downward
direction and thus µ is negative for upward angles.
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The vertical heterogeneity of the system to be analyzed can be represented
assuming a multi-layer configuration where the medium is subdivided in multiple
homogeneous layers, each having different optical properties. For each layer, the
single scattering albedo and the scattering phase function are defined either for
a single material or for a mixture, respectively as v

(s)
λ and p(s)λ (cos Θ), for s =

1, . . . , N. In every layer s, the radiative transfer equation is:

µ
∂

∂τ
I(s)λ (τ, µ, φ) + I(s)λ (τ, µ, φ) =

v
(s)
λ

4π

∫ 2π

0
dφ′

∫ 1

−1
dµ′ p(s)λ (cos Θ)I(s)λ (τ, µ′, φ′), (3.6)

where τ has to be considered in a local coordinate system (i.e. the s-th layer starts
from 0(s) and ends with τ

(s)
0 ).

Moreover, the continuity of the intensity at each interface provides the bound-
ary conditions in each layer:

I(s)λ (0(s),+µ, φ) = I(s−1)
λ (τ

(s−1)
0 ,+µ, φ), (3.7a)

I(s)λ (τ
(s)
0 ,−µ, φ) = I(s+1)

λ (0(s+1),−µ, φ). (3.7b)

In such configurations the bottom layer is generally assumed to be optically
thick, i.e. semi-infinite.

3.1.4 Quantities of interest for remote sensing

Quantitative characterization of surface properties using remotely sensed data re-
quires the definition of a functional relationship between surface properties and
surface radiance. So far, we have considered only the spectral radiance or intensity
Iλ(r, Ω, t), that is the energy transported across an element of area dA, whose ori-
entation is defined by its unit normal n, and in directions confined to an element
of solid angle dΩ. The total energy traveling across an element of area dA, for
every incident and outgoing direction is called spectral irradiance or flux (Davis
and Knyazikhin, 2005). It can be calculated from integration of the intensity, i.e.:

Fλ(r, t) =
∫

4π
dΩ′ ∣∣n ·Ω′∣∣Iλ(r, Ω′, t). (3.8)

The related half-range irradiance are obtained integrating only in one hemisphere,
say n ·Ω′ > 0 and n ·Ω′ < 0. Note that the flux/irradiance is the first moment of
the intensity/radiance.

When a flat surface emits isotropically in all the directions, the intensity does
not depend on the angle considered, say Iλ(Ω) = Iλ = constant. This is the
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so-called Lambertian surface. Using a system of polar coordinates with the z-axis
in the direction of the outward normal to dA, we can calculate the hemispherical
irradiance in a straightforward way, say:

FL =
∫ 2π

0
dφ′

∫ π
2

0
dθ′ IL cos θ′ sin θ′ = π IL (3.9)

where the subscript L highlights the fact that we are speaking about a Lambertian
surface. Of course, the net flux is equal to zero.

In the 1D, two-angle radiative transfer theory the two hemispherical photon
fluxes are conventionally defined as:

q+ =
∫ 2π

0
dφ′

∫ +1

0
dµ′ I(0, µ′, φ′) (3.10a)

q− =
∫ 2π

0
dφ′

∫ 0

−1
dµ′ I(0, µ′, φ′). (3.10b)

Making use of these definitions, useful quantities can be obtained. For the sake
of clarity and simplicity of the notation, we shall suppress all the dependencies
about wavelength. The transmittance is defined as the ratio between the outgoing
flux at the lower boundary and the incoming irradiance at the upper one:

Tn =
F+(τ0)

F+(0)
, (3.11)

where τ0 is the thickness of the medium.
The reflectance or spectral albedo, instead, is the ratio between the outgoing and

incoming flux at the upper boundary:

R f =
F−(0)
F+(0)

. (3.12)

For example, for a 1D system illuminated by a solar beam of flux f0π, the spectral
albedo is q−/( f0π).

Full dependence on angular direction of the reflected intensity is obtained
through the Bidirectional Reflectance Distribution Function (BRDF). It is the ratio
of reflected radiance per unit of incoming irradiance, and it is dependent on both
the incoming and outgoing angle considered (Davis and Knyazikhin, 2005):

BDRF((µ0, φ0)→ (µ, φ)) =
I(0,−µ, φ)

q+
, [sr−1] (3.13)

where (µ0, φ0) is the angle of the collimated incident beam, and (µ, φ) the angle
of reflection.
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Another popular quantity is the Bidirectional Reflectance Factor (BRF), that is
closely correlated to the BDRF. The nadir radiance, propagating vertically upward,
is I(Ω = n). If we use the Lambertian hypothesis, we can predict the outgoing
flux and, from there, the apparent albedo of the medium:

BRF =
π I(Ω = n)

q+
. (3.14)

In case of collimated incoming beam, (3.14) becomes:

BRF =
π I(Ω = n)

q+
= πBDRF (3.15)

Note that the BRF, unlike the original out/in flux ratio, is not bounded between 0
and 1 (Davis and Knyazikhin, 2005).

The Bidirectional Reflectance Distribution Function (BRDF) and/or the closely
related Bidirectional Reflectance Factor (BRF), as well as the spectral albedo, are
the typical parameters employed to describe the surface reflectance given irradi-
ance, surface morphology and composition variations.

3.2 Radiative transfer modeling for glaciers surfaces moni-
toring

Remote sensing of the Earth’s cryosphere is an active research area, since glacio-
logical processes are closely linked to atmospheric, hydrospheric, and lithospheric
processes (Bush, 2000). Global understanding of cryospheric processes involves
analysis of glacier dynamics since they are affected by and can influence climate
change (Maisch, 2000). Consequently, characterization and estimation of glacier
surface properties, such as ice grain-size, rock debris cover, and surface water dis-
tribution, becomes critical to advancing our understanding of glacier-climate rela-
tionships and glacier fluctuations (Bishop et al., 2004; Kargel et al., 2005). These
information can be obtained by orbiting platforms, that measure the magnitude
of reflected/emitted surface radiance in the visible, infrared, and thermal por-
tions of the spectrum. Satellite imagery provide global and continuous coverage
of vast portions of Earth’s surface, and can thus be processed to estimate surface
properties.

Glacier surfaces are generally comprised of a variety of materials and exhibit a
complex reflectance distribution depending on the spatial structure of the surface
constituents. Spatial and temporal variations in debris cover and intimate or areal
mixtures between coarse-grained glacier ice, snow, liquid water, vegetation, and
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rock debris contribute to highly variable reflectance as observed by in-situ and
platform-based sensors (Kargel et al., 2005; Raup et al., 2007).

Modeling plays a central role in investigating the relationships between sur-
face mixtures and reflectance, and can assist glacier mapping and characteriza-
tion. BRDF and BRF modeling are important functional components of scientific
inquiry because they help bridge the gap between investigative findings and field-
based and remote observations. For example, Mishchenko, Dlugach, et al. (1999)
modeled the directional reflectance pattern and its effect on the albedo for four
types of soils, each characterized by a different index of refraction. The BRF pat-
terns were generated for snow using three different scattering phase functions
(hexagonal ice, fractal ice and spherical ice) to examine the effect of ice morphol-
ogy on reflected radiation.

The radiative transfer equation is the framework and physical basis of for mod-
eling the directional reflectance measured by orbiting sensors as a function of the
surface properties (e.g. composition, grain size) and the solar/sensor/medium
geometry. The photon field depends on the scattering properties of the system
considered, and in particular on the single-particle optical behavior. As seen in
previous sections, absorption and scattering efficiencies are related to the probabil-
ity that a photon will be scattered or absorbed by a single particle of defined shape
and size. Scattering and absorption processes are accounted for via two optical-
property parameters single-scattering albedo vλ and scattering phase function
pλ(cos Θ).

The single-scattering albedo is a scalar parameter ranging between 0 and 1,
representing the ratio between scattering and total extinction. The phase function,
instead, is customarily described using a series expansion, in which the coeffi-
cients represent the projection of pλ(cos Θ) on a basis of Legendre polynomials:

p(cos Θ) =
L

∑
l=1

βl Pl(cos Θ). (3.16)

Generally, snow, ice, and soil exhibit a strongly forward-peaked scattering
function, i.e. relatively large single particles tend to scatter radiation primarily in
the forward direction. The latter implies that a very large numbers of coefficients
(order of hundreds) is required to accurately characterize the single-particle phase
function. The asymmetry parameter g, which is the defined as the cosine of
the average of deviation, may be conveniently employed to reduce the number
of parameters required to described the optical properties of a single particle.
Under this scheme, the Heyney-Greenstein model (Henyey and Greenstein, 1941)
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is widely employed to approximate the phase function for the particles of interest:

p(cos Θ) =
1− g2

(1− 2g cos Θ + g2)3/2 , g ∈ [−1,+1], (3.17)

and the coefficients of the Legendre expansion are:

βl = (2l + 1)gl . (3.18)

Therefore, the single particle optical properties can be, at minimum, charac-
terized by knowledge of the single-scattering albedo and asymmetry parameter.
Where a more accurate modeling is required, a number of additional scattering
coefficients are requested to describe the particle phase function. Such parameters
depend on the size of the particle, wavelength, index of refraction, and the shape
of the particle. The most common approach to determine the optical properties
is to assume that the particle is a perfect sphere, for which closed-form solution
of the Maxwell equations is know. This approach is known as Mie theory (Wis-
combe, 1980). This model has been widely used to describe the optical properties
of snow, ice, and soil. More involved approaches, e.g. T-matrix (Mishchenko,
Travis, et al., 2002), have been developed to account for arbitrary and irregular
shapes, but tend to be computationally expensive.

3.2.1 Snow

From a radiative transfer perspective, snow can be viewed as a collection of ice
particles immersed in air. A single particle of ice has variable shape and size and
an exact description of the single-scattering albedo and phase function involves
using methods of geometric optics. Monte Carlo based ray-tracing algorithms
can be applied to retrieve the optical properties of ice crystals for a substantial
variety of shapes including plates, hollow columns, bullet rosettes and ice ag-
gregates. Accurate description of scattering properties for such complex shapes
requires handling thousands of phase function coefficients, that results in imprac-
tical computationally expensive calculations. A more popular approach employed
to describe snow particle optical properties makes extensive use of the Mie theory,
enabling the computation of single-scattering albedo and asymmetry parameters
as a function of the grain size (Wiscombe, 1980). Although single snow particles
are not spheres, an ensemble of snow particles can be represented as optically
equivalent to a collection of snow grains having the same volume/surface ratio.
Fox example, Mugnai and Wiscombe (1980) demonstrated that a collection of non-
oriented small spheroids have a scattering behavior correctly approximated by an
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Figure 3.1 Spectral behavior of the complex index of refraction for pure ice.
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ensemble of spherical particles of equivalent size, especially for smooth oscilla-
tions of the borders. Thus, this approximation appears to be adequate for snow
representation.

Mie-based codes require knowledge of the complex index of refraction:

n = nr − ıni. (3.19)

Generally, the real part is interpreted as phase velocity and the imaginary part
describes the absorption loss for an electromagnetic wave moving through the
particle. For the case of ice, the imaginary part is linked to the volume absorption
of ice (Wiscombe and Warren, 1980). Figure 3.1 depicts the real and the complex
parts of index of refraction for pure ice as function of wavelength. It is based on
the compilation prepared by Warren and Brandt (2008).

As we can see, the magnitude of the imaginary part varies across the visible
and the Near InfraRed (NIR) by many orders of magnitude. As a consequence,
ice is transparent in the visible region (small imaginary index of refraction), but
it is moderately absorptive in the NIR (imaginary index of refraction is larger
and increases with wavelength). Using Mie theory, Wiscombe and Warren (1980)
showed that the extinction coefficient and asymmetry parameter are relatively
insensitive to wavelength (typical value for g ranges between 0.88 and 1), and
that vλ (or the co-albedo 1− vλ) is mainly responsible for the spectral variation
of the snow albedo. Generally, vλ is very close to 1 in the optical region (highly
scattering snow medium across the visible) and decreases monotonically reaching
a minimum value of 0.5 in the NIR. At the same time, increasing the grain size is
shown to decrease vλ.

Generally, values of 50 µm are assumed for fresh snow, whereas 1 mm is as-
sumed for grain clusters or wet snow. Water in the snowpack is not usually
modeled, as the index of refraction of water is very close to the one for ice.

3.2.2 Glacier ice

The major components of glacier surfaces are snow and ice. Nevertheless, the
physical state and optical properties of various glacier ice vary dramatically. In
fact, snowfall is transformed to ice through a variety of mechanisms including:
mechanical settling, sintering, refreezing of meltwater, and refreezing of sublimat-
ing ice. The grain size of surface ice and rate of annealing varies widely: typically
over time grain size increases, porosity decreases, and scattering surfaces decrease
along photon pathways. At the same time, fine snow may persist and dominate
in the accumulation zone. In the firn zone (i.e. annealed/recrystallized snow),
grain size may be in the range of several millimeters. In the ablation zone, bubbly
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ice may have effective grain size of a few millimeters, but dense, well crystallized
ice may have grain sizes of 1 cm to 10 cm. In some cases, glaciers may present
a layered structure, i.e. a dusting of snow or bubbly ice overlying denser and
coarser ice.

Multiple scattering of such complex structures require proper modeling of the
properties of the single components which are usually mixed with other compo-
nents. Glacier clean ice can thus be modeled as a collection of bubbles, ranging
from nearly zero bubbles to a majority fraction of bubbles, trapped within a matrix
of transparent ice. The firn, which is the snow material after the transformation
process has begun, is initially porous and contains interconnected air channels.
As the density increases above 0.88 Mg m−3, the channels close off resulting in a
mixture of ice and bubbles trapped within the glacier body.

A framework for modeling the volumetric scattering of such bubbly ice has
been proposed by Mullen and Warren (1988). In a pure ice sample containing
only air bubbles, the physics of interaction of the photons and the host medium
is such that absorption occurs in the ice matrix and the scattering occurs at the
ice-bubble boundaries. This means that the absorption process can be modeled
separately from from the scattering process.

Scattering is dominated by the size and distribution of the air bubbles within
the ice. If bubbles are assumed to be spheres, Mie theory can be employed to
compute the scattering efficiency (and subsequently the scattering coefficient) as
well as the asymmetry parameter as a function of the bubble size. Following the
approach of Mullen and Warren (1988) the scattering efficiency of the bubble-ice
mixture is computed by running the Mie code for a particle with the radius as
the bubble and the index of refraction only real and equal to the real part of
the snow index of refraction as seen in the previous subsection. The absorption
coefficient is subsequently computed as function of the amount of ice per unit
volume, using the data provided by Kou et al. (1993). Once the scattering and
absorption coefficients are available, both the extinction coefficient and single-
scattering albedo can be computed to complete the optical characterization of the
volumetric scattering of clean ice.

3.2.3 Rock debris

Debris-covered glaciers may include also varying amounts, grain sizes, and spa-
tial arrangements of rock debris. Fox example fine rock flour can be intimately
mixed with ice or debris patches can be scattered among clean-ice exposures. The
optical characterization of single-particle absorption and scattering for soil/sedi-
ment is very difficult, since soil particles distributions can vary in size, shape and
mineralogy. Mishchenko, Dlugach, et al. (1999) proposed a way to describe the
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Table 3.1 Symbols used to describe optical properties of mixtures.

Symbol Definition Units

n number of particle per unit volume m−3

r particle radius m
Qa absorption efficiency unitless
Qs scattering efficiency unitless
Qt extinction efficiency: Qa + Qs unitless
Σs scattering coefficient m−1

Σt extinction coefficient m−1

v single-scattering albedo unitless
g asymmetry parameter unitless

soil particles optical properties through Mie theory, allowing the selection of the
size distribution of the components. Although this approach considers soil parti-
cles as sphere with an effective radius, it appears to be adequate for simulation of
snow/soil mixtures of glaciers.

More recently, T-Matrix code has been made available to describe the optical
properties of particles that are large and irregular. T-matrix methods are also avail-
able to compute the optical properties of particle clusters with defined orientation.
However, such algorithms are computationally expensive, and recently some of
the available code has been re-designed to run on parallel clusters of machines
(Mackowski and Mishchenko, 2011).

3.2.4 Mixtures

Optical properties of single particles can be employed to determine the optical
behavior of multi-component mixtures. Computing the single-scattering albedo
and the asymmetry parameter for a mixture is fairly straightforward.

Assuming spherical particles, and considering the definitions reported in Ta-
ble 3.1, the scattering and extinction coefficients are:

Σs = nπr2Qs (3.20a)

Σt = nπr2Qt. (3.20b)

Consequently, the single-scattering albedo of the mixture of two components can
be computed as a weighted average, i.e.:

v =
Σs,1 + Σs,2

Σt,1 + Σt,2
=

n1πr2
1Qs,1 + n2πr2

2Qs,2

n1πr2
1Qt,1 + n2πr2

2Qt,2
. (3.21)
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If the particles are not spherical, πr2 shall be replaced by the relative particle
cross sectional area. If the particle size is modeled as a size distribution, then
computing an integral with the weighted size distribution is required. Similarly,
the combined phase function moments are computed by averaging the moment of
each component and weighted by its scattering coefficient. Thus, the asymmetry
parameter of the two-component mixture is computed as follows:

g =
g1Σs,1 + g2Σs,2

Σs,1 + Σs,2
=

g1n1πr2
1Qs,1 + g2n2πr2

2Qs,2

n1πr2
1Qs,1 + n2πr2

2Qs,2
. (3.22)

3.3 Numerical solution method

Computing the radiative regime within glaciers, as well as the amount of radia-
tion reflected by glacier surfaces, requires solving the radiative transfer equation
formally presented in the previous sections. Due to its mathematical complexity,
an analytical exact description of the light field is virtually impossible.

Over the past years, many approximate methods have been developed to pro-
vide analytical expressions for the multiple scattering of photons in snow, ice,
and soil. Among them, the most common and widely used has been formulated
by Bruce Hapke. The general philosophy of this method is to derive analytical
approximate expressions, which describe the essential physics of the scattering
process. Specifically, the hearth of this approach relies on the separation of the
radiant field into two main contributions: the single scattering radiance and the
multiply scattered radiance. The former can be evaluated exactly for any arbi-
trary phase function, since the intensity subject to scattering is just the collimated
incident light exponentially attenuated by passage through the matter. To com-
pute the latter, instead, the two-streams approximation for isotropic scattering is
used, leading to an analytical solution. Chandrasekhar (1960) has emphasized
that for a semi-infinite medium, which is one of the most used hypothesis in the
remote sensing field, the multiply scattered portion of the radiance field is much
less sensitive to the particle phase function than the singly scattered fraction. This
approximation is proven to be good to better than 15 % (Hapke, 1981).

Whereas this model has among its strengths a somewhat acceptable accuracy
and, more importantly, a simple and straightforward implementation, it violates
the basic principle of photons conservation expressed in the transport equation
and therefore is able to produce unphysical results. The widespread availability
of high-speed digital computers permitted researchers to develop and test more
efficient and faster algorithms to compute radiance and the reflectance factor, solv-
ing the complete radiative transfer equation.
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A variety of techniques have been developed to solve the linear transport equa-
tion for photons. All of them are based on some form of discretization of the
spatial and angular variable.

One approach is called Invariant Embedding. While the mathematical problem
described in (3.1) may be classified as a linear two-points boundary value prob-
lem, it can be converted into a set of initial-value problems. Thus, a difficult but
linear boundary value problem is transformed into a set of simpler but partly non
linear initial-value problems. Mishchenko, Dlugach, et al. (1999) applied this strat-
egy to compute the bidirectional reflectance factor of an optically thick surface of
particulate media, including snow, ice, debris, and mixtures. The method is based
on iteratively solving a non-linear integral equation (Ambartsumian equation) de-
rived from photon conservation. The method has been proven to be efficient
because it does not need to solve for the light inside the medium, and may be
ideal for modeling the reflected radiance. Nevertheless, the assumptions of this
method (i.e. one thick layer only) limit the applicability range on real situations.

Another prominent class among the scientific community is the Discrete Ordi-
nates methods, that are based on discretizing the angular variable in a set of finite
directions, and then solving the resulting differential equations. Therefore, it is
based on a given quadrature formula for the integration on the angular variable.
For example, the most popular code in the remote sensing community based on
the solution of the radiative transfer equation is DISORT (Stammes, Tsay, and Las-
zlo, 2000; Stammes, Tsay, Wiscombe, et al., 1988), and it has been widely used by
the community to compute the reflectance factor and spectral albedo of snow as
a function of grain size

The spatial dependency in discrete ordinates methods may be represented in
discrete or analytical form.

The former has been employed in the so-called Sn (Segment- n) method (Carl-
son and Bell, 1958). It has been proven to perform remarkably well in solving
the neutron transport equation, especially in two and three dimensions (Ganapol,
2011). One major drawback of the method is that accurate solutions can only
be obtained if the discretization mesh is sufficiently fine. For optically thick me-
dia and settings with forward peaked phase functions, the method becomes very
slow due to the multiple sweeps in the angular and spatial variable. Most of
these issues can be addressed by the Converged SN (CSN) method, proposed by
Ganapol and Furfaro (2008), that couple coarse mesh rebalancing with acceler-
ation techniques. In particular, Wynn’s epsilon acceleration is applied on the
angular discretization while a combination of the Romberg and Wynn’s epsilon
extrapolations is applied to the spatial discretization.

The latter, instead, originates in the pioneer work of Chandrasekhar (1960).
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Recently, Siewert (2000) revised this solution scheme in a matrix formulation,
transforming the problem of finding the separation constants as an eigenvalue
problem, instead of finding the zeros of a specified polynomial. The method,
called Analytical Discrete Ordinate Method (ADO), is capable of computing the
radiative regime for a single layer with specified optical properties and thickness
With this novel semi-analytic approach, the the angular variable is discretized to
determine a set of ordinary differential equations that have the radiant intensi-
ties along the discrete directions as unknown. The set of equations are solved
by: numerically solving the resulting eigenvalue problem to compute the homo-
geneous solution, and using a modified Green’s function formulation to compute
the particular solution of the set of differential equations arising from angular
discretization. More recently, the method has been extended to include multiple
layers of optical properties with special routines that give the method the ability
to quickly and efficiently handle thousands of layers (Picca, 2009; Previti, 2010). It
was confirmed to lead to extremely accurate results, with reasonably fast compu-
tation time. Importantly, this code, called MADOC5 has been used to provide the
simulation examples in the next section.

3.3.1 MADOC

The theoretical and numerical basis of MADOC is here explained.

Since the upper boundary condition introduces into I(τ, µ, φ) components that
are generalized functions, we follow Chandrasekhar (1960) and express the com-
plete solution to the problem as a sum of two components. The former represents
the free propagation of the incident beam (uncollided or solar term, Iu(τ, µ, φ)),
while the latter corresponds to the particles that have scattered at least one (col-
lided, diffused or reduced term, Ic(τ, µ, φ)):

I(τ, µ, φ) = Iu(τ, µ, φ) + Ic(τ, µ, φ). (3.23)

By introducing a finite set of N propagating directions, the solution of the
uncollided intensity can be carried out analytically. In fact, (3.4) does not have
for this case the scattering integral at the right-hand side, and therefore the equa-
tion to be solved is a simple first-order differential equation, that allows simple
exponential solutions.

Making use of the decomposition of the phase functions in Legendre polyno-
mials, the two-angle transport problem for diffuse intensity can be decomposed
into a sequence of one-angle problems by expansion of the collided component in

5Multi-layer Analytic Discrete Ordinate Code
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a Fourier series and by invoking the addition theorem (Chandrasekhar, 1960):

Ic(τ, µ, φ) =
1
2

L

∑
m=0

(2− δ0,m)Im(τ, µ) cos[m(φ− φ0)]. (3.24)

The equation for each Im(τ, µ) writes:

µ
∂

∂τ
Im(τ, µ) + Im(τ, µ) =

v

2

L

∑
l=m

βl Pm
l (µ)

∫ 1

−1
dµ′ Pm

l (µ′)Im(τ, µ′)+

f0
v

2
e−τ/µ0

L

∑
l=m

βl Pm
l (µ)Pm

l (µ0). (3.25)

The solution of (3.25) can be written as the sum of a homogeneous and a
particular solution due to the illumination source:

Im(τ, µ) = Im
h (τ, µ) + Im

p (τ, µ). (3.26)

Having set an half range quadrature scheme (i.e. 2N direction symmetrical
with respect to µ = 0), the homogeneous solution is cast into an eigenvalue
problem and expressed as a linear combination of eigenfunctions (Siewert, 2000),
whereas the particular solution is expressed through the infinite medium Green’s
function (Barichello et al., 2000). In MADOC, the Gauss-Legendre quadrature
scheme is adopted for the approximation of the scattering integral. With this
approach, the direction of propagation are chosen to be the zeros of the Legen-
dre polynomial of order N. As described in literature (Lewis and Miller, 1984),
the Gauss-Legendre scheme is a typical choice as it allows an exact integration
of polynomials of order 2N + 2 and in general gives accurate results for a broad
class of functions.

In the generic homogeneous s-th layer, the formal solution of (3.4) can still
be found by applying this method. For each layer, the homogeneous part of the
solution contains 2N arbitrary constants, that are found by imposing the bound-
ary conditions of (3.5) and the continuity of the intensities at the each interface of
(3.7). Finally, the intensity at each position τ can be calculated through an analyt-
ical post processing, where the discrete-ordinates solution found so far is used to
approximate the integral part of the radiative transfer equation, and the required
intensity is computed solving a first-order differential equation using the method
of separation of constants.

The implementation and the optimization through convergence acceleration
(Brezinski, 2000) of the ADO methodology to multi-layer configurations, as well
as its validation through the benchmarks available in the literature has been the
topic of previous works (Picca, 2009; Previti, 2010; Previti et al., 2011).
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Figure 3.2 Spectral albedo for a layer of optically thick pure snow as a function of wave-
length and grain size. The solar zenith angle is 30 degrees.

For the purpose of our simulations, we computed the single-scattering albedo
as well as the coefficients of the Legendre expansion of the phase function using
the Mie routines written in MATLAB R© provided by Mätzler (2002). The latter
has been coupled with MADOC to demonstrate how linear transport theory can
be successfully employed to simulate radiative regimes typical of glacier environ-
ments.

3.4 Glacier simulations results

In this section, a set of numerical examples that show how radiative transfer the-
ory can be employed to model BRF and spectral albedo for a variety of configura-
tions typically found in alpine glaciers.

Figure 3.2 reports the first set of simulations The radiative transfer theory has
here been employed to evaluate the response of an optically thick layer of pure
snow. The spectral albedo has been computed as a function of wavelength in
the range 0.4 µm to 2.5 µm (i.e. subdividing the range into 100 parts, and repeat-
ing the transport calculation for each wavelength separately) and grain size. The
solar zenith angle was set at 30◦. The single-particle optical properties of single-
scattering albedo and asymmetry parameter, were computed using the MATLAB-
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based Mie-code provided by Mätzler (2002), using the collection of complex in-
dex of refraction for ice prepared by Warren and Brandt (2008). The ice grain
sizes considered are: 50 µm (fresh fine snow), 200 µm (fresh coarse snow), and
1 mm(annealed snow, i.e. firn).

The overall single-scattering albedo and asymmetry parameter have been com-
puted considering a mixture of ice particles and air. We have assumed a diffuse
ice packaging of sphere totaling 10.9 % by volume. This would be like spherical
ice particles interconnected by radiatively and volumetrically negligible ice ten-
drils. Considering an ice density ρice = 0.918 g cm−3, the overall density of snow
in then 0.1 g cm−3. We computed the number density of ice particles in snow as:

nice =
volume density of ice in snow

volume ice particle
=

0.109
4
3 πr3

ice
. (3.27)

The simulation has been performed with N = 50 points for the quadrature
of the scattering integral and with a L = 50 expansion of phase function. The
Legendre coefficients of (3.16) have been computed using the Heyney-Greenstein
model as specified in (3.18).

As shown in Figure 3.2, the albedo is very sensitive to the grain size and
decreases as the radius of the snow particle increases. From a physical point
view, photons have higher chances to be scattered at the boundary between fine
snow grains and air. Incrementally larger grain size has the effect of increasing
the free mean path, giving the photons a higher chance to travel through the ice,
and a smaller chance to be scattered and exit the snowpack. Whereas larger snow
particles are both more absorptive and more forward scattering, it can be shown
that the decrease in albedo is mainly due to the fall of vλ in the NIR regime,
where the asymmetry parameter increases only slightly (Wiscombe and Warren,
1980). Importantly, in the visible region of the spectrum, the snow particles are
highly scattering (vλ very close to 1), that explains why snow has generally such
a high albedo, independent of grain size.

The second set of simulations, reported in Figure 3.3, depict the variability of
the spectral albedo with respect to the solar zenith angle. In this case the ice grain
size was fixed and assumed to be 50 µm. Mie theory is used to compute the single-
particle optical properties as in the previous set of simulations. As expected, the
angle of incidence of the incoming radiation illuminating the snowpack has a
large effect on the albedo. As shown in Figure 3.3, the albedo increases with
an increasing solar zenith angle. Wiscombe and Warren (1980) explained this
phenomenon by postulating that because of the high inclination with respect to
the zenith, photons entering the medium travel close to the upper surface of the
snowpack and therefore scattering events give light particles a higher probability
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Figure 3.3 Spectral albedo for a layer of optically thick pure snow as a function of wave-
length and solar zenith angle. The particle grain size is fixed and assumed to
be 50 µm.

of exiting the snowpack surface.

For the third set of simulations, reported in Figure 3.4, we considered an op-
tical thick mixture of pure snow and carbon soot, as a function of ice grain size
(50 µm, 20 µm, 1000 µm). The aim of these calculation is to mimic the reflectance
of dirty snow. As usual, the optical properties of the two constituents have been
independently computed using Mie theory. The optical properties of the carbon
soot have been computed (assuming that soot particles are modeled as spheres) by
setting the soot radius equal to 0.1 µm and particle density equivalent to 0.3 ppmw.
The soot complex index of refraction is assumed to be constant across the spectral
range of interest and equal to 1.95− 0.79i (Gardner and Sharp, 2010). Figure 3.4
shows the resulting spectral albedo as a function of wavelength with radius of
the snow particles. The simulations show that a small amount of carbon soot is
sufficient to lower the albedo in the visible region of the spectrum where ice has
the lowest absorption (highly scattering media with single-scattering albedo very
close to 1). As expected, the albedo reduction is more marked for larger snow
particles. Relative high scattering between 0.4 µm to 0.7 µm increases the prob-
ability that photons are more likely to experience multiple scattering, therefore
increasing the probability of encountering a carbon particle and being absorbed.
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Figure 3.4 Spectral albedo for a layer of optically thick mixture of pure snow and carbon
soot as a function of wavelength and snow grain size. Soot particle concen-
tration is assumed to be 3 ppmw.

As discussed above, increasing the snow particle grain size increases the average
free mean path, further increasing the probability of encountering a carbon par-
ticle and being absorbed. In the NIR region (i.e. above 0.9 µm) the influence of
carbon particles on the albedo is limited, as its reduction is dominated by the
stronger absorption of ice. This simulation shows that carbon soot and generally
other impurities may have a large impact on the overall energy budget of glaciers.

Figure 3.5 reports the fourth set of simulations. Here we consider a two-layer
medium: a snow layer of fine pure snow (grain size 50 µm) over an optically
thick layer of glacier ice (air bubble filled). The computation has been repeated
for various thickness of the snow layer. The optical properties of pure snow has
been computed as in previous simulations. Instead, for bubbly ice we employed a
different approach (Mullen and Warren, 1988). Assuming the radius of a bubble
equal to 0.3 mm, the scattering efficiency of the bubble-ice mixture has been calcu-
lated running the Mie code for a particle with the radius as the bubble and index
of refraction equal only real and equal to the one of ice. The absorption coefficient
has then been computed multiplying the absorption coefficient of pure ice (Kou
et al., 1993) per the volume fraction of ice. In our case we assumed Vair = 0.15
and Vice = 0.85. Finally, the optical thickness of the layer of pure snow has been
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Figure 3.5 Spectral albedo for a layer of pure snow over a layer of optically thick ice as
a function of wavelength and snow depth. The snow particle grain size is
assumed to be 50 µm.

set equal to:

τsnow =
3
4

ρsnowzQt,snow

riceρice
, (3.28)

where τsnow is the optical thickness of the snow layer, ρsnow = 918 · 0.109 =

100 kg m−3 is the density of the snow, z is the snow geometrical depth in m, rice

is the snow grain radius in m, and ρice = 918 kg m−3 is the density of ice. As we
can see from Figure 3.5, the spectral albedo in the visible range is sensitive to the
depth of the snow layer. This enables an estimation of the amount of the snowfall
measuring the reflectance through remote sensing instruments.

Finally, the fifth set of simulations shows an example of a BRF for an optically
thick mixture of soil and ice as a function of the percentage in volume of the two
pure components. The input parameters, including complex index of refraction,
grain size, and grain size distribution for both soil and snow are reported in Ta-
ble 3.2. The mixture was computed at a specified wavelength in the visible region
of the spectrum, i.e. 0.63 µm. The 641 coefficients of the Legendre expansion of
the phase function as well as the single scattering albedo have been computed fol-
lowing the methodology and using the code provided by Mishchenko, Dlugach,
et al. (1999). Figure 3.6 demonstrates the reflectance variability associated with in-
timate mixtures of ice and sediment/soil. As we can see, and following common
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(a) 100% Ice 0% Soil (b) 75% Ice 25% Soil

(c) 50% Ice 50% Soil

(d) 25% Ice 75% Soil (e) 0% Ice 100% Soil

Figure 3.6 BRF simulations for intimate mixtures (in volume percentage) of ice and sed-
iment/soil. The white dot represents the impinging solar beam. The overall
magnitude (i.e. albedo) decreases as the percentage of soil increases. The BRF
patterns are also a function of the mixture percentage. This set of simulations
shows that BRF patterns can be potentially used to discriminate between var-
ious surface materials and conditions in glacier environments.
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Table 3.2 Input optical parameters employed for MADOC BRF simulations of intimate
and areal mixtures of ice and soil.

Ice Soil

Wavelength 0.63 µm 0.63 µm
Particle diameter 30 µm 30 µm
Variance 0.2 0.1
Distribution Log Normal Modified gamma
Index of Refraction (Real) 1.31 1.55
Index of Refraction (Imag) 0 0.001
Max radius 35
Min radius 25
Single-scattering albedo 1 0.85413
Max scattering coefficients 641 641
Type of simulation Intimate Mixture Intimate Mixture

sense, the magnitude of reflectance decreases with increasing percentage of sed-
iment/soil. Also, pure ice exhibits a highly variable pattern that is directionally
dependent. This anisotropic reflectance changes with increasing sediment. In par-
ticular, the azimuthal reflectance variations become more spatially homogeneous.
The forward-scattering component also decreases in extent and magnitude, while
the backscatter component decreases in extent, and exhibits an increase in magni-
tude associated with increasing debris.
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Conclusions

The aim of this work has been to explore various applications of the transport
theory for industrial and environmental protection purposes, and specifically to
neutron and photon transport. The numerical modeling required for nuclear re-
actor analysis and remote sensing applications has been discussed, presenting
our research devoted to provide fast, accurate, and efficient tools to analyze such
systems.

Chapter 1 has been dedicated to the application of neutron transport theory
for nuclear reactor applications, and in particular to the acceleration of the com-
putation. A direct calculation for whole core heterogeneous geometries repre-
sents a challenge for the extreme complexity and correlated great computational
effort. Typically, homogenization techniques are employed to collapse spatial het-
erogeneities into homogenized equivalent cross sections, unfortunately introduc-
ing substantial error in the flux distribution and leading to inaccurate prediction
of punctual reaction rates. The augmentation of the computation power in mod-
ern computers coupled with a renewed research in a more precise numerical tools
is gradually making increasingly possible to study clusters of fuel assemblies and
small cores in full transport theory and even in 3D geometries, without assuming
spatial homogenization.

In particular, the Method of Short Characteristics (MSC) implemented in the
code IDT-APOLLO has been recently extended to take into account heterogeneous
Cartesian cells, to exactly represent the ordinary fuel pins of water-moderated re-
actors. However, proper acceleration techniques are of paramount importance
in order to make the problem tractable and the solution feasible for industrial
and research needs. Convergence acceleration techniques applied to source iter-
ations based transport codes are essential when the regions in the spatial mesh
are optically thick and the scattering to total extinction ratio is very close to unity.
Applications to nuclear reactors and shields usually employs finer meshes, but
the extreme heterogeneities coupled with the steep gradients of the neutron flux
make practical simulations very slow. Acceleration methods are therefore useful
to greatly reduce the overall computational burden.
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We concentrated our efforts in the implementation of the Boundary Projection
Acceleration (BPA) for the peculiar heterogeneous Cartesian cells of IDT-APOLLO.
Being a linear acceleration scheme, it is guaranteed to converge to the unaccel-
erated (source iteration) equation. The BPA is a synthetic transport acceleration
technique that involves a lower order angular discretization for the construction of
the transport operator. The calculation of the response matrices of the acceleration
problem has been carried out by integration and projection of the matrices used
by free iterations. The acceleration scheme has been further enhanced considering
the boundary source residual error, increasing the consistency of the acceleration
model.

The results provided by the C5G7 benchmark in 2D and 3D configurations
demonstrate the effectiveness of the BPA. More specifically the number of internal
iterations needed to achieve convergence drops by a factor of 4 in 2D and by a
factor of 6 in 3D. Comparison with the non-linear Coarse Mesh Finite Differences
(CMFD) acceleration scheme manifests the spectral superiority of the BPA method.
However, considering the total CPU time, BPA appears more competitive than
CMFD only for higher SN angular discretization. In fact, the CMFD approach
involves a pre-homogenization phase, where the number of unknowns is by far
reduced, as opposed to BPA, that only degrades the angular representation while
preserving the full description of the spatial heterogeneities.

The effect of the CMFD acceleration applied to the external iteration has been
studied as well. The combination of CMFD (external iterations) and BPA (internal
iterations) has been proved to be more efficient than other methods based on
Chebyshev acceleration and group rebalance. In particular the savings in terms
of total inner iterations is 4-fold in 2D and 2-fold in 3D.

Regarding the spatial representation of the angular flux, in the cases examined
in 2D and 3D the linear characteristics scheme has manifested to be sensibly more
accurate than the constant one. On the other side, bilinear has not provided
substantial gain in the precision of the eigenvalue estimation, while increasing
the cost in terms of calculation time.

In Chapter 2 we focused our attention on the temperature effects in the elastic
scattering for heavy isotopes accounting for the anisotropy of elastic scattering in
the center of mass reference system. Nuclear data processing codes like NJOY
usually neglect the temperature dependency of transfer kernel above the thermal
region, assuming the asymptotic model, that considers only down-scattering. It
has already been proven that there is a sensible probability of elastic up-scattering
by resonant isotopes in the vicinity of the thermal region. In particular, the prob-
ability of up-scattering increases on the left side of the resonance. Therefore the
effect is particularly important when a pair of absorption and scattering reso-
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nances are very close. In such cases, during the slowing down a neutron may
be sent back to an higher energy by the up-scattering effect just mentioned and
it should be passed through the absorption peak multiple times. However, the
bulk of neutrons usually slows down in the moderator, and since this effect is
pronounced only for heavy isotopes, it may occur mostly on the periphery of the
fuel pin. Elastic up-scattering is shown to affect the calculation of reactivity as
well as the neutron balance and then the fuel burn-up.

We proposed a method for computing the Doppler-broadened transfer kernel
for elastic scattering of heavy nuclei that accounts for resonance behavior, and we
determined the angular moments by an accurate angular quadrature. Then this
methodology can be applied to the generation of multigroup transfer matrices for
deterministic transport computations, and there is also a potential for applications
to Monte Carlo.

We employed an exponential cutoff to limit the interval of the integral defin-
ing the Doppler-broadened transfer kernel. This approach has been proved to
be very efficient in reducing the overall computational burden while avoiding
numerical instabilities. The accuracy of the algorithm has been proved from com-
parison with analytic solutions for constant cross section. Regarding the angular
moments calculation, two types of representations have been tested: a global col-
location technique based on the Gauss-Legendre nodes, and a simpler continuous
piecewise linear interpolation. An increased difficulty for the angular moment
numerical quadrature has been found for exiting neutron energies close to the
impinging energy, that comes from the singularity of the kernel at E′ = E. Sub-
sequent refinements of the angular representation has enabled the precise eval-
uation of the angular moment integral, with good agreement with previously
published results.

We first considered the case of an isotropic scattering law in the center of mass
system. Analysis of the transfer kernel for 238U increasing the temperature have
demonstrated the presence of a pronounced up-scattering peak for back-scattering
angles at 1000 K. The behavior of the angular moments has been studied as well.
In particular, it has been found that the effect of up-scattering at high tempera-
tures is present only for the first resolved resonances at few eV. At higher energies
the validity of the asymptotic models has been confirmed.

We then studied the effect of anisotropy in the scattering law. From the anal-
ysis of the cross section data, it is shown that 238U presents anisotropy of the
scattering only for energies above 1 keV. As a consequence, the is no sensible
up-scattering prompted by resonances.

Chapter 3 has been dedicated to photon transport theory, and in particular
how it can be employed to quantify the amount of radiation reflected by glacier
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surfaces in the study of Earth’s cryosphere. Numerical modeling of radiative
transfer equation has provided the scientific community with a numerical algo-
rithm that permits the computation of physical quantities of interest in remote
sensing, like BRF and spectral albedo, both efficiently and accurately.

However, such radiance calculations are only meaningful if knowledge of the
medium optical properties is available, since they require the input of explicit
models for single-scattering albedo and scattering phase function, that in turn de-
pends upon the use of absorption and scattering coefficients (or efficiencies), the
asymmetry parameter (or Legendre coefficients describing the series expansion of
the phase function), particle concentrations, wavelength of interest, as well as size
and shape of the single-type particles/mixture of many-type particles describing
the medium. Mie theory is the most popular way to determine such properties,
and it is based on the assumption that a single particle is spherical. Mie-based
codes have been designed to compute the aforementioned parameters as a func-
tion of the complex index of refraction and particle size. The modeling of the
optical properties of glacier environments, i.e. snow, ice, soil, and mixtures, has
been discussed, including extensive analysis of the validity of the approximations
employed.

The radiative transfer simulation examples have demonstrated that modeling
can be effectively employed as an investigative tool to assess the information con-
tent in satellite images. Furthermore they show how typical glacier surface con-
ditions and glacial lakes optically respond as a function of their morphological
and mineralogical composition. Consequently, the coupling of radiative transfer
modeling and multispectral digital image analysis can be used to assess impor-
tant biophysical parameters of glacier environments, such that the ingesting of
sensor data can produce spatio-temporal quantitative information regarding the
observed medium including ice grain size, percentage of carbon soot in snow,
concentration of glacier flour in lakes, pixel debris cover percentages. The latter
reinforce the significance of radiative transfer modeling for studying and under-
standing the Earth’s cryosphere.
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