
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN INFORMATICA

Ciclo: XXVI

Settore Concorsuale di afferenza: 01/B1

Settore Scientifico disciplinare: INF01

Learning with Kernels on Graphs:
DAG-based kernels, data streams and RNA

function prediction.

Presentata da: Nicolò Navarin

Coordinatore Dottorato: Relatore:

Maurizio Gabbrielli Alessandro Sperduti

Esame finale anno 2014





Abstract

In many application domains such as chemoinformatics, computer vision or natural

language processing, data can be naturally represented as graphs. Machine learning

allows for computers to learn a concept from a set of examples. When the appli-

cation of analytical solutions for a given problem is computationally unfeasible or

we do not know how to analytically solve a problem, machine learning techniques

could be a viable way to solve the problem. Classical machine learning techniques

are defined for data represented in a vectorial form. Recently some of them have

been extended to deal directly with structured data. Among those techniques, ker-

nel methods have shown promising results both from the computational complexity

and the predictive performance point of view. Moreover, these methods offer strong

theoretical guarantees on the quality of the solution. Kernel methods allow to avoid

an explicit mapping in a vectorial form relying on kernel functions, which informally

are functions calculating a similarity measure between two entities. However, the

definition of good kernels for graphs is a challenging problem because of the difficulty

to find a good tradeoff between computational complexity and expressiveness. An-

other problem we face is learning on data streams, where a potentially unbounded

sequence of data is generated by some sources. We considered the case where the

learning algorithms have to respect a bound on memory occupation.

There are three main contributions in this thesis.

The first contribution is the definition of a new family of kernels for graphs. The

idea is to decompose a graph into a multiset of simpler structures, i.e. Directed

iii



Acyclic Graphs (DAGs). Then the graph kernel is defined as a function of kernels

for DAGs. We analyzed two kernels from this family, achieving state-of-the-art

results from both the computational and the classification point of view on real-

world datasets.

The second contribution consists in making the application of learning algorithms

for streams of graphs feasible. Moreover, when memory constraints are present, the

adopted budget management policy is critically influencing the overall algorithm

performance. We defined a principled way for the management of the budget, based

on LossyCounting, which is an algorithm originally designed for computing approx-

imated frequency counts over event streams. Our proposal extends LossyCounting

in order to approximate the solution of a learning algorithm.

The third contribution is the application of machine learning techniques for

structured data to a bioinformatics problem, namely non-coding RNA function

prediction. In this setting, the secondary structure is thought to carry relevant

information. However, existing methods considering the secondary structure have

prohibitively high computational complexity, thus limiting their application to very

small datasets. Indeed, the tool that is considered the state-of-the-art considers only

sequence information. We propose a new representation for RNA sequences. More-

over, we adapted the definition of existing graph kernels, and defined a new one, on

such representation. The resulting kernels are able to consider the secondary struc-

ture and are fast enough to be applied to large datasets. Our proposed approach

outperforms the state-of-the-art.

iv



Acknowledgements

Foremost, I would like to thank my advisor Prof. Alessandro Sperduti for his guid-

ance and support. Besides my advisor, I would like to thank Dr. Giovanni Da San

Martino who helped me at different stages of my PhD journey.

Next, I thank Dr. Fabrizio Costa for giving me the opportunity to visit the Bioin-

formatics group at the University of Freiburg.

Also, I need to thank my PhD colleagues that made this experience more pleasant

and unique.

Thanks to all the people that supported me during these difficult years.

Last but not least, I would like to thank my family for allowing me to realize my

own potential. My mother gave me the opportunity to follow university and then

the doctoral program. My father helped me to get through the tough times.

v



vi



Contents

Abstract iii

Acknowledgements v

I Introduction and basic concepts 1

1 Introduction 3

1.1 Why structured data? . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Learning on structured data . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Learning on graph streams . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Kernel methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Learning with kernels 11

2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Kernel methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Kernel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Kernel machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 The Perceptron algorithm . . . . . . . . . . . . . . . . . . . . 18

2.4.2 The Support Vector Machine . . . . . . . . . . . . . . . . . . 19

vii



2.5 The curse of dimensionality and dimension reduction . . . . . . . . . 21

2.6 SVM training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.2 The SMO algorithm . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Online learning algorithms . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.1 Stream data mining . . . . . . . . . . . . . . . . . . . . . . . . 25

Incremental (online) Learning . . . . . . . . . . . . . . . . . . 26

Concept drift . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.2 Formalization and Feasible approaches . . . . . . . . . . . . . 28

2.7.3 Online Stochastic gradient descent algorithms . . . . . . . . . 29

Online Passive-Aggressive . . . . . . . . . . . . . . . . . . . . 31

2.7.4 Budget online stochastic gradient descent algorithms . . . . . 33

Budget stochastic gradient descent . . . . . . . . . . . . . . . 34

Budget perceptron . . . . . . . . . . . . . . . . . . . . . . . . 35

Budget online Passive-Aggressive . . . . . . . . . . . . . . . . 35

2.7.5 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Managing the budget . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Learning on structured data 43

3.1 Learning on graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 Pattern mining on graphs . . . . . . . . . . . . . . . . . . . . 47

3.1.3 Graph classification algorithms . . . . . . . . . . . . . . . . . 47

3.2 Graph streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Learning on graph data streams . . . . . . . . . . . . . . . . . 49

3.3 Kernels for structured data . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Convolution kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Mapping kernels . . . . . . . . . . . . . . . . . . . . . . . . . 53

viii



Extension of mapping kernels . . . . . . . . . . . . . . . . . . 55

3.5 Tree kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Kernels for unordered trees . . . . . . . . . . . . . . . . . . . 56

3.5.2 Kernels for ordered trees . . . . . . . . . . . . . . . . . . . . . 57

Tree edit distances kernel . . . . . . . . . . . . . . . . . . . . 57

Subtree kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Subset tree kernel . . . . . . . . . . . . . . . . . . . . . . . . . 59

Partial tree kernel . . . . . . . . . . . . . . . . . . . . . . . . . 60

Other tree kernels . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Kernels for graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.1 Random walk kernels . . . . . . . . . . . . . . . . . . . . . . . 63

Product graph kernel . . . . . . . . . . . . . . . . . . . . . . . 63

Marginalized kernel . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6.2 Cyclic pattern kernel . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.3 Subtree pattern kernel . . . . . . . . . . . . . . . . . . . . . . 67

3.6.4 Shortest path kernels . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.5 Graphlet kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.6 Weisfeiler-Lehman kernels . . . . . . . . . . . . . . . . . . . . 69

3.6.7 Neighborhood subgraph pairwise distance kernel . . . . . . . . 71

3.6.8 Other graph kernels . . . . . . . . . . . . . . . . . . . . . . . . 73

II Original Contributions 74

4 A new framework for the definition of DAG-based graph kernels 75

4.1 A new DAG-based kernel framework for graphs . . . . . . . . . . . . 77

4.1.1 Decomposition of a graph into DAGs and derived graph kernels 78

4.2 Extending tree kernels to DAGs . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Ordering DAG vertices . . . . . . . . . . . . . . . . . . . . . . 82

ix



4.2.2 Tree-based kernels for ordered DAGs and graphs . . . . . . . . 84

4.2.3 Speeding up the single kernel evaluation . . . . . . . . . . . . 87

4.2.4 Speeding up the kernel matrix computation . . . . . . . . . . 90

4.2.5 Limiting the depth of the visits . . . . . . . . . . . . . . . . . 92

4.3 Two graph kernels based on the framework . . . . . . . . . . . . . . . 93

4.3.1 A graph kernel based on the Subtree Kernel . . . . . . . . . . 93

4.3.2 A graph kernel based on a novel tree kernel . . . . . . . . . . 97

4.3.3 Feature spaces comparison of some graph kernels . . . . . . . 98

4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Model compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5.1 Application of feature selection to graph kernels . . . . . . . . 112

4.5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 114

5 Learning algorithms for streams of graphs 119

5.1 Budget online Passive-Aggressive on graph data . . . . . . . . . . . . 122

5.1.1 Removal policies . . . . . . . . . . . . . . . . . . . . . . . . . 125

Incremental computation of F-score . . . . . . . . . . . . . . . 126

5.1.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 128

Chemical dataset . . . . . . . . . . . . . . . . . . . . . . . . . 128

Image dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 131

Results and discussion . . . . . . . . . . . . . . . . . . . . . . 132

5.2 Budget Passive-Aggressive with Lossy Counting . . . . . . . . . . . . 140

5.2.1 Online frequent pattern mining . . . . . . . . . . . . . . . . . 141

Lossy Counting . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.2 Online frequent pattern mining with real weights . . . . . . . 141

x



LCB: Lossy Counting with budget for weighted events . . . . 142

5.2.3 LCB-PA on streams of graphs . . . . . . . . . . . . . . . . . . 144

5.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 146

Results and discussion . . . . . . . . . . . . . . . . . . . . . . 147

6 Application to RNA 153

6.1 Introduction to RNA . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3 Existing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3.1 Sequence-based methods . . . . . . . . . . . . . . . . . . . . . 156

6.3.2 Structure-based methods . . . . . . . . . . . . . . . . . . . . . 157

RNA secondary structure . . . . . . . . . . . . . . . . . . . . 157

Infernal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.3.3 Kernel methods . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Stem kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Marginalized kernel on RNA sequences . . . . . . . . . . . . . 162

6.4 Computation of RNA secondary structure . . . . . . . . . . . . . . . 162

6.4.1 Minimum free energy structure . . . . . . . . . . . . . . . . . 163

6.4.2 RNA shape representation . . . . . . . . . . . . . . . . . . . . 164

6.4.3 RNA abstract shapes . . . . . . . . . . . . . . . . . . . . . . . 166

6.5 Novel graph kernels for RNA sequences . . . . . . . . . . . . . . . . . 168

6.5.1 Multiple instance learning . . . . . . . . . . . . . . . . . . . . 169

6.5.2 Representation issues . . . . . . . . . . . . . . . . . . . . . . . 171

6.5.3 Kernels exploiting different abstraction levels . . . . . . . . . . 173

Abstract NSPDK . . . . . . . . . . . . . . . . . . . . . . . . . 173

Abstract NSDDK . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

xi



6.6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.6.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 177

7 Conclusions and future work 183

References 187

xii



Part I

Introduction and basic concepts

1



2



Chapter 1

Introduction

The first ultraintelligent

machine is the last invention

that man need ever make.

I. J. Good, 1965

1.1 Why structured data?

The interest in structured data arises because in many application domains data

can be naturally represented in a structured form. For example, XML documents

are naturally represented as trees; in NLP each sentence may be represented with

its parse tree; in computer vision each image can be represented by its segmenta-

tion graph (e.g. [9] or [106]), and in Chemoinformatics chemical compounds can be

easily represented as graphs, where each atom is a vertex and the edges represent

the bonds between atoms [1]. Figure 1.1 shows some examples of data arising from

these applications.

Other application domains where data is naturally represented as graphs include

computational biology, social networking, web link analysis or computer networks[1].

The topic of graph data processing is not new. Over the last thirty years there have

been continuous efforts in developing new methods for processing graph data. Re-

cently, because of the growing amount of structured data and the need to extract



4 Chapter 1. Introduction

information from it, there has been the interest, if not the necessity, to apply ma-

chine learning on graph data. Nowadays, because of technical advances such as

graph kernels [85] and graph mining techniques [153], it is possible to apply these

techniques in reasonable time on large datasets, obtaining good results.

Figure 1.1: Examples of data that can be naturally represented in structured

form. From left to right, top to bottom: an XML document, a parse tree from NLP,

an image and the corresponding segmentation graph and a chemical compound.

1.2 Learning on structured data

The amount of data generated in different areas by computer systems is growing at

an extraordinary pace, mainly due to the advent of technologies related to the web,

ubiquitous services and embedded systems that aim at monitoring the environment

in which they are immersed. According to a report from IDC titled “The Digital



Chapter 1. Introduction 5

Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the

far East” [64], only 0.5% of the 643 exabytes of useful data have been analyzed.

Examples of this data includes images, social media, sensors (including those in

our smartphones and other devices, as well as those that may be implanted into the

body), medical devices or biological data, e.g. data generated from DNA sequencers.

In this context, to analyze the data means to extract useful information from it. This

problem is commonly referred to as Data mining.

For some application domains where huge amounts of data have to be processed,

an algorithmic solution may be computationally unfeasible. In other cases, it may

be very difficult (or impossible) to state the problem itself in a non-ambiguous way,

and thus also the development of an algorithmic solution is very difficult. Finally, it

is possible that we know how to formalize the problem but we do not know how to

solve it in an algorithmic way. This is the case when looking for the effectiveness of

drugs against a certain disease. In these cases, it is convenient to adopt a machine

learning approach.

Machine learning [100] is the branch of Artificial Intelligence that lets computers

learn from experience. In particular, in our scenario to learn from experience means

to learn a concept from examples. A typical learning task is to classify entities. In

this scenario, we are given a set of labeled examples and the goal is to learn the

concept underpinning the labeling function and to accurately predict the label for

unseen examples.

While classical machine learning techniques have been defined for data represented

in a vectorial form, more recently many techniques have been extended to deal

directly with structured data [141, 46].

In this thesis, we deal with graph classification. There is a second task commonly

referred as graph classification consisting in the prediction of the class labels for

single nodes in a graph. This latter task is usually faced with different techniques,

such as label propagation [29], that are not considered in this thesis.



6 Chapter 1. Introduction

1.3 Learning on graph streams

In some application domains, data is generated at a constant rate by sources that

can potentially emit an unbounded sequence of data elements, i.e. data streams.

Because of that, processing of data streams requires special care from a computa-

tional point of view, since only bounded time and memory resources can be used.

However, it was early recognized that data streams tend to evolve with time, giving

rise to the well-known concept drift phenomenon (see Section 2.7.1). Due to compu-

tational complexity issues, streams of structured data have not been much studied

up to now. Only few works involving streams of trees have recently appeared [5]

[72], while not much work has been done for streams of graphs.

This is a major drawback, since in many important application areas data can nat-

urally be represented as streams in structured form. For example, modern medicine

critically depends on the discovery of new drugs, i.e. chemical compounds. Chemical

compounds can be naturally described via their molecular graphs. The discovery of

new effective drugs relies on the systematic assessment of many different properties

of all possible organic molecules, the so-called chemical space, which is estimated at

1020 − 10200 structures [137]. Only a very small portion of this space (few millions)

constitutes the real chemical space, i.e. compounds that have been synthesized,

while recent works have explored the possibility to explicitly enumerate a bit larger

portion of this space (e.g. in [59] around 26.4 million compounds are covered). Hav-

ing to deal with such numbers, it is clear that exploration of the chemical space

can only be performed by adopting a stream-based approach, where the same com-

pound can occur at different times associated with different but still related classi-

fication/prediction tasks. Another example of application involving a graph stream

is malware detection. Malware detection consists in recognizing malicious software

executed without user’s awareness. The number of codes to be analyzed can be

enormous and the problem is difficult since some malwares are able to modify their

own code in order to avoid detection. In [56] the detection of malwares is performed

by representing executables codes as graph nodes and control flow instructions and



Chapter 1. Introduction 7

API calls as edges. Concept drift can be present since malwares continuously try

to exploit more and more sophisticated approaches to deceive the classifier. Also

classification of images is a task which may involve streams of graphs. In fact, more

and more images are available online. A graph can be built from an image with the

aim of representing (spatial) relationships between the objects into the image (see

Section 5.1.2 for an example). The task of finding images that a user likes is then an

example of a stream of graphs with concept drift. Finally, in [7] a Fault Diagnosis

System for Sensor Networks is proposed. The idea is to apply a cognitive algo-

rithm to a stream of graphs representing spatial and temporal relationships among

the sensors in order to distinguish between changes in the environment and sensor

faults. In this context, concept drift occurs naturally as the environment changes.

In the aforementioned paper, a simple thresholding system has been used, but the

potential for improvements is large if more sophisticated algorithms are adopted.

Learning on graph streams is an important problem, and as such it will be one

of the focuses of this thesis.

1.4 Kernel methods

Different approaches in the application of machine learning to structured data have

been explored. The simplest one is to define a mapping from structured data to

fixed-size vectors in order to straightforwardly apply classical machine learning al-

gorithms [93, 90]. Those vectors need to encapsulate structural information about

the graph. There are several ways to implement this mapping, some of them suited

for specific applications. In general, the more information we keep in the vectorial

representation, the more computationally demanding the mapping is. Other ap-

proaches are based on graph mining [115]. Basically those methods apply pattern

matching techniques to graph data, with the need to solve the subgraph isomorphism

problem that is an NP-complete problem.

With the application of kernel methods to graph data, a new promising ap-

proach emerged, that mixed the speed benefits of the former with the classification



8 Chapter 1. Introduction

performance of the latter. This approach allows to avoid the explicit mapping in

a vectorial form and to define learning algorithms directly on the original struc-

tured data. For many tasks, kernel methods shows good results outperforming other

methods [22, 60, 104, 34, 75, 37, 122, 105, 111, 85, 9, 15, 35, 82, 124, 53].

Moreover, kernel methods offer strong theoretical guarantees and a convenient

hard separation between the learning algorithm and the kernel function that applies

directly to the examples and maps them in an high dimensional Euclidean space.

The kernel function is, informally, a function that represents the similarity between

two objects.

The key for the successful application of kernel methods to graph data is the

definition of kernel functions for graphs. Early works [68, 112] defined kernels for

graphs with an acceptable expressiveness, i.e. kernels that represent a “meaningful”

similarity measure between graphs. However these kernels were computationally de-

manding. More recent works defined efficient kernels, some of them with near-linear

time complexity [78, 122], but there is a major drawback concerning these kernels.

Indeed, it is difficult to find a good tradeoff between computational complexity and

expressiveness because, generally speaking, the faster the kernel is, the lower its

generalization performance will be.

Recently, the application of graph kernels is being extended to new domains

where representing examples as graphs is not straightforward, but this approach

allows to explicitly store the information needed from the task. For example, in

bioinformatics and molecular biology a significant research topic is the discrimination

and detection of functional RNA sequences. The peculiarity of this problem is that

in the sequence there is a lot of hidden information. In particular, it is thought that

the specific form of the secondary structure is an important feature for detecting

RNA sequences (see Chapter 6). Recently proposed kernels for RNA sequences [116]

try to extract this information from the sequence and incorporate it in the kernel

calculation, but the resulting algorithm is not applicable to big datasets. In this

thesis we will propose a novel approach for this problem.



Chapter 1. Introduction 9

1.5 Contributions

The contributions of this thesis can be grouped in three branches.

The first contribution is the definition of a new family of kernels for graphs. The

idea is to define a new similarity measure based on the subtrees of a graph. We

analyze two kernels from this family, achieving state-of-the-art results from both

the computational and the classification point of view.

The second contribution consists in the definition of learning algorithms for

streams of graphs. Namely, we extend a family of online learning algorithms pro-

posed in the literature to structured data. It is worth to notice that the algorithms

we present are applicable only in conjunction with kernels that allow for an explicit

feature space representation, such as the ones defined in the first contribution.

The third contribution is the application of machine learning techniques for struc-

tured data to a specific problem from bioinformatics, namely RNA function predic-

tion. The application of machine learning to this field is not straightforward because

several problems have to be faced. Eventually, we explored some feasible solutions

and obtained successful results outperforming the state-of-the-art.

1.6 Outline

This thesis is organized as follows. Part I provides a comprehensive review of the

state-of-the-art in the field. We start introducing kernel methods in Chapter 2. In

the same chapter, from Section 2.7 we present the state-of-the-art on online learning

algorithms. Then in Chapter 3 we start talking about learning on structured data

and specifically on graphs, giving a comprehensive review of the state-of-the-art in

kernel functions for structured data.

Part II groups the original contributions of this thesis. In Chapter 4 we propose

a novel family of graph kernels and we study extensively two members of this family.

Moreover, we thoroughly discuss how to make the computation very efficient, and

in Section 4.5 how to apply feature selection techniques to the final learned model.



10 Chapter 1. Introduction

Part of the work in this chapter has been published in [43] and [44].

These findings are the basics for another study presented in Chapter 5, where the

goal is to develop fast online learning algorithms for streams of graphs. We start with

an analysis of different possible formulations, proposing a modification of existing

learning algorithms that can deal with the explicit feature space of some kernels.

Moreover, in Section 5.2 we introduce a brand-new approach to model reduction

based on the LossyCounting approach [95], particularly suited for online learning

algorithms. This chapter is based on the work published in [45].

Finally, in Chapter 6 we discuss about a particularly interesting problem in

bioinformatics, namely non-coding RNA function prediction, and we propose a novel

solution based on kernels for graphs. The work in this chapter is a joint work with

Fabrizio Costa.



Chapter 2

Learning with kernels

It is not the strongest of the

species that survives, nor the

most intelligent, but the one

most responsive to change.

Charles Darwin

2.1 Machine Learning

Learning from experience is one central aspect in what humans call intelligence.

Indeed, learning from experience is what enables humans to adapt to various situa-

tions, and one of the core aspects of intelligent behavior. Learning from experience

is a process that everyone adopts every day, during the extraction of physical laws

from experimental data or the use of experience for decision making.

Nowadays we don’t have enough information about how humans learn from expe-

rience, so we don’t know how to make a computer learn even nearly as well as people

do, but many algorithms have been developed that exhibit useful types of learning

in some specific tasks. This science that lets computers learn from experience is

called machine learning [136].

There are various applications in which machine learning turns to be the most

effective approach. A non-exhaustive list includes speech recognition, handwritten



12 Chapter 2. Learning with kernels

character recognition, image recognition (and face recognition). The characteristic

shared by these problems is that it is very difficult (or impossible) to state the

problem itself in a non-ambiguous way, and thus looking for an algorithmic solution

for these problems is very difficult.

Moreover, the amount of data collected day by day exceeds the human capability

to extract the information hidden in it, so it becomes more and more important to

automate the process of learning from data, even so in problems where it may exist

an algorithmic solution, but it is too much computationally expensive. The problem

of extracting knowledge from data is called data mining.

More formally we say that a computer program is able to learn if its performance

improves with experience.

Definition 2.1. [100] A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P , if its performance at

tasks in T , as measured by P , improves with experience E .

A textbook example is a computer program that learns how to play chess, that

might improve its performance measured as its ability to win, at the class of tasks in-

volving playing chess games, through the experience obtained playing against itself.

So in general we have to identify these three features in order to have a well-posed

learning problem: the class of tasks, the measure of performance and the source of

experience.

Machine learning (ML) [99] aims to design and develop algorithms that allow

computers to evolve their behaviors based on empirical data, such as from sensor

data or databases.

In general, learning involves acquiring general concepts based on some specific

training examples. This is not surprising because humans continuously learn general

concepts based on examples: think about the concepts of ”bird“ or ”car”. Each one

can be viewed as a boolean function defined over a larger set, e.g. a function defined

over all animals whose value is true for birds and false for all other animals. There

may be some examples that are border line, for which the membership to a class



Chapter 2. Learning with kernels 13

is not trivial. This kind of examples will be the most important ones in kernel

methods, as we will see later.

This decision function is what machine learning methods try to approximate.

We can make a taxonomy of different learning problems depending on the nature

of the examples and the type of concept we want to learn. A first distinction

is between supervised and unsupervised learning. In the former we have a label

associated with each instance, while in the latter we don’t. In this thesis we will

focus on the supervised learning scenario, but some of the techniques can be applied

as-is to the unsupervised one. For details about unsupervised learning, refer to [100].

In supervised learning, we are given a set of tuples called training set of the form

S = {(xi, yi) : i = 1, . . . , n}, where xi ∈ X is the i-th available instance and yi ∈ Y
is the associated label. The tuples (xi, yi) are called the examples.

The examples in S are assumed to be generated according to some unknown

probability distribution P . Depending on the domain of Y we can further define

various types of classification problems:

• If yi ∈ {±1} we have a binary classification problem.

• If yi ∈ {0, . . . , n} we have a multi-class single-label classification problem.

• If yi ∈ {±1}m we have a binary multi-label classification problem.

• If yi ∈ R we have a regression problem, that is the problem of approximating

a real-valued target function.

Binary classification is the better understood and studied task. Since many clas-

sification methods have been developed specifically for binary classification, multi-

class classification often requires the combined use of multiple binary classifiers. In

this thesis we deal with both types of classification problems.

The goal of supervised learning is to find the function c : X → Y that best

represents the relationship between xis and yis. Since the only information we know

about this function are the examples in S, the best we can do is try to approximate

this function as tightly as possible. The function we want to learn is called the



14 Chapter 2. Learning with kernels

(optimal) hypothesis h, that comes from an hypothesis space H that is fixed a-

priori (and it must be fixed in order to perform learning). An hypothesis is often

referred to as a model, that is an abstraction that tries to explain the reality (in our

case tries to explain the evaluation of the unknown c function).

The best from all possible hypothesis h, that we will refer to as h∗, is the one

that minimizes the risk :

R(h) =

∫
X×Y

L(h(x), y)dP (x, y)

where L is a loss function that measures the classification error of h, X is the space

of all possible instances and Y the space of the labels.

It’s not possible to directly use this formulation for the selection of the best h

because the probability distribution P (x, y) is unknown. An alternative approach

consists in minimizing the error with respect to the data we have, thus defining the

empirical risk :

Re(h) =
1

n

∑
(x,y)∈S

L(h(x), y) (2.1)

The techniques that select the best model (according to specific criteria) from

the set of all possible models (from H) are referred to as model selection techniques.

In the following we will use the concept of Vapnik-Chervonenkis dimension (VC-

dimension) [139] of an hypothesis space H. The VC-dimension is a measure of the

capacity of an hypothesis space H, defined as the cardinality of the largest set of

points that H can shatter. To shatter a set of points means that, for all possible

assignments of labels to those points, there exists a h ∈ H such that h makes no

errors when evaluating that set of data points (that is Re(h) = 0).

It is worth to distinguish between two different supervised machine-learning

frameworks. In batch learning, we assume that there exists a probability distribution

over the examples, and that we have access to a training set drawn i.i.d. from this

distribution. A batch learning algorithm uses the training set to generate a single

output hypothesis. We expect a batch learning algorithm to generalize, in the sense

that its output hypothesis should accurately predict the labels of previously unseen

examples, which are sampled from the same distribution.



Chapter 2. Learning with kernels 15

On the other hand in the online learning framework, we typically make no sta-

tistical assumptions regarding the origin of the data. An online learning algorithm

receives a sequence of examples and processes these examples one-by-one. On each

online-learning round, the algorithm receives an instance and predicts its label using

an internal hypothesis, which is kept in memory. Then, the algorithm receives the

correct label corresponding to the instance, and uses the new instance-label pair to

update and improve its internal hypothesis. The concept of generalization is much

more difficult to define for online learning algorithms with respect to the batch ones

[27]. Indeed, as we will see in Section 2.7, in online learning the underlying con-

cept may change, meaning that the probability distribution over the examples is

continuously changing.

The sequence of internal hypotheses constructed by the online algorithm from

round to round is referred as the online hypothesis sequence. Typically, online learn-

ing have stronger requirements in terms of computational complexity and memory

occupation then the batch framework.

2.2 Kernel methods

In many business and scientific applications the use of machine learning methods

helped to speed up and reduce the cost of certain processes.

In these research fields, recently a class of learning algorithms has received much

attention because of the solid foundation in learning theory and the empirical results

that outperforms any other learning method in many benchmarks as well as real-

world applications. These are kernel methods, whose most popular example is the

Support Vector Machine [138], that will be explained in detail in Section 2.4.2.

Kernel methods are all the learning algorithms that can represent the solution

in terms of the input examples. As mentioned in Section 2.2, kernel methods com-

prehends all those algorithms that do not work on an explicit representation of the

examples, but need only some information about their pairwise similarity. This

function for computing similarity has to be a kernel function (see Section 2.3).



16 Chapter 2. Learning with kernels

Every kernel method can be decomposed in two components:

• a problem-specific kernel function

• a general purpose learning algorithm.

The following sections are organized as follows. We start presenting the most impor-

tant concepts and algorithms belonging to the kernel methods family in Sections 2.3

and 2.4. Section 2.5 discusses the drawbacks of the kernel approach. In Section 2.6

we briefly present state-of-the-art algorithms for SVM training in the batch scenario.

Then we will move to online learning (Section 2.7), stochastic gradient descent

(Section 2.7.3) and the related algorithms. Finally in Section 2.7.4 we present the

Budgeted online learning algorithms.

2.3 Kernel functions

In this section we formally define what a kernel function is following the notation in

[73], and we will show some examples of kernel functions defined on vectors.

Given a set X and a function K : X ×X → R, we say that K is a kernel on X ×X
if K is:

• symmetric, i.e. if for any x and y ∈ X K(x, y) = K(y, x) and

• positive-semidefinite, i.e. if for any N ≥ 1 and any x1, . . . , xN ∈ X, the matrix

K defined as Ki,j = K(xi, xj) is positive-semidefinite, that is
∑

i,j cicjKi,j ≥ 0

for all c1, . . . , cN ∈ R or equivalently if all its eigenvalues are non-negative.

It is easy to see that if each x ∈ X can be represented as φ(x) = {φn(x)}n≥1 such

that the value returned by K is the ordinary dot product K(x, y) = 〈φ(x), φ(y)〉 =∑
n φn(x)φn(y) then K is a kernel. If X is a countable set, the converse is also always

true , that is a given kernel K can be represented as K(x, y) = 〈φ(x), φ(y)〉 for some

choice of φ. The vector space induced by φ is called the feature space. Note that it

follows from the definition of positive-semidefiniteness that the zero extension of a



Chapter 2. Learning with kernels 17

kernel is a valid kernel, that is, if S ⊆ X and K is a kernel on S × S then K may

be extended to be a kernel on X ×X by defining K(x, y) = 0 if x or y are not in S.

It is easy to show that kernels are closed under summation, i.e. a sum of kernels is

a valid kernel.

2.4 Kernel machines

Defined what a kernel function is, we can describe how kernel methods work in

more detail. Kernel methods search for linear relations in the feature space. In these

methods, the learning algorithm is formulated as an optimization problem that, if

the adopted function is a kernel and thus symmetric positive semidefinite, is convex

and has a global minimum.

Let us consider for sake of simplicity a binary classification problem (see Section 2.1).

Let X be a set of examples, and suppose that these examples are not linearly

separable, that is there does not exist an hyperplane in the input space that can

correctly separate positive and negative examples.

What happens with kernel methods is that examples are nonlinearly projected

into a high-dimensional space (defined by the φ function associated to the kernel

function), where they are supposed to be more sparsely distributed, that is the

distance among examples, and thus the distance between positive and negative ex-

amples, is larger. In this space, examples are more likely to be linearly separable, so

we can search and hopefully find a linear separator. This separator, if back-projected

into the input space, corresponds to a nonlinear separator between the two classes.

The representer theorem states that the solution of certain optimization prob-

lems that involves empirical risk and a quadratic regularizer, can be expressed as a

combination of the examples in the training set [144].

In particular, kernel methods are defined as convex optimization problems on

some feature space. If the vectors φ appear only inside dot products, they can be

calculated by the corresponding kernel function.



18 Chapter 2. Learning with kernels

As a consequence, the optimization problem and its solution are defined over the

input space, and the algorithm works only implicitly in the feature space via the

kernel function. This technique is referred as the kernel trick.

Figure 2.1 shows an example of the application of the kernel trick for the classi-

fication of points in a 2-dimensional space.

We will see in the following sections some examples of kernel methods.

Figure 2.1: Example of classification using the kernel tick.

2.4.1 The Perceptron algorithm

One of the oldest algorithms used in machine learning (from early 60s) is an online

algorithm for learning a linear decision function (an hyperplane) on real-valued

vectorial data, called the Perceptron Algorithm [14].

A prototype vector w is (randomly) initialized, and used as the decision function.

An example xi is predicted as positive iff w · xi + b > 0 and as negative otherwise.

The prediction is then compared with the real class of the example. On a mistake,

a new prototype vector w′ is generated as w′ = w + αyixi, where 0 < α ≤ 1 is

a constant that influences the learning rate, and yi ∈ {+1,−1} is the class of the

example. This is a very simple algorithm, that guarantees to find a linear separator

between positive and negative examples, if it exists.

The original algorithm has been extended in order to be applied with kernel

functions, where the examples xi are substituted with φ(xi) in the formulation.



Chapter 2. Learning with kernels 19

This new formulation lies on the observation that w, after have seen a number t

of examples, is no more than a weighted sum of the examples where we have made

mistakes so far, that is:

wt = αyi1xi1 + . . .+ αyit−1xit+1

where xi1 , . . . , xit−1 is the set of misclassified examples.

So to compute φ(w) · φ(x) we can just do:

φ(w) · φ(x) = αyi1K(xi1 , x) + αyit−1K(xit+1 , x)

where φ is the function that maps examples in the feature space and K the

corresponding kernel function.

The examples used to define the hypothesis (i.e. the misclassified examples) are

referred to as support vectors. Perceptron finds one separator for the examples in X .

The perceptron is a fast and simple algorithm that can be applied to online learning

tasks. Its main drawback is that it does not provide bounds on generalization error.

2.4.2 The Support Vector Machine

One of the most important algorithms in kernel methods is the Support Vector

Machine(SVM) [138].

SVM is based on the principle of structural risk minimization[139] that is an

inductive principle for model selection used for learning from finite training data

sets. It describes a general model of capacity control and provides a tradeoff between

hypothesis space complexity (the VC dimension of approximating functions, see

Section 2.4) and the quality of fitting the training data (empirical error, defined in

Equation 2.1). The procedure is outlined below.

Given a class of hypotheses (in this case being the hyperplanes in the feature

space defined from the adopted kernel function), divide it into a hierarchy of nested

subsets in order of increasing complexity. Perform empirical risk minimization on

each subset (this is essentially parameter selection). Select the model in the series



20 Chapter 2. Learning with kernels

whose sum of empirical risk and VC confidence (i.e. a value that directly depends

on VC dimension) is minimal.

Let us now focus on how SVM works. In a first phase, the examples are pro-

jected in a feature space; then we search for a hyperplane that separate positive and

negative examples maximizing the margin, that is the minimum distance between

the hyperplane and the nearest example. We want to maximize the margin because

VC dimension of a linear classifier can be expressed as a function of the margin. If

the training set is linearly separable in the feature space, then the hyperplane that

maximizes the margin, referred as optimum hyperplane, is unique and correspond

to the solution of the following problem:

argmin
w,b

||w||2

2
s.t. ∀(xi, yi) ∈ S.yi(w · φ(xi)) + b ≥ 1 (2.2)

where w and b define the hyperplane in the feature space. We will refer to

this formulation as primal, as it is expressed in the feature space. The margin is

inversely proportional to the norm of w, so minimizing ||w||2 corresponds to selecting

the simpler hypothesis from the ones that satisfy the constraints. The representer

theorem states that the solution f of the problem 2.2 can be reformulated as:

∀x ∈ X .f(x) =
∑
xi∈S

αik(xi, x)

The examples for which α 6= 0 are called support vectors. We will refer to this formu-

lation as dual since it is expressed in terms of the corresponding dual optimization

problem.

In many cases we may not want to classify correctly all training examples to avoid

the so-called overfitting problem, maybe for the presence of noise in the data, maybe

for the high complexity of the hypothesis in the case training set is not linearly

separable. More precisely, overfitting takes place when the case of the selected

hypothesis has poor generalization capabilities, that is it has poor classification

performance on unseen data. Intuitively, it is as if the classifier has learned by heart

the training examples, so it is not able to classify correctly the new data.



Chapter 2. Learning with kernels 21

It is possible to define a tradeoff between the mistakes on the training set and

the complexity of the hypothesis:

argmin
w,b,ε

||w||2

2
+ C

n∑
i=1

εi

s.t. ∀(xi, yi) ∈ S.yi(w · φ(xi)) + b ≥ 1− εi,

εi ≥ 0, i = 1, . . . , n.

The C parameter of the SVM influences this tradeoff. The optimal value of C

depends on the problem.

The dual version of the soft-margin support vector machine can be expressed as

follows:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjK(xi, xj)αiαj,

subject to:

0 ≤ αi ≤ C, for i = 1, 2, . . . , n,
n∑
i=1

yiαi = 0

where the variables αi are Lagrange multipliers. This is the standard formulation

for the SVM.

2.5 The curse of dimensionality and dimension re-

duction

When dealing with high-dimensional data, various phenomena that do not occur in

low-dimensional settings arise. This problem is known as the curse of dimensional-

ity [58].

The curse of dimensionality arises from the fact that when the dimensionality of

the space where learning is performed increases, the volume of this space increases

so fast that the available data becomes sparse. This sparsity is problematic for any

method that requires statistical significance. In order to obtain a statistically sound

and reliable result, the amount of data you need to support the result often grows



22 Chapter 2. Learning with kernels

exponentially with the dimensionality. Moreover, organizing and searching data

often relies on detecting areas where objects form groups with similar properties;

in high dimensional data however all objects appear to be sparse and dissimilar in

many ways which prevents common data organization strategies from being efficient.

This problem is also faced by kernel methods because of the implicit mapping in

the high dimensional feature space. To address this problem in machine learning,

techniques for dimensionality reduction are used, that are techniques for reducing

the number of variables under consideration, i.e. for reducing the dimensionality of

the space where learning is performed.

Feature selection is an example of a dimensionality reduction technique, which tries

to find an informative subset of the original variables using statistical measures.

Feature selection has been successfully applied to various machine learning algo-

rithms. The advantages of using these techniques are the reduction of the noise

in input data discarding some useless or not-correlated information (for the task),

making learning from the data simpler.

In kernel methods, dimensionality reduction consists in reducing the dimension-

ality of the feature space. As stated in Section 2.2 usually kernel methods perform

the mapping in the feature space only implicitly, so the application of dimensionality

reduction techniques in the feature space is not trivial. The study of how to extend

the application of these techniques to kernel methods is an interesting research line,

because various existing kernel functions may benefit from it. In Section 4.5.1 we

will present feature selection techniques applicable to the problem of learning from

graph data in more detail.

2.6 SVM training

2.6.1 Gradient Descent

Gradient descent (GD) is a mathematical technique for finding the minimum of a

function. This method uses the fact that the gradient ∇f of a function points in



Chapter 2. Learning with kernels 23

the direction of greatest increase. This means that −∇f points in the direction of

greatest decrease. GD can be applied to solve the SVM optimization problem stated

in Section 2.4.2. For example, if we consider the primal SVM formulation, a natural

iterative algorithm to find the minimum of equation 2.2, referred for clarity as fSVM ,

is to update an estimate wt using wt+1 = wt − α∇fSVM(wt), where 0 < α < 1 is a

learning rate (necessary for convergence) and∇fSVM(wt) is the gradient of fSVM(wt)

computed on the whole training set.

2.6.2 The SMO algorithm

Sequential minimal optimization is an algorithm for efficiently solving the large

optimization problem which arises during the training of support vector machines,

invented by Microsoft research [110]. SMO breaks the main problem into a set of

the smallest possible quadratic programming problems, which are then analytically

solved. The algorithm proceeds as follows:

1. Find a Lagrange multiplier α1 that violates the Karush–Kuhn–Tucker (KKT)

conditions for the optimization problem.

2. Pick a second multiplier α2 and optimize the pair (α1, α2).

3. Repeat steps 1 and 2 until convergence.

When all the Lagrange multipliers satisfy the KKT conditions (within a user-

defined tolerance), the problem has been solved. Although this algorithm is guaran-

teed to converge, heuristics are used to choose the pair of multipliers to accelerate

the rate of convergence. The complexity of this algorithm is quadratic in the dataset

size, while previous methods were cubic.

2.7 Online learning algorithms

When the amount of data to process becomes very large, kernel methods have a

bottleneck related to the computational complexity of the learning algorithms. The



24 Chapter 2. Learning with kernels

problem of processing huge amounts of data is receiving increasing attention. Ac-

cording to a report from IDC titled “The Digital Universe in 2020: Big Data, Bigger

Digital Shadows, and Biggest Growth in the far East” [64], only 0.5% of the 643

exabytes of useful data have been analyzed. Examples of this data include images,

social media, sensors (including those in our smartphones and other devices, as well

as those that may be implanted into the body) or medical devices. Indeed, the most

popular learning algorithm, the SVM, scales quadratically in the dataset size. This

complexity may be impractical when dealing with datasets of several thousands of

examples. The simplest way to handle large datasets is to randomly discard data,

but there are statistical benefits to process more data [19].

Recent research focused on large-scale learning, e.g. [154, 28], but the majority of

the methods focus on linear SVMs not allowing for the application of the kernelized

formulation. Other researches slightly modify the optimization problem to make the

parallelization possible [155]. Typically, the complexity of these methods remains

quadratic.

A promising way to deal with large-scale datasets that has been recently proposed

is to use online learning algorithms, that are learning algorithms that process one

example at a time. Indeed, it is possible to apply online learning algorithms on big

batch datasets, allowing for multiple (sequential) passes over the data. Typically,

each complete pass over the data is referred as an epoch.

This approach is very flexible because it allows an user to adjust the tradeoff

between computational time and the quality of the solution.

Moreover, even if online algorithms are in general simpler with respect to batch

ones, for most of them the solution (given that some properties are respected) con-

verges to the global optimum. These algorithms belong to the general family of

Stochastic Gradient Descent algorithms[120], that will be presented in Section 2.7.3.

Unlike other approaches, in the non-kernelized version SGD has constant update

time and constant space occupation.

Algorithms belonging to the SGD family can be easily kernelized to be applied to

nonlinear classification problems. However, it becomes necessary to store the set of



Chapter 2. Learning with kernels 25

support vectors and in general the number of SVs grows linearly with the size of the

dataset. In the large-scale scenario we deal with huge datasets, thus this approach

leads to the problem of exceeding the available memory and to the linear growth of

the training and test times [5].

In order to face these issues, in [146] it is proposed a budgeted version of SGD,

referred as BSGD (see Section 2.7.4).

2.7.1 Stream data mining

Data streams are becoming more and more frequent in many application domains

thanks to the advent of new technologies, mainly related to web and ubiquitous

services [11, 62]. In a data stream, data elements are generated at a rapid rate and

with no predetermined bound on their number. For this reason, processing should

be performed very quickly (typically in linear time) and using bounded memory

resources. Data streams can be viewed as ordered infinite sequences of instances,

flowing at variable rates and typically produced by a non-stationary source. They

can be generated for example by sensor networks, user clicks, web server connections

or emails.

Moreover, every real-world classification system may take advantage of continu-

ously adapting the model with a feedback from the new data.

Unfortunately, conventional knowledge discovery tools cannot manage this over-

whelming volume of streaming data. The study of the issues related to the new

nature of incoming data represents the starting point to understand the main fac-

tors influencing the data streams problem.

Batch machine learning techniques typically require data to be entirely stored in

memory, and to work with multiple passes on this data. In data streams scenario,

the huge amount of data cannot be stored in memory or on disk. Thus, it’s crucial

to design mining algorithms using efficient techniques to bound the time and space

necessary to extract a model.

Moreover, in streaming contexts a phenomenon called concept drift frequently

occurs, and makes mining data streams even more complex. Indeed, in the data



26 Chapter 2. Learning with kernels

streams world the underlying concept that we are trying to learn is not stable,

but constantly evolving over time [86]. For example, if we want to predict weekly

merchandise sales in an online shop we can develop a predictive model that works

satisfactorily. The problem is that the behavior of the customers may change over

time. The model may use inputs such as the amount of money spent on advertising,

promotions being run, and other metrics that may affect sales. The model is likely

to become less and less accurate over time - this is concept drift. In the merchandise

sales application, one reason for concept drift may be seasonality, which means that

shopping behavior changes seasonally. Perhaps there will be higher sales in the

winter holiday season than during the summer, for example. This problem in the

classification context requires special techniques.

The main challenge of stream data mining is to accurately capture the continuous

changing decision concepts and scale up to large volume of stream data. The nature

of data streams requires the use of algorithms that involve at most one pass over the

data and try to keep track of time-evolving features (concept drift). Summarizing,

the characteristics required from online learning algorithms are:

• example processing in linear time;

• no need for storing examples after they have been processed (single pass over

data);

Incremental (online) Learning

Incremental learning has recently attracted growing attention from both academia

and industry. From the computational intelligence point of view, there are at least

two main reasons why incremental learning is important. First, from data mining

perspective, many of today’s data-intensive computing applications require learning

algorithms to be capable of incremental learning from large-scale dynamic stream

data, and to build up the knowledge base over time to benefit future learning and

decision-making processes. Second, from the machine intelligence perspective, bi-

ological intelligent systems are able to learn information incrementally throughout



Chapter 2. Learning with kernels 27

their lifetimes, accumulate experience, develop spatial-temporal associations, and

coordinate sensor-motor pathways to accomplish goals. We mainly focus on the

first issue. Historically, inductive machine learning has focused on non-incremental

learning tasks, i.e., where the training set can be constructed a priori and learning

stops once this set has been duly processed, because it is the simplest learning sce-

nario. There are, however, a number of areas, such as agents, where learning tasks

are incremental. In recent years, the attention has been posed on this type of learn-

ing (see e.g. [71]) and some work has been done for defining incremental learning

systems, for example in [74] is proposed a general incremental learning framework

that is able to learn from stream data for classification purpose. The traditional

online learning problem can be summarized as follows. Suppose a, possibly infinite,

data stream in the form of pairs (x1, y1), . . . , (xt, yt), . . ., is given. Here xt ∈ X is the

input example and yt = {−1,+1} its classification. Notice that, in the traditional

online learning scenario, the label yt is available to the learning algorithm after the

class of xt has been predicted. The goal is to find a function h : X → {−1,+1}
which minimizes the error, measured with respect to a given loss function, on the

stream. There are additional constraints on the learning algorithm about its speed:

it must be able to process the data at least at the rate it gets available to the learning

algorithm. Moreover, the amount of memory available to represent h() is limited by

memory constraints or by the user.

Concept drift

When moving from the classical batch learning scenario to the online setting, the

learning problem becomes more challenging. When dealing with large amounts of

data produced from data streams, the problem of extracting knowledge from the data

becomes more difficult because the data distribution and the underlying concept may

be subject to continuous changes. An effective stream data mining algorithm should

therefore be capable of dealing with such changing concepts and producing accurate

models. In practice, this issue can be addressed by detecting changes in the data

streams and continuously updating the prediction models according to the most



28 Chapter 2. Learning with kernels

recently arrived data.

We can characterize concept drifting in two macro classes:

• loose concept drifting;

• rigorous concept drifting;

the main difference between them being the speed in which changes in concepts

happen. In the former the concept slowly changes over the time, while in the latter

at a certain time t the concept changes.

2.7.2 Formalization and Feasible approaches

The most commonly used formalization for stream data mining with concept drift-

ing is presented in [88] and models a stream as an infinite sequence of elements

e1, . . . , ej, . . .. We can divide a data stream into batches b1, b2, . . . , bn, . . . where

bi = ei1 , . . . , eini . For each batch bi, we assume data as identically distributed with

regard to a distribution Pi(e). Depending on the amount and type of concept drift,

Pi(e) will differ from Pi+1(e).

Data accumulation policy

As summarized in [74], the family of methods that adopts a data accumulation

policy, simply develops a new hypothesis whenever a chunk of data is received.

Thus the hypothesis ht is based on all the available data accumulated up to time t,

i.e. {b1, b2, . . . , bt} and the previously trained hypothesis ht−1 is discarded. This is a

too straightforward and simplistic approach for many scenarios: in fact the existing

learned hypothesis ht−1 is not used for the learning of the new one ht. When concept

drift happens, the learner is not able to adapt quickly to the new data. We would like

to point out that for some memory-based approaches such as the locally weighted

linear regression method, a certain level of previous experience can be accumulated

to avoid the ”catastrophic forgetting” problem. Nevertheless, this group of methods

generally requires the storage of all accumulated data items. Therefore, it may not



Chapter 2. Learning with kernels 29

be feasible in many data-intensive real applications (as when we deal with examples

in structured form) due to the constraints of limited memory and computational

resources.

Classifier ensemble for stream data mining

Existing research in the area has proposed a set of ensemble frameworks for stream

data mining. Under this framework, one can build classifiers on rather small data

chunks without missing major patterns.

One of the first approaches that deals with streams of structured data, in partic-

ular with trees, is proposed in [72]. The idea is not to keep in memory all examples

that come from the data stream. Instead, only a fixed number of data chunks are

kept in memory (e.g. the last n chunks). A model is generated for each data chunk.

When a chunk becomes outdated, it is not deleted but it is aggregated with an-

other old data chunk in a DAG that is a compressed lossy representation of them,

generating one single model. With this policy, we have a bounded, fixed number of

models, and thus of classifiers, that are combined in a (linear) committee.

When a new data chunk arrives, there is a re-weighting phase that computes a

new weight for each model based on its accuracy on a part (25%) of the current

chunk. This weighting phase keeps only the informative parts of the data, thus this

makes possible to deal with concept drifting. Old concepts will have a very low

weight.

2.7.3 Online Stochastic gradient descent algorithms

Online algorithms to approximately solve the SVM optimization problem have been

proposed in order to incrementally update the model working on a single example

at a time. For example LASVM [16] proposes a tradeoff between optimality and

scalability modifying the SMO algorithm to incrementally upgrade the model. Gra-

dient descent methods are an appealing alternative to the quadratic programming

methods. In stochastic gradient descent (SGD) the SVM training is transformed



30 Chapter 2. Learning with kernels

in an unconstrained problem. The algorithm scan the data one example at a time

and the model is updated using (sub-)gradient descent over an instantaneous ob-

jective function. This class of algorithms, due to its iterative nature, is often run

in epochs, performing multiple passes over the input data for improved accuracy.

The primal version of the PA, sketched in Algorithm 1, represents the solution as a

sparse vector w. In machine learning w is often referred to as the model. SGD differs

from batch gradient descent in the way the gradient is estimated[18]. In the batch

gradient descent algorithm, each iteration involves a burdening computation of the

average of the gradients of the loss function ∇wL(xn, w) over the entire training set,

see Section 2.6.1. The elementary online stochastic gradient descent algorithm is

obtained by dropping the averaging operation in the batch gradient descent algo-

rithm. Instead of averaging the gradient of the loss over the complete training set,

each iteration of the online gradient descent consists of choosing an example xt at

random, and updating the parameters wt according to the following formula:

wt+1 = wt − α∇wL(xt, wt)

where α is the learning rate and L() is a loss function and ∇wL(xt, wt) indicates the

gradient, that is the vector of partial derivatives, of L(xt, wt) with regard to w .

It is worth noticing that most online algorithms actually are stochastic gradi-

ent descent algorithms. For example, the perceptron algorithm presented in Sec-

tion 2.4.1 updates the model, when an error occurs, with the following update rule:

wt+1 = wt + 2αytw
T
t xt

is a stochastic gradient descent with the following loss function

Lperceptron(x,w) = (sign(wTx)− y)wTx. (2.3)

The resulting SGD rule is:

wt+1 = wt − α(sign(wTt xt)− yt)wTt xt

Since the desired class is either +1 or -1, the weights are not modified when the

pattern x is correctly classified. Therefore this parameter update rule is equivalent



Chapter 2. Learning with kernels 31

Algorithm 1 Primal Stochastic gradient descent online learning.
1: Initialize w: w0 = [0, 0, . . . , 0]

2: for each round t do

3: Receive an instance xt from the stream

4: Compute the score of xt: S(xt, wt) = wTt xt

5: Receive the correct classification of xt: yt

6: if L((xt, yt),Mt) > 0 then

7: update the hypothesis: wt+1 = wt − α∇wL(xt, wt)

8: end if

9: end for

to the perceptron rule. Algorithm 1 summarizes the primal SGD procedure. When

a new example xt arrives(line 3) the algorithm computes its score (line 4) by means

of a dot product with the current model wt. The prediction is then sign(S(xt, wt)).

After the prediction has been made, the correct labeling yt is received. If a pre-

diction mistake occurred and the loss function value is greater than zero (line 6),

the algorithm needs to update the model accordingly (gradient descent step). The

new model wt + 1 is computed accordingly to the particular gradient descent rule

(line 7). It is worth to notice that L(xt, wt) is the gradient of the instantaneous loss

function L defined only on the latest example. In the original SGD formulation,

L((xt, yt), wt) = max(0, 1− ytS(xt, wt)) is the hinge loss function.

Note that an equivalent dual version of SGD algorithm exists. For sake of sim-

plicity, we will introduce a similar dual algorithm in the next section, and the dual

Budget Stochastic Gradient Descent in Section 2.7.4.

Online Passive-Aggressive

The Passive-Aggressive (PA) [39], among the different online learning algorithms,

presents state-of-the-art performances, especially when budget constraints are present [149].

In Section 5.2 we propose an extension to this algorithm that deals with structured

data. There are two versions of the algorithm, primal and dual, which differ in the

way the solution h() is represented. We will assume in the following that the model

vector w is sparse. In other words, we are not going to store the whole vector w,

but only the elements that differs from zero. In the following we will use |w| as the



32 Chapter 2. Learning with kernels

number of non null elements in w. This assumption allows us not to work directly

in the input space (the space in which examples live), but to use a mapping function

φ from the input space to another bigger vectorial space, referred as feature space.

For more details about the possible mappings, see Section 2.3.

Let us define the score of an example as:

S(xt, wt) = wt · φ(xt). (2.4)

Note that h(x) corresponds to the sign of S(x). The algorithm, sketched in Algo-

rithm 2, proceeds as in the stochastic gradient descent presented in Section 2.7.3:

the vector w is initialized as a null vector (line 1) and it is updated whenever the

sign of the score S(xt) of an example xt is different from yt (line 6). The update rule

of the PA finds a tradeoff between two competing goals: preserving w as much as

possible and changing it in such a way that xt is correctly classified. In the algorithm

the weight assigned to the new example entering in the support set is referred as τt.

In [39] it is shown that the optimal update rule is:

τt = min

(
C,

max(0, 1− S(xt, wt))

‖xt‖2

)
, (2.5)

where C is the tradeoff parameter between the two competing goals above. It can be

shown that Passive-Aggressive belongs to the family of stochastic Gradient Descent

algorithms.

Algorithm 2 Primal Passive-Aggressive online learning.
1: Initialize w: w0 = (0, . . . , 0)

2: for each round t do

3: Receive an instance xt from the stream

4: Compute the score of xt: S(xt, wt) = wt · φ(xt)

5: Receive the correct classification of xt: yt

6: if ytS(xt) ≤ 1 then

7: update the hypothesis: wt+1 = wt + τtytφ(xt)

8: end if

9: end for

Under mild conditions [41], to every φ() corresponds a kernel function K(xt, xu),

defined on the input space such that ∀xt, xu ∈ X, K(xt, xu) = φ(xt) · φ(xu), as



Chapter 2. Learning with kernels 33

explained in Section 2.2. Notice that w =
∑

i∈M yiτiφ(xi), where M is the set of

examples for which the update step (line 7 of Algorithm 2) has been performed.

Then Algorithm 2 has a correspondent dual version, presented in Algorithm 3, in

which the τt value is computed as

τt = min

(
C,

max(0, 1− S(xt,Mt))

K(xt, xt)

)
(2.6)

and the score of equation (2.4) becomes S(xt,Mt) =
∑

xi∈Mt
yiτiK(xt, xi).

Algorithm 3 Dual Passive-Aggressive online learning.
1: Initialize M : M0 = {}
2: for each round t do

3: Receive an instance xt from the stream

4: Compute the score of xt: S(xt,Mt) =
∑

(xi,yi,τi)∈Mt
yiτiK(xt, xi)

5: Receive the correct classification of xt: yt

6: if ytS(xt) ≤ 1 then

7: compute τt = min
(
C,

max(0,1−S(xt,Mt))
K(xt,xt)

)
8: update the hypothesis: Mt+1 = Mt ∪ {(xt, yt, τt)}
9: end if

10: end for

Here M is the, initially empty set of tuples corresponding to support examples

which the update rule modifies as M = M ∪ {xt, yt, τt}, where xt is the example, yt

its label and τt its weight computed accordingly to Equation 2.6. It can be shown

that the primal and dual algorithms compute the same solution. However, the dual

algorithm does not have to explicitly represent w, since it is only accessed implicitly

through the corresponding kernel function.

2.7.4 Budget online stochastic gradient descent algorithms

Respecting a memory budget is one of the constraints of online learning algorithms,

as explained in Section 2.7. Moreover, if the algorithm complexity depends on

the memory occupation like in the dual algorithms presented in Section 2.7.3, an

effective method to control the speed of online learning algorithms is to control

the amount of memory the algorithm is allowed to use. Assigning a fixed memory

budget in this way ensures that the algorithm do not run out of memory, and



34 Chapter 2. Learning with kernels

burden the computational complexity of the algorithm since for most of them the

computational complexity can be expressed as a function of the budget. In this

section we will review some of the most important algorithms in literature for this

scenario.

Budget stochastic gradient descent

The paper [146] proposes a modification of SGD algorithm limiting the model size

to a budget B expressed as the number of Support Vectors representing the model.

A budget maintenance step is performed whenever the number of SVs exceeds the

budget, namely |M | > B. This step reduces the size of M by one. The result

of this step is a degradation of the classifier. The budget maintenance strategy

greatly influences this degradation. In Section 2.8 some of the principal strategies

are presented, including random, oldest ones and the examples having lowest τ value.

Algorithm 4 Dual Stochastic gradient descent online learning on a budget.
1: Initialize M : M0 = {}
2: for each round t do

3: Receive an instance xt from the stream

4: Compute the score of xt: S(xt,Mt) =
∑

(xi,yi,τi)∈M yiτiK(xt, xi)

5: Receive the correct classification of xt: yt

6: if L((xt, yt),Mt) > 0 then

7: while size(Mt) + size(xt) > B do

8: select an example j and remove it from Mt

9: end while

10: compute τt = αL((xt, yt),Mt)

11: update the hypothesis: Mt+1 = Mt ∪ {(xt, yt, τt)}
12: end if

13: end for

Let’s proceed briefly explaining the algorithm. When a new example xt ar-

rives(line 3) the algorithm computes its score (line 4) applying a kernel function

with all the support vectors. Here the τ is the weight associated to each support

vector (calculated in line 10). The prediction is then sign(S(xt)). After the pre-

diction has been made, the correct labeling yt is received. If a prediction mistake

occurred and the loss function value is greater than zero (line 6), the algorithm needs



Chapter 2. Learning with kernels 35

to update the model accordingly (gradient descent step). At this point, if the budget

B is full, the budget maintenance step have to be performed. In this case, according

to the particular policy, a support vector is removed. This step lead to a degradation

of the model, that can be bounded for some budget maintenance policies. Finally,

the example xt can be inserted into the model M . A new tuple is generated (line

11) containing the example, its label, and the weight τ computed accordingly to the

particular gradient descent rule (line 10). It is worth to notice that L(xt,Mt) is the

gradient of the instantaneous loss function L defined only on the latest example.

In the original BSGD formulation, L((xt, yt),Mt) = max(0, 1 − ytS(xt,Mt)) is the

hinge loss function. Different works proposed modifications of the way the budget

is maintained, each one giving funny names to the resulting algorithms. Most of

them are briefly explained in Section 2.8. For sake of simplicity, in this chapter we

will separate the learning algorithms with the budget policies.

In the next sections, we will present several learning algorithms that can be

viewed as slight modifications of Algorithm 4. For this reason, where possible we

will present the algorithms pointing out the differences with this one.

Budget perceptron

The simplest budget online algorithm is, not surprisingly, the budget perceptron.

This modification of the original perceptron algorithm was first proposed in [40]. We

can easily obtain the algorithm instantiating the loss functionL(xt, yt,Mt) calcula-

tion in lines 6 and 10 of the BSGD Algorithm 4 to the perceptron rule Lperceptron(xt, yt,Mt) =

(sign(S(xt,Mt)− y)ytS(xt,Mt). It is worth to notice that this rule is the same rule

presented in equation 2.3 but for the dual version of the algorithm.

Budget online Passive-Aggressive

In [149] it is proposed to modify the dual version of the passive aggressive algo-

rithm presented in Algorithm 3 introducing the same budget constraint as in BSGD.

Recalling from Section 2.7.3, the main difference between the perceptron and the

passive-aggressive algorithm is that in the former the model is updated only if a



36 Chapter 2. Learning with kernels

classification mistake occurs, while in the latter the model is updated even when a

margin error occurs. In other words, we update the model even when an example is

correctly classified but it is too close to the separating hyperplane (for an example,

see Figure 2.2).

Figure 2.2: Example of a margin error.

For this algorithm, the loss function is computed according to Equation 2.5, and

looks like:

L(xt, yt,Mt)t = yt − sign(S(xt,Mt)) min

(
C,

max(0, 1− |S(xt,Mt)|)
K(xt, xt)

)
. (2.7)

So for this formulation, the α parameter is fixed to one since the tradeoff is managed

by the parameter C.



Chapter 2. Learning with kernels 37

The resulting algorithm is given in Algorithm 5.

Algorithm 5 Dual Passive-Aggressive online learning on a budget.
1: Initialize M : M0 = {}
2: for each round t do

3: Receive an instance xt from the stream

4: Compute the score of xt: S(xt,Mt) =
∑

(xi,yi,τi)∈M yiτiK(xt, xi)

5: Receive the correct classification of xt: yt

6: if ytS(xt) ≤ 1 then

7: while size(Mt) + size(xt) > B do

8: select an example j and remove it from Mt

9: end while

10: compute τt = min
(
C,

max(0,1−S(xt))
K(xt,xt)

)
11: update the hypothesis: Mt+1 = Mt ∪ {(xt, yt, τt)}
12: end if

13: end for

The differences between Algorithm 5 and Algorithm 4 are in line 6, where the

further looks for margin errors instead of classification errors, and in line

2.7.5 Feature selection

When dealing with fixed-size vectors as inputs, it is common to apply techniques of

feature selection as a preprocessing step. Feature selection refers to the process of

selecting a subset of relevant features for use in model construction, discarding the

non-informative ones. Feature selection techniques provide several benefits when

constructing predictive models:

• improved model interpretability;

• shorter training times;

• enhanced generalization by reducing overfitting.

In the context of kernel methods for structured data, feature selection is not

commonly used since kernel functions avoid to explicitly accessing the feature space.

However in Section 4.5.1 we propose a way to apply feature selection to a specific

family of graph kernels.



38 Chapter 2. Learning with kernels

In the literature, several feature selection techniques have been proposed. The

paper [30] shows the impact of different feature selection techniques on SVM train-

ing. We will briefly review the two main approaches. A first approach for feature

selection consists on trying to estimate a-priori the impact a feature is likely to have

in the final model. A typical approach is to compute a statistical measure for esti-

mating the relevance of each feature w.r.t. the target concept, and to discard the

less-correlated features.

The measure we seek should take into account both feature frequency and target

information. F-Score is a value that measures the discrimination of two sets of real

numbers. The F-score [31] of a feature i is defined for binary classification tasks as

follows:

Fs(i) =
(AV G+

i − AV Gi)
2 + (AV G−i − AV Gi)

2∑
j∈Tr+

(f ji − AV G+
i )2

|Tr+| − 1
+

∑
j∈Tr−

(f ji − AV G−i )2

|Tr−| − 1

(2.8)

where AV Gi is the average frequency of feature i in the dataset, AV G+
i (AV G−i )

is the average frequency of feature i in positive (negative) examples, |Tr+| (|Tr−|)
is the number of positive (negative) examples and f ji is the frequency of feature i

in the jth example of the dataset. It should be noticed that features that get small

values of F-score are not very informative with respect to the binary classification

task.

Once the F-Score value has been calculated for every feature, it is possible to fix

a threshold to cut low and high F-Scores.

In Section 4.5.1 we will present a new formulation of F-Score allowing for an

incremental evaluation.

Another method to estimate feature importance is to train the model and to

select, after the training phase, the features that mostly contribute to the classifi-

cation. However, it is necessary to train the model on the complete set of features,

giving up the speed benefits of feature selection. To avoid this problem, we can train

a simpler (and thus faster) algorithm. In [30] it is proposed to use Random Forest,

which is a classification method that also provides feature importance. Obviously,



Chapter 2. Learning with kernels 39

different feature selection approaches can be combined in order to produce a more

powerful feature selection pipeline.

2.8 Managing the budget

In online learning, algorithms have to be designed to respect a strict budget con-

straint. The budget is a limit on the amount of memory an algorithm is allowed to

occupy. To design such algorithms is a challenging problem, thus for some algorithms

in literature this constraint has been relaxed, e.g. [107].

Nonetheless, imposing a budget constraint is important:

• to avoid that the algorithm runs out of memory, essential in tasks that involve

life-long learning;

• depending on the algorithm design, to adjust the accuracy/speed tradeoff.

The applicability of the budget constraint makes sense with kernelized algo-

rithms, whose memory occupation is not bounded. In order to apply these con-

straints, when the model is represented as a set of examples, we have to select which

examples have to stay in the Support Vector set and which do not. On the other

hand, the application of a memory budget on primal algorithms, for example the

primal version of the PA presented in Algorithm 2 is not straightforward and in

general, when the model is represented as a vector, limiting the size of the vector

implies the application of feature selection techniques. For this reason in this sec-

tion we will focus on those algorithms where the model M is represented as a set of

examples.

To maintain a fixed number of support vectors, a budget maintenance step have

to be performed every time the space needed from the support vector set exceeds

a predefined memory budget B. Without loss of generality, we can assume that if

the examples are fixed-size vectors, a fixed number of examples can be accommo-

dated into the budget B. We will refer to this number as b = |B|/size(x). After

the reduction step, the model will comprehend i < b support vectors. This step



40 Chapter 2. Learning with kernels

inevitably lead to a degradation of the model M . We will refer to this degradation

as the difference between M before and after the removal step at the t-th round

as ∆t. Budget maintenance is a critical design issue, and different strategies may

lead to different performances of the resulting algorithm. It can be shown that the

gradient error (i.e. the deviation from the optimal gradient descent direction) is

directly proportional to the weight degradation.

The main budget maintenance strategies can be grouped in three main categories:

removal, projection and merging.

The policy managing the budget affects both the computational and spatial

complexity of the algorithm. For example, when projection is used the space and

time complexity of the resulting algorithm scales quadratically with the budget and

linearly with merging or removal policies. Different budget maintenance strategies

have been defined in literature, and are briefly presented in the following.

• Stoptron[107]: this is a very simple algorithm, that updates the model until

the budget limit is reached and then, even if errors occurs, stops updating the

model.

• Random Perceptron[25]: whenever the perceptron makes a mistake and the

budget is full, a random support vector is deleted.

• Forgetron[48]: it is the first budget perceptron with performance guarantees.

The idea is to reduce the weight of each example in the support vector set

whenever a new support vector is added. Then, only when the budget is full,

the oldest vector (that is the one with smallest weight by construction) is

deleted.

• Projectron[107]: before adding a new example to the support vectors set, we

check if the new hypothesis can be approximated using a smaller number of

support vectors. If this is the case, the hypothesis is modified accordingly

(introducing a small approximation error).



Chapter 2. Learning with kernels 41

• BPA-P: in [149] he update rule of the dual version of the PA is extended by

adding the following constraint: the new model Mt must be spanned from only

B of the available B + 1 examples in M ∪ {xt}. In other words, a projection

step is added to the simple deletion of an example in M whenever the budget

is full.

• BPA-NN[149]: this approach is similar to BPA-P but, for reducing the com-

plexity, the removed support vector is projected to only a subset of the support

vectors in the models, the nearest ones.

• Twin Vector Machine [148]: the idea is to merge support vectors together

in order to respect the budget constraint. Authors calls the merged support

vectors twin vectors indicating that they merge two support vectors together.

In Section 5.2 we will propose a novel budget maintenance strategy.



42 Chapter 2. Learning with kernels



Chapter 3

Learning on structured data

The question of whether a

computer can think is no more

interesting than the question of

whether a submarine can swim.

Edsger Dijkstra

Classical machine learning algorithms, e.g. the ones presented in Chapter 2,

can directly be applied to all kinds of data that are easily embedded in a vectorial

form, as this is the traditional setting of machine learning. For example in kernel

methods, different kernel functions have been defined for vectors, like the polynomial

kernel [118] or the radial basis kernel [121].

In this chapter we will present the motivations behind the application on ma-

chine learning techniques on structured data in Section 3.1. Then in Section 3.2 we

will see why learning on graph streams is an interesting research direction. From

Section 3.3 until the end of the chapter we will review the state-of-the-art on kernels

for structured data.

3.1 Learning on graphs

Classical machine learning techniques are traditionally defined for data represented

in a vectorial form. However, there are many potential application domains where



44 Chapter 3. Learning on structured data

there are not natural representations of the examples in this form. For example, the

task of predicting a certain property of chemical compounds (e.g. carcinogenicity,

mutagenicity or toxicity) given their chemical structure is one of the tasks where it

is very difficult to extract a vectorial representation of data without losing useful

information. Such compounds can be easily represented as graphs where vertices

represent the atoms and are labeled according to the type of the atom (e.g. Carbon

or Oxygen), while edges represent the bonds between atoms and are labeled accord-

ing to the bond type (e.g. single, double ...). Another example is the problem of

protein-protein interactions in bioinformatics, where the protein secondary structure

can be easily seen as a graph where nodes correspond to the amino acids and bonds

refer to the distance between them. Also other fields may benefit from the applica-

tion of learning algorithms on structured data: in computer vision, an image (or a

video frame) can be viewed as its segmentation graph (see for example [9]). These

are only some examples of the possible applications of learning algorithms on graphs

(see [1]). Thus, despite the complexity of the problem, the application of learning

algorithms on structured data is interesting because there are many applications

that can benefit from this approach.

One possible approach is to derive a satisfactory vectorial representation for ad-

hoc problems, for example see [111], but this is a painful, time consuming work and

it should be done ex-novo for every different task.

Another solution consists is extending learning methods in such a way that they

can be applied directly to learning problems where the representation of objects

as vectors is not trivial. In particular, in this thesis we will consider examples

represented as graphs, or as special types of graphs like trees.

In this learning scenario, encapsulating all information in a vectorial form is

difficult because, if we want to map the examples into vectors, we have to design

such a function. Ideally, we would require this mapping to respect some properties:

• isomorphic graphs must be mapped in the same vector;

• the function has to be computed efficiently (polynomial time);



Chapter 3. Learning on structured data 45

• non-isomorphic graphs must be mapped in different vectors.

It is worth to notice that these properties are necessary conditions for the successfully

application of a learning algorithm on our data.

Since the problem of deciding graph isomorphism is believed not to be efficiently

solvable (not to be in P), we probably cannot hope to find a function that satisfies

these properties, and without this function we cannot satisfactorily apply standard

machine learning algorithms to vectorial representations of graphs.

One can instead try to find a function that violates some of the conditions (the

second or the third one) but is still good enough for most learning problems, but

this approach is not trivial and introduces various complications. In general, the

more information we keep in the vectorial representation, the more computationally

demanding the mapping is.

Therefore, it seems that a promising approach to deal with structured data is to

avoid to explicitly map them in a vectorial form, and defining learning algorithms

directly on these data. We will see that, for efficiency reasons, most of the learning

algorithms defined in this way maps examples into vectors, too. The difference is

that this map is not ad-hoc defined for the specific task, and so it has not to be

defined by a domain-expert. Moreover, some learning algorithms perform this map

only implicitly, with benefits from the computational point of view.

In particular, we saw in Section 2.2 that kernel methods have the nice property

to separate the learning algorithm from the kernel function that faces with the

examples and that maps them into an high-dimensional Euclidean space. We will

see in Section 3.3 how to define kernel functions for structured data, in order to

apply all kernel learning algorithms to this kind of data.

Recently, machine learning turned its attention on graph-structured data. Learn-

ing on graphs is much more challenging than learning on vectors as we saw in the

previous section. In spite of this, various algorithms for learning on graphs has been

proposed for traditional mining problems, as frequent pattern mining or classifica-

tion. In this section, we will have an overview on some of these methods (for other

methods, see [1]).



46 Chapter 3. Learning on structured data

3.1.1 Notations

A graph is a triplet G = (V,E, L), where V (alternatively V (G)) is the set of vertices

(|V | is the number of vertices), E the set of edges and L() a function returning the

label of a node.

A graph is undirected if (vi, vj) ∈ E ⇔ (vj, vi) ∈ E, otherwise it is directed.

The set of neighbors of a vertex vi is defined as {vj|(vi, vj) ∈ V }. This set may be

referred as the set of children if the graph is directed.

A walk in a graph is a sequence of nodes v1, . . . , vn such that vi ∈ V , 1 ≤ i ≤ n

and (vi, vi + 1) ∈ E. A path is a walk with no repeated vertices. A cycle is a path for

which v1 = vn; a cycle is even/odd if its number of nodes is even/odd, respectively.

A simple cycle (or circuit) is a cycle with no repetitions of vertices or edges allowed,

other than the repetition of the starting and ending vertex. A graph is connected

if there exists a path connecting each pair of nodes. A directed connected graph

is rooted if exactly one node has no incoming edges. A graph is ordered if the set

of neighbors of each node is ordered. A tree is a rooted connected directed acyclic

graph where each node has at most one incoming edge. A subtree of a tree T is

a connected subset of nodes of T . A proper subtree is a subtree composed by a

node and all of its descendants. The symbol
v

4 is used to denote the proper subtree

of T rooted at v. Moreover, we denote as
v

4|h the subtree of T resulting from a

breadth-first visit starting at v and limited to h levels of depth. A subset tree is

a subtree with the constraint that, for each node, either all or none of its children

are included. Given a node v of a tree, ρ(v) represents the out-degree of v, i.e. the

number of nodes connected to v. We will use ρ as the maximum outdegree of a node

in either a tree or a graph. The depth depth(v) of a node v is the number of edges

in the shortest path between the root of the tree and v. If the tree is ordered, chv[j]

represents the j-th child of v and chsv[j1, j2, . . . , jn] indicates the set of children of

v with indices j1, j2, . . . , jn.



Chapter 3. Learning on structured data 47

3.1.2 Pattern mining on graphs

The problem of pattern mining on graphs can be stated as the problem of, having a

group of graphs, determine all patterns (subgraphs) that appear at least in a fixed

fraction of the graph dataset. These patterns are referred as frequent patterns.

To solve this problem, we have to face with the isomorphism issue in determining

whether one graph is a subgraph of another graph. Moreover, since there may be

overlapping among frequent patterns, the anti-monotonicity property of frequent

patterns, assumed from most frequent pattern mining algorithms, is violated.

However, for this scenario most of the well-known techniques for frequent pattern

mining on vectorial data can be extended to graphs. For example, Apriori[3]-style

algorithms search for frequent patterns of increasing dimension in the dataset. How-

ever, the complexity of these methods is in general exponential in the size of graphs,

so in many real-world datasets these techniques are not feasible.

Some of these techniques are used by algorithms for classification in a prepro-

cessing phase, for the generation of a vectorial representation of graph examples,

e.g. in [115]. This is another example of a technique for the generation of ah-hoc

vectorial representations for graphs, saw in Chapter 3.

3.1.3 Graph classification algorithms

This is one of the tasks we deal with in this thesis. The task is to learn a model

from a set of labeled graphs and use it to classify unseen examples. This is an

active research area. Among the various and very different techniques that has been

proposed, some of them have to be remarked: Kernel-based classification methods,

Boosting-based classification and neural networks methods. A detailed description of

available techniques concerning kernel methods on structured data will be provided

in Chapter 3.3, so we will not explain in details these techniques here.

The second approach, the boosting-based one, addresses also the problem of re-

vealing what graph structures (sub-structures) are relevant for classification. This



48 Chapter 3. Learning on structured data

is achieved through pattern mining. We can build a binary feature vector corre-

sponding to each graph based on the presence or absence of a certain sub-structure

(subgraph) in the graph, and apply an off-the-shelf classifier on these vector repre-

sentations. Since the entire set of subgraphs is often very large, we have to focus on

a small subset of it. This subset is usually selected using frequent pattern mining.

However, frequent patterns are not necessary relevant patterns (e.g. in Chemoinfor-

matics patterns C-C or C-C-C are very frequent but have almost no significance in

predicting characteristics like activity, toxicity ...). For this reason, boosting is used

to automatically select a relevant set of subgraphs as features for classification. An

example of an application of this approach is GBoost [115].

Neural networks techniques [49] consist in the application of artificial neural

networks directly to graph-structured data.

Among all the techniques that have been applied to the graph classification prob-

lem in literature, learning methods based on graph kernels have largely outperformed

other methods in terms of classification performance and often in computational

complexity. That is the reason why recent research has focused on these methods.

3.2 Graph streams

Recently there has been some work in extending stream data mining to graph struc-

tures. In many real world tasks involving streams, representing data as graphs is a

key for success, e.g. in fault diagnosis systems for sensor networks [7], malware de-

tection [56], image classification or the discovery of new drugs (see Section 5.1.2 for

some examples). Moreover, there has been a work on streaming graph classification

[2]. This problem is quite difficult because it requires some effective approximations

in order to be feasible. These has been achieved in practice via the well-known min-

hash technique [21] (or the min-wise independent permutations locality sensitive

hashing scheme), that is a way of quickly estimating how similar two objects are.

This technique has been extended in order to deal with a stream of graphs, leading

to an approximation of a similarity measure between graphs.



Chapter 3. Learning on structured data 49

It is worth to notice that graph streams usually are stream of edges, i.e. an

example may not arrive all at once. This further complicates the problem.

Recently, there is a continuously incrementing number of applications that can

be modeled as streams of graphs over a predetermined massive underlying universe

of nodes. Some examples are as follows:

• The communication pattern of users in social network in a modest time window

can be decomposed into a group of disconnected graphs, which are defined over

a massive-domain of user nodes.

• The browsing pattern of a single user (constructed from a proxy log) is typically

a small subgraph of the web graph. The browsing pattern over all users can

be interpreted as a continuous stream of such graphs.

• The intrusion traffic on a communication network is a stream of localized

graphs on the massive IP-network.

Motivated from the increasing number of novel applications requiring these tech-

niques, the classification of graph streams is one of the research areas where we

focused. Chapter 5 will present such contributions.

3.2.1 Learning on graph data streams

Most online learning algorithms assume that the input data can be described by a set

of features, i.e. there exists a function φ : X→ Rs, which maps the input data onto

a feature vector of size s where learning is performed1. We will loose this condition

assuming that s may be very large (possibly infinite) but only a finite number of

φ(x) elements, for every x, is not null, i.e. φ(x) can be effectively represented in

sparse format.

In this section, we introduce the problem of learning a classifier from a (possibly

infinite) stream of graphs respecting a strict memory constraint. In Chapter 5,

1While the codomain of φ() could be of infinite size, in order to simplify the notation we will

use Rs in the following.



50 Chapter 3. Learning on structured data

we will present an algorithm for processing graph streams on a fixed budget that

performs comparably to the non-budget version, while being much faster.

Similar problems have been faced in literature, e.g. learning on large-scale data

streams [52, 108, 131, 33, 63], learning on streams of structured data [8], learning

on streams with concept drift [81, 119, 89], and learning on structured streams with

concept drift [11, 13, 12]. However, none of the existing approaches considers mem-

ory constraints. Some methods provide bounds on the memory occupation, e.g. [12],

but they cannot limit a priori the amount of memory the algorithm requires. Conse-

quently, depending on the particular algorithm and on the data stream, there exists

the possibility for the system to run out of memory. This makes such approaches

unfeasible for huge graph streams.

Recently, the paper [92] proposed an ensemble learning algorithm on a budget

for streams of graphs. Each graph is represented through a set of features and a

hash function maps each feature into a fixed-size vector, whose size respect the given

budget. Different features mapped to the same vector element by the hash function

are merged into one. The performances of the learning algorithm vary according to

the hash function and the resulting collisions. While the use of an ensemble allows

to better cope with concept drift, it increases the computational burden to compute

the score for each graph.

Learning from graphs is per se very challenging. In fact, state-of-the-art ap-

proaches use kernels for graphs, which usually are computationally demanding since

they involve a very large number of structural features. Recent advances in the

field, have focused on the definition of efficient kernels for graphs which allow a di-

rect sparse representation of a graph onto the feature space [122, 38, 44]. For further

details, see Chapter 3.6.

3.3 Kernels for structured data

For the motivations discussed in Section 3.1, in the last years the research on kernel

methods focused on the definition of valid kernel functions for structured data.



Chapter 3. Learning on structured data 51

Initially Kernel methods, as other standard machine learning tools, have been

applied to various real-world problems with examples in vectorial form.

A first approach to apply this kind of methods on problems with data represented

in other forms was the derivation of an ad-hoc, domain specific vectorial represen-

tation for the data and then the application of a classical learning algorithm for

vectors on it.

This has been done for example in [111] representing graphs in a vectorial form

using various polynomial-time graph invariants. The problem is that this function is

very specific, and incorporates much domain-knowledge. Therefore, a new function

has to be defined for every application domain.

With kernel methods, we have another option: thanks to the modularity of

this approach (see Section 2.2), we can leave the learning algorithm unchanged,

represent data in any meaningful way and adapt the kernel function to the chosen

representation. This approach does not simplify the general problem but it allows

a more systematic solution.

So kernel methods can be applied wherever a valid kernel function is defined,

and kernel functions in general can be defined over any type of entity.

Furthermore, positive definite kernel functions themselves can be seen as inner

products between the images of examples in a high dimensional Euclidean space.

Thus, it appears more natural to extend kernel methods to structured data by

directly defining a positive definite kernel function on the data rather then first

mapping it into vectors and then mapping it into yet another space. Moreover,

mapping the data only once and implicitly, using the kernel function, has computa-

tional advantages. Therefore, we should define how kernel methods can be applied

to learning problems on structured data. Fortunately, kernel methods can be applied

straightforwardly to any kind of data as long as a meaningful (that is, significant

for the task) kernel function is known.

Unfortunately, defining a meaningful and fast kernel function on structured data

is a very difficult task, because there is a tradeoff between the computational com-

plexity of the kernel and its expressiveness, i.e. how much information from the



52 Chapter 3. Learning on structured data

original data is considered.

In particular, the computation of large Gram matrices is known to be one of

the bottlenecks of kernel methods. When dealing with simple vectors of reason-

able size, this problem only materializes with very large databases. For complex

structures such as texts or dense graphs, computational limits are hit much earlier.

Hence, defining a kernel that can leverage the wealth of information provided by

such structures while being still computationally tractable remains a major chal-

lenge, and is one of the research lines proposed in this thesis. Between the two ends

of this spectrum lie structures such as strings or trees, which, although challenging

from a combinatorial perspective, can be handled with relative efficiency through

the convolution kernel framework (see Section 3.4).

We will focus on these types of data for drawing an increasing-complexity (non-

exhaustive) taxonomy on kernels for structured data, emphasizing kernels for graph-

structured data.

The research on kernel methods for structured data started with the work of

Haussler [73] that we will summarize in Section 3.4, in which it is proposed a general

framework that allows the definition of kernel functions over structured objects based

on the decomposition of the object into simpler parts. In the next sections we will

see some of the state-of-the-art kernel functions for structured data that has been

defined in literature. This is an active area of research, since a fast and generally

meaningful kernel cannot exist. In fact, every kernel function has its own drawbacks,

that we will explain in detail.

3.4 Convolution kernels

One of the first and most important results in the field of kernels for structured

data is Haussler’s R-convolution kernel framework. This is a framework for defin-

ing positive definite kernel functions over any kind of objects, based on positive

semidefinite kernels on some kind of decomposition of the object, that are kernels

on sub-structures.



Chapter 3. Learning on structured data 53

In short, let X be a space of objects (that are our data points) and let each object

x be associated with a finite subset X ′x of a space X ′. Furthermore, assume that a

kernel over this domain k : X ′ × X ′ → R is defined. To define an R − convolution
kernel, Haussler [73] assumed a finite relation R ⊆ X ′D ×X , and let

K(x, y) =
∑

(x′1,...,x
′
n,x)∈R

 ∑
(y′1,...,y

′
n,y)∈R

D∏
i=1

k(x′i, y
′
i)

 .

The commonly used formulation with D = 1 becomes:

K(x, y) =
∑

(x′,x)∈R

∑
(y′,y)∈R

k(x′, y′).

With regard to positive definiteness of R− convolution kernels, Haussler showed

the following theorem.

Theorem 3.1 (Haussler 1999). If k is positive definite, K is also positive definite.

[129] rewritten this definition, and showed that any R− convolution kernel can

be derived from kernels determined by the following formula:

K(x, y) =
∑

(x′,y′)∈X ′x×X ′y

k′(x′, y′)

where X ′x and X ′y are finite subsets of X ′, and are determined according to x

and y.

Starting from the aforementioned simple formalization of the convolution kernels,

[129] generalized the concept of the convolution kernel, and introduced the mapping

kernel, that is explained in the next section.

3.4.1 Mapping kernels

The mapping kernel framework has been introduced in [129] to define kernels be-

tween structured objects. Recalling that X ′x = {x′ ∈ X ′|(x′, x) ∈ R}, the mapping

kernel is defined so that (x′, x) moves in subset Mx,y of X ′x × X ′y rather then the

entire cross product X ′x ×X ′y.



54 Chapter 3. Learning on structured data

Mapping kernel is defined as:

K(x, y) =
∑

(x′,y′)∈Mx,y

k(x′, y′).

This framework defines kernels over large structures that can be described through

smaller ones enumerated in a set X ′. The kernels are defined by the mapping set

Mx,y ⊂ X ′2 paired with a base kernel k : X ×X → R. This kernel K is positive defi-

nite for all positive definite base kernels k if and only if the mapping {Mx,y|x, y ∈ X}
is transitive (see [129]).

The mapping kernel generalizes Haussler’s convolution kernel in two ways:

1. The range of the pairs (x′, y′) can be a subset Mx,y instead of the entire X ′x×
X ′y.

2. The set X ′x can be an arbitrary set not limited to a subset of X ′.

In other words, the convolution kernel is the special case of the mapping kernel

when Mx,y is X ′x ×X ′y.

In addition, the family of sets {Mx,y|x, y ∈ X} are called a mapping system. In

relation to positive definiteness of mapping kernels, [129] introduced the following

important notion and theorem.

Definition 3.1. A mapping system {Mx,y|x, y ∈ X} is transitive if and only if the

following conditions are met:

• if (x′, y′) ∈Mx,y then (y′, x′) ∈Mx,y holds;

• if (x′, y′) ∈Mx,y and (y′, z′) ∈Mx,y, then (x′, z′) ∈Mx,y holds.

Theorem 3.2. The following conditions are equivalent.

1. The mapping system Mx,y|x, y ∈ X is transitive.

2. For an arbitrary positive definite kernel k : X ′ × X ′ → R, the mapping kernel

derived from it is positive definite.



Chapter 3. Learning on structured data 55

This equation provides a generic approach to build kernels but not to compute

them. In [128] it is introduced a topology of families of sub-structures τ to define

the mapping set Mx,y in order to define computationally tractable kernels and then

some examples of kernels of this family are shown. We will describe such kernels in

the following sections.

Extension of mapping kernels

Mapping kernel theorem assert that if a mapping system is transitive, the resulting

mapping kernel derived from a positive definite evaluation system is always positive

definite. It do not deny the possibility that mapping kernels with non-transitive

mapping systems or using non-positive-definite kernels on sub-structures can be

positive definite.

A new technique called covering technique that allows us to deal with some of

these cases is presented in [125]. In this work weaker but still sufficient condition

for positive definiteness of mapping kernels are given. This work can be useful for

future definitions of new kernels in the sense that it expands the possibility to easily

demonstrate positive definiteness of kernels.

String kernels

In this thesis, we are not interested in the details about kernels for strings. However,

some concepts from string kernels will be used later. The idea behind string kernels

is to compare strings in terms of common substrings. The paper [66] provides an

extensive survey for these types of kernels, most of which fits in the convolution

kernels framework.

3.5 Tree kernels

The majority of tree kernels are instances of the framework of convolution kernels.

Every kernel defines a different decomposition of the input trees, i.e. paths or



56 Chapter 3. Learning on structured data

subtrees, as we will see in the next sections.

3.5.1 Kernels for unordered trees

In general defining kernels on unordered trees is more complex with respect to the

case of ordered ones. Indeed, in this case there is a kind of equivalence class between

every possible permutation of the children of a node. This implies that practically it

is infeasible to define kernels based on “complex” sub-structures when dealing with

this kind of trees. Recently there has been some work [87] on defining a reasonable

and feasible kernel for unordered trees. This kernel counts the number of common

subpaths shared by two trees (the idea is from information retrieval [79]). A subpath

is a part of a path. The implementation is efficient and based on a variation of the

multikey quicksort algorithm applied to the tree of suffixes. The idea is to enumerate

prefixes of common suffixes of two trees, where a suffix is the string starting from a

node and ending at the root.

The algorithm for computing the kernel function between two trees T1 and T2

can be summarized as follows.

1. Initialize the kernel function value k as k := 0, the current position h as h := 1,

and the current set S as the set of all nodes in T1 and T2.

2. For nodes included in the current set S,

(a) choose one of the node labels in S as pivot at random;

(b) compare the node labels in S with the pivot label, and divide the nodes

into three sets Ssmall, Slarge and Sequal, that are, nodes with labels alpha-

betically larger than the pivot, nodes with smaller labels than the pivot,

and the others (with the same label of the pivot), respectively;

(c) if Ssmall has at least one node from both T1 and T2, apply step 2 to

S := Ssmall;

(d) apply Step 2(c) to Slarge;



Chapter 3. Learning on structured data 57

(e) if Sequal has at least one node from both T1 and T2, update k by using

k := k + whL(T1)L(T2)

where wh is the weight parameter, L(T1) and L(T2) are the number of

nodes in Sequal originated from T1 and T2, respectively. Otherwise, exit

from the current recursion. Set h := h + 1 and apply step 2 to S :=

parents(Sequal), that is the set of parent nodes of Sequal.

3.5.2 Kernels for ordered trees

The main issue of kernels for unordered trees is that they can rely only on path/walk

sub-structures in order to avoid NP-hardness. Moreover, most of the applications

of kernels for trees are on ordered trees, i.e. trees where a total order among the

children of each node is defined.

Many works deal with this kind of structures. Most of these kernels fall into the

framework of mapping kernels, described above in Section 3.4.1.

Tree edit distances kernel

The work in [128] shows an exhaustive topology of tree kernels that can be efficiently

computed. [23] introduces an edit distance that measures the (dis)similarity between

two trees. We now describe the concept of edit distance, which can be applied to

trees and graphs as well. Given two graphs (trees) X and Y , let us define an edit

script σ as a finite sequence of edit operations that converts X into Y . An edit

operation can be:

1. deletion of a vertex x ∈ V (X)

2. insertion of a vertex y ∈ V (Y ) into X

3. substitution of a vertex y ∈ V (Y ) for x ∈ V (X).



58 Chapter 3. Learning on structured data

Each operation has an associated, possibly different, cost. The cost of a script c(σ)

is the sum of the costs of all edit operations in σ. Then, the distance between X

and Y can be defined as the minimum cost over all edit scripts that turns X into Y .

Moreover, the costs of all the possible scripts can be considered as in the following

kernel from [129]:

K(X, Y ) =
∑

σ:X→Y

e−λc(σ).

This kernel is an instance of mapping kernels (see Section 3.4.1).

Another family of tree kernels measures the similarity of two trees based on the

number of sub-structures that they share. The difference between these kernels is

the type of sub-structures they look for. In the family of tree kernels that search for

common subtrees, we will describe three of the most important ones, in increasing

expressivity order.

Subtree kernel

Subtree kernel is an extension of the string kernel proposed in [143] that applies on

trees. The set of all proper subtrees of the input trees forms the feature space of

this kernel. In fact, the kernel can be formulated as a weighted sum over all proper

subtrees shared by two trees.

Let X and Y be two trees. The subtree kernel is defined as:

Ksubtree(X, Y ) =
∑
x∈X

∑
y∈Y

δ(x, y)wx =
∑
s∈A∗

hs(X)hs(Y )ws

where x and y are proper subtrees of X and Y , wx is the weight associated to the

tree x, A∗ is the set of all possible subtrees, hs(X) counts the frequency of the

subtree s in X, and δ is Kronecker’s delta function, that is a function evaluated to

1 if the two arguments matches, 0 otherwise.

The kernel complexity that arises from the formulation is quadratic. However,

an efficient implementation has been proposed that, using suffix trees, lowers the



Chapter 3. Learning on structured data 59

complexity to O(n log n), where n is the maximum number of nodes in X and Y

(see [143]).

Subset tree kernel

Unlike Subtree kernel, that calculates the similarity of two graphs counting the

number of shared proper subtrees, the kernel explained in this section is based on

subset trees. It is worth to notice that generally the number of subset trees in a graph

is larger than the number of proper subtrees, so there is a significant expressivity

gap between these two kernels.

Let t1, . . . , tm be the distinct trees corresponding to the set of subset trees induced

by a finite set of trees. We can define a feature space in which every feature represents

one different subset tree.

Let hs(X) be the number of times the subset tree ts occurs in the tree X. Every

tree will then be represented as the feature vector:

φ(T ) = [h1(T ), . . . , hm(T )].

The inner product between the feature vectors of two trees in this representation is

the subset tree kernel, defined as:

ksubsettree(X, Y ) = φ(X)φ(Y ) =
m∑
s=1

hs(X)hs(Y ).

The subset tree kernel can be calculated efficiently by a recursive formulation:

let Is(x) with x ∈ VX be a function evaluated to 1 if the subset tree ts appears in

X and is rooted in x, 0 otherwise. Then hs(X) =
∑

x∈VX Is(x). We can define the

kernel as:

ksubsettree =
m∑
s=1

hs(T )hs(T
′)

=
m∑
s=1

∑
v∈VT

Is(v)
∑
v′∈VT ′

Is(v)

=
∑
v∈VT

∑
v′∈VT ′

C(v, v′)



60 Chapter 3. Learning on structured data

where C(v, v′) =
∑m

s=1 Is(v)Is(v
′).

C(v, v′) can be computed recursively with the following definition:

1. if the productions of v and v′ (the production of v is the subset tree rooted in

v and that includes only its children) are different, then C(v, v′) = 0;

2. if the productions of v and v′ are the same, and v and v′ have only leaf children

(they are pre-terminal symbols), then C(v, v′) = λ;

3. if the productions of v and v′ are the same, and v and v′ are not pre-terminals,

then

C(v, v′) = λ

nc(v)∏
j=1

(1 + C(Chj(v), Chj(v
′)))


where nc(v) is the number of children of v, Chj(v) returns the j-th children

of node v, and 0 < λ ≤ 1 is a parameter used for the downweighting of larger

structures.

The computation of this kernel consists in a dynamic programming procedure,

that is the fulfilling of an |X| × |Y | matrix. Being n the number of nodes of the

biggest input tree, the computational complexity is O(n2).

Partial tree kernel

It is possible to enhance the subset tree kernel in order to further augment the

corresponding feature space dimension.

Partial trees are often simply referred as subtrees. Indeed, all the possible sub-

trees of the graphs in the training set form the feature space induced by partial tree

kernel. the

More in detail, the Partial tree kernel [101] measures the similarity of two trees

in terms of the partial matching of their subtrees. The definition is quite similar

to the subset tree kernel one, as the only modification is in the definition of the C

function:



Chapter 3. Learning on structured data 61

kpartialtree(X, Y ) =
∑
x∈VX

∑
y∈VY

C(x, y)

where C(x, y) is now defined by the following cases:

1. if x and y have the same label, then C(v, v′) = 0

2. otherwise

C(v, v′) = µ

λ2 +
∑

J1,J2,|J1|=|J2|

λd(J1)+d(J2)

|J1|∏
j=1

C(ChJ1i(v), ChJ2i(v
′))

 ,

where J1, J2, . . . are index sequences associated with the ordered child se-

quences Ch(v), Ch(v′), J1i, J2i point to the i-th children in the two sequences,

|J1| returns the length of the sequence J1 and d(J1) = J1|J1| − J11 (that is the

number of gaps that has been introduced), while µ and λ are two decaying

factors.

Partial tree kernel can be computed in O(p3|V (X)||V (Y )|) where p is the maximum

out-degree of the trees X and Y .

Other tree kernels

Many other kernels for ordered trees have been proposed in literature, e.g. the route

kernel [4] and the elastic tree kernel [84]. For a complete survey see [42]. Here

we will focus our attention on graph kernels, so we are not going to describe these

kernels.

3.6 Kernels for graphs

The main issue with graph kernels is whether it is possible or not to define graph

kernels that distinguish between all non-isomorphic graphs and, if not, how can

efficient graph kernels be defined to capture most of the structural information of

the graphs. The research on graph kernels has been made possible thanks to the



62 Chapter 3. Learning on structured data

important contribution of Haussler [73] that gave us an effective way to define valid

kernels on structured data, see Section 3.4.

We start our overview on graph kernels, following [67], with some first tries of

defining kernels for graphs.

The first class of graph kernels we are going to consider is the class of kernels

that allows to distinguish between all (non-isomorphic) graphs in the feature space.

If a kernel does not allow us to distinguish between two graphs then there is no way

any learning machine based on this kernel function can separate these two graphs

(and thus correctly classify them if their target value is different). Investigating the

complexity of graph kernels that distinguish between all graphs is thus an interesting

problem.

Unfortunately, computing any complete graph kernel is at least as hard as deciding

whether two graphs are isomorphic [67].

Let us now look at another interesting class of graph kernels. Intuitively, it

seems reasonable to base the similarity of two graphs on their common subgraphs.

It is possible to define a graph kernel that decomposes a graph into the set of its

subgraphs. Alternatively we can consider the map Φ that has one feature Φh for

each possible graph h, each feature Φh(X) measuring how many subgraphs of X are

isomorphic to h.

Again, this problem is known to be NP-hard, so it is highly improbable that an

algorithm that can solve this problem in polynomial time exists.

Moreover, limiting the feature space to only some specific types of subgraphs, e.g.

paths, does not change the problem complexity that remains NP-hard, as shown in

[67].

After these initial discouraging results, research focused on the definition of less

expressive (and thus less discriminative) kernels that are computable in polynomial

time. It is worth to point out that the definition of good kernels for graphs is a

challenging problem because of the inevitable tradeoff between the computational

complexity and the expressiveness of the kernel, which in general directly affects the

predictive performance.



Chapter 3. Learning on structured data 63

In the following, some of the most important proposals found in the recent literature

are discussed.

3.6.1 Random walk kernels

An alternative approach to the “näıve” kernels presented in the previous section

consists in measuring the number of common walks with identical label sequences

in two graphs. Although the number of common walks can be infinite, the inner

product in this space can be computed in polynomial time by first building the

product graph and then computing the limit of a matrix power series of its adjacency

matrix. This is the idea of the product graph kernel. It is worth to notice that the

computation of this kind of kernels is polynomial for undirected graphs only [69].

Product graph kernel

This kernel, one of the first to be proposed in [66] by Gärtner who was a key

forerunner in this field, counts the common walks of two graphs. A specific type of

graph product is used, the direct product graph, that is an instance of the tensorial

product.

More formally, the direct product graph of two graphs X and Y , referred as

P× = X × Y = (V×, E×) , is the graph which vertex and edge sets are defined as

follows:

V× = {(x, y) : x ∈ V (X) ∧ y ∈ V (Y ) ∧ LX(x) = LY (y)}

E× = {((x, y), (x′, y′)) ∈ V× × V× :

(x, y) ∈ E(X) ∧ (y, y′) ∈ E(Y ) ∧ {LX(x, y) = LY (y, y′)}

Now let X and Y be two graphs, and let A× be the adjacency matrix of their

product graph P× = (V×, E×) . With the weight sequence λ = λ0, λ1 . . ., with

λi ∈ R;λi ≥ 0 for each i ∈ N, it is possible to define the product graph kernel as:

K×(X, Y ) =

|V×|∑
x,y=0

[
∞∑
k=0

λkA
k
×

]
x,y



64 Chapter 3. Learning on structured data

if the limit exists.

This limit can be computed efficiently for particular values of lambdas: indeed,

it is possible to reduce the problem to geometric or exponential series. Both the

reductions have O(n6) computational complexity.

A new reduction of the kernel calculation to the solution of a Sylverster equa-

tion has recently been proposed in [140]. This approach lowers the computational

complexity of the kernel to O(n3).

Marginalized kernel

Another kernel has been defined that has the same feature space of the product

graph kernel, but it has a completely different formulation. For historical reasons,

we will explain this kernel too, that has been independently proposed in [85].

Informally, this kernel is defined as the expected value of a kernel over all possible

pairs of label sequences generated by random walks on two graphs. The procedure

for the generation of a random walk in a graph X consists in (i) select the starting

vertex v1 ∈ V (X) according to a probability distribution ps(v1) over all vertices

in V (X) (ii) in the i-th step, the vertex vi is extracted according to the transition

probability pt(vi|vi−1) to go in the vertex vi starting from vi−1, or the random walk

stops with a probability pq(vi−1). The sum of the probability of moving from a

vertex to another in its neighborhood and the stop probability of the current vertex,

should be equal to 1, that is:

|V (G)|∑
i=1

pt(vi|vi−1) + pq(vi−1) = 1.

Every random walk generates a vertex sequence w = (v1, . . . vl) where l is the

random walk length (possibly infinite). The probability of a walk w to be generated

is:

p(w|G) = ps(v1)

(
l∏

i=2

pt(vi|vi−1)

)
pq(vl).

Every walk have a corresponding label sequence, obtained alternating the vertex

and edge labels of the walk:



Chapter 3. Learning on structured data 65

hw = (L(v1), L(v1, v2), L(v2), . . . , L(vl))

= (h1, h2, . . . , h2l−1).

The probability for the sequence h to be generated is the sum over all the prob-

abilities of the walks w that generate the same label sequence hw = h:

p(h|G) =
∑
w

δ(h, hw)

{
ps(v1)

l∏
i=2

pt(vi|vi−1)pq(vl)

}

where δ is Kronecker’s delta. It is now possible to define a kernel kz for label

sequences, using a PD kernel for vertices kv and one for edges ke:

kz(h, h
′) = kv(h1, h

′
1)

l∏
i=2

ke(h2i−2, h
′
2i−2)kv(h2i−1, h

′
2i−1)

Finally, the graph kernel based on label sequences is defined as the expected

value of kz over every possible label sequence pair h and h′ from two graphs X and

Y :

k(X, Y ) =
∑
h

∑
h′

kz(h, h
′)p(h|X)p(h′|Y )

This kernel is an instance of the framework of R − convolution kernels, where

the decomposition is the set of all possible label sequences generated from a random

walk. The complexity of this kernel is O(n6).

In [94] two extensions of the marginalized kernel have been proposed, aiming to

improve the efficiency and to address the tottering problem. The first modification

consists in a process of label enrichment, i.e. the encapsulation in vertex labels of

additional information concerning the neighborhood of the vertex. This is achieved

through the Morgan index. In fact, every label is enriched with the information

about how many fixed-length paths starts from the vertex. This leads to a higher

feature relevance (i.e. there will be less common labels between two graphs), with

a computational gain and a small accuracy improvement in some datasets. The



66 Chapter 3. Learning on structured data

second contribution consists in the reformulation of the random walk kernel in order

to avoid tottering between two vertices, but the problem persists in longer cycles.

However, this modification leads to a significant improvement in kernel performance.

3.6.2 Cyclic pattern kernel

This kernel has been proposed in [80] as an alternative to walk kernels. It is poly-

nomial in the number of vertices and simple cycles of the graph. For this reason,

it can be applied only if the number of cycles is small. This is the case in chemical

informatics, but it is not true in the general case or in other domains. We defined

in Section 3.1.1 what a simple cycle is. Without going too much in the details,

it can be shown that every cycle has a canonical representation, i.e. a string that

represents uniquely the cycle. The set of cyclic patterns of a graph X is defined as

C(X) = {π(c)|c ∈ S(X)}

where π(c) is the canonical representation of a cycle c and S(X) is the set of simple

cycles of X. Now in order to make the kernel more expressive, we can consider the

graph obtained removing all the edges that are in a cycle in the original graph X.

The resulting graph is a forest consisting of the set of bridges (i.e. all the edges that

do not belong to simple cycles) of the graph. Therefore, we can generate a pattern

from each maximal tree in this forest, and refer the set of all tree patterns of a graph

as T (X). The feature space of this kernel is thus composed of features representing

cyclic and tree patterns of the graph. We can formulate the kernel as:

KCP (X, Y ) = |C(X) ∩ C(Y )|+ |T (X) ∩ T (Y )|

where the ∩ operator returns the set of common cycles (trees), as expected. We

recall that a property of kernel functions ensure the positive semidefiniteness of the

kernel resulting from this operation.



Chapter 3. Learning on structured data 67

3.6.3 Subtree pattern kernel

Another alternative to random walk kernels has been proposed by Ramon and Gärt-

ner in [112]. It relies on the observation that existing graph kernels were all concep-

tually based on the common walks between two graphs. See Section 3.6.1 for some

examples. One of the problems of these kernels is that one can easily find pairs

of graphs that are mapped to the same point in the feature space. So [112] pro-

posed a kernel based on counting the common subtree patterns between two graphs.

Roughly, the subtree patterns considered are rooted subgraphs such that there ex-

ists a subtree homomorphic to the subgraph (pattern), and the number of distinct

children of both root nodes in the pattern and tree are the same.

A high-level description for the algorithm that calculates the kernel for two

graphs X and Y follows.

For each vertices tuple (x, y) ∈ V (X)× V (Y ):

• apply a positive semidefinite kernel for vertices on x and y;

• recursively apply the kernel on the neighbors sets of the vertices x and y, one

level at time, until a pre-defined level h is reached.

Notice that the algorithm analyzes one neighborhood level at time, considering all

possible combinations of neighbors. It is not defined any ordering between vertices.

This kernel has a richer feature space compared to random walk kernels, but the

calculation is more expensive and grows exponentially with the maximum depth h

of the considered subtree patterns.

For this reason, in the original paper no experimental results for this kernel are

given.

3.6.4 Shortest path kernels

The motivation that led to the definition of this kernel was again to find a practical

and effective similarity measure for graphs, because walk kernels were not so ex-

pressive, while other kernels, e.g. the subtree pattern kernel, were hard to compute.



68 Chapter 3. Learning on structured data

The idea behind these kernels, proposed in [17], is to compare all-pairs shortest

paths between two graphs. The computation of shortest paths is known to be a

polynomial-time problem. There are many algorithms for solving this problem, that

are for example Dijkstra, that calculate shortest paths starting from a vertex in

O(m+ n log n) (n number of vertices, m number of edges) time, or Floyd-Warshall

that computes all-pairs shortest paths in O(n3).

The use of shortest paths in the kernel definition leads to a problem. The shortest

path between two vertices in a graph can not be unique and there is no way for deter-

ministically select one path among the others. Notice that to non-deterministically

choose one shortest-path is not a solution because this would lead to a non positive

semidefinite kernel function, while keeping all shortest paths would lead to a NP-

hard kernel. Nevertheless, the length of the shortest paths between two vertices is

unique, so in [17] it is proposed to use this property for the kernel definition.

Starting from a graph X, we can derive its shortest path graph S(X) that has

the same set of vertices of the original graph, that is V (S(X)) = V (X), and that

have an edge connection between two vertices x and y if and only if in the original

graph at least one path exists that connects the two vertices. A label, that is the

length of the shortest of these paths, is then associated to every edge.

This shortest path graph can be obtained using Floyd-Warshall algorithm in

O(n3).

The shortest path kernel on two graphs X and Y is then defined as:

kshortest−path(X, Y ) =
∑

e∈E(S(X))

∑
e′∈E(S(Y ))

k1
walk(e, e

′)

where k1
walk is a positive semidefinite kernel on 1-length walks, e.g. a kernel on edges.

The complexity of the kernel is dominated by the number of comparisons, i.e.

one for each possible combination of edges from the two graphs. Every graph has

at most n2 edges, so the total complexity of the kernel is O(n4).



Chapter 3. Learning on structured data 69

3.6.5 Graphlet kernel

Graphlet kernel [123] is a kernel that tries to approximate the all-subgraphs kernel,

discussed in Section 3.6.

The idea is to measure the similarity between graphs in terms of the common

subgraphs of a fixed (low) size.

Fixed the size i of graphlets, the kernel can be defined as:

ki(X, Y ) =
∑

S∈Mi(X)

∑
S′∈Mi(Y )

δ(S, S ′)

where Mi(X) is the set of all possible matrices of dimension i obtained deleting

n− i rows and the corresponding columns from the original adjacency matrix of the

graph X (that is, the set of all graphlets of size i of X), and δ is the Kronecker’s

delta function. It is worth to notice that the δ function incorporates the graph

isomorphism problem, so with the direct application of the formula, the kernel would

be computationally unfeasible. However, when dealing with unlabeled graphs, one

can pre-compute the set of all possible subgraphs of dimension i and pre-compute

the isomorphism. In this way the kernel computation becomes polynomial.

3.6.6 Weisfeiler-Lehman kernels

The first instance of this family of kernels was proposed in [122]. After that, recently

a framework that generalizes the first definition has been proposed in [124].

The idea behind this framework is to represent every graph in the dataset as a

sequence of graphs, each one with a different labeling function that encapsulates a

specific iteration of the Weisfeiler-Lehman test of isomorphism.

More formally, the sequence of Weisfeiler-Lehman graphs for a graph X =

(V,E, L) is

{X0, X1, . . . , Xh} = {(V,E, L0), (V,E, L1), . . . , (V,E, Lh)}



70 Chapter 3. Learning on structured data

where X0 = X,L0 = L and the labeling function Li represents the relabeling of

the original graph obtained applying the Weisfeiler-Lehman isomorphism test up to

height i.

The general Weisfeiler-Lehman kernel framework can be formulated, being k any

positive semidefinite kernel for graphs:

Kh
WL(X, Y ) = k(X0, Y0) + k(X1, Y1) + . . .+ k(Xh, Yh). (3.1)

Among the various instances of this framework that has been proposed, the first

and most impactful is the Weisfeiler-Lehman subtree kernel.

Weisfeiler-Lehman subtree kernel

This kernel, proposed in [122], is quite similar to the kernel explained in 3.6.3 with

the difference that this kernel considers all subtree patterns up to height h, while

subtree pattern kernel considers only the subtrees of exactly height h. Moreover,

the further checks whether the neighborhoods of two nodes x ∈ X and y ∈ Y

match exactly, whereas the latter considers all pairs of matching subsets of the

neighborhoods of x and y . These differences lead to a consistent speedup of the

kernel calculation: indeed this kernel can be computed in O(hm) time on a pair

of graphs (where m is the maximum number of edges of the two graphs), and in

O(Nhm + N2hn) on N graphs (where n is the maximum number of nodes of the

graphs in the dataset).

For defining the WL-subtree kernel let the base kernel of equation 3.1 be the

kernel counting pairs of matching node labels in two graphs:

k(X, Y ) =
∑

x∈V (X)

∑
y∈V (Y )

δ(L(x), L(y))

where δ is the Kronecker delta function. Adopting this as base kernel, Kh
WL

becomes the subtree kernel defined in [122].

This kernel is a milestone in graph kernels because of its low complexity, and its

good experimental results on real-world classification tasks.



Chapter 3. Learning on structured data 71

Other kernels that belong to this framework have been defined. Just to mention,

the WL-edge kernel, which counts matching pairs of edges with identically labeled

endpoints, that have a complexity of O(N2m2) per iteration.

Another example is the WL-shortest path kernel that can be computed inO(N2m4).

It is worth to notice that these kernels can be computed also explicitly, keeping

in memory the entire feature space, but in most cases this is not practical.

3.6.7 Neighborhood subgraph pairwise distance kernel

This kernel is an extension of the kernel explained in Section 3.6.6. This is a recent

work, proposed in [38].

For the definition of this kernel, some additional notation is needed. The distance

between two vertices of a graph X is the length of the shortest path between them.

The neighborhood of radius r of a vertex x ∈ V (X) is the set of vertices at a distance

less than or equal to r from x. In a graph, an induced subgraph of a set of vertices

W is the graph that have W as vertices, and contains every edge of the original

graph whose endpoints are in W . The neighborhood subgraph of radius r of a vertex

x is the subgraph induced by the neighborhood of radius r of x. It is denoted by

Nx
r (X).

We can define a relation Rr,d(A
x, By, X) between two rooted graphs Ax, By

and a graph X to be true iff both Ax and By are in {N v
r |v ∈ V (X)} (where the set

inclusion is up to isomorphism) and the distance between u and v ∈ V (X) is exactly

d. In other words, the relation selects all pairs of neighborhood graphs of radius r

whose roots are at distance d in a given graph X. We can define an auxiliary kernel

for graphs as the convolution kernel that uses this relation:

kr,d(X, Y ) =
∑ Av ,Bu∈R−1

r,d(X)

A′v ,B′u∈R−1
r,d(Y )

δ(Av, A′v)δ(Bu, B′u)

where δ is the Kronecker delta function. In words, kr,d counts the number of identical

pairs of neighborhood subgraphs of radius r at a distance d in two graphs. Figure 3.1

shows an example of such features.



72 Chapter 3. Learning on structured data

Finally, the neighborhood subgraph pairwise distance kernel is defined as:

K(X, Y ) =
∑
r

∑
d

kr,d(X, Y )

For efficiency reasons, we can further define a kernel that imposes an upper

bound on radius and distance parameters:

Kr∗,d∗(X, Y ) =
r∗∑
r=0

d∗∑
d=0

kr,d(X, Y )

The complexity of the kernel is O(|V ||Vh||Eh| log |Eh|), where |Vh| and |Eh| are the

number of nodes and the number of edges of the subgraph obtained by a breadth-fist

visit of depth r∗. The authors state that, for small values of the subgraph size and

distance, the complexity of the kernel becomes practically linear.

Figure 3.1: Example of some features generated from the application of the

NSPDK kernel on an example graph representing a chemical compound.



Chapter 3. Learning on structured data 73

3.6.8 Other graph kernels

In this section we will mention other kernels for graphs from the literature. The pa-

per [76] proposes a kernel for reaction function prediction that is based on subpaths

and is particularly efficient to compute thanks to the adoption of an efficient com-

pressed path index. In the papers [126, 127] the author proposes a new framework

for the definition of kernels for structured data. This framework is a generalization of

the mapping kernel framework presented in Section 3.4.1. The partitionable kernels

framework allows for the definition of new kernels for structured data with a dif-

ferent formulation respect the existing ones, maintaining the properties of recursive

computation of the kernels. In the future, more kernels may be defined according

to this framework.



Part II

Original Contributions

74



Chapter 4

A new framework for the definition of

DAG-based graph kernels

There are two possible

outcomes: if the result confirms

the hypothesis, then you’ve

made a measurement. If the

result is contrary to the

hypothesis, then you’ve made a

discovery.

Enrico Fermi

As stated in Section 3.6, among all machine learning methods defined on struc-

tured data, kernel methods have important advantages because input instances are

mapped in a (large) space only implicitly. This implicit mapping can bring impor-

tant computational benefits with respect to other techniques that explicitly map

examples in high-dimensional vectors.

We stated also that, thanks to the modularity of these methods, for a successful

application on structured datasets it suffices to define a good kernel function for the

task, that is a kernel that drops as little useful information (for the task) as possible,

while being efficient from a computational point of view.

In general, it is not possible to define a universally good kernel function, because

of the no free lunch theorem [152] that states that no learning algorithm can achieve



76 Chapter 4. A new framework for the definition of DAG-based graph kernels

good performance in all tasks because, for making learning from examples possible,

one should make strong assumptions on the data.

For this reason, different kernels for structured data have been defined, each

one achieving good performance on specific application areas, and each one having

different (but still polynomial) complexities (see Section 3.6).

The majority of the kernels that have been proposed in literature are based on

walks or subtree patterns, that are subtrees where each vertex can appear multiple

times (similar to the difference between paths and walks). Walk-patterns have been

considered because of the NP-hardness of kernels based on paths or other subgraphs

(see Section 3.6). This approach leads to tractable problems, but there is a major

problem related to the feature spaces of these kernels commonly referred as tottering,

i.e. a small subset of nodes can be visited several times, inducing artificially high

similarity values between two graphs.

These kernels shown good results on some tasks, but in general the tottering

problem badly affects the predictive performance of the kernel. Other kernels have

been proposed that, considering simpler substructures such as shortest paths (see

Section 3.6.4),but avoiding the tottering problem. On the other hand, often the

considered structures are too simple resulting in poor predictive performance.

In general, the challenge with graph kernels is the unavoidable tradeoff between

the efficiency and the expressive power of the kernel.

The research proposed in this chapter aims at improving the state-of-the art on

kernel methods for graphs defining kernels that are more expressive compared to

existing ones, with the smallest possible increase in computational complexity.

Moreover, we propose a framework for the definition of graph kernels, with various

instantiations in order to have appropriate kernels for different application areas.

Among state-of-the art kernels for graphs, the most effective one (among those that

have an acceptable computational complexity) seems to be the WL-subtree kernel

(see Section 3.6.6). This kernel outperforms walk kernels in all the datasets where it

has been tested. This gives the intuition that subtree-patterns are in general more

expressive than other decompositions.



Chapter 4. A new framework for the definition of DAG-based graph kernels 77

Following this intuition, a first idea for developing new graph kernels may be to

define a kernel framework that allows for the definition of multiple kernels. With

the possibility to instantiate several kernels from the framework, it is possible to

balance the tradeoff between the expressivity and efficiency of the resulting kernel,

depending on the specific task and on the required generalization performance.

In this field, the theoretical soundness of a kernel function has to be supported

by experimental evidence.

However, for many real-world problems we do not know which kind of structural

features are relevant for the specific task. In such cases, the definition of an effective

kernel needs to pass through a trial-and-error step. Moreover, it is not uncommon

for an expressive kernel to perform poorly on some tasks because the class of features

it considers are not-relevant for the task.

This chapter is organized as follows. In Section 4.1-4.4 we present the first

contribution, that is a new family of graph kernels. Moreover, in Section 4.3.1 we

propose a way to speed up the kernel computation using hash tables. In Section 4.5

we will analyze how to apply feature selection techniques in order to make the final

model more compact.

4.1 A new DAG-based kernel framework for graphs

In this section we propose a work in the direction of defining new kernels that

outperform the state-of-the-art in terms of expressivity.

The main idea is to define a new kernel framework for graphs that allows to

define both expressive and efficient kernels.

These kernels decompose a graph G into a (multi)set of DAGs, guaranteeing that

isomorphic graphs are represented exactly by the same (multi)set (this is important

for the function to be a valid kernel). The kernels for graphs are defined as the sum

of the values of a local kernel for DAGs, over all pairs of DAGs in the multisets.

Different instantiations of the DAGs kernel result in different graph kernels. Since

no kernel specifically designed for DAGs was described in literature, the adopted



78 Chapter 4. A new framework for the definition of DAG-based graph kernels

strategy was to extend the definition of a well known class of tree kernels (see

Section 3.5.2) to the DAG domain, via an ordering between DAG vertices and the

extension of tree kernels on the DAG domain.

The following sections are divided into two parts. The first one describes a

framework for exploiting tree kernels in a graph domain. First the decomposition of

a graph into a set of DAGs is described in Section 4.1.1 and then the extension of a

class of tree kernels to the DAG domain is discussed in Section 4.2. Optimizations

generally applicable to the framework are discussed for the single kernel evaluation

in Section 4.2.3 and for computing the kernel matrix in Section 4.2.4.

The second part focuses on two instances of the framework: one which is based

on the Subtree kernel for trees and one based on a novel kernel, first introduced in

this thesis. Section 4.3.1 shows specific optimizations for the Subtree kernel. Sec-

tion 4.3.2 introduces a graph kernel based on the novel tree kernel. A theoretical

comparison between the proposed kernels and the state-of-the-art ones (Fast Sub-

tree kernel and gBoost) is reported in Section 4.3.3. A set of experiments on real

benchmark datasets is described in Section 4.4. These kernels shown promising re-

sults in terms of classification performance on real-world datasets and in terms of

computational complexity, giving evidence that it is possible to define flexible ker-

nels that return state-of-the-art results on different graph domains while preserving

competitive computational performances.

The section is a significantly reorganized and extended version of [44]: it adds a

novel tree kernel and consequently a novel instance of the framework. Theoretical

discussion as well as practical evaluation on novel real world datasets is provided.

4.1.1 Decomposition of a graph into DAGs and derived graph

kernels

The first step of the framework we propose for the definition of kernels for graphs

consists in decomposing the graph into a set of DAGs:



Chapter 4. A new framework for the definition of DAG-based graph kernels 79

1. given a graph G, for each v ∈ VG, one unordered rooted DAG, say DDv
G, is

generated. G is then represented by the multiset of unordered rooted DAGs.

2. The kernel for graphs is defined as the sum of the evaluations of a local kernel

for DAGs, over all pairs of DAGs in the multiset.

We first describe our proposal for decomposing a graph G into |VG| DAGs, one

for each v ∈ VG. A requirement of this phase is for isomorphic graphs to be rep-

resented by exactly the same multiset of DAGs. The decomposition is based on a

simplification of the graph isomorphism testing proposed by [61]. Given a node vi,

the idea is to keep in DDvi
G all nodes of G and those edges belonging to the shortest

paths between vi and any vj ∈ VG. An efficient way to build DDvi
G = (VG, E

vi
G , L) is

to perform a breadth-first visit on the graph starting from node vi and applying the

following rules:

1. during the visit a direction is given to each edge, if vj is reached from vi in

one step, then (vi, vj) ∈ Evi
G (note that edge (vj, vi) is not added to Evi

G );

2. edges connecting nodes reached at level l of the visit to nodes reached at level

g < l are not added to Evi . Such edges would induce a cycle in DDvi
G .

For every choice of G and vi, a single Decompositional Dag DDvi
G is generated.

By repeating the procedure for each node of the graph, |V | DAGs are obtained.

Figure 4.1 shows the four DDs obtained from the undirected graph in Figure 4.1-

a. Note that when the same node is reached simultaneously (at the same level of

the visit) from different nodes, then all involved edges are preserved. For example,

when considering the visit at level 2 starting from node s, the node d is reached

simultaneously by edges (b,d) and (e,d), and both of them are preserved in the

corresponding Decompositional DAG (see Figure 4.1-b). On the contrary, edge (b, e)

is not inserted into the corresponding Decompositional DAG: when the visit at level

2 attempts to traverse it (either starting from node b or e) a node already visited

at level 1 (i.e., e or b, respectively) is reached.



80 Chapter 4. A new framework for the definition of DAG-based graph kernels

d

b

e

s
a)

b) c)

d) e)

s

e

d

b

e

s b d

b

s e d

d

b

s

e

Figure 4.1: Example of decomposition of a graph a) into its 4 DDs b-e).

Some edges might not be added to a DDG because they would induce a cycle.

However, |VG| DAGs are created from G, each one related to a different starting node

of the breadth-first visit. Thus, every undirected edge eij, which is not a self-loop,

will appear at least in two DDG, i.e. DDvi
G and DD

vj
G .

Theorem 4.1. Given two graphs G1 and G2, define the multisets of Decompositional

DAGs associated to G1 and G2 as DD(G1) = {DDvi
G1
|vi ∈ VG1} and DD(G2) =

{DDvj
G2
|vj ∈ VG2}. If G1 and G2 are isomorphic, then DD(G1) and DD(G2) are

identical.

Proof. G1 and G2 are assumed to be isomorphic with respect to a function f :

VG1 → VG2 . Since the set of nodes of the DDGs are identical by construction, it

remains to be shown that the set of edges is identical. We prove the theorem by

contradicting the thesis: we assume that (vi, vj) ∈ Ev1
G1

and (f(vi), f(vj)) /∈ Ef(v1)
G2

(or vice-versa). If (f(vi), f(vj)) /∈ Ef(v1)
G2

, there is a shorter path connecting f(v1) to

f(vj). Since G1 and G2 are isomorphic the corresponding path from v1 to vj in G1

must be shorter than the one comprising the edge (vi, vj). This contradicts the fact

that (vi, vj) ∈ Ev1
G1

, i.e. the edge (vi, vj) belongs to the shorter path connecting v1

and vj.

Note that the DAGs resulting from the decomposition are not ordered.

Let assume a positive definite (PD) kernel KDAG for DAG is available. Then,

we can define a kernel for graphs as follows:

DDKKDAG(G1, G2) =
∑

D1∈DD(G1)
D2∈DD(G2)

KDAG(D1, D2). (4.1)



Chapter 4. A new framework for the definition of DAG-based graph kernels 81

The above kernel is positive semidefinite since it is an instance of the convolution

kernel framework (see Section 3.4), where the relation R is defined on X1 × . . . ×
X|V |×G, with X1× . . .×X|V | being the multiset of Decompositional DAGs obtained

from G. We will refer to this general class of kernels as DD kernels.

In the following, we define a family of positive definite kernels for DAGs.

4.2 Extending tree kernels to DAGs

Equation (4.1) reduces the computation of a kernel for graphs to the combination of

a set of kernels for DAGs. At the time of writing, few papers in literature propose

kernels for DAGs [133, 117, 55]. The kernel in [133] is defined as the inner product

of the common attribute sequences, that are the sequences obtained concatenating

the labels of the nodes that appear in the sub-paths of the graph. Its complexity

is O(kn2), where k is the maximum length of the considered sub-paths. Thus, the

resulting DDK kernel presented in Equation 4.1 would have a complexity of O(kn4),

that is too high for our goal of having computational complexity comparable with

the fastest state-of-the-art kernels (as stated in the introduction of this Chapter).

Another kernel proposed in literature [55] exploits the same idea but with O(n3)

complexity. Moreover, the the feature space of the resulting kernel would be very

similar to the subpath kernel presented in Section 3.6.4. The third existing kernel,

proposed in [117], calculates the sum of kernel values for all pairs of possible sub-

structures of two input graphs. This kernel is applicable in our scenario, but the

computational complexity of every kernel calculation is O(ρ2n2), that would result

in a computational complexity of O(ρ2n4) for the resulting DDK kernel presented

in Equation 4.1.

In order to derive faster alternatives for the kernels present in literature, the

strategy we propose is to extend the definition of tree kernels to the rooted DAG

domain. Our proposal owns the additional benefit that a large number of kernels

for trees is already available. However, while there is a vast literature on kernels for

ordered trees (see Section 3.5.2), just a few kernel functions for unordered trees are



82 Chapter 4. A new framework for the definition of DAG-based graph kernels

defined (see Section 3.5.1). In order to broaden the applicability of our approach, we

define an ordering between DAG nodes (Section 4.2.1) such that kernels for ordered

trees can be applied, too. In Section 4.2.2 it is shown how to extend the definition

of the most popular class of kernels for ordered trees, the convolution kernels, to the

DAG domain. One nice aspect of the DAG-kernels proposed in this chapter is that,

by representing the multiset of DAGs generated by a graph G via an annotated DAG

(BigDAG), where sub-structures shared by DAGs in the multiset are represented

only once and their frequency of occurrence is annotated, the computation of the

kernel can be sped up for common classes of graphs. In Section 4.2.3 we formally

characterize the computational gain by providing a general upper bound on the

number of nodes of the BigDAG and verify, on popular graph datasets, that the

actual computational burden is far from the worst case expected complexity.

4.2.1 Ordering DAG vertices

The procedure described in Section 4.1.1 yields a multiset of Decompositional DAGs

from a graph. However, such DAGs are not ordered. Despite the fact that it has

been demonstrated that the computation of any tree kernel for unordered trees with

subtrees as their sub-structures is ]P -complete [83], some kernels for unordered trees

have been defined in literature [87, 142]. Such kernels, in order to be tractable, tend

to restrict the type of sub-structures used as features, thus potentially limiting their

expressiveness. Indeed, a set of experiments performed with the kernel in [87] on

the datasets described in Section 4.4 show that the kernel never improves, in terms

of classification performances, over the state of the art (for this reason we do not

report the results in the experimental section).

In order to broaden the applicability of our approach, in this section we define a

strict partial order among vertices of a DAG which allows us to employ the kernels

defined in Section 3.5.2. The ordering makes use of a unique representation of

subtrees as strings inspired by [142]. Here we modify such mapping by employing

perfect hash functions to encode subtrees. As a consequence we obtain a compressed

subtree representation, which will be also used in section 4.3.1 to implement one of



Chapter 4. A new framework for the definition of DAG-based graph kernels 83

the kernels proposed in this chapter. The compressed representation is here used to

define an ordering between DAG vertices:

Definition 4.1. Strict partial order relation <̇ between DAG vertices

Let κ() be a perfect hash function and #, d, c /∈ A be symbols never appearing in any

node label, then

π(v) =

κ(L(v)) if v is a leaf node

κ
(
L(v)

⌈
π(chv[1])#π(chv[2]) . . .#π(chv[ρ(v)])

⌋)
otherwise,

where the children of v are recursively ordered according to their π() values.

Then vi<̇vj if π(vi) < π(vj), where < is the relation of order between alphanumeric

strings.

Notice that π(vi) = π(vj) ⇔ ¬(vi<̇vj) ∧ ¬(vj<̇vi), i.e. π(vi) = π(vj) if and

only if the nodes vi and vj are not comparable. In such case, many orderings for

non comparable children nodes in Definition 4.1 are possible. We will show in

Section 4.2.2 that any of them yields the same representation in terms of features

and thus the related kernel functions for graphs are well defined. For this reason we

avoid to give a specific ordering between non comparable vertices. If two vertices

vi, vj have different node labels or at least two children chvi [l], chvj [m] (possibly

l = m) have a different representation, then the use of the symbols #, d, c and the

fact that κ() is perfect ensures that they can not have the same π() value (a detailed

demonstration in the case κ() is the identity function can be found in [142]). The

ordering between π() values is a strict partial order, i.e. irreflexive, transitive and

asymmetric, since it is based on the alphanumeric ordering < of strings. Then the

ordering <̇ between DAG vertices described in Definition 4.1 is also a strict partial

order.

We now show that if two DAGs DDvi
G1

and DD
vj
G2

are isomorphic, then the root

nodes of the DAGs are not comparable with respect to the ordering in Definition 4.1:

Theorem 4.2. if two DAGs DDvi
G1

and DD
vj
G2

are isomorphic, then ¬(vi<̇vj) ∧
¬(vj<̇vi).



84 Chapter 4. A new framework for the definition of DAG-based graph kernels

Proof. Let f : VG1 → VG2 be an isomorphism between DDvi
1 and DD

vj
2 . We prove

the thesis by induction. Let f(vi) = vj, since the nodes are isomorphic L(vi) = L(vj).

If vi and vj are leaf nodes, then π(vi) = π(vj) and consequently ¬(vi<̇vj)∧¬(vj<̇vi).

Otherwise, by inductive hypothesis ∀l.1 ≤ l ≤ ρ(vi). π(chvi [l]) = π(chf(vi)[l]) and

L(vi) = L(f(vi)), thus π(vi) = π(f(vi)) = π(vj).

In the following, we will denote as ODDvi
G the Decompositional Dag rooted at vi

and ordered according to Definition 4.1. If the π() values are computed according to

a post order visit of the DAG, then the values π(chv[l]) for 1 ≤ l ≤ ρ(v) are already

available for computing π(v). Thus the time complexity of the ordering phase of the

DAG is O(|V |ρ log ρ) where the term ρ log ρ accounts for the ordering of the children

of each node.

The reason for defining the ordering according to Definition 4.1 is that it must

be efficient to compute and must ensure that the swapping of non comparable nodes

does not affect the feature space representation of the DAG. After introducing the

extension of tree kernels to DAGs in Section 4.2.2, we will show that our ordering

meets both constraints.

4.2.2 Tree-based kernels for ordered DAGs and graphs

Here we define a family of kernels for ordered DAGs based on tree-kernels. The

basic idea is to project sub-DAGs to a tree space and then apply a tree kernel on

the projections.

Let a tree visit be a function T (v) that, given a node v of a ODDvi
G , returns

the tree resulting from the visit of the DAG starting from v. Figure 4.2 gives an

example of tree visits. Note that the trees resulting from the visit starting in node

s are identical for the DAGs in Figure 4.2-a and Figure 4.2-b even if the DAGs

are not isomorphic. However, the DAGs in Figure 4.2-a and Figure 4.2-b can be

discriminated if we consider the multiset of trees returned by the tree visits starting

in all nodes of the DAGs: one tree is produced by the visit starting in node d of

the DAG in Figure 4.2-a and two trees are generated by the two visits starting in



Chapter 4. A new framework for the definition of DAG-based graph kernels 85

s

b

d

ea)

s

b

d

e

d

b)

s

b

d

e

d

e

d

b

d

d

s

b

d

e

d

e

d

b

d

d d

Figure 4.2: Two DAGs (left) and their associated tree visits T () starting from each

node.

the nodes labeled with d in Figure 4.2-b. Moreover, note that the set of tree visits

would be different even if the nodes labeled with d were not leaves. The concept of

tree visit is used in the following

Theorem 4.3. Given the ordering <̇ in Definition 4.1, ¬(vi<̇vj) ∧ ¬(vj<̇vi) if and

only if T (vi) and T (vj), obtained as visits of the sub-DAGs rooted at vi and vj, are

identical.

Proof. If ¬(vi<̇vj)∧¬(vj<̇vi) then π(vi) = π(vj). Recalling that κ(), the function on

which π() is based on, is a perfect hash function, we prove the thesis by induction. If

vi, vj are leaf nodes, then π(vi) = π(vj)⇔ L(vi) = L(vj). If vi, vj are not leaf nodes,

then ∀l.1 ≤ l ≤ ρ(vi) T (chvi [l]) is identical to T (chvj [l]) for inductive hypothesis,

and then it must be L(vi) = L(vj) since π(vi) = π(vj); therefore T (vi) is identical

to T (vj). Now we show that if T (vi) is identical to T (vj), then π(vi) = π(vj) by

induction. The base case has already been proved by the equality π(vi) = π(vj)⇔
L(vi) = L(vj). By inductive hypothesis π(chvi [m]) = π(chvj [m]) for each child m of

vi and vj. Then π(vi) = π(vj) and ¬(vi<̇vj) ∧ ¬(vj<̇vi).

If we consider the tree kernels defined in Section 3.5.2, then we can write

KDAGKT (D1, D2) =
∑

v1∈VD1
v2∈VD2

C(root(T (v1)), root(T (v2))), (4.2)



86 Chapter 4. A new framework for the definition of DAG-based graph kernels

where root() is a function returning the root node of a tree, T () are tree-visits and

the C() function is the one related to the corresponding tree kernel KT . Theorem 4.3

ensures that the mapping in feature space of each tree visit is well defined since the

swapping of any two non comparable children of a node does not change the resulting

tree visit. This, in turn, ensures that:

• C(root(T (chv1 [i])), root(T (chv2 [j]))) = C(chroot(T (v1))[i], chroot(T (v2))[j]), for ev-

ery 1 ≤ i ≤ ρ(v1), 1 ≤ j ≤ ρ(v2), which allows us to use the algorithms

described in [36, 102], thus significantly reducing the computational burden;

• C() remains a valid local kernel.

Given two isomorphic DAGs DDvi
G1

and DD
vj
G2

, by applying Theorem 4.2 and The-

orem 4.3 it can be concluded that DDvi
G1

and DD
vj
G2

yield the same set of tree visits

and thus have the same representation in feature space for each tree kernel. Finally,

the kernel of Equation (4.2) is positive semidefinite since it is an instance of convolu-

tion kernel framework [73], where the relation R is defined on X1×. . .×X|V |×ODD,

with X1 × . . . ×X|V | being the set of tree-visits obtained from ODD. The feature

space, i.e. the set of features associated with the kernels of Equation (4.2), coincides

with the one of the tree kernel KT . However, note that a DAG with a “diamond”

shape, such as the DAG in Figure 4.2-a, has a different representation with respect

to the DAG of Figure 4.2-b: while the non-zero features are the same, the fea-

ture related to the leaf node d occurs once in Figure 4.2-a, while it occurs twice in

Figure 4.2-b.

After introducing the DAG-kernels used in this section, we can now motivate why

the ordering in Section 4.2.1 has been employed. We recall that the requirements for

the ordering are to be efficiently computable and to ensure that the swapping of non

comparable nodes does not affect the feature space representation of the DAG. More

“standard” orderings would not meet both constraints. For example, a total order

between DAG vertices would require an algorithm with GI-complete computational

complexity [113]. On the contrary, simple partial orderings, such as the one based

on reachability of the nodes, would not allow us to consistently order structurally



Chapter 4. A new framework for the definition of DAG-based graph kernels 87

different sub-DAGs. This makes impossible to have a consistent mapping in feature

space for any kernel whose features are tree structures, which basically includes the

vast majority of tree kernels.

On the basis of Equation (4.2), given a tree-kernel KT , we can define a kernel

KKT between two graphs G1 and G2 as follows:

ODDKKT (G1, G2) =
∑

D1∈ODD(G1)
D2∈ODD(G2)

KDAGKT (D1, D2) (4.3)

where ODD(G) is the multiset {ODDvi
G |vi ∈ VG}, KDAG is defined according to

Equation (4.2) and depends on a kernel for trees KT . In the following, we refer

to this class of kernels as ODD kernels. As we noted in Section 4.1.1, self-loops

are ignored during the decomposition from graph to multiset of DAGs. However,

information about self-loops can be incorporated into node labels. For example,

let ∗ /∈ A be a symbol not appearing in any node label. Then, the label of any

node with a self-loop can be concatenated with ∗ in order to distinguish it from

a node with the same label but without self-loop. From a computational point

of view, let Q(n) denote the worst-case complexity of the tree kernel KT , where

n = maxD1∈ODD(G1)
D2∈ODD(G2)

{|VD1|, |VD2 |}, then the kernel of Equation (4.3) has time com-

plexity O(|VG1||VG2| · Q(n)). Thus, in the worst case where n = max{|VG1|, |VG2|},
using ST, SST, and PT as tree-kernels, leads to a time complexity of O(n3 log n),

O(n4) and O(ρ3n4), respectively.

In Sections 4.2.3-4.2.5 we show how the computation of ODDKKT (G1, G2) can

be optimized.

4.2.3 Speeding up the single kernel evaluation

We now show how to speed up the computation of Equation (4.3) when KT is a

convolution kernel where the input tree is decomposed into proper subtrees. All the

kernels described in Section 3.5.2 and the vast majority of tree kernels defined in

literature meet this constraint. The strategy for speeding up kernel computation is

based on avoiding to recompute C() values for identical proper subtrees appearing



88 Chapter 4. A new framework for the definition of DAG-based graph kernels

in different DAGs. The |VG| Decompositional DAGs generated according to the

procedure described in Section 4.1.1 can be represented by a single Annotated DAG,

named BigDAG, where each node is annotated with the frequency of appearance of

the proper subtree rooted at v, i.e. T (v), in all the ODDs of the graph. An example

of BigDAG construction is shown in Figure 4.3. In the figure, the subtree rooted in

b in the two graphs are merged together in the BigDag since all of their descendant

nodes, i.e. c, are identical. Note that, on the contrary, the nodes labeled with a

are not merged together because, in one case the second child of a is d and in the

other the second child is the subtree rooted at c. The algorithm for computing the

a

b

c

d

a

b

c

c

d

a

b

c d

a

c

1 1

2

2 2

1

Figure 4.3: Two DAGs (left) and their associated BigDAG. Numbers on the right

of the nodes represent their frequencies.

BigDAG can be found in [5]. Its complexity is O(|VG|2 log |VG|), thus it does not

affect the worst-case complexity of any of the kernels considered here. The kernel

of Equation (4.3) can be rewritten as

ODDKKT (G1, G2) =
∑

u1∈V (BigDAG(G1))
u2∈V (BigDAG(G2))

fu1fu2C(u1, u2), (4.4)

where fu is the frequency of the ordered DAG rooted at u in ODD(G). We want to

stress the fact that the BigDAG does not loose any information about the ODDs,

thus Equation (4.4) and Equation (4.3) are equivalent. The speed up due to the

BigDAG depends on the number of identical sub-structures found in the ODDs.

We now derive an upper bound on the number of nodes of the BigDAG in terms

of the in-degree of the nodes and the size of the cycles in the original graph G. We

first derive the bound for a specific class of graphs and then extend it to general

graphs.



Chapter 4. A new framework for the definition of DAG-based graph kernels 89

Without loss of generality, we will assume in the following to deal with connected

and undirected graphs. Let’s consider a polytree P , i.e. a graph for which at

most one undirected path exists between any two nodes. Let us consider any node

vi ∈ P with degree ρ(vi). The procedure for obtaining a Decompositional DAG,

when applied to all the nodes of P , generates exactly ρ(vi) + 1 different patterns

of connectivity for vi. In fact, since P is a polytree, only 1 edge at a time can

be entering vi while all the remaining edges are outgoing. Moreover, we have to

consider the case where vi is the starting node for the visit and all the edges are

outgoing. These considerations are valid for all nodes belonging to P , thus BigDAG

will exactly have
∑|P |

i=1(ρ(vi) + 1) nodes.

Let’s now turn our attention to general graphs. Given a graph G we can represent

it as a polytree P (G) by iteratively grouping the nodes forming local cycles into a

single node υ ∈ P (G) until no more cycles can be grouped (see Figure 4.4 for an

example). Let us define nυi as the number of nodes of G represented by υi in P (G)

and q = |P |. The values ρ(υi) represent now the sum of the incoming edges of all

the nodes represented by υi. Then, the bound can be computed by applying the

same reasoning for polytrees, the only difference being that υi contains nυi choices

for starting the visit from a node “inside” υi, thus generating nυi different sub-

structures with, in the worst case of a single cycle involving all the nodes of G

represented by υi, a total of n2
i nodes added to the BigDAG. The number of nodes

added to the BigDAG is thus bounded by:

|BigDAG(G)| ≤
q∑
i=1

(ρ(υi) + n2
υi

). (4.5)

Note that |BigDAG(G)| ≤ |VG|2, being the worst case when there’s only one cycle

of length |VG|. Let us define the length of the longest cycle in G to be o. The

bound then becomes o|VG|+
∑

i ρ(υi), since
∑

i nυi = |VG|. Note that
∑

i ρ(υi) ≤ 2q

otherwise P (G) wouldn’t be a polytree. Just to give an example, if o = |VG|
1
2 , then

|BigDAG(G)| ≤ 2q +
∑

i nυinυi ≤ 2q + |VG|
1
2

∑
i nυi = 2q + |VG|

3
2 .

Note that if the number of nodes in theBigDAG isO(|VG|
3
2 ), then the complexity

of the kernels reduces significantly, for example the application of the subset tree



90 Chapter 4. A new framework for the definition of DAG-based graph kernels

s

b

i

l

m

c

e

d

h

υ1υ2

s

v2 v1

Figure 4.4: Example of a polytree representing a graph with two “complex” poly-

tree nodes υ1 and υ2 representing local cycles.

kernel would have a complexity of O(|VG|3), thus reducing the complexity of a factor

|VG|. Section 4.4 will discuss the actual reduction of the computational burden due

to the BigDAG on benchmark datasets.

4.2.4 Speeding up the kernel matrix computation

When using a kernel method, such as the SVM, the tuning of the hyperparameters

through a validation set or through cross-validation is common practice. If the

kernel function depends on multiple parameters, then it is often more efficient to

precompute the kernel matrix of the dataset1 than computing the kernel values on

demand. Other kernel methods, e.g. KPCA, require the full kernel matrix to be

computed.

In this section, we discuss how the computation of the full kernel matrix can

be optimized. The BigDAG has been used to avoid multiple calculations of kernel

values for the same structures in different ODDs. The same idea can be extended to

the whole training set avoiding multiple calculations of the kernel values for the same

structures in different examples. Note that sub-structures shared by different graphs

should exist, otherwise the kernel would be extremely sparse for the considered

training set, and not worth to be used for learning. Let’s assume that the training

1The i, j element of the kernel matrix corresponds to the evaluation of the kernel function on

the i-th and j-th examples of the dataset



Chapter 4. A new framework for the definition of DAG-based graph kernels 91

a

b

c d

a

c

1 1

2

2 2

1

b

c

d c

e

b

1

2

2 2

1

1

a

b

c
d

a

c

b
e

[1,0] [1,0] [0,1]

[0,1]

[1,2]
[2,1]

[2,2]
[2,2]

Figure 4.5: Two BigDAGs (left) and their associated Big2DAG. Arrays on the

right of nodes represent the frequencies associated to each example.

set contains M graphs. Then, we can obtain a compact representation of all the

BigDAGs coming from the M graphs by applying the same algorithm for building

the BigDAG starting from a multiset of ODDs, the only difference being that,

while a sub-DAG in a BigDAG may have a frequency greater than one. The idea

is implemented as follows. An annotated DAG, we call it Big2DAG, is created

starting from all the BigDAGs generated by the training set, where each different

structure is represented only once. A (sparse) vector Fvi , representing the frequency

of the structure rooted at that node in all graphs, is associated to each node of the

Big2DAG. For example, Fvi [j] represents the frequency of the structure rooted at

node vi in BigDAG(Gj). Figure 4.5 shows an example of Big2DAG construction.

While the frequency associated to each node in BigDag(Gi) is the frequency of the

proper subtree rooted at that node in all the ODDs related to the graph Gi, in the

same way, the vector Fui represents the frequencies of the proper subtree rooted in

node ui in the various training graphs. When the graphs Gi and Gj have been used

to construct the Big2DAG, eq. (4.4) can be rewritten as:

ODDKBig2DAG(Gi, Gj) =
∑

u1,u2∈V (Big2DAG)

Fu1 [i] ∗ Fu2 [j] ∗ C(u1, u2). (4.6)

Since eq. (4.4) corresponds to the entry i, j of the kernel matrix, in order to compute

the whole kernel matrix efficiently it is sufficient to construct the Big2DAG from

all the graphs in the training set and then apply eq. (4.4) to any pair of graphs in

the training set.



92 Chapter 4. A new framework for the definition of DAG-based graph kernels

s

b

e

d
h=0 h=1

s

e b

e

s b d

b

s e d

d

b e

Figure 4.6: Example of decomposition of the graph shown in Figure 4.1-a) into its

DDs with visits up to depth h = 1.

4.2.5 Limiting the depth of the visits

It is a common practice in many graph kernels (see Section 3.6 for some examples)

to limit the features that are generated in order to reduce the computational burden

when evaluating the kernel. We apply this approach by limiting the depth of the

visits during the generation of the multiset of DAGs. Our aim is

1. to further reduce the computational complexity of the kernel when large graphs

are involved;

2. moreover, for some tree kernels, to add features that otherwise would be dis-

carded if only unlimited visits were performed. Examples of such kernels are

the subtree kernel and the one presented in Section 4.3.2.

The above idea is implemented as follows. Given a graph G, for any j ∈ {0..h}
and for any vi ∈ VG, an ODD is generated with the additional constraint that the

maximum depth is at most j (we will refer to it as ODDvi,j
G ). All the ODDvi,j

G

are merged together and form the BigDAG(G) as described in Section 4.2.3. The

kernel definition is the same as in eq. (4.3), the only difference being that ODD(G)

is now replaced by {ODDvi,j
G |vi ∈ VG, j ∈ {0 . . . h}}. This kernel is referred to as

KODD−STh in the following. Notice that, while new features are introduced when

kernels such as ST are employed and the visits are limited, all DAGs generated by

visits of depth j > h are lost (see Figure 4.6).



Chapter 4. A new framework for the definition of DAG-based graph kernels 93

Given a node, in the worst case no more than O(ρh) nodes are generated by all

the visits up to depth h. In fact, the total number of generated nodes is

H =
h∑
j=0

(h+ 1− j)ρj =
(h+ 1)− (h+ 2)ρ+ ρh+2

(1− ρ)2
.

Therefore the BigDAG of a graph cannot have more than nH nodes2. The time

complexity of BigDAG creation is thus dominated by a O(nH log(nH)) term. If ρ is

constant, then H is constant as well and the complexity reduces to O(n log n). Note

that limiting the visits allows us to apply the kernel for graphs in Equation (4.3)

with any tree kernel in Section 4.2.2 having the same worst case complexity of the

corresponding tree kernel: for example, when computing eq.Equation (4.3) with the

subtree kernel the total worst case complexity is O(n log n).

4.3 Two graph kernels based on the framework

Various instances of the proposed framework can be obtained from the kernels de-

scribed in Section 3.5.2. However, a naive application of such kernels may lead, on

most datasets, to graph kernels not competitive from the computational point of

view. This section, instead, focuses on obtaining fast graph kernels. Specifically,

two instances of the framework are presented in the following: Section 4.3.1 focuses

on the graph kernel based on the ST Kernel and show how to optimize its compu-

tation. Section 4.3.2 introduces a novel tree kernel, which is more expressive than

ST.

4.3.1 A graph kernel based on the Subtree Kernel

In the previous section we discussed how theBigDAG, and consequently theBig2DAG,

can improve the speed of the kernel matrix computation. If the tree kernel KT in

Equation (4.4) is the subtree kernel, the BigDAG yields an explicit (and compact)

2It is worth to notice that the bound is not tight, since the same leaf nodes are generated in

turn by visits of neighbours nodes with depth 0 and 1.



94 Chapter 4. A new framework for the definition of DAG-based graph kernels

representation of the feature space of the kernel: by construction each node u is

associated to the unique proper subtree T (u) rooted at u. Such subtree is uniquely

associated to a feature and fu is the frequency of T (u) in all the ODDs related to the

input graph. By definition of the subtree kernel, only matching identical subtrees

contribute to the kernel, that is C(u1, u2) 6= 0 ⇔ T (u1) = T (u2). Exploiting this

property leads to an efficient implementation. In fact, if T (u1) = T (u2), we recall

from Section 3.5.2 that C(u1, u2) = λ|T (u1)| and eq. (4.6) can be computed with a

single scan of the Big2DAG built from Gi and Gj:

ODDKBig2DAG(Gi, Gj) =
∑

u1,u2∈V (Big2DAG)

Fu1 [i] ∗ Fu2 [j] ∗ C(u1, u2) =
∑

u∈V (Big2DAG)

Fu[i] ∗ Fu[j] ∗ λ|u|.

(4.7)

As Equation (4.7) shows, the information needed to compute the kernel, for each

feature f and graph G, is: i) a representation of the proper subtree f ; ii) the

frequency of f in G; iii) the value λ|f |.

We now discuss a more compact representation for proper subtrees than the

Big2DAG which keeps all relevant information for computing the kernel. Recalling

that the evaluation of a kernel function corresponds to a dot product in a feature

space induced by the kernel, i.e. K(Gi, Gj) = 〈φ(Gi), φ(Gj)〉, we consider the explicit

feature space representation φ(G) of a graph G, as induced by the kernel in Equa-

tion (4.7): let us assume a mapping π() from proper subtrees to indices of the vector

φ(Gi) is available, if the value of the element of index π(u) is φπ(u)(Gi) = Fu[i]λ
|u|
2

then ∑
u∈V (Big2DAG)

Fu[i] ∗ Fu[j] ∗ λ|u| =
∑

u∈V (Big2DAG)

φπ(u)(Gi)φπ(u)(Gj). (4.8)

Since the last term in Equation (4.8) corresponds to evaluating only the non-zero ele-

ments of the feature space representation ofGi andGj, we can express Equation (4.8)

as 〈φ(Gi), φ(Gj)〉 by setting φs(G) = 0 for all s such that @u ∈ V (G).π(u) = s.

We propose a hash-based implementation of the φ(G) in Equation (4.8). The

function π(u) returning the unique id of the feature/subtree T (u) is the one in

Definition 4.1. Notice that, by using such π() function to encode any DAG vertex u,



Chapter 4. A new framework for the definition of DAG-based graph kernels 95

the size of each id, and consequently the time to compute it, is bounded by ρ(u) and

it is independent from the number of descendants of u. If the vertices are processed

in inverse topological order, each feature is guaranteed to get a unique id. Notice

that, since the tree kernel is ST, the number of features corresponds to the number

of nodes in the BigDAG.

We finally show that φ(G) can be computed directly from the input graph with-

out constructing first the Big2DAG. The process is detailed in Algorithm 6, in which

the sparse representation of the feature space of a graph G, induced by the ST kernel

with visits limited to depth h, is computed and represented via a hash map. Given

a node of the graph, first the DDv,h
G is constructed. The vector X[] represents the

encodings, according to Definition 4.1, of the subtrees resulting from the limited vis-

its. Specifically Xu[d] is the encoding of the proper subtree rooted at u and obtained

from a breadth-first visit limited to d levels. The vector S[] represents the size of the

subtrees encoded by the corresponding element of X[]. Finally, φ stores the weights

of the extracted features. The fact that in line 4 the visit is post-order and that the

variable i in line 9 of Algorithm 6 ranges from 1 to max
v∈

u

4
depth(v) − depth(u),

ensures that the Xchu[j][i − 1] values of the children nodes of u have been properly

computed before being first accessed. Lines 5-11 compute the encoding of the sub-

tree composed by the single node u, obtained from the visit limited to 0 levels, and

add the corresponding element to φ. If u is not a leaf node, all subtrees obtained

from limited visits up to (max
v∈

u

4
depth(v) − depth(u)) ≤ h levels, i.e. the visits

termined at level h or when a leaf node is encountered, are generated. The ordering

of children nodes in line 14 is the one of Definition 4.1. The macro compute-st-

features in line 15 executes the code in the bottom part of Algorithm 6, which

computes the encoding of the subtree resulting from the visit limited to i levels and

add the corresponding entry to φ.

Since the number of nodes of the DAG generated in line 3 of Algorithm 6 is at

most H, the complexity of the algorithm is O(|VG|Hhρ log ρ). Evaluating the kernel

between two graphs G1 and G2 then reduces to look for matching entries in the

hash tables returned by Algorithm 6. If we consider H constant, the complexity



96 Chapter 4. A new framework for the definition of DAG-based graph kernels

of a kernel evaluation then is |VG| log |VG|, where the term log |VG| accounts for the

worst case complexity for looking up a key in a hash table.

Algorithm 6 An algorithm for computing the feature space representation of a

graph G according to the kernel STh.
1: Input: a graph G, h (maximum depth of the visit)

2: for each v ∈ V (G) do

3: generate DDv,hG as described in Section 4.1.1

4: for u ∈ post-order-visit(DDv,hG ) do

5: Xu[0] = κ(L(u))

6: Su[0] = 1

7: if Xu[0] is a new feature then

8: φXu[0] = λ
1
2

9: else

10: φXu[0] = φXu[0] + λ
1
2

11: end if

12: if u is not a leaf then

13: for 1 ≤ i ≤ max
v∈

u
4
depth(v)− depth(u) do

14: sort the children of u

15: compute-st-features //see macro below

16: end for

17: end if

18: end for

19: end for

20: Output: φ, the set of features of G

compute-st-features

1: Xu[i] = κ
(
L(u)

⌈
Xchu[1][i− 1]#Xchu[2][i− 1] . . .#Xchu[ρ(u)][i− 1]

⌋)
2: Su[i] = 1 +

ρ(u)∑
j=1

Schu[j][i− 1]

3: if Xu[i] is a new feature then

4: φXu[i] = λ
Su[i]

2

5: else

6: φXu[i] = φXu[i] + λ
Su[i]

2

7: end if

Algorithm 6 is applied to a single graph. However, an equivalent of the construc-

tion of the Big2DAG (Section 4.2.4) can be obtained by a simple merge operation

between the hash tables resulting from the application of Algorithm 6 to a set of

graphs.



Chapter 4. A new framework for the definition of DAG-based graph kernels 97

v
chv [1]

4|l
. . . chv [j−1]

4|l
chv [j]

4
chv [j+1]

4|l
. . . chv [ρ(v)]

4|l

Figure 4.7: A feature for the tree kernel ST+. Given the node v and the index j,

the feature is composed by v, the proper subtree rooted at the j-th child and the

subtrees resulting from a limited visit of l levels for the other children.

4.3.2 A graph kernel based on a novel tree kernel

In Section 4.3.1 a graph kernel based on the ST kernel for trees has been defined.

It has |VG| log |VG| complexity but, in practice, it is competitive, in terms of speed,

with the fastest graph kernels (see Section 4.4). However, being it based on the ST

kernel, the associated feature space might not be expressive for certain tasks.

The kernel we introduce in this section enlarges the feature space of the kernel

in Section 4.3.1, with a modest increase in computational burden.

The associated tree kernel, which is a novel contribution in itself, is referred to

as ST+. The set of features related to the ST+ kernel is a superset of the features

of ST and a subset of the features of PT. Figure 4.7 describes a generic novel feature

introduced by ST+. Notice that it depends on v ∈ T , the index of a child j and a

limit l on the depth of the visits. While for the ST kernel there is one feature for

each v ∈ T , ST+ associates at most ρ(v)h features for any v ∈ T . Figure4.8 depicts

a partial feature space representation of a tree according to ST+. For each node

v ∈ T , for example the node hightlighted in Figure 4.8-a, the algorithm inserts at

most ρ(v)h+ 1 features:

• the proper subtree rooted at v, which in our example is the one in Figure 4.8-b;

• given the j-th child of v, the subtree composed by

– v,

– the proper subtree rooted at the j-th child of v,

– the subtrees resulting from a visit limited to 1 ≤ l ≤ h levels starting

from the other children of v



98 Chapter 4. A new framework for the definition of DAG-based graph kernels

is added as feature. As l ranges from 0 to h, the features/subtrees from

Figure 4.8-c to Figure 4.8-e are added.

Substituting line 15 of Algorithm 6 with Algorithm 7, an algorithm for computing

the features of ST+ directly from a graph G is obtained. The variables u, i are set

in Algorithm 6 and represent the current node of the DDv
G and the current level

of the visit, respectively. The features of the ST kernel are added in line 1 by the

macro compute-st-features. Notice that it sets the vectors X[] and S[]. The

variables x and s represent the encoding of the novel features of ST+ as exemplified

in Figure 4.7.

Algorithm 7 A macro for computing the features of the ST+ kernel. It is supposed

to replace line 15 of Algorithm 6.
compute-ST+features

1: compute-st-features // macro defined in Algorithm 6

2: for 1 ≤ j ≤ ρ(u) do

3: for 0 ≤ l < i do

4: (M1, . . . ,Mρ(u))=sort
(
Xchu[1][l], . . . , Xchu[j−1][l], Xchu[j][i], Xchu[j+1][l], . . . , Xchu[ρ(u)][l]

)
5: x = κ

(
L(u)

⌈
M1# . . .#Mρ(u)

⌋)
6: s = 1 + Schu[j][i] +

ρ(u)∑
z=1,z 6=j

Schu[z][l]

7: if x is a new feature then

8: φx = λ
s
2

9: else

10: φx = φx + λ
s
2

11: end if

12: end for

13: end for

The complexity of Algorithm 6 where line 15 is substituted with Algorithm 7 is

O(|VG|Hh2ρ2 log ρ). The complexity of a kernel evaluation then is |VG| log |VG| if we

consider H constant.

4.3.3 Feature spaces comparison of some graph kernels

A way to get insights on the difference between graph kernels is to analyze what types

of inputs they are able to discriminate. While this is not a sufficient requirement



Chapter 4. A new framework for the definition of DAG-based graph kernels 99

s

d

f

v

a x

d

e f

e

e f

g

e

g

b
a)

v

a x

d

e f

e

e f

g

e

g

b)

v

x

d

e f

c) l = 0

d)
l = 1

v

a x

d

e f

e e
e) l = 2

v

a x

d

e f

e

e f

e

g

Figure 4.8: Feature space representation related to the kernel ST+ for an example

tree: a) the input tree; b) the proper subtree rooted at the node labeled as v; c)-e)

given the child x of v, the features related to visits limited to l levels.

for successfully solving a learning task, it becomes necessary, for example, in a

classification problem when two graphs, with the same representation in feature

space, have different target classes. Specifically we are going to present some cases

in which φ(G1) = φ(G2) when G1 is not isomorphic to G2. The analysis focuses

on gBoost, the Fast Subtree and the proposed ODDKSTh and ODDKST+ kernels.

Since gBoost extracts only a set of informative subgraphs, it is sufficient to consider

G1 = {g} ∪ {g1} and G2 = {g} ∪ {g2}, where g is an informative subgraph and g1,

g2 are not. Clearly φ(G1) = φ(G2) = φ(g).

When considering the Fast Subtree Kernel, it can be observed that, in order

for two graphs to get the same representation in feature space, they need to have

the same number of vertices and the same statistics on the out-degree of vertices.

In addition, ODDKSTh also requires the same distribution on the length of all the

pairwise shortest paths. This is not the case for the Fast Subtree Kernel. Figure 4.9

shows an example of two graphs having the same feature space representation. Note

that ODDKSTh is able to discriminate those two graphs: the left one has a shorter

path of length 4, while the longest one for the graph on the right has length 3.



100 Chapter 4. A new framework for the definition of DAG-based graph kernels

This implies that there are at least two different tree visits and consequently two

different features for both ODDKSTh and ODDKST+: the proper subtrees whose

root correspond to the root of the tree visits.

Figure 4.9: An example of two different graphs having the same representation in

feature space according to the Fast Subtree kernel. All the nodes have the same

label.

Let us turn our attention to the ODDKSTh and ODDKST+ kernels. Clearly, two

graphs differing just in self-loops, yield identical multisets of DAGs. However, the

information about the presence of self-loops could be transferred into the represen-

tation of the corresponding node, for example by adding a field to the representation

of the label. A less trivial example of non-injective mapping for the ODDKSTh ker-

nel is shown in Figure 4.10. Since the set of DAGs generated from the graphs in the

figure are identical, the feature spaces related to the ODDKST+ kernel are identical

as well.

4.4 Experimental results

While Equation (4.3) can be instantiated with any tree kernel, in order to reduce the

time required for the experimentation, only the kernels in Section 4.3, the subtree

kernel with visits of limited depth, i.e. ODDKSTh , and the kernel ODDKST+,

are considered in the following. The reason for such choice lies in the fact that



Chapter 4. A new framework for the definition of DAG-based graph kernels 101

Figure 4.10: An example of two different graphs having the same representation

in feature space according to the ODDKSTh and ODDKST+ kernels. All the nodes

have the same label.

previous sections heavily focused on ODDKSTh and ODDKST+, especially from

the computational point of view.

Typically, learning algorithms depend on a set of parameters. For the assess-

ment of the predictive performance of an algorithm, we need a way to estimate the

optimal values for such parameters. We will present two types of experiments that

adopt different parameter selection procedures, in order to compare the performance

with other algorithms present in literature [122, 38, 115], and to assess in the most

unbiased way the predictive performances of the proposed methods.

The first experiments are performed in K-fold cross validation, with K=10. We

compute the cross validation values over a grid of parameters, and choose the pa-

rameters that minimize the CV error to be our best parameters estimates. This

evaluation method allows us to compare the performance of the proposed algorithms

vs other previously published results, for which we were not able to perform new

experiments because no software was publicly available. While this first method

allows to estimate the best accuracy a predictive algorithm can reach in practice,

when the cross validation is used for model selection (i.e. for parameter selection),

as in our case, it is known that the results can be overly optimistic [26, 134]. Even

if the effect applies to all learning algorithms, so the comparison should be fair, we

decided to use also another parameter selection method, that more closely reflects

the performance expected from the algorithm on unseen data.



102 Chapter 4. A new framework for the definition of DAG-based graph kernels

The second type of experiments adopt a technique commonly referred to as nested

k-fold cross validation. For each fold of the K-fold cross validation, we performed

another inner K-fold cross validation, in which we select the best parameters for

that particular fold. Then, using only the best parameters for each of the K folds,

we classify the remaining examples (the test set for the particular iteration of K-

fold). With this second approach, the parameters are optimized, for each fold, on

the training dataset only, similarly to the approach adopted in [122].

The 10× 10-CV statistical test proposed in [20] has been used for assessing the

significance of the results.

4.4.1 Dataset Description

The experimentation has been performed on six datasets: Mutag [47], CAS3, CPDB [77],

AIDS [151], NCI1 [145] and GDD [51]. All datasets involve chemical compounds

and represent binary classification problems. In all data sets nodes are labeled and

there are no self-loops. Mutag, CAS, CPDB are dataset of mutagenic compounds

whose target class represents whether or not they have a mutagenic effect. NCI1 is

a balanced subset of a dataset of chemical compounds screened for activity against

non small cell lung cancer. AIDS is an antiviral screen datasets.

The GDD dataset comprises X-ray crystal structures of proteins. Each protein

is represented by a graph, in which the nodes are amino acids and two nodes are

connected by an edge if they are less than 6◦ Angstroms apart. The examples are

divided into enzymes and non-enzymes classes on the basis of Enzyme Commission

number, annotations in the Protein Data Bank and Medline abstracts [51].

Table 4.1 summarizes the statistics of the datasets.

4.4.2 Results and Discussion

The efficiency of the proposed ODDKSTh and ODDKST+ kernels are first compared.

In Section 4.2.3 we have proposed a technique for speeding up the kernel computation

3http://www.cheminformatics.org/datasets/bursi



Chapter 4. A new framework for the definition of DAG-based graph kernels 103

Dataset graphs pos(%) avg atoms avg edges

Mutag 188 66.48 45.1 47.1

CAS 4337 55.36 29.9 30.9

CPDB 684 49.85 14.1 14.6

AIDS 1503 28.07 58.9 61.4

NCI1 4110 50.04 29.87 32.3

GDD 1178 58.65 284.31 2862.63

Table 4.1: Statistics of MUTAG, CAS, CPDB, AIDS, NCI1 and GDD datasets:

number of graphs, percentage of positive examples, average number of atoms, aver-

age number of edges.

by compactly representing the ODDs by means of an Annotated DAG (BigDAG).

The complexity of the DAG kernels, for example the ones described in Section 4.3,

depends on the number of nodes of the BigDAG. In order to compare the bound

on the number of nodes in Equation (4.5) and how it affects the complexity of the

kernel, we have computed the number of nodes in each BigDAG as a function of

the number of nodes of each graph. The plots in Figure 4.11 refer to the NCI1

dataset while the plots in Figure 4.12 refer to the CAS dataset. We have also plotted

the polynomial function interpolating these points: such function is n1.3691 for NCI1

and n1.3652 fo CAS. In order to have a comparison with the values of the bounds

discussed in Section 4.2.3, the functions n
3
2 and n2 are plotted as well. The points

of the plot, i.e. the numbers of nodes inserted in the BigDAG are, for the vast

majority, under the curve n1.5 for both datasets. The size of the BigDAG tends to

an asymptotic value which depends on the outdegree of the nodes and the size of

the longest cycle (see Section 4.2.5). In this case, the “actual” complexity of the

kernel is proportional (via H) to n log n. Similar results are obtained for the other

datasets. The interpolating functions are: n1.2774 for MUTAG, n1.3001 for CPDB,

n1.2571 for AIDS and n1.672 for GDD.

Figure 4.13 and Figure 4.14 report the time needed to compute the kernel matrix,

as a function of h, for the ODDKSTh , ODDKST+, NSPDK and the FS kernels on



104 Chapter 4. A new framework for the definition of DAG-based graph kernels

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100

#
 n

o
d

e
s
 B

ig
D

A
G

# nodes input graph

Number of nodes BigDAG for NCI1

NCI1

n
2

n
1.5

n
1.3691

Figure 4.11: Number of nodes inserted into each BigDAG as a function of the

nodes of the graphs.

NCI1 and CAS, respectively. All the experiments are performed on a PC with two

Quad-Core AMD Opteron(tm) 2378 Processors and 64GB of RAM. Given that the

available implementations of the two kernels are in different programming languages,

the plots of the FS kernel were added just for a qualitative comparison. Notice that,

as h increases, the time required for computing the kernel matrix seems to increase

almost linearly for FS and STh. This can be explained with the fact that smaller

graphs do not allow too deep visits, so the increase in complexity due to the increase

of the depth visit is compensated by the smaller number of graphs where visits of

that depth can be actually performed.

We then compare the predictive abilities of the kernels in Section 4.3 to the

Fast Subtree Kernel (FS), the Neighborhood Subgraph Pairwise Distance Kernel

(NSPDK) and gBoost. In addition, results from the following algorithms, when

available, are provided from [115] and [122]: Gaston, Correlated Pattern Mining

(CPM), MOLFEA, Marginalized Graph Kernel (MGK) and SVM with frequent

pattern mining (freqSVM). The proposed kernel, as each of the kernel functions



Chapter 4. A new framework for the definition of DAG-based graph kernels 105

 0

 100

 200

 300

 400

 500

 0  10  20  30  40  50  60

#
 n

o
d

e
s
 B

ig
D

A
G

# nodes input graph

Number of nodes BigDAG for CAS

CAS

n
2

n
1.5

n
1.3652

Figure 4.12: Number of nodes inserted into each BigDAG as a function of the

nodes of the graphs.

in the following, was employed together with a Support Vector Machine. For the

sake of comparison with the above mentioned results, the accuracy of each algo-

rithm was measured by selecting a posteriori the best parameters among the aver-

age of 10 repetitions of a 10−fold cross validation. The values of the parameters

of the ODDKSTh and ST+ kernels have been restricted to: λ = {0.1, 0.2, . . . , 2.0},
h = {1, 2, . . . , 10}. The parameter selection procedure for the Fast Subtree Kernel

replicates the one described in [122], i.e. only the parameter h = {1, 2, . . . , 10} is

optimized. gBoost has many parameters, but following the parameter selection pro-

cess exposed in [115], only µ (that controls training accuracy) has been optimized

among the values {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. For the parameters of the other

methods, see to the corresponding papers. Table 4.3 reports the average accuracy,

the standard deviation and the ranking obtained by the considered methods on the

six datasets.

According to the experimental results, gBoost tends to have a low ranking on

most datasets, i.e. third, fourth and the fifth on three datasets. On the contrary, the



106 Chapter 4. A new framework for the definition of DAG-based graph kernels

 0

 100

 200

 300

 400

 500

 600

 700

 0  1  2  3  4  5  6  7  8

K
e
rn

e
l 
M

a
tr

ix
 C

o
m

p
u
ta

ti
o
n
 (

s
e
c
)

h

Gram matrix computation for NCI1 dataset

ODD-ST
ODD-ST+

FS
NSPDK d=1
NSPDK d=7

Figure 4.13: Time needed to compute the kernel matrix, as a function of h, for

the ODDKSTh , ODDKST+ and the FS kernels on NCI1.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  1  2  3  4  5  6  7  8

K
e
rn

e
l 
M

a
tr

ix
 C

o
m

p
u
ta

ti
o
n
 (

s
e
c
)

h

Gram matrix computation for CAS dataset

ODD-ST
ODD-ST+

FS
NSPDK d=1
NSPDK d=7

Figure 4.14: Time needed to compute the kernel matrix, as a function of h, for

the ODDKSTh , ODDKST+ and the FS kernels on CAS dataset.



Chapter 4. A new framework for the definition of DAG-based graph kernels 107

Fast Subtree, while placing first on two datasets, has a lower ranking, i.e. second,

fourth, fifth and sixth, on the other datasets. Its average ranking is 3.16. By a

curious coincidence, 3.16 is exactly the average ranking of NSPDK kernel as well.

Thus, 3.16 is the average ranking to compare to our proposed kernels. ODDKST+

has best accuracy in three out of six datasets. On the remaining datasets it places

in second position. Notice that ODDKST+ almost always increases its accuracy

with respect to ODDKSTh (the only exception being the CPDB dataset). The

average rankings of ODDKST+ and ODDKSThare 1.5 and 2.83, respectively. These

generally good results may be attributed to the fact that ODDKSThand ODDKST+

have associated a large feature space, which makes them more adaptable to different

tasks.

As stated at the beginning of this section, when the cross validation is used

for model selection (i.e. for parameter selection), as in our case, it is known that

the results can be overly optimistic [26, 134]. In the following, we will present

and discuss a second type of experiments performed with the technique commonly

referred as nested 10-fold cross validation. Table 4.4 reports the average accuracy

results obtained with this method for parameter selection. Note that in this case,

there is no single setting of best parameters for each kernel/dataset, since different

parameters are selected for each fold of each dataset. The values in accuracy for all

the datasets are lower with respect to the results in 10-fold cross validation reported

in Table 4.3. However, the relative ranking of the kernels for each dataset is similar.

The only dataset in which there is a difference is MUTAG. We argue that this

happens because the dataset is small, and the parameter selection procedure in this

case is not reliable. It is evident looking at the high standard deviation presented

by all the tested kernels on this dataset.

In order to better understand the differences in the performances of the various

kernels, we analyzed the statistical significance among the accuracy results. We

assessed the significance using the 10× 10-CV statistical test proposed in [20] with

confidence level 95%.

As expected, on small datasets (MUTAG and CPDB) the difference between the



108 Chapter 4. A new framework for the definition of DAG-based graph kernels

Kernel CAS AIDS NCI1 GDD

FS 77 (h=3) 30 (h=9) 246 (h=8) 405 (h=1)

NSPDK 24 (h=2,d=6) 217 (h=8,d=6) 192 (h=5,d=4) 395 (h=2,d=6)

ODDKSTh 18 (h=3) 56 (h=7) 44 (h=4) 29 (h=1)

ODDKST+ 32 (h=4) 111 (h=8) 205 (h=5) 199 (h=2)

Table 4.2: Average seconds required for computing the kernel matrix on CAS,

AIDS, NCI1 and GDD dataset with the optimal parameters. The parameters influ-

encing the speed of the kernel are reported between brackets.

various kernels is not statistically significant. More interestingly, in other datasets

the difference in performance is significant. In the AIDS and CAS datasets, NSPDK,

ODDKSTh andODDKST+ perform significantly better than FS. In the NCI1 dataset,

FS and ODDKST+ performs significantly better than NSPDK that, in turn, per-

forms better than ODDKSTh . In the GDD dataset, FS, ODDKSTh and ODDKST+

perform significantly better than NSPDK.

Analyzing the significativity results, ODDKST+ never performs significantly

worse respect the other kernels, while ODDKSTh performs significantly worse than

competitors in only one dataset: NCI1.

Table 4.2 reports the average computational time for a single fold with the opti-

mal parameters on the four largest datasets: CAS, AIDS, NCI1, GDD. The param-

eters influencing the speed of the kernel are reported between brackets. Note that,

looking at Table 4.2, Table 4.3 and Table 4.4 together, the ODDKSTh kernel tends

to have the best accuracy/speed ratio, being comparable to NSPDK in accuracy but

faster in the calculation of the kernel matrix.



C
hapter

4.
A

new
fram

ew
ork

for
the

defi
nition

of
D

A
G

-based
graph

kernels
109

Kernel Mutag CAS CPDB AIDS NCI1 GDD

Gaston - 79.0 (6) - - - -

MOLFEA - - - 78.5 (6) - -

CPM - 80.1 (5) 76.0 (8) 83.2 (3) - -

MGK 80.8 (6) 77.1 (8) 76.5 (7) 76.2 (8) - -

freqSVM 80.8 (6) 77.3 (7) 77.8 (5) 78.2 (7) - -

gBoost 85.2 (5) 82.5 (3) 78.8 (3) 80.2 (4) 70.8 (5) -

FS 89.54±0.99 (2) 81.12±0.17 (4) 76.72±0.96 (6) 78.45±0.67 (5) 86.12±0.21 (1) 79.63±0.27 (1)

(c=100,h=1) (c=0.1,h=3) (c=0.1,h=2) (c=0.01,h=9) (c=0.01,h=8) (c=0.1,h=1)

NSPDK 88.61±0.60 (4) 84.35±0.12 (2) 78.12±0.71 (4) 83.96±0.42 (2) 84.98±0.16 (3) 76.09±0.35 (4)

(c=1,h=1,d=4) (c=1,h=3,d=6) (c=1,h=1,d=2) (c=10,h=8,d=6) (c=1,h=5,d=4) (c=100,h=2,d=6)

ODDKSTh 89.28±0.74 (3) 83.97±0.21(3) 79.62±0.59 (1) 83.6±0.34(3) 82.71±0.20 (4) 77.92±0.20(3)

(c=10,h=6, λ =0.5) (c=10,h=3, λ =1.6) (c=10,h=2,λ=1.6) (c=10,h=8,λ=1.8) (c=100,h=4,λ=1.04) (c=10,h=1,λ=1.4)

ODDKST+ 89.92±0.91 (1) 84.40±0.18 (1) 79.47±0.52 (2) 83.99±0.45 (1) 85.46±0.18 (2) 78.37±0.21 (2)

(c=10,h=7,λ=0.3) (c=10,h=4,λ=1.2) (c=100,h=2,λ=0.5) (c=100,h=8,λ=2) (c=10,h=5,λ=1.02) (c=10,h=2,λ=1.02)

Table 4.3: Average accuracy results (when available) ± standard deviation in 10-fold cross validation for Gaston,

MOLFEA, Correlated Pattern Mining, Marginalized Graph Kernel, SVM with Frequent Mining, gBoost, the Fast Sub-

tree, the Neighborhood Subgraph Pairwise Distance, the ODDKSTh and the ODDKST+ kernels obtained on MUTAG,

CAS, CPDB, AIDS, NCI1 and GDD datasets. The rank of the kernel is reported between brackets.



110
C

hapter
4.

A
new

fram
ew

ork
for

the
defi

nition
of

D
A

G
-based

graph
kernels

Kernel Mutag CAS CPDB AIDS NCI1 GDD

FS 83.53±2.5 (3) 81.13±0.21 (4) 73.37±0.84 (4) 75.35±0.78 (4) 84.79±0.32 (1) 76.29±1.22 (1)

NSPDK 84.53±1.33 (1) 83.58±0.37 (2) 75.23±1.77 (3) 81.94±0.41 (2) 83.45±0.43 (3) 74.09±0.91 (4)

ODDKSTh 83.82±1.71 (2) 83.34±0.31(3) 76.87±1.64 (1) 81.93±0.72(3) 82.10±0.42 (4) 75.27±0.68(3)

ODDKST+ 83.44±2.13 (4) 83.90±0.33 (1) 75.66±1.33 (2) 82.33±0.85 (1) 84.60±0.47 (2) 75.33±0.81 (2)

Table 4.4: Average accuracy results ± standard deviation in nested 10-fold cross validation for the Fast Subtree, the

Neighborhood Subgraph Pairwise Distance, the ODDKSTh and the ODDKST+ kernels obtained on MUTAG, CAS,

CPDB, AIDS, NCI1 and GDD datasets. The rank of the kernel is reported between brackets.



Chapter 4. A new framework for the definition of DAG-based graph kernels 111

4.5 Model compression

As we saw in Section 2.5, feature selection consists in deleting non-informative fea-

tures in order to reduce noise and to increase performance. The application of

feature selection in the context of kernels for graphs is not usual because of the

implicit definition of the feature space. Only when adopting other learning methods

for graphs, feature selection has been applied (e.g. [115]) but considering only the

feature frequency, and disregarding target information.

For a learning algorithm to be efficient, it is important to contain the size of

the learned model, because it directly influences the complexity of the classification

phase. One can notice that, in the high dimensional feature space in which kernel

methods work, many features may be non-relevant for the task. Therefore, dropping

these features not only reduces the noise in the data but also reduces the dimension

of the feature space (and thus slightly improves kernel performance). It is worth to

notice that we do not want to define new learning algorithms that produce smaller

models with respect to state-of-the-art learning algorithms, since some work on this

field has already been done, e.g. in [91]. The direction we want to explore is the

application of feature selection techniques directly in the feature space of kernels for

structured data.

Feature selection techniques can be applied to several kernels that can be effi-

ciently computed with an explicit representation of the feature space, i.e. the Fast

Subtree kernel (see Section 3.6.6), the Neighborhood Subgraph Pairwise Distance

kernel (see Section 3.6.7) and the ODD kernels presented in this chapter in Sec-

tion 4.3.

Existing feature selection techniques are designed for vector spaces. Thus, even

if the feature space of kernel methods is actually an Euclidean space, each feature

represents the presence or the absence of a specific (sub)structure into the instances.

This introduces a major complication, because the features are strictly dependent,

e.g. the feature associated with a certain tree can be activated only if all the features

corresponding to its subtrees are activated as well.



112 Chapter 4. A new framework for the definition of DAG-based graph kernels

We can apply two different strategies:

• consider the feature space as-is as a vectorial space, making possible to apply

all the well-known feature selection techniques on these features. This is the

most straightforward way, and we explored this approach in Section 4.5.1.

• taking into account the dependencies between features, including them in the

feature selection process. This would be a more powerful approach, but it is

necessary to keep track of feature dependencies in a non-straightforward way.

This line of research is not considered in this thesis and is left as a future work.

The challenge of this research line is to define new measures and new algorithms

for the weighting of features, considering the structured nature of the features. Cur-

rently, there is no work in literature that covers this topic (on graph data).

Evaluating a feature selection technique is not straightforward. A way to test the

quality of the method is to compare the classification performance of various learn-

ing (kernel) methods with different dimensionality reduction techniques on various

datasets.

Independently from feature selection, in some cases it may be convenient in

kernel methods to represent the model obtained from learning not maintaining in

memory all the selected support graphs as usual, but keeping a vector of the features

that occur in those examples as explained in Section 4.3.1. This representation may

lead to a more compact model, for example in the case of the studied kernel from

the framework introduced in Section 4.1, and can be further reduced via feature

selection.

4.5.1 Application of feature selection to graph kernels

The work presented in this section has been published in [43]. One nice characteris-

tic of the kernel presented in Section 4.1 is the possibility to perform feature selection

thanks to the explicit representation of the feature space. In particular, adopting



Chapter 4. A new framework for the definition of DAG-based graph kernels 113

the explicit feature space representation proposed in Section 4.3.1, it becomes pos-

sible to delete some of the features from the hash map without problems, since the

structural dependencies among features are not considered in this representation.

Notice that this is not the case for other representations such as the BigDAG pre-

sented in Section 4.2.3. On the other hand, the BigDAG representation maintains

the information about feature dependencies, and thus is apt for different and more

powerful feature selection strategies. The definition of these strategies however is

left as a future work.

In our case, feature selection is appealing since it can reduce the number of

features to store in memory for representing the model generated via learning. Of

course, a significant reduction in number of features should not reduce too much the

performance of the model, which otherwise becomes useless.

In the literature, several feature selection principles have been proposed (see [31]

for a description of many of them). A typical approach is to compute a statisti-

cal measure for estimating the relevance of each feature with regard to the target

concept, and to discard the less-correlated ones.

In order to do as-well-as-possible, the measure to apply should take advantage of

all available information, which in our learning scenario means to care about both

feature frequency and target information. We have decided to study one measure

that possesses these characteristics, the F-score (defined in Equation (2.8)). This

measure has been widely adopted in various tasks including, for example, infor-

mation retrieval. We recall that features that get small values of F-score are not

very informative with respect to the binary classification task. Thus, features with

F-score below a given threshold can be removed. Given a predefined tolerance on

the drop of classification performance, a suitable value for such threshold can be

estimated using a validation set or a cross-validation approach. In both the cases,

the feature selection is performed on the training dataset only.



114 Chapter 4. A new framework for the definition of DAG-based graph kernels

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0.0002  0.0005  0.001  0.002

N
u
m

b
e
r 

o
f 
d
is

c
a
rd

e
d
 f
e
a
tu

re
s

F-score treshold

CAS Dataset h=4

Figure 4.15: Number of discarded features as a function of the F-score threshold

for the CAS dataset.

4.5.2 Experimental results

This section analyzes, from an empirical point of view, the effects of reducing the

size of the model by making use of its explicit representation and by applying the

feature selection technique based on the F-score (eq. 2.8). The experiments were

performed on the CAS4 and AIDS [151] datasets, previously described in Section 4.4.

All the experiments in this section involve the Support Vector Machines together

with the kernel defined in Section 4.1. We recall that on these datasets this kernel

(with h = 4) obtains state-of-the-art classification performances. The feature selec-

tion process is performed by choosing a set of threshold values and then discarding

all those features whose F-score, computed according to eq. 2.8, is lower than such

threshold on the training dataset. We first analyze the size of the model, in terms

of number of features, after the application of various threshold values. Figure 4.15

and Figure 4.16 report the resulting plots. The number of discarded features is not

linear with respect to the threshold value; in particular, there are high nonlinearities

around the values 0.00023 and 0.0003 for CAS and one around the value 0.0006 for

4http://www.cheminformatics.org/datasets/bursi



Chapter 4. A new framework for the definition of DAG-based graph kernels 115

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0.0002  0.0005  0.001  0.002

N
u
m

b
e
r 

o
f 
d
is

c
a
rd

e
d
 f
e
a
tu

re
s

F-score treshold

AIDS Dataset h=4

Figure 4.16: Number of discarded features as a function of the F-score threshold

for the AIDS dataset.

AIDS.

We then checked how the accuracy of the learning algorithm was affected when

reducing the number of features through the F-score. We performed a 10-fold cross

validation on the datasets and reported mean accuracies and corresponding stan-

dard deviations. Figure 4.17 plots the values of accuracy and standard deviation

with respect to the F-score threshold and the number of features that survived the

selection process. Notice that between threshold values 0 and 0.0003 the accuracy

decreases from 0.847 to 0.839, while the number of features retained decreases from

40, 495 to 11, 549 on average. This means that the size of the model, i.e. the number

of features, is reduced to about 1
4

with no significant loss in accuracy. Increasing

the threshold to 0.001, the associated accuracy becomes 0.832 and the number of

features becomes 3, 477, i.e. less than 1
10

of the original size with a total accuracy

loss of 0.015. After the threshold value 0.005 the number of features is 441, but the

accuracy drops to 0.789. Clearly, too many significant features are discarded and

the learning algorithm is not able to create a meaningful model. A similar behavior

can be observed in Figure 4.18 for the AIDS dataset. However, notice that the



116 Chapter 4. A new framework for the definition of DAG-based graph kernels

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0  0.00025  0.0005  0.00075  0.001  0.00125
 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

N
u

m
b

e
r 

o
f 

fe
a

tu
re

s

A
c
c
u

ra
c
y

F-score treshold

CAS Dataset h=4

Number of features
Accuracy

Figure 4.17: Accuracy (with standard deviation) and number of features as a

function of the F-score threshold for the CAS dataset. Standard deviation for the

number of features is not visible because it is very small.

0.0003 threshold has a slight accuracy improvement with respect to 0 (from 0.825

to 0.829) and the number of features decreases from 30, 843 to 27, 169. Figure 4.18

does not show the behavior for higher F-score values, however it is interesting to

notice that with threshold value set at 0.05 the accuracy is 0.785, so 0.042 less than

the reference figure, but with just 90 features.

Figure 4.19 plots the number of support graphs as a function of the F-score

thresholds. Notice that, for threshold values less than 0.001, the number of sup-

port graphs drops, while there is no significant accuracy loss. This means that the

learning algorithm is able to produce a simpler but effective model.

One can argue that eliminating features can lead a graph to lose all of its features

in the representation. This graph then will not be represented at all in the model.

Figure 4.20 shows that this happens only for high F-score values, so this does not



Chapter 4. A new framework for the definition of DAG-based graph kernels 117

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  0.001  0.002  0.003  0.004  0.005
 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9
N

u
m

b
e
r 

o
f 
fe

a
tu

re
s

A
c
c
u
ra

c
y

F-score treshold

AIDS Dataset h=4

Number of features
Accuracy

Figure 4.18: Accuracy (with standard deviation) and number of feature as a func-

tion of the F-score threshold for the AIDS dataset. Standard deviation for the

number of features is not visible because it is very small.

 1500

 1600

 1700

 1800

 1900

 2000

 0  0.001  0.002  0.003  0.004  0.005

N
u
m

b
e
r 

o
f 
S

u
p
p
o
rt

 G
ra

p
h
s
 (

fo
r 

o
p
ti
m

a
l 
p
a
ra

m
e
te

rs
)

F-score treshold

CAS Dataset h=4

Figure 4.19: Number of support graphs (with standard deviation) as a function of

the F-score threshold for the CAS dataset.



118 Chapter 4. A new framework for the definition of DAG-based graph kernels

 0

 1000

 2000

 3000

 4000

 5000

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

N
u
m

b
e
r 

o
f 
d
is

c
a
rd

e
d
 e

x
a
m

p
le

s

F-score treshold

CAS Dataset h=4

Dropped Examples

Figure 4.20: Number of graphs that lose all their features as a function of the

F-score threshold value, for the CAS dataset.

happen with the range of F-score values we considered acceptable looking at the

accuracy.

A final remark that is worth to make is the following. If the number of explicit

features needed to represent a model is larger than the total number of vertices in

the support graphs, then it is more convenient from the storage point of view to use

the representation of the model in the dual space. We have verified that this is not

the case for the two studied datasets. In fact, for the CAS datasets, the total number

of vertices in the support graphs without feature selection is around 240, 300, while

for the AIDS dataset, the same number is around 146, 158. Of course, these values

are far larger than the number of features retained by the models, with or without

feature selection.



Chapter 5

Learning algorithms for streams of graphs

A paper should be like a mini

skirt: long enough to cover

everything, but short enough to

keep it interesting.

Anonymous

Recalling from Section 2.7.1, the main challenges of stream data mining are

to accurately capture the continuous changing decision concepts and to scale up

to large volumes of stream data. The nature of data streams requires the use of

algorithms that involve at most one pass over the data and that try to keep track of

time-evolving features (concept drifting). Moreover, a stream algorithm should use

at most a fixed amount of memory. The research illustrated in Section 4.5 is useful

in order to reduce the model dimension, that is a key prerequisite for the research

discussed in this section.

The development of fast and robust stream learning algorithms for structured

data is a very interesting and challenging task. Recently some work in this direction,

involving learning on streams of trees [72], has been performed. Another recent work

[2] considers the case of online learning on a stream of graphs. This work focuses

on efficiency, using an approximated discriminative subgraph mining approach for

graph classification. The paper considers the case of a stream of edges from a limited

number of very big graphs. This case does not cover all the graph stream scenarios.



120 Chapter 5. Learning algorithms for streams of graphs

For example, if we want to classify a stream of chemical compounds, composed of a

big number of small graphs, the proposed approach seems not adequate. Moreover,

the proposed technique implicitly defines a similarity measure between graphs based

on the edges two graphs share. Thus, there is no flexibility in the adopted similarity

measure.

In Section 3.2 we gave some examples of application domains where learning on

streams of graphs can be applied, e.g. fault diagnosis systems for sensor networks,

malware detection, image classification or the discovery of new drugs.

Being the application domains so different, the goal we want to achieve is to define

a framework for learning on streams of graphs that allows for the instantiation with

different graph similarity measures, i.e. the framework has to be flexible. In this

chapter we will focus on the problem of classification of graphs in a stream. However,

the findings of this chapter can be easily extended to the other learning problems

discussed in Section 2.1. Moreover, it is necessary to respect the strict constraints of

stream learning, i.e. a strict bound on the memory occupation and the linear-time

computational complexity, as stated in Section 2.7.1. Kernel methods turn to be

a good approach also in this field. A stream learning algorithm that adopts kernel

functions could be instantiated with various kernels for graphs, giving the possibility

to select the kernel that is more appropriate for a given task. Nonetheless, the

application of kernel methods to graph streams is not straightforward due to the

computational problems that arise.

In this chapter we will give some feasible solutions for the definition of such

framework, proposing modified versions of state-of-the-art linear-time classification

algorithms as online passive aggressive presented in Section 2.7.4. The proposed

modifications are easily extensible to all the algorithms based on the Online Stochas-

tic Gradient Descent technique presented in Section 2.7.3 and to any graph kernel

that is fast enough to respect the linear-time processing constraint imposed by the

stream setting.

Moreover, if the adopted kernel allows for an explicit feature space representation,

as the kernels belonging to the framework proposed in Chapter 4, it is possible to



Chapter 5. Learning algorithms for streams of graphs 121

adopt a different formulation for the learning algorithm working directly in the

feature space induced by the kernel, and that is practically faster with respect to

the classical formulation with kernel functions applied to examples in the input

space. To define the framework, we have to modify the existing algorithms in order

to:

• make a selection of features (based on some estimation of relevance) in order

to consider only relevant information and to limit the dimension of the model,

i.e. to respect the strict memory constraints;

• address the problem of concept drifting. This can be done by adapting the

model for each data chunk that arrives.

For addressing the first problem, there are several techniques for performing fea-

ture selection. We will propose some alternatives and test the results of different

policies in Section 5.1.1. Note that the research presented in Section 4.5.1 is the

starting point for the policies presented in that section. To address the second prob-

lem, one way to identify outdated information is using a committee of classifiers,

trained from different portions of the data following the concept of sliding windows

over the examples: that is, every classifier is trained from a different, possibly over-

lapping, subset of the data available so far. This approach, presented in [92] for

structured data, has the drawback of increased computational complexity though.

Another strategy to face the second problem is to address concept drift in the fea-

ture selection step, i.e. when concept drift occurs, the learning algorithm is able to

modify the current hypothesis in an effective way. This is the strategy we adopt in

the proposed algorithms.

As far as we know, in literature there are no other works on learning on streams

of graphs except the ones cited in this section. We recall that to assign a label to

the nodes of a graph is a different problem w.r.t. the one we are considering.

With kernel-based learning algorithms, as the one presented in Section 2.7.3, we

have the choice to represent the hypothesis explicitly or as a weighted sum over

the support vectors (representer theorem, see Section 2.4). When the learning is



122 Chapter 5. Learning algorithms for streams of graphs

performed on structured data as in the case we are considering, or more in general

with nonlinear kernels, usually it is not possible to use the sparse explicit version

of the algorithms. With some recently proposed kernels, such as the one proposed

in Chapter 4, it is possible to slightly modify explicit algorithms to deal with the

explicit feature space representation of the examples. In Section 5.1 we will discuss

if it is convenient to adopt such representation for the learned model. In Section 5.2

we will discuss a novel approach to represent in approximation the explicit model.

5.1 Budget online Passive-Aggressive on graph data

In this section, we study three algorithms together with different strategies for man-

aging the budget on graph streams. The goal of the work in this section is to show

that, when dealing with graph data, it is convenient, both from the accuracy and

the performance point of view, to use algorithms working with explicit features. The

algorithms listed in Section 2.7.4 assume that each example has a fixed size represen-

tation. This assumption clearly does not hold for structured data and specifically

for graphs. Given the variable size of graph data, we make use of the following

measure for computing the size of the model for Algorithm 5:

|M | =
∑
Gj∈M

(|VGj |+ |EGj |+ 1), (5.1)

where 1 takes into account the value τj. This measure is optimistic with regard

to the particular data structure adopted to represent the graph, meaning that any

possible representation of the graph needs at least this amount of memory. Indeed,

we take into account one memory unit per node plus one memory unit per edge.

The first algorithm we define (Algorithm 8) is a modification of Algorithm 5

with a different removal rule: when Gt has to be inserted, instances are removed

from M until |M | + |VGt | + |EGt| + 1 ≤ B, where |M | is computed according to

Equation (5.1).



Chapter 5. Learning algorithms for streams of graphs 123

Algorithm 8 Dual Passive-Aggressive algorithm for online kernel learning on graphs

on a budget.
1: Input: β (algorithm dependent), B (budget size)

2: Initialize M : M = {}
3: for each round t do

4: Receive an instance Gt from the stream

5: Compute the score of Gt: S(Gt) =
∑|M|
i=1 yiτiK(Gi, Gt)

6: Receive the correct classification of Gt: yt

7: if ytS(Gt) ≤ β (Gt incorrectly classified) then

8: update the hypothesis:

9: while |M |+ |VGt |+ |EGt |+ 1 > B do

10: select an element Gj ∈M for removal

11: M = M \ {Gj}
12: end while

12: M = M ∪ {(ytτt, Gt)}
13: end if

14: end for

The complexity of dual online algorithms depends on the number of graphs in

M and the complexity of the employed kernel function. In settings in which the

number of features associated to a kernel is not significantly greater than the size

of the input (for example [44]), the evaluation of the kernel function may be greatly

speeded up if performed as dot product of the corresponding feature vectors. This

observation has been proposed in [130]. The actual size of vectors φ(G) can be much

less than the feature space size if only non-null elements of φ(G) are represented in

sparse format. In fact, when using graph kernels, it is typical that only a small

fraction of the features that constitute the graph domain are not-null, i.e. the

representation for the graph is sparse. We will refer to the size of φ(G) according

to the sparse representation as |φ(G)|. This observation leads to the primal/dual

algorithm (referred to as mixed in the following) presented in Algorithm 9.



124 Chapter 5. Learning algorithms for streams of graphs

Algorithm 9 Mixed Passive-Aggressive algorithm for online learning on a budget.
1: Input: β (algorithm dependent), B (budget size)

2: Initialize M : M = {}
3: for each round t do

4: Receive an instance Gt from the stream

5: Compute the score of Gt: S(Gt) =
∑
φ(Gj)∈M yjτjφ(Gj) · φ(Gt)

6: Receive the correct classification of Gt: yt

7: if ytS(Gt) ≤ β (Gt incorrectly classified) then

8: update the hypothesis:

9: while
∑
φ(Gj)∈M |φ(Gj)|+ |φ(Gt)| > B do

10: select an element φ(Gj) ∈M and remove it: M = M \ {φ(Gj)}
11: end while

12: M = M ∪ {ytτtφ(Gt)}
13: end if

14: end for

Note that Algorithm 9, although expected to be faster than Algorithm 8, needs

to use more memory since every example is now explicitly represented by its set of

features. The size of the model for this algorithm can be calculated as:

|M | =
∑
Gj∈M

|φ(Gj)|, (5.2)

where φ(·) refers to the specific adopted kernel function. In words, for each example

in the model the memory occupancy corresponds to the number of non-null features.

Finally, we introduce a budget online algorithm working in the feature space.

The idea is to replace all elements of M with their sum: w =
∑

φ(Gj)∈M yjτjφ(Gj),

as in Algorithm 2. The difference is that in this case w is sparse and very high

dimensional, requiring specific techniques in order to limit the memory occupancy

of the explicit model. Moreover, by so doing, we lose the connection between features

and the instances they belong to. Consequently, during the update of the hypothesis

it is not possible to select a whole vector φ(G) for removal. We propose to remove

single features from w when the budget is full, i.e. |w| = B and to insert a new

non-zero feature in w.



Chapter 5. Learning algorithms for streams of graphs 125

Algorithm 10 Primal Passive-Aggressive online learning on a budget.
1: Input: β (algorithm dependent)

2: Initialize w: w0 = (0, . . . , 0)

3: for each round t do

4: Receive an instance Gt from the stream

5: Compute the score of Gt: S(Gt) = wt · φ(Gt)

6: Receive the correct classification of Gt: yt

7: if ytS(Gt) ≤ β (Gt incorrectly classified) then

8: while |w + φ(Gt)| > B do

9: select a feature j and remove it from w

10: end while

11: update the hypothesis: wt+1 = wt + τtytφ(Gt)

12: end if

13: end for

Note that the use of the sparse vector w instead of the set M allows Algorithm 10

to save a significant amount of memory while still being faster than Algorithms 8

and 9.

In Section 5.1.2 we will compare the three proposed algorithms, showing the

superiority of Algorithm 10.

5.1.1 Removal policies

In all the algorithms introduced in the previous section, we have not specified how to

select the examples/features to be removed when the budget is full. In this section,

we describe the policies we have explored. Of course, all the algorithms are able to

face (in a way or the other) concept drift since they use a budget. However, different

policies can potentially lead to different performances in presence of concept drift.

The explored policies mimic the different approaches presented in literature and

briefly described in Section 2.8.

For Algorithms 8 and 9 (Dual and Mixed), we have explored the following poli-

cies:

• “random”, examples are removed randomly with uniform probability; after

preliminary experiments, we decided not to include this policy in our experi-

mental evaluation because it tends to have worse performances [149].



126 Chapter 5. Learning algorithms for streams of graphs

• “oldest”, the oldest examples are removed;

• “τ”, the examples with lowest τ values are removed. If more than one example

has such τ value, the candidate is randomly selected.

The “random” and “oldest” policies are also used for Algorithm 10 (Primal)

with the difference being that features are removed instead of examples. For the

same algorithm, we have also explored the following specific policies:

• “Weight”: first, all the features of the input instance that are already present

in the model, are inserted. This maximizes the information available to the

algorithm without increasing memory occupation. Next, for each remaining

feature f of the input instance, the feature of the model with lowest weight

wi, i.e. the weight associated to the feature fi in the current hypothesis, is

selected for removal. However, if all the features in the model have weight

higher than f , then f is not inserted. This policy does not require to keep

any additional information for each non-null feature because only the weight

of the feature is used.

• “F-score”: it is similar to the “weight” policy where the weight wi is replaced

by the F-score, computed according to Equation (2.8) for the i-th feature.

Moreover, we defined an incremental version of the F-score in Equation (5.3)

that will be presented in the following section. If we use this formulation, the

size of the model becomes four times the number of non-null features since, for

each feature fi, we need to keep its cumulative frequency in the positive (f+
i )

and negative (f−i ) examples and the cumulative squared frequencies (f 2,+
i and

f 2,−
i ).

Incremental computation of F-score

The original F-score formulation, presented in Equation 2.8, cannot be applied as

it is to a stream since instances arrive one at a time. However, it is not difficult to

rewrite an incremental version of the F-score. Let I+
t (I−t ) be the set of positive



Chapter 5. Learning algorithms for streams of graphs 127

(negative) instances which have been observed from the stream after having read t

instances, then the F-score Fs(i, t) can be rewritten by using the following quantities:

n+
t = |I+

t |, f+
i (t) =

∑
j∈I+t

f ji , f 2,+
i (t) =

∑
j∈I+t

(f ji )2,

n−t = |I−t |, f−i (t) =
∑
j∈I−t

f ji , f 2,−
i (t) =

∑
j∈I−t

(f ji )2,

where f ji is the frequency of the i-th feature in the j-th instance.

In fact, we have:

AV G+
i,t =

f+
i (t)

n+
t

, AV G−i,t =
f−i (t)

n−t

AV Gi,t =
f+
i (t) + f−i (t)

n+
t + n−t

and

Fs(i, t) =
(AV G+

i,t − AV Gi,t)
2 + (AV G−i,t − AV Gi,t)

2

D+
t +D−t

(5.3)

where

D+
t =

f 2,+
i (t)− 2AV G+

i,tf
+
i (t) + n+

t (AV G+
i,t)

2

n+
t − 1

,

D−t =
f 2,−
i (t)− 2AV G−i,tf

−
i (t) + n−t (AV G−i,t)

2

n−t − 1
.

By defining δ+(t+1) = 1 if the (t+1)th instance is positive; otherwise δ+(t+1) = 0,

and δ−(t+1) = 1−δ+(t+1), the quantities of interest can be updated incrementally

as follows:

n+
t+1 = n+

t + δ+(t+ 1), f+
i (t+ 1) = f+

i (t) + δ+(t+ 1)f ji ,

f 2,+
i (t+ 1) = f 2,+

i (t) + (δ+(t+ 1)f ji )2.

n−t+1 = n−t + δ−(t+ 1), f−i (t+ 1) = f−i (t) + δ−(t+ 1)f ji ,

f 2,−
i (t+ 1) = f 2,−

i (t) + (δ−(t+ 1)f ji )2.

It should be noticed that n+
t and n−t do not depend on the feature index, while

the other quantities do.



128 Chapter 5. Learning algorithms for streams of graphs

5.1.2 Experimental results

In this section, we report the performance of the various algorithms introduced

in the previous section on two graph datasets: the first one composed of chemical

compounds and the second one composed of images. We start by describing how the

datasets were obtained. Then we introduce the experimental setup and the adopted

evaluation measure. Finally, the obtained results are illustrated and discussed in

the same section.

Chemical dataset

We have created graph streams combining two graph datasets available from the

PubChem website (http://pubchem.ncbi.nlm.nih.gov).

PubChem is a source of chemical structures of small organic molecules and their

biological activities. It contains the bioassay records for anti-cancer screen tests

with different cancer cell lines. Each dataset belongs to a certain type of cancer

screen. For each compound, an activity score is reported. The activity score for

the selected datasets is based on increasing values of -LogGI50, where GI50 is the

concentration of the compound required for 50% inhibition of tumor growth. A

compound is classified as active (positive class) or inactive (negative class) if the

activity score is, respectively, above or below a specified threshold. By varying the

threshold, we are able to simulate a drift on the target concept.

Our dataset is a combination of the “AID: 123” and “AID: 109” datasets from

PubChem. In “AID:123”, growth inhibition of the MOLT-4 human leukemia tumor

cell line is measured as a screen for anti-cancer activity. The dataset comprises

40, 876 compounds tested at 5 different concentrations. The average number of

nodes for each graph representing a compound in this dataset is 26.8, while the

average number of edges is 57.68. In “AID:109”, growth inhibition of the OVCAR-

8 human ovarian tumor cell line is measured as a screen for anti-cancer activity

on 41, 403 compounds. The average number of nodes for each compound is 26.77,

while the average number of edges is 57.63. For each dataset, we used two different



Chapter 5. Learning algorithms for streams of graphs 129

Number of graphs
164,55881,7520

AID:123 t=40 AID:123 t=47 AID:109 t=41 AID:109 t=50

Figure 5.1: Composition of the first stream of graphs on chemical data. Four

different target concepts are obtained by using different threshold values (t) on the

activity scores of the datasets.

Number of graphs
164,55882,2790

AID:123 t=40 AID:109 t=41 AID:123 t=47 AID:109 t=50

Figure 5.2: Composition of the second stream of graphs on chemical data. Four

different target concepts are obtained by using different threshold values (t) on the

activity scores of the datasets.

threshold values to simulate the concept drift: the median of the activity scores and

the value such that approximately 3/4 of the compounds are considered dataset to

be inactive (negative target).

Finally, the stream has been obtained as the concatenation of “AID: 123” with

threshold 1, “AID: 123” with threshold 2, “AID: 109” with threshold 1, “AID:

109” with threshold 2 as shown in Figure 5.1. We call this stream Chemical1.

In order to assess the dependency of the results on the order of concatenation of

the datasets, we created a second stream as: “AID: 123” with threshold 1, “AID:

109” with threshold 1, “AID: 123” with threshold 2, “AID: 109” with threshold 2

(Figure 5.2). We call this stream Chemical2. Note that two streams are composed

by four different concepts and each stream comprises a total of 164, 558 graphs. It

should be stressed that the selected datasets represent very challenging classification

tasks, independently of the value selected as the activity score threshold.



130 Chapter 5. Learning algorithms for streams of graphs

Figure 5.3: An example of graph construction from an annotated image.

Image dataset

We created a stream of graphs from the LabelMe dataset1. The dataset comprises

a set of images whose objects are manually annotated via the LabelMe tool [114].

The images are divided into several categories. We have removed those images

having less than 3 annotations. We have selected six categories amongst the ones

having the largest number of images: “office” (816), “home” (928), “houses” (1, 294),

“urban city” (865), “street” (1, 069), “nature” (370). In total we considered 5, 342

images.

We then transformed each image into a graph: the annotated objects of the image

become the nodes of the graph. The edges of the graph are determined according to

the Delaunay triangulation [132]. The basic idea of the Delaunay triangulation is to

connect spatially neighboring nodes. Figure 5.3 gives an example of the construction

of a graph from an image. The average number of nodes per graph is 14.37 and the

1http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php



Chapter 5. Learning algorithms for streams of graphs 131

average number of edges is 63.61.

The stream is made up of six parts, for each of them one of the categories is

selected as the positive class while the remaining ones represent the negative class;

each one of the 5, 342 images appears six times in the stream: once with a positive

class label, and 5 times with negative class label. The total number of examples

composing the stream is 32, 052.

Experimental setup

Algorithms 8 and 9 have been used as baseline approaches. We recall that the τ

values are computed accordingly to Equation 2.6 and Equation 2.5. The presented

approach can be easily applied to all of the budgeted online learning algorithms

presented in Section 2.7.4. However, we focus on Passive-Aggressive for its very

competitive performances (from both the accuracy and computational complexity

point of view). The C parameter has been fixed to 0.01 for both the chemical and

image datasets after a set of trial experiments.

All the proposed algorithms use the same amount of memory, expressed as Bud-

get, that is calculated for Dual as described in eq. 5.1, for Primal/Dual as described

in eq. 5.2 and for Primal as described in Section 5.1.1.

Since all the proposed learning algorithms use the same kernel, it is possible

to fix the kernel parameters, and to compare the performances varying only the

parameters of the learning algorithm, i.e. the budget. The kernel parameters were

set to the best values we obtained on a set of trial experiments on the stream: h = 3

and λ = 1.6 for the chemical datasets and h = 3 and λ = 1.0 for the image dataset.

It is worth to notice that, for both the chemical and the image datasets, the kernel

achieves the best performance for h > 1, proving that the structural information

in the data is actually correlated with the learning tasks. As budget values we

experimented with 10, 000 and 50, 000 memory units (assuming each memory unit

can store a floating point or integer number). Higher budget values were not tested

since the time needed for Dual to terminate became excessive.



132 Chapter 5. Learning algorithms for streams of graphs

Since the class distribution on the streams is unbalanced, the Balanced Error

Rate was adopted as an error measure for our experiments [31]:

BER =
1

2

(
fp

tn + fp
+

fn

fn + tp

)
,

where tp, tn, fp and fn are, respectively, true positive, true negative, false positive

and false negative examples. Since the BER is an error measure, in order to ease the

presentation of the results, we preferred to adopt 1−BER as performance measure.

The plots in Section 5.1.2 regarding the 1−BER measure are obtained as follows: the

1−BER measure is sampled every 50 examples. In order to increase the readability

of the results, we interpolated the resulting values with the Bézier curve. Note that

the interpolation has the following side effect: when a drift in the stream occurs,

the changes in the plot are not immediate.

Results and discussion

Our first experiments are aimed at determining, for each of the three algorithms,

the best policy for managing the budget. In this set of experiments, we tested the

algorithms with a budget value b = 10, 000. The comparison between the “oldest”

and “τ” policies for Dual on the Chemical1 dataset are reported in Figure 5.4 while

the performances on the Image dataset are reported in Figure 5.5. The results for

Chemical2 are very similar to the ones of Figure 5.4 and thus are omitted.

The comparison between the “oldest” and “τ” policies for Primal/Dual on the

Chemical1 dataset are reported in Figure 5.6. Figure 5.7 reports the performance

on the Image dataset. It is worth to notice that, in the Image dataset, the “oldest”

policy is not able to recover after the second drift. This happens because this policy

does not remove examples from the budget according to their contribution to the

model. This plot clearly show how different budget policies can strongly affect the

accuracy of the trained model.

A comparison between the “F-score” and the “weight” policies for Primal on the

Chemical1, Chemical2 and Image datasets can be found, respectively, in Figure 5.8,

Figure 5.9 and Figure 5.10.



Chapter 5. Learning algorithms for streams of graphs 133

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0  20000  40000  60000  80000  100000 120000 140000 160000

1
-B

E
R

Examples

Chemical1, H=3 λ=1.6 b=10000

Drift Drift Drift

Dual with τ based removal
Dual with oldest removal

Figure 5.4: Comparison between the classification performances of the “τ” and

“oldest” policies applied to Dual with budget 10, 000 on the Chemical1 dataset.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  5000  10000  15000  20000  25000  30000  35000

1
-B

E
R

Examples

Image, H=3, λ=1, b=10000

Drift Drift Drift Drift Drift

Dual with τ based removal
Dual with oldest based removal

Figure 5.5: Comparison between the classification performances of the “τ” and

“oldest” policies applied to Dual with budget 10, 000 on the Image dataset.



134 Chapter 5. Learning algorithms for streams of graphs

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  20000  40000  60000  80000  100000 120000 140000 160000

1
-B

E
R

Examples

Chemical1, H=3, λ=1.6, b=10000

Drift Drift Drift

Primal with F-score based removal
Primal with weight based removal

Mixed with τ based removal
Dual with τ based removal

Figure 5.6: Comparison between the classification performances of the “τ” and

“oldest” policies applied to Primal/Dual with budget 10, 000 on the Chemical1

dataset.

The plots do not clearly indicate the best policy, thus we report in Table 5.1

the expected 1 − BER value over the stream for each algorithm. The best policy

for managing the budget for Dual and Primal/Dual is “τ”. The best policy for

Primal is “weight”. This might be surprising, since the “F-score” is able to select

the most informative features to keep in the model. However, in order to compute

F-score values, more information need to be kept in memory with respect to the

“weight” approach: 5 budget units per feature versus 2. Our hypothesis is that

the reduced discriminative power of the features selected by the “weight” policy is

compensated by the fact that a higher number of them can be kept into the model.

Once the best policy for managing the budget has been selected, we proceeded

by comparing the three algorithms with respect to classification and computational

performances. Figure 5.8, Figure 5.9, and Figure 5.10 report the results of the

classification performance comparison, with budget 10, 000, on the three datasets.

Primal has better performances. This is confirmed by its expected 1−BER values



Chapter 5. Learning algorithms for streams of graphs 135

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  5000  10000  15000  20000  25000  30000  35000

1
-B

E
R

Examples

Image, H=3, λ=1, b=10000

Drift Drift Drift Drift Drift

Mixed with τ based removal
Mixed with oldest based removal

Figure 5.7: Comparison between the classification performances of the “τ” and

“oldest” policies applied to Primal/Dual with budget 10, 000 on the Image dataset.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  20000  40000  60000  80000  100000 120000 140000 160000

1
-B

E
R

Examples

Chemical1, H=3, λ=1.6, b=10000

Drift Drift Drift

Primal with F-score based removal
Primal with weight based removal

Mixed with τ based removal
Dual with τ based removal

Figure 5.8: Performance curves of Dual and Primal/Dual with “τ” policy, and

Primal with “F-score” and “weight” policies on the Chemical1 dataset. Budget size

is 10, 000.



136 Chapter 5. Learning algorithms for streams of graphs

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  20000  40000  60000  80000  100000 120000 140000 160000

1
-B

E
R

Examples

Chemical2, H=3, λ=1.6, b=10000

Drift Drift Drift

Primal with F-score based removal
Primal with weight based removal

Mixed with τ based removal
Dual with τ based removal

Figure 5.9: Performance curves of Dual and Primal/Dual with “τ” policy, and

Primal with “F-score” and “weight” policies on the Chemical2 dataset. Budget size

is 10, 000.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  5000  10000  15000  20000  25000  30000  35000

1
-B

E
R

Examples

Image, H=3, λ=1, b=10000

Drift Drift Drift Drift Drift

Primal with F-score based removal
Primal with weight based removal

Mixed with τ based removal
Dual with τ based removal

Figure 5.10: Performance curves of Dual and Primal/Dual with “τ” policy, and

Primal with “F-score” and “weight” policies on the Image dataset. Budget size is

10, 000.



Chapter 5. Learning algorithms for streams of graphs 137

Algorithm/Dataset Chemical1 Chemical2 Image

Budget 10000 50000 10000 50000 10000 50000

Dual-τ 0.534 0.547 0.535 0.546 0.768 0.822

Dual-oldest 0.531 - 0.515 - 0.547 0.770

Primal/Dual-τ 0.526 0.540 0.528 0.541 0.685 0.813

Primal/Dual-oldest 0.510 0.532 0.510 0.528 0.516 0.579

Primal-F-score 0.624 0.629 0.626 0.633 0.836 0.848

Primal-weight 0.629 0.642 0.630 0.642 0.845 0.846

Table 5.1: Expected 1−BER values for Algorithms 8 (Dual), 9 (Primal/Dual), 10

(Primal) with budget 10, 000 and 50, 000, “τ”,“weight”,“oldest”, “F-score” policies

for managing te budget on the Chemical1, Chemical2 and Image datasets. Best

results are in bold.

in Table 5.1: 0.629 on Chemical1, 0.630 on Chemical2 and 0.845 on Image. The

three figures show that both the “weight” and the “F-score” policies of Primal

outperform the best policy of Dual and Primal/Dual.

Increasing the budget size up to 50, 000 yields the results reported in Figure 5.11,

Figure 5.12 and Figure 5.13. Since Dual is very computationally demanding on

chemical datasets, we tested only the most promising policy with budget 50, 000.

While Primal is still better than Dual and Primal/Dual, the gap is reduced es-

pecially on the Image dataset. The values in Table 5.1 confirm the visual analysis.

Since Algorithms 8 and 9 significantly benefit from the budget increase while Primal

does not, suggest that, at least for these datasets, Primal is able to achieve good

results with a smaller budget.

We finally compare the algorithms from a computational point of view. Table 5.2

reports the time required by each algorithm to process the whole stream of data for

the Chemical1 and Image datasets using a budget size of 10, 000 and 50, 000. The

running times are referred to executions on a machine with two Intel(R) Xeon(R)

CPU E5-4640 0 @ 2.40GHz equipped with 256GB of RAM. Notice that the exe-

cutions use a single core and a very limited amount of RAM. There is a clear gap



138 Chapter 5. Learning algorithms for streams of graphs

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  20000  40000  60000  80000  100000 120000 140000 160000

1
-B

E
R

Examples

Chemical1, H=3, λ=1.6, b=50000

Drift Drift Drift

Primal with F-score based removal
Primal with weight based removal

Mixed with τ based removal
Dual with τ based removal

Figure 5.11: Performance curves of Dual and Primal/Dual with “τ” policy, and

Primal with “F-score” and “weight” policies on the Chemical1 dataset. Budget size

is 50, 000.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0  20000  40000  60000  80000  100000 120000 140000 160000

1
-B

E
R

Examples

Chemical2, H=3, λ=1.6, b=50000

Drift Drift Drift

Primal with F-score based removal
Primal with weight based removal

Mixed with τ based removal
Dual with τ based removal

Figure 5.12: Performance curves of Dual and Primal/Dual with “τ” policy, and

Primal with “F-score” and “weight” policies on the Chemical2 dataset. Budget size

is 50, 000.



Chapter 5. Learning algorithms for streams of graphs 139

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0  5000  10000  15000  20000  25000  30000  35000

1
-B

E
R

Examples

Image, H=3, λ=1, b=50000

Drift Drift Drift Drift Drift

Primal with F-score based removal
Primal with weight based removal

Mixed with τ based removal
Dual with τ based removal

Figure 5.13: Performance curves of Dual and Primal/Dual with “τ” policy, and

Primal with “F-score” and “weight” policies on the Image dataset. Budget size is

50, 000.

between the computational times of Algorithms Dual, Primal/Dual and Primal.

On average, the time needed by the explicit algorithm to process a single example

is 0.01 seconds with budget 50, 000, while for the faster of the other two algorithms

(Primal/Dual) it is 0.13 seconds.

Dual is efficient from the point of view of memory occupation, however, that is

paid by a very low efficiency when computing the score for a new graph: the kernel

values between the input graph and all the graphs in the model have to be computed

Algorithm/Dataset Chemical1 Image

Budget 10000 50000 10000 50000

Dual 5h49m06s 31h59m18s 58m 48s 7h 34m

Primal/Dual 25m43s 6h12m58s 15m 36s 58m 5s

Primal 11m30s 26m58s 6m 30s 34m 7s

Table 5.2: Execution times of Algorithms 8 (Dual), 9 (Primal/Dual), 10 (Primal)

on the Chemical1 and Image datasets with budget size 10, 000 and 50, 000.



140 Chapter 5. Learning algorithms for streams of graphs

from scratch. As the values of Table 5.2 indicate, that makes the application of the

dual algorithm to graph streams practically infeasible, especially when strict time

constraints have to be satisfied. Primal/Dual is able to significantly speed up the

score computation by storing the explicit feature space representation of each graph

in the model. As a consequence, the size of the model may increase significantly,

thus reducing the total number of graphs that can be kept in it: Dual is able to

store in memory approximately 250 graphs of the chemical datasets with budget

10, 000, while Primal/Dual only 100 graphs. On the contrary, Primal keeps in the

model only the most informative features, and so it is able to retain information

of all graphs inserted in the model while preserving a very good efficiency. In

particular, the primal algorithm made practically feasible the application of graph

kernel methods to data streams.

5.2 Budget Passive-Aggressive with Lossy Count-

ing

In this section, we move forward from the results presented in the previous section

and suggest to use a state-of-the-art online learning algorithm, i.e. Primal Passive-

Aggressive with budget for graphs presented in Algorithm 10 in conjunction with

an adapted version of a classical result from stream mining, i.e. Lossy Counting

(see Section 5.2.1), to efficiently manage the available budget so to keep in memory

only relevant features. This approach is appealing because it does not require any

particular feature selection technique, it gives a bound on the approximation error,

and it is fast. Specifically, we extend Lossy Counting to manage both weighted

features and a budget, while preserving theoretical guarantees on the introduced

approximation error.

Experiments on real-world datasets show that the proposed approach achieves

state-of-the-art classification performances, while being much faster than existing

algorithms.



Chapter 5. Learning algorithms for streams of graphs 141

5.2.1 Online frequent pattern mining

Lossy Counting

The Lossy Counting is an algorithm for computing frequency counts exceeding a

user-specified threshold over data streams [95]. Let s ∈ (0, 1) be a support threshold,

ε � s an error parameter, and N the number of items of the stream seen so far.

By using only O
(

1
ε

log(εN)
)

space to keep frequency estimates, Lossy Counting, at

any time N is able to i) list any item whose frequency exceeds εN ; ii) avoid listing

any item with frequency less than (s − ε)N . Moreover, the error of the estimated

frequency of any item is at most εN .

In the following the algorithm is sketched, for more details refer to [95]. The

stream is divided into buckets Bi. The size of a bucket is |Bi| = d1
ε
e items. Note

that the size of a bucket is determined a priori because ε is a user-defined parameter.

The frequency of an item f in a bucket Bi is represented as Ff,i, the overall

frequency of f is Ff =
∑

i Ff,i. The algorithm makes use of a data structure D
composed by tuples (f,Φf,i,∆i), where Φf,i is the frequency of f since it has been

inserted into D, and ∆i is an upper bound on the estimate of Ff at time i.

The algorithm starts with an empty D. For every new event f arriving at time

i, if f is not present in D, then a tuple (f, 1, i − 1) is inserted in D, otherwise Φf,i

is incremented by 1. Every |Bi| items all those tuples such that Φf,i + ∆i ≤ i are

removed.

The authors prove that, after observing N items, if f /∈ D then Φf,N ≤ εN and

for each (f,Φf,N ,∆N) ∈ D holds that Φf,N ≤ Ff ≤ Φf,N + εN .

5.2.2 Online frequent pattern mining with real weights

In this section, we propose an extension to Lossy Counting (LC) algorithm, presented

in Section 5.2.1 that works on a fixed memory budget and able to deal with events

weighted by positive real values. Then, in Section 5.2.3 we show how to apply the

proposed algorithm to the Passive-Aggressive algorithm in the case of a stream of

graphs.



142 Chapter 5. Learning algorithms for streams of graphs

LCB: Lossy Counting with budget for weighted events

The original Lossy Counting algorithm does not guarantee that the available memory

will be able to contain the ε-deficient synopsis D of the observed items. Because

of that, we propose an alternative definition of Lossy Counting that addresses this

issue and, in addition, is able to deal with weighted events. Specifically, we assume

that the stream emits events e constituted by couples (f, φ), where f is an item id

and φ ∈ R+ is a positive weight associated to f . Different events may have the

same item id while having different values for the weight, e.g. e1 = (f, 1.3) and

e2 = (f, 3.4). We are interested in maintaining a synopsis that, for each observed

item id f , collects the sum of weights observed in association with f . Moreover,

we have to do that on a memory budget. To manage the budget, we propose to

decouple the ε parameter from the size of the bucket: we use buckets of variable

sizes, i.e. the i-th bucket Bi will contain all the occurrences of events which can

be accommodated into the available memory, up to the point that D will use the

full budget and no new event can be inserted into it. This policy implies that the

approximation error will vary according to the size of the bucket, i.e. εi = 1
|Bi| , where

|Bi| is the sum of the weights of all the events in bucket Bi, that is |Bi| =
∑

(f,φ)∈Bi φ.

Having buckets of different sizes, the index of the current bucket bcurrent is defined

as bcurrent = 1 + maxk[
∑k

s=1 |Bs| < N ]. Deletions occur when there is no more space

to insert a new event in D. Trivially, if N events have been observed when the i-th

deletion occurs,
∑i

s=1 |Bs| = N and, by definition, bcurrent ≤
∑i

s=1 εs|Bs|.

Let φf,i(j) be the weight of the j-th occurrence of f in Bi, and the cumulative

weight associated to f in Bi as wf,i =
∑Ff,i

j=1 φf,i(j). The total weight associated to

bucket Bi can then be defined as Wi =
∑

f∈D wf,i. We now want to define a synopsis

D such that, having observed N =
∑i

s=1 |Bs| events, the estimated cumulative

weights are less than the true cumulative weights by at most
∑i

s=1 εiWi, where we

recall that εi = 1
|Bi| . In order to do that we define the cumulated weight for item f

in D, after having observed all the events in Bi, as Φf,i =
∑i

s=if
wf,s, where if ≤ i

is the largest index of the bucket where f has been inserted in D. The deletion test



Chapter 5. Learning algorithms for streams of graphs 143

is then defined as

Φf,i + ∆if ≤ ∆i (5.4)

where ∆i =
∑i

s=1
Ws

|Bs| . However, we have to cover also the special case in which the

deletion test is not able to delete any item from D2. We propose to solve this problem

as follows: we assume that in this case a new bucket Bi+1 is created containing just

a single ghost event (fghost,Φ
min
i − ∆i), where fghost 6∈ D and Φmin

i = minf∈D Φf,i,

that we do not need to store in D. In fact, when the deletion test is run, ∆i+1 =

∆i + Wi+1

|Bi+1| = Φmin
i since Wi+1 = Φmin

i − ∆i and |Bi+1| = 1, which will cause the

ghost event to be removed since Φghost,i+1 = Φmin
i −∆i and Φghost,i+1 + ∆i = Φmin

i .

Moreover, since ∀f ∈ D we have Φf,i = Φf,i+1, all f such that Φf,i+1 = Φmin
i will be

removed. By construction, there will always be one such item.

Theorem 5.1. Let Φtrue
f,i be the true cumulative weight of f after having observed

N =
∑i

s=1 |Bs| events. Whenever an entry (f,Φf,i,∆) gets deleted, Φtrue
f,i ≤ ∆i.

Proof. We prove by induction. Base case: (f,Φf,1, 0) is deleted only if Φf,1 = Φtrue
f,1 ≤

∆1. Induction step: let i∗ > 1 be the index for which (f,Φf,i∗ ,∆) gets deleted. Let

if < i∗ be the largest value of bcurrent for which the entry was inserted. By induction

Φtrue
f,if
≤ ∆if and all the weighted occurrences of events involving f are collected in

Φf,i∗ . Since Φtrue
f,i∗ = Φtrue

f,if
+ Φf,i∗ we conclude that Φtrue

f,i∗ ≤ ∆if + Φf,i∗ ≤ ∆i∗ .

Theorem 5.2. If (f,Φf,i,∆) ∈ D, Φf,i ≤ Φtrue
f,i ≤ Φf,i + ∆.

Proof. If ∆ = 0 then Φf,i = Φtrue
f,i . Otherwise, ∆ = ∆if , and an entry involving f

was possibly deleted sometimes in the first if buckets. From the previous theorem,

however, we know that Φtrue
f,if
≤ ∆if , so Φf,i ≤ Φtrue

f,i ≤ Φf,i + ∆.

We notice that, if ∀e = (f, φ), φ = 1, the above theorems apply to the not

weighted version of the algorithm.

2E.g, consider the stream (f1, 10), (f2, 1), (f3, 10), (f4, 15), (f1, 10), (f3, 10), (f5, 1), .. and

budget equal to 3 items: the second application of the deletion test will fail to remove items from

D.



144 Chapter 5. Learning algorithms for streams of graphs

Let now analyze the proposed algorithm. Let Oi be the set of items that have

survived the last (i.e., (i− 1)-th) deletion test and that have been observed in Bi, Ii
be the set of items that have been inserted in D after the last (i.e., (i−1)-th) deletion

test; notice that Oi ∪ Ii is the set of all the items observed in Bi, however it may

be properly included into the set of items stored in D. Let wOi =
∑

f∈Oi Ff,i and

wIi =
∑

f∈Ii Ff,i. Notice that wIi > 0, otherwise the budget would not be fully used;

moreover, |Bi| = wOi + wIi . Let WO
i =

∑
f∈Oi wf,i and W I

i =
∑

f∈Ii wf,i. Notice

that Wi = WO
i +W I

i , and that Wi

|Bi| =
wOi
|Bi| [Ŵ

O
i − Ŵ I

i ] + Ŵ I
i = pOi [ŴO

i − Ŵ I
i ] + Ŵ I

i ,

where pOi =
wOi
|Bi| is the fraction of updated items in Bi, Ŵ

O
i =

WOi
wOi

is the average

of the updated items, Ŵ I
i =

WIi
wIi

is the average of the inserted items. Thus Wi

|Bi|

can be expressed as a convex combination of the average of the updated items and

the average of the inserted items, with combination coefficient equal to the fraction

of updated items in the current bucket. Thus, the threshold ∆i used by the i-th

deletion test can be written as

∆i =
i∑

s=1

pOs [ŴO
s − Ŵ I

s ] + Ŵ I
s (5.5)

Combining eq. (5.4) with eq. (5.5) we obtain

Φf,i ≤
i∑

s=if

pOs [ŴO
s − Ŵ I

s ] + Ŵ I
s .

If f ∈ Ii, then if = i and the test reduces to wf,i ≤ pOi [ŴO
i − Ŵ I

i ] + Ŵ I
i . If

f 6∈ Ii (notice that this condition means that if < i, i.e. f ∈ Iif ), then the

test can be rewritten as wf,i ≤ pOi [ŴO
i − Ŵ I

i ] + Ŵ I
i −

∑i−1
s=if

γf,s, where γf,s =

wf,s − pOs [ŴO
s − Ŵ I

s ] + Ŵ I
s is the credit/debit gained by f for bucket Bs. Notice

that, by definition, ∀k ∈ {if , . . . , i} the following holds
∑k

s=if
γf,s > 0.

5.2.3 LCB-PA on streams of graphs

This section describes an application of the results in the previous section to the

Primal PA algorithm presented in Algorithm 10. We will refer to the algorithm

described in this section as LCB-PA. The goal is to use the synopsis D created and



Chapter 5. Learning algorithms for streams of graphs 145

maintained by LCB to approximate at the best w, according to the available budget.

This is obtained by LCB since only the most influential wi values will be stored into

D.

A difficulty in using the LCB synopsis is due to the fact that LCB can only

manage positive weights. We overcome this limitation by storing for each feature f

in D a version associated to positive weight values and a version associated to (the

modulus) of negative values.

Let’s detail the proposed approach in the following. First of all, recall that we

consider the features generated by the φ() mapping described in Section 4. When a

Algorithm 11 LCB-PA Algorithm.
1: Initialize D: {}, ∆: ∆0 = 0

2: for each round t do

3: Receive an instance Gt from the stream

4: Compute the feature set φ(Gt) = {(f, φf,t)|f is a dimension in the feature space}
5: Compute the score of Gt: S(Gt) = wt · φ(Gt)

6: Receive the correct classification of Gt: yt

7: if ytS(Gt) ≤ 1 then

8: if |w + φ(Gt)| > B then

9: Deletion procedure:

10: delete all f ∈ D s.t. Φf,i + ∆if ≤ ∆t

11: end if

12: update the hypothesis: Dt+1/2 = Dt ∪ {(f,Φf,t + τtytφf,t)|(f, φf,t) ∈ φ(Gt) ∧ (f, ·) ∈ D}}
13: update the hypothesis: Dt+1 = Dt ∪ {(f, τtytφf,t)|(f, φf,t + ∆t) ∈ φ(Gt) ∧ (f, ·) /∈ D}
14: end if

15: end for

new graph arrives from the stream (line 3 of Algorithm 11), it is first decomposed

into a bag of features according to the process described in Section 4. Then the score

for the graph is computed according to eq. (2.4) (line 4 of Algorithm 11). If the

graph is misclassified (the test on line 7 of Algorithm 11 is true), then the synopsis

D (i.e., w) has to be updated. In this scenario, an event corresponds to a feature f

of the current input graph G.

The weight φf,i(j) of a feature f appearing for the j-th time in the i-th bucket

Bi, is computed multiplying its frequency in the graph G with the corresponding τ

value computed for G according to eq. (2.5), which may result in a negative weight.



146 Chapter 5. Learning algorithms for streams of graphs

Φf,i is the weighted sum of all φf,i(j) values of the feature f since f has last been

inserted into D. In this way, the LCB algorithm allows to maintain an approximate

version of the full w vector by managing the feature selection and model update

steps (lines 7-10 of Algorithm 11).

In order to cope with negative weights, the structure D is composed by tuples

(f, |f |,Φ+
f,i,Φ

−
f,i), where Φ+

f,i corresponds to Φf,i computed only on features whose

graph G has positive classification (Φ−f,i is the analogous for the negative class).

Whenever the size of D exceeds the budget B, all the tuples satisfying eq. (5.4) are

removed from D. Here ∆i can be interpreted as the empirical mean of the τ values

observed in the current bucket. Note that the memory occupancy of D is now 4|w|,
where |w| is the number of features in D. The update rule of eq. (2.5) is kept.

However, when a new tuple is inserted into D at time N , the ∆N value is added to

the τ value computed for G. The idea is to provide an upper bound to the Φ+
f,N ,

Φ−f,N values that might have been deleted in the past from D. Theorem 5.1 shows

that indeed ∆N is such upper bound.

5.2.4 Experiments

In this section, we report an experimental evaluation of the algorithm proposed

in Section 5.2.3 (LCB-PA), compared to the algorithms presented in Section 5.1.

Our aim is to show that the proposed algorithm has comparable, if not better,

classification performances than the baselines while being much faster to compute.

Experimental Setup

We used the same datasets described in Section 4.5.2, and one new chemical dataset.

This new dataset, referred to as Chemical3, is the concatenation of the datasets

Chemical1 and Chemical2 described in the same section. The reason why we gener-

ated this new dataset is to understand the difference in the classifier behavior when

starting from an empty hypothesis or when recovering from a concept drift.



Chapter 5. Learning algorithms for streams of graphs 147

We considered as baseline Algorithm 10 (Primal) and Algorithm 8 (Dual), both

using the φ() mapping defined in Section 4.3.1. We compared them against Algo-

rithm 11 presented in Section 5.2.3 (LCB-PA in the following). From the experi-

ments reported in Section 5.1.2, we determined the best removal policy and kernel

parameters. The best removal policy for Primal PA algorithm is the one removing

the feature with lowest value in w. The best policy for the Dual PA removes the

example with the lowest τ value. We did not consider the Mixed algorithm since

its performance are lower w.r.t. Primal (see Section 5.1.2). The C parameter has

been set to 0.01, while the kernel parameters has been set to λ = 1.6, h = 3 for

chemical datasets, and to λ = 1, h = 3 for the Image dataset.

Results and discussion

The measure we adopted for performance assessment is the 1-(BER), explained

in Section 5.1.2. We recall that higher values mean better performances. In our

experiments, we sampled 1-BER every 50 examples. In Table 5.3 are reported, for

each algorithm and budget, the average of the 1−BER values over the whole stream.

It is easy to see that the performances of the Dual algorithm are poor. Indeed,

there is no single algorithm/budget combination in which the performance of this

algorithm is competitive with the other two. This is probably due to the fact that

support graphs may contain many features that are not discriminative for the tasks.

Let us consider the Primal and the LCB-PA algorithms. Their performances are

almost comparable. Concerning the chemical datasets, Figure 5.14 and Figure 5.15

report the details about the performance of the Chemical1 stream. Similar plots

can be obtained for Chemical2 dataset and thus are omitted. Figure 5.16 reports

the performance plot on the Chemical3 stream with B = 50, 000. Observing the

plots and the corresponding 1 − BER values, it’s clear that on the three datasets

the algorithm Primal performs better than LCB-PA for budget sizes up to 25, 000.

For higher budget values, the performances of the two algorithms are very close,

with LCB-PA performing better on Chemical1 and Chemical2 datasets, while the



148 Chapter 5. Learning algorithms for streams of graphs

Budget Dual Primal LCB-PA PA (B=∞)
C
h
em

ic
a
l1

10,000 0.534 0.629 0.608

0.644

25,000 0.540 0.638 0.637

50,000 0.547 0.642 0.644

75,000 - 0.643 0.644 (B = 182, 913)

100,000 - 0.644 0.644

C
h
em

ic
a
l2

10,000 0.535 0.630 0.610

0.644

25,000 0.541 0.638 0.638

50,000 0.546 0.642 0.644

75,000 - 0.644 0.645 (B = 182, 934)

100,000 - 0.644 0.645

C
h
em

ic
a
l3

10,000 0.532 0.640 0.601

0.661

25,000 0.542 0.652 0.643

50,000 0.549 0.658 0.658

75,000 - 0.660 0.660 (B = 183, 093)

100,000 - 0.661 0.661

I
m
a
g
e

10,000 0.768 0.845 0.855

0.852

25,000 0.816 0.846 0.853

50,000 0.822 0.846 0.852

75,000 - 0.846 0.852 (B = 534, 903)

100,000 - 0.845 0.852

Table 5.3: 1 − BER values for Primal, Dual and LCB-PA algorithms, with dif-

ferent budget sizes, on Chemical1, Chemical2, Chemical3 and Image datasets.

Best results for each row are reported in bold. The missing data indicates that the

execution did not finish in 3 days.



Chapter 5. Learning algorithms for streams of graphs 149

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  20000  40000  60000  80000  100000 120000 140000 160000

1
-B

E
R

Examples

Chemical1, H=3, λ=1.6, b=10000

Drift Drift Drift

Primal
Dual

LCB-PA

Figure 5.14: Comparison of 1 − BER measure for Primal, Dual and LCB-PA

algorithms on Chemical1 dataset with budget 10, 000.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  20000  40000  60000  80000  100000 120000 140000 160000

1
-B

E
R

Examples

Chemical1, H=3, λ=1.6, b=50000

Drift Drift Drift

Primal
Dual

LCB-PA

Figure 5.15: Comparison of 1 − BER measure for Primal, Dual and LCB-PA

algorithms on Chemical1 dataset with budget 50, 000.



150 Chapter 5. Learning algorithms for streams of graphs

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  20000  40000  60000  80000  100000 120000 140000 160000

1
-B

E
R

Examples

Chemical3, H=3, λ=1.6, b=50000

Drift Drift Drift

Primal with weight based removal
Dual

LCB-PA

Figure 5.16: Comparison of 1 − BER measure for Primal, Dual and LCB-PA

algorithms on Chemical3 dataset with budget 50, 000.

performances are exactly the same on Chemical3. Let’s analyze in more detail this

behavior of the algorithms. In Primal every feature uses 3 budget units, while in

LCB-PA 4 units are consumed. In the considered chemical streams, on average every

example is made of 54.56 features. This means that, with budget 10, 000, Primal

can store approximatively the equivalent of 60 examples, while LCB-PA only 45, i.e.

a 25% difference. When the budget increases, such difference reduces. The LCB-PA

performs better then the Primal PA with budget size of 50, 000 or more. Notice

that LCB-PA, with budget over a certain threshold, reaches or improves over the

performances of the PA with B =∞.

On the Image dataset we have a different scenario. LCB-PA with budget 10, 000

already outperforms the other algorithms.

Table 5.4 reports the time needed to process the streams. It is clear from the

table that LCB-PA is by far the fastest algorithm. Dual algorithm is slow because

it works in the dual space, so it has to calculate the kernel function several times.

The plot in Figure 5.17 reports the memory occupancy of Primal and LCB-

PA algorithms. Notice that when the LCB-PA performs the cleaning procedure,



Chapter 5. Learning algorithms for streams of graphs 151

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0  5000  10000  15000  20000

U
s
e
d
 M

e
m

o
ry

 (
in

 b
u
d
g
e
t 
u
n
it
s
)

Examples

 Budget occupancy, Chemical1 H=3, b=50,000 (first 20,000 examples)

Primal
LCB-PA

Figure 5.17: Evolution of memory occupation of Primal and LCB-PA algorithms

on the first 20,000 examples of the Chemical1 dataset.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  5000  10000  15000  20000  25000  30000

1
-B

E
R

Examples

Image, H=3, λ=1, b=10000

Drift Drift Drift Drift Drift

Primal
Dual

LCB-PA

Figure 5.18: Comparison of 1 − BER measure for Primal, Dual and LCB-PA

algorithms on Image dataset with budget 10, 000.



152 Chapter 5. Learning algorithms for streams of graphs

Chemical1 Chemical2

Budget 10, 000 50, 000 10, 000 50, 000

Dual 5h44m 31h02m 5h42m 31h17m

Primal 44m19s 1h24m 43m54s 1h22m

LCB-PA 4m5s 3m55s 3m52s 3m57s

Chemical3 Image

Budget 10, 000 50, 000 10, 000 50, 000

Dual 10h50m 60h31m 49m34s 6h18m

Primal 1h32m 2h44m 7m21s 33m18s

LCB-PA 7m41s 7m45s 0m49s 0m50s

Table 5.4: Execution times of Dual, Primal and LCB-PA algorithms for budget

values of 10, 000 and 50, 000.

it removes far more features from the budget then Primal. As a consequence,

Primal calls the cleaning procedure much more often than LCB-PA, thus inevitably

increasing its execution time. For example, on Chemical1 with budget 50, 000,

Primal executes the cleaning procedure 132, 143 times, while LCB-PA only 142

times. Notice that a more aggressive pruning for the baselines could be performed

by letting a user define how many features have to be removed. Such a parameter

could be chosen a piori, but it would be unable to adapt to a change in the data

distribution and there would be no guarantees on the quality of the resulting model.

The parameter can also be tuned on a subset of the stream, if the problem setting

allows it. In general, developing a policy to tune the parameter is not straightforward

and the tuning procedure might have to be repeated multiple times, thus increasing

significantly the overall computational burden of the learning algorithm. Note that,

on the contrary, our approach employs a principled, automatic way, described in

Equation (5.5), to determine how many and which features to prune.



Chapter 6

Application to RNA

So Keys did what any dedicated

researcher would do.. he threw

up the data that didn’t fit and

published his results.

from the movie “Fat Head”

In Chapter 3, we showed some examples of learning applications on graphs.

There are other applications where it is possible to represent instances in a graph-

structured form, but where it’s not so straightforward. An example of this kind of

applications is the function prediction of RNA sequences. If we are able to find a

good representation, we can achieve good results with the application of state-of-

the-art graph kernels. In the last few years, techniques of whole genome sequencing,

that allow to determine the complete DNA sequence of an organism, have received

increasing attention. The 98% of this sequence is not translated into proteins, and

may encode functional RNA molecules. These molecules may have important roles

in cells. However, the exact mechanisms are not understood yet (see Section 6.3.2).

For the problem faced in this chapter, the computational complexity of the

method is a key aspect for the applicability of the techniques to real-world data,

i.e. the target data set to analyze (the human genome) is a string of approximately

3.2× 109 base pairs.



154 Chapter 6. Application to RNA

The application of graph kernels to this problem is made possible by the recent

definition of fast kernel functions allowing for an explicit feature space represen-

tation (see Chapter 4) that, in conjunction with fast learning algorithms, gives a

learning method that can be reliable on such a problem. This chapter is organized

as follows: we start in Section 6.1 with some basic concepts about RNA. In Sec-

tion 6.2 we formally state the problem we face from a machine learning point of

view. In Section 6.3 we present the existing methods we adopted as baselines. Then

in Section 6.4 we focus on the different issues that it is necessary to face in order

to represent RNA as graphs. In Section 6.5 we present our novel approach based

on graph kernels and the problems we need to solve. This section presents a novel

kernel specifically designed for graphs representing RNA sequences, that is an exten-

sion of the kernel framework presented in Chapter 4. Section 6.6 presents promising

experimental results.

6.1 Introduction to RNA

Ribonucleic acid (RNA) is a family of biological molecules that perform multiple

vital roles in the coding, decoding, regulation, and expression of genes. Like DNA,

RNA is assembled as a chain of components called nucleotides, but it is usually

single-stranded. There are four types of nucleotides in RNA: Adenine (A), Cyto-

sine (C), Guanine (G) and Uracil (U). RNA has various functions. For example

messenger RNA (mRNA) is used by all cellular organisms to carry the genetic in-

formation that directs the synthesis of proteins. A non-coding RNA (ncRNA or

functional RNA) is an RNA molecule that is not translated into a protein. The

study of ncRNA genes is receiving increasing attention because of new accumulat-

ing evidence that large portions of genome are transcribed into RNA molecules of

mostly unknown functions, as well as the discovery of novel non-coding RNA types

and functional RNA elements. This class of RNA genes produces transcripts that

function directly as structural, catalytic or regulatory RNAs, rather than express-

ing information on how to encode proteins like mRNA. Recent research focused on



Chapter 6. Application to RNA 155

function prediction of this type of RNA e.g. [54].

However, working on ncRNA sequences is difficult because they have little statis-

tical signals. Indeed, as we will explain in Section 6.3.2, the analysis of these RNAs

has revealed that they are highly structured.

6.2 Problem statement

In this section we will formally state the problem we are facing from a machine

learning point of view.

With the evolution of computational techniques applicable to ncRNA sequences,

novel challenges have been faced. A first problem was the identification of non-

coding sequences from a single (long) genome sequence: one of the first proposed

techniques is based on neural networks [24]. More recently, a more complex problem

has been approached. This is the problem we deal with in this chapter. Given a set of

small sequences known to be some particular ncRNA genes, the problem is to build

a classifier that predicts whether or not new (unknown) sequences share the same

function. From a machine learning point of view, this is a multiclass classification

problem on sequence data. The dataset we consider has 47 different classes, and is a

subset of the Rfam database [65] that comprises more than 2000 RNA families. The

sequence length is fixed to 200 nucleotides. Since the considered RNA sequences

are shorter than that, we added padding before and after the original sequence,

respecting the same statistics on the nucleotide distribution.

The first methods that have been proposed in literature were based on compar-

ative genome analysis [109]. Currently, the approach that seems to be the most

promising is based on kernel methods: indeed, a kernel for ncRNAs that computes

the similarity between sequences in terms of the similarity between its secondary

structure has been proposed in [116] (see Section 6.3.3). Nonetheless this approach

(as well as other methods that consider the RNA secondary structure) suffers from

severe scalability problems.



156 Chapter 6. Application to RNA

In order to solve the issues of existing methods, we decided to follow a different

approach. We transform every sequence into the corresponding secondary structures,

defining a suited representation for these structures as graphs, and finally apply

learning algorithms based on graph kernels. Several problems arise and have to be

faced:

• multiple instance learning, i.e. the RNA secondary structure prediction al-

gorithms output a set of candidate secondary structures rather than a single

structure. Thus, we have a bag of structures for each RNA sequence. This

problem requires special techniques to be solved in an efficient way;

• representation issues, i.e. we have to define a way to transform the secondary

structures into graphs in a meaningful way (for our task).

In Section 6.5 we will discuss in detail the solution we propose for these problems.

6.3 Existing methods

There are several different methods for the classification of RNA molecules. Here

we focus only on the most representative ones.

6.3.1 Sequence-based methods

The first class of methods consists in the homology-based ones, where the most

known algorithm is BLAST (Basic Local Alignment Search Tool). To use it, a

sequence of interest has to be submitted to the algorithm. BLAST will then compare

the sequence the user submitted with the sequences in its database, and tell the user

which database sequences most closely match the user-submitted one. Given a query

q and a target sequence, BLAST:

• find substrings of length k (k-mers) of score at least t, also called hits. k is

normally 3 to 5 for amino acids and 12 for nucleotides.



Chapter 6. Application to RNA 157

• Extend each hit to a locally maximal segment. Terminate the extension when

the reduction in score exceeds a pre-defined threshold.

• Report maximal segments above score S.

To efficiently compute the similarity between sequences, the software starts com-

puting the match of k-mers, that are subsequences of length k, and then expands

the matching regions to find k+ 1-mers. This process is repeated Then it’s possible

to infer a class for the input sequence based on a majority vote among the matching

ones.

6.3.2 Structure-based methods

RNA secondary structure

Like DNA, most biologically active RNAs contain self-complementary sequences

that allow parts of the RNA to fold. The analysis of these RNAs has revealed that

they are highly structured. Unlike DNA, their structures do not consist of long

double helices but rather collections of short helices packed together into structures

akin to proteins. The structure of ncRNAs is important because it is thought to

provide insights into its biological function [96]. In the folding process, character-

istic nucleotide base-pairing and stacking interactions play significant roles and are

governed by molecular forces acting on and within any molecule in aqueous solutions

(e.g. electrostatic interactions) [135]. RNA secondary structure is the 2-dimensional

representation of the folding of the RNA sequence, driven from the bonds that arise

between the nucleotides. The secondary structures of RNAs are generally composed

of stems, hairpins, bulges, interior loops and multi-branches, and thus can be easily

represented as graphs, as we will show in Section 6.4.2. The adopted shapes or

folds can be highly complex and are capable of carrying out a variety of molecular

functions, such as binding metabolites and proteins with high specificity. RNA is

particularly suited for hybridizing with nucleotide sequences allowing for highly spe-

cific targeting of genes and genomic regions. Furthermore, it is conceivable that two



158 Chapter 6. Application to RNA

ncRNA molecules with completely different nucleotide compositions would still fold

to form the same structure and have the same function. For example, the secondary

structure of tRNA (transfer RNA) has a characteristic cloverleaf shape; however, the

nucleotide composition of tRNA can vary to the degree that two tRNAs can have

completely different sequences. Thus, methods that incorporate ncRNA secondary

structure information can improve the accuracy of prediction.

Figure 6.1 shows an example of a stem structure, with the corresponding RNA

sequence, while in Figure 6.2 it is shown an example of a typical secondary structure

of tRNA, that is a particular class on non-coding RNA, showing all the aforemen-

tioned structures.

Figure 6.1: A typical secondary structure including stem structure of an RNA

sequence (left) constitutes the so-called biological palindrome (right).

This representation of RNA sequences arises a problem, that is for a fixed RNA

sequence we have no way to uniquely identify which will be its secondary structure.

The reason is that experimental probing of the secondary structure is expensive and

not always possible [150]. What we can do is to predict a possibly small number of

different foldings (see Section 6.5.1), and estimate the probability of a folding to be

the correct one (the folding that appears in nature) using some heuristics such as

the minimal energy principle, see Section 6.4.1.

Moreover, while it is clear that secondary structure information is relevant for



Chapter 6. Application to RNA 159

Figure 6.2: Typical secondary structure of tRNA.

the task of identifying and classifying ncRNA sequences, it is still not clear how to

use this information. This will be the focus of this chapter, as we will explain in

Section 6.5.

Graph topology indices derived from RNA structure have been used to predict

the family of RNA sequences in the Rfam database [32]. Their approach consist

in representing RNA sequences as a fixed-size vector of graph properties, defined

over the graph representation of the sequence. In this way, it is possible to identify

sequences that have a similar folding but that are highly dissimilar from the sequence

point of view. However, using graph properties as ”summaries“ cause a significant

information loss about the actual folding. The approach appears to be successful for

the classification purpose only when considering highly dissimilar sequences. This

method is thus not suited for the task of non-coding RNA function prediction. In

Section 6.3.3 we will see another approach that at time of writing is considered at

the state-of-the-art.

Infernal

The other family of methods we consider exploit the secondary structure informa-

tion and is based on covariance models. The most adopted software in this family is



160 Chapter 6. Application to RNA

Infernal (INFERence of RNA ALignment) [103]. It is a tool for searching databases

of sequences for RNA structure and sequence similarities. It is an implementation

of a special case of profile stochastic context-free grammars called covariance models

(CMs). To build a model, INFERNAL starts from a pre-computed consensus struc-

ture (see Section 6.4.1), that is a secondary structure shared by different sequences

in the same family. The assumption is that the secondary structure of most RNA

molecules is strongly conserved in evolution. In Section 6.4 we will present how

the secondary structure can be computed. A CM is like a sequence profile, but it

computes a combination of sequence consensus and RNA secondary structure con-

sensus, so in many cases, it is capable of identifying RNA homologs that conserve

their secondary structure more than their primary sequence. CMs are closely related

to profile Hidden Markov Models, but are more complex. CMs and profile HMMs

both capture position-specific information about how conserved each column of the

alignment is. However, in a profile HMM each position of the profile is treated inde-

pendently, while in a CM base-paired positions are dependent on one another. The

dependency between paired positions in a CM enables the profile to model covaria-

tion at these positions, which often occurs between base-paired columns of structural

RNA alignments. In most cases, the particular RNA folding is determined by the

Watson-Crick base pairs complementarity (G-C, A-U), rather than the specific nu-

cleotide in a particular position. For this reason, for many of these base-pairs, it is

not the specific nucleotides that make up the pair that is conserved by evolution,

but rather that the pair maintains Watson-Crick base-pairing. The added signal

from covariation can be significant when using CMs for homology searches in large

databases.

6.3.3 Kernel methods

Stem kernel

Stem kernel [116] is a natural extension of the all-subsequences string kernel [121]

for the application to RNA sequences. The feature space of the all-subsequences



Chapter 6. Application to RNA 161

Figure 6.3: Example of a multiple RNA sequence alignment with secondary struc-

ture annotation.

string kernel is defined as all the possible subsequences of the input string, both

the contiguous and non-contiguous ones. For example, two RNA sequences CUG

and CAU have 4 common subsequences: ε (the empty string), C, U,and C-U, where

- represents the bond between two nucleotides. The all-subsequences kernel calcu-

lates the inner product of the feature vectors by counting all common subsequences

(considering gaps). The inner product of the two sequences CUG and CAU is 4.

The Stem kernel is a simple kernel for RNA secondary structures, that maps

them in a feature space representing all the possible base pairs. Note that paired

nucleotides have not to be neighbors in the sequence. This feature mapping is easily

constructed when the secondary structure of the target is available, but in general

this is not the case. The policy is to extend the same approach to count over all pos-

sible base-pair candidates, but this may be not feasible. For limiting the complexity

of the method, the idea is to count the occurrences of possible stacking base-pairs,

called stem structures. An example of stacking base pairs is in the sequence ACGU,

where the pairs A-U and C-G are stacked. This situation is disambiguated intro-

ducing parenthesis in the notation, so in this case we represent this stem structure

as (A(C-G)U). For example, stems of length 2 constitutes a 16-dimensional vector

space: (A(A-U)U), (A(U-A)U), (A(C-G)U), (A(G- C)U), (U(A-U)A), (U(U-A)A),

(U(C-G)A), (U(G-C)A), (C(A-U)G), (C(U-A)G), (C(C-G)G), (C(G-C)G), (G(A-

U)C), (G(U-A)C), (G(C-G)C), (G(G-C)C).



162 Chapter 6. Application to RNA

The features of the Stem kernel are all possible non-contiguous stems of arbi-

trary length from the RNA sequence that is examined. The kernel calculates the

inner product in the feature space implicitly, starting from RNA sequences, thus no

additional information about the secondary structure is needed.

Marginalized kernel on RNA sequences

The work in [98] proposed the application of marginalized kernel to RNA sequences

represented as a labeled dual graph, that is the representation in Figure 6.7B. In

this representation, every node represents helical regions (sequences of paired nu-

cleotides) and the edges represent the loops (sequences of non-paired nucleotides).

This representation uses only the information about the pairing of the nucleotides

in the sequence, discarding the information about the type of structure (stems,

hairpins, bulges,...). Such information is however coded in the resulting graph, but

not in an explicit way.

Marginalized kernel, that is based on random walks and has been presented in

Section 3.6.1, has been applied on these graphs. It showed promising performance. It

made the way for the application of other graph kernels to RNA secondary structure

graphs.

6.4 Computation of RNA secondary structure

Due to the importance of RNA secondary structure, several computational RNA

folding tools have been developed. RNAalifold is one of the most adopted programs

to predict the secondary structure starting from an RNA sequence [10]. It determines

the folded secondary structure that minimizes the free energy by optimizing the

intramolecular base pairing. We describe this technique in detail here because we

adopted it for the conversion from RNA sequence to graph for our proposed method.



Chapter 6. Application to RNA 163

6.4.1 Minimum free energy structure

The secondary structure for ncRNA sequences is very important for understanding

of the function of the molecule. However, as stated in Section 6.3.2, the experimen-

tal determination of the secondary structure is time consuming and expensive. For

this reason, computational methods able to accurately predict it are of great inter-

est. The minimization of the free energy (MFE) is a well-understood method for

predicting the secondary structure which an RNA takes at equilibrium for a given

temperature and pH. The free energy ∆G of a double strained structure relative to

a single strand is defined as the sum of enthalpy, ∆H, and the entropy, ∆S, terms

∆G = ∆H − T∆S

where T is the absolute temperature.

The structure with the lowest total free energy will be the most stable and

probably the one present in nature.

An approximated approach for estimating the free energy has been proposed in

[135], and it is adopted nowadays for the MFE computation.

The approach consists in the assignment of stability numbers to every pair and

structure. These numbers results from experiments at 25 degrees C in a neutral

buffer. The numbers are: (1) +1 for A-U pairs, (2) +2 for G-C pairs, (3) 0 for G U

pairs, (4) -5 to -7 for hairpin loops, (5) -4 to -7 for interior loops, (6) -2 to -6 for

bulges. For the exact weight assignment see Figure 6.4. The stability number for a

given RNA secondary structure is the sum of the contribution of the pairs, loops,

bulges and helices. The structure with the highest number is the most stable. Stable

structures have thus positive values, measured in units of the free energy of forming

an A-U base pair (−1.2kcal/mol at 25 degrees Celsius).

In order to calculate the minimum free energy structure for a given sequence, a

dynamic programming approach has to be adopted. We can compute a base pair

matrix with all possible pairs between A-U, G-C and G U nucleotides. A matrix

for an example sequence is shown in Figure 6.5, in which 1, 2 and 0 represent the

respective stability numbers. From the matrix, all possible secondary structures can



164 Chapter 6. Application to RNA

Figure 6.4: Contributions of loops and bulges with unbonded bases to the stability

of the secondary structure. Figure from [135].

be investigated and their stability numbers computed. Figure 6.6 shows three of

the most probable structures for the same sequence. In some cases, the method is

unlikely to predict an unambiguous stable structure, but it is valuable in significantly

limiting the number of possibilities.

6.4.2 RNA shape representation

The majority of the methods developed to predict ncRNA function are fully reliant

on the ability to predict the secondary structure accurately. A large portion of recent

research on RNA function prediction applies concepts developed in graph theory to

the analysis of RNA structure (see references in [32]). There are many ways to

represent RNA secondary structure with graphs (see Section 6.4.3), including the

bracketed representation (where nucleotides are converted to nodes and bonds to

edges), and the tree one (where base pairs are converted to ‘stem’ nodes and loop

nucleotides are converted to ‘loop’ nodes). Each representation has different advan-



Chapter 6. Application to RNA 165

Figure 6.5: Example base pairing matrix for a sequence of 55 bases from R17 viral

RNA. Figure from [135].

Figure 6.6: Three possible secondary structures for a sequence of 55 bases from

R17 viral RNA. Figure from [135].



166 Chapter 6. Application to RNA

Figure 6.7: Example of different graph representations of RNA.

tages and disadvantages including information loss and complexity of calculation

[57]. For an example see Figure 6.7, where “A” is the most straightforward repre-

sentation where each nucleotide is a node, and each bond between nucleotides forms

an edge. Figure 6.7 “B” gives an example of the bracketed representation, while

Figure 6.7 “C” represents the secondary structure as a tree.

6.4.3 RNA abstract shapes

The minimum free energy principle for the prediction of RNA secondary structure

has been presented in Section 6.4.1. However, this principle is not enough for the

successful prediction of the secondary structure. Frequently, the minimum free en-

ergy configuration is not the one present in nature. Nonetheless, the configuration

present in nature is usually one of the suboptimal configurations, i.e. one with a

slightly higher free energy w.r.t. the MFE configuration. Thus, it is necessary to

consider a large set of suboptimal solutions, often very similar to one another. On

the other side, we do not want to analyze all the possible variations because the

high number of structures to analyze would increase the computational complexity

too much. Instead, we want to select only a small set of configurations, possibly

with fundamental differences in their shape. This key idea is implemented in one

of the state-of-the-art tools for RNA secondary structure prediction: RNAshapes

[70]. Each shape of RNA belongs to a class of similar structures, each one with



Chapter 6. Application to RNA 167

a MFE representative. For a given energy range, the number of different shapes

is considerably smaller than the number of different structures. For the definition

of the abstract shapes, we need to partition the folding space into different classes

of structures, thus abstracting from structural details. Given a particular folding

(shape) there are different abstraction levels we can use for its representation. The

shape type is the level of abstraction or dissimilarity that we adopt to decide whether

two different foldings have the same shape or not. In general, helical regions are

depicted by a pair of opening and closing square brackets and unpaired regions are

represented as a single underscore. The differences in shape types are due to whether

a structural element (bulge loop, internal loop, multi loop, hairpin loop, stacking

region and external loop) contributes to the shape representation: five types are

implemented. All shapes abstract from loop and stack lengths. In type 1, unpaired

regions are represented by an underscore and stacking regions by a pair of squared

brackets. The succeeding shape types gradually increase abstraction. In type 5,

no unpaired regions are included and nested helices are combined. The differences

among the five abstraction types are shown in the example in Figure 6.8. For the

given sequence, one possible folding is reported. Then, according to the different

shape types, the associated shape is reported.

Figure 6.8: RNAshapes: image describing the differences between shape types.

In order to generate the set of foldings associated to a given sequence, we proceed

analyzing one candidate secondary structure at a time. When analyzing different

foldings of the same sequence, if the folding generates a new shape then it is added



168 Chapter 6. Application to RNA

to the set of foldings we consider, otherwise it is discarded.

6.5 Novel graph kernels for RNA sequences

Let us now focus on the application of kernel methods for graphs on RNA sequences.

In literature there are some graph kernels specifically defined for RNA secondary

structures.

Recent work on this topic proposed a kernel function that enhances the ability

to measure the similarity of two RNA sequences from the viewpoint of secondary

structure, that is the Stem kernel (see Section 6.3.3).

The application of graph kernels to RNA function prediction (that is, predicting

the family which an RNA sequence belongs to) is made possible by the representation

of the RNA secondary structure as a graph. As stated in Section 6.3, string kernels

working directly on the RNA sequence do not constitute a successful approach since

the majority of the information resides in the secondary structure. Only few kernels

that consider the secondary structure have been proposed, but they show promising

results. A major problem of these kernels is the computational complexity. For

example, the Stem kernel have an asymptotic complexity of O(n4), that makes it

unfeasible for datasets bigger than few hundred examples.

The goal of the work presented in the following is to extend kernel methods for

structured data to RNA sequences.

The motivation leading to the application of kernels for graphs to the ncRNA

family prediction is basically to solve the issues of existing tools (see Section 6.3),

and to propose a method that can take into account the secondary structure of the

sequences, and at the same time being feasible from a computational point of view.

The goal in this case is to develop fast kernels (near to linear time) because

of the large amount of data we need to process. Moreover, examples in this case

are RNA sequences. Since in the genome we don’t know where a certain ncRNA

sequence begins or ends, we have to deal with a very noisy signal, as explained in

Section 6.5.1.



Chapter 6. Application to RNA 169

The problem presents various non-trivial issues that have to be addressed to

achieve the goal of defining good kernels for this domain. In the following sec-

tions these main issues are presented. Preliminary experiments in Section 6.6 show

promising results.

The contributions presented in this chapter can be summarized in:

• the definition of a way to represent RNA sequences as graphs, preserving as

much information as possible;

• the definition of new graph kernels particularly suited for this domain.

6.5.1 Multiple instance learning

In machine learning, the multiple instance learning problem [50] is a variation on

supervised learning (see Section 2.1). Instead of receiving a set of instances which are

labeled positive or negative, the learner receives a set of bags that are labeled positive

or negative. Each bag contains many instances. The most common assumption is

that a bag is labeled negative if all the instances in it are negative. On the other

hand, a bag is labeled positive if there is at least one instance in it which is positive.

We will now explain why this problem arises when considering the problem of RNA

function prediction.

As stated before, in the RNA domain the examples are simple nucleotide se-

quences. In these sequences, we don’t really know where a particular ncRNA frag-

ment starts or ends. This fact holds in nature, because there is no particular signal

for the start or end of a region of interest. For this reason, this holds also for the

dataset we considered in our experiments. This means that a significant part of

the input sequence may be noise, i.e. nucleotide sequences not generating any RNA

functional molecule. The problem arises from the fact that trying to fold the real

sequence and a part of noise can give misleading results because the “right” fold-

ing can be completely different. A solution to this problem is to adopt a sliding

windows policy. Beginning with position 1 of the input sequence, the analysis is

repeatedly performed on subsequences of the specified size. At each calculation, the



170 Chapter 6. Application to RNA

resulting structures (the configurations with lowest free energy) are added to the

set of structures for the given sequence and the window is moved, until the end of

the input sequence is reached. Table 6.1 shows an example of the resulting subse-

quences starting from an RNA sequence of 100 nucleotides. The windows of size 20

and 50 are shown, with a 50% shift (i.e. two subsequent sequences overlap by the

half of their length). In the end, we have a set of several foldings associated with the

input sequence. Most of them will probably be noise, but the hope is that in some

of them there is the signal we are looking for. Experimental results in Section 6.6

show an evidence for this claim. The dimension of the window is a very important

parameter for the successful prediction of the actual shape of the RNA sequence.

In particular, existing tools have different predictive performance depending on the

size of the original sequence. Since we don’t know the length of the real sequence,

the only option we have is to try different window sizes, looking for more and more

complex shapes. In particular, the bigger the window, the more complex the result-

ing shape will be. From biological knowledge, it has been shown that sequences of

length up to 20 gives the simpler structures, consisting in a single shape. Sequences

up to 50 nucleotides give more complex structures, giving some information about

the connections between different shapes. Finally, for sequences bigger than that,

a complex folding is generated. In general, the bigger the considered sequence, the

more complex is the resulting folding, but the less probable that every particular

folding is the one we find in nature (because the impact of noise in the overall folding

is determinant for the final shape).

For the preliminary work presented in this chapter, we decided to face the mul-

tiple instance learning issue in the simplest way. We consider as a single example

the set of all graphs generated from a particular sequence. This approach increases

the example size of several times with respect to the length of the original sequence.

Future extensions may consider the weighting of each structure according to the

probability of that structure to be the real one.



Chapter 6. Application to RNA 171

Original Sequence
GAAGAUCUGCCGCAACUGCAAGAUCAUCCGCCGCAAAGGUGUUGUGCGCG

UGAUCUGCACUGACCCGCGCCACAAGCAGCGCCAGGGUUGAUUUACAGGU

Window size 20
1 GAAGAUCUGCCGCAACUGCA 20

-0.50 .......(((.......))) []

11 CGCAACUGCAAGAUCAUCCG 30

-0.40 .((....))........... []

21 AGAUCAUCCGCCGCAAAGGU 40

-2.50 .........(((.....))) []

31 CCGCAAAGGUGUUGUGCGCG 50

-2.90 .((((.........)))).. []

41 GUUGUGCGCGUGAUCUGCAC 60

-4.00 ...(((((.......))))) []

51 UGAUCUGCACUGACCCGCGC 70

-0.90 .....(((........))). []

61 UGACCCGCGCCACAAGCAGC 80

-1.80 ......((((.....)).)) []

71 CACAAGCAGCGCCAGGGUUG 90

-3.60 ......((((......)))) []

81 GCCAGGGUUGAUUUACAGGU 100

-1.40 (((...((......)).))) []

Window size 50
1 GAAGAUCUGCCGCAACUGCAAGAUCAUCCGCCGCAAAGGUGUUGUGCGCG 50

-13.70 ((.(((((((.......)).))))).))((((((((.....))))).))) [][]

26 AUCCGCCGCAAAGGUGUUGUGCGCGUGAUCUGCACUGACCCGCGCCACAA 75

-17.90 ...((((.....))))(((((.(((((.((......))..)))))))))) [][]

51 UGAUCUGCACUGACCCGCGCCACAAGCAGCGCCAGGGUUGAUUUACAGGU 100

-15.20 ..(((((....(((((((((........))))..)))))......))))) []

Table 6.1: Sliding window approach.

6.5.2 Representation issues

In Section 6.3.2 we showed how it is possible to predict the secondary structure of

an RNA sequence, and that there exists a natural representation of this structure

as a graph, where vertices represent the nucleotides and an edge between two ver-

tices means that the corresponding nucleotides are paired in the folding. We also

argued that we want to find similarities between structures, and not between the

nucleotides these structures are made of. One way to face this problem is to consider

multiple representations at the same time, just differing on the abstraction level of



172 Chapter 6. Application to RNA

representation.

Some possible secondary structure representations found in literature have been

presented in Section 6.4.2, but no one seems to carry the right amount of information

on the secondary structure. So the representation issue has to be addressed defining

new representations for the RNA secondary structure.

We decided to adopt a combined representation with possibly several abstraction

layers. Using one of the abstractions presented in Section 6.4.2, a layer may have a

node corresponding to each structure (stems, loops, hairpins, bulges, ...). Each one

of these nodes is connected to a relationship node, that is a node representing the

relationships between two different layers. On the other hand, the same relationship

node is connected to the corresponding vertices in a different abstraction layer, e.g.

the nodes representing the nucleotides involved in the particular shape. An example

of this representation can be found in Figure 6.9. In this figure, the yellow nodes

are the relationship ones. Each one of these nodes is connected to the corresponding

nodes in the two abstraction layers. For example, the leftmost one is connected to a

stem node in one abstraction, and to the nucleotides forming the stem in the other

abstraction.

It is worth to notice that this representation allows for multiple abstraction

layers. Theoretically, each one of the possible secondary structure representations

presented in Section 6.4.3 can be one of several layers interconnected by relationship

nodes. At the time of writing we did not explore this path, the main reason being

that adding more abstraction layers would lead to an increase in the computational

demand of the kernel calculation. So from now on we will refer to the representation

carrying only two abstraction layers as the one in Figure 6.9. Many graph kernels

can be defined on this representation, keeping into account the presence of the

relationship nodes that have not to be accounted for the overall kernel calculation

(see Section 6.5.3 for our proposed kernel).

To evaluate a representation, we measured the classification performance of the

SGD learning algorithm, that approximates the SVM solution (see Section 2.7.3)

on different representations of RNA sequences. Our aim is to find a representation



Chapter 6. Application to RNA 173

U
U

U

U

A

A

A

A
AA

A
G

G

G G

G G G

C
CC

C C

C

CC

Stem Loop

Figure 6.9: Example of different abstraction layers for the representations of

RNA.

that performs well for the majority of ncRNA families, that is a representation that

nearly contains all the useful information for the task of classifying non-coding RNA

sequences.

6.5.3 Kernels exploiting different abstraction levels

In this section we will present two kernels designed for the graphs representing RNA

sequences with different abstraction layers defined in Section 6.5.2.

Abstract NSPDK

The NSPDK kernel presented in Section 3.6.7 is easily extensible to the representa-

tion of RNA with two abstraction layers presented in Section 6.5.2. We only have



174 Chapter 6. Application to RNA

to decide the behavior of the relationship nodes. The idea is not to consider them

as normal nodes, because of the following reasons:

• we don’t want relationship nodes and the edges connecting them with other

nodes to influence the kernel value; i.e. since relationship nodes do not have a

label, we would have always node-match, that would slightly alter the kernel

value;

• we want to keep a simple interpretation of the features. For this reason, we do

not want mixed features, i.e. a subgraph spanning two different abstraction

layers.

For these reasons, the proposed adaption consists in not considering the relationship

nodes as actual nodes. That is, when computing a sub-structure of radius r rooted

in a certain node v, even if the relationship node is at a distance smaller than r

from v, it will not appear in the sub-structure. In other words, relationship nodes

and the relative edges are ”invisible“ when computing the sub-structures. This

first modification leads to the property that each sub-structure belongs to exactly

one abstraction layer. Moreover, we do have to consider relationship nodes when

computing the pairwise features. When merging two sub-structures at distance

d, it’s possible to consider structures at different abstraction levels, respecting the

constraint that the distance between the two roots has to be d, considering in the

path the relationship node.

Abstract NSDDK

In this section, we present the Neighborhood Subgraph Decomposition DAG Kernel

(NSDDK ), particularly suited for graphs representing RNA structures defined in

Section 6.5.2. The idea behind this kernel is to exploit the expressivity of pairwise

features. That is, a single feature is made by two structures in the original graphs

at predefined distance, limited by the kernel parameter d. In this way, compared to

having only the single decomposition structures as features, we add some information



Chapter 6. Application to RNA 175

about the context in which a feature appears in the graph. This pairwise trick pro-

motes sparsity, with benefits from both the computational and the predictive point

of view for the task we are considering. This is the same concept behind the NSPDK

kernel (see Section 3.6.7). The problem of NSPDK on this task is that it requires

isomorphism between the two neighborhoods it considers. As we stated before, it’s

unlikely, for two ncRNA that share the same structure, to share the nucleotide se-

quence as well. This would result in a very sparse kernel, ending up to consider

only small fragments of nucleotides. ODDKSTh kernel, presented in Section 4.1,

on the other hand has a feature associated to each subtree-fragment, allowing for a

”softer“ match. The idea is to apply the pairwise trick to the ODDKSTh kernel, that

is fast and shows good predictive performances. The problem is that the number of

features ODDKSTh produces is higher with respect to the ones NSPDK generates.

The straightforward pairing of the features, resulting in a quadratic number of fea-

tures, would lead to a quadratic kernel, which does not respect the computational

complexity constraint stated in the problem statement (see Section 6.2).

We decided to combine the ODDKSTh features generated from a node in the

graph with the neighborhoods features generated starting from another node. In

this case, the resulting kernel would have a linear number of features w.r.t. the

ODDKSTh kernel, hopefully maintaining the performance improvements of the pair-

wise trick. Similarly to the definition of NSPDK kernel in Section 3.6.7, for defining

the NSDDK kernel it is convenient to define a relation Rr,d(A
x, Dy, X) between two

rooted graphs Ax, Dy and a graph X to be true iff Ax is in {N v
r |v ∈ V (X)} (where

the set inclusion is up to isomorphism), Dy is in {φr,vDDK |v ∈ V (X)} and the distance

between u and v ∈ V (X) is exactly d. We recall that the function φr,vDDK is the φ

function of the ODDKSTh kernel defined in Section 4.1. The relation selects all pairs

made of one neighborhood subgraph of radius r and a tree-feature of ODDKSTh ker-

nel at a distance d in a given graph X. We can define an auxiliary kernel for graphs



176 Chapter 6. Application to RNA

as the convolution kernel that uses this relation:

kr,d(X, Y ) =
∑

Av ,Du∈R−1
r,d(X)

A′v ,D′u∈R−1
r,d(Y )

δ(Av, A′v)δ(Du, D′u),

where δ is the Dirac kernel. In words, kr,d counts the number of identical pairs made

of a neighborhood subgraphs of radius r and a DAG-feature at distance d in two

graphs.

We can formally define the NSDDK kernel as:

K(X, Y ) =
∑
r

∑
d

kr,d(X, Y ).

This kernel can be directly applied to the abstract representation of RNA sequences

presented in Section 6.5.2. It’s worth to notice that the decompositions A and

D may belong to different abstraction layers. In this case, the path of length d

that connects the roots of the two structures have to include a relationship node.

These mixed features are possible only using the described representation. We think

these features that consider information from different points of view to be the most

relevant ones.

6.6 Experiments

In this section, we present and analyze the preliminary results of the application of

graph kernel methods to the task of ncRNA family prediction. We used as baseline

a classifier based on BLAST and described in Section 6.3.1.

6.6.1 Datasets

The dataset adopted for experiments on ncRNA was extracted from Rfam [65]. Rfam

is a database that aims to catalog non coding RNAs through the use of sequence

alignments and covariance models. RNA sequences are grouped according to the

family, that is a set of sequences that share the same function and a clear common



Chapter 6. Application to RNA 177

ancestor. First, the family assignment is done using the Infernal tool on a well-

curated set of seed alignments. Then a large database of nucleotide sequences is

searched for possible homologues. The search returns a ranked list. At this point, a

human expert fixes a threshold to discriminate between real homologues and false

hits.

At the time of writing, the Rfam database is one of the most accurate sources

of annotated non-coding RNA sequences. The dataset was created starting from 47

Rfam families. We calculated the identity score (sequence similarity) between each

pair of sequences in a family. Then, each family was splitted in two parts, one for

training and one for validation. The split was done assuring that no sequence in a

split would have sequence similarity grater than 50% with any sequence in the other

split. To better simulate the real world scenario in which the start and end points of

the sequences are not known, we added random padding (respecting the frequency

of each nucleotide in the particular sequence) at the start and after the end of the

sequence. The total length of the original Rfam sequence and the padding sums up

to 200 nucleotides. The RNA families we selected and the number of examples foe

each class are shown in Table 6.2. The problem is inherently a multiclass problem.

We decided to split it into 47 single-class problems using the one-versus-all approach.

Since the resulting datasets are unbalanced, we adopted as performance measure the

area under the precision/recall curve (APR).

Moreover, we generated a reduced version of the dataset with only seven classes

in order to be able to estimate the parameters in a fast way. This reduced dataset

comprehends only the following classes: 14, 21, 24, 25, 26, 31, 42.

6.6.2 Experimental results

In the experimental section of this chapter, we consider as baselines the aforemen-

tioned BLAST tool, that is considered the state-of-the-art [97] and has been pre-

sented in Section 6.3. Other methods based on Covariance Models like INFERNAL

that has been presented in the same section, and the kernel-based ones presented

in Section 6.3.3 have not been applied since their computational complexity makes



178 Chapter 6. Application to RNA

Class ID ncRNA Rfam calsses TRAINING VALIDATION

1 RF00001:5S rRNA 593 290

2 RF00005:tRNA 360 170

3 RF00015:U4 568 260

4 RF00016:SNORD14 164 41

5 RF00019:Y RNA 614 319

6 RF00020:U5 134 60

7 RF00026:U6 170 69

8 RF00029:Intron gpII 286 136

9 RF00031:SECIS 1 124 51

10 RF00050:FMN 75 34

11 RF00059:TPP 298 160

12 RF00066:U7 121 59

13 RF00097:snoR71 171 81

14 RF00140:Alpha RBS 62 34

15 RF00156:SNORA70 145 80

16 RF00162:SAM 56 23

17 RF00163:Hammerhead 1 148 61

18 RF00169:Bacteria small SRP 98 47

19 RF00263:SNORA68 56 28

20 RF00322:SNORA31 100 48

21 RF00406:SNORA42 88 42

22 RF00409:SNORA7 605 274

23 RF00420:SNORA61 217 114

24 RF00504:Glycine 373 89

25 RF00557:L10 leader 73 33

26 RF00560:SNORA17 149 72

27 RF00619:U6atac 93 48

28 RF00645:MIR169 2 57 24

29 RF00655:mir-28 117 59

30 RF00779:MIR474 124 65

31 RF00875:mir-692 121 47

32 RF00876:mir-684 65 27

33 RF00906:MIR1122 1010 148

34 RF00989:mir-492 142 56

35 RF01016:mir-584 263 127

36 RF01028:mir-633 70 33

37 RF01055:MOCO RNA motif 53 19

38 RF01059:mir-598 480 237

39 RF01063:mir-324 100 49

40 RF01699:Clostridiales-1 114 59

41 RF01705:Flavo-1 76 38

42 RF01725:SAM-I-IV-variant 76 34

43 RF01731:TwoAYGGAY 64 24

44 RF01734:crcB 58 29

45 RF01739:glnA 67 33

46 RF01942:mir-1937 249 122

47 RF02012:group-II-D1D4-7 63 27

Total 9247 3953

Table 6.2: Table showing the number of examples for each ncRNA class in the

training and validation sets.



Chapter 6. Application to RNA 179

their application to the considered datasets unfeasible. With this kind of methods

a subsampling phase is necessary. However, the comparison of the kernel approach

with other methods is left as future work.

For the assessment of the classification performance, we considered the AUC

measure, that is the area under the Precision/Recall curve.

We fixed the parameters for RNAshapes using a line-search approach on the re-

duced version of the dataset. We validated the shape type parameter t in {1, 2, 3, 4, 5}
and the parameter w of the window side in the set {20, 50, 75, 100}. For the clas-

sifier based on BLAST, we performed a majority voting among the top-matching

sequences. The number of foldings parameter M has been validated in the set

{1, 3, 5, 10, 20, 30, 50}

Finally, for each dataset the kernel parameters have been optimized using a grid-

search approach. For NSPDK, the parameters have selected from the following sets:

r = {1, 2, 3}, d = {1, 2, 3}.

After a set of experiments on the reduced dataset, we fixed the set of parameters

to adopt. Table 6.3 shows the performance on the validation set for the optimal

parameters configuration for each class. The kernel approach outperforms BLAST in

almost all the considered classes. Note that these results are not directly comparable

with the results on the whole 47-class problem. Since there is not the need for the

uniqueness for some parameters, i.e. it is possible to use multiple window sizes at the

same time, we found a good set of parameters to be w = {20, 30, 75},M = 5, t = 4.

Let us now focus on the full 47-class dataset. As we can clearly see from the

results on the validation set, presented in Table 6.4, using BLAST for classification

works well for some RNA families. Indeed, for some ncRNA families the sequence

carries enough information about the function. In these cases, it’s useless to apply

techniques that consider the secondary structure because the additional computa-

tional complexity may not be worth the benefits from the classification point of

view. In some cases, considering the structure may introduce additional noise to the

data, resulting in worst classification performance. This happens to the classes 12,

14, 16, 19, 28 in the dataset. For other classes, the performance of the two methods



180 Chapter 6. Application to RNA

Class ID Validation set

BLAST NSPDK

14 1.00000 0.94663

(b=5) (w=100 m=5 t=4)

21 0.88690 0.92652

(b=10) (w=20 m=5 t=4)

24 0.87900 0.99951

(b=1) (w=20 m=5 t=4)

25 0.89794 0.91945

(b=50) (w=20 m=5 t=4)

26 0.96059 0.96156

(b=10) (w=20 m=5 t=4)

31 0.95591 0.98842

(b=20) (w=50 m=5 t=4)

42 0.52928 0.89303

(b=10) (w=75 m=5 t=4)

Table 6.3: Experimental results (Area under Precision/Recall curve) of NSPDK

kernel and the BLAST baseline in the reduced ncRNA dataset. The optimal pa-

rameters are reported between brackets.

are comparable (classes 6, 26, 27 and 41), but the kernel approach is considerably

slower. However, for the majority of the classes the kernel approach achieves sig-

nificantly higher classification performance. In 38 out of 47 classes, kernel methods

outperform BLAST. On average, the AUC value for BLAST is 0.66, while for the

NSPDK kernel is 0.80. From the execution times points of view, the two methods

run times have a huge difference. BLAST requires only few seconds for building the

database and for looking for the top-matching sequences in the database from the

query. On the other hand, Abstract NSPDK requires from 8 minutes to 2 hours

(depending on the parameters) for the computation of the feature vectors of the

training examples in the reduced dataset. The point here is that the proposed ap-



Chapter 6. Application to RNA 181

proach is the only one that considers the RNA secondary structure and is feasible

for this dataset, i.e. other methods that consider the secondary structure applied to

the reduced dataset would have required several hours or days for the computation.

Notice that kernels that do not account for the different abstraction levels, such

as the ODDKSTh kernel that considers single decompositions, perform poorly on

this dataset. For what concerns the NSDDK kernel presented in Section 6.5.3, we

were not able to complete the experiments, thus the analysis of this kernel is left

as a future work. The preliminary experimental results presented in this section

confirm the fact that the information considered in the RNA graph representation

presented in Section 6.5.2 is useful for the task of ncRNA family prediction, and that

the graph kernel approach is promising for the task of RNA function prediction.



182 Chapter 6. Application to RNA

Class ID Validation set

BLAST NSPDK

1 0.76065 0.82869

2 0.38904 0.63258

3 0.90148 0.99369

4 0.70689 0.80432

5 0.63467 0.78767

6 0.83047 0.82118

7 0.77439 0.7934

8 0.39317 0.87899

9 0.02315 0.06984

10 0.90392 0.93252

11 0.9005 0.95741

12 0.83744 0.76889

13 0.04367 0.20995

14 0.94948 0.79752

15 0.84183 0.93446

16 0.75302 0.69802

17 0.20389 0.40515

18 0.43001 0.66874

19 0.69319 0.60933

20 0.82743 0.88246

21 0.76755 0.83394

22 0.8562 0.98875

23 0.85023 0.93274

24 0.76338 0.95497

Class ID Validation set

BLAST NSPDK

25 0.66202 0.96678

26 0.85414 0.84969

27 0.68772 0.63412

28 0.93186 0.86177

29 0.77299 0.96774

30 0.82191 0.99275

31 0.84984 0.96258

32 0.87513 0.92935

33 0.65172 0.94471

34 0.78503 0.92344

35 0.86821 0.99589

36 0.85933 0.91913

37 0.16878 0.70015

38 0.66543 0.99927

39 0.79103 0.88071

40 0.71489 0.94816

41 0.68267 0.66265

42 0.06366 0.63009

43 0.36706 0.8188

44 0.09053 0.24882

45 0.59577 0.86439

46 0.80531 0.90373

47 0.28407 0.78127

AVG 0.66 0.80

Table 6.4: Experimental results (Area under Precision/Recall curve) of different

kernels and the BLAST baseline in the ncRNA dataset with window size of 20, 30

and 75, shift 20% and M = 5 different shapes per window.



Chapter 7

Conclusions and future work

The key to making programs

fast is to make them do

practically nothing. ;-)

Mike Haertel (GNU grep)

The aim of this thesis was to propose feasible solutions to some of the current

drawbacks of kernel methods applied to graph-structured data. The problems we

considered are challenging and interesting because of the large number of application

domains that can benefit from solutions to them.

We can summarize the main contributions of this thesis as follows.

One of the main drawbacks of the existing kernels for graphs is the tradeoff be-

tween the computational complexity and the predictive performance of the adopted

kernel. The recent trend in graph kernels is to define fast kernel functions (near-

linear time complexity), but in general they are not flexible i.e. a fast kernel has

limits in the expressiveness. This is a problem when the used kernel function does

not reach the expected predictive performance on the considered task. The idea

underpinning our approach is to define a family of graph kernels which allows sev-

eral alternate instantiations in order to give to the user the possibility to select one

kernel or another depending on the addressed task. In Chapter 4 we proposed a

framework for graph kernels based on the decomposition of a graph into a multiset

of unordered DAGs. By extending the definition of convolution tree kernels to DAGs



184 Chapter 7. Conclusions and future work

and by defining an ordering of the nodes of the DAGs, we favored the application

of a vast class of tree kernels to graph data. Our analysis focused on two kernels

belonging to the framework, one of which based on a novel tree kernel, for which

proposed specific optimizations. The classification performances of the proposed

kernels on six benchmark datasets show that they are able to reach competitive

results on practically all the considered datasets. Moreover, while their worst-case

time complexity is more than linear (while other considered kernels have a linear

complexity in the number of nodes or edges in the graphs) in practice they are com-

petitive, if not faster than competing approaches. Future developments of this line

of research will include the definition of different graph kernels from the framework,

possibly defining DAG kernels that consider different kinds of sub-structures than

the ones considered here.

We proposed in the same chapter a feasible approach for model compression

based on the application of feature selection techniques in the explicit feature space

associated to a kernel. Future research on this research line are the following. Having

the explicit set of features associated to the support graphs, and having the relative

importance measure for each feature (given by the feature selection phase and the

learning phase), it is possible to map each feature back to the input examples,

obtaining information on the most significant part of each example. For example,

we can map a feature space made of subtrees back to the input examples assigning

a weight to each vertex in the original graphs that is the sum over the weights

of each tree in feature space where that node does occur. At the end, we obtain

a value for each node in the dataset that is a measure indicating how much that

node is important for the task, and thus finding out what are the “key” zones

of each example. This is important for example in bioinformatics applications,

i.e. for the RNA analysis. Another future extension is the application of more

sophisticated feature selection techniques, considering the dependencies between

structural features.

Another important problem that is recently attracting interest consists in the

application of machine learning algorithms on streams of graphs. In Chapter 5



Chapter 7. Conclusions and future work 185

we analyzed the tradeoff between efficiency and efficacy of various online margin

kernel perceptron algorithms with fixed budget for graph streams. We defined three

algorithms as modified versions of online algorithms present in literature. One of

them efficiently exploits the explicit representation of the feature space (via hash

tables) of one of the kernels for graphs defined in this thesis. It is faster and more

accurate than the other proposed algorithms. Experiments on real data show the

effectiveness of our approach. This is a pioneering work in the area of kernel methods

for streams of graphs which shows that working in the primal space is a viable way

for applying kernel methods to graph streams.

In the same chapter, we presented a fast technique for budget maintenance in the

explicit feature space. The idea is to estimate the weighted frequency of a stream of

features based on an extended version of the Lossy Counting algorithm. It uses it

for: i) pruning the set of features of the current solution such that it is ensured that

it never exceeds a predefined budget; ii) prediction, when a feature not present in

the current model is first encountered. The results on streams of graph data show

that the proposed technique for managing the budget is much faster than competing

approaches. Its classification performance, provided the budget exceeds a practically

very low value, is superior to the competing approaches, even when no budget con-

straints are considered for them. As future work, it would be interesting to apply

the same budget maintenance policy to other learning algorithms. Moreover, the

technique may be applied to every scenario where a kernel with a sparse represen-

tation in the feature space is defined, i.e. learning on trees or strings. We plan to

apply the technique to the Multiple Hyperplane Machine [6, 147], that shows very

good predictive performances while being at the same time a very fast algorithm.

Finally, in Chapter 6 we presented an application of graph kernels to an impor-

tant real world problem in bioinformatics, namely RNA function prediction, where

several issues arise for the extraction of relevant information from the data. We

showed an effective way to solve the different problems and, applying graph kernels,

we achieved state-of-the-art results. The work presented in this chapter should be

considered preliminary. Indeed, an extensive analysis of the novel graph kernel de-



186 Chapter 7. Conclusions and future work

fined in this thesis for this problem should be performed. Moreover, there is the

need to analyze the results, understanding which kind of feature is the most im-

portant and eventually focusing on the generation of a reduced number of features

(with computational benefits) without losing predictive performance. On the other

hand, we proposed a representation for RNA sequences as sets of graphs. It would

be interesting to analyze other representations, focusing on the reduction of the

practical complexity of the method and/or on the improvement of the predictive

performance.



References

[1] C. C. Aggarwal. Managing and Mining Graph Data, volume 40 of Advances

in Database Systems. Springer US, Boston, MA, 2010.

[2] C. C. Aggarwal. On Classification of Graph Streams. In SDM, 2011.

[3] R. Agrawal. Fast Algorithms for Mining Association Rules. In Proc 20th Int

Conf Very Large Data Bases VLDB, pages 487–499, 1994.

[4] F. Aiolli, G. Da San Martino, and A. Sperduti. Route kernels for trees.

In Proceedings of the 26th Annual International Conference on Machine

Learning, pages 17–24, Montreal, Quebec, Canada, 2009. ACM.

[5] F. Aiolli, G. Da San Martino, A. Sperduti, and A. Moschitti. Fast On-line

Kernel Learning for Trees. In Proceedings of the 2006 IEEE Conference on

Data Mining, pages 787–791, Los Alamitos, CA, USA, 2006. IEEE Computer

Society.

[6] F. Aiolli and A. Sperduti. Multiclass Classification with Multi-Prototype Sup-

port Vector Machines. Journal of Machine Learning Research, 6:817–850, 2005.

[7] C. Alippi, S. Ntalampiras, and M. Roveri. A Cognitive Fault Diagnosis System

for Distributed Sensor Networks. IEEE Transactions on Neural Networks and

Learning Systems, 24(8):1–14, 2013.

[8] T. Asai, H. Arimura, K. Abe, S. Kawasoe, and S. Arikawa. Online Algorithms

for Mining Semi-structured Data Stream. Data Mining, IEEE Internl. Conf.

on, page 27, 2002.



188 References

[9] F. Bach. Image Classification with Segmentation Graph Kernels e. In In Proc.

CVPR, 2007.

[10] S. H. Bernhart, I. L. Hofacker, S. Will, A. R. Gruber, and P. F. Stadler.

RNAalifold: improved consensus structure prediction for RNA alignments.

BMC bioinformatics, 9:474, Jan. 2008.

[11] A. Bifet and R. Gavaldà. Mining adaptively frequent closed unlabeled rooted

trees in data streams. In Proceeding of the 14th ACM SIGKDD Internl. Conf.

on Knowl. Disc. and data mining, KDD ’08, pages 34–42, New York, NY,

USA, 2008. ACM.

[12] A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà. Mining frequent closed

graphs on evolving data streams. Proceedings of the 17th ACM SIGKDD

international conference on Knowledge discovery and data mining - KDD ’11,

page 591, 2011.

[13] A. Bifet, G. Holmes, B. Pfahringer, R. Kirby, and R. Gavaldá. New Ensemble

methods for evolving data streams. In Proc. of the 15th Internl. Conf. on

Knowl. Disc. and Data Mining, pages 139–148, 2009.

[14] H. Block. The Perceptron: A Model for Brain Functioning. I. Reviews of

Modern Physics, 34(1):123–135, Jan. 1962.

[15] S. Bloehdorn and A. Rettinger. Graph Kernels for RDF Data. In The Semantic

Web: Research and Applications, pages 134–148. 2012.

[16] A. Bordes. Fast Kernel Classifiers with Online and Active Learning. Journal

of Machine Learning Research, 6:1579–1619, 2005.

[17] K. M. Borgwardt and H.-P. Kriegel. Shortest-Path Kernels on Graphs. Data

Mining, IEEE International Conference on, 0:74–81, 2005.

[18] L. Bottou. Online learning and stochastic approximations. On-line learning

in neural networks, 1998.



References 189

[19] L. Bottou and O. Bousquet. The Tradeoffs of Large-Scale Learning. In

S. Platt, J.C. and Koller, D. and Singer, Y. and Roweis, editor, Advances

in Neural Information Processing Systems, pages 161—-168. NIPS Founda-

tion (http://books.nips.cc), 2008.

[20] R. R. Bouckaert. Estimating replicability of classifier learning experiments. In

Twenty-first international conference on Machine learning - ICML ’04, page 15,

New York, New York, USA, 2004. ACM Press.

[21] A. Z. Broder. On the resemblance and containment of documents. Systems

Research, pages 1–9.

[22] L. Brun and D. Villemin. Two New Graph Kernels and Applications to

Chemoinformatics. pages 112–121, 2011.

[23] N. Carolina, S. Umverslty, and N. Carohna. The Tree-to-Tree Correction

Problem. Computing, (3):422–433, 1979.

[24] R. J. Carter, I. Dubchak, and S. R. Holbrook. A computational approach

to identify genes for functional RNAs in genomic sequences. Nucleic acids

research, 29(19):3928–38, Oct. 2001.

[25] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Tracking the best hyperplane

with a simple budget Perceptron. Machine Learning, 69(2-3):143–167, Feb.

2007.

[26] G. Cawley and N. Talbot. Preventing over-fitting during model selection via

Bayesian regularisation of the hyper-parameters. The Journal of Machine

Learning Research, 8:841–861, 2007.

[27] N. Cesa-Bianchi, a. Conconi, and C. Gentile. On the Generalization Ability

of On-Line Learning Algorithms. IEEE Transactions on Information Theory,

50(9):2050–2057, Sept. 2004.



190 References

[28] Y. Chang and C. Hsieh. Training and testing low-degree polynomial data map-

pings via linear SVM. The Journal of Machine Learning Research, (11):1471–

1490, 2010.

[29] O. Chapelle, B. Scholkopf, and E. Zien A. Semi-Supervised Learning

(Chapelle, O. et al., Eds. IEEE Transactions on Neural Networks, 20:542,

2009.

[30] Y.-W. Chen and C.-J. Lin. Combining SVMs with Various Feature Selection

Strategies. In I. Guyon, M. Nikravesh, S. Gunn, and L. Zadeh, editors, Feature

Extraction, volume 207 of Studies in Fuzziness and Soft Computing, pages

315–324. Springer Berlin / Heidelberg, 2006.

[31] Y.-w. Chen and C.-j. Lin. Combining SVMs with Various Feature Selection

Strategies. In Feature Extraction, number 1, pages 1–10. 2007.

[32] L. Childs, Z. Nikoloski, P. May, and D. Walther. Identification and classi-

fication of ncRNA molecules using graph properties. Nucleic acids research,

37(9):e66, May 2009.

[33] F. Chu and C. Zaniolo. Fast and light boosting for adaptive mining of data

streams. In Proc. of the 8th Pacific-Asia Conf. Advances in Knowl. Disc. and

Data Mining (PAKDD’04), pages 282–292, Sydney, Australia, 2004.

[34] M. Collins and N. Duffy. Convolution Kernels for Natural Language. In T. G.

Dietterich, S. Becker, and Z. Ghahramani, editors, NIPS, pages 625–632. MIT

Press, 2001.

[35] M. Collins and N. Duffy. Convolution Kernels for Natural Language.

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS,

14:625–632, 2001.

[36] M. Collins and N. Duffy. New ranking algorithms for parsing and tagging:

kernels over discrete structures, and the voted perceptron. In Proceedings



References 191

of the 40th Annual Meeting on Association for Computational Linguistics,

pages 263–270, Philadelphia, Pennsylvania, 2002. Association for Computa-

tional Linguistics.

[37] F. Costa and B. Bringmann. Towards Combining Structured Pattern Mining

and Graph Kernels. In ICDM Workshops, pages 192–201, 2008.

[38] F. Costa and K. De Grave. Fast neighborhood subgraph pairwise distance ker-

nel. In Proceedings of the 26th International Conference on Machine Learning,

number v, 2010.

[39] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online

Passive-Aggressive Algorithms. Journal of Machine Learning Research, 7:551–

585, 2006.

[40] K. Crammer, J. S. Kandola, and Y. Singer. Online Classification on a Budget.

In S. Thrun, L. K. Saul, and B. Schölkopf, editors, NIPS. MIT Press, 2003.

[41] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods,

volume 1. 2000.

[42] G. Da San Martino. Kernel Methods for Tree Structured Data. PhD thesis,

University of Bologna, 2009.

[43] G. Da San Martino, N. Navarin, and A. Sperduti. A memory efficient graph

kernel. In The 2012 International Joint Conference on Neural Networks

(IJCNN). Ieee, June 2012.

[44] G. Da San Martino, N. Navarin, and A. Sperduti. A Tree-Based Kernel for

Graphs. In Proceedings of the Twelfth SIAM International Conference on

Data Mining, pages 975–986, 2012.

[45] G. Da San Martino, N. Navarin, and A. Sperduti. A Lossy Counting

Based Approach for Learning on Streams of Graphs on a Budget. In

IJCAI 2013, Proceedings of the 23rd International Joint Conference on



192 References

Artificial Intelligence, Beijing, China, August 3-9, 2013., pages 1294–1301.

IJCAI/AAAI, 2013.

[46] G. Da San Martino and A. Sperduti. Mining Structured Data. IEEE Comp.

Int. Mag., 5(1):42–49, 2010.

[47] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman,

and C. Hansch. Structure-activity relationship of mutagenic aromatic and

heteroaromatic nitro compounds. Correlation with molecular orbital energies

and hydrophobicity. Journal of Medicinal Chemistry, 34(2):786–797, Feb.

1991.

[48] O. Dekel, S. S. Shwartz, Y. Singer, and S. Shalev-Shwartz. The Forgetron: A

Kernel-Based Perceptron on a Budget. SIAM J. Comput., 37(5):1342–1372,

2008.

[49] V. Di Massa, G. Monfardini, L. Sarti, F. Scarselli, M. Maggini, and M. Gori.

A Comparison between Recursive Neural Networks and Graph Neural Net-

works. The 2006 IEEE International Joint Conference on Neural Network

Proceedings, pages 778–785.

[50] T. Dietterich, Thomas G.; Lathrop, Richard H.; Lozano-Pérez. Solving the

multiple instance problem with axis-parallel rectangles. 89, 1997.

[51] P. D. Dobson and A. J. Doig. Distinguishing Enzyme Structures from Non-

enzymes Without Alignments. Journal of Molecular Biology, 330(4):771–783,

2003.

[52] P. Domingos and G. Hulten. Mining High-Speed Data Streams. In Proc. of the

6th Internl. Conf. on Knowl. Disc. and Data Mining (KDD’00), pages 71–80,

Boston. MA, 2000.

[53] K. K. Driessens and K. Driessens. Graph kernels and Gaussian processes for

relational reinforcement learning. Machine Learning, pages 146–163, 2003.



References 193

[54] S. R. Eddy and H. Hughes. NON-CODING RNA GENES AND THE MOD-

ERN WORLD. Genetics, 2(December), 2001.

[55] C. H. Elzinga and H. Wang. Kernels for acyclic digraphs. Pattern Recognition

Letters, 33(16):2239–2244, Dec. 2012.

[56] M. Eskandari and S. Hashemi. A graph mining approach for detecting un-

known malwares. Journal of Visual Languages & Computing, 23(3):154–162,

June 2012.

[57] D. Fera, N. Kim, N. Shiffeldrim, J. Zorn, U. Laserson, H. H. Gan, and

T. Schlick. RAG: RNA-As-Graphs web resource. BMC bioinformatics, 5:88,

July 2004.

[58] R. Field, H. Solomon, T. M. Cover, and P. E. Hart. On the Mean Accuracy

of Statistical Pattern Recognizers. Electronics, I, 1968.

[59] T. Fink and J. L. Reymond. Virtual exploration of the chemical universe up

to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million

stereoisomers) and analysis for new ring systems, stereochemistry, physico-

chemical properties, compound classes, and drug discove. J Chem Inf Model,

47(2):342–353, 2007.

[60] M. Fisher, M. Savva, and P. Hanrahan. Characterizing Structural Relation-

ships in Scenes Using Graph Kernels. ACM Transactions on Graphics (TOG)

- Proceedings of ACM SIGGRAPH 2011, 30(4), 2011.

[61] O. Flint. Graph Isomorphism Testing. CMS, 2010.

[62] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data streams: a

review. ACM SIGMOD Records, 34(2):18–26, 2005.

[63] J. Gama and C. Pinto. Discretization from data streams: applications to

histograms and data mining. In Proc. of the 2006 ACM symposium on Applied

computing (SAC’06), pages 662–667, Dijon, France, 2006.



194 References

[64] B. J. Gantz, D. Reinsel, and B. D. Shadows. THE DIGITAL UNIVERSE

IN 2020 : Big Data , Bigger Digital Shadow s , and Biggest Growth in the

Far East Executive Summary: A Universe of Opportunities and Challenges.

Technical report, IDC, 2012.

[65] P. P. Gardner, J. Daub, J. Tate, B. L. Moore, I. H. Osuch, S. Griffiths-Jones,

R. D. Finn, E. P. Nawrocki, D. L. Kolbe, S. R. Eddy, and A. Bateman.

Rfam: Wikipedia, clans and the ”decimal” release. Nucleic acids research,

39(Database issue):D141–5, Jan. 2011.

[66] T. Gärtner. A survey of kernels for structured data. ACM SIGKDD

Explorations Newsletter, 5(1):49, July 2003.

[67] T. Gartner, P. Flach, and S. Wrobel. On Graph Kernels : Hardness Results

and Efficient Alternatives. Lecture notes in computer science, pages 129–143,

2003.

[68] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and

efficient alternatives. Lecture notes in computer science, pages 129–143, 2003.

[69] T. T. Gärtner, J. W. Lloyd, and P. a. Flach. Kernels and Distances for

Structured Data. Machine Learning, 57(3):205–232, Dec. 2004.

[70] R. Giegerich, B. Voss, and M. Rehmsmeier. Abstract shapes of RNA. Nucleic

acids research, 32(16):4843–51, Jan. 2004.

[71] C. Giraud-carrier. A Note on the Utility of Incremental Learning. Ai

Communications, 13 (4):215–223, 2000.

[72] V. Grossi and A. Sperduti. Kernel-Based Selective Ensemble Learning for

Streams of Trees. In Proceedings of the Twenty-Second International Joint

Conference on Artificial Intelligence, volume 1, pages 1281–1287, 2009.

[73] D. Haussler. Convolution Kernels on Discrete Structures. Technical report,

Department of Computer Science, University of California at Santa Cruz, 1999.



References 195

[74] H. He, S. Chen, K. Li, and X. Xu. Incremental learning from stream data.

IEEE transactions on neural networks / a publication of the IEEE Neural

Networks Council, Oct. 2011.

[75] M. Heinonen and J. Rousu. Efficient Path Kernels for Reaction Function

Prediction. 2009.

[76] M. Heinonen, N. Välimäki, V. Mäkinen, and J. Rousu. Efficient Path Ker-

nels for Reaction Function Prediction. Bioinformatics Models, Methods and

Algorithms, 2012.

[77] C. Helma, T. Cramer, S. Kramer, and L. D. Raedt. Data mining and ma-

chine learning techniques for the identification of mutagenicity inducing sub-

structures and structure activity relationships of noncongeneric compounds.

Journal of Chemical Information and Computer Sciences, 44:1402–1411, 2004.

[78] S. Hido and H. Kashima. A Linear-Time Graph Kernel. ICDM, 0:179–188,

2009.

[79] I. Hiroshi, H. Keita, H. Taiichi, and T. Takenobu. Efficient sentence retrieval

based on syntactic structure. In Proceedings of the COLING/ACL on Main

conference poster sessions, COLING-ACL ’06, pages 399–406, Stroudsburg,

PA, USA, 2006. Association for Computational Linguistics.

[80] T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern kernels for predic-

tive graph mining. In Proceedings of the 2004 ACM SIGKDD international

conference on Knowledge discovery and data mining - KDD ’04, page 158,

New York, New York, USA, 2004. ACM Press.

[81] G. Hulten, L. Spencer, and P. Domingos. Mining Time Changing Data

Streams. In Proc. of the 7th Internl. Conf. on Knowl. Disc. and Data Mining

(KDD’01), pages 97–106, San Francisco, CA, 2001.

[82] A. Kalousis and M. Hilario. Matching Based Kernels for Labeled Graphs.

pages 4–7.



196 References

[83] H. Kashima. Machine Learning Approaches for Structured Data. PhD thesis,

Graduate School of Informatics, Kyoto University, Japan, 2007.

[84] H. Kashima and T. Koyanagi. Kernels for Semi-Structured Data. In

Proceedings of the Nineteenth International Conference on Machine Learning,

pages 291–298. Morgan Kaufmann Publishers Inc., 2002.

[85] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled

graphs. In Proceedings of the Twentieth International Conference on Machine

Learning, pages 321–328. AAAI Press, 2003.

[86] M. Kelly, D. Hand, and N. Adams. The impact of changing populations on

classifier performance. Proceedings of the fifth ACM SIGKDD . . . , 32(2):367–

371, 1999.

[87] D. Kimura, T. Kuboyama, T. Shibuya, and H. Kashima. A Subpath Kernel for

Rooted Unordered Trees. In In Proceedings of the 15th Pacific-Asia Conference

on Knowledge Discovery and Data Mining (PAKDD), Shenzeng, China, 2011.

[88] R. Klinkenberg. Learning drifting concepts: Example selection vs. example

weighting. Intell. Data Anal., 8:281–300, August 2004.

[89] J. Z. Kolter and M. A. Maloof. Dynamic Weighted Majority: An Ensemble

Method for Drifting Concepts. Journ. of Mach. Learn. Res., 8:2755–2790,

2007.

[90] S. O. Kuznetsov and M. V. Samokhin. Learning Closed Sets of Labeled Graphs

for Chemical Applications. pages 190–208, 2005.

[91] Y.-j. Lee and O. L. Mangasarian. RSVM : Reduced Support Vector Ma-

chines. In Data Mining Institute, Computer Sciences Department, University

of Wisconsin, pages 1–17, 2001.

[92] B. Li, X. Zhu, L. Chi, and C. Zhang. Nested Subtree Hash Kernels for



References 197

Large-Scale Graph Classification over Streams. 2012 IEEE 12th International

Conference on Data Mining, pages 399–408, Dec. 2012.

[93] G. Li, M. Semerci, and M. J. Zaki. Graph Classification via Topological and

Label Attributes.

[94] P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extensions of

marginalized graph kernels. Twenty-first international conference on Machine

learning - ICML ’04, page 70, 2004.

[95] G. Manku and R. Motwani. Approximate frequency counts over data streams.

In VLDB, pages 346–357, 2002.

[96] D. H. Mathews and D. H. Turner. Prediction of RNA secondary structure by

free energy minimization. Current opinion in structural biology, 16(3):270–8,

June 2006.

[97] P. Menzel, J. Gorodkin, and P. F. Stadler. The tedious task of finding homol-

ogous noncoding RNA genes. RNA (New York, N.Y.), 15(12):2075–82, Dec.

2009.

[98] S. R. Meraz, Richard F. & Holbrook. Classification of non-coding RNA using

graph representations of secondary structure. Science, 2004.

[99] R. Michalski, J. Carbonell, and T. Mitchell.

Machine learning: An artificial intelligence approach. Kaufman Publish-

ers Inc.,Los Altos, CA, Jan. 1983.

[100] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[101] A. Moschitti. Efficient Convolution Kernels for Dependency and Constituent

Syntactic Trees.

[102] A. Moschitti. Efficient Convolution Kernels for Dependency and Constituent

Syntactic Trees. In J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors,



198 References

ECML, volume 4212 of Lecture Notes in Computer Science, pages 318–329.

Machine Learning: ECML 2006, 17th European Conference on Machine Learn-

ing, Proceedings, Berlin, Germany, Sept. 2006.

[103] E. P. Nawrocki, D. L. Kolbe, and S. R. Eddy. Infernal 1.0: inference of RNA

alignments. Bioinformatics (Oxford, England), 25(10):1335–7, May 2009.

[104] M. Neuhaus and H. Bunke. A Convolution Edit Kernel for Error-tolerant

Graph Matching. Pattern Recognition, International Conference on, 4:220–

223, 2006.

[105] M. Neuhaus and H. Bunke. Edit distance-based kernel functions for structural

pattern classification. Pattern Recognition, 39(10):1852–1863, 2006.

[106] S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and G. Bakir. Weighted Substructure

Mining for Image Analysis. 2007 IEEE Conference on Computer Vision and

Pattern Recognition, pages 1–8, June 2007.

[107] F. Orabona, J. Keshet, and B. Caputo. The projectron: a bounded

kernel-based perceptron. In ICML ’08 Proceedings of the 25th international

conference on Machine learning, pages 720–727, 2008.

[108] N. C. Oza and S. Russell. Online bagging and boosting. In Proc. of 8th Internl.

Workshop on Artificial Intelligence and Statistics (AISTATS’01), pages 105–

112, Key West, FL, 2001.

[109] B. J. Parker, I. Moltke, A. Roth, S. Washietl, J. Wen, M. Kellis, R. Breaker,

and J. S. Pedersen. New families of human regulatory RNA structures iden-

tified by comparative analysis of vertebrate genomes. Genome research,

21(11):1929–43, Nov. 2011.

[110] J. C. Platt. Sequential minimal optimization: A fast algorithm for training

support vector machines. Technical Report MSR-TR-98-14, Microsoft Re-

search, 1998.



References 199

[111] L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. Graph kernels for

chemical informatics. Neural networks : the official journal of the International

Neural Network Society, 18(8):1093–110, Oct. 2005.

[112] J. Ramon and T. Gärtner. Expressivity versus efficiency of graph kernels. In

Proceedings of the First International Workshop on Mining Graphs, Trees and

Sequences, pages 65–74, 2003.

[113] R. C. Read and D. G. Corneil. The graph isomorphism disease. Journal of

Graph Theory, 1(4):339–363, 1977.

[114] B. C. Russell and A. Torralba. LabelMe: a database and web-based tool for

image annotation. International journal of Computer Vision, 77(1-3):157–173,

2008.

[115] H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda. gBoost: a

mathematical programming approach to graph classification and regression.

Machine Learning, 75(1):69–89, Nov. 2008.

[116] Y. Sakakibara, K. Popendorf, N. Ogawa, K. Asai, and K. Sato. Stem kernels for

RNA sequence analyses. Journal of bioinformatics and computational biology,

5(5):1103–22, Oct. 2007.

[117] K. Sato, T. Mituyama, K. Asai, and Y. Sakakibara. Directed acyclic graph

kernels for structural RNA analysis. BMC bioinformatics, 9:318, Jan. 2008.

[118] B. Scholkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge,

MA, USA, 2001.

[119] M. Scholz and R. Klinkenberg. An Ensemble Classifier for Drifting Concepts.

In Proceeding of 2nd Internl. Workshop on Knowl. Disc. from Data Streams,

in conjunction with ECML-PKDD 2005, pages 53–64, Porto, Portugal, 2005.



200 References

[120] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal esti-

mated sub-gradient solver for SVM. Mathematical Programming, 127(1):3–30,

Oct. 2010.

[121] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.

Cambridge University Press, New York, NY, USA, 2004.

[122] N. Shervashidze and K. Borgwardt. Fast subtree kernels on graphs. In Y. Ben-

gio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,

Advances in Neural Information Processing Systems 22, pages 1660–1668,

2009.

[123] N. Shervashidze, K. Mehlhorn, T. H. Petri, S. V. N. Vishwanathan, and

K. Borgwardt. Efficient graphlet kernels for large graph comparison. 5:488–

495, 2009.

[124] N. Shervashidze and P. Schweitzer. Weisfeiler-Lehman Graph Kernels. Journal

of Machine Learning Research, 12:2539–2561, 2011.

[125] K. Shin. Mapping kernels defined over countably infinite mapping systems and

their application. Journal of Machine Learning Research, 20:367–382, 2011.

[126] K. Shin. Partitionable Kernels for Mapping Kernels. 2011 IEEE 11th

International Conference on Data Mining, pages 645–654, Dec. 2011.

[127] K. Shin. A New Frontier of Kernel Design for Structured Data. In Proceedings

of the 30th International Conference on Machine Learning (ICML-13), pages

401–409, 2013.

[128] K. Shin, M. Cuturi, and T. Kuboyama. Mapping kernels for trees. In

Proceedings of the 28th International Conference on Machine Learning

(ICML-11), pages 961–968, 2011.

[129] K. Shin and T. Kuboyama. A generalization of Haussler’s convolution kernel:



References 201

mapping kernel. In ICML ’08: Proceedings of the 25th international conference

on Machine learning, pages 944–951, New York, NY, USA, 2008. ACM.

[130] S. Sonnenburg and V. Franc. COFFIN: A computational framework for linear

SVMs. In ICML 2010: Proceedings of the 27th international conference on

Machine learning, 2010.

[131] W. N. Street and Y. Kim. A streaming ensemble algorithm (\upshape{SEA})
for large-scale classification. In Proc. of the 7th Internl. Conf. on Knowl. Disc.

and Data Mining (KDD’01), pages 377–382, San Francisco, CA, 2001.

[132] P. Su and R. L. S. Drysdale. A comparison of sequential Delaunay trian-

gulation algorithms. In Proceedings of the eleventh annual symposium on

Computational geometry - SCG ’95, pages 61–70, New York, New York, USA,

1995. ACM Press.

[133] J. Suzuki, T. Hirao, Y. Sasaki, and E. Maeda. Hierarchical directed acyclic

graph kernel: Methods for structured natural language data. . . . of the 41st

Annual Meeting on . . . , pages 2–4, 2003.

[134] R. J. Tibshirani and R. Tibshirani. A bias correction for the minimum error

rate in cross-validation. The Annals of Applied Statistics, 3(2):822–829, June

2009.

[135] I. TINOCO, O. C. UHLENBECK, and M. D. LEVINE. Estimation of Sec-

ondary Structure in Ribonucleic Acids. Nature, 230(5293):362–367, Apr. 1971.

[136] A. M. Turing. Computing Machinery and Intelligence. Mind, 59(236):433–460,

1950.

[137] R. van Deursen and J.-L. Reymond. Chemical space travel. ChemMedChem,

2(5):636–40, May 2007.

[138] V. Vapnik and C. Cortes. Support-Vector Networks. MACHINE LEARNING,

20(3):273–297, 1995.



202 References

[139] V. N. Vapnik. An overview of statistical learning theory. IEEE transactions

on neural networks / a publication of the IEEE Neural Networks Council,

10(5):988–99, Jan. 1999.

[140] S. V. N. Vishwanathan, K. Borgwardt, and N. Schraudolph. Fast computation

of graph kernels. NIPS. Cambridge MA MIT Press, 2006.

[141] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt.

Graph Kernels. Journal of Machine Learning Research, 11:1201–1242, Apr.

2010.

[142] S. V. N. Vishwanathan and A. A. J. Smola. Fast Kernels for String and Tree

Matching. In S. Becker, S. Thrun, and K. Obermayer, editors, NIPS, pages

569–576. MIT Press, 2002.

[143] S. V. N. Vishwanathan and A. J. Smola. Fast kernels for string and tree

matching. NIPS, 15, 2003.

[144] G. Wahba. Spline models for observational data, volume 59 of CBMS-NSF

Regional Conference Series in Applied Mathematics. Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 1990.

[145] N. Wale, I. Watson, and G. Karypis. Comparison of descriptor spaces for

chemical compound retrieval and classification. Knowledge and Information

Systems, 14(3):347–375, 2008.

[146] Z. Wang, K. Crammer, and S. Vucetic. Breaking the Curse of Kernelization :

Budgeted Stochastic Gradient Descent for Large-Scale SVM Training. Journal

of Machine Learning Research, 13(10):3103–3131, 2012.

[147] Z. Wang, N. Djuric, S. Vucetic, and K. Crammer. Trading Representability for

Scalability : Adaptive Multi-Hyperplane Machine for Nonlinear Classification.

In 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD), 2011.



References 203

[148] Z. Wang and S. Vucetic. Twin Vector Machines for Online Learning on a

Budget. SDM, pages 906–917, 2009.

[149] Z. Wang, S. Vucetic, K. Crammer, and O. Dekel. Online Passive-Aggressive

Algorithms on a Budget. Journal of Machine Learning Research - Proceedings

Track, 9:908–915, 2010.

[150] K. M. Weeks. Advances in RNA structure analysis by chemical probing.

Current opinion in structural biology, 20(3):295–304, June 2010.

[151] O. S. Weislow, R. Kiser, D. L. Fine, J. Bader, R. H. Shoemaker, and M. R.

Boyd. New soluble-formazan assay for HIV-1 cytopathic effects: application

to high-flux screening of synthetic and natural products for AIDS-antiviral

activity. Journal of the National Cancer Institute, 81(8):577–586, 1989.

[152] D. H. Wolpert. THE LACK OFA PRIORI DISTINCTIONS BETWEEN

LEARNING ALGORITHMS. Artificial Intelligence, III(1978):392–394, 1995.

[153] X. Y. X. Yan and J. H. J. Han. gSpan: graph-based substructure pattern min-

ing. 2002 IEEE International Conference on Data Mining, 2002. Proceedings.,

2002.

[154] H.-f. Yu, C.-j. Hsieh, K.-w. Chang, and C.-j. Lin. Large Linear Classification

When Data Cannot Fit in Memory. pages 2777–2782, 2007.

[155] Z. A. Zhu, W. Chen, G. Wang, C. Zhu, and Z. Chen. P-packSVM: Paral-

lel Primal grAdient desCent Kernel SVM. 2009 Ninth IEEE International

Conference on Data Mining, pages 677–686, Dec. 2009.


	Abstract
	Acknowledgements
	I Introduction and basic concepts
	Introduction
	Why structured data?
	Learning on structured data
	Learning on graph streams
	Kernel methods
	Contributions
	Outline

	Learning with kernels
	Machine Learning
	Kernel methods
	Kernel functions
	Kernel machines
	The Perceptron algorithm
	The Support Vector Machine

	The curse of dimensionality and dimension reduction
	SVM training
	Gradient Descent
	The SMO algorithm

	Online learning algorithms
	Stream data mining
	Incremental (online) Learning
	Concept drift

	Formalization and Feasible approaches
	Online Stochastic gradient descent algorithms
	Online Passive-Aggressive

	Budget online stochastic gradient descent algorithms
	Budget stochastic gradient descent
	Budget perceptron
	Budget online Passive-Aggressive

	Feature selection

	Managing the budget

	Learning on structured data
	Learning on graphs
	Notations
	Pattern mining on graphs
	Graph classification algorithms

	Graph streams
	Learning on graph data streams

	Kernels for structured data
	Convolution kernels
	Mapping kernels
	Extension of mapping kernels


	Tree kernels
	Kernels for unordered trees
	Kernels for ordered trees
	Tree edit distances kernel
	Subtree kernel
	Subset tree kernel
	Partial tree kernel
	Other tree kernels


	Kernels for graphs
	Random walk kernels
	Product graph kernel
	Marginalized kernel

	Cyclic pattern kernel
	Subtree pattern kernel
	Shortest path kernels
	Graphlet kernel
	Weisfeiler-Lehman kernels
	Neighborhood subgraph pairwise distance kernel
	Other graph kernels



	II Original Contributions
	A new framework for the definition of DAG-based graph kernels
	A new DAG-based kernel framework for graphs
	Decomposition of a graph into DAGs and derived graph kernels

	Extending tree kernels to DAGs
	Ordering DAG vertices
	Tree-based kernels for ordered DAGs and graphs
	Speeding up the single kernel evaluation
	Speeding up the kernel matrix computation
	Limiting the depth of the visits

	Two graph kernels based on the framework
	A graph kernel based on the Subtree Kernel
	A graph kernel based on a novel tree kernel
	Feature spaces comparison of some graph kernels

	Experimental results
	Dataset Description
	Results and Discussion

	Model compression
	Application of feature selection to graph kernels
	Experimental results


	Learning algorithms for streams of graphs
	Budget online Passive-Aggressive on graph data
	Removal policies
	Incremental computation of F-score

	Experimental results
	Chemical dataset
	Image dataset
	Experimental setup
	Results and discussion


	Budget Passive-Aggressive with Lossy Counting
	Online frequent pattern mining
	Lossy Counting

	Online frequent pattern mining with real weights
	LCB: Lossy Counting with budget for weighted events

	LCB-PA on streams of graphs
	Experiments
	Experimental Setup
	Results and discussion



	Application to RNA
	Introduction to RNA
	Problem statement
	Existing methods
	Sequence-based methods
	Structure-based methods
	RNA secondary structure
	Infernal

	Kernel methods
	Stem kernel
	Marginalized kernel on RNA sequences


	Computation of RNA secondary structure
	Minimum free energy structure
	RNA shape representation
	RNA abstract shapes

	Novel graph kernels for RNA sequences
	Multiple instance learning
	Representation issues
	Kernels exploiting different abstraction levels
	Abstract NSPDK
	Abstract NSDDK


	Experiments
	Datasets
	Experimental results


	Conclusions and future work
	References


