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Abstract

The two main frameworks for the college admissions have been proposed so

far; one is centralized, like in Turkey, Greece, China and Iran, and the other is

decentralized, like in most of the European countries.

In centralized systems, there are clearing houses and those o¢ ces execute

the placements according to an algorithm. In decentralized markets, the agents

match with the agents on the other side themselves.

As Balinski and Sönmez (1999) showed that the algorithm used in Turkey is

equivalent to well known Gale and Shapley�s stable mechanism. But, because

of the restrictions on the market, the outcome matching is unstable.

This dissertation started with the purpose to reduce the ine¢ ciencies of

the college admission procedure in Turkey. For this purpose, we propose a

mechanism to Turkish college admisson problem. We also introduce a new

market structure; as we prefer to call, semi-centralization. A semi-centralized

market is the one where the market for one side is centralized, but decentralized

for the other. The centralized side, as we call the Restricters, are only supposed

to submit their preference orderings before the game starts. Once they submit,

their job is done. Then, the other side, as we call the Choosers, play the game.

In chapter 1, we give a brief summary of Matching Theory. We present the

�rst examples in Matching history with the most general papers and mecha-

nisms.

In chapter 2, we propose our mechanism. In real life application, that is

in Turkish university placements, the mechanism reduces the ine¢ ciencies of

the current system. The success of the mechanism depends on the preference

pro�le. It is easy to show that for some pro�le the mechanism generates a stable

matching.

On the other hand, when we introduce the complete information to the
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model, that is the preference pro�le is publicly known, we get fruitful results.

Our mechanism becomes a contribution to the implementation literature. We

show that the mechanism implements the full set of stable matchings for a given

pro�le.

We show this result by dividing the full domain of the pro�les into two;

in one partition, the pro�les have one single stable matching and in the other

one they have more than one matching. We detect the existence of, as we call,

Cyclical Con�icts between the chooser agents for some restricters because of the

priority con�icts. We observe that those cyclical con�icts are the reason of such

a division. While no chooser experince any cyclical con�ict in the pro�les from

the �rst division, in the second partition of the domain in all pro�les choosers

have such con�icts. We prove our main result by using those cyclical con�icts.

Depending on the actions of the choosers in those cycles, the game ends up with

one of the stable matchings.

In chapter 3, we re�ne our basic mechanism. The modi�cation on the mech-

anism has a crucial e¤ect on the results. The new mechanism is, as we call,

a middle mechanism. It is middle, because it partitions the full domain into

two. In one of the partitions, this mechanism coincides with the original basic

mechanism. But, in the other partition, it gives the same results with Gale and

Shapley�s algorithm. That is, for some pro�les, it again implements the full

set of stable matchings. But, for the rest of the pro�les, it ends up with the

chooser-optimal stable matchings.

In chapter 4, we apply our basic mechanism to well known Roommate Prob-

lem. We test the success of our mechanism in �nding stable matchings of the

problem. It is known that there are pro�les for this problem where there is no

stable solution. Since the roommate problem is in one-sided game patern, �rstly

we propose an auxiliary function to convert the game semi centralized two-sided
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game, because our basic mechanism is designed for this framework.

We bene�t from a well known scoring rule, the Borda Rule, in a social welfare

function form. First we �nd the Borda scores of each agent and generate a

social preference of those agents. The weak Borda ranking order gives us the

Restricters order in every stage of the game. Starting from the top, we start

the game with one of the top agents being the restricter of our game and the

rest of the agents take place in the chooser side. At the end of the �rst stage,

matched agents are deleted from the pro�le and also from the social preference

ranking. Then, we continue with the next top agent among the remaining ones.

We show that this process is mostly succesful in �nding a stable matching.

Then, we detect the reason why it fails to �nd any stable matching for some

pro�le in the existence of stability. The reason is the "aggregation fault". As

we call the irrelevant alternatives may change the real ordering of some other

alternatives. When we "purify" the e¤ects of those externalities, the mechanism

becomes successful also in those pro�les. So, the basic mechanism successfully

�nds a stable matching in the existence of stability.

We also show that our mechanism easily and simply tells us if a pro�le lacks

of stability by using puri�ed orderings. Finally, we show a method to �nd all

the stable matching in the existence of multi stability. The method is simply to

run the mechanism for all of the top agents in the social preference.
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1 The Literature Review

Abstract

In this chapter, we introduce a brief summary of the history of Matching

Theory with its most general and milestone papers. Then, we introduce some of

the most important properties of the (stable) matchings. And, �nally we present

some of the well known mechanisms (which are relevant to this dissertation) in

Matching Theory.

1.1 The History and the Background of the Theory

The oldest issue known in Matching theory literature is American hospital-

intern market at mid-twentieth century. For the new medical school graduates,

the name of the speci�c position in the hospitals is called a residency. These

positions were an important part of the labor force of the hospitals and also the

crucial jobs for the new graduates for their future career.

Between 1900-1945, this market experienced a lot of problems. Given the

importance of the market, there was a tough competition for the candidates

between the hospitals. To hire the best candidates, the hospitals made the o¤ers

two years before the medical shool students�graduation. This was ridicuolus

since at the time being, the quality of the candidate could not be observed in a

clear way. Another problem was that once a residency program made an o¤er,

they put a very short period of time to respond. This decentralized market

su¤ered much from thickness.

In 1945, to stop these ine¢ ciencies, the medical shools agreed not to an-

nounce any information about their students before a speci�c date. This deci-

sion took the control of the time problem of the market. But, another problem

appeared. Since, this time, the agreements had to be achieved in a short time,
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the hospitals o¤ered very high salaries with a very short time to respond for the

candidates. This led to the congestion problem.

In 1952, the hospitals, the students and the medical schools agreed to cen-

tralize the placement procedure for this malfunctioning market. And, they

decided to found a central clearinghouse to coordinate the market. First, the

students applied to the residency programs of the hospitals. Then, the hospitals

conducted interviews with the students whom had applied to them. After the

interviews, both sides were ruqired to submit a preference ordering over the

other side to this clearinghouse. That is each agent submited a list of hospitals

in a rank order and also each residency program had a preference ordering over

the students that they had interviewed. And, then the clearinghouse processed

those preference orderings through an "algorithm" that they developed and

placed the candidates to the hospitals. Today, this clearinghouse is called the

National Resident Matching Program (NRMP). This process produced a "sta-

ble" placement whose meaning will be explained in this chapter soon.

In 1962, David Gale and Lloyd Shapley published a paper, which is regarded

as the seminal work of Matching Theory. In their paper, they describe two

di¤erent problems; one is the college admission problem and the other is the

marriage problem.

In the marriage problem, there are two sides, namely the men and the

women. Each woman has a preference ordering over men and each man has

a preference ordering over women. The problem is to generate the "marriages"

between these two sides. Basically, we form the couples which consists of one

member from both sides. For this reason, the marriage problem is called a one-

to-one problem. That is each agent on boths sides form a couple with only one

agent of the other side.

In the college admission problem, again there are two sides; the colleges and
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the students. Each student has a preference ordeing over the colleges and each

college has rank ordering over the students. The problem here is to place the

students to the colleges in a way that each student is placed in only one college

but, each college accept many students. So, the college admission problem is

known as a many-to-one or one-to-many problem.

Gale and Shapley showed that the college admission problem is a very simple

extension of the marriage problem. The reason is that we can regard the each

seat of a school as a school with one seat. By this argument, the seats from

the same schools have the same preference orderings over the students. And,

so, the students are indi¤erent between the seats of the same school. Then,

the college admission problem becomes a one-to-one problem. Therefore, Gale

and Shapley modeled their paper on a one-to-one scenario which gives the same

results with any other game based on a many-to-many scenario.

They set up the model as the following. The collection of the preference

orderings of all agents is called a preference pro�le. The set of the married

couples is called a matching, �. The full domain for a marriage problem consist

of all the possible combinations of the couples.

As an example, if there are three women Elena, Maria and Silvia, and three

men Matteo, Andrea and Mario, then the set of following marriages is a match-

ing: "Elena and Andrea", "Maria and Matteo" and "Silvia and Mario". Since

there are three members on both sides, the full domain consist of six matchings.

In a matching, if there exist a man and a woman, who are not married to

each other, but who prefer each other to their own mate in the matching, then

this couple is called a blocking pair. For a preference pro�le and a mathcing, if

there exists a blocking pair, then this matching is called unstable. Otherwise, it

is stable.

Gale and Shapley �rstly proved that every marriage problem (every prefer-
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ence pro�le) has at least one stable matching (solution). This result is called the

stability theorem. Secondly they showed that for both of the sides as a whole

group, there exist a best-optimal matching for every preference pro�le. So, every

marriage problem, there exist a women-optimal, �W , and a men-optimal, �M ,

matching. (In section 1:2 we will describe what men and women optimal match-

ings mean). And, �nally, they proposed an "algorithm" to �nd those optimal

matchings.

In 1984, Alvin Roth showed that the algortihms used by NRMP and Gale-

Shaple are the same. We will describe the algorithm in a detailed way in section

1:3.

1.2 The Properties and the Structure of the Matchings

We know from Gale and Shapley that every marriage problem has a stable

solution. What about the upper limit? Do we have a function to determine

the number of stable matchings for a given preference pro�le? Such questions

were �rstly raised by Donald Knuth in 1976 during his lectures in University

of Montréal. This is one of his famous 12 questions he asked in those lecture

series.

The answer to question was given by Irving and Leather in 1986 by using the

algorithm proposed by McVitie and Wilson (1971) who proposed the algorithm

to generate all of the stable matchings for a given pro�le. Irving and Leather

showed that the number of the stable matchings is an exponential function of

the number of the agents on both sides.

So, we know that preference pro�les, depending on the pro�le and the num-

ber of agents, may have many stable matchings. What about the comparisons

of the matchings in view of the agents and the sides as a group?

Let us back to above example. If Matteo prefers Silvia over Maria, then he
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prefers the matchings where he is matched to Silvia over the matchings in which

his mate is Maria. Hence, a matching is men-optimal, �M , if for any man this

matching is at least as good as any other stable matching. The same argument

works for the women side.

Knuth (1976) showed that when all agents have strict preferences, the com-

mon preferences of the two sides of the market are opposed on the set of stable

matchings. That is let �i and �j be two stable matchings, then all men pre-

fer �i over �j if and only if all women prefer �j over �i. This also with the

result of Gale and Shapley shows that for a given pro�le if there is only one

stable matching, that matching is men and women optimal at the same time. If

there two stable matchings, one of them is men-optimal and the other is women

optimal; and all men prefer men-optimal matching to women-optimal one and

vise versa for women side. If there are three stable matchings, then we have

a strict ordering for both sides. For the men side, there is the men-optimal

stable matching, then the middle stable matching and women-optimal one. The

preference ordering of the women side over these three stable matchings is the

opposite of the one by the men side by Knuth. But, what if there are more than

three stable matchings for a given pro�le?

In 1988, Charles Blair showed that the set of stable matchings for a given

pro�le is a partial order for both of the sides, for sure in an opposite way. A

partial order is a set with a maximum and a minimum member, but not every

subset of it has a maximum and a minimum member. So, for any of the sides,

there is a best and a worst member of the set, but the not all the middle members

are perfectly comparable. We give more details about the "incomparable" stable

matchings in Theorem 11 and Example 12 in section 2:3:1.

The last property we want to give is Pareto E¢ cieny. For any side, men or

women, a matching � is Pareto E¢ cient if we cannot improve the mate of an
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agent without damaging to any other agent on the same side.

1.3 The Mechanisms in Matching Theory

In this section, we present some well known mechanisms in Matching Theory.

Since, as we have showed, many-to-many is a simple extension of one-to-one,

we stick to the marriage problem scenario.

1.3.1 Gale and Shapley�s Algorithm

As we have stated before, the oldest issue known in Matching Theory is the

case of American hospital-intern market. Eventhough it was them who used

"the algorithm" for the �rst time, it is known as Gale and Shapley�s algorithm

(1962). Here how it works;

We assign one side as the proposer side. Let us assume men are the pro-

posers. In the �rst stage, each man proposes simultaneously to their �rst best

woman. At that moment, there three types of woman:

i) Some women do not receive any proposal,

ii) Some woman receive one proposal,

iii)Some women receive more than one proposal.

A �rst type of woman moves to the second stage as being single. A second

type of woman engages tentatively to the man who has proposed. A third type of

woman picks the best man among all proposers, engages tentatively to him and

rejects the rest of the proposers.

So, at the end of the �rst stage, there are two types of man:

i) Some men tentatively engage,

ii) Some men are rejected and they move the second stage as being single.

In the second stage, engaged men do not do anything. The rejected, and so

single men propose to their second best women. The same scenario in stage one
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works here. But, if an engaged woman receives one or more proposals in this

stage, then

i) If there is a better man among the new proposers than her tentative hus-

band, she picks this new man and rejects the rest including her tentative husband,

ii) If there is no proposer is better her current husband, she rejects all the

new proposers and moves to the next stage with her current husband.

......................................

In stage k, previously rejected men propose to their next best women. A

woman always picks the best man and rejects the rest. The process stops at the

end of a stage where no man is rejected. And, the currents couples are accepted

as the �nal couples.

Gale and Shapley showed that this process ends in a �nite stage. They

showed that as the stages pass through, men get weakly worse o¤ and women

get weakly better o¤. Gale and Shapley proved that their algorithm always �nds

the proposer-optimal stable matching; that is if the men side is the proposer

side, then the outcome of the process is the men-optimal stable matching, �M .

1.3.2 Multi-Category Serial Dictatorship Algorithm

This algorithm was stated in Balinski and Sönmez (1999). The algorithm de-

scribed in this paper is used by the central clearinghouse for the college admis-

sion procedure in Turkey. Here is the algorithm:

We assign one side as the non-strategic side (the objects), and the other

as the strategic side. The objects do not do anything in the game other than

submitting their preferences. Let us assume that men are the objects.

In the �rst stage of the game, independently, we assign each man to their

best women. It is possible that more than one man is assigned to the same

woman, if she is a favorite woman among the men. If there exist a woman who

has more than one man, then we modify her preference ordering in a special
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way. Among the men she is engaged, we �nd the best man in view of this

woman. Then, we delete all the other men less prefered from him in view of

the woman from her preference ordering. We apply the same process to the

preference orderings of women who are engaged to more than one man. Each

time we modify a preference ordering of a woman, we also delete this woman

from the preference orderings of those men. Then, at the end of the �rst stage,

we get a new tentative preference pro�le.

In the second stage, we assign men to women by the same argument and if a

woman has more than man, then we �nd the best man engaged in her ordering

and we delete less prefered men.

.................................................

In stage k, we apply the process. This procedure stops at the end of a stage

where no woman is engagaed to more than one man. Then, these couples are

accepted as the �nal couples.

Balinkski and Sönmez showed that this process always �nds the objects-

optimal stable matching. That is if men are the non-strategic players (the

objects), then the outcome of the process is the men-optimal stable matching,

�M .

1.3.3 Gale�s Top Trading Cycles (TTC) Algorithm

This algorithm was described in Shapley and Scarf (1974). Here is the algorithm;

We assign one side as "the essential" of the game. Let us assume that

essentials are women.

In the �rst stage, each agent points to their most favorite agent in their

preference orderings. In the paper it isproved that there exist at least one cycle

if we draw the map. For example, a cycle may consist of 2 or more agents.

A 2-agent cycle looks like mi �! wj �! mi. And, a 4-agent cycle looks like

mi �! wj �! mj �! wi �! mi. In each cycle, we give the agents that the
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essentials point out. As an example, since we assign women as the essentials,

we form the pairs (wj ;mj) and (wi;mi) from above cycle. Then, we delete these

four agents from the preference pro�le.

..................................

In stage k, each agent points to their most favorite agent in their preference

orderings. We assign the agents that the essentials point out in the cycles. This

process stops when either one or no agent remains in the preference pro�le.

This pocess �nds Pareto e¢ cient matching for the essential side. That is

if women are assigned as the essentials, we end with women-Pareto Optimal

matching.

This algorithm was proposed as a trade-o¤ with Gale and Shapley�s algo-

rithm (1962) by Abdülkadiro¼glu and Sönmez (2003). Abdülkadiro¼glu and Sön-

mez claims that if the policy-maker cares about stability, Gale and Shapley�s

algorithm should be used. But, if Pareto e¢ ciency is the desired property, then

Gale�s TTC should be applied.
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2 ANewDynamicMechanism to the Two-Sided

Matching Games

Abstract

We know from Gale and Shapley (1962) that every Two-Sided Matching

Game has a stable matching. It is also well-known that the number of stable

matchings increases with the number of agents on both sides. On the other

hand, Gale and Shapley�s algorithm selects only the best matchings for either

side.

In this paper, we propose a new mechanism to the semi-centralized two-sided

matching games. The mechanism ends up with any of the stable matchings for

a given pro�le. Formally, the set of the possible outcomes of the process is the

set of the stable matchings for any pro�le.

2.1 Introduction

Gale and Shapley (1962) described the well-known marriage problem. There

is a set of men and a set of women, and each man and woman has a strict pref-

erence ordering over the agents of the other set. A set of preference orderings,

one for each agent, is called a preference pro�le.

We get couples each of which consists of one man and one woman from those

sets. We call the set of couples a matching. For a given pro�le, a matching is

unstable if there exist a man and a woman who are not paired in that matching,

but both of them prefer each other to their current mates. The matching is called

unstable, because this man and woman do not want to stay in this matching

but want to move to another one where they are together. We call such a pair of

man and woman a blocking pair. For a preference pro�le and a matching, if there
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is no blocking pair, then we call such a matching as stable. Gale and Shapley

showed that there is always a stable matching for every marriage problem.

They also showed that every preference pro�le, there exist optimal stable

matchings for both sides of the market and they distinguish their process to

�nd each of them. We refer to their paper for more details.

One of the famous applications of the two-sided matching games is the college

admission problem. This paper mimics the Turkish college admission procedure.

In Turkey, student placements are centralized by a public o¢ ce. Every year

through April-June, high school graduates take several nation-wide exams in all

subjects of the high school curriculums. The scores together with their GPAs

from their high schools, students get an overall score and so thet are ranked

accordingly. Each student, knowing their rank, submits a list of schools to this

o¢ ce and placements are conducted according to an algorithm by processing

students�school lists and rankings.

Balinski and Sönmez (1999) showed that the algorithm used by the central

college admission authority in Turkey is equivalent to College-Proposing Gale-

Shapley algorithm (1962), which had been theoretically known as stable. But, in

their paper, they claimed that the algorithm should be converted into Student-

Proposing Gale-Shapley for the sake of the students.

Do¼gan and Yuret (2010) showed that Turkish placement procedure has some

ine¢ ciencies. Using the data of a �xed year, they showed that the outcome

matching of the placements was not stable and they emprically tried to estimate

the ratio of the blocking pairs. They said that the algorithm is equivalent to the

one by Gale and Shapley, but since there are restrictions in the application of

the algortihm, e.g. in the number of schools allowed to submit and incomplete

information between the students, the procedure generates blocking pairs. They

claimed that limit for the number of schools should be increased to overcome

19



this problem.

Given that the number of agents is too high, the restrictions of the school lists

by the central o¢ ce is justi�able. Every year nearly two million students take

those exams and hundreds of thousands of them are assigned to the universities

(the school seats).

This paper started with the aim to decrease, and eliminate if possible, the

ine¢ ciencies of this huge market in Turkey. As we have said, the model of the

paper is based on the Turkish student placement procedure. We regard the

structure of the market as given; that is �rstly the schools announce their rank-

ings, and then the students submit their school choices and matching process

starts.

Therefore, we proposed a new mechanism for this market. The market is

based on the incomplete information (that is the preference pro�le is not publicly

known), so was the mechanism. Eventhough we do not give precise proofs or

examples, it is easy to show that this mechanism is successful in reducing the

number of blocking pairs, depending on the preference pro�le.

Introducing the complete information to the model converted the game into

an "implementation problem".1

We know from Gale and Shapley (1962) that every Two-Sided Matching

Game has a stable matching. The question about the number of stable match-

ings for any pro�le was raised by Knuth (1976). Irving and Leather (1986)

showed that the number of stable matchings is an exponential function of the

number of agents.

McVitie and Wilson (1971) described an algorithm to generate all stable

matchings starting from either men or women optimal matching found by the

algortihm of Gale and Shapley. In section 1.4, we will give a literature review

1 I would like to thank Vincenzo Denicolò for the suggestion to introduce complete infor-
mation to the model. His advice has brought this project up to this point.
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on the papers published on implementing stable matchings.

We will show that the mechanism we propose in this paper implements the

full set of stable matchings for any pro�le. We propose this mechanism in, as

we prefer to say, a semi-centralized market. While for the one side the market is

centralized, i.e. the student side, for the other side it is decentralized. The agents

on the decentralized part are "the objects" and they are not active players. On

the other hand, the agents, who are having a centralized game, are the strategic

players and so they play the game.

2.2 Basic De�nitions and Notations

Let M = fm1; :::;mkg and W = fw1; :::; wlg be two non-empty, �nite and

disjoint sets of men and women.

Each agent has a strict preference ordering R over the agents of the other set;

that is Rmi2M be the preference ordering of mi over W . For any wi; wj 2 W ,

wiRmiwj means mi prefers wi over wj . A Preference Pro�le R = (Ri)i2M[W

is the a set of preferences of all agents in the model. RW[M is the set of all

preference pro�les for the sets M and W .

rw(m) is the rank of agent m in preference of agent w. That is, rw(m) = k

means m is the kth best man of w.

A (two-sided) matching � :M[W !M[W is an injection. For anym 2M

and w 2 W , �(m) = w means w is the match of m and vice versa. �(m) = m

means m is single in the matching �. �M[W is the set of all matchings between

M and W .

Let �i; �j 2 �M[W be two matchings and m 2M . If �i(m)Rm�j(m), then

we say that for agent m, �i Pareto Dominates �j : If �i(m) = �j(m), then m is

indi¤erent between �i and �j and we denote this by �iIm�j . If @mi 2M such

that �j(mi)Rmi
�i(mi) and 9mj 2M such that �i(mj)Rmj

�j(mj), then we say
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that for the set of menM , �i Pareto Dominates �j ; that is �iRM�j . If 9mi 2M

such that �j(mi)Rmi
�i(mi) and 9mj 2 M such that �i(mj)Rmj

�j(mj), then

we say that for the set of men M , �i and �j are incomparable.

For any m 2 M and w 2 W , (m;w) =2 � is called a blocking pair for the

matching �, if wRm�(m) and mRw�(w). If there is no blocking pair for �, then

we say � is stable; otherwise, it is unstable.

Gale and Shapley (1962) proved that for any two-sided matching game R =

(Ri)i2M[W , there exists a matching � 2 �M[W which is stable for R.

A Matching Mechanism 
 is a procedure to select a matching from every

preference pro�le. Formally


 : RW[M �! �M[W .

A Matching Mechanism 
 is called stable, if it always selects a stable match-

ing.

Now, let us consider the following example.

Example 1 Let M = fm1;m2;m3g and W = fw1; w2; w3g be the sets of men

and women who have the following preference pro�le R1:

R1 =

m1 m2 m3 w1 w2 w3

w1 w2 w2 m3 m1 m2

w2 w1 w3 m2 m2 m1

w3 w3 w1 m1 m3 m3

For the setsM andW , the set of all possible matchings is �M[W = f�1; �2; �3; �4; �5; �6g

where

�1 = f(m1; w3); (m2; w2); (m3; w1)g,

�2 = f(m1; w2); (m2; w3); (m3; w1)g,

�3 = f(m1; w3); (m2; w1); (m3; w2)g,

�4 = f(m1; w2); (m2; w1); (m3; w3)g,
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�5 = f(m1; w1); (m2; w2); (m3; w3)g,

�6 = f(m1; w1); (m2; w3); (m3; w2)g.

For pro�le R1, the set of stable matchings is f�2; �4; �5g.

If we apply Gale and Shapley�s algorithm to the pro�le R1, we get either �2

or �5, if we assign women or men as the proposer side, respectively.

There are two major problems with the algorithm by Gale and Shapley.

Firstly it is not symetric; if women propose, there is no chance for �5 to be

chosen and vice versa for �2. Secondly, there is no possibility for �4 to be

chosen in any scenario.

In the next section, we propose a new dynamic mehanism. With that mech-

anism, any stable matching for any pro�le could be chosen, e.g. for R1 the set

of the possible outcomes is f�2; �4; �5g.

2.3 The Dynamic Mechanism

For a given matching game R = (Ri)i2M[W , we assign one side as the Restricter,

and the other side as the Chooser. We use the preferences of the restricters as the

restrictions or the priorities on the chooser side and the choosers make decisions

with their own preferences as their turns come. In that game, the information

is complete; that is the rule of the game and the preference pro�le is known by

all agents. Here is how the mechanism works.

Without loss of generality, we shall assign W as the restricter and M as

the chooser. (Later we will show that the set of the outcomes does not depend

on which set is the restricter or the chooser). The preference orderings of any

woman is the priorities of the men for those women.

We start with the man/men who are the best in view of women; that is we

start with men such that fmi 2 M j9wj 2 W such that rwj (mi) = 1g. Those

men are asked to make a decision; either to say "yes" or "no" to the woman for
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who they are the best men. Some of them may be the best man for more than

one woman. In this case, such a man is asked to choose one of those women.

If a man says "yes" to a woman, then they form a pair and both of them are

deleted from the pro�le; if he says "no", he loses that woman/women and waits

for his turn for other women.

At any step/rank k, a man either chooses a woman to marry or refuses and

waits for another woman. In that way, we construct our pairs.

First, we shall show that this process produces a matching from any pro�le.

Let mi 2M be a chooser agent. At any step where he is the best man for any

woman, if mi decides to choose an agent wj 2W , mi is deleted from the pro�le

and he forms the pair (mi; wj): If he never chooses anybody at any step, then

he forms the pair (mi;mi): As we have said before, any chooser says "no" to

wait for his turn for a better restricter. In this model, we explicitely assume

that all the agents are acceptable for the agents on the other side, and so they

prefer being matched to some agent than being single. If he never says "yes" to

any woman, he remains single which contradicts to the rationality assumption.

We will analyze when and why a man says "no" in the following sections. If a

chooser remains single, it is only because he does not receive any o¤er. These

scenarios are the same for all mj 2 M: On the other hand, when any mj 2 M

chooses an agent wi 2 W , she is deleted from the pro�le, too. If wi is not

choosen by any mj (possibly because l > k and wi is not a favorite woman),

then she forms the pair (wi; wi). This happens when all of men are matched to

some women before she calls for her "best(s)". So, any agent i 2M [W could

be a member of one pair. Hence, the outcome of this procedure 
 is a matching

� 2 �M[W :

Now, we shall demostrate our mechanism with a simple example.

Example 2 Let M = fm1;m2;m3g be the restricter and W = fw1; w2; w3g be
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the chooser who have the following preference pro�le R2.

R2 =

m1 m2 m3 w1 w2 w3

w2 w1 w2 m1 m3 m1

w1 w3 w3 m3 m2 m2

w3 w2 w1 m2 m1 m3

In the �rst round, w1 and w2 are asked to choose; w1 for m2 and w2 for

either m1 or m3. Since rw2(m3) = 1, w2 says "yes" to m3. They construct

(m3; w2) and both of them are deleted from the pro�le. As the information is

complete and so w1 knows that w2 chooses m3, she says "no" to m2.

In the second round, since rw1(m1) = 1, w1 says "yes" tom1. They construct

(m1; w1) and both of them are deleted from the pro�le. Eventhough rw3(m1) = 1,

since the information is complete and so w3 knows that w1 chooses m1, she says

"yes" to m2 since m2Rw3m3.

Hence,using our mechanism 
 we get the matching �6 = f(m1; w1); (m2; w3); (m3; w2)g

which is the only stable matching for R2.

2.3.1 The Flow of the Mechanism

Our mechanism is based on the "�rst-come �rst-served" principle. When a

chooser agent is asked to reply an o¤er, e.g. he is the best man for some

restricter(s), he makes his decision by considering the best alternatives better

than the current restricter. If all of them have already been taken or regarded

as will be taken in the current or the next rounds (thanks to the complete

information), then he says "yes" to the o¤er. In this section, we will examine

the game scenarios that the choosers confront.

De�nition 3 Let m 2 M be any chooser agent and wi; wj 2 W be any two

restricter agents. If rwi(m) > rwj (m) and wiRmwj and at the step k = rwj (m)

non of wi and wj have been taken by other choosers yet, then we say the agent

m experiences a con�ict between agents wi and wj.
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The de�nition says that for a chooser agent if the turn for a worse restricter

comes before any better one, given that non of those restricters have not been

chosen yet, then the chooser agent experiences a con�ict; he may not be sure

about his decision.

De�nition 4 If a chooser agent m 2M does not experience any con�ict, then

we say m has a smooth game.

When the information is incomplete, ex. the agents cannot observe the

preseferences of any other agents, the chooser agent cannot make a precise

decision; but incompleteness is not the topic of this paper. When the preference

pro�le is observable, such an agent estimates what will happen in the current

and the successive steps. Hence, he has su¢ cient information to make a clear

decision during those con�icts. So, under complete information, the con�icts

turn into smooth games.

In this paper, we pay our attention to the special case of con�icts.

De�nition 5 Let fm1; :::;mrg �M be a set of choosers and fw1; :::; wrg �W

be a set of restricters. If we have such a case;

� m1Rw1m2, m2Rw2m3,...,mrRwrm1;

� wrRm1w1, w1Rm2w2,...,wr�1Rmrwr;

� rw1(m1) = rw2(m2) = ::: = rwr (mr) = k (for at least one side),

� Each agent of fw1; :::; wrg and fm1; :::;mrg is present at step k.

Then, we say that agents in fm1; :::;mrg experience a cyclical con�ict with

each other at step k.

Therefore, eventhough the preference pro�le is publicly known, if some group

of choosers experience a cyclical con�ict, they cannot have a precise decisions,
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since the actions are not observable for the current step. Hence, when a chooser

has a smooth game, the process is a squential game for that agent. On the other

hand, when he experiences a cyclical con�ict, it is a simultaneous game for him

(including other agents in the cycle).

Claim 6 Any chooser agent could be a member of at most one cyclical con�ict

at any step k.

Proof. The proof is straight forward. Let m 2 M be any chooser being a

member of more than one cyclical con�ict at step k. Let wi; wj 2 W be any

two restricters where rwi(m) = rwj (m) = k and each of these restricters is

from di¤erent cyclical con�icts. As an assumption, all the agents have strict

preferences. So, we have either wiRmwj or wjRmwi. In any case, the agent m

does not consider the worse agent. Hence, any chooser m experiences only one

single cyclical con�ict at any single step.

Now, we will focus on the a¤ects of such cycles on the relationship between

any preference pro�le and the set of the stable matchings for that pro�le; ex.

the number of stable matchings for a given pro�le.

Theorem 7 For a given preference pro�le R = (Ri)i2M[W , there exists only

one single stable matching if and only if there exists no cyclical con�ict for the

choosers.

Proof. ((=). Suppose that we do not have any cyclical con�ict. We shall

assume multiple stable matchings for a preference pro�le and prove that this

leads to a contradiction. Then, from Gale and Shapley there exist optimum sta-

ble matchings �M and �W for men and women, respectively, with �MRM�W

and �WRW�M . Since the preferences are strict, then 9mk;ml 2 M and

9wi; wj 2W , such that
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1. �W (wi) = mk, �W (wj) = ml, �M (wi) = ml, �M (w
�) = mk and �M (wj) =

m� for some w� 2W , m� 2M with

2. w�Rmk
wi, wiRml

wj , mkRwiml, mlRwjm
�.

In that case, we may have two scenarios:

Scenario 1: Let A = fw 2 W jwRml
wig be the set of the agents who are

better than agent wi according to agent ml. Since �M (wi) = ml, either all

of w 2 A have been taken by some other �m 6= ml before the round where ml

chooses wi or ml regards each w as will be taken. Hence, any w 2 A is not

achievable for ml. On the other hand, we have �W (wj) = ml. In that case, the

fact wiRml
wj contradicts the rationality of agent ml; while he could choose wi,

he did not. Then this leads us to wi = wj which gives �M=�W = �.

Scenario 2: Maintaining the assumptions on the rationality of the agents

and existence of multiple stable matchings, we have the following scenario. If

we have stable matchings �M and �W , using the information in 2 above, we

may have either of the followings;

1. m� = mk and w� = wj , that is the sets fml;mkg and fwi; wjg had a

cyclical con�ict so that we have such two stable matchings, or

2. m� = m0 and w� = w0, that is there is a bigger cycle including ml;mk; wi

and wj ; by iterative construction, there may be cycle including all the

agents.

Both of them contradicts the fact that there is no cycle. Hence, there is only

one single stable matchings.

(=)). For any pro�le R = (Ri)i2M[W , there exists only one stable matching

� 2 �M[W . And, let us assume there exists a cyclical con�ict between the

agents ofM 0 = fm1; :::;mrg �M for the agents W 0 = fw1; :::; wrg �W at step

k.
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Since eachmi 2M 0 is in the cycle, any better restricters than the ones in the

cycle have either been taken or regarded as taken in the current or next steps.

For that reason, in the matching � we cannot have any pair such that (mi; ŵ)

where mi 2 M 0 and ŵ =2 W 0; because (mi; wj) would block the matching �,

where wj 2 W 0. For that reason, in the matching �, 8m 2 M 0 and 8w 2 W 0,

�(m) 2W 0 and �(w) 2M 0.

We shall assume that all the choosers say "yes" at step k. In that case, we

may have two scenarios:

Scenario 1: M 0 =M andW 0 =W . In such case, the matching � would be

stable since no pair blocks it; that is 8w 2 W 0 get better choosers in their own

cycle, so no woman admires any man in the cycle. But, in that case, another

matching �0 would be stable where no agent m 2 M 0 says "yes" at step k;

in that situation 8m 2 M 0 �0(m)Rm�(m). Hence, in �0 8m 2 M 0 gets their

better restricters in their own cycle, so no man admires admires any woman in

the cycle. Hence, we have two stable matching which contradicts to the single

stable matching.

Scenario 2: M 0 � M and W 0 � W are proper subsets. 8m 2 M=M 0 and

8w 2 W=W 0 do not confront any cycle. Hence, each of them experince either

smooth or (simple) con�ict games. By using the argument in Scenario 1 of

((=), we end up with a unique set of pairs for m 2M=M 0 and w 2W=W 0, and

8m 2 M=M 0 �(m) 2 W=W 0 and 8w 2 W=W 0 �(w) 2 M=M 0. The remaining

part is same with scenario 1.

With Theorem 7, we have showed that when there is a unique stable match-

ing for a preference pro�le, we do not have any cyclical con�icts for the choosers,

and vice versa. And, our proof also showed that when there is a single stable

matching, our mechanism gives us that matching. As we have a two-sided im-

plication in the theorem, we get the symmetry between the sides: if one side
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has no cyclical con�ict, then there is a single stable matching and if so, other

side has no cyclical con�ict. Then, in any scenario, we get the same matching.

Now, we know that the reason for multiple stable matchings is the existence

of cyclical con�icts. The following example shows that when there are multiple

stable matchings, the set of the agents on both sides having cyclical con�icts

need not be the same.

Example 8 Let M = fm1;m2;m3g and W = fw1; w2; w3g be the sets of men

and woman who have the following preference pro�le R3:

R3 =

m1 m2 m3 w1 w2 w3

w1 w2 w2 m3 m1 m3

w3 w1 w3 m2 m2 m1

w2 w3 w1 m1 m3 m2

The set of the stable matchings for R3 is f�4; �5g. When W is the chooser,

the sets of agents in the cycle are fm1;m2g and fw1; w2g. On the other hand,

whenM is the chooser, the sets of agents in the cycle are fm1;m3g and fw2; w3g.

W-Chooser case M-Chooser case

m1 m2 m3 w1 w2 w3

w1 w2 w2 m3 m1 m3

w3 w1 w3 m2 m2 m1

w2 w3 w1 m1 m3 m2

m1 m2 m3 w1 w2 w3

w1 w2 w2 m3 m1 m3

w3 w1 w3 m2 m2 m1

w2 w3 w1 m1 m3 m2

We have seen that existence of a cyclical con�ict generates two stable match-

ing; one of them is constructed if all the choosers in the cycle say "yes" in the

�rst step and the second is created if all say "no". But, we cannot conclude

that this is always the case.

De�nition 9 Let M and W be the sets of choosers and restricters, respectively.

Let M1;M2 �M be the set of the agents of two cycles. If M1 \M2 = ;, we say
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the cycles are independent. Otherwise, they are (sequentially) dependent

cycles.

From Claim 6, we know that the any chooser could be a member of at most

cyclical con�ict at a single step; but he could be a member of another cycle in

any consecutive steps. This is why we call such cycles as sequential.

Proposition 10 If there exist two dependent cycles in the pro�le, they generate

three stable matchings.

Proof. The proof is simple. Let M1;M2 � M and W1;W2 � W with M1 and

W1 be the agents of the cycle at step k andM2 andW2 be the agents of the cycle

at step l: Let us assume that for M1 if all say "yes" at step k, �1 is generates;

if nobody says "yes", �2 is generated. And, also we shall assume that for M2

if all say "yes" at step l, �3 is generates; if nobody says "yes", �4 is generated.

Let m �M1 \M2 be any chooser member of the both of the cycles.

In such a case, we may have two scenarios; either k = l or k 6= l and we

examine here each one of them. The �rst scenario is trivial. Let wi 2 W1 and

wj 2 W2 such that rwi(m) = k and rwj (m) = l with (wolg) k < l. If m (like

other agents in M1) says "no", they come to the consecutive step to l (here

l � k � 1). If m says "yes" (like other agents in M1) at step l which is also

the consecutive step of k, �2 is generated where all the agents without cycles

construct unique couples as we have proved in Thm 7. But, at the same time, if

m says "yes" (like other agents in M2), then �3 is generated with same uniwue

couples by the same argument. Then �2 = �3.

The same argument works for the case k = l from which we end up with

�1 = �3: Hence, two sequentially cycles generate three stable matchings.

From Proposition 10, the idea saying that "each cycle produces two stable

matchings" fails. We refer to the pro�le R1 of Example 1 above where k 6= l. For
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example, we may have four stable matchings from either two independent cycles

or three sequentially dependent cycles. Hence, unfortunately we cannot have a

relationship between the number of cycles and the number of stable matchings

for a given pro�le R.

We have one more property of the cyclical con�icts related to the stable

matchings.

Theorem 11 There exist (independent) cyclical con�icts which occur at the

same step k if and only if we have incomparable stable matchings.

Proof. (=)).LetM andW be the sets of choosers and restricters, respectively,

and let M1;M2 � M and W1;W2 � W with M1 and W1 be the agents of the

one of the cycles and M2 and W2 be the agents of the other cycle.

We shall focus on the scenarios of those two cycles. Let us assume that

at step k, if the agents of M1 say "yes", they construct the couples C1 and

nobody says "yes", they construct the couples C2. Same argument works for

the agents of M2 and they construct the couples C3 from "yes" at step k and

C4 from "no" at step k. Since the cycles are independent, then the couples

are di¤erent constructed by the two cyclec. Hence, the combinations of those

cycles give us four matchings: C1 [ C3 2 �1, C1 [ C4 2 �2, C2 [ C3 2 �3 and

C2 [ C4 2 �4. And, the agents out of those cycles construct the same couples

in all those matchings from the proof of Thm 7. From the de�nition of a cycle,

we have

1. C2RM1
C1 and C4RM2

C3,

2. C1RW1
C2 and C3RW2

C4.

Hence, from (1) we have �1RW�4 and �4RM�1. And, from (2), we have �2

and �3 are incomparable for both M and W .
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((=). Let �i and �j be any two incomparable stable mathcings for the

pro�le R = (Ri)i2M[W with M be the chooser and W be the restricter. And,

let us assume we do not have any cyclical conlicts that occur at the same step

k. We may have three scenarios.

Scenario 1: We do not have any cycles. But, in that case since we have one

single stable matching and so there is nothing to compare, our theorem becomes

true.

Scenario 2: We have independent cycles that occur consecutively at di¤er-

ent steps of the game. In that case, each cycle produces two stable matchings.

From the de�tion of cyclical con�icts, we have for the matchings �k; �l that

are created from a single cycle such that �k from "yeses" in the �rst step and

�l from "yeses" in the second that �kRW�l and �lRM�k and this is the case

for all such matchings. Contradiction to the existence for incopmrable stable

matchings.

Scenario 3: We have independent cycles and/or sequentially dependent

cycles. As stated before, dependent cycles produce such common cycles which

do not e¤ect the comparison. The same argument works with the one in Scenario

2. Contradiction.

Now we shall give an example of incomparable stable matchings.

Example 12 (Roth and Sotomayor, Example 2.17, page 37). LetM = fm1;m2;m3;m4g

and W = fw1; w2; w3; w4g be the sets of men as the chooser and woman as the

restricter who have the following preference pro�le R4:

R4 =

w1 w2 w3 w4 m1 m2 m3 m4cm4 cm3 fm2 fm1 w1 w2 w3 w4cm3 cm4 fm1 fm2 w2 w1 w4 w3

m2 m1 m4 m3 fw3 fw4 cw1 cw2
m1 m2 m3 m4 fw4 fw3 cw2 cw1

�M[W has 24 matchings 10 of which are stable for R4. Two of them are �8 =

33



f(m1; w3); (m2; w4); (m3; w2); (m4; w1)g and �9 = f(m1; w4); (m2; w3); (m3; w1); (m4; w2)g.

�8 is generated if the agents of fm4;m3g and fm2;m1g say "yes" and "no",

respectively, and the opposite for �9. And, both for M and W , �8 and �9 are

incomparable.

Before we state and prove our main theorem, let us examine the following

trivial example.

Example 13 Let M = fm1;m2g and W = fw1; w2g be the sets of men as the

chooser and woman as the restricter who have the following preference pro�le

R5:

R5 =

m1 m2 w1 w2

w2 w1 m1 m2

w1 w2 m2 m1

For the sets M and W , the set of all the possible matchings between them is

�M[W = f�1; �2g where

�1 = f(m1; w1); (m2; w2)g,

�2 = f(m1; w2); (m2; w1)g.

For the pro�le R5, the set of the stable matchings is f�1; �2g. If w2 says

"yes" to m1, then the best response of w1 would be "yes" to m2 (otherwise,

we get the couples � = f(m1; w2); (m2;m2); (w1; w1)g) and vice versa. And,

if w2 says "no" to m1, then the best response of w1 would be "no" to m2;

otherwise w1 would miss the chance to construct (w1;m1) which she prefers

over (w1;m2). Hence, the Nash Equilibrium (NE) of this game is NE(w1; w2) =

f(yes; yes); (no; no)g. And, it is easy to show that the argument is same for any

cyclical con�icts.

Theorem 14 If Nash Equilibria of the cycles are chosen, the outcome of our

mechanism is the set of the stable matchings for any preference pro�le. In other

words, we always end up with one of the stable matchings for any pro�le.
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Proof. The proof is straight forward. Let R = (Ri)i2M[W be any pro�le with

M be the chooser and W be the restricter. If there is no cyclical con�ict, then

there is only one stable matching and our mechanism �nds it as we have proved

in Thm 7.

Hence, let us assume there are some cyclical con�icts for that pro�le, and

so we have multiple stable matchings. Let �M[W = f�1; :::; �rg be the set of

all stable matchings for R. So, let us assume 9� 2 �M[W , but our mechanism

does not �nd it in any scenario.

From Thm 7 and Proposition 10, we know that 8�i 2 �M[W are generated

by some cyclical con�icts. Any cycle that has n choosers and n restricters

generates n! matchings; two of them are stable and (n! � 2) are unstable. The

game ends when all agents construct a pair. With NE assumption, either all the

agents in any cycle say "yes" or all say "no". As they say "no", we prooceed

from top to the bottom on the preferences of W . With the assumption on NE

solutions, we ommit (n!�2) unstable matchings for each cycle which means our

mechanism always ends up with a stable matching. So, for each cycle, one of

two stable matchings is chosen.

Hence, if there exists such a matching �, then either it was not generated by

any cycle or it is an unstable matching. If � was not generated by any cycle,

then from Thm 7, it is the unique stable matching for the pro�le R which is a

contradiction to the existence of multiple stable matchings. If � is unstable, then

we are done. Hence, any stable matching could be chosen by our mechanism

and there is no possibility to end up with unstable matching.

2.3.2 Strategy-Proofness of the Mechanism

Now, we will investigate whether our mechanism is vulnerable to the strategic

manipulation or not.
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Theorem 15 Truth telling is weakly dominant in our mechanism.

Proof. Let us assume that our mechanism is manipulable. Let R = (Ri)i2M[W

be any pro�le based on true preferences with M be the chooser and W be

the restricter. And, let R� = (Ri)i2M[W be any other pro�le with Ri =

R�i2M[W=fmgand Rm 6= R�m for a chooser agent m 2 M . R� is the prefer-

ence pro�le based on mispresented preferences and m is the manipulator agent

with 
(R�)Rm
(R). We may have two scenarios:

Scenario 1: For R we have one single stable matching; that is there is no

cyclical con�ict. So let 
(R) = � and 9�� 2 
(R�). Let wi; wj 2 W with

��(m) = wiRmwj = �(m). As we have proved, our mechanism 
 is stable, and

so is ��. To satisfy stability for ��, ��(wj)Rwjm and mRwi�(wi). If we have

��(w) = �(w) for 8w 2 W=fwi; wjg, then we get ��(wj) = �(wi) = m� such

that the sets fm;m�g and fwi; wjg construct a cyclical con�ict. If not, to keep

the stability of �� we should have a pair (m̂; wj) with m̂Rwjm, and so on. In

every step, we should assign a better mate to every agents which iteratively

leads us to the full cyclical con�ict. This is a contradiction to fact that there is

no cyclical con�ict.

Scenario 2: For R we have one single cyclical con�ict. If m is not a member

of the cycle, then the above argument works. Let wi; wj 2 W be the agents

that m experiences the con�ict with wiRmwj . Let �M and �W be the stable

matchings from Gale and Shapley such that �M = wi and �W = wj . From the

de�nition of a cycle, any agent in the set fwjwRmwi; w 2Wg is not achievable

for m. Any matching �� such that wjRm��(m) would be unstable. Hence, the

question becomes "Can m guarantee to make �M = wi chosen?".

Firstly, we shall examine the trvial example, ex. Example 12 above, where

�2 = �M and �1 = �W . Letm = m1 be our manipulator. A change bym breaks

the cycle and 
(R�) = �1 = �W . Hence, m damages himself by abolishing the
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possiblity for �2 = �M to be chosen.

Now, we shall consider any cycle which has three agents on each side with

9m;mi;mj 2M and wi; wj ; wk 2W such that wkRmwi, wiRmi
wj and wjRmj

wk.

If m changes his ordering, he breaks the cycle and saying "yes" to the o¤ers is

a dominant-rational strategy. And, we end up with �W . By the same argu-

ment, iteratively for any number of agents, breaking the cycle damages to the

manipulator. The argument works for any number of cycles for the choosers.

Hence, we conclude that truth telling is weakly dominant for the choosers.

2.4 The Related Literature

In the related literature, there are papers, which have di¤erent model and pat-

tern, on implementing the stable matchings. The main di¤erence of those papers

are that some of them are modeled on the centralized market and the others

are on decentralized markets.

While in the centralized markets, there is a social planner who collects the

preferences of all agents and constructs the matching, in the decentralized ones,

the agents on both sides match with other themselves.

Among the centralized based paper in the literature, the closest one to our

paper is Alcalde (1996). Alcalde proposed a deferred acceptance algorithm

similar to Gale-Shapley, but in a now-or-never scenario, that is if an agent

receives an o¤er, she can never receive an o¤er in the subsequent stages. Alcalde

showed that in undomainated Nash equilibria, the mechanism ends up with the

full set of stable matchings.

The related papers to ours have been published for the decentralized markets.

Blum, Roth and Rothblum (1997) poposed an defer-acceptance process. They

assume there is uncertainty; each proposer only knows to who she proposes and
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each receiver-replier knows only his o¤er. Also, the order of the proposers to

make o¤ers is randomized. They analyzed the Nash equilibria. They show that

since the order of the proposers are randomized, whether the mechanism ends

up with proposer-optimal matching or not depends on the initial point of the

game.

Alcalde et al. (1998) proposed a one-stage game. In the �rst stage the

o¤ers are made, and in the second the candidates-receivers accept at most one

proposal. The poposers simultaneously make the o¤er all the agents they want

on the other side. Then, then the proposals are accepted or rejected and the

game ends. They show that this implements the full set of stable matchings in

subgame perfect nash equilibrium.

Alcalde and Romero-Medina (2000) proposed a many-to-one sequential one-

stage mechanism similar to Gale and Shapley. In the �rst stage, the students

simultaneously send a letter to at most one college and in the second stage the

colleges select the set of best students among their candidates. They show that

this mechanism implements the full set of stable matchings in subgame Nash

equilibrium.

Peleg (1997) proposed a one-stage one-to-one model for the marriage prob-

lem. The agents on both sides propose to at most one agent on the other side.

If a man and a woman propose each other, then they form a pair. Peleg showed

that his mechanism implements the full set of stable matchings by strong Nash

equilibria. He also showed that an extensive form game �nds the same set in

subgame Nash equilibrium.

Roth and Xiaolin (1997) proposed a deferred acceptance algortihm for the

market for clinical psychologists. When the agents on one side of the market

make the o¤ers, the other side can hold the o¤er for a while. They show that

the results coincide with Gale-Shapley.
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Haeringer and Wooders (2011) proposed a sequential mechanism and they

studied the mechanism for four di¤erent scenarios. In their game, the �rms

propose and the workers accept or reject the o¤ers. Their scenarios are based

on whether �rms and workers acts simultaneously or non-simultaneously. They

show that regarless of the �rms, if the workers act simultaneously the outcome

includes the full set of stable matchings, but also includes unstable ones. If they

act non-simultaneously, the result is worker-optimal stable matching.

Romero-Medina and Triossi (2013) proposed an extension of the model by

Alcalde and Romero-Medina (2000). Precisely, they extended the serial dicta-

torship. The students simultaneously propose to the colleges. And, then, the

colleges in a �xed ordering are allowed to accept their o¤ers in one single queue.

They show that this extended-serial dictatorship mechanism implements the full

set of stable matchings in subgame perfect Nash equilibrium.

Among those papers, our work is based on a semi-centralized work with

a multi-stage game for one side. In this perspective, it is similar to Romero-

Medina and Triossi (2013), but we allow multi-ordering; not restricted to one

queue. There is a similarity to the paper by Haeringer and Wooders (2011)

in the sense that there are multi-stages for non-proposers. But, we �x the the

preferences of one side which makes them non-strategic players, namely "objects"

in the game. Moreover, their looks like a chess game; the sides of the market

play after the other side. The game consists of multi one-stage games. But, in

our paper for one side (restricters) it is one stage game and for the other side

(choosers) it is a multi stage game and they play the game with each other; not

with the restricter agents on the other side. Since our models are di¤erent, we

observe the di¤erences in the outcomes; our mechanims never ends up with a

best stable matching for any side, unless there is only one single matching of

the game. Besides, our mechanism does not choose any unstable matching in
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subgame Nash equilibrium.

2.5 A Simple Extension of the Mechanism into Many-to-

Many Case

Our basic mechanism 
 is de�ned for one-to-one matching games. And, we

have showed that it implements the full set of stable matchings.

We can simply extent the mechanism into many-to-one games for which the

college admission problem is a well-known example. First, we should convert

the game into one-to-one. We can do this conversion by regarding each "seat" of

a school as a "school with one seat". In this way, we seperate the restricters the

schools into the seats. And, the seats of the same schools have the preference

orderings over the set of the students. Tehn, it is easy to show that our previous

results hold.

More interesting extension of one-to-one games is many-to-many games for

which many of the properties of one-to-one models do not extend. The main

reason for that is in this wider class of two-sided matching games, object com-

parison is introduced di¤erent from one-to-one games.

The usual example for this class is the match of the workers and the �rms.

There are two disjoint sets of the workers and the �rms and each agent has

a preference ordering over the agents of the other set. The main di¤erence of

many-to-many games from other scenarios is that any agent may have more

than one mate. That is any worker may be matched to one than one �rm and

also the opposite. Formally,

De�nition 16 Let W = fw1; :::; wkg and F = ff1; :::; flg be two non-empty,

�nite and disjoint sets of workers and �rms, with the quotas QW = fwq1; :::; w
q
kg

and QF = ffq1 ; :::; f
q
l g. Each agent has a strict preference ordering R over the

agents of the other set; that is Rwi2W be the preference ordering of wi over
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F . For any wi; wj 2 W , wiRfiwj means fi prefers wi over wj. A Preference

Pro�le R = (Ri)i2F[W is the a set of preferences of all agents in the model.

RW[F is the set of all preference pro�les for the sets F and W .

De�nition 17 rw(f) is the rank of agent f in preference of agent w. That is,

rw(f) = k means f is the kth best �rm of w.

De�nition 18 A matching � : P (F )=; ! P (W )=; is a mapping, where P (:)

is the power set. For any f 2 F and W �W , �(f) =W means that the set W

is the match of f . �(f) = f means f is single in the matching if W = ;. �.

�(P (F )=;)[(P (W )=;) is the set of all matchings between (P (F )=;) and (P (W )=;).

In this many-to-many model, we study the Pairwise Stability concept. But,

"object comparison" is not the topic of this paper. So, we drop the object

comparison part from the usual de�nition of pairwise stability.

De�nition 19 Let W and F be the sets of the workers and the �rms. Let

f; f 2 F and w;w 2 W . Let � : P (F )=; ! P (W )=; be a matching. Let

w 2 �(f) and f 2 �(w) with fRwf and wRfw. Then, we say the matching �

is pairwise blocked by the pair (f; w). Then, we call � pairwise unstable. If

there is no pairwise blocking, then � is pairwise stable.

Then we de�ne our mechanism 
 as,


 : RW[F �! �(P (F )=;)[(P (W )=;)

We shall apply our mechanism 
 to this many-to-many game.

2.5.1 The Flow of the Mechanism

Without loss of generality, we shall assign the �rms as the restricters and the

workers as the choosers; previously we have showed that order of the game does
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not change the result for one-to-one case and this many-to-many model is not

an execption.

If a chooser agent accepts the o¤er, both of the agents �ll one of their quotas.

Any agent is deleted from the game, when he �lls all of his positions.

Like in section 1:3:1, we have the concepts of a "smooth game" and a "con-

�ict" for the chooser side. But, since the choosers stay in the game longer in

this model, we need to modify our de�nitions.

De�nition 20 Let w 2 W be any chooser agent and fi; fj 2 F be any two

restricter agents. If rfi(w) > rfj (w) and fiRwfj and at the step k = rfj (w)

non of fi and fj have been deleted from the game yet, then we say the agent

w experiences a con�ict between agents fi and fj if the current rank of fj in

R�w, r
�
fj
(w), is bigger than the current quota of w, that is r�fj (w) > w

q� , in the

current subgame.

The de�nition says that for a chooser agent if the turn for a worse restricter

comes before any better one, given that non of those restricters have not been

deleted from the game yet, and if this restricter is not one of the favorite agents

for the remaining positions, then the chooser agent experiences a con�ict; he

may not be sure about his decision.

The above de�nition is the key factor of this section. Since, the choosers

may match to multi partners, we only observe con�icts when the restricter of

the issue is not a top candidate for the quotas of the chooser. If the numerical

values of both of the agents�ranks are less than their capacity, the agent directly

accepts the o¤er.

De�nition 21 If a chooser agent w 2W does not experience any con�ict, then

we say w has a smooth game.

The de�nition of a cycle is same as the one in section 1:3:1.
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De�nition 22 Let wi;wj 2 W be the chooser agents who experince con�icts

on the same restricter agents fi; fj 2 F , in an opposite way. Then, we say that

the set of the choosers fwi;wjg experince a cyclical con�ict for the set of the

restricters ffi; fjg.

According to above set up and de�nitions, all the results of the section 1:3

also hold for this many-to-many game.

Theorem 23 If Nash Equilibria of the cycles are chosen, the outcome of our

mechanism is the set of the pairwise stable matchings for any preference pro�le.

In other words, the mechanism 
 implements the full set of the pariwise stable

matchings.

Proof. The proof is based on the same arguments with Theorem 14.

It is easy to show that truth telling is weakly dominant for the choosers by

Theorem 15.

2.6 The Conclusion

In this paper, we have proposed a new dynamic mechanism for the semi-centralized

two-sided mathcing games. The model mimics the college admission procedures

where the number of agents is too high in the market, like Turkey, Greece, Iran

and China, where the admissions to the universities are centralized.

The mechanism is de�nedon a market where the preferences of one side

are �xed (the schools) and we the other side (the students) play the game

simultaneously. Which matching to be found is determined by the actions of

the students at the decision steps.

The mechanism is an improvement under incomplete information in the sense

that it partially or fully eliminates the blocking pairs depending on the pref-

erence pro�le. Under complete information, it ends up with one of the stable
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matchings. Precisely, the set of the possible outcomes of the procedure is the

set of the stable matchings for a given market.

We also shoewd that a simple extension of the mechanism into many-to-

many games, generates the full set of pairwise stable matchings, where we drop

the object comparison part.
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3 A Partially Biased Mechanism for the College

Admission Problem

Abstract

Evci (2014) showed that their mechanism implements the full set of sta-

ble matchings for a semi-centralized market. In this paper, we propose a new

mechanism to the same semi-centralized two-sided matching games.

We show that the mechanism generates a bias for the strategic player; that is

our mechanism improves the outcome for the centralized side. The mechanism

partitions the full domain; for the pro�les in one partition, our mechanism

coincides with the mechanism by Evci (2014) and for the other partition it end

up with the algortihm by Chooser-Optimal Gale - Shapley (1962).

3.1 Introduction

The seminal work by Gale and Shapley (1962) showed that every two-sided

matching game has a stable matching, which is known as the "stability theorem".

They also proved that there exist matchings which are best for either of the side

in pro�le. Depending on the proposer side, their algorithm ends up with the

stable matching which is the best for the prposers.

Evci (2014) proposed a mechanims for the semi-centralized two-sided mar-

kets. They propose the concept semi-centralized to the huge markets where the

number of agents is too high. In such markets, either applying an centralized

algorithm is not e¢ cient, or it is possible with some restrictions on the proce-

dure, which brings some ine¢ ciencies as Do¼gan and Yuret (2010) have showed.

Their mechanism in this speci�cally modi�ed market implements the full set of

stable matchings.
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Under the same conditions, that is in a huge market where centralization is

not possible in an e¢ cient way, we propose a mechanism to improve the outcome

for the strategic players, namely for the students in college admission problem.

We show that the mechanism is partially successful in achieving this goal.

Moreover, the mechanism we propose here is in fact a re�nement of the one

by Evci (2014). We apply a little change to their mechanism and we improve

the result for the choosers, as they call in their paper.

Since, we re�ne their mechanism, we directly adopt their notation. In the

next section, we propose our re�nement and the analysis of the game with the

characterization the results.

3.2 The Mechanism

In this section, we propose a re�nement of the mechanism by Evci (2014) and

analyze the e¤ects of this little modi�cation2 . Since they call their mechanism


, we shall use the letter � for ours.

The di¤erence of � from 
 is that when a chooser agent refuses the o¤er,

he is re-placed to the end of the queue of the same restricter agent instead of

loosing her forever as in 
. Now, we shall start with the most trivial example

to analyze the equilibrium.

Example 24 We will focus on R5 in Example 13.

R5 =

m1 m2 w1 w2

w2 w1 m1 m2

w1 w2 m2 m1

For the sets M and W , the set of all the possible matchings between them is

�M[W = f�1; �2g where

�1 = f(m1; w1); (m2; w2)g,

�2 = f(m1; w2); (m2; w1)g.
2 I would like to thank Giacomo Calzolari for suggesting this re�nement.
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For the pro�le R5, the matchings f�1; �2g are both stable and for the mecha-

nism 
 the Nash Equilibrium (NE) of this game is NE(w1; w2) = f(yes; yes); (no; no)g.

Under the mechanism �, the story changes.

First, let us assume that w1 says "no" and she is replaced to the end of the

queue of the agent m2. At the same step, if w2 says "no", then in the second

stage of the game, the tentative preference pro�le will look like,

R�5 =

m1 m2 w1 w2

w1 w2 m1 m2

w2 w1 m2 m1

Then, in this step both of the choosers say "yes" and we end up with the

matching �1 which is chooser-optimal.

On the other hand, at the �rst step if w2 says "yes", then she forms the pair

(m1; w2) and both of them are deleted from the pro�le. In the second stage of

the game, the tentative preference pro�le will look like

R�5 =
m2

w1

Then, w1 forms the pair (m2; w1) and we end up with the matching �2 which

is restricter-optimal.

Secondly, let us assume that w1 says "yes", then she forms the pair (m2; w1)

and both of them are deleted from the pro�le. At the �rst step, whatever w2

says, we end up with the matching �2.

Hence, at the �rst step, if w1 says "yes", the game ends up with f�2g and if

w1 says "no", the game ends up with one of f�1; �2g. So, regardless of which

action w2 takes, for w1 rejecting the o¤er is weakly dominant. The arguments

are the same for w2:

Therefore, for the mechanism � the Nash Equilibrium (NE) of this game is

NE(w1; w2) = f(no; no)g, which ends up with �1, the chooser-optimal matching.

We have showed that for the pro�le R5, � is an improvement for the choosers;
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of course the case is opposite for the restricters. We continue with another

example.

Example 25 We will study R3 in Example 8.

R3 =

m1 m2 m3 w1 w2 w3

w1 w2 w2 m3 m1 m3

w3 w1 w3 m2 m2 m1

w2 w3 w1 m1 m3 m2

The set of the stable matchings for R3 is f�4; �5g according to the list of the

matchings in Example 1. Here, the strategic players are w1 and w2.

The same arguments with those in Example 16 work. For both of w1 and w2,

rejecting the o¤eres at step 1 is weakly dominant. Therefore, for the mechanism

� the Nash Equilibrium (NE) of this game is NE(w1; w2) = f(no; no)g, which

ends up with �5, the chooser-optimal matching.

Example 25 shows that, eventhough it is not a trivial example, for R3, which

has two stable matchings, � is an improvement for the choosers.

Claim 26 From Example 24 and 25, can we conclude that for all pro�les with

two stable matchings (one cyclical con�ict), � is an improvement for the choosers?

The following example shows that the answer is negative.

Example 27 Let M = fm1;m2;m3g and W = fw1; w2; w3g be the sets of men

and women who have the following preference pro�le R6:

R6 =

m1 m2 m3 w1 w2 w3

w1 w2 w1 m2 m1 m1

w3 w1 w3 m1 m3 m2

w2 w3 w2 m3 m2 m3

For pro�le R6, the set of stable matchings is f�3; �5g. Now, we will analyze

the possible scenarios.
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First, let us assume that w1 accepts the o¤er and w2 does not at step 1, then

we end up with �6, which w1 prefers less than �3, chooser-optimal matching.

So, if w2 rejects the o¤er, so does w1.

Second, let us assume that w1 rejects the o¤er and w2 accepts at step 1, then

we end up with �1, which w1 prefers less than �5, restricter-optimal matching.

Therefore, if w2 accepts the o¤er, so does w1.

Hence, there is no dominant strategy at step 1. We conclude that � is not

an improvement for the choosers for R6.

Next example will be on a pro�le with three stable matchings.

Example 28 Let M = fm1;m2;m3g and W = fw1; w2; w3g be the sets of men

and women who have the following preference pro�le R7:

R7 =

m1 m2 m3 w1 w2 w3

w1 w2 w3 m3 m1 m2

w2 w1 w2 m2 m3 m1

w3 w3 w1 m1 m2 m3

For pro�le R7, the set of stable matchings is f�2; �4; �5g. Now, we will

analyze the possible scenarios for w1. The table below shows all possible decisions

at step 1 and corresponding mate that w1 matches from the game.

w1 Y es No Y es No Y es No Y es No

w2 Y es Y es Y es Y es No No No No

w3 Y es Y es No No Y es Y es No No

Mate m1 m1 m1 m3 m1 m2 m1 m3

So, we conclude that for w1 rejecting the o¤er at step 1 is weakly dominant.

Same analysis for w2 and w3 shows that also for those agents it is a dominant

strategy to refuse. Therefore, for the mechanism � the Nash Equilibrium (NE)

of this game is NE(w1; w2; w3) = f(no; no; no)g, which ends up with �2, the

chooser-optimal matching.
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Example 28 shows that, for R7, which has three stable matchings (inter-

dependent cycles), � is an improvement for the choosers.

Claim 29 From Example 28, can we conclude that for all pro�les with three sta-

ble matchings (inter-dependent cycles), � is an improvement for the choosers?

The following example shows that the answer is negative.

Example 30 We will study R1 in Example 1.

R1 =

m1 m2 m3 w1 w2 w3

w1 w2 w2 m3 m1 m2

w2 w1 w3 m2 m2 m1

w3 w3 w1 m1 m3 m3

For pro�le R1, the set of stable matchings is f�2; �4; �5g. Now, we will

analyze the possible scenarios.

First, let us assume that w1 accepts the o¤er and w2 does not at step 1, then

we end up with �6, which w2 prefers less than �5, men-optimal matching. So,

if w1 accepts the o¤er, so does w2.

Second, let us assume that w1 rejects the o¤er and w2 accepts at step 1,

then we end up with �1, which w2 prefers less than �4 or �2 (women-optimal

matching). Hence, w2 is bounded by the action of w1 at step 1.

Finally, let us assume that both of w1 and w2 reject the o¤ers at step 1, then

we will have the following tentative pro�le,

R�1 =

m1 m2 m3 w1 w2 w3

w2 w1 w3 m3 m1 m2

w3 w3 w1 m2 m2 m1

w1 w2 w2 m1 m3 m3

For pro�le R�1, the set of stable matchings is f�2; �4g. And, it is easy to

show that at the second step of R�1 for w1 and w3, rejecting the o¤ers is weakly

dominant which leads us to �2, the women-optimal matching.
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Since there is no dominant strategy at the �rst step of R1, we cannot conclude

that the outcome set is f�2; �5g. Even if we ended up with the set f�2; �5g

by dominant strategies, we could not say that this set is better than the set

f�2; �4; �5g; object comparison is not the topic of this paper.

So far we have showed that for the pro�les with independent or inter-

dependent cyclical con�icts � may or may not be an improvement for the

choosers compared to 
. The bigger pro�les with more than three stable match-

ings (including incomparable matchings) consist of both independent and inter-

dependent cycles. Hence, the same arguments and similar examples, like above,

work also for those pro�les.

Proposition 31 Let M = fm1; :::;mkg be the restricter and W = fw1; :::; wlg

be the chooser side, with l > k. @R = (Ri)i2M[W 2 RW[M , � is an improve-

ment for the choosers. In other words, 8R = (Ri)i2M[W 2 RW[M , 
 and �

coincide.

Proof. The proof is straight forward. For simplicity let us assume k = n and

l = n+ 1. Let R 2 RW[M be any pro�le.

If R has only one stable matching, then both of 
 and � �nds it. Hence,

they coincide.

Let us assume R has more than one stable matching. Let�M[W = f�1; :::; �rg

be the set of all stable matchings for R. From Roth and Sotomayor (1990), we

know that for a pro�le R, the set of the agents that are matched is the same

for all stable matchings. Therefore, the set of n women matched to n men are

same for all � 2 �M[W .

Let w� 2 W be the agent who remains single for all stable matchings. Let

w 2W be one the agents in stable matchings. We only need to show that there

exists a cycle where w does not have a weakly dominant strategy.
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Without loss of generalirt, let us assume 8w 2 W=fwg accept the o¤ers

in the �rst cycle they confront and w rejects the o¤er by m 2 M and she is

re-placed to the end of the same queue. Since 8m 2 M=fmg have been taken

and deleted from the pro�le, in the next step w� accepts the o¤er by m 2 M

and forms the pair (m;w�). w remains single which she prefers less than being

matched to m. Hence, w is bounded by the actions of the other agents, like

in 
. The same argument works for any other agent that is matched in stable

matchings.

We conclude that � is not an improvement and it coincides with 
.

Finally, we state our most general result.

Theorem 32 Let M = fm1; :::;mkg be the restricter and W = fw1; :::; wlg be

the chooser side. Let RW[M be the set of all pro�les.

Let R�;R��;R��� 2 RW[M be disjoint sub-domains, that is R�[R��[R��� =

RW[M and R� \ R�� = ;, R� \ R��� = ;, R�� \ R��� = ;, where we have k � l

for R� and R�� and k < l for R���.

Let GSChooser denote the mechanism by Gale and Shapley where, as we call,

the chooser side propose. Then, we have

� =

8>>>>>><>>>>>>:
GSChooser; if R 2 R�


; if R 2 R��


; if R 2 R���

Proof. Examples 24� 30 and Proposition 31 proves the theorem.
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3.3 The Conclusion

In this paper, we have proposed a new mechanism to generate a bias for the

chooser side in semi-centralized two-sided matching game as described in Evci

(2014). We have showed that we are partially successful for this purpose; the

re�ned mechanism is an improvement in a subdomain.

Basically the mechanism � partitions the full domain into two. In one of

them, it coincides with GSChooser, that is it ends up with chooser-optimal stable

matching, and in the other it coincides with 
, that is it ends up with any of

the stable matchings. Then, for the second case we partition this sub-domain

into two as R�� and R���.

Unfortunately, for now we cannot know further about the distinction between

R� and R��. This is because the improvement for the case k � l is pro�le based

and we do not have any extra relation for the pro�les within R� or R��.

55



References

[1] Do¼gan, K. & Yuret, D. (2010), "Üniversitelere Ö¼grenci Yerleştirme Siste-
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4 A SimpleMechanism for the Roommate Prob-

lem

Abstract

Gale and Shapley (1962) proposed that there is a similar game to marriage

problem called "the roommate problem". And, they showed that unlike the

marriage problem, the roommate problem may have unstable solutions. In

other words, the stability theorem fails for the roommate problem.

In this paper, we propose a new mechanism to the roommate problem.

Firstly, the mechanism is successful in determining the reason of instability.

Hence, it detects whether any given pro�le has a stable matching or not. If the

pro�le has a stable solution, the mechanism �nds that matching. We also show

how we can end up with any stable matchings in the existence of multi stability

using our mechanism.

4.1 Introduction

Gale and Shapley (1962) described the well known roommate problem in

their seminal paper. In the problem, there are even number of boys and rooms

for paired boys. Each boy has a preference ordering over the other boys. The

objective is to allocate these boys to the rooms. They showed that this problem

does not hold the stability theorem and they describe a counter-example in their

paper.

Knuth (1976) showed that multiple solutions could exist, like the marriage

problem. In his 12 famous questions he raised in these lecture notes he asked

for an e¢ cient algorithm to �nd a stable solution for the roommate problem.

Irving (1985) proposed a deferred acceptance algorithm for the roommate

problem. The algorithm tells whether a given pro�le has a stable solution or
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not and if there exists the algorithm �nds it.

In this paper, we propose a simple mechanism to this problem. We ben-

e�t from the mechanism proposed in Evci (2014). The problem here is that

their mechanism is for semi-centralized two-sided matching games. But, the

roommate problem is a one-sided matching game. Hence, �rstly we convert

the model of the roommate problem into a semi-centralized two-sided game by

using auxiliary functions, and then we will apply the mechanism by Evci (2014)

to this modi�ed market. And also, we give our solution to multi stability case

using our mechanism.

In the next section, we describe the roommate problem with an example.

Later, we propose our mechanism and model.

4.2 Basics and Examples

"The Roommate Problem" is one of the most interesting examples of matching

theory.3 In the game we match the agents, but there is only side.

The problem was proposed �rstly by Gale and Shapley (1962). In the

roommate problem, as one-sided game, we have an even-number cardinal set of

agents. There are 2n number boys and n rooms. Each boy has a preference

ordering over the other (2n � 1) boys. The objective is to allocate those boys

to n rooms in pairs.

In their paper, Gale and Shapley give a counter example which shows that

stability theorem, which holds for the marriage problem, fails for the roommate

problem. They say "...consider boys �, �, 
 and �, where � ranks � �rst, �

ranks 
 �rst, 
 ranks � �rst, and �, � and 
 all rank � last. Then regarless

of ��s preferences...". We shall demonstrate their example with the following

preference pro�le R8,
3 I would like to thank Jean Lainé for the suggestion to test the mechanism for the roommate

problem.
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R8 =

a b c d

b c a c

c a b b

d d d a

where N = fa; b; c; dg be the set of the agents and �N = f�1; �2; �3g be the

set of all possible matchings, where

�1 = f(a; b); (c; d)g,

�2 = f(a; c); (b; d)g,

�3 = f(a; d); (b; c)g.

None of those matchings is stable; �1 is blocked by (b; c), �2 is blocked by

(a; b) and �3 is blocked by (a; c). So, in this one-sided game, we observe unstable

matching games as well as the stable ones.

4.3 The Mechanism and The Model

In this section we re�ne the mechanism 
 of Evci (2014) to the roommate prob-

lem. The mechanism 
 is designed for two-sided matching games. Therefore,

we should modify either the mechanism or the roommate problem. To stick

with the mechanism and its structure, we shall modify the game. So, we need

to convert this game into two-sided case. For this purpose, we bene�t from a

well-known social welfare function (SWF).

De�nition 33 Let A be a set of alternatives, with Card(A) = m, and N be

a set of objects, with Card(n). 8i 2 N , Ri be the (strict) preference ordering

of i over the set of alternatives A. R be the set of all orderings and RN be a

preference pro�le.

A Social Welfare Function (SWF) f : RN �! R gives the social preference

of the society N over the alternative set A.
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This is the usual de�nition of a social welfare function in Social Choice

Theory. Basically, we aggregate the orderings of all agents. Next, we give the

de�nition of a famous SWF, which is one of the Scoring Rules.

De�nition 34 In a pro�le, the Borda Score BS(x) of an alternative x is BS(x) =P
i2N

[(m+ 1)� ri(x)]. In a voting system, the Borda Rule as a SWF, ranks the

alternatives according to their Borda Scores. We allow weak orders in social

preference.

And, this is the usual the Borda Rule de�nition. In the roommate problem,

since there is no alternative set, we modify the de�niton of the Borda Rule to

this game. Now, we shall show this modi�cation in an example.

Example 35 Let N = fa; b; c; d; e; fg be the set boys with a preference pro�le

R9,

R9 =

a b c d e f

b c d a a b

c d a b b a

d a b c c c

e e f f d d

f f e e f e

Now, we shall compute the Borda scores of the agents.

B(a) = 0 + 3 + 4 + 5 + 5 + 4 = 21

B(b) = 5 + 0 + 3 + 4 + 4 + 5 = 21

B(c) = 4 + 5 + 0 + 3 + 3 + 3 = 18

B(d) = 3 + 4 + 5 + 0 + 2 + 2 = 16

B(e) = 2 + 2 + 1 + 1 + 0 + 1 = 7

B(f) = 1 + 1 + 2 + 2 + 1 + 0 = 7
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From these scores, we get the pro�le to be used for our mechanism,

R�9 =

a b c d e f B(R)

b c d a a b ab

c d a b b a c

d a b c c c d

e e f f d d ef

f f e e f e

Since the mechanism in Evci (2014) is called 
, we shall denote ours by �.

� is de�ned over the preference pro�le RN and its Borda ranking B(RN ) into

the set of matchings �N . Formally,

� : (RN ; B(RN )) �! �N .

Now, we describe how our mechanism works here. We use the Borda ranking

of preference pro�le to split the game into two-sided case. The Borda ranking

gives the order of the agents that will be the restricter in all successive steps.

We assign the �rst agent in Borda ranking as the restricter. Then, all the

other agents take place in the chooser side. If there is more than one agent

at the top, we randomly choose one of them and assign him as the restricter.

Then, we run the mechanism 
.

Claim 36 At the end of the �rst stage, we get a pair which consists of the

restricter and one of the choosers.

Proof. The proof is easy. Since the restricter is (one of) the top agent(s) in

the Borda ranking, he is a favorite agent. If there exists a chooser agent whose

the best agent is the restricter, then trivially they form a pair.

So, let us assume that there is no agent whose the best agent is this restricter.

This is possible under the Borda rule. If all the choosers reject, then we get

61



an unstable matching (in the existence of stable matchings) which is against

the rationality of the agents. Since there is only one ordering, the choosers do

not confront any con�ict or cyclical con�ict as they do in the games for 
, it is

easy to show that in subgame perfect Nash equilibrium, since there is only one

ranking (that is serial dictatorship), there exists a chooser that accepts the o¤er

because the other better alternatives are not achievable.

Then, we delete the agents of the pair from the preference pro�le and the

Borda ranking. For the second stage of the game, we assign the best agent in

the Borda ranking as the restricter. Then, we run our mechanism. And, so on.

Now, we demonstrate the mechanism � with an example.

Example 37 We will study R9 in Example 35.

R�9 =

a b c d e f B(R)

b c d a a b ab

c d a b b a c

d a b c c c d

e e f f d d ef

f f e e f e

Since there is tie between a and b, we randomly choose one of them.

Firstly, let us pick a as the restricter. Firstly, b is called to make a choice. If

he accepts the o¤er, then he forms the pair (a; b). In the second stage c becomes

the restricter. d is called for an o¤er and d accepts the o¤er since a and b are

deleted from the pro�le and so there is no better mate remained. Then, he forms

the pair (c; d). The �nal pair (e; f) is automatically formed. Now, let us assume

that b rejects the o¤er in the �rst stage. Then, a o¤ers to c. If c rejects the

o¤er, then d will be called and surely he will accept the o¤er which means c will

loose his chance for both of a and d. So, c accepts the o¤er and forms the pair

(a; c). In the second stage, b will be the restricter and he o¤ers to d. d will
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de�nitely accepts and forms the pair (b; d). And, the pair is (e; f). Now, let us

back to the beginning of the �rst stage. If b accepts the o¤er from a, he forms

the pair (a; b). If he rejects a�s o¤er, then he forms the pair (b; d). Since, he

prefers d over a, then in the equilibrium, he rejects at the �rst stage and we end

up with matching � = f(a; c); (b; d); (e; f)g, which is the only stable matching

for R9.

Secondly, let us pick b as the restricter of the �rst stage. It is easy to show

that for c rejecting b�s o¤er is dominant and we end up with the same matching

�.

Example 37 showed that the mechanism �nds a stable matching for R9.

From Theorem 14 in section 2:3:1, this result is not unexpected. R9 has a stable

matching and our mechanism � �nds it.

But, what about R8, the example by Gale and Shapley? What do we ob-

serve if we apply our mechanism to some pro�le that does not have any stable

matching?

Example 38 We will study R8.

R�8 =

a b c d B(R)

b c a c c

c a b b b

d d d a a

d

In the �rst stage, c will be the restricter. a is called to make a decision. If

a accepts the o¤er, he forms the pair (a; c). Then, the other pair will be (b; d).

If a rejects, then b will be called. De�nitely b accpets the o¤er and forms (b; c).

Then, the other pair will be automatically (a; d). So, at the beginning of the

stage, if a accepts the o¤er, then he matches to c. If he rejects, then his mate
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will be d. Since he prefers c over d, a accepts the o¤er by c. Then, we end up

with matching �2 = f(a; c); (b; d)g.

We applied the mechanism � to R8 and we end up with an unstable matching.

This result is not a surprise; we knew that there is no stable matching for this

pro�le. The unexpected point is the behaviour of our mechanism. In section

2, we showed that 
 is a stable mechanism; it always �nds a stable matching.

The surprise part is that as if there is stable matching for R8, the procedure is

very smooth. But, in the end it gives an ustable matching. Then, what is the

mistery for R8?

Next example will give us some clue about the perspective that we should

have to evaluate R8 or any other pro�le for which we do not end up with any

stable matching.

Example 39 Let N = fa; b; c; d; e; fg be the set boys with a preference pro�le

R10,

R�10 =

a b c d e f B(R)

c c d a a b a

b d a c b a c

d a b b c c b

e e f f d d d

f f e e f e ef

In the �rst stage, a will be the restricter. c is called to make a decision.

If c accepts the o¤er, he forms the pair (a; c). In the second stage b becomes

the restricter. d is called for an o¤er and d accepts the o¤er since a is deleted

from the pro�le and so there is no better mate remained. Then, he forms the

pair (b; d). The �nal pair (e; f) is automatically formed. And, we end up with

matching �i = f(a; c); (b; d); (e; f)g.
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Now, let us assume that c rejects the o¤er in the �rst stage. Then, a o¤ers

to b. If b accepts the o¤er, he forms the pair (a; b). In the second stage c becomes

the restricter. Then, c o¤ers to d and d accepts the o¤er since a is deleted from

the pro�le. Then, he forms the pair (c; d). The �nal pair (e; f) is automatically

formed. Then, we end up with matching �j = f(a; b); (c; d); (e; f)g.

If b rejects the o¤er in the �rst stage, then d will be called and surely he

will de�nitely accept the o¤er and forms the pair (a; d). In the second stage c

becomes the restricter. Then, c o¤ers to b and b de�nitely accepts the o¤er.

Then, he forms the pair (b; c). The �nal pair (e; f) is automatically formed.

Then, we end up with matching �k = f(a; d); (b; c); (e; f)g.

In the �rst stage (after c rejects a�s o¤er), if b accepts a�s o¤er, we end up

with �j. If he rejects a�s o¤er, we end up with �k. Since �kRb�j, b rejects the

o¤er by a.

In the �rst stage, if c accepts a�s o¤er, we end up with �i. If c rejects a�s

o¤er, we end up with �k. Since �iRc�k, c accepts the o¤er by a.

Hence, we end up with matching �i, which is unstable for R10.

We applied our mechanism � to R10 and we �nd an unstable matching. Is

R10 one of the pro�les which do not have any stable matching?

The answer is "No!". R10 has absolutely and only one stable matching and

it is �j .

As we have stated and proved, the mechanism 
 is stable. � is stronger than


, since there is only one queue and the chooser agents never experience any

con�ict. Then, why cannot � end up with a/the stable matching while there

exist some?

The de�nition below will help us to �gure out the reason.

De�nition 40 Let N be a set of agents. Let R be the preference pro�le and

B(R) is the corresponding Borda ranking. Let M � N be a proper subset of N .
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The preference pro�le R̂ of M is constructed by deleting the agents i 2 N=M in

R. Namely, R̂ is the pro�le Puri�ed from Irrelevant Alternatives (PIA)

of M and B(R̂) is the corresponding Borda ranking.

In the next example, we will examine R10 with puri�ed Borda ranking.

Example 41 R̂10 =

a b c d e f B(R) B(R̂)

c c d a a b a c

b d a c b a c ad

d a b b c c b b

e e f f d d d ef

f f e e f e ef

In R10, the agents e and f are the worst alternatives for the rest of the

society and for each other they are same. If we purify R10 by excluding e and f ,

we get the relationships of fa; b; c; dg with each other, as seen in pro�le Rfa;b;c;dg10

below,

Rfa;b;c;dg10 =

a b c d B(R̂)

c c d a c

b d a c ad

d a b b b

The comparison of B(R) and B(R̂) tells us that eventhough a is the most

favorite member of the set fa; b; c; dg, the support from an "irrelevant" set fe; fg

makes him the best, which falsi�es the result of the game. The fake position of

a makes him get a better mate which leads to an unstable matching.

If we start the game with a, then we get �i = f(a; c); (b; d); (e; f)g. On the

other hand, strating with c gives �j = f(a; b); (c; d); (e; f)g and we have �iRa�j.

Before we �nd out why the same scenario does not happen for R9, we have

a corollary to understand the story in R9.
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Corollary 42 Let M � N be an even-cardinal subset whose members form a

(top) cycle in puri�ed Borda ranking. There is only one stable matching and in

that matching agents form pairs with their mid-rank agents.

Proof. If Card(M) = 2, then it is trivial; for both of the agents, the other is

the best for him and they form the pair.

Let Card(M) > 2. Mid-ranks give the stable matching which is easy to

check. Let i; j 2 M be two agents in pair in the stable case. Now, we shall

assume there is another stable matching where we have the pair (i; k). If we

give, wlog, k 2M to i which i prefers more than j, because of the structure of a

cycle, k gets worse o¤. If Card(M) = 4, then the other agent l 2 M forms the

pair with j, (j; l). Using the structure of a cycle, we �nd that j becomes better

o¤ and l becomes worse o¤. Then, (k; l) blocks the matching. If Card(M) > 4,

we keep giving better agents to those who has become worse o¤ and we end

with a con�ict that there is no cycle among the members of M .

Now, we check the case for R9.

Example 43 R̂9 =

a b c d e f B(R) B(R̂)

b c d a a b ab abcd

c d a b b a c ef

d a b c c c d

e e f f d d ef

f f e e f e

For R9 with unpuri�ed ranking, since fa; bg is the top cycle of B(R), we run

our mechanism for both of a and b and we showed that starting with either a or

b gives the same stable matching.

As we have showed in Corollary 42, there is only one stable matching for the

set fa; b; c; dg among each other. Since our mechanism � is stable, whoever we

start with, the procedure ends up with the same matching.
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Since B(R)�s top cycle fa; bg is included by the one of B(R̂), R9 with un-

puri�ed Borda ranking gives coincidetanlly the stable matching. c and d would

give the same matching from the corollary.

Now, we will examine the pro�le R8, the example of Gale and Shapley, with

puri�ed orderings.

Example 44 R̂8 =

a b c d B(R) B(R̂)

b c a c c abc

c a b b b d

d d d a a

d

Since there is a cycle between fa; b; cg, we randomly pick one of the agents

and assign him as the restricter. If we start with a, we end up with �1 =

f(a; b); (c; d)g: Starting with b gives �3 = f(a; d); (b; c)g. And, �nally if c is the

restricter of the �rst stage, the game reaches at �2 = f(a; c); (b; d)g. As we have

already said, none of them is stable.

From above example, the following question arises; what is the stability

condition (in terms of �)?

Following proposition generalizes the example of Gale and Shapley.

Proposition 45 Let N be a society and R̂ be their preference pro�le with puri-

�ed orderings. The pro�le R does not have any stable matching if and only if in

the game for R̂, the mechanism � confronts a cycle with odd number of agents

in a subgame.

Proof. ((=). Let M � N be a set of agents with odd number of cardinality.

From Corollary 42, we know that the agents of M match with each other. So,

one of them has to form a pair with an agent from the bottom set. The existence
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of an agent in a bottom set is guaranteed by the number of agents in the set

N . Let i 2 M be that agent and j 2 N=M be his mate. From the de�nition

of a cycle, it is clear that xRij where x 2 M=fig. And, again from Corollary

42, there is an agent k 2 M such that rk(i) = 1. So, the pair (k; i) blocks the

matching.

(=)). We suppose that R does not have any stable matching and there is

no cycle with odd number of agents in game of �. We will show that this leads

to a contradiction.

Firstly, let us assume that there is no cycle at all. So, B(R̂) is a sequence of

agents. Let (i; j) be a blocking pair. Wlog, let us assume i has a higher raking

than j does in B(R̂). Since (i; j) blocks the matching, i has a mate k such

that jRik and also j has a mate l such that iRj l. This means that until j�s

turn, i has not been taken. Since, we have (j; l), j has not chosen any agent

until his turn for i, because better agents are not achievable for him.. Antd,

�nally, when it is his turn, he does not choose i and in a later stage he chooses

l. Eventhough he has a chance, he does not choose i, which contradicts to the

rationality axiom. This contradicts to instability.

Secondly, let us assume that the game consist(s) of cycle(s) with even number

of agents. From Corollary 42, we know that agents end up one and only one

matching where they form pairs with each other in the cycle. This contradicts

to instability.

Finally, if the game is a combination of two above cases, same arguments

work.

The �nal topic of this paper is multi stability. Like for the marriage problem,

in the roommate problem some pro�les have more than one stable matching.

The reason of multi stability is, not surprisingly, the existence of the cycles of

a set of agents for another disjoint set. Since we already did an exhaustive
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analysis of such cycles, we will not do it again in this section.

The next example is on a pro�le with multi stability and the outcome of the

mechainsm �.

Example 46 Let N = fa; b; c; dg be any set of boys with the pro�le R11,

R̂11 =

a b c d B(R) B(Rfa;b;cg) B(Rfa;b;dg) B(Rfb;c;dg)

c d b a a abc d b

d a a b bd a d

b c d c c b c

�N = f�1; �2; �3g be the set of all possible matchings, where

�1 = f(a; b); (c; d)g,

�2 = f(a; c); (b; d)g,

�3 = f(a; d); (b; c)g.

For pro�le R11, the set of stable matchings is f�2; �3g. As we see, there is

no one puri�ed ordering for the whole set. So, any agent could be the restricter

of the �rst stage. This is because of the cycle between the sets fa; bg and fc; dg.

It is easy to that if we start the game with a or b, we end up with matching

�3. On the other hand, starting with c or d gives us matching �2.

Hence, in the existence of multi stability, we need to run all puri�ed orderings

in order to �nd all of the stable matchings of the pro�le.

Now, we state the most general result.

Theorem 47 Let N be a set agents and R be their preference pro�le. Let R̂

be the puri�ed ordering (or one of the puri�ed orderings when multiple). The

mechanism � de�ned over R̂, formally

� : (RN ; B(R̂N )) �! �N
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gives a stable matching, when there exists some, and gives a Pareto E¢ cient

matching in the absence of stability.

Proof. The stability part has been proved by the examples, corollaries, claims

and propositions so far.

Pareto e¢ ciency is proved from the de�nition of a cycle with odd number of

agents. There always exists an agent who matches to his most favorite choice.

Increasing the "payo¤s" of the blocking pair damages to this agent. Hence, the

matching from the procedure is Pareto e¢ cient.

4.4 The Conclusion

In this paper, we have proposed a simple mechanism to the roommate problem.

The mechanism is a re�nement of the mechanism by Evci (2014). While applying

their mechanism to this problem, we have bene�tted from the Borda rule in a

scial welfare function form. Then, we analyze the e¤ect of this SWF in two

scenarios by simply seperating the raw and puri�ed orderings.

First of all, as we have showed, the mechanism � is quite successful under the

puri�ed orderings in determining the stability of any given pro�le. The success

of � for the raw orderings depends on whether it coincide with the puri�ed

orderings or not. As long as the top set of the raw orderings concide with those

of puri�ed orderings, we end up with a/the stable matchings.

We have showed that in the absence of stability, the mechanism � ends up

with a Pareto e¢ cient matching.

And �nally, we showed that � is also an easy and strong mechanism to �nd

all the stable matchings for a given pro�le in the existence of multiple case.

71



References

[1] Evci, B. (2014), "A New Mechanism to the Two-Sided Matching Games",

Unpublished manuscript.

[2] Gale, D. & Shapley, L.S. (1962), "College Admissions and the Stability of

Marriage", The American Mathematical Monthly, 69: 9-15.

[3] Irving, R.W. (1985), "An E¢ cient Algorithm for the Stable Roommates

Prolem", Journal of Algorithms 6, 577-595.

[4] Knuth, D.E. (1976), "Mariages Stables et leurs relations avec d�autres prob-

lèmes combinatoires", Les Presses de l�Université Montréal, Montréal.

72


