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Abstract 

A major weakness of composite materials is that low-velocity impact, introduced  accidentally  during  

manufacture,  operation  or  maintenance  of  the  aircraft,  may  result  in  delaminations between the plies. 

Most studies regarding the effect of low-velocity impact damage reported in the literature have focused on 

thicker flat plates that are typical of those used for wing structures, but there are a few studies that address 

the low-velocity impact response of thinner curved composite panels that are typical of fuselage skins. 

Therefore, the first part of this study is focused on mechanics of curved laminates under impact loading. For 

this aim, the effect of preloading on impact response of curved composite laminates is considered. By 

applying the preload, the stress through the thickness and curvature of the laminates increased. The results 

showed that all impact parameters are varied significantly. For understanding the contribution rate of 

preloading and pre-stress on the obtained results another test is designed. The outcomes shows that the effect 

of curvature is more on maximum contact load, maximum displacement, and time duration of impact. The 

interesting phenomenon is that the preloading can decrease the damaged area when the curvature of the both 

specimens is the same. Finally the effect of curvature type, concave and convex, is investigated under impact 

loading. The results proved that the maximum load is more in concave laminates, while the damaged area in 

convex laminates is more. 

In another part of this research, a new composition of nanofibrous mats are developed to improve the 

efficiency of curved laminates under impact loading. Therefore, at first some fracture tests are conducted to 

consider the effect of Nylon 6,6, PCL, and their mixture on mode I and mode II fracture toughness. For this 

goal, nanofibers are electrospun and interleaved between mid-plane of laminate composite to conduct mode I 

and mode II tests. The results shows that efficiency of Nylon 6,6 is better than PCL in mode II, while the 

effect of PCL on fracture toughness of mode I is more. By mixing these nanofibers the shortage of the 

individual nanofibers is compensated and so the Nylon 6,6/PCL nanofibers could increased mode I and II 

fracture toughness. Then all these nanofibers are used between all layers of composite layers to investigate 



 
 

their effect on damaged area. The results showed that PCL could decrease the damaged area about 25% and 

Nylon 6,6 and mixed nanofibers about 50%. 
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Chapter 1 

Introduction 

 

Composite materials have become more popular over the years. Composites offer many 

advantages over traditional metallic materials due to their higher stiffness-to-weight and strength-

to-weight ratio. The aerospace, automotive, transportation, construction and other industries are 

applying composite materials for saving the energy, and performance benefits can be obtained using 

these materials. Composite structures are always exposed to impact during manufacturing, service, 

and maintenance operations. Impact damage in composites usually results in internal micro 

damages that are difficult to detect by naked eyes but may cause severe degradation of material 

properties, such as the compressive strength leading to a reduction in performance of the structure.  

The impact resistance of composite laminates has been considered intensively for many years [1-5]. 

Most of the available literature deals with impact on structures without any pre-stresses. Usually, in 

addition to impact loading,  composite  structures  may  experience  pre-stresses  produced  either  

by  service  loads  or  by  the manufacturing/assembly process. When a structure is under tensile 

load, the effect of internal delamination on the residual strength is small. On the contrary, in 

compression delamination is the worst destabilizer, since it may become unstable and propagate [6, 

7]. The pre-stress can be uniaxial and biaxial tension/compression, pure shear and their 

combinations, which have been considered by various researchers [8-10]. On the other hand, most 

of the studies in the literature have focused on thicker flat plates, but there are few studies that 

address the low-velocity impact response of thinner curved composite panels that are typical of 
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aircraft wing and fuselage skin [11-14]. Fig. 1 illustrates some parts of the aircraft wing and 

fuselage exposed to various threats of  foreign object damage like birds, hail, runway debris or tire 

rubber impact. All these parts are curved laminates that can present different response to impact 

loading under various situations: 1- curvature value 2- preloading 3- curvature type (concave or 

convex). In the first part of this study, the effect of all these situations on the impact response of 

curved composite laminates is considered. 

 

 

Fig. 1.1.  Illustration of aircraft components exposed to the risk of bird strike [15]. 

 

When a foreign object impacts on a laminate, several damage modes can occur in composite 

laminates: matrix cracks, fiber/matrix interface debonding, fiber fracture, and delaminations (Fig. 

2). Dominant damage mode depends on the impact parameters of the impactor and the material 

properties of the composites [16].  
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Fig. 1.2. Failure modes of composite laminates under impact loading [17,18] 

 

epoxy is used as the matrix in most of composite laminates, but its inherent brittleness is the main 

reason for delamination which is one the most important failure mode in composite laminates. So 

far many attempts have been conducted for resolving this problem that finally lead to development 

of novel resin systems involving the use of thermoplastics as toughening agents [19-23]. The 

toughening material can be used as a discrete layer of a secondary material in the form of film, 

fiber, or particle between composite layers [24-26]. Since the distribution of fibers is easier than 

particles and also its efficiency is more than films [27-28], many researches have been focused on 

these materials. Li et al. [27] and Magniez et al. [28] compared the influence of polymeric 

nanofibers and films on fracture toughness of composite laminates. In the first study, 

polyvinylidene fluoride (PVDF) nanofiber and film were prepared and interleaved between 

composite layers for toughening carbon/epoxy laminates. They showed that mode II fracture 

toughness increase 57% using nanofibers while applying PVDF in form of film decreased this 

parameter significantly. In the second research, Polysulfone (PSF) used and like the first study they 

proved nanofibers effect on mode I fracture toughness is more in comparison with PSF film. The 

results of these two topics are illustrated in Fig. 3. HMW and LMH mentioned in Fig.1-A means 
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high and low molecular weight, respectively. Because of the nanofiber advantages in toughening of 

composite laminates, in this study a wide research has been done for decreasing the failure in 

curved laminates and increasing its performance while it is under the service loading. 

 

  

Fig. 1.3. A) The effect of PVDF film and nanofibers on mode II fracture toughness [27]. 

The comparison of mode I fracture toughness of: B) reference laminate C) modified laminate with PSF film and 

nanofibers [28] 

 

In chapter 2, first a wide literature review is presented about what has been presented regarding the 

effect of curvature and preloading on the impact response of composite laminates. Then three 

different tests designed for considering the mechanics of curved laminates under impact loading. In 
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the first one, the effect of preloading on the impact parameters is considered. In this situation, by 

applying the load the, curvature and the stress in the laminates are changed. For understanding the 

contribution rate of stress and the curvature on the results of the last test, the second test is designed. 

Finally for considering the effect of curvature type, concave or convex, the third test is conducted. 

In chapter 3, electrospinning method for producing nanofibers is introduced with which a composite 

nanofiber provided for increasing mode I and mode II fracture toughness. For finding its efficiency 

in toughening epoxy-based laminates some mode I and mode II fracture tests conducted  using 

double cantilever beam (DCB) and the End Notched Flexure (ENF) specimens. In chapter 4, this 

new composite nanofibers are used for investigating its influence on impact response of curved 

laminate.    
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Chapter 2: 

Mechanics of Curved Laminates 

2.1. Introduction 

In this chapter some parameters that affect on impact response of curved composite laminates are 

considered: 1- curvature effect 2- pre-stress effect 3- curvature type (concave or convex). Before describing 

experimental method and final result, a review regarding what have been followed by other researcher is 

presented in this section: 

 

2.1.1. Effect of pre-stress 

composite material structures exposed to impact loading are likely to be under a static load prior to 

impact. Therefore, evaluation the behaviour of preloaded composite under impact is an important topic. 

Arranging a setup for providing pre-stress conditions is very complicated and so some limited experimental 

works in this field are available in literature and most studies are numerically.  

The impact resistance of pre-tension, pre-compression and unloaded quasi-isotropic graphite/epoxy 

laminated samples have been studied in [29] with an  instrumented drop-weight testing machine. The pre-

load stress level was selected to be 20% of the ultimate compressive strength of the material. Pre-tension 

increased the maximum force, while pre-compression decreased it. However, the damage area exhibited a 

rather different trend. The damage was minimal for the unloaded samples. The damage area was larger for 

the pre-compressed samples and the major axis of the damage zone ellipse was aligned with the pre-

compression direction. In this case, specimen  was damaged and bent into large deflection, i.e. the specimen 

would be under post-buckling. Therefore, the damage size of precompression specimen was enlarged 

because of the delamination buckling. Finally, the damage was largest for the pre-tension samples, where the 

major axis of the damage zone ellipse was perpendicular to the pre-tension direction. Robb et al. [30] 
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published the most complete paper in this field, which encompasses a wide range of pre-loading (uniaxial 

and biaxial tension/compression, pre-strain of 0 to 6000). They conducted drop tower studies on pre-

loaded E-glass/polyester laminates. It was found that there is no significant damage growth in GRP samples 

up to the pre-strain level of ±2000με. They also found that the most damage, least contact force, and least 

contact duration were caused in a biaxially loaded tension/compression state. Whittingham et al. [31] 

conducted low velocity impact tests on carbon/epoxy laminates. The following pre-stresses were introduced 

to specimens: 1) uniaxial tension (1000 and 1500) 2) bi-axial tension-tension (500/500 and 1000/1000) 

3) bi-axial tension-compression (500/-500με, 1000/-1000με, and 1500/-1500με). The uniaxial-loaded 

samples were impacted with an impact energy of 6 J and others with energies of 6 and 10 J. Their results 

showed that there is no significant difference in impact resistances for the unstressed and pre-stressed cases. 

Therefore there is a good agreement between these results with what presented by Robb et.al [30]. Because 

in both of these studies they showed that in strain less than 2000 the effect of preloading is not noticeable. 

Mitrevski et al. [32] investigated the influence of impactor shape on the biaxially (tension) pre-stressed 

impact of E glass/polyester laminates. Biaxial tension values applied in this study were 500 and 1000 and 

impact tests were conducted in 4 and 6J. As the contact surface of the impactor shifts from flat to 

hemispherical to ogival to conical (Fig. 2.1), the maximum deflection and absorbed energy increased. For the 

amount of pre-tension applied in this test, no considerable effect on damaged area were observed. Minak et 

al. [33] investigated carbon/epoxy cylinders which were pre-stressed in torsion prior to low velocity impact 

tests (7J). They reported that that the delamination initiation is not affected by the torsional preload. On the 

other hand, as evidenced by the variation in the contact duration and the tube maximum deflection, 

delamination propagation is highly affected by the torsional load. 

 

Fig .2.1. Impactor shapes; (a) flat, (b) hemispherical, (c) ogival and (d) conical, all 12 mm in diameter [32] 
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Many finite element analyses (FEA) have been conducted on the impact response on pre-stressed laminates. 

Khalili et al. [34] used ABAQUS software for modelling curved laminate and consider its behaviour under 

low velocity impact. The main goal of this study was finding a suitable method for obtaining accurate and 

precise answer from the software. Accurate modelling requires the appropriate selection of element type, 

solution method, impactor modelling method, meshing pattern and contact modelling. By considering several 

case studies with various conditions, validity of the existed modelling processes was examined. In each case, 

by comparing the results of various methods with the related available experimental test results in existing 

literature, the best procedure was proposed which can serve as benchmark method in low-velocity impact 

modelling of composite structures. Zheng et al. [35] studied dynamic responses of a pre-stressed laminated 

composite plate under impact based on the linearized elastoplastic contact law as well as shear deformable 

plate theory. The effects of pre-stresses (biaxial-tension/tension or compression/comprerssion), velocity and 

mass of the impactor, plate thickness, and shear strength of the laminate on the contact force and plate 

central displacement are presented. It was found that initial stress does not have noticeable effect on the 

contact force history but it has significant effect on the plate central displacement. It was found that 

Compressive pre-stress tends to increase the displacement and also the impact response is proportional to the 

impact velocity. The contact force increases with the increasing of the mass of impactor, thickness and shear 

strength of the laminate. Larger deflection of the plate were also introduced by a heavier mass and thinner 

plate thickness. Ghelli and Minak [36] studied the effect of membrane pre-loads through FEA. It was shown 

that tensile pre-load increased the peak stress while the compressive pre-load reduced the peak impact stress. 

Heimbs et al. [37] considered the preloading effect experimentally and numerically using LS-DYNA 

software and compared the results. The specimens were subjected to uniaxial compressive preloading until 

80% of buckling load. The experimental test series showed an increased deflection for the preloaded 

composite plates, which lead to a higher extent of material damage compared to the unloaded plates with 

delaminations as one important energy absorption8 mechanism. Therefore, the total absorbed energy was 

higher for the preloaded plates. 
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2.1.2. Effect of curvature 

Like the last section, some analytical, numerical, and experimental studies have been followed for 

investigation the effect of curvature on impact response of composite laminates. 

Kistler and Waas [38-40] have conducted one the most experimental studies in this field. They considered 

the effect of thickness, curvature, and boundary conditions. They showed that as the thickness decreased the 

curvature effect becomes more important. They also concluded that flat panels responded to impacts with 

larger peak forces but smaller maximum deflection than the curved panels. The influence of curvature on 

impact force is stronger when the straight edges of the laminate are prevented from displacing outwards. Kim 

et al. [41] in a similar study mentioned that as the curvature increased the contact force decreased. In other 

words, both studies showed that as the curved panels became flat the maximum contact force increased. 

They also showed that a composite design with the smallest radius of curvature and the most interlaminar 

surfaces the least amount of damage. As the panel became flat, the impact force increased. Ambur and 

Starnes [42] considered this effect using a wider range of curvature. They showed that the contact force 

decreases by increasing the radius of curvature until 76cm and after this critical point increasing the radius 

leads to increase of contact force. The effect of height in curved laminates and also the boundary conditions 

on energy absorption was investigated by Schulz and Liu [43]. Experimental results showed that the 

maximum deflection and the energy absorption increased significantly as the camber height increased while 

the peak load decreased slightly. It was also found that the boundary condition played an important role in 

the energy absorption process. They used two kinds of clamps: frame-clamped and bolt-clamped boundary 

conditions. In the first one, when the specimens were held by a rectangular frame and clamped at four 

corners by toggle clamps slippage between the specimens and the frame could happen. In order to 

completely eliminate the slippage, the second clamp was used in which additional holes at each end of the 

frame were prepared to bolt the specimens. Bolting the specimen increased the visible delamination and fiber 

breakage and several times the specimen broke into two pieces. Study by Short et al. [44] on post-impact 

compressive strength  of curved composites showed a linear trend of damage area with increasing impact 

energy (3J, 6J, and 9J) for a flat panel and two different radii: 75 and 125mm. The results indicate that the 

curvature tends to reduce the impact force; examination for each energy level shows lower impact force as 

curvature is increased.    
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Numerical studies about the effect of curvature is very vast and different parameters and methods have been 

used. Leylek et al [45] used MSC.DAYTRAN software to determine the accuracy and efficiency of a 

nonlinear explicit FE code and compare the results to published experimental data. The study looked at the 

impact response as a function of composite panel curvature, composite mesh density, impactor mass, 

velocity and size, and also various suggestions were made for improving the accuracy and efficiency of FE 

analysis procedures in composite low energy impact studies. In some experimental studies have been done 

before by changing the curvature, maximum force increased and in some others decreased. Since in this 

study a wide range curvature radius was considered, this effect can be investigated better. As illustrated in 

Fig. 2.2, in very low radius of curvature, a small enhancement in the radius leads to a sharp decline in contact 

force, but in some regions this increase causes a rise in contact force. So far, there is no studies about the 

exact reason of this phenomenon. Surely many structural factors affect on this response.  

 

 

Fig. 2.2. The effect of Radius of curvature on maximum contact force [45] 

 

In another study, Yokoyama et al. [46] developed a damage model formulation based on a methodology that 

combines stress based, continuum damage mechanics (CDM) and fracture mechanics approaches within a 

unified procedure by using a smeared cracking formulation. The damage model was implemented as a user-

defined material model in ABAQUS FE code within shell elements. They considered the effect of curvature, 

thickness, and internal pressure on impact response of curved laminate. The results showed that damage 
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extent under impact loading decreases when combined with internal pressure effects. The results also 

indicated that larger the plate curvature higher is the amount of dissipated energy during the impact loading. 

Moreover, the amount of dissipated energy decreases as the plate thickness increases. A finite element code 

to model dynamic behavior and subsequent damage of a composite cylinder subject to impact loading is 

successfully implemented by Krishnamurthy et al. [47]. Many parameters considered in this research but 

what distinguishes this study to others is determining the effect initial hoop stress in a composite cylinder on 

its impact response. Their test outcomes showed that increased hoop stress enhances the strength and 

stiffness. The initial hoop stress influence on damage area of each composite layers also was investigated. 

Ganapathy and Rao [48] considered two kinds of curvature: cylindrical and spherical shell panels. The 

damage in a spherical shell panel is more than a cylindrical shell panel of same dimensions, since the former 

is stiffer than the latter. 

There are many other studies in this field that the difference between them is: 1- the methodology of 

determining failure criterion 2- effective parameters such as thickness, curvature, impact energy, boundary 

conditions and etc [49-55]. Since in what presented here is enough for understanding the effect of curvature, 

the other studies are not considered. 

 

2.1.3. Effect of curvature type (concave or convex) 

Regarding the effect of curvature type on mechanical behaviour of composite laminate under low velocity 

impact only one conference paper can be found in literature [56]. This study was followed by Vaidya and his 

group members on E-glass/Vinyl ester composite laminates.  Fig. 2.3 is the schematic picture of the test 

method. The tests conducted on these parameters: 1- Impact energy: 13.5J 2- Two different radii of curvature 

(200mm and 265mm). The concave curved panels absorbed more energy and load compared to flat and 

convex curved samples. There is no analysing on damage in this paper and surely a deep consideration needs 

in this topic. There is another research in this field [57], but the situation is different with what is considering 

here. Zhang et al.  investigated the composite laminates under low velocity impact while the specimen was 

under post-buckling position (in different modes).    

There are some studies in this field under high velocity impact [58,59], but since in this thesis the main study 

is focused on low velocity impact, more consideration is waived in this section. 
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Fig. 2.3.  Illustration of impact condition on flat and curved panels. For the curved  

panel, the impact was imparted on the concave and convex sides respectively [56]. 

 

In the following sections some experimental studies will be conducted regarding all topics introduced in this 

part: 1- The effect of preloading in convex curved laminates 2- the effect of curvature type, convex or 

concave 3- the effect of preloading on concave laminates under impact loading.   

 

2.2. Experimental program 

 2.2.1. The effect of preloading on impact response of convex curved laminates 

2.2.1.1. Material and specimens: 

Unidirectional glass/epoxy prepreg (Ref. 1017) supplied by G. Angeloni Srl was used in this research; its 

mechanical properties are shown in Table 1. All these parameters was evaluated experimentally except G12 

which was estimated according to literature [60-62].  Thirty six composite specimens with 168 mm length, 

100 mm width, 3.1±0.1mm thickness, and 20 mm height as illustrated in Fig. 2.4 were manufactured in an 

autoclave by stacking 10 unidirectional plies with sequence of [0/90/0/90/0]S.  

 

 

Fig. 2.4. Schematic picture of curved laminate with dimensions 
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Table 2.1. Mechanical Properties of Glass/epoxy lamina. 

 

E1 (Gpa) 

 

E2 (Gpa) 

 

G12 (Gpa) 

 

V12  

 

44 11 4.5 0.28  

 

Xt (MPa) 

 

Xc (MPa) 

 

Yt (MPa) 

 

Yc (MPa) 

 

S (MPa) 

1000 500 80 130 60 

 

 

2.2.1.2. Test setup 

Three different drop heights of 0.5, 1, and 2m, corresponding to a nominal potential energy of 6, 12, and 24 

J, and two different pre-strains of 3000 and 5000 , were chosen to consider the effect of preloading in 

different impact energies and boundary conditions. Three specimens were used for each combination of 

parameters. The tests were conducted in a custom built drop-weight machine equipped with a laser device (to 

measure the initial velocity) and a piezoelectric load cell attached to the impactor. The signals of both load 

cell and laser were acquired at 100 kHz sampling frequency without any filtering except the intrinsic one due 

to the measurement chain. The hemispherical head of the load cell had a diameter of 12.7 mm and the total 

mass of the impactor was 1.22 Kg. The curved laminates were positioned under this drop tower and 

preloaded by means of a special fixture designed and fabricated to meet the goals of this research (Fig. 2.5). 

 

 

Fig. 2.5. A) Drop weight machine B) The fixture used for conducting load   

C) A schematic drawing of fixture 
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In order to apply the preload two parallel steel plates were used with the load cell placed between one of 

them and the hydraulic cylinder. A strain gauge was installed on each specimen, but the load cell was used 

for obtaining more precise results. The impact tests were conducted for two different boundary conditions 

(Fig. 2.6):  

1- The straight edges fixed in x and y directions and the curved edges free (indicated with “S” in the 

figures) 

2- The same boundary conditions for the straight edges but the curved edges fixed only in y direction, 

by using special supports (indicated with “F” in the figures). The nuts illustrated in Fig. 2.6-B were 

located in the side rails shown in Fig. 2.5-C and fastened with screws. 

Velocity V(t) and central displacement U(t) of the impactor were obtained by calculating the first and second 

numerical integration of force F(t), respectively, as given in Eqs. (2.1) and (2.2), 

�(�) = �� + ∫ �(�)�� = �� −
�

�
∫ �(�)��

�

�

�

�
                                                                                                  (2.1) 

�(�) = �� + ∫ �(�)��
�

�
                                                                                                                                 (2.2) 

where Vi is initial velocity before contact obtained from the laser device and U0 is the initial displacement 

which is supposed to be zero (as initial condition in t=0). a(t) and m are acceleration and mass, respectively. 

Absorbed energy Ea can be calculated from the following equation, 

         ��(�) =
� (��(�)���

�)

�
                                                                                                                             (2.3) 

 

 

Fig. 2.6. The boundary conditions applied on: A) the specimen labeled with “S”   

B) the specimen labeled with “F”   
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2.2.1.3. Results and discussion 

Twelve different combinations were considered to find the effect of preloading on the impact response of 

curved laminates. The impact force-displacement curves are illustrated in Fig. 2.7 Each situation has a 

specific code in this figure which is defined as follows: (The type of boundary condition: “S” or “F”-The 

amount of pre-strain 0, 3000, or 5000-The amount of impact energy: 6, 12, or 24J). 

When pressure is applied on curved laminates the curvature and the stiffness increase [38]. On the other 

hand, also by using the “F” boundary condition the stiffness of laminates increased. Comparing the curves in 

Fig. 2.7 and considering the relation of maximum force to maximum displacement for both these conditions 

in comparison with reference specimens (without preload and with the “S” boundary condition), the effect of 

preloading (by 5000) on stiffness of laminate is much more than the “F” boundary condition. When these 

two effects combine, F-5000-6 or 12J, the maximum contact force and minimum deflection were obtained, 

and on the contrary, for S-0-6 and 12J this behavior is completely the opposite. 

The delamination threshold force can be obtained from the force–time history and is described as the force 

level at which a sudden force drop happens due to material damage [63]. Fig. 2.8 shows the force-time 

history of curved laminates under 12J impact energy and “S” boundary condition. The position of 

delamination threshold force on curves is determined by a black oval. As shown, in all curves the 

delamination starts almost at the same time, but at different values of force. In Fig. 2.8, in the region marked 

by the red oval, some small force drops or oscillations can be appreciated. Such a behavior of force-time 

diagram can be associated with the introduction of transverse matrix crack or localized indentation of the 

specimen as described by Schoeppner and Abrate [64] .It is interesting to note that by increasing the 

preloading, the impact  force  required to onset the delamination and matrix cracks increases as well.   

In the following section, the effects of preloading and boundary conditions on all impact parameters, i.e 

maximum contact force (Fmax), displacement (Umax), absorbed energy (E), damaged area (A), and time-

duration of impact (tF) are considered.  
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12J impact tests

Displacement (mm)

0 2 4 6 8

F
o

rc
e

 (
N

)

0

500

1000

1500

2000

2500

3000

S-0-12J
S-3000-12J
S-5000-12J
F-0-12J
F-5000-12J

 

24J Impact tests
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 Fig. 2.7. Force versus impactor displacement for all laminates 
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Fig. 2.8. The force history during impact loading under energy of 12J and “S” boundary condition 
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a) Effect on maximum contact force: 

The effect of different combinations on maximum contact force is shown in Fig. 2.9. By increasing the 

preloading to 3000 and 5000, the maximum force increased. This phenomenon is related to two different 

factors: changing the curvature and tension stress in the upper part of the specimen. Using these results, it is 

not possible to determine what percentage of this increment is due to the effect of curvature and how much to 

the effect of tension preloading. However, in the next step of this study, this will be considered. 

Comparing the outcomes with different impact energies shows that in higher impact energies, the difference 

between the maximum load of 5000 and 0 is much higher. For example, this difference for 6J-energies 

is about 290N (9.7% increase), while for 12J it is 480N (20.8% increase) (for the “S” boundary condition) 

(Table 1-A).   

By applying the “F” boundary condition, the maximum load is enhanced because of the decrease in 

compliance. However, it is interesting to note that when this boundary condition was utilized, the effect of 

preloading decreased. This means that the difference between the maximum force of F-0-12J and F-5000-12J 

(7.3% increase) is less than the difference between S-0-12J and S-5000-12J (20.8% increase) (Table 2-B).
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Fig. 2.9. Maximum force of impact tests for all situation 
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Table 2.2. The effect of A) Pre-load  B) Boundary conditions on Maximum force 

(A) S-0-6J S-5000-6J S-0-12J S-5000-12J 

Maximum Force (N) 2250 2470 2300 2780 

Variation (%) 0 9.7 0 20.8 

 

(B) S-0-12J S-5000-12J F-0-12J F-5000-12J 

Maximum Force (N) 2300 2780 2600 2790 

Variation (%) 0 20.8 0 7.3 

 

 

b) Effect on maximum deflection and time-duration of impact: 

The displacement history calculated by Eqs. (1) and (2) includes the specimen deflection and any indentation 

or penetration. The time duration of impacts and maximum displacements are shown in Figs. 2.10 and 2.11. 

As shown in these figures and comparing their results with Fig. 2.9, it can be see that the trend is completely 

similar to each other and opposite to the maximum force. In any condition in which there is an increase in 

force, the displacement decreases. This is because the increase of curvature decreases the compliance of 

laminates, thereby resulting in lower central displacement and higher impact force. 

Table. 3 presents the preload and boundary condition effect on time-duration of impact and maximum 

displacement under impact of 6 and 12J. Mostly in all situations, except one, both factors lead to decrease in 

tF and Umax, but preload influence is significantly more. For instance, Pre-strain of 5000 and “F” boundary 

condition reduced tF 12% and 5.9% in comparison with reference laminates, respectively. According to this 

table, increase of the impact energy from 6 to 12J caused 17.5% and 82% enhancement in tF and Umax, 

respectively.  

  

Table 2.3. The effect of Preload and boundary conditions on time-duration of  

impact and maximum displacement (6 and 12J) 

 S-0-6J S-5000-6J F-0-6J S-0-12J S-0-12J F-0-12J 

Time-duration of 

impact (ms) 

4.22 3.71 3.97 4.96 4.22 4.65 

Variation (%) 0 -12% -5.9% 0 -14.9% -6.25 

Maximum 

Displacement (mm) 

4.2 3.82 4.41 7.65 6.12 6.8 

Variation (%) 0 -9% +5% 0 -20% -11% 
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Fig. 2.10. Time-duration of impact tests for all situations 
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Fig. 2.11. Maximum Displacement of impact tests for all situations 

 

c)Effect on damaged area: 

The size of the damaged area is illustrated in Fig. 2.12. To find the exact results of this parameter, the 

following steps were performed: 1-Near the damaged area, a 1cm-line was drawn 2-Placing a strong light 

source behind each specimen, some photos were taken. 3- The pictures were imported to AutoCAD software 

to calculate the area. 4-The 1cm-line was used for scaling all dimensions in the software.  
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Generally, by raising impact energy, preloading, and applying the “F” boundary condition the damage area 

increased. The trend of their effects is exactly the same with what mentioned in the last section. Comparing 

red (reference laminates), green (preloaded laminates), and yellow (supported laminates by “F” boundary 

condition) columns (6 and 12J) in Fig. 2.12 demonstrates that preloading can cause more damage area for 

composite laminates.    
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Fig. 2.12. Maximum Displacement of impact tests for all situations 

 

Table 2.4. The effect of preloading value on damaged area (A)under 12 and 24J 

 Reference  

(Red column) 

Preloading of 3000 

(Violet column) 

Preloading of 5000 

(Green column) 

Panel radius of curvature 

(R) (mm) 

190  148  126 

Variation(%) 0 -22.1%  -33.7% 

Damaged area, A (6J)  

(mm2) 

78 152 176 

Variation(%) 0 94.8% 125.6% 

Damaged area, A (12J) 

(mm2) 

348 437 482 

Variation(%) 0 25.5% 38% 

 

The effect of preloading value on damaged area is presented in Table 4. As shown, the most portion of 

damage area was caused by 3000. While this amount of preloading enhanced A to 94.8%, 5000 
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increased it to 125.6% which is only 30.8% more (for 6J impact energy). From this situation, a very 

important result can be obtained. By increasing the preload from 0 to 3000, the radius of curvature (R) 

reduced 22.1%, i.e. curvature increased. Continuing to increase preload up to 5000, i.e. 66.7% increase, 

lead to decrease R to 33.7% which is only 11.6% less than last situation. Therefore it can be concluded that 

curvature affects more than preloading on damaged area. This story is the same for 12J-energy impact tests 

as shown in the table. 

When a foreign object impacts on a composite laminate, the following damage modes can occur in the 

laminate: delamination, splitting, matrix and fiber cracking. Depending on different situations and parameters 

such as the impact energy, the shape of the laminate, boundary conditions, etc., different damage modes can 

occur. In order to have a more precise idea, some images from the front and back surfaces of the damaged 

samples (front surface is impacted) are provided in Figs. 2.12 and 2.13, respectively. As seen, due to the 

conditions of the impact tests, only delamination, splitting, and matrix cracking can be observed, 

delamination  and matrix cracking being the dominant mode. From the view of the back surface (Fig. 2.13) 

in all impacted specimens, delamination and matrix crack modes exist, but splitting cannot be observed in 

non-loaded 6J-tests. One very interesting phenomenon that occurred is that when the preloading increased in 

the laminates, the level of matrix cracking decreased. This means the maximum matrix cracks can be found 

in non-preloaded specimens. The existence of compression stress in the lowest layer of the laminate, during 

impact loading, restricted the propagation of cracks in the matrix. The reason of this phenomenon can be 

described as follows: preloading causes tensile and compressive stresses on the top and bottom surfaces 

respectively, while impact loading leads to compression on the top and tension on the bottom. Therefore 

during impact the stresses caused by these two loads have opposite sign. For matrix cracking the dominant 

criterion is the maximum tensile stress. When the specimen is under pre-loading, the tensile stress caused by 

impact loading is less than the situation of without preload. So, by increasing the preload the amount of 

matrix cracks decreases.   

It is also worth mentioning that in lower impact energies, 6 and 12J, the shape of the damaged area is 

approximately ellipsoid, but in higher impact energy, 24J, it is rhombic like. 
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A) S-0-6J 

 

B) S-5000-6J 

 

C) F-0-6J 

 

D) F-5000-6J 

 

E) S-0-12J 

 

F) S-3000-12J 

 

G) S-5000-12J 

 

H) F-0-12J 

 

I) F-5000-12J 

 

J) S-0-24J 

 

K) S-3000-24J 

 

L) S-5000-24J 

 

Fig. 2.13. The image of damaged area in back surface 

 

For the front surface (Fig. 2.14), not all specimens are shown because for the 6J-impact tests, the specimens 

had almost the same shape and mode of failure (delamination) and only the level of the area slightly 

increased or decreased. Therefore Fig. 2.14-A is illustrated as representative of the others. In higher impact 

energies, 12 and 24J, all damage modes of delamination, fiber splitting, and matrix cracks are clearly visible. 

Unlike the back surface, when the specimen is under preloading, the matrix cracks are more on the front 

Matrix cracks 

Delamination 

Matrix cracks Fiber Splitting 
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surface. This proves that tension stress in the upper surface and compression stress in the lower one 

increased and decreased, respectively, matrix cracks in laminate composites. Another point is that the 

direction of matrix cracks are mostly in the same direction with preloading, while the direction of splitting is 

orthogonal to it. 

 

A) S,F- 0,5000-6J 

 

B) S-0-12J 

 

C) S-3000-12J 

 

D) S-5000-12J 

 

E) F-0-12J 

 

F) F-5000-12J 

 

G) S-0-24J 

 

H) S-3000-24J 

 

I) S-5000-24J 

 

Fig. 2.14. The image of damaged area in front surface 

 

d) Effect on Absorbed Energy: 

In this section the effect of preloading on total energy absorbed during impact (Eat) is considered. This 

parameter was calculated by replacing the rebound velocity of impactor at end of the test in Eq. (3). As 

shown in Fig. 15, there is a decreasing trend in absorbed energy by raising the preloading (regardless of 

some experimental errors). By comparing this figure with Fig. 2.12, an uncommon behavior attracts 

attention. It is demonstrated that by increasing the preload, the damaged area increased and absorbed energy 

Matrix cracks 
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decreased, while flat laminates mostly do not show this phenomenon in different situations [65, 66]. This 

behavior has been considered before in several papers [30,67, 68]. Robb et al. [30] shows experimentally that 

by exposing flat E-Glass/polyester laminates under 6000-biaxial tension, the damage area and absorbed 

energy are 1.18 more and 0.93 less, respectively, in comparison with unstressed laminates. Sun and 

Chattopadhyay [67] analytically considered the dynamic response of anisotropic laminated plates under 

initial stress subject to impact. In their study, also the initial stress was biaxial tension. Contact force and 

dynamic response are obtained by solving a nonlinear integral equation. They showed that less energy is 

absorbed if the plate is under pre-stress. The reason for this behavior is more intelligible in numerical studies 

conducted by Krishnamurthy et al. [68]. They considered the impact response of cylindrical shell panels 

(curved laminate) and cylindrical shells (full cylindrical laminate) under different situations: mass and 

velocity of impactor, radius of curvature. In a part of this research, the effect of curvature on the absorbed 

energy of cylindrical shells was considered. Two parameters of Es and Ed represent the total energy absorbed 

by the structure during impact and the energy used for causing indentation/damage. As shown in Fig. 2.16-A 

[68], the maximum load belongs to R (the radius of the cylinder) =0.05m and so the specimen is in the 

stiffest position. But according to Fig. 2.16-B [68], the total absorbed energy, Es, during impact loading is the 

minimum. On the other hand, the maximum Ed used for damage and indentation is for the position of 

R=0.05. These curves prove that while total absorbed energy, Es, decreased, damage and indentation can 

rise. It is also clear that the energy used for indentation/damage is a minor fraction of the energy transferred 

to the shell, and most of Es is obviously used in deforming the shell. It should be mentioned that the curves in 

Fig. 13-A are for different combinations for comparison with curves in Fig. 2.16-B. They are illustrated only 

for considering the effect of curvature.  
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Fig. 2.15. Absorbed energy of impact tests for all situations 
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Fig. 2.16. Effect cylinder radius on A) contact force, B) Es, Ed during impact on a composite cylinder (The curves in (A) 

and (B) belong to different situation such as various mass and velocity of impactor) [68] 

 

2.2.2. Determining the contribution rate of pre-stress and curvature on impact response of preloaded curved 

laminates 

In the last part, it was shown that preloading changed the impact parameters of curved laminates significantly  

by increasing curvature and tensile and compression stress through the thickness. A very important question 

regarding this effect is: what is the contribution level of stress and curvature on impact parameters specially 
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damaged area. For answering this question a new test was conducted in the following method. Three 

different specimens were provided: 

1- Nine specimens which their curvature was the same with the last test and no preloading will be conducted 

during the impact test (Type A). 2- Nine specimens which their curvature is the same with the same group, 

but will be under pre loading during the impact test (preloaded Type A). 3- Nine specimens that their 

curvature is the same with the second group (after their preloading) and no preloading will be conducted 

during impact test (Type B). It should be mentioned that the curvature of the Type A specimen is about 

190mm and the curvature of the two others is about 125mm. Since the curvature of the second and third 

groups is the same, so the effect of stress on impact parameters can be determined. Fig. 2.17 is shown the 

configuration of all samples. The material and test setup is the same with the last test and impact tests were 

conducted under 6, 12, 24, and 36J. The pre-strain is the second group of specimens is 5300. 

 

 

Fig. 2.17. Configuration of the samples for determining the contribution rate of pre-stress and curvature 

on impact response of preloaded curved laminates: A) Type A    B) Type B    C) Preloaded Type A. 

 

2.2.2.1. Results and discussion 

The Force-Displacement curves obtained from impact tests are shown in Fig. 2.18. As seen the group of 

“Type B” and “Preloaded Type A” have a very similar behavior, while the group of “Type A” follows a 
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completely a different trend. Since in the “Type A” specimens the curvature is less and also there is no 

preloading the stiffness is less, but the other two other groups the stiffness is almost the same which shows 

the stiffness is more depends on curvature, not pre-stress. For considering more details, the impact 

parameters: maximum load, maximum displacement, time-duration of impact, and damaged area are 

presented in Figs. 2.19 and 2. 20.  

According to Fig. 2.19 all impact parameters are almost the same for the “Preloaded Type A” and “Type B” 

specimens that shows pre-stress does not affect on these parameters significantly. On the other hand in the 

“Type A” specimen in which the curvature is more and there is no pre-stress the impact parameter is 

completely different. Therefore, the maximum displacement and time-duration of impact is more and 

maximum force is less in comparison with two other configuration. It is related to this fact that when the 

curvature is less the stiffness decreased and so under the impact loading less force can be transferred to the 

specimen.  

The effect of the pre-stress and curvature on damaged area is shown in Fig. 2.20. The effect of curvature and 

pre-stress on the damaged are is completely visible from this figure. By applying preload the curvature and 

pre-stress increased in the laminate (Preloaded Type A) and so damaged area increased. For understanding 

the contribution level of pre-stress and curvature in this situation “Type B” specimens were provided that its 

curvature is the same with “Pre-loaded Type A”, but does not have pre stress. As shown in the Fig. 2.20 the 

damaged area in “Type B” specimen is much more than “preloaded Type A” that means preloading could 

decrease the damage in the laminate. This result is very important in designing of composite components. 

When in a specific structure, a curved laminate composite should be used, by applying a pre-stress this part 

will be more safe.    

Table 2.5 presents more details about the effect of curvature and pre-stress on damaged area. Table 2.5-A 

shows that decreasing the radius of curvature from 190mm (Type A) to 125mm (Type B) increased the 

damaged area about 100% in various impact energies. On the other hand, by applying pre-stress on the 

specimens (Preloaded Type A) the damaged area increased from 36% to 62%. Table 2.5-B showed the effect 

of pre-stress, while the curvature of both samples of “Preloaded Type A” and “Type B” is the same. The 

results show that the pre-stress, decreased the damaged area from -16% to -32% in different impact energies.  
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Table 2.5. Damaged area in different configuration under various impact energies. 

 

A 
6J 
 

12J 24J 36J 

Type 
A 

Preloaded 
Type A 

Type 
B 

Type 
A 

Preloaded 
Type A 

Type 
B 

Type 
A 

Preloaded 
Type A 

Type 
B 

Type 
A 

Preloaded  
Type A 

Type 
B 

Damaged Area 27.3 43 57 51 72 107 151 205 244 211 342 473.5 

Variation (%) -- +57.5 +109 -- +41 +110 -- +36 +92 -- +62 +124 

 

 

B 
6J 
 

12J 24J 36J 

Preloaded Type A Type 
B 

Preloaded Type A Type 
B 

Preloaded Type A Type 
B 

Preloaded  
Type A 

Type 
B 

Damaged Area 43 57 72 107 205 244 342 473.5 

Variation (%) -24.5 -- -32.7 -- -16 -- -27.7 -- 
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Fig. 2.18. Force versus impactor displacement for impact energies of: 6J, 12J, 24J, and 36J 
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Fig. 2.19. The effect of different configuration on: A) maximum load  B) maximum displacement and 

C) impact duration. 
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Fig. 2.20. The effect of different configuration on damaged area.   

 

2.2.3. The effect of curvature type, convex or concave 

In this section the effect of curvature type, convex or concave, on impact response of composite laminate is 

considered. For this aim, the impact tests were conducted for each situation under 6,12,24, and 36J. 

 
2.2.3.1. Material, specimens, and test setup 

The material and its mechanical properties are the same with what presented in the last part. As seen in Fig. 

2.21, another kind of specimen is used for this test. Because in the concave situation, the specimen is  under 

tension stress during impact (membrane effect) so the last specimen could not bear this stress.  Fifteen 

composite specimens with 188 mm length, 100 mm width, 3.3±0.1mm thickness, and 20 mm height as 

illustrated in Fig. 2.21 were manufactured in an autoclave by stacking 10 unidirectional plies with sequence 

of [0/-45/45/90/0]S. The test setup is again the same with the last test with only one difference in which 3 

holes were made to each straight support to fasten the specimen to the fixture by screws. For each situation, 2 

or 3 tests were conducted. If the results of the first two tests were near to each other, the 3 one waived. 
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Fig. 2.21. Configuration of the specimen for conducting impact tests  

on the convex and concave surfaces 
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Fig. 2.22. Force versus impactor displacement for impact energies of: 6J, 12J, 24J, and 36J 
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2.2.3.2. Results and discussion 

Fig. 18 shows the Force-Displacement curves in which “CX” and “CV” represent convex and concave 

configurations. As completely visible, in concave configuration the maximum force is more and maximum 

displacement is less than convex samples, so the stiffness of concave laminates are more than convex ones. 

Table 2.6. presents more details about the effect of specimen shape and impact energy on stiffness. As 

shown, increasing the impact energy causes more difference between the stiffness of concave and convex 

shapes under impact. For example, in impact energy of 6J the stiffness increased 12.7% by changing the 

configuration from CX to CV, whereas under 36J it increased 44.4%.  This phenomenon can be relate to 

membrane effect that concave laminates are under tension stress during the impact while convex ones are 

under compression.  

 

Table 2.6. The variation of stiffness in different configuration (concave or convex) and impact energies.  

 6J 
 

12J 24J 36J 

CX CV CX CV CX CV CX CV 
Maximum 

Load 
2130 2314 2429 2687 3056 3730 4276 5253 

Maximum  
Displacement 

4.156 4.005 7.163 6.834 10.96 9.94 12.66 10.77 

Stiffness 512.5 577.8 339.1 393.2 278.8 375.25 
 

337.8 
 

487.7 

Variation 
(%) 

 +12.7  +16  +34.6  +44.4 

 

Like the last section the effect of curvature type on impact parameters, maximum force, maximum 

displacement, impact duration, damage area, and absorbed energy, is presented. As seen in Fig. 2.23, by 

changing the curvature from convex to concave the maximum load increased, and maximum displacement 

and load duration decreased. In all pictures shown in this figure by increasing the impact energy, the effect of 

changing curvature in more visible. As mentioned before, the difference is because of the membrane effect in 

which convex specimens are under compression stress during impact and concave ones under tension. When 

the specimen is under tension the specimen is more stiff, therefore the maximum load is more and the 

displacement and time duration are less. 
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Fig. 2.23. The effect of curvature type on maximum load (N), maximum displacement (mm) and impact duration (ms) 
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The damaged areas under different impact energies cin concave and convex laminates are shown in Fig. 

2.24. As seen, the amount of damage is more in convex configuration. This increased damage extent for 

convex shells is attributed to compressive membrane stresses that have been shown to promote delamination 

growth through sub-laminate buckling. In impact energies of 24 and 36J this effect can be seen better. 
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Fig 2.24. The effect of curvature shape on the amount of damaged area 
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Chapter 3: 

Toughening Composite Laminates using nanofibers 

 

3.1. Introduction 

Delamination is one of the major failure mode in composite laminates which is a discontinuity 

between adjacent plies and can be viewed as an interface crack between two anisotropic materials. 

Susceptibility to delamination is an intrinsic and severe problem of laminates that can ultimately undergo 

structural failure. Delamination can be caused by many factors such as interlaminar stresses, stress 

concentration at free edges, joints, matrix cracks, out-of-plane loading, physical discontinuities or mismatch 

in mechanical properties between adjacent layers [69]. The interest of the research community on this 

problem is highly connected to industry since many companies are facing this problem, which is particularly 

critical for aerospace and aeronautical applications. So far researchers have developed many techniques to 

face the delamination problem such as matrix toughening [70], stitching polymeric filaments [71], optimum 

stacking sequence [72], through-the-thickness reinforcement [73], Z-pins [74], and fiber braiding [75].  

Hojo et. al [70] investigated mode I delamination fatigue crack growth behaviour of carbon/epoxy laminates 

with two kinds of interlayer/interleaf. One was with heterogeneous interlayer with fine polyamide particles, 

T800H/3900-2, and the other was with interleaf of new types of thermoplastic resin, ionomer, 

UT500/111/ionomer. The first one, T800H/3900 -2, indicated the transition of the crack path from the 

toughened inter layer region (Stage I) to the untoughened inter layer/base lamina interface (Stage II). The 

crack growth resistance for toughened Stage I was 3.0 times higher than the reference laminates. Though the 

growth resistance decreased in Stage II, it was still 1.6 times higher than that of the reference laminates. This 

transition occurred for much shorter increment of the crack length than that under static loading. The 
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laminates with a new thermo plastic resin (ionomer) interleaf, UT 500/111/ionomer, keep higher crack 

growth resistance without respect to the increment of the crack length under fatigue loading. The threshold 

value was 3.3–3.5 times higher than the base laminates. This increase was similar to that of the propagation 

values of the static fracture toughness. Though the crack path was at the interleaf/base lamina interface, the 

resin of this region consists of ionomer and epoxy resin, forming toughened interphase. Thus, the crack path 

was still within the toughened region without respect to the crack length. Fig. 3.1 illustrates the crack 

propagation in these two laminates.  

Another method introduced by Yang et. al [71] studied into a new type of stitched fiber/polymer laminate 

that combines high interlaminar toughness with self-healing repair of delamination damage by stitching 

Poly(ethylene-co-methacrylicacid) (EMAA)  filaments into carbon  fiber/epoxy laminate. They 

manufactured a three-dimensional self-healing  fiber system that also provides high fracture toughness. 

Double cantilever beam (DCB) tests revealed that the stitched EMAA fibers increased the mode I 

interlaminar fracture toughness of the laminate about 120%. The 3D stitched network was effective in 

delivering self-healing EMAA material extracted from the stitches into the damaged region, and it resulted in 

high recovery in the delamination fracture toughness (around 150% compared to the reference material). 

This novel self-healing stitching method provides high toughness which resists to delamination growth while 

also have the functionality to repeatedly repair multiple layers of damage in epoxy matrix laminates.  

Finding an optimum stacking sequence was considered by Fuoss and his colleagues [72]. They developed a 

finite element model to analyze the internal stress state in the laminate and predict delamination damage 

under impact loading. The effect of three parameters on damage resistance of laminates was considered: 

interface angle, ply orientation relative to a fixed angle and ply grouping. According to outcomes, they 

proposed several guidelines to design with laminates, such as avoiding ply grouping and stacking adjacent 

plies in similar orientation, particularly at interface angles below 45.  

Howard et. al [73] proposed a navel method for increasing the capacity of laminate composite under different 

loading using through-the-thickness 3D reinforcements. They investigated the bonding effect of U-shaped 

caps to the edge of a laminate analytically and experimentally. In the analytical section a generalized plane 

strain finite element is used to predict reduction of interlaminar normal stresses when a U-shaped cap is 

applied. Three-dimensional composite material failure criteria are used in a progressive laminate failure 
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analysis to predict failure loads of laminates with different edge cap designs. In an experimental program, 

symmetric 11-layer graphite-epoxy laminates with a one-layer cap of Kevlar-epoxy cloth are shown to be 

130% to 140% stronger than uncapped laminates under static tensile and tension-tension fatigue loading. The 

predicted failure load calculated with the finite element results is 10% lower than the actual failure load. For 

both capped and uncapped laminates, actual failure loads are lower than those predicted using classical 

lamination theory stresses and a 2-D failure criterion.  

Another method of through-the-thickness reinforcement was presented by Partridge [74] in which  Z-Fiber® 

pins inserted in laminate composite (Fig. 3.2). For determining the effectiveness of this method, 

delamination tests samples were prepared from unidirectional continuous carbon fiber/epoxy prepreg 

(IMS/924), made into 3 mm thick unidirectional laminates with and without a block of Z-pins in the crack 

path. Fracture testing was carried out under Mode I and Mode II loading conditions.   

Three-dimensional braided carbon fiber epoxy resin composites (Fig 3.3) are significant structural materials 

in the fields of astronauts and aeronautics. The effect of the process and test parameters on the mechanical 

properties was studied by Tang et al [75]. The results indicate that the mechanical properties can be 

significantly affected by the parameters of braiding: by decreasing the braided angle, the elastic moduli and 

the ultimate tensile strength showed an obvious increase. 

  

 

Fig. 3.1. Schematic models of crack paths under mode I loading: (a) interlayer-toughened laminates,  

(b) ionomer-interleaved laminates [70] 
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Fig. 3.2. Steady-state crack propagation of Z-pinned laminates [74].  

 

 

Fig. 3.3. Schematic structure of 3-D braided laminate [76] 

 

In this research, the concentration is on the first topic regarding the toughening of epoxy as a matrix in the 

composite laminates. For toughening epoxy, the modifier can be in three forms: film, particles, and 

nanofibers. Nanofibers exhibit interesting characteristics such as very high surface area to volume ratio, 

flexibility in surface functionalities, higher porosity and smaller pores, and excellent mechanical 

performance such as stiffness and tensile strength, compared to micro-fibers of the same material. As 

mentioned before among these forms using nanofibers are easier and much more effectiveness.  

Usage of electrospun nanofibers as a interlayer between composite layers was proposed firstly as a patent by 

Dzenis and Reneker [77]. They proposed to interleave a laminate with polymeric nanofibrous non-woven 

mat fabricated trough the electrospinning process. They demonstrated that a fiber reinforced composite 

laminate with polymeric electrospun nanofibrous mats placed at one or more ply interfaces is characterized 

by an improved delamination resistance.  
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In the following sections these topics are presented: 1- Electrospinning method for producing nanofibers 2- 

The application of nanofibers in toughening composite laminates 3- presenting a case study using two 

different kinds of nanofibers to increase the mode I and mode II fracture toughness. 

 

3.2. Electrospinning: 

Electrospinning is a fascinating and easy technique for producing fibrous mats from different kinds of 

synthetic and natural polymers. The structure and morphology of such fibers can be controlled from a few 

micrometers to a few nanometers and highly aligned fibrous (Fig 3.4-A) or randomly oriented (Fig 3.4-B) 

matrices can be fabricated.  

 

 

Fig. 3.4. Different kinds of nanofibers: A) Aligned nanofibers  B) Random nanofibers 

 

Electrospinning had been known as electrostatic spinning and until 1933 only a few papers published 

regarding its application in producing of thin fibers [78–80]. Formhals presented his first invention in 1934 

about the process and the machine for producing filaments using electric charges [81]. Since before him the 

method of producing artificial threads using electric field had been applied, his patent did not attract the 

other researchers’ attention. His spinning device contained a movable collector on which the threads were 

gathered in a stretched state. The machine could produce parallel threads onto the collector such that they 

could be unwound continuously. One the most disadvantages of the process suggested by Formhals was that 

the final product of the fibers was wet because of the short distance between the collector and spinning zone. 
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For resolving this problem he change this distance by revising his machine. In this way, the drying time 

increased and so the final electrospun fibers ware completely dry [82]. After Formhals studies, so many other 

researches have been on this topic, but the term of “electrospinning”, derived from “electrostatic spinning”, 

has been used relatively recently (in around 1994), but as mentioned before its origin can be traced back to 

more than 60 years ago.  

As seen in Fig. 3.5, an electrospinning system consists of three major components: a high voltage power, a 

capillary tube with a small-diameter needle, and a grounded collecting plate (usually a metal screen, plate, or 

rotating mandrel). The process utilizes a high voltage source to inject charge of a certain polarity into the 

polymer solution which is then accelerated towards a collector of opposite polarity. Most of the polymers are 

dissolved in some solvents before electrospinning to form the polymer solution. This  fluid is then introduced 

into the capillary tube for the electrospinning process. The polymeric solution held by its surface tension at 

the end of a capillary tube is subjected to an electric field which induces an electric charge on the liquid 

surface. When the electric field reaches a critical value, the repulsive forces overcome the surface tension 

ones. Eventually, a charged jet of the solution is ejected from the tip of the Taylor cone and an unstable and 

rapid whipping of the jet occurs in the space between the capillary tip and collector. This motion leads to the 

evaporation of the solvent, leaving the polymer behind. There are many parameters that influence the 

electrospinning process and so the final morphology of the fibers: 1- the type of the solvent and polymer 2- 

Solution concentration 3- Voltage value 4- Distance between needle tip and the collector 5- the rate of the 

solution 5- environmental conditions 6- Motion and shape of collector 7- needle diameter. The effect of some 

of these factors are considered in the following paragraphs. 

The concentrations of polymer solution play an important role in the fiber formation during the 

electrospinning process because it is strongly related to the viscosity of the solution. Morphology of 

nanofibers are dependent on solution viscosity [83]. When the concentration is very low, polymeric micro or 

nano-particles can be obtained that is electrospray instead of electrospinning [84]. Increase of the polymer 

concentration, therefore, can decrease the numbers and sizes of beads, and eliminate beads completely in 

some cases. Fig. 3.6 is shown the effect of increasing concentration on the morphology of the electrospinning 

final product. 
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Fig. 3.5. Schematic diagram of set up of electrospinning apparatus 

 

 

 

 

Fig. 3.6. SEM images of the evolution of the products with different concentrations from low to 

high during the electrospinning [85,86] 

 

In electrospinning process, applied voltage is one the most important factors among others. Only the applied 

voltage higher than the threshold voltage, charged jets ejected from Taylor Cone, can occur. Regarding the 

Increasing the solution concentration 
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effect of the voltage on the diameter of electrospun fibers some different and opposite reports have been 

published. For instance, Reneker and Chun [87] have shown that voltage does not affect significantly on the 

diameter of electrospun polyethylene oxide (PEO) nanofibers. There are also some evidences that higher 

voltages facilitated the formation of large diameter fiber like Zhang et al. study on poly (vinyl alcohol) 

(PVA)/water [88]. Several researches suggested that higher voltages can increase the electrostatic repulsive 

force on the charged jet that leads to decreasing nanofiber diameter. Yuan et al. [89] investigated the effect 

voltage on morphologies and fiber alignment with polysulfone (PSF)/DMAC/acetone as model. Applying 

10, 15, and 20 kV of voltage leads to 344, 331, and 323nm of nanofiber diameter. In addition, some studies 

also proved that higher voltage offers the higher possibility of beads formation [90,91].  

The flow rate of the polymer solution is another important process parameter. Generally, it is suggested that 

the flow rate is better to be low until the solution has enough time for polarization. If the flow rate is very 

high, bead fibers with thick diameter will form rather than the smooth fiber with thin diameter. Yuan et al. 

[89] investigated the effect of the flow rate on the morphologies of the PSF fibers from 20% PSF/DMAC 

solution at 10 kV. In their study, bead fibers with thicker diameters can be obtained as the flow rate is 0.66 

ml/h, while with flow rate of 0.4 the final mat is completely smooth and thinner. 

The distance between the collector and the tip of the syringe can also affect the fiber diameter and its 

morphologies. When this distance is short, the time is not enough for the fibers to be solidified and inversely 

if the distance is very long, the fibers consists of many beads. Therefore, for finding a quality of nanofibers 

an optimum distance should be found. As shown by Yuan et al [89] increasing the distance, a thinner fibers 

can be obtained (It means after finding the optimum distance, increasing a little of this parameter the fiber 

can be thinner, but it should not be so much because will make beads in the fibers). 

Environmental parameters such as temperature and humidity also affect the process of electrospinning and 

morphology of nanofibers. Mituppatham et al. [92] considered this effect using polyaide-6 and their showed 

that increasing the temperature caused thinner nanofiber. Regarding the effect of humidity: Generally lower 

humidity dry and solution and enhance the evaporation rate during electrospinning. On the contrary, higher 

humidity leads to thicker nanofiber. Because in this situation the charges is less and so stretching force 

become weaker. It should be mentioned that changing environmental parameters can vary the 
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electrospinning process. For example, if a smooth nanofiber can be produced by 15kV of voltage, changing 

the humidity forced the process to change the voltage for obtaining the same quality of the nanofiber. 

 

3.3. Nanofiber applications 

When the diameters of polymer fiber materials change from micrometers like 10–100 m to submicrons or 

nanometers, several amazing advantages such as large surface area to volume ratio, flexibility in surface 

functionalities, and mechanical performance (e.g. stiffness and tensile strength) compared with any other 

known form of the material can be obtained. These outstanding properties make the electrospun nanofibers 

to be suitable choice for many important applications. As seen in Fig. 3.7, nanofibers are applicable in many 

fields, but mostly they have been used in health and medicine sector. 

 

 

Fig. 3.7. The application of nanofibers in different fields 

 

Since this  study deals with integration of polymeric electrospun nanofibers into epoxy-based composite 

materials to improve delamination resistance and fracture toughness of interfaces,  in the next section a 

review of the works already published on this topic is presented. 

 

 



44 
 

3.3.1. Application of nanofibers in composite materials 

Dzenis et al. [93] firstly patented the use of nanofibers to reinforce carbon fiber composite laminate.  In their 

patent authors showed that a  reinforced laminate with electrospun nanofibrous mats placed at one or more 

ply interfaces can improve delamination resistance (Fig. 3.8). Indeed, composite laminates incorporating 

nanofibrous reinforcements are expected to have an improved interlaminar fracture toughness, strength, and 

delamination resistance towards static, fatigue, and impact loadings. In particular, the nanofibrous 

reinforcement can be useful in suppressing and arresting delamination from any source, including matrix 

cracks, free edges, notches or holes, ply drops, bonded joints, bolted joints, out-of-plane loading, and etc. 

 

 

Fig. 3.8. A schematic picture of interleaved composite laminate [94] 

 

Before introducing nanofibers as an interlayer for strengthening composite laminates, different methods have 

been used such as using polymeric films and particles. Therefore, usage thermoplastic for toughening epoxy-

based laminated was known from many years ago, but as mentioned before the efficiency of nanofibers is 

much more than other shapes of interleaving.  
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Table 3.1. Summary of some studies regarding the effect of film, particles, and chopped fibers on the fracture response 

of interleaved laminates 

 
Reference 

No. 

 
Laminate type 

 
Interleaved 

film, particle or fiber 

Maximum 
curing 

temprature 

Dimension 
of  

interleaved 
material 

Improvement of 
mode I fracture 

toughness 

Improvement of 
mode II fracture 

toughness 

 
[95] 

Carbon/Epoxy 
(1K plain woven) 

Polysulfone 
(Particles) 

 
190 

50 to 150m 
and 

150 to 250m 

 
220% 

 
----- 

 
[96] 

1K carbon 
fabric/epoxy 

Polysulfone 
(film) 

190 (2 hours) 5,10,15,20% 20%: 2.7times  
----- 

 
[97] 

Carbon/Epoxy 
(Unidirectional) 

Ethylene-based 
ionomer (film) 

140 
(1.5 hour) 

12, 25, 100 and 
200 m 

3, 4.8, 6.5, 11 
times more 

 
----- 

 
 

[98] 

 
 

Satin weaved carbon 
fiber fabric 

 
chopped Kevlar fibres 

and 
epoxy resin AY 105 

 
120 

(4 hours) 

150 m of epoxy 
resin AY 105 and 
0.5, 1, 1.5 mg/cm3 

of Kevlar 

 
 

----- 

 
 
1.5 to 2 times 

 
[99] 

 
Plain weave carbon 

fibre fabric 

 
Chopped phenoxy 
fibres (48 mm of 

diameter) 

 
180 

(2 hours) 

 
5% and 10% (with 
regard to the total 
matrix content) 

 
2 and 10 times 

 
----- 

 
 

[70] 

 
 

Unidirectional 
Carbon/epoxy 

 
1- fine polyamide 

particle 
2- UT500/111/ionomer 

 
 

---- 

 
1-30m 

2-25 nd 100m 

 
1-1.6 to 3 times 

2-3.4 times 

 
 

----- 

 

Some of the studies regarding the effect of interleaves in the form of particles, films, and thick fibers on 

fracture response of composite laminates are listed in Table 3-1. Yun et al. [95]  interleaved Polysulfone 

(PSF) particles between plain woven carbon/epoxy laminates. Two groups of particles were used in this test: 

50 to 150m and 150 to 250m and also various concentrations: 5,10,15, and 20 wt% of the matrix. Since 

glass transition temperature of polysulfone is between 180 to 190 oC, the specimens were cured in 190 oC. It 

is shown that by phase separation which happened during curing process PSF could increase the fracture 

toughness. In next sections more information is presented about this mechanism. It is sown that two different 

size of the particles showed similar increasing pattern up to 10 wt % of PSF and from 10 to 20 wt %, the 

fracture toughness of the large size PSF particles was higher than that of the small size particles. The fracture 

toughness of 20 wt % the large size particles-modified epoxy composite was 2.2 times higher than that of the 

unmodified epoxy. Yun et al. [96] in another study instead of particles of PSF used its film. They showed 

that the concentration of the PSF affected on its morphology after curing: increasing the concentration leads 

that the morphology changes from sea-island to nodular structure.  In another study in this field, Matsuda et 

al. [97] considered the influence of Ethylene-based ionomer thickness (12, 25, 100, and 200m) on mode I 

interlaminar fracture toughness of carbon/epoxy laminates. The fracture toughness increased as increasing 

the thickness of inserted ionomer film. This enhancement happened sharply by inserting thin ionomer film, 
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and the additional increase with increasing the ionomer thickness was smaller. According to Fig. 3.9 they 

also showed that crack path was at the interfaces between the interphase region and the ionomer region for 

12 mm- and 25 mm-ionomer-interleaved CFRP, and mainly inside the inter-phase region for 100 mm- and 

200 mm-ionomer-inter-leaved CFRP. Unlike many papers that only consider the mode I fracture toughness, 

Yadav et al. [98] investigated the effect of interleaving in mode II. The five different types of laminates were 

fabricated: 1- laminates without interleaf (baseline) 2-laminates with interleaf of epoxy resin AY 105 of 0.15 

mm thickness 3,4,and 5- laminates with interleaf layer of epoxy AY 105 of 0.150 mm thickness and chopped 

Kevlar-49 fibers in an amount of 0.5, 1.0 and 1.5 mg/cm2. Mode II fracture toughness of composite enhanced 

about two times by interleaving epoxy AY 105 and up to 1.5 times by adding chopped Kevlar reinforcement. 

Flexural modulus declined up to 12% by interleaving and improved up to 6% by increasing amount of 

Kevlar. Therefore, although Kevlar decreased the fracture toughness, but on the other hand could 

compensate the decrease of stiffness. Wong et al. [99] used dissolvable chopped phenoxy fibers, which are 

added at the interlaminar region in a carbon fiber/epoxy composite. The thermoplastic phenoxy fiber 

dissolved in the epoxy during curing and a phase separated morphology with phenoxy-rich secondary phase 

was formed upon curing (like PSF). It was found that the average Mode-I fracture toughness value, increased 

ten times with only 10 wt.% (with regard to the total matrix content) phenoxy fiber added. Other properties 

such as Young’s modulus, tensile strength and thermal stability were not adversely affected.  

 

Fig. 3.9. Schematic figures of the crack path at transverse section for the 

ionomer-interleaved CFRP [97]. 
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The effect of interleaving on impact response of composite materials has been also considered [100-103], but 

much more limited than studies regarding its effect on fracture response. Sohn et al. [100] interleaved 

different kinds of materials to consider and compare the efficiency of each one on mechanical behavior of 

composite under impact loading. The interleaving using PEEA film was suitable in decreasing the damaged 

area while the residual compressive strength was much lower than other interleaved laminates. The good 

interfacial bond strength of Zylon fiber with the epoxy matrix increases the fiber-bridging effect, and thus 

contributes to the remarkable improvement in interlaminar fracture resistance. Four different types of Kevlar 

fiber reinforcements (15 mm in length and 0.8 wt% (uniform and coarse distributions); 15 mm in length with 

0.4 wt%; and 5±7 mm in length with 0.4 wt%) were used. The uniformly and coarsely distributed Kevlar 

fibers did not make much difference. Better impact performances were shown by Kevlar fibers of 5±7 mm 

and 0.4 wt% than those of 15 mm and 0.8 wt%, perhaps due to the intensive fiber-bridging effect with the 

increased number of fiber ends. For all these situation the failure mode was considered by SEM. Duarte et al. 

[101] applied different types of polymers as the interlayer. Olefin film was a good choice for decreasing the 

damaged area under impact loading, but this was accompanied by a reduction in compression strength, due 

to a lack of lateral support for the fibers. Their results showed that using a polyetherimide film, it produced 

reduction in damaged area, and significant improvements in compression after impact strength. A very 

interesting study about the influence of interleaf sequence has been followed by Yi and An [102]. Fig. 3.10 

illustrates different sequences which investigated in this study. PEK-C was used as the toughening agent 

which its morphology after curing is like PSF and phenoxy mentioned before. As seen in the picture the 

minimum damaged area is related to the laminate which all its layers interleaved by PEK-C. For evaluation 

the response of each interleaved laminate under impact, compression after impact (CAI) test also was 

conducted for each situation which the results are shown in Fig. 3.11. According to these results, from 

situation “B” to “G” the CAI strength increased. The situation of “H” is like “G”, but the thickness of 

interleaf is more and in situation “I” which is the weakest one the interleaf was placed in every two plies. 

From these results, it is found that the interleaf position affect considerably on impact response of composite 

laminates. Lu et al. [103] applied poly(ethylene-co-acrylic acid) as interlayer in the midplane of 

unidirectional CFRP laminates.  The  impact penetration energy of the composite  beam increased strongly. 

They also used a microscope during a static flexure test and found out that a  dramatic change of failure 
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mode  can happen from the dominantly compressive fracture of the baseline laminate to the dominantly 

tensile fracture process  upon  interleaved laminate. These  observations  were attributed  to  the change  in  

stress  distribution upon  introduction of the interleaf  layer.  

 

 

Fig. 3.10. Interleaf sequence of the specimens studied and the C-scan result showing the impact damage [102]. 

 

Fig. 3.11. Compression after impact (CAI) of the specimens in dependence on the interleaf sequence [102] 
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After introducing nanofibers as the interlayer for increasing fracture toughness of polymeric composite 

laminates many researches have been followed and different kinds of polymers used to consider their effect 

in this regard. Various polymers have different mechanism and role for toughening the matrix that it will be 

considered in this section. 

Polysulfone (PSF) is one the famous thermoplastics for toughening epoxy. Before its usage in the form of 

nanofiber, many studies conducted in other forms [104-106]. As shown in Fig. 3.12, during curing process 

the PSF is separated from epoxy that is like islands in the sea. The increase of toughness is completely 

related to the separated phase because stress concentrations caused by particles that produce initiating shear 

bands which form plastic zones and so absorbed more energy during loading [107]. On the other hand, when 

the crack propagates and reaches the PSF phase, it is deviated and so more energy is required for the 

propagation. Li et al. [108] used PSF nanofibers and film for toughening CFRP laminates. They performed 

mode I fracture tests and discovered a strong effect of the interleave: mode I fracture toughness of the 

nanofibers toughened composite was 869 J/m2 for 5.0 wt.% PSF nanofibers content, which was 140% and 

280% higher than those of PSF films toughened and untoughened composite respectively due to the uniform 

distribution of PSF spheres (Fig. 3.13).  

 

 

Fig. 3.12. Morphology of epoxy/PSF after curing [106] 
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Fig. 3.13. SEM images of composite fracture surface toughened by 3 wt%: 

 (a) PSF nanofibrous membranes (b) PSF films [108] 

Zhang et al. [109] present an interesting discussion about the efforts to obtain optimal process parameter to 

electrospin Polycaprolactone (PCL), Polyvinylidene uoride (PVDF) and Polyacrylonitrile (PAN) nanofibers. 

They performed Mode I fracture and DMTA tests to determine the conditions which allow the best 

mechanical performances. Their  findings show an optimal concentration of 15 wt.% of PCL solution for 

electrospinning to produce composites with enhanced mode I interlaminar fracture toughness, stable crack 

growth and maintained  flexural strength and modulus. The morphology of PCL is like PSF and during the 

curing process make a separation phase (Fig. 3.14). 

 

 

Fig. 3.14. SEM micrographs of delamination fracture surfaces after mode I fracture tests for specimens toughened by 

PCL nanofibers [109] 
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Another polymer which attract the attention of many researchers for enhancing the fracture toughness is 

Nylon 6,6. Palazzetti et al. in various studies [110-112] considered the effect of Nylon 6,6 on fracture and 

impact response of plain CFRP. Wide range of parameters such as the nanofibers diameter, the thickness of 

mats, the alignment of nanofibers in the mat was considered. In their first study [110] they used two different 

modified specimen: 1- two nanofibrous mats interleaved in the two sides of laminate (down and up) and 2- 

three layers of laminates interleaved in the downer side (Fig. 3.15). All the specimens were subjected to 

static and dynamic tests to assess their stiffness, harmonic frequencies and damping. The experiments were 

repeated before and after low velocity impacts in order to investigate the effect of nanofibers to static and 

dynamic properties when the laminates were impacted. Their results showed that the stiffness of modified 

laminates is 10% less, but the damping ratio is 160% more. Impact tests on nano-modified specimens also 

reveal an 8% lower peak force (for the lowest energy impact) and 14.3% less energy absorbed compared to 

the virgin ones. In another study [111], they considered the influence of Nylon 6,6 nanofibers on mode I and 

II fracture of Gr/epoxy laminates. Results showed that electrospun nanofibrous mat is able to increase by 

23.2% the mechanical energy absorbing capability and by about 5% the mode I fracture toughness. Fracture 

mode II tests revealed that the nanofibrous mats contribute to improve the maximum stress before the 

material crisis (6.5% of increment) and a measurable increment of (8.1%) the maximum mechanical energy 

that can be absorbed by the material during the crack propagation was registered. The acoustic emission 

(AE) technique was also used to monitor both mode I and mode II tests. The AE information highlight that 

the nanofibrous mats mitigate the interlaminar matrix failure on both the fracture modes. In the third study 

[112] they used different geometrical features of electrospun nanofibers: nanofiber orientation, nanolayer 

thickness, and nanofiber diameter to consider their effect on fracture toughness. In mode I tests, increasing 

the thickness of mat and diameter of nanofibers leads to decreasing fracture toughness and the efficiency of 

random nanofibers were more than aligned one. In mode II tests, thickness of the mat did not affect on 

fracture toughness and aligned nanofibers were more suitable. Mode II tests also revealed that smaller 

nanofibers give to the specimen an improved absorbing energy capability, while bigger diameters can 

improve the maxi-mum tension that the specimens can carry on, with respect the virgin configuration. They 

also conducted a numerical research in this regard and compare its outcome with experimental results [113].   
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Fig. 3.15. Different types of interleaving for considering their response under impact loading [110] 

 

Akangah et al. [114] interleaved carbon/epoxy laminates using Nylon 6,6 and conducted some impact tests in 

very low impact energies, 0.46 to 1.8J. The results showed that polymer nanofabric interleaving increased 

the threshold impact force by about 60%, reduced the rate of impact damage growth rate to one-half with 

impact height and reduced impact damage growth rate from 0.115 to 0.105 mm2/N with impact force. 

Another interesting polymer is the polyetherketone-cardo (PEK-C), used also to electrospun nanofibers 

directly deposited on carbon fabric. Zhang [115] investigated the influence of nanofiber diameter and 

interlayer thickness on the Mode I delamination fracture toughness, flexure property and thermal mechanical 

properties of a CFRP interleaved with nanofibers. They have achieved considerably enhanced interlaminar 

fracture toughness. Finer nanofibers result in more stable crack propagation and better mechanical 

performance under flexure loading. Composites modified by finer nanofibers maintained the glass transition 

temperature (Tg ) of the cured resin and increasing nanofiber interlayer thickness improving the fracture 

toughness while compromising the flexure performance. 

So far the method of electrospinning for producing nanofibers described and its application on toughening of 

composite laminates is reviewed. According to the literature each nanofibers has a specific benefit and each 

one is more effective either in mode I or mode II fracture (or perhaps is suitable for both modes but is not 

very effectiveness). In next parts, for the first time the combination of nanofibers is used for improving the 

efficiency of polymeric laminates. For this aim, PCL and Nylon 6,6 are applied since according to the 

literature both of them are a good choice for toughening epoxy.  
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3.4.  Materials and Specimen fabrication 

3.4.1. Materials 

Unidirectional glass/epoxy prepreg (Ref. 1017) supplied by G. Angeloni Srl is used as composite material. 

Nylon 6,6 Zytel E53 NC010 provided from DuPont in the form of pellets and PCL purchased from Sigma-

Aldrich (Table 3.2) were used to electrospun nanofibers. Formic acid, Acetic acid, and Chloroform provided 

from Sigma Aldrich were used as solvents.  

 

Table 3.2. PCL and Nylon 6,6 properties 

Property PCL Property Nylon 6,6 

Form Pellets Form Pellets (3mm) 

Density (g/mL at 25 oC) 1.145 Density (g/mL at 25 oC) 1.14 

Melt Temperature (oC) 60 Melt Temperature (oC) 263 

Number average molar mass (Mn) 70000-90000 Glass Transition Temperature (Tg) (
oC) 50 

 

3.4.2. Electrospinning process and nanofiber producing 

The steps of producing nanofibers using electrospinning is shown in Fig. 3.16. Polymeric solutions used for 

the electrospinning process were made dissolving the 14% wt of Nylon 6,6 in a solvent made 50:50 v/v by 

Formic Acid and Chloroform [111]; PCL solution was made by dissolving in Formic Acid/Acetic Acid 

solvent (60:40 v/v) in a polymer concentration of 15% w/v [116]. Schueren et al. [116] showed that the 

viscosity of PCL solution changes with time, but remains stable within the first 3 hours after dissolving PCL. 

Therefore after this specific time the electrospinning parameters such as voltage, distance from needle to 

collector and rate will be varied for obtaining a steady state condition. 
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Fig. 3.16. The steps of producing nanofibers using electrospinning method 

 

The solutions were then transferred to an in-house electrospinning apparatus for producing nanofibers. Fig. 

3.17 the electrospinning machine manufactured by Spinbow company. This semi-automatic machine 

equipped with two chambers that each one consists 4 needles. The chambers moved vertically and the 

Aluminium collector horizontally. The machine also has some brushes that every 3 min cleaned the tip of 

needles. As seen the picture the red pump is used for transferring the solution from the syringes to the 

chambers using tubes. 

Electrospinning process was optimized and carried out as presented in Table 3.3. Three different nanofiber 

mats were produced: 1- PCL nanofibers 2- Nylon 6,6 nanofibers 3- Nylon 6,6/PCL (mixed) nanofibers. It is 

important to electrospun the same nanofiber content for all the mats. Therefore, since the concentration of 

both solutions and density of Nylon 6,6 and PCL (Table. 3.2) are almost the same, an equal amount of 

solution was electrospun. For this goal 2.4 ml of PCL and 2.4 ml of Nylon 6,6 were used for individual mats 

and for mixed one 1.2 ml of PCL and 1.2 ml of Nylon 6,6 were utilized as follow: 0.4 ml of PCL, 0.6 ml of 

Nylon, 0.4 ml of PCL, 0.6 ml of Nylon, 0.4 ml of PCL. The final thickness of PCL, Nylon 6,6 and mixed 

mats were 27, 31, and 30 m, respectively. The SEM images of electrospun nanofibers are presented in Fig. 

3.18. The nanofibers were electrospun with random directions, and formed heterogeneous crossing junctions 

in mat. The nanofiber diameters of PCL and Nylon 6,6 were about 550 nm and 250 nm, respectively. Fiber 

diameter distribution was determined by measuring 200 fibers per sample, with an image acquisition 

software (EDAX Genesis). 
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Fig. 3.17. Electrospinning machine 

 

Table 3.3. Electrospinning parameters for producing PCL and Nylon nanofibers 

 PCL Nylon 

Applied Voltage (kV) 16 23 

Feed rate (ml/min per nozzle) 0.017 0.005 

Needle tip – collector distance (cm) 10 10 

Humidity 40% 40% 

 

 

Fig. 3.18. SEM images of: A) PCL nanofibers  B) Nylon 6,6 nanofibers 
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3.4.3. Fabrication of test panels 

Double cantilever beam (DCB) (width B = 20 mm, length L = 140 mm, nominal thickness t = 4.2 mm, and 

initial crack length a = 60mm) and End notched flexure (ENF) specimen (width B = 20 mm, length L = 130 

mm, and nominal thickness t = 4.2 mm, and initial crack length a = 40mm) specimens were prepared for 

tests under mode I and mode II loading, respectively (Fig. 3.19). For manufacturing the specimens, 16 

unidirectional layers stacked on each other; the nanofiber mat and a 15m Teflon sheet (for producing initial 

crack) were put between the mid-layers before curing process. Test panels were cured by using a vacuum 

bag in autoclave at 150oC for 1 hour, according to supplier’s specifications. Specimens were cut from the 

laminates using a rotating diamond disk. For DCB tests, aluminium blocks were used to apply the load, as 

shown in Fig. 3.18-A. For each configuration, 5 specimens were manufactured and tested. 

 

 

Fig. 3.19. Sample geometry for: A) double cantilever beam (DCB)  B) end notch flexure (ENF) 

 

3.5. Experimental Tests 

 mode I and mode II fracture tests were carried out in a computer-controlled servo-hydraulic universal testing 

machine Instron 8033 with force capacity of 5 to 250 kN. The cross head speed was controlled at 0.5 and 1.5 

mm/min for ENF and DCB tests respectively, and data was recorded 10 times per second. The energy release 

rate for mode I fracture (GI) testing is obtained from Modified Beam Theory (MBT) Method in the ASTM 

standard [117]: 
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where P is the load,  is he displacement, F is a correction factor for large displacements, N is a correction 

factor for the stiffening caused by the metal blocks and ∆ is a correction for crack tip rotation and deflection. 

∆ is determined from a linear regression analysis of (C)1/3 versus a data, while C is the compliance (/P). The 

direct beam theory was used to calculate the energy release rate for mode II fracture (GII) using the following 

expression [118]: 

��� =
�����

��(�������)
                                                                                                                                  (3.2)

          

3.6. Results and discussion 

In this section the fracture response of reference and nanofiber-modified laminates are presented: 

 

 3.6.1. DCB tests 

In Fig. 3.20 examples of the force-displacement curves of reference and nanofiber-modified laminates are 

presented. Each curve can be divided into three different sections: 1- for the beginning up to first load drop 

(shown on the curves with circle); 2- from the first load drop up to maximum load (initiation stage); 3- from 

the maximum load up to end of test (propagation stage). 

As shown, PCL-modified laminates cause the maximum load in comparison with reference and Nylon 6,6- 

modified specimens which exhibit almost the same trend during crack propagation stage. Although reference 

and Nylon 6,6 reinforced laminates present some similarities in mode I fracture behaviour, the crack starts to 

propagate sooner in reference laminate as shown from the force drop observed at 7 mm displacement. The 

crack in PCL-reinforced laminates begins to propagate earlier than the laminate with Nylon 6,6/ PCL 

(mixed) nanofibers. The maximum force of mixed-mat laminate is lower than those laminates with PCL, but 

after a specific point (black square in the figure), both of them follow the same trend. An interesting 

phenomenon which can be observed in this figure is that the initiation stage in PCL and reference laminate 

begins at lower displacement than what happen in Nylon 6,6 and mixed laminates, and therefore it can be 

concluded that Nylon 6,6 can postpone the starting of the initiation. Also it should be mentioned that all the 

laminates have the same behaviour in the first stage of loading. 
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Fig. 3.20. Force-displacement curves of modified and reference laminates (DCB tests) 

 

Fig. 3.21-A and B compare the amounts of GI in two different stages of initiation and propagation: the 

effectiveness of Nylon 6,6 and PCL is completely inversed in initiation and propagation sections. It means 

that GI is increased 36 and 12 % using Nylon 6,6 and PCL nanofibers respectively during initiation phase, 

while it is -3 and 17% in propagation stage, respectively. A different behaviour is observed mixing the Nylon 

6,6 and PCL nanofibers: specimens addicted with mixed nanofiber increased fracture parameter in both 

stages: 40% (initiation) and 10% (propagation) with respect pristine specimen. Fig. 3.21-C presents average 

of GI during loading, from start of crack propagation up to the end of the test, i.e. the average of initiation 

and propagation stages. Both Nylon 6,6 and PCL nanofibers present an increased GI: 4.5% and 25%, 

respectively. The effectiveness of PCL is much more in mode I loading. It is interesting that the ability of 

mixed nanofiber to increase toughness of laminate is between individual nanofibers with 21% enhancement.  
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Fig. 3.21. The results of energy release rate for mode I fracture (GI) for: A) initiation stage B) propagation stage 

and C) average of GI during loading 

 

3.6.2. ENF tests 

Fig. 3.22 presents the force-displacement curves of mode II fracture tests for reference and modified 

laminates. It is shown that Nylon 6,6 modified specimens can resist more against crack propagation than 

reference laminate and their maximum force increased about 30%. Although maximum forces of PCL and 

Nylon 6,6/PCL-reinforced laminates are almost the same, drop-force position of the second one happened in 

higher displacement (12% increased). From this figure it can be observed that the curvature slope of all 

nano-modified and of the reference laminates is almost the same. This experimental evidence is related to the 

fact that the nanofiber mat is placed in the mid-plane of the laminate and to the fact that mat thickness does 
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not significantly affect the total thickness of the laminate. Therefore, the linear elastic behaviour of the all 

types of laminates can be considered the same. 
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Fig. 3.22. Force-displacement curves of modified and reference laminates (ENF tests) 

 

Fig. 3.23-A shows GII values of nanofiber-reinforced and reference laminates. Unlike mode I tests, the 

effectiveness of Nylon 6,6 is high with 68% enhancement in GII, but the effect of PCL in mode I and II are 

almost similar to each other: 25% in mode I and 24% in mode II in comparison with reference laminate. The 

influence of Nylon 6,6/PCL like mode I results and is between the of PCL and Nylon 6,6 nanofibers.  

Generally, by comparing Fig. 3.23-A and Fig. 3.21-C the ability of mixed nanofibers in toughening epoxy is 

highlighted with 21% in mode I and 56% in mode II, while by using Nylon 6,6 and PCL separately the 

toughening effect is lower (Table 3.4). A very important point in usage of mixed nanofibers is that one of 

them should be powerful in mode-I loading and second one in mode-II. For example, the combination of 

Nylon 6,6 and polyvinylidene fluoride (PVDF) nanofibers is not a good choice. Because the effectiveness of 

PVDF is appreciated under mode II loading and at the same time it is very weak in mode I [28] and 

according to this study Nylon 6,6 is also suitable only in mode II, therefore it cannot be expected that their 

combination can increase GI and so their combination just increased one mode of loading.  
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The mechanical energy from the begin of the test to maximum load is illustrated in Fig. 3.23-B. Comparing  

3.23-A and B, it is shown that the trend of absorbed energy in this part of loading is similar to GII. It means 

PCL, Nylon 6,6 and Nylon 6,6/PCL nanofibers can absorb 34, 85 and 68% more than in the case of reference 

laminates respectively. 

 

Table  3.4. The effect of each kinds of nanofiber mat on GI and GII (The values are presented in percent in comparison 

with reference) 

 Mode I loading Mode II Loading 

Nylon 6,6 4.5% 68% 

PCL 25% 24% 

Nylon 6,6+PCL 21% 56% 
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Fig. 3.23. ENF mechanical test results: (A) energy release rate for mode I fracture (GII) for all specimens 

 (B) mechanical energy during loading until maximum load 

 

3.6.3. Morphology of fractured surface 

Fracture surfaces of specimens were also examined using a scanning electron microscope (SEM) to provide 

an insight into the toughening mechanisms. Fig. 3.24-A represents fracture surface of reference laminate 

under mode I loading where the ‘hackle’ fracture pattern is clearly visible. Fracture surface of PCL-

reinforced laminate is depicted in Fig. 3.24-B and C. The hackle formation was still visible but significantly 
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less distinguished, even occasionally to a non-hackle fracture pattern (Fig. 3.24-C). Therefore it shows that 

fracture process in non-modified laminates is completely brittle and PCL nanofibers significantly change it.  

Generally by blending thermoplastics such as PAN, PVDF, Polysulfone, PCL and etc [108, 103] with epoxy, 

after the cure, different phenomena can take place. So far many studies have been followed about the 

morphologies of cured PCL/epoxy blends and details can be found in [119, 120], but totally a heterogeneous 

morphology was observed in which the spherical particles were uniformly dispersed in the continuous matrix 

(phase separation). The spherical phase was ascribed to PCL-rich phase while the continuous was attributed 

to the epoxy matrix (Fig. 3.25). Fig. 3.24-D illustrates the PCL-rich particulate microphases on the fracture 

surface. The increase of toughness is completely related to the separated phase because stress concentrations 

caused by particles that produce initiating shear bands which form plastic zones and so absorbed more 

energy during loading [107]. On the other hand, when the crack propagates and reaches the PCL phase, it is 

deviated and so more energy is required for the propagation. It is worth mentioning that since PCL is 

completely melt and blended with matrix, fiber bridging happened during loading from first to end of DCB 

test. 

 

Fig. 3.24. SEM pictures of delamination fracture surface: (A) Reference Laminate (B) PCL-reinforced laminates  

 (C) PCL-reinforced laminates (another position) (D) Phase separation in PCL-reinforced laminates. 

C) D) 
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Fig. 3.25. SEM micrographs of epoxy/PCL blends after curing [120]. 

 

Fig. 3.26 shows the SEM photographs of fractured surface under mode I condition for Nylon 6,6 and 

PCL/Nylon 6,6-modified laminate taken near the initial crack. According to Table 3.2 and Fig. 3.26, the 

curing temperature is lower than melting point of the polymer and higher than the glass transition 

temperature: it leads to the fact that Nylon 6,6 nanofibers are completely visible (Fig. 3.26-A and B), and 

have a rubbery characteristics. The latest leads to a plastic deformation and to the behaviour of matrix 

illustrated in Fig. 3.26-A. It should be noted that in early stage of crack propagation the fracture surface is 

covered by a white layer of nanofiber, therefore the glass fibres are not visible in the pictures and also in this 

position no fiber bridging happened. The fracture surface morphology of PCL/Nylon 6,6-modified laminate 

is shown in Fig. 3.26-C. What observed from fractured surfaces of interfaces interleaved by Nylon 6,6 is also 

true in the case of fractured surfaces of interfaces nano-modified by Nylon 6,6/PCL. Since Nylon 6,6 

covered the fracture surface and PCL were the upper part of mat nanofiber, so it is not possible to consider 

the effect of PCL in this morphology.  
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Fig. 3.26. SEM pictures of delamination fracture surface: (A) Nylon 6,6-reinforced laminates (B) Nylon 6,6-reinforced 

laminates (more magnification) (C) PCL/Nylon 6,6-reinforced laminates (mixed nanofibers). 

 

3.7. Conclusion 

Toughening of glass/epoxy laminates was achieved by interleaving mixed PCL/Nylon 6,6 nanofibers. For 

considering this effect, the ability of individual PCL and Nylon mats for increasing the fracture toughness of 

laminates compared with mixed one. The results prove that while Nylon 6,6 are only useful for mode II  

loading and PCL effect is almost the same in mode I and mode II, the mixed nanofibers could use the 

efficiency of both individual nanofibers in modes I and II. The morphology of fracture surface showed that 

PCL nanofibers completely melt and act as a second phase in the matrix (phase separation). Nylon 6,6 did 

not melt, since curing temperature was higher than its glass transition temperature, it showed a rubbery 

behaviour. 
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Chapter 4: 

Impact Response of Nanofibers-Interleaved Curved Laminates 

 

4.1. Introduction 

In chapter 2 the impact response of curved laminate in different situation was considered and in 

chapter 3 it was shown that nanofibrous mats are a good choice for toughening composite laminates. For this 

consideration, two different nanofibers, Nylon 6,6 and PCL, and also their mixture were used for 

investigating their effect on mode I and mode II fracture toughness. It was proved that the efficiency of 

Nylon 6,6 is better in mode II and PCL effect on fracture toughness is better than Nylon 6,6 in mode I. By 

mixing these two nanofibers each nanofiber could compensate the shortage of another one. 

In this chapter all these nanofibers are used for considering their influence on impact response of interleaved 

nanofibers. Studies in this field is very limited that mentioned in chapter 3. 

 

4.2. Experimental program 

4.2.1. Materials, Electrospinning, specimen fabrication, and test setup 

The PCL, Nylon 6,6 and GFRP laminates which are used for this study are the same with what applied for 

considering the fracture behaviour of interleaved laminate (Chapter 3). For each nanofiber-interleaved 

laminate 9 specimens were provided which means 27 samples for all modified laminates and 9 specimens as 

the reference. The nanofibrous mats were interleaved between all layers of composite that its stacking 

sequence is: [0/90/0/90/0]S.  

Since very wide nanofibrous mats were required in this study, a new electrospinning machine was used for 

producing nanofibers (Fig. 4.1-A). This semi-automatic electrospinning machine consists of four needles 

(4.1-B) that each one connects to one syringe by a Teflon tube (4.1-C). Unlike the last machine used in the 
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last chapter, this new machine has a roller which fixed in x and y direction and the needles move in the 

longitudinal direction of the roller (Fig 4.1-A). For collecting nanofibers from the roller, a specific paper 

attached to it before starting electrospinning, so after finishing the process the nanofibrous mat can be 

removed by the paper (Fig. 4.2). The dimension of nanofibrous mats produced by this machine is 

40cm*47cm and its thickness is 40±5m. 

The characteristics of the PCL and Nylon 6,6 is the same with the last test, but since the electrospinning 

machine was changed the electrospinning parameters varied according to Table 4.1. As seen the only 

difference between electrospinning parameters of PCL and Nylon 6,6 is the feed rate. For producing 

individual Nylon 6,6 and PCL nanofibers all four needles were used and for each mat 12ml of solution was 

used. For producing mixed nanofibrous mat (Nylon 6,6/PCL), both of them electrospun at the same time (in 

the last study for considering the fracture behaviour mixed nanofibers produced by layers of PCL and Nylon 

6,6 – chapter 3). For mixed mat, 6ml of PCL and 6ml of Nylon 6,6 were used and since the feed rate of PCL 

electrospinning is three times more than Nylon 6,6, so 1 needle used for PCL and three others used for Nylon 

6,6.  

All samples are curved and its configuration is shown in Fig. 2.6. All these samples interleaved by 

nanofibers in all layers and then transferred to autoclave for curing in 150oC for 1 hour and under the 

pressure of 6.4 bar. It should be mentioned the rate of curing from room temperature to 150oC is 2oC/min. 

Then the sample were cut using a high-speed rotating diamond disc. The average thickness of reference 

laminate is 3.28mm and nanomodified one is 3.31 which means the effect of nanofiber on the thickness is 

less than 1 percent.  

Test setup is the same with the setup used for considering the effect preloading on impact response of curved 

laminate (Chapter 2) and the impact tests conducted for four different impact energies: 6, 12, 24, and 36J. 

For each situation, 2 or 3 tests were conducted. If the results of the first 2 samples were near to each other, 

the third one waived.  
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      A) 

 

 

                                 B) 

 

 

 

                                          C) 

 

Fig. 4.1. The electrospinning machine 
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Fig. 4.2. Collecting the nanofibrous mat from the collector 

 

 

Table 4.1. Electrospinning parameters for producing PCL and Nylon nanofibers in the new electrospinning machine 

 PCL Nylon 

Applied Voltage (kV) 23 23 

Feed rate (ml/h) 0.9 0.3 

Needle tip – collector distance (cm) 15 15 

Humidity 40% 40% 

 

 

4.3. Results and discussion 

Fig. 4.3. illustrates the contact force-displacement curves of impact test for reference and nanomodified 

laminates. At the first glance it is visible that nanomodified does not change significantly these curves. 

Therefore for more consideration the impact parameters: maximum force, maximum displacement, time-

duration of impact, and damaged area are shown in Figs. 4.4 and 4.5. The difference between the reference 

laminate and nanomodified laminate in all these situation is less than 5% that is in the error range. Generally 

as the maximum impact force, maximum displacement, and time-duration of impact is a bit more, less, and 

less, respectively, in nanomodified laminates in comparison with reference laminates that show 

nanomodified one is a bit more stiff. 
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The interesting things in this project is the effect of Nylon 6,6 and PCL and their mixture on damaged area. 

A shown in the Fig. 4.5, PCL and Nylon 6,6 could decrease the damaged area noticeably, but the efficiency 

of Nylon 6,6 is much more than PCL. For investigating more details the amount of damaged area in each 

situation is presented in Table 4.2 for the reference and nanomodified laminates. In lower impact energies, 6J 

and 12J, the effect of PCL on damaged area is low with decreasing 9% and 7%, respectively, and the effect 

of mixed nanofibers, PCL/Nylon 6,6, is less than pure Nylon 6,6. In higher impact energies, 24J and 36J, the 

efficiency of Mixed nanofibers is more than Nylon 6,6. For example, mixed nanofibers could decrease 

damaged area about 60%, while Nylon 6,6 declined it 52%. Generally the influence of Nylon 6,6 and mixed 

nanofibers is noticeable in all impact energies and their difference is very limited. According to the 

electrospinning parameters mentioned in the past, each nanofibrous mat for Nylon 6,6 takes 12 hours and 

mixed one 6 hours. Since the process of the mixed one is much more fast and its efficiency is almost the 

same and sometimes better, so using the mixed nanofibrous mat is proposed.            
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Fig. 4.3. Force versus impactor displacement for the reference and nanomodified laminates under 

 impact energies of: 6J, 12J, 24J, and 36J 
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Fig. 4.4. The effect of nanofibrous mat on: A) maximum load  B) maximum displacement and  

C) impact duration of the reference and nanomodified specimens.  
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Fig. 4.5. The effect of nanofibrous mat on damaged area of the reference and nanomodified specimens.  

 

 

 

Table 4.2. The effect of nanofibrous mat on damaged area under different impact energies. 

 

 
6J 
 

12J 

Ref PCL NY Mix Ref PCL NY Mix 
Damaged Area 32 29 19.22 20.1 58.3 54.4 34.52 36.25 

Variation (%) --- -9.3 -40 -37.1 --- -6.7 -40.8 -37.8 

 

 

 
24J 

 
36J 

Ref PCL NY Mix Ref PCL NY Mix 
Damaged Area 170 125 81.5 69.22 260 197 152 149 

Variation (%) --- -26.5 -52 -59.3 --- -24.2 -41.5 -42.7 

 

 

The pictures of damaged area on the back surface of the specimens (non-impacted surface) are also presented 

in Fig. 4.6 for the reference and modified specimens under 24 and 36J. As seen in the pictures the 

delamination and matrix cracks are the dominant failure in all samples. By comparing the damaged area in 

all situation it can be seen that the effect of nanofibers is more on delamination, not on the matrix cracks of 

the back surface.    
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Impact Energy = 24J 

 

 

 

Impact Energy = 36J 

 

Fig. 4.6. Damaged area of the reference and nanomodified samples under 24J and 36J 

 

 

delamination 

Matrix Cracks 
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4.4. Conclusion 

 

In this chapter the effect of Nylon 6,6, PCL, and their mixture on impact response of composite laminates 

was considered. The nanofibrous mats were produced by electrospinning method and interleaved between all 

layers of composite laminates. The results showed that PCL could decrease the damaged area about 25% and 

Nylon 6,6 and mixed nanofibers about 50%. Since the efficiency of mixed nanofibers is almost the same 

with Nylon 6,6, but producing of them is much more easier, so applying the mixed nanofibers are suggested. 
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